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Abstract

Department of Physics and Astronomy

Doctor of Philosophy

by Marcin Zwierz

Quantum information theory promises many advances in science and technology.

This thesis presents three different results in quantum information theory.

The first result addresses the theoretical foundations of quantum metrology. It is

now well known that quantum-enhanced metrology promises improved sensitivity in

parameter estimation over classical measurement procedures. The Heisenberg limit

is considered to be the ultimate limit in quantum metrology imposed by the laws of

quantum mechanics. It sets a lower bound on how precisely a physical quantity can

be measured given a certain amount of resources in any possible measurement. Re-

cently, however, several measurement procedures have been proposed in which the

Heisenberg limit seemed to be surpassed. This led to an extensive debate over the

question how the sensitivity scales with the physical resources such as the average

photon number and the computational resources such as the number of queries that

are used in estimation procedures. Here, we reconcile the physical definition of the

relevant resources used in parameter estimation with the information-theoretical

scaling in terms of the query complexity of a quantum network. This leads to a

novel and ultimate Heisenberg limit that applies to all conceivable measurement

procedures. Our approach to quantum metrology not only resolves the mentioned

paradoxical situations, but also strengths the connection between physics and com-

puter science.

A clear connection between physics and computer science is also present in other

results. The second result reveals a close relationship between quantum metrology

and the Deutsch-Jozsa algorithm over continuous-variable quantum systems. The

Deutsch-Jozsa algorithm, being one of the first quantum algorithms, embodies the

remarkable computational capabilities offered by quantum information processing.

Here, we develop a general procedure, characterized by two parameters, that uni-

fies parameter estimation and the Deutsch-Jozsa algorithm. Depending on which



iii

parameter we keep constant, the procedure implements either the parameter estima-

tion protocol or the Deutsch-Jozsa algorithm. The procedure estimates a value of an

unknown parameter with Heisenberg-limited precision or solves the Deutsch-Jozsa

problem in a single run without the use of any entanglement.

The third result illustrates how physical principles that govern interaction of light

and matter can be efficiently employed to create a computational resource for a (one-

way) quantum computer. More specifically, we demonstrate theoretically a scheme

based on atomic ensembles and the dipole blockade mechanism for generation of

the so-called cluster states in a single step. The entangling protocol requires nearly

identical single-photon sources, one ultra-cold ensemble per physical qubit, and

regular photo detectors. This procedure is significantly more efficient than any

known robust probabilistic entangling operation.
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Chapter 1

Quantum Information

Processing

1.1 Introduction

Quantum information theory is a novel branch of science that exploits the remark-

able features of quantum mechanics to store, manipulate and transfer information

in ways that are unattainable to any classical device. It is arguably one of the most

exciting branches of science that promises a huge impact on many other disciplines.

Quantum information theory lays at the intersection of theoretical and experimental

physics, and computer science. Thus, the impact it may have on these disciplines is

quite clear. Surprisingly, quantum effects also seem to have a large significance in

some phenomena in biology such as the light-harvesting complexes that are capable

to efficiently transmit a single quantum of light on a relatively long distance or the

avian compass that birds use to navigate in the magnetic field of Earth. Therefore, a

fundamentally deeper understanding of some biological systems may be impossible

without an “insight” from the field of quantum information. Also, molecular chem-

istry can be greatly influenced by quantum information science, if we are able to

build a quantum simulator that would allow us to study the behaviour of complex

molecules. Quantum computation over discrete or continuous-variable quantum

systems is main field of quantum information theory. The quantum phenomena can

2
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also be harnessed to perform measurements of physical quantities with a precision

inaccessible to any classical device.

The organisation of Chapter 1 reflects the order at which different subjects are in-

troduced in the remaining chapters. In Sec. 1.2, we recall basic notions of quantum

computation such as a qubit and a quantum gate. In Sec. 1.3, we introduce a more

practical and less abstract form of quantum computation, namely distributed quan-

tum computation. Distributed quantum computation is closely related to quantum

communication. This relation is so close that people perceive them as two faces

of the same coin, that is, if you can establish quantum network and transfer in-

formation between its nodes, you can perform quantum computation. In the same

section, we present the measurement-based model of quantum computation that

can be implemented in a distributed manner. In Sec. 1.4, we review the basic

foundations of quantum metrology - an important discipline of quantum informa-

tion theory that is concerned with high-precision measurements. In Sec. 1.5, we

introduce an alternative to quantum computation based on discrete quantum sys-

tems (qubits), namely continuous-variable quantum computation. In this section,

we review basic properties of continuous quantum systems and present some basic

continuous-variable quantum gates. Finally, in Sec. 1.6, we introduce the concept

of an atomic ensemble, a physical system that can be used in distributed quantum

computation.

1.2 Quantum computation

The construction of a quantum computer is an important goal of modern science,

which requires an effort from both experimental and theoretical physicists, and

quantum computer scientists. A quantum computer is a computing device whose

operation is based on the principles of quantum mechanics. The quantum computer

exploits the non-classical and counterintuitive phenomena of quantum mechanics

such as superposition, entanglement, quantum interference and quantum measure-

ment to perform some computations more efficiently than any classical computer

[2]. The basic unit of information for a quantum computer is called a quantum
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bit or qubit. A qubit is an abstraction of a two-dimensional quantum system that

consists of two addressable quantum states, so-called basis states |0⟩ and |1⟩, that

is, the computational basis. A qubit is represented as a vector that lives in a two-

dimensional Hilbert space. The |0⟩ and |1⟩ states are analogous to the 0 and 1 of a

classical bit. In contrast with classical bits, qubits can exist in any superposition of

basis states such as |ψ⟩ = α|0⟩ + β|1⟩, where α and β are complex numbers called

amplitudes that obey |α|2 + |β|2 = 1. This is the so-called superposition principle.

A qubit can exist in a superposition of both basis states, until we try to observe

it by performing a measurement. By means of a measurement, we find a qubit in

one of the basis states with a probability given by a square of the amplitudes: |α|2

for the |0⟩ state and |β|2 for the |1⟩ state. For the state |ψ⟩ = |+⟩ = 1√
2
(|0⟩ + |1⟩),

the qubit has an equal probability: 50%, of being in the |0⟩ or |1⟩ state. Therefore,

if we repeat the measurement in the computational basis many times, on average

half of the outcomes will yield a classical value of either 0 or 1 and the state of the

qubit will be collapsed to the basis state |0⟩ or |1⟩, respectively. The superposition

principle applies not only to a single qubit but to many qubits as well. In the case of

two qubits |ϕ⟩ = α|0⟩+ β|1⟩ and |φ⟩ = γ|0⟩+ δ|1⟩, the state of a composite system

is given by the tensor product |ϕ⟩ ⊗ |φ⟩ of the form:

|ψ⟩ = |ϕ⟩ ⊗ |φ⟩ = (α|0⟩ + β|1⟩) ⊗ (γ|0⟩ + δ|1⟩)

≡ αγ|00⟩ + αδ|01⟩ + βγ|10⟩ + βδ|11⟩. (1.1)

The two-qubit composite state is a vector in 4-dimensional Hilbert space. Naturally,

this reasoning generalises to any number of qubits. The most intriguing kind of

composite states in quantum mechanics are so-called entangled states. One of the

entangled states of two qubits is given by

|ψ⟩AB =
1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B) . (1.2)

This state together with three other two-qubit entangled states is the so-called set

of Bell basis states. What is so special about entangled states? First of all, the

entangled states cannot be factored into a tensor product: |ψ⟩ ̸= |ϕ⟩ ⊗ |φ⟩ for any

basis states. Furthermore, one may notice that if the measurement of the first
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qubit A yields 0 then the state of the second qubit B is instantaneously collapsed

to |0⟩. The same occurs for the second qubit B. For the entangled state |ψ⟩AB,

the measurement results are perfectly correlated. Although the qubits may be

separated by a large distance, their behaviour is in some sense synchronised, i.e.,

the measurement of one of them affects instantaneously the state of the other. This

non-local character or the so-called “spooky action at a distance” of the Bell pair is

called entanglement. In order to show that qubits share nonclassical correlations,

that is, they are entangled, we also need perfect correlations in the {|+⟩, |−⟩} basis,

where |−⟩ = 1√
2
(|0⟩ − |1⟩). The true importance of entanglement is still unclear,

however, it is considered essential for quantum computation [3, 4]. In fact, many

“quantum tricks” such as quantum teleportation or superdense coding rely heavily

on the entangled states.

The quantum computer processes information by applying some set of quantum op-

erations on qubits according to a blueprint called a quantum algorithm [2]. These

operations consist of linear, unitary evolutions U : single and two-qubit operations

(the so-called gates), and measurements (a measurement can also “process” informa-

tion as can be readily seen in section 1.3.2) [5]. The unitarity of the quantum gates,

U †U = I, implies that the quantum computation is reversible. The single-qubit

operations can be represented graphically in the Bloch sphere. A Bloch sphere is a

geometrical representation of the state space of a qubit and any unitary single-qubit

gate can be described as a rotation in the Bloch sphere. The three most important

single-qubit gates are the so-called Pauli operators X, Y and Z. In matrix notation,

Pauli operators have the following representations in the |0⟩, |1⟩ basis

X =

 0 1

1 0

 , Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 .
In the computational basis, the X operator is a bit flip, and the Z operator is a

phase flip, that is, a phase rotation in the Bloch sphere. The Y operator can be

constructed from X and Z operators [5]. Another extremely useful and essential

for quantum computation operation is the Hadamard gate H. In matrix notation,



Chapter 1. Quantum Information Processing 6

the Hadamard operation is given by

H =
1√
2

 1 1

1 −1

 .
The Hadamard gate applied to the basis state |0⟩ and |1⟩ returns the balanced

superposition states |+⟩ = 1√
2
(|0⟩ + |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩), respectively.

Therefore, the Hadamard gate gives rise to the superposition states of possibly

large number of qubits. The last of the crucial single-qubit gates is the general

phase shift operation R(φ) represented as

R(φ) =

 1 0

0 eiφ

 .
For φ = π the phase shift gate takes the form of the Pauli Z operator. When

φ = π/2 and φ = π/4, the phase shift operator corresponds to the π/2-phase gate

and π/8 gate, respectively.

Two important two-qubit gates are the controlled-X (CX) and the controlled-Z

(CZ), which are applied between the so-called control and target qubits. The matrix

representation of these gates is the following

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

The CX operation flips the state of the target qubit by applying the X operation

only when the control qubit is in the basis state |1⟩ (the state of the control qubit

is left unchanged). In other words, the CX stores the result of addition modulo 2
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of both qubit states in the state of the target qubit. In the case of CZ gate, the

Z operation is applied to the target qubit if the control one is present in the basis

state |1⟩ (again the state of the control qubit is left unchanged), otherwise states of

both qubits are unchanged. The importance of the CX and CZ gates stems from

the fact that together with the Hadamard gate H, we can create entangled states

of any number of qubits initially prepared in one of the basis states. Furthermore,

the CX or CZ gates and single-qubit gates serve as a basis building block for any

other two-qubit gate [2].

The linearity of the quantum gates means that qubits in any superposition state of

the computational basis can be manipulated by applying these gates. This suggests

that a single quantum computer can process information in parallel, a phenomenon

known as quantum parallelism. Therefore, by means of the superposition principle,

linear quantum gates and quantum interference amplitudes of the favoured states

that represent the correct answer to the computational problem can be enhanced.

In a nutshell, this is why quantum computers are capable of solving some compu-

tational problems more efficiently than any classical computer. The phenomena

described in this section may possibly constitute the foundation for the power of

quantum computation. However, it is still unknown how large is the class of com-

putational problems that can be solved efficiently on a quantum computer with

respect to its classical counterpart [2]. Therefore, we are still not confident whether

quantum computation is, in principle, more powerful than classical computation.

In the next section, we abandon the abstract way of thinking about quantum compu-

tation and introduce an architecture that can be used to physically build a quantum

computer, the so-called distributed quantum computer.

1.3 Distributed quantum computation

There are many physical systems in which a qubit and a quantum computer as

a whole can be realised. One can represent a qubit as a spin of an electron, a

nucleus or even an atom [6–11]. Other physical representations of qubits are based
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on Josephson junctions (so-called superconducting qubits) or quantum dots [6, 12–

17]. One of the prominent approaches to the physical implementation of a qubit

and quantum computer is linear quantum optics [18, 19]. One can use coherent

and squeezed states of light or even a single photon (Fock state or polarisation

degree of freedom of a photon) to represent a quantum bit [18, 19]. The drawback

of photonic systems for quantum computation is the fact that there is no direct

interaction between photons. Nevertheless, photons are perfect carriers of quantum

information and can be utilised in the distributed model of quantum computation

as quantum communication channels [2, 20].

At the present time, a number of models of quantum computation exist, such as

adiabatic quantum computing, or the most widely used standard circuit model of

quantum computation. Regardless of the model of quantum computation, anyone

trying to build a quantum computer faces two main challenges:

1. the problem of decoherence, that is, how well we can suppress the unwanted

influence of the environment on our quantum computer,

2. the problem of scalability of basic modules of our quantum computer.

The difficulties associated with the fragility of quantum information (decoherence)

and scalability of a quantum computer architecture are one of the most important

cornerstones of the distributed version of quantum computation. Decoherence, i.e.,

the deterioration of the quantum state, affects each qubit and introduces errors to

the computation. This has to be suppressed to the lowest level possible, but crucially

below the fault tolerance threshold [21]. As one would expect, any interesting, i.e.,

complicated, computational problem usually employs many qubits. The most well

known quantum algorithms, Shor’s factoring algorithm, Grover’s database search

algorithm and the Deutsch-Jozsa algorithm have been demonstrated experimentally

but only for few qubits [22–24]. These experiments are proof-of-principle experi-

ments of quantum computation power. All of these suggest that a truly useful and

powerful quantum computer has to be robust and scalable machine. In the case

of many qubits, which may interact with the environment and their neighbours,

protection against decoherence becomes quite a challenging task. The scalability
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and decoherence issue are the main difficulties that are addressed by distributed

quantum information processing. It may be much more feasible to build a number

of small-scale remotely distributed quantum computers (processors) and connect

them together instead of one large machine. In the distributed model of quantum

computation, a small number of stationary qubits are placed in the (distant) nodes

of a large network. A distributed quantum computer may also be based on a model

of quantum computation that is inherently distributed such as a measurement-based

model of quantum computation [25]. Here, the computation is done via single-qubit

measurements and feed-forward operations on a large, multi-qubit, entangled graph

state [26, 27]. The stationary qubits are usually encoded in the ground levels of

trapped atoms, ions or quantum dots and therefore can additionally serve as a good

quantum memory [28]. This kind of qubit implementation allows for fast and re-

liable single qubit operations and rather straightforward measurement techniques.

In this setting a possibly large collection of small-scale quantum processors can

solve a single computational problem as long as they communicate the outputs of

their computations with each other or with a central quantum processor. Robust

communication between any two stationary nodes (qubits) is usually provided via

flying qubits - single photon qubits [29]. Computation with a distributed quantum

network consists of the preparation of initial states, which may involve exchange

of classical and quantum information between nodes. Next, computation at each

node is performed and then all the partial results from each node are sent to the

central processor [30]. The central node gathers results and returns the final answer

to the computational problem. Since the quantum computation is probabilistic in

nature, one may have to repeat the distributed computation many times until the

required result is obtained. The advantages of the distributed model of quantum

computation, which result from the spatial separation of stationary qubits, are the

following:

1. each qubit is uniquely addressable. Therefore, control and measurement of

an individual quantum processor is completely decoupled from the rest of the

computational resources. Naturally, better protection against decoherence

originating from the interaction with the environment is more feasible too.
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2. enhanced flexibility. By means of the optical elements qubits may interact

with each other more easily. Entanglement can in principle be generated

between any two stationary qubits. Moreover, the distributed character of

the architecture allows for applications not only in quantum computation but

in quantum communication too.

Even though each node of a quantum network consists of a small number of qubits,

decoherence still will lead to errors and deterioration over time [31]. In order to

avoid this scenario, one may encode logical qubits in many physical qubits and apply

error correcting procedures [31]. The main disadvantage of the distributed model of

quantum computation is the lack of local interaction between nodes, therefore the

need for entangling procedures. Naturally, the distributed quantum computation

has to operate on distributed versions of known standard quantum algorithms. In

other words, the centralised quantum algorithm has to be distributed over nodes of

a large quantum network too. This adds an additional cost associated with commu-

nication to the overall cost of a computation [32]. Consequently, one has to decide

how to partition a single problem between many remotely distributed quantum

processors in an optimal way and then how to communicate and collect outputs of

these processors, effectively finding the final solution to the computational problem

[32]. This issue was first addressed by Eisert et al. where they considered how

to distribute the CX and number of other important gates between two quantum

processors [33]. Eisert et al. proved that implementation of distributed version of

the CX gate requires one pre-shared EPR pair and communication of two classical

bits between two individual quantum nodes. Since the CX gate is a basic building

block of any other multi-qubit gate and together with general single-qubit opera-

tion it constitutes a universal set of gates for universal quantum commutation, the

distributed model of quantum computation is universal [2, 34]. Apart from devising

the non-local version of gates, Eisert et al. addressed the problem of minimal re-

sources, both classical and quantum ones, and optimal procedures that are required

to implement these distributed gates [33].

In most models for distributed quantum computing one assumes that all quan-

tum processors work perfectly [34]. Moreover, one is able to transfer and store,
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manipulate, and retrieve quantum states from each of the nodes of an arbitrary

quantum network. Concerning communication, there are few possibilities allowed.

In some models, communication is done only with qubits or only with classical bits.

Commonly, some amount of entanglement is prepared between the qubits when the

quantum network is initialised. Often various nodes share EPR pairs and commu-

nication is established with only classical bits (quantum teleportation) or classical

bits and qubits (super-dense coding) [35]. Obviously, generation of the pre-shared

entanglement can be quite challenging especially for large networks. In some cases

the cost of entanglement preparation can render the distributed quantum compu-

tation with pre-shared entanglement inefficient in comparison with other models

of distributed quantum computing based on disentangled states. Nevertheless, use

of the pre-shared entangled states under ideal conditions is usually advantageous

over uncorrelated ones [30]. Furthermore, even for noisy communication channels

one can employ purification procedures [30]. Naturally, the resources one exploits

to solve a computational problem will depend on the problem at hand and avail-

able methods for entanglement generation. On the other hand, in some models of

distributed quantum computing, nodes communicate with each other without any

pre-shared entanglement by means of flying qubits (single photons).

1.3.1 Quantum communication

In quantum communication protocols, photons serve as carriers of quantum infor-

mation between nodes of communication network. In most of the quantum commu-

nication protocols, an important task for photons is to generate perfect entangled

states between distant nodes. This is not a trivial task. Each photon that carries

quantum information between the nodes of a quantum network is prone to losses.

The probability that photon is lost is given by

plost = exp
(
− l0
latt

)
, (1.3)

where l0 is the communication distance and latt is the characteristic channel atten-

uation distance [1, 20]. This implies an exponential attenuation that decreases the
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fidelity of quantum communication protocols. The solution that addresses these lim-

itations was given in terms of quantum repeater and purification protocols. Some of

the well known quantum repeater and purification protocols are probabilistic. This

imposes a requirement for a medium that would facilitate an interaction between

photons, and store photonic qubits, i.e., a stationary qubit. Hence, the concept

of an optical quantum memory realised in atomic vapour (atomic ensemble) was

introduced. Consequently, an optical quantum memory is a necessary ingredient

in many quantum communication protocols and an essential ingredient in many

optical quantum information processing protocols.

In general, a quantum memory has to fulfil the following requirements: efficient

mapping of a photon into the memory, long storage times and efficient retrieval of a

photon back from the memory. Moreover, one has to be able to control the state of

a quantum memory at all times. The storage time itself has to be much longer than

the characteristic time scale of an application in which quantum memory is used.

Not all of these requirements have to be met for all quantum applications. In fact, for

some applications such as quantum computation, the first and third requirement can

be lifted and a quantum memory can serve as a qubit itself, the so-called stationary

or matter qubit. Ideally, all operations that concern quantum memories should

be highly efficient and deterministic. Unfortunately, this is never the case and all

realistic quantum memories are imperfect. Hence, a question arises: how to evaluate

the performance of a quantum memory? The most commonly used measure of

quantum memory performance is the average fidelity F , i.e., state overlap between

the input and output quantum states [2, 36]. A quantum memory characterised

with unit average fidelity perfectly maps the input state, stores it for some time

and returns it unchanged. Naturally, a truly quantum memory has to outperform

any classical memory for quantum state storage [36]. A classical memory fidelity

for quasi-classical bright coherent states is Fclassical = 1
2 , [37] and for an arbitrary

qubit states, the maximal classical fidelity is Fclassical = 2
3 [38]. Therefore, any

truly quantum memory has to exceed these classical bounds. Fidelity is not the

only measure for quantifying the performance of quantum memories. Similar to the

case of the requirements, an appropriate measure for quantum memory performance

depends on a particular application [36].
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1.3.2 The one-way model of quantum computation

A natural candidate for a distributed model of quantum computation is the so-

called measurement-based or one-way model of quantum computation realised on

graph states [5, 25, 39]. Although, the very first experimental proposal for a one-

way quantum computer was based on optical lattices (where cold atoms are locally

trapped in a standing-wave potential created by counter-propagating laser fields

[40–42]), nevertheless this model of quantum computation is especially well suited

for the distributed implementation. What is a graph state? Graph or cluster states

are large entangled states that act as a universal resource for a one–way quantum

computer [5, 26, 27]. The cluster states are represented in the form of a lattice or

a graph. We associate with every node j of a graph an isolated qubit in the state

|+⟩j = 1√
2
(|0⟩j + |1⟩j) subsequently connected, that is, entangled, with adjacent

qubits via the CZjk operations

CZjk = |0⟩j⟨0| ⊗ Îk + |1⟩j⟨1| ⊗ Zk , (1.4)

where |0⟩, |1⟩ are the computational basis states, Z is the Pauli operator and Î

denotes the identity matrix. Commonly, graph states are described in terms of the

stabilizer operators. A set of commuting operators Sj constitutes a stabilizer of

the quantum state |ϕ⟩ under which the state is invariant. The stabilizer formalism

allows us to describe multi-qubit quantum states and their evolution in terms of

few stabilizer operators, which usually consist of operators from the Pauli group

Gn on n qubits. The Pauli group G1 on a single qubit is a group under matrix

multiplication consisting of the identity matrix and Pauli matrices multiplied by

±1, ±i factors. The Pauli group Gn on n qubits is an n tensor product of the Pauli

group G1 [2]. The state |ϕC
n ⟩ of a cluster C consisting of n qubits is completely

specified by the following set of eigenvalue equations:

Sj |ϕC
n ⟩ = |ϕC

n ⟩, (1.5)



Chapter 1. Quantum Information Processing 14

Figure 1.1: A graph state. Nodes represent physical qubits which are connected
via the CZ operations. Horizontal strings of physical qubits constitute logical
qubits. The vertical links between logical qubits represent two-qubit CZ gates.

with

Sj = Xj

∏
k ∈ nghb(j)

Zk , (1.6)

where nghb(j) is the set of all neighbours of qubit j [26]. The Sj are Hermitian

stabilizer operators whose eigenstates, i.e., the graph states, are mutually orthogonal

and form a basis in the Hilbert space of the cluster [26]. Cluster states and quantum

algorithms implemented on them may be related to mathematical graphs [26, 27].

A graph G(V,E) is a pair of a finite set V of vertices connected with edges e from

the set E. A cluster C is identified with the vertices VC of a graph C = VC [27].

The set EC of edges is given by EC = {(a, b)|a, b ∈ C, b ∈ nghb(a)} [27]. Edges e

are realised by CZ operations and connect two vertices of a graph (Fig. 1.1). The

well-known graph theory notation is a very useful tool in analysing properties of

the cluster states.

Let us now review some details of the one-way model of computation. In the

measurement-based model of quantum computing, the entire resource for quantum

computation is provided from the beginning as a graph state (Fig. 1.1). Quantum

computation consists of single-qubit measurements on the graph states and every

quantum algorithm is encoded in a measurement blueprint. A measurement of a

qubit in the Z eigenbasis, i.e., in the computational basis, removes a qubit from a

graph and all links to its neighbours are broken. Consequently, a cluster is reduced

by one qubit, and possible corrective Z operations are applied to its neighbours

depending on the measurement outcome (if the measurement result is 0 then nothing

happens, but when the measurement outcome is 1 a phase-flip is applied to all
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Figure 1.2: A linear 4-qubit cluster. Nodes represent a physical qubits which
are connected via the CZ operations.

neighbours). By means of a Z measurement, any cluster can be carved out from a

generic, fully connected cluster (Fig. 1.1).

Other single-qubit measurements are performed in the basis

B(α) ∈ {|α+⟩, |α−⟩} , where |α±⟩ =
1√
2
(|0⟩ ± eiα|1⟩) . (1.7)

For α = 0 the measurement is realised in the X eigenbasis. An interesting feature

of X measurement is that two neighbouring X measurements in a linear cluster

remove measured qubits and connects their neighbours with each other resulting in

a shortened cluster. For α = π/2, the Y measurement is performed. In the case

of a Y measurement, the measured qubit is removed from a cluster and its neigh-

bours are connected (up to a corrective phase operation). Measurements in the X

and Y eigenbases propagate quantum information through a cluster. In general,

any quantum computation proceeds as a series of measurements governed by an

appropriate blueprint. The choice of measurement basis for every physical qubit is

encoded in this measurement blueprint. Moreover, all measurement bases depend

on the outcomes of the preceding measurements. This implements the so-called

feed-forward operation. Although the result of any measurement is completely ran-

dom, information processing is possible because of the feed-forward operations. The

feed-forward operations ensure that measurement bases are correlated and a deter-

ministic computation can be realised. In this way quantum information propagates

(due to the feed-forwarding which implies time ordering in one way) through the

cluster until the last column of qubits, which are then ready to be read out. Read-

outs are performed in the Z eigenbasis up to Pauli corrections and the output of

the computation is given as a classical bit string [26].
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A simple example of a measurement-based computation can presented on a linear

4-qubit cluster given by

|ϕC
4 ⟩ =

1
2

(| + 0 + 0⟩ + | + 0 − 1⟩ + | − 1 − 0⟩ + | − 1 + 1⟩) (1.8)

with |−⟩ = 1√
2
(|0⟩ − |1⟩). Although this is a very basic cluster, it allows us to

perform an arbitrary single-qubit rotation in only three (measurement) steps:

• measure qubit 1 in basis B1(α),

• measure qubit 2 in basis B2((−1)m1β) depending on the outcome m1 of the

previous measurement,

• measure qubit 3 in basis B3((−1)m2γ) depending on the outcome m2 of the

previous measurement.

Following these measurements an arbitrary single-qubit rotation (up to corrective

Hadamard H and Pauli X, Z operations) is applied to the fourth qubit in a linear

cluster according to the unitary transformation Urot given by [43]

Urot = Rz((−1)m2γ)Rx((−1)m1β)Rz(α) (1.9)

We again emphasize the importance of the feed-forward operations. The angles

of the rotation and by implication the final corrective operations depend on the

outcomes of previous measurements [43].

On the basis of cluster states a universal set of quantum gates can be implemented,

e.g., single-qubit gates such as the Hadamard, the π/2-phase gate and π/8 gate, and

a two-qubit CX gate [2, 39]. Most importantly, the measurement-based model of

quantum computation on cluster states is completely equivalent to the standard cir-

cuit model, thus the one-way model is capable of efficiently simulating any quantum

circuit. Consequently, the measurement-based model of computation is a universal

model of quantum computation [39].

Cluster states are a very promising resource for quantum information processing.

One possible way of creating large networks of qubits is by trapping small atomic
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ensembles in optical lattices or placing them in the distributed nodes of a quantum

network. Therefore, in Sec. 1.6, we introduce the concept of an atomic medium

as a quantum memory for light. Since a cluster state consists of a large set of

entangled qubits, efficient protocols for generating entanglement between nodes of

a network are required. We review some of the well-known entangling procedures

in Chapter 5 and present a new procedure based on some manipulation techniques

for atomic ensembles that are described in detail in Chapter 4.

In the next section, however, we present foundations of another important discipline

of quantum information theory, namely quantum metrology.

1.4 Quantum metrology

Quantum metrology, or quantum parameter estimation theory, is an important and

relatively young branch of science that received a lot of attention in recent years. It

studies high-precision measurements of physical parameters, such as phase, based

on systems and physical evolutions that are governed by the principles of quantum

mechanics. The main theoretical objective of this field is to establish the ultimate

physical limits on the information we can gain from a measurement. From an ex-

perimental perspective, quantum-enhanced metrology promises many advances in

science and technology since an optimally designed quantum measurement proce-

dure outperforms any classical procedure. Furthermore, improved measurement

techniques frequently lead not only to the technological advancement but also to

a fundamentally deeper understanding of Nature. The main figure of merit in the

field of quantum metrology for both theorists and experimentalists is the precision

with which the value of an unknown parameter can be estimated.

1.4.1 The quantum Cramér-Rao bound

In this section, we introduce the two most crucial concepts in quantum metrology,

namely the Fisher information and the quantum Cramér-Rao bound. The Fisher
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Figure 1.3: The general parameter estimation procedure involving state prepara-
tion P , evolution U(φ), and generalised measurement M with outcomes x, which

produces a probability distribution p(x|φ).

information is a quantity that measures the amount of information about the pa-

rameter we wish to estimate revealed by the measurement procedure. Given the

Fisher information, we can bound the minimal value of uncertainty in the parameter

with the quantum Cramér-Rao bound. Here, we consider the estimation of a single

parameter φ. The most general parameter estimation procedure corresponding to

any conceivable experimental setup is shown in Fig. 3.3. This procedure consists of

three elementary steps:

1. prepare a probe system in an initial quantum state ρ(0),

2. evolve it to a state ρ(φ) by a unitary evolution U(φ) = exp(−iφH), where the

Hermitian operator H is the generator of translations in the parameter φ,

3. subject the probe system to a generalised measurement M , described by a

Positive Operator Valued Measure (povm) that consists of elements Êx, where

x denotes the measurement outcome.

The conditional probability p(x|φ) of finding measurement outcome x is given by

the Born rule

p(x|φ) = Tr[Êxρ(φ)] (1.10)

with
∫
dx Êx = Î. Given the probability distribution p(x|φ), we can derive the

expression for the Fisher information and subsequently the quantum Cramér-Rao

bound. The following derivation is due to Braunstein and Caves [44], and can also

be found in Kok and Lovett [1]. We start the derivation by noting that the above

measurement procedure returns the measurement outcome x with probability p(x|φ)

instead of a more desired single value for the parameter with probability p(φ|x).

Therefore, we need to relate these two values with a help of a special function called

an estimator. The estimator T (x) for a parameter φ is a function that allows us
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to find the value of the parameter φ given the measurement outcome x. For an

estimator T , we define ∆T ≡ T (x) − ⟨T ⟩φ with

⟨T ⟩φ ≡
∫
dx p(x|φ)T (x) . (1.11)

When ⟨T ⟩φ = φ, the estimator is unbiased. Given N independent measurement

outcomes x1, . . . , xN we can write

∫
dx1 · · · dxN p(x1|φ) · · · p(xN |φ)∆T = 0 , (1.12)

Following the definition of ∆T , we can easily verify that Eq. 1.12 holds for any

estimator T . Next, we take the derivative to φ of Eq. 1.12 and rewrite it as

∫
dx1 · · · dxN p(x1|φ) · · · p(xN |φ)

(
N∑

i=1

∂ ln p(xi|φ)
∂φ

)
∆T =

⟨
d⟨T ⟩φ
dφ

⟩
. (1.13)

Now we apply the Cauchy-Schwarz inequality:

|⟨f, g⟩|2 ≤ ⟨f, f⟩⟨g, g⟩ (1.14)

with f and g defined as

f =
N∑

i=1

∂ ln p(xi|φ)
∂φ

, g = ∆T . (1.15)

Hence, we obtain

∫
dx1 · · · dxN p(x1|φ) · · · p(xN |φ)

(
N∑

i=1

∂ ln p(xi|φ)
∂φ

)2

×
∫
dx1 · · · dxN p(x1|φ) · · · p(xN |φ)(∆T )2 ≥

∣∣∣∣⟨d⟨T ⟩φdφ

⟩∣∣∣∣2 . (1.16)

We identify the first term with the Fisher information F (φ) and rewrite this in-

equality as

NF (φ) × ⟨(∆T )2⟩φ ≥
∣∣∣∣d⟨T ⟩φdφ

∣∣∣∣2 , (1.17)
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where

F (φ) ≡
∫
dx p(x|φ)

(
∂ ln p(x|φ)

∂φ

)2

=
∫
dx

1
p(x|φ)

(
∂p(x|φ)
∂φ

)2

. (1.18)

The Fisher information measures the average squared rate of change of the condi-

tional probability distribution (derived from a measurement) with the parameter

φ. Therefore, higher sensitivity of the probe system to the parameter in question

implies higher Fisher information. Strictly speaking, the Fisher information quanti-

fies the amount of information about parameter φ extracted from the probe system

prepared in ρ(φ) by a generalised measurement described by the povm. The unit

of the Fisher information is given by the inverse squared unit of the parameter in

question, that is, [F (φ)] = 1/[φ]2. The above inequality relates the Fisher informa-

tion F (φ) and the average error in the estimator T . However, we want to express

it in terms of the average error in the actual value of φ. Therefore, we use the

following expression for the error ∆φ:

∆φ ≡ T (x)
|d⟨T ⟩φ/dφ|

− φ . (1.19)

The derivative accounts for a possible change in the units between the average value

of the estimator ⟨T ⟩φ and parameter φ. In order to find a relationship between

⟨(∆T )2⟩φ and ⟨(∆φ)2⟩φ, we use ∆T ≡ T (x) − ⟨T ⟩φ to calculate

⟨(∆T )2⟩φ = ⟨T 2(x)⟩φ − ⟨T ⟩2φ , (1.20)

and we use Eq. 1.19 to further find

⟨T 2(x)⟩φ =
∣∣∣∣d⟨T ⟩φdφ

∣∣∣∣2 (⟨(∆φ)2⟩φ + 2⟨∆φ⟩φφ+ φ2
)
, (1.21)

⟨T ⟩2φ =
∣∣∣∣d⟨T ⟩φdφ

∣∣∣∣2 (⟨∆φ⟩2φ + 2⟨∆φ⟩φφ+ φ2
)
. (1.22)

Given above equations, we find

⟨(∆T )2⟩φ =
∣∣∣∣d⟨T ⟩φdφ

∣∣∣∣2 (⟨(∆φ)2⟩φ − ⟨∆φ⟩2φ
)
. (1.23)
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This relation together with Eq. 1.19 leads to the quantum Cramér-Rao bound on

the minimum value of the mean squared error in the parameter φ

⟨(∆φ)2⟩φ ≥ 1
NF (φ)

+ ⟨∆φ⟩2φ ≥ 1
NF (φ)

. (1.24)

The last inequality holds for unbiased estimators: ⟨∆φ⟩φ = 0. The minimal error

in φ depends on the inverse of N times the measurement procedure is repeated and

the Fisher information. The Cramér-Rao bound is a theoretical limit and in general

it is not tight. In order to attain this bound, we have to use the probe system in an

appropriate initial quantum state and then subject it to a suitable measurement. In

other words, for a given measurement procedure we need to find an optimal initial

quantum state and an optimal measurement observable.

There exist two important regimes of the quantum Cramér-Rao bound, the so-

called Standard Quantum Limit (sql) and the Heisenberg Limit. The sql or the

shot noise limit is a classical limit for which each measurement reveals a constant

amount of information about the parameter. The Heisenberg limit is imposed by

the laws of quantum mechanics and for many years it was considered optimal and

unbreakable. However, the optimality of the Heisenberg limit has been questioned

recently. The Heisenberg limit and its optimality for the most general parameter

estimation procedures will be the subject of Chapter 2.

1.4.2 The statistical distance

The Fisher information defined in Eq. 1.18 is a function of the probability distri-

bution p(x|φ). In this section, we introduce the concept of the statistical distance

between two probability distributions and relate it to the Fisher information. From

a conceptual perspective, this corresponds to a parameter estimation procedure pro-

ducing two distinct probability distributions p(x|φ) and p(x|φ′) associated with two

possible values of the parameter: φ and φ′. The statistical distance measures how

different these probability distribution are.
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First, we define a space of probability distributions with a distance s between two

distributions defined on it [1]. Then, we introduce two infinitesimally close prob-

ability distributions p(x) and p′(x) = p(x) + dp(x). The infinitesimal statistical

distance for p(x) and p′(x) is given by

ds2 =
∫
dx

1
p(x)

[dp(x)]2 . (1.25)

We can divide both sides by dφ2 assuming that p(x) depends on a parameter φ

(
ds

dφ

)2

=
∫
dx

1
p(x|φ)

(
∂p(x|φ)
∂φ

)2

= F (φ) . (1.26)

This relates the Fisher information to the derivative of the statistical distance over

φ squared, i.e., the rate of change of the statistical distance with the parameter.

One of the most widely used systems for quantum metrology are optical systems

such as interferometers fed with different states of light. A comprehensive descrip-

tion of various states of light can be given in terms of continuous variables. This

approach applies not only to the field of quantum metrology but also to the field of

optical quantum computation. Given their importance to many distinct subfields

of quantum information, we introduce continuous variables in the next section.

1.5 Continuous variables

Continuous variables (CVs) may serve as a useful tool for describing various states

of light. More importantly, in the context of quantum computation, CVs present an

interesting alternative to discrete quantum systems, such as qubits. In this section,

we introduce the notion of continuous variables and some basic operations that can

be performed on them.

In general, continuous variables are eigenstates of an operator with a continuous

spectrum [1]. There are a number of operators with continuous spectrum such as

position, momentum, and quadrature operators of the electromagnetic field whose

eigenstates can implement the continuous variables. We are especially interested in

the last one, i.e., an optical representation of CVs.
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We model a single mode of a free electromagnetic radiation field as a quantum

harmonic oscillator. We write down the Hamiltonian of a harmonic oscillator in

terms of creation and annihilation operators as

Ĥ = ~ω(â†â+
1
2
) , (1.27)

where ω denotes the frequency of harmonic oscillator. The creation and annihilation

operators are field operators that create or annihilate single excitations (quanta)

of the radiation field in a well-defined single mode. The annihilation operator is

associated with a quantised amplitude of a single excitation [45]. We can rewrite the

Hamiltonian of a harmonic oscillator in terms of the so-called quadrature operators

Ĥ =
1
2
(ωx̂2 + p̂2) , (1.28)

with x̂ and p̂ defined in terms of creation and annihilation operators by

x̂ =

√
~
2ω

(â+ â†) , p̂ = −i
√

~ω
2

(â− â†) , (1.29)

For simplicity, we can define dimensionless quadrature operators as

x̂ =
1
2
(â+ â†) , p̂ =

1
2i

(â− â†) , (1.30)

Given the bosonic commutation relation (
[
â, â†

]
= 1), the dimensionless quadrature

operators obey the following commutation relation

[x̂, p̂] =
i

2
. (1.31)

This commutation relation is reminiscent of the commutation relation for canoni-

cally conjugate position and momentum operators with ~ = 1/2 [46]. Hence, the

quadrature operators are traditionally regarded as the position and momentum of

the electromagnetic harmonic oscillator. Naturally, the quadratures have nothing to

do with the position and the momentum of a single quantum since they are defined

in the phase space of a harmonic oscillator [45]. Since we think about the quadra-

tures as position- and momentumlike quantities, their spectrum is unbounded and
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more importantly continuous. Therefore, we may use their eigenstates as an im-

plementation of the continuous variables. We introduce eigenstates of single-mode

quadrature operators satisfying

x̂|x⟩ = x|x⟩ , p̂|p⟩ = p|p⟩ . (1.32)

The eigenstates are orthogonal: ⟨x|x′⟩ = δ (x− x′), ⟨p|p′⟩ = δ (p− p′) and complete

∫ ∞

−∞
|x⟩⟨x|dx = 1 ,

∫ ∞

−∞
|p⟩⟨p|dp = 1 . (1.33)

According to the quantum-mechanical formalism, the eigenstates of canonically

conjugate operators are related to each other by the Fourier transform, thus we

may write

|x⟩ =
1√
π

∫
dp exp(−2ixp)|p⟩ , |p⟩ =

1√
π

∫
dx exp(2ixp)|x⟩ (1.34)

with ~ = 1/2. To this end, we have introduced the continuous variables as the

eigenstates of quadrature operators (position and momentum) of the electromag-

netic field. Now, in order to perform a continuous-variable quantum computation,

we need to create an initial CV state, i.e., a register, then apply an appropriate in-

teraction Hamiltonian to induce evolutions on the continuous variables, and perform

a measurement that reveals the result of computation [47]. The continuous-variable

quantum computation was introduced by Lloyd and Braunstein [48]. In principle,

there are two distinct types of operations associated with CVs [46]

1. Gaussian operations that include linear phase-space displacements, interac-

tion Hamiltonians at most quadratic in x̂ and p̂ and homodyne detections

(measurements of the quadratures of electromagnetic field),

2. non-Gaussian operations that include interaction Hamiltonians at least cubic

(non-linear) in x̂ and p̂ or operations conditioned on non-Gaussian measure-

ments such as photon counting.

First, we focus our attention on the Gaussian operations. We introduce linear (in

the quadrature operators) Hamiltonians. The displacement operator that allows us
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to move between different eigenstates of the position operator can be written as

X̂(x) = exp(−2i xp̂). (1.35)

A straightforward calculation verifies that X̂(x) truly is a displacement operator.

When applied to a position eigenstate |y⟩ it gives: X̂(x)|y⟩ = |y + x⟩. For a

momentum eigenstate |r⟩, the effect of X̂(x) is the following

X̂(x)|r⟩ = exp(−2i xr)|r⟩. (1.36)

It simply introduces a phase shift in the front of a momentum eigenstate. Since

we have two conjugate quadrature operators, the form of another linear operator is

given by

Ẑ(p) = exp(2i px̂). (1.37)

Its action on the eigenstates of quadrature operators is the opposite to the action

of X̂(x) and reads

Ẑ(p)|x⟩ = exp(2i px)|x⟩ , Ẑ(p)|r⟩ = |r + p⟩ . (1.38)

In summary, the X̂(x) and Ẑ(p) linear operators displace the continuous variables

to another eigenstate or introduce a state-dependent phase shift [1]. These oper-

ators implement phase-space displacements and constitute the continuous-variable

generalisation of Pauli bit flip X and phase flip Z operators. Naturally, this set

of operations is too limited for a fully functional quantum computer, therefore, we

introduce Hamiltonians quadratic in the quadrature operators. One of the most

important unitary operators in the field of quantum computation is the Fourier

transform given by

F̂ = exp
[
−2i

π

4
(x̂2 + p̂2)

]
. (1.39)

When we apply the Fourier transform to a position eigenstate |x⟩, we have

F̂ |x⟩ =
1√
π

∫
dy exp(2i xy)|y⟩ = |x⟩p . (1.40)

The action of the Fourier transform on a position eigenstate yields a momentum
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eigenstate with numerical value x (subscript p denotes a momentum domain). Fur-

thermore, with a help of the Fourier transform, a momentum eigenstate can be

written as a superposition of all possible position eigenstates. The application of

the Fourier transform to a momentum eigenstate has an analogous effect, i.e., it gives

a position eigenstate |p⟩x. The Fourier transform is the continuous-variable version

of the Hadamard gate for discrete quantum systems. Other useful quadratic Hamil-

tonians include the phase gate Φ̂(θ) (a squeezing operator) applied on a single-mode

system:

Φ̂(θ) = exp
(
2i θx̂2

)
(1.41)

and continuous-variable versions of the CX and CZ gates applied on two CVs:

CXij = exp (−2i x̂i ⊗ p̂j) and CZij = exp (2i x̂i ⊗ x̂j) . (1.42)

A truly powerful quantum computer has to be able to perform a universal quantum

computation. Are the above CV operations sufficient to implemented any quantum

computation? The generalised Gottesman-Knill theorem states that a CV quan-

tum computer equipped with linear and quadratic Hamiltonians, i.e., the Gaussian

operations, and allowing for classical feed-forward can be efficiently simulated on

a classical computer. We note that it is interesting that a number of CV proto-

cols which rely heavily on entanglement such as quantum teleportation satisfy the

conditions of the Gottesman-Knill theorem and may be simulated efficiently on a

classical computer [46, 49]. However, to move beyond a classical domain and at the

same time implement universal quantum computation, we require arbitrary Hamil-

tonians to induce arbitrary evolutions. Fortunately, we can generate any interaction

Hamiltonian corresponding to an arbitrary Hermitian polynomial of x̂ and p̂ given

a small set of elementary interaction Hamiltonians. Before presenting this univer-

sal set, let us show why the linear and quadratic operations can never give us the

higher-order polynomials. We invoke the Baker-Campbell-Hausdorff relation

eABe−A = B +
1
1!

[A,B] +
1
2!

[A, [A,B]] + . . . (1.43)
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Here, A and B operators are at most quadratic in x̂ and p̂. Therefore, the com-

mutator [A,B] and all repeated commutators can produce polynomials of order at

most two. In conclusion, to generate an arbitrary polynomial we require interac-

tion Hamiltonians at least cubic in the position and momentum operators x̂ and p̂.

The most well known Hamiltonian of this type is the so-called Kerr Hamiltonian

ĤK = (x̂2+p̂2)2. The higher-order Hamiltonians belong to the class of non-Gaussian

operations and, therefore, are much harder to generate. However, to perform uni-

versal quantum computation only one of such higher-order Hamiltonians, e.g., ĤK ,

suffices [1].

The universal set of elementary operations for universal continuous-variable com-

putation consists of

1. linear operations, e.g., X̂(x), Ẑ(p),

2. quadratic operations, e.g., F̂ , Φ̂(θ),

3. a single non-linear (non-Gaussian) operation of higher-order, typically the

Kerr Hamiltonian ĤK ,

4. multi-mode interaction Hamiltonian applied on at least two modes, e.g., CX,

CZ operations or the beam splitter interaction,

5. homodyne measurement.

This set of operations can generate any multi-mode Hermitian polynomial in the

canonical position and momentum operators. For the continuous variables imple-

mented as the quadratures of the electromagnetic field, the universal set of elemen-

tary operations can be generated using linear optical elements, such as a simple π/2

phase shift (Fourier transform), and the non-linear optical medium such as a Kerr

nonlinearity.

The only basic ingredient (omitting error correction [50, 51]) of our continuous-

variable quantum computer that is still missing is a physical input state that can

be used as a register with which we encode our information. The position and mo-

mentum eigenstates represent an idealised implementation of the continuous vari-

ables. When one inspects the orthogonality conditions one easily notices that these
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eigenstates are non-normalisable and, therefore, unphysical, i.e., they cannot be

generated in the laboratory. The way to deal with this difficulty is by approximat-

ing idealised eigenstates with a normalised Gaussian states. The Gaussian position

and momentum eigenstates centered around the position value x and momentum

value p can be written as [1]

|G(x)⟩ =
∫ ∞

−∞

dy
4
√
π∆2

exp
[
−(y − x)2

2∆2

]
|y⟩ , (1.44)

|G(p)⟩ =
∫ ∞

−∞

dr
4
√
π/∆2

exp
[
−2∆2(r − p)2

]
|r⟩ , (1.45)

where ∆ is the width of the Gaussian state with ~ = 1/2. Depending on a value

of ∆, the Gaussian state represents various quantum states of light. When ∆ =

0, the Gaussian state |G(x)⟩ = |x⟩ corresponds to an infinitely squeezed (in the

position domain) state and |G(p)⟩ represents an infinitely anti-squeezed state. For

∆ = 1/
√

2, we associate Gaussian states with coherent states of light. The Gaussian

states of light can be generated unconditionally, however, their quality depends on

the amount of squeezing applied. Naturally, the coherent states are free from these

imperfections. As one expects, all Gaussian operations map Gaussian states onto

Gaussian states.

Continuous variables are especially well suited for quantum communication proto-

cols. Therefore, a number of applications have been generalised to CVs. These

include quantum teleportation [37, 49, 52] and entanglement swapping, quantum

super-dense coding, quantum error correction, quantum cryptography [53–55] and

entanglement distillation [46]. On the other hand, continuous-variable quantum

computing has received much less attention. In Chapter 3, we present a comprehen-

sive analysis of a parameter estimation protocol and the Deutsch-Jozsa algorithm

in the setting of continuous-variable quantum systems. We devise a simple proce-

dure that unifies quantum metrology and the Deutsch-Jozsa algorithm. We are not

aware of a counterpart of this protocol existing in the setting of discrete quantum

systems.



Chapter 1. Quantum Information Processing 29

1.6 Atomic ensembles

An atomic ensemble or atomic vapour is a gas that consists of several hundred of the

same species of atoms, typically alkali atoms such as Cesium or Rubidium, trapped

at room temperature or trapped and cooled to µK temperature. An atomic ensem-

ble may serve as a good quantum memory for light. As the preceding sections may

suggest, quantum memories can often be viewed as interfaces for either continuous-

variable states or discrete states [36]. The behaviour of continuous-variable memo-

ries is described in terms of quadrature operators x̂ and p̂ subjected to homodyne

measurements. The discrete memories are described with a help of â and â† oper-

ators that annihilate or create single quanta of light which are then measured with

photon counting detectors [36]. The remainder of this section and Chapter 4 are

focused on discrete quantum memories, that is, single-photon memories.

Any good and efficient quantum memory has to meet the following requirements.

The atoms have to possess a long-lived ground state that is easily populated by

optical pumping techniques. Moreover, the macroscopic ensemble should have a

large optical depth d = ρσL, where ρ is the atom number density, σ is the absorption

cross section of an atom and L denotes the length of atomic medium. In other words,

the atomic ensemble should easily, i.e., effectively, interact with light pulses. This

is in fact one of the main advantages of atomic ensembles for interface purposes.

A large number of atoms increases the coupling strength of an interaction between

light and matter, and therefore allows us to coherently manipulate the quantum

state of the ensemble with light and vice versa. Moreover, a large number of atoms

helps to suppress the negative impact of decoherence on information stored in an

atomic ensemble [20, 36, 56–58].

The simplest way to prepare an atomic ensemble is to trap a cloud of alkali atoms

in a glass cell (see Fig. 1.4). This is the so-called hot atomic vapour or room tem-

perature atomic vapour. Room temperature atomic ensembles are used extensively

because of their simplicity and large optical depth, which is the key figure of merit

for quantum memory efficiency. These kinds of interfaces will inherently suffer from

thermal motion and therefore from Doppler broadening. Moreover, atoms moving in
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Figure 1.4: A picture of an atomic ensemble consisting of a cloud of atoms
trapped in a glass cell (taken from the homepage of the Experimental Quantum

Optics Group at the Niels Bohr Institute in Copenhagen).

and out of the interaction region may limit the performance of a quantum memory.

One of the widely used methods to overcome this problem is utilisation of a buffer

gas [59, 60]. A few torr of a noble gas, typically neon or helium, limits the thermal

diffusion of atoms inside a vapour [60, 61]. Another advantage of a buffer gas is the

suppression of decoherence from the collisions between alkali atoms and with the

walls of a cell. By means of a buffer gas, the atoms can retain coherence for more

than 108 collisions [59]. Although a buffer gas seems to be indispensable, too high

buffer gas pressure may also introduce some incoherent processes to the operation

of a quantum memory [59]. One of the most recent techniques for suppression of

the collisional and motional decoherence involves buffer gas cooled below 7K. In an

experiment by Hong et al. [62], Rubidium atoms are cooled by a buffer gas and

the diffusion time is slowed down. Moreover, the optical depth of a medium in

this experiment is very large (d > 70). The mentioned setup combines simplicity

and large optical depth of a room temperature atomic vapour with slow atomic

motion that is characteristic for another technique of trapping alkali atoms, namely

so-called magneto-optical trapping (MOT) [62].

A MOT technique combines laser cooling and trapping with magnetic fields. Atoms

trapped with MOT are cooled down to the µK temperature, therefore the collisional

and motional decoherence becomes negligible in comparison with a typical opera-

tional time scale of a quantum memory. The shortcoming of a cold atomic ensemble

is rather low optical depth (d < 10). The very principle on which the MOT is oper-

ating, i.e., the magnetic field, also introduces another difficulty. The magnetic field

causes decoherence of the ground states usually realised as magnetic Zeeman sub-

levels of a ground state. This problem can be overcome by switching off the MOT
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trap and then performing operations on a quantum memory [36]. However, lack of

the magnetic field trapping allows atoms to slowly diffuse and therefore limits the

lifetime of a quantum memory. Nevertheless, by means of the MOT trap atomic

vapours can be prepared in the form of a “frozen” gas with lifetime much longer

than in the case of a room temperature vapours.

The last widely used method for confining large numbers of atoms to a small sam-

ple is called Bose-Einstein condensation. A Bose-Einstein condensate (BEC) has

extremely large optical depth. However, the preparation of a BEC is an extremely

challenging experiment.

There are a number of effects that influence the overall efficiency of quantum mem-

ories based on atomic ensembles. In spite of many efforts the efficiency of quantum

memories reaches at the best 70% [36]. The main source of low fidelity is a low

optical depth d. Only an optically thick medium, that is, highly dense and/or large

medium, can effectively interact with the light fields. The broadening of the optical

transitions, both homogenous and inhomogeneous, is another source of decoherence

for quantum memories. The homogenous broadening is mainly due to the sponta-

neous emission and results in the inefficiency of storage that depends on the optical

depth as 1/dhombroad, where dhombroad is the optical depth without the homogenous

broadening [36]. The inefficiency of storage of light pulses based on techniques

such as electromagnetically induced transparency or Raman interaction scales as

1/dhombroad [36]. For atomic ensembles at room temperature the inhomogeneous

broadening is due to the thermal motion and associated with it Doppler broadening

of the atomic lines. The Doppler broadening induces shifts in the energy level struc-

ture of the atoms in completely incoherent fashion and results in the inefficiency

of storage that scales as 1/d2
inhombroad, where dinhombroad is the optical depth in a

presence of the homogenous broadening [36]. For a sufficiently dense and/or large

medium, inhomogeneous broadening is less dominant than homogenous broadening.

Apart from the Doppler broadening, the thermal or atomic motion is responsible

for atomic collisions, which are yet another factor that limits fidelity of a quantum

memory.
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Chapter 2

General Optimality of the

Heisenberg Limit for Quantum

Metrology

2.1 Introduction

Parameter estimation is a fundamental pillar of science and technology, and im-

proved measurement techniques for parameter estimation have often led to scientific

breakthroughs and technological advancement. Caves [63] showed that quantum

mechanical systems can in principle produce greater sensitivity over classical meth-

ods, and many quantum parameter estimation protocols have been proposed since

[1]. The field of quantum metrology started with the work of Helstrom [64, 65],

who derived the minimum value for the mean square error in a parameter in terms

of the density matrix of the quantum system and a measurement procedure. This

was a generalisation of a known result in classical parameter estimation, called the

Cramér-Rao bound. Braunstein and Caves [44] showed how this bound can be

formulated for the most general state preparation and measurement procedures.

While it is generally a hard problem to show that the Cramér-Rao bound can be

attained in a given setup, at least it gives an upper limit to the precision of quantum

parameter estimation.

33
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The quantum Cramér-Rao bound is typically formulated in terms of the Fisher

information, an abstract quantity that measures the maximum information about a

parameter φ that can be extracted from a given measurement procedure. One of the

central questions in quantum metrology is how the Fisher information scales with

the physical resources used in the measurement procedure. We usually consider two

scaling regimes: First, in the standard quantum limit (sql) [66] or shot-noise limit

the Fisher information is constant, and the error scales with the inverse square root

of the number of times T we make a measurement. Second, in the Heisenberg limit

[67] the error is bounded by the inverse of the physical resources. Typically, these

are expressed in terms of the size N of the probe system, e.g., (average) photon

number. However, it has been clearly demonstrated that this form of the limit is

not universally valid. For example, Beltrán and Luis [68] showed that the use of

classical optical nonlinearities can lead to an error with average photon number

scaling N−3/2. Boixo et al. [69] devised a parameter estimation procedure that

sees the error scale with N−k with k ∈ N, and Roy and Braunstein [70] construct

a procedure that achieves an error that scales with 2−N . The central question is

then: What is the real fundamental Heisenberg limit for quantum metrology? We

could redefine this limit accordingly to scale as 2−N , but in practice this bound will

never be tight and therefore of limited use.

In this chapter, we give a natural definition of the relevant physical resources for

quantum metrology based on the general description of a parameter estimation

procedure, and we prove the asymptotical bound on the mean squared error based on

this resource count. We will show that the resource count is proportional to the size

of the probe system only if the interaction between the object and the probe is non-

entangling over the systems constituting the probe. In Sec. 2.2, we study the query

complexity of quantum metrology networks, which will lead to a resource count

given by the expectation value of the generator of translations in the parameter φ.

In Sec. 2.3, we prove that the mean error in φ is asymptotically bounded by the

inverse of this resource count. We argue that this is the fundamental Heisenberg

limit for quantum metrology. Furthermore, in Sec. 2.4, we clarify the origin of the

term “Heisenberg limit”. Finally, we illustrate how this general principle can resolve

paradoxical situations in which the Heisenberg limit seems to be surpassed.
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a)

b) c)

d)

Q = N = 4 Q = 1
2
N(N − 1) = 6

Q = 2N − 1 = 15

P M p(x| )U ( )
(0) ( )

Figure 2.1: a) General parameter estimation procedure involving state prepara-
tion P , evolution U(φ) and generalised measurement M with outcomes x, which
produces a probability distribution p(x|φ). In terms of quantum networks, the
evolution can be written as a number of queries of the parameter φ. b) Example
for N = 4 of the usual situation described by HGLM, where each system performs
a single query, and the number of queries equals the number of systems (the grey
box represents Oj(φ)); c) for HBFCG the number of queries Q does not always
equal the number of systems: any two systems can jointly perform a single query,
and the number of queries then scales quadratically with the number of systems;
d) for HRB all possible subsets of systems perform a single query. The number of

queries scales exponentially with the number of systems.

2.2 Parameter estimation and resources

The most general parameter estimation procedure is shown in Fig. 2.1a). Consider

a probe system prepared in an initial quantum state ρ(0) that is evolved to a state

ρ(φ) by U(φ) = exp(−iφH). This is a unitary evolution when we include the

relevant environment into our description, and it includes feed-forward procedures.

The Hermitian operator H is the generator of translations in φ, the parameter

we wish to estimate. The system is subjected to a generalised measurement M ,

described by a Positive Operator Valued Measure (povm) that consists of elements
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Êx, where x denotes the measurement outcome. These can be discrete or continuous

(or a mixture of both). The probability distribution that describes the measurement

data is given by the Born rule p(x|φ) = Tr[Êx ρ(φ)], and the maximum amount of

information about φ that can be extracted from this measurement is given by the

Fisher information

F (φ) =
∫
dx

1
p(x|φ)

(
∂p(x|φ)
∂φ

)2

. (2.1)

This leads to the quantum Cramér-Rao bound [44, 64]

δφ ≥ 1√
TF (φ)

, (2.2)

where (δφ)2 is the mean square error in the parameter φ, and T is the number

of times the procedure is repeated. The sql is obtained when the Fisher infor-

mation is a constant with respect to T , and the Heisenberg limit is obtained in a

single-shot experiment (T = 1) when the Fisher information scales quadratically

with the resource count. The sql and the Heisenberg limit therefore relate to two

fundamentally different quantities, T and F , respectively. We need to reconcile the

meaning of these two limits if we want to compare them in a meaningful way.

To solve this problem, we can define an unambiguous resource count for parameter

estimation by recognising that a quantum parameter estimation protocol can be

written as a quantum network acting on a set of quantum systems, with repeated

“black-box” couplings of the network to the system we wish to probe for the param-

eter φ [71]. The quantum networks arise naturally in the circuit model of quantum

computation. A quantum network consists of wires that connect successive quan-

tum gates. The wires represent movement of quantum systems through space or

time, and gates perform simple computational tasks on the information carried by

these quantum systems [2]. In general, a quantum network involves many quantum

systems and many quantum gates. Traditionally, we represent a quantum gate as

a function f with fixed number of input parameters and fixed number of output

parameters [2]. In the following analysis, we employ a special type of the quantum

gate called a black-box or a quantum oracle. A black-box is a unitary operator

defined by its action on quantum systems whose internal workings are usually un-

known. As any other quantum gate, a black-box is a function that can be univariate
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or multi-variate. When the function is multi-variate, a query to the black-box must

take the form of multiple input parameters. Likewise, when the operator that de-

scribes the fundamental “atomic” interaction between the queried system and the

probe is a two-body interaction on the probe, then a query can consist only of pre-

cisely two input bodies. The scaling of the error in φ is then determined by the

query complexity of the network. The number of queries Q is not always identical

to the number of physical systems N in the network.

In Fig. 2.1b-d) we consider three examples. The quantum network with univariate

black-boxes in b) was analysed by Giovannetti, Lloyd, and Maccone [71]. Sup-

pose that each grey box in Fig. 2.1 is a unitary gate Oj(φ) = exp(−iφHj), where

j = 1, . . . , N denotes the system, and Hj is a positive Hermitian operator. It is

convenient to define the generator of the joint queries as

HGLM =
∑

j

Hj , (2.3)

because all Hj commute with each other. The number of queries Q is then equal to

the number of terms in HGLM, or Q = N . In Fig. 2.1c) the black-box is bi-variate.

This is a type of Hamiltonian considered by Boixo, Flammia, Caves, and Geremia

[69], and takes the form

HBFCG =
N∑

k=1

k∑
j=1

Hj ⊗Hk . (2.4)

A physical query to a black-box characterised by Ojk(φ) = exp(−iφHj ⊗Hk) must

consist of two systems, labeled j and k. Since each pair interaction is a single query,

the total number of queries is
(
N
2

)
= 1

2N(N − 1). Finally, in Fig. 2.1d) we depict

the network corresponding to the protocol by Roy and Braunstein [70]. It is easy

to see that the number of terms in the corresponding generator HRB is given by

2N − 1, and the number of queries is therefore Q = 2N − 1.

A similar argument can be made to find the correct number of queries for all types of

networks. The key principle is that a physical query to a quantum system consists of

probe-systems that together undergo an operation, which can potentially entangle



Chapter 2. Optimality of the Heisenberg Limit for Metrology 38

them. The entangling power of the black-box operation over multiple input systems

accounts for the super-linear scaling of Q with N . Only when H does not have any

entangling power across the input, we are guaranteed to have Q = O(N). This

is in agreement with Refs. [69] and [70] where
√
F (φ) scales super-linearly in N ,

but is always linear in Q, as defined here. Since we have a systematic method

for increasing N (and Q) given the atomic interaction Hj , this uniquely defines an

asymptotic query complexity of the network. Since both T and Q count the number

of queries, this allows us to meaningfully compare the sql with the Heisenberg limit.

Given that in Eq. (2.2)
√
F (φ) . Q, we have to find a general procedure that bounds

Q, based on the physical description of the estimation protocol in Fig. 2.1a). Pre-

viously, we showed that Q is the number of black-box terms in H, and a straight-

forward choice for the resource count is therefore |⟨H⟩| ≤ O(Q). An important

subtlety occurs when H corresponds to a proper Hamiltonian. The origin of the

energy scale has no physical meaning, and the actual value of |⟨H⟩| can be changed

arbitrarily. Hence, we must fix the scale such that the ground state has zero energy

(equivalently, we may choose ⟨H − hminI⟩, where hmin is the smallest eigenvalue,

and I the identity operator). In most cases, this is an intuitive choice. For example,

it is natural to associate zero energy to the vacuum state, and add the correspond-

ing amount of energy for each added photon. Technically, this corresponds to the

normal ordering of the Hamiltonian of the radiation field in order to remove the

infinite vacuum energy. Slightly less intuitive is that the average energy of N spins

in a Greenberger-Horne-Zeilinger state (|↑⟩⊗N + |↓⟩⊗N )/
√

2 is no longer taken to be

zero, but rather N/2 times the energy splitting between |↑⟩ and |↓⟩.

While the expectation value of H is easy to calculate, it is not the only way to

obtain a bound of O(Q) from H. Other seemingly natural choices are the variance

and the semi-norm. For example, if we write H ≡
∑Q

j Aj , the variance is

(∆H)2 =

⟨ Q∑
j

Aj

2⟩
−

⟨
Q∑
j

Aj

⟩2

=
Q2∑
j

⟨Lj⟩ −
Q∑
j,k

⟨Aj⟩⟨Ak⟩ ≤ cQ2 (2.5)
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for some positive number c and positive operator Lj . This gives ∆H ≤ O(Q),

where e.g., in Ref. [69] Q = O(N2). Similarly, |⟨H⟩| ≤
∑Q

j |⟨Aj⟩| ≤ O(Q) since all

expectation values are positive and finite. In other words, in terms of the scaling

behaviour with Q, we can use either the variance or the expectation value. However,

there are important classes of quantum systems for which the variance of the energy

diverges, such as systems with a Breit-Wigner (or Lorentzian) spectrum [72, 73].

Furthermore, for the NOON states written as (|N, 0⟩ + |0, N⟩) /
√

2, the variance of

the energy is zero [1]. The variance of a Hermitian operator is upper bounded by

the operator semi-norm

(∆H)2 ≤ ||H||2

4
, (2.6)

where the operator semi-norm is defined as ||H|| = hmax −hmin with hmax and hmin

being the maximal and minimal eigenvalue of H, respectively. Again, the semi-

norm does not exist for a large class of states, such as optical Gaussian states. In

these cases the resource count, and by implication the scaling of the error, would

be ill-defined.

Also, from a physical perspective the higher-order moments do not describe “a-

mounts” in the same way as the first moment does, and refer instead to the shape

of the distribution. This is a further argument that |⟨H⟩| is the natural choice for

the resource count. Sometimes, it is unclear how the query complexity is defined,

for example when the estimation procedure does not involve repeated applications

of the gates Oj(φ), or when an indeterminate number of identical particles, such as

photons, are involved. Nevertheless, the generator H is always well-defined in any

estimation procedure, and we can use its expectation value to define the relevant

resource count.

The resource count in terms of |⟨H⟩| is completely general for all possible quantum

networks. The most general quantum interaction U(φ) acting on the probe system

is represented by the unitary transformation

U(φ) = V0 O(φ) V1 O(φ) . . . O(φ) VQ (2.7)

This general interaction consists of Q applications of O(φ), interspersed with Q+1
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arbitrary unitary gates Vj . The arbitrary unitary gates Vj together with ancillary

systems may be used to introduce adaptive (feed-forward) strategies to the esti-

mation procedure. For a general interaction U(φ), we can use an argument by

Giovannetti et al. [71] to show that the expectation value of the generator of U(φ)

is given by

|⟨H⟩| =
∣∣∣∣⟨i(∂U(φ)

∂φ

)
U †(φ)

⟩∣∣∣∣ ≤ Q∑
j=1

|⟨A′
j⟩| , (2.8)

where

A′
j = VQO(φ) . . . Vj+1O(φ)Vj

∂O(φ)
∂φ

V †
j O

†(φ)V †
j+1 . . . O

†(φ)V †
Q . (2.9)

Since all the A′
j have the same spectrum as Aj (the spectrum of the generator of

O(φ) is unchanged by the Vj ’s), then the expectation value |⟨H⟩| is unaffected by the

intermediate arbitrary unitary gates, and the scaling is therefore still determined

by Q.

2.3 Optimality proof of the Heisenberg limit

After establishing the appropriate resource count, we are finally in a position to

prove the optimality of the Heisenberg limit for quantum parameter estimation in

its most general form. The Fisher information can be related to a statistical distance

s on the probability simplex spanned by p(x|φ). Consider two probability distri-

butions p(x|φ) and p(x|φ) + dp(x). The infinitesimal statistical distance between

these distributions is given by [74, 75]

ds2 =
∫
dx

1
p(x|φ)

[dp(x|φ)]2 . (2.10)

Dividing both sides by (dφ)2 we obtain

(
ds

dφ

)2

=
∫
dx

1
p(x|φ)

(
∂p(x|φ)
∂φ

)2

= F (φ) , (2.11)

which relates the Fisher information to the rate of change of the statistical distance

(i.e., the speed of dynamical evolution).
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When we count the resources that are used in a parameter estimation procedure, we

must make sure that we do not leave anything out, and this can be guaranteed by

including in our description the environment that the estimation procedure couples

to. This reduces the quantum states to pure states. The distance between the probe

state ρ(0) and the evolved state ρ(φ) can then be represented by the pure states

|ψ(0)⟩ and |ψ(φ)⟩, respectively, and the unitary evolution is given by

|ψ(φ)⟩ = exp (−iφH) |ψ(0)⟩ . (2.12)

Here, we place no restriction on H, other than fixing the energy scale if necessary.

It was shown by Anandan and Aharonov [76] that the derivative of the statistical

distance between two pure states is given by the variance of H

ds

dφ
= 2∆H . (2.13)

Combining this equality with Eq. (2.11) and Eq. (2.2) leads to the Cramér-Rao

bound

(δφ)2 ≥ 1
T

(
ds

dφ

)−2

≥ 1
T 4(∆H)2

. (2.14)

Since both the variance and the expectation value of H are bounded by a linear

function of Q, in the asymptotic limit we have:

(δφ)2 & 1
T |⟨H⟩|2

. (2.15)

When all resources are used in a single-shot (T = 1) experiment, the error in φ is

bounded by

δφ & 1
|⟨H⟩|

. (2.16)

Since |⟨H⟩| is the resource count in the parameter estimation procedure, this is the

Heisenberg limit. It is always positive and finite, and in the limit where |⟨H⟩| → 0

there are no resources available to estimate φ, and δφ cannot be bounded. In

general, the bound is not tight. Indeed, only carefully chosen entangled systems

can achieve this bound [71]. This completes the proof of the optimality of the

Heisenberg limit in the most general case.
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2.4 Consequences of the new Heisenberg limit

In addition to Eqs. (2.11) and (2.13), for mixed states the Fisher information is

bounded by the variance of H according to F (φ) ≤ 4(∆H)2 [77]. This leads to a

(single-shot) quantum Cramér-Rao bound

δφ ≥ 1
2∆H

. (2.17)

However, since ∆H is not a resource count, such as the average photon number,

but rather a variance (or uncertainty) this is not the Heisenberg limit. In fact, it is

Heisenberg’s uncertainty relation for the parameter φ and its conjugate operator H.

Any parameter estimation procedure must respect both bounds, and the Heisenberg

limit in Eq. (2.16) may not be attained for a particular input state because the bound

in Eq. (2.17) prevents it from doing so.

The term “Heisenberg limit” was introduced by Holland and Burnett [67], who

referred to the number-phase uncertainty relation in Heitler [78]. However, as our

optimality proof and the subsequent discussion indicate, the Heisenberg limit is not

an uncertainty relation, since it relates the uncertainty of the parameter to the first

moment of the conjugate observable H, rather than the second. The (generalised)

uncertainty relation can be identified with the Mandelstam-Tamm bound on the

time it takes for a quantum system to evolve to an orthogonal state [1, 79]. To see

this, we can formally solve
ds

dφ
≤ 2∆H (2.18)

by separation of variables, yielding

∫ φ

0
dφ′ ≥ 1

2∆H

∫ π

0
ds ⇒ φ ≥ π

2
1

∆H
. (2.19)

We again emphasise that both limits given in terms of the variance and the expec-

tation value of H are completely general and complement each other.

Finally, we demonstrate that our proof applies to continuous variable systems as

well as discrete systems, by considering the procedure of Beltrán and Luis [68]. The
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construction is as follows: The evolution O(φ) is generated by an optical nonlin-

earity proportional to the square of the photon number operator n̂2 acting on a

single-mode coherent state |ψ(0)⟩ = |α⟩. The evolved state before detection is given

by

|ψ(φ)⟩ = exp(−iφn̂2) |α⟩ , (2.20)

and the mean square error in φ is calculated as

δφ ≃ 1
4
⟨n̂⟩−3/2 =

1
4
|α|−3 (2.21)

to leading order in the average photon number ⟨n̂⟩. Since here the average energy

is directly proportional to the average photon number, this procedure seems to

surpass the Heisenberg limit. To resolve this paradox, we note that the generator of

translations in φ is not the photon number operator n̂, but rather the higher-order

nonlinearity H = n̂2. The appropriate resource count is therefore |⟨H⟩| = ⟨n̂2⟩,

instead of the average photon number ⟨n̂⟩. It is easily verified that to leading order

δφ is theoretically bounded by 1/⟨n̂2⟩ = 1/|α|4. Hence the parameter estimation

procedure does not even attain the Heisenberg limit.

Formally, we can attain the Heisenberg limit for this generator of translations in φ

with the following modification of the input state and the measurement. Consider

the single-mode input state |ψ0⟩ = (|0⟩ + |N⟩) /
√

2, where |0⟩ denotes no photons,

and |N⟩ denotes N photons. The state of the probe before detection is then given

by

|ψ(φ)⟩ = exp(−iφn̂2)|ψ(0)⟩ = (|0⟩ + e−iφN2 |N⟩)/
√

2 . (2.22)

We define the measurement observable X = |0⟩ ⟨N | + |N⟩ ⟨0|. Hence, for the final

state |ψ(φ)⟩ we calculate

⟨X⟩ = ⟨ψφ|X|ψφ⟩ = cos(N2φ) and ∆X = sin(N2φ) . (2.23)

Using the standard expression for the mean squared error, we find that

δφ =
∆X

|d⟨X⟩/dφ|
=

1
N2

. (2.24)
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Since |⟨H⟩| = ⟨n̂2⟩ = 1
2N

2, this attains the Heisenberg limit. This is a formal

demonstration that the Heisenberg limit can be attained according to quantum

mechanics, even though we currently do not know how to implement it.

2.5 Summary

In conclusion, we demonstrated that the Heisenberg limit is optimal for all param-

eter estimation procedures in quantum metrology, but it requires careful considera-

tion as to which resource is appropriate for expressing the scaling behaviour of the

mean square error. The correct identification of the resource count was achieved us-

ing computational complexity theory, further strengthening the connection between

physics and computer science. The correct resource to take into account is (the ex-

pectation value of) the generator of the translations in the parameter. In the case

of most optical phase estimation protocols this reduces to the average photon num-

ber. Contrary to the origin of the term “Heisenberg limit”, it is not a generalised

uncertainty relation. We can identify a generalised uncertainty relation with the

Mandelstam-Tamm bound on the speed of dynamical evolution of quantum systems

when H is the Hamiltonian. Our general approach to quantum metrology resolves

paradoxical situations in which the Heisenberg limit seems to be surpassed even

when it is unclear how the query complexity is defined. Like other fundamental

limits, the new Heisenberg limit increases our understanding of Nature, and will

likely lead to new recipes for high-precision measurements.



Chapter 3

Unifying Parameter Estimation

and the Deutsch-Jozsa

Algorithm for Continuous

Variables

3.1 Introduction

It is well known that quantum metrology promises many advances in science and

technology. Continuous variables (CVs) are natural candidates for optical imple-

mentations of quantum metrology protocols [1, 49, 63]. The importance of CVs

for quantum metrology stems from the unconditional and efficient character of CV

preparation, manipulation, and detection techniques [46, 48]. In this chapter, we

devise an optimal parameter estimation procedure for continuous variables. Our

procedure employs a single CV and estimates a value of an unknown parameter with

Heisenberg-limited precision. Furthermore, for a particular, fixed value of the pa-

rameter in question the procedure behaves as the Deutsch-Jozsa algorithm for CVs.

In fact, our protocol extends the Deutsch-Jozsa algorithm over continuous vari-

ables presented by Pati and Braunstein [80]. Instead of idealised, non-normalisable

(unphysical) states, we employ Gaussian states to represent continuous variables.

45
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Moreover, we define Gaussian states on a finite domain, thus removing an unphys-

ical, infinite speed-up over any classical procedure offered by the idealised states.

An extensive analysis of the Deutsch-Jozsa algorithm over continuous variables was

given by Adcock, Høyer, and Sanders [81].

The Deutsch-Jozsa algorithm is one of the first quantum algorithms, preceded only

by the original Deutsch algorithm [82]. Even though the Deutsch problem is rather

artificial, the algorithm drew enormous attention due to the computational speed-

up over any classical procedure. The structure of the algorithm is simple enough

to determine the source of this speed-up. The quantum superposition principle and

consequent quantum parallelism that lie at the heart of quantum mechanics permits

the interference of many distinct computational paths and allows the correct answer

to the problem to emerge in a single query. In other words, the Deutsch-Jozsa

algorithm probes a global property of an unknown function f(x) and returns the

result in a single run.

This chapter is organised as follows. In Sec. 3.3, we recall the Deutsch-Jozsa algo-

rithm for discrete quantum systems, that is, the qubits. In Sec. 3.3, we review the

Deutsch-Jozsa algorithm over continuous-variable quantum systems and present its

simplified version. In Sec. 3.4, we review basic concepts in quantum metrology. In

Sec. 3.5, we introduce a general procedure that unifies parameter estimation with

the Deutsch-Jozsa algorithm, and we analyse it in detail. Finally, we make some

concluding remarks in Sec. 3.6.

3.2 Deutsch-Jozsa algorithm

The following algorithm is not the original algorithm proposed by Deutsch and

Jozsa [82] (which was probabilistic), but its improved version [83]. However, for a

historical reason we still refer to the following algorithm as the Deutsch-Jozsa algo-

rithm. The Deutsch-Jozsa algorithm is an extension of a simple Deutsch algorithm.

It addresses the Deutsch problem defined as follows. Imagine two parties, Alice and

Bob, playing a game. Alice chooses a number x from 0 to 2n−1. Given this number

Bob evaluates function f(x) that returns only two values 0 or 1. Furthermore, Bob
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|0⟩⊗n
H⊗n

Uf

H⊗n NM



|1⟩ H

Figure 3.1: A quantum circuit representing the Deutsch-Jozsa algorithm over
qubits. The quantum network NDJ consists of the Hadamard gates H and con-
trolled black-box gate Uf applied to the n qubit register and single target qubit
prepared in |0⟩⊗n and |1⟩ states , respectively. The last operation is the Hadamard

gate which enables the interference of different computational paths.

makes a promise that he will use only two kinds of functions, either constant or

balanced. A constant function returns either 0 or 1 value for all input values x. A

balanced function returns 0 value for exactly half of the values of x, and 1 for the

remaining half of the values. The objective of this game is for Alice to decide which

kind of the function Bob used. How many queries has Alice to submit to learn the

property of function f(x) with certainty? Classically, the answer is straightforward.

Since in the worst case scenario Bob can return 2n/2 0s before sending a 1, Alice

has to submit 2n/2 + 1 numbers to decide whether function f(x) is constant or

balanced with certainty [2]. However, in the best case scenario only two evaluations

of the function suffice. If the second value returned by Bob is different from the

first one then Alice concludes that the function is balanced. Naturally, when Alice

is allowed to make her guess with some probability of error then she needs only few

random queries.

In the quantum domain, the answer to the Deutsch problem can be given following

only one query. Here, Alice stores her queries in the n qubit register. Additionally,

Bob has a single target qubit which serves as a repository for every value that can

be returned by function f(x). In order to evaluate the value of the function Bob

uses a controlled black-box unitary operator Uf whose action on the state of the

register and target qubits is given by

Uf |x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩ , (3.1)

where y⊕f(x) is modulo 2 addition. Therefore, following the action of Uf the state

of the target qubit is flipped or remains unchanged depending on the state of the
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register. The Uf operator represents the CX gate. The Deutsch-Jozsa algorithm is

shown in Fig. 3.1 and is implemented by the following quantum network:

NDJ = H⊗(n+1)UfH
⊗n . (3.2)

The elementary steps of the Deutsch-Jozsa algorithm are listed below:

1. prepare the n qubit register and single target qubit in |0⟩⊗n and |1⟩ states,

respectively. Therefore, the input state is |ψ⟩ = |0⟩⊗n|1⟩;

2. apply the Hadamard gate to all n+ 1 qubits, thus creating a complete super-

position state of the n qubit register and balanced superposition state of the

target qubit according to

|ψ⟩ =
1√
2n

2n−1∑
x=0

|x⟩
(
|0⟩ − |1⟩√

2

)
; (3.3)

3. next, Bob applies a controlled black-box operator Uf to the register and target

qubits

|ψ⟩ =
1√
2n

2n−1∑
x=0

(−1)f(x)|x⟩
(
|0⟩ − |1⟩√

2

)
; (3.4)

4. subsequently, the Hadamard gate is applied to the n qubit register, giving

|ψ⟩ =
1
2n

2n−1∑
y=0

2n−1∑
x=0

(−1)x·y+f(x)|y⟩
(
|0⟩ − |1⟩√

2

)
, (3.5)

with x · y being the inner product of x and y, taken modulo 2.

5. finally, Alice measures her n qubit register by projecting on the |0⟩⊗n state.

The probability of finding all her qubits in the |0⟩ state is given by [84]

P0 =

∣∣∣∣∣ 1
2n

2n−1∑
x=0

(−1)f(x)

∣∣∣∣∣
2

. (3.6)
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We note that the probability P0 depends on the character of function f(x). If

the function is constant (taking either 0 or 1 value) then Eq. (3.8) reduces to

P0 =

∣∣∣∣∣±1
2n

2n−1∑
x=0

1

∣∣∣∣∣
2

= 1 . (3.7)

All other probabilities are exactly zero. Thus, when the function f(x) is

constant, the register is found in the |0⟩⊗n state with certainty. If, however,

the function f(x) is balanced then Eq. (3.8) reduces to

P0 =

∣∣∣∣∣ 1
2n

2n−1∑
x=0

(−1)f(x)

∣∣∣∣∣
2

=
∣∣∣∣ 1
2n

0
∣∣∣∣2 = 0 . (3.8)

For the balanced function, the positive part of the probability cancels the

negative one resulting in a zero value for probability P0. Therefore, Alice

never observes the register in the |0⟩⊗n state, that is, at least one of the

register qubits must be in the |1⟩ state.

In summary, if Alice finds all register qubits present in the |0⟩ state then function

f(x) is constant, otherwise function f(x) is balanced. The key ingredient of the

Deutsch-Jozsa algorithm (and many other well know quantum algorithms) is em-

bodied by the Hadamard operation that enables parallel processing and interference

of different computational paths. In other words, the quantum superposition prin-

ciple that gives rise to a quantum parallelism allows for the answer to the Deutsch

problem to emerge in a single execution of the algorithm. In the next section,

we show how the Deutsch-Jozsa algorithm can be extended to continuous-variable

quantum systems.

3.3 Deutsch-Jozsa algorithm over continuous variables

The generalisation of the Deutsch-Jozsa algorithm to continuous variables was de-

vised by Pati and Braunstein [80]. This generalisation was implemented with ide-

alised continuous variables defined on an infinite domain. However, any practical

CV implementation of the Deutsch problem can be realised only in a finite domain.
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|x0⟩ F
Uf

F−1 NM


∣∣π
2

⟩
F

Figure 3.2: A quantum circuit representing the Deutsch-Jozsa algorithm over
continuous variables. The quantum network NDJ consists of the Fourier trans-
forms F and controlled black-box gate Uf applied to the register and target CVs
prepared in the idealised position eigenstates |x0⟩ and |π/2⟩, respectively. The last
operation is an inverse Fourier transform that enables the interference of different

computational paths.

Nevertheless, for simplicity and clarity, we first recall the Deutsch-Jozsa algorithm

over continuous variables as originally stated in Ref. [80].

As already stated, the objective of the Deutsch problem is to determine whether

some function f(x) is constant or balanced. Similarly as in the discrete case, this

is achieved by Alice and Bob playing the following game. Alice submits a value

of x from −∞ to +∞ to Bob. Then Bob evaluates f(x), which can take only

two values: 0 or 1. Bob also promises Alice to use either balanced or constant

functions. A constant function is either 0 or 1 for all values of x ∈ (−∞,+∞). A

balanced function is 0 for half of the values of x, and 1 for the remaining values of

x. This is defined in terms of the Lebesgue measure µ on R: µ(x ∈ R|f(x) = 0) =

µ(x ∈ R|f(x) = 1) [80]. The goal of this game is the same as the objective of

the traditional Deutsch problem, that is, to establish if the function used by Bob

is constant or balanced. Classically, Alice would have to submit infinitely many

values of x to learn the global property of f(x) with certainty. However, if Bob

can use a unitary black-box operation to calculate function f(x), then only a single

function evaluation is sufficient to reveal the global property of f(x). In the setting

of idealised CVs, this would imply an infinite speed-up over any classical procedure.

The ideal Deutsch-Jozsa algorithm over continuous variables is shown in Fig. 3.2.

This implementation of the Deutsch-Jozsa algorithm employs two CVs, the so-

called register and target CVs. Alice stores her query in the register CV, and the

target CV is used by Bob during function evaluation. The register is prepared in

the position eigenstate |x0⟩ and the target in the position eigenstate |π/2⟩. The

quantum network NDJ implementing the Deutsch-Jozsa algorithm is given by the
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following unitary transformation:

NDJ = F−1
r UfFrFt , (3.9)

where F is the Fourier transform and r and t indicates the register and target CV,

respectively. The Fourier transform applied to a CV in some position eigenstate |x⟩

creates a superposition of all position eigenstates according to

F |x⟩ =
1√
π

∫ ∞

−∞
dy e2ixy|y⟩ , (3.10)

where we used photon number units in which ~ = 1
2 . The unitary black-box operator

Uf evaluates a value of function f(x) and stores it in the state of the target CV:

|x⟩|y⟩ −→ |x⟩|y + f(x)⟩. Let us analyse the Deutsch-Jozsa algorithm step by step:

1. prepare the register and target CVs in an ideal position eigenstate |x0⟩ and

|π/2⟩, respectively;

2. apply the Fourier transform F to the register and target CVs,

|s⟩ = FrFt|x0⟩|π/2⟩ =
1
π

∫ ∞

−∞

∫ ∞

−∞
dxdy e2ixx0+iπy|x⟩|y⟩ ;

3. following the action of a unitary black-box operator Uf , the state of the CVs

is given by

Uf |s⟩ =
1√
π

∫ ∞

−∞
dx e2ixx0e−iπf(x)|x⟩Ft|π/2⟩ ;

4. the quantum network NDJ is finalised with an inverse Fourier transform F−1

applied to the register CV. Therefore, the state of the CVs can be written as

F−1
r Uf |s⟩ =

1
π

∫ ∞

−∞

∫ ∞

−∞
dxdx′ e2ix(x0−x′)e−iπf(x)|x′⟩Ft|π/2⟩ ;

5. following the quantum network NDJ , the property of the function f(x) is

determined by projecting the state of the register CV onto the original position

eigenstate |x0⟩.
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The continuous-variable projection operator for idealised states can be written as

Px0 =
∫ x0+ε

x0−ε
dy |y⟩⟨y| , (3.11)

where ε is the spread around x0 value, that is, the CV measurement cannot be

performed with infinite precision. The orthogonal complement of Px0 is given by

Px̄0 = I − Px0 = I −
∫ x0+ε

x0−ε
dy|y⟩⟨y|. (3.12)

By construction, a complete set of orthogonal projectors Pm satisfies the complete-

ness relations
∑

m Pm = I and PmPm′ = δmm′Pm. If f(x) is constant, then the

measurement statistics based on the preceding set of orthogonal projection opera-

tors (and taking ε→ 0) is given by

p(x0) = Tr[P̂x0ρDJ ] = 1, (3.13)

p(x̄0) = Tr[P̂x̄0ρDJ ] = 0 , (3.14)

where p(x0) is the probability of measurement outcome to be x0, p(x̄0) is the proba-

bility of a measurement outcome different than x0, and ρDJ = NDJ |r⟩|t⟩⟨t|⟨r|N−1
DJ .

Conversely, if f(x) is balanced, then the measurement statistics assuming ε → 0 is

given by

p(x0) = Tr[P̂x0ρDJ ] = 0, (3.15)

p(x̄0) = Tr[P̂x̄0ρDJ ] = 1. (3.16)

Therefore, if the state of the register CV remains unchanged, then the function

f(x) is definitely constant, and if the state of the register CV is not |x0⟩, then the

function f(x) is balanced. A single function evaluation solves the Deutsch problem.

The core of the preceding implementation of the Deutsch-Jozsa algorithm is repre-

sented by a unitary, controlled black-box operator Uf applied between the Fourier-

transformed register and target CVs. Here, the Fourier-transformed target CV,

together with a black-box operator, induces a phase shift, which depends on the
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global property of the function f(x):

Uf (|x⟩Ft|π/2⟩) = e−2if(x̂)p̂t |x⟩Ft|π/2⟩ = e−iπf(x)|x⟩Ft|π/2⟩ .

Notice that the state of the target CV is not changed following the action of Uf .

In fact, Ft|π/2⟩ is an eigenstate of Uf with an eigenvalue e−iπf(x) “kicked back” in

front of the register CV [83]. Conventionally, the Deutsch-Jozsa algorithm employs

multiple quantum systems; however, as the preceding simple analysis of the action of

Uf indicates, the target CV can be omitted. It is easy to show that a single register

CV together with a redefined black-box operator Uf ≡ e−2i π/2 f(x̂) is enough to

implement the Deutsch-Jozsa algorithm over continuous variables. In Ref. [81],

the authors arrived at the same conclusion; however, they used a slightly different

approach. We emphasise that a direct consequence of employing a single system is

that this protocol does not use any entanglement to determine the global property

of the function in a single run. Moreover, the preceding implementation of the

Deutsch-Jozsa algorithm is expressed in terms of the idealised position eigenstates.

However, a more realistic and physically meaningful representation of a continuous

variable is given by, for example, Gaussian states.

Similar to the setting of discrete quantum systems (e.g., qubits), some features

of the Deutsch-Jozsa algorithm can serve as a starting point for developing other

quantum algorithms. A slightly modified black-box operator Uf ≡ e−2i π/2 f(x̂) for

a simplified Deutsch-Jozsa algorithm can be used as the core of a protocol capable

of estimating an unknown parameter that under appropriate conditions still retains

the capabilities of the Deutsch-Jozsa algorithm. Before introducing this protocol,

we recall some basic concepts in quantum parameter estimation theory.

3.4 Parameter estimation

The most general parameter estimation procedure is shown in Fig. 3.3, and consists

of three elementary steps:

1. prepare a probe system in an initial quantum state ρ(0);
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P U(φ) M

p(x|φ)

ρ(0) ρ(φ)

Figure 3.3: The general parameter estimation procedure involving state prepara-
tion P , evolution U(φ), and generalised measurement M with outcomes x, which

produces a probability distribution p(x|φ).

2. evolve it to a state ρ(φ) by a unitary evolution U(φ) = exp(−iφH);

3. subject the probe system to a generalised measurement M , described by a

Positive Operator Valued Measure (povm) that consists of elements Êx, where

x denotes the measurement outcome.

Here, the Hermitian operator H is the generator of translations in φ, the parameter

we wish to estimate. The amount of information about φ that can be extracted by

a measurement of the probe system is given by the Fisher information,

F (φ) =
∑

x

1
p(x|φ)

(
∂p(x|φ)
∂φ

)2

, (3.17)

where p(x|φ) = Tr[Êxρ(φ)] is the probability distribution given by the Born rule

that describes the measurement data, and x is a discrete measurement outcome.

Based on the Fisher information, one can bound a minimal value of the uncertainty

in φ with the quantum Cramér-Rao bound [44, 64, 85],

(δφ)2 ≥ 1
TF (φ)

, (3.18)

where (δφ)2 is the mean squared error in the parameter φ, and T is the number

of times the procedure is repeated. The ultimate limit of the quantum Cramér-

Rao bound depends on how the Fisher information is bounded from above. The

Fisher information can be bounded in two ways: by the variance of H [77] or by

the expectation value of H [86],

F (φ) ≤ 16(∆H)2 and F (φ) . 4 |⟨H⟩|2 , (3.19)

where we again used ~ = 1
2 . Since both bounds are completely general and comple-

ment each other, any parameter estimation procedure must respect them. Typically,
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the Fisher information may be related to various resource counts such as the average

photon number, the average energy of the probe system, or the number of funda-

mental “atomic” unitary evolution gates that are used in the estimation procedure.

As we have established in Chapter 2, all these different resource counts are encom-

passed by the expectation value of H which plays the role of a proper resource count

[86]. We usually consider two scaling regimes of the quantum Cramér-Rao bound.

The first regime, the so-called standard quantum limit (sql) [66] or shot-noise limit,

is obtained when the Fisher information is a constant with respect to T and the

resource count. The sql is typically given by

δφ & 1√
T
. (3.20)

The second regime, the so-called Heisenberg limit [67], is obtained in a single-shot

experiment (T = 1) when the Fisher information scales quadratically with the

resource count. The Heisenberg limit is then given by

δφ ≥ 1√
F (φ)

. (3.21)

Therefore, the uncertainty in the parameter φ scales linearly inversely with the

resource count. Both scaling regimes of the quantum Cramér-Rao bound can be

compared directly in terms of an appropriate resource count [86].

3.5 General procedure with Gaussian states

In this section, we present a general procedure capable of determining the value of

a single parameter φ ∈ [0, 2π) or implementing the Deutsch-Jozsa algorithm (see

Fig. 3.4). Here, the black-box operator is defined in the following way:

Uf (φ) ≡ exp [−2iφf(x̂)] , (3.22)

where f(x̂)|x⟩ = f(x)|x⟩. The function f(x) again takes only two values: 0 and

1. Without loss of generality, ideal, non-normalisable continuous variable states

are regularised to Gaussian input states. Similar to the case of the Deutsch-Jozsa
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|G(x0)⟩ F Uf (φ) F−1 NM



Figure 3.4: A quantum circuit representing the general protocol over continuous
variables. The quantum network consists of the Fourier transform F and black-
box gate Uf (φ) applied to a single register CV prepared in the Gaussian state
|G(x0)⟩. The last operation is an inverse Fourier transformation that enables the

interference of different computational paths.

algorithm, any physical continuous-variable parameter estimation protocol can be

implemented only on a finite domain. Therefore, we introduce the semi-Gaussian

input state defined on a finite domain given by

|G(x0)⟩ =
∫ T

−T

dx

Nx
exp

[
−(x− x0)2

2∆2

]
|x⟩ , (3.23)

where ∆ is the variance of the state and Nx is the normalisation constant given by

N2
x =

√
π∆2

2

[
erf
(
T + x0

∆

)
+ erf

(
T − x0

∆

)]
.

We note that for ∆ ≪ T we recover the normalisation constant in the form of

N2
x =

√
π∆2 which is characteristic for a Gaussian state defined on an infinite

domain, that is, from −∞ to +∞. The Fourier-transformed semi-Gaussian state

defined on a finite domain can be written as

|G(p0)⟩ =
∫ P

−P

dp

Np
exp

[
−2∆2(p− p0)2

]
|p⟩ , (3.24)

where 1/(2∆) is the variance of the Fourier-transformed semi-Gaussian state and

Np is given by

N2
p =

√
π/4∆2

2
[erf(2(P + p0)∆) + erf(2(P − p0)∆)] .

For P ≫ 1/(2∆) the normalisation constant takes the form of N2
p =

√
π/4∆2,

characteristic for a Fourier-transformed Gaussian state define on an infinite domain.

The relationship between domains of the semi-Gaussian input state and its Fourier-

transformed counterpart is given by P = 1/(2T ).

The general procedure consists of the following instructions:
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1. prepare the register CV in the normalised semi-Gaussian state |r⟩ = |G(x0)⟩,

and apply the Fourier transform F defined by

F |x⟩ = |x⟩p =
1√
2T

∫ T

−T
dy e2ixy|y⟩ , (3.25)

where |x⟩p is the Fourier-transformed position eigenstate, that is, the momen-

tum eigenstate;

2. subsequently, a black-box operator Uf (φ) is applied. Then the state of the

system is

Uf (φ)F |r⟩ =
∫ T

−T

dx

Nx
exp

[
−(x− x0)

2

2∆2

]
e−2iφf(x̂)|x⟩p

=
1√
2T

∫ T

−T

dxdy

Nx
exp

[
−(x− x0)

2

2∆2

]
×e2iyxe−2iφf(y)|y⟩ ;

3. finally, an inverse Fourier transform F−1 is applied followed by a measurement.

The state of the register CV is measured by projecting onto the original semi-

Gaussian state centered around x0.

The measurement is described by a povm {Px0 , Px̄0}, where

Px0 =
∫ T

−T
dxdy gxy|x⟩⟨y|, and Px̄0 = I − Px0 (3.26)

with

gxy =
1
N2

ε

exp

[
−(x− x0)

2

2ε2

]
exp

[
−(y − x0)

2

2ε2

]
, (3.27)

and ε is the intrinsic precision of the measurement apparatus; that is, any CV mea-

surement must have finite precision if it is to be physical, andNε is the normalisation

constant given by

N2
ε =

√
πε2

2

[
erf
(
T + x0

ε

)
+ erf

(
T − x0

ε

)]
.

The optimal measurement which corresponds to the initial semi-Gaussian register

state has ε = ∆; thus Nε = Nx.
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Now let us calculate the measurement statistics. Analytical expressions for the mea-

surement statistics are hard to find due to the presence of error functions. However,

for the semi-Gaussian states with ∆ ≪ T the calculations simplify considerably.

Under this regime, the limits of integration for the integrals containing terms that

depend on ∆ range from −∞ to +∞. Necessarily, the normalisation constants have

to be changed and are expressed as
√

2TNx =
√
π

4
√
π∆2. In other words, a semi-

Gaussian input state defined on a finite domain is approximated with a Gaussian

state defined on an infinite domain. Therefore, the measurement statistics based

on the preceding povm are given by the following expression:

p(x0|φ) =
4∆2

π

∫ P

−P
dzdy e−4∆2(z2+y2)e2iφ(f(z)−f(y)),

p(x̄0|φ) = 1 − p(x0|φ). (3.28)

Here, the interval (−P, P ) is a finite domain of the Fourier-transformed semi-

Gaussian state |G(x0)⟩ and denotes the interval where for this particular procedure

function f(x) is defined.

At this point, we have to give an explicit definition of the function. Functions f(x)

defined on a finite domain returning only two values ({0, 1}) fall into three distinct

categories: constant, balanced, and neither constant nor balanced. We recall that

the objective of the Deutsch-Jozsa algorithm is to probe whether an unknown func-

tion f(x) is constant or balanced. We parametrize the three possibilities for defining

f(x) by introducing a parameter r. The preceding integrals can then be evaluated

for any function f(x) behaving as a step function, with the parameter r marking

the point where f(x) changes its value. Hence, for r = 0 and r = ±P the function

f(x) is balanced and constant, respectively. For 0 < r < P (or −P < r < 0), the

function f(x) is neither constant nor balanced. We consider only positive values of

r due to the symmetry of the setup. This leads to

p(x0|φ) =
1
2
[
erf2(2P∆) + erf2(2r∆)

]
+

1
2
[
erf2(2P∆) − erf2(2r∆)

]
cos(2φ),

p(x̄0|φ) = 1 − p(x0|φ) ,
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-P P

b)

0-P P0

a)

Figure 3.5: Representations of function f(x) in the momentum domain z ∈
(−P, P ). a) a simple step-function representation of a balanced function with
r = 0, b) the “hat” representation of a balanced function that changes its value
twice at points r1 = −P/2 and r2 = P/2. The curved line represents the Fourier
transformed Gaussian state and the straight, grey line corresponds to the Fourier

transformed idealised state. For more details see text.

where p(x0|φ) is the probability of measurement outcome to be in the interval x0±ε

and p(x̄0|φ) is the probability of measurement outcome not to be in the interval

x0 ± ε.

3.5.1 Representations of f(x)

Our choice to represent f(x) as a step function simplified our calculations. However,

we can imagine more elaborate behaviour patterns for f(x). In principle, since in

the case of the Fourier-transformed idealised CVs all terms have amplitudes of equal

magnitude, all finite subintervals where the function takes value 0, can be added

up to a single interval. The same applies to all subintervals where function takes

value 1. Therefore, one ends up with two intervals and a relationship between

them given by the parameter r. However, in the setting of semi-Gaussian states

defined on a finite domain, the preceding reasoning is not quite as straightforward.

The amplitudes of the Fourier-transformed Gaussian states have a slightly different

magnitude. One may notice this feature by inspecting Eq. (3.28). Since in our

calculations we favour a step-function representation over any other, let us estimate

the maximum error we make with this assumption. Due to a trivial nature of a

constant function, in the following analysis we consider a balanced function. We

consider the step-function representation of a balanced function with r = 0 (see

Fig. 3.5a)). The biggest deviation from this representation is offered by a balanced

function that changes its value twice at points r1 = −P/2 and r2 = P/2 (see

Fig. 3.5b)). Both representations produce two distinct probability distributions,
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pstep(x0|φ) and phat(x0|φ), respectively, that differ by the error εP∆ given by

εP∆ = |1 − cos(2φ)| ×
∣∣∣∣− 8
π

(P∆)6 +
24
π

(P∆)8 +O
(
(P∆)10

)∣∣∣∣ .
The error tends to zero with P∆ → 0. This is natural since when ∆ → 0 all

amplitudes of the Fourier-transformed idealised position eigenstate have the same

magnitude; that is, the spectrum is flat.

3.5.2 Analysis

Our procedure can be analysed in two ways. As expected, from one perspective

it behaves as a parameter estimation protocol. From the other, it behaves as the

Deutsch-Jozsa algorithm. First, we analyse the behaviour of the parameter esti-

mation part of the procedure. Based on the preceding measurement statistics, we

calculate the Fisher information F (φ). The minimal value of F (φ) = 0 occurs when

function f(x) is constant (r = P ) with the corresponding measurement statistics:

p(x0|φ) = erf2(2P∆),

p(x̄0|φ) = 1 − erf2(2P∆).

Conversely, the maximal value of the Fisher information,

F (φ) =
4 erf2(2P∆) [cos(2φ) − 1]

erf2(2P∆) [cos(2φ) + 1] − 2
, (3.29)

occurs when function f(x) is balanced (r = 0) with the corresponding measurement

statistics:

p(x0|φ) =
1
2

erf2(2P∆) [1 + cos(2φ)] ,

p(x̄0|φ) = 1 − 1
2

erf2(2P∆) [1 + cos(2φ)] .

Here the optimal value of the Fisher information F (φ) = 4 is given for erf2(2P∆) =

1. This condition imposes a lower bound on P :

erf2x = 1 for x ≥ 3 ⇒ P ≥ 3/(2∆) , (3.30)
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Figure 3.6: General dependence of the Fisher information F (φ) for five values of
the parameter r: r = 0 corresponds to the uppermost solid line (green), r = P/8
corresponds to the dashed line (blue), r = P/4 corresponds to the dashed-dotted
line (brown), r = P/2 corresponds to the long-dashed line (grey), and r = P
corresponds to the lowermost solid line (red). Here P = 3/(2∆) with ∆ = 1/

√
2.

which, in general, implies P & 1/(2∆) and is consistent with the approximation ap-

plied earlier. The general dependence of the Fisher information F (φ) on parameter

r with P = 3/(2∆) and ∆ = 1/
√

2 (the variance of the coherent state) is shown

in Fig. 3.6. The dips that are especially visible for the balanced function appear

because the Fisher information F (φ) retains some dependence on the parameter φ

since for P = 3/(2∆), erf2(2P∆) ≈ 1. Based on the general dependence of F (φ) on

r, we conclude that the maximal value of the Fisher information is indeed obtained

for a balanced function.

In order to address the optimality of our parameter estimation protocol, we analyse

the behaviour of the generator of translations in the parameter φ: H ≡ f(x̂). The

expectation value of the generator H in the state of the register CV preceding

application of the black-box operator, that is, |ψin⟩ = F |r⟩ with ∆ ≪ T , is given

by

|⟨H⟩|2 = |⟨f(x̂)⟩|2 =
1
4

[erf(2P∆) − erf(2r∆)]2 .
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The last equality holds for positive values of r. Since f2(x) = f(x) the variance of

the generator H in |ψin⟩ can be written as

(∆H)2 = (∆f(x̂))2 =
1
2

[erf(2P∆) − erf(2r∆)]

×
[
1 − 1

2
[erf(2P∆) − erf(2r∆)]

]
.

The maximal expectation value of the generator H occurs for a balanced function

(r = 0) with P ≥ 3/(2∆) and is given by |⟨H⟩|2 = 1/4. On the other hand,

the maximal variance of the generator H is (∆H)2 = 1/4. Hence, the Fisher

information is bounded by F (φ) ≤ 16(∆H)2 = 4. Therefore, we note that according

to Eqs. (3.19) and (3.21) our procedure attains the scaling regime of the Heisenberg

limit. We also note that even though, for this setup, the Fisher information is

bounded by the variance of H, asymptotically both bounds given in Eq. (3.19)

coincide. In order to establish the optimality of the procedure, we must calculate

whether δφ = 1/
√
F (φ). We use the standard expression for the mean squared

error given by

δφ =
∆X

|d⟨X⟩/dφ|
, (3.31)

where X is the measurement observable defined as X = Px0 [see Eq. (3.26)]. Hence,

for the final state |ψφ⟩ = F−1Uf (φ)F |r⟩ with ε = ∆, we calculate

⟨X⟩ = ⟨ψφ|Px0 |ψφ⟩ =
1
2

erf2(2P∆) [1 + cos(2φ)] .

Based on the property P 2
x0

= Px0 , we find that ⟨X2⟩ = ⟨X⟩. For P ≥ 3/(2∆) the

mean squared error is δφ = 1/2. Hence, we conclude that for a balanced function

our parameter estimation procedure over continuous variables attains the ultimate

limit of the quantum Cramér-Rao bound, and therefore is optimal. This result

constitutes an analogy to the phase estimation with a qubit realised as a single

photon placed in the arms of the Mach-Zender interferometer. Here the balanced

property of function f(x) plays a role of two distinct paths in a balanced Mach-

Zender interferometer.

Next, let us analyse the Deutsch-Jozsa side of the procedure. Under appropriate

conditions the developed procedure can determine the character of function f(x).
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If a value of the parameter φ is fixed, φ = π/2, then the measurement statistics are

given by

p(x0) = erf2(2r∆),

p(x̄0) = 1 − erf2(2r∆),

It is clear that for a constant and balanced function f(x) the corresponding mea-

surement statistics of the Deutsch-Jozsa algorithm are recovered. Indeed, when

function f(x) is constant (r = P ), then

p(x0) = erf2(2P∆),

p(x̄0) = 1 − erf2(2P∆),

and when function f(x) is balanced (r = 0), then p(x0) = 0 and p(x̄0) = 1. The

Deutsch-Jozsa algorithm over the semi-Gaussian states defined on a finite domain

becomes a probabilistic procedure. This is consistent with the conclusions found

in Ref. [81]. However, when the size of the domain is sufficiently large with P ≥

3/(2∆), then a definite distinction between constant and balanced functions can

be made. Nevertheless, even for large-enough domains this implementation of the

Deutsch-Jozsa protocol does not offer an unphysical, infinite speed-up over the

classical procedures. We note that for ideal, non-normalisable position eigenstates

(∆ → 0), the constant function measurement statistics is retained for P → ∞,

rendering P and r unphysical, thus making a meaningful distinction between the

balanced and constant functions impossible.

We also calculated the Fisher information F (r) and plotted it against r ∈ (0, P )

for five different values of the parameter φ = {π/2, 5π/12, π/3, π/4, π/8} with P =

3/(2∆) and ∆ = 1/
√

2 (see Fig. 3.7). The maximal value of the Fisher information

F (r) is obtained for φ = π/2 corresponding to a simplified Deutsch-Jozsa algorithm.

We note that the optimality changes from balanced to more constant when φ ̸= π/2.

Any further analysis of this side of the procedure is problematic due to a lack of

the generator of translations in r.

One possible application of the Deutsch-Jozsa part of our procedure is to test the
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Figure 3.7: General dependence of the Fisher information F (r) (with P =
3/(2∆) and ∆ = 1/

√
2) for four values of the parameter φ: φ = π/2 corresponds to

the uppermost solid line (green), φ = 5π/12 corresponds to the dashed line (blue),
φ = π/3 corresponds to the dashed-dotted line (brown), φ = π/4 corresponds to
the long-dashed line (grey), and φ = π/8 corresponds to the lowermost solid line

(red). The optimal value of r shifts from balanced to constant.

quality of the implementation of function f(x) employed in the parameter estima-

tion protocol. Whenever the function is balanced or constant the quality of its

implementation can be established by probing the parameter r. We also stress that

since we are employing a single continuous variable, no entanglement is present at

the preparation stage and none is created during the computation. The quantum

superposition principle itself is responsible for speed-up over any classical proce-

dure. Even though, in principle, a single continuous variable is quite sufficient, a

practical implementation of the Deutsch-Jozsa algorithm may require more contin-

uous variables. Traditionally, operators of type Uf and Uf (φ), which introduce a

phase factor in front of the register CV, are applied between two quantum systems,

that is, the register and target CVs.
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3.6 Summary

In conclusion, we developed a general procedure capable of performing two distinct

tasks. For one mode of operation the protocol estimates a value of an unknown pa-

rameter with Heisenberg-limited precision. On the other hand, for a fixed value of

the parameter in question the procedure addresses the Deutsch problem in a single

run. Our procedure employs Fourier transforms and black-box unitary operator ap-

plied to a single continuous variable represented as the semi-Gaussian state defined

on a finite domain. Consequently, for this setup, the parameter estimation side

of the procedure is optimal and the Deutsch-Jozsa algorithm offers finite, that is,

physically feasible, speed-up over any classical procedure. Furthermore, no entan-

glement is present at any stage of the procedure. A similar conclusion concerning

the quantum metrology part of our procedure can be found in Refs. [87, 88]. We

emphasise a special role played by balanced functions f(x). The procedure equipped

with the black-box operator that introduces the parameter φ via the balanced func-

tion attains the ultimate limit of the quantum Cramér-Rao bound. This behaviour

can be linked to the phase estimation with a qubit realised as a single photon placed

in the arms of the Mach-Zender interferometer.
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Chapter 4

Techniques for Atomic

Ensembles

4.1 Introduction

Many well known techniques from quantum optics and atomic physics can be used

for a coherent manipulation of the quantum states of light and matter. These include

electromagnetically induced transparency (EIT) and stimulated Raman interaction.

Both techniques are associated with quantum interfaces, that is, interactions be-

tween atomic vapours and light, and can be employed to affect the behaviour of

an atomic medium and also the propagation of optical pulses inside a medium.

Under certain conditions, EIT and resulting propagation phenomena, such as the

reduced group velocity of the optical pulse, may enable the storage of single-photon

pulses inside an atomic medium, and therefore, implement an atomic-based quan-

tum memory. Another technique that offers a remarkable control over a collective

behaviour of an atomic vapour is the so-called dipole blockade mechanism.

This chapter is organised as follows. In Sec. 4.2, we review in some detail a well

known techniques for coherent manipulation of atomic ensembles, namely electro-

magnetically induced transparency and stimulated Raman interaction. In the same

section, we review the concept of an atomic medium as single-photon quantum

memory. In Sec. 4.3, we introduce a notion of the Rydberg state and the dipole
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blockade mechanism, which also may be used to induce coherent behaviour of a

macroscopic atomic medium.

4.2 Electromagnetically induced transparency

One of the most important and interesting phenomena in quantum optics is electro-

magnetically induced transparency, a term coined by Harris et al. in 1990 [89, 90].

Its importance stems from the range of new potential applications it promises for

non-linear optics and quantum information applications. EIT is a phenomenon re-

sulting from the modification of the optical properties of an atomic medium, i.e.,

an atomic ensemble, driven by an optical laser pulse [56, 57, 91]. The laser field

induces coherent behaviour of an atomic medium and leads to the vanishing absorp-

tion and rapidly varying refraction of a resonant signal field (Fig. 4.2) [92, 93]. The

prominent optical properties of the atomic medium are determined by the first-order

linear susceptibility χ(1). The imaginary part of the susceptibility Im[χ(1)] repre-

sents the absorption of the optical field by a medium and the real part Re[χ(1)]

represents the refractive index n.

The optical properties of any atomic medium are mostly determined by its level

structure [56]. The behaviour of a two-level atomic medium in the presence of a

resonant optical pulse seems rather straightforward. The laser pulse induces Rabi

oscillations, i.e., atomic population is transferred between two levels in a coherent

fashion. The addition of a third level to the level structure of atoms dramatically

changes this picture. This slight change leads to a number of new and non-intuitive

phenomena, such as appearance of dark state polaritons and EIT itself. The phe-

nomenon of EIT is based on quantum interference in the amplitudes of excitation

pathways, which results in destructive interference of the imaginary part of the

linear susceptibility. In other words, at resonance linear response of a medium is

canceled and the atomic medium is completely transparent to the signal field. The

idea of interference between different excitation channels was first introduced by

Fano [56]. Apart from the transparency window, a number of new possibilities

emerge such as opportunity to “stop” a light pulse inside a medium.
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Figure 4.1: The three-level Λ-type scheme for EIT. |g⟩ and |s⟩ are a lower, long-
lived energy states and |e⟩ is an excited state. Ωs is the Rabi frequency of the
signal field detuned from the atomic transition by ∆1 = ωeg − ωs. Ωc is the Rabi
frequency of the control field detuned from the atomic transition by ∆2 = ωes−ωc.

To understand the essence of EIT, let us consider an ensemble of atoms with a

Λ-type three-level structure driven by two optical fields. Each atom in an ensemble

has a pair of lower, long-lived energy states |g⟩ and |s⟩. These states can be realised

by the electronic ground state of alkali atoms and the transition between them

is always dipole-forbidden. A state |g⟩ is coupled to an excited state |e⟩ through

the signal optical field. A second strong control field is applied to the transition

between states |s⟩ and |e⟩ (Fig. 4.1). In this setting, the only way to absorption is by

means of the |e⟩ level. The EIT understood as a lack of the absorption emerges by

means of destructive quantum interference between different absorption pathways

- the direct one |g⟩-|e⟩ and the indirect pathways such as |g⟩-|e⟩-|s⟩-|e⟩ [56]. If the

control field is much stronger than a signal field and both are detuned by the same

amount, amplitudes of these different pathways have the same magnitude but the

opposite sign and cancel each other [56]. In this picture atoms are said to be in

a so-called dark superposition of the states |g⟩ and |s⟩, which leads to vanishing

light absorption. Let us examine the Hamiltonian of the atomic Λ-type three-level

system driven by a pair of near-resonant optical fields. In terms of the Hamiltonian

Ĥ, the system can be described as a sum of the free evolution atom Hamiltonian Ĥ0

and the interaction Hamiltonian Ĥint [56]. Within the dipole approximation and in
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the rotating wave approximation, the interaction Hamiltonian Ĥint is given by

Ĥint = −~
2


0 0 Ωs

0 −2(∆1 − ∆2) Ωc

Ωs Ωc −2∆1

 , (4.1)

where Ωs is the Rabi frequency of the signal field with frequency ωs detuned from the

corresponding atomic transition by ∆1 = ωeg − ωs and Ωc is the Rabi frequency of

the control field with frequency ωc detuned from the corresponding atomic transition

by ∆2 = ωes − ωc [56]. The dynamics of the system as a whole are captured by the

Hamiltonian Ĥ. For two-photon resonance (∆1 = ∆2 = ∆), the Hamiltonian Ĥ

has a set of three eigenstates. In terms of the bare atom states |g⟩, |s⟩ and |e⟩, one

of the eigenstates has the form |ψ(θ)⟩ = cosθ|g⟩ − sinθ|s⟩, where θ is the so-called

mixing angle given by tan θ = Ωs/Ωc [56, 94]. Under a two-photon resonance, the

|ψ⟩ is a stationary state. The state |ψ⟩ is called a dark state because it has no

contribution from |e⟩, hence there is no possibility of absorption. Consequently, an

opaque, optically thick atomic medium is completely transparent to the signal field

in the presence of a strong control field. In general, appearance of the transparency

is independent of the detuning ∆ of the signal optical field [56]. Naturally, the

ideal transparency occurs at the exact resonance. However, the increased control

field strength can circumvent the limitations that are imposed by the resonance

condition and even away from the resonance transparency can be observed. The

reader should note an interesting feature of the dark state: |ψ⟩ depends on the

mixing angle θ. This opens a route to extraordinary possibilities and applications.

4.2.1 Stimulated Raman adiabatic passage

The state of a system described above can be easily manipulated with an appropriate

change of Rabi frequencies of the signal and control optical fields [56]. An adiabatic

evolution known as stimulated Raman adiabatic passage (STIRAP) can be applied

to the system to prepare it in a dark state |ψ⟩. The STIRAP technique is governed

by the interaction Hamiltonian Ĥint given above with ∆1 = ∆2 = ∆. The adiabatic

passage starts when Ωs ≪ Ωc and the system is in the ground state |ψ⟩ = |g⟩. Then



Chapter 4. Techniques for Atomic Ensembles 71

Ωs is adiabatically increased and Ωc is adiabatically decreased up to the point when

sin θ = 1 (cos θ = 0) and the dark state |ψ⟩ = −|s⟩. Consequently, by choosing

appropriate Rabi frequency for both optical fields, it is possible to transfer a whole

atomic population to a maximally coherent dark state |ψ⟩ = 1√
2
(|g⟩−|s⟩) [56]. More

importantly, the STIRAP technique is immune to spontaneous emission losses since

an excited state |e⟩ is never populated, and therefore the number of photons in the

optical field is conserved. The STIRAP technique allows us to prepare the system

in one of the bare states (|g⟩ or |s⟩) and in any intermediate superposition. Hence,

the STIRAP procedure is a widely used technique for quantum state preparation

in atomic ensembles.

4.2.2 The propagation phenomena

The EIT technique modifies not only the optical properties of an atomic medium,

but the propagation of optical pulses inside a medium is affected as well. These

special propagation effects are the source for a variety of applications. First of

all, the group velocity of a signal field, i.e., the velocity of the envelope of a wave

packet, is changed [95]. Under EIT conditions, the group velocity, is reduced since

the refractive index n is varying rapidly in the neighbourhood of the two-photon

resonance as shown in Fig. 4.2 (the derivative of the refractive index with respect

to the frequency is positive and large) and

vgr =
c

n+ dn
dωω

=
c

1 + ngr
, (4.2)

with ngr ∼ ρσc/Ω2
c is the group index and σ = 3λ2/2π is the absorption cross

section of an atom and ρ is the atom number density [56]. Moreover, at resonance

the refractive index is equal to unity therefore the phase velocity, i.e., the velocity of

a phase front, is equal to the speed of light in vacuum c. For high atomic densities

and low Rabi frequency of the control field, the group velocity can be lowered to very

small values. Different groups performed experiments in which slow group velocities

were obtained. In some of the experiments an ultra-cold and dense vapour Na atoms

were used [96], in others a light pulse was stopped in a hot Rb vapour [97] or even
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Figure 4.2: Absorption coefficient κ (Im[χ(1)]) and refractive index n (Re[χ(1)])
of the optical signal field interacting with an atomic medium in the presence of
strong control field. ∆1 is the detuning between the signal field and the atomic
transition. The strong control field is on resonance with the appropriate atomic
transition, i.e., ∆2 = 0. The above figures were prepared with a help of chapter

on atomic ensembles in quantum information processing in Ref. [1].

in solids [98]. The most remarkable result was obtained in an experiment by Hau et

al. where the optical pulse was slowed to 17 m/s in a Bose-Einstein condensate of

Na atoms [99]. Naturally, all these experiments suffer from low transfer and storage

efficiency due to decoherence effects that are intrinsic to the atomic system. All

challenges concerning the atomic vapours that are encountered by experimentalists

were described in Chapter 1. One may ask if it is possible to fully stop the optical

pulse in the medium, i.e., “freeze it”. Unfortunately, the decreasing group velocity

leads to the decreasing transparency window which at some point vanishes and

absorption of the signal pulse occurs again. To overcome this limitation one may

use a non-stationary, time-dependent control field which dynamically narrows the

frequency spectrum of a signal pulse proportional to the group velocity [56]. In other

words, the group velocity has to be reduced adiabatically and this allows for the

frequency spectrum of the signal pulse to reside within the transparency window.

As one would expect, the trapping of the signal pulse, i.e., gradual reduction of the

control field intensity, should commence when the entire pulse is within the medium

which requires Tsignal < L/vgr to avoid leakage of the front edge of the signal pulse

[57]. This again requires an optically dense atomic medium. The fact that one can

slow down and confine an entire optical pulse in atomic ensemble for some time
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may seem unheard-of. Although this effect is much more comprehensible when

viewed from the point of view of an atomic medium. During the slowdown of an

optical pulse, many additional and interesting effects happen. The reduced velocity

introduces a time delay of the light pulse in an atomic medium τd = ngrL/c ∼ ρσL

and a spatial compression of the signal pulse in the propagation direction. The

longer propagation time may be very advantageous in the case of non-linear medium

enhancing the non-linear effects. The time delay is proportional to the optical depth

of a medium d = ρσL, and therefore a substantial time delay requires an optically

thick medium. The spatial compression is associated with different propagation

velocities inside and outside the medium. The front edge of a pulse propagates in

the medium with a different velocity than its back edge, which propagates outside

of the medium with the velocity c. This gives rise to the spatial compression by a

ratio of the group velocity to the speed of light outside the atomic ensemble [56, 57].

The spatial compression means that the part of photons from the signal pulse is

temporarily stored in the medium in the form of excitations. It is important to point

out that no energy carried by photons is stored in the medium only the quantum

state of light and the excess energy is transferred to the control field [57]. This

process resembles stimulated Raman passage. When the optical pulse enters the

medium the total number of photons is reduced and the state of atomic system is

adiabatically changed to a superposition between the bare states |g⟩ or |s⟩. When

the pulse starts to leave the medium this process is reversed. The atomic excitations

are turned back to the signal photons with the help of the control field and the state

of the system comes back to the bare state |g⟩. Naturally, this adiabatic process

depends on the strength of the control field.

All these effects associated with slow light propagation can also be analysed from the

point of view of the atomic medium. Under these conditions, a system consisting

of an atomic medium driven by optical fields can be described by introducing a

new quantum field Ψ̂(z, t) that is a coherent mixture of electromagnetic and atomic
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excitations (|g⟩-|s⟩ excitation) [56, 94]. The field Ψ̂(z, t) has the form

Ψ̂(z, t) = cosθÊ(z, t) − sinθ
√
NŜ(z, t) , (4.3)

cosθ =
Ωc√

Ω2
c + Ω2

s

, sinθ =
Ωs√

Ω2
c + Ω2

s

,

where Ê(z, t) =
∑

k âk(t)eikz is the electric field operator of the signal field consisted

of the free-space modes with bosonic operators âk and wave vectors k, Ŝ(z, t) =

1/
√
N
∑N

i=1 |gi⟩⟨si|e−iωgst corresponds to the atomic wave, where N is the number

of atoms in the medium and ωgs is the frequency between long-lived levels |g⟩ and

|s⟩. The excitation of the field is called a polariton. The field Ψ̂(z, t) obeys the

following equation of motion:

[
∂

∂t
+ c cos2 θ

∂

∂z

]
Ψ̂(z, t) = 0 , (4.4)

and propagates with group velocity vgr = c cos2θ. By gradually changing the

intensity of the control field one can modify the properties of the polariton from

electromagnetic Ê(z, t), with propagation velocity close to the speed of light c, to

purely atomic Ŝ(z, t) with propagation velocity close to zero. It is important to

stress that for low group velocities not all but almost all photons from the optical

pulse are transferred to the atomic medium. The character of the polariton depends

on the intensity of the control field and the density of the atomic medium. In other

words, when the control field strength is adiabatically lowered, the signal field is

transferred to the atomic medium and propagates as an atomic wave, therefore in

some sense the signal pulse is “stopped”. After some time this “write” process can

be reversed. When an intensity of the control field is increased, the signal pulse is

retrieved from the atomic medium. Consequently, under EIT conditions the atomic

medium acts as a quantum memory capable of slowing down, storing and releasing

optical laser pulses or even single photon wave packets with high fidelity. The EIT

enables to reverse the storing procedure and retrieve written information. Most

importantly, since the transfer and retrieval of the light field is an adiabatic and

coherent process, all properties of the light pulse are conserved at all times. The

applications of electromagnetically induced transparency, i.e., the stopping of light

pulses by means of stimulated Raman adiabatic passage, for quantum information
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processing seem natural. This technique gives the capability for coherent transfer

of quantum states between optical light fields and matter system such as atomic

vapours. Therefore, EIT can be used for preparation of specific non-classical and

entangled states of the atomic medium [100].

4.2.3 Atomic medium as single-photon quantum memory

EIT and all associated phenomena can also be observed for single-photon wave

packets. Hence, one can imagine a single-photon coherently mapped onto an atomic

medium [101, 102]. The subsequent state of a medium is described by the symmetric

and collective atomic state given by

|s⟩ =
1√
N

N∑
j=1

|g1, g2, . . . , sj , . . . , gN ⟩, (4.5)

with high fidelity [101]. The state |s⟩ is a coherent W state. As the following dis-

cussion indicates, the optically dense EIT medium may serve as a good quantum

memory that can be employed as a node in a quantum network or quantum repeater

[103, 104]. Typically, we make the assumption that all atoms in a medium have the

same probability of absorbing a single photon. This approximation implies a very

attractive feature of the collective state: it is impossible to learn which atom really

absorbed a photon [57]. Therefore, within small error the loss of one atom has no

effect on the fidelity of resulting state. This remarkable property of collective states

make them very robust with respect to decoherence and losses [57]. In general, an

EIT based quantum memory is capable of storing not only single photon states but

any superposition of photonic states, e.g., entangled states. Although EIT based

applications for quantum information science are very promising, one has to re-

member many potential limitations associated with atomic quantum memories. In

many experimental trials, it has been proved that for high transfer-storage-retrieval

efficiency, one has to use an atomic ensemble with a very large optical depth, i.e.,

high density of atoms or large sample size [60]. Consequently, higher density will

introduce stronger collisional and dephasing effects, which are one of the most se-

vere decoherence causes [105, 106]. Collisions during write and read processes may
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substantially limit the fidelity of the quantum memory [59]. One way of dealing

with the decoherence processes such as collisions and diffusion is exploitation of

a cold atomic vapours in strong optical traps. Other ways are specific, entangled

states of light as input fields and optimal input pulse shapes [60, 61, 105].

In spite of these difficulties, recent advances in quantum memories have been re-

markable. In recent experiments, truly quantum optical memories that preserve

quantum features of light such as entanglement have been demonstrated [107–109].

In these experiments, a quantum memory was fed by a non-classical field of light

originating from an atomic ensemble. An atomic ensemble serving as a source is

prepared by a weak laser pulse so that only one of the atoms is in the excited state.

This is the so-called weak excitation regime. The excited atom relaxes to one of

the lower energy levels, emitting a single photon, the so-called Stokes photon, that

carries less energy than the absorbed photon. Next, the strong retrieve laser pulse

brings the atomic medium back to its ground state and atomic excitation is con-

verted into an anti-Stokes photon [36, 108, 109]. The described technique proved

to be extremely useful not only as a way of generating single-photon pulses but in

many different applications, such as the quantum repeater protocol, i.e., the DLCZ

protocol described in detail in Chapter 5 [20]. Subsequently, the non-classical char-

acter of the source was verified with a help of the correlation function. Conditioned

on the detection of one Stokes photon, after the retrieve pulse one observes either no

anti-Stokes photons or exactly one anti-Stokes photon as the output of the source.

The single-photon pulses are then stored and released by means of EIT techniques,

i.e., the control field is turned off and after a delay time reapplied again. In an ex-

periment by Choi et al. the single-photon pulses are stored for 1 µs in cold Rb atoms

trapped in a magneto-optical trap (MOT) with overall transfer-storage-retrieval ef-

ficiency of 17%. In other experiments by Chanelière et al. and Eisaman et al. the

overall efficiency was close to 6%. The experiment by Choi et al. stands out be-

cause it exploits the entangled state of a photonic qubit. A single-photon from the

atomic source is split on a beam splitter so that the two components of the input

state of the form |ψin⟩ = 1√
2
(|0⟩A|1⟩B + eiφ|1⟩A|0⟩B) are directed into two atomic

vapours [36, 109]. The EIT procedure is repeated now for two atomic ensembles.

Subsequent tomography of the retrieved state verifies that the quantum memory



Chapter 4. Techniques for Atomic Ensembles 77

conserved entanglement. The overall efficiency of transfer-storage-retrieval of en-

tanglement is 20%. The described experiments are proof-of-principle experiments

rather than reliable implementations of quantum memories. Still they demonstrate

significant progress. Naturally, for applications in a distributed quantum network

the overall efficiency has to be much higher. The difficulty of relatively low efficiency

of the transfer-storage-retrieval process can be circumvented by the exploitation of

an atomic medium with increased optical depth d and optimising the shape of the

control field with respect to the signal field. The efficiency of the optical quantum

memory depends mostly on the optical depth d. However, the retrieval efficiency

can be sharply increased if one uses the control field that stores the given signal

field in an optimal way [36]. In a recent experiment, Novikova et al. used an it-

erative optimisation procedure that maximised the storage and retrieval efficiency

[60]. First an initial optical pulse was stored and retrieved. Then a time-reversed

profile of the retrieved pulse was used as the next input for the atomic memory.

The whole procedure was repeated and converged very quickly to the optimal in-

put pulse profile. The overall efficiency of the transfer-storage-retrieval process for

optimal input field was close to 45%. Moreover this experiment was performed for

warm 87Rb vapour with relatively low optical depth d ≃ 9. The exploitation of cold

atomic vapours with increased optical depths should boost the overall light-storage

efficiency. The experiment of Novikova et al. confirmed again that the optical depth

is the key figure of merit for the efficiency of quantum memories.

Finally, we would like to mention a quite interesting application of EIT, namely the

possibility of building atomic-vapour-based high efficiency photon detectors with

an estimated detection efficiency of ηD ≈ 99.8% [110]. The single photons stored

inside a medium can be counted by means of resonant fluorescence. Moreover, if the

detection of light stored in an atomic ensemble does not alter the state of a medium,

this kind of detector could then realise a quantum non-demolition measurement of

the photon-number operator since one can retrieve the photons stored in the atomic

medium [111].

Apart from EIT and Raman interactions, one may induce coherent behaviour of

a macroscopic atomic medium with the help of Rydberg atoms. In the following
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section we introduce a notion of the Rydberg state and the dipole blockade mecha-

nism.

4.3 Rydberg state and dipole blockade mechanism

Although the concept of a Rydberg atom has been known for more than 100 years,

physicists are able to study them in laboratory only since the nineteen seventies.

Despite this relatively short period of experimental studies, we know already that

Rydberg atoms allow for a number of interesting applications. The Rydberg state is

a state of an alkali atom characterised by a high principal quantum number n [112].

Rydberg atoms possess a number of remarkable properties. To begin with, Rydberg

atoms are very large compared to normal atoms. The radius of a Rydberg atom

scales as n2a0, where a0 is the Bohr radius, and the binding energy of a Rydberg

state is given by

E = − R

(n− δ)2
= − R

n∗2 , (4.6)

where R is the Rydberg constant, n∗ is the effective quantum number, and δ is the

quantum defect which corrects for the deviation from the hydrogen atom [113]. This

implies that the valence electron is very weakly bound to the nucleus. Moreover,

the Rydberg states have an incredibly long lifetime, which scales as τ0n5 where τ0

is the typical lower level lifetime of around ∼10 ns. Hence, Rydberg states possess

lifetimes of the order of ms and even longer.

Because of the very weak binding energy, Rydberg atoms are extremely sensitive to

external electric fields. The Rydberg energy levels are easily perturbed by modest

electric fields. Higher electric fields can even ionise Rydberg atoms. In fact, the

ionisation is commonly used as one of the detection methods. This sensitivity to

electric fields is the source of a phenomenon called the dipole blockade mechanism.

Atoms in Rydberg states have large dimensions and large dipole moments, resulting

in a strong dipole–dipole interaction [114]. Under certain circumstances the effect

of strong dipole–dipole interaction can be observed in the laboratory. The dipole

blockade mechanism was observed experimentally in small clouds of alkali atoms,

such as Rubidium in a vapour cell [115, 116]. This mechanism prevents populating
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Figure 4.3: Diagram representing the dipole blockade mechanism. The ground
state |g⟩ and Rydberg state |r⟩ are coupled by means of a narrowband laser. (a.)
After an appropriate interaction time one of the atoms in atomic medium is excited
to the Rydberg state |r⟩. (b.) Presence of a single atom in the Rydberg state |r⟩
shifts energy levels of all other atoms located within the long range Rydberg-

Rydberg interactions distance and blocks any further excitations.

states of an atomic ensembles with two or more atoms excited to the Rydberg level

[57]. A single atom in a micron-sized atomic ensemble excited to a Rydberg state

with a narrowband laser can inhibit excitation of the other atoms in the sample if

the long range Rydberg-Rydberg interactions are much larger than a linewidth of

the Rydberg state.

The physics of the dipole blockade mechanism is presented in Fig. 4.3. An optical

pulse resonant with a transition to the Rydberg state |r⟩ will create a Rydberg

atom with a very large dipole moment (Fig. 4.3 (a.)). For sufficiently short separa-

tions, the long range Rydberg-Rydberg interactions (dipole interactions) between

the Rydberg atom and the other atoms will cause a shift in the Rydberg transition

energy of the other atoms. Therefore, the optical pulse becomes off-resonant with

the other atoms, and the ensemble is transparent to the pulse. Under dipole block-

ade conditions, the mesoscopic vapour behaves as one superatom with a two-level

structure. A single excitation is coherently shared by all atoms in a sample and one

is able to observe Rabi oscillations. Naturally, effectiveness of the blockade depends

on an average strength of the interaction between atoms in the ensemble.

The long range Rydberg-Rydberg interactions have different types depending on

the separation between atoms. The usual van der Waals interaction of type C6/R
6

can be enhanced by a static electric field or Förster processes to the C3/R
3 long
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range interaction. Here, the C’s coefficients depend on atomic energy level structure

[117].

In the absence of an external electric field, the Rydberg-Rydberg interactions are of

the van der Waals type C6/R
6 [117, 118]. In a static electric field, a Rydberg atom

possesses a large permanent dipole moment p oriented in space along the applied

electric field, which scales as ∼ qa0n
2 with q the electron charge, which leads to

a much stronger and longer C3/R
3 interaction. A pair of Rydberg atoms i and j

interact with each other via dipole–dipole potential Vdd,

Vdd =
pipj − 3(pi · eij)(pj · eij)

4πϵ0|ri − rj |3
=

p2

4πϵ0R3
(1 − 3 cos2 θ) , (4.7)

where eij is a unit vector along the interatomic direction, θ is the angle between

the interatomic separation R = |R| = |ri − rj | and the electric field z direction. In

general, the interaction between Rydberg atoms can be quite strong. However, for

some angles Vdd vanishes, which is undesirable for dipole blockade purpose [118].

Fortunately, there is another method to induce a strong, isotropic interaction be-

tween Rydberg atoms, comparable to Vdd through the Förster process (in practice,

however, the shape and dimensionality of the atomic ensemble may introduce the

angular dependence and therefore the Förster interaction may no longer be isotropic

[119]). The resonant collisional process (Förster process) transfers energy between

two atoms through the dipole–dipole interaction with strength ∼ ρ1ρ2/R
3, where

ρ1 and ρ2 are the dipole matrix elements between initial and final energy states of

the interacting atoms [120]. Therefore, the usual van der Waals interaction can be

resonantly enhanced by Förster processes such as nl + nl → n′l′ + n′′l′′ when the

nl + nl states are degenerated in energy with the n′l′ + n′′l′′ states. The Förster

process induces an interaction potential of the form

V±(R) =
δ

2
±
√

4U3(R)2

3
+
δ2

4
, (4.8)

where

U3(R) = q2⟨nl||r||n′l′⟩⟨nl||r||n′′l′′⟩/R3 , (4.9)

with δ = E(n′l′) + E(n′′l′′) − 2E(nl) as the Förster energy defect. There is no
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angular dependence for the potential V±(R) so an interaction is isotropic. For

a perfect Förster degeneracy (δ = 0), V+(R) would be of similar strength and

range to Vdd [118]. Although at large separations, a non-zero Förster energy defect

reduces long-range interaction between the atoms to be van der Waals C6/R
6 type.

However, if the Förster energy defects are smaller compared to the fine-structure

splitting then a strong C3/R
3 interaction can even occur at longer range.

Although Förster processes are very promising as a method to induce very long-

range C3/R
3 interactions, there are some selection rules that need to be fulfilled for

obtaining high fidelity dipole blockade. Only for l′ = l′′ = l+1 there are no so-called

Förster zero states with C3 = 0 [118]. Therefore, the fidelity of the dipole blockade

mechanism is highly dependent on the weakest interactions between degenerate

Rydberg states and may be reduced under unfortunate circumstances. In the case

of the Förster zero states, strength of the interaction between Rydberg atoms is

not enhanced and reduces to the usual van der Waals long-range type. Therefore,

a strong dipole blockade requires tuning of the resonances by means of an electric

field [118]. The other possibility for attaining strong dipole blockade is to rely on

the van der Waals interaction which at smaller distances, less than 5 µm, is large

enough to mix the fine-structure levels together, so the interaction is of the Vdd type

[117].

As one would expect, the dipole blockade mechanism fuelled a number of interesting

proposals such as a method to entangle large numbers of atoms [57]. Fortunately,

the exact strength of the dipole blockade in these proposals is not important as long

as it is greater than the linewidth of a Rydberg state. Therefore, the atoms can be

located at random distances R from each other [118]. Moreover, with the dipole

blockade mechanism at hand, one can avoid a problem of mechanical interactions

between atoms, since states with two or more atoms in the Rydberg state are never

populated. Therefore, the atoms avoid heating and the internal states of the atoms

are decoupled from the atomic motion [57].

The range and quality of the dipole interaction has been studied extensively. In

papers by Walker and Saffman the primary errors with respect to the idealized
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blockade process were analysed [116, 117]. Naturally, the two most common er-

rors are the occurrence of doubly-excited Rydberg states and singly-excited states

outside the desired two-level system. In the case of Rubidium atoms with principal

quantum number n = 70, the blockade energy shift is approximately 1 MHz. Hence,

a strong and reliable blockade is possible for two atoms with separation up to ∼10

µm [117]. Moreover, the decoherence associated with spontaneous emission from

long-lived Rydberg states can be quite low (∼1 ms). The dipole blockade mecha-

nism can be used to build fast quantum gates, i.e., a two qubit phase gate [121–123].

The long-range dipole–dipole interaction between atoms can be employed to realise

a universal phase gate between pairs of single-photon pulses [124–126]. Most im-

portantly, the ideas based on the dipole blockade mechanism are experimentally

feasible.

The single quantum sensitivity suggests that the dipole blockade mechanism can

be used to create cluster (graph) states: The blockade mechanism can be used

in a heralding type of entangling operations and render them nearly deterministic

[127]. In Chapter 5, we introduce nearly deterministic entangling protocol based

on the dipole blockade mechanism, first however, we review several schemes for

probabilistic entanglement generation between atomic vapours followed by a scheme

capable of implementing any single-qubit operation on the qubit defined as collective

states of mesoscopic ensemble.

4.4 Summary

In conclusion, we have reviewed in some detail electromagnetically induced trans-

parency, Raman interaction and associated propagation phenomena in atomic va-

pours. The EIT technique allows us to induce coherent behaviour of a macroscopic

atomic medium under certain conditions. The reduced group velocity and dark

state-polaritons are a remarkable propagation phenomenon associated with prop-

agation of an optical pulse in an atomic medium under EIT conditions that has

lead to the concept of quantum memory. In principle, an atomic medium is capable

of storing single-photon pulses. Apart from EIT, one can employ Rydberg atoms
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and the dipole blockade mechanism to induce collective behaviour of atomic vapour.

On the basis of the above techniques, probabilistic entanglement generation between

atomic vapours is feasible.



Chapter 5

Atomic Ensembles in

Distributed Quantum

Computing

5.1 Introduction

Initially, atomic vapours were proposed as fast quantum memories. However, it is

also possible to define a qubit (stationary qubit or quantum processor) in an atomic

ensemble, and the question remains how to implement the entangling operations

between the qubits that enable universal distributed quantum computation. One

may choose to create a large network of spatially separated quantum processors

and connect them with quantum communication channels. However, it suffices to

create a inherently distributed, large entangled multi-qubit resource —the graph

state— after which the entire computation proceeds via single-qubit measurements

[26, 27]. Graph states are large arrays of isolated qubits connected (entangled) via

CZ operations. They are a scalable resource and can be built up with probabilistic

entangling operations with psuccess > 0 [128]. When the success probability of

entangling operation is low, a very large overhead in optical elements is required.

Moreover, finite coherence times of the qubits limit practical use of the graph states.

Hence, it is extremely important to build them up in an efficient way.

84



Chapter 5. Atomic Ensembles in DQC 85

This chapter is organised as follows. In Sec. 5.2, we review several schemes for prob-

abilistic entanglement generation between atomic vapours such as DLCZ protocol

and double-heralding protocol. In Sec. 5.3, we review the concept of an atomic

ensemble as single qubit system and analyse in detail a scheme for single-qubit op-

erations in atomic ensembles. In Sec. 5.4, we give a description of a new entangling

operation and consider its usefulness for generation of the GHZ and cluster states.

In Sec. 5.5, we consider all major errors and decoherence mechanisms that enter the

entangling procedure and propose several experimental implementations.

5.2 Entanglement in atomic ensembles

In this section, we are going to focus on the probabilistic entanglement generation

between two distant qubits implemented as atomic ensembles. We are especially

interested in the heralded entanglement generation, i.e., detection of an object such

as a single photon heralds the creation of entanglement between two distant macro-

scopic objects such as atomic ensembles [129]. The heralded protocols work with

some success probability psuccess, which in principle depend on structure of the pro-

tocol, the efficiency of detection method and the physical implementation. There-

fore, for efficient entanglement generation one has two choices: either prepare many

copies of physical systems or repeat entanglement procedure sufficient number of

times. If psuccess is small, it takes on average 1/psuccess copies or repetitions to cre-

ate entanglement between two distant ensembles. The probabilistic nature of the

heralded entanglement procedures imposes some limitations on its practical use in

quantum computation but not in quantum communication.

5.2.1 The DLCZ protocol

One of the well known entangling protocols is the DLCZ protocol. It was devised

by Duan et al. as a quantum repeater protocol. Quantum repeaters are essential

for long-distance quantum communication. The DLCZ protocol is realised on two

macroscopic atomic ensembles, a balanced beam splitter and two single-photon

photo detectors. The relevant atomic level structure is shown in Fig. 5.1. The
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N atoms in an ensemble have two lower, long-lived energy states |g⟩, |s⟩ (Zeeman

sublevels of the ground state), and an excited state |e⟩. The protocol begins with

all atoms prepared in the ground state |g⟩. Then a weak laser pulse that addresses

off-resonantly the |g⟩-|e⟩ transition transfers, preferably a single atom to the state

|s⟩ and simultaneously produces a single, forward-scattered Stokes photon. This

process resembles stimulated Raman passage (STIRAP) and the whole state of the

ensemble-light system is given by

|ϕ⟩EL = |0⟩E |0⟩L +
√
pe|S⟩E |1⟩L + O(pe) , (5.1)

where |0⟩E is the ensemble collective ground state given by |0⟩E = |g1, g2, . . . , gN ⟩,

|0⟩L is the vacuum state of light, |S⟩E is the collective state of the ensemble given by

|S⟩E = 1√
N

∑N
j=1 |g1, g2, . . . , sj , . . . , gN ⟩, |1⟩L represents the single forward-scattered

Stokes photon state and pe is the excitation probability that, because of the weak

excitation laser pulse, is small. The above state represents the very heart of the

DLCZ protocol. The STIRAP procedure can be applied simultaneously to two en-

sembles. In the result, a single forward-scatted Stokes photon is produced in one of

the ensembles. It is not possible to learn which ensemble is the source of a Stokes

photon. The light modes from both ensembles are then combined on the balanced

beam splitter (BS) to erase which-path information (see Fig. 5.1 (a.)). Following the

detector click on one of the photo detectors (D1,D2) the maximally entangled state

of two ensembles Ψ± = 1√
2
(|S⟩A|0⟩B±|0⟩A|S⟩B) is created. This scheme works with

the success probability given by psuccess = pe. Hence, the entangled state will be

generated on average after 1/psuccess procedure repetitions. As mentioned above,

the DLCZ protocol is in fact a quantum repeater protocol. The DLCZ protocol

enables the entanglement of two atomic ensembles and then through entanglement

swapping, the connection can be established between distant sites [20]. In other

words, the DLCZ protocol enables the distribution of entanglement between dis-

tributed quantum network nodes. If one prepares two pairs of atomic ensembles

(A-C and B-D) in the maximally entangled state, then by means of a read-out laser

pulse, applied to the |s⟩-|e⟩ transition, stored atomic excitation of a single ensemble

in each pair can be converted into light modes (see Fig. 5.1 (b.)). These light modes

are again combined on the balanced beam splitter to erase which-path information
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Figure 5.1: (a.) The relevant three-level Λ-type structure and diagram of the
DLCZ protocol. |g⟩ and |s⟩ are a lower, long-lived energy states and |e⟩ is an
excited state. The blue line represents a weak, write laser pulse. Conditionally
on the detector click entanglement is created between A-B ensembles. (b.) Dia-
gram of the entanglement swapping procedure. The red line represents a read-out
laser pulse. Conditionally on the detector click entanglement is extended to C-D

ensembles.

and, conditionally on the detector click, entanglement is extended to the more dis-

tant C-D ensembles. This procedure is called entanglement swapping, and can in

principle be applied many times creating a communication channel between distant

nodes.

The interesting feature of the DLCZ protocol is the fact that it has built-in entan-

glement purification. The fidelity imperfection of the protocol is proportional to pe

and can be lowered close to zero for small excitation probabilities [20]. The DLCZ

protocol is scalable and highly efficient in comparison with direct communication

methods. Apart from the communication applications, the DLCZ protocol can be

used for quantum teleportation, cryptography and demonstrating the violation of a

Bell inequality.

The DLCZ protocol drew a lot of attention from experimental groups all around the
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world. The first experimental attempts to realise a quantum repeater were limited

to the generation of non-classical photon pairs originating from a single atomic

ensemble [103, 104, 130]. In these experiments by means of a write pulse (Raman

adiabatic passage) a collective atomic state is created together with a single Stokes

photon. After some programmable delay time, the read pulse is applied to the

atomic ensemble resulting in a generation of a second (anti-Stokes) photon. The

quantum (non-classical) character of correlations between both photons is confirmed

by the violation of a Cauchy-Schwarz inequality [103, 104, 130]. Although none

of the mentioned experiments implemented the DLCZ protocol, techniques used

in these experiments are considered a first and a crucial step in the realisation

of the protocol [103]. Shortly after these initial experiments, the full quantum

repeater implementations were realised [105, 109, 131–133]. The DLCZ protocol

was realised on the atomic ensembles consisting of ∼ 105 atoms separated by a

few meters [131]. The experiments involve preparation of the collective atomic

states and the read out of quantum memories after some delay time. The quality

of the entanglement between quantum nodes is given in terms of concurrence C

[105, 109, 131] or validated by the violation of the Bell inequality [132, 133]. There

are several factors that limit the performance of DLCZ protocol. The main one is

low retrieval efficiency varying in range from 30% to 60% and decoherence of the

collective atomic states [105].

An interesting extension of the quantum repeater protocol to include quantum tele-

portation was devised by Chen et al. They demonstrated teleportation between

photonic and atomic qubits [134]. The quantum state of a single photon was tele-

ported onto an atomic ensemble, stored for up to 8µs and then converted back

to a photonic state. The main advantage of this scheme over other teleportation

protocols is the prospect of storing the teleported state and reusing it for further

quantum applications. Although this technique makes large-scale communication

and distributed quantum computation more feasible, it is not yet useful for practical

applications due to many experimental limitations such as short quantum memory

lifetime.
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5.2.2 The double-heralding protocol

Another protocol for probabilistic entanglement generation between spatially sep-

arated quantum nodes is the double-heralding protocol. This protocol is due to

Barrett and Kok [128]. Here, entanglement is established after two consecutive

single photon detections, hence the name of the protocol. The double-heralding

protocol is based on matter qubits and linear optics. Let us consider two spatially

separated matter qubits, e.g., single atoms or atomic ensembles, each having two

lower energy levels |g⟩ and |s⟩, and an excited level |e⟩, which is coupled only to the

|g⟩ level by means of an optical pulse [5, 128]. If a matter qubit is realised by an

atomic ensemble, the above energy levels are represented by collective atomic states.

The energy levels |g⟩ and |s⟩ constitute the qubit states. The protocol begins with

both matter qubits prepared in the separable state |ϕ⟩LR = 1
2(|s⟩+ |g⟩)L(|s⟩+ |g⟩)R.

We apply an optical π pulse to each qubit which results in a single photon being

emitted when a matter system spontaneously goes back to the |g⟩ level. Following

the above manipulations, the total state of the matter qubits and output modes of

light is given by

|Φ⟩ =
1
2
(|ss⟩|00⟩ + |sg⟩|01⟩ + |gs⟩|10⟩ + |gg⟩|11⟩) , (5.2)

where |0⟩ and |1⟩ denote the vacuum and a single photon state respectively. The

modes of light are then combined on the balanced beam splitter (BS) to erase

which-path information, which results in the state:

|Φ⟩ =
1
2
{|ss⟩|00⟩+ 1√

2
[(|sg⟩+ |gs⟩)|01⟩+(|sg⟩−|gs⟩)|10⟩+ |gg⟩(|20⟩+ |02⟩)]}. (5.3)

Following the beam splitter, the light modes are coupled to the regular photo de-

tectors that must have a low dark count rate. Conditional on a single detector click

D± the state of the matter qubits is given by the following density operator:

ρ(±) =
1

2 − η
|Ψ±⟩⟨Ψ±| + 1 − η

2 − η
|gg⟩⟨gg| , (5.4)

where |Ψ±⟩ = 1√
2
(|sg⟩±|gs⟩) and η is the combined photon collection and detection

efficiency [128]. The above state is a mixed state. To remove the second, separable
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part of the mixed state ρ(±), a bit flip must be applied to both matter qubits.

In the case of a matter qubit implemented as atomic ensemble, a bit flip is not

a trivial operation. In fact, for a reliable bit flip operation one has to make use

of the dipole-blockade mechanism. In the next section, we review the concept

of an atomic ensemble as single qubit system and analyse in detail a scheme for

single-qubit operations in atomic ensembles. After the bit flip, we repeat the whole

procedure. Therefore, after a second measurement event (single detector click in

D±) the total state of two qubits is projected onto the pure maximally entangled

state

|Ψ±⟩ =
1√
2
(|sg⟩ ± |gs⟩), (5.5)

with success probability p = η2/2 and unit fidelity. The double-heralding proto-

col can be used to efficiently create multi-qubit graph states with only moderate

overhead in physical resources, which together with the one-way model of compu-

tation can be used to implement universal quantum computation [128, 135]. The

procedure is a fully scalable scheme for universal quantum computation assuming

that the physical implementation allows high-fidelity single qubit operations and

measurements.

The double-heralding protocol possesses many attractive features. The scheme is

based on a simple level structure and a simple optical network, which imply rather

straightforward phase stabilisation. Moreover, the protocol works for distributed

qubits that facilitate control of decoherence and permit applications in quantum

communication such as quantum repeaters. The main disadvantage of the double-

heralding protocol is the success probability (p = η2/2) depending on the collection

of photons, which makes it sensitive to photon loss. This problem was analyzed

by Barrett and Kok [128]. The authors concluded that “[...] the photon loss does

not reduce the fidelity of the entangled states, but merely adds to the overhead

cost”. The problem of losses was also addressed by the broker-client model devised

by Benjamin et al. [136]. In the broker-client model two qubits are placed in each

node. One of them is used for entanglement generation between nodes and the

other one serves for storing of the entanglement when double-heralding procedure

succeeds. In this way, influence of an extreme photon loss is suppressed at the cost
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of a more complicated level scheme and effective graph state generation with small

overhead in physical resources is feasible.

From the experimental point of view, one of the main challenges in implementing

the double-heralding protocol is the generation of the indistinguishable photons.

However, the following experiments prove that this is possible. There is a number

of physical systems that may be used to represent a matter qubit such as trapped

ions or atoms, NV centers in diamond and Pauli blockade quantum dots [5]. In the

experiment by D. L. Moehring et al. [137] two trapped 171Yb+ ions are separated

by one meter. Each of the ions emits a single photon which polarisation is entangled

with each ion. The single photons are then combined on the balanced beam splitter

and detected by photon-counting photomultiplier tubes (PTMs). In this experi-

ment entanglement is generated for the system with more complex level structure.

However, in its essence the mentioned experiment and the double-heralding proto-

col are analogous. The entanglement between ions was confirmed by a violation of

a Bell inequality [138]. Unfortunately, when all experimental limitations are taken

into account, heralded entanglement between ions is established every 8.5 min. This

result is consistent with a general observation that for η ≪ 1 the success proba-

bility of the generation of a maximally entangled state of even two qubits can be

quite low. Therefore, generation of multi-qubit graph states for quantum computa-

tion, or quantum communication has to be based on protocols with higher success

probabilities.

A deterministic protocol for implementing a universal two-qubit gate between two

atoms placed in optical cavities was proposed by Lim et al. [29]. The two-qubit in-

teractions are induced using single-photons, that originate from atom-cavity matter

systems, linear optics and photo detectors. The qubits are encoded in two atomic

ground states and prepared in an arbitrary state |Ψ⟩ = α|0⟩ + β|1⟩. Subsequently,

an encoding operation is applied to each matter system that transforms the state of

each qubit to |Ψ⟩ = α|0, E⟩+β|1, L⟩. In other words, each atom in an optical cavity

emits a single photon at an early (E) or a late (L) time. The atom-cavity system

acts as “on-demand” single photon source. Therefore, the encoded state contains
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both the initial state of an atom-cavity matter system and the state of single pho-

ton. This is the so-called time-bin encoding. Consequently, one can prepare two

atom-cavity systems and two single photons in the arbitrary encoded state. At this

point, the measurement in the appropriate basis (mutually unbiased basis formed by

single photon basis states |E⟩ and |L⟩) can realise any universal two-qubit gate [28].

However, some certain experimental implementations and measurement bases may

involve rather complicated linear optical setups. The main strength of this protocol

is its repeatability. If the proposed gate fails then the original input state can be re-

covered by local operations and the whole procedure can be repeated until successful

operation is achieved [28]. On average two repetitions are required to realise the

gate operation. This repeat-until-success modus operandi leads to the deterministic

two-qubit operations. Unfortunately, in the presence of unavoidable photon loss,

the above procedure becomes probabilistic [28]. The successful implementation of

the two-qubit gates requires detection of a photon pair in appropriate outputs of

optical network and the failure associated with photon emission, collection or de-

tection leaves the matter qubits in an unknown state. Although, the failure of the

scheme is heralded and scalable quantum computing is still possible, the overall

overhead cost associated with the procedure may be increased significantly [28].

Here, we present another entangling protocol that in principle is also deterministic.

This protocol employs dipole blockade mechanism between Rydberg atoms. We

show how to efficiently create graph states using single photons interacting with

atomic ensembles via the dipole blockade mechanism. The protocol requires iden-

tical single-photon sources, one atomic medium per physical qubit placed in the

arms of a Mach–Zehnder interferometer, and regular photo detectors. We present

a general entangling procedure, as well as a procedure that generates Q-qubit GHZ

states with success probability psuccess ∼ ηQ/2, where η is the combined detection

and source efficiency. This is significantly more efficient than any known robust

probabilistic entangling operation [28, 128]. The GHZ states are locally equivalent

to the graph state and form the basic building block for universal graph states. Our

protocol significantly reduces an overhead in optical elements and leads to better

quantum computing prospects. However, before giving a detailed description of
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Figure 5.2: Diagram of atomic level structure with allowed atomic transitions.
States |g⟩, |e⟩, and |s⟩ can be realised by a lower, long-lived energy states of alkali
atoms. Ωg denotes Rabi frequency of a laser pulse coupling |g⟩ and |e⟩ states.
A second laser pulse Ωs is applied to the transition between the highly excited
Rydberg level |r⟩ and the state |s⟩. This transition may possibly be a two-photon
process. Ωr denotes Rabi frequency of a weak laser pulse coupling |e⟩ and |r⟩
states. Both laser pulses Ωr and Ωs may be detuned from the corresponding

atomic transition by ∆.

a new entangling operation, let us review a scheme for implementing single-qubit

operations on the qubit defined in atomic ensemble and analyse it in detail.

5.3 Atomic ensemble as single qubit system

Until now we have avoided the issue of single qubit operations in atomic media. An

atomic ensemble can serve as a qubit as long as one is able to apply single qubit

rotations. A qubit may be represented by a micron-sized atomic ensemble, cooled

to µK temperatures by the far off-resonant optical trap (FORT) or magneto-optical

trap (MOT). The N atoms at positions rj in an ensemble have three lower, long-

lived energy states |g⟩, |e⟩, and |s⟩ (see Fig. 5.2). The qubit states in a mesoscopic

ensemble are collective states defined as

|0⟩L ≡ |g⟩ = |g1, g2, . . . , gN ⟩ , (5.6)

|1⟩L ≡ |s⟩ =
1√
N

N∑
j=1

eik·rj |g1, g2, . . . , sj , . . . , gN ⟩ . (5.7)

Energy levels |g⟩ and |s⟩ play the role of storage states and transition between

these states is always dipole-forbidden. These qubit states have a very desirable
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property of long coherence times. However, in the case of the qubit states defined

as collective states of mesoscopic ensemble, the single-qubit manipulations are more

complex than in the case of a qubit realised on a single atom. Moreover, one cannot

use the weak excitation regime to implement reliable single-qubit operations. In

fact, the simplest approach to this problem is to realise single-qubit rotations by

means of classical optical pulses and the dipole blockade mechanism. In a paper

by Brion, Mølmer, and Saffman [123], the single-qubit rotations are performed in

only three elementary steps (see Fig. 5.3). The laser pulses illuminate the entire

ensemble and excite all atoms with equal probability [57]. The states |e⟩ and |r⟩

participate in the interaction part of the scheme and states |g⟩ and |s⟩ serve as the

storage levels. The single-qubit operations can be implemented with the following

laser sequence:

1. first, two simultaneous π pulses are applied to the transitions between levels

|s⟩ and |r⟩, and |g⟩ and |e⟩. The first π pulse may transfer a single atom from

|s⟩ to |r⟩, and the remaining atomic population is transferred from |g⟩ to |e⟩

by the second pulse;

2. then a coherent coupling of states with zero and one Rydberg excited atom is

applied for an appropriate amount of time;

3. finally, two simultaneous π pulses may transfer a single atom back from |r⟩ to

|s⟩, and the remaining atomic population from |e⟩ to |g⟩ .

Therefore, in the case of a bit flip operation (X) the coherent coupling is just a π

pulse with a real Rabi frequency, and the Hadamard gate (H) can be performed by

a π/2-pulse on the same transition. An arbitrary phase gate Φ(ϕ) = exp(−iϕZ/2)

is realised by a detuned optical pulse applied to the transition between |s⟩ and an

auxiliary level |a⟩ (not shown in Fig. 5.3). The gates Φ(ϕ), X, and H generate all

single-qubit operations. The readout of a qubit is based on the resonance fluores-

cence and again requires an auxiliary level |a⟩. An optical laser drives a transition

between |s⟩ and |a⟩ producing a large number of fluorescence photons. If the mea-

surement gives no fluorescence photons, the qubit is in |0⟩L. Otherwise, a state of

the qubit is projected into |1⟩L.
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Figure 5.3: Diagram representing the bit flip operation (X). (a.) Rotation from
|0⟩L to |1⟩L and (b.) rotation from |1⟩L to |0⟩L. See text for explanation.

In summary, all single-qubit manipulations can be implemented in the dipole block-

ade regime with a laser pulse of a well-defined length and phase resonant with

transition between a lower energy level and Rydberg state. The single-qubit ma-

nipulations can be executed rather fast through collective enhancement. The col-

lective enhancement emerge from the fact that although only one atom is excited

to a Rydberg state, all N atoms in atomic medium interact with the laser field. In

general, the above technique for implementing single-qubit manipulation is capable

of generating any superpositions of collective qubit states of mesoscopic ensembles.

The scheme for implementing single-qubit operations relies heavily on the dipole

blockade mechanism. We analyse the above scheme for the case of a bit flip opera-

tion X. Therefore, we need to carefully consider the evolution of the system under

a π pulse applied to the transition between |e⟩ and |r⟩. In the following discus-

sion, we interchangeably use both levels |g⟩ and |e⟩ to denote a low-lying (ground)

level. In general, the interaction of atoms with an optical laser pulse, within the

dipole approximation and in the rotating frame approximation, is governed by the
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Figure 5.4: The dipole blockade mechanism. The level structure consists of
collective states of a mesoscopic atomic ensemble. The state |e⟩ is the collective
low-lying state, |r⟩ is the singly excited Rydberg state and |rr⟩ is the doubly excited
state. Ω is the Rabi frequency of a weak laser pulse that is out of resonance with
the transition between single and double excited states. ∆̄ is the mean dipole shift

induced by a presence of a single atom in Rydberg state.

interaction Hamiltonian Ĥint

Ĥint = −i~
N∑

j=1

Ωj σ
j
re exp[i(ωre − ω)t]

−i~
N∑

j,k>j

Ωk σ
jk
rr exp[i(ωre − ω)t] + H.c. , (5.8)

where Ωj = Ωeik·rj is the Rabi frequency, ω = kc is the frequency of an optical

laser pulse, σj
re = |rj⟩⟨e| and σjk

rr = |rjrk⟩⟨rj | are the atomic transition operators

(see Fig. 5.4) [139]. The first transition operator σj
re corresponds to the transition

between the collective state |e⟩ and the singly excited state

|r⟩ =
1√
N

N∑
j=1

eik·rj |rj⟩ , (5.9)

where |rj⟩ = |e1, e2, . . . , rj , . . . , eN ⟩. The second one corresponds to the transition

between the singly excited state |r⟩ and the doubly excited state

|rr⟩ =

√
2

N(N − 1)

N∑
j,k>j

ei(k·rj+k·rk)|rjrk⟩ , (5.10)
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where |rjrk⟩ = |e1, e2, . . . , rj , . . . , rk, . . . , eN ⟩. We assume that the optical laser pulse

is resonant with a transition between |e⟩ and |r⟩ (ωre − ω = 0). Then, the dipole

interaction between two Rydberg atoms is given by

V̂dd = ~
N∑

j,k>j

∆jk|rjrk⟩⟨rjrk| , (5.11)

where ∆jk = C6
|rj−rk|6

is the dipole shift of the weakest van der Waals type. Hence,

the coupling of levels |e⟩ and |r⟩ is described by the Hamiltonian Ĥ = Ĥint + V̂dd.

The state vector of an atomic ensemble is given by

|ψ(t)⟩ = cg|g⟩ +
N∑

j=1

cje
ik·rj |rj⟩ +

N∑
j,k>j

cjke
i(k·rj+k·rk)|rjrk⟩. (5.12)

In the limit where the dipole shift is much larger than the Rabi frequency of an

optical laser pulse ∆jk ≫ Ωj , the Schrödinger equation for amplitudes of the state

vector gives

ċg =
√
NΩcr, (5.13)

ċr = −
√
NΩcg +

Ω√
N

N∑
j,k>j

cjk, (5.14)

N∑
j,k>j

ċjk = −
N∑

j,k>j

Ωcj − i
N∑

j,k>j

cjk∆jk, (5.15)

with cr =
√
Ncj (we assume that all cj coefficients are equal) [139]. Elimination of

the doubly excited Rydberg state described by Eq. (5.15) by means of an adiabatic

approximation ċjk ≈ 0 which leads to

cjk =
iΩ√
N∆jk

cr (5.16)

yields

ċg =
√
NΩcr, (5.17)

ċr = −
√
NΩcg +

i∆̄Ω2

N
cr , (5.18)
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where ∆̄ =
∑N

j,k>j ∆−1
jk is the mean dipole shift. The solution of Eq. (5.18) for

cg(0) = 1 (initially all atoms are in a low-lying state |g⟩, or equivalently |e⟩) reads

as

|cr(t)|2 = sin2(
√
NlΩt)/l, (5.19)

with l = 1 + ∆̄2Ω2

4N3 . The evolution from the collective state |e⟩ to the singly excited

state |r⟩ in time t = π
2
√

NlΩ
occurs with probability P1 = 1/l. In the limit of finite

dipole blockade, the probability of unwanted double excitations after the π pulse is

given by

P2 =
N∑

j,k>j

|cjk|2 =
∆̄P2Ω

2

N
, (5.20)

with ∆̄P2 =
∑N

j,k>j
1

∆2
jk

. A finite blockade also implies a frequency shift of the

effective two-level system (|e⟩ and |r⟩). The resonance frequency is shifted by δω =

Ω2∆̄/N . The above results can be applied to the case of any single-qubit operation.

The numerical values based on the above model for single-qubit rotation are ob-

tained for the following situation. We assume that a qubit is realised by a quasi

one-dimensional (cigar shaped) atomic vapour consisting of ∼500 87Rb atoms. The

spatial distribution (probability density) of an atomic cloud is given by

P (z) = (2πσ2
z)

−1/2exp(−z2/2σ2
z) , (5.21)

where z is the dimension along the ensemble, σz = 3.0 µm is the variance in the z

direction and σxy = 0.5 µm is the variance in the transverse directions. The level

|r⟩ may correspond to 43D5/2 or 58D3/2 state. The probability of double excitation

given by Eq. (5.20) can be rewritten in terms of the mean blockade shift B with

1/B2 = 2∆̄P2/N(N−1) [117]. Hence, the probability of a double excitation is given

by

P2 =
Ω2

N (N − 1)
2NB2

, (5.22)

where ΩN =
√
NΩ. For the 43D5/2 and 58D3/2 states, the mean blockade shift is

B = 2π× 0.25 MHz and B = 2π× 2.9 MHz in a trap with σ = 3.0 µm, respectively

[117]. For Ω = 2π×1 kHz, the probability of a double excitation for the 43D5/2 level

is P2
∼= 4.0 × 10−3 and for the 58D3/2 level is P2

∼= 3.0 × 10−5. The probability of
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doubly-excited states and singly-excited states outside the desired two-level system

resulting from a shifted resonance frequency are similar.

The time of a π pulse applied to the transition between |e⟩ and |r⟩ is t ∼= 11.2

µs. We estimate that the rest of the π pulses which are necessary to realise any

single-qubit rotation (see Fig. 5.3) can be applied in time significantly shorter than

the time t. In summary, the above single-qubit rotations can be carried out on a

microsecond timescale.

The spontaneous emission from the Rydberg state and the black-body transfer (to

other Rydberg states) occur with low rates of order 103 Hz (or even 102 Hz for higher

Rydberg states) and may introduce small error Pdecay
∼= 1 − exp(−103t) = 0.01

[140]. Other sources of errors such as atomic collisions and Doppler broadening are

negligible because of the low temperature of the atomic vapour.

The fidelity of the single-qubit rotations can be as high as Fsingle = exp[−(2P2 +

Pdecay)] ∼= 0.99, where P2 = 3.0 × 10−5. This fidelity is given for the worst case

scenario when the separation of atoms is maximal and the dipole-dipole interaction

is of the weakest (van der Waals) type.

Single-qubit rotations are one of the basic operations that are necessary in any model

of quantum computation. The above fast and reliable implementations of the single-

qubit operations open the possibility for a realisation of the measurement-based

model of quantum computation. However, we are still lacking a scheme for efficient

generation of the cluster states, a resource for the one-way quantum computer.

5.4 New entangling protocol based on the dipole block-

ade

We propose a scheme for efficient and reliable cluster state generation, based on

the dipole blockade mechanism [127]. The entangling operation between two meso-

scopic atomic ensembles takes place in the arms of a Mach–Zehnder interferometer

shown in Fig. 5.5. The protocol begins with both ensembles A and B prepared in
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Figure 5.5: Diagram of the entangling protocol. A pair of entangled photons
in the state |ϕ⟩light = i√

2
(|02⟩ + |20⟩) interact with atomic vapours placed in the

arms of a Mach–Zehnder interferometer. One and only one alkali atom in the
ensemble is excited by one of the photons to the Rydberg state |r⟩. Absorption
of the second photon is prohibited by the dipole blockade mechanism. Detection
of a single photon will leave the atomic ensembles in an entangled state |ψ±⟩ =

1√
2
(|re⟩ ± i|er⟩).

the collective state |ϕ⟩A,B = |e⟩ ≡ |e1, e2, . . . , eN ⟩ (see Fig. 5.2). Next, two indistin-

guishable photons enter each input mode of the interferometer. After the first beam

splitter (BS1), due to the Hong-Ou-Mandel (HOM) effect two photons propagate

in the maximally entangled state:

|ϕ⟩light = |11⟩ BS1−−−→ i√
2
(|02⟩ + |20⟩) , (5.23)

where |0⟩ and |2⟩ denote the vacuum and a two-photon state respectively [141, 142].

The photons can be maximally entangled only if prior to a beam splitter interaction

both photons were exactly the same in all possible senses. Subsequently, two pho-

tons interact with the atomic ensembles: One and only one atom in the ensemble

is excited by one of the photons to the Rydberg state |r⟩, and the absorption of the

second photon is prohibited by the dipole blockade mechanism [127]. Following the

dipole blockade interaction, the total state of the atomic ensembles and light fields

is given by

|ϕ⟩int =
i√
2
(|er⟩|01⟩ + |re⟩|10⟩). (5.24)

We omit in the following discussion the overall phase factor introduced to the total

state by reflections from mirrors M . After the second beam splitter (BS2), the total
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Figure 5.6: The scheme for creating the 4-qubit GHZ state. Four ensembles
A, B, C, and D prepared in the state |ϕ⟩ABCD = |eeee⟩ interact with two pairs
of entangled, indistinguishable photons. Conditional on photo detector clicks at
the photo detector pair (D1, D2), (D1, D3), (D4, D2) or (D4, D3), the state of four
qubits is projected onto the 4-qubit GHZ state (up to phase correcting operations)

with success probability psuccess = η2/2.

state reads

|ϕ⟩out =
i√
2
(|ψ+⟩|01⟩ + |ψ−⟩|10⟩) , (5.25)

where |ψ±⟩ = 1√
2
(|re⟩ ± i|er⟩). Conditional on a single click at photo detectors D+

or D−, the atomic ensembles are projected onto a maximally entangled state. After

establishing entanglement, the qubits are transferred to their computational basis

states |0⟩L ≡ |g⟩ and |1⟩L ≡ |s⟩ by classical optical pulses Ωg and Ωs. Ideally every

run of the protocol gives an entangled state of two atomic ensembles with success

probability psuccess = η, where η = ηDη
2
S is the combined detection and source

efficiency. This is a significant improvement compared to the success probability

psuccess = η2/2 of the double-heralding protocol in Ref. [128].

5.4.1 Generation of the GHZ and cluster states

The entangling operation can be used to efficiently create arbitrary cluster states

of any degree of connectivity, including 2D universal resource states for a one-way

quantum computer. However, a modification of the entangling procedure yields an
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even more dramatic improvement in the efficiency of cluster state generation. By

arranging the atomic ensembles in a four-mode interferometer as shown in Fig. 5.6,

the detection of two photons will create the four-qubit GHZ state in a single step

with the success probability psuccess = η2/2. Moreover, since only two photons

are detected, the protocol is relatively insensitive to detector losses. Higher GHZ

states can be created by a straightforward extension. Subsequent GHZ states are

generated with success probability

psuccess = ηQ/2(Q− 2)/2Q−2 , (5.26)

where Q = 4, 6, . . . is the number of the qubits.

As already mentioned, the GHZ states are locally equivalent to cluster states. The

efficiently generated large GHZ states may serve as building blocks for universal

graph states. By entangling small clusters with the above entangling procedure,

large cluster states can be constructed. A single photon applied to a pair of qubits

(each from two different 4-qubit cluster states) followed by a single photo detector

click creates an 8-qubit cluster state with success probability psuccess = η′/8. This

procedure can be repeated in an efficient manner [143]. In the case of failure, the

two qubits that participated in linking are measured in the computational basis,

and the rest of the cluster state is recycled [39].

5.5 Errors, decoherence mechanisms and fidelity

The dominant errors and decoherence mechanisms that enter the entangling oper-

ation are the following:

1. the imperfect mode matching that results in the unwanted coincidence events

in the HOM effect,

2. the spontaneous emission rate of the Rydberg state,

3. the black-body transfer rate (to other Rydberg states),

4. the atomic collision rate,
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5. the doubly-excited Rydberg states and singly-excited states outside the de-

sired two-level system,

6. no absorption event,

7. the dark count rate of the photo detectors.

We analyse in more detail the above dominant error and decoherence mechanisms

on the following experimental implementation. First, let us consider the coincidence

events in the HOM effect. The single indistinguishable photons that recombine at

the first beam splitter (BS1) can be generated by means of spontaneous parametric

down-conversion (SPDC) process or sources of single-photon pulses such as atomic

ensemble inside an optical cavity [144, 145]. The SPDC source (the non-linear

crystal) must be pumped with a narrowband (∼1 MHz) laser or placed inside a

cavity. These kind of cavity-enhanced SPDC sources produce pairs of identical

photons with a narrow bandwidth of order of MHz and a spectral brightness of

∼1500 photons/s per MHZ bandwidth [146, 147].

In general, successful generation of the entangled state of light depends on the

proper setup, where both photons from the SPDC source recombine at BS1 at the

same time. In a recent experiment, the coincidence event in the HOM effect occurs

with a low rate of 1500 counts/s [148]. In fact, it is possible to completely eliminate

the coincidence events in the HOM effect by getting rid of the BS1. In place of

single-photon sources and BS1, one can use a SPDC source generating pairs of

single-photons entangled in momentum (path) degree of freedom [149, 150]. The

state of the photons is given by |ϕ⟩light = 1√
2
(|1, 1; 0, 0⟩A;B + |0, 0; 1, 1⟩A;B), where

states |1, 1; 0, 0⟩A;B and |0, 0; 1, 1⟩A;B represent two single photons propagating along

slightly different paths through upper and lower arm of the interferometer, and

interacting with atomic ensembles A and B, respectively (see Fig. 5.7). State |ϕ⟩light

represents so-called dual-rail qubit encoding. Moreover, since the SPDC process is a

phase and energy matching phenomenon, no phase difference appears between two

paths (pairs) A and B [149]. In general, the whole Mach–Zehnder interferometer

needs to be phase-stable. In the case of a GHZ state generation, phase locking

of a large number of Mach–Zehnder interferometers is very demanding (although
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Figure 5.7: Example of an experimental implementation of the entangling proto-
col. The source of a single-photon pair entangled in the momentum (path) degree

of freedom consists of the type I non-linear crystal.

possible). Therefore, by replacing single-photon sources and BS1 with the SPDC

source generating entangled photon pairs, we may simplify experimental realisation

of the entangling operation (although the second half of the interferometer after

atomic ensembles still requires phase stabilisation). Recently, it has been shown

that these kind of entangled pairs of photons can be generated very effectively

[150].

Now, assume that an atomic vapour consists of 500 87Rb atoms placed in the far

off-resonant optical trap (FORT) or magneto-optical trap (MOT). The atomic lev-

els |g⟩, |e⟩, and |r⟩ may correspond to (5S1/2, F = 1), (5P3/2, F = 2) and 43D5/2 or

58D3/2, respectively. State |s⟩ may correspond to the hyperfine state (5S1/2, F = 2),

which implies that the transition from |s⟩ to |r⟩ is a two-photon process (see

Fig. 5.2). We have identified state |e⟩ with a short lived state (5P3/2, F = 2),

when in fact it must be a long-lived energy level. However, in the case of the MOT,

the requirement of a long relaxation time of the state |e⟩ can be lifted since the

trap lasers produce a constant population in the |e⟩ state [113, 151]. In general, a

requirement of state |e⟩ is imposed to simplify experimental realisation of the pro-

tocol where usually two-photon excitations are used to obtain Rydberg atoms. The

spatial distribution of an atomic cloud is a quasi one-dimensional (cigar shaped) en-

semble with probability density given by Eq. (5.21). Atomic vapours described with

quasi one-dimensional probability density have been demonstrated experimentally

[115].
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When a protocol is based on a quantum optical system, its performance is limited by

the dark count rate of the photo detectors. The dark count rate of a modern photo

detector γdc can be as low as 20 Hz and efficiency reaches ηD ≈ 30% for wavelengths

around 480 nm. The probability of the dark count is Pdc = 1− exp(−γdct/psuccess),

where t is the time scale of the entangling protocol. In general, the probability of

the dark count is negligible for psuccess > γdct.

Since the length of the atomic ensemble needs to be of the order of several µm, the

most important source of errors is the lack of absorption event. The probability of

absorption of a single photon by a cigar shaped atomic ensemble is given by Pabs
∼=

1 − e−Niσ0/A, with Ni = N the number of atoms in the interaction region, σ0 =

3λ2γ0/(2πγ) is the on-resonance scattering cross section of a single-photon pulse,

where γ0 is the spontaneous decay rate of the Rydberg state to low-lying levels, and

γ is the spontaneous decay to other Rydberg states [36, 140, 152]. A = πw2
0 is the

area of a single-photon pulse with a waist w0 ≈ πλ [153]. With λ43D = 485.766 nm,

γ0 = 1.1 × 104 Hz and γ = 7.2 × 104 Hz, the probability of absorption for 43D5/2

state is Pabs
∼= 0.69. For λ58D = 485.081 nm, γ0 = 4.8 × 103 Hz and γ = 2.0 × 104

Hz, the probability of absorption for 58D3/2 state is Pabs
∼= 0.84. The probability

of absorption for both Rydberg states is much too low for reliable operation of the

entangling gate, therefore one has to use atomic ensembles with larger number of

atoms N . A smaller area A does not improve the probability of absorption since it

implies a smaller number of atoms Ni in the interaction region. In fact, the optimal

area A coincides with a size of an atomic ensemble in the transverse directions.

Consequently, for a level structure shown in Fig. 5.2 the only solution to a low

absorption probability is a higher number of atoms N . To render probability of

absorption close to unity, one has to use more than 2500 atoms. High fidelity dipole

blockade in such a large ensemble is not feasible [152]. Another potential difficulty

may be a rather high atomic density of the sample. Several µm long atomic vapours

consisting of thousand of atoms are hard to prepare.

To overcome these difficulties, we propose different experimental implementation

based on a level structure shown in Fig. 5.8. This level structure implements the

entangling operation but in slightly different manner. Here, the dipole blockade is
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Figure 5.8: Relevant atomic level structure with allowed atomic transitions. The
low-lying state |g⟩ is coupled to the first Rydberg state |r1⟩ through intermediate
low-lying level |e⟩ by means of a classical field that implements a π pulse. A second
π pulse realised by a classical field is applied to the transition between the second
Rydberg level |r2⟩ and the state |s⟩ (it may possibly be a two-photon process).

not used to block absorption of a second photon. In this implementation, we employ

the dipole blockade mechanism to prepare a single atomic excitation in the Rydberg

state |r1⟩ by means of a two-photon process. This is precisely a bit flip operation

X described in Sec. 7. However here, the two-photon Rabi frequency of a laser

field that realises a π pulse between states |g⟩ and |r1⟩ is given by Ω = ΩgeΩer1/2∆,

where ∆ is a small detuning (not shown in Fig. 5.8). For |r1⟩ = 43D5/2 a bit

flip operation can be carried out on a microsecond timescale. Subsequently, two

single photons interact with the atomic ensembles: One and only one photon is

absorbed by the Rydberg atom in the state |r1⟩. The Rydberg atom is excited to

the state |r2⟩. We assume that the probability of a two-photon absorption process is

negligible since both photons are on-resonance with a transition between Rydberg

states |r1⟩ and |r2⟩ [154–156]. Finally, following a single photo detector click, two

π pulses realised by classical fields are applied simultaneously to the transitions

between the second Rydberg level |r2⟩ and the state |s⟩ (it may possibly be a two-

photon process), and between the first Rydberg level |r1⟩ and the state |g⟩. The

main strength of this implementation lies in the fact that all π pulses that transfer

single excitation between Rydberg states and low-lying storage states |g⟩ and |s⟩ are

highly reliable operations with fidelity Fsingle
∼= 0.99. Most importantly, this kind of

control over atomic ensembles has been demonstrated experimentally [115, 157, 158].
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Consequently, this implementation of the entangling operation requires relatively

straightforward experimental extension of known procedures.

Let us now examine if the probability of absorption of a single photon by a single

Rydberg atom is high enough for reliable operation of our entangling gate. The

two single photons couple to the transition between level |r⟩ = 45P3/2 (not shown

in Fig. 5.8) and level |r2⟩ = 58D3/2. The reader should note that state |r1⟩ =

43D5/2 is only used in a bit flip operation X and then single Rydberg atom is

excited by means of a fast microwave pulse to the Rydberg state |r⟩ = 45P3/2. For

λ45P−58D = 370.783 µm, γ0 = 4.8× 103 Hz and γ = 2.0× 104 Hz, the probability of

absorption Pabs
∼= 1 − e−2σ0/A ∼= 0.90, where area A = 0.1λ2

45P−58D (this implies a

waist of a single-photon pulse w0
∼= 66 µm) [159]. High probability of an absorption

requires strongly focused light fields with small area A [160–162]. The improved

ratio of σ0/A and therefore higher probability of an absorption for this experimental

implementation is due to the stronger focusing relative to the wavelength of a single-

photon pulse. Naturally, the focusing regime is limited by a size of the atomic

sample and diffraction limited area of a single-photon pulse [160–162]. To render

the probability of absorption close to unity one may apply a mode converter (shaper)

to a single photon light field [163]. The probability of absorption depends also on the

spontaneous decay rates associated with the Rydberg state. The rich structure of

Rydberg levels offers many possible ways for level assignment, therefore one may be

able to choose two Rydberg states with higher on-resonance scattering cross section.

The overall time scale of the entangling protocol t consists of a time required by

the π pulse tπ = 11.2 µs (preparation of a single Rydberg atom in the state |r1⟩)

and time of an interaction part of the protocol given by

t45P−58D =
π

2(
√

2g)
∼= 2.9 ns, with g =

√
σ0γc

4V
, (5.27)

where g is the atom-light coupling constant and V = AL is the interaction volume

with L = 12 µm the length of an atomic medium [36]. After successful entanglement

preparation the state of atomic ensembles is quickly stored in the long-lived atomic

states |g⟩ and |s⟩ in time significantly shorter than tπ. In summary, the entangling

protocol can be carried out on a microsecond time scale.
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The two single photons employed in the entangling procedure belong to the far-

infrared part of the electromagnetic spectrum. The photo detectors sensitive to this

part of the spectrum are under development. The detection range of quantum dot

infrared photo detectors such as In(Ga)As quantum ring terahertz photo detector

reaches 175 µm. Another photo detector operating in THz regime is based on

hot-electron effect in nanobolometers and used in astrophysics for registration of

the cosmic microwave background (CMB) radiation [164]. A bolometer is a device

that measures the energy of incident electromagnetic radiation. Although photo

detector based on nanobolometers is characterised with rather complex fabrication

and has to work in ultra-cold temperature regime (around 200 mK), it is highly

sensitive and capable of detecting single THz photons with quantum efficiency close

to 100% (maintaining at the same time low dark count rate) [164]. An alternative

to the photo detector based on nanobolometers can be given in terms of the atomic-

vapour-based high efficiency photon detectors [110, 111].

The source of single-photon pulses in the far-infrared frequency regime can be based

on atomic ensembles or on single ions placed inside an optical cavity. Preferably,

the single-photon sources should work on-demand. However, as already mentioned,

one may choose different Rydberg levels and implement the entangling gate with

single photons from a less extreme part of the electromagnetic spectrum.

The spontaneous emission from the Rydberg state and the black-body transfer

(to other Rydberg states) occur with rates of order 103 Hz (or even 102 Hz for

higher Rydberg states), and are negligible, since following successful entanglement

preparation the state of matter qubit is quickly stored in the long-lived atomic states

|g⟩ and |s⟩. Exact values of these rates are given in Ref. [140]. The atomic collision

rate inside atomic vapour is given by

τ−1
col ≈ nσcol/

√
M/3kBT , (5.28)

with n the number density of atoms, σcol the collisional cross section (∼10−14 cm2),

M the atomic mass, kB Boltzmann’s constant, and T the temperature [110]. Assum-

ing a vapour with a number density of atoms of order 1012 cm−3 and a temperature

of ∼10−3 K, the atomic collision rate can be as low as 2 Hz. Moreover, with a
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sufficiently large energy difference between states |g⟩ and |s⟩ a single collision is not

likely to affect the qubit.

A low temperature of an atomic vapour implies negligible Doppler broadening.

The Doppler broadening is described by the Gaussian distribution with a standard

deviation of ∆λ = λ0

√
kBT/Mc2, where λ0 is the center wavelength of the Doppler

profile (wavelength of a transition between states |r⟩ and |r1⟩). For λ0 = λ45P−58D,

the Doppler broadening is ∆λ = 0.4×10−6 µm. Therefore, the Doppler broadening

does not affect fidelity of the entangling protocol.

Considering both the overall and interaction time scales of the protocol, the en-

tangling procedure is mostly affected by the no absorption event, assuming high

quantum efficiency and low dark count rate of the THz photo detectors. We as-

sume that the coincidence event rate in the HOM effect and two-photon absorption

process are negligible. In the presence of the above noise and decoherence mecha-

nisms, the final state of the system conditional on a single photo detector click is

given by

ρfin = (1 − 2ε)|ψ±⟩⟨ψ±| + 2ερnoise + O(ε2) , (5.29)

where |ψ±⟩ = 1√
2
(|sg⟩ ± i|gs⟩) and ε = 1 − Pabs, where Pabs is the probability of

an absorption of a single photon by a single Rydberg atom. ρnoise denotes the

unwanted terms in the state of the two atomic ensembles. It is worth noting that

the source efficiency does not affect the fidelity of the final state, it only lowers the

success probability. After taking into account all dominant error mechanisms, the

fidelity of the prepared entangled state is given by

F = ⟨ψ±|ρfin|ψ±⟩ ∼= 0.90. (5.30)

Stronger focusing regime and/or application of a mode converter (shaper) to a sin-

gle photon light field should render the fidelity of the entangling operation close to

current fault-tolerant thresholds of topological codes [165–168]. As already stated,

the new entangling protocol is capable of creating cluster states of any degree of

connectivity. Since a 3D cluster lattice can be used to implement planar surface

codes efficiently, one can exploit topological error-correction capabilities of these
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Figure 5.9: Example of an experimental implementation of the entangling pro-
tocol exploiting the polarisation-entangled photon pair. The source of a single-
photon pair consists of the type I non-linear crystal. A “square” placed in front

of and behind each ensemble depicts the polarisation beam splitter.

codes to perform fault-tolerant quantum computation with our entangling proce-

dure. One can also increase the fidelity of the final states with the use of purification

techniques at the price of cluster size reduction when the purification fails [169, 170].

5.5.1 Polarisation-entangled photon pair

The dual-rail qubit encoding responsible for the significant experimental simplifi-

cation of the protocol can be implemented with the polarisation-entangled state of

a photon pair |ϕ⟩light = 1√
2
(|HV ⟩AB + |V H⟩AB), where H and V are the horizon-

tal and vertical polarisation of a photon, respectively (see Fig. 5.9). Traditionally,

polarisation-entangled photon pairs are generated by means of a type I non-linear

crystal [149, 171]. A pair of photons entangled in a polarisation degree of free-

dom allows us to simplify the experimental implementation of the protocol even

further. In fact, the dipole blockade mechanism is no longer required for a re-

liable operation of our entangling protocol. Here, the entangling gate works as

follows. Initially, we prepare each ensemble A and B in the collective ground state

|g⟩ ≡ |g1, g2, . . . , gN ⟩, where the ground state |g⟩ may correspond to atomic level

(5S1/2, F = 1). Subsequently, one of the polarisation-entangled photons, for in-

stance horizontally polarised, interacts with the atomic ensembles: One and only

one atom in the ensemble is excited by the photon to the excited state |e⟩ that
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may correspond to atomic level (5P3/2, F = 2). The absorption of the second pho-

ton (the vertically polarised) is completely prohibited since the polarisation beam

splitter placed in front of each ensemble prevents vertically polarised photon from

interacting with the atomic vapours. Following a balanced beam splitter (BS) inter-

action and conditioned on a photo detector click, the state of the atomic ensembles

is projected onto a pure maximally entangled state. The main advantage of this im-

plementation lies in a fact that the second photon is never absorbed by the atomic

ensembles and the probability of absorption of the first photon Pabs
∼= 1− e−Niσ0/A

can practically reach unity since one can exploit optically thick atomic vapours, i.e.,

highly dense and/or large vapours. Therefore, a single photon should easily couple

to atomic medium. Moreover, we are no longer limited by the size of the atomic

ensemble, which significantly simplifies the preparation of atomic samples.

The dominant errors and decoherence mechanisms that enter the entangling oper-

ation based on the polarisation-entangled photon pair are the following:

1. the quality of polarisation-entangled photon source

2. the spontaneous emission rate of the exited state |e⟩,

3. the atomic collision rate,

4. the inefficiency and the dark count rate of the photo detectors.

Recently, ultrafast, high quality polarisation-entangled photon sources have been

developed with the reported fidelity reaching Fsource
∼= 0.99 [172]. The atomic level

(5P3/2, F = 2) corresponding to the excited state |e⟩ is a short-lived level. There-

fore, one has to apply an additional laser pulse between the excited state |e⟩ and

storage state |s⟩, exploiting stimulated Raman adiabatic passage, to reliably carry

out the entangling operation. The atomic collision rate as described in the previous

section is insignificant. The dark count rate of a modern photo detector γdc can be

negligibly low (20 Hz) with efficiency reaching ηD ≈ 90% for wavelengths around 780

nm. Considering all the dominant errors and decoherence mechanisms, the imple-

mentation of the entangling protocol exploiting polarisation-entangled photon pair

can generate entangled states of atomic ensembles with fidelity F = Fsource
∼= 0.99
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Figure 5.10: A mapping of cluster state on a collection of atomic ensembles. H
depicts a multi-port beam splitter that erases which-path information.

and success probability psuccess = η, where η = ηDη
2
S is the combined detection

and source efficiency. It is worth noting that the fidelity of the final state does not

depend on η and can be as high as the fidelity of the photon source. More im-

portantly, all results associated with the generation of the GHZ and cluster states

follow exactly.

The new entangling operation presented here allows us to map an entangled state

of a photon pair onto two macroscopic atomic ensembles in a heralded fashion. In

general, one may imagine an experiment in which a multi-qubit photonic cluster

state is mapped onto a collection of atomic ensembles (see Fig. 5.10). In this way,

a possibly large Q-qubit cluster state can be reliably stored in Q atomic vapours.

5.6 Summary

In conclusion, we have reviewed several schemes for probabilistic entanglement gen-

eration such as the DLCZ protocol and the double-heralding protocol. We have also

presented and studied a new scheme for cluster state generation based on atomic

ensembles and the dipole blockade mechanism. The new entangling protocol con-

sists of single-photon sources, ultra-cold atomic ensembles, and regular photo detec-

tors. The protocol generates in a single step a GHZ state with success probability

psuccess ∼ ηQ/2, where Q is the number of the qubits, and high fidelity F ∼= 0.90 (or

F ∼= 0.99 when polarisation-entangled implementation is used). Our new entangling

gate is more efficient than any previously proposed probabilistic scheme with real-

istic photo detectors and single-photon sources. Every run of the procedure gives

an entangled state of two atomic ensembles with success probability psuccess = η,
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where η is the combined detection and source efficiency. The double-heralding pro-

tocol produces an entangled state of two matter qubits with the success probability

psuccess = η2/2. The protocol proposed by Lim et al. [29] requires on average two

repetitions to realise the desired gate operation. Moreover, the successful imple-

mentation of this protocol involves detection of a photon pair. The new entangling

protocol requires only single photon detection. In general, number-resolution photo

detectors are not needed. However, a reliable photon counting detector with low

dark count rate would be able to herald any error in the procedure increasing the

fidelity close to unity. The GHZ states are locally (up to Hadamard operation)

equivalent to star-shaped cluster states. The efficiently generated large GHZ states

may serve as building blocks for universal graph states.

We have also reviewed and analysed a scheme implementing any single-qubit oper-

ation on the qubit defined as collective states of mesoscopic ensemble. The scheme

for single-qubit rotations is based on classical optical pulses and the dipole block-

ade mechanism. The experimental implementation may be carried out with high

fidelity Fsingle
∼= 0.99 and on the microsecond timescale with current state-of-the-art

experimental setups.

The described protocols for single-qubit operations and entangling operation open

a possibility of experimental implementation of the measurement-based quantum

computer based on atomic ensembles.
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