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Abstract 
 

The electronic spectra of a number of platinum (II) complexes bound to single nucleobases 

have been investigated using Time-Dependent Density Functional Theory (TDDFT). The 

calculated spectra obtained in this work have been benchmarked against recent gas-phase 

photo-dissociation spectra of platinum complex-nucleobase clusters. UV spectra have been 

calculated for a range of density functionals and basis sets to determine the best functional-

basis set combination for reproducing the experimental spectra.  

The first series of TDDFT calculations conducted in this work investigated the electronic 

transitions of iodide ion-nucleobase clusters and their constituent “monomer” parts (i.e. the 

isolated iodide anion and isolated nucleobases). Calculations on the I-∙Nu clusters (Nu = 

Uracil, Thymine or Adenine) and isolated uracil, cytosine, thymine and adenine produced 

computed UV spectra and the associated electronic transitions were characterised by 

inspection of respective molecular orbitals. For the nucleobases, these orbitals were revealed 

to be mainly of ππ* character.  The electronic transitions of the I-∙Nu clusters were 

dominated by excitations involving orbitals localised on the nucleobases.  

A second series of studies focused on the electronic transitions of isolated platinum (II) and 

platinum (IV) cyanide complexes as well as their clusters involving a single water molecule. 

The excited states of the Pt(CN)4,6
2-∙H2O complexes were found to involve only platinum 

localised orbitals. The final set of TDDFT calculations were performed on Pt(CN)4,6
2-∙M 

complexes (M =  Uracil or Cytosine). The electronic transitions occurring in the Pt(CN)4
2-

∙Uracil and Pt(CN)4
2-∙Cytosine complexes were found to be of a short-range charge transfer 

nature. Conversely, the electronic transitions of Pt(CN)4
2-∙Uracil involved uracil localised 

orbitals that were of ππ* character. 



iii 
 

Contents 
 

Abstract………………………………………………………………….…………...……..…ii 

Contents…………………………………………………………………………………....…iii 

List of Figures……………………………………………………………...…………………vi 

List of Tables……………………………………………..........................…………………...xi 

Author’s Declaration………………………………………………………………..….........xiv 

 

Chapter 1: Introduction…………………………………………………………………..…1 

1.1 The Study of Biological Ions in the Gas Phase………………………………………..1 

1.2 Electronic Spectroscopy of Biological Ions in the Gas Phase…………………………2 

1.3 Computational Methods for the Study of Biological Ions the Gas Phase…………..…3 

1.4 Platinum Based Complexes as Anticancer Agents…………………………………….6 

1.5 Overview of Thesis …………………………………………………………………...9 

 

Chapter 2: Computational Methods……………………………………………………………...10 

2.1 Density Functional Theory……………………………………...……………………10 

2.2 Density Functionals………………………………………..…………………………14 



iv 
 

2.3  Time Dependent Density Functional Theory………………………………………. ..16 

2.4  Basis Sets……………………………………………………………………………..18 

2.5  Solvation Models……………………………………………………………………..23 

2.6  Computational Details………………………………………………………………..26 

 

Chapter 3: A TDDFT Computational Study of Iodide Ion-Nucleobase Complexes....…27 

3.1  Introduction………………………………………………………………………….27 

3.2  Computational Methods……………………………………………………………...28 

3.3  Results and Discussion………………………………………………………………29 

 3.3.1 Iodide…………………………………………………………………………29 

 3.3.2 Isolated Nucleobases…………………………………………………………30 

  3.3.2.a    Uracil……………………………………………………………….30 

  3.3.2.b    Cytosine…………………………………………………………….40 

  3.3.2.c    Thymine……………………………………………………………47 

  3.3.2.d    Adenine…………………………………………………………….52 

 3.3.3 I-∙Nu Complexes……………………………………………………………...58 

  3.3.3.a    Iodide-Uracil……………………………………………………….58 

  3.3.3.b    Iodide-Thymine…………………………………………………….63 

  3.3.3.c    Iodide-Adenine……………………………………………………..67 

3.4  Conclusion………………………………………………………………………...…70 

 



v 
 

Chapter 4: A TDDFT computational study of platinum (II) complexes bound 

water………………………………………………....……………………………………....72 

 

4.1 Introduction…………………………………………………………………………..72 

4.2  Computational Methods……………………………………………………………...73 

4.3  Results and Discussion………………………………………………………………74 

 4.3.1 Platinum (II) Tetracyanide…………………………………………………...74 

 4.3.2  Platinum (IV) Hexacyanide…………………………...……………………...84 

 4.3.3 Platinum (II) Tetracyanide∙Water ……………………………………………89 

4.4  Conclusion………………………………………………………………………...…93 

 

Chapter 5: A TDDFT computational study of platinum (II) and (IV) complexes bound   

to a single nucleobase……………………………………………………………………….94 

 

5.1 Introduction…………………………………………………………………………..94 

5.2  Computational Methods……………………………………………………………...96 

5.3  Results and Discussion………………………………………………………………97 

 5.3.1 Pt(CN)4
2-∙uracil……………………………………………………………….97 

 5.3.2 Pt(CN)4
2-∙cytosine…………………………………………………………..107 

 5.3.3  Pt(CN)6
2-∙uracil……………………………………………………………...116 

5.4 Conclusion…………………………………………...…………………………...…121 

 

References………………………………………………………………...………………..122 



vi 
 

List of Figures 
 

 

Chapter 3: A TDDFT Computational Study of Iodide Ion-Nucleobase 

Complexes  

 

Figure 3.1  The B3LYP/LANL2DZ optimised ground state structures of a) uracil             

b) cytosine c) thymine d) adenine. The magnitude and direction of the dipole 

moments of these nucleobases are represented by the blue vector. ……........30 

Figure 3.2  Comparison of the computational and experimental UV spectra of uracil:       

 Experimental UV spectrum (courtesy of Sen et al.)   

B3LYP/LANL2DZ,  M062X/LANL2DZ and M11/ 

LANL2DZ……………………………………………………………………32 

Figure 3.3 Comparison of the theoretical and experimental UV spectra of uracil:             

 Experimental UV spectrum (courtesy of Sen et al.),  B3LYP/Def2-

TZVPP and  MN12-SX/Def2-TZVPP……………………………….…35 

Figure 3.4 Comparison of the experimental and theoretical electronic spectra of uracil:

 Experimental aqueous UV absorption (courtesy of Sen et al.),  

Gas phase B3LYP/LANL2DZ (10 states) and  Solution phase 

IEFPCM/B3LYP/LANL2DZ (10 states)…………………………………….37 

Figure 3.5 Experimental aqueous UV absorption spectrum of uracil (courtesy of Sen et 

al.)…………………………………………………………………………….38 

Figure 3.6 MOs involved in the electronic transitions of uracil. MOs were calculated at 

the B3LYP/LANL2DZ level of theory……………………………………...39  

Figure 3.7  Comparison of the theoretical and experimental UV spectra of cytosine:             

 Experimental UV spectrum (courtesy of Sen et al.), 

M062X/LANL2DZ and  M11/LANL2DZ………………………….......42 

Figure 3.8 Comparison of the experimental and theoretical electronic spectra of cytosine: 

 Experimental aqueous UV absorption (courtesy of Sen et al.), 

Gas phase B3LYP/LANL2DZ (10 states) and  Solution phase 

IEFPCM/B3LYP/LANL2DZ (10 states)………………………………….…44 

Figure 3.9 MOs involved in the electronic transitions of cytosine. MOs were calculated at 

the B3LYP/LANL2DZ level of theory………………………………………46 

Figure 3.10 Comparison of the experimental and theoretical electronic spectra of thymine:

 Experimental aqueous UV absorption (courtesy of Sen et al.),   

M11/ LANL2DZ,    B3LYP/LANL2DZ and  

M062X/LANL2DZ………………………………………………….……….48 

Figure 3.11 MOs involved in the electronic transitions of thymine. MOs were calculated at 

the B3LYP/LANL2DZ level of theory………………………………………50 



vii 
 

Figure 3.12 Comparison of the experimental and theoretical electronic spectra of thymine:  

 Experimental aqueous UV absorption (courtesy of Sen et al.),  

Gas phase B3LYP/LANL2DZ (10 states) and  Solution phase 

IEFPCM/B3LYP/LANL2DZ (10 states)…………………………………….52 

 

Figure 3.13  Comparison of the experimental and theoretical electronic spectra of adenine: 

 Experimental aqueous UV absorption (courtesy of Sen et al.) and 

 B3LYP/LANL2DZ ………………………….......……………………54 

Figure 3.14  Comparison of the experimental and theoretical electronic spectra of adenine: 

 Experimental aqueous UV absorption (courtesy of Sen et al.),  

Gas phase B3LYP/LANL2DZ (10 states) and  Solution phase 

IEFPCM/B3LYP/LANL2DZ (10 states) ……………………………………55 

Figure 3.15 MOs involved in the electronic transitions of adenine. MOs were calculated at 

the B3LYP/LANL2DZ level of theory……………………………………....57 

Figure 3.16 The B3LYP/LANL2DZ optimised ground state structures of I-·Ur. Hydrogen 

bonds are indicated with a dashed line with bond distances in Å…………...58   

Figure 3.17  Comparison of the experimental and theoretical electronic spectra of I-∙Ur: 

Experimental photodepletion (absorption) spectrum (unpublished work 

courtesy of Yoshikawa et al.), Band profile for photodepletion 

(absorption) spectrum and       B3LYP/LANL2DZ (50 states)………...60 

Figure 3.18 MOs involved in the electronic transitions of I-·uracil. MOs were calculated at 

the B3LYP/LANL2DZ level of theory………………………………………62  

Figure 3.19  The B3LYP/LANL2DZ optimised ground state structures of I-·thymine. 

Hydrogen bonds are indicated with a dashed line with bond distances in 

Å……………………………………………………………………….......…63 

Figure 3.20 Comparison of the experimental and theoretical electronic spectra of I-∙Thy: 

Experimental photodepletion (absorption) data (unpublished work courtesy 

of Yoshikawa et al.),  Band profile for the photodepletion (absorption) 

spectrum and  B3LYP/LANL2DZ (30 states)………………………….65 

Figure 3.21 MOs involved in the electronic transitions of I-·thymine. MOs were calculated 

at the B3LYP/LANL2DZ level of theory………………………………..…...66 

Figure 3.22 The B3LYP/LANL2DZ optimised ground state structures of I-·adenine. 

Hydrogen bonds are indicated with a dashed line with bond distances in Å...67 

Figure 3.23 Computed UV spectrum of I-·Adenine, calculated at 50 states using 

B3LYP/LANL2DZ……………………………………………………….…..68 

Figure 3.22  MOs involved in the electronic transitions of I-·Adenine. MOs were calculated 

at the B3LYP/LANL2DZ level of theory………………………………….…69 

 

 

 



viii 
 

Chapter 4: A TDDFT computational study of platinum (II) complexes 

bound water 

 

Figure 4.1 Experimental gas phase photodepletion (absorption) spectrum of Pt(CN)4
2-. 

(Courtesy of Sen et al.)……………………………………………………….75 

Figure 4.2 Comparison of the experimental and theoretical electronic spectra of Pt(CN)4
2- 

:   Experimental photodepletion (absorption) spectrum (courtesy of Sen et 

al.),43  Band profile for photodepletion spectrum B3LYP/SDD 

(ECP) and   PBE0/SDD (ECP)………………………………………78  

 

Figure 4.3 Comparison of the experimental and theoretical electronic spectra of 

Pt(CN)4
2: Experimental photodepletion (absorption) spectrum (courtesy of 

Sen et al.),43 Band profile for photodepletion spectrum,   

MN12-SX/SDD (ECP),  B3LYP/ LANL2DZ (ECP) and 

B3LYP/SDD(ECP)…………………………………………………………79 

Figure 4.4 Comparison of the theoretical and experimental electronic spectra of Pt(CN)4
2- 

:   Experimental photodepletion spectrum (courtesy of Sen et al.),43  

Band profile for photodepletion spectrum,  M11/Def2-TZVPP (ECP) 

and  B3LYP/Def2-TZVPP (ECP)…………………………………...80 

Figure 4.5 MOs involved in the electronic transitions of Pt(CN)4
2-∙ MOs have been 

calculated at the MN12-SX /LANL2DZ level of theory…………………….81 

Figure 4.6 Comparison of the solution and gas phase experimental UV spectra of 

Pt(CN)4
2-

:  Aqueous absorption spectrum and Photodepletion 

(absorption) spectrum. The solid black line is a tentative band profile for the 

photodepletion spectrum…………………………………………………......82 

Figure 4.7 Comparison of the computed and experimental absorption spectra of Pt(CN)4
2-

:  Solution-phase absorption spectrum produced by IEFPCM/MN12-

SX/LANL2DZ,  Gas-phase absorption spectrum produced by MN12-

SX/LANL2DZ, Aqueous experimental UV spectrum………………...83 

Figure 4.8 Theoretical UV spectrum of Pt(CN)6
2- generated using LANL2DZ and the 

following functionals:  B3LYP(50 States),  PBE0 (50 States) 

and MN12-SX (90 states)…………………………………………....85 

Figure 4.9  Aqueous experimental absorption spectrum of Pt(CN)6
2- (courtesy of Sen et 

al.)……………………………………………………………………...……..86 

Figure 4.10 MOs involved in the electronic transitions of Pt(CN)6
2-, calculated at the 

MN12-SX/LANL2DZ level of theory……………………………………..... 88 

Figure 4.10 MN12-SX/LANL2DZ optimised ground state geometry of Pt(CN)4
2-∙H2O…89 

Figure 4.11 Comparison of the theoretical UV spectra produced using the following 

functionals and LANL2DZ: PBE0, B3LYP and 

MN12-SX ..…………………………………………………………………..90 

 



ix 
 

Chapter 5: A TDDFT computational study of platinum (II) and (IV) 

complexes bound to a single nucleobase 
 

Figure 5.1 Ground state B3LYP/LANL2DZ optimised geometry of Pt(CN)4
2-∙Uracil. 

Hydrogen bonds are indicated as dashed lines and bond lengths are in 

Angstroms……………………………………………………………………97 

Figure 5.2  Comparison between the computed and experimental electronic spectra of 

Pt(CN)4
2-∙Uracil:  Photodepletion (absorption) spectrum (courtesy of Sen et 

al.),41      Band profile for photodepletion (absorption) spectrum, 

 MN12-SX/LANL2DZ (ECP) (90 states)…………………………100 

Figure 5.3  Comparison between the computed and experimental electronic spectra of 

Pt(CN)4
2-∙Uracil:  Photodepletion (absorption) spectrum (courtesy of Sen et 

al.),41   Band profile for photodepletion (absorption) spectrum, 

B3LYP/SDD (ECP) (50 states) and B3LYP/LANL2DZ (50 

states)………………………………………………………………………101 

Figure 5.4  Comparison between the computed and experimental electronic spectra of 

Pt(CN)4
2-∙Uracil:  Photodepletion (absorption) spectrum (courtesy of Sen et 

al.),41  Band profile for photodepletion (absorption) spectrum, 

MN12-SX/Def2-TZVPP (ECP) (50 states) and B3LYP/Def2-TZVPP 

(ECP) (50 states)……………………………………………………………102 

Figure 5.5 Error in excitation energy plotted against Λ values for TDDFT calculations 

employing the following functionals: (a) PBE (b) B3LYP and (c) CAM-

B3LYP. Each point represents a single excitation: (▵) local excitations, (×) 

Rydberg excitations, and (●) charge- transfer excitations. This figure has been 

reproduced from Ref [134]………………………………………………….104 

Figure 5.6 Comparison between the computed and experimental electronic spectra of 

Pt(CN)4
2-∙Uracil:  Photodepletion (absorption) spectrum (courtesy of Sen et 

al.),41         Band profile for photodepletion (absorption) spectrum, 

M11/LANL2DZ (50 states) and B3LYP/LANL2DZ (50 

states)………………………………………………………………………..105 

Figure 5.7  Molecular orbitals involved in the electronic transitions of Pt(CN)4
2-∙Uracil. 

MOs were calculated at the B3LYP/LANL2DZ level of theory……………107 

Figure 5.8 B3LYP/LANL2DZ optimised ground state geometry of Pt(CN)4
2-∙Cytosine. 

Hydrogen bonds are indicated as dashed lines and bond distances are in 

Angstroms…………………………………………………………………..108 

Figure 5.9  Comparison of the computed and experimental UV spectra of Pt(CN)4
2-

∙cytosine:   Photodepletion (absorption) spectrum (courtesy of Sen et al.),43

 Band profile for photodepletion (absorption) spectrum,  

MN12-SX/SDD (ECP) (50 states) and MN12-SX/LANL2DZ (50 

states)………………………………………………………………………..110 

 

Figure 5.10 Comparison of the computed and experimental UV spectra of Pt(CN)4
2-

∙cytosine:   Photodepletion (absorption) spectrum (courtesy of Sen et al.),43  

 Band profile for photodepletion (absorption) spectrum, 



x 
 

B3LYP/LANL2DZ (50 states) and B3LYP/SDD (ECP) (50 

states)………………………………………………………………………..111 

 

Figure 5.11 Comparison of the computed and experimental UV spectra of Pt(CN)4
2-

∙Cytosine:   Photodepletion (absorption) spectrum (courtesy of Sen et al.),43  

 Band profile for photodepletion (absorption) spectrum, 

PBE0/LANL2DZ (ECP) (90 states) and B3LYP/LANL2DZ (ECP) 

(90 states)…………………………………………………………………...113 

Figure 5.12    MOs involved in the electronic transitions of Pt(CN)4
2-∙Cytosine. MOs were 

calculate using B3LYP/LANL2DZ…………………………………………115 

Figure 5.13   Ground state structure of B3LYP/LANL2DZ optimised Pt(CN)6
2-∙Uracil…..116 

Figure 5.14    Comparison of the computed UV spectra of Pt(CN)6
2-∙Uracil:                      

B3LYP/LANL2DZ,  M062X/LANL2DZ and  CAM-

B3LYP/LANL2DZ…………………………………………………………118 

Figure 5.15 MOs involved in the electronic transitions of Pt(CN)6
2-∙Uracil. MOs were 

calculated at the B3LYP/LANL2DZ level of theory ………………………120 

 



xi 
 

List of Tables 

 

Chapter 3: A TDDFT Computational Study of Iodide Ion-Nucleobase 

Complexes  

 

Table 3.1 Computed and experimental excitation energies (in eV) of uracil…………...31 

Table 3.2 Mean absolute errors in excitation energy (eV) associated with 

TDDFT/LANL2DZ calculations of uracil at 10 states……………………….31 

Table 3.3 Mean absolute errors in excitation energy (eV) associated with TDDFT 

calculations of uracil at 10 states…………………………………………..…34 

Table 3.4 Comparison of the computed excitation energies of uracil (in vacuo and 

solution) with experimental results…………………………………………..36 

Table 3.5 Assignment of the four lowest energy excited state transitions of uracil using 

B3LYP/LANL2DZ data……………………………………………………...38 

Table 3.6 Computed and experimental excitation energies of cytosine…………….…..40 

Table 3.7 Mean absolute errors in excitation energy (eV) associated with TDDFT 

calculations of cytosine at 10 states……………………………………….....41 

Table 3.8 Comparison of the computed excitation energies of cytosine (in vacuo and 

solution) with experimental results………………………………….……….43 

Table 3.9 Assignment of the three lowest energy excited state transition of cytosine 

using B3LYP/LANL2DZ…………………………………………………….45 

Table 3.10 Computed and experimental excitation energies of thymine……….………..47 

Table 3.11  Mean absolute errors in excitation energy (eV) associated with 

TDDFT/LANL2DZ calculations of thymine at 10 states…………………….48 

Table 3.12 Assignment of the three lowest energy excited state transitions of thymine 

using B3LYP/LANL2DZ data……………………………………………….49 

Table 3.13  Comparison of the computed excitation energies of thymine (in vacuo and 

solution) with experimental results…………………………………………..51 

Table 3.14 Computed and experimental excitation energies for adenine.……………….53 

Table 3.15 Mean absolute errors in excitation energy (eV) associated with 

TDDFT/LANL2DZ calculations of adenine at 20 states…………………….53 

Table 3.16 Comparison of the experimental and computational excitation energies (in 

vacuo and solution phase) of adenine………………………………………..55 



xii 
 

Table 3.17 The assignment of the three lowest energy excited state transitions occurring 

in adenine using B3LYP/LANL2DZ data……………..……………………..56 

Table 3.18 Computed and experimental excitation energies of I-·Ur at 50 

states………………………………………………………………………….59 

Table 3.19 Mean absolute errors in excitation energy (eV) associated with TDDFT/ 

LANL2DZ calculations of I-·Ur at 50 states…....……………………………59 

Table 3.20 Assignment of the four lowest energy excited state transitions of I-·Uracil 

using B3LYP/LANL2DZ data.……………………….……………………...61 

Table 3.21 Computed and experimental excitation energies of I-·thymine at 30 states.....64 

Table 3.22 Mean absolute errors in excitation energy (eV) associated with TDDFT/ 

LANL2DZ calculations of I-·thymine at 30 states……………………..…….64 

Table 3.23 Assignment of the four lowest energy excited state transitions of I-∙thymine 

using B3LYP/LANL2DZ data……………………………………………….65 

Table 3.24 Computed excitation energies of I-·adenine at 50 states using LANL2DZ….68 

Table 3.25 The assignment of the three lowest energy excited state transitions occurring 

in I-∙adenine using B3LYP/LANL2DZ data...……...………………………...69 

 

Chapter 4: A TDDFT computational study of platinum (II) complexes 

bound water 

 

Table 4.1 Comparison between the theoretical excitation energies obtained using 

TDDFT at 30 states and the experimental, gas phase results (in eV) of 

Pt(CN)4
2-……………………………………………………………………...76 

Table 4.2 The mean absolute errors in excitation energy (eV) of Pt(CN)4
2-……………76 

Table 4.3 Assignment of the vertical excitations of Pt(CN)4
2-  using MN12-

SX/LANL2DZ data………………………………………………………......82 

Table 4.4 Comparison of the experimental and computed excitation energies of 

Pt(CN)4
2- (in vacuo and solution)…….……………………………………....83 

Table 4.5  Comparison between the computed and experimental excitation energies of 

Pt(CN)6
2-……………………………………………………………………...86 

Table 4.6 Assignment of the vertical excitations of Pt(CN)6
2-  using MN12-

SX/LANL2DZ data………………………………………………………..…87 

Table 4.7 Comparison between the computed excitation energies of Pt(CN)4
2-∙H2O 

produced using TDDFT at 20 States…………………………………………90 

Table 4.8  Assignment of the electronic transitions of Pt(CN)4
2-∙H2O

 ………………….91 

Table 4.9 A comparison between the MOs of Pt(CN)4
2-  and Pt(CN)4

2-∙H2O which are 

involved in the excited state transitions……………………………………...92 



xiii 
 

Chapter 5: A TDDFT computational study of platinum (II) and (IV) 

complexes bound to a single nucleobase 

 

Table 5.1 Selected bond distances (Å) in the B3LYP/LANL2DZ optimised geometry of 

Pt(CN)4
2-∙uracil………………………………………….…………………....98 

Table 5.2 Comparison between the theoretical excitation energies obtained using 

TDDFT and the experimental, gas phase results (in eV) of Pt(CN)4
2-∙uracil...99 

Table 5.3 The mean absolute errors in excitation energy (eV) of Pt(CN)4
2-∙uracil……..99 

Table 5.4 Assignment of the electronic transitions of Pt(CN)4
2-∙uracil. Excitation 

energies have been calculated using B3LYP/LANL2DZ…………………..106 

Table 5.5 Key bond distances (Å) in the B3LYP/LANL2DZ optimised geometry of 

Pt(CN)4
2-∙cytosine…………………………………………………..............108  

Table 5.6 Comparison between the theoretical excitation energies obtained using 

TDDFT and the experimental, gas phase results (in eV) of Pt(CN)4
2-∙Cy….109 

Table 5.7 The mean absolute errors in excitation energy (eV) of Pt(CN)4
2-∙Cy……....109 

Table 5.8  Assignment of the electronic transitions of Pt(CN)4
2-∙cytosine using TD-

B3LYP/LANL2DZ results……………………………………….…………114 

Table 5.9 Selected bond distances (Å) in the B3LYP/LANL2DZ optimised geometry of 

Pt(CN)6
2∙uracil….…………………………………………………………..116 

Table 5.10     Comparison between the computed and experimental excitation energies of 

Pt(CN)6
2-∙uracil. …….……………………………………………………...117 

Table 5.11 Mean absolute error in excitation energies (eV) for Pt(CN)6
2-∙uracil……....117 

Table 5.12 Assignment of the vertical excitations of Pt(CN)6
2-∙uracil  using 

B3LYP/LANL2DZ data……………….........………………………………119 

 



xiv 
 

Author’s Declaration 

 

 

I hereby certify that the research presented in this thesis is my own and to the best of my 

knowledge, is original except where due reference has been made to others. This work has 

not previously been presented for an award at this, or any other, University. All sources are 

acknowledged as References.



1 
 

Chapter 1 

 

Introduction 

 

1.1 The Study of Biological Ions in the Gas Phase 

 

Due to the well-established relationship between structure and function, the study of 

biologically relevant ions remains a significantly active area of research. It is expected 

that, through the characterisation of their geometric and electronic structures and 

dynamics, a unique perspective can be gained into the role of these biological molecules. 

Studying these species in the gas phase may initially appear counter intuitive, as most 

reactions involving biological ions occur within condensed phases. However, some 

biological activity occurs deep within proteins where solvent is absent. In addition, 

examination of these systems in isolation simplifies the complex native environment, 

allowing the initial studies of the intrinsic properties.1 

 

The rapid advances of computational and experimental methods has provided a means to 

probe the gas-phase properties of biological ions with efficiency. Over the last decade, 

density functional theory using popular functional such as B3LYP have been widely 

applied to calculate structures of bioions.2 Conversely, the creation of experimental 

techniques such as femtosecond photoelectron spectroscopy has allowed the 



2 
 

photodynamics of these systems to be followed on a very small timescale.3  In this 

introductory chapter, a selection of the experimental and computational methods at our 

disposal will be reviewed, with cases of previous gas-phase studies of biomolecules also 

presented. The clinical context in which this work has taken place will also be explored. 

 

1.2 Electronic Spectroscopy of Biological Ions in the Gas 

Phase 

 
Information regarding the structure and excited-state dynamics of biological ions can be 

obtained through the use of electronic spectroscopy.  Optical spectroscopic methods have 

been facilitated by the common availability of tunable dye lasers and OPO lasers have 

allowed for the collection of high-quality ultraviolet (UV) and fluorescence spectra.4 

Aromatic amino acids and DNA bases are two biological systems which have been 

studied extensively in the gas phase using UV spectroscopy.5-8 Exposure to UV radiation 

can cause critical damage to peptides and proteins within the body, so the photodynamics 

of their chromophores have been intensively explored.9 The first gas-phase UV 

spectroscopic study in this area is widely acknowledged to have been produced by Levy 

et al. in 1985,5 in which supersonic molecular beams were used to prepare tryptophan. 

More recent work by Rizzo et al. has focused on the elucidation of the 

photofragmentation mechanism of gas phase peptides.6 Rosu et al. have used UV 

spectroscopy to gain insight into the photoreactivity of model DNA strands, producing 

for quadruplex, single and double stranded DNA in the gas-phase.7 In a separate series of 

experiments, fluorescence resonance energy transfer has been employed to examine the 

conformations of polyproline peptides by Jockusch et al.8  
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Photoelectron spectroscopy (PES) can provide an insight in to the composition and 

electronic states of ions through the determination of quantities such the electron binding 

energy and angular distributions of the electrons.9 There are a range of PES techniques 

which incorporate lasers including Ultraviolet Photoelectron Spectroscopy (UPS) and 

time resolved PES.10 The biological marker, green fluorescent protein (GFP) has been 

intensively studied over recent years using this technique.11 Mooney et al. employed 

femtosecond time-resolved PES to follow the dynamics of the GFP chromophore, while 

Verlet et al. have utilised UPS to investigate its vertical and adiabatic detachment 

energies.12,13  

Several studies have used time resolved PES to investigate the photophysical properties 

of nucleobases. Femtosecond time resolved PES has previously been employed by 

Ullrich et al. to investigate the electronic relaxation dynamics of the following 

nucleobases, which had been isolated in a molecular beam: adenine, thymine, cytosine 

and uracil.14 Chatterley et al used time resolved PES to elucidate relaxation dynamics of 

various adenosine nucleotides and found that the decay mechanism was characterised by 

internal conversion from the ππ* state to the electronic ground state.15 

 

1.3 Computational Methods for the Study of Biological Ions 

the Gas Phase 
 

The experimental studies described above are frequently supported by accompanying 

theoretical studies. The inclusion of computational work in experimental studies 

primarily serves as a tool to fully interpret the experimental results. However, there is a 

synergy between experimental gas-phase studies and computational chemistry as the 
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experiments provide important benchmarking data for testing the applicability of 

computational methods. In addition, computational methods can allow the analysis of 

systems for experimental data cannot be easily obtained. This is illustrated in a study by 

De Leon et al., in which density functional theory (DFT) calculations were used to probe 

binding properties of fullerenes with amino acids.16   

 

For the analysis of biological ions, the quantum mechanical methods at disposal range 

from the lower level semi empirical methods to more accurate levels of theory such as 

Coupled Cluster.17 Theoretical studies usually commence with an investigation of the 

relevant molecule’s conformational space using lower levels of theory. Previous studies 

have shown that post Hartree-Fock methods such as Møller-Plesset perturbation theory 

(MPn) can be used successfully in this initial identification.18,19 Cassady et al. previously 

used to MP2 level calculations in the conformational search of several gas-phase amide 

acidities, deducing that the lowest energy conformer was cis in nature.20  

 

The main limitation of MPn methods is its inability to describe the properties of systems 

with complex and atypical electronic structures.17 A higher level of accuracy can be 

attained for such systems, through the use of Quadratic Configuration Interaction and 

Coupled Cluster methods including QCISD(T) and CCSD(T). These methods take into 

account more rigorously, the effects arising from electron correlation such as dispersion 

forces.21,22 Hobza et al. have utilised CCSD(T) for the study of an anisole dimer (in 

which dispersion forces are prevalent), producing binding energies with a high degree of 

accuracy.23 It is for this reason that CCSD is commonly referred to as the “gold standard” 
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of theoretical methods.24 However for both QCISD(T) and CCSD(T), the computational 

expense associated with performing calculations on even modestly large molecules is 

often high. Therefore, its use is mainly limited to small and medium sized species such as 

individual nucleobases.25  

 

For larger systems, Density Functional Theory (DFT) provides a credible alternative for 

the analysis of the predominantly ground state properties of biomolecules. Facilitated by 

the advent of exchange correlation hybrid functionals, the electron density based method 

has undergone a rapid expansion in use in recent years.17 Prior to this development, DFT 

was viewed as too inaccurate due to its neglect of electron correlation and exchange 

interaction and was rejected in favour of its wave function based predecessors. Through 

the examination of glycine and alanine acidities in the gas phase, Toscano et al. 

demonstrated that B3LYP is capable providing a satisfactory balance between accuracy, 

computational cost and time.26 

While DFT can be used to describe the ground state properties of systems containing up 

to 200 atoms, the accuracy of the results can often be reduced in larger systems due to the 

failure of standard hybrid functionals to account for the London dispersion energy.27 This 

failure is addressed by modern dispersion corrected DFT (DFT-D) functionals, which 

rectify the incorrect long-range asymptotic decay behaviour of local hybrid functionals.27, 

28 

An extension of DFT, Time Dependent Density Functional Theory (TDDFT) can be used 

to quantify the excited state properties of biological systems. Properties including 

excitation energies and UV/vis spectra can be calculated using this method. TDDFT 
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differs from DFT due to the application a time dependent potential (e.g. a magnetic 

field).29 To gain information regarding the previously mentioned properties, the effect of 

this potential on the system must be analysed. As an example, Rogers et al. used the 

B3LYP/6-311++G(d) level of theory to investigate the excited state transitions occurring 

within tryptophan and approximate the vertical excitation energies of the chromophore.30 

 

1.4 Platinum Based Complexes as Anticancer Agents  

 
Since the serendipitous discovery of their antineoplastic properties in 1965, platinum 

based complexes such as Cisplatin have become one of the most widely used drugs 

within chemotherapy.31 It has been found that these compounds instigate cell death by 

crosslinking to cellular DNA nucleotides.32 While there is consensus that platinum based 

drugs occupy a crucial role in the treatment of advanced cancers, there is also 

acknowledgement of their shortcomings, which include acquired drug resistance by cells 

and severe side effects such as neurotoxicity and nephrotoxicity.33,34 These issues coupled 

with the desire to increase the efficacy, have fuelled interest in the use of platinum based 

complexes in conjunction with Photodynamic therapy (PDT).35 

 

PDT has a wide range of clinical applications and is used in the treatment of cancers such 

as that of the lung and skin, and for some acute non-malignant conditions such as acne.36 

In its most common form, its use requires a photosensitising agent (a drug which makes 

cells sensitive to light) and a light source of a specific wavelength. Upon irradiation, the 

photosensitiser undergoes photoexcitation and a series of other photophysical processes, 
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which culminates in the production of the highly reactive and cytotoxic singlet oxygen 

species (1O2).  

Following the absorption of a photon of energy, the photosensitiser is promoted from its 

groundstate (1GS) to a singlet excited state (1ES). The 1ES is relatively short-lived as 

intersystem crossing occurs soon after, generating the photosensitiser triplet excited state 

(3ES). Provided that the 3ES is long-lived, it can participate in an energy transfer process 

with adjacent oxygen molecules, generating 1O2 from molecular oxygen in its triplet 

groundstate (3O2).
37 

Latest research has focused on the use of transition metals in Photoactivated 

Chemotherapy (PACT), where photoexcitation is used to control the transition metal 

reactivity.38 Recent studies such as that by Sadler et al. have explored the photochemistry 

of platinum (II) and (IV) complexes in an attempt to gain insight into the effectiveness of 

these complexes as metallophotosensitisers.39 In addition, a number of recent studies 

have involved photoexcitation of intercalated transition metal complexes.40  

As a first step toward providing a fundamental, molecular level understanding of 

transition metal complex-DNA photocleavage mechanisms, Sen et al. have recently 

performed the first laser photodissociation studies on platinum complexes bound to 

individual nucleobases. Initial work involved obtaining the photodepletion (absorption) 

spectra of Pt(CN)4
2- ∙ uracil and Pt(CN)6

2- ∙ uracil complexes. Upon consideration of the 

two observed in the UV spectral range, a preliminary assignment of the excited-state 

transitions observed were attributed to π→π* nucleobase-centred transitions.41  
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This work built on earlier research carried out by the group in which the collision induced 

dissociation of Pt(CN)4
2-  and Pt(CN)6

2- complexes bound to various nucleobases had 

been studied. Using a combination of theoretical and experimental methods, pathways for 

ground state collision induced dissociation were suggested, and the geometric structures 

and isomers of these complexes were identified. Whereas, the Pt(CN)6
2- ∙ nucleobase 

clusters were shown to fragment by solvent evaporation, the Pt(CN)4
2- clusters 

fragmented by a combination of solvent evaporation and proton transfer between the 

nucleobase and dianion.42  

 

Other work by Sen et al. has characterized in detail the relationship between the 

nucleobase and the photophysics of the platinum complexes. Photodepletion and 

photofragmentation spectra for Pt(CN)4
2-∙ Nu complexes have been obtained (Nu = 

adenine, cytosine, thymine or uracil) to explore the influence of changing the nucleobase. 

The photodepletion spectra displayed a broad absorption band of varying widths at ca. 

4.70 eV for all systems. The variation in band width was found to correlate with a 

changes in the photofragmentation product ions produced after photoexcitation.43  

 

Aside from platinum, many other transitions metals exhibit anti-cancer activity. These 

include ruthenium, osmium and gold.44 In particular, osmium (II) and ruthenium (II) 

polypyridyl complexes are often researched as they absorb richly in the visible region and 

display comparatively long metal to ligand charge transfer (MLCT) states, making them 

ideal candidates for PDT. Earlier experimental studies by Meyer et al. have probed the 

decay kinetics of these MLCT states for osmium and ruthenium complexes.45 Menéndez 
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et al. have conducted theoretical work in this area. TDDFT was used to examine the 

excited states transitions occurring within ruthenium polypyridyl, and found that the M05 

functional found to be the best performed best at predicting the UV absorption 

spectrum.46 Zheng et al. have previously employed both PES spectroscopic methods and 

DFT level calculations to investigate the ground state properties of nucleobase-gold 

complexes.47 

 

1.5 Overview of Thesis  

 
The main aim of this project is to investigate the nature of the excited state transitions 

occurring within nucleobase-Pt systems using computational methods such as TDDFT. In 

particular, this work is aimed at providing a more detailed assignment of the previously 

measured, UV photodepletion (absorption) spectra of Pt(CN)6
2-∙uracil and Pt(CN)4

2-

∙uracil.41,44  In addition, the project will investigate the applicability of TDDFT for the 

interpretation and prediction of the electronic excited states of these complex systems. 

 

Chapter 2 presents the computational methods and models that are used throughout this 

thesis. Chapter 3 describes the results of a study exploring the excited state transitions 

occurring within I-∙Nucleobase complexes to focus on nucleobase localised excitations. 

Chapter 4 presents work on the electronic transitions of Pt(CN)4
2-∙H2O to focus on 

Pt(CN)4
2- centred excitations. Chapter 5 describes the study of the excited-state 

transitions of Pt(CN)4
2-∙nucleobase and Pt(CN)6

2-∙nucleobase systems, where both the 

dianion and nucleobase have active chromophores. 
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Chapter 2 

Computational Methods 

2.1 Density Functional Theory 

The fundamental aim of Density Functional Theory (DFT) and other quantum mechanical 

calculations is to provide a solution to the Schrödinger equation,  

 𝐻̂Ѱ = 𝐸Ѱ (2.01) 

where Ĥ is the Hamiltonian operator, E is the energy of the system and Ѱ is the 

wavefunction.25 In quantum mechanical systems, Ĥ defines the total energy as the sum of its 

kinetic and potential energies.  For systems containing more than one particle, i.e many body, 

Ĥ must also take into account the interaction energy between the electrons. Thus, the 

Hamiltonian operator can further be defined as: 

 𝐻̂ = 𝑇̂ + 𝑉̂ + 𝑊̂ (2.02) 

where 𝑇̂ is the kinetic energy operator, 𝑉̂ is the potential energy operator and 𝑊̂ is the 

electron-electron interaction operator.48 For one electron atoms, the Schrödinger equation can 

be solved exactly. However, obtaining a solution to the Schrödinger equation is complicated 

for many body systems due to electron correlation and the number of variables which 

determine the wavefunction.49 The wavefunction is dependent on 3N variables (N being the 

number of electrons) and therefore becomes too complex to solve analytically. To calculate a 

solution for many electron systems, approximations must be made.  

One such approximation was proposed by Born and Oppenheimer.50 The Born-Oppenheimer 

approximation simplifies the Schrödinger equation by separating the nuclear and electronic 
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terms. The basis for this division arises from the difference in mass of the nuclei and 

electrons. Although they both apply the same momentum, nuclei have a considerably larger 

mass than electrons. Therefore, nuclei have such a small velocity that their position can be 

considered fixed. This allows the motion of the nuclei to be disregarded and the wavefunction 

of the molecule to be expressed as a product of electronic and nuclear wavefunctions.25  

DFT provides an alternative method for solving the Schrödinger equation. In contrast to 

wavefunction based methods, the determining factor in DFT is electron density. From this the 

energy of the system and its ground state properties can be ascertained. DFT greatly 

simplifies the Schrödinger equation as the number of variables in the determining factor is 

reduced from 3N to 3.49 In contrast to wavefunction based methods, the independence of 

electron density’s spatial coordinates from N renders DFT suitable for larger many-body 

systems.  

The origins of DFT lie in the Thomas-Fermi (TF) model which relates the electron density 

ρ(r) to the kinetic energy to the system T[ρ].
51 This relationship is given in equation 2.03 

below.  

 
𝑇[𝜌] = 𝐶𝐹 ∫ 𝜌5 3 ⁄ (𝐫)𝑑𝐫 

(2.03) 

Where: 

 𝐶𝐹 =
3

10
 (3𝜋2)2 3⁄ = 2.8712  (2.04) 

As shown in equation 2.05, the total energy of a system can be expressed as the sum of its 

kinetic energy, the electron-electron interaction V𝑒𝑥𝑡  and external potential interaction 

𝑉𝑒𝑒.25,52 This can also be written as: 

 𝐸[𝜌] = 𝑇[𝜌] + 𝑉𝑒𝑥𝑡[𝜌] + 𝑉𝑒𝑒[𝜌] (2.05) 
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The external potential and electron-electron interaction terms can be further defined as 

follows: 

 
V𝑒𝑥𝑡[𝜌] = ∫ V𝑒𝑥𝑡 𝜌(𝐫)𝑑𝐫 

(2.06) 

 
𝑉𝑒𝑒[𝜌] =

1

2
∬

𝜌(𝐫1)𝜌(𝐫2)

|𝐫1 − 𝐫2|
𝑑𝐫1𝑑𝒓𝟐 

(2.07) 

The substitution of equations 2.06 and 2.07 into equation 2.05 produces the TF energy 

functional:53  

 
𝐸𝑇𝐹[𝑛] = 𝐶𝐹 ∫ 𝜌5 3 ⁄ (𝐫)𝑑𝐫 +

1

2
∬

𝜌(𝐫1)𝜌(𝐫2)

|𝐫1 − 𝐫2|
𝑑𝐫1𝑑𝒓𝟐 + ∫ V𝑒𝑥𝑡 𝜌(𝐫)𝑑𝐫 

(2.08) 

The main error in the TF model originates from the kinetic energy. The model produces an 

inaccurate kinetic energy value because it treats the electrons as non-interacting particles and 

therefore does not include an electron correlation or exchange term. The TF model was later 

revised by Dirac who added the following expression to account for the exchange energy of 

electrons:53 

 
−

1

4𝜋3
(3𝜋2)4 3⁄ ∫ 𝜌4 3⁄ (𝐫)𝑑𝐫 

(2.09) 

In spite of this amendment, the kinetic energy was still inaccurate because the energy 

functional contained a large error in the exchange term and still ignored the correlation 

energy. Crucially, the TF and Thomas-Fermi-Dirac (TFD) models could not be used as a 

practical electronic structure method as they produced a poor description of molecular 

bonding. The energies produced by the functionals were unexpectedly higher than their 

atomic parts.  

The TF and TFD models were used as a basis for the Hohenburg-Kohn (HK) theorems.54 The 

work by Hohenburg and Kohn provided further proof of the relationship between electron 
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density and the ground-state properties of a system. The first HK theorem uses a reductio ad 

absurdum argument to prove that the ground state electron density determines the external 

potential.25 It states that for two systems of interacting electrons moving in two external 

potentials υ1 and υ2, υ1 and υ2 cannot differ by more than a constant if both systems have the 

same electron density.49 The first HK theorem is fundamental to DFT as it demonstrates that 

the electron density 𝑛(𝐫) can be used to solve the Schrödinger equation. Electron density 

determines the number of electrons in the system and the external potential, from which the 

Hamiltonian can be calculated.   

The second HK theorem introduces a universal density functional Fn from which the minimal 

value of the energy functional,𝐸𝑣[𝑛], i.e the exact energy of the groundstate can be 

obtained.52 The density functional is defined as: 

 𝐹𝑛 = min
Ѱ→𝑛

⟨Ѱ|𝑇 + 𝑉𝑒𝑒|Ѱ⟩ (2.10) 

For a system containing N electrons in an external potential, υ, the minimum values of Fn and 

𝐸υ[𝑛] can be obtained from equation 2.11 when the value of n(r) is correct.54  

 
𝐸υ[𝑛] = ∫ υ(𝐫) 𝑛(𝐫)𝑑𝐫 + F[𝑛] 

(2.11) 

The framework of modern DFT can be found in the Kohn-Sham theory which uses a set of 

differential equations to address the fundamental problems of the TF and TFD models.55 

Kohn and Sham devised a fictitious system of non-interacting electrons in an external 

potential (referred to as the effective potential υeff). The electron density was described using 

Kohn-Sham orbitals øi, and was made equivalent to the density of a real system of interacting 

electrons.52 Using a fictitious non-interacting system of electrons allows the orbitals to be 

expressed as Slater determinants.48  
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The Kohn-Sham energy functional is of the form:56  

 
𝐸[𝑛] = ∫ υ(𝐫) 𝑛(𝐫)𝑑𝐫 +

1

2
∬

𝑛(𝐫1)𝑛(𝐫2)

|𝐫1 − 𝐫
2
|

𝑑𝐫1𝑑𝒓𝟐 + 𝑇𝒔[𝑛] + 𝐸𝑥𝑐[𝑛] 
(2.12) 

From which the exact value of the unknown kinetic energy operator, 𝑇𝒔[𝑛] can be calculated 

as:52  

 
𝑇𝒔[𝑛(𝐫)] = −

1

2
∑ ∫ ø𝑖

∗ (𝐫)

𝑁

𝑖=1

∇2ø𝑖(𝐫)𝑑𝐫 
(2.13) 

The exchange correlation energy Exc in equation 2.12, is a correction term which describes 

the error in electron-electron repulsion and the kinetic energy. The difference in electron-

electron repulsion arises from its classical treatment in the Kohn-Sham theory. The error in 

kinetic energy results from the variation between the fictitious Kohn-Sham system and the 

interacting system.25 The solution to equation 2.12 provides a value which is extremely close 

to the kinetic energy of the real interacting system. However, it does not offer an exact value 

for the exchange-correlation operator, therefore Exc must be approximated. 

2.2 Density Functionals 

There are numerous classes of functionals which have been developed to approximate the 

exchange-correlation energy. The simplest of these are local density approximation (LDA) 

functionals in which the electron density is treated as a uniform electron gas and its value at a 

specific point r is known. Generalised Gradient Approximation (GGA) functionals improved 

LDAs by adding a gradient correction term to account for the inhomogeneity of a real 

system.52,55  

The exchange energy is far greater than the correlation energy and so must be accurately 

defined. This difference is recognised in Hybrid GGA functionals which incorporate a 

Hartree Fock (exact) term. Hybrid GGA functionals combine a fraction of exact exchange 
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with GGA exchange and correlation terms.57  Two popular hybrid functionals are B3LYP and 

PBE0.58,59 B3LYP is a combination of the Becke’s three parameter (B3) exchange functional 

and the Lee-Yang-Parr (LYP) GGA correlation functional.55,60 B3LYP contains 20% exact 

exchange. PBE0 contains 25% Hartree-Fock exchange, with 75% Perdew, Burke and 

Ernzerhof (PBE) exchange, and uses the full PBE correlation functional.   

A long-range corrected version of B3LYP, CAM-B3LYP was developed to rectify the 

incorrect long-range behaviour of the B3LYP exchange potential.61 This inaccuracy was 

thought to be the reason behind a number of B3LYP’s failures including the calculation of 

excited states using TDDFT and charge-transfer excitations.61,62 CAM-B3LYP uses the 

Coulomb-attenuating method to range separate the total exchange functional in B3LYP. 

CAM-B3LYP treats short-range exchange interactions with mostly DFT exchange and long-

range interactions largely with exact exchange integrals. The Coulomb operator is partitioned 

using the following formula: 

 1

𝑟12
=

1 − (𝛼 + 𝛽 ∙ erf(𝜇𝑟12))

𝑟12
+

𝛼 + 𝛽 ∙ erf(𝜇𝑟12)

𝑟12
 

(2.14) 

Where erf is the standard error function,  𝜇 is the range separated parameter and α + β 

determine the value of exact exchange at 𝑟12 = 0 and 𝑟12 = ∞. In CAM-B3LYP α = 0.19 and β 

= 0.46.61,63 

Jensen and Govind used CAM-B3LYP to investigate the lowest vertical excitation energy 

transitions of several individual nucleobases and base pairs.64 In addition to CAM-B3LYP, 

the study compared the performance of the long-range corrected BNL and LC-PBE0 

functionals. Jensen and Govind found that CAM-B3LYP performed comparatively well, 

successfully describing the charge transfer nature of the HOMO LUMO transition in the 

adenine∙thymine base pair.  
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The newer generation meta-GGA functionals are dependent on the kinetic energy density 

and/or the second derivative of electron density.55 The Truhlar group have created a certain 

range of hybrid meta-GGA functionals which incorporate a percentage of exact exchange.65 

These include the M06 and M11 families of functionals. The M06 and M06-2X functionals 

contain 27% and 54% HF exchange respectively.65 M11 is a range-separated hybrid meta-

GGA functional with the following amounts of HF exchange: 42.8% HF in the short range 

and 100% in the long range.66 In a TDDFT study, Aquino et al. used M06-2X and M06-HF to 

characterise the excited-state transitions of adenine∙thymine and cytosine∙guanine base 

pairs.67 The group also investigated the effect of solvation on the charge transfer states at the 

M06-2X/TZVP level of theory. 

Other Minnesota functionals include the meta-nonseparable gradient approximation (meta-

NGA) MN12 family. In contrast to GGAs, NGAs do not treat the exchange and correlation 

terms separately.68 Akin to meta-GGAs, meta-NGAs can depend on the electron and/or 

kinetic energy densities. MN12-SX is a hybrid meta-NGA functional that is range 

separated.69 MN12-SX has 25% exact exchange in the short range and no long-range exact 

exchange component. Due to the absence of HF exchange in the long range, MN12-SX is 

described as a hybrid screened exchange (SX) functional.  

2.3 Time-Dependent Density Functional Theory 

Time-dependent density functional theory (TDDFT) is an extension of DFT which can be 

used to study the excited-state properties of a system.70 The basis of TDDFT lies in a theorem 

that is analogous to the time-independent Hohenburg-Kohn theorem. The Runge-Gross 

theorem demonstrated the relationship between the time-dependent external potential υext (r,t) 

and the electron density of the system n(r,t). Runge and Gross showed that when two external 

potentials νext (r,t) and υext’(r,t)  have a difference of more than a time-dependent function, 
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their respective electron densities n(r,t) and n’(r,t) also differ.  This led Runge and Gross to 

conclude that for a many-body system, evolving from a fixed initial wavefunction, there is a 

one-to-one mapping between υext (r,t) and n(r,t).71 The relationship between υext (r,t) and 

n(r,t) is significant because the Hamiltonian (and consequently the solution to the 

Schrödinger equation) can be calculated from the external potential.72 Therefore, the energy 

and other properties of the system can be expressed as a function of the time-dependent 

electron density.48  

Similarly to DFT, the time-dependent Hamiltonian can be partitioned into its constituent 

operators: the kinetic and time dependent potential operators T and 𝑉̂(𝑡), respectively. Time-

dependent Kohn-Sham equations were constructed to calculate the system’s kinetic energy 

and electron density accurately.72 In this theorem, the non-interacting electrons once again 

reside in Kohn-Sham orbitals 𝜑𝑖 and the fictitious Kohn-Sham system is given electron 

density equivalent to that of a “real” system of interacting electrons. The electron density of 

the real system is:  

 
𝑛(𝐫, 𝑡) = ∑|𝜑𝑖(𝐫, 𝑡)|

𝑜𝑐𝑐

𝑖

² 
(2.15) 

The electrons in the fictitious time-dependent system move in an external Kohn-Sham 

potential, 𝜐𝐾𝑆 . As displayed in equation 2.16, the Kohn-Sham potential is the sum of the 

external, the electrostatic Hartree and exchange potentials. 

 𝜐𝐾𝑆 (𝐫, 𝑡) = 𝜐𝑒𝑥𝑡(𝐫, 𝑡) + 𝜐𝐻𝐴𝑅𝑇𝑅𝐸𝐸 (𝐫, 𝑡) + 𝜐𝑥𝑐 (𝐫, 𝑡) (2.16) 

 

Equations 2.17 and 2.18 further define the Hartree and exchange potentials, 𝜐𝐻𝐴𝑅𝑇𝑅𝐸𝐸  and 

𝜈𝑥𝑐, respectively.  
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𝜐𝐻𝐴𝑅𝑇𝑅𝐸𝐸 (𝐫, 𝑡) = ∫ 𝑑3𝑟 ′ 

𝑛(𝐫, 𝑡)

|𝑟 − 𝑟′|
 

(2.17) 

 
𝜐𝑥𝑐 (𝐫, 𝑡) =

𝛿𝐴̃𝑥𝑐

𝛿(𝐫, τ)
|

𝑛(𝐫,𝑡)

 
(2.18) 

 𝜐𝑥𝑐 is defined using the exchange correlation component of the action potential 𝐴̃𝑥𝑐 and the 

pseudo time τ. Analogously to the time-independent Kohn-Sham equations, functionals must 

be used to approximate 𝜐𝑥𝑐 because its value is unknown.  

There are many studies which have successfully used TDDFT to investigate the optical 

properties of nucleobases and transition metal complexes. Tai et al. have studied the 

absorption properties of diazido platinum (IV) complexes using TDDFT.73 The 

computational and experimental excitation energies were found to be in good agreement with 

errors under 0.3 eV.70 

Varsano et al. and Tsolakidis et al. employed TDDFT to investigate the vertical excitations of 

individual DNA nucleobases and their base pairs.74 Both studies offer a comparison between 

the calculated excitation energies, experimental results and excitation energies obtained using 

other methods such as CASSCF and CASPT2.  The theoretical values produced by TDDFT 

were generally in good agreement with the experimental values and results obtained using the 

more computationally demanding methods.   

2.4 Basis Sets 

Both ab initio and DFT methods employ basis sets to mathematically describe the molecular 

orbitals in a system. A basis set is composed of a series of functions known as basis 

functions. Basis functions are one electron functions which approximate the atomic orbitals 

in a system. Due to the various generalisations made during their calculation, basis functions 

cannot be viewed as exact representations of atomic orbitals.75  
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Basis functions can be arranged in a linear combination to give rise to a wavefunction. Since 

electron density can itself be expressed as a wavefunction, the molecular orbitals of a system 

can be determined.25  

Atomic orbitals are represented by two main types of basis functions: Slater-Type Orbitals 

(STOs) and Gaussian-Type Orbitals (GTOs). STOs bear strong resemblance to the atomic 

orbitals of hydrogen and are of the form: 

 Ѱ = A𝑟𝑛−1 𝑒−𝜁𝑟𝑌𝑙.𝑚(𝜃, ∅) (2.19) 

Where A is the normalisation constant, n, l and m are quantum numbers, ζ is the orbital 

exponent and 𝑌𝑙.𝑚(𝜃, ∅) are the spherical harmonics.  

In comparison to GTOs, STOs are considered a more accurate representation of atomic 

orbitals due to their correct short and long range behaviour. STOs satisfy the nuclear cusp 

condition in the short range and display exponential decay in the long range. This accounts 

for the maximum in electron density reached at the nucleus and the exponential decrease in 

electron density at increasingly large distances away from the nucleus. Long range decay is 

controlled by the orbital exponential factor which is denoted in Equation 2.19 as ζ.75  

The major disadvantage of STOs is the lengthy computational time that they are associated 

with. This originates from the computational demanding calculations of various molecular 

integrals. This numerical difficulty is such that STOs are only rendered suitable for atoms and 

a small range of molecules.25,75   

Boys put forward a simpler method for the evaluation of the molecular integrals using GTOs. 

The general form of a Cartesian GTO is: 

 Ѱ𝑖𝑗𝑘 = A𝑥𝑖𝑦𝑗𝑧𝑘 𝑒−𝜁𝑟² (2.20) 
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where i, j and k are positive Cartesian integers. Each GTO is usually expressed as a linear 

combination of Cartesian Gaussians (also known as Gaussian primitives).75 This produces a 

contracted basis set with the form:  

 

𝜒𝑖(𝐫) = ∑ 𝑑𝑗𝑔𝑗(𝐫)

𝑁

𝑗=1

 

(2.21) 

Where N is the length of contraction, dj is the contraction coefficient and gj is a normalised 

Gaussian primitive.76 

Gaussian functions do not exhibit the same short and long-range behaviour as STOs and 

therefore are not as accurate. They tend to show a rapid decrease in electron density at large 

distances away from the nucleus and do not replicate the nuclear cusp.75,76 

A basis set which uses only one basis function to represent each atomic orbital is known as a 

minimal basis set. Calculations employing minimal basis set are very low in computational 

demand, making their use very attractive. However, minimal basis sets are only capable of 

describing the most basic features of an orbital and therefore produce results of relatively low 

accuracy.75  

An enhanced description of atomic orbitals can be gained by increasing the amount and size 

of the basis functions. Double and triple zeta basis sets employ two and three basis functions, 

respectively, for each orbital. Each set of functions can be differently sized to account for the 

variation in charge distribution throughout a molecule.22  The size of an orbital is controlled 

by the orbital exponential, ζ. As the value of ζ decreases, the width of the orbital increases 

and becomes more diffuse.75,22 

Increasing the number of basis functions can be problematic as it often results in an increase 

in computational time. Split-valance basis sets try to counter this increase by making an 

important distinction between the core and valence electrons. It is primarily valence electrons 
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that are involved in chemical bonding, core electrons remain largely unperturbed by it. 

Therefore there are no significant benefits that can be achieved by increasing the number of 

functions for the core electrons.75 To reflect this observation, split basis sets use a one basis 

function to describe the core atomic orbitals, while the valence orbitals are represented by 

multiple functions. The reduction in the overall size of the basis set yields a decrease in 

computational time.25,75  

A popular family of split-valance basis sets are those produced by Pople et al., denoted as N-

M1G or N-M11G. N and M are the basis functions representing the core and valence orbitals 

respectively. N and M are integers which denote the number of Gaussian primitives used in 

each function.75 The 6-311G basis set is commonly used in calculations involving 

nucleobases. Ren et al. used the PBE0/6-311++G(2d,2p) level of theory when investigating 

the spectral shifts in the UV spectra of solvated uracil.77 Improta and Barone also employed 

PBE0/6-311++G(2d,2p) to calculate the gas- and solution-phase absorption spectra of 

uracil.78  

Another frequently used family of basis sets are those by Ahlrichs et al. Def2 basis sets use 

either single, double, triple or quadruple zeta basis sets to describe the valence orbitals.79  

They are suitable for light atoms and first-row transition metals but can also be employed as 

an effective core potential (ECP) for heavier atoms.  Wu et al. used Def2-TZVP (ECP) in 

conjunction with 6-31G(d) in a recent investigation of the photophysical properties of various 

phosphorescent Pt(II) complexes.80 DFT calculations were performed at the following levels 

of theory to test the reliability of the results: TPSSTPSS, TPSSh, B3LYP and PBE0.81 During 

the DFT geometry optimisation of Pt(CN)4
2-, Dohn et al. assessed the performance of various 

Ahlrichs basis sets including Def2-TZVP and Def2-QZVP.82 Optimisations were performed 

at BLYP, B3LYP, PBE and PBE0 levels of theory.60,83  
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The accuracy of a basis set can be further improved by addition of polarisation and diffuse 

functions. When AOs participate in bonding, their shape can become slightly asymmetric as 

electron density becomes polarised in the direction of the bond. Polarisation functions 

reproduce this asymmetry by adding a function which possesses a higher angular momentum 

than the valence AOs. This introduces angular flexibility into the basis set and allows for 

increased accuracy in the description of electron density in bonded areas.25  

Diffuse functions are usually added to a basis set to describe areas with expansive electron 

density. They have very small exponents and exhibit slow decay in the long range. Diffuse 

functions are necessary to accurately represent the electron distribution in anions, highly 

electronegative atoms and long, weak bonds.25,75  

The plus sign (+) is used in Pople-type basis sets to denote the presence of a polarisation 

function. + specifies that diffuse functions have been added to heavy atoms, while ++ 

indicates that diffuse functions have also been added to light atoms.75 Although their 

inclusion can increase the computational cost, a basis set is only regarded as balanced if it 

contains both diffusion and polarisation functions.22 

The significance of adding polarisation and diffuse functions is outlined in a study on nucleic 

bases by Shukla and Leszczynski. A range of 6-311G basis sets with varying degrees of 

polarization and diffusion were used in conjunction with TD-B3LYP to calculate the 

excitation energies of different nucleobases. Shukla and Leszczynski found that the use of 

larger, more diffuse basis sets [e.g. 6-311(5+,5+)G(df,pd), in which the fourth and fifth sets 

of diffusion functions are used on all atoms] increased the accuracy of the results.84 

Studying systems which contain heavy elements can be challenging because of the lengthy 

computational times involved with calculations. Effective core potentials (ECP) reduce the 

CPU time cost of these systems by substituting the core electrons for a pseudopotential. The 
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pseudopotential is an effective potential constructed from the product of the polynomial 

radial functions and spherical harmonics. It gives rise to a pseudo wavefunction that does not 

contain any nodes. Additionally, ECPs can be formulated to describe scalar and spin-orbit 

relativistic effects, both of which can be prominent in heavy elements.22 

LANL2DZ is a double-zeta basis set that is frequently used in the study of transition metals.25  

LANL2DZ is composed of the Los Alamos pseudopotential and double zeta valance basis 

set. During their recent TDDFT investigation on Pt (II) complexes with picolinate ligands, 

Zhang et al. employed LANL2DZ as an ECP for Pt and 6-31G* for the light atoms.85 

Geometry optimisations and excited-state calculations were performed using the B3LYP 

functional. Ghani and Mansour performed DFT geometry optimisations of palladium (II) and 

platinum (II) complexes with benzimidazole ligands at B3LYP level of theory using 

LANL2DZ and 6-31G*.86 

2.5 Solvation Models 

Quantum chemistry packages typically represent molecules as isolated, non-interacting 

species in the gas phase. Whilst this creates a simplistic environment in which calculations 

can be performed, the effect of the chemical surroundings on the system are neglected. For 

biologically relevant molecules these effects can be significant as almost all biological 

processes occur in solution.25  

The effects of solvation on the electronic states of various nucleobases have been investigated 

extensively using a range of theoretical methods.87 Such effects are exemplified in theoretical 

studies by DeFusco et al. and Ren et al., in which the positions of the two lowest energy 

bands in the UV absorption spectrum of uracil were shown to be altered by solvation. Both 

studies found that the lowest energy spectral band of uracil was shifted to a shorter 

wavelength when the absorption spectrum was calculated in solution. Conversely, a 
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significant shift in the position of the second lowest energy spectral band to a longer 

wavelength was observed in the computed aqueous absorption spectra of uracil.77,87 Solvent 

shifts in spectral absorption band positions to either longer or shorter wavelengths are 

referred to as bathochromic or hypsochromic shifts, respectively.  

In addition to solvent induced shifts in the position of spectral absorption bands, solvation 

can also alter the intensity of the bands. An increase in the absorption intensity of a spectral 

band is referred to as a hyperchromic shift, while a decrease in the absorption intensity is 

known as a hypochromic shift.88 

Over recent years, a substantial amount of research has been devoted to developing models to 

study solvation effects. These methods can be divided into two main types: explicit and 

implicit models. In explicit solvation models, the solute is surrounded by a number of discrete 

solvent molecules.89 Although this method provides a very detailed and accurate description 

of solute-solvent interactions, it is also very computationally expensive due to the increased 

system size. A substantial proportion of the computational demand originates from the 

calculation of statistical mechanical averages. As the system contains a large number of 

molecules, statistical averages are required to ascertain its equilibrium properties. The size of 

the system is such that the use of explicit solvation models is generally restricted to Monte 

Carlo and Molecular Dynamics simulations.90  

Implicit models reduce the computational cost required by substituting the individual solvent 

molecules for a continuous medium. In implicit continuum models, the solvent media 

surrounds a cavity in which the system is located.90 The shape of the cavity is close to that of 

the system under study but its precise dimensions are dependent on the particular continuum 

model used. Few parameters are used to define the continuum. It is usually characterised by 

properties such as the dielectric constant or surface tension and has values in line with the 
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ideal solvent.91 Implicit models provide an averaged representation of solute-solvent 

interactions and therefore are not suitable in studies where the explicit behaviour of the 

solvent is important.25  

A commonly used implicit method is the Polarisable Continuum Model (PCM).  Here, the 

cavity is composed of overlapping spheres with radii that are scaled to that of a van der 

Waals atom. As each sphere is atom centred, the overall shape of the cavity is defined by the 

solute. There are regions of the cavity that solvent cannot interact with, therefore an area 

known as the solvent accessible surface (SAS) is outlined around the cavity.92  

The continuum and its degree of polarisation is solely defined by the dielectric constant. 

Polarisation of the solvent occurs in a self-consistent fashion. The charge density of the solute 

induces the polarisation of the dielectric continuum. This in turn causes the solute to become 

polarised and the formation of a reaction field.92 As the reaction field is present as a charge 

spread across the cavity surface, it can be calculated using point charges. The SAS is divided 

into small fragments known as tesserae and the point charge at each fragment is then 

determined.91   

Models from the PCM family are frequently used in conjunction with TDDFT to incorporate 

solvent effects into excited-states studies. Han et al. employed a variant of PCM, IEFPCM to 

study the photophysical properties of various heterocyclic carbene platinum (II) complexes.93 

Calculations using IEFPCM/TD-B3LYP produced absorption and emission spectra, from 

which the excited state transitions could be characterised. Gustavsson et al. conducted 

experimental and theoretical investigations of numerous uracil derivatives, in which 

PCM/TD-PBE0 was employed to calculate absorption and emission spectra.94  
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2.6 Computational Details 

TDDFT was used to study the excited-state transitions of the following complexes and their 

constituent monomer parts: I-∙Nu, Pt(CN)4
2-∙H2O, Pt(CN)4

2-∙Nu and Pt(CN)6
2-∙Nu.  Aside 

from TDDFT, there a wide range of methods which can be used to study the excited states. 

These include wavefunction-based methods such as CIS, CC2 and CASSCF. However, the 

size limitations of these methods renders them unsuitable for the systems under 

consideration. All calculations were performed using the d01 version of the Gaussian 09 

(G09) package.95  

In addition to assigning the excited state transitions of the named systems, the performance of 

a range of density functionals and basis sets will be assessed. For every system studied, the 

following functionals were tested: B3LYP, CAM-B3LYP, M062X, M11, MN12-SX and 

PBE0.58-61, 65-66 

When investigating the excited states of uracil and cytosine, the performance of the 

LANL2DZ, 6-311++G(2d,2p) and def2-TZVPP basis sets were evaluated.  Calculations on 

Pt(CN)4
2-∙uracil and Pt(CN)4

2- tested the following range of pseudopotentials: LANL2DZ, 

def2-TZVPP and SDD.  ECPs were used on platinum, while either 6-311++G(2d,2p) or 

LANL2DZ was used on the C, N, H and O atoms .   

The computational results were compared to either experimental UV-Vis or photodepletion 

(absorption) spectra. Gas-phase photodepletion spectra was not available for the isolated 

nucleobase monomers studied, therefore these results were compared to the condensed phase 

UV-vis spectra. 

To permit a direct comparison between the computational and experimental UV-vis spectra, 

solvation modelling was incorporated into the excited state calculations of the nucleobase and 

Pt(CN)4
2- monomers. The method used to model solvation was the default version of PCM in 
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G09, Integral Equation Formalism PCM (IEFPCM). IEFPCM is a reformulation of PCM, 

which aims to enhance the performance by including gradient and molecular response 

calculations in its formalism.25,96  
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Chapter 3 
 

A TDDFT Computational Study of Iodide Ion-

Nucleobase Complexes  

 

 

3.1 Introduction 

UV spectra of gas-phase platinum cyanide complexes bound to a single nucleobase have 

previously been acquired by Sen et al. using laser spectroscopy. The Pt(CN)n
2-∙Nu complexes 

act as model systems in the examination of the photochemical processes associated with 

PDT.43 These studies have produced UV spectra with unique absorption bands for each 

complex, however only initial assignments of these bands have been made. Therefore, there 

is now a need to confirm these assignments using computational chemistry. The complexity 

of studying these systems theoretically are such that the much simpler, iodide-nucleobase (I-

∙Nu) clusters will be investigated first. 

Gas-phase iodide ion-nucleobase clusters have been studied previously, both experimentally 

and theoretically.  King et al. have used iodide-nucleobase clusters as model systems for 

studying the mechanisms by which low-energy electrons interact with nucleobases, causing 

DNA double strand breakage.97 Their investigations used time-resolved photoelectron 

spectroscopy to explore the dynamics and kinetics of near-threshold iodide-thymine and 

iodide-uracil clusters.98  

King et al. have very recently reported computational data as part of their latest study. Time-

Dependent Density Functional Theory (TDDFT) calculations were performed at the ωB97XD 

level to determine the equilibrium geometries of various iodide-nucleobase binary clusters in 
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their electronically excited states. Additionally, the differences in electron density of the 

optimised iodide-thymine and iodide-uracil geometries at the ground and first excited states 

were investigated.99,100 Mak et al. have used both quantum chemical and molecular dynamics 

calculations to conduct theoretical studies of photoexcited iodide-methanol clusters. The 

properties of the ground, excited and ionised states of these clusters were explored at MP2, 

CCSD(T) and CASSCF levels of theory respectively. Ab initio molecular dynamics 

simulations were employed to elucidate the detailed nature of dynamical relaxation pathways 

of the clusters.101  

The aim of this chapter will be to use TDDFT to calculate electronic spectra for I-∙Nu 

complexes (Nu = adenine, thymine or uracil) and their constituent “monomer” parts, (i.e. the 

isolated I- ion and isolate nucleobase). The variation in excitation energies resulting from the 

use of different functionals and basis sets will also be assessed.  

 

3.2 Computational Methods 

Excited state, geometry optimisation and frequency calculations were performed using the 

Gaussian 09 (G09) programme package, version d01.95 The ground-state geometries of I-∙Nu 

complexes were optimised using Density Functional Theory (DFT) at the following levels of 

theory in conjunction with the LANL2DZ basis set: B3LYP, CAM-B3LYP, M062X, M11, 

MN12-SX and PBE0.58-61, 64-65 For studies involving cytosine and uracil, the basis set used 

was also varied between LANL2DZ, 6-311++G(2d,2p) and Def2-TZVPP.102 Mean Absolute 

Errors (MAEs) were then calculated for each density functional/basis set combination. 

Frequency calculations were performed to ensure that the optimised ground-state geometric 

structures calculated represent true minima on the potential energy surfaces. 
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The experimental spectra that are used to benchmark the calculations presented in this work 

were measured from clusters generated using electrospray ionisation. This preparation 

method is known to predominantly produce the nucleobase in its native tautomeric form.103 

Therefore, only the native tautomers are studied here.   

To study the excited states, TDDFT calculations were then performed on the optimised 

ground-state structures at the various levels of theory listed above. Formatted checkpoint files 

were generated for each system using B3LYP/LANL2DZ in order to view the molecular 

orbitals (MOs).  

The effect of solvation on the excitation energies of the nucleobases was also investigated 

using the default version of PCM in G09, IEFPCM. IEFPCM/TDDFT calculations were 

performed at the B3LYP/LANL2DZ for uracil, cytosine, thymine and adenine. IEFPCM 

calculations involving uracil, cytosine and thymine were performed using water as the 

solvent. The solvent used in the aqueous excited-state calculation on adenine was methanol. 

The solvents used in the IEFPCM excited-state calculations were the same as those employed 

by Sen et al. to obtain the aqueous experimental spectra of the nucleobases.  

 

3.3 Results and Discussion 

3.3.1 Iodide 

B3LYP, CAM-B3LYP, M062X, M11 and MN12-SX in conjunction with the LANL2DZ 

basis set were used to perform the electronic ground state and TDDFT calculations on I-. The 

TDDFT calculations (at 10 and 30 states) of I-, both produced spectra in which no bands were 

present, as expected due to the lack of any stable (i.e. undetached) excited states for I-.   
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3.3.2 Isolated Nucleobases 

3.3.2.a. Uracil 

 

Figure 3.1: The B3LYP/LANL2DZ optimised ground state structures of a) uracil                 

b) cytosine c) thymine and d) adenine. The magnitude and direction of the dipole moments of 

these nucleobases are represented by the blue vector. 

 

Figure 3.1a depicts the B3LYP/LANL2DZ optimised ground-state structure of uracil. Within 

this planar arrangement, the N···H and C···H bond lengths were calculated as 1.01 and 1.08 

Å respectively and the dipole moment was 4.93 Debye. These results are in good agreement 

with other theoretical values available in the literature and thus provide support for the level 

of theory used here.104,105 No imaginary frequencies were found during the ground-state 

calculation, indicating that the optimised structure represents a true PES minimum.  
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Following optimisation, TDDFT calculations were performed using a range of density 

functional and basis set combinations. These combinations are listed in Table 3.1, along with 

the resulting excitation energies.  As can be seen from this table, all functional/basis set 

combinations reproduced the two spectral bands seen in the experimental spectra, along with 

an additional third band at around 7.6 eV (above the spectral range). 10 states were found to 

be sufficient for these calculations.  

Table 3.1: Computed and experimental excitation energies (in eV) of uracil, where a, b and c 

are the lowest energy spectral bands.a,b 

Functional LANL2DZ 6-311++G(2d,2p) Def2-TZVPP 

   

 a b c a b c a b c 

B3LYP 5.10 6.36 7.28 5.17 6.45 7.42 5.22 6.57 7.60 

CAM-B3LYP 5.46 6.82 7.64 5.46 6.89 7.77 5.54 7.01 7.97 

M062X 5.54 6.91 7.68 5.50 6.89 7.78 5.58 7.05 7.93 

M11 5.59 7.04 7.68 5.52 7.02 7.70 5.59 7.14 7.95 

MN12-SX 5.38 6.72 7.62 5.36 6.56 7.50 5.45 6.97 8.01 

PBE0 5.28 6.60 7.50 5.30 6.66 7.63 5.37 6.75 7.78 

          

Experimentalb 4.80 6.12 - 4.80 6.12 - 4.80 6.12 - 

a Calculations performed at 10 states 

b Aqueous UV absorption experimental data (courtesy of Sen et al.).41,42  

 

Table 3.2: Mean absolute errors in excitation energy (eV) associated with 

TDDFT/LANL2DZ calculations of uracil at 10 states 

Functional Mean Absolute Error (eV) 

B3LYP 0.27 

CAM-B3LYP 0.68 

M062X 0.77 

M11 0.86 

MN12-SX 0.59 

PBE0 0.48 
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Further analysis of the excitation energy variations is provided in Table 3.2, where the mean 

absolute errors (MAEs) have been calculated for the various functionals using the LANL2DZ 

basis set. The B3LYP functional was shown to have the lowest error of 0.27 eV, indicating it 

had the highest accuracy. As shown in Figure 3.2 below, a good agreement was found 

between the B3LYP/LANL2DZ and experimental UV spectra. The next accurate functional 

was PBE0, however it had an error nearly double that of B3LYP, making its use unsuitable.  

 

Figure 3.2: Comparison of the computational and experimental UV spectra of uracil:       

 Experimental UV spectrum (courtesy of Sen et al.), 41, 42   B3LYP/LANL2DZ,     

 M062X/LANL2DZ and  M11/LANL2DZ. 

 

M11 followed by M062X displayed the least accuracy, with its results consistently much 

higher than the corresponding experimental data (Table 3.1). A poor agreement was found 

between the M062X, M11 and experimental UV spectra. As shown in Figure 3.2, 

M062X/LANL2DZ and M11/LANL2DZ over predicted the excitation energies of the 

experimental spectral bands. It is interesting to observe that the intensity of the lowest energy 
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band produced by M062X/LANL2DZ and M11/LANL2DZ was considerably higher than that 

of B3LYP/LANL2DZ.   

The inclusion of exact exchange into hybrid B3LYP and PBE0 functionals is likely to be 

responsible for the relatively good performance of these functionals.  The Hartree-Fock 

exchange component of these functionals partially cancels out the self-interaction error 

present in DFT.106 Although the M11 and M062X functionals are also hybrid in nature, they 

contain a larger percentage of Hartree-Fock (exact) exchange. An increase in percentage 

Hartree-Fock exchange should result in a more accurate description of ground-state 

quantities. However, various studies have acknowledged that while systematic increases in 

percentage exact exchange may provide a more accurate description of electronic ground-

state properties such as kinetics, it adversely affects the quality of excitation energies 

results.107,108 Using this theory, the satisfactory performance of MN12-SX can be explained 

by its Hartree-Fock component being comparable to that of B3LYP.  

Despite the comparatively good performance of B3LYP in this study, its inability to predict 

excitation energies accurately using TDDFT is a well-recognised failure of B3LYP.61 This 

failure can be attributed to the incorrect behaviour of the exchange interaction potential at 

long range. In CAM-B3LYP, the exchange potential is range separated and exact exchange is 

largely used to describe long-range interactions.108 These modifications rectify the long-range 

behaviour of the exchange potential, therefore CAM-B3LYP was expected to predict the 

excitation energies of uracil with greater accuracy than B3LYP. However, in this respect, 

CAM-B3LYP performed poorly, overestimating the excitation energies. The 

underperformance of CAM-B3LYP could be due to dispersion forces not being as significant 

in the system in question. To summarise, the order of accuracy was deduced as follows: 

B3LYP > PBE0 > MN12-SX > CAM-B3LYP > M062X > M11.  
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Following the analysis of the density functionals, the basis set used was also varied to study 

its effects on the excitation energies. The results of these basis set comparisons are outlined in 

Table 3.1 and the corresponding MAEs have been calculated in Table 3.3. 

Table 3.3: Mean absolute errors in excitation energy (eV) associated with TDDFT 

calculations of uracil at 10 states. 

Functional 

 

LANL2DZ 6-311++G(2d,2p) Def2-TZVPP 

B3LYP 
0.27 0.35 0.33 

CAM-B3LYP 
0.68 0.72 0.71 

M062X 
0.77 0.74 0.75 

M11 
0.86 0.81 0.80 

MN12-SX 
0.59 0.50 0.64 

PBE0 0.48 0.52 0.49 

  

Interestingly, the trend witnessed previously in density functional performance remained 

unchanged when the basis set is varied. B3LYP/LANL2DZ proved to be the best performing 

combination while M11/LANL2DZ was shown to be the worst. The order of basis set 

performance can be summarised as LANL2DZ > 6-311++G (2d,2p) > Def2-TZVPP.  

Generally, both LANL2DZ and 6-311++G (2d,2p) performed well, producing results with a 

high degree of accuracy. However, LANL2DZ was deemed to be the better performing basis 

set of the two due to its lower CPU time cost. On average, the 6-311++G (2d,2p) set took 

2.62 hours longer than LANL2DZ to complete a TDDFT calculation for Uracil at 20 states. 

The Def2-TZVPP basis set was deemed to be the worst performing following analysis of its 

MAEs and computational time. Although the MAEs recorded for Def2-TZVPP were not 

grossly higher than those of LANL2DZ, examination of the TDDFT/Def2-TZVPP spectra in 

in Figure 3.3 revealed that Def2-TZVPP consistently, overestimated the positions of the 

higher energy spectral bands. As the MAEs only take into account the lowest energy spectral 
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bands, the significant overestimation of the higher energy bands by Def2-TZVPP is not 

reflected.  

 

Figure 3.3: Comparison of the theoretical and experimental UV spectra of uracil:             

 Experimental UV spectrum (courtesy of Sen et al.),41,43  B3LYP/Def2-TZVPP  

and  MN12-SX/Def2-TZVPP. 

 

The lengthy computational time associated with performing calculations confirmed the 

unsuitability of this basis set. On average, it took 2.25 hours longer than the LANL2DZ basis 

set to perform a TDDFT calculation for uracil at 20 states. As these results have been 

performed for a relatively small system, it is clear that the use of this basis set would be 

unsuitable for the larger I-∙Nu complexes. This high CPU time cost can be straightforwardly 

explained by the relatively large size of this triple-zeta basis set. 

It must also be acknowledged that some error in the excitation energies would have arisen 

from the comparison of the experimental and theoretical spectra in different phases. The 

experimental UV absorption spectrum of uracil was in solution phase, whilst the theoretical 

UV spectra were calculated in vacuo. In order to probe the effect of the solvent on the 
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excitation energies, the theoretical UV spectrum of uracil was calculated in solution at 

B3LYP/LANL2DZ level using the default Gaussian model IEFPCM. The computational 

excitation energies produced from the TD-IEFPCM calculation are listed in Table 3.4, where 

they have also been compared to computational gas-phase results and experimental excitation 

energies.   

Table 3.4: Comparison of the computed excitation energies of uracil (in vacuo and solution) 

with experimental results, where a, b and c are the lowest energy spectral bands.a-c 

 Excitation Energy (eV) 

 a b c 

Vacuuma 5.10 6.37 7.27 

Solutionb 5.00 6.16 7.20 

Experimentalc 4.80 6.12 - 

a TD-B3LYP/LANL2DZ calculation performed at 10 states  

b TDDFT calculation performed at IEFPCM/B3LYP/LANL2DZ level (10 states) and 

employed water as the solvent.  

 
c Aqueous UV absorption spectrum obtained by Sen et al. 41, 43   

 

In comparison to the gas-phase computational results (Table 3.4), the TD-IEFPCM 

calculation produced lower excitation energies for uracil. As seen in Figure 3.4, the addition 

of solvation to TD-B3LYP/LANL2DZ results in the considerable hypsochromic shift of the 

gas-phase absorption spectrum. Consequently, a better agreement between the experimental 

and (solution-phase) computational spectra is found. For the excitations at 5.10, 6.37 and 7.27 

eV, the solvent shifts (of the theoretical spectra) were 0.10, 0.21 and 0.07 eV, respectively. 
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Figure 3.4: Comparison of the experimental and theoretical electronic spectra of uracil:  

 Experimental aqueous UV absorption (courtesy of Sen et al.),41  Gas phase 

B3LYP/LANL2DZ (10 states) and  Solution phase IEFPCM/B3LYP/LANL2DZ (10 

states). 

 

Aside from the excitation energies, there are notable differences in the aqueous and gas phase 

B3LYP/LANL2DZ spectra. The IEFPCM/B3LYP/LANL2DZ calculation at 10 states 

produced four distinct bands at 5.00, 6.16, 7.20 and 8.06 eV. Although present, the intensity 

of the highest energy band was comparatively low in the gas-phase B3LYP/LANL2DZ 

spectrum. As shown in Figure 3.4 above, the highest energy band is present on the rise edge 

of the adjacent band at 7.27 eV. Interestingly, all of the bands in the solution-phase 

computational spectrum were of greater intensity to that in the gas-phase theoretical 

spectrum.   

As B3LYP/LANL2DZ was shown to have produced the most accurate results, this data set 

was used in the assignment of the excited-state transitions. In Table 3.5, these transitions are 

detailed. The three absorption bands present in the spectra at 5.10, 6.36 and 7.28 eV all 
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corresponded to transitions that were ππ* in nature.  These theoretical results confirm the 

assignment made previously by Sen et al.41 As previously discussed, Sen et al. investigated 

the UV photophysics of Pt(CN)n
2-∙uracil complexes and their isolated Pt(CN)n

2-∙ and uracil 

monomers. These studies produced the aqueous UV absorption spectrum of uracil shown in 

Figure 3.5. 41,43 Sen et al. characterised the nature of the transition at 4.80 eV as ππ*.41  

Table 3.5: Assignment of the four lowest energy excited-state transitions of uracil using 

B3LYP/LANL2DZ data. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment 

of 

Transition 

 

4.38 0.0001 HOMO-1  LUMO 0.68270 

(93.22) 

n π* 

5.08 0.1090 HOMO  LUMO 0.64971 

(84.42) 

π  π* 

6.37 0.1302 

 

HOMO LUMO+1 0.64664 

(83.63) 

π  π* 

7.28 0.4635 HOMO-2  LUMO+1 0.65572 

(85.99) 

π  π* 

     

 

 

Figure 3.5: Experimental aqueous UV absorption spectrum of uracil (courtesy of Sen et al.). 

41,43 
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Also present within the calculated spectra was a forbidden transition occurring at 4.38 eV.  

Upon inspection of the relevant MOs (Figure 3.6), this transition was identified as being 

nπ* in nature. The assignments presented here are in line with results of an earlier 

investigation conducted by Ren et al.77 In this computational study, TDDFT level calculations 

were used to analyse the spectral shifts for the two lowest energy excited-state transitions 

occurring within solvated uracil.      

 

 

Figure 3.6: MOs involved in the electronic transitions of uracil. MOs were calculated at the 

B3LYP/LANL2DZ level of theory.  
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3.3.2.b. Cytosine 

Preliminary DFT calculations were carried out and the ground-state properties of the resulting 

structure were analysed. The dipole moment was observed as 7.41 Debye and lay agreeably 

between the reported experimental values of 6.8 and 8 Debye.109 No imaginary frequencies 

were found.  

In order to validate the basis set and density functional trends set by uracil, TDDFT 

calculations were performed using the same density functional/basis set combinations that 

were employed previously, with the results presented in Table 3.6. Analysis of the results 

showed that at 10 states, three bands were produced at the following average excitation 

energies: 4.8, 5.8 and 6.8 eV.  

Table 3.6: Computed and experimental excitation energies of cytosine, where a, b and c are 

the lowest energy spectral bands.a,b 

Functional LANL2DZ 6-311++G(2d,2p) DEF2-TZVPP 

   

 a b c a b c a b c 

B3LYP 4.55 5.37 6.55 4.64 5.43 6.55 4.75 5.50 6.78 

CAM-B3LYP 4.94 5.91 6.82 5.02 5.94 6.75 5.06 6.03 7.00 

M062X 5.02 5.98 6.80 5.06 5.98 6.70 5.11 6.09 6.92 

M11 5.10 6.12 6.82 5.13 6.09 6.60 5.20 6.23 6.91 

MN12-SX 4.73 5.63 6.80 4.78 5.42 6.49 4.90 5.74 7.04 

PBE0 4.72 5.58 6.74 4.83 5.61 6.72 4.94 5.73 6.98 

          

Experimentalb 4.64 6.00 6.12 4.64 6.00 6.12 4.64 6.00 6.12 

a All calculations were performed at 10 states 

b Aqueous UV absorption spectrum obtained by Sen et al.43  
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Table 3.7: Mean absolute errors in excitation energy (eV) associated with TDDFT 

calculations of cytosine at 10 states. 

Functional 

 

LANL2DZ 6-311++G(2d,2p) Def2-TZVPP 

B3LYP 
0.27 0.35 0.33 

CAM-B3LYP 
0.68 0.72 0.71 

M062X 
0.77 0.74 0.75 

M11 
0.86 0.81 0.80 

MN12-SX 
0.59 0.50 0.64 

PBE0 0.48 0.52 0.49 

 

 

Table 3.7 provides the MAEs for cytosine for the different density functional/basis set 

combinations used. Initial inspection of the results showed only slight differences in error 

irrespective of the functional and basis sets. These differences were incredibly minor between 

the LANL2DZ and 6-311++G (2d,2p) basis sets, especially. As for uracil, Def2-TZVPP 

produced the most inaccurate results with an average error for cytosine of 0.47 eV.   

Inspection of the experimental and computational spectra offers an explanation for the small 

error differences observed overall. It can be seen in the experimental spectrum of cytosine 

(Figure 3.7) that while the lowest and highest energy bands are well defined, the second band 

at 6 eV is not. This band is present as a peak on the rising edge of the highest energy band. If 

the computational and experimental energies of the highest and lowest energy bands are 

compared (Table 3.6), the trends observed for uracil are reproduced.  
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Figure 3.7: Comparison of the theoretical and experimental UV spectra of cytosine:             

 Experimental UV spectrum (courtesy of Sen et al.),43 M062X/LANL2DZ and 

 M11/LANL2DZ. 

 

B3LYP/6-311++G(2d,2p) and B3LYP/LANL2DZ give the most accurate results in terms of 

predicting the experimental excitation energies, followed by MN12-SX/LANL2DZ and 

MN12-SX/6-311++G(2d,2p). The introduction of the middle band into the calculations 

distorts the MAEs because M11 and M062X were the only functionals to describe accurately 

the shape and position of the second band. This results in lower MAEs for the M11 and 

M062X, making them appear to be as accurate as the other functionals. The poor agreement 

between the M062X, M11 and experimental spectra can be seen in Figure 3.7, where the 

position of the experimental spectral bands were overestimated by M062X/LANL2DZ and 

M11/LANL2DZ. Interestingly, M11/LANL2DZ was the only functional to describe 

accurately the position of the middle spectral band as being on the rising of the highest 

energy band.  

As the experimental band at 6.12 eV was the most intense, it was used as the determining 

factor in the assessment of the functional and basis set performance.  Comparison with that 



43 
 

band indicated that MN12-SX/6-311++G(2d,2p) was the most accurate functional. However, 

due to the high CPU time cost associated with this combination, B3LYP/LANL2DZ provides 

the best balance between accuracy and computational cost.  

The MAEs associated with the various functional/ basis set combinations can in part be 

attributed to the comparison of experimental and theoretical results that are in different 

phases. All TDDFT calculations were conducted in gas-phase and were compared to aqueous 

experimental results. The extent to which solvation affects the theoretical excitation energies 

of cytosine was investigated using IEFPCM. As B3LYP/LANL2DZ was deemed to be the 

best performing functional/basis set combination, it was employed in an IEFPCM/TDDFT 

calculations at 10 states. The solvent used in this calculation, water, was the same as that used 

by Sen et al. to produce the aqueous experimental spectrum of cytosine. The excitation 

energies produced by IEFPCM/B3LYP/LANL2DZ have been compared to the gas-phase 

theoretical and aqueous experimental energies of cytosine in Table 3.8.  

Table 3.8: Comparison of the computed excitation energies of cytosine (in vacuo and 

solution) with experimental results, where a, b, c and d are the lowest energy spectral bands. 
a-c 

 Excitation Energy (eV) 

 a b c d 

Vacuuma 4.52 5.37 6.55 - 

Solutionb 4.73 5.47 6.46 7.85 

Experimentalc 4.64 6.00 6.39 - 

a TD-B3LYP/LANL2DZ calculation at 10 states 

b IEFPCM/B3LYP/LANL2DZ calculation at 10 states, modelled in a solution of water. 

c Aqueous UV absorption spectrum (courtesy of Sen et al.).43  Water was used to solvate 

cytosine.  

 

In comparison to the gas-phase theoretical results, IEFPCM/B3LYP/LANL2DZ predicted 

higher excitation energies for the two lowest absorption bands.  The resulting bathochromic 

shift of the two lowest spectral bands can be seen in Figure 3.8, where the solution and gas-
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phase theoretical spectra have been compared.  Using the values in Table 3.8, bathochromic 

shifts of 0.21 and 0.10 eV were calculated for the two lowest energy bands, respectively.  

Conversely, a hypsochromic shift of 0.09 eV was observed for the second highest energy 

band in the aqueous theoretical spectrum. As a result of the bathochromic and hypsochromic 

shifts, a better agreement between the experimental and theoretical spectra was found. 

 

Figure 3.8: Comparison of the experimental and theoretical electronic spectra of cytosine:  

 Experimental aqueous UV absorption (courtesy of Sen et al.), 43 Gas phase 

B3LYP/LANL2DZ (10 states) and  Solution phase IEFPCM/B3LYP/LANL2DZ (10 

states). 

 

Similar to uracil, a significant hyperchromic shift was observed for all bands in the solution-

phase spectrum. Interestingly, IEFPCM/B3LYP/LANL2DZ described the spectral band at 

5.47 eV more accurately than gas-phase B3LYP/LANL2DZ. In the experimental spectrum, 

the second highest band is present on the rising edge of the highest energy band at 6 eV. 

IEFPCM/B3LYP/LANL2DZ reproduced the relatively low intensity and position of this 

spectral band better than the gas-phase B3LYP/LANL2DZ calculation. Also similar to uracil, 

an additional spectral band was produced by IEFPCM/B3LYP/LANL2DZ at 10 states. The 



45 
 

additional fourth band (seen at 7.85 eV in the IEFPCM/B3LYP/LANL2DZ spectrum), was 

not observed in the gas-phase B3LYP/LANL2DZ results or aqueous experimental results.  

An interpretation of the dominant transitions occurring at the three excitation energies is 

presented in Table 3.9. The MOs involved in these transitions are displayed in Figure 3.9.  

Table 3.9: Assignment of the three lowest energy excited-state transition of cytosine using 

B3LYP/LANL2DZ. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment 

of 

Transition 

4.52 0.0310 HOMO  LUMO 0.69845 

(97.57) 

 

π  π* 

5.37 0.0848 HOMO-2  LUMO 0.64797 

(89.97) 

 

π  π* 

6.58 0.5658 HOMO  LUMO+1 0.49066 

(48.15) 

π  π* 

 

Similarly to uracil, all three bands were attributed to ππ* transitions with the lowest energy 

band involving electron density movement from the HOMO to LUMO. The percentage 

contribution of the highest energy transition at 6.58 eV was relatively low (48.15%). With 

such a value, there is doubt if the HOMOLUMO+1 transition can be viewed as truly 

representative of all the excitations occurring at that particular energy. 
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Figure 3.9: MOs involved in the electronic transitions of cytosine. MOs were calculated at 

the B3LYP/LANL2DZ level of theory.  
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3.3.2.c Thymine 

The results presented previously for uracil and cytosine had indicated that LANL2DZ is the 

best performing basis set. Therefore, it was the only basis set employed in calculations for 

thymine, including the density functionals comparisons. 

The ground-state geometry generated by the DFT calculation is depicted in Figure 3.1c. The 

key bond lengths such as O···H (1.25 Å) and N···H (1.08 Å) compared favourably to both 

theoretical and experimental literature values.84 As a consequence of their similar geometric 

arrangements, the calculated dipole moment was very close to that of uracil at 4.92 Debye. 

As demonstrated in Table 3.10, all TDDFT calculations that were performed at 10 states 

produced three absorption bands at ca. 5.2, 6.5 and 7.6 eV. Inspection of the MAEs in Table 

3.11 revealed once again that B3LYP/LANL2DZ produces the most accurate results with a 

relatively small error of 0.16 eV associated with the calculation. B3LYP/LANL2DZ was 

shown to have predicted the energy the second band incredibly accurately. It displayed a 

difference of only 0.05 eV between the theoretical and experimental values. This accuracy is 

also reflected in the MAEs, which are the lowest overall for thymine in comparison to the 

other nucleobases. 

Table 3.10: Computed and experimental excitation energies of thymine, where a, b and c are 

the lowest energy spectral bands.a,b 

a All calculations were performed at 10 states. 

b Aqueous UV absorption spectrum obtained by Sen et al.43   

Functionals Excitation Energy (eV) 

 a b c 

B3LYP 4.91 6.06 7.30 

CAM-B3LYP 5.29 6.63 7.69 

M062X 5.38 6.73 7.74 

M11 5.42 6.84 7.78 

MN12-SX 5.17 6.43 7.65 

PBE0 5.08 6.30 7.52 

    

Experimentalb 4.65 5.99 - 
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Table 3.11: Mean absolute errors in excitation energy (eV) associated with 

TDDFT/LANL2DZ calculations of thymine at 10 states. 

Functional Mean Absolute Error (eV) 

B3LYP 
0.17 

CAM-B3LYP 
0.64 

M062X 
0.74 

M11 
0.81 

MN12-SX 
0.48 

PBE0 0.37 

 

In keeping with the trends displayed by uracil and cytosine, the next best performing 

functional was shown to be MN12-SX. The least accurate functionals were again M11 and 

M062X. These functionals tended to grossly overestimate the energy of the absorptions 

bands. In addition to this, the oscillator strengths are also significantly overestimated in the 

M062X and M11 UV spectra (Figure 3.10), thus providing a less accurate reproduction of the 

experimental spectra.   

 

Figure 3.10: Comparison of the experimental and theoretical electronic spectra of thymine:  

 Experimental aqueous UV absorption (courtesy of Sen et al.),43  M11/ 

LANL2DZ,    B3LYP/LANL2DZ and  M062X/LANL2DZ. 
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Using the B3LYP/LANL2DZ TDDFT data set, the excitations occurring at 4.91, 6.18 and 

7.29 eV were deduced as being HOMO  LUMO, HOMO  LUMO+1 and HOMO-2  

LUMO+1, respectively (Table 3.12). Examination of the shape of these MOs (Figure 3.11) 

confirmed that all three transitions are π  π* in nature.  

Table 3.12: Assignment of the three lowest energy excited state transitions of thymine using 

B3LYP/LANL2DZ data. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment 

of 

Transition 

 

4.91 0.1151 HOMO  LUMO 0.66640 

(88.82) 

 

π  π* 

6.18 0.1301 HOMO  LUMO+1 0.62572 

(78.31) 

 

π  π* 

7.29 0.4534 HOMO-2 LUMO+1 0.65676 

(86.27) 

π  π* 

     

 

Referring overleaf to Figure 3.11, it is interesting to compare the difference in shape between 

the HOMO and HOMO-2 orbitals. Electron density in the HOMO is distributed around the 

system, with a large amount concentrated on the C4-C5 π bond. This typical π arrangement 

contrasts to that observed in the HOMO-2 orbital. Here, electron density is situated solely on 

the adjacent N-H, C=O and C-Me bonds and therefore occupies one half of the molecule. 

Nevertheless, both are still thought to be π in nature.  

A theoretical study by Shukla et al. gives credence to this assignment.84 In this work, the 

excited-state transitions for all five nucleobases were calculated using the B3LYP functional 

and a range of 6-311G type basis sets with varying degrees of added diffusion and 

polarisation. They assigned the corresponding excitation (7.43 eV) as also being ππ* 

nature. They also put forward an explanation for the atypical nature of MOs involved in that 
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transition, as arising from Rydberg contamination. It was suggested Rydberg πσ* 

contamination of 25% was present at this excitation energy. 

 

 

 

Figure 3.11: MOs involved in the electronic transitions of thymine. MOs were calculated at 

the B3LYP/LANL2DZ level of theory.  
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To study the effect of solvation on the excitation energies, a TDDFT calculation was 

performed in solution using IEFPCM. As B3LYP/LANL2DZ was deemed the best 

performing basis sets in terms of the excitation energy predications, it was used to calculate 

the solution-phase UV spectrum of thymine. The IEFPCM/B3LYP/LANL2DZ calculation 

was conducted at 10 states. The excitation energies produced by the solution-phase 

B3LYP/LANL2DZ calculation is outlined in Table 3.13.  

Table 3.13: Comparison of the computed excitation energies of thymine (in vacuo and 

solution) with experimental results, where a, b and c are the lowest energy spectral bands.a-c 

 Excitation Energy (eV) 

 a b c 

Vacuuma 4.91 6.06 7.30 

Solutionb 4.85 5.98 7.23 

Experimentalc 4.65 5.99 - 

a TD-B3LYP/LANL2DZ calculation at 10 states 

b IEFPCM/B3LYP/LANL2DZ calculation at 10 states, modelled in a solution of water. 

c Aqueous UV absorption spectrum obtained by Sen et al.43 Water was used to solvate 

cytosine.  

 

At 10 states, IEFPCM/B3LYP/LANL2DZ reproduced the three spectral bands seen in the gas 

phase B3LYP/LANL2DZ spectrum. In comparison to the gas-phase theoretical spectrum, the 

excitation energies the three bands in the solution-phase theoretical spectrum were smaller. 

The hypsochromic shifts of 0.06 and 0.08 eV for the respective bands at 4.85 and 5.98 eV in 

the B3LYP/LANL2DZ solution-phase spectrum, brings the theoretical  solution-phase 

spectrum into very good agreement with the experimental spectrum (Figure 3.12). In 

particular, the position of the highest energy band in the experimental spectrum is predicted 

extremely accurately by IEFPCM/B3LYP/LANL2DZ. The difference between the excitation 
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energies of the second highest spectral band in the theoretical and experimental spectra is 

reduced by the inclusion of IEFPCM to 0.01 eV.  

 

Figure 3.12: Comparison of the experimental and theoretical electronic spectra of thymine:  

 Experimental aqueous UV absorption (courtesy of Sen et al.),43  Gas-phase 

B3LYP/LANL2DZ (10 states) and  Solution-phase IEFPCM/B3LYP/LANL2DZ (10 

states). 

 

3.3.2.d Adenine 

Figure 3.1d illustrates the ground-state structure of B3LYP/LANL2DZ optimised adenine.  In 

this diagram, the arrow representing the magnitude of the dipole moment (2.62 Debye) is 

shown to originate from the centre of mass. This result is comparable to those obtained by 

Ran et al.110 The N-H and C=N bonds crucial in hydrogen bonding were measured as 1.01 Å 

and 1.36 Å respectively. The results are also in line with those available in literature.111  

Following geometry optimisation, TDDFT calculations were carried out at 10 and 20 states 

using the following functionals and the LANL2DZ basis set: B3LYP, CAM-B3LYP, 
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M062X, M11, MN12-SX and PBE0. LANL2DZ was shown to be the best performing basis 

set during earlier investigations with cytosine and uracil and so was used exclusively in these 

calculations. Performing calculations at 20 states was found to be sufficient to produce the 

three bands observed in the experimental spectrum. The excitation energies produced by the 

various functionals are listed in Table 3.14 below. 

Table 3.14: Computed and experimental excitation energies for adenine, where a, b and c are 

the lowest energy spectral bands.a,b  

a All calculations were performed at 20 states 

b Aqueous UV absorption spectrum obtained by Sen et al.43  

 

Table 3.15: Mean absolute errors in excitation energy (eV) associated with 

TDDFT/LANL2DZ calculations of adenine at 20 states. 

Functional Mean Absolute Error (eV) 

B3LYP 0.39 

CAM-B3LYP 0.78 

M062X 0.85 

M11 0.93 

MN12-SX 0.64 

PBE0 0.58 

 

The trend in density functional performance displayed by adenine is similar to that exhibited 

by the other nucleobases studied. Comparison between the experimental and theoretical 

excitation energies for the different functionals (Table 3.14), shows that B3LYP is the most 

accurate in the prediction of the experimental excitation energies, followed by MN12-SX. 

Functionals Excitation Energy (eV) 

 a b c 

    

B3LYP 5.02 6.41 7.22 

CAM-B3LYP 5.44 6.76 7.68 

M062X 5.52 6.83 7.68 

M11 5.60 6.90 7.78 

MN12-SX 5.24 6.68 7.56 

PBE0 5.22 6.59 7.51 

    

Experimentalb 4.75 5.90  
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M11 and M062X were judged to be the least accurate of the functionals with errors two times 

higher than B3LYP (Table 3.15).  

Attention should be drawn to the magnitude of the MAEs for adenine. In contrast to the other 

nucleobases investigated, adenine had the highest calculated MAEs. This suggests a poorer 

agreement between the calculated and experimental spectra. Nevertheless, a relatively good 

agreement was found between the experimental and B3LYP/LANL2DZ spectra (Figure 

3.13). 

 

Figure 3.13: Comparison of the experimental and theoretical electronic spectra of adenine:  

 Experimental aqueous UV absorption (courtesy of Sen et al.) and  B3LYP/ 

LANL2DZ.43 

 

The difference between the experimental and computational energies were in part due to the 

contrasting phases of the experimental and computational spectra. As the gas-phase 

computational spectrum was compared to solution-phase experimental spectrum, a systematic 

error in the MAEs could be present. To account for the difference between the gas and 

solution phase spectra, a TD-B3LYP/LANL2DZ calculation incorporating the IEFPCM 
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solvation model, was performed at 20 states on adenine. The resulting excitation energies 

produced by the IEFPCM/B3LYP/LANL2DZ are listed in Table 3.16. 

Table 3.16: Comparison of the experimental and computational excitation energies (in vacuo 

and solution phase) of adenine, where a, b, c and d are the lowest energy spectral bands. 

 Excitation Energy (eV) 

 a b c d 

Vacuuma 5.02 6.41 7.22 - 

Solutionb 4.99 6.28 6.99 8.28 

Experimentalc 4.75 5.94 - - 
a TD-B3LYP/LANL2DZ calculation at 20 states 

b IEFPCM/B3LYP/LANL2DZ calculation at 20 states in methanol solution. 

c Aqueous UV absorption spectrum obtained from unpublished work by Sen et al. Methanol 

was used to solvated the nucleobase. 

 

In comparison to the gas-phase theoretical UV spectrum, a notable hypsochromic shift of 

0.03, 0.13 and 0.23 eV was seen for the respective three lowest energy spectral bands in the 

solution-phase B3LYP/LANL2DZ spectrum (Figure 3.14).  

 

Figure 3.14: Comparison of the experimental and theoretical electronic spectra of adenine:  

 Experimental aqueous UV absorption (courtesy of Sen et al.),43  Gas-phase 

B3LYP/LANL2DZ (10 states) and  Solution-phase IEFPCM/B3LYP/LANL2DZ (10 

states). 
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With respect to the gas-phase theoretical UV spectrum, a notable reduction of 0.1 eV in the 

spacing between the two lowest energy spectral bands at 4.99 and 6.28 eV is seen in the 

solution-phase theoretical spectrum. As shown in Figure 3.14, the hypsochromic shifts and 

smaller spectral band spacing of the bands at 6.28 and 6.99 eV, brings the aqueous computed 

UV spectrum into better agreement with the experimental UV spectrum.  

As the most accurate functional/basis set combination, B3LYP/LANL2DZ TDDFT output 

data were analysed to gain insight into the nature of the excited-state transitions occurring. 

These results have been tabulated in Table 3.17. The MO transitions occurring at 4.93, 6.26 

and 7.28 eV were found to correspond to HOMO  LUMO, HOMO-2  LUMO and 

HOMO-4  LUMO+1, respectively.  The MOs involved in these transitions are depicted in 

Figure 3.15. 

Table 3.17: The assignment of the three lowest energy excited state transitions occurring in 

Adenine using B3LYP/LANL2DZ data. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment 

of 

Transition 

 

4.93 0.1546 HOMO  LUMO 0.60878 

(74.12) 

 

π  π* 

6.26 0.1971 HOMO-2  LUMO 0.43317 

(37.53) 

 

π  π* 

7.28 0.2355 HOMO-4  LUMO+1 0.60774 

(73.87) 

π  π* 
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Figure 3.15: MOs involved in the electronic transitions of adenine. MOs were calculated at 

the B3LYP/LANL2DZ level of theory.  

 

It should be noted that for the excitation occurring at 6.26 eV, HOMO-2  LUMO made a 

relatively small contribution (37.53%) to the transition. Although, this transition had the 

relatively largest CI coefficient (in comparison to the transitions occurring at that energy), it 

cannot be deemed the most dominant. The low CI coefficient of HOMO-2  LUMO 

suggests that other transitions contributed significantly to the excited state. 

The present results have again been compared to those of Shukla et al. (TDDFT performed at 

50 states using B3LYP/6-311++G(d,p)).84 In their work, the first two transitions of adenine 

were described as being ππ* in nature. Visualisation of the MOs using B3LYP/LANL2DZ 

put the calculated results in agreement with those of Shukla et al. Although thorough, their 
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work only detailed MO transitions up to ca. 6 eV for adenine. Therefore, no assignment is 

offered for the third band present at 7.26 eV. Again, the inspection of the MOs indicates that 

this third band is also ππ* in nature. 

 

3.3.3 I-∙Nu Complexes 

3.3.3.a Iodide-Uracil  

Initial ground-state geometry optimisation DFT calculations were performed on I-·Ur 

calculations using a range of density functionals. Figure 3.16 displays a typical structure 

obtained at the B3LYP/LANL2DZ level of theory. The measured H···I distances (2.60 Å and 

3.12 Å) were consistent with the parameters outlined previously by King et al.98 Frequency 

calculations were also carried out alongside the geometry optimisation. The results contained 

no imaginary frequencies, therefore the cluster can be described a true minimum on the PES.  

 

Figure 3.16: The B3LYP/LANL2DZ optimised ground-state structures of I-·Ur. Hydrogen 

bonds are indicated with a dashed line with bond distances in Å.   
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TDDFT calculations were performed at 50 states in order to account for the all of the bands 

seen in the experimental spectra. As displayed in Table 3.18, the computational results 

generated from testing six different functionals were compared to the experimental, gas-phase 

data, and the resulting MAEs were calculated (Table 3.19).  

Table 3.18: Computed and experimental excitation energies of I-·Ur at 50 states, where a, b, 

c and d are the lowest energy spectral bands a,b 

Functional Excitation Energy (eV) 

                                 

 a                                                b                                c d 

     

B3LYP 3.58 4.95 6.36 7.35 

CAM-B3LYP 3.74 5.29 6.72 7.78 

M062X 3.53 5.36 6.79 7.84 

M11 4.54 5.38 6.90 7.76 

MN12-SX 3.82 5.23 6.55 7.75 

PBE0 4.07 5.14 6.55 7.54 

     

Experimentalb 4.03 4.84 - - 
a TDDFT calculations were performed at 50 states. 

b Photodepletion (absorption) spectrum (unpublished work courtesy of Yoshikawa et al.). 

 

Table 3.19: Mean absolute errors in excitation energy (eV) associated with TDDFT/ 

LANL2DZ calculations of I-·Ur at 50 states. 

Functional Mean Absolute Error (eV) 

B3LYP 0.205 

CAM-B3LYP 0.295 

M062X 0.435 

M11 0.625 

MN12-SX 0.225 

PBE0 0.290 

 

The density functional MAEs displayed little deviation from the trend observed for the 

uncomplexed nucleobases.  The accuracy of the functionals were determined as: B3LYP > 
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MN12-SX > CAM-B3LYP > PBE0 > M062X > M11. Although PBE0 predicted the energy 

of the first band most accurately, B3LYP still performs most accurately overall as it predicted 

the excitation energy for the second band most accurately. As this band was the most intense 

in the experimental data, its excitation energy was used as the principle performance criteria. 

Therefore, it was concluded that B3LYP/LANL2DZ gave the best performance and its data 

was used in the further analysis of the excited-state transitions.  A very good agreement was 

found to exist between the B3LYP/LANL2DZ and photodepletion (absorption) spectra of I-

·Ur, This is shown in Figure 3.17. 

 

Figure 3.17: Comparison of the experimental and theoretical electronic spectra of I-∙Ur: 

Experimental photodepletion (absorption) spectrum (unpublished work courtesy of 

Yoshikawa et al.), Band profile for photodepletion (absorption) spectrum and      

 B3LYP/LANL2DZ (50 states).  

 

It is fascinating to note in Figure 3.17 the very weak intensity of the lowest energy theoretical 

band (at 3.58 eV). No functional produced results in which this band had significant oscillator 

strength. At this excitation energy, a transition of electron density from iodide to a π* orbital 

on uracil was witnessed involving the HOMO and LUMO+1 orbitals (Table 3.20 and Figure 
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3.18). The low oscillator strength of the first band could be attributed to the well-recognised 

failure of TDDFT to account for charge transfer transitions accurately.112 As this deficiency is 

thought to stem from the incorrect long-range behaviour of the density functional’s exchange 

potential, the long-range corrected CAM-B3LYP functional should have described the lowest 

energy band more accurately. However, the MAEs of CAM-B3LYP were much higher than 

that of B3LYP’s. This suggests that the inaccurate description of the lowest energy band was 

not solely due to the density functional used.  

Table 3.20: Assignment of the four lowest energy excited-state transitions of I-·uracil using 

B3LYP/LANL2DZ data.  

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment of 

Transition 

 

 

3.58 0.0037 HOMO  LUMO+1 0.70679 

(99.91) 

I-  π* 

4.96 

 

0.1621 HOMO-3  LUMO 0.66898 

(89.51) 

π  π* 

6.34 0.1950 HOMO-3  LUMO+1 0.59971 

(71.93) 

π  π* 

7.30 0.3219 HOMO-5 LUMO+1 0.59598 

(71.04) 

π  π* 

 

The weak oscillator strength of the lowest energy band was most likely due to the nature of 

the excited-state transition occurring at that particular energy.  From Figure 3.18, it is evident 

that the transition at 3.58 eV was of a charge transfer nature, however it was thought that the 

excitation was to a dipole bound excited state. In this dipole bound excited state, the excited 

electron is loosely bound to the nucleobase and occupies a diffuse orbital which is localised 

on the nucleobase.113,114 The relatively high dipole moment of uracil provides further 

evidence for the presence of a dipole bound excited state. Dipole-bound excited states 

typically require a dipole moment of 2.0 Debye or above and I-·uracil possesses a dipole 

moment of 3.95 Debye.114,115  
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The failure of the TDDFT calculations to produce spectra in which the lowest energy band 

had a significant oscillator strength, stems from the basis set used. Calculations must take into 

account the diffuse nature of the orbital in which the excited electron resides. Consequently, a 

very diffuse basis set is often required in calculations involving dipole-bound excited states.  

Through further examination of the MOs involved in the electronic transitions of I-·uracil 

(Figure 3.18), the three higher energy transitions at 4.96, 6.34 and 7.30 eV were all confirmed 

as being ππ* in nature.  

 

 

 Figure 3.18: MOs involved in the electronic transitions of I-·uracil. MOs were calculated at 

the B3LYP/LANL2DZ level of theory.  
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3.3.3.b Iodide-Thymine 

The geometry produced by the B3LYP/LANL2DZ optimisation can be seen in Figure 3.19. 

When compared to isolated thymine, slightly longer N···H and C···H bonds can be observed 

in this structure. It was thought that the presence of iodide was responsible for the elongation 

of these bonds by 0.03 and 0.01 Å, respectively. The calculated H···I- distances were 2.60 

and 3.15 Å and in good agreement with literature values.98 A large dipole moment of 5.61 

Debye was calculated for this cluster. 

 

Figure 3.19: The B3LYP/LANL2DZ optimised ground-state structures of I-·thymine. 

Hydrogen bonds are indicated with a dashed line with bond distances in Å.   

 

Using the previously optimised ground-state structures, TDDFT calculations were performed 

at 30 states for the six functionals listed in Table 3.21. All functionals produced spectra with 

four absorption bands at ca. 3.9, 5.1, 6.5 and 7.9 eV. From the calculated MAEs in Table 

3.22, it is clear that the accuracy of the functionals observes the trend set by I-∙uracil. The 

order of functional performance was determined as: B3LYP > MN12-SX > PBE0 > CAM-

B3LYP > M062X > M11.  The relatively small size of the MAEs indicates the overall good 

agreement between the experimental and calculated spectra. 



64 
 

Table 3.21: Computed and experimental excitation energies of I-·thymine at 30 states, where 

a, b, c and d are the lowest energy spectral bands. a,b 

 Excitation Energy (eV) 

Functional a b c d 

     

B3LYP 3.66 4.80 6.16 7.38 

CAM-B3LYP 3.82 5.14 6.61 7.93 

M062X 3.60 5.20 6.68 7.88 

M11 4.54 5.24 6.78 8.68 

MN12-SX 3.88 5.06 6.40 7.68 

PBE0 4.14 4.97 6.34 7.61 

     

Experimentalb 3.90 4.63 - - 
a TDDFT calculations were performed at 30 states. 

b Photodepletion (absorption) spectrum (unpublished work courtesy of Yoshikawa et al.). 

 

 

Table 3.22: Mean absolute errors in excitation energy (eV) associated with TDDFT/ 

LANL2DZ calculations of I-·thymine at 30 states. 

Functional Mean Absolute Error (eV) 

B3LYP 0.103 

CAM-B3LYP 0.148 

M062X 0.218 

M11 0.313 

MN12-SX 0.113 

PBE0 0.145 

 

In similar fashion to I-∙uracil, the lowest energy band on the calculated B3LYP/LANL2DZ 

spectra displays extremely low intensity (Figure 3.20). The oscillator strength of this 

transition is listed in Table 3.23 as 0.0036. As this transition was from iodide to a π* state on 

thymine, the inaccuracy in oscillator strength can again be attributed to either the failure of 

TDDFT to account for charge transfer transitions or the basis set not being diffuse enough to 

describe the dipole-bound excited state on iodide.  
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Figure 3.20: Comparison of the experimental and theoretical electronic spectra of I-∙Thy: 

Experimental photodepletion (absorption) data (unpublished work courtesy of Yoshikawa et 

al.),  Band profile for the photodepletion (absorption) spectrum and  

B3LYP/LANL2DZ (30 states).  

 

Table 3.23: Assignment of the four lowest energy excited state transitions of I-∙Thymine 

using B3LYP/LANL2DZ data. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment 

of 

Transition 

 

3.66 0.0036 HOMO  LUMO+1 0.70675 

(99.90) 

I  π* 

4.80 0.1623 HOMO-3  LUMO 0.67608 

(91.42) 

 

π  π* 

6.21 0.1630 HOMO-3  LUMO+1 0.52427 

(54.98) 

 

π  π* 

 

7.33 0.4671 HOMO-5  LUMO+1 0.64527 

(83.27) 

π  π* 
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Further inspection of the MOs in Figure 3.21 overleaf revealed that the three, higher energy 

bands at 4.80, 6.21 and 7.33 eV were dominated by transitions involving the nucleobase only. 

These transitions were all assigned as ππ*. Attention should to drawn to the low percentage 

contribution (54.98%) of the MOs involved in the transition at 6.21 eV. While the HOMO-

3LUMO+1 transition had the highest CI coefficient of all those listed, it is important to 

recognise that there would be a significant contribution from other MOs which give rise to 

the absorption band. For that reason it is with caution that the HOMO-3  LUMO+1 

transition is described as dominant. 

 

 

Figure 3.21: MOs involved in the electronic transitions of I-·thymine. MOs were calculated 

at the B3LYP/LANL2DZ level of theory. 
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3.3.3.c Iodide-Adenine 

A typical ground-state structure of I-∙adenine produced by the DFT geometry optimisation 

calculations is depicted in Figure 3.22. Following DFT calculations, the resulting structure 

and ground-state properties were analysed. I-∙adenine was found to have the largest dipole 

moment (9.32 Debye) of all the I-∙Nu systems studied. A small increase in length (0.029 Å) 

can be observed for the N···H bond when compared to the corresponding isolated structure 

(Figure 3.1d).  The H···I- distances were calculated as 2.54 and 3.70 Å. These values are in 

reasonable agreement to those reported by Stephansen et al.116 

 

Figure 3.22: The B3LYP/LANL2DZ optimised ground-state structures of I-·adenine. 

Hydrogen bonds are indicated with a dashed line with bond distances in Å.   

 

As there were no experimental data available for this system, MAEs could not be calculated 

and consequently the best performing functional could not be deduced. Nevertheless, the 

excitation energies produced by the various functionals are displayed in Table 3.24. Based on 

the high accuracy exhibited by B3LYP/LANL2DZ during the previous calculations of I-·Nu 

systems, its data were used in the assignment of the I-·adenine spectra.  
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Table 3.24: Computed excitation energies of I-·adenine at 50 states using LANL2DZ, where 

a, b and c are the lowest energy spectral bands. 

Functional Excitation Energy (eV) 

 a b c 

B3LYP 3.24 5.10 6.86 

CAM-B3LYP 4.93 5.47 6.84 

M062X 4.68 5.56 6.92 

M11 5.00 5.64 6.92 

MN12-SX 3.34 5.30 7.12 

PBE0 3.70 5.28 7.10 

 

 

Figure 3.23: Computed UV spectrum of I-·adenine, calculated at 50 states using 

B3LYP/LANL2DZ. 

 

As observed for the other I-·Nu complexes, the lowest energy band was found to be 

dominated by an excitation from iodide to a π* state on adenine. The lowest energy band is 

again extremely weak in intensity with a relatively low oscillator strength of 0.004 a.u. 

(Figure 3.23). The subsequent three, higher energy bands were also found to be dominated by 

transitions that were thought to be ππ* in nature.  A summary of these assignments is given 

in Table 3.25. The MOs involved in the electronic transitions of I-·adenine are displayed in 

Figure 3.24.   
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Table 3.25: The assignment of the three lowest energy excited-state transitions occurring in 

I-∙Adenine using B3LYP/LANL2DZ data. 

 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment of 

Transition 

 

3.24 0.0037 HOMO  LUMO+1 0.70665 

(99.87) 

 

I  π*(nucleobase) 

5.04 0.1512 HOMO-3  LUMO 0.57455 

(66.02) 

 

π  π* 

6.08 0.1583 HOMO-5  LUMO 0.47122 

(44.41) 

 

π  π* 

6.91 0.4114 HOMO-5 LUMO+1 0.56995 

(64.97) 

π  π* 

 

 

 

Figure 3.24: MOs involved in the electronic transitions of I-·adenine. MOs were calculated at 

the B3LYP/LANL2DZ level of theory. 
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3.4 Conclusion 

TDDFT calculations were performed on I-∙Nu complexes, where Nu = uracil, thymine and 

adenine, and their constituent “monomer” parts (i.e. the isolated iodide ion and isolated 

nucleobase monomer). Excited-state calculations produced UV absorption spectra from 

which the nature of the electronic transitions were assigned.  

The electronic transitions of uracil, cytosine, adenine and thymine were very similar in nature 

and were revealed to be mostly of ππ* character. Assignments made for the electronic spectra 

of the nucleobases were in agreement with those found in literature. TDDFT calculations of 

the isolated iodide ion produced UV spectra in which no bands were present. The absence of 

spectral bands was attributed to the lack of stable excited states for iodide.  

Strong similarities were also observed in the electronic spectra of the I-∙Nu complexes 

studied. The higher energy spectral bands were all found to correspond to ππ* transitions. 

Although the position of the lowest energy spectral bands were well described by 

B3LYP/LANL2DZ, calculations at this level of theory failed to accurately reproduce the 

intensity of these band, as seen in the experimental spectra. No functional/basis set 

combination produced spectra in which the lowest energy band had a significant oscillator 

strength. This failure was attributed to the nature of the electronic transition occurring at the 

first band. In all I-∙Nu spectra, the lowest energy spectral band corresponded to a charge 

transfer excitation to a dipole-bound excited state. To account for this transition, a more 

diffuse basis set must be used. 

 In a recent study by King et al., the aug-cc-pVDZ-PP basis set with several added sets of sp 

diffuse functions was used to investigate the difference in electron density for I-∙thymine and 

I-∙uracil following electronic excitation.99,117 Another study by this group employed the 6-
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311++G(d,p) basis set with five additional sets of sp diffuse functions to investigate the 

photodynamics of dipole bound I-∙adenine clusters.116  

Overall, B3LYP/LANL2DZ was found to be the best performing functional/basis set 

combination in terms of the prediction of the experimental excitation energies. The superior 

performance of B3LYP was attributed to its relatively smaller exact exchange component. Of 

the I-∙Nu and isolated nucleobases studied, M062X and M11 were deemed the worst 

performing functionals. M062X and M11 tended to grossly overpredict the experimental 

energies and provided a poor balance between computational time and accuracy. 

The inclusion of a solvent in TDDFT calculations was found to increase the accuracy of the 

theoretical excitation energies. The significant solvent shifts observed in the 

B3LYP/LANL2DZ solution spectra brought the calculated UV spectra into further good 

agreement with the aqueous experimental spectra.  
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Chapter 4 

 

A TDDFT Computational Study of Platinum (II) 

Complexes Bound to Water 

 

4.1 Introduction 

As discussed in Chapter 3, gas-phase UV spectra of various Pt(CN)n
2-∙Nu complexes have 

been obtained using laser spectroscopy and initial assignments of their excited-state 

transitions have been made.43 A theoretical investigation of these systems is necessary to 

confirm the preliminary assignments. As a precursor to this, the UV electronic transitions of 

Pt(CN)4
2-∙H2O complexes will be explored in this chapter. This study aims to investigate the 

evolution of the transitions of bare Pt(CN)4
2- into a complex with a solvent molecule that 

lacks a near-UV chromophore.  

Although research into platinum complexes bound to water is limited, platinum (II) 

complexes are studied frequently due to their relationship to the anticancer drug 

cisplatin.86,118,119 Wang et al. have previously employed experimental and theoretical methods 

to study the electronic structures and stabilities of Pt(CN)4
2- and Pt(CN)6

2-  in the gas phase. 

Photodetachment photoelectron spectroscopy was used to measure the adiabatic electron 

binding energies, vertical detachment energies and repulsive Coulomb barriers. Density 

functional theory (DFT) calculations were performed at the B3LYP and PW91 levels of 
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theory to confirm the geometries of the dianions and to aid interpretation of the experimental 

results.58,120-121  

Wang and Ziegler have also investigated the electronic properties of platinum (II) complexes 

using theoretical methods. Having devised a two-component relativistic time-dependent 

density functional theory (TDDFT) formalism, Pt(CN)4
2-, PtCl4

2- and PtBr4
2 were used to 

assess its performance.122 The electronic spectra and subsequent excitation energies of these 

complexes were calculated and compared to experimental data obtained using single crystal 

absorption spectroscopy.123  

The structure and stability of microsolvated Pt(CN)4
2- clusters have been investigated by 

Milner et al. in a joint experimental and theoretical study. Resonance excitation collision 

induced dissociation was used to determine the stabilities and fragmentation pathways of the 

following clusters: Pt(CN)4
2∙(H2O)n  where n = 1–4, Pt(CN)4

2∙(MeCN)m  where m = 1,2  and 

Pt(CN)4
2∙ (H2O)3∙MeCN. The lowest energy structural isomers of Pt(CN)4

2∙(H2O)4 were 

identified using DFT at the B3LYP/LACVP+* level of theory.124  

In this chapter, TDDFT will be used to calculate the electronic spectra of the following 

complexes: Pt(CN)4
2-, Pt(CN)6

2- and Pt(CN)4
2-∙H2O. In order to investigate their effects on 

the excitation energies, the calculations will employ a range of hybrid functionals. This study 

will also probe the performance of several pseudopotentials for the prediction of electronic 

spectra.   

4.2 Computational Details 

DFT geometry optimisations and frequency calculations were performed on Pt(CN)4
2-∙H2O, 

Pt(CN)4
2- and Pt(CN)6

2- at the following levels of theory: B3LYP, CAM-B3LYP, M062X, 

M11, MN12-SX and PBE0.58-61, 64-65 Using their previously optimised structures, TDDFT 

calculations were then performed on Pt(CN)4
2-∙H2O, Pt(CN)4

2- and Pt(CN)6
2- at the respective 
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levels of theory. All calculations were carried out using the Gaussian 09 (G09) package, 

version D.01.95  

To probe its effects, the basis set employed in the calculations on Pt(CN)4
2- was also varied. 

Either Def2-TZVPP or SDD pseudopotentials were used to describe the core platinum 

electrons, while LANL2DZ was employed in conjunction to define the valence electrons (C 

and N) in Pt(CN)4
2-. The effect of using LANL2DZ as pseudopotential on Pt was also 

explored. In this combination, 6-311++G(2d,2p) was used on C and N. In addition to these 

pseudopotential combinations, the LANL2DZ basis set was also tested.  

The effect of solvation on the excitation energies of isolated Pt(CN)4
2- was investigated using 

IEFPCM, the default version of PCM in G09. TDDFT calculations were performed at the 

MN12-SX/LANL2DZ level of theory and methanol was used as the solvent. The solvent 

chosen was the same as that used in a study by Sen et al.,41 from which the aqueous 

experimental spectra of Pt(CN)4
2- and Pt(CN)6

2- have been obtained.43  

 

4.3 Results and Discussion 

4.3.1 Platinum (II) Tetracyanide 

DFT ground state geometry optimisations were performed on Pt(CN)4
2- using a range of 

functional/basis set combinations. The resulting D4h square-planar optimised ground-state 

structure was found to have average Pt···C and C···N bond lengths of 2.01 and 1.19 Å, 

respectively.  

Using their respective optimised structures, TDDFT calculations were performed at 10, 20 

and 30 states. When employing CAM-B3LYP, M062X and M11, 20 states was sufficient to 

reproduce the two absorption bands alluded to in the experimental spectra (Figure 4.1). 
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However, TDDFT calculations had to be performed at 30 states when using the B3LYP, 

MN12-SX and PBE0 functionals.  

 

Figure 4.1: Experimental gas-phase photodepletion (absorption) spectrum of Pt(CN)4
2-. 

(Courtesy of Sen et al.)43  

 

As outlined in chapter 3, LANL2DZ was proven to be the best performing basis set for 

predicting the excitation energies of several nucleobases with the range of functionals studied 

for uracil, cytosine, thymine and adenine. In order to see if that conclusion was still relevant 

for the platinum-based complexes studied in this chapter, the basis set used in this study was 

also varied. With the exception of 6-311++G(2d,2p), the basis sets studied in the previous 

chapter (LANL2DZ and Def2-TZVPP) were employed as pseudopotentials on Pt. The SDD 

pseudopotential and LANL2DZ basis set was also tested. A comparison of the subsequent 

computational and experimental energies is provided in Table 4.1. 
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Table 4.1: Comparison between the theoretical excitation energies obtained using TDDFT at 

30 states and the experimental, gas phase results (in eV) of Pt(CN)4
2-; where a and b are the 

lowest energy spectral bands. 

 

 

DEF2-TZVPP 

(ECP)a 

LANL2DZ SDD (ECP) a LANL2DZ 

(ECP) b 

 a b a b a b a b 

B3LYP 5.21 8.07 5.16 6.79 5.05 6.48 5.12 6.23 

CAM-B3LYP 5.47 8.89 5.48 7.30 5.37 7.09 5.41 6.78 

M062X 5.74 8.96 5.70 7.36 5.66 7.14 5.58 6.70 

M11 5.72 9.30 5.68 6.89 5.58 6.88 5.48 6.50 

MN12-SX 5.26 7.27 4.38 5.80 5.19 5.79 4.15 5.63 

PBE0 5.37 8.46 5.33 7.08 5.24 6.72 5.28 6.40 

         

Experimentalc 4.70 - 4.70 - 4.70 - 4.70 - 

a ECPs were used solely on Pt, while LANL2DZ was used for C and N. 

b ECP  was used on Pt only, while 6-311++G(2d,2p) was used for C and N. 

c Ref [43] 

Table 4.2: The mean absolute errors in excitation energy (eV) of Pt(CN)4
2-. 

Functional 

 
Def2-TZVPP 

(ECP) a 

LANL2DZ 

 

SDD 

(ECP) a 

LANL2DZ 

(ECP) b 

B3LYP 0.51 0.46 0.35 0.42 

CAM-B3LYP 0.77 0.78 0.67 0.71 

M062X 1.04 1.00 0.96 0.88 

M11 1.02 0.98 0.88 0.78 

MN12-SX 0.56 0.32 0.49 0.55 

PBE0 0.67 0.63 0.54 0.58 
a ECPs were used solely on Pt, while LANL2DZ was used for C and N. 

b ECP  was used on Pt only, while 6-311++G(2d,2p) was used for C and N. 

 

The MAEs calculated in Table 4.2 show clearly the variation in functional/basis set 

combinations. With a relatively small error of 0.32 eV, MN12-SX/LANL2DZ produced the 

most accurate results in terms of predicting the experimental excitation energies. This was 

followed closely by the B3LYP/SDD (ECP) combination which had an error of 0.35 eV. 
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Comparisons between these two functionals showed that when the basis set was varied, 

B3LYP consistently outperformed MN12-SX, (with the exception of LANL2DZ).  

M062X and M11 proved to be the worst performing functionals, displaying the highest 

MAEs. Calculations at these levels of theory led to a significant over prediction of the 

excitation energies.  It has been suggested by Zhao et al. and Peverati et al. that a higher 

accuracy can be achieved when using the long-range versions of these functionals. Their 

studies deduced that the M06-L and M11-L functionals (which contain no Hartree Fock 

exchange), were better suited for treating systems containing transition metals.125,126 

Calculations using PBE0 and CAM-B3LYP also resulted in an overestimation of the 

excitation energies. Consequently, these functionals were deemed unsuitable for the platinum 

(II) systems under consideration. The performance of the functionals tested can be 

summarised as follows, in the order of decreasing performance: MN12-SX >B3LYP > PBE0 

> CAM-B3LYP > M11 > M062X. 

The SDD pseudopotential basis set produced the lowest errors overall, giving a highly 

accurate prediction of the first experimental band (Table 4.2). As expected, this 

pseudopotential also provided a relatively low computational time. This apparently high 

accuracy and reasonable CPU time cost makes SDD (ECP) an attractive choice. However, 

examination of the computed UV spectrum revealed that the pseudopotential tended to 

largely overestimate the position of the second experimental band. This is depicted in Figure 

4.2, in which the computational UV spectra produced by B3LYP/SDD (ECP) and PBE0/SDD 

(ECP) are compared to the experimental spectrum.  
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Figure 4.2: Comparison of the experimental and theoretical electronic spectra of Pt(CN)4
2- : 

   Experimental photodepletion (absorption) spectrum (courtesy of Sen et al.),43  

Band profile for photodepletion spectrum B3LYP/SDD (ECP) and   

PBE0/SDD (ECP). 

 

The inability of SDD (ECP) to replicate the pattern in the oscillator strengths of the 

experimental bands can also be seen in Figure 4.2 above.  Due to these reasons of accuracy, 

LANL2DZ (specifically when used in conjunction with MN12-SX) was viewed as the better 

performing basis set.    

Interestingly, use of the SDD pseudopotential with MN12-SX did not produce the relatively 

poorer performance displayed by other functionals. As can be seen in Figure 4.3, calculations 

employing MN12-SX/SDD (ECP) on Pt(CN)4
2- produced UV spectra which accurately 

predicted the excitation energy of the higher energy band. It also predicts the higher energy 

band as the most intense spectral band over this region, therefore successfully replicating the 

pattern in oscillator strength seen in the experimental spectrum. In these respects, MN12-

SX/SDD (ECP) performs comparably to MN12-SX/LANL2DZ. However, MN12-SX/SDD 

(ECP) grossly overestimated the position of the lowest energy band and did not represent the 

difference in intensity between the two spectral bands accurately.  
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Figure 4.3: Comparison of the experimental and theoretical electronic spectra of Pt(CN)4
2:      

Experimental photodepletion (absorption) spectrum (courtesy of Sen et al.),43 

Band profile for photodepletion spectrum,   MN12-SX/SDD (ECP),  B3LYP/ 

LANL2DZ (ECP) and B3LYP/SDD (ECP).  

 

When compared to LANL2DZ, use of LANL2DZ (ECP) on Pt in conjunction with 6-

311++G(2d,2p) (on C and N) resulted in a modest increase in accuracy for the prediction of 

the lowest energy band in the experimental UV spectrum of Pt(CN)4
2- (Figure 4.3). 

Consequently, the MAEs associated with calculations employing LANL2DZ (ECP) were 

generally lower than those of LANL2DZ.  

Although LANL2DZ (ECP) produced UV spectra that were quantitatively more accurate than 

the LANL2DZ basis set, LANL2DZ (ECP) gave a poorer qualitative reproduction of the 

experimental UV spectrum of Pt(CN)4
2-. With exception of MN12-SX/LANL2DZ (ECP), 

LANL2DZ (ECP) produced UV spectra in which the lowest energy band was more intense 

than the highest. As shown in Figure 4.3, the pattern in the intensity of the spectral bands 
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within LANL2DZ (ECP) spectra is in contrast with that seen in the experimental UV 

spectrum. With respect to LANL2DZ, a notable increase in the computational time of 

calculations employing the LANL2DZ (ECP) was also observed. The computational time 

associated with running a TDDFT calculation using LANL2DZ (ECP) at 30 states was on 

average 33 minutes longer than that of the LANL2DZ basis set.  

Similar to the trend observed previously with the nucleobases, Def2-TZVPP (ECP) had the 

highest errors associated with its results, indicating a poor level of accuracy. Analysis of the 

computational spectra (Figure 4.4) showed that the use of this basis set led to an 

overestimation in the excitation energy of both spectral bands. Figure 4.4 depicts an extreme 

case in which M11/Def2-TZVPP predicted the energy of the second band as 9.30 eV. The 

expected value of this band was approximately 6 eV.   

 

Figure 4.4: Comparison of the theoretical and experimental electronic spectra of Pt(CN)4
2- :     

  Experimental photodepletion spectrum (courtesy of Sen et al.),43  Band profile for 

photodepletion spectrum,  M11/Def2-TZVPP (ECP) and  B3LYP/Def2-

TZVPP (ECP). 

 

The computational time associated with running the Def2-TZVPP (ECP) calculations made 

the use of this basis set impractical for studying the electronic states of Pt(CN)4
2-. 
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Calculations at this level ranged in duration between 1 and 3.5 hours. This is significantly 

longer than the length of time taken to compute calculations involving LANL2DZ, of which 

the average time was 11 minutes. The poor balance between computational time and accuracy 

exhibited by Def2-TZVPP (ECP), when employed in the TDDFT calculations of the isolated 

Pt(CN)4
2-monomer, makes the use of this pseudopotential basis set unsuitable in the study of 

the larger Pt(CN)4
2-∙M complexes.  

Using the MOs generated at MN12-SX/LANL2DZ level (Figure 4.5), assignments of the 

transitions were made (Table 4.3). The spectral bands at 4.38 and 5.8 eV represented 

transitions from the A1g ground state to A2u and Eu excited states, respectively. At 5.8 eV, the 

dominant excitations were discovered to have originated from a pair of degenerate orbitals, 

HOMO-1 and HOMO-2. These assignments were compared to literature to confirm their 

accuracy.127  

 

 

Figure 4.5: MOs involved in the electronic transitions of Pt(CN)4
2-∙ MOs have been 

calculated at the MN12-SX /LANL2DZ level of theory. 
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Table 4.3: Assignment of the vertical excitations of Pt(CN)4
2-  using MN12-SX/LANL2DZ 

data. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution)  

Assignment of 

Transition 

4.38 0.0648 HOMO  LUMO 0.70148 

(98.41) 

A1g  A2u    

5.80 0.1273 HOMO-1  LUMO+3 

 

HOMO-2  LUMO+3 

 

0.68452 

(93.71) 

A1g   A2u 

 

 

 

An aqueous UV spectrum of Pt(CN)4
2-has been obtained experimentally by Sen et al. in 

addition to a photodepletion (absorption) spectrum of Pt(CN)4
2-. A comparison of the gas-

phase photodepletion and aqueous experimental UV spectra Pt(CN)4
2- is presented in Figure 

4.6. A bathochromic shift of 0.17 eV is seen for the lowest energy band in the aqueous UV 

spectrum of Pt(CN)4
2. The aqueous spectrum of Pt(CN)4

2- contains an additional spectral 

band of relatively weak intensity at 5.17 eV. Although the spectral band is not included in the 

band profile of the gas phase absorption spectrum (denoted by a solid black line in Figure 

4.6), it is present in the photodepletion (absorption) spectrum of Pt(CN)4
2- also at 5.17 eV.  

 

Figure 4.6: Comparison of the solution and gas phase experimental UV spectra of Pt(CN)4
2-

: 

 Aqueous absorption spectrum and Photodepletion (absorption) spectrum. The 

solid black line is a tentative band profile for the photodepletion spectrum.  
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The aqueous absorption spectrum of Pt(CN)4
2- was computed using IEFPCM/TDDFT and 

MeOH was used as the solvent (Figure 4.6). The first 30 electronic states of Pt(CN)4
2- were 

calculated at the MN12-SX/LANL2DZ level of theory. The excitation energies of Pt(CN)4
2- 

produced by IEFPCM/TD-MN12-SX/LANL2DZ are listed in Table 4.4 below. The 

computed UV spectrum of Pt(CN)4
2- is presented in Figure 4.7, where it has been compared 

with the gas phase MN12-SX/LANL2DZ and aqueous experimental UV spectra of Pt(CN)4
2-.  

Table 4.4: Comparison of the experimental and computed excitation energies of Pt(CN)4
2-  

(in vacuo and solution), where a and b are the lowest energy spectral bands.a-c 

 Excitation Energy (eV) 

a b 

Vacuuma 4.38 5.80 

Solutionb 4.99 6.14 

Experimental (gas phase)c 4.66 - 

Experimental (solution)c 4.87 5.73 

a TD-B3LYP/LANL2DZ calculation performed at 20 states  

b TDDFT calculation performed at IEFPCM/B3LYP/LANL2DZ level (20 states) 

c Ref [43] 

 

Figure 4.7: Comparison of the computed and experimental absorption spectra of Pt(CN)4
2-: 

 Solution-phase absorption spectrum produced by IEFPCM/MN12-SX/LANL2DZ, 

 Gas-phase absorption spectrum produced by MN12-SX/LANL2DZ, Aqueous 

experimental UV spectrum.  
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In comparison to the gas-phase UV spectrum, significant solvent shifts are observed in the 

aqueous MN12-SX/LANL2DZ spectrum for both absorption bands. A large bathochromic 

shift of 0.61 eV is seen for the lowest energy band in the solution phase MN12-

SX/LANL2DZ spectrum of Pt(CN)4
2-.  The highest energy band in the solution-phase 

computed spectrum of Pt(CN)4
2- experiences a significant bathochromic shift of 0.34 eV. As 

shown in Figure 4.7, the solvent shift seen in the IEFPCM/MN12-SX/LANL2DZ spectrum of 

Pt(CN)4
2- brings the aqueous theoretical spectrum into very good agreement with the solution 

phase experimental absorption spectrum of Pt(CN)4
2-

. 

Following solvation, the lowest band in the aqueous computed UV spectrum of Pt(CN)4
2  is 

hyperchromically shifted and is three times as intense as first band in the aqueous 

experimental spectrum of Pt(CN)4
2-. In Figure 4.7, a notable hyperchromic shift is also 

observed for the highest energy band in the aqueous computed UV spectrum of Pt(CN)4
2-.   

 

4.3.2 Platinum (IV) Hexacyanide 

Geometry optimisation calculations were conducted using the B3LYP, CAM-B3LYP, 

M062X, M11, MN12-SX and PBE0 functionals in conjunction with LANL2DZ. During 

previous investigations of Pt(CN)4
2-, LANL2DZ performed best in terms of predicting the 

relative band positions. Therefore, it was the only basis set employed in both DFT and 

TDDFT calculations for Pt(CN)6
2-

.  

The key Pt-C and C≡N bond lengths in the octahedral, Oh ground state optimised structure 

were calculated as 2.03 and 1.18 Å, respectively. The calculated bond lengths are in good 

agreement with other theoretical results available in the literature.128 Frequency calculations 

yielded no imaginary values, confirming that these results were representative of a PES 

minimum.  
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While it was possible to conduct TDDFT calculations at 50 states when using the B3LYP, 

CAM-B3LYP and PBE0 functionals, 70 states were necessary for M06-2X and M11. MN12-

SX required the highest number of states (90) to fully elucidate the second spectral band. It is 

interesting to observe in Figure 4.8, that even at their respectively high number of states, the 

highest energy band was still present on the rising edge of the lower energy band.  

 

Figure 4.8: Theoretical UV spectrum of Pt(CN)6
2- generated using LANL2DZ and the 

following functionals:  B3LYP (50 states),  PBE0 (50 states) and 

MN12-SX (90 states). 

 

The excitation energies produced from the TDDFT calculations on Pt(CN)6
2- are presented in 

Table 4.5, where they have been compared to experimental excitation energies. A comparison 

of the excitation energies produced by the various functionals shows that B3LYP/LANL2DZ 

produced excitation energies that were significantly lower than the other functionals. As gas-

phase experimental data was not available for Pt(CN)6
2-, it is not possible to determine 

precisely if B3LYP’s results were a gross underestimation or in fact accurate. However, 
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comparisons of the computed UV spectra can be made with the aqueous experimental 

absorption spectrum that has been produced by Sen et al. (Figure 4.9). 

Table 4.5: Comparison between the computed and experimental excitation energies of 

Pt(CN)6
2-, where a and b are the lowest energy spectral bands.a,b 

a TDDFT calculations performed at 90 states using LANL2DZ for all atoms. 

b Ref [43] 

 

 

Figure 4.9: Aqueous experimental absorption spectrum of Pt(CN)6
2- (courtesy of Sen et 

al.).43  

 

Comparison of the computed and experimental excitation energies for the lowest energy band 

in the electronic spectra of Pt(CN)6
2- revealed B3LYP/LANL2DZ to be the best performing 

functional, (in terms of predicting the excitation energy of the first spectral band). Similar to 

Functional Excitation Energy (eV) 

 a b 

B3LYP 6.61 7.33 

CAM-B3LYP 7.52 8.51 

M062X 7.68 9.10 

M11 8.05 9.09 

MN12-SX 7.30 8.19 

PBE0 7.09 7.89 

Experimentalb  5.64 - 
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the TDDFT calculations on Pt(CN)4
2-, M062X and M11 were deemed the poorest performing 

functionals as they gave the largest overprediction of the lowest energy spectral band.  

In Table 4.5, significant differences between the computed excitation energies and 

experimental excitation energies can be seen for all functionals. These differences can partly 

be attributed to the different phases of the experimental and computed UV spectra. The 

theoretical spectra of Pt(CN)6
2- were produced by TDDFT calculations which were conducted 

in the gas phase. Conversely, the experimental absorption spectrum of Pt(CN)6
2- was obtained 

in solution. Whilst comparisons of the computed and experimental absorption spectra of 

Pt(CN)6
2- provides an indication of the density functional performance, only tentative 

conclusions can be drawn from these comparisons.   

When employed during the study of the Pt(CN)4
2-monomer,  MN12-SX displayed the highest 

level of accuracy and produced results at reasonable computational cost. Consequently, 

MN12-SX/LANL2DZ data were used to assign the excited-state transitions for Pt(CN)6
2-  

(Table 4.6). MOs associated with these assignments are presented in Figure 4.10. 

Table 4.6: Assignment of the vertical excitations of Pt(CN)6
2-  using MN12-SX/LANL2DZ 

data. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution)  

Assignment 

of Transition 

7.35 0.2044 HOMO-4  LUMO+4 

 

 

HOMO-3  LUMO+3 

 

 

HOMO-5  LUMO+4 

 

 

0.45588 

(41.57) 

 

0.59544 

(70.91) 

 

0.57544 

(66.23) 

T1uEg 

 

 

T1uEg 

 

 

T1uEg 

 

8.19 0.1398 HOMO-14  LUMO+4 

 

0.61509 

(75.67) 

T1uEg 
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At both excitation energies (7.35 and 8.19 eV), the dominant transitions were from T1u to Eg 

states. It is interesting to observe that although the dominant transitions at 7.35 eV originated 

from three degenerate states, their CI coefficients vary significantly. Of these transitions, 

HOMO-4  LUMO+4 had the lowest coefficient (corresponding to 41.57%). With such a 

relatively low percentage in contribution, it is arguable that the HOMO-4  LUMO+4 

transition is not representative of the overall excitations occurring at 7.35 eV. Therefore, it 

cannot be described as dominant.  

 

Figure 4.10: MOs involved in the electronic transitions of Pt(CN)6
2-, calculated at the MN12-

SX/LANL2DZ level of theory.   
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4.3.3 Platinum (II) Tetracyanide∙Water 

DFT geometry optimisation calculations were carried out using the following functionals: 

B3LYP, CAM-B3LYP, M062X, M11, MN12-SX and PBE0. Figure 4.11 displays a typical 

structure obtained at the MN12-SX/LANL2DZ level of theory for Pt(CN)4
2-∙H2O. There was 

little disparity between the calculated bond lengths of Pt(CN)4
2-∙H2O and its monomer 

Pt(CN)4
2-.  The Pt-C bond length of the solvated complex was found to be the same as that of 

Pt(CN)4
2- (1.19 Å) whilst the C-N length displayed a modest elongation of 0.1 Å. The 

distance of the N-H hydrogen bond was recorded as 1.71 Å. 

 

Figure 4.11: MN12-SX/LANL2DZ optimised ground state geometry of Pt(CN)4
2-∙H2O. The 

hydrogen bond is indicated with a dashed line; hydrogen bond distance is in Å.  

 

Following optimisation of the ground state structure, TDDFT calculations were performed at 

both 10 and 20 states. For all the functionals tested, two distinct bands of varying intensities 

were produced at 20 states. As shown in Table 4.7, these bands occurred at around 5.6 and 

6.9 eV. Notably, these excitation energies were strikingly similar to the transitions of 

Pt(CN)4
2-.  
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Table 4.7: Comparison between the computed excitation energies of Pt(CN)4
2-∙H2O produced 

using TDDFT at 20 states, where a and b are the lowest energy spectral bands. 

 

It is interesting to note from Figure 4.12 how the trend in oscillator strength differs between 

functionals. B3LYP, CAM-B3LYP, M062X, M11 and PBE0 all produced spectra in which 

the first absorption band had a higher oscillator strength than the second. MN12-SX was the 

only functional tested which presented the second band as the most intense.  

 

Figure 4.12: Comparison of the theoretical UV spectra produced using the following 

functionals and LANL2DZ: PBE0, B3LYP and MN12-SX.  

Functional Excitation Energy (eV) 

 a b 

B3LYP 5.20 6.83 

CAM-B3LYP 5.52 7.40 

M062X 5.74 7.48 

M11 5.74 7.02 

MN12-SX 5.80 5.80 

PBE0 5.38 7.06 
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Owing to its previously good performance during the Pt(CN)4
2- studies, TDDFT results 

generated by MN12-SX/LANL2DZ were used to assign the electronic transitions of 

Pt(CN)4
2-∙H2O.  These assignments are listed below in Table 4.8.  

Table 4.8: Assignment of the electronic transitions of Pt(CN)4
2-∙H2O

 . 

Excitation 

Energy 

(eV) 

Oscillator Strength 

(a.u.) 

CI Coefficient 

(% contribution)  

Assignment of 

Transition 

    

4.48 0.0681 0.70060 

(98.17%) 

HOMO  LUMO 

5.77 0.1196 0.68719 

(94.45%) 

HOMO-1 LUMO+3 

 

 

 

The dominant transitions at 4.48 and 5.77 eV corresponded respectively to the following 

excitations: HOMOLUMO and HOMO-1LUMO+3. Inspection of these MOs, reveals 

that these transitions involved only the orbitals in which are localised on Pt(CN)4
2-. On this 

basis, it can be concluded that H2O does not appear to significantly perturb these electronic 

transitions of Pt(CN)4
2-∙H2O.  Further evidence for this comes from the strong similarities 

between the MOs participating in these transitions in Pt(CN)4
2-∙H2O and those in bare 

Pt(CN)4
2-. This is illustrated in Table 4.9 where the relevant MOs of Pt(CN)4

2- and Pt(CN)4
2-

∙H2O have been compared. 
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Table 4.9: A comparison between the MOs of Pt(CN)4
2- and Pt(CN)4

2-∙H2O which are 

involved in the excited state transitions. 

 Pt(CN)4
2- Pt(CN)4

2-∙H2O 

   

 

 

 

 

HOMO 

 

 

 

 

      
 

 

 

 

 

 

HOMO-1 

 

 

 

 
 

 

 

 

 

 

LUMO 

 

 

 

 

 

 

 

 

 

 

LUMO+3 
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4.4 Conclusion 

Density functional and basis set comparisons carried out on Pt(CN)4
2- revealed MN12-

SX/LANL2DZ to be the best performing combination followed closely by B3LYP/SDD. 

Examination of the MAEs showed that, with the exception of LANL2DZ, B3LYP 

consistently produced more accurate excitation energies. However, the use of this functional 

with basis sets other that LANL2DZ resulted in a significant increase in CPU time cost.  It 

was suggested that the size of the pseudopotential used was responsible for this unexpected 

rise in computational time.  

In summary, TDDFT calculations were performed on Pt(CN)4
2-, Pt(CN)6

2- and Pt(CN)4
2-∙H2O 

complexes producing UV spectra and assignment of their excited-state transitions were made. 

The MOs involved in the transitions of Pt(CN)4
2-∙H2O and Pt(CN)4

2- were found to be very 

similar in character, so that the hydrogen bond-bonding water molecule does not significantly 

perturb the electronic structure of Pt(CN)4
2-

. 
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Chapter 5 

 

A TDDFT Computational Study of Platinum (II) and (IV) 

Complexes Bound to a Single Nucleobase 

 

5.1 Introduction 

Following the discovery of cisplatin’s anti-cancer properties in the 1960s, its use has become 

widespread in the treatment of cancer.129 It is estimated that cisplatin and its various 

analogues are used in up to 50% of chemotherapeutic regimens.130 However, the popularity 

and high success rate of cisplatin is overshadowed by its serious side effects including 

neurotoxicity and nephrotoxicity.129-132 In an effort to overcome these side effects, recent 

research has focused on the chemotherapeutic use of alternative organometallic 

compounds.134-136  

As discussed previously in Chapter 1, an area of research with considerable interest is the use 

of platinum complexes in photo activated chemotherapy (PACT). PACT is a combinatorial 

approach in which the anticancer properties of transition metals and the phototoxic effects of 

photosensitising agents are exploited.38,130 Transition metals are of specific interest as they 

display a variety of excited states which can easily be generated by irradiation.38  

Several studies have focused on the use of platinum (II) and (IV) complexes as 

photochemotherapeutic agents and have aimed to probe their photophysical and 

photochemical properties. Using NMR and mass spectrometry, Cubo et al. investigated the 

effects of irradiation over time in the reaction of Pt (II) and (IV) diamine complexes with 
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adenosine, guanine and cytidine nucleotides. The excited-state geometries and electronic 

properties of the Pt (II, IV) complexes were characterised using TDDFT. Calculations were 

performed at 32 states and employed PBE0 and LANL2DZ as an effective core potential on 

Pt.136  

Sen et al. conducted the first laser photodissociation study of isolated platinum dianions 

bound to a single nucleobase. These complexes represented model systems from which the 

photophysical processes associated with PDT were investigated. Photodepletion spectra of 

Pt(CN)4
2-∙Ur  and Pt(CN)6

2-∙Ur were obtained and initial assignments of the electronic 

transitions were made.41  

Later work by Sen et al. investigated the influence of the nucleobase on the photophysics of 

various Pt(CN)4
2-∙Nu clusters using laser spectroscopy, where Nu = uracil, thymine, cytosine 

or adenine. All spectra contained broad absorptions bands and an increase in intensity was 

observed at higher energies, indicating the presence of an additional band above the spectral 

range. While there was little difference observed between spectra of the Pt(CN)4
2-∙Nu 

complexes, notable variations were found in the absorption profiles of  Pt(CN)4
2-∙Cy and 

Pt(CN)4
2- Thy . In contrast to the very broad absorption band present in the Pt(CN)4

2-∙ Thy 

spectrum, the Pt(CN)4
2-∙Cy spectrum contained a relatively narrow band. A correlation was 

found between the changes in band width and the differences in the photo fragmentation 

product ions.43  

The aim of this chapter will be to use TDDFT to calculate electronic spectra for the 

Pt(CN)4,6
2-∙Nu complexes, where Nu = uracil or cytosine. To provide a more rigorous 

assignment of experimentally measured UV spectra, the nature of the excited-state transitions 

occurring within the Pt(CN)4,6
2-∙Nu complexes will be characterised. Alongside this, the 
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performance of various density functionals and basis sets will be examined and their 

suitability to Pt(CN)4,6
2-∙Nu complexes will be determined.  

 

5.2 Computational Details 

Ground-state geometry optimisations and frequency calculations were performed for 

Pt(CN)4
2-∙uracil, Pt(CN)4

2-∙cytosine and Pt(CN)6
2-∙uracil using DFT at the following levels of 

theory: B3LYP, CAM-B3LYP, M062X, M11, MN12-SX and PBE0.58-61,65-66 To study the 

electronic transitions of the Pt(CN)4,6
2-∙Nu complexes, TDDFT calculations were performed 

at the six levels of theory using their respective optimised structures. All calculations were 

carried out using Gaussian 09 (G09), revision d.01.95  

To test their performance, a range of pseudopotentials were used in the DFT and TDDFT 

calculations for Pt(CN)4
2-∙uracil, Pt(CN)4

2-∙cytosine. The following ECPs were used on Pt: 

Def2-TZVPP, LANL2DZ and SDD. In calculations where LANL2DZ ECP was employed, 6-

311++G(2d,2p) was used for all other atoms. The Def2-TZVPP and SDD ECPs were used in 

conjunction with LANL2DZ for all other atoms. By comparison with gas-phase 

photodepletion (absorption) spectra, the performance of the various functionals and basis sets 

tested were determined. In addition to the various pseudopotentials, the performance of the 

LANL2DZ basis set was also assessed. All calculations on Pt(CN)6
2-∙uracil employed the 

LANL2DZ basis set.  

 



97 
 

5.3 Results and Discussion 

5.3.1 Pt(CN)4
2-∙uracil 

DFT geometry optimisation calculations were performed on Pt(CN)4
2-∙uracil and produced 

the ground-state structure shown in Figure 5.1 below. Frequency calculations did not generate 

any imaginary values, therefore it can be concluded that the optimised structures represent 

local minima on the PES. 

 

Figure 5.1: Ground-state B3LYP/LANL2DZ optimised geometry of Pt(CN)4
2-∙uracil. 

Hydrogen bonds are indicated as dashed lines and bond lengths are in Angstroms.  

 

Geometrically significant bond distances were calculated from the B3LYP/LANL2DZ 

optimised structure and are displayed in Table 5.1. 
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Table 5.1: Selected bond distances (Å) in the B3LYP/LANL2DZ optimised geometry of 

Pt(CN)4
2-∙uracil.  

Bond Bond Distance (Å) 

Pt‒C1 2.011 

Pt‒C2 2.024 

C1‒N1 1.191 

C2‒N1 1.194 

C1-N1···H1 1.679 

C2-N2···H2 2.422 

N5‒H1 1.064 

C5‒H2 1.089 

C5‒C6 1.375 

C7‒O1 1.267 

C8‒O2 1.259 

 

In comparison to its isolated constituent “monomer” parts (i.e. isolated Pt(CN)4
2-and isolated 

uracil), there were notable differences observed in the bond lengths of Pt(CN)4
2-∙uracil . 

Compared to isolated Pt(CN)4
2-, the Pt‒C2 bond in Pt(CN)4

2-∙uracil was elongated by 0.01 Å. 

Hydrogen bonding was shown to perturb the C5‒H2 and N5‒H1 bonds of Pt(CN)4
2-∙uracil. In 

comparison to isolated uracil, the C5‒H2 and N5‒H1 bonds in Pt(CN)4
2-∙Uracil were 

elongated by 0.05 and 0.01 Å, respectively. The N1···H1 and N2···H2 hydrogen bond 

lengths were 1.679 and 2.422 Å, respectively. These values were in very good agreement 

with the corresponding hydrogen bond lengths reported by Sen et al.124  

TDDFT calculations were performed at the following levels of theory to study the electronic 

transitions of Pt(CN)4
2-∙uracil: B3LYP, CAM-B3LYP, M062X,M11, MN12-SX and PBE0. 

To assess the effect of changing the basis set on the excitation energy, the basis set used in 

calculations was also varied. The excitation energies produced using each functional/basis set 

combination and the experimental energies are listed in Table 5.2. The mean absolute errors 

have also been calculated for each combination and are displayed in Table 5.3. 
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Table 5.2: Comparison between the theoretical excitation energies obtained using TDDFT 

and the experimental, gas-phase results (in eV) of Pt(CN)4
2-∙uracil, where a and b are the 

lowest energy spectral bands. 

 SDD (ECP)a 

 

LANL2DZ 

(ECP)b 

DEF2-TZVPP 

(ECP)a 

LANL2DZ 

 

a b a b a b a b 

B3LYP 5.05 6.31 5.13 6.28 5.19 6.41 5.11 6.26 

CAM-B3LYP 5.35 6.71 5.39 6.78 5.44 6.82 5.41 6.61 

M062X 5.56 6.72 5.65 7.03 5.64 7.98 5.64 6.67 

M11 5.50 6.88 5.49 6.58 5.64 6.87 5.62 6.76 

MN12-SX 5.28 6.54 4.40 5.20 5.32 6.69 5.32 5.86 

PBE0 5.22 6.51 5.28 6.31 5.33 6.58 5.28 6.48 

         

Experimentalc 4.64 - 4.64 - 4.64 - 4.64 - 
a ECP was used solely on Pt, while LANL2DZ was used for C, N, O and H atoms. 

b ECP was used on Pt only, while 6-311++G(2d,2p) was used for C, N, O and H atoms. 

c Ref [41] 

 

Table 5.3: The mean absolute errors in excitation energy (eV) of Pt(CN)4
2-∙uracil.  

Functional 

 
SDD 

(ECP) a 

LANL2DZ 

(ECP)b 

Def2-TZVPP 

(ECP) a 

LANL2DZ 
 

B3LYP 0.41 0.49 0.55 0.47 

CAM-B3LYP 0.71 0.75 0.80 0.77 

M062X 0.92 1.01 1.00 1.00 

M11 0.86 0.85 1.00 0.98 

MN12-SX 0.64 0.24 0.68 0.68 

PBE0 0.58 0.64 0.69 0.64 

a ECP was used solely on Pt, while LANL2DZ was used for C, N, O and H atoms. 

b ECP was used on Pt only, while 6-311++G(2d,2p) was used for C, N, O and H atoms. 

 

Comparison of the MAEs in Table 5.3 showed that calculation employing MN12-

SX/LANL2DZ (ECP) produced the lowest error in the excitation energies of Pt(CN)4
2-∙uracil 

The value of this error (0.24 eV) was significantly lower than that of any other 

functional/basis set combination. However the use of MN12-SX/LANL2DZ (ECP) was not 

recommended for Pt(CN)4
2-∙uracil because it failed to give a qualitatively accurate description 
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of the experimental spectrum. In contrast to the two distinct experimental bands, the highest 

energy band in the computational spectrum was very close in energy to that of the lower band 

(Figure 5.2). The intensity of these bands were also significantly lower than the intensity of 

the experimental bands.  

 

Figure 5.2: Comparison between the computed and experimental electronic spectra of 

Pt(CN)4
2-∙uracil:  Photodepletion (absorption) spectrum (courtesy of Sen et al.),41      

 Band profile for photodepletion (absorption) spectrum,  MN12-

SX/LANL2DZ (ECP) (90 states). 

 

 In addition, there was a relatively long computational time associated with the MN12-

SX/LANL2DZ (ECP) calculation (21.1 hours). This time was lengthened by the higher 

number of states used. While it was generally possible to produce two absorption bands at 50 

states using other functional/basis set combinations, MN12-SX/LANL2DZ (ECP) 

calculations had to be performed at 90 states. As previously discussed, calculations at this 

relatively high number of states produced bands which were uncharacteristically close in 

energy. In order to observe a significant separation of these bands, TDDFT calculations must 
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be conducted at an even higher number of states. This is likely to result in a further increase 

in computational time.  

Calculations which employed SDD (ECP) had the lowest errors overall. In particular, the UV 

spectra produced using B3LYP/SDD (ECP) was found to be in very good agreement with the 

experimental results (Figure 5.3). The SDD and LANL2DZ basis sets gave similarly accurate 

results overall, in terms of predicting the excitation energies of the experimental UV bands. A 

comparison between the UV spectra produced by B3LYP/SDD (ECP) and 

B3LYP/LANL2DZ in Figure 5.3, shows that although the energy of the lowest band is 

described more accurately (in relation to the experimental UV spectrum) by B3LYP/ SDD 

(ECP), B3LYP/LANL2DZ predicts the experimental energy of the highest experimental  

band more accurately.  

 

Figure 5.3: Comparison between the computed and experimental electronic spectra of 

Pt(CN)4
2-∙uracil:  Photodepletion (absorption) spectrum (courtesy of Sen et al.),41   

Band profile for photodepletion (absorption) spectrum, B3LYP/SDD (ECP) (50 

states) and B3LYP/LANL2DZ (50 states). 
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The computational time associated with performing a TDDFT calculation using B3LYP/SDD 

(ECP) was slightly longer (22 mins) than B3LYP/LANL2DZ. This increase is representative 

of the higher CPU time cost associated with the various TDDFT calculations which 

employed SDD (ECP). Taking all of this into account, B3LYP/LANL2DZ was considered to 

be the best performing combination.   

Def2-TZVPP (ECP) was deemed the worst performing basis set due to its poor description of 

the highest energy spectral bands and the lengthy computational times associated with 

calculations. Use of this basis set resulted in the significant overestimation in the position of 

the highest energy spectral band. This is exemplified in Figure 5.4 where the B3LYP/Def2-

TZVPP, MN12-SX/Def2-TZVPP and experimental spectra have been compared. 

 

Figure 5.4: Comparison between the computed and experimental electronic spectra of 

Pt(CN)4
2-∙uracil:  Photodepletion (absorption) spectrum (courtesy of Sen et al.),41  

Band profile for photodepletion (absorption) spectrum, MN12-SX/Def2-TZVPP 

(ECP) (50 states) and B3LYP/Def2-TZVPP (ECP) (50 states). 

 

As Def2-TZVPP (ECP) described the position of the lowest energy band satisfactorily, its 

MAEs were similar to that of the LANL2DZ (ECP) and LANL2DZ basis sets. If the MAEs 
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took into account the highest spectral bands, the errors associated with TDDFT/Def2-

TZVPP(ECP) calculations of Pt(CN)4
2-∙uracil would be significantly higher. Additionally, 

TDDFT calculations employing Def2-TZVPP (ECP) had a very high computational time 

cost. In comparison to BL3YP/LANL2DZ, it took 21.6 hours longer to perform a TDDFT 

calculation at 50 states using B3LYP/Def2-TZVPP.  

B3LYP and MN12-SX were considered the best performing functional as they yielded the 

lowest MAEs overall and their calculations had the lowest computational cost. In comparison 

to these functionals, CAM-B3LYP performed poorly. CAM-B3LYP largely overestimated 

the energy of the two experimental bands and therefore had a relatively high average error of 

0.75 eV. The addition of Coulomb attenuation to B3LYP was expected to enhance the 

performance of this functional (in comparison to B3LYP), as it rectified the incorrect long-

range behaviour of the exchange potential. This incorrect long-range behaviour was thought 

to be the cause of a number of B3LYP’s failures such as its poor description of TDDFT 

excitations and charge transfer states.61 Following the examination of the MOs involved in 

the electronic transitions of Pt(CN)4
2-∙uracil (Figure 5.7), it was evident that the excitations at 

4.90 and 6.32 eV corresponded to charge transfer transitions. Therefore, it was interesting to 

observe that CAM-B3LYP provided a less accurate description of these charge transfer states 

in comparison to B3LYP.  

The performances of B3LYP and CAM-B3LYP can be attributed to the type of charge-

transfer transitions occurring at 4.90 and 6.32 eV, i.e. short-range. Although B3LYP performs 

poorly in its description of long-range charge transfer transitions, it is capable of describing 

short-range charge-transfer interactions with a high level of accuracy. Evidence for this can 

be found in a recent study by Peach et al. in which the electronic excitation energies were 

determined using the B3LYP, CAM-B3LYP and PBE functionals. The electronic transitions 

of variety of molecules were investigated to permit the study of a wide variety of excitations. 
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The study included molecules in which charge-transfer interactions are prevalent such as 

(dimethylamino)benzonitrile (DMABN). The errors in excitation energy associated with the 

various TDDFT calculations performed, were plotted against a function of spatial orbital 

overlap, Λ (Figure 5.5). High and low values of Λ indicate short and long-range interactions, 

respectively.137  

 

Figure 5.5: Error in excitation energy plotted against Λ values for TDDFT calculations 

employing the following functionals: (a) PBE (b) B3LYP and (c) CAM-B3LYP. Each point 

represents a single excitation: (▵) local excitations, (×) Rydberg excitations, and (●) charge- 

transfer excitations. This figure has been reproduced from Ref [137] 

 

As shown in Figure 5.5b, B3LYP predicted the excitation energies of short-range charge-

transfer interactions with relatively low error, but produced relatively large errors in the 
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prediction of long-range charge-transfer interactions. As the charge-transfer interactions 

studied in Pt(CN)4
2-∙uracil are short-range, they were adequately described by B3LYP.  

Figure 5.5c shows that CAM-B3LYP predicted the excitation energies of both the short and 

long-range charge-transfer interactions of the molecules studied with relatively little error. 

Based on the findings of this study by Peach et al., CAM-B3LYP was expected to yield 

relatively low MAEs when predicting the excitation energies of Pt(CN)4
2-∙uracil. However, it 

is possible that use of CAM-B3LYP led to an over-correction in the excitation energies of 

Pt(CN)4
2-∙uracil and therefore relatively high MAEs.  

 

Figure 5.6: Comparison between the computed and experimental electronic spectra of 

Pt(CN)4
2-∙uracil:  Photodepletion (absorption) spectrum (courtesy of Sen et al.),41        

 Band profile for photodepletion (absorption) spectrum, M11/LANL2DZ (50 

states) and B3LYP/LANL2DZ (50 states). 

 

M062X was deemed the worst performing functional, followed by M11. As depicted in 

Figure 5.6, both functionals greatly overestimated the energies of the two experimental 
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spectral bands. Consequently, the average errors of M062X and M11 were respectively 0.50 

and 0.44 eV higher than the best performing functional, B3LYP.  

B3LYP/LANL2DZ was considered the best performing functional/basis set combination and 

its UV spectral data was used to assign the electronic transitions of Pt(CN)4
2-∙uracil. A 

summary of these assignments are presented in Table 5.4. 

Table 5.4: Assignment of the electronic transitions of Pt(CN)4
2-∙uracil. Excitation energies 

have been calculated using B3LYP/LANL2DZ.  

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment of 

Transition 

 

4.90 0.1760 HOMO-6  LUMO 0.67229 

(90.39) 

eg  π* 

6.32 0.1945 HOMO-6  LUMO+1 

 

 

HOMO-14  LUMO 

0.52585 

(55.30) 

 

0.41652 

(34.70) 

HOMO-6  π* 

 

 

HOMO-14  π* 

  

As discussed previously, the excited state transitions characterising the two absorption bands 

were all charge transfer in nature. Examination of the MOs involved in each transition 

showed that electron density was being transferred from platinum to uracil (Figure 5.7). The 

transition at 4.90 eV corresponded to electron density moving from an eg orbital on platinum 

to a π* orbital on uracil. Interestingly, the eg orbital was also involved in the lowest energy 

transition of isolated Pt(CN)4
2-.   

The transition at 6.32 eV was also to π* orbital on uracil but had originated from the HOMO-

6 orbital localised on platinum. Attention should be drawn to the relatively low CI coefficient 

of this transition. The CI coefficient corresponding to 55% suggested that there was more 

than one transition which made a significant contribution to the band at 6.32 eV. Following 

HOMO-6 LUMO+1, the second highest contribution was made by the HOMO-14 
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LUMO transition. In contrast to HOMO-6, electron density in the HOMO-14 orbital was 

distributed on both molecules in Pt(CN)4
2-∙uracil  (ie. Pt(CN)4

2 and uracil).   

 

 

Figure 5.7: Molecular orbitals involved in the electronic transitions of Pt(CN)4
2-∙uracil. MOs 

were calculated at the B3LYP/LANL2DZ level of theory. 

 

5.3.2 Pt(CN)4
2-∙cytosine 

A series of DFT calculations were performed on Pt(CN)4
2-∙cytosine at the B3LYP, CAM-

B3LYP, M062X, M11, MN12-SX and PBE0 levels of theory. The resulting ground-state 

optimised geometry of Pt(CN)4
2-∙cytosine is shown in Figure 5.8.  
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Figure 5.8: B3LYP/LANL2DZ optimised ground state geometry of Pt(CN)4

2-∙cytosine. 

Hydrogen bonds are indicated as dashed lines and bond distances are in Å. 

 

Significant bond lengths in the B3LYP/LANL2DZ optimised geometry of Pt(CN)4
2-∙cytosine 

were calculated and are displayed in Table 5.5. Similar to Pt(CN)4
2-∙uracil, the calculated 

bond lengths in Pt(CN)4
2-∙cytosine were slightly elongated in comparison its isolated 

constituent “monomers”, (i.e. isolated Pt(CN)4
2- and isolated cytosine). Increases of 0.015, 

0.003 and 0.029 Å were observed for the Pt‒C2, C1‒N1, and N5‒H1 bonds, respectively.  

Table 5.5: Key bond distances (Å) in the B3LYP/LANL2DZ optimised geometry of 

Pt(CN)4
2-∙cytosine.  

Bond Bond Distance (Å) 

Pt‒C1 2.018 

Pt‒C2 2.026 

C1‒N1 1.191 

C2‒N2 1.193 

C1-N1···H1 1.827 

C2-N2···H4 2.538 

N1‒H3 2.542 

N2‒H3 2.693 

N5‒H1 1.039 

C7‒H4 1.086 

C6‒C7 1.365 

C8‒O 1.276 
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Using the six DFT optimised structures, a series of TDDFT calculations were performed at 

50 states. To substantiate the conclusions made for Pt(CN)4
2-∙uracil, the basis set was again 

varied. The excitation energies produced from these calculations are displayed in Table 5.6. 

The MAEs were also calculated for each functional/basis set combination and are presented 

in Table 5.7.  

Table 5.6: Comparison between the theoretical excitation energies obtained using TDDFT 

and the experimental, gas-phase results (in eV) of Pt(CN)4
2-∙cytosine; where a and b are the 

lowest energy spectral bands. 

Functional SDD (ECP)a LANL2DZ 

(ECP)b 

Def2-TZVPP 

(ECP)a 

LANL2DZ 

a b a b a b a b 

B3LYP 5.19 6.56 5.29 6.17 5.30 6.58 5.28 6.58 

CAM-B3LYP 5.51 6.85 5.58 6.72 5.53 7.06 5.64 6.81 

M062X 5.81 6.79 5.81 6.35 5.86 6.93 5.86 6.79 

M11 5.80 6.85 5.74 6.48 5.83 6.76 5.93 6.83 

MN12-SX 4.93 5.72 4.19 - 5.35 6.48 4.72 5.79 

PBE0 5.37 6.75 5.44 6.49 5.46 6.93 5.46 6.75 

         

Experimentalc 4.75 - 4.75 - 4.75 - 4.75 - 

         
a ECPs were used solely on Pt, while LANL2DZ was used for C and N. 

b ECP  was used on Pt only, while 6-311++G(2d,2p) was used for C and N. 

c Ref [43]  

 

Table 5.7: The mean absolute errors in excitation energy (eV) of Pt(CN)4
2-∙cytosine.  

Functional 

 
SDD 

(ECP) a 

LANL2DZ 

(ECP)b 

Def2-TZVPP 

(ECP) a 

LANL2DZ 
 

B3LYP 0.44 0.54 0.55 0.53 

CAM-B3LYP 0.76 0.83 0.78 0.89 

M062X 1.06 1.06 1.11 1.11 

M11 1.05 0.99 1.08 1.18 

MN12-SX 0.18 0.56 0.60 0.03 

PBE0 0.62 0.69 0.71 0.71 

a ECPs were used solely on Pt, while LANL2DZ was used for C and N. 

b ECP  was used on Pt only, while 6-311++G(2d,2p) was used for C and N. 
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The trend observed in the density functional performance for Pt(CN)4
2-∙cytosine, generally 

followed that of Pt(CN)4
2-∙uracil. Calculations employing the MN12-SX and B3LYP 

functionals reproduced the experimental spectra reasonably well. With the exception of 

MN12-SX/LANL2DZ and MN12-SX/SDD (ECP), B3LYP produced slightly lower errors 

than MN12-SX overall.  MN12-SX/LANL2DZ and MN12-SX/SDD (ECP) had the lowest 

errors of the functional/basis set combinations tested (0.03 and 0.18 eV, respectively). As 

shown in Figure 5.9, an extremely good agreement was found between the experimental and 

MN12-SX/LANL2DZ spectra. In addition to the highly accurate excitation energies 

produced, MN12-SX/LANL2DZ also successfully replicated the energy between the 

experimental bands.   

 

Figure 5.9: Comparison of the computed and experimental UV spectra of Pt(CN)4
2-∙cytosine: 

  Photodepletion (absorption) spectrum (courtesy of Sen et al.),43  Band profile for 

photodepletion (absorption) spectrum, MN12-SX/SDD (ECP) (50 states) and 

MN12-SX/LANL2DZ (50 states). 

 

The errors listed in Table 5.7 also show that there was little deviation between the excitation 

energies of MN12-SX/SDD (ECP) and the experimental energies. Further analysis of the 

spectrum in Figure 5.7 showed that while MN12-SX/SDD (ECP) overestimated the energy of 
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the lowest band, it slightly underestimated the position of highest energy band. This under-

estimation resulted from the failure of MN12-SX/SDD (ECP) to reproduce the ca. 1 eV 

separation between the spectral bands seen in the experimental UV spectrum.  

Of the B3LYP/basis set variations tested, the two best performing combinations were found 

to be BL3YP/SDD (ECP) and B3LYP/LANL2DZ. At 0.44 and 0.53 eV, the respective errors 

associated with the BL3YP/SDD (ECP) and B3LYP/LANL2DZ calculations were 

significantly higher than that of MN12-SX/SDD (ECP) or MN12-SX/LANL2DZ.  

In comparison to MN12-SX/SDD (ECP), the UV spectrum of B3LYP/SDD (ECP) contained 

two well defined spectral bands with a difference of 1.37 eV (Figure 5.10). The bands in both 

B3LYP/SDD (ECP) and B3LYP/LANL2DZ spectra were of very similar intensity and width. 

The intensity of both these spectral bands were much higher in the UV spectra B3LYP/SDD 

(ECP) and B3LYP/LANL2DZ than in that of MN12-SX/SDD (ECP) or MN12-

SX/LANL2DZ.  

 

Figure 5.10: Comparison of the computed and experimental UV spectra of Pt(CN)4
2-

∙cytosine:   Photodepletion (absorption) spectrum (courtesy of Sen et al.),43   Band 

profile for photodepletion (absorption) spectrum, B3LYP/LANL2DZ (50 states) and 

B3LYP/SDD (ECP) (50 states). 
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B3LYP/SDD (ECP) and B3LYP/LANL2DZ exemplify the typical performance of the SDD 

(ECP) and LANL2DZ basis sets. Both basis sets performed in a similarly accurate manner, 

producing spectral bands of similar energies and intensities. In comparison to LANL2DZ, 

SDD (ECP) tended to better describe the position of the lowest energy spectral band. With 

regards to the higher energy band, a marginally better agreement was generally found 

between the experimental and theoretical LANL2DZ spectra. 

In spite of the better agreement between the experimental and MN12-SX/LANL2DZ spectra, 

B3LYP/LANL2DZ was considered the better performing functional/basis set combination 

due to the considerably smaller CPU time cost. The computational time required to perform a 

TDDFT calculation at 50 states using MN12-SX/LANL2DZ was on average 1.51 hours less 

than B3LYP/LANL2DZ. The high computational cost associated with B3LYP/LANL2DZ 

made its use impractical for studying the excited states of Pt(CN)4
2-∙cytosine.  

Adhering to the trend seen in the study Pt(CN)4
2-∙uracil, calculations employing CAM-

BL3YP produced much higher errors than B3LYP. The poor performance of CAM-B3LYP 

was attributed to the failure of this functional to accurately describe short-range CT 

excitations. As will be discussed, the electronic transitions of Pt(CN)4
2-∙cytosine 

corresponded to short-range CT transitions. It is possible that the modification of the 

exchange potential in CAM-B3LYP resulted in the overcorrection of these CT transitions. 

Therefore, these transitions were better described by B3LYP in comparison to CAM-B3LYP.  

As a result of their lengthy computational times and high MAEs, M062X and M11 were 

deemed the poorest performing density functionals. M062X and M11 consistently 

overestimated the energy of the lowest experimental band by an average of 1.08 eV. 

Consequently, the MAEs of M062X and M11 were on approximately double that of B3LYP.  
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The trend in basis set performance also followed the pattern observed during the study of 

Pt(CN)4
2-∙uracil. For the purpose of predicting the excitation energies, LANL2DZ was 

deemed the best performing basis set followed closely by SDD (ECP). When employed as a 

pseudopotential on Pt, LANL2DZ (ECP) performed satisfactorily. As demonstrated by the 

B3LYP/ LANL2DZ (ECP) and PBE0/ LANL2DZ (ECP) UV spectra in Figure 5.11, the 

position and intensity of the lowest energy band was described suitably by LANL2DZ (ECP). 

Furthermore, LANL2DZ (ECP) often predicted the position of the highest energy 

experimental band most accurately (Table 5.6). However, the pseudopotential basis set often 

failed to reproduce the relative band intensities observed in the experimental spectrum. The 

lowest energy band was often more intense than the highest energy band. 

 

Figure 5.11: Comparison of the computed and experimental UV spectra of Pt(CN)4
2-

∙cytosine:   Photodepletion (absorption) spectrum (courtesy of Sen et al.),43   Band 

profile for photodepletion (absorption) spectrum, PBE0/LANL2DZ (ECP) (90 states) 

and B3LYP/LANL2DZ (ECP) (90 states). 

 

The main drawback of using LANL2DZ (ECP) was the lengthy computational time 

associated with TDDFT calculations and the high number of states which calculations had to 

be performed at. While most TDDFT calculations could be conducted at 50 states using other 
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basis sets, LANL2DZ (ECP) often required 90 states. At 50 states, calculations employing 

LANL2DZ (ECP) seldom produced two spectral bands. In an extreme case, it was necessary 

to perform a TDDFT calculation at 150 states using MN12-SX/LANL2DZ (ECP), as the 

spectrum calculated at 90 states produced one band of extremely low intensity. However, 

calculations performed at 150 states using MN12-SX/LANL2DZ (ECP) still did not 

reproduce the two spectral bands seen in the experimental spectrum. Similar to the TDDFT 

calculations of Pt(CN)4
2-∙uracil, Def2-TZVPP (ECP) was considered the worst performing 

basis set in terms of it  calculations that employed Def2-TZVPP (ECP) had a significantly 

longer computational time and produced UV spectra in which the position of the highest 

energy band was grossly overestimated.  

Given that B3LYP/LANL2DZ was considered the best performing functional/basis set 

combination, its data were used to assign the electronic transitions of Pt(CN)4
2-∙cytosine in 

Table 5.8. The MOs involved in these transitions are depicted in Figure 5.12. 

Table 5.8: Assignment of the electronic transitions of Pt(CN)4
2-∙cytosine using TD-

B3LYP/LANL2DZ results. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment of 

Transition 

5.25 0.1129 HOMO-1  LUMO+3 0.68211 

(93.05) 

π  LUMO+3 

6.59 0.5137 

 

 

 

HOMO-3  LUMO+2 

 

 

HOMO-5  LUMO+2 

 

0.43219 

(37.36) 

 

0.35380 

(25.03) 

HOMO-3 π* 

 

 

HOMO-5 π* 
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Figure 5.12: MOs involved in the electronic transitions of Pt(CN)4
2-∙cytosine. MOs were 

calculate using B3LYP/LANL2DZ. 

 

As previously stated, the transitions at 5.25 and 6.59 eV corresponded to charge transfer 

interactions. Examination of the HOMO-1 and LUMO+3 orbitals revealed that the excitation 

at 5.25 involved a transition from a π orbital localised on the nucleobase to an MO localised 

on the platinum complex. At 6.59 eV, the dominant transition originated from the HOMO-3 

orbital which is localised in platinum to a π* orbital on cytosine.  However, the HOMO-3 

LUMO+2 transition had a relatively small CI coefficient of 0.43 and therefore indicated that 

there were other transitions which made a significant contribution to the excited state. Other 

dominant transitions included HOMO-5  LUMO+2. The similarities between the HOMO-3 

and HOMO-5 orbitals can be seen in Figure 5.12. As in HOMO-3, electron density in 

HOMO-5 is situated in an orbital localised on Pt(CN)4
2-.  
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5.3.3 Pt(CN)6
2-∙uracil 

The previous studies of Pt(CN)4
2-∙uracil and Pt(CN)4

2-∙cytosine had deemed LANL2DZ the 

best performing basis set, therefore ground-state geometry optimisation calculations were 

performed using only this basis set.  The six functionals tested during the previous 

investigations of Pt(CN)4
2-∙uracil and Pt(CN)4

2-∙cytosine were used in DFT and TDDFT 

calculations. Figure 5.13 displays the ground-state optimised structure produced by 

B3LYP/LANL2DZ.  

 
Figure 5.13: Ground state structure of B3LYP/LANL2DZ optimised Pt(CN)6

2-∙uracil.  

Using the B3LYP/LANL2DZ optimised structure, the key bond lengths within the complex 

were calculated and are listed in Table 5.9. 

 

Table 5.9: Selected bond distances (Å) in the B3LYP/LANL2DZ optimised geometry of 

Pt(CN)6
2-∙uracil. 

Bond Bond Distance (Å) 

Pt‒C1 2.047 

Pt‒C2 2.049 

C1‒N1 1.183 

C2‒N2 1.187 

C3‒N3 1.186 

C1-N1···H1 1.773 

C2-N2···H2 2.563 

N7‒H1 1.046 

C7‒H2 1.087 

C6‒C7 1.373 

C9‒O1 1.265 

C10‒O2 1.257 
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In comparison to Pt(CN)4
2-∙uracil, Pt(CN)6

2-∙uracil formed weaker ionic hydrogen bonds. The 

C1-N1···H1 and C2-N2···H2 hydrogen bond lengths of Pt(CN)6
2-∙uracil were 0.09 and 0.14 

Å longer, respectively, than that of Pt(CN)4
2-∙uracil. The calculated hydrogen bond lengths 

were in very good agreement with literatures values obtained by Sen et al.41  

The electronic transitions of Pt(CN)6
2-∙uracil were studied using TDDFT at the B3LYP, 

CAM-B3LYP, M062X, M11, MN12-SX and PBE0 levels of theory. The excitation energies 

of the two spectral bands produced by the various functionals are outlined in Table 5.10 

below. The MAEs have been calculated for each functional and are shown in Table 5.11. 

Table 5.10: Comparison between the computed and experimental excitation energies of 

Pt(CN)6
2-∙uracil, where a and b are the lowest energy spectral bands.a,b   

a TDDFT calculations performed at 30 states using the LANL2DZ basis set for all atoms. 

b Ref [41] 

 

Table 5.11: Mean absolute error in excitation energies (eV) for Pt(CN)6
2-∙uracil. 

Functional Mean Absolute Error (eV) 

B3LYP 0.04 

CAM-B3LYP 0.28 

M062X 0.43 

M11 0.45 

MN12-SX 0.33 

PBE0 0.21 

 

A comparison of the MAEs showed that calculations employing B3LYP/LANL2DZ 

produced errors significantly lower than the other functionals. The low error associated with 

Functionals Excitation Energy (eV) 

 a b 

B3LYP 4.94 6.32 

CAM-B3LYP 5.18 7.21 

M062X 5.33 7.49 

M11 5.35 6.82 

MN12-SX 5.23 6.55 

PBE0 5.11 6.49 

   

Experimentalb 4.90 - 
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B3LYP/LANL2DZ (0.04 eV) indicates a very good agreement between the computed and 

experimental UV spectra of Pt(CN)6
2-∙uracil. As shown in Figure 5.14, B3LYP/LANL2DZ 

also predicts a significantly lower excitation energy for the highest energy spectral band, 

compared to the other functionals. 

Interestingly, CAM-B3LYP/LANL2DZ performs relatively well in terms of predicting the 

excitation energy of the first band in the experimental UV spectrum of Pt(CN)6
2-∙uracil. 

Previous use of this functional in the TDDFT calculations of Pt(CN)4
2-∙uracil and Pt(CN)4

2-

∙cytosine, resulted in relatively high MAEs. CAM-B3LYP/LANL2DZ predicted the energy 

of the first spectral band accurately but gave a poor description of the higher energy bands in 

the UV spectra of Pt(CN)6
2-∙uracil. At 30 states, CAM-B3LYP/LANL2DZ produced a UV 

spectrum in which the second spectral band was present on the rising edge of the highest 

energy band (Figure 5.14). The small spacing in between the higher energy bands produced 

by CAM-B3LYP/LANL2DZ was in contrast to the three distinct spectral bands produced by 

M062X/LANL2DZ (Figure 5.14). 

 

Figure 5.14: Comparison of the computed UV spectra of Pt(CN)6
2-∙uracil:                      

B3LYP/LANL2DZ,  M062X/LANL2DZ and  CAM-

B3LYP/LANL2DZ.   
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Similar to the trend exhibited by Pt(CN)4
2-∙uracil and Pt(CN)4

2-∙cytosine, the M062X and 

M11 functionals were deemed the worst performing density functionals in terms of predicting 

the excitation energies of Pt(CN)6
2-∙uracil. Although M062X/LANL2DZ and 

M11/LANL2DZ produced relatively high MAEs (in comparison to the other functionals), the 

MAEs of M062X/LANL2DZ and M11/LANL2DZ for Pt(CN)6
2-∙uracil are significantly 

lower than that of  Pt(CN)4
2-∙uracil and Pt(CN)6

2-∙cytosine. 

Attention should be drawn to the general magnitude of the MAEs. In comparison to Pt(CN)4
2-

∙uracil and Pt(CN)4
2-∙cytosine, errors associated with the TDDFT calculations of Pt(CN)6

2-

∙uracil were much smaller, indicating a better agreement between the theoretical and 

experimental UV spectra overall.  

B3LYP was considered to be the best performing functional, therefore the results from the 

TD-B3LYP/LANL2DZ calculation were used to study the nature of the electronic transitions 

in Pt(CN)6
2-∙uracil. 

Table 5.12: Assignment of the vertical excitations of Pt(CN)6
2-∙uracil  using 

B3LYP/LANL2DZ data. 

Excitation 

Energy 

(eV) 

Oscillator 

Strength 

(a.u.) 

MO Transition CI Coefficient 

(% contribution) 

Assignment 

of 

Transition 

 

4.94 0.1679 HOMO  LUMO 0.67120 

(90.10) 

π  π* 

6.32 0.2631 HOMO  LUMO+1 

 

 

HOMO-12  LUMO 

0.54835 

(60.14) 

 

0.37327 

(27.87) 

π  π* 

 

 

π  π* 

 

Unlike Pt(CN)4
2-∙uracil and Pt(CN)4

2-∙cytosine, the electronic transitions of Pt(CN)6
2-∙uracil 

were not charge-transfer in nature. The absorption bands at 4.94 and 6.32 eV were associated 
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with transitions involving orbitals that were localised exclusively on the nucleobase. Both 

excitations at 4.94 and 6.32 eV corresponded to π  π* transitions localised on uracil. These 

assignments were in line with the initial characterisations made by Sen et al. 

In addition to HOMO  LUMO+1, the HOMO-12  LUMO transition made a notable 

contribution to the excited state at 6.32eV. Examination of the HOMO-12 and LUMO 

orbitals in Figure 5.15 revealed that this transition was also π  π* in nature.  

 

Figure 5.15: MOs involved in the electronic transitions of Pt(CN)6
2-∙uracil. MOs were 

calculated at the B3LYP/LANL2DZ level of theory.  
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5.4 Conclusion 

The electronic transitions of Pt(CN)4
2-∙uracil, Pt(CN)4

2-∙cytosine and Pt(CN)6
2-∙uracil were 

studied using TDDFT at the following levels of theory: B3LYP, CAM-B3LYP, M062X, 

M11, MN12-SX and PBE0. Using the computed UV spectra, the electronic transitions of 

Pt(CN)4
2-∙Uracil and Pt(CN)4

2-∙Cytosine were characterised and were found to be of a short-

range charge-transfer nature. In contrast to the electronic transitions of Pt(CN)4
2-∙uracil and 

Pt(CN)4
2-∙cytosine, MOs that were of ππ* character and were localised on the nucleobase 

dominated the electronic transitions of Pt(CN)6
2-∙uracil. 

Comparison of the density functionals and basis sets used in calculations revealed 

B3LYP/LANL2DZ to be the best performing functional/basis set combination, in terms of 

the predicting the excitation energies of the experimental UV spectra. Generally, calculations 

employing B3LYP/LANL2DZ had low associated MAEs and were of a low computational 

time cost. M062X and M11 functionals were deemed the worst performing as their use often 

led to a significant over prediction of the experimental excitation energies.Def2-TZVPP was 

considered the worst performing basis set as it often produced the highest MAEs and had a 

lengthy computational time associated with its use.  
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