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Zhuangzi and Huizi were strolling along the dam of the Hao Waterfall 
when 

Zhuangzi said, “See how the minnows come out and dart around where they 
please! That’s what fish really enjoy!”

Huizi said, “You’re not a fish — how do you know what fish enjoy?”

Zhuangzi said, “You’re not me, so how do you know I don’t know what fish 
enjoy?”

Huizi said, “I’m not you, so I certainly don’t know what you know. On the 
other hand, you’re certainly not a fish — so that still proves you don’t know 
what fish enjoy!”

Zhuangzi said, “Let’s go back to your original question, please. You asked 
me how I know what fish enjoy — so you already knew I knew it when you 
asked the question. I know it by standing here beside the Hao.” 

- Zhuang Zhou
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Abstract

Small molecule inhibitors are commonly used to target protein targets that assist in 
the spread of diseases such as AIDS, cancer and deadly forms of influenza. Despite 

drug companies spending millions on R&D, the number of drugs that pass clinical trials 
is limited due to difficulties in engineering optimal non-covalent interactions. As many 
protein targets have the ability to rapidly evolve resistance, there is an urgent need for 
methods that rapidly identify effective new compounds.

The thermodynamic driving force behind most biochemical reactions is known as 
the Gibbs free energy and it contains opposing dynamic and structural components 
that are known as the entropy (ΔS°) and enthalpy (ΔH°) respectively. ΔG° = ΔH° 
- TΔS°. Traditionally, drug design focussed on complementing the shape of an 
inhibitor to the binding cavity to optimise ΔG° favourability. However, this approach 
neglects the entropic contribution and phenomena such as Entropy-Enthalpy 
Compensation (EEC) often result in favourable bonding interactions not improving 
ΔG°, due to entropic unfavorability. Similarly, attempts  to optimise inhibitor entropy 
can also have unpredictable results. Experimental methods such as ITC report on global 
thermodynamics, but have difficulties identifying the underlying molecular rationale 
for measured values. However, computational techniques do not suffer from the same 
limitations.

MUP-I can promiscuously bind panels of hydrophobic ligands that possess incremental 
structural differences. Thus, small perturbations to the system can be studied through 
various in silico approaches. This work analyses the trends exhibited across these panels 
by examining the dynamic component via the calculation of per-unit entropies of protein, 
ligand and solvent. Two new methods were developed to assess the translational and 
rotational contributions to TΔS°, and a protocol created to study ligand internalisation. 
Synthesising this information with structural data obtained from spatial data on the 
binding cavity, intermolecular contacts and H-bond analysis allowed detailed molecular 
rationale for the global thermodynamic signatures to be derived.
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Chapter 1.0: Introduction

1.1.0. The birth of rational drug design

Paul Ehrlich hypothesised the existence of chemoreceptors based on the observation 
that dyes are selectively absorbed by different histological samples. The realisation 

that the differences between chemoreceptors of healthy cells and those found in parasites, 
cancers and bacteria could be exploited to effect cures to diseases began the science 
of drug discovery. Ehrlich examined over 600 compounds before finally discovering 
Salvarsan, a drug effective against syphilis 1 2.

Drug targets are molecules that modulate enzymes, receptors or other proteins that 
exert physiological effects on the body. Targets can broadly be divided into seven 
classes, with receptors falling into one of the largest subsets (Fig.1.1) 3.

Subsequent to the discovery of a compound efficacious against disease, illness or 
microorganisms, chemists found they could modify the main chemical nucleus by 
altering functional groups to produce more potent analogues that overcame resistance. 
e.g. β-lactam antibiotics 5. Methodologies in drug design have changed throughout 
the years. A key tenet of drug discovery that has evolved alongside biochemical and 
structural characterisation of biomolecules is that of rational design. This is the use 
of biochemical and structural data to engineer ligands (small, non-covalent complex-
forming organic molecules) with a complementary shape to their protein targets. This 
can be done by improving an existing ligand or designing a completely new ligand 6–8. 
Detailed, high-resolution structural information of proteins with or without complexed 
ligands is regularly obtainable via techniques such as X-ray crystallography and nuclear 
magnetic resonance (NMR) spectroscopy. In October, 2013, the RCSB Protein Data 
Bank (PDB) held the details of 62,634 structures 9.

Fig.1.1. Potential 

therapeutic targets 

divided into seven 

different categories. 

Image taken from 

reference 4.
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Drug discovery is currently a multi-disciplinary field that integrates computational 
approaches with synthetic chemistry, biochemistry and biophysics. Computational 
methods are increasingly important in the search to effectively match protein targets 
with appropriate ligands. Once promising ligands are found, they can be optimised 
and assayed to determine their effectiveness. While complementarity is important for 
molecular recognition between interacting biomolecules, high-affinity ligand design is 
influenced by a complex assortment of often competing factors 10,11.

1.1.1. High throughput screening - A brute force approach

Pharmaceutical companies have spent considerable time and money creating large 
libraries of drug candidates that have potential activity against biological targets. 
When designing a new pharmacophore, a subset of these compounds is selected 
and approximately 500,000 compounds a week are rapidly assayed against protein 
targets using automated technologies such as robotics. This commonly used procedure 
is known as high throughput screening (HTS). Assays are normally carried out on 
microtitre plates containing 384 and 1,536 wells at higher capacities. There are many 
options for assays, including but not limited to enzyme-linked immunosorbent assays, 
optical sensing, mass spectrometry and reporter based assays. These procedures can be 
cell based or cell free. A preliminary assay often identifies potential candidates. These 
“hits” are subjected to more stringent subsequent rounds of testing to identify whether 
they qualify as a promising lead that is suitable for pre-clinical trials 12,13.

In order to maximise the generation of successful drugs in a cost-effective manner, the 
libraries must sample as much chemical space as possible. Most drug libraries contain 
around 106 compounds, whilst a moderate estimate of chemical space contains an excess 
of 1060 entities 2 14.

Fig.1.2. A representation of chemical space containing regions occupied by clusters of chemical compounds 

possessing biological affinity. Examples include proteases (purple), lipohillic GPCRs (blue) and Kinases (red). Those 

compounds with the shared characteristics of orally administered drugs (i.e. absorption, distribution, metabolism 
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and excretion) are shown to share space with the region shaded green. Image and information taken from reference 2.

The higher dimensionality of chemical space can be reduced to a map of chemical 
compounds that populate a 3D space. Chemographing is a technique by which 
these compounds are positioned relative to each other within this space according 
to their most significant chemical characteristics. These can be various physiological 
or topological properties such as size, lipophilicity, structural motifs or other physio-
chemical characteristics. If a very accurate map of chemical space could be generated, 
compounds neighbouring each other should possess high structural similarity and thus 
have a greater chance of displaying similar biological activities (Fig.1.2). The task facing 
drug designers is to map and ascertain the biologically relevant regions of chemical 
space 2,15,16.

Early libraries contained many natural compounds but their contents represented a 
very small region of chemical space. The advent of combinatorial chemistry allowed 
library expansion via the automated synthesis of large numbers of diverse compounds 
from chemical “building-blocks”.  This approach can be problematic as increasing the 
quantity of possible candidates does not necessarily increase the quality of the library. 
Compounds were characterised by excessive complexity and a lack of “drug-likeness” 
(§1.1.2). Despite exponential increases in library size, the discovery of new drugs 
remained approximately constant 4,15,17.

1.1.2. The rules of 5 - A set of exclusionary criteria

An influential concept pioneered by Lipinski was that of “drug-likeness”. In 1996, a 
study demonstrated that in contrast to the large dimensions of chemical space, the 
actual target space at that time was limited to ~500 drug targets (Fig.1.2). Lipinski 
argued that the methods adopted by pharmaceutical companies to explore chemical 
space were grossly inefficient, as the diversity generated by large combinatorial libraries 
hid the fact that only a smaller subset of those compounds actually had the requisite 
physio-chemical properties to be effective in humans. As drugs with similar properties 
are clustered together in the vastness of chemical space, it would be wiser to search 
target space by filtering out compounds that did not have drug-like properties. This 
argument is substantiated by a calculation that demonstrated that, if the hypothetical 
number of drug targets of molecular weight 500 in a human being was 1026, searching a 
chemical space containing (the lower estimate) of 1040 chemical entities generated only 
a 1 in 1014 probability of a hit. This problem is exacerbated by the fact that chemical 
libraries lack true diversity. They have a surfeit of molecules with agrochemical or 
pharmaceutical applications but are deficient in truly diverse compounds due to 
limitations in synthetic techniques 1,14.
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In practical terms, Lipinski advocated filtering potential drug candidates based on 
principles of Absorption, Distribution, Metabolism and Excretion (ADME), versus 
affinity alone. The rules of 5 is a series of exclusionary criteria based on ADME, whose 
purpose is to reduce the number (and associated cost) of drug candidates selected for 
HTS. This rule set for orally administered drugs was derived from examination of a 
selected subset of the World Drug Index (coined the USAN library) and contains 2,245 
drugs. The rules are based on the observation that successful orally administered drugs 
(i.e. those that had passed Phase I-IV clinical trials) display a distinct subset of physio-
chemical properties that are defined by solubility and intestinal permeation. However, 
compounds that did not enter preclinical or Phase I trials typically did not possess 
these essential characteristics. Thus, if a compound violates the rules of 5 (summarised 
below), it is very likely that it will fail. The strength of these rules is their ability to be 
successfully applied to lead compounds at a very early stage in their development. 

1. Compound should have < 5 hydrogen bond donors (expressed as the sum 
of OHs and NHs). Compounds capable of making too many hydrogen bonds 
tend to suffer permeability issues as they cannot cross the membrane bilayers 
easily.

2. Compound molecular weight should be < 500 Daltons. A higher molecular 
weight is also associated with poor permeability due to difficulties in passing 
intestinal and blood-brain barriers.

3. The logP is < 5. This measurement is the octanol-water partition coefficient 
and can be taken as a measure of lipophilicity (Table.1.1).

4. Compound should have less than 10 H-bond acceptors (calculated from 
the sum of Ns and Os). Once again, compounds with too many acceptor 
groups have lower permeability.

5. Actively transported compounds (e.g. antibiotics, antifungals, vitamins and 
cardiac glycosides) are excluded from the above rules.

logP
Optimum CNS penetration ~2 +/- 0.7
Optimum Oral absorption ~1.8
Optimum Intestinal absorption ~1.35 
Optimum Colonic absorption ~1.32 
Optimum Sub lingual absorption ~5.5 
Optimum Percutaneous  (& low mw) ~2.6

Table.1.1. Typical logP values. Data taken from reference 18
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Further analysis indicated that violations of any two rules did not exist in excess of 10% 
of successful compounds. The combination of high molecular weight and logP had the 
lowest rate (~1%) of passing clinical trials. The author noted that it is this combination 
that was usually enhanced by HTS 19. A detailed statistical study validated Lipinski’s 
findings by comparing the physio-chemical property profiles of orally administered 
drug candidates at various stages in the developmental cycle to that of successfully 
marketed drugs 20.

1.1.3. The disassociation constant and residence time

Besides consideration of ADME properties, ligand effectiveness is often ranked by 
binding affinity (Ka). It is also measured in terms of its reciprocal, the disassociation 
constant (Kd) via the use of Michaelis-Menten or pre-steady state kinetics 21,22.

For the bimolecular reaction in eqn.1.1, Kd is represented by eqn.1.2, where the values 
in square brackets denote concentrations of Protein [P], Ligand [L], and Protein-Ligand 
complex [PL]. Consequently, Kd has Molar units and corresponds to the concentration 
at which the total population of protein active-sites are half occupied by ligand. Thus, a 
ligand with a Kd in the nanomolar range has a tighter binding constant than one in the 
micromolar range.

   (eqn.1.1)

   (eqn.1.2)

Kd can alternatively be expressed as a ratio of ligand disassociation to association rate 
(eqn.1.4).

  (eqn.1.3)

Where:

   (eqn.1.4)

Binding affinities (Ka) between proteins and ligands allows broad classification into 
strong, medium and weak binding categories (Fig.1.3). Examples of strong binding 
complexes (sub-picomolar) include enzyme transition-state complexes formed using 
mechanisms such as electrophilic, nucleophilic and acid/base catalysis. The medium 
binding range (micromolar – nanomolar) include antibodies, drug-receptor complexes 
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and enzyme-inhibitor complexes. Lastly, the weak binding category (decimolar to 
weak micromolar) contains entities such as cyclodextrins, albumins and some weaker 
enzymes. Typically, initial searches for lead drug-like molecules generate “hits” around 
the micromolar range and successful optimisation should generate compounds that 
possess nano to picomolar binding affinities 23,24.

Fig.1.3. Typical Protein-Ligand binding interactions measured in log K
a
. Each area is an idealised normalised 

binding distribution with the maxima denoting the group average. Image and information taken from 23,24.

A ligand attached to a biological target usually exerts its effect for the duration it is bound. 
This concept is known as residence time and is primarily reflected in the disassociation 
constant. Enzyme catalysed substrates have a relatively low residence times (50 ms-1), 
whereas effective inhibitors generally have much longer residence times e.g. Basic 
pancreatic trypsin inhibitor inhibits trypsin with a residence time of ~6 months 25. 
A longer residence time is desirable for inhibitors as it decreases the requirement for 
sustained high doses and the possibility of resistance. Whilst the formation of strong 
covalent bonds favour long residence times, non-covalent inhibitors can also be 
effective. Some of the most stable Protease Inhibitors can achieve residence times > 4 
months. Small molecule ligands face a greater challenge compared to larger compounds 
due to the more limited number of possible interactions with their target receptors. 
Maintaining a lengthy residence time thus involves a more precarious balancing of 
positive and negative contributions to the disassociation constant 24,26.

Proteins and receptors encounter each other in two types of system: open and closed. 
In vitro assessment of binding is usually carried out in a closed system, in which the 
total [P] and [L] is static, only changing with respect to the proportion of bound (PL) 
and free species. The cell is a good example of an open system, in which [P] and [L] are 
in flux. In vivo, kon can be influenced by many biochemical parameters such as ligand 
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concentration, metabolic clearance, and the limits imposed by the rate of diffusion. koff is 
not affected by these factors, although it is more susceptible to considerations pertaining 
to the binding of protein and ligand. e.g. van der Waals interactions, hydrogen-bonding, 
protein conformational changes and solvent effects. For example, a study on binding 
of a variety of protease inhibitors (PIs) to resistant variants of HIV-I protease used 
data from surface plasmon resonance to compare Kd, kon and koff values. Resistance to 
protease inhibition correlated with an increase in disassociation rate, coupled with a 
smaller decrease in association rate. The authors proposed that increases in koff were 
due to structural changes around the binding pocket reducing inhibitor residence time. 
Thus, using the Kd as the primary metric for ligand affinity can mask problems that 
could otherwise be optimised, as compounds can possess similar Kd values whilst having 
different ratios of component koff and kon terms 26–28. 

1.1.4. Gibbs free energy and the interplay of enthalpy and entropy

For a closed system at constant pressure and at equilibrium, Kd can be related to energy 
change in the system via the Gibbs free energy (ΔG°) as shown in eqn.1.5. The term R 
is the ideal gas constant (8.314 J K-1 mol-1) and T is the temperature in Kelvin (K). The 
superscript ° denotes that the measurements are made at standard states that usually 
correspond to a pressure of 1 atmosphere, 1 M concentration and a temperature of 
298 K. Standard states are common reference points that allow comparison of the 
relative thermodynamic values generated by different reactions via the use of a common 
experimental environment.

    ΔG°binding = -RT ln(Ka) = RT ln(Kd)  (eqn.1.5)

The more negative the free energy (ΔG°), the more strongly a reaction (e.g. L + P —>  
PL) will be spontaneous/favourable and move to completion. Hence, it is commonly 
used in drug scoring systems to evaluate the binding affinity of chemical compounds. 
ΔG° can be further broken down into contributions from enthalpy (ΔH°) and entropy 
(ΔS°) (eqn.1.6).

     ΔG° = ΔH° – TΔS°   (eqn.1.6)

An examination of the relationship between both these component forces reveals that 
the entropy must be maximised whilst the enthalpy is simultaneously minimised to 
achieve highly favourable free energies of binding. This has led to attempts to define 
a master equation that allows the computational determination of ΔG° by taking into 
account the two main contributors that compose it. 

Enthalpy can be thought of as the amount of heat absorbed or emitted by the system 
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whilst entropy is a measure of the dispersal and spread of energy during that process at a 
defined temperature. The definition of ΔG° is based on the second law of thermodynamics 
which states that a spontaneous process occurring within the universe is driven by the 
overall dispersion and dissipation of a very concentrated source of energy (ΔS° > 0). 
In a biochemical context, making bonds and non-covalent interactions are exothermic 
processes that are characterised by the reaction having a negative enthalpic value. The 
inverse is true for the process of breaking bonds, as an input of energy is required to 
pull apart molecules. A positive increase in entropy can be due to various solvent effects 
or because regions of the protein or ligand have greater freedom of motion at the end 
of a process (Table.1.2). Thus, negative enthalpic contributions in conjunction with 
positive entropic contributions are favourable to a spontaneous reaction occurring at a 
specific temperature (ΔG° < 0) 21,29,30.

Whilst strong covalent, ionic and metallic bonds are mainly responsible for the chemical 
bonds (intramolecular interactions) holding a molecule together, there exist a host of 
weak interactions (intermolecular interactions) that exhibit disparate effects in terms of 
attractive and repulsive forces. Some of these are tabulated in Table.1.2.

The entropy of a simple molecule such as water can be subdivided into contributions 
from translational, rotational and internal vibrations (Fig.1.4). Furthermore, the aqueous 
milieu within which most biochemical 
reactions occur also affects the entropic 
term (§1.1.6). The interplay between 
entropic and enthalpic forces means that it 
is very difficult to rationally design drug-
like molecules on the basis of structure 
alone, as any physical modifications have 
to account for the inevitable impact on 
dynamics (§1.2.0).

Enthalpy Entropy
van der Waals interactions Ligand degrees of freedom(rotatable bonds)
Hydrogen bonding Protein configurational disorder

Electrosatic complementarity Expulsion of water molecules from protein 
active site on binding ligand

Salt bridges Desolvation of hydrophobic groups
Ligand desolvation

Table.1.2. Typical factors that contribute to enthalpy and entropy values.

Fig.1.4. The main sources of entropy for a water molecule. 

Figure adapted from reference 31
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1.1.5. Decomposition of global thermodynamic terms

This section describes an experimental decomposition method and also serves as a 
conceptual framework whereby the interplay between entropy and enthalpy can be 
illustrated. Experimental techniques such as Isothermal Titration Calorimetry (ITC) 
provide global values for the three key thermodynamic values. This technique directly 
measures successive changes in ΔH°, as the ligand is titrated in aliquots into a solution 
of protein receptor. It allows ΔH°, Kd and stoichiometry to be measured in a single 
experiment. Values for ΔG° and ΔS° are calculated from the relationship in eqn.1.7 32:

   RT ln(Kd) = ΔG° = ΔH° –TΔS° = -RT ln(Ka) (eqn.1.7)

While these thermodynamic values give global information about binding reactions, 
it is more difficult to ascribe rationale to the structural interactions or dynamic 
components with any specificity, due to the complexity of the system. i.e. The trees 
cannot be seen for the forest. Per contra, computational methods such as molecular 
dynamics (MD) simulations provide atomistic-level models that contain detail about 
the dynamics and structure of a binding event. However, accurately describing the 
macroscopic thermodynamics of the system can be a challenge as validating the model 
and achieving sufficient statistical averaging is not trivial. MD is akin to a single molecule 
technique that requires simulations of sufficient length, coupled with multiple repeats 
to substantiate the credibility of any observations. i.e. The forest cannot be seen for the 
trees. The reductionism prevalent in science is applied in both MD and experimental 
methodology. Experimentalists tend to apply techniques (vida infra) that decompose 
the system to its fundamental parts, whilst MD takes an approach that “builds up” the 
system from the smallest, tractable component interactions possible (§1.4.0). Though 
these two approaches are currently (§1.4.3) separated in terms of size and timescale, 
the synergistic application of the two allows for the validation of theories and a better 
understanding of systems.

There are three main players in a bimolecular binding reaction that must be taken into 
account to fully understand the behaviour of the system. These are the protein, ligand 
and the solvent, each with decomposable enthalpic, entropic and free energy aspects. 
Capturing the thermodynamic facets of any one of these is a daunting task, made all the 
more dire by the fact that all of them must be quantified in order to ascertain whether 
the decomposition is an accurate reflection of the system. The most difficult component 
to calculate is the solvent thermodynamics due to the sheer number of molecules, their 
associated degrees of freedom (DOF) and the complexity of their hydrogen bonding 
interactions. Thus, the experimental decomposition of the global free energy (ΔG°obs) 
begins by separating contributions into (Protein + Ligand) solute-solute free energy 
(ΔG°intrinsic), and the solvation contribution using equation eqn.1.8.
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   ΔG°obs = ΔG°i + {ΔG°sb - ΔG°su}  (eqn.1.8)

The latter is calculated from the difference between the solvation free energy of the bound 
(ΔG°sb) and free (ΔG°su) species. Construction of a Born-Haber cycle takes advantage 
of the fact that ΔG° is a state function whose final energetic value is independent of the 
path taken to reach it (Fig.1.5). Thus, construction of an appropriate form allows the 
elucidation of quantities that are not directly measurable. This treatment can be extended 
to other thermodynamic terms such as the entropy and enthalpy (eqn.1.9-10) 33,34.

   ΔH°obs = ΔH°i + {ΔH°sb - ΔH°su} (eqn.1.9)

   ΔS°obs = ΔS°i + {ΔS°sb - ΔS°su} (eqn.1.10)

Air-solvent partition equilibrium experiments are utilised to calculate the solvation term 
required for this type of decomposition and can only be conducted with ligands that 
possess sufficient volatility at room temperature 35. ΔG°i encompasses the difference 

in solute-solute free energy between 
products (protein-ligand complex) 
to reactants (free ligand and protein) 
in a solvent free environment. The 
enthalpic contributions to ΔG°i arise 
principally from the formation of new 
dispersive interactions, salt bridges 
and hydrogen bonds in the complexed 
state. Naturally, these interactions 
must be offset against the non-bonded 
solute-solvent interactions held prior 
to binding and is encompassed in the 
solvation term (§1.1.6). Typically, van 
der Waals interactions are thought 
to make a negligible contribution, 
because the small size of water 
molecules surrounding the ligand in 
the free state provides excellent shape 
complementarity. However, new 
solute-solute hydrogen bonds have 
the potential to be much stronger than 
exchanged solute-solvent bonds if 
positioned favourably. Unfavourable 
ΔH°i contributions can occur if 

Fig.1.5. Thermodynamic decomposition facilitated by 

construction of a Born-Haber cycle. Image adapted from 

reference 33.
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the ligand or protein residues have to adopt energetically strained conformations 
upon binding 33,34,36.

Entropic contributions to ΔG°i on binding are usually considered unfavourable due 
to restriction of rotational, translational and internal DOF of the ligand upon binding 
(Fig.1.4). Protein residues in close proximity to the bound ligand are generally thought 
to rigidify and are thus also entropically penalised 33. The solvation contribution is 
discussed in more detail in the next section.

1.1.6. The effect of solvent and the hydrophobic Effect

The aqueous medium in which most biomolecules interact is characterised by unusual 
properties such as the hydrophobic effect; a phenomena best illustrated by the observation 
that oil and water do not mix. Most students are familiar with the ordered tetrahedral 
geometry adopted by water molecules in ice. Each molecule forms 4 hydrogen bonds 
with its neighbours and the crystalline phase ensures translational and rotational 
entropy is close to zero, whilst the enthalpic term is maximised. However, liquid water 
exists in a far more dynamic environment, in which the hydrogen-bonding network is 
in a constant state of flux and a single water molecule has the possibility of orientating 
itself in multiple ways with respect to its neighbours. The scales balancing enthalpic and 
entropic components in this medium are more even compared to that in the solid phase. 
The classical hydrophobic effect qualitatively explains the segregation and aggregation 
of non-polar solutes in solution using the following description. Apolar solutes are 
incapable of forming strong hydrogen bonds with each other, or with the solvent and 
predominantly interact via weak dispersion interactions. On solvation, water molecules 
are unable to form the maximum number of hydrogen bonds possible when adjacent to 
such a solute. This equates to a loss of entropy due to the unavailability of previously 
available configurations. To maintain maximal hydrogen bonding interactions (and 
thus maximise configurational entropy), water molecules reorient themselves to form 
ordered “clathrate-like” structures around the solute. The force that drives the system 
is entropic and apolar solutes aggregate so as to minimise their exposed surface area. 
This allows surrounding water molecules to preferentially hydrogen bond with each 
other. Though water loses a small measure of entropy in the formation of these ordered 
structures, the expulsion of a proportion of these ordered water molecules into bulk 
solvent (upon minimisation of hydrophobic surface area) results in the overall process 
being highly entropic at physiological temperatures. On the other hand, despite the loss 
of some solvent-solvent hydrogen bonding, the enthalpy change of solvation is very 
small and negative: it is only just exothermic and favourable. This is because expelled 
interfacial water molecules renew hydrogen bonds with bulk solvent and the hydrogen 
bonds of waters involved in the clathrate structure possess greater strength.



Chapter 1.030 31

In the case of a hydrophobic protein-ligand binding interaction, binding is considered 
a desolvation event as water molecules enveloping the ligand are stripped off on entry 
into the pocket. The enthalpic term is thus unfavourable, because the sign is the inverse 
of that observed for hydrophobic solvation. As detailed above, the associated entropic 
term dominates and is favourable due to a proportion of waters hydrating the protein’s 
binding cavity being displaced upon ligand entry.

The specific heat capacity at constant pressure (ΔCp) measures the quantity of heat 
energy required to change the temperature of a defined mass by one degree Celsius. 
Another perceived hallmark of the hydrophobic effect is its association with a negative 
change in ΔCp at physiological temperatures. This follows from the observation that 
transferring apolar solutes (such as small aliphatic hydrocarbons) from a hydrophobic 
to aqueous phase is accompanied by a positive change in heat capacity and that the 
unfolding of proteins is also accompanied by a heat capacity change of the same sign. 
As water molecules participating in ordered clathrate structures have a higher heat 
capacity than those in bulk, they can absorb a greater amount of thermal energy by 
virtue of possessing low kinetic energies. Hence, the expulsion of waters from an 
aggregating apolar interface back into the bulk medium yields a concurrent decrease 
in the heat capacity. However, other factors for the decrease in heat capacity have also 
been proposed such as protein tightening on ligand binding 37.

Fig.1.6. Red spheres are representations of methane-like molecules, whilst water molecules are depicted as 

blue ball and stick structures. Hydrogen bonds are coloured as blue dashed lines. Panel (a) shows that waters 

surrounding the single methane-like molecule participate in a hydrogen bond network is not greatly perturbed. 

However, in panel (b) waters surrounding the 135 member cluster (formed by aggregating methane-like particles) 

typically possess less than three hydrogen bond interactions. Image taken from reference 38.
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The crystalline-like explanation given by the clathrate model for the aggregation 
of non-polar solutes is controversial. It is now considered to be a simplification, as 
MD simulations and neutron scattering experiments question the level of ordering 
and amount of hydrogen bond enhancement. A number of other models have been 
proposed to account for these discrepancies.

An interesting alternative theory proposed by Chandler (2005) regarding the 
hydrophobic driving force, states that very small non-polar solutes under 1 nm2 in 
surface area (e.g. methane) are so small they do not consequentially interrupt water’s 
hydrogen bond network. i.e. Water molecules surrounding the solute are still capable of 
maintaining 4 hydrogen bonds with their neighbours, despite the excluded volume taken 
up by the solute. Hence, there is no impetus for a few modestly separated hydrophobic 
molecules to coalesce in a very dilute solution. It is only in very close physical proximity 
to each other that the thermodynamic cost of association is naturally overcome. On 
the other hand, the formation of larger non-polar structures does disrupt the ability 
of water molecules to hydrogen bond with each other and this leads to the formation 
of a dewetted (intermediate phase between vapour and a liquid) interface. As the cost 
of creating the new interface scales with surface area whilst the thermodynamic forces 
opposing this scale with volume, a critical size greater than 1 nm2 must be amassed 
before these apolar assemblies become metastable. The total solvation free energy for 
very small, dispersed apolar solutes equates to the algebraic sum of their solvation 
energies. Larger apolar assemblies possess total energies smaller than the sum of their 
parts as they possess larger volume to surface area ratios. This energetic discrepancy 
is the driving force for hydrophobic association which is dominated by enthalpy for 
large assemblies and the entropic term for small molecules. Unlike the clathrate theory, 
evidence from experiments and MD simulations do provide supporting evidence for 
this model (Fig.1.6) 33,39,40 41,42 33,34,37,43,44 38.

1.1.7. Surface area burial

The Scorpio database is one of several that contains ITC derived thermodynamic 
data. It contains over 254 protein-ligand complexes from peer reviewed sources. On 
scrutinising this database, Olsson et al. (2008) found that burial of hydrophobic surface 
area in protein-ligand complex formation (i.e. difference in hydrophobic surface area 
of complexed ligand to that of free protein and ligand) contributed favourably to free 
energy 45. This equated to a burial of 20 Å2 of Connolly surface area (CSA) reducing 
ΔG° by -1 kJ/mol (Fig.1.7).

The authors noted that smaller ligands buried a roughly equal proportion of polar 
and apolar groups, whilst larger ligands tended to bury a greater proportion of apolar 
surface area. Polar groups afford ligand specificity as they are capable of making high 
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affinity interactions (e.g. H-Bonds) with the protein. However, these are sensitive to 
spatial positioning, unlike apolar interactions that are “amorphous and nonselective by 
nature” 45. Increasing polar surface area burial increases the complexity of interactions 
and is therefore harder to achieve. Thus, smaller ligands have to bury a greater 
proportion of polar groups to achieve minimum specificity, compared to larger ligands 
that maximise apolar surface area burial to avoid excess complexity.

Fig.1.7. Correlation of ΔG° with apolar surface area burial. Dotted line gives 95% confidence interval of the fit. 

Image and information taken from reference 45.

The compounds in the Scorpio database do not show a clear relationship between 
molecular weight and affinity, but do show strong correlations between apolar surface 
area burial and affinity. Thus the latter is a better indicator of affinity as it accounts for 
the binding interface only. This is more specific than looking at the whole molecule 
which may possess groups uninvolved in the interaction 45.

1.1.8. Maximal ligand affinity

Analysis of a variety of natural & synthetic ligands by Kuntz et al. (1999) found the 
maximal free energy possible in non-covalent interactions (with a few exceptions such 
as Biotin) to be ~ -62.7 kJ/mol (10-11 M) 46. The contribution per non-hydrogen atom 
(NHA) is -6.27 kJ/mol for the first 15 atoms, after which the contribution made to 
the free energy of binding sharply dropped to ~0.04 kJ/mol (Fig.1.8). The authors 
examined contributions to ΔG° from hydrogen bonds, electrostatic, van der Waals and 
hydrophobic interactions, concluding that the effect was primarily due to the latter two. 
They proposed a solvent-free model that reproduced similar free energy contributions 
per NHA. Adding more atoms increased “self-shielding”, resulting in a reduction of the 
energy contribution per NHA. This phenomenon was geometry dependent, with linear 
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ligands experiencing less shielding than a planar or cubic ligand upon burial in the 
receptor. Though their model did not directly take solvent into account, they suggested 
that entropically based phenomena such as the hydrophobic effect is linked to and 
would augment van der Waals interactions. There is the additional caveat that the 
dataset may not represent compounds of extremely high (femtomolar) binding affinity 
as such ligands would take years to disassociate and thus might be evolutionarily 
selected against 46.

Another study containing a larger dataset of 1,012 enzymes suggests that strong binders 
with picomolar (10-12 M) to ten zeptomolar (10-20 M) affinities utilise enzyme transition 
states involving the formation of covalent intermediates. However, enzymes with 
affinities less than 10-11 M (corresponding to the -62.7 kJ/mol affinity limit) operated 
via weaker non-covalent mechanisms such as hydrogen bonding and electrostatic 
interactions. e.g. Chorismate mutase (1010.6 M-1) and Cyclophillin (108.7 M-1) 47. The 
maximum free energy obtainable for non-covalent interactions was also observed by 
Gilli et al. (1994) in a study of the binding of 136 ligands to 10 receptors 48. The 
authors observed that the smallest observable Kd was 10-11 M for high-affinity drugs. 
They suggested that this behaviour was caused by compensation between enthalpic 
and entropic forces primarily due to the differences in hydrogen bonding, prior to and 
after binding.

These experimental data and conflicting conclusions raise questions regarding the 
physical basis for the observation of a free energy ceiling of -62.7 kJ/mol. A proposed 
answer is that most non-covalent interactions are subject to entropy-enthalpy 
compensation (EEC) and thus cannot easily attain free energy values that exceed this 
level of affinity. However, it is clearly possible to design drugs that break this apparent 
barrier, as there are binding interactions that possess exceptionally high non-covalent 
affinities. e.g. the avidin-biotin complex (~10-15 M) 49.

Fig.1.8. Half maximal inhibitory constants 

(IC
50

) or disassociation constants (Kd) were used 

to calculate the change in free energy (ΔΔG°) 

versus number of NHAs for a variety of strongly 

binding ligands. Image taken from reference 46.
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1.2.0. Entropy-Enthalpy Compensation
This phenomenon occurs when one of the two components constituting ΔG° (enthalpy 
or entropy) compensates a change in its counterpart with an equivalent change possessing 
the same sign (eqn.1.6). The net result is a ΔG° change at, or close to zero. It has been 
suggested to arise “because bonding opposes motion and, also reciprocally, motion 
opposes bonding”  30. For example, the formation of a hydrogen bond between a ligand 
and protein generates a favourable enthalpic contribution to ΔG°, but also restricts the 
movement of the ligand, thereby reducing entropy and negating any enthalpic gain. This 
issue is particular to non-covalent interactions in solution, as the weaker bond strengths 
are easier to disrupt by comparable thermal energies at 298 K 30,50,51. Though this 
definition neglects to account for potential solvent effects as a source of compensation, 
it is a useful concept to begin understanding EEC.

Fig.1.9. Entropy-enthalpy plot of compounds in the Scorpio database derived from ITC data. Image taken from 

reference 54.

When plotting entropy vs. enthalpy, the relationship sometimes displays a linear 
correlation (coefficient > 0.95) and the data points fall within a narrow diagonal 
band. The data can be derived from databases of binding data, and/or examination 
of a homologous series of ligands with small incremental alterations in structure. e.g. 
The linear alkane series: pentane to hexadecane. This has led to heated debate as 
to whether this has extra-thermodynamic significance (i.e. the consequence of a real 
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physical relationship that cannot be defined by statistical thermodynamics) or is in fact 
a statistical anomaly 52,53. Data from the Scorpio database shows a characteristic EEC 
plot with ΔH° and ΔS° values spanning a range much greater than those observed 
for ΔG° (Fig.1.9).

The thermodynamics of EEC has been theoretically described in terms of bonding 
between two molecules: A + B. The formation of the A-B complex can be represented by 
a potential energy well, in which the deepest part of the well represents a stronger bond 
than the shallower part. As the interatomic distance is reduced, the bond strengthens 
until it reaches a point where repulsive forces dominate. The potential energy (V) can 
be used to measure the enthalpy. The entropic contribution can be calculated from 
the vibrational frequency (v), using statistical mechanics. The entropy is very small at 
vibrational frequencies observed for covalent bonds (v > 1000 cm-1). As the frequency 
drops, entropy increases rapidly 50. This can be represented by an idealised entropy-
enthalpy plot, in which increased bonding strength is linked to a loss of vibrational 
entropy. Weak interactions are characterised by greater entropic penalties, whilst 
stronger (covalent) interactions are penalised less because the majority of the entropic 
cost has already been overcome. In-between both these extremes, the entropy roughly 
equals enthalpy and a linear relationship is observed (Fig.1.10) 55.

Fig.1.10. Exothermicity in terms of the entropic cost for the reaction A + B --> AB. Image taken from reference 55.

The observation of EEC effects in datasets derived from disparate chemical compounds 
suggests that EEC is the result of “a limited Gibbs free energy window” that illuminates 
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only the linear portion of Fig.1.10. This is likely to be due to practical limitations in the 
experimental measurements of thermodynamic values and lack of true diversity in the 
databases of compounds examined 56.

Many examples of EEC have been discredited, due to the use of a vant Hoff or Arrhenius 
plot to determine the entropy (intercept) and enthalpies (slope) from differences in 
experimental binding constants measured at various temperatures. As most biological 
reactions are only feasible within a restricted temperature range, the number of 
experimentally obtainable measurements is likewise limited. Thus, determination of 
the ordinate intercept often involves an extrapolation many times the range of the data 
(Fig.1.11).

Fig.1.11. Extrapolation of data from a small temperature range to calculate enthalpy and entropy. Image taken 

from reference 57.

Thus, the resulting entropy and enthalpy values have large systematic errors that are 
characterised by a high correlation coefficient  52,53,57. While these considerations may seem 
like a damning indictment of EEC, they should not extend to ITC analysis which directly 
measures ΔH°, Kd and stoichiometry within a single experiment. Olsson et al. (2008) 
caution that this does not necessarily qualify as prima facie evidence for EEC, as error 
margins of calorimeters cause difficulties in measuring ΔG° > -20 kJ/mol 45. Additionally, 
caveats regarding binding databases used in studies (such as Gilli, Kuntz and Lipinski’s 
rules of 5) are also relevant here. There are limitations in the experimental measurements 
that can be gleaned for very small or large ligands. The binding affinities of the former 
are too small to detect, whilst larger ligands tend to be insoluble and are thus intractable 
to study 24,45,46.
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1.2.1. Entropy-enthalpy compensation case studies

Successful drug design involves knowledge of how modifications to structure affect the 
relationship between ΔH° and ΔS°. A deeper understanding of the forces that govern 
EEC can potentially guide rational design to maximise ligand efficacy. Consequently, 
the following sections detail real-world case studies that illustrate the molecular basis of 
a variety of EEC effects.

1.2.2. HIV-1 Protease

Several drugs have been developed and put on the market to mitigate the problem 
of acquired immunodeficiency syndrome (AIDS), which is caused by the human 
immunodeficiency virus (HIV). The viral protein known as HIV-I protease cleaves 
newly synthesised polyprotein precursors, thus facilitating the creation of multiple 
mature proteins essential to the life cycle of the virus. Freire (2008) noted that the 
binding signatures of HIV protease inhibitors (PIs) have evolved from being entropically 
to enthalpically dominated over the last 11 years. He suggested that the reason for 
this evolution is that, entropically favourable compounds are easier to design as this 
merely involves the addition of non-polar groups. This results in a positive contribution 
from the hydrophobic effect and a compound with an entropically favourable binding 
signature. However, enthalpic gains take more time and work to engineer because of 
the complexities posed by EEC 58. For instance, hydrogen bonds range in strength from 
weak to very strong. A typical interaction can contribute ~6.0 kJ/mol of favourable 
enthalpy, which roughly translates to a tenfold increase in binding affinity. A weak 
hydrogen bond interaction caused by poor spatial positioning may even be unfavourable. 
Mutational studies on tyrosyl-tRNA synthetase have indicated that hydrogen bonds 
with charged groups have enthalpies of -14.2 to -18.8 kJ/mol and those with uncharged 
groups have -2.1 to -6.3 kJ/mol, whereas bonds with poor spatial positioning contributed 
negatively (~ -1.8 kJ/mol) 59. For example, the HIV-1 protease inhibitor, KNI-10033 
was engineered with a sulfonyl group that made the binding enthalpy more favourable 
by -16.3 kJ/mol via the formation of a strong hydrogen bond. However, an entropic 
penalty of 17.1 kJ/mol was incurred as a result of decreased ligand conformational 
flexibility and reduced desolvation entropy. The proposed strategy to mitigate entropic 
loss, was to design inhibitors with hydrogen bond acceptors/donors placed adjacent to 
well structured regions of the protein 60.

Constraining the ligand to minimise entropic losses and maximise favourable enthalpic 
contacts may seem like the way forward to design effective drugs. However, the resulting 
rigid body inhibitors are optimised for shape complementarity and thus engineered 
binding affinities can be severely affected by binding-site mutations. This is commonly 
seen in HIV-1 protease, resulting in ~40% of infected patients possessing mutant 
variants that are resistant to at least one of the currently available PIs. An interesting 
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example highlighting the subtlety of entropic compensation was observed on adding a 
phosphonate moiety to the PI, TMC-126. The phosphonate variants displayed similar 
inhibitory activity (2 to 7 pM) to the parent molecule when complexed with wild-type 
HIV-1 protease. However, TMC-126 experienced a reduction in activity vs. HIV-1 
protease mutants M461/147V/150V (41.3 pM), and I84V/L90M (12.3 pM) compared 
to Ki’s of only 0.8 to 1.6 pM for the phosphonate derivatives. ITC analysis revealed 
that whilst all the PIs had suffered reductions in binding enthalpy (ΔΔH°: +8.4 to 
+10.9 kJ/mol), the PIs with a phosphonate moiety entropically offset the free energy 
loss (ΔΔS°: 8.8 to 9.2 kJ/mol). The entropic increase was not due to desolvation or 
increased ligand torsional freedom, but was instead proposed to be caused by a “solvent 
anchoring mechanism.” 

Fig.1.12 (a) 2D structure of TMC-126 and the phosphonate derivative, GS-8374. RMS deviations (indicating 

mobility) of the ligands bound to the I84V/L90M mutant are plotted as a histogram beneath the relevant part of the 

molecule. (b) and (c) show structures of GS-8373 bound to HIV-1 protease. Note the phosphonate juts out of the 

binding site. Image and information taken from reference 61.

The I84V/L90M mutant is successful against inhibitors because the size of the binding 
site is enlarged compared to wild-type. Crystal structures of the complex showed 
that the solvated phosphonate moiety protrudes out of a hydrophobic channel at the 
enzyme surface. The electron density from the crystal structure indicated that this group 
sampled multiple conformations and was unlinked with the binding site. The relatively 
immobile P1 aromatic ring (Fig.1.12.a inset) is wedged in the hydrophobic channel and 
is thought to act as a “molecular fulcrum” that transfers the dynamics of the exterior 
phosphonate moiety to ligand functional groups located within the heart of the binding 
pocket. This results in an increase in their conformational mobility. TMC-126 also 
exhibits a measure of mobility in the enlarged pocket, but phosphonate PIs are better 
at adapting to (mutation induced) alteration of the binding cavity volume/shape. Thus, 
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they sample alternative binding poses and avoid losses in potency (Fig.1.12). This 
directly translates into the phosphonate analogues having a better resistance profile 
than TMC-126 61.

1.2.3. Carbonic Anhydrase

This enzyme reversibly catalyses carbon dioxide and water to protons and bicarbonates 
so that pH balance of blood and tissues are maintained. A review by Krishnamurthy et al. 
(2008) details the many reasons why bovine carbonic anhydrase (BCA) is considered a 
model system 62. It is a very simple system through which the various biophysical aspects 
of binding interactions can be studied. e.g. ligand design and protein-ligand selectivity. 
It is easily purified and amenable to a variety of experimental techniques. Despite not 
being an important medical target, it is very well characterised and has aspects that are 
representative of features possessed by a larger number of other enzymes. Additionally, 
its binding site can bind a series of inhibitors that differ incrementally from each 
other in terms of structure. Consequently, it functions as a useful test system in which 
perturbations to binding can be correlated to changes in ligand structure. Histidine 
residues coordinate a catalytic zinc ion that is situated at the base of a conical cavity that 
forms the hydrophobic binding site 62. ITC investigations into the binding of a series of 
para-substituted benzene-sulfonamides of various chain lengths (n = 1-5) demonstrated 
almost perfect EEC. As chain length increased, the enthalpy became unfavourable and 
the entropy favourable, whilst ΔG° remained relatively constant (Fig.1.13).

Fig.1.13. Entropy-enthalpy compensation plot of three separate series of ligands. Image taken from reference 63

As the effect was independent of heat capacity, the hydrophobic effect was thought to be 
an unlikely cause. To account for the decrease in enthalpy with increasing chain length, 
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a model was proposed whereby distal residues in the ligand exerted a destabilising 
effect on the proximal residues adjacent to the zinc ion (Fig.1.14) 63.

Fig.1.14. Model illustrating how addition of successive residues decreases the stability of previous residues. 

Ellipse size represents the mobility of the residue. The ligand is bound within the conical binding site of carbonic 

anhydrase. The hydrophobic wall is represented by cross-hatching. Image and information taken from reference 63.

In a subsequent independent NMR spectroscopy study, 2 sets of 
6 para-(glycine)n-substituted benzene-sulfonamide (ArGlynO-) ligands complexed with 
BCA were examined. Series-1 contained incremental additions of GLY residues (1-6), 
15N labelled at the terminal glycine. All ligands in series-2 were composed of six residues 
and differed from each other in terms of which residue was labelled (Fig.1.15).

Comparing adjacent ligands in a series allowed the intrinsic entropic contribution of 
each additional glycine residue to be measured. This decomposition revealed a different 
picture to that afforded by global ITC values. Increasing chain length decreased the 
mobility of preceding residues (Fig.1.15). This model is subtly different and can be 
summarised in 4 points:

1. Series-1 ligands are labelled on the terminal residue and thus have a larger 
measured S2 mobility relative to series-2 ligands, as they are attached to only 
one vincal neighbour.

2. Series-2 ligands demonstrate that the glycine residue nearest the zinc ion 
has the lowest mobility (high S2).

3. Adding successive glycine residues to series-1 ligands does not greatly 
increase the mobility of the terminal residue compared to the other ligands in 
series-1 that possess fewer residues (S2 values roughly the same).

4. Comparison of residues 1-4 of both series indicates that the residues in 
series-2 ligands have lower mobility compared to series-1. Thus, the addition 
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of glycines restricts mobility of residues proximal to zinc.

Fig.1.15 NMR spectroscopy derived order parameters for 15N-1H bond vectors in series-1 and 2 ligands bound to 

carbonic anhydrase. The number of glycine residues is represented above the histogram. Filled circles represent the 

labelled residue. Note that high values of S2 equate to lower mobility. Image taken from reference 64.

This demonstrates that ligand destabilisation is not the reason for the observed 
entropic binding signature. The conclusion drawn from further MD calculations was 
that increased enzyme side-chain mobility (particularly near the binding pocket) was 
primarily responsible for the globally observed favourable entropic term 64.

1.2.4. High-affinity non-covalent Interactions

A discussion of non-covalent interactions 
would be incomplete without examining the 
avidin-biotin complex. Biotin is a soluble 
vitamin of ~240 Da that displays strong co-
operative binding to avidin (ΔG° = -85.9 kJ/
mol), a component of egg white. The complex 
is 319 to 320 K more heat stable than avidin 
alone. Biotin binds to a β-barrel that displays 
a high degree of shape complementarity to the 
ligand. Tryptophan and phenylalanine residues 
form a rigid “hydrophobic box”, whilst polar 
residues form a stabilising hydrogen bond 
network with the ligand (Fig.1.16).

Fig.1.16. Binding site of avidin-streptavadin complex. (a) 

Hydrophobic binding site residues. (b) Hydrophilic binding 

site residues. Image and information taken from reference 49.
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Upon binding, water molecules are expelled from the binding site and a mobile loop 
stiffens and “locks“ biotin into the binding site 49,65. ITC Calorimetry indicated that 
biotin binds with a strong enthalpic signature (ΔH° = -84.9 kJ/mol) as a consequence of 
favourable hydrogen bonding and van der Waals interactions. Loss of conformational 
DOF is minimised because the binding site residues are already rigid, whilst an 
additional favourable desolvation term results in a net entropy change of zero 66,67.

This interaction was taken as the inspiration for the design of a synthetic host-guest 
interaction. Cucurbiturils are nanoscale macrocycles that are synthesised from the 
condensation of glycoluril and formaldehyde. They are abbreviated as CB[n], where n 
refers to the number of repeat units (5-10) 68. Rekharsky et al. (2007) investigated non-
covalent interactions in-between CB[7] and 1.1’-bis(trimethylammoniomethyl)ferrocene 
to achieve an extremely high Ka of 3x1015 M-1 (ΔG° ~ -87.8 kJ/mol) 69. The guest is 
characterised by two cationic sidearms that can interact with one of the carbonyl oxygen 
atoms lining either side of the hosts ring system (Fig.1.17).

Fig.1.17. (a) Structure of CB[7] host and binding three ligands (1-3). (b) 3D structure of ligand 3 bound to 

CB[7]. Image and information taken from reference 69.

Competition ITC experiments were carried out to accurately quantify the binding 
enthalpies. They indicated binding was driven by a favourable enthalpic contribution 
(-90 kJ/mol). Comparison with ferrocene-based guests with single or no sidearms 
established that this feature did not increase the enthalpy, but instead increased the 
entropy by 16-18 kJ/mol so that it approached zero.

There are several reasons behind such tight binding:

1. The ligand displays rigidity and shape complementarity with the binding 
cavity and this resulted in hydrophobic interactions being maximised whilst 
losses in configurational entropy were attenuated.
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2. The surface area of the guest that is buried upon complex formation is 
large (~55% of host cavity volume).

3. Reduction in configurational entropy is mainly affected by restriction of the 
ferrocene core. The cationic sidechains do not perturb this value greatly and 
the majority of the favourable entropic term is obtained from the expulsion of 
waters hydrating CH[7]’s cavity back to bulk.

When placing this interaction in context of the Scorpio binding data, this example 
can be taken as an example of entropy-enthalpy reinforcement as both entropic and 
enthalpic terms are favourable (Fig.1.18) 69. Thus, by subtle optimisation of disparate 
entropic and enthalpic contributions, it should be possible to overcome the apparent 
ceiling on maximal ligand affinity and design inhibitors with exceptional affinity.

Fig.1.18. Points marked 1-3 correspond to ferrocene ligands: Ligand 1 has no cationic arms, whilst ligands 2 and 

3 have one and two cationic arms respectively. A putative entropy-enthalpy reinforcement plot would move from the 

bottom left quadrant to the top right. Image adapted from references 54,69.

1.3.0. The Mouse Major Urinary Protein (MUP)
MUP-I is one of several isoforms of a protein found in mouse urine and is estimated to 
form as much as 99% of the total protein content in that medium. MUPs are typically 
expressed in areas associated with pheromone excretion such as the liver and kidneys 
at such high concentrations (5-10 mg/ml) that a significant metabolic cost is incurred. 
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MUPs are ubiquitous and are also found in many other tissues and secretions. For 
example, MUP-IV is found in the vomeronasal mucus and has substantial sequence 
divergence and much higher binding specificity compared to the urinary isoforms 70 71.

As a member of the lipocalin family, MUPs possess a characteristic beta-barrel motif 
that forms a hydrophobic cavity which can promiscuously bind a variety of small 
volatile pheromones. These are also collectively known as volatile organic compounds 
(VOCs) and have been linked with individual recognition, kin recognition, inbreeding 
avoidance, inter-male aggression, onset of female puberty, pregnancy termination 
courtship mating, and other behavioural and physiological effects in mice 72,73 74–76 .

MUP proteins possess significant sequence polymorphism as a consequence of the large 
number of MUP genes found in mouse chromosome 4 and, to date, more than 2,000 
MUP sequences can be found in GENBANK. Most of the amino acid differences can 
be tracked to substitutions on the surface of the protein with a more limited number 
involving modifications to the binding cavity. The latter would ostensibly have a 
greater impact on ligand specificity and binding 77,78. Studies indicate that mouse urine 
contains a heterogeneous population of MUPs whose structural differences allow 
them to differentially bind various populations of VOCs. Analysis demonstrates that 
the concentration and composition of VOCs within urine produces a unique “scent 
signature” that can vary not only by individuals but also according to mouse strain 
and gender. This signature changes naturally over time as urine deposited in the 
environment ages, and one of the predominant theories regarding MUP’s structural 
function is its facility to protect these volatile chemical messengers from premature 
decomposition and evaporation. MUPs are extremely stable in an aqueous milieu 
and can withstand melting temperatures in excess of 70°C. Experiments that involve 
the addition of guanidine hydrochloride to aged mouse urine indicate that the VOC 
profile dramatically changes upon denaturation of the protein, releasing pheromones 
that should have evaporated almost immediately.  This serves to reinforce the thesis of 
a time-delay role for MUPs in scent communication 74,79.

As well as having a detailed and interesting physiological role, the ability of some MUPs to 
promiscuously bind a series of chemically related ligands makes it an ideal model system 
to study the binding of hydrophobic ligands that structurally vary from each other in 
an incremental manner. Thus, there exists a significant corpus of research that seeks to 
elucidate the thermodynamic and structural details on the binding of “natural” ligands 
such as 3,4-dehydro-exo-brevicomin (DBH); 2-methoxy-3-isopropylpyrazine (IPMP); 
2-methoxy-3-isobutylpyrazine (IBMP); 2-sec-butyl-4,5-dihydrothiazole (SBT); and 
6-hydroxy-6-methyl-3-heptanone (HMH) 34 74 78 (Fig.1.19). The binding of primary 
alcohols to MUP are of particular interest, as these ligands form a panel whose members 
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differ from one another in terms of carbon chain length. Thus, this allows analysis of 
the thermodynamics of binding and how it is perturbed by modifying the length of the 
ligand by a methylene 36. Investigations into these panels and their structural analogues 
form the focus of this thesis.

An improved theoretical understanding of binding practically assists in the engineering 
of purpose built proteins that take advantage of the hyperplasticity of the MUP binding 
site to perform functions such as drug delivery. As the excessive hydrophobicity of 
many promising drug leads violates Lipinski’s “rule of five”, MUP’s hydrophobic cavity 
can be leveraged to contain and transport these poorly soluble compounds to sites of 
activity 80 81.  Members of such engineered lipocalins form a protein family known 
as anticalins. As they maintain structural stability despite sequence modification, they 
are designed to act as drug delivery systems, scavenging systems that assist in toxic 
compound removal, and as antibody mimetics that can bind other protein targets with 
high specificity 82–84.

1.3.1. Brief structural dissection of MUP-I

Lipocalins are generally 18-20 kDa in weight and, along with fatty acid binding proteins 
(FABPs), triabins, avidins, and a subset of metalloprotease inhibitors, form a larger 
superfamily known as Calycins. The etymology of the label ‘lipocalin’ comes from a 
conjugation of “lipo” and the Latin word “calyx”, to describe the hydrophobic cuplike 
structure of the binding cavity which forms the key structural motif within this family. 
The calyx consists of a β-clam fold fashioned by the arrangement of eight antiparallel 
β-strands labelled a-h. Strands b-d are orientated orthogonally with respect to e-h. The 
series of loops (denoted L2-L7) that join these strands are β-hairpin +1 connectors, 
whilst the L1 forms a large W loop. Within the MUP family, the bottom portion of the 
calyx is closed, whilst the L1 loop forms a lid that caps the opposite end of the binding 
site (Fig.1.20). However, this is not the rule for all lipocalins and an example of a 
notable exception is neutrophil gelatinase-associated lipocalin (NGAL), which possesses 
a funnel-like cavity exposed to solvent.

Fig.1.19. Structures of some of the different 

ligands that bind to MUP-I.  HMH exists in 

equilibrium between the form of a closed furan 

ring and an open hydroxyketone tautomer that 

both bind to MUP-I 72.
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Fig.1.20. (a) Protein topology map created with pro-origami 85. (b) 3d structure of MUP-1 bound to octanol (ball 

& stick). Structural features are assigned canonical names. Secondary structure elements are colour coded to match 

features in 2D and 3D representations.

Lipocalins share low pairwise sequence similarity (< 20%) and one of the essential 
criteria for membership within this group is the number of sequence conserved regions 
(SCRs). There are three main, short SCRs and assignment of a putative lipocalin into 
kernel or outlier lipocalin subfamilies is accomplished via quantification of the number 
of SCRs the protein possesses. The first SCR encompasses the 310-helix and strand 
a near the N-terminus. It maintains the highest degree of sequence and structural 
conservation, whilst SCR2 corresponds to the bottom portion of strands f, g and the 

b

a
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L6 loop. The SCR3 motif consists of strand 
h in addition to a few flanking residues and 
tends to maintain greater sequence versus 
structural conservation 83,86,86–88.

Lipocalins can have a variable number of 
disulphide bonds. MUP-I possesses one 
such bond that acts to directly connect the 
C-terminus to the base of strand d, near 
the L3 loop. The main sidechain available 
for a directional hydrogen bond belongs to 
TYR120 and is situated deep in the calyx 
core. Due to the conformational flexibility 
of the c, d strands, and the L3 loop region, 
ligand entry into the occluded pocket has 
been postulated to be mediated by these 
regions. Furthermore, examination of crystal 
structures indicate that the most direct route 
out of the pocket is by passing over the 
methionine situated in the cleft formed by 
the d and e strands 72.

Ligands binding to the MUP-I cavity are 
caged by a mixture of aliphatic and aromatic 
residues (Fig.1.21). The arrangement of 
these hydrophobic sidechains along the 
sides of the calyx can be broadly categorised 
into three levels. The predominant residue, 
leucine lines the upper rim of the calyx, and 
is overshadowed by a dyad of phenylalanines 
that act in concert with other W loop residues 
to cap the open mouth of the protein. A further 
two leucines are located in the saddle of the 
calyx, interspersed betwixt a triumvirate of 
isoleucines and function to block ligand exit 

Fig.1.21. The architecture of the MUP binding pocket (a) Aromatic residues that line the cavity; (b) Aliphatic 

residues; (c)  All aliphatic and aromatic residues. Red sphere marks a binding site water molecule. Phenylalanines 

are coloured orange-red; tyrosine - green, whilst TYR120 is additionally coloured by heteroatom; alanine - black; 

cysteine - yellow; isoleucine - purple; leucines - cyan; methionine - violet-red; and tryptophan - pink.
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and egress. The bottom of the pocket is padded by an additional two counterforts in 
the form of a tryptophan and tyrosine residue. The sidechains lining the central tier are 
more varied in identity and distribution - a matrix of aliphatic and aromatic residues 
that act to corral any bound ligand within the pocket.

1.3.2. An atypical binding signature

An early thermodynamic study examined the binding characteristics of several SBT 
analogues varying in the size of their alkyl functional group. Despite the negative ΔCp 

obtained for ligands binding to MUP-I (henceforth referred to as MUP), the expected 
entropic signature associated with the hydrophobic effect was not observed.  Instead, the 
enthalpic term dominated binding and was approximately 50% more favourable than 
the entropy. This was unexpected, as the association of hydrophobic solutes in solution 
is usually believed to be an entropic process, abetted by ligand desolvation and the 
expulsion of ordered water molecules from the binding pocket (§1.1.6). Solvent transfer 
of solvated SBT ligands into cyclohexane confirmed that the desolvation enthalpy 
should indeed be unfavourable 70. This unusual behaviour was also corroborated by 
studies on the binding of a panel of n-alkanols and pyrazine derivatives (IPMP and 
IBMP) to MUP 36,89,90. The exact reason for the discrepancy between ΔCp values and 
the binding signature could not be deconvoluted by examining global ITC values alone 
and various other techniques were utilised.

High resolution crystal structures indicated that there are very few waters present in the 
occluded binding site. The apo protein only contains 4 waters clustered near TYR120, 
whilst complexed structures contain 0 to 3 water molecules, depending on the identity 
of the ligand bound 36,72,90. Short ~10 ns MD simulations indicated that the density 
of water within the occluded binding site is very low (0.2 to 0.3 g/cm3). Artificially 
flooding the calyx with water resulted in their expulsion and a return to a state of 
minimal hydration as the simulations progressed 90. Low levels of water density were 
also observed in longer MD simulations of 1.2 ms 91.

Published crystal structures indicate that bound ligands usually form a single hydrogen 
bond via a bridging water molecule (e.g. SBT and n-alkanols) or directly to TYR120 
(e.g. IBMP) 36,70,90. The lack of suitable hydrogen bond donors and acceptors in the 
dewetted cavity means that waters are disordered because they cannot maintain a stable 
hydrogen bond network. Computational work on the binding of n-alkanols indicated 
that increasing ligand size merely resulted in the waters repositioning themselves 
within the calyx 36,90. The possibility that the low dielectric environment in the sub-
solvated cavity could strengthen electrostatic interactions such as hydrogen bonds was 
investigated by Barratt et al. (2005) by mutating TYR120 to a phenylalanine 90. It was 
found that the binding enthalpy was reduced by ~12 kJ/mol, whilst the entropic term 
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partially compensated this loss by ~7 kJ/mol. As the dominance of enthalpic binding 
signature (-31.44 kJ/mol) was undiminished, this hydrogen bond was not thought to 
be a predominant factor for the observed phenomenon 90,92. However, given that the 
enthalpy linearly scales with ligand surface area and hydrogen bonding is relatively 
consistent between different ligands, a strong dependence on van der Waals interactions 
was thought likely 36,70.

Ross et al. (1981) put the “classical” hydrophobic effect to question through the 
observation that the binding of some protein-ligand complexes are driven by the 
enthalpic term. e.g. a-chymotrypsin and lactic dehydrogenase 93. They advance a 
two stage model, the first of which has thermodynamic characteristics directed by 
solvent reorganisation effects, while the last stage is more influenced by solute-solute 
interactions. Whereas the hydrophobic effect posits that the exchange of solute-solvent 
for new solute-solute interactions during ligand binding roughly cancels; the model 
provides examples why this may not be the case. Examples include the optimisation 
of van der Waals contacts via aromatic stacking interactions, strong hydrogen bonds, 
ionic interactions and salt bridges. Additionally, these effects could all potentially be 
amplified by a low dielectric environment 93. 

As MUP is suboptimally hydrated, favourable dispersion interactions at the protein-
ligand interface are not offset by the compensating enthalpic and entropic terms 
associated with displaced binding site waters rejoining bulk. Thus, it was proposed 
that the enthalpic binding signature must arise from new interactions made during the 
second stage 36,90.

1.3.3. Thermodynamic Decomposition: The binding of n-alkanols to MUP

The binding of a simple n-alkanol panel (pentan-1-ol to nonan-1-ol) was investigated 
by Malham et al. (2005) using ITC and illustrates how the entropy and enthalpy of 
binding vary in a linear fashion upon addition of a methylene group (Fig.1.23.a) 36. 
Using the decomposition methodology outlined in §1.1.5, the solvation term was 
factored out via the use of available experimental solvation data for primary alcohols to 
yield values for ΔG°i, ΔH°i and TΔS°i 

94. In the absence of any solvent effects, additivity 
is observed upon hydrocarbon chain extension, yielding a ΔH°i of -8.4 kJ/mol; and a 
TΔS°i of -5.5 kJ/mol (Fig.1.23.b). Notably, ΔΔH and ΔΔS values were relatively constant 
between different members of the panel. Caveats associated with this method are that 
the number of bound waters displaced on ligand binding must be the same between 
all ligands within the panel. Additionally, the protein is assumed to make the same 
contribution to the thermodynamics of binding for all ligands in the panel and thus its 
contribution is considered to be zero. Despite these reservations, the favourable ΔH°i 

term correlates  well to the value of -6.9 kJ/mol per methylene returned by theoretical 
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bead models of alkanes projected on a 3D-lattice. Furthermore, experimental values (-6 
to -7.5 kJ/mol per methylene) show a relationship between the length of linear molecules 
and their molar cohesive energy 95. In entropic terms, the intrinsic value is comparable 
to the ~6 kJ/mol energetic cost associated with restriction of another torsional rotor 
upon extending carbon chain length, Thus, the working hypothesis codified by this 
work stated that increasing the size of a small n-alkanol by a single methylene, results in 
an ΔH°i gain on binding due to increased protein-ligand van der Waals contacts. This 
favourable term is partially compensated by the accompanying TΔS°i  associated with 
restricting an additional rotor 36.

Fig.1.23. (a) Global ITC Enthalpies and entropies of binding of pentan-1-ol to nonan-1-ol to MUP, plotted against 

length of carbon chain. Figure adapted from reference 36. (b) Difference in intrinsic enthalpies & entropies between 

successive ligands in primary alcohol series. Figure taken from reference 36.

1.3.4. Protein contribution to binding and distal residue dynamics

The protein is formed from the folding of a linear polypeptide chain into a complex 
folded structure. Its dynamics are subtly affected by motions propagated between amino 
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acid units close to one another in terms of both sequence and their spatial positioning 
within 3D space. In order to deconvolute the protein contribution to the global entropy 
of binding, the NMR spectroscopy derived order parameters (S2) can be converted to 
yield per-residue conformational entropies using the method described by Yang et al. 
(1996) 96. The order parameter gives a measure of the dynamics of methyl and amide 
bond vectors from relaxation data and is subject to the following caveats. Firstly, this 
is a 1st order estimate as no account of correlated motions between bond vectors is 
taken into account and thus the entropies obtained represent an upper limit. Only 
timescales in the picosecond to nanosecond timescale can be reliably measured. Finally, 
the method assumes the motional model for the configurational entropy is invariant 
between protein free and bound states 34,97.

Bingham et al. (2004) used NMR spectroscopy relaxation measurements to assess 
configurational entropy differences in backbone amide and side-chain methyl groups 
between the apo and complexed state 89. Data for the ligands, IPMP and IBMP are 
tabulated in Table.1.3.

Despite being unable to obtain order parameters for all the bond vectors, the entropic 
sum of IBMP methyl’s and amides comes close to the global ITC values. Obtaining 
entropies on a per-site basis indicated that the expected loss of movement on binding a 
ligand was accompanied with an increase in mobility of residues distal from the binding 
site. This phenomenon was described as a “conformational relay” (or entropy-entropy 
compensation) and served to offset part of the entropic penalty typically associated 
with binding. Increases in mobility were primarily associated with the flexible loop 
regions 89. This is not entirely surprising as there are numerous examples from directed 
evolution of how mutating residues distal to the binding site improves catalytic efficiency 
dramatically 98,99. It is not immediately obvious what roles residues distant from the 
binding site play in structural reinforcement, and assessing their role when rationally 
designing ligands is important.

The experimental results for IPMP and IBMP are at variance with relaxation data and 
computational studies obtained for SBT, as these show an increase in protein dynamics 
on ligand binding 100–102. The reason for this may be due to differential protein dynamics 
dependant on the identity of the ligand bound. Additionally, the caveats associated 
with calculating order parameters, coupled with the fact that only subsets of all possible 

IPMP IBMP
ITC T∆S° -9.4 ± 0.9 -10.7 ± 0.5
Backbone Amide - -7.4 ± 6.5
Sidechan Methyl -0.8 ± 3.8 -3.4 ± 2.8
Amide plus Methyl - -10.8 ± 7.1

Table.1.3. Comparison of ITC data to summed 

entropies obtained from NMR spectroscopy order 

parameters 89.
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protein bond vectors were measured, render this an approximate method subject to 
considerable error.

1.3.5. Overview of why MUP is considered a model system

MUP is considered a good model system to study EEC and other thermodynamic 
effects because of its ostensible simplicity.

1. It binds promiscuously to a variety of hydrophobic ligands. Hence, it 
is possible to assess the binding characteristics of panels of ligands, whose 
members are designed to possess incremental differences in structure. e.g. a 
panel of n-alkanols allows an evaluation of the thermodynamic cost of adding 
a single methylene group.

2. Binding is dominated by apolar interactions and only a single directional 
hydrogen bond donor is thought to be present in the calyx. The former 
allows recognition of multiple ligand partners, whilst the latter simplifies 
thermodynamic assessments as hydrogen bond strengths are distance and 
orientation dependant.

3. The binding pocket of MUP is suboptimally hydrated and this feature 
allows easier appraisal of the solvation term.

4. MUP is a relatively small, well-behaved protein (< 20 kDa) which is easily 
overexpressed in E.Coli. Its characteristics can be probed via MD simulations 
and a variety of experimental techniques. e.g. NMR spectroscopy, ITC, X-ray 
crystallography, etc.

1.4.0. Molecular Dynamics: Quick or accurate?
Molecular dynamics is an in silico method that simulates the physical motion of atoms 
and molecules over a period of time. This dynamic time course is known as a trajectory 
because the trajectories of a many-body ensemble are determined by solving Newton’s 
equations of motion for the system. The simulation can be viewed like a movie and 
because the motion of molecules is generated in a time-dependent manner, non-
equilibrium thermodynamics and processes (e.g. ligand binding, transport phenomena, 
etc) can be studied 95,103,104. In conjunction with statistical mechanics, information about 
thermodynamic quantities such as free energies, entropies, enthalpies, pressure, volume, 
temperature, etc can be obtained. Statistical mechanics is a branch of probability theory 
that allows macroscopic thermodynamic quantities to be generated via averaging 
microscopic, instantaneous values of a population. When simulating large systems, 
amassing a large enough ensemble that accurately represents the population distribution 
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of various microstates of the system is a common problem and statistical accuracy has 
to be balanced against computational cost 21,103,105 106.

Simulation of a typical biochemical system pertinent to drug design typically contains a 
protein receptor and a ligand surrounded by a box of solvent such as water. The initial 
structural data is usually obtained by techniques such as NMR spectroscopy or X-ray 
crystallography. The atoms that constitute the solvent, protein and ligand are restrained 
by rules that define the range and degree of permissible motion. The calculation and 
simulation of water incurs the greatest source of computational expense.

One of the more rigorous methods of achieving this is via ab initio MD. Here, interactions 
between electrons are calculated “on the fly” using knowledge about quantum mechanics. 
The chief advantage is that many of the approximations and presumptions seen with 
the other methods are avoided. Thus, this method is useful to describe systems whose 
behaviour cannot be predicted from first principles, and to represent chemical moieties 
yet uncharacterised by force field methods (vide infra). However, it does not accurately 
deal with dispersion forces without incurring further computational overhead and also 
uses some approximations such as Density Functional Theory (DFT) to deal with 
the many-electron problem and the Born-Oppenheimer approximation to simplify 
calculation of the Schrödinger equation.  In practical terms, the length of time taken for 
these simulations often means that only short timescales are investigated 105–109.

“Classical MD” obtains an increase in speed through the use of mathematical functions 
known as force fields to approximate the potential energy of the system. A “fixed-
charge” model is used to describe the electrostatic polarisation of a molecule, thus 
avoiding the computational penalty associated with calculating how the molecule’s 
charge distribution evolves with time. This approximation means that the molecule’s 
polarity is not modulated in response to its environment. Despite this proviso, force 
fields are capable of providing results comparable to other more rigorous methods 
in less time. Parameterisation of a molecule is usually accomplished by quantum 
mechanical calculations and the associated computational cost is ameliorated by a key 
tenet of MD: transferability. This means that certain fundamental parameters do not 
have to be recalculated when modelling a new molecule as their behaviour has already 
been quantified. For example, most CH bond stretching and angle bend values do not 
exhibit large differences between molecular species. Additionally, assignment of atom 
types allows atoms to be further differentiated according to their hybridisation state 
and chemical properties. e.g. Carbon atoms located in aromatic groups versus those in 
alkyl groups.

A typical force field serves to package descriptions of bonded and non-bonded terms in 
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a functional form to capture inter and intramolecular interactions (eqn.1.11). Bonded 
terms collate contributions to the potential energy by summing bond stretching, torsional 
rotation and angle bends. Non-bonded interactions usually encapsulate van der Waals 
and electrostatic contributions, and are calculated via application of the Lennard-Jones 
(LJ) potential and Coulomb’s law respectively.

eqn.1.11. example of a classical MD force field taken from reference 103. 

Force fields are continually refined by empirically fitting the potential energy function 
against experimental data (e.g. NMR spectroscopy; X-ray/neutron diffraction; 
vibrational spectroscopy; etc) and theoretical, quantum mechanical methods 95,103,104,110.

Fig.1.24. Harmonic oscillator potential (green) compared to Morse potential (blue). Image taken from reference 111.

Most currently implemented force fields use a harmonic oscillator to describe the inter-
atomic distance for systems near equilibrium. This method aids computational speed 
and is a good approximation as bonds generally stay around their equilibrium values. A 
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limitation with this approach is that bond breaking cannot be simulated. A better model 
that accounts for bond cleavage is known as the Morse potential (Fig.1.24). However, 
this is computationally more intractable and has the additional overhead of each bond 
requiring three terms to describe it. Thus, it is not generally implemented 105,112,113.

There are various MD software implementations available such as CHARMM 
(Chemistry at Harvard Macromolecular Mechanics) and AMBER (Assisted Model 
Building with Energy Refinement). These suites are capable of working with a variety 
of different force fields 103,105,113.

1.4.1. Modelling water

MD can explicitly model every water molecule, or use implicit models which speed up 
the calculation significantly. The latter is also known as a continuum model as it treats 
water as a continuous entity, as opposed to simulating the interactions of discrete water 
molecules. Early continuum models such as the Poisson-Boltzmann (PB) calculated the 
molecular electrostatic potential and the change in solvent polarisation on binding. As 
they neglected to factor in the hydrophobic effect, an additional surface area term was 
added to create the PBSA model. This operates by adding an unfavourable solvation 
energy term to solute possessing a greater amount of exposed surface area. This negative 
term can be minimised via solute clumping or binding (in the case of a protein-ligand 
interaction), in order to simulate the hydrophobic effect. The Generalised Born (GB) is 
another notable implicit model that is designed as a faster alternative to the PB model. 
It also has a (GBSA) version that factors in surface area 103,112,114.

Though implicit models are faster than explicit ones, they neglect to account for water 
molecules that fulfil unique functional roles within locations such as the binding pocket. 
These waters may be resident for a greater than average length of time, make large 
contributions to the free energy of binding, or assist ligand binding by acting as a 
bridging molecule. Ideally, the descriptive quality of a single explicit water molecule 
should scale up to accurately simulate the characteristics of bulk water. e.g. density, 
surface tension, self-diffusion coefficient, the hydrophobic effect, dielectric constant, etc. 
However, this is not always the case and models of water tend to excel in different areas 
depending on the training sets and criteria used to parameterise them 42,73,115. There are 
several rigid, fixed charge water models that vary in bond geometry, charge distribution 
and how well they reproduce the properties of water. One of the pertinent differences is 
the number of interaction sites utilised in different models and the associated impact on 
computational cost. In the TIPnP family (transferable intermolecular potential n point, 
where n is 3, 4, 5 or 6) a positive charge lies on the hydrogen atoms and placement of 
the negative charge is variable depending on model.  Some models place this charge 
on, or slightly offset the oxygen atom, whilst others model it as lone pairs (Fig.1.25).
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Fig.1.25. From left to right, water models TIP3P, TIP4P, TIP5P and a six site model. The point marked M is the offset 

location of the negative charge in the 4 and 6 site model. This is purported to improve the electrostatic distribution 

around the molecule. Image taken from reference 116.

The computational cost increases with the number of sites on the model. For example, 
9 interactions (every site on one molecule with every site on another) are calculated for 
a pair of TIP3P molecules. There should be a cost of 16 interactions for TIP4P, but 
this can be reduced to 10. i.e. 9 Coulombic relationships and a single estimation of the 
O-O distance to ascertain the LJ interaction. Using the same approximation, a TIP5P 
water dimer can be modelled with 17 interactions instead of 25. Recent evaluations 
of the different TIPnP models based on their ability to reproduce the properties of 
bulk water, nominated TIP4P/2005 as the best rigid model in all categories tested, bar 
dielectric constant 73,115. It is important to reiterate that it is extremely difficult to find 
any fixed point model that can even begin to reproduce the many properties of water 
simultaneously. Every model is designed to fit certain experimental criteria and so the 
experimenter should choose a model best suited for the application at hand.

It is believed that large improvements in the simulations of water can be made by 
moving away from fixed point charges towards polarisable and flexible force fields. 
There are a variety of methods of executing this with varying degrees of (large) 
computational cost. The AMOEBA (Atomic Multipole Optimised Energetics for 
Biomolecular Applications) force field is one such model. The water model is flexible 
and replicates the target properties exceedingly well. The force field deals with both 
inter and intramolecular polarisation and can better deal with the subtleties of hydrogen 
bonding and other electrostatic interactions such as van der Waals interactions, ionised 
side chains or ligands, and movement of polar groups from bulk solvent into the binding 
site, etc 117–119.

1.4.2. Class I vs. Class II Techniques

Computational methods that determine details about protein-ligand binding affinities 
can be divided into two broad classes. Class I techniques are recognised as being 
the slower, more rigorous methods. To achieve better resolution of parameters, they 
generally use explicit solvent and tend not to limit conformational DOF available 
to the system. Hence, they are more suitable to acquire precise values for the key 
thermodynamic quantities of interest. Examples include ab-initio and Thermodynamic 
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Integration (TI) methods.

Ideally, computer based screening should allow the in silico analysis of multiple drug 
candidates in a manner that is quicker and cheaper than carrying out the same tests in 
the lab. Thus, class II techniques (e.g. molecular docking or posing) are optimised for 
high throughput analysis and concentrate on the speed of calculation to generate “hits” 
from vast libraries of drug-like compounds. In order to do this, there exists a trade-off in 
terms of increasing the speed of the calculation, at the expense of accuracy. Rigid body 
approximations freeze solute (protein and ligand) DOF, whilst solvent complexity is 
minimised via the use of continuum models. Due to the loss of entropic contributions, 
a true estimate of values such as the free energy is not possible. Rather, consensus 
schemes use a variety of different scoring systems to rank ligands in order of relative 
binding affinity. To redress inaccuracies created by these approximations, methods have 
been developed that generate a variety of “rigid body snapshots” from the dynamic 
trajectory of a target protein from MD simulations and screen potential ligands against 
these alternate conformations 114,120.

1.4.3. The evolution and revolution of simulation hardware

Biologically relevant simulations usually deal with a range of timescales depending 
on the system being studied. Apart from the solvent, protein dynamics are the second 
largest contributor to the size and tractability of the calculation.

Fig.1.26. Timescale ranges of protein dynamics

The time scales in which various biologically relevant motions are observed are 
depicted in Fig.1.26. A limiting factor in simulations is the time step. This is the basic 
unit of simulation time at which the forces between atoms and molecules are calculated. 
Through necessity, this is limited to a period less than the fastest atomic vibrations 
(~1 fs) in the system to avoid simulation instability. The SHAKE Algorithm removes 
DOF by freezing rapidly moving bonds involving hydrogen. This allows the time step 
to be doubled and the calculation is thus accelerated 121,122. Despite this, CPU-based 
calculations typically yield simulations in the hundreds of nanoseconds, whilst research 
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covering the microsecond to millisecond range is rarer. For example, simulations of 
MUP consist of ~27,000 atoms including explicit water molecules. A single 2 fs time 
step takes ~72.7 s to calculate and thus a single 100 ns simulation takes ~8 days of 
real world time to complete. When multiple protein-ligand complexes and the requisite 
repeats are factored with queuing time for shared computational resources, the time 
taken for these calculations can extend into months.

The availability of parallel processors allows rapid calculation and access to longer 
timescales. However, in practice there are an optimal number of processors for any given 
system. This is because scalability is limited by the MD code, CPU interconnect speed 
and latency. Thus, benchmarks must be conducted to establish the best settings for a 
given computer configuration. The hardware used to run MD simulations is constantly 
evolving and, until recently, researchers would have had to pay substantial amounts of 
money to purchase the necessary equipment or have access to large computer clusters 
whose resources are shared. Roughly 40% of the equilibrium simulations run in this 
thesis were run on the Leeds arc1 and N8 polaris clusters. The former uses 4,512 
processors, 8.5 Tb RAM and an 115 Tb parallel file system, whilst the latter consists 
of 5,504 cores, 25 Tb RAM and has a 175 Tb parallel file system. Theoretical peak 
performance is measured at 50 and 110 teraFLOPS (TFLOPS) respectively. A teraflop 
is a measure of computer performance and stands for FLoating-point Operations Per 
Second. Thus a TFLOP equates to 1012 FLOPS and equates to a human (e.g. a hirstute, 
yet erudite professor) doing a calculation per second for 31,688.77 years to match what 
such a cluster can do in a single second. As a further reference point, a 2.5 GHz desktop 
processor typically delivers performance at a rate of 0.01 TFLOPS. Simulations of the 
dihydrofolate reductase (DHFR) benchmark on such clusters typically achieve a speed 
of ~12 ns/day.

There have been two significant game changers in the field of MD. The first is the 
creation of the Anton supercomputer by DE Shaw research, which specifically runs 
MD simulations. The machine is composed of 512 nodes, each formed by a single 
Application-Specific Integrated Circuit (ASIC) with instructions hard-coded onto the 
chip. Performance is in the multi-petaFLOP region and ~17,000 ns/day can be calculated 
against the DHFR benchmark 123–125. However, access to such powerful resources are 
limited by a run time of ~8 days and competing applications are only accepted from 
principal investigators affiliated with US academic or non-profit organisations 125. Whilst 
the terms controlling access to these finite resources are generous, they inevitably widen 
the gap between researchers fortunate enough to qualify and those that do not. The 
second game changer redresses this balance by reducing the cost of running microsecond 
length simulations to a level affordable by the hoi polloi. This is the advent of GPGPU 
(General-purpose Computing on Graphics Processing Units).
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Initially, the job of rendering computer graphics on the screen was handled by the 
CPU. However, computers designed from approximately the 1990’s onwards, 
offloaded this job to a specialised, dedicated device known as the Graphics Processing 
Unit (GPU) 126. The hardware evolution of these specialised devices was partly driven 
by the consumer gaming industry and its quest to simulate photorealistic effects, whilst 
simultaneously avoiding the depths of the “uncanny valley” (Fig.1.27). This concept 
was conceived in the field of robotics by Masahiro Mori and describes the feelings of 
aversion and discomfort humans have in response to depictions or forms recognised 
as being different from themselves. e.g. A computer generated person walking with an 
incorrectly programmed gait. The term valley is used because, after a certain point, the 
feeling of the “uncanny” shifts back to familiarity as the object becomes less recognisable 
as human. e.g. a cuddly toy 127,128.

In order to simulate the levels of realism required, GPUs were engineered with multiple 
specialised processors that worked in parallel to process pixels and vertices. To increase 
performance and cope with innovations created by rapid development cycles, these units 
were gradually replaced by more general purpose programmable units that could fulfil 
a variety of roles. The company NVIDIA brought GPGPU to the scientific developers 
through the development of CUDA (Compute Unified Device Architecture), a platform 
that supports commonplace programming languages (e.g. C, C++, FORTRAN, etc) 
and thus made knowledge of specialised graphics programming languages unnecessary.

Traditionally, compute for scientific and engineering applications relies on expensive 64 
bit double precision (DP) floating point arithmetic that can represent numbers to 15-17 
decimal places, whilst 32 bit single precision (SP) can only manage 6-9 decimal points 
130,131. In the context of MD simulations, the rounding errors caused by SP arithmetic 
can cause significant deformations of protein structure and dynamics. Hence, NVIDIA 
marketed a line of expensive Tesla graphics cards (Fermi architecture) capable of rapid 
DP calculations to the scientific community labelled with a price tag in the thousands 
of pounds. Whilst consumer grade GeForce cards had negligible DP performance, 

Fig.1.27. Depiction of uncanny valley taken 

from reference 129.
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professional GPUs could calculate DP arithmetic at ~1/2 the rate of SP. The AMBER 
suite of programs accelerated speed by developing a stable, mixed single and double 
precision (SPDP) model, wherein nonbonded forces are calculated with SP, whilst more 
critical bonded terms and force accumulation are dealt with by DP arithmetic. When 
the Kepler architecture superseded Fermi, SP performance increased dramatically at 
the expense of DP. Consequently, an even faster single precision, 64 bit floating point 
integer (SPFP) model was developed. It used 5 extra SP data operations to combine 
a 32 bit integer and a SP float, to form a 48 bit pseudo-DP structure at the expense of 
a few significant figures. This model has been extensively benchmarked and found to 
have the same accuracy as the SPDP model 132,133. Synchronously with these software 
developments, the hardware technology filtered down to consumer grade devices. As 
NVIDIA’s 28nm chip fabrication process suffered from poor yields, chips that did not 
meet quality control standards were repackaged as cut-down models with an affordable 
price tag. Typically, these sub-performing chips have some of their processing power or 
other features disabled (Table.1.4).

Table.1.4. Performance statistics of various Tesla and GeForce cards.

As can be seen from Table.1.4, the price to performance ratio of purchasing a GeForce 
780, coupled with the AMBER SPFP model, makes this an attractive card for long 
MD simulations. With a quad GPU setup, a researcher has access to ~16 TFLOPS 
of unshared processing power. This equates to 32% and 15% of the power of the arc1 
and polaris clusters respectively for a cost of around £3,000 or less. While a specialised 
supercomputer like Anton can achieve a far greater rate of calculation compared to 
GPUs, there are three important factors that make GPU computing more significant. 
Firstly, microsecond long calculations are available to the majority of scientists on a 
ubiquitous hardware platform at a fraction of the cost of a typical cluster. Secondly, 
GPU computation coupled with enhanced sampling methods such as accelerated 
Molecular Dynamics (aMD), achieve greater conformational sampling than millisecond 
long conventional MD simulations in less time 134,135. Finally, researchers can rapidly 
prototype and test hypotheses, which would previously have been agonised over due 
to the cost of computational resources and time. This forms the basis of promising new 
avenues of research in both computational and experimental terms that might not have 
otherwise been explored.

Stream 
Processors

SP 
(TFLOPS)

DP 
(TFLOPS)

DHFR 
(ns/day)

Cost

Tesla K40 2,880 4.29 1.43 81.4 £3,500
Tesla K20 2,496 3.52 1.17 65.7 £2,500
GeForce TITAN 2,688 4.50 1.30 84.0 £950
GeForce 780 2,304 4.00 low 77.1 £500
GeForce 680 1,536 3.00 low 59.9 £400
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1.5.0. Aims and scope
MUP is an ideal model system in which protein-ligand interactions can be interrogated, 
partly due to its ostensible simplicity and also due to its affinity for a large number of 
hydrophobic ligands. Some key points that will be examined by this thesis are:

1. Experimental thermodynamic decomposition on the binding of primary 
alcohols to MUP has indicated that the enthalpic contribution to binding is 
favourable, whilst the entropic portion is unfavourable. These terms change in 
a linear fashion upon increasing the length of the ligand by a methylene group. 
The key question considered is whether the intricacies of the thermodynamics 
of binding can be captured by in silico techniques, so as to allow the better 
rational design of drugs. This question is rather broad and can be further 
subdivided into queries that are pertinent for MUP.

2. MUP has an atypical enthalpically driven binding signature. Do molecular 
dynamics simulations have sufficient depth of detail to capture this subtlety?

3. Do the limited number of binding site waters observed in MUP’s 
suboptimally hydrated calyx act to optimise van der Waals contacts?

4. As the entropic penalty is thought to be mainly contributed by the ligand, 
can this value be computationally recreated and does it match the experimental 
values?

5. Does pre-organisation of the ligand mitigate entropic losses typically seen 
upon binding?

6. A key assumption in many of the thermodynamic decompositions of MUP 
is that the ligand loses a significant amount of translational and rotational 
entropy when bound. However, other works have noticed significant 
translocation of the ligand in the pocket. So this work will seek to ascertain 
whether simulation data can replicate this, and accurately quantify the nature 
and amount of ligand translocation?

7. How does the ligand gain access to the protein binding cavity and what is 
the response of bound waters to ligand internalisation?

8. Previous research has suggested that the protein does not greatly contribute 
to the global thermodynamics of binding. Can this be verified via in silico 
analysis?
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An overview of the chapters that follow are presented below:

Chapter 2.0: Thermodynamic Integration: In this chapter an attempt is made to 
obtain all three thermodynamic values of interest (ΔH, ΔG and TΔS), and capture the 
enthalpically driven thermodynamic signature of MUP. 

Chapter 3.0: Ligand Conformational Entropy: A method to quantify the amount of 
conformational entropy lost on ligand binding is employed. This is applied to the 
question of whether the entropy decreases in a linear manner with the addition of 
another CH2 rotor. Furthermore, the impact of improving the conformational entropy 
on binding is examined via analysis of additional panels of ligands that have restricted 
rotors.

Chapter 4.0: Ligand Translational & Rotational Entropy: The translational and 
rotational contribution of the ligand to the global entropy of binding is assessed via the 
development of two new methods.

Chapter 5.0: Ligand Internalisation & Desolvation: A MD protocol is developed 
whereby ligand’s movement from bulk solvent to the binding cavity can be charted and 
studied to reveal mechanistic details about the internalisation process. This method also 
allows an assessment of the contribution made by ligand desolvation and the expulsion 
of bound waters to the global entropy of binding.

Chapter 6.0: Ligand Mediated Modulation of Protein Conformations: The change in 
the protein entropy on binding different ligands is assessed on a per-residue basis. This 
allows a granular analysis of the protein’s response to ligand binding and allows further 
mechanistic conclusions to be reached.

Chapter 7.0: Conclusion: Summary and conclusions.
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Chapter 2.0: Thermodynamic Integration

2.1.0. Recreating experimental data via an in silico method

MUP is a particularly interesting protein to study because of its atypical binding 
signature, promiscuity in choice of binding partners, ostensible simplicity and 

additive affinity upon binding ligands of increasing size. The key hypothesis postulated 
by Malham et al. (2005), was that binding interactions of MUP were dominated by 
weak solute-solute dispersive interactions 36. This is because the magnitude of the 
entropic term commonly expected in hydrophobic association was greatly diminished 
due to suboptimal hydration of the binding site. An experimental decomposition 
method performed on a panel of primary alcohols suggested a structural rationale 
behind these observations. The favourable intrinsic enthalpic contribution (-8.4 kJ/mol) 
to binding affinity was linear on extension of the carbon chain length by a single 
methylene group. Thus, this was primarily responsible for an increase in ligand-
protein dispersive interactions, which is commensurate with increases in ligand surface 
area. At the same time, an intrinsic entropic penalty partially (-5.5 kJ/mol) offsets the 
enthalpic gain due to the cost of immobilising the additional C-C rotor. This term is 
chiefly responsible for the unfavourable global entropy, because the large favourable 
contribution gained from solvent reorganisation on displacing binding site waters 
is non-existent (§1.3.2 to 1.3.5 & Fig.1.23) 36,90,136.

Whilst, the experimental evidence is cogent, it is of value to establish whether these 
observations can be replicated in silico for three main reasons. Firstly, the experimental 
conclusions are the result of a “top down” decomposition of global thermodynamic values 
and have a number of associated caveats. Though computational approaches have their 
own shortcomings, they are of a different nature and thus offer an independent source 
of validation. The evisceration and dissection of global thermodynamic observations 
is of particular value to computational methods, because the system necessarily has 
to be built from the “bottom up”. The “decomposition values” obtained possess a 
finer level of granularity and are a natural by-product of this process. Secondly, most 
experimental work is expensive compared with the cost of running simulations. The 
drug discovery process would benefit greatly from computational methods that better 
assist at all stages within the pipeline, from rapid HTS through to precise rational design 
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based upon knowledge of the fundamental thermodynamic interactions that regulate 
bi-molecular binding. Knowledge of these interactions and how they vary from system-
to-system form the foundation of designing better force fields and improving methods 
to quantify the binding affinity of putative drug-like molecules. Finally, techniques that 
offer atomistic level detail provide an understanding of the mechanics and parameters 
that govern protein-ligand binding. This chapter investigates the ability of the Class 
I technique known as Thermodynamic Integration (TI) to capture the essential 
thermodynamic trends behind the binding of congeneric panel of ligands to MUP with 
respect to the free energy, enthalpy and entropy. TI can be used to calculate the change 
in thermodynamic parameters resulting from small changes in structure of the ligand or 
the protein. As a rigorous method that eschews many of the approximations that other 
Class II techniques accept, it is hoped that trends very close to the experimental values 
will be captured. 

2.1.1. Objectives

A number of key aspects of the TI method were examined to ascertain its suitability to 
discern the key thermodynamic quantities of interest. The first question analysed was 
whether the AMBER force field, coupled with the TI methodology, possessed sufficient 
accuracy to capture the free energy difference between 2 ligands differing incrementally 
in structure. e.g. One methylene group between hexan-1-ol and heptan-1-ol. Whilst 
obtaining the free energy difference between two ligands may be difficult, replicating a 
congruent pattern across a congeneric panel is even more challenging, with accuracy 
having to be counterbalanced by the associated computational “cost” of the method. 
Thus, the technique was applied to more than one transformation, in order to check its 
ability to capture experimental trends. The following transmutations were considered:

1. hexan-1-ol to heptan-1-ol

2. heptan-1-ol to octan-1-ol

According to Malham et al. (2005), binding site waters are postulated to enhance 
dispersion forces via the optimisation of interfacial solute-solute interactions between 
protein and ligand 36. This hypothesis was tested by examining the following 
transmutations:

1. hexan-1-ol to heptan-1-ol (with two crystal binding site waters)

2. hexan-1-ol to heptan-1-ol (without binding site waters)

As the value for final free energy difference is “built up” by calculating fundamental 
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interactions between atoms, the accuracy of the method was not only scrutinised in 
terms of its ability to reproduce the relative ∆∆GTI values, but also with regards to 
how well it was able to capture the experimental thermodynamic signature. The latter 
describes the domination of van der Waals interactions over that of electrostatics upon 
addition of a methylene group. 

In the second analysis, the entropy difference was calculated using a finite-difference 
method (FDM). This entailed running TI calculations at three different temperatures 
(278, 300 & 322 K) for every transmutation. The enthalpy was then calculated using the 
relationship ∆G° = ∆H° – T∆S°. As TI performance is usually measured only in terms 
of the veracity of the double free energy difference (∆∆GTI), the additional requirement 
to successfully predict component entropic and enthalpic trends required a further level 
of rigour. 

2.1.2. The principle behind Thermodynamic Integration

The TI calculation is performed on data obtained from a rigorous MD simulation 
that makes use of explicit solvent and does not sacrifice solute degrees of freedom to 
save on computational time. As a consequence, the free energies computed are more 
likely to accurately represent the entropic and enthalpic contributions 114. The core 
concept behind TI is the calculation of the free energy difference between two closely 
related states, A and B. In practical terms, this can be a comparison of ligands with 
small disparities in structure binding to a certain protein. e.g. the ligands hexan-1-ol 
and heptan-1-ol differ by a single methylene group. The free energy difference can be 
calculated by applying Hess’s law of constant heat summation which states that ‘the 
energy change for any reaction is independent of the path taken or number of steps 
required’ 21. As energy changes are state functions, an “unphysical” reaction between A 
and B states can be computationally simulated to create a reaction cycle similar to that 
seen in Hess and Born-Haber cycles (Fig.2.1). 

The two states can be differentiated from each other on the basis of the identity of the 
ligand involved. i.e. State A contains ligand A, whilst state B involves ligand B. Fig.2.1 
can be visualised more easily as two discrete simulations. The lower half (Y) measures 
the change in free energy as ligand A transmutes into ligand B whilst free in solution. 
Per contra, the upper half simulates the same ligand transformation process whilst bound 
to the protein. It is for this reason that this process has been termed computational 
alchemy. This can be formalised to yield the following equation:

  ∆G(A)Bind  - ∆G(B)Bind  = ∆G(Y)Tmut  - ∆G(Z)Tmut    (eqn.2.1)

As the difference between two known free energies of binding (A and B) yields the 
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∆∆G between the two different ligands, the calculated free energy difference between 
two alchemical transmutations (Y and Z) should yield the same result 21,112,137–139. This 
method is better suited to a computational approach, due to the ease of simulating 
ligand transmutation within the binding site compared to simulating the binding process 
of two discrete bodies. It has also been reported to have an accuracy of around 1 kcal/
mol when comparing simulation results to experimental 103,112. As a result of using this 
approach with respect to a protein-ligand binding interaction, the interactions involving 
common portions of the two ligands cancel out. Therefore, the ∆∆GTI contribution 
comes mainly from the interactions created or disrupted by the difference in ligand 
structure, be they protein-ligand, protein-protein or solvent-solute. 

Fig.2.1. An alchemical cycle showing free energy paths for the process of two ligands: A and B binding to the same 

protein. ∆G(A)
Bind

 and ∆G(B)
Bind

, correspond to the free energy of binding of the two different ligands. On the other 

hand, ∆G(Y)
Tmut 

and ∆G(Z)
Tmut

 represent the free energy obtained by transforming one ligand into the other via an 

unphysical, alchemical transmutation process. Figure adapted from reference 137.

2.1.3. Phase space and ergodicity - the sampling problem

Describing how the position of a molecule evolves with time within a classical computer 
simulation requires 6N descriptors. Each of the N atoms that constitute the molecule, 
possess three positional coordinates and three descriptors relating to momenta. Every 
one of these parameters acts as an axis, in what is known as phase space. As a multi-atom 
system evolves with time, every microstate (snapshot containing 3N momenta and 3N 
positions) recorded by an MD simulation can be projected as a point in 6-dimensional 
space. The latter concept is easier to visualise by considering a subset of phase space 
known as configurational space. This can be described using only the 3N positional 
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coordinates, and is therefore easier to represent in more familiar 3-dimensional 
space. The positions for every atom in the molecule are merged so that a single point 
representing one configurational snapshot is created (Fig.2.2). The configurational 
probability density can be evaluated from a large number of these snapshots and 
information such as the free energy landscape of the molecule can be generated after 
further calculations 103,140. 

In statistical mechanics, an ensemble is a collection of microstates brought together on 
the basis that they satisfy certain predefined constants that describe the equilibrium 
state of the system (macrostate). e.g. The temperature, number of particles and the 
volume of the system make up the Canonical (NVT) ensemble. In order to capture 
macroscopic properties of the system such as energy or pressure, information about the 
momentum of particles is required in addition to their positions. At any given moment 
in time, examining interactions within component microstates allows the instantaneous 
measurement of any property of the system. As this can vary substantially from 
measurement to measurement, statistical mechanics obtains what is termed an ensemble 
average, by averaging measurements from all available microstates of the system. 
The veracity of this term is dependent upon how thoroughly 6N-dimensional phase 
space is sampled and any trajectory that fully explores phase space is termed ergodic. 
Simplistically defined, the ergodic hypothesis states that if phase space is populated 
with sufficient microstates, the ensemble average converges to a limit that is an accurate 
estimate of the macroscopic property being measured. In practice, simulating a sufficient 
density of microstates to fully populate the phase space of even small systems (< 50 
atoms) presents a considerable challenge. This is partly due to the computational effort 
in generating sufficient snapshots, and also because MD methods preferentially sample 
states of lower energy whilst underrepresenting those of higher energy. There are a 
variety of methods that ameliorate insufficient sampling of phase space 103.

2.1.4. The lambda (λ) parameter

A naive approach to calculating the free energy difference between two simple molecules 

Fig.2.2. Depiction of how 3N positional coordinates 

for a molecule are mapped onto a representation of 

configurational space. The spatial geometry of the atoms 

in the molecule, captured from a single static snapshot, is 

reduced to a point. Figure adapted from reference 140. 
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(such as ethanol and ethane thiol) can be made from a single simulation enclosed within 
a box of water. At every time step, the energetic contribution is first calculated for the 
ethanol molecule. Next, the ethanol force field is temporarily modified so that the oxygen 
atom is described by the parameters relevant to that of the sulphur in ethane thiol. 
The energy is then recalculated for the same snapshot. In this manner, the ensemble 
energy of the two states can be averaged and then subtracted from one another to yield 
the free energy difference. However, if the energetic difference is much larger than 
kBT (Boltzmann constant multiplied by temperature), the two molecules will not have 
sufficient phase space overlap, and the calculation will not be accurate. A separation 
within phase space results in the ensemble averages inadequately representing the 
common microstates of both molecules simultaneously 103.

Fig.2.3. Illustration of how the λ parameter couples the alchemical transformation within a TI calculation. Discrete 

simulations at each λ instance accumulate work (∆W
i
) which can be summed to yield the total difference (∆W) 

between two states. Figure adapted from reference 142.

Methods such as TI seek to reduce any phase space disparity via the simulation of 
intermediate states. In order to effect an alchemical transformation, a path needs to be 
created between state A and B. This is done by introducing the nonspatial parameter λ 
which acts to couple both states. e.g. In order to simulate the transmutation of hexan-
1-ol into heptan-1-ol, the force field description of bond lengths, angles, dihedrals, 
electrostatics and van der Waals have to be modulated. When λ = 0.0, the force field 
describes pure hexan-1-ol. When it is 1.0, it is representative of pure heptan-1-ol. λ 
values between 0.0 and 1.0 (e.g. 0.1, 0.2, 0.3) have hybrid force fields that are a mixture 
of pure hexan-1-ol and heptan-1-ol. For example, at λ 0.3, the force field has 30% of the 
character of that used to describe hexan-1-ol and 70% of the character of heptan-1-ol. 
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Provided the gaps between successive λ steps are small enough, this method ensures 
that phase space for each state is adequately sampled. As previously mentioned, use of 
force fields that merely describe the endpoint states do not yield accurate results unless 
they are extremely similar 103,137–139. Thus, λ acts to minimise a large difference between 
two states by breaking it into smaller “windows”, each of which explores a part of phase 
space that overlaps with both the previous and the successive windows (Fig.2.3). These 
work done within these “windows” can be later summed up to yield the total difference 
141,142.

In practical terms, a separate simulation has to be run for every instance of λ. The λ 
derivative of the potential (V) is averaged across the range of selected λ values. This is 
then integrated numerically to give the final free energy as shown in eqn.2.2 137,143.

 (eqn.2.2)

2.1.5. Mixing schemes

There are a number of different mixing schemes for force fields when using TI, falling 
into the category of either linear or non-linear. A commonly seen example of the former 
is given by eqn.2.3, where V0 represents the potential energy calculated by the force 
field describing state A and V1, state B:

 (eqn.2.3)

This is sufficient for most examples of states differing by only atom types or partial 
charges. However, when the number of atoms increases or decreases, convergence 
is difficult at high and low λ values. This is because atoms to be deleted are turned 
into “dummy” atoms that need to have their van der Waals interactions with the 
surroundings gradually removed. At V0, the potential energy for disappearing atoms 
are calculated with the LJ interactions fully switched on, whilst at V1, these atoms have 
their LJ interactions completely turned off and thus become dummy atoms. The linear 
mixing scheme described above creates difficulties due to issues that occur when the LJ 
potential is linearly scaled across intermediate instances of λ. This often results in large 
forces and numerical instabilities that manifest as an end-point singularity as λ values 
approach 1.0. This is because the scheme effectively results in the van der Waals radii 
of deleted atoms decreasing, whilst concurrently developing a “hard-core” potential 
that is strongly repulsive. When λ is not exactly 0.0 or 1.0, these “hard-core” atoms 
can generate massive energy fluctuations upon contact with other atoms in the system.

A variety of other scaling schemes have been suggested to overcome the difficulties 
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with scaling the LJ potential, with varying degrees of success. e.g. a nonlinear scheme 
with a multiplicative pre-factor k in the form of eqn.2.4 has been found to be effective 
in some scenarios:

 (eqn.2.4)

Assigning values of k in-between 4 to 6 removes the singularity and the integrand 
remains finite. However, this does not resolve the problem, as the final result can still 
be numerically unstable. Beutler et al. (1994) proposed the best solution of ‘soft-core 
potentials’ (eqn.2.5) 144. Instead of multiplication by a pre-factor, the repulsive portion 
of the LJ term was slowly modulated so that an offset based as a function of λ was 
added to the inter-atomic distance. The technique allows atoms from different states to 
gradually overlap, as the full LJ interaction of atoms to be deleted is reduced to zero on 
λ moving from 0.0 to 1.0 (Fig.2.4).  

 (eqn.2.5)

Fig.2.4. Comparing the Lennard-Jones van der Waals potential 

energy term from the GROMOS96 force field for the interaction 

of a water atom with an aromatic united carbon (CH). (a) The 

normal (unscaled) interaction. (b) The effect of linearly scaling 

LJ interaction to zero as a function of the coupling parameter λ 

is displayed for λ = 0, 0.5, 0.9, 0.99 and 0.99999. (c) Linear 

soft-core scaling of λ = 0, 0.25, 0.375, 0.5, and 0.75. Figure and 

text taken from 145.
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In the AMBER 10 implementation (eqn.2.5), the atoms scheduled for deletion have 
their non-bonded interactions with the surroundings smoothly set to zero while still 
retaining their intramolecular LJ interactions. It would be more accurate to describe 
them as decoupled from the surroundings as opposed to being annihilated. When 
soft-core potentials are used, dummy atoms are not required and an even distribution 
of lambda points assigned by linear mixing (0.01 < λ < 0.99) is recommended 121. 
Additionally, partial atomic charges should be removed prior to the calculation in order 
to avoid the problem of the van der Waals interactions being scaled down at a faster 
rate than Coulombic interactions: this can lead to instabilities due to charged solvent 
interacting with the disappearing atom, despite the soft-core offset 121,138,143–145.

The choice of λ values is important and can strongly influence the final free energy value. 
The slow growth method relies on λ being altered so that it slowly moves from 0.0 to 
1.0. The underlying assumption being that small λ windows ensure that the system is 
always in equilibrium. Problems with this method include hysteresis and Hamiltonian 
lag, with the latter occurring due to insufficient equilibration time within a given instance 
of λ 103. Additionally, this calculation method is inefficient as convergence failure results 
in the entire simulation having to be rerun at an even slower rate. The method used 
in this chapter is much more efficient as the potential energy is evaluated at discrete λ 
instances and this set-up is amenable to simulations being executed in parallel. If better 
resolution is required, more λ instances can be added to the simulated data to increase 
integration quality. Thus, TI is directionless and simulating the reverse transformation 
to generate the lower error estimate boundary (i.e. hysteresis) is unnecessary 103,137. A 
(minor) disadvantage is that every instance of λ must be minimised and equilibrated 138.

2.1.6. Calculating the Entropy and Enthalpy

The alchemical approach can be extended to calculating the enthalpy, but the margin 
of error is an order of magnitude larger than the values obtained for free energies. 
This is because the total energy of the system (water molecules plus solute) must be 
included in the enthalpy calculation. This tends to be dominated by solvent-solvent 
interactions that are independent of λ and the greater energies generated by thermal 
fluctuations drown out the signal emitted by the lambda scaled potential linking states A 
and B. On the other hand, the free energy difference is more easily calculated because 
solvent-solvent contributions cancel when comparing the ensemble averages of A and 
B. The difference in solute-solvent energy between states is usually much smaller and 
thus easier to compute 139,146. The entropy of a simulation is exceedingly difficult to 
calculate directly, but could be derived if the enthalpy and free energies were known 
from eqn.2.6.

    ∆G° = ∆H° - T∆S°  (eqn.2.6)
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Alternatively, calculations could be simulated at three different temperatures and the 
entropy could be calculated by a finite-difference method (FDM) (§2.2.7) and the enthalpy 
obtained via the use of eqn.2.6 147. There are several other methods of calculating the 
entropy such as the Shannon entropy equation, the quasi–harmonic approximation, the 
ad hoc quantum mechanical approximation of Schlitter, hypothetical scanning, NMR-
derived order parameters and the mining minima (M2) method 148.  Space limitations 
prohibit a thorough discussion of these methods here, but some will be discussed in 
greater depth in subsequent chapters.

2.2.0. Methods
The methods used are based on protocols from the AMBER website and are explained 
using the example of hexan-1-ol or heptan-1-ol 137.

2.2.1. TI Overview

In order to run the TI calculation, two sets of simulations corresponding to State A 
and State B are required (Fig.2.1). Each member within a set corresponded to the 
structure of one of the two endpoint structures in the alchemical mutation. The set 
termed “complex” consisted of hexan-1-ol bound to MUP (State A) and heptan-1-ol 
bound to MUP (State B), whilst the simulation set termed “FreeLig” corresponded to 
the endpoint structures of un-complexed ligands.

Throughout this chapter, the three letter acronyms tabulated in Table.2.1 will be used 
for various ligands. PDB identifiers are listed where appropriate.  The programs and 
steps necessary to prepare the necessary input files, and the simulation parameters 
required to run TI calculations, are detailed below.

2.2.2. Creation of Ligand Libraries

The program xleap and tleap from the Amber 10 suite were used to create PDB structures 
of hex and hep with hydrogen atoms, taking care to ensure that atom names were 
identical for both structures where appropriate. AMBER library files were then created 
for the ligands so that generation of AMBER topology and initial velocities required to 
run the simulations could be facilitated. A complication in creating the parameter files 
involved ensuring the atom starting positions and names between members within a 
set were identical. The only exceptions to this rule were the atoms being transmutated. 

Ligand Abbreviation PDB ID
Hexan-1-ol hex 1ZNE
Heptan-1-ol hep na
Octan-1-ol oct 1ZNH

Table.2.1. Ligand abbreviations with relevant PDB 

identifiers.
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This is particularly important as the TI calculation can only be carried out in-between 
ligands with small differences such as a single methylene group. Numbering and 
positional differences result in the sander module crashing catastrophically during the 
TI portion of the calculation due to the logistics of the procedure.

Ligand parameterisation required calculation of an energy minimised structure with 
the quantum mechanical (QM) methods used in Gaussian 98 with the 6-31G* basis 
set. Subsequently, a three dimensional molecular electrostatic potential (MEP) grid was 
created from this structure and passed to RESP, a program from the AMBER suite 
that fits the partial atomic charges to the QM derived grid. This process was facilitated 
by RESP ESP charge Derive II (R.E.D. II) program. R.E.D. II acts as a link between 
Gaussian 98 and RESP by handling format conversions and automatically ensures 
file input names are generated correctly. It also allows more accurate partial charge 
derivation through the use of multiple conformations and orientations. 

The PDB files were edited in the manner prescribed by the R.E.D. II manual and the 
instructions followed therein to generate a Mol2 file 149. At this juncture, the antechamber 
module was used to assign atom types from the General Amber Force Field (GAFF) 121. 
GAFF is better suited to describe small organic molecules than the normal AMBER 
force field. As GAFF atom types are in lower case and the normal AMBER force 
field atom types are in upper case, both force fields can be used simultaneously in 
one file. This allows analysis of protein and (bound) ligand to occur simultaneously. 
GAFF parameters were checked with parmchk, to validate bond angles, lengths and 
dihedrals. Force field modifications were generated for missing or otherwise erroneous 
assignments. Finally, AMBER library files were created for both hex and hep 150. The 
same procedure was used for all the ligands in the primary alcohol panel. i.e. hex, hep 
and oct (Fig.2.5).

Fig.2.5. Primary alcohol panel. Only hex, hep and oct were tested using TI.



Chapter 2.076 77

2.2.3. Creation of structures fit for Thermodynamic Integration

After creating the library files, the structures for the complexed ligand were created in 
the following manner. 

The PDB structure of heptan-1-ol bound to MUP (1ZNG) was edited so that the ligand 
had the same three letter identifier (hep) defined in the previously created AMBER 
library file 36. The PDB then had all the waters and ions (such as cadmium) left by 
the crystallisation process stripped out, apart for binding site waters if that particular 
transmutation required them. This starting structure was then duplicated and used as 
the starting structure for hexan-1-ol bound to MUP. To maintain identical atom names 
and starting positions between the two files, the duplicated PDB file was edited so that 
the carbon atom that formed the terminal methyl group of heptan-1-ol was deleted and 
the three letter GAFF identifier of the ligand changed from hep to hex. 

Each PDB starting structure was then loaded into leap subsequent to loading the Duan 
et al. (2003) optimised force field 151, appropriate GAFF parameterised library and the 
all_aminoct02.lib library. The latter enabled the C-terminal CYS157 to be bonded by 
a disulphide bond to CYS64. Missing hydrogen atoms were added to protein residues 
according to the Duan et al. (2003) force field parameters. Ligand hydrogen atoms and 
names were assigned with reference to the AMBER library file created earlier. In the 
case of loading the hexan-1-ol structure (containing the edited/deleted terminal methyl), 
leap matched the edited PDB ligand identifier of hex with the library file of the same 
name and added the appropriate hydrogen atom instead of the terminal methyl carbon 
(in heptan-1-ol). A solvent box of TIP3P waters with a box to solute distance of 12.0 
angstroms was created around the MUP complex. The overall charge of the system 
was neutralised by the addition of K+ ions.  

Ligands that compose the FreeLig set were also generated from the parameterised library 
file and enclosed in a box of water using the method used to create the complexed set. 
Table.2.2 lists the three sets of TI simulation parameter files created for alchemical 
transmutation:

2.2.4. Simulation settings used for Thermodynamic Integration

Both complex and FreeLig sets were comprised of three calculation steps, each consisting 
of 9 λ points. In the first step, the partial atomic charges on (unique) atoms designated 

Alchemical Transformations
1. hex to hep (without water)
2. hex to hep (with 3 waters)
3. hep to oct (with 2 waters)

Table.2.2. List of alchemical transformations.
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for transmutation were switched off to avoid simulation instability in the subsequent 
step. Secondly, soft-core potentials were switched on and the transmutation of hex to 
hep was accomplished by replacing the hydrogen attached to C6 with a methyl group. 
In step-3, partial atomic charges were switched back on. 

The calculation for each λ point in any given step consisted of minimisation, equilibration 
and production stages. Each 500 cycle minimisation utilised a nonbonded cut-off of 
9 Å. 10 cycles of steepest descent were followed by 490 steps of the conjugate gradient 
method for all λ instances, bar those that used soft-core potentials. The latter exclusively 
used the steepest descent method. Constant volume simulations were used for the 
initial equilibration step and were followed by another 50 ps equilibration at constant 
pressure (1 bar). This was carried out to attain the correct density and temperature, 
and also to avoid the problem of “vacuum bubbles” forming in the solvent. As a result, 
pressure values vary widely during the simulation as the unit cell volume is adjusted. 
Energy, volume, density and temperature parameters were monitored to assess whether 
equilibration had been achieved. The final production stage utilises the equilibration 
restart file and was run in 200 ps segments for a total of 5 ns. The simulation parameters 
are essentially the same as that used in equilibration under constant pressure, apart 
from TI specific settings and switches.

During steps 1 and 3, the SHAKE algorithm was used to avoid calculations of bond 
interactions involving hydrogen and thus increased the achievable time step to 2 fs. 
As SHAKE could not be used with soft-core potentials, a smaller time step of 1fs 
was utilised to capture the fastest motions in the system. The simulations were run at 
constant temperature at 278, 300 and 322 K using a Langevin thermostat. This particular 
thermostat uses a pseudo-random number stream to model arbitrary collisions which 
alter the velocities of molecules within the simulation. As the AMBER restart file does 
not store the state of the random number generator in the output stream, this leads to 
the initial seed being reused and the same set of initial random velocities being used in 
each segment. These repeated sequences have the effect of reducing the conformational 
space available to the system and can affect dynamics in undesirable ways, such as 
driving the protein into periodic trajectories. The shorter the segment the greater the 
problem, and in extreme cases the protein can lose stability and denature 152. Therefore, 
in order to avoid introducing the correlation errors that accumulate when using a static 
random number seed, a script was developed to generate a different random number 
seed for each equilibration and production segment. 

To provide an overview of the computational intensity and costs of these calculations, 
a 1ns simulation (compromising both FreeLig and complex) utilised 108 parallel 
processors, with each λ point making use of 2 processors. Thus, a 1 ns TI calculation 
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run at a single temperature took ~3 days on the arc1 cluster at Leeds in 2010. Addition 
of two further TI calculations at alternate temperatures only added another day due to 
the parallel nature of job submission. However, finite resources and logistics associated 
with the cluster queue dramatically reduced the parallel processing advantage if longer 
simulations, additional repeats and/or additional TI transmutations were carried out. 
The compressed size of simulations run at three different temperatures was ~550 GB 
per repeat. In order to achieve convergence (§2.4.4), 5 repeats were performed and this 
yielded an aggregate data size of ~2.5 Tb per transmutation.

2.2.5. Analysis of simulation data

The ptraj program (from the AMBER suite) was used to calculate the root mean 
square deviations (RMSD) of the complex. The RMSD of the MUP carbon alpha 
chain was monitored over the equilibration and production phases so as to gauge the 
stability of the protein (eqn.2.7). The RMSD can be calculated between a reference 
structure (typically the first or last production frame, or alternatively as an average of all 
production frames) at time 0 (t0) to the protein structure at another time point (t1). The 
term ri corresponds to the co-ordinates of N protein atoms and is used to measure the 
average distance between all atoms in the reference structure to that of any other given 
snapshot in time. This can be undertaken after removing translational and rotational 
rigid body motions (minT,R) and superimposing the two structures. This work used 
the first frame as a reference.

 (eqn.2.7)

Further analysis of simulation conditions from output files were accomplished using 
a suite of in-house developed tools that were built using standard Linux programs 
such as grep, awk, sed, gnuplot and python. For each step, the free energy change was 
calculated by numerical integration (using the trapezoid rule) of pathway described by 
∂V/∂λ values. 

2.2.6. Analysis of statistical error

The statistical error inherent in the TI calculation is complicated to calculate. The 
principal sources of error are insufficient sampling of phase space, finite-size effects, 
interaction cut-off and other inaccuracies in the Hamiltonian. There is also a degree of 
error depending upon the quality of the final numerical integration. As each instance of 
λ simulated is independent from adjacent λ instances constituting the integration path, 
calculation of hysteresis is unnecessary 103,138,153,154.

Analysis of statistical error is reliant on independent measurements being made. 
However, measurements made during an MD simulation are limited by finite sample 
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sizes and the computational time it takes to adequately describe phase space can be 
prohibitive. In order to avoid inaccuracies it is important to establish whether the dataset 
obtained is correlated or not. Correlation can be assessed through block averaging the 
data or via the use of an autocorrelation function 153,154. However, a method known as 
“Independent-Trajectories Thermodynamic-Integration (IT-TI)” proposed by Lawrenz 
et al. (2009) appears to demonstrate a more promising alternative 155. IT-TI improves 
the sampling of phase space by averaging N independent trajectories. Due to differences 
in the way phase space was explored in independent trajectories, free energy differences 
were typically under or overestimated by more than 9%. This was due to inconsistent 
sampling of the conformations of flexible loops. When the trajectories were averaged, 
the researchers calculated a value within 1.1 kJ/mol (< 1%) of results obtained from 
ITC measurements of the binding of Amprenavir to the H5N1 neuraminidase N1 
receptor 155. Consequently, five independent repeats were simulated at three different 
temperatures. The standard deviation from the mean of N (independently repeated) 
free energy results (σ∆G) can be calculated to give a measure of the statistical error. 
Larger sample sizes therefore give more accurate estimates 155. The resulting errors were 
propagated by taking the square root of the sum of the squares.

2.2.7. Calculation of entropy and enthalpy via finite difference analysis

As has already been discussed, the TI method cannot be extended to a calculation of 
the enthalpy or entropy as the statistical uncertainty is roughly an order of a magnitude 
greater than that for free energy calculations. Consequently, a finite-difference method 
(FDM) that determines the entropy by evaluating the temperature derivative was 
utilised. To calculate the entropy difference between states A and B with the FDM, the 
relationship described by eqn.2.8 is utilised.

(eqn.2.8)

The derivative of the three simulations run at 278, 300 and 322 K was calculated 
using eqn.2.9.

(eqn.2.9)

T equals the target temperature, whilst ∆T is the difference between the target temperature 
and the flanking temperatures. A value in-between 30 to 50 K is recommended for 
∆T because the method assumes that heat capacity is independent of temperature 
over this range. At a ∆T of 30 K, the statistical error obtained with this calculation is 
approximately ten times that obtained for the ∆∆G 156,157.

To compare the results to experimental data, the TI calculation was run at the selected 
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temperatures and the finite difference method was used to calculate the entropic 
and enthalpic differences between state A and B at 300 K. The lower bound for the 
temperature was selected to avoid running the simulation at a temperature of 0°C where 
water exists as ice. The upper limit was constrained by the fact that ∆T is a constant, 
and thus has to be 322 K. This results in a temperature difference (2∆T) of 44 K 156,157. 
The enthalpy was obtained by using eqn.2.10 and the corresponding error obtained by 
calculating the square root of the sum of the squares.

   ∆∆H°(300) = ∆∆G° (300) + T∆∆S°(300)  (eqn.2.10)

2.3.0. Results
2.3.1. Minimisation and equilibration phase

Simulation stability was assessed by measuring key metrics during the equilibration 
and production stages for all λ points. A representative sample from the equilibration 
phase of a single complex (hex to hep) transmutation at 300 K for step-1 is shown in 
Fig.2.6. The system was minimised to a sufficient level to ensure stability instead of 
undergoing exhaustive minimisation to obtain the lowest energy minima. Initial starting 
structures generated by tleap add water molecules in an ordered lattice around the 
solute. The equilibration phase serves to “melt” this unphysical configuration to one 
akin to that observed in liquid water. This is achieved by assigning initial velocities 
from a Maxwell-Boltzmann distribution and heating the system to attain the desired 
temperature, volume and density. The density is slightly higher than the density of 
water due to the presence of solute (ions, protein and ligand). After approximately 10-
15 ps the density and volume plateaued, fluctuating around stable averages and 50 ps 
equilibration was deemed sufficient (Fig.2.6).

2.3.2. Production phase

The production stage was run for 200 ps initially. A sample depicting the first production 
stage segment from a complex (hex to hep) transmutation at 300 K for step-1 is depicted 
in Fig.2.7. Ptraj analysis of production RMSD shows that the MUP carbon alpha 
backbone is stable. After a period of time that is sufficient for loss of correlation with 
its starting co-ordinates, the RMSD of the protein initially increases with respect to 
the initial crystal structure as the configurations sampled move further away from the 
starting structure. The RMSD fluctuations indicate that the system fully equilibrates 
after ~50 ps. The simulations were then extended by 200 ps segments for a total length 
of 5 ns.
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2.3.3. Decomposing the double free energy difference

Due to space considerations, the procedure for calculating the free energy difference 
is illustrated by the transmutation of hex to hep with binding site waters. At the end 
of 5 ns, each of the nine instances of λ simulated generated a value for ∂V/∂λ. The 
resulting ∆GTI curves were numerically integrated for both complex and FreeLig for 
steps 1-3. The values generated for FreeLig were then subtracted from complex to 
generate the ∆∆GTI for each step. The results for each integration step are located in 
Table.2.3. This was done for 5 repeats across 3 different temperatures. The error is 
represented by the standard deviation as discussed in the methods. The final double 
free energy difference (∆∆GTI) is obtained by summing steps 1-3 for “complex minus 
FreeLig”. Fig.2.8 shows the averaged λ integration path (alongside individual repeats), 
with associated errors for FreeLig, complex and “complex minus FreeLig”.

Table.2.3. ∂V/∂λ values for transformation of hex to hep with water at three different temperatures. Rows depict 

the energetic value obtained by integrating under the averaged (across 5 repeats) “complex minus FreeLig” curve 

(Fig.2.8 bottom row) at 278, 300 and 322 K. The averaged values for all 3 steps are then summed to generate the 

total free energy difference between and hep. Errors are represented by the standard deviation.

Repeat 1 Repeat 2 Repeat 3 Repeat 4 Repeat 5 Mean Std Dev

Step-1 -0.16 -0.05 -0.04 -0.07 0.02 -0.06 0.06

Step-2 -6.00 -4.77 -4.39 -4.50 -4.75 -4.88 0.65

Step-3 -0.75 -1.02 -0.62 -0.72 -0.73 -0.77 0.15

Total -5.71 0.73

Repeat 1 Repeat 2 Repeat 3 Repeat 4 Repeat 5 Mean Std Dev

Step-1 -0.12 0.01 -0.02 -0.08 -0.02 -0.04 0.05

Step-2 -3.96 -4.94 -5.55 -4.23 -3.64 -4.46 0.77

Step-3 -0.92 -0.84 -0.71 -0.68 -0.74 -0.78 0.10

Total -5.29 0.74

Repeat 1 Repeat 2 Repeat 3 Repeat 4 Repeat 5 Mean Std Dev

Step-1 0.04 0.01 -0.06 0.02 0.05 0.01 0.04

Step-2 -3.93 -4.65 -6.36 -4.54 -4.15 -4.73 0.96

Step-3 -0.58 -0.67 -0.45 -0.47 -0.68 -0.57 0.11

Total -5.29 0.94

Results Summary for Transmutation of hex to hep (with water) at 278K (kJ/mol)

Results Summary for Transmutation of hex to hep (with water) at 300K (kJ/mol)

Results Summary for Transmutation of hex to hep(with water) at 322K (kJ/mol)
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The largest change occurs in step-2, when a single hydrogen atom located on the 
terminal methyl of hex is deleted and transmutated into the CH3 group possessed 
by hep (Fig.2.8 & Table 2.3). This is indicative of van der Waals interactions being 
the primary contributor to the ∆∆GTI. If the contribution were due to electrostatics, 
the largest energetic differences would have manifested themselves during step-1 and 
step-3. Although the integration path taken during step-2 for both complex and FreeLig 
describes a change of much large magnitude than that for step-1 and step-3, the FreeLig 
contribution to ∆∆GTI is insignificant. The averaged step-2 “complex minus FreeLig” 
value equates to -4.46 kJ/mol at 300K, and is obtained by subtracting the component 
FreeLig (0.40 kJ/mol) from the complex (-4.07 kJ/mol) value. The latter is a consequence 
of hex being transmutated into hep whilst surrounded by water, and thus the ∆GTI value 
(which is very small and unfavourable) reflects the difference in solute-solvent dispersive 
interactions between the two ligands. This is expected, as any favourable solute-solvent 
van der Waals interactions formed with the additional methyl group are offset by the 
energetic cost of breaking favourable solvent-solvent bonds upon creating the required 
cavitation space in water. On the other hand, the same transformation within the 
confines of the protein binding pocket engenders a favourable ∆GTI contribution that 
dominates the entire process. This is due to the additional methyl group increasing 
protein-ligand, solute-solute interactions.

The smallest energetic change occurs within step-1 and step-3 where partial charges 
on transforming atoms are turned “off” and “on” respectively. The values obtained 
are logical, as the energetic cost (-0.04 kJ/mol) associated with turning “off” the partial 
charge on a single hydrogen atom is not considerable. The price of turning “on” the 
partial charges of an entire methyl group is also minimal, with a slightly favourable 
electrostatic interaction of -0.78 kJ/mol.

2.3.4. Convergence of ∆∆GTI 

Global convergence of the free energy curves with respect to simulation length was 
checked by monitoring how the value varied with time. Representative graphs are 
shown for the three temperatures monitored in Fig.2.9. Despite the fluctuations in the 
∆∆GTI convergence plot being small near the end of 5 ns, the free energy curves for the 
complex is not very smooth and further improvements can be made by increasing the 
number of λ points and the use of a different integration scheme. Disparities between 
individual repeats are smaller for FreeLig compared to complex. This is because the 
free energy landscape explored possesses less complexity along the integration pathway 
between λ(0.0) and λ(1.0) (Fig.2.8). As the largest magnitude of change occurs in step-2, 
this is expected to contribute the largest source of error. 
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2.3.5. Finite difference analysis and experimental comparison

In order to calculate the entropies and enthalpies with the FDM, the key requirement 
is that the ∆∆GTI must change linearly with temperature. This condition is best met 
for the transformation of hex to hep without water. The other two transformations are 
linear within error and a weighted least squares fitting procedure was used to generate 
entropy and enthalpy values (Fig.2.10) 158. A summary of the final results for all three 
transformations are listed in Table 2.4.

Table.2.4. Summary of the final ∆∆G
TI
 for each of the three alchemical transmutations, carried out over three 

different temperatures.

Fig.2.9. Global ΔG convergence for hex to hep (with water) 

transmutation. Figure panels a, b and c show ΔΔG calculated 

at 278, 300 and 322K respectively. The 5 repeats are displayed 

as coloured, dotted lines, whilst the average is a solid black line 

with errors shown as standard deviations.

hex to hep (No Water) hex to hep (with Water) hep to oct (with Water)
278K -5.87 ± 0.42 -5.71 ± 0.73 -5.01 ± 0.67
300K -5.51 ± 0.75 -5.29 ± 0.74 -5.03 ± 0.79
322K -5.15 ± 0.46 -5.29 ± 0.94 -4.47 ± 0.67

Summary of TI Free Energy Differences (kJ/mol)
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The mean of the free energies obtained at 278 and 322 K were averaged and the fitted 
values were used to calculate the ∆T∆STI via FDM (eqn.2.8), as illustrated by the 
transformation of hex to hep (without water) The error was calculated by taking the 
square root of the sum of the squares of the ∆∆GTI values (at 278 and 300 K). This was 
then divided by ∆44 K and multiplied by 300 K to yield a final error of 4.25 kJ/mol.

ΔΔS° TI = -(-5.15 - (-5.87))/44 = 0.0164 kJ/mol/K

ΔTΔS°TI = -4.91 ± 4.25 kJ/mol

The enthalpy at 300 K was calculated with eqn.2.10 to yield:

∆∆H° TI (300) = -5.51 kJ/mol + (-4.91 kJ/mol)

∆∆H° TI (300) = -10.42 ± 4.31 kJ/mol

Global experimental values are used to compare the results from the TI calculation, 
as the method utilised does not separate the thermodynamic values into intrinsic and 
solvent terms (Table 2.5).

Fig.2.10. Linear dependence of ∆∆G
TI
 on temperature. 

Figure panels a, b and c represent the transmutations for hex 

to hep (without water); hex to hep (with water); hep to oct (with 

water). Errors shown as standard deviations.
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Table.2.5. Comparing TI to experimental. As the free energy dependence on temperature was not linear for two of 

the transmutations, a weighted least squares fit was utilised to obtain enthalpies and entropies. 

2.4.0. Discussion
The main aims of this chapter were twofold. The first objective was to capture the 
experimental trends and underlying thermodynamic binding signature observed on 
binding primary alcohols to MUP via an in silico method. Pinpoint accuracy was not 
a primary concern and it was considered more important to minimise computational 
cost whilst maintaining an acceptable level of accuracy. The second objective was to see 
whether the precision that TI is known for could be leveraged to allow calculation of 
the entropies and enthalpies that constitute the free energy.

2.4.1. Quality of results and free energy convergence

The results for ∆∆GTI at 300K show good agreement with ITC data, which is 
surprising as the calculation was relatively coarse. The difference between experiment 
and simulation is under 2 kJ/mol for ∆∆Gobs, for all transmutations (Table 2.5). This 
is within the kilocalorie window of accuracy expected for TI calculations. The mean 
∆∆GTI has been systematically overestimated for all the transformations, whilst the 
values for individual repeats span a gamut of values, with one even coming within 
0.2 kJ/mol of ∆∆Gobs (Table 2.3). When coupled with the fact that unique random 
number streams are used to generate every trajectory representing a ∂V/∂λ value, this 
variance is indicative of enhanced sampling of configurational space. Using the IT-TI 
method in addition to extending simulation time is an excellent method to decrease the 
execution time required to achieve adequate sampling by taking advantage of the many 
parallel processors available in High Performance Computing (HPC) environments.

ΤΙ ΔΔG TI minus Expt (ΔΔΔG)
Hex to Hep (No water) -4.20 ± 0.08 -5.51 ± 0.75 -1.31
Hex to Hep (With water) -4.20 ± 0.08 -5.29 ± 0.74 -1.09
Hep to Oct (With water) -3.10 ± 0.11 -5.03 ± 0.79 -1.93

Expt ΔΔHobs TI ΔΔH TI minus Expt (ΔΔΔH)
Hex to Hep (No water) -5.80 ± 0.72 -10.42 ± 4.31 -4.62
Hex to Hep (With water) -5.80 ± 0.72 -8.56 ± 8.14 -2.76
Hep to Oct (With water) -4.60 ± 0.72 -8.49 ± 6.45 -3.89

Expt ΔTΔSobs TI ΔTΔS TI minus Expt (ΔΔTΔS)
Hex to Hep (No water) -1.60 ± 0.72 -4.91 ± 4.25 -3.31
Hex to Hep (With water) -1.60 ± 0.72 -3.14 ± 8.11 -1.54
Hep to Oct (With water) -1.50 ± 0.72 -3.68 ± 6.46 -2.18

Comparison TI results to ITC at 300K (kJ/mol)
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Of further note is the fact that ∆∆GTI is “built up” from basic interactions using the 
six steps that compose FreeLig and complex simulations. Even so, the methodology 
accurately managed to capture the dominant enthalpic signature of the binding reaction 
as shown by the largest energetic changes occurring in step-2 of the complex and FreeLig 
simulations. This reflects the van der Waals contribution of growing the ligand by a 
methyl group. If the chief contributions to ∆∆GTI were due to electrostatic interactions, 
the largest contributions to the energy changes would have arisen in step-1 and step-3 
upon turning the partial atomic charges “off” and “on” respectively. Thus, the method 
is not a “black-box” and the mechanics behind the calculation are congruent with the 
known physical data on ligands binding to MUP. As the structural difference scrutinised 
by the TI calculations is the extension of the ligand by a methyl group, these in silico 
experiments provide additional support to the hypothesis that an increase in solute-
solute interactions are principally responsible for the observed increase in affinity, not 
solvent reorganisation. This conclusion can be drawn because the ligand in the FreeLig 
transformation obtains a small unfavourable enthalpic term (0.40 kJ/mol), chiefly 
due to the cavitation cost of elongating the ligand by a methyl group. However, the 
same transformation within the bound state is accompanied by a favourable enthalpic 
term that is indicative of the increased solute-solute dispersion interactions that dictate 
binding affinity. The source of the favourable solute-solute term could potentially be 
due to increased ligand-protein and/or protein-protein interactions.

Despite ∆∆GTI values remaining within ~2.0 kJ/mol of experimental results, calculation 
of the entropies and enthalpies via the finite difference method (§2.4.2) necessarily 
requires a greater amount of precision. The mean ∆∆GTI convergence at all temperatures 
(Fig.2.9) lies within a narrow energetic window and possesses minimal fluctuations 
compared to its component repeats. However, a caveat that must be considered is 
whether the variance in calculated ∆∆GTI values are the result of the ligand visiting 
metastable states unrepresentative of the principal binding mode. Longer simulation 
times and/or additional repeats would have to be employed to allow the ligand to 
adequately sample all possible orientations within the binding pocket. This problem 
would be aggravated by using longer primary alcohols, as the extra methylene units 
in the flexible molecule could potentially enable more exploration of the pocket due 
to additional DOF. Conversely, if the ligand has a limited number of binding poses, 
sampling and thus convergence may also be negatively impacted. For example, catechol 
binds to a T4 lysozyme double-mutant in two stable orientations. Even in simulations 
that approached 5 ns, only a single orientation was sampled due to large kinetic barriers 
separating the two states 159. As MUP is a promiscuous protein that can accommodate 
a variety of hydrophobic binding partners of disparate size, some plasticity of ligand 
orientation within the binding site is to be expected 160–162. This is in contradiction to a 
key assumption made in several theoretical thermodynamic decompositions that assume 
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that the ligand loses significant translational, rotational and conformational entropy 
89,163,164. Thus, validating the binding orientation sampled in silico is an important check 
in assessing the precision of any thermodynamic predictions. This will be determined 
in a later chapter by running long MD simulations and identifying the most populated 
ligand binding orientations.

Another consideration as to the accuracy of the TI method is the appropriate selection 
of λ points. The free energy curves are not as smooth as they could be and possess a 
“jaggedness” that is exacerbated by the use of the linear, trapezoid integration method. 
The problem is more pronounced for the complex than for the FreeLig simulations 
due to the greater complexity of the free energy landscape navigated (Fig.2.8). The 
number and distribution of λ instances simulated is intrinsically linked to the numerical 
integration scheme chosen. Precise integration is aided through the generation of 
smooth ∂V/∂λ curves.  In an evaluation of the precision of schemes such as Simpson’s 
and the trapezoidal rule, compared to more complex fitting functions based on 
polynomials, Jorge et al. (2010) employed their own physically based function that 
was purported to better describe the behaviour of their data 165. In their analysis of the 
electrostatic contribution to hydration energy of methanol, all schemes were precise 
to 0.05 kJ/mol of a reference (composed of 129 equidistant λ points), whilst using 
17 λ windows. Reduction of the number of windows caused the trapezoidal rule to 
systematically underestimate the free energy. As the other schemes were not based on 
linear interpolation between adjacent λ instances, they could still capture the curvature 
of the data in as little as 5 λ instances. The estimation of the LJ contribution was more 
difficult and even the physically based function required a minimum of 11 λ windows. 
Another study by Steinbrecher et al. (2007) demonstrated that a Gaussian integration 
scheme with 12 λ instances was capable of a precision that differed by 0.04 kJ/mol from 
a reference containing 99 instances 143. Using 9 instances decreased the precision tenfold 
143,165. However, changing the method used in this chapter to use a Gaussian integration 
scheme would involve repositioning λ instances and running all the simulations again.

The improvement in ∆∆GTI prediction is expected to be marginal by merely replacing 
the trapezoid method with a non-linear integration scheme, as examination of Fig.2.8 
indicates that an increased density of λ points is required to best smooth the curves. 
The data was tested using the non-linear Simpson’s rule with no substantial change 
in the final ∆∆GTI value. The trapezoid scheme used in this chapter is popular in TI 
calculations due to its flexibility. Any number of λ values with variable spacing can be 
used, and thus more instances of λ can be added after an initial simulation to smooth 
the ∂V/∂λ curve. As instances of λ at 0.0 and 1.0 cannot be simulated, the integration 
script linearly extrapolates these values from the closest adjacent values. i.e. 0.1 and 0.9 
respectively. Whilst additional λ points could have been strategically generated on a 
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per-simulation basis for areas in the curve that required additional definition, difficulties 
in generating linear free energy plots across three temperatures (Fig.2.10) raise serious 
questions regarding the ability of TI to consistently generate accurate entropies and 
enthalpies.

2.4.2. Entropy and enthalpy estimates

From the three transmutations tested, only hex to hep (without water) was able to 
yield entropy and enthalpy values suitable for FDM without using a fitting procedure. 
The other two transformations did not exhibit linearity across ∆∆GTI values for the 
temperatures simulated and fitting the values via linear regression produced large 
associated errors (Fig.2.10 & Table.2.5). The problem is exacerbated by the fact that 
the differences between ∆∆GTI values at the temperatures flanking 300 K are very 
small (Table.2.4). As they range from 0.35 at worst to 0.72 at best, this means that the 
method is very unlikely to reliably capture the entropy change and, by extension, the 
enthalpy change for this particular system. It is unlikely that a 2∆T value greater than 
44 K could be used, as obtaining results via the FDM for a target temperature of 300 K 
necessitates that the lower temperature boundary for ∆T would approach, or be below 
the freezing point. 

The disparity between calculated ∆∆HTI and ∆T∆STI to experimental results and their 
errors are both within a kilocalorie for the transformation of hex to hep (without water), 
whilst the other two transformations possess larger errors in the region of 2 kCal. 
The values for ∆∆Hobs and the ∆T∆Sobs are also approximately within 2 and 1 kCal/
mol respectively. Thus, this particular computational approach will not replicate these 
experimental values with sufficient accuracy, unless the margin of error is substantially 
reduced. As this is represented by the standard deviation, the best method of doing 
this is to run additional simulations to increase the number of repeats. As detailed in 
the previous section, the simulations could be run for a longer period of time with 
additional λ points. However, the margin of improvement is expected to be small, 
whilst the computational cost in terms of processing time and hard disk space would be 
too high, to be considered feasible.

2.4.3. Inclusion of binding site waters

The number of waters bound to MUP is quite variable and Malham et al. (2005) 
postulated that the limited number of waters in the calyx served to optimise binding at 
the solute-solute interface 36. Published crystal structures indicate between 0-4 waters can 
be present depending on which ligand is bound. The effects on the inclusion of binding 
site waters were roughly tested by comparing the transmutation of hex to hep, with and 
without crystallographic waters. The results (Table.2.5) indicated that there is a small 
energetic difference (0.22 kJ/mol) between the two transmutations at 300 K. Further 
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simulations would have to be run to assess whether this is statistically significant and if 
it varies for other ligands in the primary alcohol panel. Ideally, a dedicated calculation 
would be set up where the focus of the transmutation is the removal of the key waters. 
e.g. oct (with water) to oct (without water) at 300 K. As the size of the ligand increases 
in the pocket, it is possible that these bound waters might play a more prominent role 
in facilitating protein-ligand interactions than with smaller ligands. However, problems 
with adequate conformational sampling are still applicable and as further simulations 
were an expensive proposition, this initial foray was deemed to suffice at this stage. 

2.5.0. Conclusion
The Thermodynamic integration methodology was able to generate ∆∆GTI values 
to within 2 kJ/mol of experimental values, whilst replicating the expected enthalpic 
signature of the binding interaction. However, it was not precise enough to allow 
calculation of ∆∆HTI and ∆T∆STI via the finite difference method as the ∆∆GTI range 
across the different temperatures available to simulation is too small. Although it is 
possible to increase the accuracy of the TI calculation, the computational cost is deemed 
to be too expensive for this method to be feasible when factored against the many 
ligands that require calculation. Thus, alternative methods of looking at enthalpic and 
entropic contributions are examined in the following chapters. 
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Chapter 3.0: Ligand Conformational Entropy

3.1.0. MUP binding entropy and ligand pre-organisation  

A key finding from ITC data generated on a panel of n-alkanols obtained by 
Malham et al. (2005), was that TΔΔSi decreased in a linear fashion (-5.5 kJ/mol) 

and was correlated with the addition of a methylene group (§1.3.3) 36. A natural 
hypothesis resulting from this observation is that longer ligands have more DOF (in 
the form of rotatable bonds) and these have the potential to be restrained upon binding 
to MUP. This represents a loss in conformational entropy (§3.1.1) and estimates 
obtained from various studies range from ~2 to 6 kJ/mol 166–172. Panels of ligands with 
incremental differences in length are very good experimental models through which the 
thermodynamic impact of rotor addition can be assessed. As the only difference between 
successive ligands in the series is an additional rotatable bond, any perturbation to the 
system should be due to the effect of this structural modification alone. 

Natural compounds often have highly rigid structures with conjugated ring systems that 
afford specificity and large binding affinities. Some authors suggest that pre-organisation 
of the ligand can yield better binding affinities by negating entropic losses 173,174. This is a 
controversial concept that seeks to minimise unfavourable entropy by designing ligands 
that possess bonds with limited DOF. The energetic cost of “freezing” ligand DOF to 
better match its bound conformation is thus prepaid during its chemical synthesis. The 
expected entropic penalty is thus avoided and an increase in free energy is observed 175–178. 
Theoretically, pre-organisation of the ligand only impacts DOF within the ligand itself 
and is highly dependent on the designed compound possessing shape complementary 
to the protein binding site 173. This is not easy to achieve and there are examples of 
pre-organisation yielding unexpected results. e.g. Global entropy losses accompanied 
with increases in binding enthalpy 178,179. Generating structural analogues that possess 
double bonds in lieu of one or more rotatable bonds is a simple method by which ligand 
rotor restriction and its effect on binding affinities can be studied. The impact of these 
systematic modifications can then be compared to a relevant control group. In the case 
of this chapter, two panels of pre-organised ligands structurally related to the n-alkanol 
panel are investigated to ascertain the entropic penalties they pay on binding to MUP. 
The concept behind these panels were originally developed and tested using ITC by 
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Malham (2012) and the computational work forming the backbone of this chapter was 
conducted to complement the experimental data 180. Ligands in the first of these panels 
contain a double bond at the hydrocarbon terminus of the molecule and are known as 
terminal olefins. The second panel contains compounds with a cis-3-4 restriction and 
are known as 3Z-olefins.

Ligands within the terminal olefin panel ascertain whether a terminal restriction is 
equivalent to the removal of a rotatable bond. If this were the case, the entropic penalty 
associated with rotor restriction on binding would be avoided whilst the additional 
atomic mass theoretically favours enthalpic gains through increased protein-ligand 
van der Waals contacts. A positive entropic contribution from burying the additional 
surface area of the non-rotatable bond is also expected. Experimental ITC data only 
compared one 6C terminally restricted ligand to its unsaturated counterpart and 
obtained a favourable intrinsic entropy difference (TΔΔSi) of 4.5 kJ/mol (§1.1.5). As the 
value is very similar to the average TΔΔSi loss (5.4 kJ/mol) associated with methylene 
removal, this gives weight to the hypothesis that the main source of entropy loss on 
binding is from the restriction of rotor DOF. However, no large affinity gains could be 
made by adopting this as a strategy in designing ligands as the gain was compensated 
by an intrinsic ΔΔHi loss of 4.6 kJ/mol 180. This chapter extends this work by verifying 
whether the observed entropic loss is replicable in other ligands possessing various 
lengths, and whether this is directly attributable to torsional restriction.

Fig.3.1. Entropy-enthalpy compensation effect between n-alkanol and 3Z-olefin ligand panels. Graph created 

using global ITC data from reference 180.

Globally measured ITC results obtained by Malham (2012) are reproduced in Fig.3.1. 
The graph illustrates the effect of EEC between 6C to 8C compounds in the 3Z-olefin 
panel and their n-alkanol counterparts. On binding to MUP, 3Z-olefins possess more 
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favourable entropies (~ +8.9 kJ/mol) compared to their n-alkanol counterparts due to 
the structural modification of an alkyl to an alkenyl group. However, these entropic 
gains were again counterbalanced by an unfavourable enthalpic term of greater 
magnitude (~ +11.9 kJ/mol) that translated into a small net reduction in binding free 
energy (+2.9 kJ/mol). As the global values encompass ligand and protein desolvation 
terms, the decomposition technique outlined in §1.1.5 was utilised to isolate the solute-
solute contribution. Where experimental data from air-solvent partition equilibria were 
unavailable, an additive group contribution technique was utilised to acquire summed 
theoretical values 94. This could then be used to generate intrinsic thermodynamic 
values. It should be noted that these intrinsic values are based on the assumption that 
protein-protein interactions do not change when binding different ligands. Additionally, 
no account is made for differential expulsion of binding site waters. Whereas global ITC 
values show linear to almost linear trends, the intrinsic values were more variable and 
the average TΔΔSi gain on introducing a cis-3-4 double bond was 13.6 ± 4.2 kJ/mol, whilst 
the enthalpic penalty was 12.6 ± 4.3 kJ/mol. Contributions from ligand desolvation 
and other factors not accounted for in the intrinsic thermodynamic values resulted in 
the net global free energy of binding being unfavourable. The key question posed by 
this panel of ligands is why the entropic gain is more than double that of terminally 
restricted compounds. Whilst it is clear that an internal restriction could affect ligand 
dynamics to a greater extent by virtue of its central position, the exact reasons as to why 
this might be the case are more opaque. 

3.1.1. Partitioning the entropy into its component parts

The root causes for the changes in thermodynamic quantities such as the entropy can 
be difficult to assess. Entropy is hard to measure accurately and the system’s globally 
measured value is typically composed of disparate components, each making small 
contributions that may not be strictly additive in nature 173,181–183. Using statistical 
mechanics to accurately calculate the absolute entropy or free energy of a system is 
problematic as it requires evaluation of the total phase space (W) that a system has 
access to. MD simulations generally have issues generating a sufficiently diverse 
number of microstates (Wi) that adequately describe W completely and usually only 
obtain a subset from this multidimensional topography. Long simulations, or enhanced 
sampling methods, are required to overcome the energetic barriers separating localised 
energy wells that constitute the potential energy surface of the system. Determination 
of bulk macroscopic quantities such as the temperature or pressure can be easily 
accomplished by calculating the ensemble average from instantaneous measurements of 
individual elements (Wi) obtained from a finitely sampled ensemble. However, absolute 
free energies and entropies require simultaneous assessment of the entire ensemble 
(i.e. W) and this is a computationally intractable problem due to its size. Moreover, if the 
simulated microstates do not fully represent W, the entropy or free energy difference will 
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be inaccurate, as a representative sample does not take into account the contributions 
made by microstates not considered in the calculation 148,184–186.

As discussed in chapter 2.0, methods such as TI reduce the magnitude of the calculation 
by focusing on finding the relative ΔΔG between two states with small structural 
differences. As energetic fluctuations involving interactions between the alchemically 
mutated portions of the system are small, this method allows good estimates of the 
energetic disparity between states to be made. However, it is difficult to extend the 
same treatment to the entropy because the calculation takes into account interactions 
involving every atom (of solute and solvent) within the ensemble of structures and the 
magnitude of fluctuations caused by events such as solvent dynamics and amino acid 
conformational changes can be very high. Evaluating the integral for the 3N-dimensional 
configurational phase space (§2.1.3 & §3.1.2) is also a formidable, if not impossible, task 
for even small systems 148,187. The dimensionality and size of the problem can be reduced 
by separating the entropy into component parts and it is generally accepted that these 
can be reconstructed to yield the total. Firstly, the global entropy can be partitioned into 
solute and solvent portions. In a protein-ligand binding interaction, the solute portion 
can be further subdivided into contributions from the protein and ligand. Either one of 
these will have entropy values associated with the principal rotations of the molecule, 
gross translational motion and internal vibrations (eqn.3.1). The latter is analogously 
known as the conformational or configurational entropy and experimental estimates for 
this value can be derived via NMR-derived order parameters 172,186,188–190.

    S = STrans + SRot  + SConf    (eqn3.1)

Contributions to the conformational entropy can also be split into “hard” and “soft” 
DOF 191,192. The former is composed of small deviations of bond lengths and angle 
bends away from their equilibrium positions and these high frequency motions are thus 
labelled “hard”. These motions are not expected to contribute much, and the difference 
between bound and free states are often assumed to cancel. Moreover, the narrow 
probability distribution ranges typically obtained for hard DOF make them difficult 
to treat classically and quantum methods must be employed. However, soft DOF are 
composed of larger torsional oscillations, and are expected to dominate conformational 
entropy losses on binding 186,192. 

Loss of internal DOF can result in the conformational entropy being a major contributor 
to global entropy loss on binding. For instance, NMR-derived order parameters of the 
binding entropy of 6 peptides (modelling the calmodulin binding domains of various 
target proteins) to the calmodulin receptor revealed that ΔSConf was comparable in size 
to that of ΔSSolv. Additionally, variation in the magnitude of ΔSConf between complexes 
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were posited to be the primary modulator of protein binding affinity, whilst differences 
in ΔSSolv tended to be invariant as the global binding entropy changed 193,194. It is 
intuitively understandable that a large macromolecule such as a protein contains many 
DOF. Thus, small ΔSConf differences between free and bound DOF can accumulate to 
significantly affect the global entropy. However, it is less obvious how loss of ligand 
DOF can greatly impact the conformational entropy. Another study on the noncovalent 
binding of oligopeptides (netropsin and distamycin) to the minor groove of the DNA 
double helix, demonstrated that unfavourable ligand ΔSConf was a major contributor 
to the binding thermodynamics. Global entropies for these binders range from -39.7 
to -54.0 kJ/mol depending on the identity of the DNA binding sequence. Using an in 
silico method, the total ΔSConf loss on binding was calculated as being -38.1 kJ/mol and 
-31.2 kJ/mol for netropsin and distamycin respectively 195.

3.1.2. Entropy calculation methods

A computational measure of conformational entropy can be generated from an 
ensemble of n microstates obtained by MD simulations via the Gibbs entropy formula, 
which calculates the variation in the density of different states occupied by the system 
(eqn.3.2). 

(eqn.3.2)

If Ei is the energy of a given microstate, pi can be calculated from eqn.3.3.

    

(eqn.3.3)

The total conformational entropy of a molecule such as a ligand is obtained by calculating 
the integral of the continuous probability density function formed by its trajectory 
within phase space. This requires both the momenta (p) and generalised coordinates (q) 
to describe the kinetic and potential energy terms respectively. These two components 
compose the total energy and can be calculated separately. The kinetic contribution 
is typically ignored as most biological systems simulated have constant mass and are 
studied under conditions of constant temperature. Thus, when calculating the relative 
entropy difference between two states, the kinetic contribution cancels. This is because 
it is also constant (on average) due to the equipartition theorem and the primary source 
of entropy change is derived from variation in the molecule’s atomic coordinates. The 
total conformational entropy with only the potential term is defined in eqn.3.5, whilst 
both kinetic and potential components are taken into account in eqn.3.4 187,189,196.
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(eqn.3.4)

   (eqn.3.5)

There are several methods of calculating the conformational entropy such as 
the hypothetical scanning (HS) method, the nonparametric mutual information 
expansion (MIE) method, the quasi harmonic approximation (QHA)and its many 
variations 182,187,197–202. The integral in eqn.3.5 can rarely be assessed directly, because 
the dimensions of phase space accessible to proteins or even small ligands is too 
complex and thus intractable to computational calculation. Hence, the initial QHA 
method proposed by Karplus and Kushik (1981) assumes that atomic fluctuations can 
be described as a normalised multivariate Gaussian distribution that approximates a 
(quasi) harmonic distribution. The conformational entropy can then be calculated as a 
sum of entropies obtained from component quasiharmonic modes. A covariance matrix 
for two states (e.g. helix to coil transition) can be generated and the determinant (s) 
utilised to encapsulate the conformational density - r(q). The equation for a single 
state is shown in eqn.3.6, whilst the relative entropy difference between state a and b is 
described by eqn.3.7 201.

   (eqn.3.6)

(eqn.3.7)

An issue with this method is the requirement to convert Cartesian coordinates obtained 
from MD simulations to internal bond-angle-torsion (BAT) coordinates, as errors 
are introduced by approximations made within the Jacobian. This step is necessary 
to remove the centre of mass (COM) rotation of the molecule and can result in the 
s being singular if neglected. Consequently, Schlitter (1993) advanced an ad hoc 
approximation that allowed the use of Cartesian coordinates via the addition of a mass 
weighted diagonal matrix. This method additionally allows calculation of the absolute 
entropy by including translational and rotational (T&R) terms 188,202. In 1980, Karplus 
and Andricioaei reformulated the QHA to use Cartesian coordinates. This proved to 
be twice as efficient and was able to calculate the exact conformational entropy without 
the approximations present in the Schlitter method. Additionally, values for the heat 
capacity, vibrational free energy and enthalpy could also be calculated 200.

The Schlitter method models each internal DOF as a quantum harmonic oscillator, 
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whilst the QHA generates a multivariate Gaussian distribution to functionally describe 
the complex multiminima of the potential energy surface of a macromolecule. The 
latter approach is meant to better account for the multimodality of the data and 
potential anharmonicity. However, the QHA has been found to excessively smooth 
the distribution and can potentially introduce significant errors into the calculation 
by merging multiple energy wells into a single well. A better approximation can be 
obtained by calculating the entropy for each DOF separately and then summing the 
contributions. However, this is a 1st order approximation which does not take into 
account correlated motions that act to lower the calculated entropy. Methods that 
do not take into account higher order correlations only provide an estimate of the 
maximum possible entropy of the system. Covariance based methods take into account 
linear correlations only and are therefore considered to be 2nd order approximations. 
There are also other potential sources of error due to the normal distribution being a 
function that tends to maximise the entropy. The necessity of removing rotational and 
translational DOF by superimposing structures obtained from MD simulations can also 
introduce errors up to 80 J/mol/K 188,203. 

Histogramming methods such as that used in the mutual information expansion (MIE) 
put forward by Killian et al. (2007) do not assume an underlying functional form to 
the probability distribution function (PDF) and are theoretically capable of providing 
entropy estimates that take into account correlations up to 3rd order or higher 182. 
Practically, the method is typically restricted to a 3rd order ceiling, as the construction of 
3D or higher dimensional PDFs require increased sampling density. This is necessary 
to alleviate the issue of a finite number of data points inadequately filling the greater 
number of bins created within higher dimensional volumes. Furthermore, this incurs 
a substantial cost in storage capacity which can be limiting when simultaneously 
studying the trends between several systems of interest. At its heart, MIE calculates 
the Shannon entropy using eqn.3.2 and converts this into a physical entropy value 
by multiplying it by the gas constant or Boltzmann constant.  -ln r(q) is known as 
the self-information of a distribution and the mutual information is a measure of the 
amount of correlation between marginal probability distribution functions that make 
up the full PDF of the system. Thus, the total entropy can be calculated by summing 
tractable 1D and 2D marginal entropies and then applying higher order mutual 
information corrections  182,183,204.

There are other methods that infer the total PDF via the use of kernel density estimators 
which can take into account correlations higher than 3rd order. Of note is the kth nearest 
neighbour entropy estimator of Hnizdo et al. (2008) which    when combined with MIE 
was capable of providing up to 6th order correlation corrections (albeit with greatly 
increased computation time) 183. The estimator deals with the rarification of data points 
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when considering higher dimensions by using an adaptive bin width, that modulate its 
size around a sample-point centric hypersphere so that it always contains k (e.g. 1, ..., 5)  
nearest neighbours. The appropriate value for k is adjudged by its ability to make 
a smooth estimation whilst keeping the entropy calculation as localised as possible 
around each hypersphere kernel. This unbiased nonparametric method can better deal 
with anharmonicities and the multimodality of a given PDF in a better fashion than the 
QHA, but struggles to achieve convergence when the dimensions (i.e. internal DOF) of 
the system exceeds 10 to 15 183,205. 

The minimally coupled subspace approach also uses nonparametric kernel density 
estimation (based on adaptive anisotropic kernels) and can calculate the configurational 
entropy of systems possessing up to 45 dimensions. Larger systems such as proteins are 
decomposed by separating highly coupled DOF via a linear orthogonal transformation 
to Cartesian coordinates using Full Correlation Analysis. These coordinates are then 
clustered according to their correlation coefficients and the mutual information within 
each cluster is minimised. Inter-cluster correlations are ignored as it is assumed that 
the initial assignment of coordinates eliminates the majority of the significant terms. 
Oversized clusters with dimensions greater than 15 are subclustered so that the 
entropy calculation is more manageable and then summed whilst taking into account 
MIE corrections. The authors also proposed that the method could be extended to 
include a form of the Schlitter formula to account for the narrow distributions of stiffer 
DOF (e.g. bond lengths) 188,206,207.

3.1.3. Objectives

As ligand specificity in MUP is principally governed by non-specific apolar interactions, 
it is a simple model system in which the systematic modification of ligands can be 
studied. The experimental data obtained from the binding of primary alcohols suggest 
that global thermodynamic values scale in a linear fashion on extending ligand length 
with additional methylenes. This is indicative of an additive system whose global 
binding characteristics can be probed via elementary modification of the ligand alone. 

In order to open an aperture that captures bound ligand dynamics in a feasible amount 
of time, three panels of ligands were scrutinised by means of long MD simulations. This 
chapter specifically examines the entropic aspects of ligand binding to MUP and the 
key questions to be assessed are listed below.

1. “Top down” experimental decomposition indicates that reductions in TΔSi 

of 5.5 kJ/mol are attributable to the penalty of restricting a C-C rotor. As 
estimates for torsional restriction of such a rotor are ~2-6 kJ/mol, it is of 
interest to validate whether the primary source of entropy loss on binding 
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n-alkanol ligands is traceable to this specific component and whether  “rotamer 
counting” is a valid approach in drug design.

2. Pre-organisation of the ligand can easily be accomplished by introduction 
of a double bond and a systematic study on the binding of nonpeptidic ligands 
to m-opioid receptors demonstrated that insertion of a single stereo-specific 
restriction has the potential to increase affinity by an order of magnitude 208. 
This category of ligand alteration is not expected to excessively perturb the 
system being studied and offers one of the finest levels of granularity that 
is practically accessible to synthetic chemistry. Though this is a simple unit 
modification the choice of restriction position, factored with ligand length, may 
create additional dynamic effects that impact binding affinity in unexpected 
ways. Experimental work suggests that these simple alterations can be reduced 
to group additive effects, but variance in some of the results suggests that 
further analysis is needed to verify the findings. 

The equivocal results obtained from pre-organisation demonstrate that 
whilst this approach might be theoretically sound, extensive benchmarking 
of proposed modifications must be carried out in order to reap acceptable 
affinity gains. An in silico approach is an ideal method through which this can 
be accomplished in a relatively cheap manner whilst offering an atomistic level 
of detail and explanation. The question this chapter chooses to address, with 
regards to the 3Z-olefin panel, is why these ligands have better entropies of 
binding compared to their n-alkanol counterparts. In order to begin answering 
it, the contribution of the conformational entropy is assessed.

3. Only one Ligand with a terminal restriction was experimentally tested by 
ITC and the TΔΔSi gain for modifying hexan-1-ol to hex-5-en-1-ol was found 
to be 4.5 kJ/mol. Because of the similarity to the value obtained for rotor 
removal (5.4 kJ/mol), this result suggested that the principal source of global 
entropy losses on binding is due to decreased ligand DOF. The computational 
analysis will attempt to reproduce this result by examining the contribution of 
internal torsional DOF. Additionally, the binding of longer ligands will also 
be assayed to assess if the effect is consistently repeated within all members of 
the panel.

4. Most in silico studies on the binding of ligands to MUP have focused on 
one to four compounds and while the resulting analyses have been revealing, 
they do not fully meta-analyse the underlying mechanisms of promiscuous 
binding in this protein. As several panels of ligands are being studied, we are 
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more interested with trends in the data versus pinpoint accuracy and will only 
be calculating 1st order torsional entropies as the computational cost in terms 
of storage space and processing time is too prohibitive to analyse 12 ligands 
using methods such as MIE. A measure of the extent of linear correlations 
within the ligand will be obtained using principal component analysis (PCA). 

5. In order to ascertain the quality of the histogram method used to calculate 
the entropy, the method will be cross-validated against data obtained from tight 
ligand binding to HIV protease. A number of studies have been conducted 
on this system and it will provide an informative counterpoint to the results 
obtained from MUP ligand binding.

3.2.0. Methods

3.2.1. MUP ligand parameterisation

Ligands depicted in Table.3.1 and Fig.3.2 were parameterised using Gaussian 03 and 
the R.E.D. III suite of tools with the 6-31G* basis set in the manner described in 
§2.2.2 121,150,209. In this thesis, the following naming convention is used. Primary saturated 
alcohols are referred to as n-alkanols; unsaturated alcohols with terminal restriction are 
called terminal olefins and unsaturated alcohols with a cis-3-4 double bond are labelled 
3Z-olefins.

Fig.3.2. Structures of ligands composing the three primary alcohol panels. 

Amber parameter files involving ligands complexed with protein were based on 
crystal structures obtained from the PDB files listed in Table.3.1. Where these were 
unavailable, the ligand from the closest matching PDB file was mutated to the desired 
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ligand. Unpublished alken-1-ol crystal structures were kindly provided by Dr Richard 
Malham. The Duan et al. (2003) force field parameters were used for all simulations 151.

3.2.2. HIV-I protease ligand parameterisation

Darunavir was parameterised alongside other sulfonamide PIs using a fragment based 
approach to ensure that ligand backbone and common groups had consistent charge 
derivations. This method is particularly suitable for large molecules that can present 
conformations that possess intramolecular, non-bonded gas phase interactions which 
are unsuitable for charge derivation 210. Thus, the ligand was split into constituent parts 
centred on a central scaffold onto which X, Y and R groups could be interchanged 
to produce Amprenavir, Darunavir, GS-8374 or TMC-126. Darunavir was created 
by combining fragments marked with an asterisk (Fig.3.3). A two stage RESP fit 
was utilised to ensure that chemically equivalent atoms retained the same charge as 
described in references 211,212. The same references describe the use of blocking groups 
which are surrounded by boxes in Fig.3.3. Briefly, charges are derived for the different 
fragments separately and a subsequent step uses Lagrange constraints to force the 
charge on the blocking groups to become zero upon marrying fragments during the 
final fit. This is so that the net charge on the fused fragment is an integer. Combining 
the central ligand scaffold to either one of the R groups uses ACE (COCH3) and 
NME (NHCH3) blocking groups around the peptide bond. This is a well known, 
established procedure that is used to build the terminal and central fragments in 
AMBER force field libraries. The identity of the other (Y and R) blocking groups 
had to be established via iterative modifications that were assessed in terms of the 
final quality of fit. The metric to determine this was based on a comparison of charges 
derived with and without constraints. Multiple orientations were used to improve the 
fitting procedure as described in reference 209. Charges obtained with this approach are 
depicted in Fig.A1.8. Standardisation of the common backbone elements would not 

Abbrev. Ligand PDB ID
hex hexan-1-ol 1ZNE
hep heptan-1-ol 1ZNG
oct octan-1-ol 1ZNH
non nonan-1-ol 1ZNK

3c6 (Z)-hexa-3-en-1-ol unpub
3c7 (Z)-hepta-3-en-1-ol unpub
3c8 (Z)-octa-3-en-1-ol unpub
3c9 (Z)-nona-3-en-1-ol (3c8)*

ThX hex-5-en-1-ol 1ZNE*
ThP hept-6-en-1-ol 1ZNG*
ToC oct-7-en-1-ol 1ZNH*
TnO non-8-en-1-ol 1ZNK*

Pr
im

ar
y 

A
lc

oh
ol

s
3Z

-o
le

fin
s

T
er

m
in

al
 

O
le

fin
s

Table.3.1. Breakdown of three ligand 

panels with three letter abbreviations and 

PDB identifiers. Ligands marked with an 

asterisk do not have solved crystal structures 

and the ligand within the listed PDB ID was 

mutated to the appropriate compound.
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have been possible if this charge derivation approach had not been used.

The crystal structure (2HS1) of HIV-I protease bound to Darunavir included all 
crystallographic waters and the catalytic aspartates were monoprotonated (ASP25), as 
the literature reported that simulation instability could occur if the wrong protonation 
state was utilised 213–217.

Fig.3.3 - Fragment based reaction scheme to derive partial charges for HIV-I protease sulfonamide based 

inhibitors. Fragments used to make Darunavir are marked with an asterisk. Me stands for methyl; and Et, ethyl.
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3.2.3. Long MD simulation setup

Long molecular dynamic simulations of a 100 ns were carried out in the following 
manner for free and bound species. 

Bound: The equilibration phase was run with a single minimisation stage, followed 
by a heating stage at constant volume (NVT) and a final step at constant pressure 
(NPT). However, this created problems in terms of protein stability in the case of 
3Z-olefin panel. Therefore, a gentler 2-step approach was taken for minimisation 
and NVT in all the simulations. The first minimisation step was run for 2,000 steps 
using a nonbonded cut-off of 12 Å. This initially consisted of 500 steps of steepest 
descent and the remaining steps utilised the conjugate gradient method. All protein and 
ligand atoms were restrained with a strong harmonic restraint of 30.0 kCal/mol Å-2, 
whilst the solvent was allowed to “melt”. The second minimisation phase used the 
same settings as the first, but turned off all restraints. The first step of constant volume 
simulation modulated the temperature from 100 to 200 K for 20 ps using weak coupling 
(Berendsen thermostat) while using the restraint of 30.0 kCal/mol Å-2. Subsequently, 
another 20 ps NVT simulation was run with the restraint switched off and the system 
was heated from 200 to 300 K. Short NVT runs were used to minimise the possibility 
of “vacuum bubbles” forming as the ordered crystal lattice of initial waters placed by 
tleap underwent melting. The density and volume were then allowed to equilibrate in 
a single NPT stage of 40 ps. All equilibration stages were carried out using the Sander 
module from AMBER. The production stage used PMEMD and was run in 4 ns 
segments for a total of 100 ns. SHAKE was turned on in all simulation steps (apart from 
minimisation) so that a 2 fs time step could be used and care was taken to assign unique 
random number seeds to all stages.

Free: Stages with restraints used for bound simulations were omitted and the equilibration 
and production settings were the same as that used for the bound state.

Six repeats were performed for every simulation set (Bound and Free). Half of the 
simulations used the CPU code and the other half used GPU code. In all analysis steps, 
differences between the two sets of repeats were scrutinised and no disparities could be 
detected 132,133. Ideally, longer simulations of 200 to 300 ns were desired, but because 
the GPU’s were unavailable for full production use till the last half of 2013 this work 
uses the first 100 ns for analysis. The simulations have been extended by an additional 
100 ns and this will be used to confirm all findings at a later date. Special thanks goes 
to Emanuele Paci, who kindly donated the use of one of his GPU’s which did the bulk 
of the work to make the total number of repeats up to six. 
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3.2.4. The entropy calculation

The conformational entropy is calculated by measuring the number of microstates in 
the system. An early method of doing this was through counting rotamer distributions. 
The more states a rotamer samples, the higher the conformational entropy 181. Thus, 
the entropy difference is calculated from the difference in the density of states between 
the free and bound species. This is comparable to the intrinsic entropy obtained via 
thermodynamic decomposition as the conformational entropy does not take into 
account any solvent terms, even though ligand dynamics within a MD simulation is 
perturbed by collisions with water molecules. The conformational entropy for ligands 
binding to MUP were calculated as follows: All snapshots from the trajectories were 
analyzed using the ptraj module of AMBER Tools 13 150. Water, ions and, in the case 
of the bound simulations, protein residues were removed. The ptraj dihedral command 
was used to output dihedral angles using heavy atoms from the ligand backbone as a 
point of reference, whilst dihedrals near the termini also included a terminal hydrogen 
atom. 

The resulting angles for each ligand species were binned according to population. 
The resulting 1D histogram can be viewed as the inverse of a typical potential energy 
map and allows direct calculation of the entropy without prior assumptions about the 
underlying functional form of the data. The torsional entropy (TSTor) was calculated for 
every dihedral using the statistical mechanical formula (eqn.3.8) proposed for torsion 
angles by Edholm and Berendsen (1984). Physical units of kJ/mol were obtained from 
the dimensionless logarithm by multiplication by -RT. The contributions of angle bends 
and bond lengths is reported to be small and therefore assumed to cancel between 
bound and free states 192.

(eqn.3.8)
  

The probability distribution of each bin (ri) is given by eqn.3.9, where n is the total 
number of samples and ni represents the number of samples in a given bin. The 
bin width in radians (Δ) is used to correct systematic errors caused by use of a fixed 
interval size 187. 

    (eqn.3.9)

TSTor values obtained from all 1D marginal PDFs in a ligand species were summed to 
yield a 1st order torsional entropy estimate (TSConf) and then subtracted using eqn.3.10 
to give the relative difference in conformational entropy on binding (TΔSconf).
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    TΔSConf   = SConf -Bound - SConf-Free  (eqn.3.10)

As this method is only suitable to describe classical dynamics, the vibrational entropy 
occurring in the deep energy wells possessed by double bonds were not calculated as 
they are best described by a quantum mechanical treatment. 

3.2.5. Error analysis

The entropy calculations estimate the population mean using a sample size of 100,000 
snapshots per simulation. The value yielded by the calculation can be overestimated or 
underestimated depending on the population of microstates furnished by the simulations 
and the minimum number of data points required to generate a reliable ligand entropy 
estimate is uncertain. The number of independent repeats of ligands bound to MUP 
is necessarily small (six) due to the computational cost of accumulating and storing 
data. Scrutiny of dihedral distributions in amino acids reveals that, for the most part, a 
single simulation samples the total available conformational space adequately. However, 
conformations populated by certain dihedral angles are separated by larger energy 
barriers that reduce transitions between available energy minima within 100 ns of 
simulated time. Combining individual 100 ns simulations produces a distribution that 
is theoretically a closer approximation to the true ergodic distribution, and thus should 
provide a better entropy estimate. This effect is illustrated in Fig.3.4 and Table.3.2.

Fig.3.4. Dihedral angle distribution for an amino acid bond in MUP. Six 100 ns repeats are coloured green, whilst 

an overlay representing the aggregate composing 600 ns is coloured magenta.

The difference between the averaged entropy obtained from six 100 ns simulations 
and the entropy estimate from a single concatenated 600 ns simulation is within 0.1 kJ/
mol for a single protein dihedral possessing a complicated conformational landscape 
(Table.3.2). Though this is a small disparity, the difference systematically accumulates 



Chapter 3.0108 109

when summing the contributions from 
multiple dihedrals. Therefore, the 
more ergodic value calculated from the 
combined sample is always used in this 
analysis. This is considered more accurate 
as more states of the measured observable 
are accounted for in a single calculation 
and the entropy estimate improves 
because W is better approximated. Fig.3.4 
also shows that a single simulation does 
not always fully represent the population 
distribution attainable with increased 
sampling from multiple independent 

repeats. Thus, to obtain a measure of the spread of mean entropic values generated 
from sample distributions (that may not fully represent the population distribution), the 
standard error is used to quantify the error inherent in the method 205,218. Errors were 
propagated by taking the square root of the sum of the squares.

3.2.6. Principal Component Analysis

PCA allows reduction of data dimensionality inherent in molecular motions via the 
construction of a 3N x 3N covariance matrix, where N is the number of atom in the 
system multiplied by three spatial Cartesian DOF. Before constructing the matrix, T&R 
DOF are removed by fitting the structures obtained from MD simulations to a reference 
structure. The covariance for two variables is given by eqn.3.11, where Xi represents 
the instantaneous position of a specific atom, whilst X with the overbar is the mean 
atom position for that DOF. 

(eqn.3.11)
  

The matrix is then diagonalised to generate eigenvectors that describe the direction 
of the linear combinations of modes of motion, whilst the corresponding eigenvalues 
contain information regarding the magnitude of that motion. In practice, the first few 
eigenvectors possessing the largest eigenvalues are referred to as the principal components 
as they are able to capture the majority of motion inherent in the trajectory. Thus, 
projection of the largest principal component modes back onto the trajectory allows 
visualisation of the collective, correlated motions of atoms 219–223. PCA was carried out 
with programs from PCAsuite and the inbuilt Gaussian RMSD algorithm was used to 
fit all trajectories to the post-minimised crystal structure prior to diagonalisation of the 
covariance matrix and subsequent analysis 224.

Entropy Estimate (kJ/mol)
Rep 1 0.551
Rep 2 0.494
Rep 3 0.696
Rep 4 0.573
Rep 5 0.519
Rep 6 0.721
6x 100ns Avg 0.59
1x 600ns Calc 0.68

Table.3.2. Entropy estimates from MUP simulations for a 

protein dihedral angle; an averaged entropy obtained from 

the 6x 100 ns simulations; and an entropy calculated from 

a single 600 ns concatenated trajectory.
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3.2.7. Additional analysis

The radius of gyration was calculated with ptraj 150. Creation of graphs was accomplished 
by using python scripts that made extensive use of NumPy and matplotlib 225,226. 
Visualisation of molecular models utilised the program UCSF Chimera 227. Reduction 
of 3D structures to 2D representations was accomplished with MarvinSketch 
and LigPlot+ 228,229.

3.3.0. Results & Discussion

3.3.1. Simulation production stage

Simulation parameters such as energy, temperature, density and pressure were 
monitored to check for instability during the production stage (Fig.3.5). Values oscillate 
around stable averages as expected.

Fig.3.5. Representative simulation production stage plots from a simulation of heptan-1-ol (clockwise), Total 

energy; Temperature; Pressure; and Density.

The conformational space explored by each 100 ns simulation was visualised using 
principal component analysis. Projections from the first two principal component 
modes (PCM) were plotted against each other, so as to give an indication of the degree 
of conformational sampling the ligand undergoes within each simulation, for free and 
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bound states (Fig.3.6). 

Fig.3.6. Density plots of PCM1 versus PCM2 that give an indication of the modal space explored by oct. Principal 

components were calculated for the ligand without hydrogen atoms. The 6 smaller graphs show the space explored 

by individual repeats, whilst the largest graph on the right plots principal components calculated from a trajectory 

made by concatenating all the repeats for that particular species. Note that some of the individual repeats are 

rotated with respect to each other. (a) shows the free distributions of oct ligand heavy atoms coloured green. (b) 

bound oct  coloured red (c) a plot of bound oct generated from a single 1.2ms simulation.

Concatenating the PCMs from individual simulations generates a density plot that 
represents an aggregate sampling time of 600 ns (Fig.3.6.a large inset) and produces 
a distribution that is more ergodic than its parts alone. This demonstrates that a single 
shorter simulation does not adequately sample all possible ligand conformations. 
Individual simulations in the bound state have distributions that more closely match 
the shape of the aggregate simulation as mobility of the ligand is somewhat restricted 
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in the binding pocket. Whilst there is overlap in the space explored within individual 
repeats of a simulation, it can be seen that the ligand explores conformational space 
in a different manner to that in the free state. Despite some reduction, there is still a 
considerable amount of variability in the bound state. This suggests that the ligand 
experiences considerable residual motion whilst bound and this has implications with 
regards to conformational entropy loss on binding. 

Entropy calculations using the larger concatenated simulations should yield more 
accurate values than averaging smaller samples as the microstates of the system are better 
represented. A single long MD simulation of bound oct was run for 1.2 ms to assess 
the difference in sampling. The same areas are visited as those in the aggregate 600 ns 
simulations. Whilst the latter has broader, more diffuse coverage, the former contains 
two areas of higher intensity than the aggregate simulations (Fig.3.6.b-c). Despite having 
a greater density of points, the single 1.2 ms simulation has less variability than multiple 
independent simulations and could potentially under/over represent conformations as 
the system tends to dwell in certain areas of phase space. Hence, it is better to run 
greater numbers of simulations to sample phase space as efficiently as possible with the 
computational time available. This has also been observed in other studies 221,230. For 
principal component density plots of the protein alone, please see Fig.A1.6-7.

3.3.2. Ligand radius of gyration

It is well understood that the potential energy of butane moves through three 
minima and maxima as the dihedral angle is varied as a result of steric hindrance 
and hyperconjugation. The most stable (-20.9 kJ/mol) trans (or anti) conformation is 
at an angle of 180°, whilst the two less populated gauche states (-60° and +60°) are 
less stable (-17.1 kJ/mol). Because the kinetic barriers to rotation at room temperature 
are not greater than the thermal energy available (84 kJ/mol), the molecule rapidly 
interconverts between different conformations when it is free in solution and tends to 
spend more time in wells with greater energetic favourability 231,232. It should be noted 
that studies of thermal desorption of alkanes from solid surfaces indicates that short 
acyclic aliphatic hydrocarbons from hexane to octane do spend a significant amount 
of time in trans conformations, but dihedrals (particularly near the end) of molecules 
longer than nonane start spending increased time in gauche conformations 233. 
Computer simulations have observed that linear alkanes possessing more than 22 
carbons can even fold back to form collapsed structures such as hairpin, double-hairpin 
and broken paperclip motifs 234. 

It is quite difficult to directly characterise the shape of a flexible polymer whose 
conformation constantly shifts from one frame to the next within an MD simulation. A 
standard method from polymer physics that indirectly assesses flexible ligand dynamics 
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utilises the radius of gyration squared (Rg2). This was considered a better method than 
merely measuring the end-to-end distance, as it takes into account the distances of every 
heavy atom to the polymer’s centre of mass (COM). For linear molecules a large Rg2 

value corresponds to the ligand being extended, whilst small values correspond to more 
compact conformations.

The mean Rg2 increases in a linear fashion commensurate with increasing carbon 
chain length for both free and bound species (Table.3.3 & Fig.3.7). The n-alkanol 
panel possesses the highest Rg2 values, whilst ligands within the terminal olefin panel 
differ from their saturated counterparts by ~ -0.49 Å.  As expected, 3Z-olefins have the 

Fig.3.7. Rg2  values for three panels of ligands (from left to right) corresponding to 

n-alkanols, Terminal olefins and 3Z-olefins. Minimum values are coloured cyan; means 

black; and maximum magenta. Solid lines and dashed lines represent the free and bound 

states respectively.
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smallest Rg2 values due to the geometric restraint imposed by the central cis-3-4 double 
bond. This effectively shortens the maximum attainable ligand length compared to that 
observed in terminal olefins. 

The disparity in mean Rg2 between free & bound states is minimal for all three panels 
and this is the second indicator that the ligand explores a similar conformational 
space upon binding to MUP to that when unbound. Though all 3Z-olefins exhibit 
a slightly larger mean Rg2 value in the bound state, the discrepancy is small. The 
disparity between the smallest and largest Rg2 values for free and bound species are 
also minor (Table.3.4 & Fig.3.7). 

hex hep oct non
Mean F 5.86 ± 0.60 7.53 ± 0.81 9.37 ± 1.07 11.37 ± 1.35
Mean B 5.86 ± 0.61 7.62 ± 0.74 9.47 ± 0.81 11.40 ± 1.20

ThX ThP ToC TnO
Mean F 5.37 ± 0.61 7.07 ± 0.84 8.90 ± 1.05 10.83 ± 1.36
Mean B 5.57 ± 0.57 7.16 ± 0.76 8.87 ± 0.90 11.01 ± 1.19

3c6 3c7 3c8 3c9
Mean F 4.50 ± 0.45 5.66 ± 0.60 7.06 ± 0.81 8.65 ± 1.11
Mean B 4.69 ± 0.46 6.00 ± 0.63 7.30 ± 0.84 8.96 ± 1.04

n-alkanols mean Rg2 (Å)

Terminal Olefins mean Rg2 (Å)

3Z-olefins mean Rg2 (Å)

Table.3.3. Mean Rg2 with standard deviations for all 3 ligand panels. 

hex hep oct non hex hep oct non
Min F 3.51 4.13 5.11 5.65 Min B 3.48 4.37 5.65 6.12
Max F 7.47 9.72 12.23 15.02 Max B 7.52 9.70 12.17 14.96

ThX ThP ToC TnO ThX ThP ToC TnO
Min F 2.94 3.63 4.56 5.37 Min B 3.07 3.69 4.54 5.38
Max F 7.24 9.51 11.86 14.59 Max B 7.22 9.38 11.76 14.54

3c6 3c7 3c8 3c9 3c6 3c7 3c8 3c9
Min F 3.12 3.72 4.44 5.10 Min B 3.01 3.75 4.40 5.44
Max F 6.44 8.22 10.47 12.64 Max B 6.38 8.21 10.35 12.81

n-alkanols extrema Rg2 (Å)

3Z-olefins extrema Rg2 (Å)

Terminal Olefins extrema Rg2 (Å)

Table.3.4. Minima and maxima values for all 3 ligand panels, representing compact and 

extended conformations respectively. 
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Further analysis of the differences between free and bound species in all 3 panels was 
made by comparing the Rg2 distributions on a per-ligand basis (Fig.3.8). From this 
analysis several conclusions can be drawn.

 1. Both free and bound states possess a continuous Rg2 distribution that is 
indicative of the ligand being able to adopt a variety of conformations. As 
bound Ligands have distributions broadly similar to those in the free state, 
this strongly suggests that the ligand is not tightly bound in the pocket and is 
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able to adopt the majority of conformations attainable whilst free in solution. 

2. The Rg2 distribution for both states broadens with concomitant peak 
flattening as carbon chain length increases due to greater ligand conformational 
exploration. In the case of the n-alkanol and Terminal olefin panels, the general 
effect is that the bound state has a slightly reduced density of populations in 
very extended or compact conformations compared to that of the free. On the 
other hand, the trend observed within the 3Z-olefin panel is a “right-shifting” 
of the bound populations so that more extended conformations are marginally 
favoured. 

3. The n-alkanol panel has the most complicated Rg2 distribution because of 
the absence of restricting double bonds. Terminal olefins are broadly similar, 
but the distribution is smoother shaped. This is because its members have 
one less freely rotating unit than their saturated counterparts and thus fewer 
conformational permutations are available to them. Whilst the number of 
available torsional units has an effect on the shape of these linear, polymeric 
ligands, the presence and position of the double bond has a greater impact on 
ligand dynamics. The smoothing effect is greatest and close to Gaussian within 
the 3Z-olefin panel. This makes intuitive sense, as the polymer is effectively 
subdivided into two shorter segments that flank the central restriction. 
Both segments explore a volume of space closer to the ligands COM and 
exhibit less conformational complexity as they possess fewer rotational units 
than the entire molecule. In contrast, saturated n-alkanols possess rotatable 
central bonds that allow the molecule to access a greater number of internal 
configurations and permutations.

Examination of bound maximum, mean and minimum Rg2 representative structures 
show that whilst ligands from all three panels are capable of adopting fully extended 
conformations, the most highly populated conformations are roughly 70-80% of the 
length of the fully extended ligand (Fig.3.9 & Table.3.3-4). In the case of larger n-alkanol 
and terminal olefin ligands, the population distributions of these partially extended 
conformations tend to be slightly more favoured in the bound state at the expense 
of populations representing compact and fully extended conformations. However, 
the characteristic “right-shift” exhibited by bound 3Z-olefins indicate a preference for 
extended conformations (Fig.3.8). This can be rationalised by taking into account the 
architecture of the pocket and will be explored further in §3.3.5-6.
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3.3.3. Selection of appropriate bin widths for calculation of TSTor 

The (frame) spacing of data points obtained from a finite dataset is less important 
in the histogram method (eqn.3.8) than the QHA, as this 1st order method is not a 
priori defined to account for correlations from other DOF. However, the QHA includes 
linear pairwise correlations which take more time to converge and this results in 
greater sensitivity to data point density 189. However, the entropy values generated 
by histogramming methods are particularly sensitive to the number of bins used to 
generate the distribution. If the data range is apportioned within too few bins, the 
data is over-smoothed and the entropic calculation renders a higher value due to loss 
of data structure. Conversely, too many bins results in greater sharpening of the data. 
The histogram appears jagged and spiky, and the entropy reported is smaller due to 
artefacts in the data (Fig.3.10). Thus it follows that a finite dataset of limited density ( < 
2 x 105 to 3 x 105) points will be more sensitive to selection of the number of bins than 
a larger dataset, and greater care must be taken in selecting the appropriate number of 
bins 187,204. As the datasets examined in this chapter possess a higher density of 6 x 106 
points, the risk of over-binning is marginal. 

Fig.3.9. Representative structures from 

maximum, mean and minimum Rg2 values 

for all 3 panels of ligands. (a) n-alkanols; (b) 

Terminal olefins (c) 3Z-olefins. Only samples 

from the bound species are shown, due to the 

lack of significant differences between free 

and bound Rg2 distributions (Fig.3.8).

ba

c
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Fig.3.10. Dihedral distributions for the bond between two methylene groups. The graph on the left utilises 36 bins 

and is over smoothed, whilst the right depicts the jaggedness caused by excessive discretisation of the data when 

using 3,600 bins.

There are several methods (such as the Sturges and Scott formulae) for deducing 
optimal bin-widths for histograms, but analysis suggests that they are not best suited 
for torsional angles due to the data frequently adopting multi-modal distributions 182,204. 
Hence, the appropriate bin size for the ligand dihedrals were assessed by generating and 
plotting entropic values for a variety of bin sizes (Fig.3.11). 

Fig.3.11. Calculated entropy values versus number 

of bins for three different dihedrals. The top panel in 

each picture shows the entropies calculated for free and 

bound species, whilst the bottom panel shows the entropy 

difference obtained from subtracting bound minus free. 

Going clockwise, the first graph shows unfavourable TΔS 

on binding within the C4-C5 dihedral; favourable TΔS for 

the C3-C4 dihedral; and no change in TΔS for the (C6-

C7) dihedral representing the terminal methyl. Values are 

tabulated in Table.3.5.
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Table.3.5. Tables of calculated entropies versus bin widths for the 3 dihedrals depicted in Fig.3.11. Bound & 

Free show relatively large differences, difference does not. Numbers are shown to 4 decimal places to demonstrate 

the limited oscillation of values.

After around 72-120 bins, the entropic difference between bound and free states remains 
approximately constant and is largely invariant to any further increase in the number 
of bins. Therefore, in this case we observe that the histogram method is generally more 
sensitive to under-binning and no over-binning was observed. 

Given N energy wells of equal stability, the theoretical entropy can be calculated using 
the formula: -R ln(N) 173. Thus, the correct number of bins can be further calibrated 
against the torsional entropy value obtained for the rotation of a terminal methyl in the 
free state. As this dihedral possesses three equally stable energy wells, the above formula 
yields a value of 2.74 kJ/mol. A range of bin widths were applied to data obtained 
from the terminal methyl group of ligands from the primary alcohol panel and it was 
observed that a greater number of bins lower the entropy value so that it approaches 
the expected theoretical value of 2.74 kJ/mol. However, there was little improvement 
after ~72-90 bins. It should be noted that this calibration is only relevant for the specific 
dataset size tested. Taking into account the additional computational cost, stability of 
the entropy basin, smoothness of the data fit and values used in the literature, 360 bins 
were selected, aesthetically corresponding to a degree per bin. As rigid double bonds 
possess deep energetic wells and have no discernible torsional rotation, their vibrational 
entropies were treated as having zero contribution. In the case of ligands binding to 
MUP, there is no significant difference between the bound and free PDFs generated 
for the double bonds. Therefore, the entropic difference would always equate to zero, 
regardless of the method used.

3.3.4. A brief aside on torsional entropy estimates from the literature

There is disagreement in the literature as to the true cost of freezing an internal torsional 

Bins Bound Free Diff Bound Free Diff Bound Free Diff
8 3.2876 3.0517 0.2359 2.9432 3.1049 -0.1617 3.8053 3.8031 0.0021
9 3.0269 2.7436 0.2832 2.5993 2.8079 -0.2086 3.7136 3.7110 0.0026
12 2.5330 2.2425 0.2905 2.0971 2.3069 -0.2099 3.2797 3.2769 0.0028
18 2.1973 1.8801 0.3172 1.7382 1.9517 -0.2135 2.9937 2.9914 0.0023
36 2.0146 1.6966 0.3180 1.5601 1.7678 -0.2077 2.8483 2.8463 0.0020
72 1.9660 1.6475 0.3185 1.5127 1.7192 -0.2065 2.8090 2.8084 0.0005
90 1.9590 1.6408 0.3182 1.5067 1.7124 -0.2057 2.8041 2.8048 -0.0008

120 1.9547 1.6362 0.3185 1.5023 1.7086 -0.2063 2.8004 2.8006 -0.0003
180 1.9513 1.6327 0.3186 1.4986 1.7045 -0.2059 2.7976 2.7981 -0.0005
360 1.9489 1.6301 0.3188 1.4963 1.7025 -0.2062 2.7957 2.7961 -0.0004
720 1.9477 1.6290 0.3187 1.4951 1.7012 -0.2061 2.7945 2.7949 -0.0004

Dihedral C4-C5 Dihedral MethylDihedral C3-C4
Conformational entropies of selected dihedrals (kJ/mol)
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rotation. Page and Jencks (1971) estimate the value at 2.7 to 4.3 e.u (3.4 to 5.4 kJ/mol 
at 300 K) per internal rotation for the cyclisation of saturated hydrocarbons of various 
lengths 171. Searle and Williams (1992) reported average values of 1.6 and 3.4 kJ/mol 
(at 300 K) for the restriction of a single rotor. The measurements were derived from 
entropies of fusion obtained from melting hydrocarbon crystals and the two distinct 
values represent odd and even numbered linear hydrocarbons respectively. The disparity 
in values was due to the tendency of the latter to exhibit phase transitions below the 
melting temperature, whilst the former did not. They made the point that even in a 
crystalline structure, residual torsional vibrations result in internal bonds being restricted 
rather than being frozen. Thus, the entropy values obtained from the isomerization 
reactions of Page and Jencks were potentially an overestimate, as the cyclisation process 
converts flexible chains into highly restrained products that are unrepresentative of 
non-covalent, protein-ligand binding interactions. Biological complex disassociation is 
postulated to be closer in analogy to weakly orientated hydrocarbon crystals, though 
even this model falls short of an ideal description 170. 

Mammen and Whitesides (1998) also obtain a lower value (of approximately 
2.0 kJ/mol) for all central torsions in linear alkanes via a computational approach 196.  
However, their methodology and assumptions were criticised by Ercolani (1999) as their 
technique was classically based and did not suitably account for the transformation of 
the multimodal potential energy surface into a single high frequency torsional well 
upon total restriction of the bond. Additionally, Ercolani argues that whilst the model 
could hold true for partially hindered restrictions as are typically seen in drug design, 
molecular recognition, and self-assembly, calculating the entropy loss on complete 
restriction of an internal rotation would also have to account for the kinetic component 
and the requisite quantum corrections 235. 

Even higher estimates of around 8.3 kJ/mol per restricted bond have been proposed 
by Carver (1993) for the binding of oligosaccharides to proteins, whilst more modern 
computational studies have predicted 1.7 to 4.2 kJ/mol per torsion 112,167,169. Gilson makes 
the comment that the greatest losses in conformational entropy are due to narrowing of 
the energy wells versus loss of stable rotamers and the true value for the latter should be 
lower than 1.7 kJ/mol 112,166,173. Considering the evidence, 5-6 kJ/mol is likely an upper 
bound corresponding to the total freezing of a rotamer. It is unlikely that the majority of 
torsions in typical binding reactions would be constrained to this extent, as tight binding 
compounds still exhibit significant residual torsional vibrations after binding. Thus, it 
is of interest to assess the upper limit of entropy differences calculated by the histogram 
method. Consequently, tight ligand binding was investigated by studying simulations of 
Darunavir complexed to wild type HIV-1 protease (HIV PR). As Rg2 data indicate that 
ligands bound to MUP do not suffer much conformational restriction, this contrasting 
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system is relevant to the results presented in the following sections.

HIV PR is a symmetric homodimer that can be thought of as a pair of molecular 
scissors 236. It cleaves the precursor viral polyproteins Gag and Gag-Pro-Pol to release 
proteins essential for virus maturation and replication. As benefiting a well-studied 
drug target, a comparatively large number of competitive active site inhibitors have 
been developed to abolish its activity. Darunavir mimics the tetrahedral transition state 
intermediate of the protease’s natural substrate and is a sulfonamide based inhibitor. 
Other structural analogues include PIs such as Amprenavir, TMC-126 and GS-8374.  
It was developed to overcome resistance caused by HIV-I protease mutants via the 
engineering of a fused, bicyclic, bis-tetrahydrofuran (bis-THF) moiety onto a ligand 
scaffold. This created additional hydrogen bond interactions with key residues along 
the protein backbone that are theoretically less susceptible to mutation 7,8,237,238. The 
design successfully optimised a enthalpic signature that earlier first generation PIs 
lacked, and was assayed with the following thermodynamic values: ΔG -62.8 kJ/mol, 
ΔH -53.1 kJ/mol and TΔS 9.6 kJ/mol 58,239. This ligand can make multiple directional 
hydrogen bonds that ensure it is tightly bound and can be conceptually subdivided into 
four functional groups which occupy the different subsites that constitute the anatomy 
of the active site. When free in solution, key dihedrals within the inhibitor backbone 
separate the bulky functional groups and possess relatively large ranges of rotation. On 
binding, these dihedrals are expected to become considerably restrained.

A 300 ns aggregate MD simulation of Darunavir bound to HIV PR shows that dihedral 
angles suffer a range of restriction: from the freely rotating methyl groups and rigid 
aromatic bonds that show no difference in TΔSTor, to large torsional entropy reductions 
resulting from the narrowing or loss of features within the multimodal torsional 
landscape. Dramatic tightening of torsional wells is not frequently observed and the 
largest TΔSTor penalty of 3.1 kJ/mol occurs within dihedral-25 from the selected subset 
shown in Fig.3.12. In this instance, the bound PDF has narrowed substantially and the 
reported 1st order entropy value is likely to be underestimated by the classical treatment, 
requiring additional quantum and kinetic corrections as asserted by Ercolani. However, 
most TΔSTor differences (31 out of 38 rotamers) are well described by the method 
used in this thesis. For reference, the largest entropy loss obtained in our experiments 
with this method was 4.0 kJ/mol for the binding of Amprenavir (dihedral-24) to 
HIV PR (Data not shown).  

When Darunavir binds to HIV PR, dihedrals located near the sulfonamide moiety 
(e.g. dihedral-25 and 30) are highly restricted due to strong protein-ligand interactions. 
However, inhibitors are typically flexible entities and confinement can be compensated 
with motion elsewhere, be it large or small distributed increases within multiple ligand 
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DOF. For example, the summed torsional entropy of the bis-THF group is actually 
favourable by 1 kJ/mol. The same group is unfavourable by around 4 kJ/mol in the PI, 
GS-8374. On binding Darunavir, some dihedral distributions within the constrained 
double ring undergo small shifts that results in a net TΔSTor close to zero (e.g. dihedral-05), 
whilst other dihedrals gain in entropy (e.g. dihedral-07). Other dihedrals (e.g. dihedral-14 
and 10) within the ligand backbone already have highly occupied torsional wells, and 
on binding occupancy within these wells only increases moderately and the resultant 
entropy loss is not as considerable as expected (-1.54 and -0.93 kJ/mol). Thus, it can 
be seen that entropy losses cannot be easily simplified to simple fixed values on a 
per-rotor basis without extensive calibration. Even in this case, the rotamer counting 
method (as used in reference 240) would be an approximation that yields dubious results, 
as any calibration is likely to be system dependent due to the subtle dispersion of 
entropy losses throughout a flexible ligand. Even the ultra-tight binding biotin-avidin 
complex has been observed to possess some residual ligand motion in MD simulations. 
The flexible tail rapidly switches between a major and minor conformation in both 
solution and lattice phase simulations at room temperature. The authors suggested 
that the minor conformation was not visible in the experimental crystal structure due 
to cryogenic temperatures disfavouring occupancy of this alternate state 241. Hence, 
estimates of 5 to 6 kJ/mol per rotor are most probably too high for the majority of 
non-covalent interactions due to residual ligand/protein dynamics, and TΔSTor losses of 
1.7 kJ/mol and lower were typically observed for the dihedrals tested in HIV PR. 

3.3.5. Per-dihedral torsional entropies of ligands that bind to MUP

The torsional entropy of every dihedral, apart from those involving double bonds, 
were calculated using eqn.3.8 for bound and free species. 1st order entropy differences 
can be compared on a per-dihedral basis without worrying about overestimating the 
entropy due to correlated motions as there is no summation involved. Though the 
raw dihedral distributions are informative, the amount of information generated for 
all 12 ligands is overwhelming and the trends are subtle. Therefore, images for all raw 
dihedral distributions are located in the appendix (Fig.A1.1-3). 

Generally, there are no large differences between bound and free PDFs for most 
dihedrals. Typically dihedrals exhibit very small decreases or increases (< 1 kJ/mol) 
in TΔSTor on binding, whilst others possess no change. This is unsurprising, as the 
Rg2 distributions indicated that rotors are slightly hindered rather than being fully 
restricted. Thus, TΔSTor values are small compared to some of the values obtained for 
the binding of Darunavir to HIV PR. Extensive tumbling of the IBMP ligand was 
observed whilst bound to MUP in microsecond long MD simulations performed by 
Roy et al. (2010) 91. The authors predicted that conformational entropy losses would 
be minimal to non-existent and rotational losses modest 91. Malham (2012) validated 
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the occurrence of significant ligand residual motion by running simulations with the 
AMBER and CHARMM force fields 180. Table.3.6 and Fig.3.13 depict the per-dihedral 
entropies for all ligands binding to MUP and the trends observed for the three panels 
are discussed below. 
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n-alkanols: The largest TSTor values for the free ligand are obtained for the terminal 
ends of the molecule, whilst values for dihedrals near the centre of the molecule form 
a basin that increases in size on adding methylene subunits. TSTor values are typically 
around 1.65 to 1.70 kJ/mol and correspond to the lower end of torsional estimates 
reported in the literature (§3.3.4). NMR spectroscopy studies observed this phenomena 
as a progressive decrease in correlation times progressing from the centres of n-chain 
alkanes towards their termini 242,243. This is because the slowest dynamics take place 
near the centre of mass of the molecule, as methylene units located at this point have 
to satisfy the conformational requirements of two neighbours. On the other hand, a 
characteristic “zigzag” pattern develops in the bound state as the length of the ligand 
increases, and the O1-C1 dihedral possesses a smaller value of TSTor than its free 
counterpart. This is a result of reduced conformational interconversion and increased 
occupation of the trans state. When coupled with the fact that longer ligands are more 
likely to abut the boundaries of the calyx, it is likely that the increase in TΔSTor within 
some central dihedrals are a result of the ligand having less volume to explore within 
the pocket.

Terminal olefins: Per-dihedral entropies of the free species show a similar, albeit shorter 
“basin”, with a more pronounced central dip than that of their n-alkanol counterparts. 
The dihedral immediately preceding the terminal restriction has a TSTor of ~4.0 kJ/mol 
and is comparable to that of O1-C1. This adds a more pronounced dip in the basin. 
The effect of freezing the terminal rotor is not akin to removing a rotor as consistent 
TΔSConf benefits of the expected magnitude (4.5 kJ/mol) are not observed (Fig.3.13). 
The per-dihedral entropies indicate that, subtler effects dependent on ligand length are 
at play. Whilst bound, 9C TnO has a similar per-dihedral pattern to oct, but it pays 
the greatest TΔSConf penalty (-2.41 kJ/mol) on binding out of all the simulated ligands 
and the terminal restriction is a handicap. The shortest ligand, ThX, also does not 
benefit from the restriction and has an unfavourable TΔSConf (-1.59 kJ/mol) of binding. 
However, ligands of intermediate size (ThP and ToC) suffer minimal entropy losses and 
the reasons for this will be assessed in the next section.

3Z-olefins: In the free state, dihedrals immediately flanking the cis-3-4 restriction occupy 
gauche(+) and gauche(-) conformations and rotate to minimise steric clashes between 
C2 and C5 methylenes. They have higher TSTor (~2.8 to 3.0 kJ/mol) than equivalent 
n-alkanol dihedrals. Other central torsions characterised by three energy minima also 
have larger TSTor as a result of reduced torsional barriers. Only dihedrals adjacent to the 
terminal methyl in 8C and 9C ligands have comparable TSTor values (1.65 to 1.70 kJ/mol) 
to their n-alkanol counterparts. This demonstrates that the central restriction reduces 
the torsional energy barriers in dihedrals near the centre of the molecule and it only 
increases again after the hydrocarbon chain exceeds a critical length in 3c8. Despite 
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this, this panel performs the best in terms of TΔSConf, with the greatest losses generally 
occurring near the hydrogen bonded, hydroxyl head of the ligand. Thus, the double 
bond is well positioned to effectively mitigate torsional entropy losses on binding for all 
tested ligands.
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3.3.6. The dynamics of bound and free ligands

3.3.6.1. Principal component analysis 
Eigenvalues from all 3N-6 principal component modes for bound and free ligands were 
plotted in Fig.3.14 to visualise the amount of correlated motion present. The lowest 
PCMs have the greatest variance and describe the largest collective motions of the 
ligand. The magnitude of the eigenvalue is correlated to the length of the ligand and 
the first two modes represent the largest displacements. Modes higher than 7 have very 
small fluctuations and are negligible. On binding, correlated motions are reduced to 
broadly comparable levels between all three ligand panels. Additionally, the separation 
between principal component modes of the different ligands constituting a panel is 
diminished. This suggests that the constraints imposed by the pocket are constant and 
any differences in co-ordinated motions are purely a consequence of ligand structure. 
The impact on panels can be ranked in descending order: n-alkanols > terminal 
olefins > 3Z-olefins. The difference plots were generated by subtracting “free” from 
“bound”.  They indicate that 3Z-olefins suffer little reduction in their co-ordinated 
motions. As they lack the flexible central bond possessed by the other two panels, the 
degree to which large-scale, correlated motions can take place is limited to the two 
shorter segments flanking the double bond. Hence, there is less to lose on binding. Per 
contra, n-alkanols can undergo a greater variety of flexing and bending motions as the 
ligand backbone is the most flexible. Placing a restriction at the terminus reduces the 
magnitude of correlated motions to a lesser degree. This is because the contiguity of 
torsional subunits is disrupted in the most minimal manner possible by the position of 
the double bond (§3.3.6.2).

3.3.6.2. The impact of correlated ligand motions
The first two PCMs for free non are characterised by large wagging motions of 
the terminal ends of the ligand, whilst the central portion of the molecule flexes in 
sympathy (Fig.3.15). In the bound state, the ability of the termini to move away 
from the longitudinal axis of the ligand is hampered by the confines of the calyx and 
modes greater than the first exhibit an increase in smaller amplitude movements of 
all atoms. This sometimes results in motions reminiscent of the Schatzki crankshaft 
mechanism 244–246. In the reversible transition known as the glass-liquid transition, 
amorphous solids such as polyethylene transform on heating from a stiff, brittle state 
to a molten, rubbery material with greater viscosity. Different materials have specific 
glass transition temperatures associated with them and the molecules comprising the 
polymer may exhibit significant residual motion that can be modulated by modification 
of its structure. e.g. The addition of rigid aromatic rings can increase the stiffness of 
thermoplastics 244–247.  Crankshaft motions occur in flexible, linear molecules with 4 or 
more successive methylenes positioned between two co-linear terminal bonds. They are 
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named as such because the central CH2 groups rotate in the manner of a crankshaft. 
The activation energy for this process is only 54 kJ/mol and the free volume required 
for activation is roughly four times that of a single methylene 245. The mechanism 
involves intermediate methylenes possessing a TGTGT sequence, where T represents 
trans and G, gauche 244. 

The type of behaviour described above occurs in the condensed phase, where the density 
of polymer molecules is ostensibly greater than the environment encountered in the 
MUP binding pocket. However, calyx residues can be said to analogously form a less 
concentrated amino acid matrix that ensconces the bound ligand. In the case of longer 
ligands (from hep to non), the shape of the binding site introduces a curvature near the 
central part of the ligand (Fig.3.16 & Fig.A1.4-5). The large amplitude motions normally 
observed at the terminal ends of the free ligand are partially hindered within the bound 
species and excess motional energy (that would otherwise have been dissipated) is spent 
within the central portion of the molecule. The resulting fast motions are of smaller 
amplitude; concomitantly, a greater occupation of gauche states is first observed at the 
C3-C4 dihedral for hep, and then at the C5-C6 dihedral within oct and non. When 
comparing per-dihedral TSTor values, it is further observed that dihedrals adjacent to 
C3-C4 and C5-C6 have reduced entropies in the bound state compared to free (Fig.3.13). 
This is due to further increases in the predominantly occupied trans population, and 
is detectable in dihedrals C2-C3, C4-C5 and C6-C7 (Fig.A1.1). Thus, the TGTGT 
population distribution signature (in non) results in the “zigzag” pattern seen in the per-
dihedral entropies. This in turn results in summed configurational entropy losses being 
ameliorated by the phenomenon of ligand entropy-entropy compensation.

Fig.3.15. The first two modes generated from PCA analysis for nonan-1-ol heavy atoms, in free and bound states. 

Oxygen is coloured red and carbons green. Only half the motion is shown for clarity. Note that the second mode 

shows a greater reduction in correlated motion than the first (Also see Fig.3.14).
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If structures representing the motion captured from all PCMs are overlaid for 9C ligands, 
it can once again be seen that the sweeping co-ordinated motions in the free state are 
replaced by smaller amplitude motions that are a result of fast, local interconversion of 
dihedrals between different energy minima (Fig.3.16). Whilst the permissible dihedral 
angle range in the bound species is not significantly altered, specific permutations of dihedrals 
allowing large scale motions are curtailed. Thus, the overall dihedral distributions for 
both states are very similar, whilst disparities in large co-ordinated dihedral motions are 
masked (Fig.A1.1). Without explicitly carrying out a 2nd order calculation, it is difficult to 
assess the impact of correlated motions on values of TΔSConf. Correlated motions reduce 
the magnitude of TΔSConf but the degree of correlation is reduced within the bound state 
compared to the free. Thus, the free state might have less entropy due to greater amount 
of correlated motions but the bound state would not be affected to the same degree. 
Hence, the net TΔSConf would be even smaller. The impact on the calculated entropies 
is expected to be smallest for 3Z-olefins and highest for n-alkanols, with terminal olefins 
lying in-between. Any applied 2nd order corrections would additionally be weighted by 
ligand length (Fig.3.14).

3.3.6.3. Ligand pre-organisation and the architecture of the calyx: 
It is immediately noticeable that because of the cis-3-4 restriction, free 3c9 is pre-
organised into conformations that are close to those that non would be forced to adopt 
whilst bound (Fig.3.16). Additionally, the shorter chain lengths of ligand sub-segments 
that flank the double bond contribute to smaller losses in TΔSConf than that seen for 
n-alkanols. The C2-C3 and C4-C5 dihedrals adjacent to the double bond each occupy 
two gauche energy wells (Fig.A1.2). The non-rotatable restriction forms a locus around 
which the ligand can be conceptually subdivided into two smaller segments. Visual 
inspection of the trajectories indicates that ligands possess significant motion whilst 
bound, and an investigation into this phenomenon will form the focus of chapter 4.0. 
For the purposes of this discussion, it is sufficient to state that space within the calyx can 

Fig.3.16. Comparison of all the modes obtained from PCA for free and bound states for nine carbon ligands. The 

top row and bottom rows depict the free and bound species respectively. Columns (left to right) show non, TnO 

and 3c9.
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be partitioned into three chambers. The top (cal1) and bottom (cal3) areas are slightly 
larger than the centre (cal2) chamber, which is bounded by TYR120, LEU105, PHE56 
and ALA103. Cal2 is marginally offset from the others due to the intrusion of TYR120 
into the space from behind, PHE56 from the right and the gap created by the small 
ALA103 residue (beneath LEU105) on the left hand side of Fig.3.17. The staggered 
nature of the three chambers introduces a curvature into the ligand that is observed in 
many of its bound conformations. The hydrogen bond between TYR120, binding site 
waters and the ligand’s hydroxyl head weakly fix the ligands position and orientation 
within the cavity. The lack of other directional bonding restraints allows this portion of 
the ligand to rise and fall and move in a roughly radial manner around TYR120 whilst 
the linear hydrocarbon tail follows suit.

Fig.3.17. Architectural features of the MUP binding cavity and their interactions with bound ligand. The top image 

depicts octan-1-ol bound to MUP. The interior calyx surface is coloured by residue and has been generated from a 

static snapshot to show the available space in a moment in time. The C3-C4 ligand dihedral is coloured pink and the 

ligand yellow. Isoleucines - purple; leucines - cyan; phenylalanines - orange; tyrosines - green; and alanines black. 

Boxes demarcate the volume of the cavity into cal1, cal2 and cal3 (see text). The bottom image shows the same 
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view with the majority of residues depicted as space filling representations. A very small subset of ligand binding 

poses have been superimposed over one other to illustrate the range of motion these flexible, linear polymers 

possess whilst bound.

The C3-C4 dihedral is positioned near cal2 and is generally adjacent to TYR120 
most of the time (See Chapter 4.0). Whilst n-alkanol ligands exhibit an increase in 
conformational interconversion within the C3-C4 dihedral, this is impossible in 
3Z-olefins and the central restriction partially decouples the transmission of internal 
motions from one terminus of the ligand to the other. Note that methylene groups 
directly flanking the restriction are still affected by steric clashes with each other. It 
remains to be seen whether the cis-3-4 double bond is favourably pre-organised to 
match the shape of the pocket and segments to either side of the restriction are better 
located to fit into cal1 and cal3. 

3.3.6.4. Conceptual subdivision of the ligand:
The division of the ligand into segments both prior to and after the C3-C4 dihedral is 
visualised in Fig.3.18. The “OH” segment closest to the hydroxyl terminus comprises 
summed, per-dihedral entropies for O1-C1, C1-C2, C2-C3 and C3-C4, whilst the rest 
of the per-dihedral entropies are added to the “CH3” segment that lies closer to the 
terminal methyl group. Segmental “strain” is characterised by the redistribution of 
unbound dihedral torsional populations subsequent to binding and results in certain 
wells being preferentially occupied along with a concurrent reduction in conformational 
interconversion. Summing torsional entropies within a segment gives a measure of 
the conformational restriction suffered by that portion of the ligand. It is intuitively 
expected that the OH-segment would suffer more strain as the hydroxyl moiety is 
involved in a directional hydrogen bond compared to the CH3 segment which is affected 
by weaker non-directional van der Waals interactions. Despite the growing size of the 
CH3-segment upon increasing carbon chain length, ligands within the n-alkanol panel 
(Fig.3.18.a) still exhibit less TΔSConf losses than that observed for the OH-segment 
because of entropy-entropy compensation. In contrast, 3Z-olefin OH-segment entropies 
become more favourable with increasing ligand length, whilst CH3-segment entropies 
become more unfavourable (Fig.3.18.c). This meta-analysis depicts another level of 
compensatory behaviour that is a consequence of dihedrals composing the CH3-segment 
increasingly occupying the trans conformation (Fig.A1.3). Thus, a small additive loss 
of conformational entropy is accumulated for every extra methylene unit that increases 
ligand length. Note that the unfavourable TΔSConf observed for the OH-segment is 
also due to increased trans populations. Though the dihedrals adjacent to the double 
bond (C2-C3 and C4-C5) do exhibit a small asymmetric preference for gauche(+) or 
gauche(-) conformations, bound distributions broaden so as to increase occupation of 
states closer to trans. The subtle increase of trans populations in all dihedrals account 
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for the “right-shifted” mean Rg2 population distributions of bound 3Z-olefins, relative 
to free (Fig.3.8). 

Fig.3.18. Entropy divided into segments before and after dihedral C3-C4. Graphs (left to right) depict n-alkanols, 

terminal olefins and 3Z-olefins respectively.

Generally, smaller ligands are better able to explore a greater variety of positions and 
orientations within the binding pocket. The cis-3-4 restriction results in the 3Z-olefins 
possessing reduced internal flexibility within their shorter sub-segments. In the case of 
3c6 and 3c7 ligands, fewer torsional subunits aggravate this issue and the result is greater 
motional restriction at the hydrogen bonded OH-segment. As the ligand gets longer, 
it tends to adopt more defined locations in the binding pocket as a consequence of its 
size. Generally, the hydroxyl segment occupies cal1; the middle (around C3-C4) cal2; 
and the hydrocarbon tail cal3. Upon doing this, dihedrals flanking the central restriction 
sympathetically modulate their angles with respect to each other (to avoid steric clashes) 
and are driven by the dynamics of the adjoining sub-segments whose internal motions 
are largely decoupled from one another. Thus, TΔSConf losses of dihedrals within these 
chains are minimal or even favourable (Fig-3.13). 

CH3 versus OH-segment compensatory behaviour within the 3Z-olefin panel is length 
dependent and TΔSConf losses for the two segments perfectly balance for 3c8. Extending 
the length of the ligand by an additional methylene (i.e. 3c9) tips the balance and causes 
summed TΔSConf values for the CH3-segment to become increasingly unfavourable, 
whilst the OH-segment becomes more favourable (Fig-3.18.c). This supports the 
hypothesis that the root cause for improving OH-segment entropies in longer ligands is 
related to location within the pocket. In n-alkanols, the increase in C3-C4 and C5-C6 
conformational transitions only relieves strain on the OH-segment in a minimal fashion. 
This is because the rapid fluctuations of these dihedrals often result in other ligand 
dihedrals reflexively transitioning between favourable and unfavourable conformations 
in response to the shifting geometry of the pocket. However, the rigid double bond in 
3Z-olefins disallows the same internal dihedral interconversions and the central portion 
of the molecule is probably able to undergo greater rigid-body T&R displacements 
that better aid location of constituent segments into cal1 and cal3. When ligands are 
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extended by additional methylene units, the “balance” of entropic losses between sub-
segments is augmented by greater locational stability (in the pocket), engendered by 
the increasing bulk of the CH3-segment. In this manner, strain at the OH-segment 
is reduced. The last two paragraphs in this subsection form a hypothesis that will be 
further examined in chapter 4.0.

3.3.6.5. Terminally restricted olefin dynamics
This panel ostensibly test the impact of freezing a single rotatable bond in a more 
accurate manner than 3Z-olefins, as the latter modification affects torsions in both 
dihedrals flanking the cis-3-4 restriction. However, summed TΔSConf values (Table.3.7) 
indicate that neither modification has a comparable magnitude to that suggested by Page 
and Jencks (1971) and entropic reductions are not linearly correlated with ligand length. 
The conformations adopted by ligands bound to MUP are similar to that when free. 
The confines of the pocket only hinder conformational transitions enough to introduce 
subtle dynamic effects that are biochemically interesting but relatively trivial in terms of 
global entropy contributions.

Fig.3.19. The first two modes generated from PCA analysis for hept-6-en-1-ol heavy atoms, in the free and bound 

state. Oxygen is coloured red and carbons green. Full range of motion is shown.

Large amplitude motions at the termini of free terminal olefins are more pronounced 
near the alcohol group than the opposite end, as the planar double bond disrupts 
the full range of correlated motion exhibited in these ligands compared to equivalent 
compounds in the n-alkanol panel (Fig.3.19 & Fig.A1.4-5). Additionally, these 
polymers are slightly more predisposed to adopting “curved” conformations, as the 
double bond in conjunction with the preceding two carbons form a bulky sub-segment 
that frequently rotates transversal to the main body of the ligand. Even when fully 
extended, the restriction juts out from the plane formed by ligand’s longitudinal axes, 
and thus its overall length is still reduced (Table.3.3). Hence, these factors ensure 
that the OH-segment loses the most TΔSConf , whilst the CH3-segment loses minimal 
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conformational entropy for all ligands apart from TnO (Fig.3.18.b). When the latter 
exceeds a critical length, an entropy-entropy compensation phenomenon similar to that 
in oct and non is observed (Fig 3.13). However, the dynamics of terminally restricted 
olefins are fundamentally different from their n-alkanol counterparts due to the loss of a 
rotational unit and the position of the restriction. Hence, TΔSConf losses are accentuated 
instead of being attenuated in the case of its 9C member. The majority of entropy loss 
for ThX occurs at the hydroxyl terminus and is due to the ligand not having the same 
amount of flexibility and “balance” as ThP and ToC (Fig.3.18.b). 

3.3.7. Torsional entropy differences: much ado about nothing

The torsional entropies for dihedrals within ligands tested were summed to yield total 
conformational entropies and plotted to display panel trends (Table.3.7 & Fig.3.20). 
These are 1st order entropies and summing individual TΔSTor in this manner gives a 
maximum entropy estimate as it neglects correlations which usually reduce the magnitude 
of the final sum. Despite the precautions taken in §3.3.3, only relative differences shown 
by the TΔSConf values can be regarded as being accurate. However, bound and free 
TSConf values are displayed to better understand the source of entropic differences and 
to gauge any additivity on extending ligand length by a methylene. Calculated values 
only encompass the positional variations in the global entropy, neglecting the kinetic 
contribution along with bond stretching and angle bends. As the ligand is not tightly 
bound within the calyx, it is capable of adopting the majority of conformations observed 
in the free state, and thus these factors are likely to cancel.

Loss of ligand internal DOF were postulated to be the main cause for the linear 
entropic signature observed on binding n-alkanols to MUP. However, torsional 
entropy differences are small for all ligands, the largest being -2.41 kJ/mol for TnO. The 
differences between members within a panel are also small and do not approach the 
experimental TΔΔSi values of -5.4 kJ/mol per methylene 36,171. The basis for the initial 
hypothesis was based on estimates from the cyclisation of saturated hydrocarbons by 
Page and Jencks (1971). As discussed in §3.3.4, this is most likely to be an upper bound 
for torsional restriction and gains approaching this magnitude are only feasible in very 
tight protein-ligand interactions. As the simulations indicate that ligands bound to MUP 
do not undergo much conformational restriction, the global entropic signature must 
arise from another source, or alternatively be derived from multiple smaller sources. 
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Free Bound Difference
hex 14.74 ± 0.04 14.20 ± 0.57 -0.54  ± 0.57
hep 16.39 ± 0.04 15.29 ± 0.31 -1.10  ± 0.31
oct 18.07 ± 0.05 16.12 ± 0.27 -1.95  ± 0.27
non 19.71 ± 0.05 17.87 ± 0.34 -1.84 ± 0.34

ThX 14.58 ± 0.03 12.99 ± 0.26 -1.59 ± 0.26
ThP 16.15 ± 0.05 15.32 ± 0.20 -0.80 ± 0.21
ToC 17.77 ± 0.03 17.03 ± 0.19 -0.75 ± 0.2
TnO 19.61 ± 0.06 17.19 ± 0.47 -2.41 ± 0.47

3c6 15.76 ± 0.01 15.21 ± 0.34 -0.55 ± 0.34
3c7 17.99 ± 0.03 17.17 ± 0.29 -0.82 ± 0.29
3c8 19.63 ± 0.02 18.92 ± 0.45 -0.72 ± 0.45
3c9 21.35 ± 0.04 20.53 ± 0.39 -0.82 ± 0.39

Summed Conformational entropies (kJ/mol)

Fig.3.20. Cross panel comparison of entropy totals for all 3 ligand panels. Graphs clockwise depict the free TS
Conf

; 

bound TS
Conf

; Offset TΔS
Conf 

values
 
for n-alkanols versus Terminal olefins; and “bound minus free” TΔS

Conf 
totals. Each 

data point is calculated from an aggregate 600ns simulation. 

Table.3.7. Summed 1st order TS
Conf

 and TΔS
Conf

 values for all three ligand panels. Each data point is 

calculated from an aggregate 600 ns simulation and the standard error is propagated and calculated from 

entropy values generated for 6 individual 100 ns simulations.
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Linear additivity is observed in calculated TSConf values for free n-alkanols and errors 
are close to zero, indicating convergence. The principal source of error comes from the 
bound state and is propagated through to the TΔSConf calculation. As the differences 
are also small, resolution of the resulting trends is near the boundary of accuracy 
attainable with this method. Bound n-alkanols possess a shallower TSConf slope, albeit 
with small non-additive differences on increasing ligand length. Though bound non 
lies out-of-line with the trend and has a higher entropy than oct, the line is linear within 
error. It is probable that the calculated value is an overestimate and correlated motions 
might lower the magnitude of this data point (Fig.3.14). If so, the favourable 1st order 
entropy-entropy compensation effect would be reduced and the value for TΔSConf can be 
extrapolated to approximate -2.5 to -3.0 kJ/mol. Note that the entropy values of other 
ligands in the series would also undergo adjustments in accordance to their lengths.

When positioning a restriction at the terminus of a linear alcohol, bound ligand 
dynamics affect TSConf in a non-additive, non-linear manner that cannot unequivocally 
be reduced to a group effect. It was postulated that a double bond at this position 
would be energetically equivalent to removal of an n-alkanol rotor. If TΔSConf values 
for n-alkanols are offset against terminal olefins (Fig.3.20), the values are close enough 
(assuming the upper margin of error) to partially agree with this hypothesis. However, 
the torsional entropy component does not yield the expected 4.5 kJ/mol gain. The 
(limited) entropic benefits are due to a combination of factors dependent on ligand 
length. This is illustrated by the observation that 7C and 8C ligands from both restricted 
panels have almost identical TΔSConf values. 

Modifying saturated ligands with a central restriction results in free TSConf values being 
non-additive on addition of a rotor, although slopes largely maintain linearity. There is 
little difference between bound and free 3Z-olefins, and TΔSConf values for ligands within 
this panel are the same within error. This indicates that introduction of a central double 
bond alleviates torsional entropy losses on binding to a similar extent, irrespective of 
ligand length. As previously discussed, this is probably due to pre-organisation of the 
ligand to the shape of the binding cavity and the effective shortening of the compound 
into two shorter segments. It is likely that the latter could be adapted for other protein-
ligand binding interactions to mitigate torsional entropy losses in alkane chains, but the 
former is dependent on matching geometries of the binding partners and is therefore 
system specific. However, favourable entropic gains do not approach TΔΔSi values of 
13.6 kJ/mol obtained from the decomposition of ITC values (§3.1.0). 

Common conceptual models involving protein-ligand binding such as the induced fit and 
the lock and key hypotheses inculcate the notion that favourable interactions invariably 
involve a measure of immobilisation. However, MUP is a promiscuous protein whose 
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ability to bind multiple binding partners is due to a lack of specificity. Discrimination is 
typically bestowed by a tight, well-defined binding pocket that complements the shape 
of the ligand and multiple protein-ligand polar bonds that act to restrain its position. 
As these characteristics are not possessed by MUP, ligands do not undergo extensive 
conformational restriction as expected and large gains in torsional entropy are not 
realised upon pre-organisation. The results in this chapter only account for torsional 
entropy differences and do not factor other contributions from T&R, solvent or protein. 
The total quantification of entropic effects is difficult to assess with rational design. Even 
simple modifications result in marked differences in dynamics and have the potential to 
perturb the underlying network of interactions constituting the system. Therefore, the 
system must be considered holistically before any final conclusions regarding purported 
benefits are drawn. The global entropic signature is composed of many contributions 
that have the potential to accumulate or cancel, and the magnitude of these disparate 
forces are likely to dwarf those derived from the ligand alone. 

3.3.8. Convergence of total TSConf and T∆SConf values

To assess convergence, plots were created that visualise changes in conformational 
entropy estimates as the number of data points are increased (Fig.3.21). Calculation 
of the entropy is notoriously difficult as phase space has to be thoroughly sampled 
to obtain an accurate estimate and true convergence would require infinitely long 
simulations 248,249. However, we are not concerned with pinpoint accuracy and are 
content if clear (1st order) trends can be established. The entropy depends on the density 
of the number of states possessed by a given observable such as a dihedral angle. 
Without prior knowledge of the correct entropy value, it is impossible to know whether 
convergence has been attained. As simulation length is increased and/or additional 
independent repeats are added to the calculation, newly accessed areas of phase space 
are factored into the calculation and the entropy estimate increases. e.g. In Fig.3.21, 
smaller datasets (e.g green dashed lines) generally have lower entropy estimates than 
larger datasets (black and blue dashed lines). Given a finite dataset, calculated values 
oscillate as the population balance of existing states shift. However, the magnitude of 
fluctuations diminishes about a stable average as data size is increased and further 
entropy increases only occur upon the system accruing significant populations of 
underrepresented states. It is expected that convergence would be much more difficult 
for protein dihedral angles than those in the ligand. Adequate sampling for the former 
is complicated by conformational restrictions imposed by other residues within the 
polypeptide chain (§3.2.5).

Even with a small number of data points, conformational entropies in the free state show 
marginal differences compared to entropies calculated with larger datasets. Additionally, 
gauche(-) and gauche(+) states within free dihedrals between adjacent methylenes possess 
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almost identical populations (Fig.A1.1-3). As the energetic favourability of these two 
states are indistinguishable, any imbalance would be indicative of imperfect sampling 219. 
So, it is unlikely that further sampling would significantly affect the entropy calculation 
for the free species. As expected, the principal source of variability occurs for bound 
entropy estimates and this is propagated through to the relative entropy differences. 
Apparent fluctuations in the latter are amplified because the differences between 
bound and free states are so small. Therefore, assessment will focus on the bound 
species. The balance between bound trans, gauche(-) and gauche(+) conformations 
is primarily affected by the ligands interactions with the architecture of the binding 
cavity, and it is only possible to assess convergence within the context of the available 
dataset. Terminal olefins seem to be well estimated by the method, whilst n-alkanols 
and 3Z-olefins undergo comparatively greater fluctuations. It is possible that further 
increases in sampling could unlock additional states that affect the entropy calculation. 
However, Fig.3.21 indicates that the magnitude of fluctuations decreases with greater 
numbers of data points. This suggests that corrections would not be considerable, but 
it would only take around 1 kJ/mol to significantly affect the shape of the trend line as 
the differences between ligands constituting a panel are so small. This is particularly 
evident for 8C and 9C ligands which have a greater number of flexible subunits and 
would thus be harder to converge. Longer ligands are also more likely to be affected by 
correlated motions in second or higher order calculations.

3.5.0. Conclusion
The binding of alcohols to  MUP is interesting as the linearity of the global 
thermodynamic values suggest that this is an uncomplicated system whose binding 
signature is governed by simple differences. As the only perturbation to the composition 
of the system is a discrete, incremental difference in ligand structure, the magnitude 
and additive nature of the globally measured values were thought to arise from the 
ligand alone.

This chapter concentrated on assessing the internal conformational entropy of three 
ligand panels as this was considered the most likely source of loss in ligand DOF 
subsequent to binding. The experimental design of the panels systematically tested 
the loss of a rotatable bond via addition/removal and through the engineering of a 
double bond restriction. Both types of modification resulted in TΔSConf values very 
much smaller than the global values obtained from ITC. This was primarily because 
the ligands possess significant residual motion whilst bound and the range of internal 
torsions are very similar to that of the free species. If methods were used to obtain 
second or higher order entropy estimates, differences would probably be even smaller. 
Therefore, dihedral TΔSTor values do not approach the magnitude observed for tight 
binding complexes and thus the conformational entropy is not wholly responsible for 
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the global entropic signature. Fortuitously, ligands within the 3Z-olefin panel were 
structurally pre-organised to the shape of the binding cavity. This resulted in attenuated 
TΔSConf losses. Additional entropic benefits were accrued by the ligand being split 
into two shorter sub-segments by the central restriction. While this did not translate 
into any large conformational entropy gains within MUP, the modification might be 
beneficial if implemented in other systems. However, this would have to be assessed 
by thorough benchmarking.

Various authors have suggested rotor restriction as a method to improve binding 
affinities. However, the results indicate that this is not a rule of thumb that can be 
applied without detailed reference to structural features pertaining to both the protein 
and ligand. Insertion of a double bond cannot be neatly reduced to a group effect, as 
this ostensibly simple unit modification results in complex dynamic behaviour that is 
dependent on its position, the length of the ligand and the architecture of the binding 
pocket. These factors have the propensity to affect measured thermodynamic values 
in an unpredictable manner. This highlights the power of MD techniques to visualise 
and ascribe rationale to the effects of structural modifications whose purported benefits 
have been primarily adduced through thermodynamic accounting. With regards to 
drug design, the granularity offered by MD is fine enough to offer a level of detail that 
better informs the choice of structural modifications and their consequences. Global 
values and partial decompositions often obfuscate the subtlety of ligand dynamics and 
their relationship within the coupled network of polymer interactions that constitute 
protein-ligand binding.

As the contribution of ligand internal DOF to the global entropic signature was 
minimal, chapter 4.0 extends the analysis by considering the contributions from ligand 
translational and rotational entropy. 
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Chapter 4.0: Ligand Translational & Rotational 

Entropy

4.1.0. A process of elimination

As changes in the conformational entropy were insignificant on binding simple 
alcohols to MUP, this chapter continues to investigate the underlying causes for 

the decrease in global entropy across ligand panels (Fig.3.1). Causal arguments linking 
the increase of ligand length to a decrease in the global entropy of binding are still 
cogent due to the linear change observed on perturbing the system (§1.3.3). Thus, 
the most likely causative agents for the observed trends are likely to originate from 
translational and rotational (T&R) contributions to the binding entropy. Translational 
penalties are thought to scale weakly with ligand size and the contribution is expected 
to be very similar for compounds within the tested panels 172. However, disparities 
between the principal rotations of the different ligands are much more likely to offer 
the correct linear gradient and requisite magnitude of entropic losses. This view is 
reinforced by the fact that differences in conformational entropy could be attributed to 
differential ligand dynamics (Chapter 3.0). If summed T&R contributions do not equal 
the global entropy signature, protein and solvent contributions must be considered in 
an iterative process of elimination.

The majority of methods to calculate T&R entropies make the assumption that bound 
ligands occupy a single bound minimum within the binding site. Hence, some form of 
harmonic function is generally used to approximate the bound distribution 164,190,250–252. 
This is likely to lead to complications in the case of MUP as the protein is a promiscuous 
binder and the multiplicity of available partners indicate that ligands are likely to adopt 
several bound minima. This is supported by the fact that the electron density of 3Z-olefin 
ligands bound to MUP is much more diffuse than their saturated analogues and bound 
compounds were modelled with two different poses 180. Other examples of complexed 
crystal structures that contain ligands with alternate poses can be found in the literature 
e.g. T4 lysozyme, HIV PR, T4 lysozyme, neuraminidase, thymidylate synthase and 
cytochrome P450cam 253,253–256. This phenomenon is germane to rational ligand design 
as the simplistic assumption of a single bound minimum introduces errors into entropy 
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estimates and reduces the ability of computational methods to predict the suitability 
of drug-like compounds. Moreover, assessing inhibitor dynamics and the consequent 
binding site interactions could potentially provide insights into tackling drug resistance 
associated with protein mutation 61.

4.1.1. Promiscuous proteins & ligands: Shake, rattle & roll

There is considerable evidence that protein-ligand interactions cannot be simplistically 
reduced to highly specific one-to-one monogamous relationships, and proteins 
and their ligands frequently interact with a variety of partners. This is known as 
promiscuity 161,162,257–262. There are multiple classifications of promiscuity, but lack of 
protein substrate specificity is likely to have the have the greatest impact on small 
molecule inhibitor design. 

A survey by Gao et al. (2013) analysed all ligand bound protein structures in the RCSB 
PDB and created a non-redundant dataset containing 20,414 members and 9,485 
unique ligands 161. The protein binding pockets and their interactions with bound 
ligands were then analysed using pocket similarity (PS) scores which were generated by 
structurally aligning backbone geometries and assessing the chemical composition of 
binding site residues. These measurements coupled with a global structural similarity 
metric indicated that highly similar protein cavities bind the same cognate ligands in 
spite of low overall structural homology. e.g. Adenosine diphosphate (ADP) binds 
to ADP pockets of disparate protein receptors. Furthermore, structurally unrelated 
proteins have the ability to bind similar ligands, and 52 - 70% of protein complexes in 
the dataset could be matched to another pocket containing a similarly bound cognate 
ligand 161. 

Fig.4.1. (a) - Binding of two structurally dissimilar ligands (Hyperforin and SRL) to the hydrophobic binding pocket 

of the promiscuous pregnane X captor nuclear receptor protein. A Tanimoto coefficient (Tc) of 1.0 indicates identical 

compounds. (b) - Logarithmic scale showing number of representative pockets found by year. A pocket similarity 

(PS) score of 1.0 denotes identical pocket structures, whereas a score of 0.0 is indicative of total dissimilarity. 

Significant similarity is observed for pockets with a PS-score greater than 0.36. Images taken from reference 161.
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Clustering allowed the authors to conclude that a subset of only 1,315 pockets could 
be used to encapsulate the degenerate structural space of all protein binding pockets in 
the dataset. From the 1990s to the year 2000, the number of new representative pockets 
submitted to the PDB showed an exponential increase. However, after this period, the 
rate began to decline and will most probably plateau in the coming years (Fig.4.1.b) 161. 

Additional analyses indicated that proteins tend to interact with multiple ligand types, 
often with disparate chemical structures. At heart, this is the definition of a promiscuous 
protein and these entities were found to compose > ~33% of the dataset. Smaller ligands 
can access alternative locations within larger pockets and create favourable interactions 
with other amino acid residues that happen to possess complementary physio-chemical 
characteristics. This adaptability is further aided by conformational changes associated 
with ligand and protein flexibility, whilst directional polar bonds that afford specificity 
made up only ~28% of all interactions. Thus, ligands scaffolds have significant leeway 
to adapt and conserve favourable protein-ligand interactions within the context of a 
number of structurally diverse binding pockets (Fig.4.1.a) 161. e.g. Protein kinase A 
(PKA) uses a single hydrophobic interface to bind multiple A-kinase anchoring proteins 
(AKAPs) and this enables it to translocate to different compartments within the cell. 
Binding is entropically driven as each AKAP can adopt a variety of binding poses 
because the set of hydrophobic contacts it possesses are able to match a variety of 
alternate contact points on PKA 160.

Promiscuity has serious implications for the rational design of small molecule inhibitors 
that are able to retain their function because proteins targets often develop mutations 
that confer resistance, and unintended physiological side effects are likely to be due to 
off-target interactions. The propensity for both protein and ligands to be promiscuous, 
complicates the engineering of high affinity complexes possessing clinically acceptable 
levels of specificity 161,257,260,261,263. Natural compounds tend to have greater structural 
complexity (chiral centres and multiple ring systems) than synthetically designed 
inhibitors, and this is likely to result in highly specific interactions 264,265. Most importantly, 
binding promiscuity highlights the necessity to take into account the possibility that 
the protein can adopt different conformations and could well bind ligands in multiple 
locations. Thus, the number of variables and their interdependence on each other 
render this a multi-dimensional problem and this demonstrates that real advances in 
drug design can only be made by defenestrating static perceptions of binding.
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4.1.2. The practicalities of calculating T&R entropies

4.1.2.1. Why is it important to calculate contributions from external DOF?
Endpoint free energy methods such as MM(P/G)BSA and linear interaction energy 
(LIE) seek to minimise the computational cost associated with pathway methods such 
as FEP and TI by only considering the difference between free and bound states. 
Theoretically, this avoids the expensive simulation of unphysical intermediate states 
along the pathway that ensure adequate exploration of phase space 266–271 (§2.12-4). Whilst 
pathway methods yield a direct evaluation of the free energy, endpoint methods rely 
on this value being “built up” from component enthalpies and entropies. An advantage 
of this approach (with reference to MM(P/G)BSA) is that, facilities such as per-residue 
free energy decomposition affords greater insights into relationships between structure 
and function 272–280. However, the larger scientific community generally regards accurate 
quantification of the entropy as being too technical, difficult and/or time consuming. 
Hence, this portion of the calculation is sometimes neglected entirely, or simple models 
such as the QHA or normal mode analysis are used to recover the entropy associated 
with internal DOF 281–284. Indeed, the MM(P/G)BSA tutorial on the amber website 
states that: 

“The entropy contribution can be found by performing normal mode analysis on the 
three species but in practice entropy contributions can be neglected if only a comparison 
of states of similar entropy is desired such as two ligands binding to the same protein.” 285 

This approach presents a couple of serious issues that limit accurate evaluation 
of the free energy, and consequently impedes the discovery of efficacious drug-like 
compounds. Firstly, in the case of ligands that possess a single bound minimum, the 
entropy contributions from external DOF (i.e. T&R) has the potential to dwarf the 
conformational component which only accounts for internal DOF. Secondly, the true 
entropic contribution is very difficult to predict in the case of ligands that adopt multiple 
bound minima. As demonstrated in chapter 3.0, significant differential dynamics can 
arise from small disparities in structure. Hence, if the ligand retains substantial residual 
motion, it is also likely that this difference is not captured by the conformational entropy, 
but is instead reflected within external DOF. Furthermore, such a paradigm would 
mean that it would be impossible to ascertain whether the entropic component could 
be safely neglected with regard to homologous ligands.

The most compelling reason for the evaluation of external entropies is the ability to 
probe the relationship between structure and dynamics. Approaches such as quantitative 
structure-activity relationships (QSAR) and others have factored in structural 
complementarity 286,287. Some steps have been taken to redress this static notion of 
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binding by accounting for alternate molecular conformations e.g. conformation-activity 
relationships (CAR) 288–290. However, given the prevalence of promiscuous binders, it 
is clear that only accounting for internal DOF is not enough. As demonstrated in this 
chapter, the quantification of external entropic components provides greater insights 
into the relationship between structure and dynamics.

4.1.2.2. The Sackur-Tetrode equation
The simplest method of assessing translational entropy losses in bimolecular binding 
is via the use of the Sackur-Tetrode (ST) equation (eqn.4.1). Independently derived by 
Otto Sackur and Hugo Tetrode, it allows the calculation of the entropy of a monatomic 
ideal gas; a species that possesses only three translational DOF. The equation can be 
written as the following, where U is equal to the internal energy, m the mass, kB the 
Boltzmann constant and h Planck’s constant.

 (eqn.4.1)

The two main components to the equation are related to the potential and kinetic 
energy. The volume relates to the spatial distribution of particle positions (r), whilst 
the inner bracketed term associated with U encompasses the distribution of particle 
conjugate momenta (p). The corrective 5/2 term prevents the overcounting of states in 
the case of non-distinguishable particles and is necessary to avoid the Gibbs paradox. 
The quality of the ST equation is such that, the theoretical values it provides for ideal 
gasses are currently considered superior to those obtained by experiment 291–297. An 
expanded discussion regarding the derivation of this important equation can be found 
in the appendix (§A2.1.1). 

4.1.2.3. Rigid and flexible single molecule partition functions
As discussed in §2.1.3, there are a number of ensembles that consist of collections of 
microstates whose collective properties describe the equilibrium state of the system. 
By appropriately defining the partition function (Z) of a system it is possible to 
relate the microscopic fluctuations of particles to various macroscopic properties via 
statistical mechanics. The probability of a microstate Wi with energy Ei being accepted 
in the ensemble is proportional to the appropriate Boltzmann factor ( iEe β− ), where -β 
equals 1/kBT. Defining a molecular partition function suitable for in silico simulations 
necessarily involves building up an entire complex entity from more primitive elements. 
In the case of a single molecule, these elements would correspond to the available 
DOF: translational, rotational and vibrational. To simplify what might otherwise be an 
intractable calculation, the assumption of weak coupling is commonly used i.e. a small 
amount of energy transfer is allowed between DOF, but correlations are considered 
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weak enough, that these elementary components are considered independent from one 
another. Quantifying the amount of correlation and assessing its impact on the final 
calculation is the topic of many other bodies of work (§3.1.2). However, this underlying 
assumption allows contributions from the main DOF to be calculated separately and 
the total entropy is yielded when they are summed (eqn.4.2) 291,293,298.

    STot = STr + SRot + SVib   (eqn.4.2)

 

This gives MD the power to decompose dynamics into tractable parts and analysis 
of these components offer a more granular view that can better guide rational drug 
design 293. Despite the success of the ST equation at predicting the entropies of ideal 
gasses, it does not translate well to data generated by molecular dynamics or Monte 
Carlo simulations, which are at heart, single molecule experiments. In some studies, 
the equation has been applied to biological problems along with its companion ideal-
gas method to calculate the rotational entropy 171,252,299–302. However, criticism has 
been levelled at this approach due to its inconsistent application and because it did 
not adequately account for the reaction taking place in solution e.g. A key question is 
whether the results are dependent on atomic mass or not. Additionally, the ST equation 
gives the entropy for N indistinguishable molecules, rather than being based on the 
single molecule partition function which derives the binding free energy from standard 
chemical potentials 164,303,304. The most lucid exegesis to date is offered by Zhou and 
Gilson (2009) and the reader is referred there for further information on the associated 
issues 303. The remainder of this subsection and the next summarises some of the key 
points from that work with reference to other sources when appropriate.

With respect to single molecule partition functions, it is useful to be aware of two 
statistical mechanical models. These are known as the rigid rotor harmonic oscillator 
approximation (RRHOA) and the flexible molecule (FM) approach. Each model 
contains discreet expressions for translational, rotational and vibrational contributions 
and these have to be applied to receptor, ligand and the bound complex to obtain the 
binding entropy. The RRHOA assumes that the molecule is essentially rigid and that 
internal motions are modelled as small vibrations via the use of a harmonic oscillator. 
In terms of this partition function formulation, freezing larger internal vibrations of 
a molecule and assuming inflexibility allows the kinetic and potential energy contributions 
to the partition function to be factorised and evaluated separately. Thus the potential energy 
is assessed by the effective volume in coordinate space and this is multiplied by the 
contribution from the momenta which includes a mass dependent term (eqn.4.3). Note 
the similarities to the ST equation (eqn.4.1).
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  (eqn.4.3)

The entropy arising from the principal rotations of the rigid molecule can now 
be calculated using three principal moments of inertia (I1 I2 I3) about the COM    
(eqn.4.4).  

  (eqn.4.4)

Additionally, the harmonic approximation allows each internal vibration to be quantum 
mechanically modelled via the angular frequency (wi). wi =(k/m)1/2, where k is the 
oscillator spring constant (eqn.4.5).

  (eqn.4.5)

In contrast to the flexible molecule formulation, all three components of the RRHO 
partition function are mass dependent and this dependence cancels out when they are 
used to calculate the total entropy. An incorrect estimate of the total entropy will be 
obtained if the RRHO equations are combined with alternative expressions that do not 
result in mass cancellation 303–306.

On the other-hand, the FM partition function eliminates the need to calculate the 
contribution from momenta at the outset and is therefore mass independent. Most MD 
simulations are run at room temperature and the mass of the system remains constant. 
Moreover, due to the equipartition theorem, each DOF makes a fixed contribution 
to the kinetic energy and this is unaffected by entities moving from the unbound to 
the bound state. Therefore, a classical statistical thermodynamic treatment is more 
appropriate than a quantum one. This means that the only thing left to evaluate is the 
potential energy which is evaluated by considering the configurational integral over 
spatial coordinates i.e. the effective volume. The assumption of rigidity in the RRHOA 
can be discarded as there is no longer any unwanted correlation between the potential 
and kinetic energy and the requirement to calculate fixed moments of inertia evaporates. 
The translational component contributes a factor of V to the total partition function and 
the rotational contribution, 8p2. The full range of internal vibrations can be considered 
using eqn.4.6 in which the Jacobian (J) is a corrective factor utilised when transforming 
from Cartesian to internal coordinates.

   (eqn.4.6)

The full FM partition function can now be written as eqn.4.8 196,303.
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(eqn.4.8)

A further distinction between rigid and flexible formulations is the way DOF before and 
after binding is treated. Rigid models often assume that both ligand and receptor have 
3 translational and 3 rotational DOF when free in solution. Subsequent to binding, the 
complex as a whole retains 6 external DOF, whilst the ligand’s external DOF can be 
treated as 6 new vibrational DOF that are incorporated into the complex. In contrast, 
the FM approach allows the ligand to retain its external DOF and this can be more easily 
calculated from the ligand’s motion relative to the protein 164,190,250,271,303,304. Additionally, 
while the total entropy returned by both approaches should be similar, values obtained 
from vibrational, T&R subcomponents will differ due to the different partition schemes 
utilised 303.

4.1.2.4. Translational entropy is dependent on the standard concentration
In the case of protein-ligand binding under the NPT ensemble, the thermodynamic 
potential that describes the macrostate of the system is the Gibbs free energy. The 
standard free energy of binding (ΔG°b) is determined experimentally under standard 
state conditions when the three species are at equilibrium and ΔG°b is zero (eqn.4.9) i.e.  
a temperature of 298 K, 0.1 MPa pressure and 1 M standard concentration (C°). The 
choice of C° is arbitrary, but a value of 1 M is most commonly used for convenience.  
The reciprocal of this value (V/1 M) is the standard volume (V°) and this equates to 
1,660 Å3 in the case of a single molecule 164,190,250,291,303. 

    ΔG°b = -kBT ln(C° Ka) (eqn.4.9)

The standard enthalpy of binding is independent of C° and is given by eqn.4.10.

  (eqn.4.10)

Per Contra, the standard entropy of binding (ΔS°b) is also dependent on the choice of C° 
and therefore V° (eqn.4.11).

  (eqn.4.11)

In the case of a simple monatomic ligand binding to a receptor (at constant temperature), 
the translational entropy can be calculated as the ratio of the standard volume (V°) that 
the ligand has access to when free, and its bound volume (Vb) (eqn.4.12).

 (eqn.4.12)
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Hence, the translational entropy is the only entropic subcomponent that possesses a 
dependence on the standard concentration 303,304. Other contributions such as those 
arising from solvent, rotational and vibrational DOF can be calculated separately and 
added to obtain a 1st order entropy estimate.

4.1.2.5. A brief overview of methods used in the literature
Various approaches have been used to calculate translational and rotational entropies 
and all of them cannot be described due to space limitations. Irudayam et al. 
(2009) 164 have conveniently categorised some of the available literature in terms of 
experimental methods 29,163,170,171,301,307,308,308–316, approximate estimations 251,299,302,309,317–321 
and computational approaches 250,271,322,323. The last category is further subdivided into 
approaches that rely on numerical integration 324,325, normal-mode analysis 326, docked 
ensembles 327 and distribution functions 240,322,328–331.

Many of the experimental approaches are cleverly designed and prompt deeper 
discussions regarding the concepts underlying T&R entropy losses. However, such 
techniques are inevitably hamstrung in terms of broad applicability, due to the inherent 
assumptions accompanying the decomposition of the global entropy into external 
and internal contributions 308,332,333. Whilst, gas phase entropies are somewhat easier 
to characterise, the application of similar techniques to solvated systems present 
considerable difficulties due to questions regarding the extent to which solvent hinders 
gross motions. Various T&R entropy losses for molecules in solution have been 
proposed, ranging from 9 to 63 kJ/mol. Lundquist and Toone (2002) state that, the 
commonly cited figure of ~44 kJ/mol provided by Jencks is a rough rule of thumb that 
is likely to be an overestimate; the true value being unlikely to exceed ~25 kJ/mol 172,334. 
Thus, it should be realised at the outset, that there is a lack of experimental data on 
decomposed T&R contributions that offer unequivocal conclusions with respect to 
complex macromolecular systems.

4.1.2.6. Early experimental & in silico entropy decompositions
Finkelstein and Janin (1989) proposed a novel method to calculate translational and 
rotational entropies from the RMS fluctuations derived from crystallographic B 
factors 251. Their formulae assumed that the relative motions of two molecules within 
a complex are similar to that observed in crystal structures and the translational and 
rotational entropy of a bound molecule could be obtained from RMS displacements 
and amplitudes along each principal axes. Thus, STr = R ln(dx dy dz/1660 Å3) and SRo 
= R ln(dq dy dj/8p2), where 1,660 Å3 and 8p2 correspond to free translational and 
rotational configurational volumes respectively 250,251. A translational entropy estimate 
of ~28 kJ/mol was obtained for molecules possessing bound volumes of 8.0 x 10-3 to 
1.6 x 10-2 Å-3 in lysozyme crystals 251. Whilst the formulae and concepts regarding the 
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relative motions of the bound ligand to protein are solidly grounded, it is questionable 
whether small RMS fluctuations from cryocooled crystals provide an accurate measure 
of the bound volume and this assumption has been queried 250,271,323,335. In the same 
paper, F&J compared solid naphthalene to that of a very tightly bound complex; the 
gas to an ideal solution and sublimation to complex disassociation. The comparison of 
protein complexes to crystals was extended by Searle and Williams who produced a 
particularly interesting manuscript that decomposed the entropy of fusion from weakly 
ordered hydrocarbon crystals 170. They estimated that 9 to 15 kJ/mol came from T&R, 
and 1.6 to 3.4 kJ/mol from internal DOF (§3.3.4). In order to match the F&J result, they 
concluded that molecules in the crystal had to either retain large amplitude motions or 
that the melted product was more ordered than expected. However, it is now known 
that the insights that (cryocooled) crystallography generates on dynamics is limited. The 
static view it provides, imparts the impression that proteins and their bound ligands are 
far more ordered than the actuality (§A2.1.2).

An alternative approach to the treatment of bimolecular binding emerged from a series 
of investigations into the dimerisation of insulin. The T&R contributions to binding 
were decomposed using the ST equation and a primitive rigid body model (that used 
featureless cylinders) were used to calculate the disassociation of the insulin dimer into 
monomers. The entropic cost for restricting external DOF was estimated at ~153 kJ/mol 
and was considered far too high, because the global entropy of binding equated to 
only ~12 kJ/mol and thus, the authors suggested that solvation must play a significant 
part 299. However, a rough estimate based on the burial of SASA indicated that global 
entropy losses were only partially ameliorated 321. Several authors had suggested that 
relative residual motions and vibrations in the complex would further reduce the large 
negative penalty associated with T&R 37,171,317. For example, Erickson (1989) estimated 
a combined estimate of ~46 kJ/mol by assuming that bonded subunits could undergo 
relative displacements of ~2 Å in each direction (using eqn.4.12 for translation). 
He further suggested that co-cooperativity would further decrease this value to 
~29 kJ/mol 317. The alternative approach implemented by Tidor and Karplus (1994) 
modelled residual motion as 6 new vibrational modes via normal mode analysis 336. A 
total entropic loss of -84 kJ/mol was computed; the bulk of which came from a large 
unfavourable T&R contribution (-114 kJ/mol). This was partially compensated by a 
favourable vibrational component (30 kJ/mol) which arose from changes to the density 
of states and consideration of new vibrations within the complex. This experiment 
highlighted the necessity to account for all DOF when calculating the total entropy. A 
strength of the approach over that proposed by F&J is the use of quantum mechanical 
equations which would capture changes associated with narrow energy wells, whilst a 
disadvantage is the use of the harmonic approximation 240. There is also the question as 
to whether this model might be more appropriate to covalent binding, which would see 
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a far greater reduction in residual motion than non-covalent binding 164,240,250,319. 

4.1.2.7.  The utility & pitfalls of approximations
Whatever the approach, the primary problem associated with the calculation of T&R 
contributions to TΔS° is accurate estimation of the effective free and bound configurational 
volumes. Access to long timescales was hampered in early MD simulations due to 
computational costs, and thus, recovery of the ergodic distributions associated with 
protein DOF was difficult, if not impossible. As discussed in §3.1.2, approximations 
such as the ad hoc method proposed by Schlitter 202 and the QHA 200,337 circumvented 
the sampling issue by assuming that a functional form was sufficient to capture the 
underlying distribution. Uncertainty inherent in such approximations means that these 
methods only provide an estimate of the maximum entropy. The QHA is believed to 
provide a tighter upper bound as it is supposed to better account for anharmonicities. 
However, the utility of the maximum entropy estimate as a proxy for the true entropy 
has been questioned 203,338 and testing has demonstrated that these approximations can 
significantly overestimate contributions arising from principal rotations and torsional 
DOF 203,250,339. Nevertheless, both these methods can be extended to separate translation 
from rotational and vibrational components via the use of translational and rotational 
RMS fits. However, it is difficult to deconvolute rotational and vibrational contributions 
as they are intrinsically linked and the fitting procedure can introduce significant errors 
into the calculation 203,250,339. The problem is exacerbated in the case of flexible ligands and 
most examples in the literature focus on relatively rigid compounds 164,190,250,271,319,325,326,340. 
In principle, histogramming can capture multi-modal distributions with greater accuracy 
as there is no assumption of any functional form, but this approach has historically been 
limited by sampling and difficulties in accessing minima separated by unfavourable 
energy barriers 190,250,339. Some authors have estimated the ligand’s bound translational 
volume (for use in eqn.4.12) by integrating under histograms generated from COM 
motions along each principal axes, or in the case of residual rotational motion, Euler 
angles 240,328,339. This approach assumes that motions along the three orthogonal axes 
are independent from one another and care must be taken to account for correlations 
between them.

There are other techniques that utilise eqn.4.12 such as FEP, potentials of mean force, 
etc. However, free volume methods form a distinct category to what has been described 
thus far, and the salient points of this approach will be discussed below.   

4.1.2.8.  Free volume methods
There are currently two opposing schools of thought regarding the correct 
method to calculate T&R entropy contributions and a greater proportion of 
the literature is devoted to what Irudayam and Henchman (2009) 164 term the 
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molecule frame (MF) approach 186,240,250,251,271,299,302,304,318,321–323,326,327,329–331,336,339,341,342 versus 
system frame (SF) techniques 317,319,325,343. The Fundamental difference between the two 
is that MF theories treat the ligand as a “particle in a box”, wherein the free ligand is 
able to explore the entire system volume i.e. the standard volume of 1,660 Å3. However, 
SF proponents argue that the “free volume” accessible to the ligand is much smaller 
due to the effect of solvent-caging and thus calculated T&R entropies should be much 
smaller than that calculated by MF approaches. Gilson (2009) makes the important 
conceptual point that free solute molecules are confined in solvent cages for very short 
periods of time and they will explore the entire system volume during the course of an 
experiment. The complexed entity can also access the full system volume along with 
its internalised ligand. Moreover, a bound ligand’s translational motions are confined 
within the smaller volume of the cavity and are highly correlated with the protein. Thus, 
this correlation could significantly lower the calculated MF entropies which typically do 
not account for this higher order correction 303. 

SF methods can involve controversial concepts such as the cratic and communal 
entropies. In order to assist the decomposition of the entropy of binding into terms 
associated with solvation, conformational DOF, etc it was proposed that the translational 
entropy could be estimated via the use of the cratic correction 311,344–346. The model was 
applied to the problem of say, an insulin dimer fixed in space separating into two well 
separated monomers that are also fixed in space 347. In a hypothetically dilute solution, the 
number of molecules is increased from 1 to 2 and the translatory contribution can be 
separated out by use of the equation SCratic = -R ln x, wherein x is equivalent to the mole 
fraction of the solute in water. As water possesses a concentration of 55 M in the 1 M 
standard state, x = 1/55. Thus the cratic correction equates to ~10 kJ/mol at 300 K 347. 
This approach attracted severe criticism from several authors, and Holtzer’s (1995) 
theoretical analysis thoroughly addressed the associated issues and concluded that the 
theory had no foundations in thermodynamics 186,303,304,347. As some of the very early 
estimates of the translational entropy (e.g. insulin) were very large, the smaller value 
returned by the cratic correction (~10 kJ/mol) was used to argue that the entropies 
obtained from the ST equation were grossly overestimated and thus not applicable to 
studies in solution 311,319,348. Nevertheless, SF theories are difficult to implement due to 
the practical limitations of defining the free volume of the ligand within the mean frame 
of mobile solvent molecules, and there is disagreement as to the correct method 164,319,343. 
For instance, an early approach proposed by Amzel (1997), suggested that TΔS°Tr could 
be estimated by summing the cratic and communal entropies and the entropic difference 
arising from the change in free and bound volumes 319. 

The communal entropy arises from cell theories of liquids: an early theoretical framework 
that has been extended to address SF difficulties in calculating localised configurational 



Chapter 4.0154 155

volumes. If the total solvated system volume (V) is subdivided into N smaller cells of 
volume v = V/N, the motion of any particle is captured by a potential function that 
localises it within a single cell, and this is assumed to be independent of the motions of 
particles in neighbouring cells. This allows the total partition function of large, complex, 
inhomogeneous liquids to be calculated from the product of single molecule partition 
functions obtained from the potential function in each independent cell 319,349. Particles 
in the solid state are also not permitted to exchange cells and are distinguished from 
the liquid state by greatly reduced free volumes (vf). In contrast, particles in a gas readily 
exchange between cells, and are thus considered to possess extra “communal entropy”. 
However, particles in a solid are distinguishable because the cells can be labelled and 
this is reflected in the equations for the partition function and entropies (eqn.4.13-14). 
The thermal de Broglie wavelength, L =  h/(2pmkT) contains the momentum 298,319. 

  (eqn.4.13)

 (eqn.4.14)

In the case of a gas and a solid with the same number density, the difference between 
the two entropies (kB) corresponds to the communal entropy. This is relevant, because 
Ssolid is used for the bound ligand which remains localised within its cell. The equation 
for Sliquid is identical to Sgas, but the particle’s accessible free volume should be smaller 
than that in the gaseous state because the aqueous medium is much more crowded 
(eqn.4.15). 

    (eqn.4.15)

It is very difficult to evaluate the configurational integral of a particle in the mean 
field of its neighbours in the condensed phase, but the cell model allows vf to be easily 
assessed by integrating over the potential function within a single cell. However, the 
concept of the communal entropy has been criticised as an artificial construct and in 
attempting to give it a formal definition, Kirkwood (1950) could not overcome the 
issues with this term 298,350,351.  

Later SF theories proposed by Henchman removed the troublesome communal entropy 
by only permitting single-cell occupancy. Additionally, a novel method to estimate a 
particles T&R configurational volumes via a 6D anisotropic harmonic potential was 
developed 164,349,352,353.  In order to calculate T&R configurational volumes of a molecule 
in the mean field of its neighbours, averaged pairwise, force and “torque” constants 
between all the atoms in the cell are calculated and halved to prevent overcounting 
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along the 6 principal axes (x, y, z, qx, qy, qz). Free and bound volumes are then used 
in conjunction with the cratic entropy to calculate T&R entropies for several protein-
ligand binding interactions, including the T4 lysozyme mutant (T4LM) and MUP 164. 
Both these systems are addressed in the results section as the former is a good example 
of a system that binds ligands in a single bound minimum (§4.3.2), whilst the latter is 
likely to be characterised by multiple binding minima (§4.3.3). 

4.1.3. Entropy naming conventions:

There are many labels in the literature that describe the various subcomponents 
of the total global entropy. Depending on the partitioning method, certain labels 
have subtle distinctions e.g. conformational versus configurational as defined by 
Gilson et al (2007) 173,188. Translational and rotational entropies are calculated by 
measuring momentum and position distributions, but in a classical treatment the 
momentum contribution cancels out when the difference between products and 
reactants is evaluated 303,304. Hence, Gilson et al. (1997) proposed that a distinction 
should be made via use of the alternative terms positional and orientational entropy 304.  
The scheme used in this chapter is tabulated in Table.4.1.

Here, the method used to calculate the orientational binding entropy (TΔSOr) implicitly 
includes a contribution from internal DOF (TΔS In) in addition to that associated with 
the principal rotations (TΔSRo) of the molecule. This cannot be separated in the first 
instance but if the conformational entropy is obtained in a separate calculation (e.g. 
chapter 3.0), it should theoretically be possible to recover the entropic term associated 
with the principal rotations of the molecule via eqn.4.16. 

    TΔSRo = TΔSOr - TΔS In    (eqn.4.16)

Entropy Component Entropy Label Bound Free Difference
Global ITC Global na na TΔSGlo

Translational Positional TS° Po•B TS°  Po•F TΔS° Po 

Combined Rotational 
& Conformational

Orientational TSOr•B TSOr•F TΔSOr

• Principal Rotations Rotational TSRo•B TSRo•F TΔSRo

• Conformational Internal TSIn•B TSIn•F TΔSIn

Table.4.1. Entropy partitioning scheme used in this work with associated labels and symbols. Note that the 

orientational entropy includes both internal and external DOF.
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4.1.4. Objectives & Overview

4.1.4.1. Objectives
This chapter focuses on assessing the external entropies (positional & orientational) of 
ligands within n-alkanol and 3Z-olefin panels as the results from chapter 3.0 indicated 
that the structural differences between these compounds would provide the most 
interesting contrast. There are two key questions underlying this investigation that are 
intrinsically intertwined with one another:

Q1. Why does a relatively simple perturbation (i.e. introduction of a cis-3-4 double 
bond into unsaturated linear alcohols) result in improved global entropies of binding 
(Fig.3.1) of 3Z-olefins compared to n-alkanols? As the entropy contribution from 
internal DOF (TΔS In) did not account for the large difference between the two panels, 
the external entropy contribution (TΔS°Po and TΔSOr) will now be quantified. This will 
allow resolution of the following simple hypotheses:

Hypothesis-1: Extending ligand length by a single methylene group yields an enthalpic 
gain due to increased protein-ligand van der Waals contacts. However, a compensating 
entropic penalty entropic penalty of 5.4 kJ/mol is paid due to the addition of a rotor which 
inevitably becomes restrained on binding 36. Only the entropic contribution is considered in 
this chapter.

Hypothesis-2: Disabling a rotor via introduction of a double bond avoids the entropic 
penalty on binding as this debt has been paid during the process of chemical synthesis 36,178. 

Hypothesis-3: Pre-organisation of the ligand (i.e. 3Z-olefins) so that the structure 
complements the shape of the binding site ameliorates entropic penalties by virtue of less 
strain being imposed on the ligand 174,177–179.

Q2. Beyond obtaining measurements that quantify the ligand contribution to the global 
entropy of binding, it is also desirable to characterise the dynamics of bound compounds 
because this affords predictive capabilities that can guide rational drug design. As 
discussed, there are many examples of promiscuous proteins (§4.1.1), and techniques 
that illuminate the relationship between structure and dynamics can offer insights into 
how inhibitor modification affects specificity and efficacy. Hence, the question: “How 
and why do structural modifications affect the dynamics of bound ligands within the 
context of the binding cavity?”
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4.1.4.2. Chapter overview

* Question one is answered by developing two new methods that quantify TΔS°Po and 
TΔSOr:

1. Calculation of TΔS°Po is controversial and there is much debate in the 
literature regarding the correct technique. As all current methods usually 
involve the (quasi-)harmonic approximation in some manner, the method 
presented in this work eschews any reliance on a functional form to describe 
the underlying distribution from which the positional entropy is calculated. 
As the protein-ligand bound state is often characterised by multi-modal 
distributions the approach allows more accurate estimates of TΔS°Po. 

2. Defining the principal rotations of flexible molecules (such as linear alcohols) 
is beset with complications because it is impossible to define the principal 
rotational axes for molecules that drastically change shape with time. The 
complexity of this problem has resulted in researchers relying on assessing the 
conformational entropy, whilst neglecting potentially larger contributions from 
molecular rotations. This issue is particularly pronounced for promiscuous 
binding interactions, wherein the ligand possesses multiple bound minima. 
Hence, an approach that deals with these issues was developed and tested. 
The method obtains entropies for flexible compounds by calculating entropies 
on a per-bond basis and then summing these values to provide a 1st order 
estimate for the total TΔSOr of binding. As per-bond entropies afford greater 
insights into the factors governing ligand dynamics, this allows an avenue 
through which Q2 can be addressed.
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* Question two addresses the “how and the why” underlying the different global 
entropic signatures of the two panels tested and is more difficult to explain because the 
answer is highly dependent on the relationship between the architecture of the binding 
cavity and the dynamics of the ligand; the latter being affected by its size and structure. 
In order to elucidate the underlying physical rationale for dynamic differences between 
bound compounds, the results are split into four main sections that consecutively deal 
with:

1. Positional entropy: Provides data on the extent of ligand residual motion 
within the cavity and provides evidence of significant differences in positional 
distributions that are correlated with ligand size and structure. The proposed 
method is iteratively validated by:

i. Randomly generated points: to calibrate bin volumes

ii. Benzene bound to T4LM: to test the method against a ligand that 
binds within a single minimum. This system also allows comparison 
with a variety of other methods used in the literature.

iii. 3Z-olefin and n-alkanol ligands binding to MUP: to test the 
method with ligands that bind within multiple minima. An additional 
level of rigour is instituted by checking whether TΔS°Po trends across 
panels are captured. This component contributes significantly to the 
global entropy.

 2. Protein-ligand H-bonding: In the predominantly apolar binding pocket, 
the single polar moiety possessed by these linear alcohols plays a crucial role 
in determining the positions occupied by the molecule and the orientations 
that its constituent bonds can adopt. Again, clear differences in H-bond 
patterns are discerned between both panels and a correlation with ligand size 
is uncovered. 

3. Orientational entropy:  There are systematic differences in the trends 
exhibited by 3Z-olefins compared to n-alkanols and this component also 
contributes significantly to the global entropy. After exploring the preceding 
two points the rationale behind differential patterns in per-bond TΔSOr is 
uncovered. Furthermore, on solving the final piece in the puzzle, the “how 
and the why” regarding differential positional entropies and H-bonding is 
retroactively comprehended.
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4. Convergence issues and sampling: This is addressed at appropriate 
points throughout the chapter as this is a critical factor associated with the 
evaluation of any in silico calculation. Nonetheless, a more detailed section 
near the end analyses the implications of convergence in greater detail and this 
allows a comparison of the calculated total ligand entropy (internal + external 
contributions) to global ITC values. Finally, predictions regarding the total 
system decomposition (ligand + protein + solvent contributions) are made.

As the relationships between the factors described in these four sections are intrinsically 
intertwined, it is difficult to explain one without referring to the others. Nevertheless, the 
order chosen best presents the detailed “how and the why” for the difference in global 
entropic binding signatures between 3Z-olefin and n-alkanol ligands. 

4.2.0. Methods

4.2.1. Simulation setup, sampling times & protocols.

4.2.1.1. ff03 force field 
In order to investigate ligand positional and orientational contributions to the global 
entropic binding signature of MUP, the MD simulations obtained in chapter 3.0 
(n-alkanols, 3Z-olefins and apo receptor only) were extended from 0.6 ms/ligand to 1.2 
ms/ligand. As flexible ligands possessed significant residual motion when bound, they 
are likely to occupy multiple bound minima; a factor likely to be crucially dependent 
on sampling. Five simulations had to be completely rerun because the ligand began to 
escape from the pocket on extending running time (Table.4.2). All new and extended 
simulations were run using the AMBER 12 GPU code.

 All data was obtained using the protocol and parameters detailed in §3.2.3. Simulations 
were rechecked for stability via RMSD and the monitoring of other variables such as 
energy, temperature, density, etc.

Bound Ligand Repeat
hep 01
hep 05
3c8 05
non 03
non 04

Table.4.2. List of simulations obtained in 

chapter 3.0 that were discarded and rerun from 

the beginning.
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4.2.1.2. ff99Sb-nmr force field 

1. MUP: In order to check results obtained using the ff03 force field (§4.3.3), 
six 100 ns simulations were set up using exactly the same settings and protocols 
used for the ff03 based simulations as detailed in §3.2.3. The only difference 
being the use of the ff99SB-nmr force field. This was applied to the MUP-hep 
complex and apo receptor only.

2. T4 lysozyme mutant: The binding of benzene to this protein was assessed 
via six 200 ns simulations of both the complex and apo receptor (§4.3.3). 
The structure used for apo and holo simulations was obtained from the PDB 
(181L) 354. TIP3P was used for the solvent model and crystallographic waters 
were retained. Benzene was parameterised using the Gaussian 09 and the 
R.E.D III suite of tools as described in §2.2.2 and §3.2.1. Apart from this, 
identical settings to the ff03 simulations were used.

4.2.1.3. Positional entropy: Free simulations
In order to obtain the translational entropy difference between bound and free states, a 
new set of simulations were run in which the ligand sampled a free volume corresponding 
to the 1 M standard state, 1,660 Å3. A dummy atom incapable of reacting with its 
surroundings was situated at the centre of the simulation box and restrained in place 
with a strong harmonic potential (100 kcal/mol). The ligand was positioned alongside 
this atom and solvated with TIP3P waters using a box size of 12.0 Å. The ligand 
was constrained within the required volume by restraining all heavy atoms to remain 
within 7.345 Å of the dummy atom via a flat-welled parabolic restraint (20 kcal) with 
steep sides. Production runs were carried out using NPT conditions. Force field and 
simulation lengths used for various systems are detailed in §4.2.1.1-2.

4.2.1.4. Orientational entropy: Free simulations
To avoid biasing bond rotations and conformations of the free ligand, the protocol used 
for unrestrained simulations in §3.2.3 was utilised. Force field and simulation lengths 
used for various systems are detailed in §4.2.1.1-2.

4.2.2. RMS fitting of complexed simulation trajectories

The protein binding pocket is used as the frame of reference against which relative 
translational and rotational movements of bound ligands are quantified. The overall 
translations and rotations of the protein in solution are removed by RMS fitting 
backbone atoms (C, Ca, O and N) to a reference structure using ptraj. The reference 
structure was created by averaging all frames from every simulation for that system. 
e.g. in the case of bound MUP, protein backbone atoms were averaged over all frames 
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obtained from every n-alkanol and 3Z-olefin simulation. (1,200,000 frames per complex 
x 8 complexes x 6 repeats = 57,600,000 total frames). The averaged reference structure 
was then manually reorientated using UCSF Chimera so that its final position matched 
that depicted in the front view (Fig.4.2):

This procedure affords two advantages. Firstly, a better quality RMS fit is obtained 
when fitting the protein to the averaged reference structure compared to fitting to the 
first frame (Fig.4.3). Secondly, as all simulations have been fitted to the same reference 
structure, COM density plots for different bound ligands can be easily compared and 
contrasted.

Fig.4.2. The protein was RMS fitted to an averaged structure as described in the methods so that the ligand’s COM 

distributions depicted in Fig.4.11-14 could be visualised. As the averaged structure has a known position and 

orientation, it can be rotated so that the 2D projections through the three principal planes display COM densities in 

relation to the architectural features of the calyx. Residues used for orientation are colour coded as per the labels 

in the centre panel.

Fig.4.3. The graphs compares the RMSD obtained by fitting a 100 ns simulation to the averaged structure to that 

obtained via fitting to the first structure in the trajectory. Fitting to the averaged structure (cyan) provides a better 

alignment throughout the whole trajectory as opposed to fitting to just the first frame (green). 
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Reference frame “jitter” assessment: Subsequent to the RMS fit, the protein is 
localised in terms of both position and orientation in all trajectory frames. However, the 
bound ligand retains full translational and orientational motion because its coordinates 
have been shifted relative to the protein backbone atoms. As the motions of the bound 
ligand are defined in relation to RMS fitted backbone of the protein, the accuracy of 
every COM position is dependent on the frame of reference remaining static from 
snapshot to snapshot. The COM displacements of the protein backbone (N, Ca, C and 
O) were assessed with a view to calculating the entropic cost to the quality of the fit 
over the full 1.2 ms concatenated trajectories. However, the fit in the case of both T4LM 
and MUP systems was so good that the COM distribution was too small to measure 
using the positional entropy method proposed in §4.2.4.2. Hence, a rough estimate 
of the volume used by the protein’s COM distribution was generated by multiplying 
distances obtained from the minimum and maximum of the distribution across each 
orthogonal axis.

4.2.3. Mean shift clustering

The clustering of trajectories was accomplished with python scripts that utilised the 
mean shift algorithm implemented in the scikit-learn machine learning library 355. Mean 
shift clustering is non-parametric method that identifies densely populated regions of 
an n-dimensional probability distribution function by performing a gradient assent until 
convergence is reached. A bandwidth parameter defines the radius of a kernel whose 
initial position is randomly assigned. The COM is calculated from all the data points 
that fall within this kernel and the direction of the mean shift vector is ascertained by 
calculating the density gradient. The kernel is then moved along the vector towards the 
volume of greatest density and the process is repeated until convergence is attained. 
The minimum number of points considered for inclusion in the kernel also influences 
cluster identification. In order to obtain optimally positioned clusters, iterative testing 
demonstrated that 3,500 points in conjunction with a bandwidth of 0.5 were the best 
values for the key parameters with respect to the size of the dataset. 

Averaged structures representative of ligand and key amino acid residue conformations 
were obtained by isolating the frames making up each cluster using python scripts and 
ptraj. 

4.2.4. The positional entropy

4.2.4.1. Depiction of the bound ligand’s COM motion
In order to get visual representations of the translational displacements of the bound 
ligand in relation to key orientating residues in the binding pocket, Cartesian coordinates 
of the groups of interest were stripped from the concatenated, RMS fitted trajectory 
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using ptraj and python scripts. The reference residues extracted were PHE41, HIS46, 
ILE45, PHE90, ILE92 and TYR120. A further python script calculated the centre of 
mass of all extracted groups. The function hexbin from the python matplotlib library 
was utilised to generate three 2D COM density plots, so that the 3D distributions are in 
effect projected onto three mutually perpendicular planes. The three COM projections 
(Fig.4.11-14) correspond to the views obtained from the RMS fitted protein (Fig.4.2).

4.2.4.2. Positional entropy calculation
As detailed in §4.1.2.4, the positional entropy is calculated using eqn.4.12 and 
measures the change from the free ligand’s effective volume (1,660 Å3)  at the 1 M 
standard state to the smaller effective volume the ligand can access after binding. The 
primary problem associated with the calculation of the positional entropy is accurate 
quantification of the effective volume. It would not be accurate to treat a 3D cloud of 
points generated from COM displacements as a hard sphere because points near the 
edges are expected to have lower density than those at the centre of a given minimum. 
Traditionally, some form of (quasi-)harmonic approximation has been used to model 
this. However, the probabilistic approach proposed in this chapter to assess the density 
of states offers several advantages when coupled with adequate sampling. The method 
is known as 3D histogramming (3Dh) and uses a 3D grid to discretise 3D space into 
smaller cubes (Fig.4.4). The positional entropy can then be calculated via the Shannon 
entropy equation. The unitless result is converted into the thermodynamic entropy via 
the introduction of the temperature and the gas constant into the equation (eqn.4.17). 
Pi is calculated by dividing the number of points in each smaller cube volume by the 
total number of points.

  (eqn.4.17)

TΔS°Po is then calculated by taking the difference between endpoint states (eqn.4.18).

  (eqn.4.18)

Fig.4.4. Example of 3D binning with eight bins 

along each orthogonal axis. As an illustrative 

example, a randomly generated cloud of points 

(yellow) was created to fill a volume of 1,660 Å3. 

§4.3.1 contains details regarding parametrising 

the optimal number of bins. The grid discretising the 

3D volume can be drawn from the frame edges.
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As detailed in Chapter 3.0, entropy calculations are dependent on the choice of bin size 
or in this case, cube volume. In order to establish the correct cube volume a simple toy 
problem is analysed in the first results section (§4.3.1). This is followed by assessing the 
method with T4LM, which chiefly binds benzene within a single minimum (§4.3.2), 
and finally MUP; a promiscuous protein that is expected to allow ligands to bind 
within multiple minima (§4.3.3).

4.2.5 The orientational entropy

4.2.5.1. Bond vector isolation and setup
In the case of the bound simulations, ligand coordinates were stripped from RMS fitted 
trajectories and a python script was used to isolate the coordinates of individual bond 
vectors defined by pairs of heavy atoms. The Cartesian coordinates of these isolated 
bonds were written into separate files after removing translational motions by moving 
each vector to the origin. This procedure preserves the orientation of the bond vectors 
which are clustered around the origin. The density of states explored by each bond 
can be mapped onto the surface of a sphere. This can be visualised using the technique 
described in §4.2.5.2 and the per-bond orientational entropies can be calculated using 
the method detailed in §4.2.5.3. As the bound trajectories have already been fitted to a 
common frame of reference in the first instance, direct visual comparisons can be made 
between the densities of orientational states of analogous bond vectors obtained from 
the different simulations. Note that orientational motions are less susceptible to shifts in 
the fitting procedure compared to positional displacements.

In the case of the free ligand, the ptraj command autoimage was used to remove 
translational motion from the unfitted trajectory. Then the same procedures used for 
the bound ligand were applied to obtain visualisations and entropies. 

4.2.5.2. Depiction of bond vector motion
Dr G. Thompson kindly provided a python script that iteratively subdivides the twenty 
faces of an icosahedron into triangular bins of equal area. Data points obtained from 
the dynamic movement of each vector are clustered within the triangular bins formed 
by this process using a hierarchical ray casting method (Fig.4.6). Initially, points are 
coarsely apportioned between a few large bins. Subsequently, each bin is subdivided 
into four smaller bins and the points are more finely reapportioned into the new bins. 
This procedure is iteratively repeated until the desired bin size is obtained and this 
considerably saves on calculation time. In big O notation, the algorithmic efficiency of 
a simple linear search would be O(4n), whilst the hierarchical search is 4,000 times faster 
as it is O(4n) 356.
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Differences in orientational density of bond vectors 
can then be visualised in 2D using the equiareal 
Hammer projection from the matplotlib Basemap 
toolkit. The problem of correctly preserving the 
shape and area of the Earth has resulted in a variety 
of map projections. Early projections were limited 
by the perspective of the viewer and could only 
depict a single hemisphere at a time. More advanced 
techniques such as the Hammer projection double 
longitudinal values so that the entire globe can be 
viewed from a single perspective. The resulting 
2:1 ratio is equiareal and minimally compromises 

distance accuracy. Overall shape distortion is moderate, whilst the centre is free 
from artefacts 357–359. Note that a distinct procedure is used to calculate the per-bond 
orientational entropy §4.2.5.3.
 

4.2.5.3. Orientational entropy calculation 

Per-bond entropies: The orientational entropies of all bond vectors were calculated 
using a modified version of the program “order” by Dr C MacRaild and Dr G 
Thompson 360. The program assesses the density of points created by the terminus 
of each bond vector as it moves across the surface of a sphere by binning the data 
via the method discussed below. Note that orientational entropies calculated from the 
bond vectors isolated using the procedure described in §4.2.5.1, contain inseparable 
contributions from both principal rotations and internal DOF. However, the pure 
rotational component can be isolated via eqn.4.16.

If a sphere is divided by two parallel planes separated by distance (h), the portion 
between them is known as the zone or frustum which has an area of 2prh. If subdivided 
into many such horizontal zones, frustums near the equator would have a larger surface 
area than those at the poles (Fig.4.6). In spherical coordinates, a fixed variable known 
as the qstep specifies the number of bins along an arc following the zy-plane. Thus, in 
order to ensure the accuracy of the entropy calculation, all bins must be equiareal and 

Fig.4.5. Hammer projections of the iterative subdivision of an 

icosahedron that allows visualisation of orientational densities of ligand 

bond vectors. Triangles marked in red illustrate the process used to 

hierarchically cluster the data points so as to increase the efficiency of 

the process. Panels (top to bottom) contain 20, 20 x 4, 20 x 42 and 20 

x 43 bins respectively.
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the number of bins within each frustum is allowed to vary along the xy-plane. This 
results in a different value for dj for each frustum and the appropriate number of 
jsteps is calculated using eqn.19-22. In practice the value for qstep will be very small - 
typically 1° - 2°.

Fig.4.6. Depiction of spherical coordinates using physics based notation. See text for details.

   (eqn.4.19)

Therefore,

   (eqn.4.20)

Using the trigonometric identity in eqn 4.20, h can be calculated using spherical 
coordinates.

  

(eqn.4.21)
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As the area of the frustum is 4pr2 sin q sin dq/2, the number of jsteps for each frustum 
can be calculated using eqn4.22.

      (eqn.4.22)

The optimal bin area was assessed by running calculations with different increments for 
the qstep . Orientational entropy differences were invariant after a hundred qsteps, so a qstep 

corresponding to 180 (i.e. 2°) was selected (Fig.4.7). 

Fig.4.7. Per-bond orientational entropies plotted versus qstep for all bond vectors isolated from bound nonan-1-ol. 

The calculated entropy differences are invariant when using qstep  > ~100 steps.

Calculating total ligand TΔSOr contributions: Subsequent to binning the data, order 
parameters were calculated on a per-bond basis for free and bound states using the 
method proposed by Best and Vendrusculuo (2004) 361. The orientational entropy was 
calculated using eqn.4.23 as described by Yang and Kay (1996) where q represents the 
molecular coordinates and v the area of a given bin 96. Entropies were calculated using 
units of KB.

  (eqn.4.23) 

Per-bond orientational entropies can then be summed to get a 1st order estimate and 
the total value obtained for the free state can be subtracted from the bound state to 
generate the total ligand TΔSOr in a similar way to the positional entropy (eqn.4.18). All 
per-bond orientational entropy values are given in units of kB, whilst summed entropy 
totals are reported in units of kJ/mol at 300 K.
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4.2.5. Hydrogen bond analysis

Hydrogen bond (H-bond) analyses on the MD generated ensemble of structures 
were accomplished using the ptraj module from AMBER, and custom python scripts. 
Analysis was performed on all 1.2 x 106 frames for all ligands from both panels. 

4.3.0. Results & Discussion

4.3.1. Positional entropy: a toy problem to calibrate bin volumes

As described in §4.2.4.2, 3D histogramming (3Dh) creates a cubic frame centred on the 
COM distribution, so that space can be discretised in 3-dimensions by gridding each 
orthogonal axis to create smaller cubes. Technically, this outer frame can possess any 
volume that is greater than the standard volume (1,660 Å3) as cubes without data points 
are excluded from the calculation due to the logarithmic relationship in eqn.4.17. In 
practice, it was found that the frame edge lengths could equal the diameter (14.49 Å) 
of standard volume which is represented by a spherical distribution in the free state. 
However, this can create issues when evaluating the bound state as COM distributions 
can be non-spherical. Whilst the effective volume occupied by bound ligands in the 
cavity is smaller than V°, the range of points along some axes can exceed the diameter 
of the sphere describing the V°. To allow for this, an additional 8 Å were added to each 
frame edge to yield a total length of 22.49 Å. As equivolume cubes are created by equally 
subdividing the three principal frame edges into 1D bins, the optimal number of bins is 
dependent on frame edge length and this would have to be empirically calibrated.

In order to facilitate this, two datasets  were created:

1. Analytical: Theoretical entropy values were generated analytically using 
eqn.4.12. The free volume corresponded to 1,660 Å3 and a range of bound 
volumes (0.5 to 1650 Å3) were input into the equation to systematically 
represent various degrees of positional restriction smaller than V°.

2. Synthetic: “Synthetic” datasets were then numerically generated for the 
same range of volumes using 1.2x 106 data points scattered in a 3D Gaussian 
distribution. TΔS°Po values were then calculated via 3Dh (eqn.4.17-18). 

The reasoning behind the use of analytical and synthetic datasets is that the former 
easily provides a range of idealised reference TΔS°Po values, whilst the latter generates 
3D COM distributions that possess the practical limitations associated with calculating 
the effective volume (§4.2.4.2). Thus, the entropy calculation can be iteratively run on 
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the synthetic datasets whilst varying the number of bins along each axis. As synthetic 
datasets utilise a Gaussian distribution, they have the potential to approximate the 
idealised volumes used in the analytical calculation. So, on approaching the optimal bin 
number, TΔS°Po values generated by the synthetic trials should converge to reference 
TΔS°Po values yielded by the analytical calculation. 

Table.4.3. For the example volume of 1,660 Å3, changing the number of bins along each principal frame edge 

alters the cell volume and consequently, the average number of data points that fall into it. 

The frame edges were subdivided into bins in iterative synthetic trials that varied the 
number of bins through a range of 5 to 85. The upper and lower limits corresponded 
to discretised cube volumes of 62.5 Å3 to 0.013 Å3 respectively (Table.4.3). The results 
are plotted in Fig.4.8. It is difficult to assess the optimal number of bins by merely 
examining TS°Po•F or TS°Po•B as the values never converge (Fig.4.8.a). However, on 
considering relative entropy differences (TΔS°Po), convergence can be easily gauged 
(Fig.4.8.b). 

The larger the volume under consideration, the more rapid the entropy convergence 
and thus, fewer bins are required to accurately quantify the entropy of a large spread 
of points (Fig.4.8.b). For smaller effective volumes (< 10.0 Å3), convergence only occurs 
when the number of bins is > ~45 to 50. This is because the cube volume is inversely 
proportional to the number of bins, and a small number of bins results in large cube 
volumes that coarsely represent the underlying distribution. As smaller volumes tend 
to have highly localised, dense distributions, the data points tend to occupy one bin rather 
than being distributed across several. This accounts for the jagged fluctuations seen at 
small volumes (< ~10 Å3) when bins are <  ~45 to 50. Conversely, the representation 
becomes oversharpened above the optimal number of bins. The number of bins could 
be continually increased with a concomitant change in the entropy. However, this change 
becomes very small after the optimal point and over binning can result in artefacts being 
introduced into the data representation. Despite the large size of the synthetic dataset 
(1.2 x 106 points), local variations in the structure of the distribution result in synthetic 

Bin no Cube Vol (Å3) Avg points/Cell Bin no Cube Vol (Å3) Avg points/Cell
5 62.504 9600.00 50 0.063 9.60
10 7.813 1200.00 55 0.047 7.21
15 2.315 355.56 60 0.036 5.56
20 0.977 150.00 65 0.028 4.37
25 0.500 76.80 70 0.023 3.50
30 0.289 44.44 75 0.019 2.84
35 0.182 27.99 80 0.015 2.34
40 0.122 18.75 85 0.013 1.95
45 0.086 13.17

Sphere Volume 1660 Å3 (1.2x106 points)
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values never exactly matching those of the analytical values.

The difference between entropy values calculated from the synthetic data to that 
obtained analytically (TΔΔS°Po) is plotted in Fig.4.8.c for all bound volumes tested. The 
resolution necessary to differentiate entropies obtained for bound volumes <  2.0 Å3 is 
impaired. However, all the other bound volumes possess TΔΔS°Po negligible differences 
of less than 1.0 kJ/mol when the number of bins is > 55 to 65. As it is unlikely that most 
non-covalently bound compounds would be localised to extremely small volumes <  2.0 
Å3, this should not present an issue. 

On considering the slope of the lines for the smallest reliable volumes (10, 5 and 2 Å), 
the optimal number of bins for the toy problem was deemed to be 60 along each frame 
edge (Fig.4.8.b). Finally, synthetically calculated TΔS°Po values are compared against 

Fig.4.8. (a) TS°
Po

 values generated from synthetic datasets via 3Dh on varying the number of bins. Smaller bound 

volumes are labelled in red, whilst the largest free volume (V°) is coloured blue. (b) TΔS°
Po

 values obtained for the 

range of synthetic bound volumes. Grey dashed lines mark reference TΔS°
Po

 values obtained analytically for bound 

volumes less than 150 Å3. (c) The difference between TΔS°
Po

 values obtained from synthetic and the analytical 

calculations i.e. TΔΔS°
Po

. The red dashed line marks a 1 kJ/mol limit to indicate the negligible amount of error 

.(d) Synthetic TΔS°
Po

 values obtained for all bound volumes (with 60 bins) compared to the analytical TΔS°
Po

 

values. The greatest difference between the two (TΔΔS°
Po

) chiefly occurs within the smallest bound volumes. 
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analytically generated TΔS°Po values for the selected number of bins (Fig.4.8.d). The 
optimal bin number will have to be recalibrated for different systems as changes in the 
shape of the underlying distribution may affect this variable; an eventuality that 3Dh is 
particularly adept at handling.

The chief benefits of 3Dh are threefold:

1. 3Dh is quick and simple to execute in contrast to most other methods and 
the associated CPU and memory requirements are very small, even when 
evaluating massive datasets. Furthermore, it is flexible as the frame size can be 
altered to suit systems that possess a variety of shapes

2. Methods that generate external entropies by summing (or taking the 
product) of 3 entropy calculations 164,339 for each principal axis generate larger 
values. This is because they do not implicitly account for correlations between 
DOF which are not independent. 3Dh avoids this issue by utilising a single 
entropy calculation that simultaneously accounts for all 3 DOF. 

3. Methods based on the harmonic approximation typically assume a 
single bound minimum and excessively smooth the multimodal distribution 
commonly observed in the bound state. Calculating the effective volume 
via histogram assessment of the density of states is likely to capture the 
complicated topography created by multiple minima (§4.3.3), or indeed the 
subtle variations associated with a single minimum (§4.3.2). This is because 
3Dh is unhampered by any assumptions regarding the underlying functional 
form of the distribution, and is consequently unaffected by anharmonicities 
typically encountered in bound COM distributions 203,324. 

The next two sections test 3Dh on T4LM and MUP; macromolecular systems that 
bind ligands within single and multiple minima respectively.

4.3.2. T4LM positional entropy: a single bound minimum

The T4 lysozyme mutant (T4LM) is a particularly interesting system in which the 
results obtained from various methods can be compared and contrasted. The mutant 
(C54T, C97A, L99A) was created to demonstrate that proteins could be engineered to 
bind specific ligands, and any structural changes accompanying the modification could 
be stabilised by the protein’s intrinsic flexibility 362. The buried apolar cavity measures 
150 Å3 and its ability to bind small hydrophobic ligands (such as substituted benzene 
analogues) have been extensively studied by ITC and in silico investigations 252,253,340,354,363. 
In this case, it is fortunate that a number of estimates have been made regarding T&R 
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entropy losses on binding benzene. ITC measurements for this binding interaction provide 
global values of: ΔG° = -21.8 kJ/mol; ΔH° = -26.4 kJ/mol and TΔS° = -4.6 kJ/mol 252. 
The study analysed 16 compounds and suggested that the tight fit offered by the cavity 
was likely to result in a highly unfavourable TΔS°Po+Or that was not compensated by a 
favourable desolvation contribution. Thus, most studies to date have assumed benzene 
possesses a single, highly localised bound minimum. As protein reorganisation was 
also observed in various complexed crystal structures, there is a possibility that protein 
flexibility might contribute favourably to the overall global entropy of binding and 
ameliorate unfavourable TΔS°Po+Or 

252,354. 

Note that author abbreviations used for methods described in various papers are listed 
in Table 4.4.

4.3.2.1 Flexibility & timescales
In order to demonstrate the link between timescales and in silico entropy estimates, only 
the translational component is considered in the remainder of this section. The T4LM 
system was extensively benchmarked by Carlsson and Aqvist (2005) using Schlitter’s 
harmonic approximation, the QHA, and two simpler functional forms that assume the 
effective bound volume can be described by a Gaussian or Uniform distribution 250. The 
F&J approach (§4.1.2.6) was also tested, but TΔS°Tr was found to exceed the entropy 
calculated for the free state, and was thus deemed unphysical. An interesting aspect 
of the analysis performed on T4LM is the impact of protein flexibility on the entropy 
calculation.  Hermans and Wang (1997) had systematically tested a method known 
as the restrain release (RR) approach 340. Benzene was restrained in the binding site 
and slow-growth thermodynamic integration was used to calculate the free energy 
of binding as positional restraints were gradually removed. This allowed an estimate 
of TΔS°Po+Or to be made, but complexities in the method (associated with alchemical 
transmutation) meant that a relatively static protein structure had to be utilised, and 
to ensure convergence, benzene was actively discouraged from exploring alternative 
binding modes. TΔS°Po+Or estimates were obtained for several simulations in which the 
protein was restrained to different extents and TΔS°Po values are tabulated in Table.4.4. 
Despite high protein-ligand shape complementarity, the different restraint schemes 
indicated that the binding site retained significant flexibility. Hence, C&A also tested 
various methods by comparing the results obtained from unrestrained simulations to 
ones that imposed a 50 kCal/mol Å2 restraint on all protein atoms  250,340.  Restraints 
dramatically reduce protein flexibility and thus limit ligand access to alternative binding 
modes, and TΔS°Po is penalised by ~4.5 kJ/mol compared to the unrestrained simulations 
(Table.4.4). This should be considered unsurprising as crystallographic structures 
indicated a differential protein dynamic response on binding 9 different ligands, with 
the largest changes occurring in helix F (Fig.4.9.g). Moreover, the propensity for 
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protein reorganisation meant that, some closely related ligand analogues with minimal 
structural differences possessed significantly different binding modes 354. Hence, protein 
dynamics is likely to promote cavity adaptability and the motion of shifting sidechains 
would result in ligand accessible boundaries being in a state of flux. Thus, residual 
ligand motion is likely to be promoted to a greater extent than that suggested by the 
averaged crystal structure pose. 

Other simulations on the ultra-tight binding biotin-streptavadin complex also 
demonstrated that biotin could access multiple binding modes that possessed plausible, 
alternative H-bond interactions to that observed in the crystal structure. The root cause 
was also determined to be due to protein flexibility. Furthermore, as solvent friction 
and caging effects in explicit water simulations resulted in (~ x10 times) slower protein 
conformational exploration compared to implicit models, it is likely that very short 
simulations underestimate the effective bound volume 240,364. Despite highly favourable 
enthalpic interactions, biotin possessed bound translational amplitudes of 4-6 Å; a value 
significantly higher than the F&J crystal structure based estimate (0.25 Å) 240. 
 

Table.4.4. TDS°
Po

 values obtained from the various methods discussed in this section are listed by paper. Note 

that Tampi (2015) is from this chapter and the F&J values were recalculated by C&A. Entropy values are categorised 

by method type (SF or MF) and results from simulations that utilise protein restraints are included to demonstrate 

the effect of protein flexibility. With regards to 3Dh and S&A methods: the restrained and unrestrained columns refer 

to the amount of restraints used in RMS fitting the protein reference frame in 3Dh. For S&A, it refers to the method 

used to approximate the ligand configurational volume (see main text).
 

4.3.2.2. Approximations, MF and SF approaches
In contrast to the MF methods discussed, both the SF methods generate much lower 
estimates for TΔS°Po and are closer to -10 kJ/mol, inline with the cratic correction 

Publication Abbrv Restr Unrestr Diff
Sim 

Time(ns)
Carlsson & Aquist (2005): C&A
• Finkelstein & Janin (1989) F&J -32.3 - - na
• Hermans & Wang (1997) -25.5 -21.3 -4.2 ~0.2
• Schlitter -22.0 -17.2 -4.8 2.0
• QHA -22.1 -17.2 -4.9 2.0
• Uniform -23.0 -18.5 -4.5 2.0
• Gaussian -21.7 -17.2 -4.5 2.0

Tampi (2015):
• 3D Histogram 3Dh -11.7 -14.7 -3.0 1,200

Siebert & Amzel (2004) S&A -12.6 -14.7 -2.1 0.8
Irudayam & Henchman (2009) I&J - -9.4 1.0SF

MF

TΔSPo (kJ/mol) at 300K
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(§4.1.2.8). As the global entropy change on binding benzene to T4LM is -4.6 kJ/mol, 
this would suggest that MF theories do indeed overestimate losses in TΔS°Po. 

However, there are two additional factors that should be taken into account:

1. There is no unequivocal experimental or computational estimate of the 
translational component for this particular system. Therefore, it is plausible 
that the highly unfavourable MF TΔS°Po estimates are actually correct in the 
first place and the many DOF in the protein favourably compensate this 
unfavourable component. 

2. 3Dh is the epitome of a MF method, in which the ligand is treated as a 
“particle in a box”. Despite this heritage, the approach yields TΔS°Po estimates 
of -11.7 and -14.7 kJ/mol. This is a result that SF proponents declare to be 
impossible due to fundamental MF methodological flaws associated with 
defining the free volume 164,311,319,325. What is the rationale for this contradiction?  

Point-2 will be assessed, because point-1 is impossible to prove without calculating 2nd to 
3rd order entropy contributions for every component (protein + ligand + solvent) and 
comparing this against the global entropy of binding,. 

The simulation timescales explored by all the other methods are extremely short 
(Table.4.4). If the (~600 to 1,200x) additional sampling is considered, it is obvious 
that simulations run at shorter timescales have the propensity to return severely 
underestimated bound volumes (Fig.4.9.a). If sampling is < 2 ns, some kind of functional 
form must be used to compensate for gaps in the data. Even at 20 and 100 ns, the COM 
is poorly represented compared to fuller distributions captured from 600 to 1,200 ns 
datasets. Note that the shape of the cavity volume is also better matched by the 1.2 ms 
COM distribution, and the light grey areas corresponding to areas of low occupation 
indicate that benzene can shift its position to greater extents than previously suggested 
(Fig.4.9.f,g). Additional minima are not fully revealed under ~100 ns and the true 
extent of COM displacements is not uncovered till ~350 to 400 ns (Fig.4.9.a). Thus, it 
is very likely that a functional form used in conjunction with undersampled data, will 
result in underestimated distributions without a priori knowledge. This would result in 
TΔS°Po being more negative and unfavourable.



Chapter 4.0176 177

Fig.4 .9. (a) The effective 3D bound volume of benzene bound to T4LM is shown as a 2D COM density distribution 

through the xy projection. The top two rows show the growth of the effective bound volume as the simulation is 

extended. Note that the centre of the distribution (dashed blue lines at 1.2 ms) shifts because the trajectory is 

concatenated from 6 independent 200 ns simulations (§4.3.6). (b-c) A comparison of RMS fitting trajectory frames 

to the whole protein versus just the C-terminal ligand binding region. Furthermore, fitting to an averaged reference 

structure (cyan) generates a much better fit compared to the first frame (green). (d) Convergence of positional 

entropy for bound and free states taken in 10 ns increments over the full 1.2 ms dataset. A bin size of 60 was used 

to calculate the entropies. (e) Convergence of TΔS°
Po

. (f) Cutaway of cavity binding surface (blue) showing bound 

benzene (green). if present, the lower right protuberance can easily accommodate benzene substituent groups. As 

demonstrated by panel-a, protein reorganisation allows infrequent entry of the aromatic group into this zone and 

another at the top left. Image adapted from Basse et al. (2010) 365. (g) Image taken from Morton and Matthews 

(1995) depicts benzene bound to the carboxy-terminal domain of T4LM. The cavity volume and van der Waals 

surface of benzene are coloured with yellow and blue dots respectively 354. 

3Dh captures TΔS°Po values by measuring the displacements of the ligand relative to 
the proteins frame of reference. In order to check the error associated with the fitting 
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procedure, calculations were executed on trajectories that were RMS fitted to the entire 
protein, versus C-terminal domain residues (84-162) only (Fig.4.9.b,c). The former 
represents more restrictive fitting restraints than the latter and TΔS°Po values of -11.7 and 
-14.7 kJ/mol were generated respectively. The reference frame “jitter” accompanying 
the RMS fit improved a hundredfold (1.7 x 10-2 to 8.5 x 10-4 Å3) when fitting restraints 
were relaxed to exclude residues distal from the binding cavity. Thus, the C-terminal 
fit generated the more accurate value and as 8.5 x 10-4 is such a small volume, the error 
associated with the fit is negligible. 

3Dh is less accurate with small datasets (< 100 ns) and the convergence plots 
indicate that most of the uncertainty arises from the steep change to the free volume 
estimate (Fig.4.9.d). This converges relatively quickly (~210 ns), but estimates of 
the bound volume change and fluctuate much more gradually as more data points 
are added to the calculation. These two variables result in TΔS°Po losses being 
underestimated (~ -11 kJ/mol) with poor sampling under ~10 ns (Fig.4.9.e).  Benzene-
T4LM is particularly suited for methods based upon the harmonic approximation as it 
possesses a single minimum, but 3Dh generates reduced TΔS°Po penalties (> -17 kJ/mol) 
compared to other MF methods because it better captures the detailed shape and 
density of the distribution via a probabilistic approach. However, with small datasets, 
TΔS°Po is underestimated because missing data cannot be extrapolated via a functional 
form. Whilst approximations provide this facility, the results returned are accompanied 
by estimation errors when the true size of the distribution is unknown. In this particular 
case, TΔS°Po values converge quickly due to the single bound minimum. Other MF 
methods based on approximations are thus, also likely to yield similar entropy estimates 
to 3Dh when 100 to 200 ns simulations are considered. So, why do SF methods 164,325 
produce comparatively lower TΔS°Po estimates than these MF approaches, despite 
possessing the worst sampling <= 1.0 ns? 

In the case of S&A, complexed simulations were run in the gas phase using 
10.0 kJ/mol Å2

 restraints on all Ca atoms. Using cell theory they calculated the loss of 
translational DOF by summing the entropic contribution arising from ligand differences 
in bound and free configurational volumes; the cratic correction, and the communal 
entropy (§4.1.2.8). It is noteworthy that they obtained bound ligand configurational 
volumes (0.095 Å3) that were significantly smaller than that in the free state (0.245 Å3). 
They also make the point that the cratic correction does not account for inequalities 
between endpoint configurational volumes and if this was not calculated, TΔS°Po would 
have been more favourable by 2.4 kJ/mol (Table.4.4). Thus, the correction was deemed 
a simplistic measure that failed to account for the differences in the intramolecular 
interactions the ligand makes with solvent compared to the protein 325. Why do S&A 
obtain an identical value to 3Dh? On one hand, they restrain the protein, but as 
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simulations are performed in the gas phase, sampling of protein internal DOF could 
potentially be improved. Furthermore, they found that fitting the Boltzmann factor 
of the ligand over a grid gave better results than a quadratic function (unrestrained 
and restrained values in Table.4.4 respectively). This would avoid errors associated 
with the harmonic approximation. Hence, these multiple confounding factors make it 
difficult to pinpoint the precise reason for the similarity.

The remainder of this section focuses on the more recent formulation proposed by I&J 
which utilises a harmonic approximation 164. The subscript “Tr” will be used because 
the partition scheme includes the momentum (§4.1.3).

I&H assert that use of force and “torque” constants yield lower effective bound volumes 
compared to ligand displacements that are defined relative to the reference frame of the 
protein. They also suggest that bigger losses in TΔS°Tr generated by MF methods are 
due to large, protein reference frame shifts that artificially inflate ligand residual motion. 
However, the argument is based on proposals articulated by Gilson with reference to 
separating internal and external DOF via the use of the BAT coordinate system (§3.1.2). 
This was shown to improve estimates provided by the QHA compared to the use of 
Cartesian coordinates which tended to distort molecular conformations and rotations 203,304. 
Additionally, Gilson’s comments chiefly refer to the 3 atom “anchored Cartesian” 
coordinate system used in his body of work  182,203,204,304,324,366,367. These criticisms are 
not applicable to the case of 3Dh, because portions of the protein backbone were RMS 
fitted to an averaged reference structure and the amount of reference frame “jitter” was 
negligible (Fig.4.9.b,c).

The SF approach proposed by I&G assumes a single bound minimum based on well-
defined ligand poses observed in crystal structures and this leads to a fundamental 
difference in partitioning 164. In the case of protein-ligand binding, the free ligand is 
defined as possessing hindered translational (cratic + “vibrational”) and rotational 
(orientational + librational) motion within its solvent cage. Librations are defined as 
hindered rotations and are analogous to the vibrational component. After binding, the 
ligand is assumed to remain within a single bound minimum and this is used to justify 
zero cratic and orientational contributions i.e. only high frequency vibrations and 
librations remain. The partitioning scheme used is somewhat involved, and a simplified 
breakdown is presented below. As all the ligands tested were relatively rigid, internal 
contributions were ignored. 

SF = STr (vibrational + cratic correction) + SRo (librational + orientational) + Sint

SB = STr (vibrational + no cratic correction) + SRo (librational) + Sint
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The “vibrational” contribution to translation is computed from the differences in bound 
and free configurational volumes. These calculated volumes are inversely proportional 
to the averaged force constants “felt” by the ligand in the mean field of its neighbours 
(§4.1.2.8). It is purported that a free ligand such as benzamidine (with two polar 
groups) will form stronger interactions with its neighbours, and thus possesses a small 
configurational volume of 0.053 Å3. Conversely, benzene has a larger volume of 0.403 Å3

 

because apolar interactions contribute less to the force constant. Thus, the “vibrational” 
entropy of the former (18.0 kJ/mol) is smaller than the latter (21.5 kJ/mol). The situation 
is similar for the bound state and the near equivalence of endpoint configurational 
volumes yield minimal differences (< ~1.5 kJ/mol). Hence, the difference in “vibrational” 
contribution to translation is dwarfed by the cratic correction (~10.0 kJ/mol), and is 
largely invariant across several protein-ligand binding systems (Table.4.5) 164. 

Interestingly, I&J compute the contribution from each vibrational DOF separately and 
thus, do not take the correlations between them into account. As correlations reduce 
the magnitude of the calculated entropy, the already negligible vibrational contribution 
should become even smaller and irrelevant. By this argument, it might seem that there 
is little need in rigorously calculating the “vibrational” component via an intricate array 
of equations as the entire translatory contribution is “captured by the cratic correction”. 
However, can this fundamental entropic contribution be reduced to a group effect that 
fits any protein-ligand binding interaction? Intuitively, the disparate systems tested 
should yield a range of TΔS°Tr values > 1.9 kJ/mol due to disparities in the way bound 
ligands interact with different binding cavity architectures. 

The near equivalence of endpoint configurational volumes suggests that:

1. On taking the “ligand’s point of view”, there is equivalence between solvent-
ligand interactions that exist prior to binding, and protein-ligand interactions 
after binding. This is because the averaged force constant is influenced by 
both electrostatic and dispersive interactions. However, this is at odds with the 

Free Bound Diff Free Bound Total
Protein Ligand Vib Vib Vib Cratic Cratic TΔSTr

T4LM Benzene 21.5 21.7 0.2 10.0 0.0 -9.8
FK506 BUT 18.5 18.4 -0.1 10.0 0.0 -10.1
Trypsin Benzamadine 18.0 16.7 -1.3 10.0 0.0 -11.3
MUP IBMP 21.7 22.4 0.7 10.0 0.0 -9.4

Translational entropy (kJ/mol) at 300K
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Table.4.5. Decomposition of translational entropy values generated by I&J’s SF method for several protein-ligand 

binding interactions 164. Values were calculated from Tables.3-4 in that work. Abbreviation BUT stands for 4-hydroxy-

2-butanone. 
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phenomenon of proteins that bind with an enthalpic signature; a phenomenon 
that contradicts the “classical” hydrophobic effect (§1.3.2) 93. In the case of 
the apolar association of ligands (such as IPMP) with MUP, the enthalpic 
binding signature arises from the inequality of dispersive interactions between 
endpoint states because the cavity is suboptimally hydrated 36,89. If the 
interaction is analysed from the protein “point of view”, it can be seen that the 
barrel-like structure of the β-clam fold and lack of bound waters result in the 
calyx possessing unsatisfied van der Waals interactions. Thus, on binding, the 
presence of the ligand creates favourable protein-ligand interfacial interactions 
that overshadow lost solvent-ligand contributions. This inequality results in 
the favourable enthalpic binding signature 34,36,93. It just so happens, T4LM 
also possesses a suboptimally hydrated cavity to which hydrophobic ligands 
bind with an predominantly enthalpic signature... 252,354,365

2. There is equivalence between the endpoint “vibrational” 
entropies (~21.8 kJ/mol) of benzene-T4LM and IBMP-MUP (Table.4.5). In 
the case of the bound ligand, this suggests that IBMP “feels” almost identical 
averaged forces to benzene despite being bound to a structurally distinct 
cavity. Whilst T4LM offers a relatively tight fitting hydrophobic binding 
site 354, MUP’s cavity is much more spacious as evidenced by its ability to 
promiscuously bind different ligands of various sizes 36,89. Indeed, microsecond 
length MD simulations demonstrated that IBMP, a larger congeneric ligand 
retained significant residual motion in the pocket 91. Furthermore, it is unclear 
why IPMP-MUP does not have a larger force constant compared to benzene-
T4LM, because IBMP contains 3 electronegative atoms which have the 
potential to make H-bonds. Conversely, benzene would principally interact 
with its environment via van der Waals interactions. So if the assumption 
of a single bound minimum was discarded and IPMP-MUP simulations 
were extended, enhanced sampling would result in more H-bonded poses 
and these interactions would increase the averaged force constant. The 
bound configurational volume and thus the associated entropy would then 
be decreased. IPMP would then paradoxically possess bound “vibrational” 
entropy that was less favourable than benzene, even though the latter is clearly 
ensconced in a much smaller pocket. Regardless, this component is much 
too meagre to significantly affect TΔS°Tr. More importantly, if the method 
was expanded to include multiple minima, how would that affect the cratic 
correction? As it could no longer be set to zero in the bound state, TΔS°Tr 
would be less than ~10 kJ/mol; significantly less, in the case of MUP due 
to the reasons discussed above. Furthermore, bound orientational entropies 
would also be > 0.  The difference in the orientational entropy is of a 
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similar magnitude to the cratic correction and when all these ligand-centric 
contributions are accounted for, TΔS°Tr is likely to fall significantly short of 
the experimental techniques the method was validated against 164. As the 
global entropy is only -4.6 kJ/mol, it could be argued that this would make 
the approach more accurate. However, the many DOF available to protein 
are likely to generate contributions that dominate that from the ligand. There 
should therefore be more than a mere tremor in the force constant, and the 
proposed equality between endpoint configurational volumes should be 
questioned. Moreover, in the case of systems characterised by multiple bound 
minima, this SF approach is likely to require detailed analyses to establish the 
validity of the cratic correction.

4.3.2.3. Summary
In the case of benzene-T4LM, long 1.2 ms simulations demonstrate that benzene retains 
considerable ability to shift its position due to protein flexibility (Fig.4.9.a). This results 
in an effective bound volume much greater than the SF estimate of 0.450 Å3. Most 
importantly, despite identifying a larger bound volume, 3Dh generates TΔS°Po values 
that are more favourable than other MF methods. As SF proponents have argued that 
this was not possible due to fundamental flaws associated with MF approach, this result 
validates the conceptual approach of MF theories. The reason why MF entropies were 
more unfavourable than expected, is very likely to be due to errors associated with 
using (quasi)-harmonic approximations which have been demonstrated to be unreliable 
when dealing with multimodal distributions 203,339. Additionally, such approximations 
are unlikely to compensate for undersampled trajectories when the correct sizes of the 
Boltzmann weighted ratio of stable states is unknown (§4.3.8.1).

If the analogy that one human year is equivalent to seven dog years is extended 
to computer life spans; mechanical/electronic failures, Moore’s law and planned 
obsolescence result in an average workstation lifetime of ~7 years. Thus, assuming 
an average human life expectancy of ~67 years, every human year equates to ~10 
computer years. So, computers built in 2005 and 2010 would currently be a hundred, 
and fifty human years respectively. On considering higher operational temperatures 
and rapid development cycles, GPUs should  age at an even faster rate. Given the 
exponential acceleration of computational capabilities (§1.4.3), there is little need for 
the use of harmonic approximations or other simplistic functional forms to calculate 
the entropy of moderately sized systems in the year 2015. These were ingenious, 
respected methods that were relevant at a not too distant time in scientific history. But 
in the information age, shouldn’t such approximations coupled with sub-microsecond 
simulations be regarded as an anachronism?
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4.3.3. MUP positional entropy: multiple bound minima

The binding of ligands to MUP is likely to be characterised by multiple bound minima, 
and 3Dh’s ability to generate reliable TΔS°Po values is further tested in the remainder 
of this section. 

4.3.3.1. Analysis of n-alkanol & 3Z-olefin COM distributions
If the full COM distribution (grey to orange/yellow) is considered, it is apparent that 
ligands bound to MUP retain considerable freedom of movement. Fig.4.11-12 shows 
the COM translational displacements of n-alkanols and 3Z-olefins in relation to the 
COM of key amino acids which are colour coordinated according to the key provided 
in the bottom row. A zoomed in representation of the figures is provided in Fig.4.13-14 
without amino acid residues. Ligand COM density plots in these two figures have been 
normalised with respect to each other to allow cross-comparison. The following trends 
are observed:

1. Wide spread (light grey) areas of low population surrounding higher density 
minima suggest that the ligand can sample multiple positions and orientations 
within the pocket. Visual inspection indicates that these are dissimilar to the 
bound crystallographic ligand poses published by Malham et al. (2005) 36.

2. The accessible volume represented by the COM in the 2D plots is larger 
for n-alkanol 6C and 7C ligands as their smaller size allows them to explore a 
greater proportion of the cavity. It is more difficult to discern the distinctions 
in the overall spread of distributions possessed by the 3Z-olefin ligands.

3. Whilst smaller ligands can easily occupy spacious regions near the W loop 
in their entirety (§3.3.6), longer ligands from both panels tend to increase 
occupation of high density minima further within the depths of the calyx.

4. The distributions depicted in Fig.4.13-14 demonstrate that 3Z-olefins 
have a broader, more evenly distributed spread of COM minima than their 
n-alkanol counterparts which tend to possess highly occupied minima. 
This indicates that 3Z-olefins have the ability to rapidly shift their COM, 
and the resulting distributions in the zy plane form a rough “kidney shape” 
corresponding to the rise and fall of the ligand’s COM within the cavity. 
If the bottom left quadrant (demarcated by dotted cyan lines) is examined, 
it can be ascertained that 3Z-olefin ligands maintain a significant cluster of 
points in this zone that is “off-centre” from the y-axis. On the other hand, 
n-alkanols dwell in more localised minima that become reduced in number as 
the length of the ligand is increased. With the exception of hep, no saturated 
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ligand maintains a stable cluster in the bottom left quadrant. 

Fig.4.10. Average ligand COM displacements. Whilst all 3Z-olefins possess roughly the same average displacement 

value along each axis, n-alkanols progressively become more localised within the calyx (y-axis) as carbon chain 

length increases. Note that zig-zag trends are likely to be the result of odd/even alternation of ligand length. 

The average displacements along the three principal axes for ligands in both 
panels are illustrated in Fig.4.10. While there are small inter-panel differences 
along the x and z axes, the most obvious disparity occurs along the y axis. 
Whilst, all 3Z-olefins maintain relatively constant positions along the principal 
axes, n-alkanols increase occupation of positions deeper within the cavity as 
ligand size increases. When this observation is coupled with the concomitant 
reduction in stable minima, there is a strong indication that the size and 
structure of n-alkanols predispose them to become “trapped” by binding site 
residues. 

Malham (2012) compared crystals of MUP complexes and found that the 
electron density of bound 3Z-olefin ligands was less defined than n-alkanols. 
This fact supports the observation that unsaturated ligands are able to access 
a greater number of bound poses than their saturated analogues 180.

5. The range of COM motion along the three axes can be ordered as y > z > 
x for all the ligands (Table.4.6). A large contribution to the range along the z 
axis stems from displacements towards the cavity entrance which is situated in 
the cleft formed by the d and e strands. This location was proposed by Timm 
et al. (2001) as being associated with ligand ingress and egress 72. Further 
examination of the COM distributions along the zy plane indicates that some 
of the bound ligands (hex, hep, and non) visit areas close to the proposed 
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Fig.4.11. Two dimensional density plots representing the COM motions of n-alkanol ligands bound to MUP. Middle 

panel in bottom row contains key for residue coding. Each graph characterises the motion over a concatenated 1.2 

ms trajectory. Density maps are not normalised.
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Fig.4.12. Two dimensional density plots representing the COM motions of 3Z-olefin ligands bound to MUP. Middle 

panel in bottom row contains key for residue coding. Each graph characterises the motion over a concatenated 1.2 

ms trajectory. Density maps are not normalised. 

 



186 187

Fig.4.13. Magnification of two dimensional density plots depicting the COM motions of n-alkanol ligands bound 

to MUP. Each graph characterises the motion described over a concatenated 1.2 ms trajectory. Densities are 

normalised so that the maximum count per hexagonal bin is capped at a maximum of 5,000, to allow cross-

comparison between ligands in both panels. Clusters isolated via mean shift clustering are marked with green 

numbers in the zy projection (§4.3.3). 
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Fig.4.14. Magnification of two dimensional density plots depicting the COM motions of 3Z-olefin ligands bound 

to MUP. Each graph characterises the motion described over a concatenated 1.2 ms trajectory. Densities are 

normalised so that the maximum count per hexagonal bin is capped at a maximum of 5,000, to allow cross-

comparison between ligands in both panels. Clusters isolated via mean shift clustering are marked with green 

numbers in the zy projection (§4.3.3). 
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gateway to greater extents than other ligands.  For example, in the case of hep 
the zy coordinates are 36,37 (Fig.4.11-12). Attempted egress is a stochastic 
phenomenon as there is a lack of multiple restraining polar interactions within 
the calyx. Nevertheless, these excursions constitute a minority of snapshots 
(< 1%) of the 1.2 ms concatenated trajectories and tests demonstrated that the 
positional entropy calculation was negligibly perturbed. 

4.3.3.2. Positional entropy of n-alkanol & 3Z-olefin ligand panels

The positional entropy was calculated for free (TS°Po•F) and bound states (TS°Po Po•B) 
using eqn.4.17. Data points from concatenated 1.2 ms trajectories were used to generate 
the more accurate value for each ligand by maximising sampling. As demonstrated in 
Fig.4.15.a-c, values of TS°Po obtained for free and bound states are not meaningful 
in themselves. Only relative differences (TΔS°Po) between the two possess physical 
significance (eqn.4.18). It is difficult to visually identify the optimal number of bins 
by examining the change in TS°Po on increasing the number of bins along each axis 
(Fig.4.15.a,c). However, the data obtained for TΔS°Po flattens after a certain point 
and the correct answer is more apparent. Thus, 60 bins were selected on the basis 
that changes in TΔS°Po (i.e. TΔΔS°Po) on increasing bin size were minimal at this point 
(Fig.4.15.b,d).

The precision of the method was measured by performing the entropy calculation on 
the 6x 200 ns repeats constituting the joined trajectory and generating the standard 
error. The margin of error is greatest (<= 0.70 kJ/mol) in the case of bound ligands 
because protein conformational changes drive shifts in the architecture of the binding 
site, and this limits or abets ligand translocation within the confines of the cavity. This 
results in relatively greater variability between individual repeats than that observed 
for the free ligand because movement between all localities is not equally favourable. 
Conversely, all regions within the free simulations are equally favourable. The 
extremely small (< 0.15 kJ/mol) standard error observed for free ligands indicates that 
the free volume is sampled homogenously and variations between individual repeats 

X Range Y Range Z Range Clusters
hex 6.1 14.3 12.5 5
hep 8.0 14.6 11.9 6
oct 4.4 11.5 6.5 4
non 4.8 13.1 11.9 3

X Range Y Range Z Range Clusters
3c6 6.1 11.4 7.2 3
3c7 5.8 10.5 7.6 4
3c8 5.8 13.1 9.0 4
3c9 4.6 11.9 7.0 5

Angstroms (Å)

Table.4.6. The range of ligand COM displacements 

(Å) along each axes. The range is distinct from the 

average values depicted in Fig.4.10 as it reports on 

the spread of values along each axis, as opposed to 

the mean of the distribution. The number of high density 

states identified by mean shift clustering is tabulated in 

the final column.
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are minimal (Table.4.7). In both cases, the method employed obtains consistent results 
within 200 ns sampling time. The COM deviations of the protein backbone (N, Ca, 
C, O) were also assessed with a view to calculating the entropic cost to the quality of the 
fit. However, the distribution of points was too small to reliably measure because, the 
largest amount of frame “jitter” occupied a negligible volume of ~6.1 x 10-4 Å3.

Of particular interest is the rank order of the different ligands in terms of TΔS°Po. 
Intuitively, it would be expected that by virtue of size, shorter ligands would suffer 
less restriction on binding, than longer ligands. The COM density distributions for 
n-alkanols and 3Z-olefins support this idea, though TΔS°Po disparities between ligands 
within the latter panel are smaller than those in the former (Fig.4.16). When free, the 
smallest ligands do have greater amounts of translational motion than larger ligands 
as expected. However, values for TΔS°Po indicate that some of the shorter ligands 
suffer greater positional restriction than their longer counterparts (Fig.4.15.b,d). The 

Fig.4.15. (a) Endpoint entropies for n-alkanols n-alkanol bound & free states. Dashed green and blue lines 

demonstrate how the inter-panel free entropy differential dominates the entropy change on binding. Identical bound 

entropies result in oct counterintuitively losing more entropy on binding than non. (b) TΔS°
Po

 values obtained for 

n-alkanols. Standard error is plotted as background shaded area. The error for free state is so small, it can barely be 

seen. (c) Endpoint entropies for 3Z-olefins bound & free states. Note that all 3Z-olefins have near-identical bound 

values. (d) TΔS°
Po

 values obtained for 3Z-olefins. As bound entropy values are so similar, the free entropy once 

again dominates the change in binding entropy. 
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rank order of all ligands within the 3Z-olefin panel is the precise opposite of what was 
anticipated, and the position of oct and non are inverted with respect to size based 
expectations (Fig.4.15.b,d). This counter-intuitive result has physical significance and 
the examples can be explained by the fact that when ligands in the bound state have 
near identical values for TS°Po•B, the entropy differential between the same ligands in the free state 
(TS°Po•F) dominates the value obtained for TΔS°Po. This is illustrated for the case of oct 
and non in Fig.4.15.a.

Calculated TΔS°Po values indicate that whilst this component contributes a significant 
amount of energy (-7.50 to -9.31 kJ/mol) to the global entropic signature, differences in-
between ligands are not substantial enough to account for the linear trend observed in 
the ITC data (Fig.4.16). Although TS°Po•B for all 3Z-olefin ligands are equivalent within 
error, the two larger ligands (oct and non) within the n-alkanol panel are restricted to 

Fig.4.16. Positional entropies (TS°Po•F,TS°Po•B & TΔS°
Po) obtained for ligands in n-alkanol and 3Z-olefin 

panels obtained using 60 bins along each axes. 

n-alkanols Bins TSPo•B TSPo•F TΔSPo

hex 60 17.50 ± 0.28 25.00 ± 0.02 -7.50 ± 0.28
hep 60 16.85 ± 0.42 24.49 ± 0.05 -7.64 ± 0.42
oct 60 14.35 ± 0.48 23.66 ± 0.03 -9.31 ± 0.48
non 60 14.26 ± 0.49 22.58 ± 0.13 -8.32 ± 0.51

3Z-Olefins TSPo•B TSPo•F TΔSPo

3c6 60 16.31 ± 0.31 25.41 ± 0.00 -9.10 ± 0.31
3c7 60 16.73 ± 0.41 25.13 ± 0.00 -8.40 ± 0.41
3c8 60 16.75 ± 0.35 24.78 ± 0.01 -8.00 ± 0.35
3c9 60 16.63 ± 0.60 24.34 ± 0.01 -7.71 ± 0.60

Positional Entropy (kJ/mol)

Table.4.7. Positional entropies (TS°
Po•F

,TS°
Po•B

 & TΔS°
Po

) with standard error, obtained for ligands in n-alkanol and 

3Z-olefin panels obtained using 60 bins along each axes.
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a greater extent than the shorter members. The resulting disparity between the two 
groups is ~1.8 kJ/mol at its largest. As the difference is so small, further changes to this 
trend with increased amounts of sampling cannot be ruled out. However, the magnitude 
of inter and intra panel TΔS°Po differences are minor and the correlation between ligand 
size and the amount of restriction is weaker than expected because compounds retain 
considerable translational freedom when bound. For the same reason, the overall 
magnitude of TΔS°Po is less than that obtained in other studies (§4.3.3.3) 91,164.

4.3.3.3. Assessing the accuracy of the positional entropy calculation in MUP
As discussed in §4.1.2.5 there are few (if any), experimental decompositions that 
yield unequivocal T&R entropy estimates in the literature. Thus, the accuracy of the 
calculation is difficult to determine. In the case of MUP, the focus has centred on the 
binding of IPMP and IBMP and these interactions have been assigned a combined T&R 
penalty of -25.8 kJ/mol 34,89,163. The value is obtained from the calculation of intrinsic 
free energies of the cell surface glycolipid ganglioside (GM1) fragments to the B-subunit 
of the cholera toxin (CTB) 313. The quantity was later treated as a system-independent 
contribution that could be applied to various other binding interactions such as the 
binding of IPMP and IBMP to MUP 34,89,163, and histamine to recombinant histamine-
binding protein (rRaHBP2) 368. The validity of broadly applying this contribution 
in a system-independent manner should be questioned due to differences in ligand 
size, structural features, and protein binding site architecture. As GM1 possesses more 
hydrophilic groups than IPMP and IBMP, it can, and does make more H-bonding 
interactions to CTB (PDB ID: 3CHB) 369,370 compared to hydrophobic ligands bound 
to MUP. Hence, these multiple, polar directional restraints are likely to be associated 
with greater T&R entropy penalties on binding, and in the case of MUP, the estimate 
of -25.8 kJ/mol could be an overestimate. 

Irudayam & Henchman calculated the combined loss of external DOF on binding 
IPMP to MUP to be -22.2 kJ/mol at 298 K, of which -9.3 kJ/mol is derived from the 
translational component (tables 3 to 7) 164. However, in the discussion (p5882, section 
6) they confusingly state that the value is -25.0 kJ/mol and hence, a good approximation 
to the (-25.8 kJ/mol) contribution originally proposed by Turnbull et al. (2004) 313. 
As the tabulated data reports a value of -22.2 kJ/mol, this is likely to be their actual 
result. Hence, the claim that their SF method generates a near-identical value to the 
“experimental estimate” (obtained from a completely different system) is vitiated by a 
(not insignificant) 3.6 kJ/mol differential 164. Furthermore, the concerns raised in §4.3.2.2 
regarding the validity of this particular SF approach are still pertinent. 

Roy & Laughton (2010) performed long MD simulations (1.2 ms x 3 replicates) of 
IBMP bound to MUP; the larger analogue of IPMP 91. They observed significant 
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residual motion of IBMP within the calyx and noted that the ligand could take up a 
larger array of orientations than originally anticipated and that some of these poses were 
characterised by a lack of H-bonding to TYR120. This directly challenges the notion 
of a single bound minimum and a rough estimate of the ligand entropy was generated 
via the method proposed by Schlitter. Ligand translation and rotational tumbling were 
removed via a series of RMS fits. They concluded that that the total entropy loss on 
binding was ~ -22 kJ/mol. -13 kJ/mol could be attributed to combined internal and 
rotational contributions, to which internal DOF only contributed -1 kJ/mol. Using the 
ideal gas approximation, a rough estimate of -10 kJ/mol was obtained for the loss of 
translational DOF. However, the magnitude of the entropic penalty could potentially 
be overestimated for the following reasons:

1. The Schlitter method is based upon the harmonic approximation which is 
known to account poorly for anharmonicities and multimodal distributions. 
The binding of IBMP is likely to be characterised by both these factors.

2. The calculation uses 1 microsecond of data with a frame spacing of 1 ns to 
create a 1,000 frame dataset.  Hence, this is equivalent to 1 ns of sampling and 
this would affect evaluation of the entropy which is critically dependent on 
correct evaluation of the density of states (§4.3.6). Furthermore, note that the 
use of such a large frame spacing has been shown to lead to convergence issues 
when using Cartesian coordinates in conjunction with a covariance matrix 
(Fig.2 in p341 of Baron, 2012) 189. On viewing figure S12 in the supplementary 
material of that publication, it is clear that despite significant similarities, 
IBMP is able to explore different regions of phase space in different 1.2 ms 
repeats 91. Obviously, this would affect the distribution and consequently, the 
entropy result. If more frames (> 1.2 x 106) had been utilised, a more ergodic 
distribution would have been obtained, and the greater number of accessible 
states is likely to have reduced the entropic penalty. 

An examination of the range of values (-7.5 to -9.31 kJ/mol) generated by 3Dh indicates 
that loss of translational DOF cannot be reduced to a system-independent contribution 
as there are small differences in the binding of different ligands to the same protein. 
However, at this stage, an unequivocal conclusion is not yielded by inter or intra-
methodological comparisons. Hence, the only remaining solution is to calculate the 
entropic penalties associated with the remaining ligand DOF and compare this to the 
global ITC results. As this work assesses the binding of 8 different ligands, any errors in 
method should be highlighted by discrepancies in entropic trend lines. After calculating 
the total orientational entropy in §4.3.8, a total system decomposition is presented in 
§4.4.1-2.
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4.3.3.4. Positional entropy convergence and force field dependency
Convergence of TS°Po was assessed to account for the variability of the calculated 
entropy with increased sampling (Fig.4.17). The rapid convergence of TS°Po•F compared 
to TS°Po•B is apparent and the lack of change after ~200 ns in the former indicates that 
errors in TΔS°Po would primarily arise from energy barriers preventing bound ligands 
fully sampling the accessible cavity volume within the simulation. The largest changes 
in TS°Po•B occur within 300 ns sampling time and the degree of variability decreases on 
supplying more data points to the calculation. Bound oct takes the longest amount of 
time to converge and this could be ascribed to higher energy barriers preventing its 
translocation between the different regions of the cavity compared to shorter ligands. 
The longest ligand non, is less likely to move between different regions than oct because 
of its size and thus, the distribution describing its COM displacements has a greater 
likelihood of being accurately captured. On the other hand, oct has the potential to move 
between different bound minima to a greater degree than non, but it tends to dwell in 
a given location for greater amount of simulated time. The minima that make up the 
relevant COM distributions of the other compounds within the n-alkanol panel are 
built up relatively evenly on extending simulation time. A fact that is supported by the 
lack of large fluctuations in TS°Po•B upon supplying more data points to the calculation 
i.e. there are minimal changes in entropy between the datasets > 300 ns (Fig.4.17). 
Thus, these ligands have the facility to transition between available bound minima 
with higher frequencies than oct. On the other hand, oct tends to remain within stable 
minima for longer periods of time and larger variations in the TS°Po•B convergence 

Fig.4.17. Positional entropy (TS°
Po•F 

& TS°
Po•B

 ) convergence was assessed over 1.2 ms of aggregate simulation time 

for both ligand panels. The number of points made available to the entropy calculation were iteratively increased by 

6 x 104 (60 ns) each round. Solid black lines show the value calculated for the full 1.2 ms, whilst coloured dashed 

lines indicate how the entropy total for a given ligand changes with better sampling. Some of these lines cannot be  

discerned as they are overlaid and points that possess small separations in-between different dashed coloured lines 

indicate good convergence. Greater visibility of cyan and green dashed coloured lines is discernable near points that 

have convergence difficulties e.g. oct.  
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plot occur because the occupancies of newly unlocked minima increase in an uneven 
fashion.

The other principal source of error that could well dwarf those already discussed, 
are inaccuracies in the force field used for the simulations. New force fields are 
constantly being developed and more recently, the main adjustments have been to 
the parameters governing important torsion angles rather than fundamental shifts in 
methodology. It is often not clear which force field offers the greatest level of accuracy 
until sufficient research is published in the literature and benchmarks performed to 
validate modifications with experimental data. This can limit early adoption of new 
developments as researchers would rather use tried and tested parameters. Early ff94 
and ff99 force fields overestimated the stability of helical regions due to sub-optimal 
parameterisation of glycine and alanine residues. Due to computational cost, the 
torsional parameters of the protein’s j and y angles were quantum mechanically fitted 
to a limited number of low energy conformations of these amino acids and a systematic 
cumulative error resulted in secondary structure elements such as right handed alpha 
helices being overly stabilised. The ff99SB force field improved the existing ff99 force 
field via extensive refitting of these torsional parameters to multiple glycine and alanine 
tetrapeptide conformations. This resulted in greater rigidity of the backbone and a 
concomitant reduction in loop dynamics 121,371–375. The ff03 force field used in this 
study can be considered a distinct force field as the charge derivation procedure used is 
fundamentally different 151,371. Over time there have been various improvements to the 
ff99SB force field such as the ff99SB-nmr, ff99SB-ildn and the ff99SB-ildn-phi. A recent 
benchmark rates the ff03 and ff99SB variants as having good agreement with NMR-
derived observables. Of particular note were the ff99SB-ildn-phi and ff99SB-ildn-nmr 
force fields which possessed calculation errors comparable to experimental uncertainty 
when used in conjunction with the TIP4P-EW water model 375.

Given the discussion above, 6x 100 ns equilibrium simulations of hep bound to MUP 
were run to verify whether the magnitude of translational motions were diminished 
when using the ff99SB-nmr force field. The results show that the ligand still retained 
extensive residual motion within the binding site and the difference in the calculated 
TS°Po•B value (16.15 ± 0.5 kJ/mol) to that obtained from the ff03 force field is only 
-0.70 kJ/mol. While there are minor differences in the distributions, the key features 
are retained (Fig.4.18). As the ff99SB-nmr simulations have half the number of data 
points, it is expected that similarities in the distribution should increase with extended 
simulation time.

The agreement between the two very different force fields indicates that the radical 
difference in the method of force field parameterisation does not greatly perturb the 
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range of residual ligand motion observed in MUP. Moreover, it is worth remarking 
that there is always a new force field being developed, but as the chief modifications 
are incremental improvements to torsional terms, it is extremely unlikely that the 
number of bound minima would suddenly be reduced to a single stable minimum. 
Considering MUP is a promiscuous binder, it is likely that its facility to accommodate 
a wide range of different shaped ligands would be accompanied by a lack of specificity. 
The predominantly apolar cavity has a dearth of strategically placed H-bond acceptor/
donors that act to synchronously constrain the translational motions of the flexible, 
hydrophobic ligands tested in this study (§4.3.4). 

4.3.4. The architecture of the binding pocket (clustering I)

Before considering the orientational entropy, it would be useful to describe the 
architecture of the binding pocket and the nature of ligand hydrogen bonding so that the 
structural factors that affect ligand dynamics are made clear (§4.34-5). An appreciation 
of these underlying factors and their relationship to dynamics provides a framework 
through which, the rationale for differences in 3Z-olefin and n-alkanol ligand entropy 
(TΔS°Po and TΔSOr) can be better understood. 

Highly populated bound minima in both panels demonstrate that the ligand’s 
COM is offset at a variable distance from TYR120. The underlying 3D probability 
distribution was analysed via mean shift clustering and high density clusters were 
isolated (Table.4.6). The locations of identified clusters are numerically marked on 

Fig.4.18. Comparison of the COM distributions of bound hep obtained with the ff03 (Top row) compared to the 

ffs99SB-nmr force field (Bottom row) sampled to 0.6 ms and 1.2 ms respectively. The ffs99SB-nmr simulation 

is normalised to half (5000 count) that of ff03 which has twice the number of data points. The comparison 

demonstrates the impact of sampling, and demonstrates the ligand retains considerable residual motion when 

bound despite differences in force field parameterisation.
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the zy projection in Fig.4.13-14. Each cluster contained ligand binding poses localised 
to discrete minima within the binding site and visual analysis revealed that the COM 
displacements are amplified because the ligand is capable of adopting a variety of 
compact and extended conformations due to the flexibility of its hydrocarbon tail. 
Averaged PDB files were generated from every cluster and all ligand poses obtained 
in this manner were overlaid on a per-panel basis to give a conservative indication of 
the average positions of minima within the context of the binding pocket (Fig.4.19). 
Every pose thus represents the averaged ligand coordinates obtained from the ensemble 
of different ligand conformations, positions and orientations isolated from each high 
density cluster. Though internal flexibility results in localised fluctuations of ligand 
orientation and conformation, large changes to the average position of the molecule 
within each extracted cluster is minor. Thus, the image shows idealised poses that 
have the greatest probability of occurrence in a larger continuum of possibilities and 
does not show poses around the mean or those at the extrema of the total distribution. 
The overlay gives a very conservative indication of the range of bound positions to 
supplement the abstraction provided by the COM distributions (Fig.4.11-14). 

For the purpose of discussion, it is convenient to subdivide the calyx into three smaller 
chambers: cal1, cal2 & cal3 (Fig.4.19). The largest volume is possessed by cal1 and this 
is linked to the proposed point of ligand entry/exit to the occluded binding site and the 
relationship between the two is further discussed in chapter 5.0. Cal2 is bounded by 
TYR120, PHE56 and ALA103 and is smaller in volume than cal1 due to the intrusion 
of these residues. The highly hydrophobic environment offered by cal3 lies within the 
area situated near the base of the calyx and access to this area is partially occluded 
by the bulk of PHE90. However, in response to the presence of bound ligand this 
residue is capable of undergoing a conformational change whereby it swings open to 
press against the upper part of TYR80 so as to admit portions of the ligand into cal3. 
Chemical shift perturbations (CSP) obtained from NMR spectroscopy indicate that this 
residue shows one of the greatest 1H 15N changes on ligand binding (Data not shown). 
The conformational change was also noted in long MD simulations of IBMP bound 
to MUP by Roy et al. (2010) 91. The isobutyl tail of IBMP possesses greater bulk than 
the linear alcohols examined in this work and it is possible that this structural disparity 
prevents IBMP from translocating to the very bottom of the calyx to a similar extent. 
In the case of n-alkanols, the staggered nature of the subcavities predisposes saturated 
ligands to adopt “curved” poses. In contrast, 3Z-olefins are pre-organised to the shape 
of the cavity and this is likely to facilitate a greater amount of positional displacement 
(Fig.3.15-16 and Fig.4.19). 

As detailed in chapter 3.0, the ligand’s internal DOF are only marginally restricted 
when bound and it maintains the capability of adopting a variety of compact to 
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extended conformations. However, visual examination of the simulations and the 
averaged cluster structures indicate that the ligand adopts two characteristic poses that 
can range from being roughly perpendicular to the y axis or parallel to it. Examples of 

Fig.4.19. The range of ligand translational displacement within the architecture of the binding pocket is depicted 

by an overlay of 28 averaged ligand binding poses obtained from every ligand COM clusters identified by mean shift 

clustering. All frames in an identified cluster were averaged to yield averaged ligand coordinates and this gives a 

conservative indication of positional variation. Each ligand carbon chain is coloured differently, whilst oxygen atoms 

are coloured yellow. Subcavities are demarcated and labelled as cal1, cal2 & cal3 in the top left. Examples of 

vertical and horizontal pose are marked as VP and HP respectively (top right). Longer n-alkanols are distinguished 

by preferential adoption of vertical poses, whilst 3Z-olefins fluctuate between the two. There are also two principal 

H-bond localities associated with the poses (HB1 & HB2). n-alkanols predominantly bind to the HB1 zone, whilst 

3Z-olefins preferentially H-bond to HB2. The closed and open conformations of PHE90 are overlaid and coloured 

yellow and orange respectively.
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both can be observed for oct bound to MUP and are labelled as a vertical pose (VP) 
and horizontal pose (HP) respectively (Fig.4.19). HPs tend to occupy cal1 and upper 
portions of the cal2 subcavities because the volume available in these zones is large. 
Ligands of all lengths are capable of HPs, but shorter ligands have a greater propensity 
to adopt this whole-molecule orientation as their smaller size results in a reduced chance 
of getting trapped by residues near the middle of the calyx. This type of pose has the 
potential to be associated with ligand entry/exit if the ligand is not sufficiently restrained 
by H-bond interactions near TYR120 (chapter 5.0). VPs generally result in the ligand 
being trapped by residues in cal2 & cal3 whilst the hydroxyl group is usually held by 
H-bonds. Note that 3Z-olefins can jump between these two poses more readily than 
n-alkanols for reasons that will be discussed in §4.3.7.

The densities shown in Fig.4.11-14 chart the displacement of the ligand’s COM as it 
varies its position within the pocket whilst the hydrophobic chain transitions between 
a farrago of compact, intermediate and extended conformations. This is unsurprising 
as the difference between dihedral angle distributions for free and bound states were 
minimal (Fig.A1.1-3). As the hydroxyl head is (usually) restrained by H-bonds, high 
density minima should correspond to positions in the pocket close to the location of 
these polar interactions. Interestingly, the cluster analysis indicates that polar hydroxyl 
group of the linear alcohols can broadly be categorised as occupying two areas. The 
first (HB1) positions the alcohol moiety close to TYR120 and ALA103, whilst the 
second (HB2) is located higher along the y axis than the former. This can most 
clearly be observed in the side view of clustered 3Z-olefin structures (Fig.4.19). In 
the predominantly apolar cavity, the identity of potential protein hydrogen partners is 
important as this interaction plays a vital role in localising the ligand within the cavity. 
Hence, this line of enquiry will be investigated in detail within the next section.

4.3.5. Hydrogen bond interactions within the calyx 

It is well known that H-bond strength is distance and angle dependent (§1.2.2) and 
that these interactions play a structural role that usually contributes favourably to the 
binding affinity. A detailed analysis of H-bond interactions beyond examining patterns 
in crystallographic structures has not been published to date and prior research has 
emphasised the role of TYR120 as the principal interacting partner 36,90,136,180. Most of 
the binding poses indicate that the ligand’s alcohol moiety is close enough to directly, 
or indirectly be involved in H-bond interactions with TYR120. However, localisation 
to other areas is also observed and the COM of the ligand can occupy regions that are 
near the apex of cal1 or even within the hydrophobic reaches of cal3. This is somewhat 
surprising and the conclusion that must be drawn is that at certain junctures the ligand is 
H-bonded to other residues or not involved in any such polar interactions at all. IBMP 
was also reported to display significant residual motion within the cavity and occupied 
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poses that disallowed H-bonding with TYR120 91,180. Whilst the linear alcohols have the 
potential to move around all localities within the pocket, the highest populated COM 
minima lie within cal1 and cal2 subcavities as these areas presumably provide more 
H-bonding opportunities than cal3. 

Published crystal structures of n-alkanols bound to MUP indicate that that these linear 
ligands can be involved in a direct H-bond interaction to TYR120 or are indirectly 
linked via bridging water molecules 36,90,136,180. Additional H-bond interactions are 
also observed with various amino acid backbone atoms such as PHE38 and LEU40. 
Analysis of the simulation data indicates that the intermolecular H-bond network is 
more subtle than that implied by the static picture provided by crystals as the dynamic 
nature of bound compounds within the calyx results in the breaking and reforming 
of a greater number of these polar interactions than originally anticipated. All frames 
(1.2x 106) from each concatenated trajectory were analysed for the fraction of time 
H-bonds occurred during the simulation. This allowed separation of H-bonds made 
directly to the ligand and those facilitated via the presence of bridging water molecules. 
Direct interactions are discussed below and water mediated H-bonds are discussed in 
the next chapter (§5.3.4.4). Note that the percentage occupancies only reflect the probability of that 
bond existing within the simulation and do not indicate whether the bond exists synchronously with 
bonds made with other potential H-bond partners. Tables 4.8-9 demonstrate that n-alkanols 
predominantly bind to backbone atoms of residues (LEU40 and PHE38) situated within 
the large W loop; a structural feature that functions to form a lid over the open maw 
of the calyx (Fig.1.20). These interactions can readily be observed in crystal structures 
of MUP (e.g. 1ZND, 1ZNE, 1ZNH & 1ZNK), but it is worth noting that the single 
structure typically produced by x-ray crystallography is an averaged conformation 
that is affected by a multitude of other factors and does not provide a comprehensive 
picture regarding the H-bond network which is very likely to morph in sympathy with 
protein and ligand dynamics (§A2.1.2). TYR120 is also identified as an H-bonding 
partner, but the fraction of its occupancy throughout the time course of the simulation 
is significantly less than that observed for the residues located within the W loop. In 
contrast, 3Z-olefins principally bind to TYR120 and the backbone carbonyl atom of 
ALA103, though there is a much reduced probability of forming bonds to the W loop 
in the case of 3c7, 3c8 and 3c9. Furthermore, due to significant ligand residual motion 
ligands from both panels are capable of directly forming a multitude of other transient 
interactions to alternative residues, albeit with occupancies < 1% (not tabulated). The 
protein atoms involved in these interactions are principally located within the backbone 
of the β-clam fold and are rarely unmasked by the bulk of obstructing sidechains as the 
protein undergoes conformational change. When this is juxtaposed with the forces that 
drive the ligand to adjust its position and orientation within the shifting architecture of 
the calyx, the favourable confluence of angle and distance required to form a successful 
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H-bond interaction with these partners is severely limited. More importantly, there is a 
correlation between ligand length and direct H-bond occupancies (Fig.4.20). 

4.3.5.1. n-alkanol direct H-bonds
All ligands H-bond to TYR120 to some extent, but there are a greater number 
of interactions to other residues within the W loop and some of these have higher 
probabilities of being involved in H-bonds with the ligand than the intuitively obvious 
candidate. As the ligand increases in size, the residue with the largest H-bond occupancy 
shifts from LEU40 which lies lower on the loop, towards PHE38, which is higher and 
more centrally positioned. The simple rationale underlying this trend can be explained 
by the following observations (Fig.4.20): The smallest ligand hex, spends the majority 
of simulated time in cal1 by virtue of its small size and thus makes the greatest variety 
of interactions with the W loop. Consequently, the dynamics of the loop result in this 
ligand being displaced to the greatest extent compared to the other ligands. Thus, it 
possesses the largest magnitude of TS°Po•B because the shorter hydrophobic tail is much 
less likely to be hindered by residues situated in cal2 & cal3 (Table.4.8). Increasing 
the length of the ligand by a single methylene group results in more protein-ligand 
interactions which act to transfix the hep to a greater extent and counteract the residual 
translational motion stimulated by W loop motions. Therefore, hep possesses roughly 
equal probabilities of forming H-bonds with residues within the W loop and lies near 
the midpoint of the described trend. Per contra, the two longer ligands (oct and non) are 
disposed to adopting fewer, better defined translational minima because they are more 
likely to be displaced into cal2 & cal3 and getting trapped by residues within that region 
(Fig.4.20). Their larger size also allows them to make increased polar interactions to 
residues near the apex of the calyx. The interactions with the W loop are especially 
interesting because these residues are also associated with ligand internalisation and 
externalisation (Chapter 5.0).

4.3.5.2. 3Z-olefin direct H-bonds
The cis-3-4 restriction introduces a curvature into these unsaturated ligands and this 
feature allows them to adopt positions lower down along the y axis so that H-bonds 
are principally formed to TYR120 and ALA103 (Fig.4.19 and Fig.4.10). Visual 
examination of the simulations indicates that interactions between these residues 
often occur synchronously due to their close proximity. These twin restraining forces 
cause the polar hydroxyl head of the ligand to be more firmly localised within the 
vicinity of TYR120 and thus, there is also a greater probability of interaction with 
THR21 which lies nearby. As will be discussed in §4.3.7, the principal driver of residual 
translational motions in these unsaturated ligands is due to rigid body displacements 
of the hydrophobic tail and the complementary shape of these ligands to the binding 
cavity. Indeed TS°Po•B for all these compounds were near identical (Table.4.7). As 
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the ligand gets larger, the probability of direct H-bonds with residues in the W loop 
increases, albeit with much lower occupancies than that observed for their saturated 
analogues. The proposed rationale for residual translational motion for members in 
both panels would seemingly be contradicted by the direct H-bond occupancies of the 
longest ligand, 3c9. Like n-alkanols, it only binds to TYR120 and W loop residues, 
yet still manages to maintain significant residual motion. However, this can easily be 
reconciled through the observation that the occupancies of these interactions are much 
less than that observed for hex. It is likely that, as the longer length of 3c9 results in 
the hydrophobic tail being more constrained within cal2 & cal3, the motions of the 
H-bonded segment become amplified by rigid body displacements and shifts in position are 
additionally abetted by low occupancy interactions with the dynamic W loop. Further 

(%) (ps) (ps)
Acceptor Donor-H Donor Occup Avg LT Max LT

LEU40@O hex@H7 hex@O1 29.1 7.2 183
hex@O1 TYR120@HH TYR120@OH 15.5 2.1 43
PHE38@O hex@H7 hex@O1 12.6 5.2 104
hex@O1 LEU40@H LEU40@N 7.6 1.6 22
LYS31@O hex@H7 hex@O1 7.3 2.8 86

LEU40@O hep@H9 hep@O1 34.6 8.1 207
hep@O1 TYR120@HH TYR120@OH 26.6 3.8 50
PHE38@O hep@H9 hep@O1 25.1 4.4 103

PHE38@O oct@H9 oct@O1 59.4 5.4 123
LEU40@O oct@H9 oct@O1 6.9 5.2 257
oct@O1 TYR120@HH TYR120@OH 5.0 3.1 47

PHE38@O non@H10 non@O1 43.1 4.9 99
LEU40@O non@H10 non@O1 12.8 7.2 151
non@O1 TYR120@HH TYR120@OH 8.5 2.6 36

Direct hydrogen bonding: n-alkanols

he
x

Unique Partners under 4% occupancy = 40

he
p

Unique Partners under 4% occupancy = 40

oc
t

Unique Partners under 4% occupancy = 26

no
n

Unique Partners under 4% occupancy = 49

Table.4.8: n-alkanol direct H-bond interactions tabulated using AMBER notation. H-bond lifetimes (LT) are 

measured in picoseconds and the maximum lifetime assesses the longest contiguous period a particular H-bond is 

present. The average H-bond LT is calculated by averaging all contiguous periods that an H-bond is present in the 

entire trajectory. See p271 of AMBER 14 manual for further details. For reference, H-bond lifetimes in pure water 

have been measured to be 1 to 20 ps 376.



Chapter 4.0202 203

evidence for this proposition is provided in §4.3.7. There is an obvious difference in 
H-bonding patterns between n-alkanols and 3Z-olefins, and it is extremely likely that 
the reason for the more diffuse COM distributions of 3Z-olefins (Fig.4.13-14) is due to 
presence of the double bond which facilitates:

1. Ligand interactions with a completely different part of the protein to 
n-alkanols.

2. The promotion of radically different modes of internal and external 
dynamics to n-alkanols (§4.3.7).

(%) (ps) (ps)
Acceptor Donor-H Donor Occup Avg LT Max LT

3c6@O1 TYR120@HH TYR120@OH 70.3 5.2 134
ALA103@O 3c6@H7 3c6@O1 23.5 4.7 293

3c7@O1 TYR120@HH TYR120@OH 64.1 4.6 113
ALA103@O 3c7@H8 3c7@O1 51.7 5.2 121
LEU40@O 3c7@H8 3c7@O1 5.0 11.2 299
3c7@O1 THR21@HG1 THR21@OG1 4.1 7.9 111

3c8@O1 TYR120@HH TYR120@OH 58.1 4.0 83
ALA103@O 3c8@H9 3c8@O1 38.8 4.2 122
PHE38@O 3c8@H9 3c8@O1 7.1 3.4 49
LEU40@O 3c8@H9 3c8@O1 6.0 3.0 298

LEU40@O 3c9@H10 3c9@O1 15.7 7.7 258
PHE38@O 3c9@H10 3c9@O1 13.8 3.1 50
3c9@O1 TYR120@HH TYR120@OH 13.2 3.8 144
3c9@O1 THR21@HG1 THR21@OG1 9.2 6.0 129
3c9@O1 LEU40@H LEU40@N 4.1 1.5 20

Direct hydrogen bonding: 3Z-Olefins

3c
6

Unique Partners under 4% occupancy = 8
3c

7

Unique Partners under 4% occupancy = 20

3c
8

Unique Partners under 4% occupancy = 19

3c
9

Unique Partners under 4% occupancy = 28

Table.4.9: 3Z-olefin direct H-bond interactions tabulated using AMBER notation. H-bond lifetimes (LT) are 

measured in picoseconds and the maximum lifetime assesses the longest contiguous period a particular H-bond is 

present. The average H-bond LT is calculated by averaging all contiguous periods that an H-bond is present in the 

entire trajectory. See p271 of AMBER 14 manual for further details. For reference, H-bond lifetimes in pure water 

have been measured to be 1 to 20 ps 376. 
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4.3.6. Orientational entropy: The number of minima

At this point it has been established that all ligands tested possess significant residual 
motion when bound and the positional entropy has been quantified. Moreover, the 
structural environment that houses bound compounds has been described and 
correlations between differential H-bonding occupancies have been made with ligand 
structure and length. The correlation has allowed intermediate hypotheses regarding 
the root cause of increased COM positional displacements to be made (§4.3.5) and the 
next two sections examine the orientational entropy and how it aids our understanding 
of ligand dynamics within MUP (§4.3.6-7). 

In order to do this, 1st order orientational entropies of every bond were calculated with 
the method described in §4.2.5.3 using two different approaches (Fig.4.22-23 & Table.
A2.2.1-2). The 1st approach averages the per-bond entropies obtained from six 200 ns 
trajectories (top 2 rows) and the 2nd approach applies the same calculation to a single 
concatenated 1.2 ms trajectory (bottom 2 rows). Hammer projections depicting the 
orientational movements of individual bonds from the concatenated 1.2 ms trajectories 
(2nd approach) are located in the appendix Fig.A2.2.1-4. They demonstrate that each 
bond can take up all possible orientations when free, while certain orientations are 
forbidden when the ligand is bound. Thus, the orientational entropy for all bonds 
are the same in the free state (TSOr•F) and the resulting trend line is flat, possessing 
zero variance and error (Fig.4.22-23.a & Fig.A2.2.1-2). There is a greater amount of 
variation in bound per-bond orientational entropies (TSOr•B) and this propagates to the 
resulting per-bond entropy differences (TΔSOr). The disparities in resulting trend lines 
between the congeneric compounds constituting both panels reveal considerable detail 
on ligand dynamics. 

The 1st approach yields per-bond trend lines for individual 200 ns repeats and TSOr•B 
values for any given bond span a gamut of values in the bound state (See dotted lines 
in Fig.4.22-23.a). This variability must be the result of interactions with the particular 
subcavity the ligand is localised within and is consequently correlated with the COM 
distributions. The trend lines described by each repeat are generally consistent with one 
another, but some repeats exhibit marked deviations from the majority. For example, 
in the case of 3c9: The trend line with the lowest per-bond TSOr•B is obtained from 
repeat-4, whilst repeat-6 possesses the greatest entropies. Additionally, the shape of the 
latter is less rugged than its counterparts. Analysis of the COM translational distribution 
of repeat-6 indicates that the ligand accesses a greater variety of minima than it does 
during repeat-4 which remains localised within a single minima for the majority of 
(the 200 ns) simulated time (Fig.4.21). Visual inspection of the trajectories indicate 
that repeat-4 favours a vertical pose which occupies cal1, cal2 & cal3, whilst repeat-6 
fluctuates between vertical poses and horizontal poses localised in cal1. The bottom row 
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in Fig.4.21 depicts the orientational distribution of the C3-C4 bond for both the repeats 
and comparison to the COM distributions demonstrates that there is a correlation 
between the two and this will be utilised in the following sections to elucidate further 
detail on ligand dynamics. The relationship between bond orientation and location 
may be self-evident, but it is worth explicitly stating, because it highlights the fact that 
the various locales housed within the architecture of the calyx are capable of driving 
ligand dynamics and behaviour in distinct ways that can potentially be separated 
from one another by clustering. Hence, positional and orientational analyses provide 
a link between structure and dynamics; factors that must be taken into account when 
structurally modifying drug-like compounds.

In quantitative terms, entropies calculated from the single concatenated 1.2 ms trajectory 
(2nd approach) are not averages of the entropies calculated from its constituent 200 ns 
segments (1st approach). Entropies are dependent on the manner in which the total 
available dataset is evaluated and the calculation yields larger entropies for concatenated 
1.2 ms trajectories compared to that generated by averaging entropies obtained from 6x 

Fig.4.21. The concatenated 1.2 ms simulations are composed of 6x 200 ns independent simulations and 

the distributions from two of these are depicted here for comparative purposes. The top row shows the COM 

distributions of bound 3c9 viewed along the zy projection. As shown in Fig.4.14, The ligand is capable of much 

greater exploration of the calyx with additional sampling. However, in individual repeats the ligand can potentially 

remain trapped within favourable minima for periods of time that many researchers would consider sufficient for 

analyses e.g. the ligand is localised to a greater extent in repeat-4 compared to repeat-6 within a span of 200 

ns. The bottom row uses hammer projections to depict the orientational distribution of the ligand’s C3-C4 bond to 

reveal the relationship with the COM distribution.  
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200 ns trajectories. As discussed in §3.1.1, any entropy calculation evaluates the density 
of states of a given observable and correct estimation is dependent upon total accessible 
phase space being fully represented. The number of orientational minima captured by 
discrete 200 ns trajectories is sufficient to capture patterns and trends in the motions 
of the bonds that constitute the ligand. However, as the entropy calculation is only 
performed on a subset of accessible phase space, the values returned are underestimated 
compared to entropies calculated from a PDF that better approximates the ergodic 
distribution by virtue of increased sampling i.e. the ergodic entropy cannot be recreated 
by averaging subsets of the data in a similar manner to simulation temperature or 
pressure because (the classical) entropy is dependent upon the density of states and all 
accessible minima have to be considered simultaneously. For example, the distribution of 
an initial 200 ns trajectory may only possess one or two orientational minima within the 
bound state. As additional 200 ns segments are added to the calculation, the population 
of the existing minima are expanded and new ones discovered. This is characterised 
by a large increase in TSOr•B as the bond vector “jumps” between increasing numbers 
of minima. After a point, sampling is sufficiently large to identify all available minima 
and TSOr•B oscillates around an increasingly stable value as the relative occupancies of 
bound minima fluctuate. Convergence is only achieved when the relative populations 
of existing minima have stabilised and no new minima remain to be uncovered; these 
conditions are hard to achieve due to the existence of rare events. Thus, the larger 
entropies obtained for 1.2 ms concatenated trajectories are the direct result of a greater 
number of minima being simu  ltaneously evaluated by the calculation. The larger 
(1.2 ms) dataset yields an entropy increase of ~0.5% and ~19% for free and bound 
bond vectors respectively. There is greater difference in TSOr•B because higher energy 
barriers separate the minima that make up its orientational distribution compared to that 
encountered when the ligand is free in solution. Identical starting coordinates were used 
as the genesis of each 200 ns trajectory and different random number seeds provided 
the impetus for the unique evolution of each discrete simulation. When processing 
power is limited, this approach is likely to yield much better sampling than a single 
simulation that is six times as long. This is because overall, an increased number of 
independent shorter simulations are stochastically less likely to all be trapped within 
identical minima (Fig.4.21). Thus the concatenated trajectory is very likely to possess 
a greater variety of minima than a single trajectory that is six times as long. Note that 
this advantage is likely to disappear in the case of extremely long simulations and these 
observations are made with reference to ligand dynamics i.e. multiple short simulations 
may not efficiently capture protein dynamics that occur on longer timescales 91.
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Fig.4.22. Per-bond rotational entropies calculated for 3Z-olefin ligands. (a-b) The top two rows depict averaged entropies 

calculated from six independent 200 ns simulations. Individual repeats are shown as coloured dashed lines. The average for 

the free species is a solid blue line, whilst bound state is represented by a solid red line and the relative entropy difference 

is a solid green line. Errors are shown as standard errors. (c-d) The bottom two rows display entropies calculated from a 

single concatenated 1.2 ms trajectory. The magnitude of the calculated values is greater than that obtained by averaging as 

the density of states that describe ligand phase space is better approximated (§4.3.6). n-alkanols have greater probabilities 

of being displaced into cal2 & cal3 as ligand length increases. This is accompanied by a characteristic alternating pattern 

(d) that arises from crankshaft motions (§4.3.7.1). Also note the difference in per-residue TΔS
Or
 baseline separating the 

two shorter ligands from longer ones. 
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Fig.4.23. Per-bond rotational entropies calculated for 3Z-olefin ligands. (a-b) The top two rows depict averaged entropies 

calculated from six independent 200 ns simulations. Individual repeats are shown as coloured dashed lines. The average for 

the free species is a solid blue line, whilst bound state is represented by a solid red line and the relative entropy difference 

is a solid green line. Errors are shown as standard errors. (c-d) The bottom two rows display entropies calculated from a 

single concatenated 1.2 ms trajectory. The magnitude of the calculated values is greater than that obtained by averaging 

as the density of states that describe ligand phase space is better approximated (§4.3.6). The black arrow in the bottom 

panel indicates the increasing probability of the terminal segment becoming restrained within cal2 & cal3 as ligand length 

increases. In the case of longest ligand, 3c9, crankshaft motions begin to occur within the terminal segment in a similar 

manner to that observed in longer n-alkanols (§4.3.6). 
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4.3.7. Trends in per-bond Orientational motion

The analysis of per-bond TΔSOr trends in this section allows conclusions to be made 
regarding ligand dynamics, and additional rationale for panel-specific differences in 
global entropic binding signatures are proposed. The following observations are based 
on the more ergodic per-bond orientational entropy differences (TΔSOr) obtained via 
the 2nd approach because they are a better representation of accessible phase space 
(Fig.4.22-23.d).

4.3.7.1. n-alkanol orientational trends: 
1. Ligands in the panel can broadly be divided into two categories based on the relative 
magnitude of measured per-bond TDSOr. Hex and hep possess larger entropies ranging 
between -1.0 to -0.5 kJ/mol, whilst oct and non lie between -1.5 and ~ -1.0 kJ/mol.

2. In the majority of compounds, the bond that possesses the highest value of TΔSOr 
belongs to the terminal methyl. This is because this apolar moiety is connected to a 
single neighbour and it experiences relatively little restriction compared to the polar 
head of the ligand which has a propensity to form H-bond interactions.

3. On increasing ligand length a characteristic “alternating” pattern near the centre 
of the molecule is observed. The pattern is similar to that obtained from per-dihedral 
analysis and reports on crankshaft motions that occur in long linear chains confined 
within small volumes (§3.3.6.2 & Fig.3.13). Increases in per-dihedral TΔS In (within 
C3-C4 and C5-C6) were associated with increased conformational transitions between 
trans and gauche states. However, comparable increases in TΔSOr are associated with 
increased movements in C2-C3 and C4-C5 bonds and the peaks and troughs reporting 
on crankshaft motions are inverted (Fig.4.22.d). The apparent anti-correlation 
is the result of differences in the method by which the two subsets of the entropy 
are measured (A2.1.3).

4. Adding methylene groups increases TΔSOr of some of the bonds near the centre 
of these linear saturated ligands. Hence, per-bond entropy-entropy compensation 
ameliorates summed TΔSOr losses in a manner that would suggest that they are not 
linearly correlated to the addition of a methylene group. Note that the conclusions 
obtained from PCA in §3.3.6.1-2 still hold true with regards to the correlated motions 
of n-alkanols (Fig.3.15). On binding, large coordinated wagging motions of the 
terminal segments of the molecule are replaced by alternating small amplitude motions 
throughout the body of the ligand. As COM distributions indicate that longer ligands 
occupy a reduced number of increasingly defined translational minima (Fig.4.13), it can 
be surmised from the averaged binding poses (Fig.4.19) that the pronounced alternating 
pattern represents crankshaft motions that arise as a result of protein-ligand interactions 
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within the crowded confines of cal2 & cal3. Further evidence for this proposition is 
provided in §4.3.9.3.

4.3.7.2. 3Z-olefin orientational trends:
1. The trend lines described by per-bond TΔSOr in most ligands can be conceptually 
subdivided according to whether the bonds lie before or after the C3-C4 double bond. 
These will be referred to as the hydroxyl segment and terminal segment respectively. 
The hydroxyl group of the ligand is engaged in H-bond interactions that act to restrain 
the head of the ligand and thus, orientational motions of O1-C1, C1-C2 and C2-C3 
bonds are curtailed. 3c9 is the exception to this rule for reasons that will shortly become 
apparent. The bonds constituting the terminal segment in most 3Z-olefin ligands have 
relatively greater orientational freedom than those in analogous n-alkanols for a several 
reasons. As the terminal segment grows from an ethyl through to a butyl chain, the 
additional methylene groups create a gradient of steric restraints that is at its maxima 
at the C3-C4 restriction. The two segments possess markedly different behaviours that 
are delimited by the position of the restriction which can be thought of as a fulcrum 
or tipping point. Extending the shortest terminal segment (possessed by 3c6) with 
additional methylenes, results in a general overall reduction to the orientational freedom 
of bonds constituting the terminal segment, whilst bonds composing the hydroxyl 
segment generally undergo entropic increases relative to the previous ligand in the 
series (Fig.4.23.d).

2. In addition to steric considerations which arise from internal interactions within the 
ligand itself, there are also external factors related to whether the terminal segment is 
located within cal1, or cal2 & cal3. If it is in the former subcavity, values for TΔSOr will 
be larger as the environment provided by this subcavity is less crowded. On the other 
hand, if it is positioned within the latter subcavity, the magnitude of TΔSOr values will 
be smaller because the surroundings are more crowded. Thus, the values depicted 
in Fig.4.23.d are an average of the disparate trends resulting from localisation within 
both of these zones (§4.3.6). As more methylenes are added after the double bond, 
the increasing size of the terminal segment invariably increases the probability of it 
being displaced into cal2 & cal3, and becoming more restricted within the pocket. This 
hypothesis is supported by the decreasing per-bond orientational entropies of the bonds 
constituting the terminal segment. This immobilisation results in a greater amount of 
compensatory orientational dynamics in the hydroxyl segment which is at its maximum 
in the case of bound 3c9 (Fig.4.23.d).

3. Before reading this point the reader is encouraged to view video 4.1 that is included 
in the supporting materials. In chapter 3.0, the torsional data demonstrated that 
the C2-C3 and C4-C5 dihedrals predominantly occupy gauche(+) and gauche(-) 
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conformations similar to that observed in the free state and chemical knowledge tells 
us that these rotate, so as to minimise steric clashes with each other. Internal motions 
cannot propagate along the body of the ligand in a similar manner to that observed 
in n-alkanols because the rigid cis-3-4 double bond acts to decouple the segments that 
lie on either side of it and the internal dynamics of the terminal segment are to a large 
extent (mostly) independent of the hydroxyl segment. In the case of flexible n-alkanols 
the same C3-C4 saturated bond is in a state of conformational flux between gauche 
and trans states and the lack of internal rigidity predisposes longer n-alkanols to favour 
fewer, better defined translational and orientational minima than their unsaturated 
counterparts. Thus, the flexible C3-C4 bond acts as a conduit through which internal 
motion can be propagated from one termini of the ligand to the other because each unit in 
the chain is influenced by the steric requirements of its neighbours. However, the rigid 
restriction within 3Z-olefins acts as a sink that disallows such propagation and as the hydroxyl 
head of the ligand is (usually) restrained by H-bonds, the ligand’s internal motions 
are transformed, and manifest in the form of external rigid body displacements of 
the terminal segment of the hydrocarbon tail which is unrestrained by any such polar 
interactions. If oct and 3c8 are taken as contrasting examples, it is clear that the terminal 
segment (C3-C4 to C7-C8) of 3c8 has greater ability to “switch” between orientations 
so that the ligand alternates between horizontal and vertical poses (video 4.1). It is likely 
that the switching mechanism is focussed on the C3-C4 bond and its fluctuations are 
chiefly responsible for a concomitant switch in orientations of the bonds constituting the 
terminal segment. Hammer projections comparing the orientational motions of bond 
vectors show that 3c8 possesses a greater spread of orientational minima compared to 
oct within the time simulated (Fig.4.24). This is further supported by the COM density 
maps whose intensities indicate that the 3Z-olefins possess a more diffuse spread of 
positional minima than n-alkanols (Fig.4.13-14 & §4.3.3.1). 

Fig.4.24. Hammer projections of the orientational distribution of the hydrophobic tail of oct and 3c8 obtained from 

1.2 ms trajectories. The projection is a flattened 3D density distribution calculated from the motions made by the terminus 

of the bond vector as it moves across the surface of a sphere after translation has been removed. Some orientations are 

disallowed. The C3-C4 bond and the other bonds that constitute the terminal segment of 3c8 possess a greater variety of 

allowed orientations than the corresponding bonds in oct. These additional states account for reduced TΔS
Or
 penalties in 

the case of unsaturated compounds. Larger images can be found in §A2.2.3-4.  
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As these distributions do not account for the frequency of bond switching, it is not 
possible to make a conclusion as to whether oct remains in stable states for longer 
periods of time than 3c8. In order to get a measure of this, the fluctuations in distance of 
the C3-C4 bond’s COM from the origin (first frame) were calculated and plotted with 
respect to time (Fig.4.25). This bond is implicated in the switching of the ligand from 
vertical poses that locate the compound within cal2 & cal3 to horizontal poses those that 
position it within cal1. Note that the change in distance baseline is a good marker for the 
frequency of (bond) orientational changes. The starting structure for both the oct and 
3c8 complexes, position the ligand in the vertical pose so that it is occupies cal1, cal2 & 
cal3. As the simulation of bound oct evolves, the distance of the C3-C4 bond from its 
starting position oscillates around a stable average (~1.0 Å) and the ligand undergoes 
localised conformational changes within a defined minima. On occasion (~50 ns), oct 
escapes the grasp of the residues situated in cal2 & cal3 and adopts horizontal poses that 
occupy cal1. This is reflected in the jump in the C3-C4 baseline which again undergoes 
localised distance fluctuations around ~2.0 to 3.0 Å. In contrast, the rigid C3-C4 double 
bond in 3c8 fluctuates wildly in terms of both localised and baseline variations. This 
proves that the C3-C4 bond in 3c8 switches between minima with higher frequencies 
than oct which tends to dwell within stable minima for longer periods of time. This 
phenomenon is further explored in §4.3.9.2-3.

4. Another factor that is likely to contribute to increased dynamics of 3Z-olefins is the 
shape and structure of the ligand. The double bond introduces a kink into unsaturated 
ligands that allows them to occupy states lower down along the y axis as the end-to-end 
length is shortened (Fig.3.8 & Fig.4.10). This also accounts for the differences H-bond 
occupancies (§4.3.5) observed in 3Z-olefins, compared to n-alkanols. As the double 
bond structurally predisposes the centre of the ligand to be offset from its termini, 

Fig.4.25. Frequency of C3-C4 bond switching measured via COM Displacements (Å) of the bond for oct (top) and 3c8 

(bottom) over a representative period of 100 ns. A rolling average (white line) was calculated using a 2 ns window. The result 

shows that the C3-C4 bond in 3c8 switches between minima with higher frequencies than oct which tends to dwell within 

stable minima for longer periods of time. 
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a greater variety of compact conformations can be adopted. Moreover, when the 
hydroxyl segment is restrained by H-bonds, this “curved” shape is likely to exaggerate 
rigid body displacements of the terminal segment that are transversal and out of plane 
to the longitudinal axis of the ligand i.e. the methylene groups (C2 and C5) flanking the 
C3-C4 bond adjust their conformations to avoid steric clashes and the satisfaction of 
these internal constraints result in relatively small torsional adjustments promoting the 
external displacement of the entire terminal segment which is unrestrained by any polar 
interactions. Hence, the “curved” shape and cis-3-4 structure facilitate the “switching” of 
C3-C4 bond between the two main orientational minima that correspond to horizontal 
and vertical poses. 

5. The factors described in the preceding four points result in a different mode of 
entropy-entropy compensation to that seen in n-alkanols. Whilst crankshaft type 
motions in the longer ligands of the latter panel result in C3-C4 and C5-C6 bonds 
undergoing reductions in TΔSOr, adjacent bonds compensate this with relatively higher 
TΔSOr values. Per contra, 3Z-olefin bonds in the terminal segment possess a greater 
spread of states than n-alkanols as the intrinsic difference in ligand structure results 
in very different dynamics. A combination of high frequencies of orientational and 
translational displacements result in 3Z-olefins rapidly switching occupation from the 
larger cal1 subcavity to the more crowded confines of cal2 & cal3  and then back again. 
Despite high occupancy, locale-specific H-bonding interactions with the hydroxyl 
moiety that penalise per-bond TΔSOr in the hydroxyl segment, the greater variety of 
minima accessed by bonds in the terminal segment result in ameliorated summed TΔSOr 
losses in the majority of 3Z-olefins (Fig.4.23.d). In the case of 3c9, the larger size of 
the ligand results in the terminal segment being more tightly constrained, whilst the 
hydroxyl segment sees a concurrent increase in the number of available minima. These 
observations indicate that the proposed cumulative (group) effect of adding a methylene 
is likely to be an over-simplification as the concomitant change in ligand dynamics is 
not straightforward. 

4.3.8. Trends in summed ligand T∆SIn & T∆SOr values

4.3.8.1. The orientational entropy possesses internal and external components
Computational methods have to necessarily obtain thermodynamic values of interest 
by building up the total from smaller component parts. In order to estimate the total 
ligand TΔSOr orientational entropy, summed TSOr•B values were subtracted from TSOr•F 
(Fig.4.26 & Table.4.10). The resulting trends are a 1st order estimate as correlations 
between orientational DOF have not been taken into account. Thus, the values are 
higher than expected. Second or higher order estimates are expected to reduce the 
magnitude of the final sum. The accuracy of the summed TΔSOr values will be fully 
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discussed in §4.4.1 as it should be considered within the context of the total ligand 
entropy loss on binding. For now, trends in the data are examined.

As previously discussed, the orientational component (as defined in this work) contains 
an implicit contribution from internal DOF and the method utilised in this chapter 
cannot deconvolute the two in the first instance (§4.1.3). However, it should be 
theoretically possible to obtain a retroactive estimate of the “pure” rotational entropy 
(TΔSRo) via eqn.4.16. 

In order to accomplish this, TΔS In was recalculated with the method described 
in §3.2.4 and data from the aggregate 1.2 ms trajectories was utilised to ensure that 
exploration of phase space was identical to that of the orientational component 
(Table.4.11). Doubling the amount of data points does not significantly perturb the 
values obtained in chapter 3.0 and the internal contribution remains small (Table.3.7). 
As previously demonstrated, only relative differences between free and bound states 
have physical significance and differences in (bin) calibration between orientational 
and internal DOF would introduce errors into the subtraction of the end state values 
e.g. TSRo•B = TSOr•B - TSIn•B. The partitioning of global values such as the entropy into 
internal and external DOF is arbitrary and only exists for ease of calculation 303,304. It is 
always preferable to obtain the best estimate of the total entropy, and the orientational 
entropy (as defined in this work) could theoretically provide a much better approximation 
for the loss of a flexible ligand’s DOF compared to the conformational entropy. This is 
because TΔSOr implicitly accounts for both internal and external factors when assessing 

Fig.4.26. Total TΔS
Or
 values are made up of contributions from TΔS

In
 and TΔS

Ro
 and in the case of flexible 

molecules, these cannot be calculated separately with the method used in this chapter. Hence, TΔS
In
 is calculated 

independently and subtracted from TΔS
Or
 to yield an estimate for TΔS

Ro
. The results were generated from 1.2 ms 

simulations and demonstrate that the rotational contribution is much larger than the internal contribution, which 

is negligible. (a) Total TΔS
Or
 (solid lines) and TΔS

In
 (dashed lines) obtained by summing per-bond entropies for 

ligands in n-alkanol and 3Z-olefin panels. (b) Estimated TΔS
Ro

 values for both ligand panels (eqn.4.16).
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the motions of bond rotors. Of course, this claim would be dependent upon accounting 
for second order or higher correlations. Fortunately, at the time of writing, this feature 
is currently in the final stages of development. Values for TΔSRo are presented here 
only to illustrate the relationship between TΔSOr and TΔS In (Table.4.10-11 & Fig.4.26). 
In this particular instance, the ligand possesses multiple bound minima and the 
internal contribution is negligible when compared to the rotational contribution. It is 
likely that a small contribution from internal DOF would also be observed in other 
promiscuous protein-ligand interactions due to the flexibility of ligands and protein 
binding sites (§4.1.1). Thus the established practice of merely accounting for the ligand 
conformational entropy could well introduce errors into the total binding entropy - a 
fundamental thermodynamic driving force.

4.3.8.2. Summed TΔSOr inter-panel trends
The shape of the n-alkanol trend line for summed TΔSOr is similar to that obtained for 
TΔS°Po (Fig.4.16 & Fig.4.26) and this reflects the relationship between ligand location 
within the cavity and the correlated effect on orientational DOF (§4.3.6). Surprisingly, 
the first 2 ligands in the n-alkanol panel suffer reduced TΔSOr losses compared to their 

TSOr•B TSOr•F TΔSOr

hex 27.98 ± 0.92 37.84 ± 0.00 -9.85 ± 0.92
hep 31.70 ± 0.60 44.15 ± 0.00 -12.45 ± 0.60
oct 27.39 ± 0.82 50.46 ± 0.00 -23.07 ± 0.82
non 30.63 ± 0.87 56.74 ± 0.00 -26.11 ± 0.87

TSOr•B TSOr•F TΔSOr

3c6 23.10 ± 1.10 37.84 ± 0.00 -14.74 ± 1.10
3c7 27.54 ± 1.10 44.15 ± 0.00 -16.61± 1.10
3c8 34.87 ± 0.70 50.46 ± 0.00 -15.59 ± 0.70
3c9 34.97 ± 1.50 56.74 ± 0.00 -21.80 ± 1.50

Orientational Entropy (kJ/mol)
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Table.4.10. Total orientational entropies 

obtained by summing per-bond entropies. 

Errors shown as standard errors.

TΔSIn TΔSRo

hex -0.54 ± 0.31 -9.30 ± 0.97
hep -1.02 ± 0.25 -11.43 ± 0.65
oct -1.88 ± 0.31 -21.19 ± 0.88
non -1.47 ± 0.33 -24.66 ± 0.93

TΔSIn TΔSRo

3c6 -0.69 ± 0.39 -14.05 ± 1.17
3c7 -1.03 ± 0.36 -15.58 ± 1.16
3c8 -0.47 ± 0.27 -15.12 ± 0.75
3c9 -0.77 ± 0.41 -21.03 ± 1.56
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Table.4.11. Total internal and rotational contributions 

obtained from 1.2 ms simulations. Rotational entropy calculated 

via eqn.4.16. Errors are shown as standard errors and have 

been propagated for the rotational contribution.
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unsaturated analogues (Fig.4.26). This is an unexpected result because the initial 
hypothesis stated that the offset (linear) entropic signatures obtained from the ITC data 
(Fig.3.1) were principally derived from the loss of ligand DOF. As TΔS°Po values for 
all the compounds tested were relatively similar (Fig.4.16), losses in orientational DOF 
were expected to yield the correct entropy differential that separated the trend lines of 
the two panels. As this is not the case, summed TΔSOr trends suggest that the ligand 
contribution cannot be the sole reason for the global ITC signatures.

In terms of the simulation data, the underlying rationale for this difference is partially 
derived from disparities within the H-bond network of the various complexes. Both 
shorter n-alkanol ligands preferentially H-bond to residues within the W loop with 
relatively low occupancies and as a result, most of their constituent bonds occupy the 
less crowded environment provided by cal1 for large proportions of time (Fig.4.20). 
Per contra, their unsaturated analogues (3c6 and 3c7) possess high occupancy H-bonds to 
two residues situated near the middle of the calyx: TYR120 and ALA103 (Fig.4.10). 
Thus, a comparatively greater proportion of time is spent in cal2 & cal3. This disparity 
results in the two shorter n-alkanol compounds being able to access a greater variety of 
orientational minima than their unsaturated analogues (Fig.A2.3-4). 

4.3.8.3. Summed TΔSOr intra-panel trends
The first 3 compounds in the 3Z-olefin panel have identical orientational entropy 
contributions within error and the resulting trend is almost flat. As the ligand’s terminal 
segment can switch between tsubcavities with high frequencies, the bonds within 
this segment enjoy relatively elevated values of TΔSOr compared to bonds within the 
restrained hydroxyl segment (Fig.4.23.d). As the length of the ligand is increased (3c6 
--> 3c8), the terminal segment becomes more restrained, whilst the hydroxyl segment 
undergoes a compensatory increase in mobility. There are more bonds in the terminal 
segment than in the hydroxyl segment, and the imbalance in bond number results in 
the first 3 ligands within this panel roughly “breaking-even” in terms of summed TΔSOr 

values (Fig.4.23.d and Fig.4.26). As bound 3c9 is more likely to be displaced and fixed 
within cal2 & cal3, most of the bonds within the terminal segment become restrained 
and the increased dynamics of the (fewer) bonds that make up the hydroxyl segment 
cannot quite ameliorate the overall loss in orientational entropy.

The trend line describing n-alkanol ligands comes closest to approximating the linear 
trend produced by global ITC data. Yet, the result indicates that the two shorter ligands 
are in a different subset to the longer ligands because there is a ~10 kJ/mol difference 
between hep and oct, whilst a mere ~2.5 to 3.0 kJ/mol difference separates ligands 
within each subset. This disparity could be rationalised by recalling that ligands within 
each subset occupy broadly similar translational states that have been shown to have a 



Chapter 4.0218 219

correlated effect on bond orientations (Fig.4.13 & Fig.4.21), but it would be unwise to 
make this proposition without a thorough assessment of convergence: the Achilles heel 
of MD. 

4.3.9. The implications of non-conforming non-convergence

4.3.9.1. The difficulties in assessing convergence
It is incredibly difficult to gauge whether a simulation has converged or not. Typical 
visual metrics may indicate convergence, but could actually be reporting a quasi-stable 
distribution and measured values could potentially change again upon the discovery 
of regions of phase space previously inaccessible due to high energy barriers (§4.3.6 
& §4.3.9.2). Thus, simulation software cannot a priori deliver the correct Boltzmann 
weighted ratio of stable states that make up the ergodic distribution, because this is 
usually unknown. The best remedy against this is to run multiple long (> 1.0 ms) 
independent simulations (ideally N > 20) to maximise the probability of discovering new 
states and ensuring that their relative populations have stabilised 219. The application 
of this measure to moderate sized (~150 residues) biological systems of interest is a 
computationally expensive proposition and few examples in the literature have achieved 
this level of sampling. To recognise when simulations match reality and avoid erroneous 
conclusions, the following checks should be implemented:

1. Monitoring the change in measurements with timescale. 

2. Inter-methodological validation e.g. comparison to NMR spectroscopy, 
ITC, etc.

3. Intra-methodological validation e.g. comparison to other in silico methods.

4. Self-consistency across multiple independent perturbations e.g. constructing 
trends from ligand panels.

In addition to difficulties in finding the resources to extend simulated time, there are 
often issues with inter and intra-methodological validation as other studies often do not 
provide data that allows “like-for-like” comparisons. An expanded discussion of these 
issues is provided in the appendix (§A2.1.4). In conjunction with the first 3 types of check, 
it is feasible, and indeed advisable to assess the internal consistency of multiple MD 
simulations describing a series of perturbations to the same protein. The correlations 
between multiple analyses (such as H-bonding, positional and orientational entropies) 
obtained from a single protein-ligand binding interaction could be dismissed as self-
fulfilling because correlations between the different results could be the consequence 
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of the rules governing the simulation. However,  the inter-woven correlations  between  
trends  obtained  from  a  panel  of  multiple independent binding interactions are more 
reliable, because any disagreement  in  the  trends rapidly highlights inadequacies in 
hypothesis, method and sampling. Thus, if non-convergence is suspected, outliers can 
easily be determined by non-conformance and data from other members in the panel 
used to identify the correct trend. 

4.3.9.2. Bound orientational entropy (TSOr•B) convergence
To assess the convergence of the orientational entropies, TSOr•B values are assessed 
in preference to TΔSOr, because the main source of error is most likely to arise from 
difficulties in sampling the more complex energy landscape of the former contribution.  
As TSOr•F is well converged, TΔSOr assessment would contain a graded offset that adds 
an unnecessary factor into the trends (Fig.4.27). Also note that because this is a 1st 
order calculation, correlations have not been taken into account. Therefore differences 
between ligands have the propensity to become bigger as the number of bonds in the 
compound increases.  

It would appear that whilst hex and hep seems relatively well converged, the other 
n-alkanols do not possess fully equilibrated distributions. The problem is most prominent 
for oct as its TSOr•B value severely disrupts the panel trend. Oct also encountered more 
convergence problems compared to non when TS°Po•B values were considered (§4.3.3.4). 
As previously discussed, the rationale for this is likely to be because oct has the potential 

Fig.4.27. Convergence for summed TSOr•B and TSOr•F values were assessed over 1.2 ms of aggregate simulation 

time for both ligand panels. The number of points made available to the entropy calculation were iteratively increased 

by 6 x 104 (60 ns) each round. Solid black lines show the value calculated for the full 1.2 ms, whilst coloured dashed 

lines indicate how the entropy total for a given ligand changes with better sampling. Some of these lines cannot be 

discerned as they are overlaid and ligands that possess small separations in-between different dashed coloured 

lines indicate good convergence. Greater visibility of cyan and green dashed, coloured lines are discernable near 

points that have convergence issues. 
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to move between different positional minima but tends to remain trapped within a 
given minima within the simulated time. Obviously, this has a correlated effect on the 
orientational distributions (Fig.4.21). On the other hand, 3Z-olefins possess greater 
facility to transition between bound positional minima and this concurrently increases 
the availability of orientational minima. Though 3Z-olefins can discover new minima 
more rapidly, there are issues with establishing the stable Boltzmann ratio of states 
within the simulated time. Thus, there are large swings in TSOr•B as more data points 
are added to the calculation. Again, larger ligands in this panel have greater difficulties 
in transitioning between minima. In order to probe the effect of increased sampling, an 
additional 1.2 ms simulation of bound oct was run. 

Values for TS°Po•B and TSOr•B were recalculated for the concatenated 2.4 ms oct trajectory, 
and entropic increases of 1.36 kJ/mol and 3.97 kJ/mol were obtained respectively. The 
new values modify the trend lines so that TS°Po•B values across the panel of ligands 
become more linear and the increase in TSOr•B brings oct more into line with the trend 
set by its neighbours (Fig.4.28). As there are more DOF involved in the calculation of 
summed orientational entropies compared to positional entropies, it is expected that 
there would be greater difficulties in convergence of the former contribution. Moreover, 
it is apparent that full convergence still has not been attained after 2.4 ms. The increase 
in the bound entropy narrows the difference between bound and free states, and if 
sampling time for all ligands were extended, it is expected that linear increases in line 
with ligand length would be observed. These effects are expected to be less pronounced 
for both smaller ligands compared to oct and non.  This is because larger ligands have 
more difficulties in accessing different positional minima. Interestingly short (10 ns) 
simulations of n-alkanes binding to MUP performed by Wang et al. (2011) obtained 
identical free energy values for oct and non using the WaterMap program 281. In response 
to the failure of this solvent-focussed approach, the group modified their program with 

Fig.4.28. The convergence for total TSOr•B and TS°Po•B was assessed over 1.2 ms of aggregate simulation time for 

the n-alkanol ligand panel. The magenta triangle marks the value returned by the entropy calculation on extending 

oct to 2.4 ms.  
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an additional corrective factor to account for an additional methylene group possessed 
by non occupying cal3. Whilst this approach had the effect of linearising the intra-panel 
free energy trend-line, the modification is based on a static perception of binding. It 
does not deal with convergence by explicitly accounting for dynamic ligand switching 
between subcavities; a sampling dependent factor that affects the final results in terms 
of the enthalpies and entropies; and consequently the free energies. 

Fig.4.29. (a) 2D Projections comparing the COM distributions of bound oct obtained from 1.2 ms with 2.4 

ms worth of sampling. It can be seen that there is increased occupation of cal1 with increased sampling. The 

highest density minima correspond to localities within the calyx where oct can adopt vertical and horizontal poses. 

(b) Isolated 0.2 ms segments from the beginning and end of the 2.4 ms trajectory correspond to vertical and 

horizontal poses respectively. Averaged protein and ligand coordinates were generated from all segment frames to 

illustrate the difference between poses. Note the significant differences in ligand pose and protein residues: PHE41, 

TYR97 and PHE90. (c) The frequency of C3-C4 bond switching measured via distance displacements of that bond 

over the 2.4 ms concatenated trajectory. A rolling average (white line) was calculated using a 2 ns window. Dotted 

blue lines mark the boundaries of the independent, component 0.2 ms trajectories that were aggregated to yield 

the initial 1.2 ms dataset (top). The second 1.2 ms dataset (bottom) was obtained from a single, long trajectory. 

This demonstrates that the C3-C4 bond in oct tends to dwell within stable minima for long periods of time and the 

ligand has difficulty switching from vertical to horizontal poses. The baseline for ligand vertical poses occupying 

cal1, cal2 & cal3 is ~1.0 Å, whilst horizontal poses adopted in cal1 are marked by a baseline of ~2.0 to 3.0 Å. 

Segments at the beginning and end of the concatenated trajectory were isolated to perform cluster analysis on the 

two key ligand poses and are labelled in the figure (§4.3.9.3). 
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X-ray crystallography structures suggest that oct and non are more likely to adopt a 
vertical pose, but other factors relating to the crystallisation process (such as crystal 
packing) cannot be ruled out 36. Nonetheless, the increase in measured entropies must 
be the result of substantial occupation of new minima, and analysis of the COM 
displacements indicates that bound oct increases its adoption of horizontal poses within 
cal1 in the 2.4 ms trajectory, (Fig.4.29.a). On plotting the COM displacements of the C3-
C4 bond versus time it can be ascertained that the additional 1.2 ms extension begins 
with oct occupying a vertical pose in cal2 & cal3 (Fig.4.29.c). Around 1.3 ms it switches 
orientation to adopt horizontal poses and the body of the ligand begins a long lived 
occupation of cal1. This is a stochastic phenomenon and additional long simulations 
are likely to see stable occupation of either pose in their respective positional minima. 
For this reason it would take a great many repeats to build up the correct stable ratio 
of minima that best approximates the ergodic distribution. Due to its larger size, bound 
non has a lower probability of switching between poses and this problem would be 
greatly exacerbated. 

The freedom of the ligand to move within the pocket is likely to be affected by 
the particular region of the calyx it is situated in, and the next section assesses this 
relationship.

4.3.9.3. The principal regimes governing ligand dynamics (clustering II)
The discussion so far has highlighted the importance of the C3-C4 bond as the crux 
around which ligand dynamics revolves. The disparate pieces of evidence gleaned 
from multiple sources strongly suggest that ligand dynamics in MUP is governed by 
two distinct regimes. The first reigns within the larger enclave formed by cal1 and the 
second in the smaller territories demarcated by cal2 & cal3. Shorter ligands are better 
able to fully occupy cal1 by adopting a horizontal pose. However, longer molecules 
have a much greater probability of adopting a vertical pose on being displaced down 
into cal2 & cal3. In this locality, the intrusion of protein sidechains limits space and 
consequently, bonds are more restrained. To recapitulate the findings of §4.3.6, the 
flexible C3-C4 bond disfavours rigid body COM displacements and longer saturated 
ligands tend to occupy localised positional states for longer periods of time compared to 
their unsaturated analogues. Conversely, the rigid double bond introduces a curvature 
into 3Z-olefin ligands that facilitates the extraction of the hydrophobic tail from cal2 
& cal3 because the C3-C4 bond is able to rapidly switch its orientation. This results 
in greater positional and orientational displacements. As most 3Z-olefins can switch 
between both regimes with higher frequencies than n-alkanols, improved per-bond 
TΔSOr in the bonds constituting the terminal segment are the results of two key factors:

1. The confinement of the terminal segment of 3Z-olefins within cal2 & cal3 is 
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associated with unfavourable reductions in positional and orientational entropy. 
However, this is compensated by favourable entropic contributions arising 
from increased displacements into cal1, the more spacious upper chamber. 
3c9 is the exception within this panel as it spends a greater proportion of time 
with its hydrophobic tail displaced into cal3 due to its larger size. Moreover, 
the number of contiguous methylenes in unsaturated ligands is disrupted by 
the double bond and crankshaft motions are unlikely to occur, as at least 
4 successive methylenes are required (§3.3.6.2). This requirement is only 
satisfied in the longest ligand, 3c9 (Fig.4.23.d). In contrast, analysis of the 
1.2 ms trajectories indicated that longer n-alkanols tended to remain trapped 
within cal2 & cal3. Hence, crankshaft motions observed in per-bond TΔSOr 
trend lines are more pronounced (Fig.4.22.d).

2. In 3Z-olefins, the high frequency of switching between vertical and 
horizontal poses result in a greater spread of orientational minima than 
that observed for n-alkanols within 1.2 ms of simulated time. Thus, even if 
ligand size is increased, the greater number of accessible minima significantly 
ameliorates ligand entropy losses. The benefit can clearly be observed in the 
elevated TΔSOr entropies measured for bonds in the terminal segment of 
most 3Z-olefins, because this portion of the ligand is not restrained by polar 
interactions and can easily “flip” between subcavities (Fig.4.23.d).

The veracity of these statements can be established by analysing subsets of the 
concatenated 2.4 ms trajectories constituting the clusters that separate horizontal and 
vertical binding poses (Fig.4.29.c). Bound oct is a good candidate for such an analysis 
because the extended 2.4 ms trajectory contains two well-populated clusters that 
correspond to both poses (Fig.4.29.a,b). Fortuitously a complex cluster analysis is not 
required because oct remains within positional minima for long periods of simulated 
time and baseline shifts of the C3-C4 bond provide a excellent metric by which poses 
can be separated. Hence, a 0.2 ms segment was taken from the beginning and end of 
the 2.4 ms trajectory. These correspond to clustered ligand vertical and horizontal poses 
respectively. Visual inspection of these isolated trajectory subsections and averaged 
ligand binding orientations indicate that there is little (if any) cross-contamination 
between the two poses (Fig.4.29.b). 



Chapter 4.0224 225

The isolated clusters were used to recalculate the per-bond TSOr•B entropies for each 
pose (Fig.4.30.a). The results indicate that summed TSOr•B values (6.2 kB) obtained 
from the horizontal pose are on average, equivalent to those obtained from the vertical 
pose (6.1 kB). As fewer data points are used in the calculation, the overall magnitude of 
summed values obtained for each 0.2 ms cluster (Fig.4.30.a) is less than that obtained 
for the full 2.4 ms trajectory (Fig.4.30.b). More importantly, the minima described 
by the two very different poses are not simultaneously factored into the calculation 
(§4.3.6). To illustrate, the ligand initially adopts a vertical pose which generates a 
characteristic (alternating) pattern in the per-bond trend line. As more points are added 
to the calculation, increased occupation of the horizontal pose results in the pattern 
becoming less pronounced (Fig.4.30.b). This is because localisation of the ligand to the 
two different environments within the calyx generates compensating per-bond TSOr•B 

values which has a linearising effect on the trend line upon accounting for the entire 
dataset i.e. crankshaft motions in the horizontal pose are staggered in a manner that 
directly opposes TΔSOr troughs and peaks produced by the vertical pose.

The ligand’s hydroxyl moiety is (generally) restrained by hydrogen bonds in both 
the poses isolated, but the O1-C1 bond is less restricted in vertical poses compared 
to horizontal poses (Fig.4.30.a). This is because bonds in the terminal segment are 

Fig.4.30. (a) The different per-bond TS
Or•B

 trend lines obtained for vertical (solid red) and horizontal (dashed 

blue) poses for bound oct. 0.2 ms clusters representing each pose were isolated from the beginning and end of the 

extended 2.4 ms trajectory (Fig.4.29.c). The solid grey line plots the arithmetic mean of bonds in each cluster. 

(b) Per-bond TS
Or•B

 convergence calculated from subsets of the full 2.4 ms trajectory. In the first 1.2 ms the ligand 

principally occupies the vertical pose, whilst the remaining time is overwhelmingly spent within the horizontal pose 

(Fig.4.29.b). Thus, on providing additional data points to the calculation, there is a transformation between the 

pronounced alternating pattern (due to crankshaft motions) arising from localisation to cal1, cal2 & cal3 into a 

more linear trend line. This is the result of greater localisation in the spacious environment offered by cal1 and the 

opposing per-bond TS
Or•B

 trend generated by the horizontal pose.
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more tightly constrained within cal2 & cal3 and when the ligand adopts vertical poses, 
the crowded environment promotes pronounced crankshaft motions that effectively 
redistribute per-bond TSOr•B values throughout the body of the ligand. Per contra, when 
adopting horizontal poses, the terminal segment possesses greater freedom in cal1 , 
and TSOr•B baseline values show a graded increase as bond distance from the ligand’s 
H-bonded hydroxyl group increases. However, the persistence of crankshaft motions in 
this pose indicates that ligand H-bonded aided localisation of one end of the compound 
plays an important role in the promotion of this phenomenon. This is probably because 
this strong polar interaction assists in maintaining the co-linearity of the terminal bonds 
(§3.3.6.2). 

Despite increasing ligand size, 3Z-olefins roughly break even in terms of summed 
positional and orientational entropy penalties due to their facility to switch between 
subcavities with ease. This is further discussed in §4.4.1.

4.4.0. Conclusion
The results provided in this chapter indicate that the hypotheses formulated in 
chapter 3.0 requires modification as the internal view of dynamics did not sufficiently 
account for the size of the binding cavity and alternate ligand binding poses. A more 
comprehensive hypothesis can now be formulated subsequent to obtaining the positional 
and orientational entropies, because bound compounds that retain significant residual 
motion possess convoluted dynamics that are the result of interwoven contributions 
from both internal and external sources. This necessitates a holistic treatment that 
combines analyses from as many entropic contributions as possible. 

4.4.1. Total external and internal ligand entropies

In order to establish whether the global ITC entropic signature (TΔS°Glo) chiefly arises from 
the ligand, orientational and positional entropy differences (TΔS°Lig = TΔS°Po + TΔSOr) 
were summed to yield total ligand entropy contributions (Fig.4.31 & Table.4.12). It is 
clear that summed entropies are too high for two primary reasons:

1. This is a 1st order calculation and correlations between orientational DOF 
have not been taken into account. Hence, the true magnitude of TΔS°Lig 

should be much lower than that calculated. This could be more pertinent for 
3Z-olefins as the analysis performed in §4.3.7.2 indicated that bonds within 
the terminal segment undergo correlated shifts in orientation as the ligand 
switches between horizontal and vertical poses. 

2. Larger ligands such as oct, non and 3c9 disrupt the trends of their respective 
panels. As discussed in §4.3.9, this is primarily due to the difficulty of obtaining 
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simulation data that fully represents the correct Boltzmann ratio of states. In 
the case of oct, TΔS°Lig losses are ameliorated on increasing representation of 
undersampled horizontal poses, and the n-alkanol trend line becomes more 
linear (magenta triangle in Fig.4.31). Likewise, further sampling for the other 
ligands is required to correct the slope and offset of both panel trend lines. In 
an ITC aliquot containing 3.4 x 10-5 Moles of protein, there are approximately 
hundred quintillion protein molecules that exist in bound, unbound or 
intermediate states. Due to technological limitations, it is currently impossible 
to obtain an equivalent amount of protein-ligand conformational sampling via 
MD. However, methods such as metadynamics and accelerated molecular 
dynamics offer an avenue through which the correct Boltzmann ratio of stable 
states can be sampled 134,135,377–382.

As discussed in §4.1.2.5, it is very difficult to experimentally decompose entropies into 
component contributions due to broad nature of underlying assumptions. The ultimate 
determination of in silico accuracy would be achieved by the calculation of the protein, 
ligand and solvent entropy, so as to yield the total system decomposition. However, 
this is a challenging and ambitious goal which will require 2nd to 3rd order calculations 
to achieve pinpoint accuracy. This is beyond the reach of this work, but the 1st order 
entropic trends generated from multiple independent simulations afford the ability to 
assess the veracity of calculated values and make conclusions regarding the disparate 
contributions that compose the global entropy.

In the case of the n-alkanol panel, hex and hep are very close to the experimental values, 
and it is likely that the data points for both of the longer ligands will also come very close 

Fig.4.31. Total ligand contributions (TΔS°
Lig

) for ligands in both panels were calculated by summing total 

positional (TΔS°
Po

) and orientational entropy (TΔS
Or
) contributions (solid lines). These values also include internal 

contributions. The magenta triangle marks the value returned by the entropy calculation on extending oct to 2.4 ms. 

Global ITC values are depicted as dashed lines and the scale used for the y axis is the same as Fig.1.a in Malham 

et al. (2005) 36. No ITC data is available for 3c9.
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to the ITC values on increasing sampling. However, it is doubtful whether restriction 
of ligand DOF is the sole reason for measured TΔS°Glo values because computed values 
for ligands in the 3Z-olefin panel are too far away from the experimental values. These 
unsaturated ligands are already very dynamic and additional sampling is unlikely to 
fully close the gap between TΔS°Glo and TΔS°Lig. On considering the magnitude of the 
shift in the TΔS°Lig data point for oct on increasing sampling, it is likely that TΔS°Lig will 
range from ~ -15 to -23 kJ/mol for all the ligands tested here on increasing the number 
of simulation repeats and accounting for higher order corrections. We are currently 
in the process of confirming this and if this is indeed the case, computed values for 
3Zolefins would be higher than the experimental values, whilst n-alkanols should be 
lower. Regardless, a pinpoint accurate calculation of TΔS°Lig is not required to establish 
that the observed TΔS°Glo trends for both ligand panels are not be principally derived 
from the loss of ligand DOF. The argument for this will be outlined in §4.4.2 and 
proven in chapters 5.0 to 6.0. 

In order to address the key hypotheses posited in §4.1.4.1, TΔS°Lig trends will be 
described on a per-panel basis and compared to global ITC values. These hypotheses 
are restated below:

Hypothesis-1: Extending ligand length by a single methylene group yields an enthalpic 
gain due to increased protein-ligand van der Waals contacts. However, a compensating 
entropic penalty of 5.4 kJ/mol is paid due to the addition of a rotor which inevitably 
becomes restrained on binding 36.

TΔSPo TΔSOr TΔSLig TΔSITC TΔΔS (Expt - Calc)
hex -7.50 ± 0.28 -9.85 ± 0.92 -17.35 ± 0.96 -19.3 ± 0.6 -1.95
hep -7.64 ± 0.42 -12.45 ± 0.60 -20.09 ± 0.73 -20.9 ± 0.4 -0.81

oct 
(1.2ms)

-9.31 ± 0.48 -23.07 ± 0.82 -32.38 ± 0.95 -22.4 ± 0.6 9.98

oct 
(2.4ms)

-7.95 ± 0.40 -19.10 ± 0.75 -27.06 ± 0.85 -22.4 ± 0.6 4.66

non -8.32 ± 0.51 -26.11 ± 0.87 -34.43 ± 1.01 -24.8 ± 0.5 9.63

TΔSPo TΔSOr TΔSLig TΔSITC TΔΔS (Expt - Calc)
3c6 -9.10 ± 0.31 -14.74 ± 1.10 -23.84 ± 1.14 -13.1 ± 0.4 10.74
3c7 -8.40 ± 0.41 -16.61± 1.10 -25.01 ± 1.17 -11.8 ± 0.3 13.21
3c8 -8.00 ± 0.35 -15.59 ± 0.70 -23.59 ± 0.78 -15.7 ± 0.6 7.89
3c9 -7.71 ± 0.60 -21.80 ± 1.50 -29.51 ± 1.62 na na

n-
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Total Ligand Entropies vs. Global ITC Data (kJ/mol)

Table.4.12. Comparing globally measured ITC values to computationally generated entropy values. 
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Hypothesis-2: Disabling a rotor via introduction of a double bond avoids the entropic 
penalty on binding as this debt has been paid during the process of chemical synthesis 36,178. 

Hypothesis-3: Pre-organisation of the ligand (i.e. 3Z-olefins) so that the structure 
complements the shape of the binding site ameliorates entropic penalties by virtue of less 
strain being imposed on the ligand 174,177–179.

Strictly speaking, hypotheses-1-2 specifically refers to the restriction of internal DOF. 
However, this contribution was found to be negligible and it is of interest to test these 
hypotheses against the loss of all ligand DOF to see if they have any merit. In the case 
of the n-alkanol panel, the loss of ligand internal and external DOF are correlated with 
the addition of a rotor and this partially validates hypothesis-1 in terms of increasing 
ligand size and greater amounts of restriction. However, TΔΔSLig values obtained by 
calculating the difference between the two shortest members of the panel (~2.5 kJ/mol) 
do not fulfil the theorised prediction of a 5.4 kJ/mol penalty paid on extending the 
ligand by a rotor. This is because bound compounds retain considerable residual motion 
and the proposed value of 5.4 kJ/mol is an overestimate based upon the cyclisation of 
saturated hydrocarbons (§3.3.4) 171.  Unfortunately the values returned for oct and non 
are not converged, so additional evidence from this panel remains to be obtained. On 
the other hand, TΔS°Lig values for the first three members of the 3Z-olefin panel are 
identical within error and TΔΔSLig is < 1.5 kJ/mol. So, even after allowing for the loss 
of all ligand DOF, a systematic group penalty for each additional methylene group is 
not realised.

The 3Z-olefin panel constitutes a particularly interesting perturbation because 
the dynamic behaviour that arises from a seemingly small ligand modification was 
impossible to predict a priori. The change in molecular shape and rules governing its 
motion resulted in complex interactions with the other entities within the system. 
Rather counter-intuitively, TΔS°Po values marginally improved with increasing ligand 
length whilst summed TΔSOr values for the first 3 ligands in the series were identical 
within error (Fig.4.16, Fig.4.26 & Table.4.12). Due to the dynamic complexity of 
these unsaturated compounds, summed inter-panel TΔS°Po and TΔSOr contributions 
are identical within error and the final TΔS°Lig trend line remains relatively constant 
(~ -24.1 kJ/mol). As 3c9 is unlikely to be fully sampled for similar reasons to oct and 
non, no special physical significance is attached to the lower value obtained for this 
ligand. TΔS°Lig values that compose the trend line are (too) far away from TΔS°Glo 
and it is likely that other (non-ligand) contributory factors will further modulate the 
magnitude and slope of the final trend. The results indicate that hypothesis-2 is too 
simplistic a rationale for the observed behaviour as introduction of a double bond does 
not result in a graded trend line with a systematic differential betwixt panel members. 
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Indeed, TΔS°Lig values remain relatively constant. As discussed in §4.3.5-7, 3Z-olefins 
avoid TΔS°Lig losses on increasing ligand length due to their shape, structure, and 
ability to adopt differential H-bonding patterns. The combination of these three factors 
allows them to dynamically switch between orientations and positions with much 
higher frequencies than n-alkanols and thus access a greater variety of states. For this 
reason, hypothesis-3 is partially correct as the mechanism described does result in less 
“strain” in 3Z-olefins due to shape complementarity. However, as hypothesis-3 is rooted 
within a static concept of binding, it does not account for the dynamic switching of 
these unsaturated ligands between subcavities, and is thus too vague to be universally 
applicable to all protein-ligand binding systems. 

All three of these hypotheses are the simplest explanations for the difference in the 
global ITC trend of n-alkanols versus 3Z-olefins. Testing them has ensured that the 
principles embodied by Occam’s razor have been followed. This law advises that 
problems should be solved via the simplest explanations possible, whilst ensuring that 
the number of explanations is not multiplied needlessly (parsimony). As none of the 
tested hypotheses are universally applicable to the trends exhibited by all the ligands, 
it is useful to be reminded of Hickam’s dictum which states that “patients can have as 
many diseases as they damn well please”. This is the medical counterbalance to the 
parsimonious approach advocated by Occam’s razor and reminds the doctor that a 
particular diagnosis should never be excluded on the grounds that a greater amount of 
diagnoses violates Occam’s razor. This is because the parsimony principle refers to new 
assumptions, not additional diagnoses which are entirely possible, and indeed likely 
with increasing patient age 383,384. In a similar vein, the description of the relationships 
between position, orientation and H-bonds offer a more comprehensive, albeit complex 
hypothesis regarding the main factors that modulate ligand entropy. The proposals 
have been refined by assessing the trends exhibited by these distinct factors and account 
for the relationships between them. Because this fully explains the data obtained from 
8 different complexes, they are considered to be more reliable than the simpler, initial 
hypotheses which do not account for all the observations.

Quantification of TΔS°Lig does not unequivocally indicate whether the restriction of 
ligand DOF is the sole reason for global entropy losses on binding. However, it is very 
likely that linear trends will captured from multiple independent simulations on accounting 
for the required level of sampling. Having analysed the subset of the DOF that constitute 
the ligand, the apportioned thermodynamic values should be further tested within the 
context of the superset of components that make up the entire system. So, the next 
section scrutinises the falsifiability of the ligand-centric theories posited in this chapter 
by gauging how calculated TΔS°Lig values fit within a total decomposition of the entire 
system.
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4.4.2. Predictions for the total system thermodynamic decomposition

As thermodynamic data describing the binding of various ligands to MUP were 
uncovered, several thermodynamic decompositions based on the experimental data 
to-hand were proposed along with a single in silico based decomposition 34,89,91,100,163. 
The focus of these analyses was primarily on the binding of IPMP and IBMP to 
MUP. Consequently, whilst there are differences in the thermodynamic characteristics 
of those hydrophobic ligands compared to the n-alkanols studied in this work, many 
of the core principles are still applicable. In terms of the binding of the alcohols, a 
key assumption underlying the thermodynamic decomposition that led the initial 
hypotheses is that the protein contributes minimally to the global entropic signature 36. 
Thus, restriction of ligand DOF and ligand desolvation were identified as the principal 
contributors. However, the assumption is likely to be invalid as the protein contribution 
differs between IPMP and IBMP binding to MUP (Table.1.3). Moreover, relaxation 
experiments performed by Zidek et al. (1999) report increased backbone dynamics on 
binding SBT 100. It is somewhat counterintuitive to expect protein DOF to become 
more dynamic on ligand binding but studies on other protein-ligand systems have also 
seen similar increases 385–387. These factors point to a paradigm within which there is a 
differential protein response that is dependent on the identity of the bound ligand. 

It seems very likely that, though the ligand contribution to the total entropy loss on 
binding is relatively large, it cannot account for the offset linear trends captured by 
ITC. The total computed system entropy (TΔS°Sys = TΔS°Lig + TΔSProt + TΔSSolv) is made 
of various contributions that have the potential to accumulate or (partially or totally) 
cancel when summed. As there are more DOF available in the protein and solvent 
components, their contributions are likely to have a substantial impact on TΔS°Sys and 
thus, the magnitude and gradient of the final TΔS°Sys trend lines are likely to be strongly 
affected. 

The increased localisation of n-alkanols on increasing ligand length suggests greater 
interfacial interactions that scale with size i.e. this promotes increasingly favourable 
enthalpic interactions. Thus, it is also likely that the binding of n-alkanols is accompanied 
by graded reductions in TΔSProt because stronger protein-ligand interactions would 
decrease the dynamics of protein residues. Per contra, 3Z-olefins are likely to possess 
reduced interfacial contacts due to substantial residual motion and an unfavourable 
TΔSProt contribution with a shallower slope should be expected. Obviously, this would 
result in an enthalpy that was more unfavourable than that of n-alkanols. If this were the 
case, summed TΔS°Lig and TΔSProt values (for both panels) would inevitably be far more 
negative and unfavourable than reported by TΔS°Glo. As MUP is suboptimally hydrated 
and bound waters are relatively disordered, a large entropic contribution should not be 
expected from protein desolvation. However, as explicated in the literature, the ligand 
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desolvation penalty on binding primary alcohols to MUP affords a positive entropic 
contribution (TΔSSolv) that linearly increases with ligand surface area 36,180,388. In the 
case of the n-alkanols tested here, ligand desolvation entropies range from +57.7 to 
+68.8 kJ/mol at 300 K 36. Thus, the favourable desolvation contribution would 
compensate the overwhelmingly unfavourable protein and ligand contributions to yield 
the values measured by global ITC. To avoid criticism that ligand desolvation and 
protein contributions are invoked as deus ex machina devices that function to smooth the 
narrative, the next two mini-chapters will briefly examine each in turn.

4.4.3. Methodological developments & thermodynamic “rules of thumb”

Ultimately, it is of great importance to benchmark methods to ensure that they attain 
the highest level of accuracy possible and the methods presented here will be further 
developed so as to account for second and higher order correlations. However, an 
argument can be made that pinpoint accuracy in drug design is unnecessary when 
using proven methods because this is expensive and time consuming. It would be more 
efficient to broadly characterise the most important components within the system via 
analysis of the trends exhibited across panels of compounds possessing incremental 
structural differences. This approach easily identifies outliers, and the insights offered 
could rapidly guide the rational modification of ligands during the early stages of drug 
development. 

In this chapter, the total ligand entropy has been “built up” from the smallest tractable 
units applicable to its positional and orientational subcomponents. The unique features 
afforded by the methods developed in this chapter are:

1. Ligand positional entropy: This 3D histogramming method does not 
assume that the underlying COM distribution possesses any functional form 
e.g. the harmonic approximation. Thus, the detailed shapes of distributions 
are better described and TΔS°Po of ligands possessing multiple bound minima 
are more accurately quantified than methods currently in use. Additionally, 
the method’s simplicity allows rapid implementation and execution.

2. Ligand orientational entropy: This method also does not assume any 
underlying functional form to the distribution and the chief benefit of the 
approach is the calculation of the entropic penalty paid on hindrance of the 
principal rotations of ultra-flexible ligands. This is accomplished by calculating 
TΔSOr on a per-bond basis and analysis of the resulting trends affords greater 
insights into the “how and the why” regarding both ligand dynamics and the 
resulting entropic binding signatures. A benefit of this approach is that both 
the conformational entropy (TΔS In) and the rotational entropy (TΔSRo) are 
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captured in a single calculation (§4.3.8.1). To obtain accurate summed results, 
2nd order or higher correlations are required. However, the same problem 
exists when calculating the conformational entropies and this feature is in 
currently the final stages of development.

The reductionist partitioning of the entropy into various internal and external DOF is 
artificial and arbitrary, its chief purpose being to facilitate the description of motion; a 
complex phenomenon that arises from the interaction of its constituent parts and the 
relationships between them. It could be said that motion is an emergent property of the 
definitions of its constituents and understanding this does not afford a priori predictions 
of dynamic behaviour when placed within the context of disparate environments i.e. 
the motion of a body in different environments cannot be qualitatively predicted by a 
theoretical understanding of it’s parts as it is always more than the portrait painted by 
its elemental definitions. This is because the relationships between the various DOF 
have to be taken into account, and inherent uncertainty in the predicted result restricts 
the broad application of what has been deduced in one system to others. This is the 
principal reason why proposed group effects for entropic penalties (e.g. the introduction 
of a double bond) yields inconsistent results 177–179. The entropy has to be captured 
in totality or as close to that as possible. If this is not done, the gap in information 
regarding the system is likely to obfuscate data and vitiate conclusions because entropic 
components have the potential to accumulate and cancel. Even within an ostensibly 
simple system like MUP, complex interwoven dynamics result from seemingly small 
unit modifications to the structure of the ligand. This situation is likely to be applicable 
to many other protein-ligand systems due to the prevalence of promiscuous binding 
and the results demonstrate that contributions from positional and orientational 
components are likely to dwarf that of the commonly calculated conformational entropy. 
Hence, it is necessary to expand the repertoire of methods that accurately quantify the 
entropy and shore the barriers against a rising tide of failed drug-like compounds. This 
chapter has contributed to this goal by reductively characterising three primary factors 
(H-bonds, position & orientation) and holistically integrating them to provide a better 
understanding of the nature of ligand dynamics within MUP. 
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Chapter 5.0: Ligand Internalisation & 

Desolvation

5.1.0. Introduction

This chapter complements the structural/dynamic analysis presented in chapter 4.0 
and further maps the architecture of MUP. Researchers have hypothesised the 

postulated mechanism of ligand entry into the calyx of various lipocalins 72,389–392 and 
others have probed different aspects of cavity and ligand desolvation 90,91,180,393–399. 
However, with regard to MUP, there are still many unanswered questions and 
this chapter attempts to address these by developing a protocol to study the ligand 
internalisation process. This provides insights into some of the underlying mechanisms 
associated with ligand internalisation and also reports on the behaviour of water 
molecules during that process. 
 

5.1.1. Protein-Ligand encounter complexes

According to collision theory, the formation of a bimolecular complex is affected by 
three principal terms relating to collision frequency, optimal structural alignment of 
the interacting entities, and the activation energy. Assuming perfect alignment and 
an activation energy of zero, the rate of association of two equally-sized molecules is 
diffusion controlled and is estimated to be ~109 s-1 M-1. In the case of protein-ligand 
binding, the rate is higher (109 to 1012 s-1 M-1) due to a combination of high ligand 
mobility and the large surface area presented by the protein 400. First contact is unlikely 
to yield optimal protein-ligand contacts and this loose association is known as an 
encounter complex. The overall process can be modelled as a generalised two-step 
model where P and L are the free species, PL* the encounter complex, and PL the final 
bound complex (eqn.5.1) 400–403.

  (eqn.5.1)

The initial formation of the encounter complex is governed by Brownian motion 
and long-range electrostatic interactions between the separated entities in solution. In 
contrast, the lifetime of the encounter complex is characterised by short-range protein-



Chapter 5.0234 235

ligand interactions as the ligand explores the protein surface. As the initial collision 
is unlikely to be near the final binding site, this mechanism acts to reduce the search 
space from three dimensions to two and a classic theoretical study on the binding of 
transcription factors to DNA quantifies this process 401,404. Similar to models describing 
protein folding, this conformational search mechanism is said to shape the binding 
free energy landscape into the form of a funnel that directs the ligand to the final 
complexed state 364,401–403,405–408. Various intermediate transition states within the funnel 
possess differential binding energies due to variations in intermolecular interactions. 
This is postulated to form a free energy gradient that allows the ligand to adopt the final 
bound pose 407,408. Structural features on the surface of the protein such as polar/charged 
residues, proximal and distal to the binding site assist the capture of the ligand and 
its subsequent translocation. Computational mutation of these key residues has been 
shown to affect the association rate and the pathways ligands use to reach  their targets  
403,409. But why is the study of protein-ligand encounter complexes important?

Swinney (2004) criticised current prevalent attitudes in drug development because 
the focus is on delivering thermodynamically tight binding compounds. But kinetic 
factors associated with the open systems typically found within in vivo environments 
are typically neglected 410.  The majority of inhibitors are geared towards competing 
with the target’s native substrate, and thus act to increase its binding affinity (Km) but 
fail to affect its maximum activity (Vmax). This can result in unprocessed substrate 
concentration increasing. Thus, higher compensatory doses are required to maintain 
effective inhibition. A study of the most successful drugs indicated that they could 
be characterised by a two-step model in which an initial equilibrium stage was 
followed by a transition to a non-equilibrium state e.g. irreversible, slow disassociation, 
allosteric interactions via corepressors, etc. Additionally, the mechanisms by which 
these compounds acted were well known in the early stages of development 410. Thus, 
designing drugs that targeted non-equilibrium states allowed Vmax to be more effectively 
targeted and this was preferential to optimising Km. This is a compelling argument 
to study the events that precede the final bound state because understanding these 
association pathways facilitate the design of better small molecule inhibitors. The next 
section provides a brief overview of in silico techniques that assess ligand internalisation.

5.1.2. Ligand internalisation via free diffusion & enhanced sampling

As protein-ligand affinity is described by more than what can be gleaned from equilibrium 
thermodynamics, greater gains can be reaped by studying non-equilibrium association 
processes which reveal interactions crucial to molecular recognition. A popular method 
that assists such investigations is high throughput docking. It allows the mapping of 
putative binding sites and associated ligand binding modes. Speed is prioritised by 
reducing the DOF in the system but this impedes accuracy. Nonetheless, scoring 



Chapter 5.0236 237

functions provide estimates of the binding affinity of multiple candidate compounds to 
a desired target and their rank order can be rapidly determined (§1.4.2). But nowadays, 
there is the requirement for methods that offer greater accuracy, even if this is at the 
expense of speed because computational technology has evolved, and these two factors 
can now be rebalanced. 

In silico calculations can be broadly categorised into endpoint and pathway methods 411. 
The first encompasses techniques such as MM-(P/G)BSA, linear interaction energy 
(LIE) and various methods that capture the entropy differential between free and 
bound states (e.g. Chapter 3.0 to 4.0). Pathway methods were greatly influenced by the 
work of Kirkwood, De Donder and Zwanzig. They include techniques such as FEP, TI, 
double-decoupling and double-annihilation 412–415. As detailed in §2.1.3-4, these methods 
facilitate optimal navigation through the tangled skein of n-dimensional phase space 
via the construction of a discretised path linking target and reference states. In order 
to avoid the computational expense accompanying thorough Boltzmann sampling, 
discrete waypoints along the route are sampled with a biased or unbiased Boltzmann 
factor. Thus, less expensive estimates of the total free energy difference are obtained 
by summing ΔG values calculated from the overlapping zones centred around each 
waypoint 379,411. Whilst these approaches usually deal with in-situ transformations, there 
also exist several techniques that spatially separate end points e.g. umbrella sampling (US), 
steered molecular dynamics (SMD) and targeted molecular dynamics (TMD) 411,416–418. 
In the context of protein-ligand binding, this allows characterisation of the free energy 
profile associated with the route the ligand takes from the unbound state (within bulk 
solvent), to the final bound state. Unfortunately, this approach requires extensive 
sampling and prior knowledge of the path (or reaction coordinate).  Nevertheless, the 
recent advent of accelerated GPU compute capabilities has enabled the development 
of new methods that overcome these limitations. These technological advancements 
also lower the computational cost of using explicit solvent, and this contributes to more 
rigorous results than that offered by docking 411,419.

Pathway methods can fully characterise the ligand binding mechanism both 
thermodynamically and kinetically. For instance, free diffusion (FD) simulations allow 
the ligand to freely diffuse from bulk solvent to its protein target and this totally unbiased 
technique affords mechanistic information on the binding process and facilitates the 
discovery of alternative binding sites. However, it is largely stochastic and limited by 
difficulties in obtaining binding events. In terms of discovering new ligand modes and 
binding sites, efficiency can be increased by flooding the simulation with excess ligand 
and several studies have reported better results with this approach than that obtained 
by docking 420–422. Unfortunately, recovering rigorous kinetic data from FD simulations 
typically requires much more sampling than necessary for the thermodynamic 
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evaluation of equilibrium simulations. This is because the complete free energy 
landscape associated with the ligand’s movement from bulk solvent to its final bound 
position has to be characterised. Nonetheless, this approach allows better understanding 
of binding pathways via the identification of various metastable states on the surface 
of the protein that act to hinder or abet binding 403,405. Early efforts captured valuable 
mechanistic details with relatively little computational expense (100’s of nanoseconds). 
However, limited sampling meant that these attempts fell short of obtaining quantitative 
data on the energetics and kinetics of such processes 423–425. Shan et al. (2011) and 
Buch et al. (2011) reset the bar in charting the free energy topography associated with 
protein-ligand binding by performing simulations that reached microsecond lengths 
when aggregated 419,426. The latter study utilised 495 (100 ns) simulations of the binding of 
benzamidine to trypsin (187 binding events) to construct Markov state models (MSMs) 
that yielded a free energy estimate < 1.0 kCal/mol of experimental measurements. 
Furthermore, they also obtained the associated kon and koff rates. The binding pathway 
could be energetically categorised into a series of metastable states representing the 
ligand’s position in bulk, first-recognition contacts, surface sites that offered greater 
protein-ligand stabilisation, and the final bound state. Benzamidine did not move directly 
into the binding site from bulk because binding was dependent on key interactions 
with these intermediate metastable states. The transitions between states defined rate 
limiting steps and understanding the kinetics associated with internalisation allows better 
inhibitor design. In order to minimise the expense associated with FD experiments, 
the protein was harmonically restrained in the centre of a volume demarcated by an 
additional flat-bottomed harmonic restraint; both of which respectively functioned to 
prevent protein and ligand diffusing away. Later developments in this area saw the 
creation of techniques such as funnel metadynamics which enhances sampling by 
increasing the sophistication of restraints. This acts to further decrease the large free 
volume and limit sampling to functionally relevant areas 411,427. 

5.1.3. Objectives

Having just described the state of the art, it is recognised that the same level of sampling 
cannot be achieved with the resources available to this project. As hardware resources 
were limited, a protocol was developed whereby ligand internalisation could be studied 
in a computationally cost-effective manner. Despite this, the quality of the presented 
results are in line with the achievements of published work within the literature 423–425. 
Simulating ligand internalisation allowed the following questions to be addressed:

1. How does the ligand find the entrance of the occluded cavity?

2. What is the mechanism by which the protein admits ligands into the 
occluded cavity? Can any detail be added to existing atomistic studies done 
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on other lipocalins? 391,392

3. What is the process by which the ligand rearranges itself to adopt poses 
similar to that observed in crystal structures?

4. How many waters are expelled from the pocket on ligand binding?

5. How many waters enter with the ligand on binding?

6. To what extent is the ligand desolvated upon ligand internalisation?

5.2.0. Methods
In order to allow simulation data to be generated, I built a custom-built quad-GPU 
machine to generate all the simulation data. Special thanks go to my industrial sponsor 
Janssen for supplementing my personal stipend with precisely the correct amount to 
achieve this.

5.2.1. Ligand internalisation protocol

Unlike the strategies used by Limongelli et al. (2013) and Buch et al. (2011), no restraints 
were placed on the protein to hold it in place during any production stage. This was 
done to minimise perturbation of the protein’s internal dynamics 411,419.

5.2.1.1. Stage-1 (Free Diffusion): 
Some of the equilibrium simulations utilised in the previous chapters had to be rerun 
as the ligand became unbound for stochastic reasons (Table.4.2). Multiple unbinding 
events allowed the location of the ligand exit to be identified as that proposed by 
Timm et al. (2001) 72. To begin understanding the ligand entry mechanism, four FD 
simulations were set up using the AMBER ff03 force field. The likelihood of success 
was maximised by randomly modelling the 12 different ligands from the three panels 
tested in chapter 3.0  approximately 10 Å away from the protein.  The simulations were 
unbiased in every way apart from the relatively short distance between protein and 
ligands. The solute was solvated with TIP3P waters using a box size of 10.0 Å. Each 
simulation was run for 100 ns using NPT conditions as described in §3.2.3. At the 
end of this process a single ligand (3c9) from one simulation entered the pocket, whilst 
the others drifted away or were involved in non-specific interactions with the protein. 
Examination of this sole internalisation event revealed that the ligand lingered near the 
L3 and W loops within a small depression near the entrance that acted to corral the 
ligand in place. On the basis of these observations, twelve additional simulations were 
run using the protocol detailed below. 
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5.2.1.2. Stage-2 (Targeted to Free Exploration MD): 
Concepts from TMD and FD simulations were amalgamated to create a protocol 
referred to as Targeted to Free Exploration (T2FE) MD. A structure was isolated from 
the stage-1 simulation in which the 3c9 ligand was located within the cupped depression 
formed by the close association of the d strand, L5, L3 and W loops (henceforth referred 
to as the mouth). Bulk waters, ions and other ligands were deleted. The ligand was 
repositioned ~18 Å away from the alpha carbon of TYR84 and four TIP4P-EW waters 
were modelled into the cavity (Fig.5.1). Subsequently all entities were solvated with 
TIP4P-EW waters using a box size measuring 10 Å. All simulations were parameterised 
with the ff99SB-NMR and GAFF force fields.

Two minimisation stages were run for a 1,000 steps each. The first 500 steps used 
steepest descent, whilst the remainder utilised the conjugate gradient method. A non-
bonded cut-off of 12 Å was set. The first minimisation stage held protein and ligand 
fixed in position using a harmonic restraint of 20.0 kcal/mol Å -2, and the second stage 
released the restraint. This was followed by two short 40 ps NVT stages to equilibrate 
the volume and temperature to 300 K with a Berendsen thermostat. A time step of 2 fs 
was used for all subsequent stages. Once again, only the first stage placed a harmonic 
restraint on protein and ligand in order to allow the crystalline-like solvent lattice to 

Fig 5.1. Isolated FD snapshot used as the blueprint for the targeted phase of T2FE simulations. Four binding site 

waters are represented as red spheres. Blue coloured ligand is positioned ~18 Å away from protein in bulk solvent. 

The pink coloured ligand depicts the target pose. Note the transient H-bonds between the ARG60, SER65 and the 

ligand.
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“melt”. The final equilibration stage was an unrestrained short 500 ps NPT simulation 
which, in conjunction with the previous NVT stage allowed both protein and ligand to 
adjust their positions and reorientate. This was followed by a short 8 ps pre-production 
stage in which four NMR style restraints were utilised to move the ligand from its 
location in bulk to the mouth of the calyx. O1, C4, C6 and C9 atoms were respectively 
targeted to ~3.5 to 5 Å of ARG60, ASN37, LEU40 and MET69 with a strong force 
constant of 20 kCal/mol (Fig.5.1). The restraints were then released and a totally 
unbiased production stage (140 ns) commenced under NPT conditions (§3.2.3). 

5.2.3. Ligand and protein desolvation

Two simple methods were used to estimate the number of water molecules stripped 
from the ligand upon internalisation, and bound waters displaced from the cavity.

1.  The cpptraj command watershell was used to estimate the number of 
waters in the ligand’s first solvation shell (< 4.0 Å)

2. After RMS fitting the protein to a reference frame as described in §4.2.2, the 
trajectory was analysed with cpptraj’s mask command to discover the names 
of all waters within 4.0 Å of internal protein residues (TYR120, PHE56, 
LEU101) and the ligand. Subsequently, the distance from each water’s oxygen 
atom to the hydroxyl group of TYR120 was measured. Finally a python script 
plotted the distances after applying a filter that assessed whether each water 
molecule remained within 10 Å of TYR120 for more than 20 ps. Waters 
failing to meet this criterion were not plotted as they were judged to be in bulk. 
Accepted water molecules were confirmed via visual inspection.

5.2.4. Entropic cost of bound water

The positional entropy contributions for bound waters were calculated using the 3Dh 
method described in §4.2.4.2 using 60 bins along each axis. The entropy of a free 
TP4 water molecule was calculated from simulations run using the protocol detailed in 
§4.2.1.3.

5.2.5. Other analysis

Images and videos of simulation data were made with UCSF Chimera 227. Graphs and 
other data analyses utilised Python 226. The method used for 2D COM density maps is 
detailed in §4.2.2.
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5.3.0. Results & Discussion

5.3.1. Surface encounter complexes

Though the initial FD simulations were a means to an end, they offer some insights 
into potential metastable states that could be later targeted via US or MSMs for more 
quantitative analysis. Whilst the solvent-facing surface of MUP is largely covered by 
extended hydrophilic residues (purple), the hydrophobic trenches (white/purple) that 
criss-cross its exterior can easily mould themselves around the shape of the ligand 
(video.5.1-2). The predominantly hydrophobic ligands naturally localise to these zones 
and the protein engages in sporadic H-bonding interactions with their polar moieties 
so that they are more effectively localised to the surface. These pathways move in an 
almost peristaltic-like manner (particularly at the apex of the protein near the W loop) as 
the protein changes conformation and these motions are likely to guide ligands towards 
the mouth of the calyx. Video.5.1 shows ligands clustered on hydrophobic patches 
located near the base of the protein. Additionally, note how unattached compounds 
located in solvent close to the protein become attracted to these hydrophobic patches. 
On internalisation of 3c9, other ligands approach the mouth from the top and bottom, 
and one competitor (ThP) attempts to follow 3c9. The high concentration of ligands 
in such a small volume allows the visualisation of multiple encounter complexes that 
sometimes separate due to frustrated contacts, only to reattach some time later. 

The recapture of ligands by hydrophilic residues near the apex of the cavity is of 
particular interest (video 5.2). The association rate constant of proteins such as MUP 
will necessarily be smaller than the diffusion controlled limit due to the occluded nature 
of the cavity. However mobile loops can assist with internalisation by enclosing and 
holding the ligand. Such a loop is known as a molecular trapdoor and can greatly 
speed up the process of internalisation 400,428. Some examples of other proteins with this 
facility are tyorosyl tRNA synthetase 429, triosephosphate isomerase 430–433 and lactate 
dehydrogenase 433–435. From the videos, it would seem that hydrophilic residues at the 
front of the W loop and the L3 loop of MUP seem to fulfil a similar function and this 
feature is further explored in this chapter.

Even after flooding the system with ligand molecules, FD simulations yielded a relatively 
low rate of initial binding and successful internalisation events. The rate of productive 
binding events can be greatly enhanced by employing a targeting phase. However, 
it was desirable to obtain spontaneous internalisation events that were unaffected by 
the possible bias associated with restraints. Thus, a hybrid protocol was developed 
whereby the ligand was targeted to the surface of the protein, after which, the restraints 
were removed. This allowed the ligand to spontaneously internalise or diffuse away. 
If the position on the surface was chosen correctly, this would greatly enhance the 
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success rate of internalisation. In this case, clues from the FD simulations identified the 
choice for the target as being one of the surface poses the ligand adopted just prior to 
the commencement of internalisation (§5.2.1.2). This strategy yielded seven successful 
internalisation events from twelve discrete simulations. The failed simulations were 
discarded owing to space limitations.

5.3.2. Overview of ligand internalisation 

In order to describe the internalisation process, the gross architectural features of 
MUP are further labelled in Fig.5.2 for ease of discussion. As the etymology of the 
term ‘lipocalin’ is derived from the conjunction of the words “lipo” and “calyx” to 
describe the hydrophobic cup-like structure formed by the protein fold, relevant terms 
describing the anatomy of a cup have been appropriated. The “gatekeeper” residues 
(TYR84, PHE38, LEU40 and MET69) forming the lip of the calyx act to separate the 
body from the mouth and are situated on the L5 & W loops, and b & d strands. It takes 
only a relatively small coordinated separation of these secondary structure elements to 
allow the ligand access to the interior. The neck of the calyx lies between the lip and 
the shoulder, and the latter is principally composed of aliphatic leucines that provide 
a hydrophobic environment that assists the internalisation of apolar ligands. PHE56 
forms a buttress that supports and partially prevents the inward motion of the gatekeeper 
residues, LEU40 and MET69. A similar supporting function is provided by LEU105 
and LEU116 which act to reinforce PHE38 and PHE114. Both phenylalanines are 
situated within the large W loop and push against TYR84. The very bottom of the calyx 
is termed the saddle and is principally composed of several aliphatic residues along 
with TYR80 and the conserved tryptophan, TRP19. These are situated at the base of 
most of the secondary structure elements composing the body which has already been 
described and subdivided into the zones termed cal1, cal2 & cal3 (chapter 4.0).

Seven out of twelve stage-2 T2FE simulations successfully underwent ligand 
internalisation. Differences in ligand pathways to the targeted pose revealed by the 2D 
distributions in Fig.5.3 and 3D density maps in Fig.5.2 demonstrate that reorientation 
of both protein and ligand during the unrestrained equilibration stages afford a measure 
of inter-replicate simulation variability (§5.2.1.1-2). After the initial 8 ps targeting phase 
(displayed as incoming grey tendrils), the ligand explored the area around the mouth 
of the calyx from between ~15 to 30 ns in three of the seven simulations (Table.5.1). 
The remaining four simulations saw almost instant internalisation for reasons that will 
shortly become apparent. Also note that the five failed simulations depicted extensive 
surface exploration but the ligand eventually diffused away due to frustrated contacts. 
If the targeting phase had localised the ligand further down (along the d strand) 
towards the N-terminus of the protein, it is likely that the failure rate would have been 
much higher and this approach would only be suitable with the support of substantial 
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computational resources. It is clear that this approach will be sensitive to the choice of 
target location. Without data from the FD simulations selecting an appropriate target 
would have been much more difficult.

rep Surface Duration Initial Entry Full entry Entry Duration 1st cal3 Entry
01 0.0 0.0 30.1 30.1 na
02 0.1 0.1 30.8 30.8 23.5
03 14.2 14.2 18.2 4.0 11.4
04 29.3 29.3 38.9 9.6 69.9
05 0.1 0.1 0.8 0.8 2.1
06 16.8 16.8 39.5 22.7 32.3
07 0.5 0.5 51.1 50.5 37.3

Ligand Internalisation Time (nanoseconds)

Table.5.1. Entry times taken for internalisation events subsequent to the targeting phase. Entry duration is the 

time the ligand spends on the threshold, whilst full entry is classified as the point when all ligand atoms are within 

the calyx. Note that the ligand sometimes makes escape attempts, but in all cases internalisation was completed. 

Rapid internalisation was observed in repeat one because the cavity happened to be wide open at the end of the 

targeting phase. 1st cal3 entry marks the ligand’s first adoption of a vertical pose. 

Fig.5.3. 2D density map of the ligand’s COM displacements. Data compiled from the concatenated 7 successful 

140 ns simulations. Middle panel in bottom row contains key for residue coding. Cyan and red dashed lines are 

identical to those used in chapter 4.0 (Fig.4.11-14).
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The process of entry was deemed complete once the ligand ceased protruding through 
the lip of the calyx, and the duration of time taken to fully occupy cal1 varied from 
~1 to 51 ns (Table.5.1). The zy projection in Fig.5.3 shows two zones of moderate 
density at (35,37) and (36,40) that are offset along the y axis. The latter corresponds 
to the volume explored around the mouth of the cavity, whilst the former represents 
time spent within the neck. Both are favourable metastable states that must be visited 
before the ligand fully enters and forms H-bonding interactions with residues at the 
back of the cavity. Usually, the success of internalisation events is measured by the 
RMSD of the final simulated poses to that of the complexed crystal structure 411,419. 
However, this metric is not suitable for ligands that transition between multiple bound 
minima, so instead, COM distances between the ligand and the hydroxyl group of 
TYR120 were used to establish the extent of internalisation (§5.3.4.2 & §5.3.4.5). After 
successful entry and passage through the neck, the ligand adopted horizontal poses in 
cal1. In all of the replicates bar one (rep 01) the ligand then moved from the horizontal 
pose to a vertical pose that spanned cal1, cal2 & cal3  in times that ranged from ~2 to 
70 ns. During the internalisation process some of the repeats (02, 04 and 06) feature 
brief excursions to escape poses due to ligand conformational changes. Generally, the 
ligand spends a lot of simulation time settling into the cavity and only adopts vertical 
poses towards the end. Thus, there is not as much occupancy of cal3 compared to the 
equilibrium simulations. (Fig.5.3 & Fig.4.14).

5.3.3. Ligand entry into the occluded calyx

As discussed in chapter 4.0, the H-bond network has a dynamic component as the 
populations of active H-bonds shift and participants are likely to have multiple alternative 
partners. Thus, (de)stabilisation of such interactions often cannot be reduced to a 
binary on/off paradigm and is better represented by the probability of occupancy over 
longer timescales. The analysis of non-equilibrium simulations of complex systems is 
hampered by the complexity of the task. It is very difficult to accrue sufficient sampling 
because the mechanisms studied are usually transient. Furthermore, once the data has 
been accumulated, sophisticated analyses are required to deconvolute the network of 
interactions and produce statistically significant results. Whilst some things are clear on 
viewing crystal structures or simulation data, there are a host of subtle coupled effects 
that propagate throughout the network of interactions within the protein. Analysis 
of this is further complicated by the possible existence of degenerate solutions that 
confound expectations of neat digestible biological mechanisms. Ligand internalisation 
in MUP is a multi-stage process that is driven by many small coordinated motions 
in secondary structure elements that can span the entire protein. As this is difficult 
to analyse, only the initial mechanism that triggers the opening of the calyx and 
several associated mechanisms will be discussed. However, the detailed causality and 
interdependence of these will be uncovered by more sophisticated analyses at a later 
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date using techniques such as graph theory. 

5.3.3.1. Initial unlocking trigger 
Comparing T2FE simulations to the equilibrium simulations obtained in chapter 4.0 
reveals that when the protein is unbound, hydrophilic residues situated on loops at 
the top of the protein participate in an H-bonding network that tighten the protein’s 
structure and assist in keeping the lip of the calyx sealed. The principle participants in 
this flickering network are termed anchor residues and act to tether L5 and L7, to the 
front and middle of the W loop respectively (Fig.5.4). Members include ASP27, LYS28, 
LYS31, ASN37, ASP85, LYS109 and GLU112. At the front of the protein, additional 
supporting H-bonds are made between ASN37 to TYR84, and PHE38 to TYR84. All 
successful internalisation events saw the ligand parting gatekeeper residues in the lip 
of the calyx and entering hydrophobic tail first. During ligand exploration, the alcohol 
group was often observed near gatekeeper residues, but close proximity did not trigger 
internalisation, and it is likely that the hydrophilic head acts to orientate the ligand 
via transient H-bonds to key residues such as ASN37, PHE38, ARG60. On occasion, 
it is likely that protein-ligand H-bonds might assist internalisation via direct disruption of 
protein-protein H-bonds, but a systematic pattern was not observed over seven repeats. 

An examination of the chain of events triggered by protein-ligand steric interactions 
revealed that when the ligand explores the mouth of the cavity, several important protein-

Fig 5.4. (a-c) A few interesting examples of the many permutations of H-bond patterns between anchor residues 

that act to tether various secondary structure elements to one another. (d-f) Ligand mediated disruption of 

hydrophilic tethers and internalisation events as described in main text. Note that the protein structure is more 

relaxed than that depicted in the top row.
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protein H-bond interactions between secondary structure elements were perturbed indirectly 
by the presence of the ligand. The ligand is held within the mouth of the calyx by 
LEU67 which acts to press it against gateway residues. As the ligand transitions through 
various conformations, the hydrophobic tail wedges its bulk within the intersections 
formed by LEU67, PHE56, LEU40 and TYR84. Here, H-bonds locking TYR84 (on 
the L5 loop) with PHE38 (in the W loop) are broken and more importantly, H-bonds 
that tether anchor residues on the various loops are destabilised. The most immediate 
repercussions are threefold. Firstly, the loss of these interactions releases the H-bond 
tethers which limit the motion of the W loop. Secondly, relaxation of the inter-secondary 
structure H-bond constraints imposed by anchor residues allows greater independent 
movement at the tops of L5 and L7 loops. Thirdly, the ligand is better positioned 
to exploit the fissure between the L5 and W loops and move its tail further into the 
widening rift (video.5.3).

5.3.3.2. Modulation of the W loop by arginine residues
The W loop functions to block access to the interior of the protein and is characterised 
by a short ordered 310-helix that lies to the opposite side of the mouth. Three of the 
residues (ILE32, PHE38 and LEU40) within this large capping loop are hydrophobic 
and inward facing, whilst the remainder are hydrophilic and are capable of extensive 
H-bonding interactions with one another and other polar moieties situated upon 
various other secondary structure elements. On internalisation, the dynamics of the W 
loop and the other parts of the protein distal to the mouth are modulated by the H-bond 
interactions of several solvent-exposed arginine residues (Fig.5.5). Brief explanations of 
their putative roles follow. Consult §1.3.1 and Fig.5.5 for more detail on residue names 
and canonical secondary structure labels. videos.5.4-7 are essential to the explanation. 

Fig 5.5. Position of arginine residues implicated in internalisation. (a) Snapshot taken midway during 

internalisation. Arginine residues marked with a minus sign are destabilised relative to the holo complex, whilst 

those marked with an asterisk display complex H-bond patterns. (b) Snapshot taken of the fully bound complex. 
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Note that panels a & b depict ARG29 in upright and flat conformations respectively. 

1. ARG39: This residue assists in the immobilisation of the W loop in the apo 
state via the formation of two H-bonds to ILE32 and GLY36. The latter H-bond is 
disrupted by the ligand’s presence in the mouth of the cavity, and when this occurs, this 
residue can then function as a fulcrum by virtue of its remaining H-bond. However, 
its function is degenerate or “fuzzy” in that this residue can also act by pulling the L3 
loop to the  W loop via the formation of directional electrostatic interactions. 

2. ARG60: This residue is attached to the L3 loop when the protein is in the apo 
state and is usually H-bonded to this secondary structure element or exploring the 
mouth of the cavity. In the apo state, this residue rarely makes contact with the W 
loop. But during the process of ligand internalisation it primarily acts in conjunction 
with ARG39 and THR58 to pull the destabilised W loop towards the L3 loop. The 
effect of the simultaneous anchoring and pulling results in the upwards and lateral 
displacements of PHE38 (Fig.5.6 and videos.5.4-5). Note that other residues such as 
TYR84 and PHE114 also move away as a result of global protein relaxation. Thus, 
function is birthed by the union of structure and dynamics.

3. ARG156: This residue is situated in the mostly unstructured loop between 
the MUP’s only disulphide bond and strand i. In the apo state, it makes extensive 
H-bond interactions with residues situated on the side of the protein and its possible 
function is to stabilise the closure of the gateway residues by reducing the dynamics of 
the loop connecting the L3 loop to the i strand and A1 helix. During internalisation, 
it ceases to make any H-bonds at all, or preferentially H-bonds to adjacent residues 
within the loop e.g. CYS157 or ALA154. This is likely to assist relaxation of the 
protein’s structure and facilitate internalisation. 

4. ARG29: The precise manner in which this residue acts is difficult to 

Fig.5.6. H-bonding interactions of ARG60 and ARG39 abet protein conformational changes on ligand entry. Note 

the large movement of gateway residues such as PHE38 and TYR84. Also observe the general relaxation of the 

upper part of the protein and conformational changes of other residues such as PHE56 and PHE114. Also see 

videos.5.4-5.
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characterise, but it is notable in that it can make H-bond interactions to adjacent 
glutamates (GLU30 and GLU33) on the W loop and residues (such as GLU146) 
on the structured turn immediately preceding strand i. Furthermore ARG29 exhibits 
two distinct conformations. The first is extended and upright, whilst the second lies 
flat and is orthogonal to the first. In the apo state, the latter conformation might 
stabilise and assist in the locking down of the W loop. Per contra, during ligand 
internalisation, the former conformation may increase the dynamics of the W loop by 
H-bond mediated modulation of residues to either side. PCA analysis reveals a certain 
amount of motional synchronicity with ARG60 during internalisation (videos.4.4-5). 
It should be noted that its precise mechanism is not completely understood and 
other unidentified elements may also play a part in its function. Nonetheless, the 
interactions mediated by this residue are part of a linked network that is likely to 
propagate dynamics from the W loop to the N-terminus. The next intermediary along 
this particular chain of H-bond mediated interactions is ARG145.

5. ARG145:  This residue is situated on the structured turn immediately preceding 
strand i and it forms relatively stable H-bond interactions with hydrophilic residues 
situated on the A1 helix such as GLU132, GLU139 and GLN136. Differences in 
H-bond patterns occur as this residue tilts to either side and this is likely to help shift 
the position of the large a-helix. This possibly acts as a steering mechanism that 
assists the modulation of the opening and closing of gateway residues and the global 
relaxation and tightening of the protein’s structure. 

6. ARG133: The A1 helix is positioned roughly near the middle of the protein and 
is well positioned to link the top of the protein to the bottom. The second arginine, 
ARG133 forms the link between the A1 helix and the N-terminus as it sometimes 
binds to residues such as GLU2. Prolonged H-bond interactions are likely to draw 
the N-terminus up into the body of the protein and are observed more often in holo 
simulations compared to apo. This interaction is likely to tighten the structure of 
the protein.

7. ARG8: Situated in the N-terminus and is likely assist stabilisation of interactions 
there. Not assessed in this chapter.

8. ARG122: In the Calycin family, this residue is generally an arginine or a 
lysine and lies over a conserved tryptophan. It is interesting in that, it is capable of 
forming extensive H-bond interactions that link TYR87 in the L6 loop to the L4 
loop in the bound state. This interaction is associated with greater stabilisation of 
the protein’s structure. In the apo state, and during the process of ligand binding, 
this residue ceases to make H-bond interactions with the L6 loop and sporadically 
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makes directional H-bonds with the 310 helix located within the N-terminus. It is 
likely that the loss of interactions with the back of the protein assists the relaxation of 
the protein’s structure.

A series of 4 videos have been created to highlight the role of these arginine residues in 
binding (videos.5.6-9). Please consult Table.5.2 for a synopsis of arginine behaviour. 
Note that the internalisation videos display a mix of features from endpoint apo and 
holo states. Therefore the behaviour of the protein should be assessed with regard to 
the position of the ligand. Furthermore, note that the global structure of the apo protein 
tends to be more relaxed than that of the holo complex and is therefore likely to visit a 
broader range of conformations.

Table.5.2. Brief synopsis of behaviour of arginine residues in videos.5.6-9.

In addition to the arginine residues discussed, it is possible that surface-exposed histidines 
also play a part in ligand internalisation. These pH sensitive residues are strategically 
placed near the junctions of several key secondary structure elements. Changes in 
protonation could well assist in relaxation and tightening of the protein’s structure so 
as to aid or inhibit conformational rearrangements. This would be consistent with the 
putative role of MUP-I as an agent that delays the release of VOCs. As it is expressed in 
areas associated with pheromone production such as the liver and kidneys prior to being 
excreted in urine, these different regions are likely to have different pHs. Furthermore, 
excreted urine is likely to change pH due to external factors and aging. Other studies 
have uncovered pH-dependent ligand binding in other lipocalins such as human tear 
lipocalin 389,436, β-lactoglobulin 437–441 and retinol binding protein 442,443 amongst others.
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5.3.4. Protein cavity & ligand desolvation on binding

5.3.4.1. Methods that characterise desolvation on binding
The global entropy of binding can be greatly affected by solvent reorganisation. This 
is a difficult contribution to evaluate because water is diffusive by nature and there 
is a large number of water molecules present in typical biological systems. The most 
commonly calculated subcomponents are ligand and cavity (de)solvation. Intuitively, 
further contributions could also arise from disparities in receptor and complex solvation 
at the protein’s surface. However, these are usually assumed to cancel, and are thus 
overlooked in discussions of protein-ligand binding. The remaining sections of this 
chapter examine the first two desolvation-related subcomponents.

Ligand desolvation: As discussed in §1.1.5, ligand solvation entropy can be 
experimentally estimated via vapour-solvent partition equilibrium experiments 35,444. As 
ligand binding in MUP is characterised by the ligand moving from bulk solvent into 
a suboptimally hydrated cavity, ligand desolvation entropy is obtained by inverting 
the sign of the measured solvation entropy. When these partition experiments cannot 
be carried out, group contribution methods such as that proposed by Plyasunov and 
Shock (2000) 94 have been used to obtain theoretical estimates 36,180. 

One of the first estimates of the impact of ligand desolvation in MUP was obtained 
by Sharrow et al. (2003) who examined the transfer of several small n-alkanols and 
SBT analogues from water to cyclohexane 388. They established that the entropy of 
desolvation provides a favourable contribution that increases linearly with increasing 
surface area. This type of partition experiment mimics the transfer of a hydrophobic 
compound to a hydrophobic pocket and is thus smaller than that obtained from vapour-
solvent experiments. Later partition equilibria studies on n-alkanols and 3Z-olefins 
demonstrated that the desolvation contributions of these compounds would display 
strongly linear thermodynamic binding signatures 36,180. However, such experiments 
only provide a measure of the maximal possible ligand desolvation entropy as this 
contribution is critically dependent on the number of waters stripped from the inhibitor upon entry 
into the cavity. The computational results presented in §5.3.4.2 provide an estimate of 
this number. 

Protein cavity desolvation: It is very difficult to experimentally ascertain the number of 
waters expelled from the cavity during ligand binding and those that remain subsequent 
to the event. X-ray crystallography is capable of capturing ordered waters, but it is not 
an effective method for the quantification of the number of disordered water molecules 
present in the cavity. This is because these waters are not localised to a single defined 
minimum and their electron densities are poorly defined 445.  NMR spectroscopy is a 
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more promising approach, and in the most favourable cases it identifies more dynamic 
waters than X-ray crystallography. Whilst X-ray diffraction is limited to a detection rate 
of 10 to 50%, NMR spectroscopy methods can report on water present at levels as low 
as 10% 320.  Moreover, details on the dynamic characteristics of water can be recovered 
e.g. orientational fluctuations and the rate of exchange with bulk 320. Other notable, 
yet oft neglected methods that allow quantification of the displacement of bound 
waters are ultrasonic densimetry and quartz crystal microbalance experiments 446–448. 
However, experimental methods provide results that are averaged over long time scales 
and do not tend to yield information on brief excursions of macromolecules from 
the equilibrium ground state to functionally important excited states. The structural 
and dynamic details of these rare events can be reproduced by MD. However, results 
have traditionally been limited by the relatively short timescales covered by atomistic 
simulations and the paucity of corroborating experimental techniques. Recently, rapid 
improvements in processing power and technologies have overcome some of these 
limitations. For example, millisecond length molecular dynamics simulations of bovine 
pancreatic trypsin inhibitor (BPT1) have been used to successfully probe the accuracy 
of modern day force fields via comparison to relaxation dispersion experiments 449.

In the case of MUP, the precise number of waters expelled upon the entry of different 
ligands is unknown. Moreover, a rigorous thermodynamic assessment of the entropic 
benefits associated with the ejection of such waters is currently unavailable. The 
computational results presented in §5.3.4.5 lay the groundwork for the accurate 
estimation of these values.

5.3.4.2. The extent of ligand desolvation on calyx entry 
T2FE simulations allow an atomistic view of the binding of 3c9 to MUP. Whilst 
the flexible ligand is free in solution, the number of water molecules in the first 
hydration shell fluctuates as the ligand transitions between compact and extended 
configurations (Fig.5.7). It then rolls across the surface of the protein and enters the 
cavity via a narrow passageway located beneath the shroud of the W loop (Fig.5.7). 
During this process, the ligand is divested of its waters, and it finally enters the calyx 
wherein it adopts poses akin to that observed in the crystal structure. 

Each T2FE simulation began with 4 waters in the binding cavity and finishes with 
0 to 1 waters (Table.5.3). This indicates that ligand internalisation is associated with 
the net egress of waters and is not counterbalanced by the entry of waters from bulk. 
On plotting the number of waters in the ligand’s first solvation shell versus time, it is 
apparent that the compound’s passage through the narrow neck of the calyx results in 
total ligand desolvation (Fig.5.8.a-b). These observations were further corroborated by 
visual inspection of the trajectories.
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Even though the evidence has been obtained from the binding of only one ligand over 7 
T2FE simulations, the structural characteristics of the narrow passageway into the calyx 
mean that it is likely that other ligands considered in this work would be desolvated 
to a similar extent. Prior to this analysis the true extent of ligand desolvation was 
not quantified and the desolvation entropy calculated from vapour-solvent partition 
equilibrium experiments only offered an upper bound. This result indicates that the 
majority of the experimentally calculated desolvation entropy would be available to the 
system upon binding. 

In the absence of partition equilibria data for 3Z-olefins, Malham (2012) used the group 
contribution method proposed by Plyasunov and Shock (2000) to calculate theoretical 
desolvation contributions 94,180. Such an approach is extremely useful because it allows 
the fast evaluation of large panels of ligands. Furthermore, it allows the assessment of 
compounds that are not amenable to partition-equilibria experiments. This particular 
method indicates that n-alkanols enjoy a larger desolvation entropy contribution 
compared to ligands with a double bond. However, it was surprising that the method 
did not distinguish between double bond stereochemistry and consequently 3Z-olefins 
and 2E-olefins have identical desolvation contributions (Table.5.4).

Fig.5.7. 3c9 is coloured blue and is depicted as a stick model surrounded by a translucent surface. Waters within 

4Å of ligand are displayed as a stick model and hydrogen bonds are displayed as blue lines. The ligand is entering 

MUP’s occluded binding cavity whilst waters preferentially bind to each other or the ligand’s hydroxyl group. Right 

image was taken 150ps subsequent to left. 

Repeat 01 02 03 04 05 06 07
Final Waters 0 1 1 1 1 1 0

No of waters at end of T2FE simulations

Table.5.3. Number of waters in calyx at the end of each 140 ns simulation.
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To assess whether MD simulations could give an indication of the relative solvation of 
the different ligand panels, the numbers of waters in the ligand’s first solvation shell 
were calculated. These results indicate that these small molecule inhibitors are solvated 
to similar extents (Fig.5.8.c-d). Relatively small variations in the distributions arise 
because structural differences result in differences in conformational exploration. As 
discussed in §3.3.2, 3Z-olefins adopt more compact conformations than n-alkanols and 
the decrease in exposed surface area results in a small reduction in solvation which is in 
line with the decreased desolvation entropy reported in Table.5.4. A comparable ligand 
with a trans double bond should therefore be associated with a small increase in the 
number of waters in its first solvation shell because the ligand will be predisposed to 
adopt extended conformations. Thus, the desolvation entropy should be slightly more 
favourable compared to an analogous saturated compound. 

Fig.5.8. (a-b) Ligand desolvation as a function of distance from the binding site for two discrete repeats. Distance 

between ligand’s COM to TYR120 is depicted as a red line. Green dots represent the number of waters within the 

ligands first hydration shell (< 3.4 Å). Dashed line represents boundary between the cavity and bulk. Increases in 

the number of water molecules subsequent to binding are the result of the ligand coming close to the lip of the 

Carbon no n-alkanols 3Z-olefins 2E-olefins
6C 48.0 43.4 43.4
7C 52.4 47.9 47.9
8C 56.9 52.4 52.4

Desolvation entropy (kJ/mol) Table.5.4. Ligand desolvation entropies calculated 

at 298 K using the method proposed by Plyasunov and 

Shock (2000) 94. Values taken from Malham (2012) 180.
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cavity. The y axis scale is appropriate for both the distance (Å) and number of waters. (c) Distributions of the range 

of waters in first solvation shell for n-alkanol and 3Z-olefin ligands in the equilibrated free state. (d) The average 

number of waters calculated from c.

As the average number o  f waters plotted between analogous ligands in Fig.5.8.d only 
differ by a single water molecule, it is unlikely that this would be associated with any 
significant error when assessing small compounds. However, solvation differences 
between larger, more complex compounds could potentially be much greater. 

It would be useful to examine how ligand desolvation entropy fits into the global 
entropy of binding, and such an analysis will be carried out in the conclusion (§5.4.1.2) 
after the expulsion of cavity waters is considered in §5.3.4.6. But first, let us consider 
how transient H-bonds assist ligand internalisation and the nature of water mediated 
H-bonds within the cavity.

5.3.4.3. H-bond reorganisation within the calyx subsequent to ligand entry
Multiple T2FE simulations captured the binding of 3c9 to MUP and data obtained from 
ligand internalisation demonstrates how transient H-bonds assist in ligand translocation 
from an unbound pose to one akin to that found in published crystal structures. The 
data also supports the hypothesised ligand entry pathway put forward by Timm et 
al. (2001) 72. The transient nature of the H-bond network in the large cavity means 
that during internalisation, there are multiple combinations of ligand conformational 
changes coupled with positional shifts within the cavity. The following description 
depicts one of these, and is chosen on the basis that it illustrates the architecture of the 
cavity along with dynamic elements pertaining to protein, ligand and water. video.5.10 
charts the internalisation of a different repeat (05) with 4 waters and viewers will note 
the inter-replicate similarities. A short time after that covered by this video all waters but 
one is expelled. This phenomenon is further discussed in §5.3.4.5.

As the ligand enters the cavity, hydrating water molecules are stripped off due to the 
narrow confines of the entranceway (Fig.5.7). The three panels in Fig.5.9 show events 
subsequent to entry. 
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Top panel: The side view focuses on the largest cal1 chamber. The top portion of cal2 
is shown, whilst cal3 is hidden below. 3c9 enters the calyx hydrocarbon tail-first. Its 
alcohol group is positioned and orientated far away from TYR120 and it still maintains 
H-bonds to a couple of waters located within bulk solvent. A single binding site water is 
engaged in H-bond interactions with TYR120 and the oxygen (helpfully coloured red) 
within the amino acid backbone of LEU40.

Centre panel: The ligand has fully entered the calyx and is no longer capable of making 
H-bond interactions with bulk solvent. The entrance way into cal1 is now blocked via 
the closure of TYR84. The alcohol moiety can form a number of transient H-bond 
interactions with several amino acid backbone atoms. In this snapshot, the backbone 
oxygen of PHE38 helps steady the head of the ligand with an H-bond interaction. 
Additional stabilisation is provided by a water molecule that is itself anchored by polar 
interactions to TYR120 and LEU40. Stabilisation of the hydroxyl group allows the 
ligand’s flexible hydrocarbon tail to bend back on itself and reorientate the polar portion 
of the polymer so that it is closer to TYR120. Note that the interactions formed by this 
water molecule with these amino acids can also be observed in MUP holo crystal 
structures (1ZND, 1ZNE, 1ZNG, 1ZNH & 1ZNK).

Bottom panel: The binding site water forms an additional H-bond interaction with 
THR21, and in this snapshot, PHE90 undergoes a conformational change that allows 
the ligand’s hydrocarbon tail to be displaced down into cal2 and cal3. Though there are 
several amino acids to which H-bonds can be created, it is important to remember that 
any strong protein-ligand interaction will (directly or indirectly) stabilise the hydrophilic 
head of the ligand. The longer hydrophobic tail is relatively free, and is only limited by 
the confines of the calyx. The dynamic motion of the flexible tail is thus responsible for 
the large range of displacements seen in the COM of the ligand and is likely to exert 
an opposing destabilising effect on the head (§4.3.3.1). Moreover, the availability of 
H-bond donors and acceptors (apart from TYR120) is inconsistent because backbone 

Fig.5.9. The triptych shows key ligand conformational changes that occur subsequent to internalisation. The images were 

generated from a free diffusion simulation that captured the binding of 3c9 to MUP. The images show a cutaway section 

of cal1 (and the top portion of cal2) from the side. The Ligand is represented as a pink stick model and is covered by a 

translucent surface to demarcate the extent of its van der Waals surface area. Water molecules are depicted as triangles 

and H-bonds are coloured yellow. All amino acid residues are represented by space filling molecules unless otherwise stated. 

Phenylalanines are coloured orange-red and PHE90 is detailed as a stick model. All tyrosines are shown as stick models 

with green carbon atoms - TYR84 lies near the entrance of the cavity, whereas TYR120 adopts a more buried position. THR21 

is shown as a ball and stick model and its carbon atoms are coloured cyan. ALA103 is depicted as a black wire and the 

MET169 residue that forms part of the gateway is coloured yellow. Leucines are coloured light blue and LEU105 and LEU116 

are shown as wires to maintain a clear view. All other residues are coloured grey. See main text for further details.
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atoms are likely to be occluded as the protein changes conformation (§4.3.5). This 
inconsistency is likely to introduce an additional degree of instability to the head of the 
ligand which should be affected by fluctuations in H-bond availability.

5.3.4.4. Water mediated H-bonds: equilibrium simulations revisited
At this juncture, the equilibrium simulation analysed in Chapter 4.0 are revisited to 
better understand the nature of bound waters in MUP. A thorough understanding 
of the H-bonding network is complicated by the capability of bound water molecules 
to mediate bridged interactions between bound ligand and protein (Table.5.6). A 
complete characterisation of the thermodynamics and dynamics of bound water in 
MUP is beyond the scope of this work as the methods required to accomplish this 
are non-trivial. Even the design of a simple metric that counts the number of bound 
waters during a simulation is challenging due to difficulties in accurately demarcating 
the binding site volume to exclude bulk solvent. Moreover, the subsequent processing 
of the millions of snapshots required for converged statistics would double the storage 
requirement at a minimum. As the equilibrium simulations contain 9.6 x 106 snapshots, 
a rough indication of the number of bound waters is provided in Table.5.5 using the 
first method described in §5.2.3.

Even though the number of bound waters is small (typically < ~3), the classification of 
water mediated H-bonds and their occupancies is limited by the cost of calculating the 
manifold configurations of interacting partners. Hence, the data in Table.5.6 focuses 
on bridged interactions i.e. water molecules that are H-bonded to two or more solute 
residues simultaneously. The analysis splits larger linked H-bonded networks into 
smaller parts that fulfil the definition given in the previous sentence (e.g. Fig.5.10.b). 
Thus, the synchronicity of bridged interactions is not detailed. The trends correlating 
ligand size and structure with direct H-bond occupancies (§4.3.5) are also echoed within 
the water mediated H-bond network. However, the correlation is somewhat weaker 

Ligand
Starting 
Waters

Mode
Mode 

Occupancy (%)
Mean Std Dev

hex 3 0 19.8 1.35 1.26
hep 3 0 34.2 0.83 0.96
oct 1 1 66.5 1.02 0.50
non 1 1 55.8 0.96 0.60

3c6 2 1 61.9 1.27 0.79
3c7 2 0 42.9 1.02 1.20
3c8 2 1 36.2 0.91 0.87
3c9 2 1 29.4 1.75 1.00

Waters per aggregate Simulation

Table.5.5: Statistics detailing the number of waters in n-alkanol & 3Z-olefin equilibrium 

simulations. 
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due to fluctuations and differences in the number of bound waters throughout the 
time course of the simulation. For example, as 3c7 simulations have zero bound water 
molecules (mode 0, for 43% of simulated time) bridged H-bonds have relatively lower 
occupancies than that observed for the other simulations. Despite these caveats, it is of 
interest to consider the dataset so as to expand our understanding about the nature of 
H-bonding within the cavity.

If H-bond interactions for all ligands are considered, it is clear that TYR120 is spatially 
positioned at the nexus of a cluster of residues that constitute an outer frame with which 
the most common polar interactions are made (Fig.5.10). As demonstrated by Barratt et 
al. (2005), it is likely that this hydrophilic sidechain is important in terms of creating a 
microenvironment that localises the polar groups of bound ligands and water molecules 
to its immediate vicinity 90. THR21 is immediately adjacent to it and contributes to a 
small hydrophilic microenvironment in the predominantly hydrophobic calyx. As this 

Residue 1 Residue 2 Ligand Occupancy (%) Residue 1 Residue 2 Ligand Occupancy (%)
LEU40 TYR120 hex 14.1 ALA103 LEU116 3c6 47.8
LEU40 - hex 12.9 LEU40 - 3c6 18.1

TYR120 - hex 8.6 ALA103 - 3c6 12.9
PHE38 - hex 6.8 LEU116 - 3c6 11.5
THR21 LEU40 hex 5.4 TYR120 - 3c6 8.2
LYS31 - hex 5.2

ALA103 LEU116 3c7 16.8
LEU40 TYR120 hep 29.4 TYR120 - 3c7 4.8
LEU40 - hep 12.3 LEU116 - 3c7 4.8
PHE38 - hep 9.4

TYR120 - hep 6.2
THR21 LEU40 hep 5.0

ALA103 LEU116 3c8 17.1
LEU40 TYR120 3c8 7.5
THR21 LEU40 3c8 6.4

LEU40 TYR120 oct 59.9 LEU40 - 3c8 5.6
LEU40 - oct 25.8 TYR120 - 3c8 4.6

TYR120 - oct 9.5 LEU116 - 3c8 3.9
THR21 LEU40 oct 9.1

LEU40 - 3c9 21.7
LEU40 TYR120 non 42.6 LEU40 TYR120 3c9 18.7
LEU40 - non 22.1 THR21 LEU40 3c9 15.7
THR21 LEU40 non 9.0 TYR120 - 3c9 12.7
TYR120 - non 7.3 ALA103 LEU116 3c9 10.9

PHE38 - 3c9 5.5
PHE38 LEU40 3c9 4.8
LYS31 - 3c9 4.4

Unique Combinations under 4% occupancy = 73

Unique Combinations under 4% occupancy = 56

Unique Combinations under 4% occupancy = 47

Unique Combinations under 4% occupancy = 54

Unique Combinations under 4% occupancy = 100

Unique Combinations under 4% occupancy = 61

Water Bridged hydrogen bonds: 3Z-Olefins

Unique Combinations under 4% occupancy = 70

Water Bridged hydrogen bonds: n-alkanols

Unique Combinations under 4% occupancy = 89 

Table.5.6. n-alkanol & 3Z-olefin bridged H-bond interactions.
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residue is often occluded by the motions of other sidechains it does not participate in 
direct H-bonds with the ligand to the same extent as TYR120. However, this does not 
prevent it from interacting with water molecules because they are small and much more 
mobile.

When n-alkanols are bound, the main site of water occupation is situated near TYR120, 
THR21 and W loop residues such as LEU40 (Fig.5.10.d). However, the hydroxyl head 
of bound ligands also contributes to the hydrophilic microenvironment within the calyx 
and its motions further perturbs the water mediated H-bond network. Differences 

Fig.5.10. Examples of different h-bonding patterns observed in 3Z-olefins and n-alkanol holo simulations. The 

figures provide a flavour of various possible water mediated H-bonds in the calyx. See main text for details.
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in 3Z-olefin ligand dynamics see the occupation of an additional hydration site that 
possesses a greater probability of existence than that observed for n-alkanols. This 
involves ALA103 and LEU116 and is situated to the opposite side of the calyx from the 
first site (Fig.5.10.c). On rare occasions, bound waters and compounds find themselves 
favourably positioned so that the H-bonding network spans cal1 and bridges both 
hydration sites (Fig.5.10.b). The examples of H-bond networks in Fig.5.10 provide a 
flavour of the interactions between bound entities and the structural features of the calyx. 
It is important to realise that while the examples might give the illusion of H-bonding 
stability, the predominantly apolar environment of the cavity and suboptimal hydration 
results in these polar interactions possessing a mercurial nature. Thus, the positions of 
some bound waters will be in a constant state of flux within the dewetted cavity. Simply 
put, there are not enough synchronously available H-bond partners for all the waters 
to adopt fixed positions. Hence, webs of transiently stable H-bonds are destabilised 
by the creation of new internal networks, comprised of competing H-bond donor and 
acceptors whose availability is constantly modulated as the Brownian motions of bulk 
solvent drive the protein to adjust its internal conformation. The relative order of bound 
water molecules is further detailed in the next section.
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Fig.5.11. Running averages of distances for 4 simulation repeats (01, 02, 03, 05 & 07). The distance of the 

ligand COM to TYR120@OH in binding site is plotted as a grey dotted line. Bound waters modelled at the start of 

the simulation are solid coloured lines, whilst bulk waters are marked by dashed lines and have residue numbers 

higher than :175. Solid vertical red line is first adoption of a vertical pose similar to that seen in the crystal 

structure. As the ligand retains considerable residual motion, there is no necessity for stable maintenance of this 

pose. Shaded yellow area indicates the span of time that the ligand spends during internalisation i.e. the time spent 

in the threshold of being in or out of the cavity. Distances plotted in panels (a-d) are depicted as moving averages 

calculated with a 200 ps window. This has a smoothing effect and panels (e-f) demonstrate the difference when 

using a smaller 20 ps window for repeat-02. The dashed horizontal line at 8 Å represents the boundary between bulk 

water and the interior of the calyx
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5.3.4.5. T2FE uncovers bound water response to ligand internalisation
To continue the discussion, the response of bound waters to 3c9 internalisation 
is analysed below. As these simulations were shorter and more amenable to visual 
inspection, the slightly more sophisticated method described in §5.2.3 was used to 
monitor water dynamics in preference to the first.

Four bound waters (molecules 172 to 175) were initially modelled within the calyx, but 
their numbers fluctuate throughout the time course of the simulation due to stochastic 
exchange with bulk. In the T2FE simulations, bound waters are displaced at disparate 
points during the internalisation process (Fig.5.11). Solvent expulsion does not occur 
at clearly defined points for the following reasons. The time period for complete ligand 
internalisation is fairly variable (~1 to 51 ns) and there is a small possibility that waters 
can escape while the ligand is midway through the lip of the calyx. Moreover, just prior 
to internalisation, gateway residues are likely to open and close with greater frequency 
(than observed during equilibrium simulations) because polar interactions between 
anchor residues are disrupted by the body of the ligand. At this stage the ligand is often 
still in the process of exploring the mouth of the protein and does not fully block the 
passageway into the cavity. This phenomenon accounts for the expulsions of waters 
prior to ligand internalisation (Fig.5.11.d). Also note that during internalisation bulk 
waters sometimes make brief forays into the cavity but do not stay for long (Fig.5.11.d,f). 

Subsequent to entry, various electrostatic forces drive the ligand to make H-bond 
interactions with residues at the rear of the cavity and during this transitional period, it is 
likely that increased ligand dynamics facilitates the further expulsion of water molecules. 
Within 4 to 6 ns after ligand internalisation in repeat-05 (video.5.10), increased ligand 
dynamics displaces all bound waters apart from Wat172 which occupies a very stable 
position referred to as the “pole position”. The increase in ligand instability is reflected 
as a change in ligand distance in from ~4 to 5 Å in Fig.5.11.c. In this time, video.5.11 
shows water molecules “walking” out of the occluded cavity with the assistance of 
hydrophilic protein residues such as TYR84 and the backbone oxygen of PHE38. 
As the ligand has just entered, gateway residues are still parted. And even though 
bound waters can H-bond to each another, the polar environment offered by bulk is 
preferable to that of the hydrophobic cavity. As indicated by Fig.5.11, the time taken 
for water expulsion is somewhat variable and the precise number of waters expelled 
across the different repeats is stochastic. As thermodynamic analyses typically evaluate 
the difference between endpoint states, the definition of the exact moment the ligand is 
considered fully bound is an open question. Is it immediately upon entry or x ns later? 
A possible answer is that the ligand should be considered fully bound when the protein 
begins to sample conformations corresponding to the equilibrium state relevant to that 
particular holo complex. Nonetheless, if the simulations were extended, it is probable 



Chapter 5.0264 265

that bulk waters would re-enter the cavity and visual inspection of the equilibration 
simulations demonstrated that over longer timescales, this is indeed the case. 

Having described the response of bound water to ligand internalisation, the next 
section begins to quantify the relative order of more mobile waters compared to the 
pole position water.

5.3.4.6. All waters are not equal under thermodynamic laws
Dunitz (1994) theorised that the entropic cost of near total immobilisation of a single 
water molecule was ~9 kJ/mol by contrasting the difference between the entropy 
of ice/hydrated inorganic salts and liquid water 309.  Later, Li and Lazaridis (2003) 
quantified the entropic contribution of a single (long residency) water molecule within 
HIV-PR using inhomogeneous solvation theory and MD 330. This particular water is 
very ordered and makes key H-bond interactions between the bound inhibitor and the 
protein’s two flap domains. They obtained a value of ~12 kJ/mol and suggested that 
the value was higher than Dunitz’s theoretical limit because this water was extremely 
ordered. Huggins (2015) also suggests that entropies higher than the theoretical limit 
are possible in cavities containing charged residues 450.

The relative (in)stability of bound waters to one another and bulk solvent is of particular 
interest and Fig.5.11 indicates that the water molecule closest to TYR120 occupies a 
“pole position” which is more ordered than other waters within the cavity. This is 
due to the greater availability of potential H-bond partners located in the zone ~3 Å 
around TYR120’s hydroxyl group (§5.3.4.4). In contrast, waters positioned further 
away experience greater positional fluctuations. This suggests that the energetic cost of ejecting 
a water molecule from the calyx is not the same for all waters. The favourable electrostatic 
interactions offered by the primary hydrophilic site promotes competition amongst 
bound waters which vie for the pole position. And at certain junctures, positions are 
swapped. For example, observed how orange and blue solid lines exchange positions in 
Fig.5.11.a,f. In MUP, the ejection of the pole position water to bulk is expected to yield 
the most favourable entropic contribution. However, displacement of the other waters 
should also be accompanied by smaller entropy gains. Quantification of these graded 
contributions would be a useful addition to the literature and the preliminary analysis 
is presented below. 

The positional entropy contributions of bound and free TP4 water were assessed with 
the 3Dh method described in Chapter 4.0. Whilst free TP4 water was well sampled at 
1.5 ms, bound waters were suboptimally sampled at 40 ns per water molecule. This is 
because the number of bound waters fluctuates and it is difficult to obtain long T2FE 
simulation segments with a constant number of waters. Consequently, at a later date, 



Chapter 5.0264 265

the equilibrium simulations will be clustered to yield trajectories with different numbers 
of bound waters. The results presented in Table.5.7 are a rough approximation of 
positional entropy differences (TΔS°Wat•Po), and are useful in that they can be compared 
relative to one another. The differences are calculated by subtracting bound from 
free, and report on the entropic benefit of expelling bound water. As the hydrophobic 
nature of the pocket precludes the free movement of water molecules throughout the 
entirety of the cavity, the resulting volume occupied by bound waters is very small 90. 
Consequently, TΔS°Wat•Po provides a large contribution to the total entropic cost of 
expelling a water molecule (TΔS°Wat) because it is derived from the difference between 
bound and free standard state volumes (eqn.4.12).

The following results are described on a per-repeat basis to highlight how TΔS°Wat•Po is 
dependent on the number and identity of entities within the calyx. 

1. Repeat 01: The first 40 ns of the bound simulations were taken for analysis 
because there are four relatively stable waters within the calyx. All waters 
apart from Wat175 have similar TΔS°Wat•Po values of ~9.5 kJ/mol (Table.5.7). 
As Wat175 occupies the pole position, it is the most ordered, and its removal 
would ostensibly provide a large favourable contribution of 14.3 kJ/mol to 
TΔS°Glo. The calculated values are much greater than the theoretical limit 
proposed by Dunitz because waters in the bound state are not well sampled. 
As water molecules are indistinguishable from one another, the coordinates 
from all four bound waters were concatenated to create a 160 ns trajectory. 
As the underlying distributions are better sampled, TΔS°Wat•Po is reduced 
to 8.68 kJ/mol; a value within the theoretical limit. Further reductions in 
TΔS°Wat•Po are expected on increasing sampling to match that obtained for 
the free state (§4.3.6). Though the calculated value for TΔS°Wat will become 
larger upon taking the orientational contributions of waters into account, 
improved sampling and water-water correlations 450,451 are expected to 
significantly reduce the overall magnitude of TΔS°Wat so that values fall 
within the theoretical limit. The extent to which these reductions would 

Free
Water Rep 01 Rep 03 Rep 07 - Rep 01 Rep 03 Rep 07

172 17.0 - - 26.5 9.5 - -
173 17.0 - - 26.5 9.5 - -
174 17.0 10.5 - 26.5 9.4 16.0 -
175 12.23 - 13.3 26.5 14.3 - 13.2
All 17.83 - - 26.5 8.7 - -

Bound Water Entropies TΔS°Po

Water Positional Entropy (kJ/mol)

Table.5.7. Water molecule’s positional entropies calculated with 60 bins along each axis. The entropy difference 

was obtained by subtracting bound from free as water molecules are being expelled from the cavity to bulk. 
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apply to the pole position water is currently unknown.

2. Repeat-07: As the number and identity of bound entities were believed to 
affect TΔS°Wat•Po, the first 40 ns of this repeat was taken to evaluate the single 
pole position water. The calculated value of 13.3 kJ/mol is lower than that 
obtained from the water occupying the pole position in repeat-01 (14.3 kJ/mol) 
because it is likely that the other less ordered waters in repeat-01 acted as a 
stabilising force. If the bound trajectory was better sampled it is expected that 
protein conformational changes will perturb the position of the pole position 
water to a greater extent than observed here.

3. Repeat-03: A 40 ns trajectory segment (between 40 ns to 80 ns) was 
extracted to assess the effect of bound ligand in (de)stabilising the water at 
the pole position. As TΔS°Wat for Wat174 is 16.0 kJ/mol, it can be surmised 
that the ligand’s hydroxyl group stabilises the pole position water to a greater 
extent than the presence of other bound waters in repeat-01. This is probably 
because the larger ligand is relatively less mobile than bound waters which are 
small and have greater facility to shift their positions and orientations.  

The analysis demonstrates that the majority of bound waters are expelled upon 
internalisation of 3c9. After ensuring adequate sampling and including orientational 
contributions, it is expected that the displacement of these waters will make a significant 
contribution to TΔS°Glo. Water bound at the pole position is anticipated to make the 
largest contribution and there is a possibility that the magnitude of this value might 
be larger than the theoretical limit. A weakness of in silico studies is the computational 
expense associated with accruing a sufficient amount of repeats. Thus, finding the 
exact number of waters displaced upon binding different ligands is a formidable task. 
Wet experimental techniques such as ultrasonic densimetry are better suited to obtain 
this information because these methods report the average of a massive number of 
molecules in solution. However, MD analysis does provide an atomistic picture that 
aids the understanding of systems and the development of better inhibitors.

5.4.0. Conclusion

5.4.1. T2FE methodology

The data is only semi-quantitative and requires further development, but the insights 
offered are valuable as this initial foray explores future directions for research. 
Ideally it would have been preferable to generate many simulation repeats in order 
to develop MSMs that would provide data on the free energy landscape and kinetics 
associated with the internalisation process. However, access to the appropriate 
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hardware (GPUs and sufficient hard disk space) was limited, sampling was likewise 
limited. Nonetheless, the internalisation protocol is of interest and the insights offered 
are valuable. As it stands, it can be used for the following tasks amongst others:

1. If complexed protein-ligand X-ray or NMR spectroscopy structures are 
unavailable for MD, bound ligand poses can be discovered with a minimum 
of bias. The ability to execute this has been tested by binding a different set of 
ligands to rat odorant binding protein 3 (ROBP3) 452. The method yielded 32 
independent internalisation events (data not shown).

2. Mechanistic details about the binding process can be uncovered and 
potentials of mean force (PMF) obtained by extracting key structures and 
utilising them in pathway techniques such as umbrella sampling. Furthermore, 
viable reaction coordinates can be identified

3. The desolvation processes accompanying ligand binding can be characterised 
and quantified.

4. Key H-bonding interactions along the pathway can be identified.

Possible ideas for future research include the mutation of arginine residues such as 
ARG60 and ARG39 to ablate binding. Interestingly other research on other lipocalins 
has suggested that TYR84 on the L5 loop is important for binding 392. The results 
obtained here suggest that mutation to a phenylalanine or alanine might actually 
destabilise the closed conformations of gateway residues and thus improve binding. 
Indeed, mutation of the analogous tyrosine in rat odorant binding protein 3 failed to 
greatly perturb binding 452.

The ability to run constant pH simulations on GPUs allows testing of the possible pH 
dependency of MUP, and the implementation of grid inhomogeneous solvation theory 
(GIST) into AMBER enables easier quantification of site-specific thermodynamic 
values associated with water occupancy.

5.4.2. Ligand & cavity desolvation contributions to the global entropy

In light of the discussion so far, it would be useful to reconsider the global entropies of 
binding of ligands to MUP with the following hypothetical argument. In §5.3.4.2 the 
evidence indicated that the majority of the ligand desolvation entropy calculated from 
vapour-solvent partition equilibrium experiments would be available to the system. 
The energetic contribution from this source is quite large and values for n-alkanols 
reported in Malham et al. (2005) are plotted in Fig.5.12 36. 
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The initial hypothesis put forward in that paper and others that dealt with the binding 
of IPMP and IBMP to MUP proposed that the atypical decrease in TΔS°Glo across 
the series was primarily derived from the loss of ligand DOF 36,89,163,453,454. Whilst 
an unfavourable entropy contribution from the protein was observed in the case of 
IBMP 89, this was deemed to be invariant in the case of binding different n-alkanols 36. 
Furthermore, data based on computational and crystallographic analysis suggested 
that a similar number of bound waters were displaced on ligand binding 36. These 
are reasonable assumptions when taken in the context of calculating the TΔΔS°Glo 

between different binding interactions to the same protein 36. However, on considering 
the global data, it is difficult to see how the observed ITC values can be recreated by 
counterbalancing the loss of ligand DOF with such a large desolvation entropy. Both 
Roy et al. (2010) and Irudayam et al. (2009) estimate that on binding, the loss of IBMP 
DOF incurs an entropic penalty of only around -22 kJ/mol 91,164. Even if the actual 
entropic cost is set at the higher value of 25.8 kJ/mol as proposed by Turnbull et al. 
(2004), the ligand desolvation entropy cannot be counterbalanced. Indeed, the gap 
between experimental TΔS°Glo values and calculated values (TΔS°MaxLig + TΔSDesolv) 
ranges from +51.2 to +67.8 kJ/mol (Fig.5.12) 313. Furthermore, this gap can only be 
widened if cavity waters are displaced on ligand binding. This is a very real possibility 
as analysis of the T2FE simulations in §5.3.4.5-6 indicated that bound waters do 
become displaced on binding 3c9, and the associated entropic benefits are likely to be 
significant. Logically, the only remaining force able to compensate this surplus is a large 
unfavourable protein contribution. Thus, this is the topic of the next chapter.

Fig.5.12. Hypothetical desolvation argument. See main text for details.
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Chapter 6.0: The protein response to ligand 

binding

6.1.0. “Dr. Livingstone, I presume?”

In the search for the molecular rationale underpinning the global ITC trends 
that describe the binding of ligand panels to MUP, both ligand and desolvation 

contributions have been duly considered (Fig.3.1 & Chapters 3.0-5.0). The results thus 
far indicate that when summed, these contributions do not match TΔS°Glo measurements. 
In fact, the large ligand desolvation contribution results in the calculated entropy of 
binding overshooting global ITC measurements by ~ +51.2 to +67.8 kJ/mol (Fig.5.12). 
As the only component left to be assessed is the protein, it is logical that this is the 
missing piece in the puzzle. The restriction of the many DOF present in the protein could 
conceivably yield a large unfavourable entropy contribution that could counterbalance 
the favourable desolvation contribution. Thus, this is the focus of this chapter.

Intuitively, protein and ligand DOF are expected to become restrained upon binding 
and indeed, studies on the binding of Biotin to streptavadin suggest that cooperativity 
of interactions can result in structural tightening that stabilises the complexed form. 
Hence, in these types of bimolecular interactions, the enthalpy is favoured at the 
expense of the entropy 33,455. However, this need not always be the case, and an example 
of structural relaxation was reported on the binding of p53 to the chaperone protein 
HSP90 456. Typically, systems that possess favourable entropies of binding like ubiquitin 
are associated with the hydrophobic effect and the release of ordered solvent molecules 
from the binding interface (§1.1.6) 457–460. Yet there are several entropically dominated 
systems whose binding signature could be dominated by the protein contribution 
instead of solvent reorganisation 461. Two examples include the binding of ions such 
as Zn2+ to conantokin-G/ conantokin-T 462 and Ca2+ to phospholipase D 461,463. Another 
study by Tzeng and Kaodimos (2012) investigated the binding of a set of catabolite 
activator protein mutants to the same DNA sequence 464.  As the location of the 
mutations was distal to the binding site, there was minimal perturbation of the binding 
interface. Hence, variations in the desolvation, translational and rotational entropies of 
binding were deemed to be negligible and the precise protein conformational entropy 
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(TΔSProt) could be more accurately ascertained. Within a set of mutants, TΔS°Glo had 
a range of ~62 kJ/mol, whilst TΔSProt spanned a much larger range of ~146 kJ/mol. 
As the solvation thermodynamics were found to be invariant between mutants, it was 
proposed that the distal mutations could modulate the large scale redistribution of the 
protein’s conformational entropy. This meant that fast internal motions within the 
protein played a prominent role in aiding or hindering binding 464. 

The thermodynamic role of the protein in MUP is far from clear because the two main 
papers that studied this important component provided conflicting results. The first by 
Zidek et al. (1999) evaluated the binding of SBT, and reported an increase in backbone 
dynamics in 68 residues, whilst the remaining 63 measured values did not display 
significant changes 100. In contrast, the second study by Bingham et al. (2004) found that 
the backbone exhibited an overall decrease in mobility on binding IBMP  89. The same 
study reported that though methyl containing sidechain within the pocket decreased 
in mobility in the presence of ligand, residues distal to the binding site displayed a 
compensating increase in mobility. This phenomenon was termed entropy-entropy 
compensation and it highlights how dynamics can be redistributed throughout the 
protein’s amino acid network. However, the lack of corroboration between the different 
experimental studies on MUP mean that the precise contribution TΔSProt makes to 
TΔS°Glo is currently debatable.

6.1.1. Methods that investigate the protein entropy 

The problem of obtaining experimental data that can be used to corroborate MD 
results is pronounced in the case of the thermodynamic decompositions employed 
in this work because it is very difficult to find any experimental corollary with good 
signal to noise ratios. NMR spectroscopy and MD have enjoyed a close relationship 
as data from the former is often used to parameterise and improve the latter. The 
calculation of Lipari-Szabo generalised order parameters (S2) are an example of an 
experimental method that can obtain entropies on a per-bond basis 465,466. However, 
the data obtainable from NMR spectroscopy is bound by technical limitations that 
are not applicable to MD (§1.3.4). For instance, NMR spectroscopy is usually limited 
to analysis of amide and methyl bond vectors, whilst MD simulations have no such 
limitations. Depending on the system, it can also be difficult to obtain comprehensive 
sets of clearly resolved peaks and thus, data on bond vector entropies are often 
incomplete. Moreover, MD is not limited by the rotational tumbling of the protein 
and can explore timescales of motion in excess of what is achievable with conventional 
1H-15N dipole-dipole T1 & T2 relaxation experiments which generally take place in 
the picosecond timescale. Maragakis et al. (2008) reported that the common issue of 
systematic discrepancies between S2 values obtained from the two techniques could be 
better addressed by including external DOF from the MD analysis as it better captures 
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the dependence of relaxation rates on molecular tumbling 467. Other techniques such 
as Car-Purcell-Meiboom-Gill (CPMG) relaxation experiments 468,469 can obtain data on 
longer millisecond timescales but these experiments tend to be intrinsically insensitive 
and again have limitations on what bond vectors can be analysed. Thus, these methods 
also typically report on a small subset of nuclei.

NMR spectroscopy techniques offer the best possible avenue through which site-specific 
changes in the protein can be experimentally measured. However, as discussed above, 
these techniques are subject to many limitations which mean that they do not usually give 
an accurate estimate of the true magnitude of TΔSProt e.g. Only a subset of bond vectors 
are captured and typical methodologies assume that no correlations between bonds 
exist. The total conformational entropy of the protein can only be accurately quantified by assessing every 
DOF in the macromolecule. This is because the summation of per-bond entropy contributions has the 
propensity to accumulate or cancel in unpredictable ways as new per-bond entropy data is added to the 
data pool used to calculate TΔSProt. In contrast, MD has the ability to overcome these technical 
limitations but is hamstrung by difficulties in accruing ergodically sampled trajectories. 
Additionally, theoretical calculations have been historically limited by compute power. 
For these reasons, researchers typically only assess subsets of the available protein 
DOF using techniques such as the QHA and histogramming methods 470. For example, 
limiting analysis to bonds within the protein backbone saves considerable computational 
resources. The likely presence of significant correlations amongst the many bond 
vectors have resulted in the development of a variety of computational techniques 
that assess 2nd or higher order correlations (§3.1.2). One of the most noteworthy was 
presented by Fenley et al. (2012) 471. They calculated the conformational entropy of all 
889 bond torsions within BPT1, and used the maximum information spanning tree 
(MIST) algorithm to account for higher order correlations 472,473 (§6.1.2). As discussed 
in §3.1.2, when calculating higher order correlations, a great many data points are 
required to counter the rarification of data points in higher dimensional volumes. Thus, 
the authors work was greatly facilitated by the small size of the protein (58 residues) 
and the availability of 1 ms worth of simulation data. Some of the pertinent findings of 
this study are further discussed in the next section.

6.1.2. Entropy-enthalpy transduction & key control variables

The strength of almost all wet techniques is that experimental samples contain an 
enormous numbers of molecules and the consequent averaging provides well converged 
results. Yet, this is also a weakness in that averaging makes it difficult to separate the 
different structural and dynamic features exhibited by the main clusters of substates 
that constitute the commonly reported ground state. For example, the study based on 
the ultra-long 1 ms simulation of BPT1 discovered that the protein possessed multiple 
thermodynamic substates; each with distinguishable thermodynamic signatures 471. 
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Whilst the free energy for each cluster was nearly identical, their component entropies 
and enthalpies could differ widely. The authors hypothesised that as the free energy 
differences were so small, even a small perturbation (such as mutation or an incremental 
ligand structural difference) could result in large shifts in the underlying entropies and 
enthalpies, and thus change the occupancy of the identified clusters. Moreover, this 
could transpire with minimal perturbation to the free energy. 

The authors examined the role of control variables i.e. key interatomic distances or 
torsional ranges that could drive the protein into a distinct cluster when computationally 
modulated by the researcher. The overall thermodynamics of a binding interaction can 
be conceptually subdivided into an “intrinsic” portion which constitutes direct ligand 
interactions with receptor and a “transduced” portion which encompasses the long-range 
modulation of protein conformation resulting from ligand interactions with key control 
variables. As local thermodynamic driving forces may be distinct from global forces, 
the agent responsible for perturbing the system could be viewed as “transducing” 
a local force into quite a different global thermodynamic signature. Identifying key 
control variables in the protein could therefore dramatically accelerate the process of 
rationally designing small molecule inhibitors. Yet, this is a difficult problem to deal 
with as it necessitates extremely long MD simulations or creative methods to ensure all 
conceivable conformations are adequately represented. 

6.1.3. Objectives

The results presented below seek to assess three principle objectives.

1. The results obtained in Chapter 4.0 suggested that 3Z-olefins undergo 
increased dynamics compared to n-alkanols (§4.3.7). Therefore, it is of interest 
to establish whether a corresponding enthalpic difference can be measured 
from the simulations. The number of inter-atomic contacts is used as a cost-
effective proxy for the enthalpy.

2. A modified version of the program order 360 is used to calculate the protein’s 
conformational entropy for n-alkanol and 3Z-olefin complexes. The method 
underlying the program is based on that proposed by Yang and Kay (1996), 
and this computational analysis allows a rough estimate of summed TΔSProt 

contributions derived from 8 different complexes 
96,361. 

3. The protein entropy analysis necessarily involves the calculation of per-
bond entropy differences. Thus, trends in this data will be utilised to identify 
possible control variables.
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6.2.0. Methods

6.2.1. Contacts

The number of contacts was assessed with the “contacts” command in cpptraj. The 
command works by assessing all contacts within a specified distance between the atoms 
specified in a search string. Thus, if a single residue is selected, the command only 
reports the number of intra-residue contacts that fall within this distance. With this 
in mind, different instances of the command were run on each 1.2 ms apo and holo 
trajectory where appropriate: 

1. All contacts for every protein residues (1 to 157 in one command instance)

2. Ligand only (self contacts)

3. Ligand versus a single residue (x157 discrete command instances)

4. Residue only (self contacts x157 discrete command instances)

Adding or subtracting various combinations of these different datasets allowed the 
calculation of:

A. PL interfacial contacts: Protein and ligand intermolecular contacts with 
no protein intramolecular contacts. Requires the holo trajectories only. The 
average number of contacts per residue was obtained by dividing the sum of 
all contacts by the number of frames utilised.

B. All PL contacts: Includes inter- and intramolecular protein-ligand 
contributions. The difference in contacts was obtained by subtracting average 
number of contacts in the receptor from the holo complex.

C. All PP contacts: Intramolecular protein-protein contributions only. The 
difference in contacts was obtained by subtracting average number of contacts 
in the receptor from the bound state.

A cut-off of 7 Å was used for all calculations as the distance should be large enough to 
remove most residue self interactions to obtain an accurate estimate of the number of 
interfacial contacts. A tighter cut-off of 3-4 Å would technically be more accurate, but 
the larger distance preserves the necessary information.
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6.2.2. Computational calculation of protein entropy

The conformational entropies of bond vectors were calculated with program order 360. 
The method used in the program is described in §4.2.5.3. The protein backbone 
was RMS fitted to the reference structure used in §4.2.2 prior to analysis. The key 
difference between the calculation of the ligand orientational entropy and the protein 
conformational entropy is in the RMS fitting. When calculating the ligand orientational 
entropy, ligand dynamics is not limited by explicitly fitting any of its coordinates. Thus, 
it is allowed to move freely relative to the frame of the fitted protein i.e. it possesses 
both T&R motion. A subsequent processing step moves each ligand bond vector to the 
origin so that the bond rotates around this central point. This removes translational 
motion while preserving rotational motion. In contrast, the motion of protein bond 
vectors is constrained to the frame of the protein which has had both gross translational 
and rotational motions removed.

6.2.3. Protein H-bond occupancies

Hydrogen bond (H-bond) analyses on the MD generated ensemble of structures were 
accomplished using the ptraj module from AMBER, and custom python scripts. Analysis 
was performed on all 1.2 x 106 frames for all ligands from both panels and every solute-
solute H-bond interaction was recorded. Note that percentage H-bond occupancies are 
calculated for the apo and holo simulations separately. Subsequent to this, the apo 
occupancy for a given H-bond was subtracted from holo occupancy. Thus, positive 
values indicate that there is a large increase in holo H-bond occupancies compared to 
that of the apo state. In a large number of instances, the difference in H-bond occupancy 
between apo and holo simulations is very small i.e. (-5 to +5%). These were discounted 
from the analysis and the importance of H-bonds were categorised into the following 
occupancy ranges. 

1. Stabilising strong: Greater than 30.01%

2. Stabilising medium: Between +15.01% and +30.0%

3. Stabilising weak: Between +5.0% and +15.0%

4. Destabilising strong: Less than -30.01%

5. Destabilising medium: Between -15.01% and -30.0%

6. Destabilising weak: Between -5.0% and -15.0%

Note that it is the holo complex that is stabilised or destabilised with respect to 
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the apo receptor.

6.2.4. Principle component analysis

Videos of largest linear protein displacements were obtained using principle component 
analysis as described in §3.2.6. All 1.2 x 106 frames were used. Only protein backbone 
atoms were evaluated.
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6.3.0. Results & Discussion

6.3.1. Protein-ligand contacts as an enthalpic proxy

Malham et al. (2005) proposed that the favourable enthalpy of binding was the result 
of increased protein-ligand interfacial contacts 36. In order to assess this, the number 
of contacts made within a 7 Å cut-off was assessed as a proxy for the enthalpy. The 
number of contacts is high because of the relatively large cut-off. This was needed to 
remove the intramolecular contacts of larger protein residues and recover the interfacial 
contribution (§6.2.1). Though such an analysis does not provide energetic values, the 
simplicity of the analysis avoids the difficulties associated with more computationally 
expensive techniques such as MM(P/G)BSA. The average number of contacts is 
subdivided into the three categories depicted in Fig.6.1.

1. The average number of protein-ligand interfacial contacts for various complexes 
(Fig.6.1.a). Intramolecular contacts have been removed, so this encompasses protein-
ligand intermolecular contacts only. The number of contacts increases linearly as 

Fig.6.1. Average number of contacts for n-alkanol and 3Z-olefin ligand panels. (a) Protein-ligand intermolecular 

contacts only. No intramolecular contacts. Represents pure PL interfacial contacts (b) Protein-protein intramolecular 

contacts without any ligand contribution. (c) All protein-ligand and protein-protein contacts. Obtained by subtracting 

the receptor from free   (d) Image of MUP with residues colour coded to show which residues 3Z-olefins (green) and 

n-alkanols (orange) preferentially contact. Per-residue data obtained from Fig.6.2.
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ligand length increases. This suggests that enthalpically favourable interactions 
occurring at the binding interface contribute linearly to ΔHGlo trend lines obtained 
from ITC. On average, 3Z-olefins systematically make fewer contacts with binding 
site residues compared to their respective n-alkanol analogues. As discussed in §4.3.5, 
this is because ligands preferentially bind to different H-bond partners and as a result 
of these interactions, 3Z-olefins “fit” better into the cavity compared to n-alkanols in 
both ligand pose categories. Thus, differences in the location of these ligands in the 
cavity are directly responsible for their reduced interfacial contacts.

2. The difference in averaged protein-protein contacts between apo and holo 
simulations (Fig.6.1.b). Values have been obtained by subtracting apo from holo 
contacts and do not include any protein-ligand contacts. The purpose of this graph is 
to isolate the protein-protein contribution from the total number of contacts which is 
inclusive of protein-ligand contacts (Fig.6.1.c). The shape and slope of the trend lines 
highlight convergence issues present in the 1.2 ms length simulations. Firstly, the end 
of the n-alkanol plot forms a “hockey stick” shape because oct and non have a similar 
number of contacts. The same disruption to linearity was also observed in summed 
n-alkanol positional and orientational entropies, and this was demonstrated to be 
indicative of imperfect sampling. As demonstrated in §4.3.9.2, additional sampling for 
the oct data point assisted the recovery of a linear trend. Secondly, the data point for 
3c6, the six carbon 3Z-olefin is out of line with the rest of the unsaturated ligands and 
is clearly too high. Again, this is a sampling issue which is likely to be the result of the 
protein preferentially visiting conformations that are unusually tight/compact. The 
precise reason for this is currently unknown, but as detailed in the following sections, 
trends obtained from congeneric ligand panels greatly assist the interpretation of 
imperfect data.

Ignoring the value for 3c6, the magnitude of values plotted in Fig.6.1.b ranges 
from -2374 to -1758. The negative sign indicates that when protein-ligand interactions 
are neglected, the apo receptor has a greater number of protein-protein contacts than 
the holo complex. The pocket is ~14 Å across at its widest point, and an increase in 
apo protein-protein contacts is likely because binding site residues can come closer 
to one another in the absence of ligand. Conversely, in the holo complex, the same 
residues are further apart due to the presence of the ligand. Despite the sampling 
issues, extrapolating the trend lines of both panels indicates that there is an increase in 
holo protein-protein contacts with increasing ligand length because the apo receptor 
makes an identical contribution to each data point. However, it is unclear whether 
there is a systematic differential between comparable n-alkanol and 3Z-olefin ligands. 
With better sampling and a tighter cut-off, this could be determined in the future. 
Nonetheless, this result supports the idea that protein structural tightening does occur, and this 



Chapter 6.0278 279

suggests that the favourable enthalpy of binding is not solely derived from protein-ligand interfacial 
interactions.

3. The difference in the total averaged contacts between apo and holo simulations 
(Fig.6.1.c). Includes inter- and intramolecular protein-protein and protein-ligand 
contacts. Values have been obtained by subtracting apo from holo contacts. Protein-
protein contacts account for the bulk of all contacts, but sampling issues introduce 
some noise into the trend line. Once all protein-ligand interactions are accounted 
for, the values have a positive value as the holo entity possesses more inter- and 
intramolecular contacts than the apo receptor. Though the slope of the trend lines 
in Fig.6.1.b indicated that protein tightening occurs as ligand size increases, protein-
ligand interfacial interactions ostensibly make a bigger contribution because their 
inclusion make the slopes much steeper. However, this should be taken with caution 
due to the lack of energetic values and the use of a relatively large cut-off.

The number of contacts were also analysed on a per-residue basis, and this revealed 
that ligands in the two panels exhibit markedly different preferences for binding site 
residues (Fig.6.1.d). Whilst n-alkanols make more contacts to residues in the omega 
loop, 3Z-olefins make contacts to residues at the opposite side. This is a consequence 
of different patterns in direct protein-ligand H-bonding (§4.3.5). A detailed per-residue 
plot depicting the difference in the number of averaged number of interfacial contacts 
between the two panels is presented in Fig.6.2. Values have been obtained by subtracting 
3Z-olefin per-residue contacts from n-alkanols. At either extreme, positive values 
indicate that the residue makes more contacts with saturated ligands, whilst negative 
numbers represent more contacts with unsaturated compounds. Note that using a 7 Å 
cut-off results in some residues outside the binding pocket picking up a small number 
of spurious protein-ligand contacts e.g. LEU151 and PHE134. Full per-residue graphs 
for both panels are located in the appendix (Fig.A3.1.1-2).
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6.3.2. Per-bond entropy analysis & control variables

Only the protein’s entropic contribution is left to be assessed in the system. Hence, a rough 
1st order estimate for each 1.2 ms holo and apo simulation was obtained by calculating 
per-bond entropies for the bonds listed below. Per-bond entropy differences (TΔSProt-pb) 
were calculated by subtracting the value obtained for the receptor from the complex.

1. Amide bonds: Amides in all residues apart from PRO93, PRO124, and 
GLU1 in the N-terminus were assessed. 

2. Aromatic bonds: Conformational entropies were calculated for Ca-Cβ 
and Cβ-Cg bonds for each aromatic residue. As these bonds are expected to 
be highly correlated, entropy values were averaged because the facility to 
calculate 2nd order entropies was not available at the time of writing. 

3. Methyl bonds: Entropies for methyl bonds were calculated by assessing the 
motion of the terminal methyl containing bond. In the case of valine residues 
which contain symmetrical methyl groups, the entropy values were averaged 
as a rough method to account for correlations.

As discussed in §6.1.1, a large amount of correlations between bonds are expected 
when calculating TΔSProt. However, as all the simulations which have been processed 
the same way, this 1st order treatment should allow adequate comparison of per-residue 
trends between the different holo complexes. The work thus far indicates that even 
after using 1.2 million snapshots, the simulations have not fully converged. However, 
inaccuracies can be readily identified by deviations in expected trends as the results 
are derived from multiple independent simulations that examine the binding of 
ligands with small incremental structural differences. The analysis presented in this 
section provides strong evidence that there is a differential protein response which is 
dependent upon the identity of the bound ligand. In addition to detailed per-residue 
graphs (Fig.6.4), a secondary structure graph is also presented (Fig.6.3). The graph 
is created by summing up TΔSProt-pb values for all bonds within canonical secondary 
structure elements (Fig.1.20). The resulting reduction in both data dimensionality and 
granularity facilitates the easy identification of which areas of the protein are most 
affected by ligand binding. The most important trends and conclusions will be briefly 
discussed.

In both panels the protein generally becomes more restrained as the bound ligand 
becomes larger (Fig.6.3). Furthermore, it is clear that the protein is much more 
restrained in the presence of n-alkanols compared to 3Z-olefins. The protein’s β-clam 
fold is made of the orthogonal arrangement of strands b-d (residues 41-73) with respect 
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to e-h (residues 80-122). It is the latter collection of secondary structure elements that 
are primarily affected by the binding of saturated compounds whilst the former displays 
a more moderate response. Residues 41-73 are located near the entrance to the protein, 
and it is possible that this mix of aliphatic and aromatic residues is more densely 
packed. Thus, this could potentially inhibit large shifts in mobility. More importantly, 
the contacts analysis indicated that relatively fewer protein-ligand contacts are made to 
residues 41-73 compared to the larger range of residues within 80-122 (Fig.A3.1.1-2).

At this point, the concept of control variables described in §6.1.2 is revisited. Analysis 
of TΔSProt-pb trends could shed some light on possible mechanisms by which local ligand 
interactions potentially drive global protein conformations. The work in chapter 4.0 
suggested that a control variable contender was PHE90 (§4.3.4). This residue can flip 
between “open” and “closed” conformations so as to allow or hinder ligand access to 
cal3 respectively. As previously discussed, longer ligands have an increased probability 
of being displaced into cal3 and shunting PHE90 aside by virtue of their increased 
bulk. Thus, this was thought to be a likely control variable as it possesses one of the 
largest changes in terms of both chemical shift perturbation (data not shown), and per-
residue contact analysis (Fig.A3.1.1-2). Though inter-panel TΔSProt-pb differences are 
present for this residue, the magnitude of the contribution is fairly small. Despite this, 
it is entirely plausible that the subset of bond vectors used for analysis does not fully 
capture the entropic contribution from PHE90. Nonetheless, when PHE90 is displaced 
into the open position, the ligand can adopt vertical poses located further within the 
heart of the calyx. This has a knock-on effect of increasing the sidechain packing of 
adjacent residues such as LEU105 and LEU116 which become increasingly restricted 
as n-alkanol ligand size increases and vertical poses become more stabilised. Per contra, 
in 3Z-olefin complexes, the amount of restriction observed in these residues is relatively 
constant (~ -1.0 kB) because unsaturated ligands have greater facility to switch between 
vertical and horizontal poses (§4.3.7.2). Thus, the underlying distributions of LEU105 
and LEU116 bond vectors in various 3Z-olefin complexes possess greater similarity, 
and intra-panel TΔSProt-pb values for these residues are relatively invariant. 

LEU105 and LEU116 are located in the g and h strands respectively. Bingham et al. 
(2004), found that on binding IBMP, residues distal to the binding site in the L6 loop 
stiffened. A fact substantiated by microsecond simulations 91. As the vertical ligand 
pose increases direct protein-ligand contacts, displacement of PHE90, LEU105 and 
LEU116 could have long-range effects on the dynamics of residues distal to the 
binding site. Additionally, TYR97 in L6 is well positioned to affect the dynamics of 
the N-terminal region, and possibly modulate other loops such as the L2 loop by a 
conformational relay mechanism similar to that described by Bingham et al. (2004) 89. 
The entropy differences of residues 92-121 within the secondary structure elements 
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that span L6 --> L7 display significant inter- and intra-panel differences. In n-alkanol 
complexes there is a general decrease in residue mobility that is correlated with ligand 
size and this indicates that changes in this area must be affected by greater occupation of 
vertical poses. Though the dynamics of this region within 3Z-olefin complexes is a lot 
more variable, the degree of restriction is ameliorated compared to analogous n-alkanol 
complexes. Indeed, residues such as LEU101 and LEU119 display a consistent increase 
in TΔSProt-pb. Note that LEU119 is located in-between flexible glycines (GLY118 and 
GLY121) in the h strand, and it is possible that that ligand H-bonds to TYR120 assist 
in the destabilisation of LEU119. Thus, it is unlikely that TΔSProt-pb gains and losses can 
purely be described in terms of differences in non-directional interfacial interactions. 
Strong, directional protein-ligand H-bonds can also modulate the dynamics of residues 
distal to those in the binding site via the action of coupled protein-protein interactions.

So what is the root cause for greater TΔSProt losses in n-alkanol complexes compared to 
3Z-olefins? As discussed in §4.3.5, n-alkanols preferentially H-bond to residues within 
the W loop whilst 3Z-olefins tend to H-bond to residues such as ALA103 and TYR120 
which are located lower down within the calyx (Fig.4.20). As all ligands increases in 
size, an increase in H-bonds occupancies to W loop residues such as PHE38 and LEU40 
is observed. In n-alkanol complexes, the increase in these interactions becomes more 
pronounced as ligand size increases, and these directional forces act to stabilise and 
limit dynamics at the front of the W loop. Additional stabilising interactions increase 
H-bond occupancies between TYR84 on the L5 loop, and ASN37 on the W loop at 
the expense of H-bonds to the upper part of the c strand. Furthermore, additional 
H-bond mediated tightening is observed near the tops of the e, f and g strands between 
ASN107, ASN88 and various backbone atoms. As a result of these key interactions, 
n-alkanol complexes generally see a greater increase in inter-strand H-bonding between 
residues 80-122 compared to 3Z-olefins (Fig.6.5). Thus, this coupled network of 
stabilising interactions results in greater TΔSProt losses in n-alkanol complexes versus 
3Z-olefins. An issue with this proposition is that the 3c8 holo complex also displays 
a large amount of restriction in W loop residues but the ligand does not H-bond to 
this secondary structure element for much of the simulation. The precise reason for 
this discrepancy is currently unknown, but the highly unfavourable TΔSProt-pb value for 
ILE32 indicates that a separate confounding protein-protein interaction may be present. 
The W loop is relatively large and difficult to converge. It is capable of complex multi-
segmented motions that could be influenced by the auxiliary dynamics of a number of 
other secondary structure elements. Thus, further sampling is necessary to make an 
unqualified conclusion on this out-of-trend data.
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In contrast, unsaturated ligands do not tend to make H-bonds to the front of the W loop 
and the protein undergoes comparatively less tightening within the areas just discussed. 
However, the binding of 3Z-olefins elicits intriguing protein responses in two particular 
areas. Firstly, an increase in the dynamics of the A1 helix is observed. As discussed, 
LEU119 possesses one of the largest increases in mobility on binding. It is located 
outside the cavity on the h strand and pushes against the A1 helix. This is possibly 
due to synchronous ligand mediated H-bonds to ALA103 and TYR120 which are 
respectively located within the g and h strands. The dynamics of external sidechains are 
worthy of further investigation but because the current analysis does not include data 
on all sidechain bond vectors it is difficult to make any firm conclusions. For example, 
what is the role of arginine residues that link the A1 helix to the W loop (chapter 5.0)? 

Secondly, a consistent increase in order is observed in the short 310 helix located at 
the N-terminus (residues 12-15). The precise cause of this is currently unknown, but 
it is pertinent that a similar amount of tightening is not observed in n-alkanol holo 

Fig.6.5. Differences in inter-strand H-bonds in various MUP complexes. High occupancy, complex stabilising 

H-bonds are coloured red, medium - orange, and low - salmon. Complex destabilising H-bonds are unemphasised 

and are coloured three shades of blue. The occupancy of stabilising H-bonds generally increases with ligand size. 

Moreover, saturated ligands promote greater positive H-bond occupancies compared to unsaturated ligands. Such 

a pattern is seen in the H-bonds between f and g strands. Also note the H-bond locking mechanism between ASN88 

and ASN107 act to pull the L5 and L7 loops together whilst H-bonds between TYR84 and the W loop act as another 

immobilisation mechanism. 
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complexes. Zidek et al. (1999) reported that the protein backbone entropy increases 
upon binding the ligand SBT as 68 residues showed significant increases in mobility 100. 
Moreover, a single residue, PHE10 located within the conserved 310-helix in the N-terminus 
underwent a significant reduction in mobility. These observations regarding the N-terminus 
were supported by MD simulations presented by Macek et al. and it was also noted that 
the ligand did not remain in the pose seen in crystal structures 101,102. These simulations 
also made a link between the ligand’s interaction with residues (ALA103 and LEU105) 
within the calyx and the disruption of H-bonds between residues at the base of g and 
h strands near the L6 loop 101,102. As shall become apparent, this is of interest because 
bound SBT complexes have been shown to promote a favourable TΔSProt contribution, 
and 3Z-olefins, (which also H-bond to ALA103), suffer reduced TΔSProt losses compared 
to n-alkanols. Thus, it is possible that protein-ligand interactions with residues near 
ALA103 act to increase protein dynamics via a conformational relay mechanism. 

At this juncture, two videos are presented to highlight what has been discussed so 
far. Both videos show the first largest principal component mode for the receptor 
(video.6.1) and all holo complexes (video.6.2). You will have to loop the videos in your 
video player. The program VLC media player is suggested to avoid codec issues. Note 
the following points:

1. Increasing immobilisation and synchronous coupling of L5 and L7 loops 
as n-alkanol ligand size is increased. A similar phenomenon, albeit greatly 
reduced is observed in 3Z-olefins.

2. Difference in N-terminal motion between 3Z-olefin and n-alkanol 
holo complexes.

3. The W loop is capable of various multi-segmented motions. In n-alkanol 
holo complexes, LEU40 (which is at the front base of W loop) gets progressively 
more restricted as ligand size increases. In all 3Z-olefin complexes apart from 
3c8, the amount of restriction in that area is reduced.

On synthesising these disparate pieces of data, it is possible to hypothesise that the protein 
is capable of modulating its response to ligand binding via dynamic rearrangement of 
the N-terminal region which lies beneath the base (ILE15, ILE45, LEU52, ILE92, 
and LEU101) of the binding cavity (Fig.6.6.a). Two out of three of short SCRs are 
localised in this zone (§1.3.1). PHE10 is within the highly conserved SCR1 sequence 
adjacent to the N-terminal 310-helix which (in common with other members of the 
Calycin family) possesses the distinct structural characteristic of forming multiple 
H-bonds (over a conserved inward-pointing tryptophan) to an arginine or lysine 474. 
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Additionally, SCR2 encompasses the (now familiar) L6 loop and the bottom portions of 
strands f and g. Strikingly, strand h along with the aforementioned arginine constitutes 
SCR3 and the outward facing residues in this strand are well placed to interact with 
Helix A1 (Fig.1.20.b). Finally, the literature hypothesises that these conserved SCRs 
form the basis of a receptor binding site (Fig.6.6.c) 474–476. If this were the case, ligand 
binding to lipocalins could induce dynamic changes to the base of the protein so that 
cell receptors are modulated.  Indeed, MUP-1 has several postulated functions and 
circulatory MUP-1 has been shown to regulate glucose and lipid metabolism, and there 
is the suggestion that it can bind its own cognate receptor in hepatocytes 477. Moreover, 
a ligand that promotes male-male aggression has been shown to bind to MUP-1, which 
goes on to stimulate sensory neurones within the nasal cavity 478.

Fig.6.6. (a) Image depicting the positions of residues described in the text. Base of the cavity coloured grey. 

(b) Two modes of binding to soluble macromolecules: non-covalent and covalent association. (c) Binding to cell 

membrane receptors via W loop or receptor binding patch at N-terminus. (d) Binding to small and large ligands. 

Larger ligand is only partly enclosed and protrudes out of cavity, whilst the smaller ligand is fully enclosed. Text and 

images for panels b-d are adapted from Flower (1996) 474.
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6.4.0. Conclusion

6.4.1. Summed protein contributions to the global entropy of binding

To assess whether TΔSProt provides a significant contribution to the TΔS°Glo trend 
lines obtained from ITC, entropy differences for all bond vectors were summed. This 
yields a 1st order estimate as it assumes that all bond vectors are independent from one 
another. If correlations between bond vectors were taken into account, the magnitude 
of the final sum would be reduced (§3.1.2). On the other hand, the true 1st order protein 
contribution is likely to be underestimated because only a relatively small subset of 
the total number of bond vectors has been captured. As discussed in §6.1.1, NMR 
spectroscopy is the only wet experimental technique that can report on protein site-
specific entropy changes with any accuracy. Despite this, the difficulty of capturing 
data for all bond vectors means that it is currently unlikely to give an accurate estimate 
of the true protein entropy. Whilst analysis of amides in the protein backbone and 
methyl groups in sidechains might give a rough indication of the protein contribution, 
it is important to remember that entropy differences can accumulate or cancel as more 
DOF are included in the summation. Thus, the missing data is a serious issue. The 
only technique that has the potential to capture all bond vector data and account for 
correlations is MD, but this is a computationally difficult task because of difficulties 
associated with accruing sufficient sampling and the raw compute capabilities required 
to process the data (§6.1.2). For these reasons the work presented in this chapter 
suffers from the same limitations associated with using experimental order parameters. 
Nonetheless, TΔSProt trends calculated from multiple independent simulations allow the 
assessment of whether there is a differential protein response that is dependent on the 
identity of the bound ligand. The analysis allows the following facts to be established:

1. Do the computationally calculated TΔSProt trend lines provide linear 
contributions to the linear TΔS°Glo trends obtained from ITC? This would 
be indicative of a graded protein response which is dependent on ligand size.

2. Is there is a systematic offset between calculated TΔSProt values between 
n-alkanol and 3Z-olefin complexes that arises from a simple ligand structural 
modification? Such a difference would indicate that differences in protein 
dynamics contribute to the improved TΔS°Glo observed on binding unsaturated 
compounds compared to saturated compounds (Fig.3.1).

As discussed in §5.4.1.2, the contribution from ligand desolvation entropy on binding 
is very large and favourable. This cannot be counterbalanced with the relatively small 
contribution yielded by the loss of ligand DOF.  Deductively, only the protein has the 
requisite number of DOF that can potentially produce the unfavourable contribution 
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required to compensate desolvation and bring the calculated values within the range 
measured by global ITC. The results obtained from the simulation data indicate that 
this is indeed the case (Fig.6.7). However, the linearity of the trend lines is disrupted 
in both panels. Fortunately, prior analysis provides the rationale as to why this occurs. 
Firstly, in the case of n-alkanol holo complexes, the analysis in §4.3.9.2 indicated that 
the data points obtained for bound oct, and (to a lesser extent) non suffered from 
sampling problems. Linear trends for ligand orientational and positional entropies 
would be recaptured upon extending sampling (Fig.4.28). As there are many DOF 
in the protein and the correlations between them are not accounted for, differences 
in the n-alkanol trend line are exaggerated. In contrast, 3Z-olefins exhibit sampling 
issues for the smallest bound ligand, 3c6. As demonstrated in Fig.6.7.b, the 3c6 holo 
complex exhibits an anomalous amount of protein-protein intramolecular contacts 
which is likely to contribute to protein structural tightening. This would undoubtedly 
result in the TΔSProt contribution of 3c6 being far more unfavourable than it ought to 
be. The same contacts data also supports the non-convergence of the bigger n-alkanols, 
oct and non. Nonetheless  , after taking non-convergence into account, TΔSProt makes a 
significant unfavourable contribution to TΔS°Glo and is in the right range to compensate 
the favourable desolvation entropy. It is expected that on including all available protein 
DOF and accounting for higher order correlations, values constituting the trend line 
will be further affected. This should correct the offset and slope of the trend lines to 
complement that obtained for the thermodynamic contributions produced by the other 
components within the system. It is also possible to conclude that the protein does 
display an amplified, albeit graded response in which greater reductions in TΔSProt 
are correlated with the size of the bound ligand. We are currently in the process of 
acquiring T1 & T2 relaxation data and the preliminary results support the argument for 
a differential protein response (data not shown).

Fig.6.7. (a) Summed 1st order TΔS
Prot 

values for both ligand panels. Ligand desolvation and experimental ITC 

values are plotted for comparison. (b) All protein-ligand and protein-protein contacts. Reproduced from Fig.6.1.b. 

Note that the data point for 3c6 displays an anomalous amount of protein-protein contacts (§6.3.1).
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It is particularly interesting that a seemingly small unit modification which introduces 
a cis-3-4 double bond into saturated ligands results in TΔSProt losses being greatly 
ameliorated. The contacts data suggests that this would be at the expense of the 
enthalpy. Though small differences in ligand structure can promote large shifts in the 
underlying enthalpies and entropies, the free energy often seems immutable because 
the system rebalances itself (Fig.3.1). When viewed from the perspective of drug 
design, this phenomenon is rightly considered an obstacle to the discovery of efficacious 
small molecule inhibitors. However, such a perspective often misses the beauty and 
complexity of biological systems. The free energy may remain static on binding ligands 
with small structural differences, but shifts in the underlying entropic and enthalpic 
contributions report on shifts in dynamic and structural features exhibited by the 
protein. These differences can contribute to variations in physiological function because 
different small molecules can mediate the modulation of the protein’s conformations 
and intermolecular interactions with its cognate receptor. This in turn, can result in the 
differential regulation of downstream pathways within the system. The highly coupled 
nature of protein-ligand interactions in this system has important implications for the 
rational design of inhibitors in other systems that exhibit EEC because the effects of 
the tiniest changes are not always predictable or obvious. The investigations carried out 
in this thesis indicate that successful drug design would be maximised by considering 
systems holistically as coupled analyses of the dynamic and structural components of 
binding offer a compelling route through which EEC can potentially be bypassed or 
leveraged.
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Chapter 7.0: Conclusions

7.1.0. Summary

This thesis has focussed on decomposing the global entropies of binding measured 
by ITC (Fig.3.1). There are many experimental techniques that are proficient 

at measuring global thermodynamic values such as ITC, but these methods typically 
encounter difficulties in providing rationale for the atomistic origins of observed binding 
signatures. This is primarily because the different components in the system can give 
rise to convoluted thermodynamic contributions that augment and negate one another. 
Thus, the assumptions underpinning most experimental decompositions are too broad, 
and this can obscure the subtleties of molecular interactions at the atomistic level. 
MD simulations provides good models of atomistic data that is extremely amenable 
to decomposition because its analysis relies upon building up desired thermodynamic 
values from the smallest base interactions. Traditionally, MD analysis has focussed on 
the characterisation of the structural components of binding because presumably, such 
interpretation is more intuitive, easier to accomplish and has already been richly defined. 
In contrast, the work presented in this thesis has principally focussed on the dynamic 
component of binding, an esoteric, niche field. The approach has yielded dividends in 
that, the calculation of per-unit entropies offers a way through which the behaviour of 
small molecules, macromolecules and solvent can be readily characterised. Synthesising 
this information with the structural data obtained from spatial information about the 
architecture of the binding cavity, intermolecular contacts and H-bond analysis has 
allowed a detailed picture of bimolecular interaction in MUP to be painted. 

But, what is the benefit of studying the decomposition of the global thermodynamic 
signature of MUP? As discussed in the introduction, MUP is a well studied system 
which is amenable to a variety of biophysical techniques, and the results from in silico 
investigations can be readily validated against the body of work published in the 
literature. However, it should not be merely regarded as a toy problem and the methods 
developed here have broad applicability to a variety of other systems for the following 
reasons:

1. Lipocalins constitute a large family of proteins, and the results discovered 
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possess a measure of transferability. For example, the development of 
engineered anticalins is an active field of research. 

2. As detailed in §4.1.1, there are a large number of promiscuous proteins 
and ligands and the techniques developed here can guide the rational design 
of drugs. Holistically understanding the molecular relationships between 
structural and dynamic elements could allow the fine-tuning of activity and 
specificity in a similar vein to that exhibited by natural compounds.

A key factor that makes MUP an interesting system to study is its atypical binding 
signature and its ability to promiscuously bind many different ligands. ITC analysis 
indicated that on binding a panel of n-alkanols that differed incrementally in size by 
a single methylene group, the enthalpy became progressively more favourable, whilst 
the entropy became more unfavourable. As both the protein binding cavity and 
ligands were predominantly hydrophobic, it was initially expected that the binding 
signature should be entropically dominated. Malham et al. (2005) proposed that as 
the cavity was suboptimally hydrated, binding did not benefit from the expulsion of 
ordered water molecules on ligand binding. This contribution usually produces an 
extremely entropically favourable contribution and is considered a hallmark of apolar 
association 36. In its absence, the enthalpy dominated the binding thermodynamics due 
to an inequality in dispersive interactions between endpoint states. At the same time, 
the smaller, progressive loss of entropy across the series was proposed to be due to 
the loss of ligand DOF (Fig.3.1). These experimentally derived hypotheses were the 
starting point for the in silico investigations carried out in this thesis.

What makes MUP even more interesting is its ability to bind homologous panels 
of ligands which possessed double bonds. The 3Z-olefin panel presented itself as an 
ideal counterpoint to the n-alkanol panel because the binding of these ligands was 
characterised by an improved entropic signature that came about at the expense of 
the enthalpy of binding. Therefore, EEC resulted in a net free energy change that was 
negligible. It was further hypothesised that greater entropic favourability of binding 
exhibited by 3Z-olefins was the result of ligand pre-organisation or because the entropic 
penalty was prepaid during the process of chemical synthesis. The rationale for the 
underlying shifts in the underlying entropies and enthalpies of binding between these 
two panels formed the focus of much of the work executed.

Initially, chapter 2.0 attempted to obtain all three thermodynamic parameters of interest 
from TI calculations i.e. ∆H, ∆G and T∆S. Whilst the free energy was accurately 
captured, entropies and enthalpies suffered in accuracy by approximately an order 
of magnitude. Thus, chapter 3.0 sought to capture the entropy more accurately by 
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calculating the loss in torsional DOF. This approach is commonly used in research 
to characterise the ligand conformational entropy, a subcomponent of TΔSGlo. If the 
linear decrease in TΔSGlo across ligand panels was principally derived from the loss 
of ligand DOF, this calculation should provide conclusive evidence for this proposal. 
Furthermore, there should be a systematic differential between n-alkanol and 3Z-olefin 
panels. However, the analysis revealed that the contribution from the conformational 
entropy was negligible. This was primarily because ligands bound to MUP retained 
significant residual motion. Despite this, analysis of per-dihedral entropies allowed 
hypotheses to be made regarding ligand interactions and dynamics within the cavity.

Chapter 4.0 primarily focussed on assessing the loss of the ligand’s translational and 
rotational DOF on binding. These contributions are not commonly assessed in the 
literature because the calculation of the translational contribution is controversial, and 
most (if not all) methods that deal the rotational contribution are limited to relatively 
rigid molecules. Two new methods were developed that addressed some of the 
limitations of previous techniques. Inaccuracies in previous methods could arise as a 
result of suboptimal sampling and the use of functional forms that fail to characterise 
the multimodal distributions that are likely to be present in many biological systems. 
Both the methods presented benefited from long 1.2 ms simulations and did not rely 
on any functional form to describe the distributions. Furthermore, analysis of the 
rotational contributions to TΔSGlo was executed on a per-bond basis and this allowed 
the principal rotations of flexible molecules to be characterised. The partitioning of 
the rotational contribution revealed significant differences between the dynamics of 
the different ligands analysed. When holistically juxtaposed with COM displacements 
and H-Bond patterns, the analyses revealed a clearer picture of the nature of ligand 
dynamics and structural interactions within the context of the binding cavity. Whilst 
longer n-alkanol ligands tend to remain localised within defined areas within the calyx, 
3Z-olefins have the ability to rapidly switch positions and orientations as a result of 
the rigid cis-3-4 double bond. Thus, the improved entropies of binding of unsaturated 
ligands compared to saturated compounds were not the result of ligand pre-organisation 
or due to the entropic penalty being prepaid during the process of chemical synthesis. 
Such mechanistic information is extremely useful and can be utilised in the rational 
design of small molecule inhibitors. Finally, the results indicated that summed 
translational and rotational entropy contributions to TΔSGlo were far more significant 
than the conformational contribution. This raises a doubt as to the wide-spread utility 
of the conformational entropy as a proxy for TΔSGlo and suggests that these other 
ligand contributions should also be assessed. Nonetheless, on accounting for all the 
ligand’s DOF and roughly estimating the effect of correlations, it became apparent that 
this contribution (~ -15 to -25 kJ/mol) could not solely account for measured TΔSGlo 

values. This was primarily because the ligand desolvation entropy was very large and 
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favourable (+57.7 to +68.8 kJ/mol for n-alkanols). 

Chapter 5.0 involved the development of a MD protocol to examine the process of 
ligand internalisation. This approach provided mechanistic details on how the ligand 
gained access to the binding cavity and in the process also allowed the response of bound 
waters to be studied. The analysis indicated that most bound waters are expelled upon 
ligand entry and their release was associated with a significantly favourable entropic 
contribution to binding. Thus, after accounting for this and the ligand desolvation 
entropy, the loss of ligand DOF was an even more unlikely candidate as the primary 
causative agent for observed TΔSGlo values because the computationally calculated 
entropies of binding were much too favourable.

As the only remaining component in the system left to be assessed was the protein itself, 
chapter 6.0 assessed this contribution by obtaining per-residue entropies and examining 
protein-ligand contacts as a proxy for the binding enthalpy. The results revealed that 
there were systematic differences in the number of interfacial contacts made between the 
two panels of ligands. 3Z-olefin compounds made fewer contacts than their saturated 
analogues as a result of differential positions adopted in the cavity. Interestingly, on 
allowing for sampling issues, calculated per-residue protein entropies and the summed 
totals indicated that there was a differential protein response that was dependent on the 
identity of the bound ligand. Once again, 3Z-olefin holo complexes displayed a much 
reduced response. What is remarkable is how the binding of small molecules could:

1. Amplify the protein response

2. Elicit a vastly different response for comparably sized compounds as a 
result of small differences in ligand structure i.e. the presence or absence of a 
double bond.

The per-residue entropy analysis allowed the specific regions of the protein susceptible 
to ligand mediated modulation to be identified. This data could be correlated with 
experimental order parameters obtained from relaxation experiments, and the analyses 
supported an early theory in the literature regarding the nature of MUP’s biological 
function. Moreover, the restriction of the many DOF within the protein provided 
an unfavourable entropy contribution of a magnitude capable of counterbalancing 
the favourable contribution yielded by desolvation. Thus, the global entropies and 
enthalpies of binding are the result of a combination of accumulating and cancelling 
contributions derived from the triumvirate of components ruling the system: Protein, 
ligand and solvent. 
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7.1.1. Future work

At the time of writing, most of the T1 & T2 relaxation data which will be used to 
experimentally corroborate the MD data has been obtained. There has a been a delay 
due to the upgrades taking place at the NMR suite in Leeds, but the initial results 
indicate that there are significant differences in the relaxation rates of the different 
compounds tested. A significant amount of work has also been carried out on 2nd order 
orientational entropy contributions, and this is currently in the final stages of testing.

Future directions include the mechanistic characterisation of other solvent exposed 
residues in MUP such as histidines. Such analyses would require the development 
of more advanced methods to characterise the H-bond network within proteins. This 
would be an effective tool that has broad applicability to a variety of different systems 
and situations.

7.1.2. Sampling

The issue of sampling has been addressed throughout this work and it is apparent that 
this is one of the primary weaknesses of MD simulations. When sampling is poor, 
there is a tendency to obtain nonsensical results, and it is often quite difficult to gauge 
when enough data points have been acquired. The approach taken in this thesis of 
testing panels of ligands that possess small incremental differences has been invaluable 
in identifying anomalous data points. Furthermore, well converged data points can 
be used to extrapolate deficient ones. These relationships allow ready assessment of 
1st order entropy calculations and the computational expense associated with pinpoint 
accuracy is avoided. In many cases, it would be better to gain an understanding of how 
the system works in preference to pinpoint accuracy as this information can be more 
readily incorporated into the process of rational design. The simulations are relatively 
long (1.2 ms) compared to many of the studies published in the literature, but the results 
indicate that still far greater levels of sampling are required to obtain totally converged 
results. Such an extension would be particularly useful to further analyse the protein 
contribution. 

It is interesting to read early papers near the beginning of this century that analyse 
simulations that are no more than tens of nanoseconds long. From today’s perspective, 
these short simulations seem anachronistic. However, everything within life is a matter 
of perspective, and it is very likely that five to ten years from today, 1.2 ms will seem like a 
paltry computational effort. The nature of the subjectivity of experience is encapsulated 
in the story related about Zhuangzi, Huizi and the happiness of fish in the forward of 
this work. And so it is with science. As different scales are unlocked; whether they be 
related to distance or time, our view and understanding of the universe is modified and 
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transformed. Then we realise that what we thought was true is naught but a screen 
masking a deeper truth. 

On that note, all that is left for me to do is to sincerely thank all the people who have 
provided their time and knowledge to assist me in this endeavour, and to say “so long 
and thanks for all the fish!” 479
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Fig.A1.1. Free and Bound dihedral distributions 

of n-alkanols obtained from an aggregate 600ns 

simulation. 



Appendix A1302 303

Fig.A1.2. Free and Bound dihedral 

distributions of terminal olefins obtained from 

from an aggregate 600ns simulation. 
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Fig.A1.3. Free and Bound dihedral distributions 

of 3Z-olefins obtained from an aggregate 600ns 

simulation. 
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Fig.A1.6. PCM-1 versus PCM-2 showing protein conformational sampling whilst octanol is bound to MUP. Individual 

plots are shown for 6 100ns repeats.

Fig.A1.7. PCM-1 versus PCM-2 showing protein conformational sampling whilst octanol is bound to MUP. The 

plot is generated from a single 1.2ms simulation and when compared to Fig.A1.6 indicates that a simulation 

of twice the length of 6 shorter simulations does not sample conformational space as efficiently.
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Fig.A1.8. Partial charges obtained for four HIV-Protease ligands obtained via a fragment based approach. Interchanging 

functional groups onto a common scaffold ensures a more consistent RESP charge derivation process.
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A2.1.1. The Sackur-Tetrode Equation 
(Referred from §4.1.2.2)

The simplest method of assessing the loss in translational entropy on bimolecular binding 
is via application of the Sackur-Tetrode (ST) equation (eqn.A2.1). Independently derived 
by Otto Sackur (1880 - 1914) and Hugo Tetrode (1895 - 1931), it allows the calculation 
of the entropy of a monatomic ideal gas, which possesses three translational DOF for 
each atom. In classical mechanics, an isolated system in thermodynamic equilibrium 
can be chiefly described by the macroscopic variables NVE, which correspond to the 
number of particles in the system (N), the system volume (V) and the total energy of 
the system (E). This function can be written as the following where U is equal to the 
internal energy, m the mass, kB the Boltzmann constant and h Planck’s constant.

 eqn.A2.1

In order to characterise the entropy of an ideal gas where the total energy and volume 
are held fixed, the most likely macrostate is calculated from the number of microstates 
available. Boltzmann realised that the best description of such a system is acquired by 
characterising the different states taken up by the positions (r) and conjugate momenta 
(p) of its constituent particles; variables that correspond to the potential and kinetic 
energy respectively. In the case of a single particle, position space (coordinate space) can 
be determined by discretising the volume into uniformly symmetric cells of arbitrary 
size along the three spatial axes: drx dry drz . The three momentum vectors can also 
be apportioned into cells within an imaginary space (momentum or k-space) which 
possess axes px, py and pz, so that: dpx dpy dpz. Discretising coordinate space is relatively 
straightforward but the solution to describing the “volume” of momentum space is more 
complicated. However, as the translational kinetic energy of the particle is constrained 
to equate to the internal energy we can write:

  eqn.A2.2

This can also be written as p2
x
 
+ p

2
y
 
+ p

2
z
 = 2mU and momentum space can be mapped 

onto the surface of a sphere with a radius of (2mU)1/2. As the energy of a large system 
cannot be specified exactly due to the Heisenberg uncertainty principle, the energy 
of the system fluctuates around its equilibrium value. Hence, the 2-dimesional area 
is turned into a 3-dimensional shell by multiplying by dp, and thus momentum space 
acquires dimensions of volume (Fig.A2.1). This also circumvents the issue of one of 
the momentum components being exactly specified; something that is impossible in a 
quantum mechanical treatment.
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The total number of microstates for a one particle system with three dimensions, can be 
given by eqn.A2.3, where H = [dr dp]. H is raised to the third power because there are 3 
degrees of translatory freedom and this cancels the dimensions of W and normalises this 
quantity. The choice of values for H is arbitrary and its size determines the granularity 
by which phase space is discretised.

   eqn.A2.3

The total energy of a gas consisting of two particles is still constrained to sum to 2mU. 
So, (p2

1x
 + p

2
1y + p

2
1z

 + p2
2x

 
+ p

2
2y

 
+ p

2
2z) = 2mU and the 6 axes in momentum space 

are described by a 6-dimensional hypersphere with a radius of (2mU)1/2. In this case, 
swapping the positions of identical particles does not result in a distinct new state. Thus, 
eqn.A2.4 is used to avoid double counting states.

 eqn.A2.4

When extending the problem to the case of a gas containing N indistinguishable 
particles, the volume is divided into cells of drx1 dry1 drz1 drx2 · · · drzN = dr3N and the 
momentum vectors are also divided so that - dpx1 dpy1 dpz1 dpx2 · · · dpzN = dp3N. This allows 
the structure of the various microstates available to the system to be characterised by 
dividing 6N-dimensional phase space into discrete units. Overcounting of the number 
of microstates is avoided by inserting the factor 1/N! (eqn.A2.5). 

    eqn.A2.5

The area of a 3-dimensional momentum hypersphere is 4pr2, and the hyper-volume of 
a d-dimensional momentum hypersphere can be calculated using eqn.A2.6.

Fig.A2.1. Depiction of the momentum 

hypersphere with 3 principal axes labelled as P.
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    eqn.A2.6

Combining the last two equations yields eqn.A2.7.

   eqn.A2.7

As an ideal gas typically contains an enormous number of molecules (1023), some factors 
can be discarded for ease of calculation by applying Stirling’s approximation and taking 
the logarithm. This yields the Sackur-Tetrode equation (eqn.A2.1) 291–297. 

Historically, classical thermodynamics could only produce relative entropies which 
were not third law compliant. The genius behind the derivations of Sackur and Tetrode 
was identification of the correct value for H needed to define the elementary cell 
volume used to discretise phase space as being hn. n equalling the number of DOF and 
h, Planck’s constant. This allowed a conceptual bridge to be made between particles 
such as photons on the small scale and the states taken up by massive particles, thus 
highlighting the importance of h and ensuring it became pervasive throughout physics. 
Their equation also adds the factor of 1/N! to remedy the “over counting” of N 
indistinguishable particles that occurs when applying a purely classical approach and 
thus avoids the Gibbs paradox. If this factor was not present, removing a partition 
separating two identical volumes of an ideal gas and allowing them to mix would result in 
a paradoxical increase in entropy. The corrective factor manifests as the last 5/2 term in 
eqn.A2.1. If the two gasses were distinguishable (e.g. argon and neon), this term would 
be 3/2. The quality of the ST equation is such that the theoretical values it provides 
for ideal gasses are currently considered superior to those obtained by experiment. A 
greater appreciation of the history around the derivation of this famous equation can 
be obtained by consulting Grimus (2013) 293,480,481.

A2.1.2. Measuring dynamics from crystal structures
(Referred from §4.1.2.6) 

Since X-ray crystallography solved the first protein structure of myoglobin from 
sperm whale muscle in 1958, this technique has dominated our view of structural 
biology. As of April, 2014 there were 88,213 crystal structures versus 10,352 NMR 
spectroscopy structures deposited in the PDB 9,482. NMR spectroscopy opens a window 
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on the dynamics of macromolecules in the solution state by generating an ensemble 
of structures from a time scale ranging over nanoseconds to seconds. However, it is 
difficult to routinely obtain well resolved NMR spectra for proteins much larger than 
~50 kDa without resorting to specialised methods and labelling techniques. Hence, 
solved NMR structures in the PDB tend to predominantly be under 10 kDa in size 483,484.  
Though NMR spectroscopy can provide data on bound ligand dynamics, getting good 
signal to noise ratios can be problematic due to the relatively smaller number of ligand 
atoms containing suitable nuclei compared to those from the other constituents within 
the sample. Additionally, expensive labelling strategies may be required if the ligand 
does not naturally contain nuclei possessing nonzero spin (e.g. fluorine, hydrogen, etc). 
Despite these difficulties, MD simulations can reproduce chemical shifts measured by 
NMR spectroscopy with greater accuracy than that generated from crystal structures 485.

The magnitude of conformational changes undergone by proteins can be very large, 
as evidenced by the observation that deoxygenated haemoglobin crystals shatter upon 
exposure to oxygen 486. However, the data X-ray crystallography provides on dynamics 
is limited and the static view it generates, imparts the impression that proteins and their 
bound ligands are a lot more ordered than the reality. This is because the crystallisation 
process favours recovery of averaged ground state structures from crystals that may 
contain ~1013 discrete molecules; each possessing limited conformational dynamics 
in the confines of the unit cells that constitute the crystalline lattice. Moreover, high 
resolution crystal structures often require a time period of seconds to hours to obtain 
good-signal to noise ratios. When this is combined with conformational averaging of 
a large ensemble of molecules, a further measure of dynamics is lost 483,487,488. Despite 
this, many advances in the understanding of protein conformational changes have 
come about via the resolution of crystal structures of proteins obtained under different 
conditions, such as before and after ligand binding. Sometimes multiple ligand poses 
can be observed within holo structures such as that found in MUP, HIV PR, T4 
lysozyme, neuraminidase, thymidylate synthase and cytochrome P450cam 253–256.  

Frauenfelder et al (1979) used crystals of metmyoglobin obtained at four temperatures 
(220-300 K) to extract dynamic information from conformational substates of the 
protein 489. The Debye-Waller factor (or B factor) measures the reduction in X-ray 
scattering caused by atomic fluctuations that atoms undergo due to thermal motion 
and this can be used to indirectly obtain their mean square displacements. A low 
value predicts structural rigidity whilst a high value, flexibility. The value contains a 
conformational component that describes the different substates occupied by atoms 
or groups of atoms, whilst the vibrational term describe static dynamics and lattice 
disorders 489,490. The temperature dependence of the latter allows its estimation via 
linearly extrapolating B factors obtained at different temperatures back to 0 K 489,491. 
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However, linearity is not observed for all protein systems. For example ribonuclease A 
displays a “glass transition” or “kink” in the B factor trend line between 212 and 228 
K. As substrate is not observed to bind to the protein below this transition point, it was 
suggested that flash cooling increased crystal packing and hinders the conformational 
movements required for binding 335,489,491. The majority (~90%) of protein crystals have 
been obtained at temperatures of ~100 K because rapid cooling with cryogens such as 
liquid nitrogen or propane, limits the formation of damaging ice crystals and drastically 
reduces radiation damage caused by X-ray sources 487,491. A study on high resolution 
crystals obtained at both room and cryogenic temperatures were conducted on thirty 
proteins by Fraser et al (2011). Their finding demonstrated that the cooling process 
reduced the degree of residual thermal motion, created a more compact averaged 
structure, increased lattice contacts (due to contraction of the unit cell), and decreased 
conformational populations. Furthermore, cryocooled crystals of the signalling switch 
enzyme HRas did not sample the catalytically competent conformations that were 
accessible within crystals obtained at room temperature 335.

With respect to structural dynamics, the most exciting recent developments include 
methods such as time-resolved Laue diffraction and time-resolved wide angle X-ray 
scattering (WAXS). While the former directly operates on crystal structures, the latter 
has been applied to proteins in solution, and is thus able to obtain a variety of temporally 
resolved structures that are unfettered by the crystalline lattice. Both methods add 
the dimension of time by capturing multiple intermediate conformations of a light-
dependent structural reaction (such as ligand binding) that are induced by laser pulse 
excitation. If standard X-ray pulses are utilised, a resolution of ~100 ps can be obtained. 
Newer X-ray free electron lasers (XFELs) deliver a rapid series of femtosecond pulses 
that minimise sample damage and allow resolutions of 10-100 fs to be obtained. This 
allows crystal structures of excited states to be obtained that offer a much better picture 
than the ground states typically offered by crystallography 487,492,493.

A2.1.3. per-bond orientational vs. internal entropy
(Expanded Point 4 from §4.3.7.1)

On increasing ligand length a characteristic “alternating” pattern near the centre of the 
molecule is observed. The pattern is similar to that obtained from per-dihedral analysis 
and reports on crankshaft types of motion that occur on long linear chains confined 
within small volumes (§3.3.6.2 & Fig.3.13). Increases in per-dihedral TΔS In (within C3-
C4 and C5-C6) were associated with increased conformational transitions between 
trans and gauche states. However, comparable increases in TΔSOr are associated with 
increased movements in C2-C3 and C4-C5 bonds and the peaks and troughs of the 
alternating pattern are inverted (Fig.4.24). The apparent anti-correlation is the result 
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of differences in the method by which the two subsets of the entropy are measured. If 
the bond vectors that lie between atoms C2 to C5 in oct are taken as an example, it is 
observed that the orientational fluctuations of C2-C3 and C4-C5 bonds are relatively 
greater than that of C3-C4. The internal torsion of C3-C4 is defined by four atoms 
(C2, C3, C4 & C5) and the dihedral angle is the angle between the plane intersecting 
C2, C3, C4 atoms and the plane intersecting atoms C4, C5, C6. Thus the dihedral 
distribution is created by the relative change of C2-C3 and C4-C5 bonds with respect 
to one another and it logically follows that if these bonds have large TΔSOr values, there 
must also be a large amount of internal torsional interconversions of the C3-C4 bond 
between trans and gauche conformations. On the other hand, TΔSOr is obtained from 
the relative orientation of the C3-C4 bond after its translation through space has been 
removed and this measurement implicitly encompasses contributions made by bond 
torsions. TΔSOr is calculated by evaluating the distribution created by isolated bond 
vectors using spherical coordinates. On the face of it, each bond vector is equivalent to 
a diatomic molecule possessing two rotational degrees of freedom. However, we cannot 
escape the fact that the coordinates used as input for the calculation of TΔSOr implicitly 
contains an inseparable contribution from internal motions due to the polymeric nature 
of the ligand i.e. any given orientation of a bond vector has implicitly been affected by 
internal factors relating to the conformation of its neighbours. In theory, it should be 
possible to obtain the total “pure” first order rotational entropy (TΔSRo) by subtracting 
the summed values for TΔS In from that of TΔSOr (§4.3.7).
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A2.1.4. The implications of non-conforming non-convergence
(Referred from §4.3.9.1) 

“Cheshire Puss,” she began, rather timidly, as she did not at all know whether it would 
like the name: however, it only grinned a little wider. “Come, it’s pleased so far,” thought 

Alice, and she went on. “Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where—” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—so long as I get SOMEWHERE,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.” 81

The above passage is one of the most extensively quoted words from Lewis Carroll’s seminal 

piece of fiction - Alice in wonderland 494. In addition to the numerous themes regarding being 

and non-being - arguments related to proto-atomistic theories of matter (see Democritus versus 

Parmenides), the philosophical implications of ostensibly nonsense scenarios have broad 

applicability to a number of situations 494-496. For example, John Kemeny framed the Cheshire 

cat’s final response as an opposition between science and ethics, whilst Perusco et al. (2006) 

provide an interpretation centered within the context of new technologies and their impact on 

society 497-498. Much can be read into the nonsensical adventures of Alice, but therein lie the power 

of the work. Like the cut-up technique popularised by William Burroughs, the juxtaposition 

of the absurd with the logical synthesises new meanings and insights that can be applied to 

diverse contexts 499. Like Alice, the researcher has embarked on a journey; the end of which 

ideally marks the discovery of knowledge that illuminates the phenomena studied. To finish, 

they should be open to the path opened by the results and not be distracted by paths that lead 

away from the true destination. Unlike Alice who naively does not have a clear idea of her goal 

or even how to recognise it once it has been attained, researchers must have a comprehensive 

framework that allows them to recognise that they have reached their destination. In the case 

to hand, MD experiments are plagued by doubts regarding the accuracy of the force field and 

sampling issues. To recognise when simulations match reality and avoid mimsy conclusions, the 

following checks should be implemented:

1. Monitoring the change in observables with timescale. 

2. Inter-methodological validation e.g. comparison to NMR spectroscopy, 
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ITC, etc.

3. Intra-methodological validation e.g. comparison to other in silico methods.

4. Self-consistency across multiple independent perturbations e.g. constructing 
trends from ligand panels.

Grossfield et al. (2009) used the example of retinal ligand bound to dark-state rhodopsin 
to illustrate the contradictory results provided by simulations exploring different time 
scales 219. A pertinent example examines a single ligand torsion responsible for the 
packing of the covalently bound ligand against a key tryptophan residue; an interaction 
crucial to the compound’s ability to act as an inverse agonist. When simulation time was 
extended from 50 ns to 150 ns and then finally to 1600 ns, the conclusions regarding 
the predominant (gauche+, trans or gauche-) conformation of this simple localised 
quantity had to be continually modified because additional sampling transformed the 
topography upon which the previous conclusions had rested. On viewing the time series 
of torsional fluctuations at short time scales it is entirely possible that apparent trends 
are the result of localised fluctuations that rarely appear at longer timescales. Moreover, 
it is incredibly difficult to gauge whether a simulation has converged or not. Typical 
visual metrics may indicate convergence, but could actually be reporting a quasi-stable 
distribution (or plateau) whose value could potentially change again upon the discovery 
of regions of phase space previously inaccessible due to high energy barriers (§4.3.6). 
Thus, simulation software cannot a priori deliver the correct final Boltzmann weighted 
ratio of stable states (in the common case of imperfect sampling) that make up the 
ergodic distribution, because this is usually unknown. The best remedy against this is 
to run multiple long (> 1.0 ms) independent simulations (ideally N > 20) to maximise 
the probability of discovering new states and ensuring that their relative populations 
have stabilised 219. The application of this measure to moderate sized (~150 residues) 
biological systems of interest is a computationally expensive proposition and few 
examples in the literature have achieved this level of sampling. 

In order to know that correct converged results have been obtained, independent 
corroborating measurements are required. The obvious solution is cross-validation of 
MD results to experimental techniques such as NMR spectroscopy and ITC. However, 
there are issues with this cross-methodological approach as even these techniques are 
subject to issues of time scale and correlated errors. A study conducted by the Molecular 
Interactions Research Group of the Association of Biomolecular Resource Facilities 
(ABRF-MIRG’02) disseminated identical samples of BCA II protein and 4-carboxy-
benzenesulfonamide ligand to a panel of expert ITC operators based in 14 different 
member laboratories. Surprisingly, errors in reported affinities and enthalpies covered a 
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range that amounted to ~24% with reported errors severely underestimating the correct 
error value 253,500. In the case of ITC, ΔG and TΔS are computed from measured Ka and 
ΔH values. A relatively large 20% error in the former translated to a mere 0.1 kcal/mol 
uncertainty in ΔG due to the logarithmic relationship in eqn.1.5, whilst errors in the 
latter were not mitigated in the same way and consequently amounted to 2.5 kcal/mol. 
As -TΔS is computed by subtracting ΔH from ΔG, the error in the enthalpy results 
in an equal and opposite shift in TΔS. In addition to the large correlated error to the 
entropy, this mechanism can result in the manifestation of spurious EEC effects 253. 
Thus, the global entropic values used as a target for MD based analysis may potentially 
be erroneous. 

In conjunction with cross-methodological checks, it is feasible, and indeed advisable 
to assess the internal consistency of multiple MD simulations describing a series of 
perturbations to the same protein. The correlations between multiple analyses (such as 
H-bonding, positional and orientational entropies) obtained from a single protein-ligand 
binding interaction could be dismissed as self-fulfilling because correlations between 
the different results could be the consequence of the rules governing the simulation. 
However,  the inter-woven correlations  between  trends  obtained  from  a  panel  of  
multiple independent binding interactions are more reliable, because any disagreement  
in  the  trends rapidly highlights inadequacies in hypothesis, method and sampling. Thus, 
if non-convergence is suspected, outliers can easily be identified by non-conformance 
and data from other members in the panel used to reconstruct the road to the true 
destination. 

A2.2.1. Supplementary tables & figures
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Table.A2.2.1. Averaged rotational entropies and order parameters calculated from 6x 200 ns simulations for bound, free 
and “bound minus free”. Errors are shown as standard errors.
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Table.A2.2.2. Aggregate rotational entropies and order parameters calculated from 1x 1.2 ms simulations for bound, free 
and “bound minus free”. Errors are shown as standard errors.
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