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I wish to thank Prof. José Nuno Oliveira, Prof. Peter Jipsen, Dr. Wal-
ter Guttmann and Dr. Damien Pous for interesting and insightful
conversations during RAMiCS’14. I also thank Prof. Jeremy Gib-
bons, Dr. Stephan Van Staden, Prof. Roland Backhouse, Prof. Carrol
Morgan and Prof. Lindsay Groves for their discussions, suggestions
and guidance during MPC’15.

Thanks to all my collegues in the department: Jorge, José, Raluca,
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Abstract

This thesis puts forward a flexible and principled approach to the
development of construction and verification tools for imperative pro-
grams, in which the control flow and the data level are cleanly sep-
arated. The approach is inspired by algebraic principles and bene-
fits from an algebraic semantics layer. It is programmed in the Is-
abelle/HOL interactive theorem prover and yields simple lightweight
mathematical components as well as program construction and veri-
fication tools that are themselves correct by construction.

First, a simple tool is implemented using Kleeene algebra with tests
(KAT) for the control flow of while-programs, which is the most com-
pact verification formalism for imperative programs, and their stan-
dard relational semantics for the data level. A reference formalisation
of KAT in Isabelle/HOL is then presented, providing three different
formalisations of tests. The structured comprehensive libraries for
these algebras include an algebraic account of Hoare logic for par-
tial correctness. Verification condition generation and program con-
struction rules are based on equational reasoning and supported by
powerful Isabelle tactics and automated theorem proving.

Second, the tool is expanded to support different programming fea-
tures and verification methods. A basic program construction tool is
developed by adding an operation for the specification statement and
one single axiom. To include recursive procedures, KATs are expanded
further to quantales with tests, where iteration and the specification
statement can be defined explicitly. Additionally, a nondeterministic
extension supports the verification of simple concurrent programs.

Finally, the approach is also applied to separation logic, where the
control-flow is modelled by power series with convolution as sepa-
rating conjunction. A generic construction lifts resource monoids to
assertion and predicate transformer quantales. The data level is cap-
tured by concrete store-heap models. These are linked to the algebra
by soundness proofs.

A number of examples shows the tools at work.



I hold the opinion that the construction of computer programs is a
mathematical activity like the solution of differential equations,

that programs can be derived from their specifications through
mathematical insight, calculation, and proof, using algebraic laws

as simple and elegant as those of elementary arithmetic.

C. A. R. Hoare
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Chapter 1

Introduction

Program verification is an old subject in computer science, dating at least from
von Neumann and Goldstine with assertion boxes in a flow diagram [116], and
Alan Turing with possibly the first correctness proof of a program computing
factorials [113]. Its importance and applicability are clear and do not need to be
reiterated here. However, program verification is still an area of intense research
activity and has many open questions. Moreover, it is unfortunately not widely
used in the industry. One of the reason for this might be the lack of good,
sound and (semi)-automatic tools and methods. Recently, the area has seen a
revival, with an explosion of papers due to the increase in computational power
and the need for rigorous treatment for concurrent algorithms, where testing-
based methods were proven to be inefficient, in particular when considering weak
memory models.

For a few years now, abstract algebras have been used to analyse and under-
stand the structure behind programs and verification methods. Kleene algebra
with tests [72] (KAT) and their variants, for instance, yield a minimalist and ele-
gant formalism for program verification of imperative while programs by simple
equational reasoning. They model the flow of computation algebraically and sub-
sume propositional Hoare logic [73], which means that validity of a Hoare triple
can be expressed in the algebra and the inference rules of Hoare logic, except the
assignment axiom, can be derived equationally as theorems. Additionally, KAT
has been used for verifying program transformations [72], for compiler optimisa-
tion [75] and for static analysis [74].

More recently, algebras were used to derive the frame rule of separation
logic [101], which is an approach to program verification for mutable resources
that is receiving considerable attention over the last decade. Its main feature is
the separating conjunction and its key application is the verification of programs
with pointers [101, 93, 91], but it has also been used in concurrency verifica-
tion [90, 63]. Algebraic approaches using power series and convolution to express
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separating conjunction in a constructive way [44] can be used as a concise and
elegant abstract foundation for separation logic.

The use of abstract algebras thus promises to be a principled sound foundation
in the development of correctness tools. They have indeed clear advantages.

Algebraic semantic layer. In the algebraic approach to program verification,
there is a clear cut distinction between control flow and data level, where a
lightweight middle layer is formed by an algebraic semantics. The control flow
can thus be understood and analysed directly and efficiently at the algebraic
level. The concrete data level can be integrated via soundness of the algebra with
respect to its concrete semantics. A clear example of this is in the proof of Kozen’s
loop transformation [72], which states that every while program can be rewritten
as a program with at most one loop, as long as there are enough free variables
available. The proof is clear and simple, and it has been done equationally.

Modularity. This algebraic semantic middle layer offers more modularity and
flexibility to the correctness tool when changing the target programming lan-
guage, its logic or even its concrete semantics. All facts derived at the algebraic
level are available to any of its computational models. In addition, the divi-
sion of concerns between flow and data yields a simple and fast development of
verification and refinement tools.

Automation. The algebra deals with the control flow very efficiently. In some
cases, inference rules and transformation proofs are fully automatic. For instance
the equational theory of KAT and its universal Horn theory has been shown
to be decidable [76]. More generally, even when the algebraic structure used
is not decidable, the algebra forms a first-order layer in which theorems can
usually be proved automatically by state-of-the-art theorem provers. These are
highly suitable for first-order theory [64]. Algebras thus have the ideal level of
expressivity. On the one hand, they are expressive enough to derive verification,
construction and transformation tools. On the other hand, they are still simple
enough to be suitable for automatic theorem provers.

Correctness. Finally, soundness of these tools are implied by the algebra, that
is, they are correct by construction.

Nevertheless the rôle of algebras in program verification and correctness tools
is still not clear; their application has so far been rare [11, 97] and it has never
been thoroughly investigated. To the best of the author’s knowledge, they have
never been fully integrated and used in the development of correctness tools.
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The reason may be that these algebras provide limited capabilities for modelling
the data level; reasoning at this level may require higher-order logic and there-
fore other tools and techniques. Advancements in theorem proving technology
in the latest years indicates that the formalisation of these algebras within an
interactive theorem proving (ITP) environment can benefit from the vast amount
of infrastructure for data-level modelling and reasoning provided by these ITPs,
delegating the proof obligations of the data level to other mechanisms.

This thesis describes a framework for the analysis of program construction and
verification within the Isabelle/HOL theorem proving environment and based
on algebraic principles. It unravels the rôle of algebras in the development of
correctness tools in an interactive theorem prover.

1.1 Contributions

The main contribution of this thesis lies in the development and implementation
of the approach outlined within Isabelle/HOL [89]. We formalise various algebraic
components in Isabelle, which are available to the theorem proving community
through the Archive of Formal Proofs [9, 55], and derive correctness tools from
these algebras. Beyond the proof of concept, this leads to refinement and verifica-
tion tools for imperative programs correct by construction. The implementation
greatly benefits from Isabelle’s support for engineering mathematical hierarchies,
for linking abstract algebras with concrete models and from its emphasis on proof
automation through the integration of state-of-the-art first-order theorem prov-
ing and SMT solving technology, which is optimised for equational reasoning.
Additionally, we implement a novel algebraic approach to separation logic and
derive correctness tools for programs with pointers.

More detailed contributions are as follows.

Algebraic components. Building upon existing formalisation of Kleene alge-
bras [13], various algebraic components are implemented in Isabelle/HOL: three
different formalisations of KAT, a novel refinement KAT, demonic refinement alge-
bras (DRA), quantales, and quantales with tests. The one-sorted implementation
of KAT is based on an antitest operation, which generates the boolean algebra
of tests as its image, and it is a contribution in its own right. In addition, an
axiomatisation for weak regular algebras given by Conway [34], in which the iter-
ation axioms cannot distinguish between finite and potentially infinite iteration,
is also provided. Moreover, soundness of all these algebraic structures is verified
with respect to the model of binary relations. In summary, extensive libraries for
these algebras are provided which add more than 400 facts. These include
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• formalisation of validity of Hoare triples and derivation of the rules of propo-
sitional Hoare logic in KAT as well as of additional rules for recursion in the
quantale setting;

• derivation of a propositional version of Morgan’s basic refinement calculus
in refinement KAT;

• proof of program transformations examples, such as transformation theorem
for while loops [72] and variants of Back’s atomicity refinement theorem for
action systems [117, 33];

• derivation of assignment rules for program verification and refinement in
the relational model; which yields formal soundness proofs of Hoare logic
and Morgan’s basic refinement calculus [83].

The algebras are linked with concrete datatypes, data structures and notions
of state in a generic fashion by an instantiation mechanism, which exploits the
polymorphism of implementations of algebras and models within Isabelle.

Correctness tools. These mathematical components allow us to implement
several tools that are correct by construction:

• a KAT-based verification tool for while-program in which classic Hoare logic
generates verification conditions;

• a KAT-based basic refinement tool for while-programs obtained by adding
an operation for the specification statement and one single axiom to KAT;

• more expressive quantale-based refinement and verification tools for pro-
grams with recursive parameterless procedures;

• a quantale-based verification tool for nondeterministic programs, capable
of verifying correctness of simple concurrent algorithms by expressing the
execution of parallel programs with nondeterministic choice;

• verification tools based on domain algebras.

Finally, we have applied our tools in a series of program construction and verifi-
cation tasks.

Over the years, several tools have been implemented based on different ver-
sions of Hoare logic. Some tools, like the ones presented in this thesis, use a
research-based and minimalist programming language, such as the while lan-
guage. Others focus on real word programming languages and applications, such
as C and Java. These include for instance KeY [2], VSE - Verification Support
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Environment [106] and VeriFast [104]. They are usually optimised and highly
automatic for a specific purpose relying on state-of-the-art decision procedures
and SMT solvers at the data level. Soundness of these tools, however, is often
not guaranteed and needs to be proven in each version released, since they are
not verified relative to a small core, as provided by an LCF-style proof assistant.
In addition, different degrees of interactivity are offered by these tools; they focus
on complete automation and the user cannot usually prove any remaining veri-
fication condition by interaction. This implies that they cannot cope very well
with higher-order aspects of data types and store.

In contrast, the tools developed in this thesis are correct by construction. They
rely on the correctness of the small core of Isabelle/HOL, satisfying the so called
de Bruijn criterion, which roughly states that proof objects should be verifiable
by a very small and simple program checkable by hand [21]. Additionally, they
are semi-automatic, i.e., tactics are used as often as possible to reduce the number
of verification conditions. The user has then the whole Isabelle infrastructure,
which supports higher-order reasoning, at his disposal to deal with any remaining
proof obligation. Moreover, the user can guide the correctness proof, breaking
the conditions down in different pieces and calling automatic SMT solvers to
discharge them.

Other verification tools have also been developed with the support of interac-
tive proof assistants in mind. For instance, Why3 [49], which is a platform where
users can write a program in WhyML, can generate verification conditions and
export them to one of the interactive provers supported, such as Coq, PVS or
Isabelle/HOL. Moreover, the proof obligations can also be exported to several
other automated theorem provers (ATP) and SMT solvers. Nevertheless, Why3
is developed in ML and its own soundness is not guaranteed by the provers; it
does not meet the de Bruijn criterion.

Correctness tools developed on top of a proof assistant include Balser et al. [20]
in KIV, Ynot [32] in Coq; or SIMPL [102], IMP [86], and Imperative-HOL [28] in
Isabelle/HOL. These are generally less automatic, but allow more precise prop-
erties to be proved. Nevertheless, they do not share the lightweight middle layer
formed by an algebraic semantics such as in our case and none of these tools
supports program construction and refinement via Morgan-style reasoning.

Algebraic approach for separation logic. Based on lifting results for power
series [44], we implement in Isabelle/HOL a novel algebraic approach for separa-
tion logic, in which separating conjunction is expressed as convolution. Contri-
butions include

• the use of power series and convolution in the context of separation logic;
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• an entire theory hierarchy formalised in Isabelle in a modular fashion from
resource monoids to predicate transformer algebras, which is based on previ-
ous work by Proteasa [98]; we formalise conjunctive, disjunctive, monotone
and local predicate transformers;

• practical tactics for Isabelle/HOL inspired by safe and auto and based
on [31]; this development benefits from Isabelle’s new proof method lan-
guage Eisbach [80];

• development of a refinement and a post-hoc program verification tool for
pointed while-programs based on separation logic.

Once again, we have applied these tools to several program construction and
verification examples.

Similarly, some tools supporting separation logic try to deal with real world
programming languages. These include Predator [46], JStar [42] and VeriFast [104].
Additionally, Why3 also support separation logic reasoning. However, as before,
the soundness of these tools is not guaranteed by a theorem prover; and they do
not satisfy the de Bruijin criterion. Among tools developed on top of proof assis-
tants, Smallfoot [22] stands out, which has been implemented within HOL4 and
supports concurrent separation logic, an approach based on [30]; and YNot [32]
in Coq, which provides high level of automation. Formalisations in Isabelle/HOL
include that of Kolanski and Klein [69], which is targeted towards a subset of
C, and Weber [119], which uses a shallow embedding of a while language similar
to the one presented in this thesis, but without allocation and deallocation laws.
Once again, none of these tools has a lightweight middle layer formed by an al-
gebraic semantics, providing more modularity and flexibility, and none of these
tools supports program refinement.

In summary, the approach advocated in this thesis does indeed yield flexible
lightweight tools. Beyond general-purpose formalisation of algebraic structures
and their standard models, little Isabelle code is needed when implementing a
simple construction or verification tool. The degree of automation in concrete
examples is generally high as they rely on Isabelle’s excellent libraries for func-
tional data types, such as functional lists, sets and relations, in which proofs,
including inductive ones, are often fully automatic. The tools have turned out
to be robust and useful at least for educational purposes, where they have been
used as support for lectures at the University of Sheffield. However we have so
far neither aimed at optimising proof performance nor at competing with state-
of-the-art verification tools.

The complete Isabelle code for the mathematical components, tools and al-
gorithmic examples can be obtained online1. Reference libraries for variants of

1https://github.com/victorgomes/veritas
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Figure 1.1: Algebraic approach for programm correctness tools.

Kleene algebras, and in particular KAT, can be obtained from the Archive of
Formal Proofs [13, 9, 55].

1.2 Outline

This thesis exposes the role of algebra and its benefits in program correctness tools
in a stepwise fashion. It begins with a very simple computational algebra (KAT)
capable of deriving a classic verification logic, the propositional Hoare logic, and
of proving important program transformations, such as Kozen’s loop theorem.
All of these results are independent of any concrete model and therefore generic
(Chapters 3 and 4). The algebra is extended with a specification statement
and yields a refinement calculus which is derived equationally (Chapter 5). The
versatility of the algebraic layer approach for building program correctness tools is
demonstrated by adding support to various programming language features, such
as recursion (Chapter 6), nondeterminism (Chapter 8) and mutable resources
(Chapters 9, 10 and 11). Its modularity is shown in Chapter 7 where the concrete
model is changed. Figure 1.1 outlines the algebraic approach for verification and
construction tools suggested in this thesis.

More precisely, the thesis is divided into two parts. Part I deals with algebraic
structures capable of modelling simple imperative programs and deriving the rules
of Hoare logic, while Part II extends the approach to programs with pointers and
separation logic.
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Here is its outline:

• Chapter 2 exposes the verification techniques foundations, giving an intro-
duction to verification logics and a recipe for correctness tools.

• Chapter 3 presents the main algebraic structures for reasoning about im-
perative programs. It also demonstrates how to use Isabelle/HOL to create
various mathematical components and shows our implementation of these
components. Examples of program transformation concludes the chapter.

• In Chapter 4, the soundness of KAT with respect to its concrete semantics
is proved. A basic verification tool is then developed. The chapter finishes
with verification examples.

• Chapter 5 shows the versatility and robustness of the algebraic approach.
We extend KAT to its refinement counterpart and derive a refinement tool.

• More powerful algebras are used in Chapter 6 to increase the expressivity
of our tools to support recursive programs.

• Chapter 7 shows a different, but equivalent, semantics for imperative pro-
grams. It also presents modal Kleene algebra, capable of expressing the
weakest predicate transformer of a command.

• In Chapter 8, the tool is extended to nondeterministic programs. A näıve
tool for concurrent program based on nondeterminism is developed. Exam-
ples show this tool at work.

• Chapter 9 presents the approach to separation logic based on power series,
where separating conjunction is expressed by convolution, and derives the
inferences rules and refinement laws of separation logic.

• Finally, Chapter 10 presents an implementation of practical tactics for sep-
aration logic predicates in Isabelle/HOL, while Chapter 11 shows some con-
struction and verification examples.

• Chapter 12 concludes this thesis.
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Chapter 2

Technical Background

The formal verification of programs is a systematic approach for proving the cor-
rectness of programs with respect to a formal specification. The approach used
in this thesis is the so-called inductive assertional method. It was initiated by
Floyd [51] for the correctness of flowcharts and Hoare [61] for while programs. It
relies on the use of assertions about the state of execution of a program. A speci-
fication is usually composed of a precondition, an assertion about the state before
the execution of the given program, and a postcondition, after the execution.

Correctness of programs is usually divided in two parts: partial correctness
and termination. For a program to be partially correct, it is required that when-
ever the precondition is satisfied in the initial state and if the program terminates,
then it terminates in a state satisfying its postcondition. Partial means that the
program is not guaranteed to terminate. Total correctness requires termination.

The fully automatic verification of program properties is in general an un-
decidable problem. Automating program verification is a topic of intense re-
search. The first tools were created in the later 80’s [57], but only recently with
the development of powerful machines and efficient theorem provers, such as Is-
abelle/HOL [89], PVS [95] and Coq [81], that development of these tools has
started to boom. Recent tools include: IMP [88], Why3 [49], VeriFast[67], and
others.

The recipe for the development of any tool for program correctness contains
the following ingredients:

1. a target programming language,

2. a language of expressions (boolean and other supported types),

3. a language of assertions, and

4. a programming logic.
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A programming logic contains a set of logical rules for reasoning about the
program. This needs to be proven sound with respect to the semantics of the
desired programming language. The semantics of assertions is usually classic
predicate logic, but it can also be a high-order logic (HOL in Isabelle/HOL) or
an intuitionist logic (as in Coq). The remainder of this chapter discusses these
ingredients.

2.1 The while Programming Language

The while language [61, 5] is a minimalistic imperative programming language.
Despite its simplicity, it is proven to be Turing complete [71]. A while program
is a string of symbols generated by the following BNF grammar:

C ::= skip | u := t | C1;C2 | if b then C1 else C2 fi | while b do C od,

where u stands for a program variable, t is an expression of the same type as u,
and b is a boolean expression.

As an abbreviation, we define the following command statements:

if b then C fi ≡ if b then C else skip fi

for i := n to m do C od ≡ i := n; while i ≤ m do C; i := i+ 1 od

An informal intuition for each statement of the language is as follows. The
statement skip does not change the state of the program and just terminates. An
assignment u := t assigns the value of the expression t to the program variable
u. A sequential composition C1;C2 executes C1 first and, when it terminates, it
executes C2. A conditional statement if b then C1 else C2 fi evaluates b then
executes C1 if b is true or C2 if b is false. A loop while b do C od evaluates b
and terminates if b is false, otherwise it executes C and repeats the process.

Nevertheless, to prove properties of a program written in any programming
language, a formal meaning or semantics is needed. There are two main ap-
proaches in the literature to program semantics, the operational approach and
the denotational one.

Operational Semantics

The operational semantics approach was proposed by Hennessy and Plotkin [60].
It describes a programming language by specifying how it executes on an abstract
machine. A configuration of this machine is a pair (C, σ) of command and state,
in the big-step operational semantics, a transition relation → is defined between
a configuration and its final state. The relation (C, σ) → σ′ then represents the
complete execution of a command C in state σ terminating in a state σ′.
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(skip, σ)→ σ

(u := t, σ)→ σ[σ(t)/u]

(C1, σ)→ σ′′ (C2, σ
′′)→ σ′

(C1;C2, σ)→ σ′

σ(b) (C1, σ)→ σ′

(if b then C1 else C2 fi, σ)→ σ′

¬σ(b) (C2, σ)→ σ′

if b then C1 else C2 fi, σ)→ σ′

σ(b) (C, σ)→ σ′′ (while b do C od, σ′′)→ σ′

(while b do C od, σ)→ σ′

¬σ(b)

(while b do C od, σ)→ σ

Figure 2.1: Big-step operational semantics of the while language

Figure 2.1 shows the operational semantics of a while language. We write σ(t)
and σ(b) to the evaluation of the expressions t and b on a state σ, this evaluation
depends on the language of expressions used and can also be defined by structural
induction. We write σ[n/u] for the state obtained from σ by substituting its
contents in u by n, that is,

σ[n/u](v) =

{
n, if v = u,

σ(v), otherwise.

We say that a command C diverges from a state σ if there is no state σ′ such
that (C, σ) → σ′, that is, its computation is infinite and the command never
terminates.

Let Σ be the set of all possible proper states and ⊥ be an error state. The
operational semantics JCKo of a program C is the mapping JCKo : Σ→ 2Σ∪{⊥}

JCKo(σ) = {σ′ | (C, σ)→ σ′} ∪ {⊥ | C diverges from σ} .

As a matter of fact, a while program is proven to be deterministic [5]; for any
program C, there is only one possible outcome σ′ for each state σ. The operational
semantics can then be strengthen to a simple mapping JCKo : Σ→ Σ ∪ {⊥}.
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The small-step operational semantics [96] is an alternative to big-step seman-
tics, where instead of defining the full execution of each command, the transition
relation →1 only expresses single steps. The semantics of a command is then
defined by using the reflexive-transitive closure relation →∗1 of →1. This can be
useful when dealing with fine-grained concurrency [115]. For a sequential while
program, both semantics have equivalent expressivity [5].

Operational semantics is extremely simple and widely used in the development
of correctness tools [88, 85, 102, 111]. This style of semantics is closed to its
implementation, but it makes it hard to compare programs and to understand
the real meaning of each command. The approach used in this thesis uses an
abstract algebraic semantic layer that fits better with denotational semantics.

Denotational Semantics

The idea of the denotational semantics approach is to provide an appropriate
semantic domain and define JCK by induction on the structure of C. Its math-
ematical foundation is due to Dana Scott [109]. It uses abstract mathematical
concepts and fixed point techniques to deal with loops and recursion [108, 56].
In contrast with operational semantics, the meaning of each command can be
explicitly written as a mathematical object.

JskipK = IdΣ

Ju := tK = {(σ, σ[σ(t)/u]) | σ ∈ Σ}

JC1;C2K = JC1K ◦ JC2K

Jif b then C1 else C2 fiK =

{(σ, σ′) | σ(b) ∧ (σ, σ′) ∈ JC1K} ∪ {(σ, σ′) | ¬σ(b) ∧ (σ, σ′) ∈ JC2K}

Jwhile b do C odK = µΦ where

Φ(φ) = {(σ, σ′) | σ(b) ∧ (σ, σ′) ∈ φ ◦ JCK} ∪ {(σ, σ′) | ¬σ(b)} .

Figure 2.2: Relational semantics of the while language

For a simple sequential imperative while language, the default semantic do-
main used is relation; each command is defined as a relation between states. This
is usually called relational semantics. Figure 2.2 shows the semantics for a while
language. Here, IdΣ = {(x, x) | x ∈ Σ} is the unit relation,

R ◦ S = {(x, y) | ∃z ∈ Σ. (x, z) ∈ R ∧ (z, y) ∈ S}
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denotes the relational composition and

R∗ =
⋃
i≥0

Ri

is the reflexive-transitive closure relation, in which Ri is defined recursively as
R0 = IdΣ and Ri+1 = R ◦Ri, for all i ∈ N. The operator µ states that µΦ is the
least fixed point of Φ(φ), that is, it is the smallest relation ϕ such that Φ(ϕ) = ϕ.

Proposition 2.1 ([5]). The relational and big-step semantics for a while lan-
guage are equivalent, that is,

(σ, σ′) ∈ JCK⇔ (C, σ)→ σ′.

We can lift the evaluation of expressions to the subidentity JbK = {(σ, σ) | σ(b)},
where the semantic symbol is overloaded. This simplifies the semantic definition
of conditionals and loops.

Proposition 2.2. The relational semantic of conditionals and loops are equal to
the following equations

if b then C1 else C2 fi = JbK ◦ JC1K ∪ J¬bK ◦ JC2K,
while b do C od = (JbK ◦ JCK)∗ ◦ J¬bK.

Note that, in these definitions, the boolean expression b behaves like a command,
filtering out the states where b holds. This interesting twofold nature of boolean
expressions, or tests, will be exploited in Chapter 3.

Other semantic domains can be used to define the denotational semantics
for a programming language, including predicate transformers, languages over an
alphabet Σ and Aczel traces.

2.2 Hoare Logic

Hoare logic is a sound and relatively complete [4] programming logic for showing
the correctness of while programs. It is said to be relatively complete, because
its completeness depends on the expressivity of the assertion language used. The
approach was also advocated as a way to give meaning to a programming lan-
guage, for that reason, it is also known as axiomatic semantics. Its central feature
is the Hoare triple {P} C {Q}, which asserts that for all states σ satisfying the
precondition P , if the execution of C from σ terminates in a state σ′ then σ′

satisfies the postcondition Q.
Figure 2.3 shows the rules of Hoare logic for partial correctness. Substitution

is lifted over the assertion language and usually defined by structural induction.
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{P} skip {P} (skip)

{Q[t/u]} u := t {Q} (assign)

P → P ′ {P ′} C {Q′} Q′ → Q

{P} C {Q}
(conseq)

{P} C1 {Q} {R} C2 {Q}
{P} C1;C2 {Q}

(seq)

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
{P} if b then C1 else C2 fi {Q}

(cond)

{I ∧ b} C {I}
{I} while b do C od {I ∧ ¬b}

(while)

Figure 2.3: Rules of Hoare logic

In the while rule, we say that I is a loop invariant. We write → for implication.
Note that assertions are mixed with boolean expressions in the conditional and
while rule. In matter of fact, the language where the boolean expression is written
is usually a subset of the assertion language.

Hoare logic can be strengthened to reason about total correctness [4], where
the while rule is replaced with

{I ∧ b} C {I} P → i ≥ 0 {I ∧ b ∧ i = n} C {i < n}
{I} while b do C od {I ∧ ¬b}

,

where a positive number i decreases after each iteration of the loop.
Any correctness tool uses some variant of Hoare logic, which needs to be linked

to the programming language semantics. For the tool to be considered safe and
sound, a soundness proof needs to be given and it is usually done by structural
induction over the language statements. Changes in the programming logic or in
the language semantics force the developers to provide a new proof. However, the
use of abstract algebras simplifies the approach and gives more flexibility when
changing semantics or adding new inference rules [11].

2.3 Weakest Preconditions

The weakest precondition approach was initially advocated by Dijkstra in his
seminal monograph [40]. For each programming construct C and postcondition
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[skip]Q = Q

[u := t]Q = Q[t/u]

[C1;C2]Q = [C2][C1]Q

[if b then C1 else C2 fi]Q = (b→ [C1]Q) ∧ (¬b→ [C2]Q)

[while b do C od]Q = I ∧ (b ∧ I → [C]I) ∧ (¬b ∧ I → Q)

Figure 2.4: The weakest liberal precondition operator for a while language

Q, the weakest precondition is an assertion that characterizes the set of all initial
states such that if C is executed in these states, then it will terminate in a state
satisfying the postcondition Q. In this context, assertions are identified as sets
of states. It is the weakest due to the fact that it characterises all initial states.
A weaker concept can also be defined, the weakest liberal precondition, in which
termination is not guaranteed.

We write [C]Q for the weakest liberal precondition of a command C leaving
the system in a final state satisfying postcondition Q. The notation comes from
modal logic and it will be clarified in Chapter 7. The operation is inductively
defined over the structure of the programming language; Dijkstra argued that
this operator should be strict, isotone, conjunctive and weakly disjunctive, the so
called healthiness conditions. In other words, it satisfies the following properties:

[C]⊥ = ⊥, (2.1)

P → Q⇒ [C]P → [C]Q, (2.2)

[C](P ∧Q) = [C]P ∧ [C]Q, (2.3)

[C](P ∨Q)→ [C]P ∨ [C]Q, (2.4)

where ⊥ represents the assertion that characterizes the empty set of states, ∧ is
its conjunction and ∨, its disjunction. The last property can be strengthened to
an equality on deterministic programs.

Figure 2.4 shows the liberal precondition operator for a while language. The
weakest precondition can be used to derive Hoare logic, where the validity of the
Hoare triple is defined to be

� {P} C {Q} ⇔ P → [C]Q. (2.5)

It also yields a semantics for programming languages known as predicate trans-
former semantics, where a command C is seen as a mapping from a set of states
satisfying a postcondition Q to a set of states satisfying [C]Q.
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2.4 Separation Logic

Separation logic is, in its basic format, an extension of Hoare logic for reasoning
about pointer manipulation. It was first developed in the early 2000s by Reynolds,
O’Hearn, Yang and Ishtiaq [93, 101, 66, 91]. It is based on the logic of bunched
implications (BI) [92] and on previous work with pointers by Burstall [29]. Its
central feature is the separating conjunction P ∗Q, or spatial conjunction, which
asserts that the predicates P and Q hold for different parts of the memory. The
operation provides reasoning about programs with pointers in a modular fashion,
isolating the part of a program that is affected by a command from the remainder.

Hoare triples {P} C {Q} have a fault-avoidance interpretation. Whenever
precondition P holds for the initial state, the command C will execute without
any fault, such as for instance trying to access a dangling pointer. Additionally,
Hoare logic is extended with the frame rule:

{P} C {Q}
{P ∗R} C {Q ∗R}

(frame)

The name comes from an analogy with animation, where an unchanging frame
has dynamic parts of the scene are drawn over it [91]. The rule states that if
from an initial state satisfying P a command C safely executes and finishes in
a final state where Q holds, then it will also safely execute if the precondition
is spatially conjoint with a predicate R and the final state will satisfy Q ∗ R.
The soundness of this rule is extremely delicate [120], in fact, it usually relies on
a relation between the command C and the predicate R. In a concrete model
for imperative while programs with pointers, this relation states that the set of
modified variables in C and the free variables in R are disjoint. A more abstract
condition, called locality, can be used to prove soundness [30].

As a relatively recent development, several other versions of the logic were
proposed to deal with different tasks of program verification, such as fractional
permissions [26], variables as resource [27], concurrent separation logic [90] and
views framework [41].

2.5 Refinement Calculus

In 1968, Dijkstra [39] introduced a constructive approach to program verification
by stepwise refinement. He proposed that, from the program specification, one
should be able to carry out a verified refinement step in such way that it would
preserve program correctness. After a finite number of iteration, the final program
would then be correct by construction. We write C1 v C2 for the refinement of
the program C1 to the program C2; any program specification satisfied by C1 will
also be satisfied by C2.
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w : [Q,Q] v skip (skip)

u : [Q[t/x], Q] v u := t (assign)

If u 6= w then u,w : [P,Q] v w : [P ′, Q] (contract)

If Q′ → Q then If P → P then w : [P,Q] v w : [P ′, Q] (weak)

If Q′ → Q then w : [P,Q] v w : [P,Q′] (strengh)

w : [P,Q] v w : [P,M ];w : [M,Q] (seq)

w : [P,Q] v if b then w : [P, b ∧Q] else w : [P, b̄ ∧Q] fi (cond)

w : [I, b̄ ∧ I] v while b do w : [I ∧ b, I] od. (while)

Figure 2.5: Morgan’s refinement laws

The refinement steps used by Dijkstra were however far from simple; it was
very difficult to judge if a step was correct by intuition. A formal refinement
calculus was then proposed by Ralph-Johan Back in his PhD thesis [16], in which
the correctness of each refinement step was formally proved, providing a rigorous
foundation for the stepwise refinement approach.

Later, Morgan [82] proposed a new operation for the refinement calculus,
called the specification statement [P,Q], which is the most general program start-
ing from a state satisfying predicate P and finishing in a state satisfyingQ. There-
fore, one would begin the program development by a specification statement and
then carry out refinement steps until an executable program. A specification
statement has an evident equivalence with a Hoare triple:

{P} C {Q} ⇔ [P,Q] v C.

Figure 2.5 shows some of the refinement laws proposed by the Morgan’s re-
finement calculus [83]. The laws use an extended version of the specification
statement w : [P,Q], which states that the program satisfying the specification
can only change the variables contained in the frame w (a list of program vari-
ables). Morgan has also proposed more refinement laws, such as expanding the
frame, renaming variables, creating procedure blocks and recursive functions.
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Part I

Construction and Verification of
while Programs
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Chapter 3

Algebras for Program
Correctness

This chapter presents the main algebraic structures for reasoning about impera-
tive programs and explains their connection with binary relations, which is the
standard model for imperative programs used in this thesis. It shows how to
use Isabelle/HOL to create various mathematical components and presents our
formalisation of variants of KAT and DRA. Finally, examples of program transfor-
mation in the end of the chapter illustrate the algebraic approach. The material
of this chapter has been published in [8] and [11].

3.1 Kleene Algebras

Programs are usually first-class objects in the algebra: they are formed by com-
posing programs inductively from primitive commands using a small set of opera-
tors. The simplest of these program operators are + for (binary) nondeterministic
choice and · for sequential composition. The first one is clearly commutative and
both operators are associative. Two primitive and essential commands are abort,
which aborts or annihilates any program execution, and skip, which maintains
the previous program state and just terminates. These commands are respec-
tively, identity for nondeterministic choice and for sequential composition. We
write 0 for abort and 1 for skip. These facts, together with distributivity and
annihilation laws connecting both operators, suggest that any algebra modelling
the behaviour of non-probabilistic and sequential programs on a set S should
form a semiring. Additionally, nondeterministic choice is obviously idempotent,
forming a idempotent semiring, or dioid.

Formally, a semiring is a structure (S,+, ·, 0, 1) over the set S such that

20



• (S,+, 0) is a commutative monoid, i.e.,

(x+ y) + z = x+ (y + z), (3.1)

x+ 0 = x, (3.2)

0 + x = x, (3.3)

x+ y = y + x; (3.4)

hold for all x, y, z ∈ S.

• (S, ·, 1) is a monoid, i.e.,

(x · y) · z = x · (y · z), (3.5)

x · 1 = x, (3.6)

1 · x = x; (3.7)

hold for all x, y, z ∈ S.

• the distributivity laws

x · (y + z) = x · y + x · z, (3.8)

(x+ y) · z = x · z + y · z (3.9)

• and the annihilation laws

0 · x = 0, (3.10)

x · 0 = 0 (3.11)

hold for all x, y, z ∈ S.

A dioid is a semiring S in which addition is idempotent, that is, x+ x = x holds
for all x ∈ S. The reduct (S,+, 0) then forms a join-semilattice with least element
0 and with semilattice order defined, as usual, as

x ≤ y ⇔ x+ y = y. (3.12)

Most of the axioms are obvious consequences of the interpretation, for instance,
associativity and non-commutativity of sequential composition, or idempotency
of choice. Others, such as the annihilation law x · 0 = 0 or the left distributivity
law x · (y+z) = x ·y+x ·z, require further explanation. They are justified by the
soundness proofs with respect to the relational semantics of imperative programs.
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A comprehensive list of dioid properties can be found in the Archive of Formal
Proofs entry for Kleene algebras [14]. Here we only mention isotonicity of addition
and multiplication, that is,

x ≤ y ⇒ x+ z ≤ y + z, (3.13)

x ≤ y ⇒ xz ≤ yz, (3.14)

x ≤ y ⇒ zx ≤ zy. (3.15)

Here and henceforth we drop the multiplication symbol.
To model while programs in a partial correctness setting, a notion of finite

iteration is needed; potentially infinite loops need not be considered. This is
obtained by expanding dioids to Kleene algebras (KA).

Formally a Kleene algebra (K,+, ·,∗ , 0, 1) is a dioid expanded by a star oper-
ator ∗ which satisfies for all x, y, z ∈ K, the unfold and induction axioms

1 + x∗x ≤ x∗, (3.16)

1 + xx∗ ≤ x∗, (3.17)

z + yx ≤ y ⇒ zx∗ ≤ y, (3.18)

z + xy ≤ y ⇒ x∗z ≤ y. (3.19)

This axiomatises finite iteration as a least fixpoint as usual. Formally, x0 is a
least pre-fixpoint of a function f if and only if f(x0) ≤ x0 and f(y) ≤ y ⇒ x0 ≤ y
hold for all x and y. It follows from the axioms that x∗ is the least pre-fixpoint of
the function λα. 1 + x · α. It is also straightforward to show that 1 + x · x∗ = x∗;
hence x∗ is in fact a fixpoint of λα. 1 + x · α. Similarly, it is also a (pre-)fixpoint
of λα. 1 + α · x. The two induction axioms are perhaps stronger than expected.
They impose that x∗z is also a (pre-)fixpoint of λα. z + x · α and that zx∗ is
a (pre-)fixpoint of λα. z + α · x. From a mathematical point of view, the two
induction axioms amalgamate a fixpoint property and a continuity property in
an intricate way. From a computational point of view, they link iteration with
tail recursion. This is explained further in Chapter 6. In addition, the power of
the induction laws is mandatory for applications.

Kleene algebra can be understood as the algebra of regular expressions under
the regular operations +, · and ∗. In fact, the regular expressions over an alphabet
Σ form the ground terms over Σ in the language of Kleene algebras. By standard
results of formal language theory, the regular languages over the alphabet Σ arise
as the images of the regular expressions under the interpretation homomorphism
that maps regular expressions into languages. In particular, the regular languages
over Σ are generated freely by Σ in the variety of Kleene algebras. This implies
that an equation is derivable from the axioms of Kleene algebra if and only if
its terms are interpreted as the same regular language. The equational theory of
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Kleene algebra is therefore decidable by automata-theoretic tools—it is PSPACE-
complete—and the well known identities from formal language theory hold in
Kleene algebras, for instance,

x∗x∗ = x∗, (3.20)

x∗∗ = x∗, (3.21)

1 + xx∗ = x∗, (3.22)

1 + x∗x = x∗, (3.23)

x(yx)∗ = (xy)∗x, (3.24)

(x+ y)∗ = x∗(yx∗)∗. (3.25)

For verifying imperative programs, however, binary relations are the semantics
of choice. Hence consider the set A×A of all binary relations over a set A under
set union ∪, relational composition ◦, the empty relation ∅, the unit relation IdA

and the reflexive transitive closure relation ∗.

Proposition 3.1. Let A be a set. Then the structure (2A×A,∪, ◦,∗ , ∅, IdA) forms
a Kleene algebra.

This structure is called the full relational Kleene algebra over A. Furthermore
it can be shown that every subalgebra of a full relational Kleene algebra forms a
Kleene algebra—called relational Kleene algebra. For an comprehensive overview
of variants of Kleene algebras, their laws and their models, see [14].

Interestingly for verification purposes, it has been shown that the equational
theory of regular languages is isomorphic to the equational theory of binary re-
lations under the operations of Kleene algebras. This means that the equational
theory of relational Kleene algebras is decidable as well. A decision procedure for
this theory has already been implemented in Isabelle [77] and Coq [97].

3.2 Kleene Algebras with Tests

For modelling tests in conditionals and loops, or assertions of programs, additional
structure is needed. For this purpose, Kleene algebra must be enriched with a
notion of test, which, in a concrete model, would correspond to predicates over
the program state.

Formally a test dioid is a dioid with a boolean algebra embedded into the
subalgebra of elements between 0 and 1, that is, a structure (S,B,+, ·, ¯, 0, 1)
such that

• (S,+, ·, 0, 1) is a dioid and
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• (B,+, ·, ¯, 0, 1) with B ⊆ S is a boolean algebra.

The elements 0 and 1 of the dioid correspond respectively to the least and greatest
elements of the boolean algebra. Similarly, + corresponds to join and · to meet.
Complementation ¯ has no counterpart in the dioid, it is a partial operation that
is defined on B, but not on S −B.

abort = 0,

skip = 1,

x; y = xy,

if b then x else y fi = bx+ b̄y,

while b do x od = (bx)∗b̄.

Figure 3.1: Algebraic semantics for a while language.

A Kleene algebra with tests (KAT) [72] is a Kleene algebra that is also a test
dioid. An algebraic semantics for conditional and while loops can now be given.
Figure 3.1 shows the full algebraic semantics for a while language. Here and
henceforth we write x, y, z for general elements and b, c for tests. Multiplying a
program x with a test b from the left means restricting the input of the program
to those states where the test holds; multiplying from the right means output
restriction. This behaviour is clear in the relational model, in which the compo-
sition of a subidentity P by a relation R filters out the elements in the domain
of R that are not in P . Similar reasoning is applied when composing a relation
R with a subidentity Q.

In the case of KAT the canonical model is given by the so-called guarded
regular languages, which is essentially a refined regular language model. It can
be shown that the guarded regular languages over an alphabet Σ are generated
freely by Σ in the variety of KAT. Therefore an equation is derivable from the
axioms of KAT if and only if its terms are interpreted as the same guarded regular
language [76]. The equational theory of KAT is again decidable by automata-
theoretic tools—and still PSPACE-complete. This decision procedure has been
implemented in Coq [97].

More importantly for our purposes, the standard relational semantics of im-
perative programs forms a model of KAT, as indicated by the following soundness
result.

Proposition 3.2. Let A be a set. Then (2A×A, B,∪, ◦,∗ , ¯, ∅, IdA) forms a Kleene
algebra with tests, where
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• B = {(x, y) | (x, y) ∈ IdA} is the set of all subidentities in 2A×A and

• complementation is defined as P̄ = {(x, y) | (x, y) ∈ IdA ∧ (x, y) /∈ P}.

This model is called the full relational KAT over A and once again every sub-
algebra forms a relational KAT. The equational theories of relational and guarded
regular language KAT are again isomorphic [76], hence the equational theory of
relational KAT is decidable in PSPACE as well. Interestingly, decidability can
be extended into the realm of universal Horn clauses with all equations in the
antecedent being of the form t = 0. Using a procedure known as hypothesis elim-
ination, such quasi-identities can be reduced to equivalent identities [76]. It turns
out that the inference rules of propositional Hoare logic fall into that class.

In sum, KAT provides a minimalist algebraic system that captures the stan-
dard relational semantics for the control flow of while programs and it is even
complete with respect to the equational theory of those programs under the re-
lational semantics. The power of KAT for reasoning under assumptions, which
is essential for program construction and verification, has been demonstrated in
various applications outlined in the introduction.

3.3 Isabelle/HOL Formalisation

We have formalised Kleene algebra with tests in the Isabelle/HOL theorem prov-
ing environment. Some basic features of the tool are introduced while discussing
our formalisation. For further information on Isabelle/HOL we refer to its ex-
cellent standard documentation [89]. Our full formalisation of KAT is available
from the Archive of Formal Proofs [9] and can be read in parallel.

Isabelle is an interactive proof assistant with embedded first-order automatic
theorem provers, SMT-solvers and counterexample generators, apart from provers,
solvers and simplifiers for higher-order logic. As an LCF-style framework it is
based on a small logical core to guarantee correctness. All algebras and models
implemented are consistent with respect to this core and all theorems proved are
correct relative to it. In particular, all proof outputs produced by external the-
orem provers must be internally reconstructed in order to be accepted. Isabelle
has been used to formalise a wide range of mathematical theories and applied
in numerous computing applications, including program correctness and verifica-
tion. Isabelle/HOL, in particular, is based on a typed higher-order logic which
supports reasoning with sets, polymorphic data types, inductive definitions and
recursive functions.

Algebraic hierarchies like the one presented in the previous section are typi-
cally formalised within Isabelle’s axiomatic type class infrastructure. As an exam-
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ple, the following type class formalises dioids using the existing class for semirings
and expanding it with the idempotency axiom for addition.

class dioid = semiring +
assumes add-idem: x + x = x

The operation of addition used by Isabelle is polymorphic; it has type α ⇒
α⇒ α. The type class mechanism supports theory expansion and the formalisa-
tion of subclass relationships. Theorems proved for reducts or superclasses thus
become automatically available in expansions or subclasses. The fact that dioids
form a join-semilattice can, for instance, be captured by the following statement.

subclass ( in dioid) join-semilattice
by unfold-locales (auto simp add: add.commute add.left-commute)

The first line of the statement indicates the proof obligation, which is to prove
that the join semilattices form a subclass of dioids. When calling the tactic
unfold-locales, Isabelle generates all the subgoals necessary to prove this claim.
Because a join-semilattice is a set equipped with an associative, commutative and
idempotent join operation, these are as follows.

1. ∀ x y z. (x + y) + z = x + (y + z)
2. ∀ x y. x + y = y + x
3. ∀ x. x + x = x

These subgoals are automatically discharged by calling Isabelle’s internal theorem
prover auto with lemmas named add.commute and add.left-commute as parame-
ters. These lemmas have been proved in the context of semirings and are available
in the type class of dioid due its definition by expansion.

Isabelle contains a range of built-in tactics, provers and simplifiers in addition
to auto. In particular, its internal Sledgehammer tool is able to invoke external
automated theorem provers and SMT solvers and reconstruct their output inter-
nally in order to guarantee trustworthiness. Isabelle also offers different modes of
interactive reasoning, notably the proof scripting language Isar which supports
human-readable proofs. The example in Figure 3.2 proves a co-simulation law
for the Kleene star in the context of Kleene algebras. The proof is split into
simple human-readable steps, which are proved automatically by Sledgehammer
and internally verified by the prover metis. A fully automatic proof by Isabelle
is possible as well. The lemma is named star-cosim and can be used in future
proofs. metis is the name of Isabelle’s internal theorem prover which reconstructs
proofs given by the external provers called by Sledgehammer. Lemmas such as
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lemma star-cosim: z ·x ≤ y ·z −→ z ·x ? ≤ y?·z
proof

assume z ·x ≤ y ·z
hence y?·z ·x ≤ y?·y ·z

by (metis mult-isol mult-assoc)
also have ... ≤ y?·z

by (metis mult-isor star-1r)
finally have z + y?·z ·x ≤ y ·z

by (metis add-lub-var mult-1-left mult-isor star-ref)
thus ?thesis

by (metis star-inductr)
qed

Figure 3.2: Example of proof in Isar, co-simulation law for Kleene star.

mult-isol or star-ref, which are used by metis, are not provided by the user, but
selected by the Sledgehammer tool according to syntactic criteria and by using
machine learning.

An important Isabelle feature is that the mathematical structures formalised
are all polymorphic—their elements can have various types. Within this infras-
tructure, abstract algebras can be linked formally with their models by instantia-
tion or interpretation statements. This, for instance, allows us to verify Proposi-
tion 3.1 with Isabelle, thus formalising soundness of Kleene algebras with respect
to binary relations.

interpretation rel-kleene-algebra: kleene-algebra (op ∪) (op O) Id {}
(op ⊆) (op ⊂) rtrancl

〈 proof 〉

Once more, Isabelle generates a series of proof obligations that must be discharged
by calling its simplifiers and provers. By formalising such soundness results in
Isabelle, theorems are automatically propagated across classes and models, as
supported by polymorphism. Those proved for Kleene algebra become available
automatically for relations, and in particular for relations over concrete detailed
store models.

Our formalisation of Kleene algebra with tests integrates into the existing
Kleene algebra hierarchy in Isabelle [14]. More precisely, we have formalised
KAT as an expansion of Kleene algebras. Due to the nature of tests, we have
formalised three different approaches and developed comprehensive libraries of
facts for these. The first formalisation is one-sorted. It implements functions for
tests and antitests (boolean test complements) that generate the boolean algebra
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of tests as their image. The second, a two-sorted algebra, follows the standard
approach of embedding a boolean algebra of tests into a dioid. Both approaches
are purely axiomatic; they do not mention an underlying carrier set. While such
axiomatic versions often suffice for verification applications, a third formalisation
with explicit carrier sets is provided as a basis for mathematical investigations.

The first implementation is based on an unpublished manuscript by Peter
Jipsen and Georg Struth. It is inspired by a previous axiomatisation of domain
semirings in [38]. The main idea is to add a function t to a semiring or dioid S
and axiomatise it in such a way that the image t(S) forms a boolean subalgebra
of tests. The function t is assumed to be a retraction, that is, it satisfies t ◦ t = t.
It then follows from general properties of retractions that p ∈ t(S) if and only if
t(p) = p, where t(S) denotes the image of S under t. We can use this fixpoint
property for typing tests and verifying closure conditions. For encoding test
complementation, however, it is more suitable to axiomatise an antitest function
n which satisfies t = n ◦ n.

class dioid-tests-zerol = dioid-one-zerol + comp-op +
assumes test-one: n n 1 = 1
and test-mult : n n (n n x · n n y) = n n y · n n x
and test-mult-comp: n x · n n x = 0
and test-de-morgan: n x + n y = n (n n x · n n y)

abbreviation test-operator :: ′a ⇒ ′a where t x ≡ n (n x)

As a matter of fact, if these axioms are added to an arbitrary semiring, idem-
potence is enforced. It is straightforward to verify that tests satisfy the boolean
algebra axioms, but unfortunately this fact cannot be expressed explicitly in Is-
abelle by a subclass or sublocale statement, simply because the carrier set S is not
explicit in a type class. Thus we cannot formally integrate Isabelle’s library for
boolean algebra and had to build up our own with the most important boolean
theorems for tests. The expansion of test dioids to Kleene algebras with tests is
straightforward.

class kat = kleene-algebra + dioid-tests

We have also verified that our test axioms are independent, using Isabelle’s
counterexample generator nitpick to find counterexamples when trying to prove
each individual axiom from the remaining ones. Despite its limitations, this
formalisation is simple and yields a high degree of automation. Overall, 122
theorems about Kleene algebras with tests and boolean algebra were proved, all
of them fully automatically.
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The second, a two-sorted formalisation of test dioids, integrates Isabelle’s
boolean algebra type class more directly. Its implementation is due to Alasdair
Armstrong. As it is two sorted, it requires Isabelle’s locale mechanism instead
of type classes. For our purpose, however, the precise differences between type
classes and locales are irrelevant.

locale dioid-tests-zerol =
fixes test :: ′a::boolean-algebra ⇒ ′b::dioid-one-zerol
and not :: ′b::dioid-one-zerol ⇒ ′b::dioid-one-zerol
assumes test-sup: test (sup p q) = ‘p + q‘
and test-inf : test (inf p q) = ‘p · q‘
and test-top: test top = 1
and test-bot : test bot = 0
and test-not : test (−p) = ‘−p‘
and test-inj : ‘p = q‘ −→ p = q

In this formalisation, the function test embeds the boolean algebra into the dioid
as usual. From a mathematical point of view it is an injective boolean algebra
homomorphism. The class of dioids with tests is expanded by the operation not ,
which corresponds to boolean complementation at the level of embedded tests.
The function ‘ − ‘ acts on the syntax tree of expressions putting the string test
in front of each leaf labelled with one of the variables commonly used for tests.
This replaces expressions using the function test with the typical KAT notation,
where the embedding is implicit. Hence with this syntax translation, one can
write ‘p+ q‘ for the join of two tests.

In this two-sorted approach, Isabelle’s libraries for boolean algebras become
once more automatically available. From an automation point of view, however,
we noted little difference between the two approaches. Here we do not explicitly
show the expansion of test dioids to Kleene algebras with tests.

The third and last implementation of test dioids provides explicit carrier sets.
It follows the general Isabelle recipe for setting up such algebras. This formalisa-
tion expands carrier-based formalisations of dioids and boolean algebras. In this
setting, algebraic signatures are specified in records. The axioms yield a dioid
where the carrier set of tests is a subset of the main carrier and the operations
are embedded as usual.

This approach is supported by Armstrong’s carrier-based background theories,
implemented from scratch with more than 250 theorems about lattices, dioids and
Kleene algebras. Because of the additional constraints, Sledgehammer may strug-
gle to automate simple proofs. Hence there is a trade-off between mathematical
precision and automation.
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record ′a test-dioid-structure = ′a dioid + test :: ′a ord

abbreviation tests A ≡ carrier (test A)

locale dioid-tests-zerol =
fixes A :: ′a test-dioid-structure (structure)
assumes is-dioid : dioid-zerol A
and test-subset : tests A ⊆ carrier A
and test-le: le (test A) = dioid .nat-order A
and test-ba: boolean-algebra (test A)
and test-one: top (test A) = 1
and test-zero: bot (test A) = 0
and test-join: [[x, y ∈ tests A]] =⇒ join (test A) x y = x + y
and test-meet : [[x, y ∈ tests A]] =⇒ meet (test A) x y = x · y

In sum, the three formalisations all have their advantages and disadvantages. The
one-sorted and two-sorted implementation offer comparable proof automation
and might be superior for program verification applications. The carrier-based
implementation leads to less automatic proofs, but for investigations in universal
algebra, for instance, this price needs to be paid.

3.4 Propositional Hoare Logic

Propositional Hoare logic (PHL) denotes Hoare logic without the assignment rule.
Hence it contains precisely the rules of Hoare logic which concern the control
flow. It is well known that this fragment can be derived within KAT [73], hence
KAT ⊆ PHL, and it is easy to see that it is even a strict subclass. Hoare logic
essentially offers one inference rule per programming construct for simple while
programs and its soundness and relative completeness with respect to the stan-
dard relational semantics makes it a powerful tool for verification condition gen-
eration: it can be applied in nondeterministic fashion to the syntax tree of any
simple while-program.

This section briefly reports on the derivation of PHL in KAT with Isabelle.
The central feature of Hoare logic is the Hoare triple, the validity of which can
be encoded in KAT as

{p} x {q} ⇔ pxq̄ = 0. (3.26)

The right-hand side states that there are no successful terminating executions of
program x from states where assertion p holds into states where assertion q fails.
In other words, if x is executed from precondition p and if it terminates, then
postcondition q must hold after its execution. Here and henceforth we write p,
q and r for assertions; although in practice assertions are tests, we differentiate
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tests in conditionals or loops and assertions about the program by notation.
Interestingly, this encoding leads to an expression of the form t = 0, which is
amenable to hypothesis elimination.

Lemma 3.1. In every KAT,

pxq̄ = 0⇔ px ≤ xq. (3.27)

Proof. Suppose pxq̄ = 0. Then px = px(q + q̄) = pxq + pxq̄ = pxq ≤ xq.
Conversely suppose px ≤ xq, then pxq̄ ≤ xqq̄ = 0.

We show this proof in order to illustrate the simplicity of equational reasoning
in KAT. It therefore comes as no surprise that such proofs can be discharged
automatically in Isabelle, via its Sledgehammer tool.

The equivalence in Lemma 3.1 justifies px ≤ xq as an alternative definition of
the validity of Hoare triples. In fact it is often preferable in proofs. Intuitively
it indicates that all successful executions of x with inputs restricted by p are
contained in the set of executions of x with output restricted by q.

Proposition 3.3 ([73]). KAT ⊆ PHL, that is, the following inference rules are
derivable in KAT.

{p} skip {p}, (3.28)

p ≤ p′ ∧ q′ ≤ q ∧ {p′} x {q′} ⇒ {p} x {q}, (3.29)

{p} x {r} ∧ {r} y {q} ⇒ {p} x; y {q}, (3.30)

{pb} x {q} ∧ {pb̄} y {q} ⇒ {p} if b then x else y fi {q}, (3.31)

{pb} x {p} ⇒ {p} while b do x od {b̄p}. (3.32)

Note that p ≤ q in KAT corresponds to implication p→ q in Hoare logic.

Proof. Each derivation requires essentially one line of equational reasoning. The
skip rule is straightforward. In the consequence rule, assuming p ≤ p′, q′ ≤ q
and p′x ≤ xq′, then by monotonicity we derive px ≤ p′x ≤ q′x ≤ qx. The
sequential rule is proved by monotonicity and associativity of multiplication, that
is, assuming px ≤ xr and ry ≤ yq, then pxy ≤ xry ≤ xyq. In the conditional
case, if pbx ≤ xq and pb̄y ≤ yq, then

p(bx+ b̄y) = pbx+ pb̄y = b(pbx) + b̄(pb̄y) ≤ bxq + b̄yq = (bx+ b̄y)q.

Finally, the while rule assumes pbx ≤ xp, thus

pbx ≤ bxp⇒ p(bx)∗ ≤ (bx)∗p⇒ p(bx)∗b̄ ≤ (bx)∗pb̄ = (bx)∗b̄p.

This last derivation uses the co-simulation lemma proved in §3.3.
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The manual proof of the while rule can be translated more or less directly
into an Isabelle proof.

lemma while-rule: [[test p; test b; {p·b}x{p}]] =⇒ {p}(b·x)?·!q{p·!b}
proof (unfold hoare-triple-def, auto)

assume assms: test p and test b and p·b·x ≤ x ·p
hence b·p·b·x ≤ b·x ·p

by (metis mult.assoc mult-isol)
thus p·((b·x)?·!b) ≤ (b·x)?·!b·(p·!b)

by (metis assms test-mult-comm-var star-sim2 mult-isor kat-eq3 mult.assoc test2)
qed (metis test-comp-closed-var test-mult-closed)

Once more this illustrates the simplicity and concision of reasoning about
programs in KAT. It is reflected by the degree of automation in Isabelle proofs.
Although these proofs leave nothing to desire, it is worth pointing out that the
validity of all inference rules of PHL could have been decided, since all identities
in antecedents are of the form t = 0. Obviously, formulas like p ≤ p′ can be
rewritten as pp̄′ = 0 in the consequence rule.

3.5 Demonic Refinement Algebras

Total program semantics require another variant of Kleene algebra [117, 118].
This section presents demonic refinement algebra (DRA), a Kleene algebra in
which the right annihilation axiom x0 = 0 is absent and which is expanded by
an operation for possibly infinite iterations ∞ which satisfy the axioms

x∞ = x∗ + x∞0, (3.33)

1 + xx∞ = x∞, (3.34)

y ≤ xy + z ⇒ y ≤ x∞z. (3.35)

They are respectively known as the isolation axiom, unfold axiom and the coin-
duction axiom.

This captures total correctness, since an agent has no control over termination;
(bx)∞b̄, for instance, models a while loop which may not terminate. For similar
reasons, x0 = 0 is invalid due to potentially infinite processes. In the isolation
axiom, x∗0 annihilates if all processes in x are finite whereas x∞0 projects on the
strictly infinite processes of x∞. A strict infinite iteration operator ω is sometimes
used, where xω = x∞0.

The refinement community’s notation unfortunately deviates from the regular
algebra notation. Their refinement order v is the converse of ≤; the symbols >,
u, ; and ω are used instead of 0, +, · and ∞. Finally tests are known as guards.
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We have formalised demonic refinement algebras in Isabelle/HOL, integrating
into the existing Kleene algebra hierarchy [14]. More precisely, we have for-
malised demonic refinement algebra as an expansion of Kleene algebra with a
left annihilator, adding simply the unfold, coinduction and isolation axiom for
∞. By this expansion, all facts proved for this variant of Kleene algebra become
automatically available in demonic refinement algebra.

class dra = kleene-algebra-zerol + strong-iteration-op +
assumes iteration-unfoldl : 1 + x · x∞ = x∞

and coinduction: y ≤ z + x · y −→ y ≤ x∞ · z
and isolation: x∞ = x ? + x∞·0

We have developed a comprehensive library of theorems of demonic refinement
algebra from the literature. Many equational algebraic theorems can be proved
fully automatically. The semantics of choice, in this case, is a predicate trans-
former algebra, which we discuss in detail in Chapter 7.

Demonic refinement algebras can also be expanded by tests in the obvious
way. All axiomatisations of the algebraic structures from the previous section
have been also given for dioids without the right annihilation law x0 = 0. This
makes all three formalisations compatible with demonic refinement algebra. The
one-sorted formalisation of tests, for instance, is

class dra-tests = dioid-tests-zerol + dra

An expansion to proper test dioids is, of course, given in our Isabelle theory files.
The addition of tests or guards makes demonic refinement algebra suitable for

program development applications. Additionally, we have formalised the dual no-
tion of assertion. Assertions are used as context information for weakest precon-
dition reasoning [117, 118] in guarded command languages. We have formalised
assertions as po = p̄> + 1. The constant > denotes the greatest element of the
demonic refinement algebra, which exists in this class and is equal to 1∞. Intu-
itively, an assertion po aborts when p is false and skips when p is true. We have
verified that guards and assertions are adjoints of Galois connections,

px ≤ y ⇔ x ≤ poy, (3.36)

xpo ≤ y ⇔ x ≤ yp, (3.37)

as well as further properties from the literature.
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Atomicity Refinement Theorem

Demonic refinement algebra is also interesting for modelling concurrency in Back’s
action system framework [18]. As a complex example we have verified three
algebraic versions of Back’s atomicity refinement theorem [17, 117, 118, 33, 65].
For an explanation we refer to these articles. Here we only discuss algebraic
aspects and proof automation. Von Wright’s variant states that the identity

x(y + z + v + w)∞p ≤ x(yz∞p+ v + w)∞

can be derived from the 12 assumptions

p ≤ 1, x = xp, y = py, pz = 0, z∞ = z∗, v∞ = v∗,

vz ≤ zv, vw ≤ wv, vp ≤ pv, yw ≤ wy, zw ≤ wz, pw ≤ wp.

Note that z∞ = z∗ and w∞ = w∗ express that z and w are finite. Von Wright’s
original proof covers about 3 pages. Our Isabelle proof essentially translates
this proof at this level of granularity; a more coarse grained automation seems
difficult for metis. The main reason is that the terms appearing in this proof are
quite long and many rules can match. This combinatorics is difficult to handle
in particular for metis, which is inferior to Sledgehammer’s external provers. In
fact, a more general proof of this theorem with Prover9 [65] was much more
coarse grained but required excessive running times. Theorems like this provide
interesting benchmarks for Sledgehammer in particular and automated theorem
provers in general. This general version can also be found in our Isabelle files.

We have also verified Cohen’s simplified version of the atomicity refinement
theorem [33] which derives the equation

(x+ y + z)∞ = (pz)∞(x+ p̄z + yp̄)∞(yp)∞

from the assumptions t p = p, x0 = 0, y0 = 0, pyp̄ = 0, pzp̄ = 0, ypx ≤ xy,
xpz ≤ zx and ypz ≤ zy. Cohen assumes partial correctness, so we must explicitly
express that x and y must terminate: x0 = 0 and y0 = 0. Our proof requires 10
particular steps with Isar.

As a last example, Figure 3.3 shows the proof of the version due to Höfner,
Struth and Sutcliffe [65].

The results in this section show that libraries that support program refine-
ment can be developed quite easily at the algebraic level with Isabelle. Demonic
refinement algebra is part of more powerful calculi which have been described, for
instance, in the book of Back and von Wright [19]. Their approach is based on
lattice and fixpoint theory. It can easily be obtained by theory expansion from
our formalisation of demonic refinement algebra.
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theorem atom-ref-back-struth:
assumes s ≤ s·q a ≤ q ·a q ·b = 0

r ·b ≤ b·r r ·q ≤ q ·r
(a + r + b)·l ≤ l ·(a + r + b) q ·l ≤ l ·q
r∞ = r? q ≤ 1

shows s·(a + b + r + l)∞·q ≤ s·(a·b∞·q + r + l)∞

proof −
have s·(a + b + r + l)∞·q = s·l∞·(a + b + r)∞·q

by (metis add .commute assms(6 ) iteration-sep mult .assoc)
also have ... = s·l∞·(b + r)∞·(a·(b + r)∞)∞·q

by (metis add-assoc ′ iteration-denest add .commute mult .assoc)
also have ... = s·l∞·b∞·r∞·(a·b∞·r∞)∞·q

by (metis assms(4 ) iteration-sep mult .assoc)
also have ... ≤ s·l∞·b∞·r∞·(q ·a·b∞·r∞)∞·q

by (metis assms(2 ) iteration-iso mult-isol-var eq-refl order-refl)
also have ... = s·l∞·b∞·r∞·q ·(a·b∞·r∞·q)∞

by (metis iteration-slide mult .assoc)
also have ... ≤ s·q ·l∞·b∞·r∞·q ·(a·b∞·r∞·q)∞

by (metis assms(1 ) mult-isor)
also have ... ≤ s·l∞·q ·b∞·r∞·q ·(a·b∞·r∞·q)∞

by (metis assms(7 ) iteration-sim mult .assoc mult-double-iso)
also have ... ≤ s·l∞·q ·r∞·q ·(a·b∞·r∞·q)∞

by (metis assms(3 ) iteration-idep mult .assoc order-refl)
also have ... ≤ s·l∞·q ·r∞·q ·(a·b∞·r?·q)∞

by (metis assms(8 ) eq-refl)
also have ... ≤ s·l∞·q ·r∞·q ·(a·b∞·q ·r?)∞

by (metis assms(5 ) iteration-iso mult .assoc mult-isol star-sim1 )
also have ... = s·l∞·q ·r∞·q ·(a·b∞·q ·r∞)∞

by (metis assms(8 ))
also have ... ≤ s·l∞·r∞·q ·(a·b∞·q ·r∞)∞

by (metis assms(9 ) mult-1-right mult-double-iso mult-isor)
also have ... ≤ s·l∞·r∞·(a·b∞·q ·r∞)∞

by (metis assms(9 ) mult-1-right mult-double-iso)
also have ... = s·l∞·(a·b∞·q + r)∞

by (metis add .commute mult .assoc iteration-denest)
also have ... ≤ s·(a·b∞·q + r + l)∞

by (metis add .commute iteration-subdenest mult .assoc mult-isol)
finally show ?thesis .

qed

Figure 3.3: Proof of Back’s atomicity refinement theorem in Isabelle/HOL. This
version is due to Höfner, Struth and Sutcliffe [65].
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3.6 Loop Transformation Example

We now consider a classical program transformation example which has first
been considered in the partial correctness setting of Kleene algebra with tests.
We formalise Kozen’s loop transformation theorem:

Proposition 3.4 ([72]). Every sequential while program, appropriately augmented
with subprograms of the form z(bc + b̄c̄), can be viewed as a while program with
at most one loop under certain preservation assumptions.

Hence any while program, suitably augmented with finitely many new dummy
subprograms, is equivalent to a simple while program of the form

x; while b do y od,

where x and y do not contain any nested loops.
A key ingredient of Kozen’s approach are commutativity conditions of the

form bx = xb. We use preservation conditions instead, which are of the form
bx = bxb and b̄x = b̄xb̄. These conditions state that x preserves b, that is,
the validity of b is not changed by the execution of x. In Kleene algebra with
tests, these two conditions are equivalent. However we prove the transformation
theorem in the weaker setting of pre-Conway algebras, where the former imply
the latter, but not vice versa. Pre-Conway algebras are defined as

class pre-conway = pre-dioid-one-zerol + dagger-op +
assumes dagger-denest : (x + y)† = (x †·y)†·x †
and dagger-prod-unfold : (x ·y)† = 1 + x ·(y ·x )†·y
and dagger-simr : z ·x ≤ y ·z −→ z ·x † ≤ y†·z

As the first line states, they are based on pre-dioids with only a left-annihilating
zero [14]. In these structures, the left distributivity law x(y + z) = xy + xz is
weakened to sub-distributivity xy+xz ≤ x(y+z) which is equivalent to isotonicity
x ≤ y ⇒ zx ≤ zy. Furthermore, the right annihilation law x0 = 0 is absent.
To avoid confusion we use the operator † instead of ∗. The denest and product-
unfold axioms are part of Conway’s classical axioms for regular algebra [34], but
several other axioms, including the idempotency axiom x†† = x†, are absent.
In particular, Conway’s classical axioms are based on a full dioid. In fact, the
dioid-based version plus dagger idempotence is equivalent to the axioms of right
Kleene algebra; and complete with respect to the equational theory of regular
expressions (see [52] for an overview).

In preparation to the proof of the loop transformation theorem we have verified
a number of laws about the dagger in pre-Conway algebra, for instance isotonicity
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and unfold laws for the dagger, and a slide rule:

x ≤ y ⇒ x† ≤ y†, (3.38)

x† = 1 + xx†, (3.39)

x† = 1 + x†x, (3.40)

x(yx)† = (xy)†x; (3.41)

along with some preservation properties,

bxb = bx⇒ bx† = (bx)†b, (3.42)

bxb = bx⇒ b(bx+ b̄y)† = (bx)†b. (3.43)

The proof itself is by structural induction on while programs. This can be
formalised in Isabelle by defining a grammar for programs and imposing the
quotient of pre-Conway algebra identities, using Isabelle’s quotient package. We
only discuss the individual cases of this inductive argument. For each program
construct, an inner loop is moved to the outside of a program and these program
transformations are verified in pre-Conway algebra with tests. Programs can be
augmented by dummy subprograms under preservation assumptions. We follow
Kozen’s case analysis, but proofs for individual cases are different due to our more
general assumptions and the weaker axioms of pre-Conway algebras. Following
Kozen, we take the sequential composition operator to be of lower precedence than
the other program constructs. We need to prove three cases: for conditionals,
loops and sequential composition.

For conditionals, Kozen shows that the following programs

z; bc+ b̄c̄;

if b

then (x1; while d1 do y1 od)

else (x2; while d2 do y2 od)

fi

and

z; bc+ b̄c̄;

if c then x1 else x2 fi;

while cd1 + c̄d2 do (if c then y1 else y2 fi) od

are equivalent.
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Translated into pre-Conway algebra we must prove that

z(bc+ b̄c̄)(bx1(d1y1)†d̄1 + b̄x2(d2y2)†b̄2) =

z(bc+ b̄c̄)(cx1 + c̄x2)((cd1 + c̄d2)(cy1 + c̄y2))†cd1 + c̄d2.

This consists of two phases. First, the two terms are simplified by right dis-
tributivity, yielding two subterms each. Second, we proved this by verifying the
following two equations between these subterms, using preservation:

bcx1(d1y1)†d̄1 = bcx1(cd1y1 + c̄d2y2)†(cd̄1 + c̄d̄2)

bc̄x2(d2y2)†d̄2 = bc̄x2(cd1y1 + c̄d2y2)†(cd̄1 + c̄d̄2)

For nested loops, Kozen proves the following two programs equivalent:

while b do (x; while c do y od) od

if b then x; while (b+ c) do (if c then y else x fi) od fi

The corresponding proof in pre-Conway algebra was fully automatic. No preser-
vation assumptions are needed for the proof.

(bx(cy)†c̄)†b̄ = bx((b+ c)(cy + c̄x))†(b+ c) + b̄

The case of sequential composition has two subcases. The first one—called
postcomputation—composes a while loop with a loop-free y program:

(while b do x od); y

if b̄ then y else (while b do (x; if b̄ then y fi) od) fi

The corresponding identity in Conway algebra is

(bx)†b̄y = b̄y + b(bx(b̄y + b))†b̄.

Due to the weaker setting, our proof differs from Kozen’s.

b(bx(b̄y + b))†b̄ = bb̄+ bbx((b̄y + b)bx)†(b̄y + b)b̄

= bx(b̄ybx+ bx)†b̄yb̄

= bx(b̄y0 + bx)†b̄y

= bx(bx)†(b̄y0)†b̄y

= bx(bx)†b̄y(0b̄y)†

= bx(bx)†b̄y.
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The first step uses the product unfold law. The second step uses right distribu-
tivity and boolean algebra. The third step uses the preservation assumption
b̄y = b̄yb̄. The forth step uses denesting and right annihilation. The fifth step
uses the sliding rule. The last step uses right annihilation and the rule 0† = 1,
which can be derived from the left unfold law. Finally, adding the term b̄y to
both sides and applying unfold yields the desired identity.

The second subcase is the composition of two while loops, which leads to the
equivalence of

while b do x od;

while c do y od

and

if b̄

then while c do y od

else while b do (x; if b̄ then while c do y od fi) od

fi.

The identity to be proven is

(bx)†b̄(cy)†c̄ = b̄(cy)†c̄+ b(bx(b̄(cy)†c̄+ b))†b̄.

Its proof has two steps. We first prove that (cy)†c̄ preserves b, that is, b(cy)†c̄ =
b(cy)†c̄b and c̄(cy)†c̄ = b̄(cy)†c̄b̄. Then we prove the identity by applying the
previous subcase. This finishes the case analysis.

We have formally shown that every Kleene algebra with tests is a pre-Conway
algebra where we interpret † as ∗.

sublocale kat ⊆ pre-conway star 〈proof〉

Thus our proof generalises Kozen’s result; and Isabelle makes our theorem auto-
matically available in Kleene algebra with tests. We have also shown that every
demonic refinement algebra is a pre-Conway algebra when interpreting † as ∞.

sublocale dra-tests ⊆ pre-conway strong-iteration 〈proof〉

Hence our result holds in demonic refinement algebra as well; our proof generalises
a previous result by Solin [105].

Finally, Rabehaja and Sanders [99] have further generalised the loop refine-
ment theorem to a probabilistic demonic refinement algebra in which the star
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and the isolation axiom are absent and the left distributivity axiom is weak-
ened to general left sub-distributivity and to a special left distributivity axiom
b(x + y) = bx + by for tests b. We have adapted our proof so that it covers all
three cases. We do not display this most generic result here since probabilistic
variants are not the subject of this article. Our Isabelle file contains all relevant
details [9]. Note that left distributivity does not hold in pre-Conway algebras
and that the product unfold axiom and simulation axiom cannot be derived from
Rabehaja and Sanders’ axioms. The decision whether the Conway-style axiom set
is appropriate for probabilistic reasoning depends on the choice of probabilistic
semantics.

In pre-Conway algebras, the dagger axioms are too weak to distinguish be-
tween finite and potentially infinite iteration. Conway’s axiom x†† = x†, which
we have dropped, holds of ∗, but not of ∞, since x∞∞ = >. Conway has analysed
the relevance of this axiom for regular algebras and remarked that it is equivalent
to 1† = 1. In demonic refinement algebra, however, 1∞ = >.

3.7 Conclusions

This chapter extends a reference formalisation for variants of Kleene algebras in
Isabelle/HOL [13] by two algebras that are important for program verification
and correctness applications: Kleene algebras with tests and demonic refinement
algebras. The library provides more than 10 algebraic structures and hundreds
of theorems. The applicability of the algebraic approach was demonstrated by
two program transformation examples: the atomicity refinement theorem and
Kozen’s while loop transformation theorem. The examples are independent of
a concrete model and make evident the advantages of an abstract middle layer
algebraic semantics of programs.

A coherent integration of algebraic methods into program analysis tools has
thereby been achieved. The associated Isabelle theories in the Archive of Formal
Proofs [9] serve as a reference for extensions and further applications.
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Chapter 4

A Basic Verification Tool

This chapter shows how to develop a quite simple, but powerful and expressive
post-hoc verification tool from Kleene algebras with tests and its variants. It
explains the design principle of building tools that it will be used throughout
this thesis. It also shows how to integrate the algebra with its data level in
Isabelle/HOL. The approach has been successfully used in different contexts [8,
10, 7, 43, 11]. It presents the material published on [10, 11].

4.1 Principles of Tool Design

Isabelle offers axiomatic type classes and locales mechanisms capable of formal-
ising algebraic hierarchies. These algebras can be linked with their models via
soundness proofs, or in Isabelle jargon, via instantiation or interpretation. These
mechanisms for designing modular mathematical components were explained in
more detail in §3.3. Algebras axiomatised in this way are polymorphic, i.e., their
type is parametric and can be instantiated. For instance, Kleene algebras can
be instantiated to binary relations over the same signature, and then further
to binary relations over program stores with arbitrary data domain. Theorems
are propagated across the hierarchy: theorems proved in an algebraic class are
automatically available in all models and subclasses; models established for an
algebraic class are automatically recognised as models of all superclasses.

It is therefore possible to design program correctness tools along two modular
principles. The first characterises the transition from an algebraic semantics to an
intermediate model and further to a concrete set-theoretical program semantics,
including a notion of state as well as data types and data structures. This is
shown in Figure 4.1. Computational algebras are used to specify the control flow
of computation of the target programming language and to derive equationally
program transformation, verification conditions or refinement laws. For example,

41



algebra intermediate semantics concrete semantics

control flow abstract data flow concrete data flow

verification conditions - verification tools

transformation laws - construction tools

Figure 4.1: Principles of tool design

as shown in §3.4, KAT is expressive enough to derive the rules of propositional
Hoare logic (ignoring the assignment rule), thus generating verification conditions
for simple while programs. In addition, its refinement extension rKAT (cf. §5.1)
allows the derivation of control flow laws of Morgan’s refinement calculus.

The intermediate semantics correspond to a set-theoretical computational
model without a concrete notion of state, such as store and heap. Here, we re-
strict our attention to binary relations, which is the standard semantics of sequen-
tial imperative programs; other models include traces, languages and matrices.
Chapter 7 demonstrates the use of the same approach for predicate transformer
semantics. This layer can be useful to generate more expressive verification condi-
tions, such as Kleymann’s consequence inference rule. However, it cannot derive
assignments axioms, since there is no notion of variables.

Finally, in the concrete semantics, states are instantiated to a concrete type.
In Isabelle, states can be typically implemented as a record of program variables,
in order to handle variables of differing types [103]. The update function of the
record is used to interpret assignment statements of the programming language.
In this layer, fully fledged Hoare logics and/or refinement calculi can now be
derived as theorems.

The second principle is characterised by the use of domain-specific algebras
within a subclass hierarchy for particular features of the programming language.
For instance, tests in a command statement can be captured by boolean algebras,
whereas the control flow of a simple while language is captured by KAT, which
embeds the boolean algebra of tests. In addition, assertions about a program,
which are more expressive than tests, can be capture by complete boolean alge-
bras, which can again be embedded in quantales with tests. The latter can then
express a notion of recursion and more powerful transformation laws can be de-
rived. While these algebras focus on program construction and verification in a
partial correctness setting based on a relational semantics, as seen in the previous
chapter, algebras for total correctness can also be obtained by dropping some of
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the Kleene algebra axioms and have been implemented in Isabelle [8, 15].
These principles with respect to algebraic subclasses and computational model

refinement allow a clear and modular implementation of algebraic and set-theoretic
components in Isabelle that can be combined and extended for the development
of correctness tools. Ultimately, verification of concrete program are performed in
the most concrete model by a shallow embedding of the programming language.
The algorithmic verification and construction examples show in this thesis indi-
cate that users can work under the assumption that they manipulate concrete
programming language syntax, intuitive algebraic laws of programming or con-
crete semantic objects in a seamless way.

In addition, the use of domain-specific mathematical components splits the
verification task in different concerns. When dealing with the control flow, au-
tomation is increased, since algebraic reasoning is well supported by Isabelle’s
integrated first-order theorem provers and SMT solvers. For set-theoretic models
or inductive reasoning with data types, which is often higher-order, Isabelle offers
different provers and simplification procedures. Moreover, the new proof method
language Eisbach [80] available in Isabelle 2015 allows a rapid prototyping of
special-purpose tactic, such as a verification condition generator. This modular-
ity of components and separation of concerns makes program verification proofs
simple, concise and highly automatic.

The elaboration of our approach with concrete models and algebras is the sub-
ject of the remainder of this thesis. Here, we restrict ourselves to the verification
and refinement of imperative programs in a partial correctness setting. Similar
algebras for a total correctness setting have been discussed elsewhere [8]. In this
chapter, we use the relational model as the concrete model and Kleene algebra
with tests as the abstract algebra. Tools for separation logic [43] (discussed in
the second part of this thesis) and for concurrency verification [7] demonstrate
the versatility of the approach.

4.2 Data Flow Integration

This section sets up the concrete relational semantics of imperative programs by
supplying notions of program state and state updates, and uses these notions to
derive Hoare’s assignment axiom. This gives us a full Hoare logic as an extension
of PHL based on KAT. The formalism is used for verification condition generation;
it dispenses with the entire control flow in program verification applications.
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Soundness of PHL

As shown in previous sections, Kleene algebra with tests is expressive enough to
derive propositional Hoare logic. In order to prove that our derivation of Hoare
logic is sound, it is enough to prove that the concrete semantics used form a KAT.
The semantics of choice for an imperative sequential language is the relational
model, in which the semantics of each command of the while language, except
assignment, can be defined algebraically and it is shown in Figure 3.1.

An interpretation proof in Isabelle links the algebra with its model. The actual
proof is straightforward, as explained in §3.3, it relies on the fact that relations
form a Kleene algebra and sets form a boolean algebra. The only axioms to be
proved are the ones about the test operator, which can be dispatched by the
tactical auto.

interpretation rel-kat: kat (op ∪) (op O) Id {} (op ⊆) (op ⊂) rtrancl (λx. Id ∩ (- x))
by default auto

Lifting Operators

The implementation of KAT used in this chapter is the singled sorted version,
i.e., all the elements in the algebra are of the same sort. In the concrete model,
the sort of choice are relations R ⊆ Σ × Σ between states. We write Σ as the
set of all possible states. Nevertheless, as it is usual, tests and assertions need to
be modelled as set of states. For the relational model we need then to inject a
test/assertion P ⊆ Σ into relational subidentities.

bBc = {(σ, σ) | σ ∈ B}

Additionally, atomic commands, such as assignments, are usually defined as
a state transformer f : Σ → Σ. The operator 〈f〉, so-called graph of function f ,
lifts state transformers to relations.

〈f〉 = {(σ, f(σ)) | σ ∈ Σ}

Following Nipkow [87] and others [102]. The last operator becomes essentially
a new command in our while language. This command is usually called basic in
the literature. A new inference rule in Hoare logic is needed to deal with it.

Lemma 4.1. The following inference rule is derivable in relational KAT.

P ⊆ {σ | f(σ) ∈ Q} ⇒ {bP c} 〈f〉 {bQc}.
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The Isabelle proof is simple and automatic. This rule, which cannot be derived
from the algebra, is the only one, proved in the model, needed to implement our
basic verification tool.

Assignment Statement

As mentioned before, states are defined in Isabelle as a record of program vari-
ables. For each variable, Isabelle provides a retrieve and an update function,
which support variables of any Isabelle type. Isabelle’s built-in list data type
and its built-in list libraries can thus be used, for instance, for reasoning about
list-based programs. Of course, due to polymorphism, other Isabelle data types
may be used as well, and in combination.

We implement assignment statements as relations of type Σ× Σ such as

(‘x := e) ≡ 〈λσ. x update (e σ) σ〉 ,

where ‘x is a program variable, x update is its update function provided by Is-
abelle’s record package, and e an expression of the same type as ‘x. Here and
henceforth, all program variables are prefixed by ‘.

An assignment axiom can be derived as corollary of the inference rule for state
transformers in Lemma 4.1, completing hence the implementation of Hoare logic
in Isabelle/HOL.

Corollary 4.1. Hoare’s assignment axiom is derivable in relational KAT.

P ⊆ Q[e/‘x]⇒ {bP c} (‘x := e) {bQc},

where Q[e/‘x] denotes substitution of variable ‘x by evaluated expression e in Q.

This yields the following result.

Theorem 4.1. The rules of Hoare logic are derivable in relational KAT.

Annotated Commands

Find a suitable invariant for a while loop is in general an undecidable prob-
lem. Nevertheless, it is a subject of intense research; machine learning, reducing
the scope of variables, abstract interpretation and other advance techniques are
promising approaches to handle invariants.

In this basic verification tool, we do not handle invariants. A while loop needs
to be correctly annotated. To enhance verification condition generation, we have
verified the following additional inference rule

p ≤ i ∧ pi ≤ q ∧ {ib} x {i} ⇒ {p} while b inv i do x od {q}.
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This result is easily derived by the consequence and the while rule of Hoare logic.
Although it is not strictly necessary, we have added the possibility of annotate

the program in any point, giving a specific precondition and/or postcondition to
a command, that is, we have verified the rule

p ≤ p′ ∧ {p′} x {q′} ∧ q′ ≤ q ⇒ {p} {p′}x{q′} {q}.

These are not new commands, but rewriting of previous commands with ex-
tra information that can be used by a tactic, such as a verification condition
generator. For that reason, the following forgetful equalities hold:

while b inv i do x od = while b do x od,

{p′}x{q′} = x.

Note the abuse of notation for an annotated program and a Hoare triple. This is
common practice in the literature and it will be clear by the context.

Verification Condition Generation

Isabelle 2015 offers the new proof method language Eisbach [80], in which a proof
tactic hoare can be easily developed using the rules of Hoare logic. The tactic
generates verification conditions automatically and tries to blast away the entire
control structure, thus generating verification conditions at the data level.

The full implementation of hoare in Isabelle/HOL is shown in Figure 4.2.
The rules of Hoare logic are grouped under a list of theorems named hl-rules. A
tactic is created by the keyword method, which might include lists of lemmas as
arguments declared after uses. The syntax used to define a method is essentially
the same one when proving a lemma in Isabelle. The operations are similar to
the ones for regular expressions, where ‘|’ is choice, ‘,’ is sequential operation, and
‘+’ and ‘?’ are quantifiers indicating one or more and zero or one respectively.
The hoare tactic essentially applies each rule of Hoare logic by programming
construct, decomposing thereby the program control structure. It chooses the
largest possible set of states whenever it encounters a schematic variable.

Through this integration of the data flow level, we have now a simple tool
for program verification at our disposition. Relative to the underlying general
purpose theories for boolean algebras, Kleene algebras and KAT and for binary
relations in Isabelle, the implementation effort required for building these tools
was minor. Very little code was needed for implementing the tool and the proofs
required for its verification were almost entirely automatic. This makes our tool
particularly lightweight; the separation between data and control and the use of
algebra at the control flow level has certainly paid off. The remaining section
shows the tool at work.
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named-theorems hl-rules

method hoare-init uses simp =
((subst simp | subst fst-conv | subst snd-conv)+)?

method hoare-step uses simp hl =
(hoare-init simp: simp, (assumption | rule subset-refl | rule mono-rules | rule hl

hl-rules | rule allI | rule ballI ))

method hoare-ind uses simp hl =
(hoare-step simp: simp hl : hl ; (hoare-ind simp: simp hl : hl)? )+

method hoare uses simp hl =
(hoare-init simp: simp; (hoare-ind simp: simp hl : hl)? )

Figure 4.2: The hoare tactic.

4.3 Euclid’s Algorithms

Figure 4.3 shows our first example. It is Euclid’s classic algorithm for computing
the greatest common divisor of two numbers. Before writing the algorithm, we
need to specify the program state as a record; in this example, the state is simply
a triplet of natural numbers named x, y and z.

Note that we have used a slightly different notation for assertions, this is
essentially syntactic sugar. When interpreted by Isabelle, for instance, the pre-
condition of Euclid’s algorithm is

{| ‘x = xo ∧ ‘y = yo |} = {b{σ | x(σ) = xo ∧ y(σ) = yo}c}.

The algorithm is annotated with a precondition, a postcondition and a loop
invariant. After applying the tactic hoare, three verification conditions need to
be proven: initialisation of the invariant, its maintenance and the establishment
of the postcondition. In this particular example, the conditions are extremely
simple; after applying auto, the only remaining proof obligation is the following

∀s. 0 < ys⇒ gcd (x s) (y s) = gcd (y s) ((x s) mod (y s)),

which can be discharged by Sledgehammer using a desired property about greatest
common divisors in Isabelle’s library.

The next example, the integer division algorithm, in Figure 4.4, shows how
the state can be extended to accommodate more program variables. The record
(store) div state is extended with the variables from the previous record state
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record state =
x :: nat
y :: nat
z :: nat

lemma euclids:
` {|‘x = xo ∧ ‘y = yo|}

while ‘y 6= 0
inv gcd ‘x ‘y = gcd xo yo
do

‘z := ‘y ;
‘y := ‘x mod ‘y ;
‘x := ‘z

od
{|‘x = gcd xo yo|}

by (hoare, auto) (metis gcd-red-nat)

Figure 4.3: Euclid’s algorithm.

record div-state = state +
q :: nat
r :: nat

lemma div :
` {| ‘x ≥ 0 |}

‘q := 0 ; ‘r := ‘x ;
while ‘y ≤ ‘r
inv ‘x = ‘q ∗ ‘y + ‘r ∧ ‘r ≥ 0
do

‘q := ‘q + 1 ;
‘r := ‘r − ‘y

od
{| ‘x = ‘q ∗ ‘y + ‘r ∧ ‘r ≥ 0 ∧ ‘r < ‘y |}

by hoare auto

Figure 4.4: Integer division algorithm.
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plus the variables q and r. The verification in this case is completely automatic.
After calling the verification condition generator hoare, the tactic auto proves all
remaining proof obligations.

4.4 Arrays and for Loops

Imperative arrays are usually modelled as functional lists in theorem provers [102],
because recursive datatypes are easier to reason about in functional languages.
Nevertheless, following Apt et al. [5], we model arrays as functions nat → α
from natural numbers to a polymorphic target type, which is a more natural
way of defining arrays. Since nat is a recursive datatype, it is possible to reason
about arrays by induction on their indexes. This is clearly an advantage, because
properties about arrays are usually defined in terms of them.

In many algorithms, a index −1 is used for initialization, to indicate error
or simply to establish a desired invariant where the assertion is vacuously true
in that index. Unfortunately, nat does not contain this value, integers could be
used instead of natural numbers, but their representation is slightly more complex
than nat in Isabelle. Therefore, opposite to the norm, arrays start on index 1
and the index 0 represents an outbound.

The i-th element of an array a is obtained by a(i). An assignment to an
element of the array is written as a(i) := e, which is syntactic sugar for

(a(i) := e) ≡ (a := a(i := e)).

In other words, it assigns the updated array a(i := e) to the variable a. The
notation a(i := e) in Isabelle denotes an updated function, that is, a(i := e)(x)
returns e if x = i and a(x) otherwise.

A for loop is usually expressed by using a while loop, thence in order to gen-
erate the necessary verification conditions for its Hoare rule, it would be enough
to simply unfold its definition and apply the corresponding rule for a while loop.
Nevertheless, when writing a for loop, one usually has a very simple invariant in
mind, and doing so, it does not benefit from the extra information that this kind
of loop may offer. The following rule is added to the tactic hoare:

P ⊆ Q[n/m] ∩ {s. n s ≤ m s}
∧ {Q[m/i] ∧ (i < m)} x {Q[(i+ 1)/m] ∧ (i+ 1 ≤ m)}
⇒ {P} for i := n to m do x od {Q},

which states that Q[m/i] is the invariant of the underlying while loop. The first
condition simply initialises the invariant, whereas the second condition maintains
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record power-state =
b:: nat
i :: nat
n :: nat

lemma power :
` {| True |}

‘i := 1 ;
‘b := 1 ;
while ‘i < ‘n
inv ‘b = a ˆ ‘i ∧ ‘i ≤ ‘n
do

‘b := ‘b ∗ a;
‘i := ‘i + 1

od
{| ‘b = a ˆ ‘n |}
by hoare auto

lemma power’ :
` {| True |}

‘b := 1 ;
for ‘i := 1 to ‘n do

‘b := ‘b ∗ a
od
{| ‘b = a ˆ ‘n |}
by hoare auto

Figure 4.5: Power algorithm

the invariant. The establishment of the postcondition is obvious, since in the end
of the loop i is equal to m, then Q[m/i] = Q.

Figures 4.5 shows how succinct and practical this notation can be. This
example simply calculates the exponentiation a‘n and stores it in the variable
‘b. Two versions of the program are presented, one written using a while loop
and then second one using a for loop. Both generate similar proof obligations.
The while version generates three, whereas the for version generates only two
conditions. The third one is the trivial establishment of the postcondition. All
the conditions are simple enough to be directly discharged by Isabelle’s prover
auto.

Another example using an array is presented in Figure 4.6. This is the clas-
sical linear search algorithm for arrays. Once again, we show a version using a
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while loop and another one using a for loop. That demonstrates the simplicity
when using the latter. The postcondition states that whenever the value m can
be found in the array, then it is located in the position ‘j. Otherwise ‘j may
contain any value. The proof obligations are trivial and can be proved by auto
and Sledgehammer. A better variant of this algorithm would set ‘j to 0 in the
beginning and then have the postcondition

if (∀ k . 1 ≤ k ∧ k < ‘n −→ a(k) 6= m) then (‘j = 0 ) else (a(‘j ) = m).

This can be used to indicate if the element m has been found in the array. This
variant is also available in our Isabelle files.

4.5 Procedures, Local Variables and Function

Calls

This section discusses how additional features of programming languages can be
added to our tools with ease. We focus on procedures, local variables and function
calls.

We use Isabelle’s definition mechanism for creating new HOL objects to add
support for procedures and procedures calls to our verification tools. A procedure
MAX ′, for instance, that takes two global variables ‘x and ‘y, compares them and
stores their maximum in variable ‘y, can be defined as

definition MAX’ ≡
if ‘x ≥ ‘y then

‘y := ‘x
fi

Isabelle considers MAX ′ as a relation on the state space which has been fixed a
priori by declaring a record of variables for a program. The procedure MAX ′ can
thus be used by any program on that state space. Simple procedure calls can be
written, for instance, as

‘x := 0; ‘y := 1; MAX ′.

Reasoning about such programs usually requires unfolding procedure definitions.
These are created automatically by Isabelle—for instance MAX’ def unfolds the
definition of MAX ′.

Without encapsulation and parameters, however, procedures like MAX ′ are
of dubious value. We have therefore added support for local variables as well.
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record ls-state =
i :: nat
j :: nat
n :: nat

lemma linear-search:
` {| ‘n ≥ 1 |}

‘i := 1 ;
while ‘i < ‘n
inv (∀ k . 1 ≤ k ∧ k < ‘i −→ a(k) 6= m) ∨ (a(‘j ) = m) ∧ (‘i ≤ ‘n)
do

if a(‘i) = m then
‘j := ‘i

fi;
‘i := ‘i + 1

od
{| (∀ k . 1 ≤ k ∧ k < ‘n −→ a(k) 6= m) ∨ (a(‘j ) = m) |}
apply (hoare, auto)
using less-SucE by blast

lemma linear-search’ :
` {| ‘n ≥ 1 |}

for ‘i := 1 to ‘n do
if a(‘i) = m then

‘j := ‘i
fi

od
{| (∀ k . 1 ≤ k ∧ k < ‘n −→ a(k) 6= m) ∨ (a(‘j ) = m) |}
apply (hoare, auto)
using less-SucE by blast

Figure 4.6: Linear search algorithm
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Apt and al. [5] propose a block statement

local ‘x := t in R end

to distinguish between local and global variables and provide explicit scope for
them. Executing a local block can change the value of a local variable ‘x within
its scope, but not the values of variables outside of its scope—including those
named ‘x.

From a mathematical point of view, a block is essentially a function that
receives a state and returns a command, which is a relation on the state space.
Following [102], we model these functions C : Σ→ Σ×Σ as dynamic commands.
They are lifted to commands by applying

dyn C = {(σ, σ′) | (σ, σ′) ∈ (C σ)}.

Deriving the following characteristic property of Hoare triples is then straightfor-
ward.

∀σ ∈ P. {P} (C σ) {Q} ⇒ {P} (dyn C) {Q}.

The semantics of a local block can be programmed in Isabelle as

local ‘x := ‘t in R end = dyn(λσ. ‘x := t;R; ‘x := ‘x(σ)).

The following proof shows how easy it is to establish the characteristic prop-
erty of local blocks by automatic reasoning, namely that the value of the variable
‘x is the same before and after executing the block local ‘x := t in R end.

lemma ` {| ‘x = u |} local ‘x := t in R end {| ‘x = u |}
by hoare auto

Modelling state spaces as records has the advantage of being polymorphic and
allowing the integration of arbitrary data types. This, however, forces us to de-
clare all local variables “globally” prior to writing and analysing algorithms. For
a general overview of alternative state spaces representations in Isabelle see [103].

The following little verification example shows a program with a local variable
that changes the value of a global variable inside a block statement.

lemma ` {| ‘x = n |}
local ‘x := ‘x + 1 in

‘x := 2 ;
‘y := ‘x + 1

end
{| ‘x = n ∧ ‘y = 3 |}
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definition MAX xo yo ≡ begin
local ‘x := ‘xo in

‘y := ‘yo;
if ‘x ≥ ‘y then

‘y := ‘x
fi

end
return ‘y

end

Figure 4.7: Maximum function of two natural numbers

by (hoare first : hl-split) auto

The tactic hoare has been annotated with first: hl split to force that the post-
condition be split before applying hoare to the resulting subgoals. This rule can
be proved algebraically.

{p} x {q1} ∧ {p} x {q2} ⇒ {p} x {q1q2}

Figure 4.7 shows how the procedure MAX ′ can be refined to a more convinc-
ing procedure MAX that uses local variables and parameters. The HOL object
created this time is a function from the two parameters to a pair consisting of
a relation in the state space and a variable, which holds the value, which the
procedure returns. The next verification example shows that MAX , when called
within a Hoare triple, satisfies the characteristic block property.

lemma ` {| ‘x = xo ∧ ‘y = yo |}
‘z := call (MAX xo yo)
{| (‘x = xo ∧ ‘y = yo) ∧ ‘z = max xo yo |}
by (hoare simp: MAX-def first : hl-split) auto

The command call strips the pair, executes function MAX and sets the value of
variable ‘z. The tactic hoare is again annotated with first: hl split. In addition it
now expands the definition of MAX by applying simp: MAX def. The variable
‘y in the definition of MAX is local to MAX ; hence MAX must not be able to
change the value of any variable ‘y outside of its scope. This is precisely the
characteristic property proved in the lemma above.
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4.6 Conclusions

We have used Kleene algebra with tests for developing a simple program verifica-
tion tool based on Hoare logic in Isabelle. The verification tool has a lightweight
flexible middle layer for formal methods which can easily be adapted and ex-
tended. Programs are analysed directly on their relational semantics, but most
relational manipulations are captured algebraically. The approach can there-
fore be integrated directly into any formal method which uses similar semantics.
Moreover, it can be further enhanced and adapted flexibly to other analysis tasks.
Using the algebra in combination with Isabelle’s integrated automated theorem
provers and SMT solvers made the development simple and effective. Finally,
case studies showed the tool at work.

A possible extension of the tool is the development of a decision procedure for
KAT within Isabelle, since universal Horn formulas of the form r1 = 0∧ ...∧ rn =
0 ⇒ s = t are decidable in PSPACE via a technique called hypothesis elimina-
tion. Note that the inferences rules of Hoare logic fall into this form. However,
formally verified decision for KAT are only available in Coq [97]; the development
in Isabelle would certainly enhance the performance of the tool presented. A
further extension would replace KAT by algebras for total correctness reasoning,
such as DRA, and by rely-guarantee style algebras for shared variable concur-
rency. A verification tool for the latter has already been developed in [7], which
includes a semantics of finite transition traces, and has been further extended to
infinite traces in Armstrong PhD thesis [6].
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Chapter 5

A Refinement Tool

This chapter shows how to easily derive a construction tool from refinement
algebras. Kleene algebras are extended to refinement algebras in which Morgan’s
specification statement operator [83] can be expressed algebraically. The algebra
is then linked to the concrete relational model derived in the previous chapter.
This yields a construction/refinement tool which is correct by construction. The
approach has been published in [10] and [11].

5.1 The Specification Statement

KAT can be extended to a Morgan-style refinement calculus by adding one sin-
gle axiom. We keep the partial correctness setting, which suffices for practical
program construction tasks. Extending it to a total correctness setting with ter-
mination variants seems straightforward, and existing Isabelle infrastructure for
proving program termination could be used.

Our approach follows Morgan’s classic book on Programming from Specifica-
tions [83]. We think of specifications as programs that need not be executable.
Morgan starts from the largest program which relates a given precondition p to a
given postcondition q—the specification statement—and uses refinement laws to
transform it incrementally and compositionally into an executable program which
is correct by construction. In KAT, the axiomatisation of Morgan’s specification
statement is very simple.

A refinement Kleene algebra with tests (rKAT) is a KAT expanded by an op-
eration [ , ] : B ×B → K which satisfies

{p} x {q} ⇔ x ≤ [p, q]. (5.1)

It is easy to show that (5.1) implies the characteristic properties

{p} [p, q] {q}, {p} x {q} ⇒ x ≤ [p, q]
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of the specification statement. First of all, program [p, q] relates precondition p
with postcondition q whenever it terminates. Second, it is the largest program
with that property.

Morgan’s basic refinement calculus provides one refinement law per program
construct. Once more we ignore assignments at this stage and focus on the control
flow. Deriving Morgan’s laws in rKAT is strikingly easy. We use the standard
refinement order v, which is the converse of ≤.

Proposition 5.1. The following refinement laws are derivable in rKAT:

p ≤ q ⇒ [p, q] v skip, (skip law)

p′ ≤ p ∧ q ≤ q′ ⇒ [p, q] v [p′, q′], (consequence law)

[0, 1] v x, (abort law)

x v [1, 0], (magic law)

[p, q] v [p, r]; [r, q], (sequential composition law)

[p, q] v if b then [bp, q] else [bp, q] fi, (conditional law)

[p, bp] v while b do [bp, p] od. (while law)

Proof. The laws are usually derived in set theory. This proof illustrates the
simplicity of using rKAT instead.

• With [p, q] v x being equivalent to px ≤ xq the proofs of the skip, abort
and magic laws become trivial.

• For the consequence law, remember that {p} [p, q] {q} is one of the char-
acteristic properties of the specification statement. Hence assuming p ≤ p′

and q′ ≤ q, we calculate

p[p′, q′] ≤ p′[p′, q′] ≤ [p′, q′]q′ ≤ [p′, q′]q ⇒ [p, q] v [p′, q′].

• For the sequential composition law we use the sequential composition rule
of Hoare logic:

{p} [p, r] {r} ∧ {r} [r, q] {q} ⇒ {p} [p, r]; [r, q] {q} ⇔ [p, q] v [p, r]; [r, q].

• For the conditional law we use the conditional rule of Hoare logic:

{pb} [pb, q] {q} ∧ {pb} [pb, q] {q} ⇒ {p} if b then [bp, q] else [bp, q] fi {q}
⇔ [p, q] v if b then [bp, q] else [bp, q] fi.
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• For the while law we use the while rule of Hoare logic:

{pb} [pb, p] {p} ⇒ {p} while b do [bp, p] od {bp}
⇔ [p, bp] v while b do [bp, p] od.

The proofs of these refinement laws are automatic in Isabelle, as the following
examples show.

lemma strengthen-post : [[test p; test q ; test q ′]] =⇒ q ′ ≤ q =⇒ [p q ] v [p q ′]
by (meson consequence-rule spec-char1 spec-char2 ref-order-def )

lemma weaken-pre: [[test p; test p ′; test q ]] =⇒ p ≤ p ′ =⇒ [p q ] v [p ′ q ]
by (meson consequence-rule order-refl spec-char1 spec-char2 ref-order-def )

lemma while-ref : [[test b; test p]] =⇒ [p p·!b] v (b·[p·b p])?·!b
by (metis ht-def-var spec-char1 spec-def test-mult-closed while-rule ref-order-def )

The specification statements [0, 1] and [1, 0] represent extreme programs. The
first one is usually called the abort statement; it is a pathological program that
can be refined by any other. The second one, also known as the magic statement,
is an impossible program that can always be refined to any other one; it magically
satisfies any statement.

In the algebraic context, the consequence law is essentially an isotonicity
property—the same is true for the corresponding Hoare rule. It indicates that if
we can weaken the precondition p to p′ and/or strengthen the postcondition q to
q′, then we can refine the specification statement [p, q] to [p′, q′]. In our Isabelle
implementation we have therefore split this law into two, as the above proofs
show.

The other refinement laws operate as expected. They allow us to introduce
control structure—a sequential composition, a conditional, a while-loop—into a
specification statement.

5.2 Data Flow Integration

Chapter 4 has set up a concrete relational semantics of imperative programs
by supplying notions of program store and store update and used them to derive
Hoare’s assignment axiom. In this section, we show how to use the same semantics
to derive three refinement laws for assignment. This gives us a Morgan-style
refinement calculus based on rKAT.

First, we verify soundness of rKAT with respect to the relational model.

58



Proposition 5.2. Let A be a set and define, for all P,Q ⊆ IdA, the specification
statement as

[P,Q] =
⋃
{R ⊆ A× A | {P} R {Q}}.

Then (2A×A, B,∪, ◦, [ , ],∗ , , ∅, id) forms a rKAT.

We call this algebra the full relational rKAT over A. Once more, every subal-
gebra is a relational rKAT. Due to its higher-order nature, this fact is proved in
Isabelle by calling the internal theorem provers safe and force, supplying appro-
priates lemmas as parameters. The proof, which is relative to soundness of KAT,
is nevertheless very simple.

interpretation rel-rkat: rkat (op ∪) (op O) Id {} (op ⊆) (op ⊂) rtrancl test-not spec
apply (default, safe)
apply (force simp: spec-def intro: Sup-upper)
apply (force intro: specD)

done

Next, we use our definition of assignments to derive three of Morgan’s refine-
ment laws for that command.

Lemma 5.1. The following refinement laws are derivable in relational rKAT.

P ⊆ Q[e/‘x]⇒ [bP c , bQc] v (‘x := e), (5.2)

Q′ ⊆ Q[e/‘x]⇒ [bP c , bQc] v [bP c , bQ′c]; (‘x := e), (5.3)

P ′ ⊆ P [e/‘x]⇒ [bP c , bQc] v (‘x := e); [bP ′c , bQc]. (5.4)

Law (5.3) and (5.4) are called the following and leading refinement law for
assignments [83]. They are particularly useful for program construction, where
they allow one to insert an assignment statement before or after a block of code.
As in the case of verification, we have programmed a tactic called morgan using
Eisbach, which automatically tries to apply the rules of the basic refinement
calculus.

Theorem 5.1. The laws of Morgan’s basic refinement calculus are derivable in
relational rKAT.

Although a Morgan style refinement calculus has been derived, the traditional
one has the concept of frame, which allows users to declare explicitly which pro-
gram variables can be changed. Our simple refinement calculus does not im-
plement this feature. We are using Isabelle’s built-in records to model program
stores (cf. §4.2), and these are not dynamic, that is, they cannot change structure
according to a higher-order function.
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Through this integration of the data flow level, we have now two tools for
program construction and program verification at our disposition. Relative to
the underlying general purpose theories for boolean algebras, Kleene algebras
and KAT and for binary relations in Isabelle, the implementation effort required
for building these tools was minor. The program construction tools could be
built literally in one afternoon from the verification tool. Very little code was
needed for implementing these tools and the proofs required for their verification
were almost entirely automatic. This makes our tools particularly lightweight;
the separation between data and control and the use of algebra at the control
flow level has certainly paid off. The following two sections of this chapter show
the tools at work.

5.3 Sum of Even Fibonacci Numbers

We now present our first construction example. We verify a program that com-
putes the sum of even Fibonacci numbers below a given threshold1. Its input is
the threshold m ∈ N; its return value is stored in a variable ‘sum. Because of
typing there is no specific precondition, i.e., m ≥ 0. The postcondition is defined
by the following predicate

is-sum-efib ‘sum m = ∃n. ‘sum = sum-efib m n ∧ fib n > m,

which states that it exists a n such that m is smaller than the n-th Fibonacci
number and ‘sum is equal to the sum of all previous even numbers. The predi-
cate is specified in terms of the standard functional program fib, which can be
programmed in Isabelle, and the recursive function

sum-efib m 0 = 0,

sum-efib m (n+ 1) =

{
sum-efib m n for fib n odd or fib n > m,

sum-efib m n+ fib n otherwise.

The specification statement for our program is therefore, in Isabelle syntax,

[[True, is-sum-efib ‘sum m]].

We use the notation [[ , ]] in Isabelle for the specification statement, because
[ , ] is already reserved for functional lists.

1The algorithm is taken from http://toccata.lri.fr/gallery/euler002.en.html.
Fibonacci numbers start as 1, 2, 3, 5, 8, ..., which is perhaps nonstandard.
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[[ True, is-sum-efib ‘sum m]]
v (1)

‘x := 2 ;
[[ ‘x=efib 0 ∧ ‘x=fib 1 , is-sum-efib ‘sum m]]

by morgan
v (2)

‘x := 2 ; ‘y := 8 ;
[[ ‘x=efib 0 ∧ ‘x=fib 1 ∧ ‘y=efib 1 ∧ ‘y=fib 4 , is-sum-efib ‘sum m]]

by morgan (smt even-fib.simps(2 ) even-fib-correct)
v (3)

‘x := 2 ; ‘y := 8 ; ‘sum := 0 ;
[[ ‘x=efib 0 ∧ ‘x=fib 1 ∧ ‘y=efib 1 ∧ ‘y=fib 4 ∧ ‘sum=sum-efib m 1 ,
is-sum-efib ‘sum m]]
by morgan
v (4)

‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
[[ ‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )
∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k , is-sum-efib ‘sum m]]

by morgan
v (5)

‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
while ‘x ≤ m do
[[ ‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )
∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k ∧ ‘x ≤ m,

‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )
∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k ]]

od
by morgan (smt is-sum-efib-def )
v (6)

‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
while ‘x ≤ m do
[[ ‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )
∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k ∧ ‘x ≤ m,

‘x=efib ‘n ∧ ‘x=fib (‘k+3 ) ∧ ‘y=efib (‘n+1 )
∧ ‘y=fib (6+‘k) ∧ ‘n ≥ 0 ∧ ‘sum=sum-efib m (‘k+3 ) ]];

‘k := ‘k+3
od

by morgan
v

. . .

61



. . .
v (7)

‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
while ‘x ≤ m do
[[ ‘x=efib ‘n ∧ ‘x=fib ‘k ∧ ‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 )
∧ ‘n ≥ 0 ∧ ‘k ≥ 1 ∧ ‘sum=sum-efib m ‘k ∧ ‘x ≤ m,

‘y=efib (‘n+1 ) ∧ ‘y=fib (‘k+3 ) ∧ (4∗‘y+‘x )=efib (‘n+2 )
∧ (4∗‘y+‘x )=fib (6+‘k) ∧ (‘sum+‘x )=sum-efib m (‘k+3 ) ]];

‘tmp := ‘x ; ‘x := ‘y ;
‘y := 4∗‘y + ‘tmp;
‘sum := ‘sum + ‘tmp;
‘n := ‘n+1 ; ‘k := ‘k+3

od
by morgan

Figure 5.1: Construction of the sum of even Fibonacci numbers program

In order to keep track of all even Fibonacci numbers up to m, we use the
function

efib 0 = 2,

efib 1 = 8,

efib (n+ 2) = 4 ∗ efib (n+ 1) + efib n.

We have verified by induction that all numbers computed by efib are even and
that efib n = fib (3n + 1) holds for all n ≥ 0. The following classical fact about
Fibonacci numbers then implies that efib computes indeed all even terms

(fib n) mod 2 = 0⇔ n mod 3 = 1.

After this groundwork, which is an indispensable part of program construction
and verification, we can start with the program construction itself, which it is
shown in Figure 5.1. Since Fibonacci numbers are defined recursively from their
two predecessors, we add the variables ‘x and ‘y to keep track of them. In
(1) we initialise ‘x to 2—the first even Fibonacci number—applying the leading
refinement law for assignments derived in Proposition 5.1.

Our morgan tactic automatically applies the assignment law. In (2) we then
initialise ‘y to 8—the second even Fibonacci number. The morgan tactic now
dictates the proof obligation fib 4 = 8, which is discharged by an integrated SMT
solver. In (3) we initialise ‘sum to 0 and state that ‘sum = sum-efib m 1 by
definition.

The main idea behind this program is to add the next even Fibonacci number
to ‘sum as long as it is below m, while storing the previous numbers in ‘x and ‘y.
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‘x := 2 ; ‘y := 8 ; ‘sum := 0 ;
while ‘x ≤ m do

‘tmp := ‘x ; ‘x := ‘y ;
‘y := 4∗‘y + ‘tmp;
‘sum := ‘sum + ‘tmp;

od

Figure 5.2: Sum of even Fibonacci numbers

In the actual state of development, we also want to keep track of the indices of
these numbers in the fib and efib series. Hence in (4) we add the variables ‘n and
‘k. The facts proved about Fibonacci numbers imply that the numbers stored in
‘x and ‘y have distance 3 in the series of Fibonacci numbers. The precondition
now stores the tentative loop invariant; so we can introduce the while-loop in (5).
This requires that the precondition implies the postcondition, which follows from
the definition of the predicate is-sum-efib by setting n to ‘k.

Deriving the body of the loop in (6) and (7) is quite straightforward; we just
need to specify the variable updates. In (6), ‘k is updated; then, in (7), ‘sum is
updated to ‘sum + ‘x, ‘x to ‘y, ‘y to the next even Fibonacci number, and so on.
This can be achieved by applying the following or leading refinement law. This
time we choose to apply the following law from Proposition 5.1, which forces a
substitution in the postcondition. In (7) we also add a new variable ‘tmp to save
the value of ‘x and proceed as before until all variables have been updated.

It now remains to eliminate the surviving specification statement. Refining it
to skip requires that its precondition implies its postcondition. Accordingly, our
morgan tactic generates the proof obligations

fib (k + 6) = 4 ∗ fib (k + 3) + fib k,

even (fib k) ∧ fib k ≤ m⇒ sum-efib m (k + 3) = sum-efib m k + fib k,

which are discharged by automatic theorem proving, using induction on Fibonacci
numbers. This finally gives us the program in Figure 5.2, which is partially correct
by construction. For total correctness it remains to prove termination, for which
Isabelle provides complementary support as well [107].

We conclude this development with three remarks. First, with good libraries
for Fibonacci numbers in place, the algebra and particular Isabelle technology
used for constructing this algorithm remain hidden behind an interface. De-
velopers interact with Isabelle mainly by writing mathematical expressions and
pseudocode in a specification language similar to Morgan’s, and by calling the
refinement tactic and Isabelle’s theorem provers. Alternatively, they could invoke
individual refinement rules. This is nicely supported by Isabelle’s structured proof
specification language Isar.
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lemma ` {| True |}
‘x := 2 ; ‘y := 8 ; ‘sum := 0 ; ‘n := 0 ; ‘k := 1 ;
while ‘x ≤ m
inv
(‘k ≥ 1 ) ∧ (‘x=efib ‘n) ∧ (‘x=fib ‘k)
∧ (‘y=efib (‘n+1 )) ∧ (‘y=fib (‘k+3 ))
∧ (‘sum=sum-efib m ‘k)

do
‘tmp := ‘x ; ‘x := ‘y ;
‘y := 4∗‘y + ‘tmp;
‘sum := ‘sum + ‘tmp;
‘n := ‘n+1 ; ‘k := ‘k+3

od
{| is-sum-efib ‘sum m |}
apply (hoare, auto)
apply (smt is-sum-efib-def )
apply (metis fib-6-n)
apply (metis efib-mod-2-eq-0 sum-efib-fib)
by (smt efib.simps(2 ) efib-correct)

Figure 5.3: Verification of the sum of even Fibonacci numbers program

Second, proof automation was very high. Most refinement steps were verified
by refinement alone, the others by automated theorem proving. Isabelle thus
supported a seamless refinement process at the level of textbook proofs.

Finally, it should be pointed out that we have used auxiliary variables such
as ‘n and ‘k to prove correctness, which are not displayed in the final program,
but have not been formally eliminated.

The Fibonacci algorithm can be verified with Hoare logic as well, as shown in
Figure 5.3. Our hoare tactic generates the standard proof obligations, which can
be inspected when executing our Isabelle theories, and auto discharges the trivial
ones. The survivors are then proved by Isabelle’s SMT solvers and external the-
orem provers, using the built-in theorem prover metis to verify external outputs.
In this case, user interaction is restricted to calling tactics and theorem provers.
Beyond that the verification is fully automatic.

64



5.4 Insertion Sort

Our next example stems from Morgan’s book: the construction and verification
of insertion sort. It shows that our tool can handle lists and nested loops.

We model an imperative list A by using Isabelle’s functional lists, and there-
fore benefit from its excellent libraries developed for this data type. This includes
the operation A ! i for retrieving the i-th element of A, the function take n A
which extracts the first n elements of A, the function list-update A i e which up-
dates the i-th value of A to e, and a sorted predicate. Using this, list assignments
are defined merely as syntactic sugar:

‘A ! i := e⇔ ‘A := list-update ‘A i e.

Our insertion sort algorithm takes a list A0 of polymorphic data that can be
linearly ordered. It returns a variable ‘A which holds the sorted list; that is, the
values in A0 have been permuted so that ‘A ! i ≤ ‘A ! j whenever i ≤ j. We write
‘A ∼π A0 if ‘A stores a permutation of the values of A0. We also require that A0

has positive length. This suggests the specification statement

[[ |A0| > 0 ∧ ‘A=A0, sorted ‘A ∧ ‘A ∼π A0 ]].

The idea behind insertion sort is well known and need not be repeated. To
express that we successively sort larger prefixes, we introduce a variable ‘i such
that 1 ≤ ‘i ≤ |‘A|. For ‘i = 1, we have sorted (take ‘i ‘A).

Our refinement steps are similar to Morgan’s. We show only the most impor-
tant ones in Figure 5.4. In (1) we initialise ‘i to 1 and introduce a while-loop.

The resulting proof obligation is discharged by the morgan tactic. In the
body of the loop we now wish to take the ‘i-th element of the list and insert it
in a position ‘j such that ‘j ≤ ‘i and sorted (take (‘i + 1) ‘A). To express this
succinctly we define the predicate sorted-but A k, which states that A is sorted
after removing its k-th element. We then rewrite the specification statement in
(2). The morgan tactic generates four proof obligations which are discharged
automatically.

Next we wish to set ‘j to ‘i and iteratively swap ‘A ! ‘j to ‘A ! (‘j − 1) until
‘A ! (‘j − 1) ≤ ‘A ! ‘j or ‘j = 0. This requires introducing a new while-loop in
(3) which is justified by calling morgan.

Finally, in (4) we need to prove that the remaining specification statement
is refined by swapping ‘A ! ‘j to ‘A ! (‘j − 1). The morgan tactic generates six
proof obligations. Discharging them automatically requires proving some general
properties of sorted list and permutations absent in Isabelle’s library, e.g., that
swapping list elements yields a permutation. The construction of the insertion
sort algorithm is then complete. The result is shown in Figure 5.5.
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[[ |A0| > 0 ∧ ‘A=A0, sorted ‘A ∧ ‘A ∼π A0]] v (1)
‘i := 1 ;
while ‘i < |‘A| do
[[ sorted (take ‘i ‘A) ∧ ‘i < |‘A| ∧ ‘A ∼π A0,
sorted (take (‘i+1 ) ‘A) ∧ (‘i+1 ) ≤ |‘A| ∧ ‘A ∼π A0]];

‘i := ‘i+1
od

v (2)
‘i := 1 ;
while ‘i < |‘A| do
[[ sorted-but (take (‘i+1 ) ‘A) ‘i ∧ ‘i < |‘A| ∧ ‘A ∼π A0,

‘j ≤ ‘i ∧ sorted-but (take (‘i+1 ) ‘A) ‘j ∧ (‘j 6=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1 ))
∧ (‘i+1 ) ≤ |‘A| ∧ (‘j=0 ∨ ‘A ! (‘j−1 ) ≤ ‘A ! ‘j ) ∧ ‘A ∼π A0]];

‘i := ‘i+1
od

v (3)
‘i := 1 ;
while ‘i < |‘A| do

‘i := ‘j ;
while ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j−1 ) do
[[ ‘j ≤ ‘i ∧ sorted-but (take (‘i+1 ) ‘A) ‘j ∧ (‘j 6=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1 ))
∧ (‘i+1 ) ≤ |‘A| ∧ ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j−1 ) ∧ ‘A ∼π A0,
‘j−1 ≤ ‘i ∧ sorted-but (take (‘i+1 ) ‘A) (‘j−1 ) ∧ (‘i+1 ) ≤ |‘A|
∧ (‘j−1 6=‘i −→ ‘A ! (‘j−1 ) ≤ ‘A ! ‘j ) ∧ ‘j 6=0 ∧ ‘A ∼π A0]];

‘j := ‘j−1
od;
‘i := ‘i+1

od
· · ·

[[ . . . previous specification statement . . . ]]
v (4)

‘k := ‘A ! ‘j ;
‘A ! ‘j := ‘A ! (‘j−1 );
‘A ! (‘j−1 ) := ‘k

Figure 5.4: Construction of insertion sort algorithm (excerpts)
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‘i := 1 ;
while ‘i < |‘A| do

‘i := ‘j ;
while ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j−1 ) do

‘k := ‘A ! ‘j ;
‘A ! ‘j := ‘A ! (‘j−1 );
‘A ! (‘j−1 ) := ‘k ;
‘j := ‘j−1

od;
‘i := ‘i+1

od

Figure 5.5: Insertion sort algorithm

Again, it is partially correct by construction; its termination can be proved by
other means. Apart from adding some general-purpose lemmas about permuta-
tions and sorted lists to Isabelle’s libraries, the development was fully automatic.

Decorating the algorithm with the pre and postcondition from the above spec-
ification statement, one can also verify this algorithm with Hoare logic. After
calling the hoare and auto tactics we are left with seven proof obligations, the
proof of which, mainly done with sledgehammer, is shown in Figure 5.6. Only
the unfold step does not directly call a theorem prover. It unfolds two definitions
and calls Isabelle’s auto tool.

As already mentioned, our Isabelle developments use functional lists instead
of imperative one, to which an imperative style syntactic sugar has been added.
In an extension of our refinement tool it would be desirable to link these two data
types formally by data refinement techniques. This is left as future work.

5.5 Conclusions

This chapter has derived a program construction tool in Isabelle/HOL, where
adding one single axiom to Kleene algebra with tests yielded a basic Morgan-
style refinement calculus. Two extended case studies showed the tool at work.

The examples suggest that algorithms of moderate complexity can be con-
structed step by step at the level of textbook granularity, with each refinement
step being justified by the morgan tactic and having a high level of automation.
Other examples confirm this impression and can be found in the online reposi-
tory1. It should, however, be stressed that a certain amount of groundwork was
needed to achieve this level of automation. A small library of generic facts about
Fibonacci numbers and permutations were created in addition to those present in

1https://github.com/victorgomes/veritas
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lemma ` {| |A0| > 0 ∧ ‘A=A0 |}
‘i := 1 ;
while ‘i < |‘A| inv sorted (take ‘i ‘A) ∧ ‘A ∼π A0 do

‘i := ‘j ;
while ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j−1 )
inv
(sorted but (take (‘i+1) ‘A) ‘j) ∧ (‘i < length ‘A) ∧ (‘j ≤ ‘i)
∧ (‘j 6=‘i → ‘A ! ‘j ≤ ‘A ! (‘j+1)) ∧ (‘A ∼π A0)

do
‘k := ‘A ! ‘j ;
‘A ! ‘j := ‘A ! (‘j−1 );
‘A ! (‘j−1 ) := ‘k ;
‘j := ‘j−1

od;
‘i := ‘i+1

od
{| sorted ‘A ∧ ‘A ∼π A0 |}
apply (hoare, auto)
apply (metis One-nat-def take-sorted-butE-0 )
apply (metis take-sorted-butE-n One-nat-def less-eq-Suc-le not-less-eq-eq)
apply (metis One-nat-def Suc-eq-plus1 le-less-linear less-Suc-eq-le take-sorted-butE )
apply (unfold sorted-equals-nth-mono sorted-but-def , auto)
apply (smt nth-list-update)
apply (metis (hide-lams, no-types) One-nat-def perm.trans perm-swap-array)
apply (smt nth-list-update)
by (smt perm.trans perm-swap-list)

Figure 5.6: Verification of insertion sort algorithm (proof steps)
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Isabelle’s libraries. This is a standard procedure and it is certainly typical when
verifying larger programs.

It is also worth mentioning that the tools derived in this chapter and in the
previous one are still at the level of prototypes. They are certainly stable enough
for educational purposes, but not intended to compare with optimised indus-
trial verification tools [49, 104]. There is certainly much scope for improvement
(cf. §12). Nevertheless, they have clear advantages, such as the flexible algebraic
layer, support to program construction and the fact to be correct by construction.
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Chapter 6

Recursive Programs

This chapter extends the tool to support recursive programs. It uses a more
expressive algebraic structure, called quantales, where recursivity is modelled by
fixpoints. It shows that quantales subsume Kleene algebras and refinement Kleene
algebras for program verification and refinement. This chapter is an extract of
the work published on [11].

6.1 Verification of Recursive Programs

A limitation of modelling programs algebraically with KAT is that this formalism
is not expressive enough for full recursion. It is, for instance, not possible to
derive a Hoare rule for recursive programs in this setting. In this section, we
present quantales, which subsume Kleene algebras, and which provide a setting
in which classical fixpoint theory can be developed. This allows us to derive
a Hoare-like inference rule for recursive programs. We restrict our attention to
single recursive procedures, theoretically, mutual recursion could be solved as well
with polyvariadic fixpoint combinators using an idea similar to the one presented
here.

A quantale (or standard Kleene algebra) is a structure (Q,≤, ·, 1) such that
(Q,≤) is a complete lattice, (Q, ·, 1) is a monoid and the distributivity axioms

(
∑
i∈I

xi) · y =
∑
i∈I

xi · y,

x · (
∑
i∈I

yi) =
∑
i∈I

(x · yi)

hold, where
∑
X denotes the supremum of a set X ⊆ Q. Similarly, we writed

X for the infimum of X, and 0 for the least and > for the greatest element of
the lattice. We write u for the binary meet in a quantale. It is straightforward
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to show that every quantale is a dioid with x+ y =
∑
{x, y}. The monotonicity

laws

x ≤ y ⇒ z · x ≤ z · y,
x ≤ y ⇒ x · z ≤ y · z

follow from distributivity. The two annihilation laws x · 0 = 0 = 0 · x follow from∑
i∈∅ xi =

∑
∅ = 0. A quantale is commutative and partial if the underlying

monoid is. It is distributive if

x u (
∑
i∈I

yi) =
∑
i∈I

(x u yi),

x+ (
l

i∈I

yi) =
l

i∈I

(x+ yi).

A boolean quantale is a complemented distributive quantale. The boolean quan-
tale B of the booleans, where multiplication coincides with meet, is an important
example.

Proposition 6.1. Every quantale is a Kleene algebra.

Proof. In quantales, the Kleene star can be defined explicitly as a sum of powers
up to the first infinite ordinal:

x∗ =
∑
i∈N

xi,

where x0 = 1 and xi+1 = x ·xi. The proofs of the unfold axioms 1 +xx∗ = x∗ and
1 + x∗x = x∗ depend on the left distributivity law for quantales, which, in the
context of fixpoint theory, is a continuity law. The verification of the induction
axioms z + xy ≤ y ⇒ x∗z ≤ y and z + yx ≤ y ⇒ zx∗ ≤ y depends on continuity
as well; they require

z(
∑
i∈N

xi) =
∑
i∈N

(zxi),

(
∑
i∈N

xi)z =
∑
i∈N

(xiz).

This explains the relationship between the induction axiom and continuity as-
sumptions.

More generally, least pre-fixpoints and fixpoints as well as greatest post-
fixpoints and fixpoints of arbitrary isotone functions exist in quantales, and can be
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obtained by iteration under appropriate (co)continuity assumptions. But before
explaining this in more detail we set up the link between quantales and KAT.

One can further enrich quantales with a test dioid to form a quantale with
tests as described in §3.2. It is desirable that, in the test algebra, the binary
meet operation of the quantale coincides with multiplication. For that, it is
sufficient to impose a closure condition for the meet operator on tests, so that
p u q is a test whenever p and q are.

class quantales-tests = quantale + dioid-tests +
assumes test-meet-closure: test p =⇒ test q =⇒ test (p u q)

The proof that binary meet and multiplication coincide on tests is straightforward
in Isabelle. We use antisymmetry of equality to create two subgoals that can be
discharged simply.

lemma test-meet: test p =⇒ test q =⇒ p u q = p · q
apply (auto simp: test-restrictl test-restrictr intro!: antisym)
by (metis inf.boundedE test-meet-closure mult-inf-subdistr ...)

Finally, Propositions 3.3 and 6.1 immediately yield the following corollaries.

Corollary 6.1. Every quantale with test is a KAT.

Corollary 6.2. The inference rules of PHL are derivable in quantales with tests.

As already mentioned, fixpoints beyond the Kleene star exist in quantales. A
basic fixpoint calculus for quantales in Isabelle can then be implemented, extend-
ing a previous one for continuous lattices [12]. Two key ingredients are Knaster-
Tarski’s fixpoint theorem, according to which any isotone function f : L → L
over a complete lattice L has a least fixpoint µf , and Kleene’s fixpoint theorem,
according to which each least fixpoint of a continous function over a complete
lattice can be obtained by iteration to the first infinite ordinal: µf =

∑
i∈N f

i(0)
for f 0 = id and fn+1 = f ◦ fn.

theorem knaster-tarski: mono f =⇒ ∃!x. is-lfp x f
by (metis knaster-tarski-lpp lfp-equality lpp-is-lfp)

Using the Knaster-Tarski theorem, a Hoare rule for recursive programs can
then be derived.

Lemma 6.1. Let f : Q → Q be an isotone function on a test quantale Q and
p, q ∈ t(Q). Then

(∀x ∈ Q. {p} x {q} ⇒ {p} f x {q})⇒ {p} µf {q}. (recursion rule)
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Proof. Let M = {x ∈ Q | x ≤ µf ∧ {p} x {q}}. We claim that if {p} x {q} ⇒
{p} f x {q} holds for all x, then

∑
M = µf . Clearly

∑
M ≤ µf . Then by

isotonicity and least fixpoint definition

f (
∑

M) ≤ f µf ≤ µf.

But the Hoare triple {p}
∑
M {q} is valid and, by assumption, {p} f (

∑
M) {q}

holds as well. Hence f (
∑
M) ∈ M , which implies that f (

∑
M) ≤

∑
M .

Thus, by the Knaster-Tarski theorem, µf ≤
∑
M . Therefore µf =

∑
M and

{p} µf {q} follows from {p}
∑
M {q}.

The proof of this proposition in Isabelle is straightforward and automatic,
which also shows its power when handling nontrivial proof tasks. Lemma 6.1 and
Corollary 6.2 then imply the following fact.

Theorem 6.1. The rules of PHL enriched with the recursion rule are derivable
in quantales with tests.

Finally, in order to build a tool based on quantales with tests, we need to prove
soundness with respect to the relational model. In fact, this result subsumes all
other soundness results so far.

Theorem 6.2. Let A be a set. Then (2A×A,⊆, ◦, IdA) forms a quantale with
tests.

Nevertheless, PHL with the recursion rule is not (relatively) complete for re-
cursive parameterless programs. Auxiliary variables, which are needed for verifi-
cation tasks, may appear in assertions. As expected, they can be arbitrary and
have no impact on the validity of a Hoare triple.

Let P and Q be functions from a tuple of auxiliary variables to state sets.
One should be able to prove that {P u} R {Q u} is equivalent to {P v} R {Q v}
when R does not depend on the auxiliary variables u and v. Clearly this is not
possible with standard Hoare logic. The only rule that we could apply is the
consequence rule, which would imply that P u = P v and Q u = Q v.

To overcome this problem, Apt [5] has introduced three adaptation rules,
but these are difficult to automate and rather unsuitable for interactive theorem
provers. Nipkow [87] has therefore implemented a stronger version of the con-
sequence rule in Isabelle which has been proposed by Kleymann [70]. We prove
Kleymann’s stronger version of the consequence rule in the relational model.

Proposition 6.2. Let P , P ′, Q, Q′ be maps from auxiliary variables to state sets
and R a relation. If

∀σ σ′. (∀u. σ ∈ P ′ u⇒ σ′ ∈ Q′ u)⇒ (∀v. σ ∈ P v ⇒ σ′ ∈ Q v),
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then
∀u. {P ′ u} R {Q′ u} ⇒ ∀v. {P v} R {Q v}.

The importance of this rule when verifying recursive programs is shown by an
example. Here and henceforth we write letrec f in S end as a syntactic sugar
for µ(λf. S).

Factorial Example. A program that calculates the factorial of a number can
be written as follows.

letrec Fac in
if ‘x = 0 then

‘y := 1
else

‘x := ‘x - 1;
Fac;
‘x := ‘x + 1;
‘y := ‘y·‘x

fi
end

We would like to prove that {u = ‘x ∧ ‘x ≥ 0} Fac {u = ‘x ∧ ‘y = ‘x!} holds.
When applying the tactic hoare expanded with the recursion rule, the verification
condition

{u = ‘x ∧ ‘x ≥ 0} Fac {u = ‘x ∧ ‘y = ‘x!} ⇒
{u = ‘x+ 1 ∧ ‘x ≥ 0} Fac {u = ‘x+ 1 ∧ ‘y = ‘x!}

is generated, but it is unprovable by standard Hoare logic. One should be able
to instantiate u in the assumption; after all, u is arbitrary and does not occur in
Fac. By applying the usual consequence rule, the assertion u = ‘x + 1 ∧ ‘x ≥ 0
for instance would need to imply that u = ‘x∧ ‘x ≥ 0, which is obviously not the
case. Yet with Kleymann’s rule, Isabelle can prove it completely automatically
with force or auto. �

6.2 Binary Search

As a larger example of an algorithmic verification in the presence of recursive
procedures we prove the correctness of binary search. This example is drawn
from the book [5]. The idea behind binary search is commonly known. It is a
dichotomic divide and conquer search algorithm, which searches an element in
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a sorted array by halving the number of items to check within each call. The
algorithm is as follows.

letrec BinSearch in
‘mid := (‘first + ‘last)/2;
if ‘first 6= ‘last then

if A (‘mid) < val then
‘first := ‘mid +1;
BinSearch

else if A (‘mid) > val then
‘last := ‘mid;
BinSearch

fi
fi

end

The sorted array A and the element to search val is given as input to the
program. The variables ‘first and ‘last correspond respectively the first and the
last element of the array. The variable ‘mid is its output; it corresponds to the
position of the element val in the array A whenever such an element exists.

As explained in §4.4, we model arrays as functions from integers to a poly-
morphic linear ordered type. Define an integer interval to be the set

[[i : j]] = {k | i ≤ k ≤ j},

and the predicate sorted as

sorted A i j = ∀m n. i ≤ m ≤ n ≤ j ⇒ A(m) ≤ A(n).

By using the defined set and predicate together with auxiliary variables f and l,
we can express the precondition of the binary search algorithm as

f = ‘first ∧ l = ‘last ∧ ‘first ≤ ‘last ∧ sorted A ‘first ‘last,

and its postcondition as

f ≤ ‘mid ∧ ‘mid ≤ l ∧ (A (‘mid) = val⇔ (∃x ∈ [[f : l]]. A(x) = val)).

Figure 6.1 shows the complete annotated algorithm. Note that for each
BinSearch, we have annotated the call with pre and postconditions. We also
have annotations before some if statements to guide the verification condition
generator. Applying the hoare tactic generates 10 proof obligations. Eight of
them are discharged by calling Isabelle’s tactical force or simp together with the
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lemma ` {| f = ‘first ∧ l = ‘last ∧ ‘first ≤ ‘last ∧ sorted A ‘first ‘last |}
letrec BinSearch in

‘mid := (‘first + ‘last)/2;
{| f = ‘first ∧ l = ‘last ∧ ‘first ≤ ‘last ∧ sorted A ‘first ‘last ∧ ‘mid = (‘first + ‘last)/2 |}
if ‘first 6= ‘last then

if A (‘mid) < val then
‘first := ‘mid + 1;
{| (f+l)/2 + 1 = ‘first ∧ l = ‘last ∧ ‘first ≤ ‘last ∧ sorted A ‘first ‘last
∧ sorted A f l ∧ A((f+l)/2) < val |}

BinSearch
{| (f+l)/2 + 1 ≤ ‘mid ∧ ‘mid ≤ l ∧ (A (‘mid) = val ⇔ (∃x ∈ [[(f+l)/2 + 1 : l ]]. A(x) = val))
∧ sorted A f l ∧ A((f+l)/2) < val |}

else
{| f = ‘first ∧ l = ‘last ∧ ‘first ≤ ‘last ∧ sorted A ‘first ‘last ∧ ‘mid = (‘first + ‘last)/2
∧ ‘first 6= ‘last ∧ A((f+l)/2) < val |}

if A (‘mid) > val then
‘last := ‘mid;
{| f = ‘first ∧ (f+l)/2 = ‘last ∧ ‘first ≤ ‘last ∧ sorted A ‘first ‘last
∧ sorted A f l ∧ val < A((f+l)/2) |}

BinSearch
{| f ≤ ‘mid ∧ ‘mid ≤ (f+l)/2 ∧ (A (‘mid) = val ⇔ (∃x ∈ [[f : (f+l)/2 ]]. A(x) = val))
∧ sorted A f l ∧ val < A((f+l)/2) |}

fi
fi

end
{| f ≤ ‘mid ∧ ‘mid ≤ l ∧ (A (‘mid) = val ⇔ (∃ x ∈ [[f : l ]]. A ! x = val)) |}

Figure 6.1: Verification of binary search (annotated algorithm)
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definition of the predicate sorted. The remaining two conditions, derived with
the consequence rule of Hoare logic, are less automatic. To deal with them, fol-
lowing [5], we have derived a condition that limits the search to a smaller array
section,

(sorted A f l ∧ f ≤ m < l ∧ A(m) < val)⇒
(∃x ∈ [[m+ 1 : l]]. A(x) = val⇔ ∃x ∈ [[f : l]]. A(x) = val).

Using this new lemma suffices to finish the verification of binary search.
Although termination remains to be proven, as usual, this example shows that

our approach is robust enough to verify correctness of program with parameterless
recursion. In addition, the items used in the array are polymorphic to any linearly
ordered type.

6.3 Quantales and Program Transformations

In this final section, we present two examples for the applicability of quantales in
program transformation and construction.

The first one is a classical program transformation example used in compilers.
In the context of quantales with tests, one can relate tail recursion to a while loop,
which is useful for compiler optimisation. The Isabelle proof is fully automatic.

lemma while b do x od; y = letrec F in (if b then x; F else y fi) end
by (force simp: cwhile-def cond-def lfp-lowerbound lfp-greatest antisym)

The second example uses Galois connections. It shows that, in the context of
quantales, specification statements (§5.1) can be defined as upper adjoints of a
Galois connection. A Galois connection between two posets (A,≤A) and (B,≤B)
is a pair of functions f : A→ B and g : B → A such that

f x ≤B y ⇔ x ≤A g y.

The function f is called the lower adjoint and g the upper adjoint of the Galois
connection. Identifying functions as adjoints of Galois connections is often desir-
able, as they are known to satisfy many useful properties. For a detailed overview
of properties of Galois connections, see [1] for a survey.

It is a general property of Galois connections that any given function f on a
complete lattice, which is continuous and hence satisfies f (

∑
i∈I xi) =

∑
i∈I f xi,

has an upper adjoint g defined by

g y =
∑
{x | f x ≤ y}.
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Clearly, for arbitrary tests p and q in a quantale with tests, the function
λx. pxq distributes over suprema. Hence in test quantales, the specification state-
ment can be defined explicitly as

[p, q] =
∑
{x | pxq ≤ 0},

where the Galois connection

{p} x {q} ⇔ pxq = 0⇔ x ≤ [p, q].

holds by definition. Perhaps a better way to see this Galois connection is via the
use of modal operators. In the relational model, the statement pxq = 0 expresses
that the image of the set p under the relation x is contained in the set q. This can
be rewritten as 〈x|p ≤ q, using the backward diamond λx, y. 〈x|y, as an image
operator (cf. Chapter 7). The above Galois connection can then be written in
more standard form as

(λy. 〈x|y) p ≤ q ⇔ 〈x|p ≤ q ⇔ x ≤ [p, q]⇔ x ≤ (λy.[p, y]) q,

which makes the adjoints clearly visible. In Isabelle the fact that our specification
operator is an upper adjoint lets us automatically instantiate many useful theo-
rems about Galois connections, and use them with the specification statement.

The explicit definition of the specification statement in the quantale context
and the fact that every test quantale is a KAT implies the following fact.

Corollary 6.3. Every quantale with tests forms a rKAT.

By duality, in the context of quantales, a refinement law for recursive proce-
dures can be derived as well.

Proposition 6.3. Let f : Q→ Q be an isotone function on a quantale with tests
Q and p, q ∈ t(Q). Then

(∀x ∈ Q. [p, q] v x⇒ [p, q] v f x)⇒ [p, q] v µf

Finally Corollary 6.3 and Proposition 6.3 yield a refinement tool that supports
recursive procedures.

Theorem 6.3. Morgan’s refinement calculus with a recursion law is derivable in
quantales with tests.

The applicability of this tool for the refinement and transformation of imper-
ative programs remains to be explored. The derivation of suitable transformation
and refinement rules is an interesting direction for future research.
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6.4 Conclusions

This chapter has further generalised the correctness tools developed in the pre-
vious chapters. It documents the implementation of a tool based on quantales
with tests, which is more expressive that the previous ones and is able to handle
recursive procedures. It also demonstrated that quantales are important struc-
tures for program transformation and expressive enough to define a specification
statement operator.
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Chapter 7

Predicate Transformers
Semantics

The weakest precondition calculus serves as an alternative way for reasoning about
programs. This chapter shows how to add this feature to our verification tool
framework. Since variants of KAT are not expressive enough to derive the weak-
est precondition of an arbitrary element [110], Kleene Algebras with Domain
(KAD) [37] are presented, implemented in Isabelle/HOL and then linked to the
relational model.

7.1 Alternative Semantics

Predicate transformers form an alternative denotational semantics for imperative
programs by assigning to each command a corresponding total function between
two predicates. They are inspired by the weakest preconditions (or the strongest
postconditions) calculus, where the problem of verifying a Hoare triple is reduced
to verifying a predicate implication, or isomorphically, a subset relation.

Let 2A be the set of predicates over an arbitrary set A by powerset lifting,
then the structure (2A,⊆) form a complete boolean algebra. Moreover, the set
of predicate transformers F : 2B → 2A is denoted by (2A)2B , where the following
operators and constants are lifted pointwise

0 q = ⊥,
> q = >,

(F uG) q = F q ∩G q,

(F +G) q = F q ∪G q.

The boolean complement of a predicate in 2A has no counterpart in the algebra
of predicate transformers. We write p, q and r for predicates and F and G for
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predicate transformers. Notation of the operators is overloaded and let implicit
by the context. The following result is an immediate consequence of the lifting
definition.

Proposition 7.1 ([19]). Predicate transformers in (2A)2B form complete distribu-
tive lattices.

In addition, predicate transformers in (2A)2A form a monoid under function
composition with the identity function as the unit. Such predicate transformers
form a distributive near-quantale, which is a quantale such that the left distribu-
tivity law,

x · (
∑
i∈I

yi) =
∑
i∈I

(x · yi),

need not hold. The monotone predicate transformers in (2A)2A , which satisfy
p ≤ q ⇒ F p ≤ F q, form a distributive pre-quantale, which is a near-quantale
in which the left monotonicity law, x ≤ y ⇒ z · x ≤ z · y, holds. This yields the
following result.

Theorem 7.1. Let A be a set and 2A its powerset lifting. The monotone predicate
transformers over 2A form a distributive pre-quantale.

The proof consists of showing that the predicate transformers over 2A form
a near quantale and checking that the monotone predicate transformers form a
subalgebra of this near-quantale. In fact, the unit predicate transformer has to be
monotone—which is the case—and composition have to preserve monotonicity.

Proposition 7.2. The healthiness condition imposed by Dikstra on predicate
transformers, cf. §2.3, hold in a pre-quantale.

Similarly, as in Kleene algebra with test, the quantale of predicate trans-
formers supports a shallow algebraic embedding of a simple while language. We
distinguish, however, two semantics: the backward predicate transformer and its
opposite, the forward predicate transformer.

7.2 Backward Predicate Transformers

The backward predicate transformer semantics correspond closely to the weakest
precondition calculus. For a given predicate q and program F , the result of the
function F q is its weakest precondition. That is, the smallest condition on the
initial state ensuring that execution of the program F terminates in a final state
satisfying q.
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A predicate is lifted to backward predicate transformers by

[b] = λq. b̄+ q,

where p̄ denotes the boolean complement of p. The notation [ ] is the same one
used by Back and von Wright [19] for their assumption operator and it is inspired
by the modal box operator in dynamic logic [59] and modal Kleene algebra/KAD.
For a given postcondition q, the predicate [b] q indicates that if we assume b then q
must hold, hence logically this is an implication. Moreover, let F be a predicate
transformer, if the predicate b is true on the initial states, then [b] · F = F ;
otherwise [b] · F = >.

The semantics of a while language is then given by

abort = 0,

skip = 1,

F ;G = F ·G,
if b then F else G fi = [b] · F u [b̄] ·G,

while b do F od = ([b] · F )∗ · [b̄].

The meet u operation is known as demonic choice [19]. We write F ∗ for the
iteration of the predicate transformer F , which is the greatest fixpoint of λα. 1u
α · F . The quantale setting guarantees its existence by Knaster-Tarski theorem.
An explicit definition can also be given by iteration to the first infinite ordinal

F ∗ =
l

i∈N

F i

where F 0 = 1 and F n+1 = F · F n, as usual.
Hoare logic can easily be derived for monotone backward predicate transform-

ers, where validity of a Hoare triple is defined as

{p} F {q} ⇔ p ≤ F q.

Note the backward reasoning strategy when building a valid deduction on Hoare
logic. From a postcondition q, we calculate its weakest precondition F q and
verify a subset relation.

7.3 Forward Predicate Transformers

Similarly, the forward predicate transformer semantics correspond to the strongest
postcondition calculus. The result of a program F applied to states satisfying a
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precondition p is the strongest postcondition F q, that is, the largest condition
held on final states, after the execution of F .

A predicate is lifted to forward predicate transformer by

〈p〉 = λq. p u q.

This is called the assertion operator by [19]. Our notation differs from the liter-
ature and it is used to contrast with the box notation. This will become clear in
the remaining sections.

The semantics of a while language is the same as before, where u is substituted
by +, the angelic choice; [ ] by 〈 〉; and the order of composition is swapped,
yielding a somehow similar algebraic semantics of the one in the context of KAT.

abort = 0,

skip = 1,

F ;G = G · F,
if b then F else G fi = 〈b〉 · F + 〈b̄〉 ·G,

while b do F od = (〈b〉 · F )∗ · 〈b̄〉.

Here, iteration F ∗ is modelled using the least fixpoint of λα. 1 +α ·F . Note that,
since the order in forward predicate transformers is the inverse dual of the one for
backward predicate transformers, iteration is defined by a least fixpoint instead
of a greatest fixpoint.

Hoare logic is again derivable for monotone forward predicate transformers
with the Hoare triple defined as

{p} F {q} ⇔ F p ≤ q.

Similarly, this correspond to a forward reasoning; from a precondition p, we derive
the strongest postcondition F p.

7.4 Relating Semantics

This section shows a well known relationship between relational semantics and
forward/backward predicate transformers [19].

A state transformer fR : A→ 2B is often associated with a relation R ⊆ A×B
from set A to set B by defining

fR a = {b | (a, b) ∈ R}.

It can be lifted to a forward predicate transformer, a function 〈R〉 : 2A → 2B

defined for all X ⊆ A by

〈R〉X =
⋃
a∈X

fR a =
⋃
a∈X

{b | (a, b) ∈ R}.
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Notation is overloaded to the lifting of predicate into predicate transformers. In
fact, let P be a subidentity relation, then

〈P 〉X =
⋃
a∈X

{b | (a, b) ∈ P} =
⋃
a∈X

dP e = dP e ∩X,

where dP e denotes the set isomorphic to the subidentity P . Similarly, relations
are lifted to backward predicate transformers [R] : 2B → 2A by defining

[R] Y = {x | fR x ⊆ Y } = {x | ∀y ∈ B. (x, y) ∈ R⇒ y ∈ Y }

for all Y ⊆ B. The modal box and diamond notation is justified by the corre-
spondence between diamond operators and Hoare triples as well as box operators
and weakest precondition operators in the context of modal semirings and modal
Kleene algebras [37]. In fact we obtain the Galois connection

〈R〉X ⊆ Y ⇔ X ⊆ [R]Y

from the above definitions. For a subidentity P , the adjunction becomes the
classical Galois connection of a boolean algebra

dP e ∩X ⊆ Y ⇔ X ⊆ ¯dP e ∪ Y.

Proposition 7.3. The following properties hold for all relations R and S.

〈0〉 = [0] = λx. ∅
〈1〉 = [1] = λx. x

〈R ∪ S〉 = 〈R〉+ 〈S〉,
[R ∪ S] = [R] u [S],

〈R ◦ S〉 = 〈S〉 · 〈R〉 = λx. 〈S〉 (〈R〉 x),

[R ◦ S] = [R] · [S] = λx. [R] ([S] x).

Proposition 7.3 justifies the alternative semantics given for a simple while
language using forward or backward predicate transformers. Additionally, their
Hoare triple are equivalent.

Theorem 7.2. The Hoare triples in all semantics considered (relational, forward
and backward predicate transformers) are equivalent. That is, let P and Q be
arbitrary sets, and let R be a relation, then,

bP c ◦R ◦
⌊
Q̄
⌋

= ∅ ⇔ bP c ◦R ⊆ R ◦ bQc ⇔ 〈R〉P ⊆ Q⇔ P ⊆ [R]Q.
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7.5 Modal Kleene Algebras

KAT is not expressive enough to model algebraically this intricate relationship
between relations and backward/forward predicate transformers. In this section,
Kleene algebras are expanded to modal Kleene algebras, which are algebraic rel-
atives of propositional dynamic logic [59]. The idea is to integrate programs into
a predicate language, allowing actions to be modal operators [50]. Modal Kleene
algebras [37] can be axiomatised in various ways, three of which are introduced
briefly in this section. The general approach is to embed, like in KAT, a suitable
boolean algebra B of tests or assertions into a Kleene algebra K modelling the
actions of a program.

Modal diamond operators are axiomatised in dynamic algebras as mappings
〈 〉 : K → B → B and modal box operators as [ ] : K → B → B. The former
model the strongest postcondition operator, while the latter the weakest (liberal)
precondition one. Validity of Hoare triple is then defined algebraically within a
dynamic algebra as

{p} x {q} ⇔ 〈x〉p ≤ q ⇔ p ≤ [x]q.

The notation of the modal operators are overloaded with its corresponding se-
mantics in the relational Kleene algebra, which are the forward and backward
lifting operators from relations to predicate transformers.

Single sorted axiomatisations

Axiomatisations of modal boxes and diamonds over a Kleene algebra can be based
on that of a domain or antidomain operation [37, 38]. A domain semiring is a
semiring S expanded by a domain operation d : S → S that satisfies

x+ d(x) · x = d(x) · x,
d(x · y) = d(x · d(y)),

d(x) + 1 = 1,

d(0) = 0,

d(x+ y) = d(x) + d(y).

In fact, every domain semiring is additively idempotent and therefore a dioid. It
can be checked that the domain operation is a retraction, that is, d2 = d. Hence
the set d(S) of domain elements of S consists precisely of the fixpoints of d. This
is useful for typing domain elements and checking their closure conditions.

Proposition 7.4. The domain elements d(S) of a domain semiring S form a
bounded distributive lattice in which · is meet, 0 is the least element and 1 is the
greatest element.
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The domain algebra d(S) does in fact contain the greatest boolean subalgebra
of S between 0 and 1, but does not need to be a boolean algebra itself. Due to
this structure, domain elements can serve as tests or assertions. Henceforth we
write p, q, r for them.

Domain semirings are too weak to express the negation of a test. Boolean
domain algebras can be obtained by axiomatising an antidomain operator, which
yields the boolean complement of a domain element.

An antidomain semiring is a semiring S expanded by an antidomain operation
a : S → S that satisfies

a(x) · x = 0,

a(x · y) + a(x · d(y)) = a(x · d(y)),

d(x) + a(x) = 1,

where we have written d = a2. This is justified because every antidomain semiring
is a domain semiring with respect to this definition.

Antidomain elements are domain elements since d ◦ a = a. Moreover d(x) ·
a(x) = 0 for all x ∈ S, hence a implements boolean complementation on d(S).
We henceforth also write p instead of a(p).

Theorem 7.3 ([38]). The domain algebra of an antidomain semiring forms the
maximal boolean subalgebra of the semiring of subidentites.

Proposition 7.5. Let A be a set. The structure (2A×A,∪, ◦, a, ∅, IdA) forms an
antidomain semiring with a(R) = {(a, a) | ∀b ∈ A. (a, b) /∈ R}.

We call this structure the full relational antidomain semiring over A. It
follows that every subalgebra is a again an antidomain semiring—a relational
antidomain semiring. Moreover, every relational antidomain semiring is also a
relational domain semiring with d(R) = {(a, a) | ∀b ∈ A. (a, b) ∈ R}.

It follows from the definitions that 〈R〉P = d(R ◦ bP c) in a relational domain
semiring. More abstractly we can define, for any antidomain semiring,

〈x〉y = d(x · y),

[x]oy = a(〈x〉a(y)) = a(x · a(y)),

where [x]o is called the dual of the modal box operator and it is defined by Morgan
duality. These are sometimes called forward diamond and box operators and are
written as |x〉 and |x]. Here, we stick with the classical notation of dynamic
algebras.

Extending domain semirings with a Kleene star ∗ is straightforward and yields
a Kleene algebra with domain (KAD) [37].
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Modal algebras

The dual So of a semiring S is a semiring where multiplication is applied back-
ward, that is, if (S,�) is the dual of (S, ·), then x�y = y·x. The duals of a domain
and an antidomain semiring define the operators do and ao respectively. They are
also called range and antirange, since in the relational model the following holds

do(R) = {(b, b) | ∃a ∈ A. (a, b) ∈ R}.

Proposition 7.6. The structure (2A×A,∪, •, ar, ∅, IdA) forms a dual antidomain
semiring with R • S = S ◦R and ar(R) = {(b, b) | ∀a ∈ A. (a, b) /∈ R}.

Similarly, for any dual antidomain semiring, we define the modal operators

〈x〉oy = do(y · x),

[x]y = ao(〈x〉ao(y)) = ao(ao(y) · x).

These are also called backward diamond and box operators, and are written as
〈x| and [x|.

In the relational model, the domain of the range of a relation R is the range
of R. Similarly, the range of its domain is equal to its domain. This result entails
the definition of a modal semiring, which is formed by an antidomain semiring
and its dual, such that the following holds:

d(do(x)) = do(x),

do(d(x)) = d(x).

Proposition 7.7 ([37]). In a modal semiring, boxes and diamonds are upper and
lower adjoints in a Galois connection. Additionally, they form conjugated pairs
with their duals.

〈x〉p ≤ q ⇔ p ≤ [x]q

〈x〉op ≤ q ⇔ p ≤ [x]oq

p · 〈x〉q = 0⇔ q · 〈x〉op = 0

p · [x]q = 0⇔ q · [x]op = 0

Finally, a modal Kleene algebra (mKA) is a modal semiring enriched with a
Kleene star.

Two sorted axiomatisations

Alternatively, domain semirings can be axiomatised in a two-sorted setting [37].
In that case, a test dioid is a structure (S,B,+, ·, , 0, 1} such that S is a dioid
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and B ⊆ S a boolean algebra with join +, meet ·, complementation , least
element 0 and greatest element 1. A domain operation d : S → B can now be
axiomatised, for all x, y ∈ S and p ∈ B, by

x ≤ d(x) · x,
d(p · x) ≤ p,

d(x · d(y)) ≤ d(x · y).

Similar reasoning can be used to axiomatise antidomains [37]. It is easy to see that
(S, d(S),+, ·, a, 0, 1) is a test dioid in that sense for every antidomain semiring S.
The extension of this setting with duals and modal variants is straightforward.

Domain modules

Finally, a semiring module [47, 78] (S, L, :) consists of a dioid (S,+, ·, 0, 1), a
bounded join-semillatice L with least upper bound operation + and least element
0 and the scalar product : of type S → L → L such that, for all x, y ∈ S and
p, q ∈ L,

(x+ y) : p = x : p+ y : p,

x : (p+ q) = x : p+ y : p,

(x · y) : p = x : y : p,

1 : p = p,

x : 0 = 0.

Every domain semiring S defines a semiring module (S, d(S), λx, p. d(x · p)) and
every antidomain semiring S forms a semiring module in which L = d(S) forms
a boolean algebra. Conversely, one can define d = λx. x : 1 for each semiring
module in which L has a greatest element 1. However it turns out that domain
elements need not be closed with respect to multiplication under that definition.

In every semiring module (S, L, :), diamond operators 〈 〉 : S × L → L can
be defined as 〈x〉p = x : p. Moreover, when L = B is a boolean algebra, box
operators [ ] : S ×B → B can be defined by De Morgan duality as [x]p = 〈x〉p,
as usual. Once again, an extension for modal module variants is straightforward.

7.6 Domain Quantale

It is desirable to be able to define directly the domain operation in a quantale;
yielding a Kleene algebra with domain. Näıvely, domain could be defined as
d(x) = 1ux ·>, which holds in the relational model. Nevertheless, in a quantale,
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we can easily find a counterexample for the equation d(x) · x = x. Consider for
instance a three-elements quantale 0, t and 1 = >, where t · t = 0 and 0 < t < 1.
Then

d(t) · t = (1 u t · >) · t = (> u t · 1) · t = (> u t) · t = t · t = 0 6= t.

To overcome this issue, we consider quantales where the following distributivity
law holds

(z u x · >) · y = z · y u x · >,

for all x, y, z ∈ Q. This is called the right distributivity law for vectors, because
in relation algebra an element x where x = x · > is usually called a vector. The
proof of d(x) · x = x becomes trivial, since x ≤ x · >, then

d(x) · x = (1 u x · >) · x = 1 · x u x · > = x.

Similarly, we have a left distributivity law for vectors.

Lemma 7.1. Every quantale satisfying the right distributivity law is a domain
semiring where d(x) = 1 u x · >; moreover it is a Kleene algebra with domain.
If it satisfies the left distributivity law, then it is a dual domain semiring with
do(x) = 1 u > · x.

A quantale is called a boolean quantale if its underlying lattice is a boolean
algebra, that is, it is distributive and complemented. As previously, we would like
to define an antidomain operation a(x) = 1ud(x) = 1ux · > directly in a boolean
quantale. However it is straightforward to find a counterexample for a(x) ·x = 0.
Nevertheless, when considering a quantale where the right distributivity law for
vectors holds, it is sufficient to prove that x · > · > = x · >, since x ≤ x · >, then

a(x) · x = (1 u x · >) · x = (1 u x · > · >) · x = 1 · x u x · > · > = x u x · > = 0.

We use the conjugation of multiplication to prove the remaining claim. It
is well known that a quantale is residuated [68]. A residuated boolean algebra
induces the conjugates

x · y u z = 0⇔ y u (xB z) = 0⇔ x u (z C y) = 0

for all x, y, z ∈ Q. In fact, one can give an equational definition of conjugates in
a boolean quantale [55]

xB y =
l
{z. x · z u y = 0},

xC y =
l
{z. x u z · y = 0}.
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Lemma 7.2. Let Q be a quantale where the right distributivity law for vectors is
satisfied, then the following holds for all x, y ∈ Q.

x · > u y = 0⇔ x u y · > = 0,

xC> = x · >,
y · xC x u y = 0.

Proof. Suppose x · > u y = 0. Then by the right distributivity law for vectors

x · > u y · > = (x · > u y) · > = 0 · > = 0,

and since x ≤ x · >, we get by isotonicity of meet

x u y · > ≤ x · > u y · > = 0.

Dually for the converse. Now by the equational definition of conjugation, xC>
is the smallest element z such that x u z · > = 0. Clearly, by the previous fact,
x u x · > · > = 0, since x · > u x · > = 0. Moreover x · > is the smallest of
such elements. Suppose by contradiction that exists z where z < x · >. Then
x · > < z and 0 = x u x · > · > < x u z · > = 0. Hence x C > = x · >. The
last equation is easily derived by using the complementation and conjugation,
y · x u y · x = 0⇔ y · xC x u y = 0.

It is then straightforward to prove the desired equation x · > · > = x · > by
using Lemma 7.2 and that x · > ≤ x · > · >, that is,

x · > · > = (x · >) · > · > = (x · >) · >C> ≤ x · >.

Lemma 7.3. Every boolean quantale satisfying the right distributivity law for
vectors is an antidomain semiring where a(x) = 1 u x · >. If it satisfies the left
distributivity law, then it is a dual antidomain semiring with ao(x) = 1 u > · x.
If it satisfies both laws, then its reduct forms a modal semiring.

A domain quantale is any boolean quantale satisfying both the right and the
left distributivity law for vectors.

Corollary 7.1. Every domain quantale is a modal Kleene algebra.

Jònsson and Tsinakis [68] have considered a residuated boolean algebra B
where the following equality holds

xB y = (xB 1) · y

for all x, y ∈ B. They have proved, and we have mechanically verified in Is-
abelle/HOL [55], that the resulting structure is isomorphic to a relation algebra.

90



Since the distributivity laws for vectors hold in a relation algebra, one could con-
sequently use the quantale expansion of this structure to derive a modal semiring.
However, the question whether the reduct of a domain quantale forms a relation
algebra remains open.

Finally, we prove soundness of the last algebraic structure in our desired model
for programs, the relational model.

Theorem 7.4. Let A be a set. The structure (2A×A,⊆, ◦, IdA) forms a boolean
quantale satisfying the distributivity laws for vectors.

7.7 Implementation in Isabelle/HOL

This section adds support to our correctness tools for reasoning about while
program using the modal box operator. We use Gomes et al. formalisation of
KAD in Isabelle/HOL [54] and, once again, we prove as an example the correctness
of Euclid’s greatest common divisor algorithm.

First, soundness with respect to the relational model is proved as usual. The
structure is called full relational KAD.

interpretation rel-kad:
kad (op ∪) (op O) Id {} (op ⊆) (op ⊂) rtrancl (λR. {(a, a) | a. ∀b. (a, b) ∈ R})
〈 proof 〉

Second, since the same relational model of Chapter 4 is used, it is straight-
forward to derive the weakest predicate transformer for the graph 〈f〉 of a state
transformer f : Σ → Σ. Note that the notation for the graph of a function and
the modal diamond operator is overloaded and it can be distinguished by typing.

Lemma 7.4. Let f : Σ→ Σ, the following holds in relational KAD.

P ⊆ {σ | f(σ) ∈ Q} ⇒ P ⊆ [〈f〉]Q.

The assignment axiom is then a corollary of Lemma 7.4.

P ⊆ Q[e/‘x]⇒ P ⊆ [‘x := e] Q.

Third, all the weakest predicate transformer rules are grouped in Isabelle/HOL
by a named theorem list wlp-rules, with the except of the consequence rule, which
is basically a monotonicity law for predicate transformers. The reason for this
exception is that the list would not be safe to be applied as an introduction rule
and it would generate schematic variables.

named-theorems wlp-rules
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record state =
x :: nat
y :: nat
z :: nat

lemma euclids:
(‘x = xo ∧ ‘y = yo) ⊆
[while ‘y 6= 0
inv gcd ‘x ‘y = gcd xo yo
do

‘z := ‘y ;
‘y := ‘x mod ‘y ;
‘x := ‘z

od]
(‘x = gcd xo yo)

apply (rule wlp-rules)+
by auto (metis gcd-red-nat)

Figure 7.1: Euclid’s algorithm by weakest liberal precondition

Finally, we are able to prove correctness of our toy example, presented in
Figure 7.1. The subset relation notation is used to explicitly show the weakest
precondition semantics, however, the program and its specification could have
been expressed by a Hoare triple. When calling (rule wlp-rules), Isabelle tries
to apply one of the facts as an introduction rule in the named theorem list wlp-
rules. The + symbol indicates that Isabelle can safely apply the rules until all of
them fails. Since we have one rule per program construct, it is clear that, after
the application of the rules, the proof state contains all the verification conditions
generated by the predicate transformer semantics. The conditions are of the form
P ⊆ Q, where P and Q are predicates. They are essentially the same conditions
generated in §4.3 by Hoare logic and can be dispatched in the same way.

Note that we have not created a tactic to generate these proof obligations,
since all the rules are applied in the same fashion, simply grouping the facts is
sufficient. However, if more program constructs need to be supported, such as
procedure calls and recursion, one might need to create its own tactic, since these
rules might not be safe or need to be applied in a specific manner. For these
extensions, domain quantales can be used to derive a recursion rule, following the
same recipe presented in Chapter 6.

Although the predicate transformer semantics is more expressive that Hoare
logic [110], they entail the same verification conditions. In §4.2, hoare tactic
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chooses the largest possible set of states whenever it encounters a schematic
variable, essentially yielding a weakest precondition reasoning. For the purposes
of a simple imperative while language, they are therefore equivalent and we do not
pursue this method any longer. If one is interested in program transformation and
refinement however, the predicate transformers semantics can be more useful [19,
118]. Additionally, for while programs with pointers, reasoning with predicate
transformer yields a simpler approach (cf. Chapter 10).

7.8 Conclusions

This chapter presented alternative ways of defining the semantics of imperative
while programs. We have described (three) axiomatisations of modal variants
of Kleene algebras, which are more expressive and are able to characterise the
weakest precondition (or the strongest postcondition) reasoning by modal oper-
ators. Additionally, these algebraic structures can be extended to incorporate
quantales; we have derived conditions that they must satisfy to define domain
and antidomain operations explicitly. Finally, the components are linked to our
tool framework by a soundness proof with respect to the relational model and an
example shows the approach at work.

Although for verification condition generation, the alternative semantics does
not bring a clear benefit, the chapter demonstrates the robustness and flexibility
of the algebraic approach to correctness tools presented in this thesis.

93



Chapter 8

Nondeterministic Programs

This chapter introduces the guarded command language proposed by Dijkstra for
nondeterministic programs. We present an algebraic semantics for this language
in the context of quantales with test and derive propositional Hoare logic equa-
tionally. A soundness proof links the language with the relational semantics and
examples show the extended tool in practice. Finally, we present a way of verify-
ing concurrent programs using nondeterminism and we prove the correctness in
Isabelle of well-known concurrent algorithms.

8.1 Guarded Command Language (GCL)

The guarded command language (GCL) was proposed by Dijkstra [40] for its
simplicity and symmetry when reasoning about nondeterministic programs. A
GCL program C is a string of symbols generated by the following BNF grammar:

GC ::= [b→ C] | [GC1, GC2]

C ::= abort | skip | u := t | C1;C2 | if GC fi | do GC od

The commands abort and skip, sequential composition ; and assignment u := t
are clear and denote the same as in the while language. A guarded command
[b → C] is the most basic construct in GCL, where a command C is guarded
by a proposition, or test, b. Informally, if b is true in the initial state, then C
is executed. Otherwise, the command fails or aborts. Guarded commands can
be a single pair of test b and a command C or be listed by commas “,” as in
[b1 → GC1, b2 → C2]. A guarded command is not however a full statement of
the language and it needs to be enclosed by a selection operator (or alternative
construct) if fi or a repetition operator (or repetitive construct) do od. The
former nondeterministically selects any command to be executed from a list of
guarded commands where the guard is evaluated to true. If none of the guards are

94



true, the statement aborts. The latter executes the guarded commands repeatedly
until none of the guards in the list are true.

One of the main advantages of GCL according to Dijkstra is the presentation of
an algorithm in a symmetric fashion, enhancing its clarity. Consider, for example,
Euclid’s greatest common divisor algorithm; using the repetition operator, it can
be written as

do [x > y → x := x− y, x < y → y := y − x] od,

which is more readable and symmetric than the one previously written in a while
language (cf. Chapter 4).

An algebraic semantics of GCL without assignment statement can be easily
given in the context of quantales with tests. The semantics of a guarded command
[b → x] is simply b · x, where b is a test and x is an arbitrary element of the
quantale. We write [bi → xi]i≤n for a list of guarded commands.

abort = 0,

skip = 1,

x; y = x · y,

if [bi → xi]i≤n fi =
∑
i≤n

(bi · xi),

do [bi → xi]i≤n od = (
∑
i≤n

(bi · xi))∗ ·
l

i≤n

b̄i.

The semantics given here are as usual for partial correctness only. A total cor-
rectness semantics in this case would not only change the repetitive construct,
but also the alternative one. It needs to ensure that

∑
i≤n bi holds in the initial

state of if [bi → xi]i≤n fi, otherwise it would fail and do not terminate.
GCL is clearly more expressive than a while program; the next proposition

shows that the conventional conditional and loop statements in a while language
can be modelled in GCL.

Proposition 8.1. Let b be a test, and x and y be arbitrary elements in a quantale
with tests, then the following correspondence identities hold.

if b then x else y fi = if [b→ x, b̄→ y] fi,

while b do x od = do [b→ x] od.

Therefore, GCL can be seen as an extension of the while language supporting
nondeterminism.

Dijkstra has initialled proposed GCL for a predicate transformer semantics.
In a quantale with domain, one can apply the backward box operator to derive
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a similar semantics. His weakest precondition semantics for GCL varies a little
from the one presented here, since he considers termination.

[abort] q = 0,

[skip] q = q,

[x; y] q = [x] [y] q,

[if [bi → xi]i≤n fi] q =
l

i≤n

(b̄i + [xi] q, )

[do [bi → xi]i≤n od] q = (
l

i≤n

(b̄i + [xi](
∑
i≤n

bi + q)))∗.

8.2 Propositional Hoare Logic for GCL

Section 3.4 presents propositional Hoare logic for a while language based on
Kleene algebra with tests. Since GCL is an extension of the while language,
to derive a version of PHL for GCL, it is enough to derive Hoare rules for the
alternative and repetitive constructs. As in KAT, this can easily be done by
equational reasoning in the context of quantale with tests. Note that the validity
of a Hoare triple remains the same.

Lemma 8.1. Let p and q be tests. Moreover, for all i in I, let bi be tests and xi
be arbitrary elements in a quantale with tests, then the following Hoare rule for
the alternative construct can be derived.

∀i ≤ n. {p · bi} xi {q} ⇒ {p} if [bi → xi]i≤n fi {q}.

Proof. Unfolding the definition of a Hoare triple and applying distributivity of
arbitrary suprema, we have

p ·
∑
i≤n

(bi · xi) =
∑
i≤n

(p · bi · xi)

≤
∑
i≤n

(bi · xi · q)

= (
∑
i≤n

(bi · xi)) · q.

From the first line to the second, we apply monotonicity of suprema and the
assumption {p · bi} xi {q}, then p · bi · xi ≤ bi · xi · q.

Lemma 8.1 shows the classic Hoare rule for the alternative construct [5]. Nev-
ertheless, we propose two others that are equivalent to the classical one, but they

96



are more suitable for machine automation and for program construction. They
inductively reduce the size of the list of guarded commands inside the alternative
construct.

{p · b} x {q} ⇒ {p} if [b→ x] fi {q},
{p · bn} xn {q} ∧ {p} if [bi → xi]i≤n−1 fi {q} ⇒ {p} if [bi → xi]i≤n fi {q}.

There is one rule for the base step and another one for the induction step. Al-
though all the 3 rules were proved in Isabelle/HOL, only the last two are added
to the hoare tactic for verification condition generation.

Lemma 8.2. Similarly, let p and q be tests, and for all i in I let bi be tests and
xi be arbitrary elements in a quantale with tests, then the following Hoare rule
for the repetitive construct can be derived.

∀i ≤ n. {p · bi} xi {p} ⇒ {p} do [bi → xi]i≤n od {p ·
l

i≤n

b̄i}.

Proof. Following similar reasoning from Lemma 8.1, we have

p ·
∑
i≤n

(bi · xi) ≤ (
∑
i≤n

(bi · xi)) · p,

applying simulation of ∗, yields

p · (
∑
i≤n

(bi · xi))∗ ≤ (
∑
i≤n

(bi · xi))∗ · p.

By applying monotonicity of ·, we get

p · (
∑
i≤n

(bi · xi))∗ ·
l

i≤n

b̄i ≤ (
∑
i≤n

(bi · xi))∗ · p ·
l

i≤n

b̄i,

which completes the proof.

Once more, we propose an equivalent rule more suitable for machine automa-
tion, reducing the problem to an alternative construct.

{p ·
∑
i≤n

bi} if [bi → xi]i≤n fi {p} ⇒ {p} do [bi → xi]i≤n od {p ·
l

i≤n

bi}.

Similarly, it is hard to find a suitable invariant for the repetitive construct. In
general, it is in fact an undecidable problem. During the verification of a nonde-
terministic algorithm, the repetitive construct needs to be correctly annotated.
We write inv r do [bi → xi]i≤n od for a construct annotated with invariant r. In
order to automatically generate proof obligations, the following secondary Hoare
rule is added to the tactic hoare.
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Lemma 8.3. Let p, q and r be tests, and, for all i ≤ n, let bi be tests and xi be
arbitrary elements in a quantale with tests. If p ≤ r and r ·

d
i≤n bi ≤ q, then

{r ·
∑
i≤n

bi} if [bi → xi]i≤n fi {r} ⇒ {p} inv r do [bi → xi]i≤n od {q}.

These results yield the following theorem.

Theorem 8.1. PHL for GCL is derivable in a quantale with tests.

Similarly, we can derive refinement laws for GCL, since the specification oper-
ator is available in the context of quantales. The derivation is straightforward.

[p, q] v if [bi → [bi · p, q]]i≤n fi,

[p, p ·
l

i≤n

bi] v do [bi → [bi · p, p]]i≤n od.

8.3 GCL Examples

The whole extension to support GCL has been done so far in the algebraic level.
This means that any computational model, that forms a quantale with tests,
supports reasoning in GCL and its propositional Hoare logic.

In order to finish the extension of our tool to GCL in Isabelle/HOL, it sufficient
to link the algebra with its model. §4.2 shows that relations form quantale with
tests, therefore the derivation of the Hoare rules are sound in the relational model.
This yields the following result.

Theorem 8.2. The inference rules of Hoare logic for GCL hold in the full rela-
tional quantale with tests.

Finally, since the tool already has a concrete relational model with assign-
ments, we are able to prove the correctness of programs using GCL. Two toy
examples are shown in Figures 8.1 and 8.2. Both examples are straightforward.
Note that in this version of Euclid’s algorithm, both variables ‘x and ‘y are the
same and store the greatest common divisor of their initial values. The verification
of both examples are completely automatic and it was done by calling the tactic
hoare, which generates all the necessary proof obligations. These were discharged
by auto or Sledgehammer. In Euclid’s example, the tactic hoare generates 4
conditions: the loop invariant initialisation, one condition per each guarded com-
mand and the establishment of the postcondition. Similarly, the other example
generates 2 conditions, one per guarded command.
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record state =
x :: nat
y :: nat
z :: nat

lemma ` {| ‘x = xo ∧ ‘y = yo |}
inv gcd xo yo = gcd ‘x ‘y
do [

‘x > ‘y → ‘x := ‘x − ‘y ,
‘x < ‘y → ‘y := ‘y − ‘x

] od
{| ‘x = gcd xo yo ∧ ‘x = ‘y |}
apply hoare
using gcd-diff1-nat gcd-nat .commute by auto

Figure 8.1: Verification of Euclid’s greatest common divisor algorithm in GCL

lemma ` {| True |}
if [

‘x ≥ ‘y → ‘z := ‘x ,
‘y ≥ ‘x → ‘z := ‘y

] fi
{| ‘z = max ‘x ‘y |}
by hoare auto

Figure 8.2: Verification of maximum algorithm in GCL

8.4 Parallelism by Nondeterminism

The tool implemented so far only supports sequential nondeterministic programs.
In this section, we present a well-known transformation of parallel programs in
nondeterministic ones, adding support to a parallel version of while programs [5].
For the remaining of this chapter, an action will be any arbitrary element of a
quantale with tests (which represents a sequential while/GCL program), and a
(parallel) program will be a list of actions with an associated program counter.
The semantics of a program will be done by a nondeterministic scheduler.

A program counter p is a list of tests pi and actions p̂i satisfying the following
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properties for all elements of the lists:

p̂i · pi = pi,

pi · p̂i = p̂i,

pi · pj = 0 for all j 6= i,∑
i≤n

pi = 1.

p̂i is the action that turns the test pi true, every pi in the list is pairwise disjoint,
and one of the pi must be true. The actions of a program should not interfere
with a program counter, and vice-versa. That is, an action in a program x should
never stablish pi and xm · p̂i · xn = xm · xn for all m,n and i. Semantically, the
actions p̂i represents an assignment of a program variable pc to i that is not in
any action of x.

A scheduler is a part of an operating system that decides which process should
run at a certain point. The repetitive construct of GCL can be thought of a very
simple and näıve scheduler. That is, let x0, x1, ..., xn be programs and b0, b1, ..., bn
conditions that they need respectively to satisfy in order to be executed, in other
words their guards, then

(b0 · x0 + b1 · x1 + ..+ bn · xn)∗ · (b0 + b1 + ...+ bn)

models the semantics of a nondeterministic scheduler. The scheduler only finishes
when all the guards are false. Note that there is no guarantee of fairness and it
could potentially abort (or in total correctness, run forever).

We use the following BNF grammar to generate parallel programs:

〈a〉 | x; ; y | x ‖ y | if b then x else y fi | while b do x od | await b then a end.

The program 〈a〉 is an atomic statement which corresponds to the action a. x; ; y
denotes sequential composition and x ‖ y parallel composition. There are two
models of parallel composition in the literature: the interleaving model and the
true concurrency model [79]. Here, we are interested in the former, where the
execution of the parallel composition of two programs x and y is the interleaving
of all actions within x and y. The conditional and loop construct are clear.
The last statement, or the synchronisation construct, was proposed by Owicki
and Gries [94]. Informally, whenever b is true, the construct await b then a end
executes the action a. Otherwise, the program gets blocked until another program
running in parallel turns b to true. It is used for synchronisation purposes. We
also introduce the following abbreviation:

wait b = await b then skip end.
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The semantics of these programs can be expressed by a nondeterministic
scheduler. For instance, let a sequential program x be a list of programs x0, ..., xn,
and let p be the program counter associated to x, then the semantics of x can be
given by

JxK = p̂0 · (T p0,#x (x))∗ · pn+1,

where T pi,j is a function that transforms the program into a suitable list of guarded
command actions, updating the program counter in the end of each action exe-
cution. The program counter starts as i and finish as j. We denote the number
of actions in a program x by #x. If x were a sequence of atomic actions, then
T p0,#x(x) =

∑
i≤n pi · xi · p̂i+1. The scheduler would start by initialising the pro-

gram counter to 0. Next it would choose nondeterministically one of the actions
where pi is true, and then update p after the execution of xi. This is done until
pn+1, in which case the scheduler does not have any more option and would finish
its execution. Note that in this case, if all xi were deterministic actions, x would
also be deterministic. Also note that, due to the nature of program counters,
the operation is indeed a nondeterministic scheduler, or a repetitive construct of
GCL, since

∑
i≤n pi = 1− pn+1 = pn+1.

Similarly, let q (q 6= p) be the program counter associated to another sequential
program y which is a list of actions y0, y1, ..., ym, then the parallel composition of
x and y is

Jx ‖ yK = p̂0 · q̂0 · (T p0,#x(x) + T q0,#y(y))∗ · pn+1 · qm+1.

This parallel operator can easily be extended to any arbitrary number of pro-
grams.

The transformation function T pi,j is defined by induction on the structure of
the program:

T pi,j(〈a〉) = pi · a · p̂j
T pi,j(x; ; y) = T pi,i+#x+1(x) + T pi+#x+1,j(y)

T pi,j(if b then x else y fi) = pi · b · p̂i+1 + T pi+1,j(x)

+ pi · b̄ · p̂i+#x+1 + T pi+#x+1,j(y)

T pi,j(while b do x od) = pi · b · p̂i+1 + pi · b̄ · p̂i+#x+1 + T pi+1,i(x)

T pi,j(await b then a end) = pi · b · a · p̂j

Clearly, whenever the program is an atomic action, the transformation tries to
execute a if pi is true and then update the program counter. For the sequential
composition case, it generates the guarded commands for x starting from i and
finishing in the end of x, that is, i + #x + 1. Similarly, for y, it will start in the
end of x and finish in j. The conditional construct follows a similar reasoning, it
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will execute x if b is true from i+ 1 or execute y if b is false from i+ #x+ 1. The
while loop construct will jump to the end of the command if b is false, otherwise
it will set the program counter p to i+1, execute x and loop back to i. Note that
T pi+1,i(x) will force the last action in x to set the program counter p to i. Finally,
the await statement works simply as a conditional atomic region, that is, it will
execute the atomic action a only if b is true. Note that, since T is not defined for
‖, nested application of parallel composition is not allowed.

8.5 Isabelle Implementation

In order to simplify the Isabelle implementation, the programs need to be anno-
tated with labels, cf. Figure 8.3. The statement S when labelled by k becomes:

k =: S.

This allows more expressivity when writing invariants for a program. One can
write an assertion Qa about the execution of the program that holds immediately
before k by simply stating pc = k ⇒ Qa. Likewise, an assertion Qb that always
hold after k could be expressed as pc ≥ k + 1 ⇒ Qb. Although, we do not
implement this here, temporal logic [79] could have been used instead, hiding the
program counters.

Since a scheduler is simply a repetitive construct, an invariant should be added
to the parallel construct in order to generate the necessary proof obligations by
the tactic hoare. We add the following construct to our parallel language:

inv b. x ‖ y,

where x and y are labelled programs. Any other invariants of loops inside a
parallel component can be annotated directly here by the program counters.

Finally, programs counters are modelled by variables ‘pcX and ‘pcY.

record pc-state =
pcX :: nat
pcY :: nat

The tests in a program counter becomes simply ‘pcX = i, and an update action
becomes an assignment ‘pcX := j. Any record state used needs to extend the
basic record pc-state. Additionally, in order to comply with the last requirement
for a program counter, the invariants ‘pcX ≤ #x + 1 and ‘pcY ≤ #y + 1 are
automatically added to the parallel construct.

Finally, we implement a tactic transform that takes our labelled and parallel
code and transforms into a GCL program by the method discussed in the previous
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section. The implementation is straightforward and done in the Eisbach language.
For more information, please refer to the Isabelle files1.

8.6 Examples

Figures 8.3 and 8.4 show the tool in work. They are classic parallel algorithms
extracted from Feijen and van Gasteren’s monograph [48].

The first example (Figure 8.3) is a handshake problem, called the initializa-
tion protocol, where an initial state needs to be established before any of the
component could start executing its own code. Each component would run an
initialisation code and then enter in a synchronisation phase, and it would only
continue to run the rest after the second component has finished its initialisation
phase. Note that the postcondition does not establish the desired property, it
only states that both components finish their initialisation phases. The prop-
erty needs to be expressed as a global invariant; therefore we add the following
specification as an invariant of the parallel operator:

‘pcX ≤ 1 −→ ‘pcY ≤ 2,

‘pcY ≤ 1 −→ ‘pcX ≤ 2.

It states that while the first component has not yet finished its initialisation phase
(‘pcX ≤ 1), which is marked as comment in the Isabelle code, the second com-
ponent needs to be in its waiting statement or still running its own initialisation
code (‘pcY ≤ 2); similarly for the second component.

Additionally, one needs to prove that the components do not deadlock, that
is, that they do not wait forever. This is verified by the following invariant

‘pcX = 2 ∧ ‘pcY = 2 −→ ‘x ∨ ‘y,

which simply states that if both components are in their waiting statement, then
‘x or ‘y must be true. Hence, at least one of the components will be able to
proceed.

The other invariants can be seen as program annotations for each of the
commands and directly follows the ones from Feijen and van Gasteren. These are
not quite straightforward, and the reader is invited to check their comments [48].
Note that a ghost variable ‘c was introduced to break the symmetry between
both programs. Although ‘c is not necessary for the final version of the program
and is not use in the synchronisation, since the first component does not read the
value of ‘c, it is needed to write a correct invariant for the problem.

1https://github.com/victorgomes/veritas
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If correctly annotated, the tactic transform re-write the program to an equiv-
alent one in GCL, hoare generates 10 verification conditions (initialisation of the
invariant, its maintenance–one condition for each of the 8 commands–and estab-
lishment of the postcondition) and force+ dispatches all the proof obligations.

As an enhancement to this correctness tool, one could formally eliminate
ghost variables (such as ‘c in this example) and allow command annotation. For
instance, one could annotate the statement 0 of the first component with ‘x −→
¬‘c, and the tool would automatically introduce the invariant ‘pcX = 0 −→
‘x −→ ¬‘c. This enhancement would be extremely useful if the tool also could
support temporal logic [79]. However, we leave this for future work.

The second example (Figure 8.4) is the solution to the mutual inclusion prob-
lem proposed by the Dutch computer science community. In this problem, two
reactive components loop forever; they are synchronised in each loop and each of
them run a critical section. Their solution is inspired by the CSP (Communicat-
ing Sequential Process) [62] primitive constructs, in which a component “send”
a message to the other component, granting permission to enter in its critical
section. The symmetry of the problem is broken by allowing the variable ‘y to be
bound between ‘x and ‘x + 1. These two examples have similar properties and,
in fact, form a family of concurrent problems [48].

Every time that the first component enters in its critical section, ‘c is true
and whenever the second component is in its critical section, then ‘c is false.
Additionally, when a component enter in its critical section, ‘x and ‘y are equal,
that is, the components enter in their section alternately. The variable ‘x is always
equal or below ‘y, since ‘x is only incremented whenever the second component
increments first ‘y and set ‘c to true. Moreover ‘y is at most ‘x + 1. These
constraints are added as global invariants. Once again, the tactic transform re-
writes the program to an equivalent one in GCL, hoare generates verification
conditions and force+ dispatches all the proof obligations.

8.7 Conclusions

This chapter extended our framework with a guarded command language (GCL),
supporting nondeterminism. In the context of quantales with tests, we have
presented an algebraic semantics for the language and derived a version of Hoare
logic. Additionally, from this GCL extension, we derived a simple correctness tool
for two concurrent processes based on an interleaving model. Examples drawn
from Feijen and van Gasteren’s monograph [48] has shown the tool at work.
Numerous improvements in the tool can be drawn for these examples, such as
command annotation, temporal logic support and ghost variable elimination. A
major drawback of the tool, however, is its lack of fairness. Since parallelism

104



record init-state = pc-state +
x :: bool
y :: bool
c :: bool

lemma ` {| ¬‘c |}
inv (
(‘pcX = 0 −→ ‘x −→ ¬ ‘c) ∧
(‘pcX = 1 −→ (‘x −→ ¬ ‘c) ∧ (‘y −→ ‘c)) ∧
(‘pcX = 2 −→ ‘y −→ ‘c) ∧
(‘pcX = 3 −→ ‘c) ∧
(‘pcX = 4 −→ ‘x ∧ ‘c) ∧

(‘pcY ≤ 1 −→ ¬ ‘c) ∧
(‘pcY = 1 −→ ‘x −→ ‘pcX > 1 ) ∧
(‘pcY ≥ 2 −→ ‘c) ∧
(‘pcY = 4 −→ ‘y ∧ ‘c) ∧

(‘pcX = 2 ∧ ‘pcY = 2 −→ ‘x ∨ ‘y) ∧
(‘pcX ≤ 1 −→ ‘pcY ≤ 2 ) ∧
(‘pcY ≤ 1 −→ ‘pcX ≤ 2 )

)
(∗ Initialisation Phase 1 ∗)

0 =: ‘y := False ;;
1 =: ‘x := True ;;
2 =: wait ‘y ;;
3 =: ‘x := True
(∗ Process 1 ∗)
‖
(∗ Initialisation Phase 2 ∗)

0 =: ‘x := False ;;
1 =: ‘y := True; ‘c := True ;;
2 =: wait ‘x ;;
3 =: ‘y := True; ‘c := True
(∗ Process 2 ∗)

{| ‘x ∧ ‘y ∧ ‘c |}
apply transform
apply hoare
by force+

Figure 8.3: The initialisation protocol example
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record mutual-incl = pc-state +
x :: int
y :: int
c :: bool

lemma ` {| ‘x = 0 ∧ ‘y = 0 ∧ ‘c |}
inv (
(‘x ≤ ‘y) ∧ (‘y ≤ ‘x + 1 ) ∧

(‘pcX ≤ 1 −→ ‘c ∧ (‘x = ‘y)) ∧
(‘pcX = 2 −→ ¬‘c ∨ (‘x + 1 = ‘y)) ∧
(‘pcX = 3 −→ ‘c ∧ (‘x + 1 = ‘y)) ∧

(‘pcY ≤ 1 −→ ‘c ∨ (‘x = ‘y)) ∧
(‘pcY = 2 −→ ¬‘c ∧ (‘x = ‘y)) ∧
(‘pcY = 3 −→ ¬‘c ∧ (‘x + 1 = ‘y))

)
0 =: while True do

(∗ Critical Section 1 ∗)
1 =: ‘c := False ;;
2 =: wait ‘c ;;
3 =: ‘x := ‘x + 1

od
‖

0 =: while True do
1 =: wait (¬ ‘c) ;;
(∗ Critical Section 2 ∗)

2 =: ‘y := ‘y + 1 ;;
3 =: ‘c := True

od
{| True |}
apply transform
apply hoare
by force+

Figure 8.4: Mutual inclusion problem example
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is model as nondeterministic choice, one component could potentially be chosen
forever and starve the second one. Nevertheless, the aim of the chapter was to
demonstrate how to rapidly derive an useful, albeit simple, tool for concurrent
programs from algebraic principles.
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Part II

Verification of while programs
with Pointers

108



Chapter 9

Separation Logic

The remaining chapters of this thesis are dedicated to add support to shared
mutable data structures and local reasoning for our tool framework by using sep-
aration logic. The approach to separation logic used in this thesis is constructive,
where separating conjunction is defined by convolution. This chapter focus on
the algebraic structure formed by the heap, the assertion language and the pro-
gram semantics. Here, the backward predicate transformers semantics is used,
which is a much simpler approach for programs with pointers, where assertions
are only over proper states, excluding hence the fault state. The inference rules of
separation logic and the refinement laws for this extension are easily derived in a
pre-quantale setting. Finally, we show a correspondence between our model and
a variant of the RAM model [93], where the fault state is explicit. A discussion
about dynamic separation algebras finishes the chapter.

9.1 Design Approach

Over the last decade, separation logic has been receiving considerable atten-
tion. Inspired by Burstall’s work on mutable data structures [29], Reynolds [100]
derived a programming logic similar to Hoare’s where the part of a system or
resource affected by an action can be isolated and verification can occur locally.
He introduced, as it would be latter called, the separating conjunction operator
and the frame rule. A quick overview of separation logic was given in §2.4. Its
main application lies in the verification of programs with pointers [101, 93], but
it has been used in concurrency verification as well [90, 115, 26].

Currently, separation logic is supported by a large number of tools, some of
which were discussed in §1.1. The correctness tools developed in the second part
of this thesis add to this tool chain and present yet another implementation within
Isabelle/HOL. Nevertheless, the approach is considerably different and has obvi-
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ous advantages. As before, it focuses on a clear separation between control flow
and data level by an algebraic semantic layer. This is achieved by developing a
novel algebraic approach to separation logic which combines the abstractness and
elegance of O’Hearn and Pym’s categorical logic of bunched implications [92] in
a way suitable for simple and efficient implementation within an interactive the-
orem assistant environment. The approach is entirely constructive and based on
power series [44], which have several applications in computer science, including
formal language and automata theory [24, 45].

For the purpose of this thesis, a power series is a function f : M → Q
from a partial monoid M into a quantale Q. Addition is defined pointwise and
multiplication as convolution

(f ⊗ g) x =
∑
x=y◦z

f y � g z,

where · acts on M , � on Q and ⊗ on QM . The function space QM of power
series itself forms then a quantale [44]. Furthermore, if M is commutative (a
resource monoid [30]) and Q is the quantale of booleans B (with � as meet),
the power series can be seen as characteristic functions of assertions or predicates
over M . Separating conjunction then arises as a special case of convolution, and
the function space BM forms the assertion quantale of separation logic.

Inspired by previous approach [120], power series are lifted again yielding an
algebraic semantics for predicate transformers over assertion quantales. More-
over, we characterise the subspace of monotone predicate transformers which
forms a so-called pre-quantale and where the inferences rules of propositional
Hoare logic for partial correctness can be derived equationally. These can be
used for verification condition generation at the algebraic level. The frame rule
of separation logic is then derived in the subalgebra of local monotone predi-
cate transformers, thus subsuming propositional separation logic. Furthermore,
Morgan’s specification statement [83] can be defined in this subalgebra as usual,
yielding tools for program construction. Finally, the refinement variant of the
frame rule is easily obtained in this setting. Predicate transformer semantics,
instead of the more common state transformer one [30], fits well into the power
series approach and simplifies the development.

At the data-domain level, states σ are instantiated as concrete store-heap pairs
(s, h) enriched with a fault element ⊥. In this layer, assignments and mutation
rules of separation logic are derived as well as their refinement laws counterparts.
As usual, Isabelle’s concrete data domain models are linked formally with the
abstract algebras by soundness proofs, where algebraic facts can be picked up
automatically for reasoning with the concrete model.

The approach thus provides a very simple and elegant formalisation of separa-
tion logic, which yields a modular tool for program construction and verification
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with a good degree of automation. The entire technical development has been
formalised in Isabelle; all proofs have been formally verified.

9.2 Partial Algebras

This section presents an algebraic structure that underlies our approach to sep-
aration logic. It abstracts the reasoning about shared resources by a partial
operator, which adds them together when separated in some sense.

A partial semigroup (S,D,�) is defined as a set S and a relation D ⊆ S × S
with a composition � : D → S that satisfies the usual associativity law in the
sense that if either side is defined then so is the other side and both are equal [23].
The element x� y is said to be defined for x, y ∈ S if and only if (x, y) ∈ D.

An obvious extension is a partial monoid (M,D,�, 1), where 1 is the unit and
satisfies

x� 1 = x, (x, 1) ∈ D,
1� x = x, (1, x) ∈ D,

for all x ∈ S. A partial monoid M is said to be commutative if x� y = y� x for
all x and y such that (x, y) ∈ D ⇔ (y, x) ∈ D. Henceforth � is used for a gen-
eral partial operation and ⊕ for the commutative version. Commutative partial
monoids are also known as resource monoids or separation algebra. Moreover,
the cancellative property, that is,

x⊕ y = x⊕ z ⇒ y = z

for all x, y, z ∈M , is usually said to hold in a separation algebra.
Several examples of partial algebras can be drawn from the literature [44].

1. Ordered Pairs. Let A be a set, then (A×A,�) forms a partial semigroup,
where for a, b, c, d ∈ A,

(a, b)� (c, d) = (a, d),

and the operation is defined whenever b = c.

2. Traces. Let Σ be a finite set of state symbols and T a finite set of transition
symbols. A trace is a finite word over (Σ∪T )∗ in which state and transition
alternate. For all p1, p2, q1, q2 ∈ Σ and α1, α2 ∈ T , the fusion product

p1α1q1 � p2α2q2 = p1α1α2q2

is defined whenever q1 = p2 and forms a commutative partial monoid with
the empty trace as unit.
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3. Partial Functions. The structure ([A ⇀ B],], e) forms a commutative
partial monoid, where [A ⇀ B] is the set of partial functions from A to B,
f ] g is their union whenever f and g have disjoint domains of definition
and e is the empty partial function. A special case of this example, which
will be used in the remaining of this thesis, is the heaplet model, where the
heap is modelled as partial function between natural numbers.

Other examples include permission algebras [26], variable as resources [27], mul-
tisets and others [41, 90].

We have implemented partial algebras in Isabelle/HOL, including partial
quantales, in which its monoidal operator is partial. We have also proved sound-
ness of the algebras with respect to their standard models.

9.3 Power Series and Convolution

This section presents the remaining algebraic structures that underlie our ap-
proach to separation logic. Further details on power series and lifting construc-
tions can be found in [44].

A power series is a function f : M → Q, from a partial monoid M into a
quantale Q. For f, g : M → Q and a family of functions fi : M → Q, i ∈ I, we
define

(f · g) x =
∑
x=y�z

f y · g z,

(
∑
i∈I

fi) x =
∑
i∈I

fi x,

where y, z ∈ M . The composition f · g is called convolution; the multiplication
symbol is often overloaded to be used on Q and the function space QM . The
idea behind convolution is simple: element x is split into y and z, the functions
f and g are applied in parallel to y and z to calculate the values f y and g z, and
their results are composed to form a value for the summation with respect to all
possible splits of x. Additionally, (f + g) x = f x+ g x arises as a special case of
the supremum. Finally, we define the power series 0 : M → Q and 1 : M → Q as

0 = λx. 0,

1 = λx.

{
1, if x = 1,

0, otherwise.

The quantale structure lifts from Q to the function space QM of power series.
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Theorem 9.1 ([44]). Let M be a partial monoid. If Q is a (boolean) quantale,
then so is (QM ,≤, ·, 1). If M and Q are commutative, then so is QM .

On the logic of bunched implications, developed by O’Hearn and Pym [92],
this quantale is known as boolean BI algebra, or simply BBI.

The power series approach generalises from one to n dimensions [44]. For
separation logic, the two-dimensional case with power series f : S×M → Q from
set S and partial commutative monoid M into the commutative quantale Q is
needed. Now

(f ∗ g) (x, y) =
∑

y=y1⊕y2

f (x, y1) ∗ g (x, y2),

(
∑
i∈I

fi) (x, y) =
∑
i∈I

fi (x, y).

The convolution f ∗ g acts solely on the second coordinate. We write ∗ whenever
the operation is commutative. Finally, we define two-dimensional units as

0 = λx y. 0,

1 = λx y.

{
1, if y = 1,

0, otherwise.

Theorem 9.2 ([44]). Let S be a set and M a partial (commutative) monoid. If
Q is a (commutative boolean) quantale, then so is QS×M .

A power series fC : A→ B can be isomorphically associated to a set C ⊆ A by
defining its characteristic function fC(a) = > ⇔ a ∈ A, where B is the booleans
{⊥,>}. Moreover, B also forms a degenerated quantale, where composition · is
meet u. Example of convolution are ubiquitous in mathematics.

1. Formal Languages. Language product is an instance of convolution

(fX ∗ fY )(w) =
∑

w=w1w2

fX(w1) u fY (w2),

where the monoid is word concatenation.

2. Binary Relations. Relational composition can be defined by convolution

(fR · fS)(a, b) =
∑
c

fR(a, c) u fS(c, b).

Let R · S = {(a, b) | ∃c. (a, c) ∈ R ∧ (c, b) ∈ S}, it is easy to check that
fR·S = fR · fS.
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3. Matrices. Matrix multiplication is also given by convolution

(A ·B)(i, j) =
m∑
k=1

A(i, k) ·B(k, j),

where A is a n×m matrix and B is an m× p matrix.

We have implemented partial monoids and quantales by using Isabelle’s type
class and locale infrastructure, building on existing libraries for monoids, quan-
tales and complete lattices. The implementation of power series uses Isabelle’s
well developed libraries for functions. This makes proofs in this setting simple
and highly automatic.

9.4 Assertion Quantale

In language theory, power series have been introduced for modelling formal lan-
guages. Here, M is the free monoid X∗ and Q can be taken as a semiring
(Q,+, ·, 0, 1), because there are only finitely many ways of splitting words into
prefix/suffix pairs in convolutions. Infinite suprema in the definition of convo-
lution are therefore not needed. In the particular case of the boolean semiring
B, where composition · is meet u, power series f : X∗ → B are interpreted as
characteristic functions (i.e., predicates) that indicate whether a word is in a set.
In this case, sets are languages, and hence, convolution specialises to

(f · g) x =
∑
x=yz

f x u g y,

identifying predicates with their extensions to the language product

p · q = {yz | y ∈ p ∧ z ∈ q}.

More generally, we consider power series S → B from a partial monoid S into
the boolean quantale B and set up a connection with separation logic. There,
one is interested in modelling assertions or predicates over the memory heap.
The heap can be represented abstractly by a resource monoid [30], which is a
partial commutative monoid. By analogy to the language case, an assertion p of
separation logic is a boolean-valued function from a resource monoid M , hence a
power series p : M → B. Thus Theorem 9.1 applies.

Corollary 9.1. The assertions BM over resource monoid M form a commutative
boolean quantale with convolution as separating conjunction.
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The logical structure of the assertion quantale BM is as follows. The predicate
0 is a contradiction whereas 1 (unit of BM) holds when its extension contains the
empty resource 1 (unit of M). The operations

∑
and

d
correspond to existential

and universal quantification; their finite cases yield conjunctions and disjunctions.
The order ≤ is implication. Convolution becomes

(p ∗ q) x =
∑
x=y∗z

p y u q z,

and it gives a simple algebraic account of separating conjunction. By x = y ∗ z,
resource x is separated into resources y and z. By p yuq z, the value of predicate
p on y is conjoined with that of q on z. Finally, the supremum is true if one of
the conjunctions holds for some splitting of x.

As for languages, one can again identify predicates with their extensions. Then

p ∗ q = {y ∗ z ∈M | y ∈ p ∧ z ∈ q},

and separating conjunction becomes a language product over resources (cf. [63]).
The analogy to language theory is even more striking when considering the
paradigmatic kind of resource: multisets or Parikh vectors over a finite set X.
These form the free commutative monoids over X.

Applications of separation logic, however, require program states which are
store-heap pairs. Now Theorem 9.2 applies.

Corollary 9.2. The assertions BS×M over set S (the store) and resource monoid
M form a commutative boolean quantale with convolution as separating conjunc-
tion. For all p, q : S ×M → B, s ∈ S and h ∈M ,

(p ∗ q) (s, h) =
∑

h=h1∗h2

p (s, h1) u q (s, h2).

Written in language-product style, therefore,

p ∗ q = {(s, h1 ∗ h2) ∈ S ×M | (s, h1) ∈ p ∧ (s, h2) ∈ q}.

The definition of convolution and the associated lifting is obviously flexible enough
to encompass situations where pairs are extended to tuples or where the store
as well as the heap are split by convolution. Isabelle also supports uncurried
representations of such tuples and translations between them. The constructive
functional approach of power series is very convenient for the functional program-
ming style of Isabelle.

One can think of the power series approach to separation logic as a simpler ac-
count of the category-theoretical approach in O’Hearn and Pym’s logic of bunched
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implication [92] in which convolution generalises to coends and the quantale lift-
ing is embodied by Day’s construction [36]. For the design of verification tools
and our implementation in Isabelle, the simplicity of the power series approach
is certainly an advantage.

Quantales carry a rich algebraic structure. Their distributivity laws give rise
to continuity or co-continuity properties. Therefore, many functions constructed
from the quantale operations have adjoints as well as fixpoints, which can be
iterated to the first limit ordinal. This is well known in denotational semantics
and important for our approach to program verification. In particular, separating
conjunction ∗ distributes over arbitrary suprema in BM and BS×M and therefore
has an upper adjoint: the magic wand operation −∗ , which is widely used in
separation logic.

p ∗ q ≤ r ⇔ p ≤ q −∗ r

In the quantale setting, the adjunction gives us theorems for the magic wand for
free. This and other residuals that arise on the assertion quantale of separation
logic have been studied, for instance, in [35]. Lemma 9.1 shows some properties
of magic wand (or spacial implication).

Lemma 9.1. The following hold in a commutative quantale.

a. p ≤ q ⇒ r −∗ p ≤ r −∗ q

b. p ≤ q ⇒ q −∗ r ≤ p−∗ r

c. s ≤ q ∧ p ≤ q −∗ r ⇒ p ∗ s ≤ r

d. q ∗ (q −∗ p) ≤ p

e. q ≤ p−∗ (p ∗ q)

f. (r −∗ q) ∗ (q −∗ p) ≤ r −∗ p

g. p−∗ > = >

h. >−∗ p ≤ p

i. 0−∗ p = >

j. (p+ q)−∗ r ≤ (p−∗ r) + (q −∗ r)

k. p−∗ (q u r) ≤ (p−∗ q) u (p−∗ r)

l. (p−∗ q) + (p−∗ r) ≤ p−∗ (q + r)

m. p−∗ (q u r) ≤ (p−∗ q) u (p−∗ r)
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Local Assertions. An assertion p is local if and only if, for all stores s and
heaps h and h′, whenever dom(h) ⊆ dom(h ′) and (s, h) ∈ p, then (s, h′) ∈ p.
Local assertions can be easily characterised algebraically by

p ∗ > ≤ p.

Additionally, it can be proved that > is unit of ∗ for local assertions, that is, the
equalities p ∗ > = p and p = >−∗ p hold for an local assertion p.

Lemma 9.2. Let r be any assertion, then the assertions >, 0, r ∗ > and >−∗ r
are local.

Proof. > and 0 are clearly local, (r ∗ >) ∗ > = r ∗ (> ∗ >) = r ∗ >, and finally,
(>−∗ r) ∗ > = (>−∗ >) ∗ (>−∗ r) = >−∗ r.

The first primitive version of separation logic was developed by Reynolds [100]
as a logic for reasoning about mutable data structures in which all predicates are
written as local assertions. The assertions were later called intuitionistic, because
his development was constructive. However, the term local is used in this thesis,
since when lifted to predicate transformers, these assertions satisfy the locality
property [30] (cf. §9.5).

Lemma 9.3. Local assertions are closed under meet u, join +, separating con-
junction ∗ and magic wand −∗ . Moreover, if pi is local for all i ∈ I, then so are∑

i∈I pi and
d
i∈I pi. Therefore, the subspace of local assertions forms a quantale.

Local assertion are not closed under negation, but it is possible to define an
intuitionistic negation on assertions [100], which is always local, by

p̄i = >−∗ p̄.

Lemma 9.4. Let p be a local assertion, then the following hold.

a. p ∗ q ≤ p,

b. (p u 1) ∗ > ≤ p,

c. p ∗ q ≤ p u (q ∗ >),

d. p ∗ q ≤ p u q, when q is also local,

e. (p u q) ∗ r ≤ p u (q ∗ r).

All the facts in this section were formally proved in Isabelle and are available
in our theory files about commutative quantales.
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9.5 Predicate Transformer Quantales

Our algebraic approach to separation logic is based on predicate transformers (cf.
[19]). This is in contrast to most previous state-transformer-based approaches
and implementations [30, 69, 112], with [120, 63] being exceptions. First of all,
predicate transformers are more amenable to algebraic reasoning [19]—simply
because their source and target types are both at powerset level. Second, the
approach is coherent and easily implementable within our framework. Predicate
transformers can be seen once more as power series and instances of Theorem 9.1
describe their algebras.

Predicate transformers in (2A)2B form complete distributive lattices [19]. In
the power series setting, this follows from Theorem 9.1 in two steps, ignoring the
monoidal structure. Since B forms a complete distributive lattice, so do 2B ∼= BB

and 2A ∼= BA in the first step, and so does (2A)2B in the second one.
In addition, as seen in §7.1, predicate transformers in (2A)2A form a distribu-

tive near-quantale and if monotone, a distributive pre-quantale [19]. In these
cases, the monoidal parts of the lifting are not obtained with the power series
technique. The monoidal operation on predicate transformers is function compo-
sition and not convolution. Of course it is associative and the identity function
is a unit of composition.

Adapting these results to separation logic requires the consideration of asser-
tion quantales BM or BS×M with store S and resource monoid M instead of the
powerset algebra over a set A. Instead of lifting these quantales, we only lift their
boolean algebra reduct, disregarding separating conjuction by not lifting it to a
convolution on predicate transformers, which is not needed for separation logic.
The quantale structure of predicate transformers is again obtained by considering
function composition as the monoidal operation. This yields the following result.

Theorem 9.3. Let S be a set, M a resource monoid and BS×M an assertion
quantale. The monotone predicate transformers over BS×M form a distributive
pre-quantale.

Monotone predicate transformers can be used to derive the standard inference
rules of Hoare logic as verification conditions (cf. §9.6) and the usual rules of
Morgan’s refinement calculus (cf. §9.7). Derivation of the frame rule of separation
logic, however, requires a smaller class of predicate transformers.

A backward predicate transformer F is said to be local with respect to a
predicate r if for all q

(F q) ∗ r ≤ F (q ∗ r).

This definition differs slightly from the classical definition of locality [93], where
r is also quantified. This difference will become clear in §9.8. If r is arbitrary, we
simply say that F is local.
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The final theorem in this section establishes the local monotone predicate
transformers as a suitable algebraic framework for separation logic.

Theorem 9.4. Let S be a set and M a resource monoid. The local monotone
predicate transformers w.r.t an arbitrary assertion r over the assertion quantale
BS×M form a distributive pre-quantale.

The fact that the local monotone predicate transformers form a complete
lattice has been observed previously [120]. Once again it must be checked that
the zero predicate transformer is local—which is the case—and that the quantale
operations preserve locality and monotonicity.

We have implemented the whole approach in Isabelle; all theorems have been
formally verified, mainly using Theorem 9.1 for the lifting to predicate trans-
formers. Apart from the local case, ours is not the first Isabelle formalisation of
predicate transformers; it is based on previous work by Preoteasa [98].

9.6 Verification Conditions

The pre-quantale of local monotone predicate transformers supports the deriva-
tion of verification conditions by equational reasoning. A standard set of such
conditions are the inference rules of Hoare logic.

The quantale setting supports a shallow algebraic embedding of a simple while
language with the standard intermediate language for the verification of while-
programs (cf. §7.2). In order to derive the frame rule of separation logic, this
language needs to be closed with respect to locality, which forces a test to be a
local predicate.

Lemma 9.5. Let b be a local predicate, then [b] is a local predicate transformer.
Moreover, if F and G are local w.r.t. a predicate r, then if b then F else G fi
and while b do F od are local w.r.t the predicate r.

We provide the usual assertions notation for programs via Hoare triple syntax:

{p} F {q} ⇔ p ≤ F q.

Proposition 9.1. Let p, q, r, p′, q′ ∈ BS×M be predicates and b a local predicate.
Let F,G,H be monotone predicate transformers over BS×M , with H being local
with respect to r. Then the rules of propositional Hoare logic (no assignment rule)
and the frame rule of separation logic are derivable.

{p} H {q} ⇒ {p ∗ r} H {q ∗ r}.

Proof. We derive the frame rule as an example. Suppose p ≤ H q. Then, by
isotonicity of ∗ and locality, p ∗ r ≤ (H q) ∗ r ≤ H(q ∗ r).
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9.7 Refinement Laws

To demonstrate the power of the predicate transformer approach to separation
logic we now outline its applicability to local reasoning in program construction
and transformation. We show that the standard laws of Morgan’s refinement
calculus [83] plus an additional framing law for resources can be derived and
programmed in Isabelle with little effort. It only requires defining one single ad-
ditional concept—Morgan’s specification statement—which is definable in every
predicate transformer quantale (cf. §9.4).

Formally, for predicates p, q ∈ BS×M , we define the specification statement as

[p, q] =
l
{F | p ≤ F q}.

It models the most general predicate transformer or program that links postcon-
dition q with precondition p. It is easy to see that

{p} F {q} ⇔ [p, q] ≤ F,

which entails the characteristic properties

{p} [p, q] {q}, {p} F {q} ⇒ [p, q] ≤ F

of the specification statement: program [p, q] relates precondition p with postcon-
dition q whenever it terminates; and it is the largest program with that property.
It is easy to check that specification statements over the pre-quantale of local
monotone predicate transformers are themselves local and monotone.

Like Hoare logic, Morgan’s basic refinement calculus provides one refinement
law per program construct. Once more we ignore assignments at this stage. We
also switch to standard refinement notation with refinement order being v.

Proposition 9.2. For p, q, r, p′, q′ ∈ BS×M , b a local predicate, and predicate
transformer F the following refinement laws are derivable in the algebra of local
monotone predicate transformers with respect to r.

[p ∗ r, q ∗ r] v [p, q].

Proof. Using the frame rule, we derive the framing law as an example:

{p} [p, q] {q} ⇒ {p ∗ r} [p, q] {q ∗ r} ⇔ [p ∗ r, q ∗ r] v [p, q].

The first step uses the frame rule from Proposition 9.1, the second one the Galois
connection for the specification statement. The proofs of the other refinement
laws are equally simple, using the corresponding Hoare rules in their proofs.
They are fully automatic in Isabelle. A refinement law for recursive programs
can be derived as well.
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The entire theory hierarchy discussed so far, from partial monoids to predi-
cate transformer quantales, has been formalised in modular fashion as algebraic
components in Isabelle/HOL, much of which was highly automatic and required
only a moderate effort. It benefits, to a large extent, from Isabelle’s integrated
first-order theorem proving, SMT-solving and counterexample generation tech-
nology. These tools are highly optimised for equational reasoning, interacting
efficiently with the algebraic layer.

9.8 Relational Fault Model

In this section, we show an equivalence between the backward predicate trans-
former model constructed to a relational model where the fault state is explicitly
defined. That validates our model and shows its simplicity.

The classical relational model used for simple while programs is clearly not
expressive enough to model memory fault, by for instance dereferencing a dangling
pointer. Hence, different models were proposed and proved sound for separation
logic [93, 101]. We implement a variant of the RAM model proposed by [93, 30],
where a state σ is a pair of (s, h) of store and heap enriched by a bottom ⊥ (fault)
element. Elements of the store s range over an arbitrary set S, and elements of
the heap h over a partial commutative monoid H. A command (or program) is
then a relation

R ⊆ ((S ×H) ∪ {⊥})× ((S ×H) ∪ {⊥}).

We say that a program R starting for a state σ = (s, h) delivers a final state
σ′ = (s′, h′) whenever (σ, σ′) ∈ R. If (σ,⊥) ∈ R, then a memory fault has
occurred. In fact, we are interested in a subclass of these relations where the safe
and frame properties with respect to a set of proper states A hold [120]. The
former says that if a command executes safely (no fault occurs) in a state with
a heap h, then it will execute safely in a state where the heap h is enlarged by a
heap h′ of A. Formally, for all s, h and h′, if (s, h′) ∈ A then

((s, h),⊥) /∈ R⇒ ((s, h⊕ h′),⊥) /∈ R.

The latter says that if a command R can execute safely in a small heap h0, then
the execution on a larger heap can be tracked back to the small one, isolating the
part of the system affected by the action, that is, for all s, s′, h0, h, dh and h′, if
((s0, h0),⊥) /∈ R, h = h0 ⊕ dh, (s, dh) ∈ A and ((s, h), (s′, h′)) ∈ R, then

∃h′0 dh′. h′ = h′0 ⊕ dh′ ∧ (s′, dh′) ∈ A ∧ ((s, h0), (s′, h′0)) ∈ R.

Note that these properties are only concerned about the heap and leave the store
unchanged. The definition slightly differs from the literature, since they are

121



defined with respect to a predicate (or a set of proper state) A, if we set A to
>, these definitions are equivalent. In [30], these properties are presented for a
partial monoidal state. Here, we needed to present the store separately, since the
state does not form a partial monoid. One could think that the states form a
partial semigroup where (s, h) ⊕ (s′, h′) = (s, h ⊕ h′) whenever s = s′, but this
would oblige that s and s′ become the same in the frame property, which does
not make sense. An alternative is to treat the store as a partial resource too,
however this would entail a different assignment rule for Hoare logic [27].

A test and a proper assertion in this model is a set of states P ⊆ S × H.
Similarly, tests can be lifted to subidentities bP c. Note that lifted sets are always
safe and do not contain any ⊥ element.

Lemma 9.6. Let P be a local assertion, then bP c satisfies the safe and frame
properties with respect to an arbitrary assertion Q.

In addition, the operations union ∪, intersection ∩ and reflexive-transitive
closure ∗ preserve safety and frame properties. This yields the following soundness
result.

Theorem 9.5. Relations on the relational fault model forms a Kleene algebra
with tests.

Therefore, the validity of a Hoare triple in this model can be written as

{P} R {Q} ⇔ bP c ◦R ⊆ R ◦ bQc .

In order to prove the equivalence of models, we prove that the validity of Hoare
triples yields the same result and that safe and frame properties are equivalent
to locality.

Following [30], we lift relations R to state transformers

〈R〉 : (S ×H)→ (2S×H ∪ {fail})

by

〈R〉 σ =

{
{σ′ | (σ, σ′) ∈ R} if (σ,⊥) /∈ R,
fail otherwise.

Notice that the range of 〈R〉 σ is an assertion enriched with a fail element. Order-
theoretically, fail is a Scott’s top [58] value, that is, faulting is mapped to this
inconsistent top element. Separating conjunction can be further extended ∗> to
support this new element by p ∗> fail = fail ∗> p = fail.

It is straightforward to encode the validity of a Hoare triple for state trans-
formers. Let P and Q be proper assertions and f a state transformer, then

{P} f {Q} ⇔ ∀σ ∈ P. f σ ⊆> Q.
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We write ⊆> to indicate that the order is enriched with a top element fail. If a
fault occurs for a state σ, then f σ = fail, which is greater than Q.

Lemma 9.7. Validity of Hoare triple are equivalent in the relational semantics
and in its state transformer counterpart.

bP c ◦R ⊆ R ◦ bQc ⇔ ∀σ ∈ P. 〈R〉 σ ⊆> Q

We can also define locality with respect to a proper assertion A for this setting.
f is a local state transformer if for all s, h and h′ such that (s, h′) ∈ A then

f (s, h⊕ h′) ⊆> f (s, h) ∗> A.

Again, this condition differs slightly from the literature [120].

Lemma 9.8. Let R be a relation between states, then 〈R〉 is local w.r.t. a proper
assertion A iff the safety and frame properties hold for R w.r.t. A.

Since locality is a much simpler condition than safety and frame, this explains
why the state transformer approach is useful and widely used [30]. However, a
fail element still exists and to implement this in Isabelle/HOL, one would need
to wrap their states around with an option datatype. All operations would need
to be unwrapped to be used, this would reduce automation and increase the
complexity of the implementation. That is also the reason why, differently from
the literature, we explicitly write ⊆> and ∗> to indicate that these operations are
wrapped around with this top element.

Finally, state transformers can be lifted to backward predicate transformers
by

[f ] Q = {σ | f σ ⊆> Q}.

Lemma 9.9. Validity of Hoare triple of a state transformer f is equivalent to
the one for the predicate transformer [f ].

∀σ ∈ P. f σ ⊆> Q⇔ P ⊆ [f ] Q.

Lemma 9.10. f is a local state transformer w.r.t A iff [f ] is local predicate
transformer w.r.t. A.

The lemmas in this section entails the following result.

Theorem 9.6. The relational fault model and the local monotone predicate trans-
former semantics are equivalent up to the validity of Hoare triples.

Of all these 3 equivalent models, the backward predicate transformer is the
simplest one. Although it does not contain explicitly a fault element, its backward
reasoning excludes all possible dangling pointers and faulty states.
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9.9 Modal Separation Algebras

Since we follow a predicate transformer approach for separation logic, it seems
natural that one can define dynamic algebras over assertion quantales. This
section adapts modal algebras (cf. §7.5) for separation logic.

Domain Separation Algebras

We use domain semirings to define a predicate transformer algebra over the as-
sertion quantale of separation logic. As with domain semirings, the idea is to
use a domain operation d over a semiring S to induce an assertion algebra d(S)
that contains separating conjunction. In the domain semiring case, the meet of
the boolean algebra was induced by semiring composition, complementation was
obtained by antidomain. Now, however, there is no semiring operation that could
give us separating conjunction.

We therefore enrich an antidomain semiring S with an operation ∗ : S×S → S
and a constant e to form a domain separation semiring, where the following
axioms hold

d(d(x) ∗ d(y)) = d(x) ∗ d(y),

d(x ∗ (y ∗ z)) = d((x ∗ y) ∗ z),

d(x ∗ (y + z)) = d(x ∗ y) + d(x ∗ z),

d(x ∗ y) = d(y ∗ x),

d(x ∗ e) = d(x),

d(x · (y ∗ z)) ≤ d(x · y) ∗ d(z).

The last axiom is the locality axiom for domains, it yields the locality property of
separation logic for predicate transformers. Hoare et al. [63] uses a similar axiom
in concurrent Kleene algebra inspired by category theory ideas, which they call it
small exchange law. This locality property can be expressed using the diamond
modal operator as

〈x〉(p ∗ q) ≤ 〈x〉p ∗ q.
Lemma 9.11. Let S be a domain separation semiring and d(S) the set of el-
ements x in S such that d(x) = x, then the structure (d(S),+, ∗, 0, e) form a
commutative dioid. Moreover, (d(S),+, ·, ∗, a, 0, 1, e) is a boolean lattice-ordered
commutative monoid, that is, it has a boolean algebra and a monoid reduct.

Note that, since all the axioms are wrapped by the domain operator d, the
separating conjunction ∗ only needs to be defined for domain elements in the
model. For instance, let ∗∗ be this operation in the relation model, then R∗∗S
is undefined for arbitrary relations R and S, whereas for subidentities P and Q,
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P∗∗Q needs to be defined. However, one cannot use the definition of separating
conjunction proposed in the previous chapter, since the subidentities P and Q
might contain the fault state.

Therefore, we split the subidentity space into two, P is called a fail assertion
if ⊥ ∈ P , otherwise it is a proper assertion. The top element > of the set of
proper assertions is isomorphic to the predicate true, whereas the top element
of all assertions is the element fail introduced in the previous section.

The separating conjunction P∗∗Q is then extended such that whenever ⊥ is
in P or Q, then it is also in P∗∗Q. Formally,

P∗∗Q = {(s, h1 ∗ h2) | (s, h1) ∈ P ∧ (s, h2) ∈ Q} ∪ {⊥ | ⊥ ∈ P ∪Q}.

Theorem 9.7. Let S be a set, H be a partial commutative monoid and Σ be the
state space (S × H) ∪ {⊥}. The structure (L,∪, ◦, ∗∗, ad, ∅, IdR, [emp]) forms a
domain separation semiring, where

L = {R ∈ Σ× Σ | R satisfies the safety and frame property}

and
ad(R) = {(σ, σ) | ∀σ′ ∈ Σ. (σ, σ′) ∈ R}.

Proof. The structure clearly forms a domain semiring. We prove by case analysis
for each of the axioms of a domain separation semiring. We prove that if x, y
and z does not contain the ⊥ element, then the axiom hold. This is easily done
in Isabelle/HOL. Otherwise, we need to prove that if the bottom element ⊥ is
contained in the left hand side, then it is also contained in the right hand side;
and vice-versa. For the locality axiom, just one direction is needed.

Extending a separation semiring by a Kleene star operation ∗ : S → S, which
satisfies the unfold and induction axioms, yields a separation Kleene algebra with
domain. All the classical inference rules of propositional separation logic can be
derived in a separation Kleene algebra, that is, all except the rules concerning
the mutation of store and heap.

Corollary 9.3. The structure (L,∪, ◦, ∗∗, ad,∗ , ∅, IdR) forms a separation Kleene
algebra, where ∗ corresponds to the reflexive-transitive closure relation.

Another possible extension is a demonic refinement algebra with domain,
which introduces a infinite iteration operator ω and a possible finite operator ∞.
Those are related by the equation x∞ = x∗ + xω · 0. In this algebra, the right
annihilation law x ·0 = 0 does not hold. It is useful for a total correctness setting,
where termination is considered.

Following the same approach of §7.5, a modal separation semiring can be
defined, yielding a modal box operator by De Morgan duality. It is then straight-
forward to derive the locality counterpart for boxes.

125



Lemma 9.12. Let S be a modal separation semiring, then for all x ∈ S and
p, q ∈ d(S), we have

[x]p ∗ q ≤ [x](p ∗ q).

Proof. By reflexivity, we have [x]p ≤ [x]p. Hence,

[x]p ≤ [x]p⇔〈x〉[x]p ≤ p

⇔〈x〉[x]p ∗ q ≤ p ∗ q
⇒〈x〉([x]p ∗ q) ≤ p ∗ q
⇔[x]p ∗ q ≤ [x](p ∗ q).

The proof uses the Galois connection between the modal operators, monotonicity
of ∗ and locality for the diamond operation.

Finally, we can similarly define a modal separation Kleene algebra.

Separation Quantale

A domain separation semiring is expressive enough to derive forward and back-
ward modal operators and propositional separation logic. However it cannot
express infinitary sum operation, which can be useful when writing predicates or
invariants for proving correctness of a program. Here, we extend domain quan-
tales to a separation quantale, where one can define, explicitly from the algebra,
the domain elements. Nonetheless it has the drawback of not being first order,
and consequently more difficult to automate.

A bi-quantale Q is a structure formed by a quantale (Q,≤, ·, 1) and a commu-
tative quantale (Q,≤, ∗, e). It is a domain bi-quantale if the distributivity laws
for vectors hold. A separation quantale is a domain bi-quantale where the locality
axiom

d(x · (y ∗ z)) ≤ d(x · y) ∗ d(z)

hold for all x, y, z ∈ Q. The locality axiom is also known as the small inter-
change law in concurrent Kleene algebra setting. The non-commutative quantale
multiplication models the sequential operation of programs and the commutative
operation models separation conjunction.

Lemma 9.13. Every separation quantale is a modal separation Kleene algebra.

The definition of a separation quantale is justified by the relational model of
programs.

Theorem 9.8. Let S be a set, H be a partial commutative monoid, Σ be the
state space (S × H) ∪ {⊥} and L the set of relation satisfying the safety and
frame property, then the structure (L,⊆, ◦, ∗∗, ∅, IdR, [emp]) forms a separation
quantale.
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Implementing these modal algebras in Isabelle/HOL is fairly simple. However
if one wants to use the facts derived in the algebra directly in the model, many
typing conversions are needed and automation is compromised. For that reason,
we stick with the backward predicate transformer as our main model and pre-
quantale as the underlying algebraic structure.

9.10 Conclusions

This chapter has introduced a novel algebraic approach to separation logic. More
than just an implementation of it, it is a complete conceptual reconstruction.
The formalisation in Isabelle is small, automatic and modular as possible, the
approach provides a minimalist setting from which useful program transformation
can be executed and powerful verification conditions and refinement laws can
be derived. It was strongly inspired by abstract separation logic [30] and the
logic of bunched implications [92], but a different combination of simplicity and
mathematical abstraction were achieved. In contrast to the latter, power series
were used instead of higher categories, which yield a simpler and generic lifting
constructions throughout the approach. In particular, the notion of separating
conjunction as convolution over resource algebras appears a more convincing and
natural definition.

The chapter has also presented two different semantics for while programs
with pointers and proved that they were equivalent up to the validity of Hoare
triples. The backward predicate transformer is however much simpler to reason
with and automate in Isabelle/HOL. The inferences of propositional separation
logic and its refinement laws counterpart were derived in this model. The chap-
ter has also extended dynamic algebras to accommodate separating conjunction.
The facts derived in these algebras however are not in the correctness tool imple-
mented, since many type conversion are needed and automation is reduced.
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Chapter 10

Separation Logic Assertions

This chapter instantiates separation logic assertions with the heaplet model and
proposes tactics in Isabelle/HOL to reason about these assertions.

10.1 Assertions over Heaplets

In the previous chapter, we have constructed assertions for separation logic by
using convolution, which are independent of any model. In this section, we present
the singleton heap predicate, e 7→ e′, which is built as a relation of expressions
and is used to make statements about the contents of heap cells. The assertion
is presented in the heaplet model, since it is difficult to define (or to axiomatise)
in a generic fashion. An incomplete axiom schema was given by Reynolds [101].
We write emp for the quantale unit in this model.

The predicate e 7→ e′ asserts that the heap contains a single cell at address e,
which has the value e′, i.e.,

e 7→ e′ = {(s, h) | dom(h) = {e(s)} ∧ h(e(s)) = e′(s)}.

Note that e and e′ are expressions evaluated only over the store. We use the
abbreviation e 7→ − to assert that the value in the address e is arbitrary.

A points-to assertion, e ↪→ e′, can also be defined using the singleton heap
predicate. It asserts that the address e points to the value e′ in the heap.

e ↪→ e′ = (e 7→ e′) ∗ >.

As another more complex abbreviation, we define the doublet heap predicate,
and its points-to counterpart.

e 7→ e1, e2 = (e 7→ e1) ∗ (e+ 1 7→ e2)

e ↪→ e1, e2 = (e ↪→ e1) ∗ (e+ 1 ↪→ e2)

= (e 7→ e1) ∗ (e+ 1 7→ e2) ∗ >
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The extension to varying length heap predicates is straightforward.

Lemma 10.1. Points-to ↪→ predicates are local assertions.

Pure Assertions. An assertion is said to be pure if, for any store, it is inde-
pendent of the heap. In an pure assertion, separating conjunction is degenerated
to simple conjunctions, and the magic wand becomes implication. Dang [35] gives
an algebraic characterization of pure assertions on a quantale. An element p is
pure if and only if for all q and r, the following holds

p ∗ > ≤ p,

p u (q ∗ r) ≤ (p u q) ∗ (p u r).

That is, p is local and its meet distributes over separating conjunction.

Lemma 10.2. Let p1 and p2 be pure assertions, then the following hold.

a. p1 u p2 = p1 ∗ p2,

b. (p1 u q) ∗ r ≤ p1 u (q ∗ r),

c. p1 −∗ q ≤ p1 → q,

d. p1 −∗ p2 = p1 → p2,

where p→ q is defined as p̄+ q.

Lemma 10.3. Pure assertions do not contain emp, 7→, or ↪→.

Precise Assertions [30]. An assertion p is precise if and only if, for all s
and h, there exists at most one h′ such that dom(h′) ⊆ dom(h) and (s, h′) ∈ p.
Intuitively, it says that for each state with heap h, a precise assertion unambigu-
ously specifies the part of the heap h that is concerned. The property can be
characterised algebraically, an assertion p is precise if it distributes over meets of
arbitrary assertions.

p ∗ (q u r) = (p ∗ q) u (p ∗ r)

Lemma 10.4. Let p and q be precise assertions, r be an arbitrary assertion and
b a pure assertion. Then p u r, p ∗ q and (b u p) + (b̄ u q) are precise.

Precise assertions were used by Bornat [25] to express spatial separation in
traditional Hoare logic and by O’Hearn et al. [93] to prove completeness of their
framework.
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Exact Assertions. In his proof of Schorr-Wait graph marking algorithm by so-
called local reasoning in BI pointer logic, Yang [120] identifies a class of strictly
exact assertions, where P is strictly exact if and only if, for all s, h and h′,

(s, h) ∈ P ∧ (s, h′) ∈ P ⇒ h = h′.

When p is strictly exact, the following hold

(P ∗ >) uQ ≤ P ∗ (P −∗ Q).

Reynolds [101] further defines a broader class, the domain-exact assertions. An
assertion P is domain-exact if and only if, for all s, h and h′,

(s, h) ∈ P ∧ (s, h′) ∈ P ⇒ dom(h) = dom(h′).

Clearly, a strictly exact assertion is domain exact. When P is domain exact, meet
of arbitrary assertions distributes over P .

P ∗ (Q uR) = (P ∗Q) u (P ∗R)

P ∗
l

i∈I

Qi =
l

i∈I

(P ∗Qi)

Lemma 10.5. Precise predicates are (domain and strictly) exact assertions.
Moreover, the singleton heap e 7→ e′ is precise.

Many assertions require an empty heap, that is, they are of the form puemp,
where P is pure. Following [31], we define the operator

〈P 〉 = {(s, h). s ∈ P} u emp,

which lifts a store predicate to a separation assertion in which the heap is empty.

Lemma 10.6. Let P be a pure predicate, then 〈P 〉 is precise and

〈P 〉 uQ = 〈P 〉 ∗Q,

for any assertion Q.
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10.2 Tactics for Separation Logic

This section extends Isabelle tactics simp, safe and auto, which are excellent for
classical predicate logic, to be able to reason about assertions of separation logic.
These tactics were mainly built upon [31], which creates practical tactics for Coq
in order to verify C programs, and upon [3], which specifies generic tactics for
LCF-style proof assistants.

A spatial fragment P ′ of an assertion R is syntactically defined as a part of
R which does not have any conjunction and disjunction construct. For instance,
(e 7→ e′) ∗ > and emp are spatial fragments of (e 7→ e′) ∗ > u emp u (P t Q).
A spatial fragment P is normalised if it has the form of ∃x1, ..., x2. P

′, where P ′

satisfies:

1. it does not contain any existential quantification;

2. all the separation conjunctions are associated to the right;

3. if P ′ 6= emp, then it does not contain emp;

4. it has at most one > on the right side;

5. it has at most one 〈P ′′〉 on the left side.

The first, and most basic tactic developed, is called sep-simp, which is respon-
sible for normalising separation fragments and simplifying assertions by unfolding
definitions, such as doublet heap and points-to predicates, and by removing re-
dundant > and emp. New predicate definitions can be added to the simplifier
by writing [sep-simp] after a lemma in Isabelle. For instance, let i, j, and k be
natural values, then applying sep-simp to the predicate

(∃x. (x 7→ i) ∗> ∗ 〈x = j〉 ∗ emp) ∗ (∃x. (x ↪→ j) ∗>) ∗ emp ∗ (k 7→ i, j) ∗ 〈i = j〉

yields the predicate

∃x y. 〈i = j u x = j〉 ∗ (x 7→ i ∗ (y 7→ j ∗ (k 7→ i ∗ ((k + 1 7→ j) ∗ >)))).

We have explicitly written the predicate with parenthesis to show that all the
separation conjunctions are associated to the right.

The goal of the tactics sep-safe and sep-auto is to prove P ≤ Q, where p
and q are conjunctions of spatial fragments. The tactic sep-safe only uses safe
introduction and elimination rules, whereas sep-auto also tries rules that might
put the predicate in an unprovable state. The tactic begins by applying sep-simp
to normalise P and Q, then it transforms the goal into

(s, h) ∈ P =⇒ (s, h) ∈ Q.
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method sep-simp =
(subst sep-simp | subst (asm) sep-simp | subst spred | subst (asm) spred)+

method sep-safe-split =
((rule Set .IntI )+)? ;
(
((erule Set .IntE )+)? ,
((erule pred-exE )+)? ,
((erule spE )+)? ,
sep-same? ,
(sep-simp, sep-safe-split)? ,
(assumption | rule HOL.refl)?

)

method sep-split =
sep-safe-split ;
((rule pred-exI )+)? ,
((rule spI )+)? ;
simp? ;
(
(sep-same | sep-simp, sep-split)? ,
(assumption | rule HOL.refl)?

)

method sep-safe =
sep-simp? ,
(rule subrelI )? ,
sep-safe-split? ;
(((erule sep-safe-elim)+, force); sep-safe-split? )? ;
sep-same? ;
(assumption | rule HOL.refl)?

method sep-auto =
sep-simp? ,
(rule subrelI )? ,
sep-split? ;
((erule sep-elim | rule sep-intro)+; simp? , sep-split? )? ;
sep-same? ;
(assumption | rule HOL.refl)? ;
auto?

Figure 10.1: Tactics for separation logic
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Next, the tactic tries to separate the spatial fragments by eliminating conjunctions
according to

lemma infI : (s, h) ∈ P =⇒ (s, h) ∈ Q =⇒ (s, h) ∈ P u Q

lemma infE : (s, h) ∈ P u Q =⇒ ((s, h) ∈ P =⇒ (s, h) ∈ Q =⇒ G) =⇒ G,

which yields subgoals of the form

(s, h) ∈ P1 =⇒ ... =⇒ (s, h) ∈ Pn =⇒ (s, h) ∈ Qi.

Every Pi is a normalised spacial fragment, therefore if it contains any existential
quantification, we can apply the elimination rule

lemma pred-exE : (s, h) ∈ (∃x . P x ) =⇒ (
∧

x . (s, h) ∈ P x =⇒ Q) =⇒ Q,

which yields

(s, h) ∈ P ′1 =⇒ ... =⇒ (s, h) ∈ P ′n =⇒ (s, h) ∈ Qi,

where P ′i does not contain any ∃. The assertions P ′i might also contain a prefix
〈P ′′〉, in which case, it can be eliminated by

lemma spE : (s, h) ∈ <P> ∗ Q =⇒ (s ∈ P =⇒ (s, h) ∈ Q =⇒ R) =⇒ R.

Note that P ′′ depends only on the store s, this is one of the main reasons why we
split the subset relation P ≤ Q into a set membership implication. The second
reason is heap reduction. The heap is reduced by monotonicity of separating con-
junction, that is, if one of the premises has the same predicate as the conclusion,
we apply the elimination rule

lemma: (s, h) ∈ P ∗ Q =⇒ (
∧

h ′. (s, h ′) ∈ Q =⇒ (s, h ′) ∈ R) =⇒ (s, h) ∈ P ∗ R,

where it is easy to show that domain of h′ is smaller than the one of h. The rule
only eliminates if the same parts are prefixes of both premise and conclusion.
Since ∗ is associative and commutative, we can also reduce the heap regarding
where the same parts are located in the premise and in the conclusion, by applying
variants of the previous elimination rule.

At this point, sep-safe will call Isabelle’s safe tactic, which will try to solve all
the subgoals generated so far and will present the remaining simplified subgoals
to the user.

The tactic sep-auto goes beyond this point by applying the introduction rule
of existential quantifier
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schematic lemma: (s, h) ∈ P ?x =⇒ (s, h) ∈ (∃ x. P x).

The variable ?x is an schematic variable [89] and it can be substituted with any
term in scope. This type of variable makes the tactic extremely powerful, but
if it matches with an undesirable term according to some rule, it can lead to an
unprovable state. If the conclusion contains a prefix 〈−〉, the tactic will apply
the introduction rule

lemma spI : s ∈ P =⇒ (s, h) ∈ Q =⇒ (s, h) ∈ <P> ∗ Q.

Next, heap reduction is applied again, this time, it tries to match terms on the
premises with schematic variables on the conclusion. Finally, it tries to apply
elimination and introduction rules added by the user when annotating lemmas
with [sep-elim] and [sep-intro]. Isabelle’s auto is then called and the user is
presented with any remaining subgoals. Figure 10.1 shows the tactics written in
Eisbach.

10.3 Conclusions

The chapter has presented a set of practical tactics implemented in Isabelle/HOL
to decide (or simplify) separation assertion implications. The assertions use the
standard model of separation logic, the so-called heaplet model. They were mo-
tivated by Appel’s note [3] and built upon Cao et al. [31]. The tactics were
implemented in Eisbach and are based in the introduction/elimination reasoning
inspired by other tactics within Isabelle/HOL. They are therefore easily extensi-
ble by lemma annotation, which is a common practice inside the Isabelle proving
environment.
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Chapter 11

Programs with Pointers

This chapter finishes the integration of separation logic to the verification frame-
work developed in this thesis, by instantiating a concrete store-heap model to
the backward predicate transformer semantics developed in the previous chapter.
Several examples show our tool at work.

11.1 Program State Integration

This section describes the integration of the data domain layer into our Isabelle
tools for program construction and verification. It uses an important Isabelle
feature, namely that the mathematical structures formalised in Isabelle are all
polymorphic. We can therefore instantiate the abstract algebras for the control
flow with various concrete models by soundness proofs, that is, quantales with
predicate transformers, predicate transformers with binary relations and functions
which update program states. In particular, abstract resource monoids are linked
with various concrete models for resources, including store-heap pairs.

Our data domain integration can build on excellent Isabelle libraries and
decades-long experience in reasoning with functions and relations, all sorts of
data structures and data types. In particular, for program construction and ver-
ification with separation logic, Isabelle already provides support for reasoning
with pointers and the heap [119]. This is predominantly based on set theory.

Program states in separation logic are store-heap pairs (s, h) enriched with a
fault element ⊥. We call a state proper if it is different from ⊥. Program stores
are implemented in Isabelle as records of program variables, each of which has a
retrieve and an update function. On the one hand, this approach is polymorphic
and supports variables of any Isabelle type. For instance, Isabelle’s built-in list
data type and list libraries can be used to reason about list-based programs. On
the other hand, Isabelle records are static, which makes it difficult to accom-

135



modate dynamic features such as variable scoping, as considered in the framing
laws of Morgan’s refinement calculus. Heaps, as previously mentioned, have been
modelled in Isabelle as partial functions on natural numbers [119]; they therefore
have type nat → nat option. Since stores are defined and instantiated later,
state type is defined in Isabelle as follows.

type synonym ′a state = (′a× (nat→ nat option)) option

We implement assignments first as functions from proper states to states (a
deterministic state transformer),

(‘x := e) = λ(s, h). Some (x update s (e s), h),

where ‘x is a program variable, x update the update function for ‘x, (s, h) a state
and e an evaluated expression of the same type as ‘x. Note that assignments do
not change or use the heap, therefore they cannot fault. It is a safe command.
Classical separation logic offers a lookup command, which assigns a value pointed
by a heap cell to a program variable.

(‘x := @e) = λ(s, h).

{
Some (x update s (h (e s)), h) if e s ∈ dom h,

None otherwise.

If the heap does not contain the address e in that state, then the program is
trying to reference a null pointer and therefore it faults.

Next, we implement the typical commands for heap manipulation of separa-
tion logic. For heap allocation, we use Hilbert’s ε operator, where ε x. P x denotes
some x such that P x provided it exists. Heap allocation is then programmed as

(‘x := cons e) = λ(s, h). let n = ε m. m /∈ dom h

in Some (x update s n, h[n 7→ (e s)]),

where dom h is the domain of the heap h, expression e is of natural number type,
and h[n 7→ e] maps n to e and is the same as h for all other parameters, namely,
h[n 7→ e] = λm. if m = n then e else h(m). In a similar fashion, we implement
deallocation and mutation as

(dispose e) = λ(s, h).

{
Some (s, h[(e s) := None]) if e s ∈ dom h,

None otherwise.

(@e := e′) = λ(s, h).

{
Some (s, h[(e s) 7→ (e′ s)]) if e s ∈ dom h,

None otherwise.

136



where the expressions e and e′ evaluate to natural numbers and h[e := None]
removes e from the domain of h.

Following the same lines of §7.4, we lift these atomic commands to predicate
transformers by

〈f〉 : (S ×H)→ (S ×H) ∪ {⊥}
〈f〉 = {(s, h) | f (s, h) in Q},

where x in A is defined to be equal to x ∈ A if x 6= ⊥, and false otherwise.
As previously, we generally do not write the lifting brackets explicitly, identifying
program pseudocode with predicate transformers to simplify verification notation.
It then remains to show that these atomic commands are local and monotonic.

Lemma 11.1. The 5 atomic commands for separation logic: assignment, lookup,
heap allocation, heap deallocation and heap mutation are local and monotone.

In fact, heap allocation is only local if dom h is a finite set, since one needs
to be able to always pick a heap location that is not in the domain of h.

With this infrastructure in place we can prove Hoare’s assignment rule and
Reynolds’ local axioms (or O’Hearn’s small axioms) for lookup, allocation, deal-
location and mutation of separation logic [101] in the concrete heap model. We
write q[e/‘x] for the substitution of variable ‘x by expression e in q.

Proposition 11.1. The following inference rules of separation logic are derivable
in the store-heap model:

{q[e/‘x]} ‘x := e {q},
{(e 7→ n) ∗ 〈‘x = m〉} ‘x := @e {(e[m/‘x] 7→ n) ∗ 〈‘x = n〉},

{emp} ‘x := cons e {‘x 7→ e},
{e 7→ −} dispose e {emp},
{e 7→ −} @e := e′ {e 7→ e′}.

Variants of these rules can easily be derived. For example, global rules, ob-
tained by a simple application of the frame rule, emphasise that anything in the
heap different from the mutated location is left unchanged:

{q[e/‘x] ∗ r} ‘x := e {q ∗ r},
{(e 7→ n) ∗ 〈‘x = m〉 ∗ r} ‘x := @e {(e[m/‘x] 7→ n) ∗ 〈‘x = n〉 ∗ r},

{r} ‘x := cons e {(‘x 7→ e) ∗ r},
{(e 7→ −) ∗ r} dispose e {r},

{(e 7→ −) ∗ r} @e := e′ {(e 7→ e′) ∗ r}.
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Applying the weakening rule and the identity p ∗ (p−∗ q) ≤ q yields global rules
for backward reasoning, which is more suitable for automation:

{∃n. (e 7→ n) ∗ ((e 7→ n)−∗ q[n/‘x]} ‘x := @e {q},
{(e 7→ −) ∗ ((e 7→ e′)−∗ q)} @e := e′ {q}.

An easier global backward rule for lookup can further be derived by applying the
identity (e ↪→ e′) u p ≤ (e 7→ e′) ∗ ((e 7→ e′)−∗ p).

{∃n. (e ↪→ n) u q[n/‘x]} ‘x := @e {q}

The resulting set of control-flow and data-domain inference rules for separa-
tion logic allows us to program the Isabelle proof tactic hoare (cf. §4.2), which
generates verification conditions automatically and eliminates the entire control
structure when the invariants of while loops are annotated.

One can also use the assignment rules to derive their refinement counterparts:

p ≤ q[e/‘x]⇒ [p, q] v (‘x := e),

q′ ≤ q[e/‘x]⇒ [p, q] v [p, q′]; (‘x := e),

p′ ≤ p[e/‘x]⇒ [p, q] v (‘x := e); [p′, q].

The second and third laws are called the following and leading refinement law
for assignments [83]. They are useful for program construction. We have derived
analogous laws for lookup, heap allocation, deallocation and mutation.

[∃n. (e 7→ n) ∗ p[n/‘x], (e 7→ ‘x) ∗ p] v ‘x := @e

[p, (‘x 7→ e) ∗ p] v ‘x := cons e

[(e 7→ −) ∗ p, p] v dispose e

[(e 7→ −) ∗ p, (e 7→ e′) ∗ p] v @e := e′

We have also programmed the tactic morgan, which automatically tries to apply
all the rules of this refinement calculus in construction steps of pointed programs.

11.2 Linked Lists

To show our approach at work, we present three examples, among them the
obligatory correctness proof of the classical in-situ linked-list reversal algorithm.
The post-hoc verification of this algorithm in Isabelle has been considered be-
fore [119]. However, we follow Reynolds [101], who gave an informal annotated
proof, and reconstruct his proof step-by-step in refinement style. As usual for
verification with interactive theorem provers, functional specifications are related
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to imperative data structures. The former are defined recursively in functional
programming style and are hence amenable to proof by induction. Such detailed
functional specifications of data structures used in separation logic are usually
not amenable to pure first-order reasoning and are therefore beyond the scope of
first-order tools such as SMT solvers.

Following Reynolds, we define a predicate list seg xs i j that indicates whether
a heap, starting from position i, contains a linked list segment ending in a position
j, represented by a functional list xs.

list seg [ ] i j = (i = j) ∧ emp,

list seg (x#xs) i j = ∃k. (i 7→ x, k) ∗ list seg xs k j.

We use the doublet heap predicate (i 7→ x, k) to indicate that i points to the cells
containing the value x and the address k of the next list block.

A linked list is then a segment ending into a null pointer. Formally,

llist xs i = (list seg xs i 0) u null,

where null simply states that the value zero is used as a null pointer, that is, the
value 0 is not in the heap domain, null = {(s, h) | 0 /∈ dom h}. Note that this
value is arbitrary.

We enrich the sep-simp tactic with the following simplification rules:

llist [ ] i = 〈i = 0〉
llist [ ] 0 = emp

llist (x#xs) i = 〈i 6= 0〉 ∗ (∃k. (i 7→ x, k) ∗ llist xs k).

Finally, we add the following elimination rules to sep-auto:

(s, h) ∈ llist x i ∗R =⇒ i s = 0 =⇒ (x = [ ] =⇒ (s, h) ∈ R =⇒ Q) =⇒ Q

(s, h) ∈ llist x i ∗R =⇒ i s 6= 0 =⇒ ((s, h) ∈ llist (hd x)#(tl x) i ∗R =⇒ Q) =⇒ Q

The first rule says that in a state (s, h) where i s = 0, the predicate llist x i
simplifies to emp and can be eliminated. Otherwise, x can be split into head and
tail in order to be further simplified.

11.3 Examples

Our first example, though somewhat artificial, explicitly demonstrates the use of
the frame rule. The following Isabelle code fragment shows the Hoare triple used
for verification.
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{ x 7→ -, j ∗ llist as j } @x := a { x 7→ a, j ∗ llist as j }

Calling the hoare tactic for verification condition generation was sufficient for
proving the correctness of this simple example automatically. Internally, the
frame and the mutation rule have been applied.

In the next example, we show how to deallocate the first cell of a list segment.
Figure 11.1 shows the algorithm written in Isabelle. It uses lookup, the most
complex command in our language, and heap deallocation. First, the address of
the second cell of the list (‘i + 1) is saved into the variable ‘k. Second, the heap
cells with address ‘i and (‘i+1) are deallocated. Finally, ‘i gets the address stored
in ‘k. Calling the hoare tactic, the following condition is generated:

list seg (x # xs) i j ≤ ∃x. (i 7→ −, x) ∗ list seg xs x j.

When adding the definition of list seg to sep-simp, the condition can be auto-
matically proved by calling sep-auto.

lemma llist-seg-dealloc: ` {| list seg (x # xs) ‘i ‘j |}
‘k := @(‘i + 1 );
dispose ‘i ;
dispose (‘i + 1 );
‘i := ‘k
{| list seg xs ‘i ‘j |}

by hoare sep-auto+

Figure 11.1: Deallocation of the first element in a list segment

To deallocate the whole list segment, one can loop until the variable ‘i is equal
to ‘j, or equal to 0 if the segment is a full linked list. In Figure 11.2, we show
the complete verification of an algorithm for linked list deallocation in a post-
hoc fashion. It has been annotated in the standard way with a precondition, a
postcondition and a loop invariant. The latter simply states that there exists a
linked list xs starting from the pointer ‘i while ‘i is not equal to 0. Calling the
hoare tactic generates three verification conditions for the data domain, which
are easily discharged by sep-auto.

11.4 Constructing a Linked List Reversal Algo-

rithm.

In this section, we reconstruct Reynolds’ classical proof relative to the standard
recursive function rev for functional list reversal. The initial specification state-
ment is

[llist xs0 ‘i, llist (rev xs0) ‘j],
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lemma llist-dealloc: ` {| llist xs ‘i |}
while ‘i 6= 0
inv {| ∃ xs. list xs ‘i |}
do

‘j := ‘i ;
‘i := @(‘i + 1 );
dispose ‘j ;
dispose (‘j + 1 )

od
{| emp |}

by hoare sep-auto+

Figure 11.2: Linked list deallocation algorithm

where xs0 is the input list and ‘i and ‘j are pointers to the head of the list on the
heap.

The main idea behind Reynolds’ proof is to split the heap into two lists,
initially xs0 and an empty list, and then iteratively swing the pointer of the first
element of the first list to the second list. The full proof is shown in Figure 11.3;
we now explain its details.

In (1), we strengthen the precondition, splitting the heap into two lists xs and
ys, and inserting a variable ‘j initially assigned to 0. The equation

(rev xs0) = (rev xs) @ ys

then holds for these lists, where @ denotes the append operation on linked lists.
Justifying this step in Isabelle requires calling the morgan tactic from §9.7, which
applies the leading law for assignment. This obliges us to prove that the lists xs
and ys de facto exist, which is discharged automatically by calling sep-auto. In
fact, all the 8 proof steps in our construction are essentially automatic: they only
require calling morgan followed by sep-safe or sep-auto tactics.

The new precondition generated then becomes the loop invariant of the algo-
rithm. It allows us to refine our specification statement to a while loop in step
(2), where we iterate ‘i until it becomes 0. Calling the morgan tactic applies the
while law for refinement. From step (3) to (8), we refine the body of the while
loop and do not display the outer part of the program.

Because now ‘i 6= 0, the list xs has at least an element a. We can thus expand
the definition of llist in step (3). Next, we assign the value pointed to by ‘i + 1
to ‘k—our first list now starts at ‘k and ‘i points to [a, ‘k].

Step (5) performs a mutation on the heap, changing the cell ‘i + 1 to ‘j;
consequently ‘i now points to [a, ‘j]. Because ∗ is commutative, we can strengthen
the precondition accordingly. We now work backwards, folding the definition of
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[[ llist xs ‘i0, llist (rev xs0) ‘j ]]
v (1)

‘j := 0 ;
[[ ∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0 = (rev xs) @ ys〉, llist (rev xs0 ‘j ) ]]
v (2)

‘j := 0 ;
while ‘i 6= 0 do
[[ ∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0 = (rev xs) @ ys〉 ∗ 〈‘i 6= 0〉,
∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0) = (rev xs) @ ys〉 ]]

od

[[ ∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0 = (rev xs) @ ys〉 ∗ 〈‘i 6= 0〉,
∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0) = (rev xs) @ ys〉 ]]
v (3)

[[ ∃xs ys a k . (‘i 7→ a, k) ∗ llist xs k ∗ llist ys ‘j ∗ 〈rev xs0 = (rev a#xs) @ ys u ‘i 6= 0〉,
∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0) = (rev xs) @ ys〉 ]]
v (4)

‘k := @(‘i + 1 );
[[ ∃xs ys a. (‘i 7→ a, ‘k) ∗ llist xs ‘k ∗ llist ys ‘j ∗ 〈rev xs0 = (rev a#xs) @ ys u ‘i 6= 0〉,
∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0) = (rev xs) @ ys〉 ]]
v (5)

‘k := @(‘i + 1 );
@(‘i + 1 ) := ‘j ;
[[ ∃xs ys a. (‘i 7→ a, ‘j ) ∗ llist xs ‘k ∗ llist ys ‘j ∗ 〈rev xs0 = (rev a#xs) @ ys u ‘i 6= 0〉,
∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0) = (rev xs) @ ys〉 ]]
v (6)

‘k := @(‘i + 1 );
@(‘i + 1 ) := ‘j ;
[[ ∃xs ys. llist xs ‘k ∗ llist ys ‘i ∗ 〈rev xs0 = (rev xs) @ ys u ‘i 6= 0〉,
∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0) = (rev xs) @ ys〉 ]]
v (7)

‘k := @(‘i + 1 );
@(‘i + 1 ) := ‘j ;
‘j := ‘i ;
[[ ∃xs ys. llist xs ‘k ∗ llist ys ‘j ∗ 〈rev xs0 = (rev xs) @ ys u ‘j 6= 0〉,
∃xs ys. llist xs ‘i ∗ llist ys ‘j ∗ 〈rev xs0) = (rev xs) @ ys〉 ]]
v (8)

‘k := @(‘i + 1 );
@(‘i + 1 ) := ‘j ;
‘j := ‘i ;
‘i := ‘k

Figure 11.3: In situ linked list reversal algorithm by refinement. The first block
shows the refinement up to the introduction of the while-loop. The second block
shows the refinement of the body of the loop.
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[[ llist xs0 ‘i , llist (rev xs0) ‘j ]]
v

‘j := 0 ;
while ‘i 6= 0 do

‘k := @(‘i + 1 );
@(‘i + 1 ) := ‘j ;
‘j := ‘i ;
‘i := ‘k

od

Figure 11.4: In situ linked list reversal algorithm

llist in and removing the existential of a in step (6). Last, to establish the
invariant, we only need to swap the pointers ‘j to ‘i and ‘i to ‘k as in steps
(7) and (8). The resulting algorithm is highlighted in Figure 11.3 and shown in
Figure 11.4.

In addition, we have performed a post-hoc verification of the list reversal algo-
rithm using two different approaches. The first, previously taken by Weber [119],
uses Reynolds’ list predicate, as we have used it in the above refinement proof.
The verification can be done automatically by hoare and sep-auto. The second
follows Nipkow in using separating conjunction in the pre- and postcondition, but
not in the definition of the list predicate. Since our approach is modular with
respect to the underlying data model, it was straightforward to replay Nipkow’s
proof in our setting.

11.5 Conclusions

This chapter integrated a concrete store-heap model to the backward predicate
semantics. Inference rules and refinement laws of the five atomic statements of
separation logic were proven sound with respect to this model. Finally, we have
applied the tool to several examples.

In summary, the approach supports the program construction and verifica-
tion of pointer-based programs with separation logic, but larger case studies are
desirable to assess the performance of the tool. Apart from soundness proofs
and the certification of the tool itself, the algebraic approach has predominantly
been used in the derivation and implementation of tactics for program construc-
tion and verification. In the end, tactics for the data level, such as sep-auto and
sep-safe, dramatically increased tool automation.
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Chapter 12

Conclusion

The tool prototypes presented in this thesis has so far allowed us to verify sev-
eral program examples with a relatively high degree of automation. Although
these examples were simple, they have interesting and varied properties, such
as recursivity, nondeterminism and pointers. So far the tools have been shown
to be useful for educational and research purposes; Prof. Georg Struth has used
them in his lectures for Software and Hardware Verification at the University of
Sheffield. However, extensions and optimisations beyond the mere proof of con-
cept are desirable, including the development of more sophisticated proof tactics,
and the integration of tools and techniques for automatic data-level reasoning in
Sledgehammer style. There are yet many verification issues that this thesis has
not addressed. These include:

• termination – proof that a program will always terminate;

• abrupt termination commands, such as break, return and continue in C;

• exceptions;

• mutually recursive procedures;

• local name for a local variable – our tools support local variables, but these
need to have their names globally defined;

• variable aliases;

• variable framing refinement laws;

• pointers to procedures; and

• concurrency – although we have a tool able to verify simple concurrent
algorithm by an interleaving model, it does not consider liveness, fairness,
starvation and weak memory models.
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12.1 Summary

This thesis has covered three main contributions.

Formalisation of algebraic structures. Various algebraic structures for rea-
soning about imperative programs were formalised in Isabelle/HOL and made
available for the theorem proving community through the Archive of Formal
Proofs [9, 55, 54].

Principled approach for correctness tools. A coherent approach based on
algebraic principles to the design and development of program verification and
refinement tools, which are correct by construction, was implemented within the
Isabelle/HOL theorem proving environment. It aimed at a clean separation of
concerns between the control flow and the data domain level of programs and
focussed on developing a lightweight algebraic layer from which verification con-
ditions or transformation and refinement laws can be developed by simple equa-
tional reasoning. Variants were also proposed, each with a different underlying
algebraic structure.

Correctness tool for separation logic. The novel algebraic approach for
separation logic, proposed by Dongol, Hayes and Struth [44] and developed in this
thesis, yields a clean design for verification and construction tools for programs
with pointers. These design choices allow us to use power series, quantales and
generic lifting constructions throughout the approach, which leads indeed to a
very small and highly automated Isabelle implementation. A particular feature
of this approach is the view on separating conjunction as a notion of convolution
over resources. The tool has a high level of automation with powerful tactics for
the control and data levels.

12.2 Future Work

Concurrent Separation Logic The approach to separation logic in this thesis
suggests a new lifting construct, in which a new operation ‖ can be defined as

(F‖G) Q =
∑

Q≤Q1∗Q2

F Q1 ∗G Q2,

where F and G are backwards predicate transformers and Q is a predicate. In
fact, Hoare et al. [63] uses a model where this equation holds. However, more
investigation is needed to certify that this model is indeed good for concurrent
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programs. Perhaps one can find a bisimulation between this model and trace
semantics.

Algebraic Structures. At least two questions remain for future work. First,
the question of whether or not a domain quantale forms a relational algebra is still
open. Second and more importantly, separation quantales define an operation ∗
over the whole carrier set; it would be interesting to know if a model exists where
∗ is a parallel operator for generic elements and a separating conjunction for
subidentities. More research is needed nonetheless to investigate this intrinsic
relationship between both operations.

Correctness Tools. The development of fully-fledged correctness tools instead
of prototypes with a better interface and other integrated techniques is desirable.
Other opportunities for future work lie in the integration of categorical approaches
to data type constructions [53, 84], and the consolidation with Preoteasa’s ap-
proach to predicate transformers in Isabelle [98].

Concurrency. The algebraic approach for correctness tools presented in this
thesis has been implemented for a rely-guarantee algebra in a concurrent set-
ting [7, 6]. However, it fails to address many interesting issues of concurrency. For
instance, the area of weak memory models is being researched intensely and new
verification logics are being created. These promising logics, such as GPS [114],
have never had an algebraic treatment. In addition, many open questions still re-
main in the area, such as the development of inference rules for fences, definition
of atomicity and refinement under weak consistent models.
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Appendix A

Algebraic Structures

This appendix collects the main algebraic axiom systems used in the thesis (cf.
Figure A.1).

Definition A.1. A join semilattice is a poset (L,≤) such that every pair of
elements x, y ∈ L has a least upper bound x + y in L. A join semilattice L is
complete if every set X ⊆ L has a least upper bound

∑
X in L. Alternatively, a

join semilattice is a structure (L,+) which satisfies, for all x, y, z ∈ L, the axioms

(x+ y) + z = x+ (y + z), (A.1)

x+ y = y + x, (A.2)

x+ x = x. (A.3)

Definition A.2. A lattice is a poset (L,≤) such that every pair of elements
x, y ∈ L has a least upper bound x + y and a greatest lower bound x u y in L.
A lattice is complete if every set X has a least upper bound

∑
X and a greatest

lower bound
d
X in L.

Definition A.3. A semiring is a structure (S,+, ·, 0, 1) which satisfies for all
x, y, z ∈ S, the axioms

(x+ y) + z = x+ (y + z), (A.4)

0 + x = x+ 0 = x, (A.5)

x+ y = y + x, (A.6)

(x · y) · z = x · (y · z), (A.7)

1 · x = x · 1 = x, (A.8)

x · (y + z) = x · y + y · z, (A.9)

0 · x = x · 0 = 0. (A.10)
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Definition A.4. A dioid is a semiring S which is additively idempotent, that is,
for all x ∈ S,

x+ x = x. (A.11)

Definition A.5. A test dioid is a structure (S,B,+, ·, , 0, 1) such that (S,+, ·, 0, 1)
is a dioid, B ⊆ S and (B,+, ·, , 0, 1) is a boolean algebra.

Definition A.6. A Kleene algebra (KA) is a structure (K,+, ·,∗ , 0, 1) such that
(K,+, ·, 0, 1) is a dioid and the star satisfies the axioms

1 + x∗ · x ≤ x∗, (A.12)

1 + x · x∗ ≤ x∗, (A.13)

z + y · x ≤ y ⇒ z · x∗ ≤ y, (A.14)

z + x · y ≤ y ⇒ x∗ · z ≤ y. (A.15)

Definition A.7. Kleene algebras with tests (KAT) are Kleene algebras which are
also test dioids.

Definition A.8. A refinement Kleene algebra with tests (rKAT) is a KAT ex-
panded by the operation [ , ] : B ×B → K which satisfies

px ≤ xq ⇔ x ≤ [p, q]. (A.16)

Definition A.9. A quantale is an algebraic structure (Q,≤, ·, 1) such that (Q,≤)
is a complete lattice, (Q, ·, 1) a monoid and the following distributivity laws hold

(
∑
i∈I

xi) · y =
∑
i∈I

xi · y, (A.17)

x · (
∑
i∈I

yi) =
∑
i∈I

(x · yi). (A.18)

Definition A.10. A quantale with tests is a quantale that is also a test dioid.

Definition A.11. A domain semiring is a semiring S expanded by a domain
operation d : S → S that satisfies

x+ d(x) · x = d(x) · x, (A.19)

d(x · y) = d(x · d(y)), (A.20)

d(x) + 1 = 1, (A.21)

d(0) = 0, (A.22)

d(x+ y) = d(x) + d(y). (A.23)
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DQ

QT

KAD rKAT Q

DS KAT CL

DT KA

D

SL

Figure A.1: Class inclusions for join semilattices (SL), dioids (D), dioids with
tests (DT), domain semiring (DS), Kleene algebras (KA), Kleene algebras with
tests (KAT), complete lattices (CL), refinement Kleene algebra with tests (rKAT),
Kleene algebra with domain (KAD), quantales (Q), quantales with tests (QT) and
domain quantales (DQ)
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Definition A.12. An antidomain semiring is a semiring S expanded by an an-
tidomain operation a : S → S that satisfies

a(x) · x = 0, (A.24)

a(x · y) + a(x · d(y)) = a(x · d(y)), (A.25)

d(x) + a(x) = 1, (A.26)

where d(x) = a(a(x)).

Definition A.13. Kleene algebras with domain (KAD) are Kleene algebra which
are also domain semirings.

Definition A.14. A domain quantale is a quantale where the left and right dis-
tributivity laws for vectors hold, i.e.,

y · (z u > · x) = y · z u > · x, (A.27)

(z u x · >) · y = z · y u x · >. (A.28)
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Appendix B

Introduction to Isabelle/HOL

This appendix is an introduction to Isabelle/HOL, covering the essentials needed
to understand this thesis. For further information on Isabelle/HOL we refer to
its excellent standard documentation [89].

Isabelle is an interactive proof assistant with embedded first-order automatic
theorem provers, SMT-solvers and counterexample generators, apart from provers,
solvers and simplifiers for higher-order logic. As an LCF-style framework it is
based on a small logical core to guarantee correctness. All algebras and models
implemented are consistent with respect to this core and all theorems proved are
correct relative to it. In particular, all proof outputs produced by external the-
orem provers must be internally reconstructed in order to be accepted. Isabelle
has been used to formalise a wide range of mathematical theories and applied
in numerous computing applications, including program correctness and verifica-
tion. Isabelle/HOL, in particular, is based on a typed higher-order logic which
supports reasoning with sets, polymorphic data types, inductive definitions and
recursive functions.

B.1 Proving in Isabelle

When proving a proposition in Isabelle, the statement is preceded by the keywords
theorem or lemma. There are no differences internally between these keywords,
but it depends how the user perceives the importance of the given proposition.
Isabelle enters then in a proof mode, where the output window shows the goals
or the proof obligations. The proof proceeds by applying tactics or methods to
these. The goals are then reduced to simpler subgoals until they become trivial.
A tactic can be invoked by the command apply. When no goals remains to be
proved, the user might exit the proof mode by the keyword done. The command
by is used as an abbreviation for applying a tactic and exiting the proof mode.
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lemma star-cosim: z ·x ≤ y ·z −→ z ·x ? ≤ y?·z
proof

assume z ·x ≤ y ·z
hence y?·z ·x ≤ y?·y ·z

by (metis mult-isol mult-assoc)
also have ... ≤ y?·z

by (metis mult-isor star-1r)
finally have z + y?·z ·x ≤ y ·z

by (metis add-lub-var mult-1-left mult-isor star-ref)
thus ?thesis

by (metis star-inductr)
qed

Figure B.1: Example of proof in Isar, co-simulation law for Kleene star.

A fully proved lemma can be stored under a given name and henceforth be used
by the tactics.

Tactics and tacticals. Tactics are usually based on natural deduction and
resolution. Simplifiers, such as the tactic simp, are based on rewritting by sub-
stitution of equals for equals. Powerful tactics, also known as tacticals, combine
multiple tactics and are able to automatically prove complicated statements. A
extremely useful tactic is auto, which combines higher-order resolution and rewrit-
ting. However, auto might reach an unprovable subgoal, the tactical safe instead
applies only safe rules. Additionally, force works similar than auto, but fails if it
does not fully prove the subgoal.

Sledgehammer. Isabelle contains a range of built-in tactics, provers and sim-
plifiers in addition to auto. In particular, its internal Sledgehammer tool is able
to invoke external automated theorem provers and SMT solvers and reconstruct
their output internally in order to guarantee trustworthiness. The tool can be
invoked by the command sledgehammer in the proof mode, or by clicking in
the sledgehammer button in the Isabelle IDE. The output window then displays a
list of tactics or provers with the necessary arguments able to prove the required
subgoal. The user selects a desired tactic, this line is copied to the Isabelle file
and the command sledgehammer is erased.

Isar. Isabelle also offers different modes of interactive reasoning, notably the
proof scripting language Isar which supports human-readable proofs. The exam-
ple in Figure B.1 proves a co-simulation law for the Kleene star in the context
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of Kleene algebras. The proof is split into simple human-readable steps, which
are proved automatically by Sledgehammer and internally verified by the prover
metis. The lemma is named star-cosim and can be used in future proofs. metis
is the name of Isabelle’s internal theorem prover which reconstructs proofs given
by the external provers called by Sledgehammer. Lemmas such as mult-isol or
star-ref, which are used by metis, are not provided by the user, but selected by the
Sledgehammer tool according to syntactic criteria and by using machine learning.

B.2 Isabelle Axiomatic Type Class

Algebraic hierarchies like the one presented in Chapter 3 are typically formalised
within Isabelle’s axiomatic type class infrastructure. As an example, the following
type class formalises dioids using the existing class for semirings and expanding
it with the idempotency axiom for addition.

class dioid = semiring +
assumes add-idem: x + x = x

The operation of addition used by Isabelle is polymorphic; it has type α ⇒
α⇒ α. The type class mechanism supports theory expansion and the formalisa-
tion of subclass relationships. Theorems proved for reducts or superclasses thus
become automatically available in expansions or subclasses. The fact that dioids
form a join-semilattice can, for instance, be captured by the following statement.

subclass ( in dioid) join-semilattice
by unfold-locales (auto simp add: add.commute add.left-commute)

The first line of the statement indicates the proof obligation, which is to prove
that the join semilattices form a subclass of dioids. When calling the tactic
unfold-locales, Isabelle generates all the subgoals necessary to prove this claim.
Because a join-semilattice is a set equipped with an associative, commutative and
idempotent join operation, these are as follows.

1. ∀ x y z. (x + y) + z = x + (y + z)
2. ∀ x y. x + y = y + x
3. ∀ x. x + x = x

These subgoals are automatically discharged by calling Isabelle’s internal tacti-
cal auto with lemmas named add.commute and add.left-commute as parameters.
These lemmas have been proved in the context of semirings and are available in
the type class of dioid due its definition by expansion.
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An important Isabelle feature is that the mathematical structures formalised
are all polymorphic—their elements can have various types. Within this infras-
tructure, abstract algebras can be linked formally with their models by instan-
tiation or interpretation statements. This, for instance, allows us to verify that
relations form a dioid.

interpretation rel-dioid: dioid (op ∪) (op O)
by auto

B.3 Isabelle Main Library

This thesis extensively uses Isabelle standard library, where types and notations
are similar to ML.

Function Type: α ⇒ β. Function type, or arrow type, is a basic type in
HOL. This can be construct by lambda abstraction, let x be of type α and y
of type β, then λx. y is of type α ⇒ β. Isabelle offers a composition function
◦ :: (α⇒ β)⇒ (β ⇒ γ)⇒ α⇒ γ and an identity function id :: α⇒ α. Function
types associate to the right, i.e., α ⇒ β ⇒ γ ≡ α ⇒ (β ⇒ γ). The notation
f(x := y) updates the function f , such that f x = y.

Product Type: α × β. Isabelle offers projection functions fst :: α × β ⇒ α
and snd :: α × β ⇒ β. The construction Pair :: α ⇒ β ⇒ α × β creates a pair
(x, y). Additionally, tuple patterns such as (x, y, z) can also be used. Tuples are
pairs associated to the right, i.e., (x, y, z) ≡ (x, (y, z)).

Sum Type: α + β. The disjoint sum of two types can be manipulated by its
projections and constructors. It offers the projections projl :: α + β ⇒ α and
projr :: α + β ⇒ β, and the constructors Inl :: α⇒ α + β and Inr :: β ⇒ α + β.

Option Type: α option. The datatype α option = None | Some α is useful to
add an extra element to a particular type, usually a bottom ⊥ or a top > element.
The function the :: α option ⇒ α is such that the (Some x) = x. Option types
are used in this thesis to model partial functions.

List: α list. Isabelle offers classic methods to reason about functional list. The
empty list is [ ] or Nil. The constructor cons is denotated by # and the operation
append by @. The i-th element of a list xs is written xs ! i. Isabelle has functions
to retrieve the head of a list hd :: α list ⇒ α, its tail tail :: α list ⇒ α list, its
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last element last :: α list ⇒ α and its length length :: α list ⇒ nat. The notation
xs[i := y] updates the i-th element of the list xs by y. For more advanced
functions, please see Isabelle’s manual [89] or its source code.

Sets: α set. The notation {x. P x} denotes set comprehension, that is, the set
of all elements satisfying the predicate P . Isabelle also offers all the classic set
operations such union A∪B, intersection A∩B and complementation −A. The
syntax {} denotes the empty set and UNIV is the universe for a given type. We
write x ∈ A and A ⊆ B for the membership and subset relations. Additionally,
the image of a set P under a function f is denoted by f`A.

Relations: α rel. Relations are defined in Isabelle/HOL as a set of pairs. All
the operations for sets are then available for relations. In addition, relation
composition is R O S = {(x, z). ∃y. (x, y) ∈ R ∧ (y, z) ∈ S}, and the identity
relation is Id = {(x, x). x ∈ UNIV}.

B.4 Eisbach

Isabelle 2015 offers the new proof method language Eisbach [80]. A tactic is cre-
ated by the keyword method, which might include lists of lemmas as arguments
declared after uses. The syntax used to define a method is essentially the same
one when proving a lemma in Isabelle. The operations are similar to the ones for
regular expressions, where ‘|’ is choice, ‘,’ is sequential operation, and ‘+’ and ‘?’
are quantifiers indicating one or more and zero or one respectively. Eisbach has
more powerful features not used in this thesis, for a full overview please refer to
its manual [80].
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Appendix C

Source Code

The implementation of the tools discussed in this thesis is based on the formali-
sation of algebraic structures available in the Archive of Formal Proofs:

• Kleene algebras [13],

• Kleene algebras with tests and demonic refinement algebras [9],

• Residuated lattices [55],

• Kleene algebras with domain [54].

In addition, the full Isabelle implementation of the correctness tools and the
formalisation of refinement Kleene algebras, quantales and partial algebras, to-
gether with all the program construction and verification examples presented in
this thesis, can be found online:

https://github.com/victorgomes/veritas.

Previous versions of the tools, presented in [8, 10, 11, 43], are also available:

• http://afp.sourceforge.net/entries/KAT_and_DRA.shtml,

• http://www.dcs.shef.ac.uk/~victor/refinement,

• http://www.dcs.shef.ac.uk/~victor/verification,

• https://github.com/victorgomes/sep-logic.

All the facts in this thesis were formally verified, except the ones in §9.9 and
the examples of partial algebras and convolution drawn from the literature in
§9.2 and §9.3.
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The remaining sections of this appendix present the most important parts
of the implementation. The formalisation of DRA, KAD and quantales are not
presented, since they follow a similar reasoning to the one for Kleene algebras.
Similarly, the implementation of the correctness tools for GCL and separation
logic is not shown here.

C.1 Kleene Algebras

Diods, or commutative semiring, are implemented from Isabelle’s semiring class.
A near-dioid is a dioid without left distributivity, whereas a pre-dioid is a near-
dioid with sub-distributivity. This hierarchy of near and pre algebras is preserved
for more complex algebraic structures.

class near-dioid = ab-near-semiring + plus-ord +
assumes add-idem ′ [simp]: x + x = x

class pre-dioid = near-dioid +
assumes subdistl : z · x ≤ z · (x + y)

class dioid = near-dioid + semiring

class near-dioid-one = near-dioid + ab-near-semiring-one

class pre-dioid-one = pre-dioid + near-dioid-one

class dioid-one = dioid + near-dioid-one

class dioid-one-zerol = dioid-one + ab-near-semiring-one-zerol

class dioid-one-zero = dioid-one-zerol + ab-near-semiring-one-zero

The left and the right star induction axiom is considered independently. In
addition, the right unfold axiom can be derived in a left Kleene algebra.

class left-near-kleene-algebra = near-dioid-one + star-op +
assumes star-unfoldl : 1 + x · x ? ≤ x ?

and star-inductl : z + x · y ≤ y −→ x ? · z ≤ y

class left-pre-kleene-algebra = left-near-kleene-algebra + pre-dioid-one
begin

lemma star-unfoldr : 1 + x ? · x ≤ x ?
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by (metis add-lub star-1r star-ref )

end

class left-kleene-algebra = left-pre-kleene-algebra + dioid-one

class left-kleene-algebra-zerol = left-kleene-algebra + dioid-one-zerol

class left-kleene-algebra-zero = left-kleene-algebra-zerol + dioid-one-zero

class kleene-algebra = left-kleene-algebra-zero +
assumes star-inductr : z + y · x ≤ y −→ z · x ? ≤ y

Before defining Kleene algebra with tests, a dioid with tests is formalised.

class near-dioid-tests-zerol = ab-near-semiring-one-zerol + plus-ord +
fixes comp-op :: ′a ⇒ ′a (n- [90 ] 91 )
assumes test-one: n n 1 = 1
and test-mult : n n (n n x · n n y) = n n y · n n x
and test-mult-comp: n x · n n x = 0
and test-de-morgan: n x + n y = n (n n x · n n y)

class pre-dioid-test-zerol = near-dioid-test-zerol-dist + pre-dioid

class dioid-tests-zerol = dioid-one-zerol + pre-dioid-test-zerol

class dioid-tests = dioid-tests-zerol + dioid-one-zero

class kat = kleene-algebra + dioid-tests
context kat
begin

We encode validity of Hoare triples and derive the inference rules of proposi-
tional Hoare logic, that is, Hoare logic without the assignement rule, in Kleene
algebra with tests.

definition hoare-triple :: ′a ⇒ ′a ⇒ ′a ⇒ bool ({|-|}-{|-|}) where
{|p|} x {|q |} ≡ p·x = p·x ·q ∧ test p ∧ test q

lemma hoare-triple-def-var : {|p|} x {|q |} = (p·x ≤ x ·q ∧ test p ∧ test q)
by (metis hoare-triple-def kat-eq1 kat-eq2 )

lemma skip-rule: test p =⇒ {|p|}1{|p|}
by (simp add : hoare-triple-def )
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lemma sequence-rule: {|p|}x{|q ′|} =⇒ {|q ′|}x ′{|q |} =⇒ {|p|}x ·x ′{|q |}
by (simp add : hoare-triple-def , metis mult .assoc)

lemma conditional-rule: [[{|p·b|}x{|q |}; {|p·!b|}x ′{|q |}; test p; test b]] =⇒ {|p|}b·x + !b·x ′{|q |}
by (simp add : hoare-triple-def , metis mult .assoc distrib-left distrib-right)

lemma consequence-rule: [[test p; p ≤ p ′; {|p ′|}x{|q ′|}; q ′ ≤ q ; test q ]] =⇒ {|p|}x{|q |}
by (unfold hoare-triple-def , metis (full-types) mult .assoc test-leq-mult-def-var)

lemma while-rule-var : {|p|}x{|p|} =⇒ {|p|}x ?{|p|}
by (metis hoare-triple-def-var star-sim2 )

lemma while-rule: [[test q ; {|p·q |}x{|p|}]] =⇒ {|p|}(q ·x )?·!q{|p·!q |}
proof (unfold hoare-triple-def-var , auto)

assume assms: test p test q p·q ·x ≤ x ·p
hence q ·p·q ·x ≤ q ·x ·p

by (metis mult .assoc mult-isol)
thus p·((q ·x )?·!q) ≤ (q ·x )?·!q ·(p·!q)

by (metis assms(1 ,2 ) test-mult-comm-var star-sim2 mult-isor kat-eq3 mult .assoc
test2 )
qed (metis test-comp-closed-var test-mult-closed)

definition (in kat) while-inv :: ′a ⇒ ′b ⇒ ′a ⇒ ′a (while - inv - do - [64 ,64 ,64 ] 63 )
where

while b inv i do p = (b·p)? · !b

lemma hoare-while-inv :
assumes tb: test b and tp: test p and tq : test q
and pi : p ≤ i and iq : i · !b ≤ q
and inv-loop: {|i · b|} c {|i |}
shows {|p|} while b inv i do c {|q |}
by (metis assms while-inv-def while-rule consequence-rule)

end

C.2 Kozen’s Loop Transformation Theorem

Kozen’s transformation theorem for while loops [72] is proved in a weak setting
that unifies previous proofs in Kleene algebra with tests, demonic refinement
algebras and a variant of probabilistic Kleene algebra.
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context pre-conway
begin

abbreviation preservation :: ′a ⇒ ′a ⇒ bool (infix preserves 60 ) where
x preserves p ≡ test p ∧ p·x ·p = p·x ∧ !p·x ·!p = !p·x

lemma preserves-test-closed : [[test p; x preserves q ]] =⇒ p·x preserves q
apply (auto, metis mult .assoc test-mult-comm-var)
by (metis mult .assoc test-comp-closed-var test-mult-comm-var)

lemma conditional-helper1 :
assumes test r1

x1 preserves q y1 preserves q
x2 preserves q y2 preserves q

shows p·q ·x1 ·(q ·r1 ·y1 + !q ·r2 ·y2 )†·(q ·!r1 + !q ·!r2 ) = p·q ·x1 ·(r1 ·y1 )†·!r1
proof −

let ?B = q ·!r1 + !q ·!r2
have pres: q ·(r1 ·y1 ) = q · (r1 ·y1 ) ·q

by (metis assms preserves-test-closed)
hence q ·(q ·r1 ·y1 + !q ·r2 ·y2 )† = (q ·r1 ·y1 )†·q

by (metis assms(2−) test-preserve1 dagger-slide mult .assoc)
hence p·q ·x1 ·(q ·r1 ·y1 + !q ·r2 ·y2 )†·?B = p·q ·x1 ·(q ·r1 ·y1 )†·q ·?B

by (metis assms(2 ) mult .assoc)
also have ... = p·q ·x1 ·(q ·r1 ·y1 )†·q ·!r1

by (metis assms(5 ) mult .assoc weak-distrib-left-var test-comp-mult annil add-zeror
test-mult-idem-var)

also have ... = p·q ·x1 ·(r1 ·y1 )†·!r1
by (metis pres assms(2 ) mult .assoc test-preserve)

finally show ?thesis .
qed

lemma conditional-helper2 :
assumes test r2

x1 preserves q y1 preserves q
x2 preserves q y2 preserves q

shows p·!q ·x2 ·(q ·r1 ·y1 + !q ·r2 ·y2 )†·(q ·!r1 + !q ·!r2 ) = p·!q ·x2 ·(r2 ·y2 )†·!r2
proof −

let ?B = q ·!r1 + !q ·!r2
have pres: !q ·(r2 ·y2 ) = !q · (r2 ·y2 ) ·!q

by (metis assms preserves-test-closed)
hence !q ·(q ·r1 ·y1 + !q ·r2 ·y2 )† = (!q ·r2 ·y2 )†·!q

by (metis assms(2−) test-preserve1 [of !q r2 ·y2 r1 ·y1 ] add .commute mult .assoc
test-comp-closed-var test-double-comp-var)
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hence p·!q ·x2 ·(q ·r1 ·y1 + !q ·r2 ·y2 )†·?B = p·!q ·x2 ·(!q ·r2 ·y2 )†·!q ·?B
by (metis assms(4 ) mult .assoc)

also have ... = p·!q ·x2 ·(!q ·r2 ·y2 )†·!q ·!r2
by (metis assms(5 ) mult .assoc test-comp-closed-var weak-distrib-left-var test-comp-mult2

test-mult-idem-var add-zerol annil)
also have ... = p·!q ·x2 ·(r2 ·y2 )†·!r2

by (metis assms(4 ) mult .assoc pres test-comp-closed-var test-preserve)
finally show ?thesis .

qed

lemma cond-distr :
assumes test p test q test r
shows (p·q + !p·r)·(p·x + !p·y) = p·q ·x + !p·r ·y

proof −
have (p·q + !p·r)·(p·x + !p·y) = p·q ·p·x + p·q ·!p·y + !p·r ·p·x + !p·r ·!p·y
by (metis assms distrib-right ′mult .assoc weak-distrib-left-var add .assoc test-comp-closed-var)
thus ?thesis

by (metis assms mult .assoc test2 test3 test4 annil add-zeror test-comp-closed-var)
qed

theorem conditional :
assumes test p test r1 test r2

x1 preserves q y1 preserves q
x2 preserves q y2 preserves q

shows (p·q + !p·!q)·(p·x1 ·(r1 ·y1 )†·!r1 + !p·x2 ·(r2 ·y2 )†·!r2 ) =
(p·q + !p·!q)·(q ·x1 + !q ·x2 )·((q ·r1 + !q ·r2 )·(q ·y1 + !q ·y2 ))†·!(q ·r1 + !q ·r2 )

proof −
have p·q ·(x1 ·(r1 ·y1 )†·!r1 ) = p·q ·x1 ·(q ·r1 ·y1 + !q ·r2 ·y2 )†·(q ·!r1 + !q ·!r2 ) and

!p·!q ·(x2 ·(r2 ·y2 )†·!r2 ) = !p·!q ·x2 ·(q ·r1 ·y1 + !q ·r2 ·y2 )†·(q ·!r1 + !q ·!r2 )
apply (metis assms(2 ,4−) conditional-helper1 [of r1 q x1 y1 x2 y2 p] mult .assoc)
by (metis assms(3−) conditional-helper2 [of r2 q x1 y1 x2 y2 !p] mult .assoc)

moreover have (p·q + !p·!q)·(p·x1 ·(r1 ·y1 )†·!r1 + !p·x2 ·(r2 ·y2 )†·!r2 ) = p·q ·(x1 ·(r1 ·y1 )†·!r1 )
+ !p·!q ·(x2 ·(r2 ·y2 )†·!r2 )

by (metis assms(1 ,4−) cond-distr mult .assoc test-def )
moreover have ... = (p·q ·x1 + !p·!q ·x2 )·(q ·r1 ·y1 + !q ·r2 ·y2 )†·(q ·!r1 + !q ·!r2 )

by (metis calculation(1 ) calculation(2 ) distrib-right ′)
moreover have ... = (q ·p·x1 + !q ·!p·x2 )·(q ·r1 ·y1 + !q ·r2 ·y2 )†·(q ·!r1 + !q ·!r2 )

by (metis assms(1 ) assms(5 ) test-comp-closed-var test-mult-comm-var)
moreover have ... = (q ·p + !q ·!p)·(q ·x1 + !q ·x2 )·((q ·r1 + !q ·r2 )·(q ·y1 + !q ·y2 ))†·!(q ·r1

+ !q ·r2 )
by (metis assms(1−3 ,5 ) cond-distr de-morgan-var2 test-comp-closed-var)

ultimately show ?thesis
by (metis assms(1 ,5 ) test-comp-closed-var test-mult-comm-var)
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qed

theorem nested-loops:
assumes test p test q
shows (p·x ·(q ·y)†·!q)†·!p = p·x ·((p + q)·(q ·y + !q ·x ))†·!(p + q) + !p

proof −
have p·x ·((p + q)·(q ·y + !q ·x ))†·!(p + q) + !p = p·x ·(q ·y)†·(!q ·p·x ·(q ·y)†)†·!p·!q +

!p
by (metis assms test-distrib mult .assoc de-morgan2 dagger-denest2 )

thus ?thesis
by (metis assms mult .assoc test-comp-closed-var test-mult-comm-var add .commute

dagger-slide dagger-unfoldl-distr)
qed

lemma postcomputation:
assumes y preserves p
shows (p·x )†·!p·y = !p·y + p·(p·x ·(!p·y + p))†·!p

proof −
have p·(p·x ·(!p·y + p))†·!p = p·(1 + p·x ·((!p·y + p)·p·x )†·(!p·y + p))·!p

by (metis dagger-prod-unfold mult .assoc)
also have ... = (p + p·p·x ·((!p·y + p)·p·x )†·(!p·y + p))·!p

by (metis assms mult .assoc weak-distrib-left-var distrib-right ′ mult-1-left)
also have ... = p·!p + p·x ·(!p·y ·p·x + p·p·x )†·(!p·y + p)·!p

by (metis assms mult .assoc distrib-right ′ test-mult-idem-var)
also have ... = p·!p + p·x ·(!p·y ·p·x + p·p·x )†·(!p·y ·!p + p·!p)

by (metis distrib-right ′ mult .assoc)
also have ... = p·x ·(!p·y ·!p·p·x + p·x )†·(!p·y)

by (metis assms test-comp-mult test-mult-idem-var add-zerol add-zeror)
also have ... = p·x ·(!p·y ·0 + p·x )†·!p·y

by (metis assms mult .assoc test-double-comp-var test-mult-comp annil)
moreover have ... = p ·x ·(p ·x )†·(!p · y · 0 ·(p ·x )†)†·!p · y

by (metis mult .assoc add .commute dagger-denest2 )
moreover have ... = p ·x ·(p ·x )†·!p · y · (0 ·!p · y)†

by (metis annil dagger-slide mult .assoc)
ultimately have p·(p·x ·(!p·y + p))†·!p = p ·x ·(p ·x )†·!p · y

by (metis zero-dagger annil mult-1-right)
thus (p·x )†·!p·y = !p·y + p·(p·x ·(!p·y + p))†·!p

by (metis dagger-unfoldl-distr mult .assoc)
qed

lemma composition-helper :
assumes test g test h g ·y = y ·g
shows g ·(h·y)†·!h·g = g ·(h·y)†·!h
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apply (subgoal-tac g ·(h·y)†·!h ≤ (h·y)†·!h·g)
apply (metis assms(1 ) test-eq3 mult .assoc)
by (metis assms mult .assoc test-mult-comm-var order-refl dagger-simr mult-isor test-comp-closed-var)

theorem composition:
assumes test g test h g ·y = y ·g !g ·y = y ·!g
shows (g ·x )†·!g ·(h·y)†·!h = !g ·(h·y)†·!h + g ·(g ·x ·(!g ·(h·y)†·!h + g))†·!g
apply (subgoal-tac (h·y)†·!h preserves g)
by (metis postcomputation mult .assoc, metis assms composition-helper test-comp-closed-var

mult .assoc)

end

Kleene algebras with tests form pre-Conway algebras, therefore the transfor-
mation theorem is valid for KAT as well.

sublocale kat ⊆ pre-conway star
apply (default , simp-all only : star-prod-unfold star-sim2 )
by (metis star-denest-var star-slide)

Demonic refinement algebras form pre-Conway algebras, therefore the trans-
formation theorem is valid for DRA as well.

sublocale dra-tests ⊆ pre-conway strong-iteration
apply (default , metis iteration-denest iteration-slide)
by (metis iteration-prod-unfold , metis iteration-sim)

C.3 Refinement Kleene Algebra

rKAT extends KAT with a specification statement and an axiom. The proposi-
tional version of Morgan’s refinement calculus is derived in this setting.

class rkat = kat +
fixes spec :: ′a ⇒ ′a ⇒ ′a
assumes spec-def : test p =⇒ test q =⇒ p·x ≤ x ·q ←→ x ≤ spec p q

begin

definition ref-order :: ′a ⇒ ′a ⇒ bool (infix v 50 ) where
x v y ≡ y ≤ x

lemma ref-order-refl [simp]: spec p q v spec p q
by (auto simp: ref-order-def )

lemma spec-char [simp]: test p =⇒ test q =⇒ p·(spec p q) ≤ (spec p q)·q
by (simp add : spec-def )
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lemma specI [intro]: test p =⇒ test q =⇒ p·x ≤ x ·q =⇒ (spec p q) v x
by (simp add : spec-def ref-order-def )

lemma spec-mult-isol [intro]: x v y =⇒ z ·x v z ·y
by (simp add : mult-isol ref-order-def )

lemma spec-mult-isor [intro]: x v y =⇒ x ·z v y ·z
by (simp add : mult-isor ref-order-def )

lemma star-iso [intro]: x v y =⇒ x ? v y?

by (simp add : star-iso ref-order-def )

lemma ref-order-trans [trans]: x v y =⇒ y v z =⇒ x v z
by (simp add : ref-order-def )

lemma strengthen-post [intro]: test p =⇒ test q =⇒ test q ′ =⇒ q ′ ≤ q =⇒ spec p q
v spec p q ′

by (meson specI local .mult-isol local .order-trans spec-char)

lemma weaken-pre [intro]: test p =⇒ test q =⇒ test p ′ =⇒ p ≤ p ′ =⇒ spec p q v
spec p ′ q

by (meson specI local .mult-isor local .order-trans spec-char)

lemma weaken-and-strengthen [intro]: test p =⇒ test q =⇒ test p ′ =⇒ test q ′ =⇒ p
≤ p ′ =⇒ q ′ ≤ q =⇒ spec p q v spec p ′ q ′

by (metis ref-order-trans strengthen-post weaken-pre)

lemma skip-ref [simp]: spec 1 1 v 1
using local .test-one-var by blast

lemma abort-ref [simp]: spec 0 1 v x
using local .test-one-var local .test-zero-var by auto

lemma magic-ref [simp]: x v spec 1 0
by (metis local .annir local .mult-1-left local .zero-least local .zero-unique ref-order-def

spec-char test-one-var test-zero-var)

lemma magic-eq-zero [simp]: spec 1 0 = 0
using local .zero-unique magic-ref ref-order-def by blast

lemma skip-ref-var1 : test p =⇒ spec p 1 v 1
by (auto simp: test-one-var local .test-ub-var)
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lemma skip-ref-var2 [intro!]: test p =⇒ test q =⇒ p ≤ q =⇒ spec p q v 1
by auto

lemma sequence-ref [intro]: test p =⇒ test q =⇒ test r =⇒ spec p q v (spec p r) ·
(spec r q)
proof −

assume hyp: test p test q test r
hence p · (spec p r) · (spec r q) ≤ (spec p r) · r · (spec r q)

by (simp add : local .mult-isor)
also have ... ≤ (spec p r) · (spec r q) · q

by (simp add : hyp local .mult-isol mult-assoc)
finally show ?thesis

by (auto simp: hyp mult-assoc)
qed

lemma choice-ref [intro]: test p =⇒ test q =⇒ spec p q v x =⇒ spec p q v y =⇒
spec p q v x + y

by (simp add : local .add-lub ref-order-def )

lemma test-expl-ref : test b =⇒ test p =⇒ test q =⇒ spec p q v b · (spec (p·b) q)
by (metis local .test-eq3 local .test-mult-closed mult-assoc specI spec-char)

oops

lemma conditional-ref : test b =⇒ test p =⇒ test q =⇒ spec p q v b · (spec (p·b) q)
+ !b · (spec (p·!b) q)

by (auto intro: test-expl-ref test-comp-closed)

end

C.4 Correctness Tools

A single while language is defined by a shallow embedding in Isabelle. The
implementation is done in Isabelle/ML.

no-notation comp-op (n- [90 ] 91 )
and comp-op (!- [101 ] 100 )
and test-operator (t- [100 ] 101 )
and floor (b-c)
and ceiling (d-e)
and Set .image (infixr ‘ 90 )

165



syntax
-quote :: ′a ⇒ ( ′s ⇒ ′a) ((�-�) [0 ] 1000 )
-antiquote :: ( ′s ⇒ ′a) ⇒ ′s (‘- [1000 ] 1000 )
-assert :: ( ′s ⇒ bool) ⇒ ′s set

-subst :: ′s set ⇒ ′v ⇒ idt ⇒ ′s set (-[- ′/‘-] [1000 ] 999 )
-assign :: idt ⇒ ′v ⇒ ′s rel ((‘- :=/ -) [0 , 65 ] 62 )
-asgn-array :: idt ⇒ nat ⇒ ′v ⇒ ′s rel ((‘- (-) :=/ -) [0 , 0 , 65 ] 62 )

-cond :: ′s set ⇒ ′s rel ⇒ ′s rel ⇒ ′s rel ((0if - then// -//else// -//fi) [0 ,0 ,0 ]
62 )

-cond-skip :: ′s set ⇒ ′s rel ⇒ ′s rel ((0if -//then -//fi) [0 ,0 ] 62 )
-while :: ′s set ⇒ ′s rel ⇒ ′s rel ((0while -//do -//od) [0 , 0 ] 62 )
-awhile :: ′s set ⇒ ′s set ⇒ ′s rel ⇒ ′s rel ((0while -//inv -//do// -//od) [0 , 0 ,

0 ] 62 )

-for :: idt ⇒ ′v ⇒ idt ⇒ ′s rel ⇒ ′s rel ((0for ‘- := - to ‘- do// -//od) [0 ,
65 , 50 , 0 ] 62 )

-afor :: idt ⇒ ′v ⇒ ′v ⇒ ′s set ⇒ ′s rel ⇒ ′s rel ((0for ‘- := - to -//inv - //do
-//od) [0 , 0 ] 62 )

-apre :: ′s set ⇒ ′s rel ⇒ ′s rel ({| - |}// - [0 , 62 ] 62 )
-apre-aux :: ′v ⇒ ( ′v ⇒ ′s set) ⇒ ′s rel ⇒ ′s rel ({| - . - |} - [0 , 0 , 62 ] 62 )

-aprog-aux :: ′v ⇒ ′s set ⇒ ′s rel ⇒ ′s set ⇒ bool ({| - . - |}// -// {| - |} [0 , 0 , 62 ,
0 ] 62 )

-proc :: ′s rel ⇒ ′s rel (begin// -//end)
-fun :: ′s rel ⇒ ′a ⇒ ( ′s rel × ′a) (begin// -// return ‘-//end)
-local :: idt ⇒ ′b ⇒ ′a rel ⇒ ′a rel ((0local ‘- := - in// -//end) [0 , 65 ,

55 ] 62 )
-call :: idt ⇒ ( ′s rel × ′a) ⇒ ′s rel (‘- := call (0-) [0 , 65 ] 62 )

-rec :: ′s rel ⇒ ′s rel ⇒ ′s rel ((0rec - in// -//end) [0 , 55 ] 62 )

-ht :: ′s set ⇒ ′s rel ⇒ ′s set ⇒ bool (` {| - |}// -// {| - |} [0 , 55 , 0 ] 50 )
-ht-aux :: ′v ⇒ ′s set ⇒ ′s rel ⇒ ′s set ⇒ bool (` {| - . - |}// -// {| - |} [0 , 55 , 0 ]

50 )

-Spec :: bool ⇒ bool ⇒ ′a ([[-,-]] [10 , 10 ] 100 )
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syntax -ListUpdate :: idt list ⇒ nat ⇒ ′b ⇒ ′a rel (‘- ! - := - [70 , 70 , 70 ] 62 )

ML 〈〈

fun antiquote-tr name =
let

fun tr i ((t as Const (c, -)) $ u) =
if c = name then tr i u $ Bound i
else tr i t $ tr i u

| tr i (t $ u) = tr i t $ tr i u
| tr i (Abs (x , T , t)) = Abs (x , T , tr (i + 1 ) t)
| tr - a = a;

in tr 0 end ;

fun quote-tr [t ] = Syntax-Trans.quote-tr @{syntax-const -antiquote} t
| quote-tr ts = raise TERM (quote-tr , ts)

〉〉

parse-translation 〈〈
[(@{syntax-const -quote}, K quote-tr)]
〉〉

translations
p [t/‘u] == -update-name u (λ-. t) ∈ p
‘u := t == CONST assign (-update-name u) (-quote t)
‘a(i) := t => CONST assign (-update-name a) �(CONST fun-upd (‘a) i

t)�

-assert b => CONST Collect (�b�)

if b then x else y fi => CONST cond (-assert b) x y
if b then x fi == if b then x else skip fi
while b do x od == CONST cwhile (-assert b) x
while b inv i do x od == CONST awhile (-assert i) (-assert b) x

for ‘i := n to ‘m do x od=> CONST cfor (CONST Pair (-update-name i) i)
�n� (CONST Pair (-update-name m) m) x

{| p |} x == CONST apre (-assert p) x
{| u . p |} x => CONST apre-aux (%u. -assert p) x
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{| u . p |} x {| q |} => CONST aprog-aux (%u. -assert p) x (%u. -assert q)

begin x end => x
begin x return ‘z end => CONST fun-block x (CONST Pair (-update-name z ) z )
local ‘u := t in x end => CONST loc-block (CONST Pair (-update-name u) u)

�t� x
‘z := call R => CONST fun-call (-update-name z ) R

rec f in x end => CONST lfp (%f . x )

` {| p |} x {| q |} => CONST ht (-assert p) x (-assert q)
` {| u . p |} x {| q |} => CONST All (%u. CONST ht (-assert p) x (-assert q))

[[p, q ]] == CONST Spec (CONST Collect �p�) (CONST Collect �q�)

‘A ! k := a => ‘A := CONST list-update ‘A k a

syntax ( output)
-assert :: ′s ⇒ ′s set ([-] [0 ] 1000 )
-seq :: ′s rel ⇒ ′s rel ⇒ ′a rel (-;// - [59 , 59 ] 60 )
-ht :: ′s set ⇒ ′s rel ⇒ ′s set ⇒ bool (` {| - |}// -// {| - |} [0 , 55 , 0 ] 50 )

ML 〈〈
fun quote-tr ′ f (t :: ts) =

Term.list-comb (f $ Syntax-Trans.quote-tr ′ @{syntax-const -antiquote} t , ts)
| quote-tr ′ - - = raise Match;

val assert-tr ′ = quote-tr ′ (Syntax .const @{syntax-const -assert});

fun subst-tr ′ (p :: x :: ts) = (quote-tr ′ (Syntax .const @{syntax-const -subst} $ p) ts)
$ Syntax-Trans.update-name-tr ′ x
| subst-tr ′ - = raise Match;

fun assign-tr ′ (x :: ts) = quote-tr ′ (Syntax .const @{syntax-const -assign} $
Syntax-Trans.update-name-tr ′ x ) ts
| assign-tr ′ - = raise Match;

fun local-tr ′ [(Const - $ - $ x ), t , y ] = (quote-tr ′ (Syntax .const @{syntax-const -local}
$ x ) [t ]) $ y
| local-tr ′ - = raise Match;

fun call-tr ′ [z , f ] = Syntax .const @{syntax-const -call} $ Syntax-Trans.update-name-tr ′

z $ f
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| call-tr ′ - = raise Match;

fun fun-tr ′ [x , (Const - $ - $ z )] = Syntax .const @{syntax-const -fun} $ x $ z
| fun-tr ′ - = raise Match;

fun for-tr ′ [(Const - $ - $ i), n, (Const - $ - $ m), x ] = (quote-tr ′ (Syntax .const
@{syntax-const -for} $ i) [n]) $ m $ x
| for-tr ′ - = raise Match;

fun print-tr ′ name [x , y , z ] = Syntax .const name $ x $ y $ z
| print-tr ′ name [x , y ] = Syntax .const name $ x $ y
| print-tr ′ name [x ] = Syntax .const name $ x
| print-tr ′ - - = raise Match;

〉〉

Hoare’s assignment axiom can easily proved for this language.

lemma hl-graph [hl-rules]: P ⊆ {s. f s ∈ Q} =⇒ ht P (graph f ) Q
by (auto simp: ht-def graph-def seq-def test-def )

lemma hl-assign [hl-rules]: P ⊆ subst Q z-upd t =⇒ ht P (assign z-upd t) Q
by (auto simp: assign-def subst-def intro!: hl-graph)

A tactic hoare, which automatically generates verification conditions, is im-
plemented in Eisbach.

named-theorems hl-rules

method hoare-init uses simp =
((subst simp | subst fst-conv | subst snd-conv)+)?

method hoare-step uses simp hl =
(hoare-init simp: simp, (assumption | rule subset-refl | rule mono-rules | rule hl

hl-rules | rule allI | rule ballI ))

method hoare-ind uses simp hl =
(hoare-step simp: simp hl : hl ; (hoare-ind simp: simp hl : hl)? )+

method hoare uses simp hl =
(hoare-init simp: simp; (hoare-ind simp: simp hl : hl)? )
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method hl-aux uses rule =
(rule allI , rule rule; ((erule-tac x=u in allE )+, assumption))

Finally, some examples of correctness proofs are presented.

record state =
x :: nat
y :: nat
z :: nat

lemma swap:
` {|‘x = xo ∧ ‘y = yo |}

‘z := ‘x ;
‘x := ‘y ;
‘y := ‘z

{|‘x = yo ∧ ‘y = xo|}
by hoare auto

lemma ` {| ‘x = n |}
local ‘x := ‘x + 1 in

‘x := 2 ;
‘y := ‘x + 1

end
{| ‘x = n ∧ ‘y = 3 |}
by hoare-split auto

lemma ` {| ‘x = u |} local ‘x := t in R end {| ‘x = u |}
by hoare auto

definition MAX xo yo ≡ begin
local ‘x := ‘xo in

‘y := ‘yo;
if ‘x ≥ ‘y then

‘y := ‘x
fi

end
return ‘y

end

lemma ` {| True |} proc (MAX �xo� �yo�) {| ‘y ≥ xo ∧ ‘y ≥ yo |}
by (hoare simp: MAX-def ) auto

lemma ` {| ‘x = xo |} ‘z := call (MAX �xo� �yo�) {| ‘x = xo |}
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apply (hoare-step simp: MAX-def , simp)
by hoare auto

lemma ` {| ‘y = yo |} ‘z := call (MAX �xo� �yo�) {| ‘y = yo |}
by (hoare simp: MAX-def ) auto

lemma ` {| ‘y = yo |} ‘z := call (MAX �xo� �yo�) {| ‘y = yo ∧ ‘z ≥ xo ∧ ‘z ≥ yo
|}

by (hoare-split simp: MAX-def ) auto

lemma swap-annotated :
` {|‘x = xo ∧ ‘y = yo |}

‘z := ‘x ;
{| ‘x = xo ∧ ‘y = yo ∧ ‘z = xo |}
‘x := ‘y ;
{| ‘x = yo ∧ ‘y = yo ∧ ‘z = xo |}
‘y := ‘z

{|‘x = yo ∧ ‘y = xo|}
by (hoare hl : hl-apre-classic) auto

record sum-state =
s :: nat
i :: nat

lemma array-sum: ` {| True |}
‘i := 0 ;
‘s := 0 ;
while ‘i < N
inv ‘s = array-sum a 1 (‘i) ∧ ‘i ≤ N
do

‘i := ‘i + 1 ;
‘s := ‘s + a<‘i>

od
{| ‘s = array-sum a 1 N |}

by hoare auto

hide-const s i

record power-state =
b:: nat
i :: nat
n :: nat
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lemma power :
` {| True |}

‘i := 0 ;
‘b := 1 ;
while ‘i < ‘n
inv ‘b = a ˆ ‘i ∧ ‘i ≤ ‘n
do

‘b := ‘b ∗ a;
‘i := ‘i + 1

od
{| ‘b = a ˆ ‘n |}
by hoare auto

lemma power ′: ` {| True |}
‘b := 1 ;
for ‘i := 0 to ‘n do

‘b := ‘b ∗ a
od
{| ‘b = a ˆ ‘n |}
by hoare auto

hide-const i b n

record ls-state =
i :: nat
j :: nat
n :: nat

lemma linear-search:
` {| ‘n > 0 |}

‘i := 1 ;
while ‘i < ‘n
inv ((∀ k . 1 ≤ k ∧ k < ‘i −→ a(k) 6= m) ∨ (a(‘j ) = m)) ∧ (‘i ≤ ‘n)
do

if a(‘i) = m then
‘j := ‘i

fi ;
‘i := ‘i + 1

od
{| (∀ k . 1 ≤ k ∧ k < ‘n −→ a(k) 6= m) ∨ (a(‘j ) = m) |}
apply (hoare, auto)
using less-SucE by blast
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lemma linear-search ′: ` {| ‘n > 0 |}
for ‘i := 1 to ‘n do

if a(‘i) = m then
‘j := ‘i

fi
od
{| (∀ k . 1 ≤ k ∧ k < ‘n −→ a(k) 6= m) ∨ (a(‘j ) = m) |}
apply (hoare, auto)
using less-SucE by blast

lemma linear-search ′′:
` {| ‘n > 0 |}

‘i := 1 ;
‘j := 0 ;
while ‘i < ‘n
inv (if ∀ k . 1 ≤ k ∧ k < ‘i −→ a(k) 6= m then ‘j = 0 else (a(‘j ) = m)) ∧ (‘i ≤

‘n)
do

if a(‘i) = m then
‘j := ‘i

fi ;
‘i := ‘i + 1

od
{| if (∀ k . 1 ≤ k ∧ k < ‘n −→ a(k) 6= m) then ‘j = 0 else (a(‘j ) = m) |}
apply hoare
apply auto
using le-less-linear apply blast
using le-less-linear apply blast
using less-SucE by blast

hide-const i j n
primrec fact :: nat ⇒ nat where

fact 0 = 1
| fact (Suc n) = (Suc n) ∗ fact n

lemma fact : ` {| True |}
‘x := 0 ;
‘y := 1 ;
while ‘x 6= xo
inv ‘y = fact ‘x
do

‘x := ‘x + 1 ;
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‘y := ‘y · ‘x
od
{| ‘y = fact xo |}
by hoare auto

lemma fact-rec: ∀ xo. ` {| xo = ‘x |}
rec Fact in

if ‘x = 0 then
‘y := 1

else
‘x := ‘x − 1 ;
{|xo. xo = ‘x + 1 |}
Fact ;
‘x := ‘x + 1 ;
‘y := ‘y · ‘x

fi
end
{| xo = ‘x ∧ ‘y = fact ‘x |}
by hoare auto

lemma euclids:
` {|‘x = xo ∧ ‘y = yo|}

while ‘y 6= 0
inv gcd ‘x ‘y = gcd xo yo
do

‘z := ‘y ;
‘y := ‘x mod ‘y ;
‘x := ‘z

od
{|gcd xo yo = ‘x |}

by (hoare, auto) (metis gcd-red-nat)

record div-state = state +
q :: nat
r :: nat

lemma div :
` {| ‘x ≥ 0 |}

‘q := 0 ; ‘r := ‘x ;
while ‘y ≤ ‘r
inv ‘x = ‘q ∗ ‘y + ‘r ∧ ‘r ≥ 0
do

‘q := ‘q + 1 ;
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‘r := ‘r − ‘y
od
{| ‘x = ‘q ∗ ‘y + ‘r ∧ ‘r ≥ 0 ∧ ‘r < ‘y |}
by hoare auto

hide-const x y z q r

lemma extend-euclid-invariant :
assumes (a ′ :: int)·m + b ′·n = c a·m + b·n = d c = q ·d + r
shows (a ′ − q ·a)·m + (b ′− q ·b)·n = r
using assms int-distrib(2 )
by (auto simp: int-distrib(3 ))

record extended-euclid-state =
a :: int
b :: int
a ′:: int
b ′:: int
c :: int
d :: int
r :: int
q :: int
t :: int

lemma extended-euclid : ` {| True |}
‘b := 1 ;
‘a ′:= 1 ;
‘b ′ := 0 ;
‘a := 0 ;
‘c := m;
‘d := n;
‘q := ‘c div ‘d ;
‘r := ‘c mod ‘d ;
while ‘r 6= 0
inv

‘a ′·m + ‘b ′·n = ‘c ∧ ‘a·m + ‘b·n = ‘d ∧ ‘c = ‘q ·‘d + ‘r
do

‘c := ‘d ;
‘d := ‘r ;
‘t := ‘a ′;
‘a ′ := ‘a;
‘a := ‘t − ‘q ·‘a;
‘t := ‘b ′;
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‘b ′ := ‘b;
‘b := ‘t − ‘q ·‘b;
‘q := ‘c div ‘d ;
‘r := ‘c mod ‘d

od
{| ‘a·m + ‘b·n = ‘d |}
by hoare (auto simp: extend-euclid-invariant)

hide-const a b a ′ b ′ c d r q t
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[49] Filliâtre, J. and Paskevich, A. Why3 - where programs meet provers. In
Felleisen, M. and Gardner, P., editors, ESOP 2013, volume 7792 of LNCS,
pages 125–128. Springer, 2013.

[50] Fischer, M. J. and Ladner, R. E. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18(2):194–211, 1979.

[51] Floyd, R. W. Assigning meanings to programs. In Proceeding of Symposia
in Applied Mathematics, volume 19, pages 19–32, 1967.

[52] Foster, S. and Struth, G. On the fine-structure of regular algebra. Journal
of Automating Reasoning, 54(2):165–197, 2015.

[53] Gardiner, P. H. B., Martin, C. E., and de Moor, O. An algebraic con-
struction of predicate transformers. Science of Computer Programming,
22(1-2):21–44, 1994.

[54] Gomes, V. B. F., Guttman, W., Höfner, P., Struth, G., and Weber, T.
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