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ABSTRACT 

It is a generally accepted belief that the use of nanofluids enhances heat transfer rates in 

comparison with a traditional fluid and can be considered to be one of the most important 

energy conservation measures in many industrial applications. Despite increased interest, 

detailed and systematic studies of nanofluids’ flow and thermal characteristics are limited 

and their effect on heat transfer is often misunderstood. The concentration of a nanofluid 

is often chosen independently of the application conditions, nanofluid type or cost and 

other economic parameters such as the cost of energy and lifetime of the application. This 

thesis has three main objectives; the first is the measurement of the thermal properties of 

nanofluids and the proposal of a correlation model for nanofluid viscosity. The results of 

these measurements show that the nanofluid viscosity depends on the type of 

nanoparticles and their concentration and the fluid temperature. It is shown that the 

viscosity increases with increasing nanoparticle concentration and decreases with 

increasing temperatures over the nanoparticle concentration and temperature ranges 

investigated.  

The second objective is concerned with the measurement and evaluation of heat 

transfer performance and pressure drop of various nanofluids via an experiment using 

forced convection heat transfer within the turbulent regime. In general, it is shown that 

the heat transfer coefficient of nanofluids decreases with increasing nanoparticle 

concentration at a specific flow rate and the base fluid gives higher heat transfer with 

respect to the nanofluids. In the other hand,  Assessing the thermal performance of 

nanofluids by considering the Nusselt number and its variation with Reynolds number is 

misleading because both Nusselt number and Reynolds number depend on the nanofluid 

properties (i.e. thermal conductivity, density and viscosity that are function of the volume 

fraction). This can lead to a false impression that some nanofluids produce an 

improvement in heat transfer performance. Moreover, using nanofluid will require 

additional pumping power to achieve the corresponding base fluid’s Reynolds number. 

Finally, existing single-phase liquid correlations of the heat transfer coefficient and 

pressure drop are compared and show good agreement in predicting nanofluid behaviour. 
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The third objective aims to determine recommended nanoparticle concentrations 

of a typical nanofluid used within immersion cooling of a data centre server; this is based 

on two different designs for immersion cooling by Iceotope at varying Reynolds numbers.  

This is determined by calculating the heat transfer and pressure drop through the server 

for various values of the volume fraction of nanoparticles by using a model created within 

the finite element solver, COMSOL. The server’s total power consumption as a function 

of its CPU temperature and cooling system, including the increased pumping power 

required for varying nanofluid concentrations, are predicted and used in a proposed novel 

methodology to evaluate potential economic trade-offs in utilising nanofluids within an 

immersed liquid cooled data centre. This methodology is used to calculate the minimum 

total costs and economically optimum volume fraction of a nanofluid with this type of 

data centre. The results show that Al2O3-water nanofluids showed the highest thermal 

performance with respect to other nanofluids because Al2O3 has the highest thermal 

conductivity, however Al2O3-water nanofluids are the most viscous giving it the highest 

pressure drop and consequently the highest pumping costs.  

Under the economic factors used, it is found that the most cost effective fluid for 

both the server with cooled plate having two parallel tubes and the server with cooled 

plate having serpentine tube configuration is the base fluid (water).  
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CHAPTER 1: INTRODUCTION 

1.1: The Problem Considered 

Information and Communication Technology (ICT) has become an important source of 

data and information in our society. As a result, business, education, transportation, and 

the economy sectors now depend on it [1]. Consequently, data centres have become a 

crucial part of ICT storage, management, processing and exchange of data and 

information [2]. A data centre consists of four main types of equipment under one roof. 

These are power equipment such as power distribution units and batteries, cooling 

equipment such as chillers and computer room air-conditioning (CRAC) units, IT 

equipment such as servers and network, and miscellaneous component loads such as 

lighting and fire protection systems [3]; see Figure 1.1. In order to quantify and compare 

data centres efficiency, the Power Usage Effectiveness (PUE) is commonly used which 

is calculated by the ratio of the total power consumed by a data centre to the power used 

solely by the IT equipment:  

PUE=
Total equipment power

IT equipment power
 

In general, the most energy efficient data centre has a PUE close to unity. 
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Figure 1.1: Typical data centre infrastructure (http://www.tripplite.com/lp/direct 

/rackcooling) and server (http://www.esis.com.au/index.php) 
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These data centres consume significant power, for example, Koomey [4] estimated that 

Google had 900,000 servers which used 1.9 billion kWh of electricity in 2010. More than 

three-quarters of the electric energy consumption of a typical data centre is used by IT 

and cooling equipment (Figure 1.2); and about half of this is used by the cooling system 

[3, 5].  This is a consequence of the heat load that is generated due to the densities of 

servers. Data centres demand a large amount of electrical energy which is estimated to be 

more than 40 times a traditional office building consumption [2]. There is a noticeable 

increase in data centres throughout the world and with energy costs increasing, there is a 

drive to find means of significantly reducing the energy consumption of data centres. A 

major part of the energy consumed by the cooling system in the data centre is due to the 

high heat flux loads generated by the servers Central Processing Unit (CPU), which is 

considered to be the dominant component of the total heat generation within the server. 

Additionally the CPU consumes more power with increasing temperature [6-8]. 

Therefore, reducing these loads and finding new ways of cooling the servers efficiently 

to decrease the CPU’s operating temperature has the dual effect of protecting them and 

increasing the performance and so becomes one of the top priorities for energy 

conservation measures in data centres [7]. The cooling of a data centre can be based on 

either an air cooling system or a liquid cooling system. Air-cooling is the most common, 

however using liquid cooling  can be superior since liquids have higher heat capacity to 

remove more heat and also help eliminate hotspots (undesirable environmental 

temperature of data centre) which is common when air cooling is used. There are several 

liquid cooling techniques such as bringing the cooled liquid close to the rack or into the 

rack and using air cooling through the interior of the server or immersing the entire server 

into a dielectric liquid eliminating the need for air altogether; these techniques will be 

explained in detail later in section 1.2.4.  

 Liquids play a vital role in heat transfer for heating or cooling in many applications 

such as industrial processes, chemical processes, air conditioning systems, 

microelectronics, etc. However, these liquids have limitations for heat transmission, 

because fluids such as water have a poor thermal conductivity compared to some solids. 
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One technique with the potential to enhance the heat transfer of these liquids is by adding 

solid nanoparticles [9]. The concept of adding nanoparticles to liquids (Nanofluid) is to 

increase their thermal conductivity and hence increase their heat transfer. Since the CPU 

power consumption depends upon its temperature, using nanofluid as liquid coolant in 

cooling system in data centre should offer a clear advantage.  

 The term ‘nanofluid’ was introduced by Choi in 1995 to describe a base fluid 

including suspensions of nanoparticles (metallic or non-metallic) with average size less 

than 100 nanometres [10]. The aim of adding nanoparticles to a base fluid is, therefore, to 

enhance the thermal performance of the base fluid by increasing the thermal conductivity, 

because the thermal conductivity of a solid is higher than the base fluid. For example, the 

thermal conductivity of copper (400 W/m.K) is 700 times greater than the thermal 

conductivity of water (0.613 W/m.K) [11]. Therefore, the thermal conductivity of the 

nanofluid should possess a relatively high value compared to the base fluid.  The aim of 

using a nanofluid in an application is to increase the heat transfer performance and energy 

efficiency. Whilst investigation into nanofluids has been increasing, researchers are still 

debating the thermal performance enhancements due to nanofluid use [12]. The studies 

on nanofluids have shown that the nanofluid performance is a factor of its particles 

characteristics, such as the particle size, shape and concentration. In addition, nanofluids 

characteristics also depend on other factors such as the type of the host liquid and 

temperature. Despite the increase of investigations into nanofluids, there is a general lack 

of detail and agreement so far, although some researchers have shown close agreement 

amongst their experimental results. 

 The use of nanofluids is considered as one of the effective means of increasing 

heat transfer performance in some applications in recent years [10, 13-17]. Adding 

nanoparticles to the base fluid increases the thermal conductivity and viscosity of a 

nanofluid, therefore, nanofluids have different thermo-physical properties compared with 

base fluids [18, 19]. There are many types of nanofluids available, these differ with regard 

to the base fluid, nanoparticle type, concentration and particle size. As is the case in most 

practical applications, nanofluids have different thermal characteristics such as the heat 

transfer coefficient, and dynamic flow characteristics such as pressure drop when 
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compared to the base fluid. Thus, testing thermal performance of nanofluid under dynamic 

conditions is essential to understand how a nanofluid behaves. The accurate estimation of 

the convective heat transfer coefficient requires scientific investigation in order to 

properly use a nanofluid in a given application.  

While nanofluids may offer benefits in terms of heat transfer performance, their 

use comes at a cost in terms of additional pumping power required to overcome increased 

pressure drops. Therefore, nanofluid use in a practical application must be subject to an 

economic analysis to evaluate this trade-off. 

 This thesis explores the development and application of nanofluids for the 

enhancement of electronic cooling systems. A full list of objectives is given at the end of 

this chapter. 
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Figure 1.2: Energy consumption in typical data centres[3] 
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1.2: Literature Review 

This section reviews some relevant and representative studies conducted with regards to 

measurement of nanofluid transport properties as well as studies regarding their heat 

transfer characteristics and previous economic analyses for assessing the benefits of 

nanofluids in practical applications. Finally, data centre cooling techniques are 

investigated to explore a potential application of nanofluids. 

1.2.1: Experimental studies on the viscosity of nanofluids 

With regards to the measurement of thermal and physical properties of nanofluids, there 

are, so far, no definitive sources and some published papers only focus on nanofluid 

thermal conductivity [18, 20-22]. However, there is a definite need to measure and test 

nanofluid properties, specifically the viscosity and thermal conductivity. In addition, the 

literature is lacking studies on the effects of particle volume concentration, particle 

material (i.e. types of nanoparticle), particle size, particle shape, particle aggregation, base 

fluid mediums, temperature, additives (materials that are added to the fluid to keep the 

nanoparticles in suspension), and acidity, on thermal conductivity and viscosity. Also, 

further research is needed regarding the other properties of nanofluids (e.g. the specific 

heat capacity). 

A systematic and detailed review of nanofluid viscosity is direly needed similar to 

the work compiled by workers Buongiorno et al. [12] for nanofluid thermal conductivity. 

Their report uses comparable samples but different experimental approaches from 34 

different organisations and was submitted to the International Nanofluid Property 

Benchmark Exercise (INPBE). A detailed comparison of the data was performed and 

showed no anomalous increases in thermal conductivity. The paper concludes that the 

enhancement of thermal conductivity is entirely a function of increasing nanoparticles 

concentration and nanoparticles aspect ratio, with minor differences reported due to the 

differing measurement techniques. 

There are some theoretical models, which exist within the literature to estimate 

the viscosity of nanofluids under a number of assumptions, such as the nanoparticles being 
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spherical. The most common theoretical nanofluid viscosity models are the Einstein 

model, the Brinkman model, and Batchelor’s model [18]; these models estimate the 

nanofluid viscosity as a function of the base fluid viscosity and nanoparticle 

concentration: 

Einstein model:     )5.21( 





bf

nf
   for low concentration ( ≤ 0.02 vol%)             (1.1) 

Brinkman model:   
5.2)1(

1








bf

nf
   for volume fractions up to ( ≤ 4 vol%)           (1.2) 

Batchelor model:    
25.65.21 






bf

nf
                                                                  (1.3) 

where bf  is the base fluid viscosity and  is the volume fraction of nanoparticles. 

Figure 1.3 shows all the theoretical models’ trends; later these trends are compared to 

experimental data performed by the author and found to underestimate the nanofluid 

viscosity. 

 

 

Figure 1.3: Theoretical correlations of nanofluid relative viscosity  
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The following is a review of previous empirical studies of nanofluid viscosities. 

Pak and Cho [23] used a Brookfield rotating viscometer to measure the viscosity of Al2O3-

water and TiO2-water nanofluids with nanoparticle size 13 and 27 nm respectively. They 

found that the viscosity of the nanofluids was significantly greater than that of the base 

fluid (water) and the relative viscosity of the Al2O3-water nanofluid was greater than that 

of TiO2-water nanofluids of comparable concentration. For example, at a 10% volume 

fraction the viscosities were 3% and 200% compared to water for TiO2-water and Al2O3-

water respectively. Duangthongsuk and Wongwises [20] used a rotational rheometer to 

measure the dynamic viscosity of TiO2-water nanofluid with average particle size 21 nm. 

The tests were conducted within a mean temperature range of 15 to 35 oC with volume 

fractions varying from 0.2 vol.% to 2.0 vol.%. Their results showed that the viscosity 

increases almost linearly with increasing nanoparticle load (volume fraction) whilst it 

decreases with rising temperatures and that the increase in viscosity compared to base 

fluid was about 4-15%. Comparison of their test measurements was also made with 

theoretical and measured values. They noted that a significant underestimate of the 

theoretical value was shown in general. In contrast, the comparison with previous 

experimental data showed a difference to their results by about 10 - 20%. The present 

author believes that the differences could be due to particle size, shape etc, as these were 

not detailed in the work and no reasons for the discrepancy was given within the study. 

 Chandrasekar et al. [24] measured the thermal conductivity and viscosity of 

Al2O3-water nanofluids with nanoparticle size 43 nm and concentrations 0.33 to 5.0 vol.% 

at room temperature. They noticed that both thermal conductivity and viscosity increased 

with increasing nanoparticle concentration and that the viscosity increase was 

significantly higher than the increases in thermal conductivity. It was also found that the 

relative viscosity increases nearly linearly up to 2% volume fraction and the nanofluid 

viscosity, at high concentrations (5.0 vol.%), was up to 2.36 times that of the base fluid.  

Williams et al. [25] and Heyhat et al. [26] measured the viscosity and thermal conductivity 

of Alumina (Al2O3-water) nanofluid for various nanoparticle volume fractions and 

different temperature ranges. Under their test conditions, their results indicate that the 

viscosity of the nanofluid increases significantly with increasing nanoparticle 

concentration and the relative viscosity is unaffected by temperature. The empirical 
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viscosity model for their results was created as a function of the base fluid viscosity and 

the nanoparticle loading as shown below: 

Williams et al. [25]   )2092.0(

91.4

)( 



  eTbfnf           (1.4) 

Heyhat et al. [26]   )278.0(

989.5

)( 



  eTbfnf               (1.5) 

where 
bf is base fluid viscosity as a function of temperature (T) and  is the volume 

fraction; a comparison of  these models is made in section 3.4. 

 The viscosity and thermal properties of alumina and silica water nanofluids at high 

temperature ranges up to 80 C were investigated by Mondragon et al. [27]. They 

observed that the viscosity and thermal conductivity were highly affected by nanoparticle 

agglomeration (i.e. when individual nanoparticles aggregate together due to the surface 

energy between the nanoparticles); they both increased with increasing agglomeration. 

They also observed that the increase in viscosity is noticeably higher than that of thermal 

conductivity.       

 Fedele et al. [22] used a rotational rheometer to study the viscosity of a TiO2-water 

nanofluid with 76 nm nanoparticle concentrations of 0.24 vol.% to 11.22 vol.% across a 

temperature range of 10 C to 70 C. Their results showed that under the study conditions, 

the nanofluid behaves as a Newtonian fluid and viscosity increases with increasing 

nanoparticle load and decreases with increasing temperature. They also mentioned that 

the relative viscosity increase was independent of temperature and the nanofluid viscosity 

increase was 20%, 60% and 215% compared to the base fluid, for volume fractions 2.54 

vol.%, 5.54 vol.% and 11.22 vol.%, respectively. The Batchelor predictive model 

underestimated the viscosity values except at low concentrations where they gave a good 

agreement; however, there are significant discrepancies in their viscosity values when 

compared to measurements made in comparable studies. Again, the present author 

believes that the differences could be due to particle size, shape etc, as details of these 

were not given and no reasons for the discrepancy was suggested within the study. Turgut 

et al. [28] also measured the viscosity of a TiO2-water nanofluid with (21 nm) nanoparticle 
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concentrations of 0.2 vol.% to 3.0 vol.% and temperature range of 13 C to 55 C using a 

vibro-viscometer. Their results indicate that the nanofluid viscosity increased with 

increasing nanoparticle loads and decreased with increasing temperatures. The nanofluid 

viscosity trend is similar to the base fluid with increasing temperature. Comparison with 

the Einstein theoretical model showed that the viscosity theoretical model could not be 

used to predict the viscosity value at high nanoparticle concentrations.  

 Nguyen et al. [29] used a piston-type calibrated viscometer to measure the 

viscosity values of some nanofluids, two Al2O3-water nanofluids and one CuO-water 

nanofluid, with different particle sizes of 36 nm, 47 nm and 29 nm respectively. The 

measurements were conducted at a temperature range of 22 to 75 oC and varying volume 

fraction concentrations within the range 1.0 vol.% to 9.4 vol.%. The results show that the 

measured viscosity value depends on the type of nanoparticle, particle size, particle 

concentration and temperature. Their results also indicate that higher temperature leads to 

lower dynamic viscosity values and that higher nanoparticle loads and sizes generally 

result in higher dynamic viscosities. Pastoriza et al. [30] reported that nanofluids with 

small nanoparticles had higher viscosity when compared to similar volume fraction, when 

they tested two CuO-water nanofluids, with average nanoparticle size 30 nm and 11 nm. 

This result seems to be inconsistent with Nguyen et al's study. 

 Duan et al. [31] investigated the viscosity and rheological behaviour of an Al2O3-

water nanofluid with volume fractions 1-5 vol.% and an average nanoparticle size 25 nm 

using a controlled rate rheometer. The tests were conducted after two weeks of preparation 

without and with re-ultrasonication. Their results indicated that the nanofluid without re-

ultrasonication behaved as a non-Newtonian fluid; however, it became Newtonian after 

re-ultrasonication. It was found that the ratio of the viscosities of the nanofluid and the 

base fluid without re-ultrasonication was higher than with re-ultrasonication; it was 43 

and 1.9 times the base fluid at high concentrations (5.0 vol.%) respectively and the relative 

viscosity was higher than the relative viscosity predicted by Einstein model. It was 

suggested that particle agglomeration was the main reason for the nanofluid’s behaviour 

and the cause of the significant difference between the experimental results and those of 

the theoretical viscosity models. 
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 Interestingly, studies of very low volume concentrations for Al2O3-water 

nanofluid (0.01 - 0.3 vol.%) [21], TiO2-water nanofluid (0.02 - 0.2 vol.%) [32] and CuO-

water nanofluid (>0.016 vol.%) [33] have shown that the theoretical viscosity model by 

Einstein model could not estimate the viscosity of nanofluids.  

 An attempt was made by Sundar et al. [18] and Mahbubul et al. [34] to review all 

available experimental and theoretical literature for nanofluid properties with a specific 

focus on viscosity. They found that the following factors have a significant effect on 

nanofluid viscosity: nanoparticle concentration, nanoparticle size, nanoparticle shape, 

base fluid type and nanofluid temperature. It is noted that these correlations estimate the 

dynamic viscosity of a nanofluid to increase with increasing volume fraction 

concentration and decrease with temperature. They also noted that there was no 

consistency in the reported rheological behaviour of nanofluids or in viscosity trends 

across various types of nanofluids. Khanafer and Vafai [35] developed a correlation for 

an Al2O3-water nanofluid’s dynamic viscosity with respect to volume fraction, 

nanoparticle size and temperature. This correlation summarised the previous experimental 

studies in the literature for volume fractions from 1% to 9%, temperatures from 20 to 70 

C and nanoparticle diameters between 13 nm and 131 nm. From this correlation, Mena 

et al. [36] extrapolated a correlation to predict the low temperature and low volume 

concentration behaviours of Al2O3-water nanofluids. Based on various researchers’ 

experimental data for nanofluid viscosity, Corcione [37] developed an empirical 

correlation to predict dynamic viscosity. This correlation is given for nanofluids with 

volume fractions between 0.01 and 7.1 vol.%, nanoparticles with diameters between 25 

and 200 nm, and temperatures in the range 20 to 50 C. Recognising the discrepancy 

between the empirical and theoretical nanofluid viscosity models, Nwosu et al. [38] 

analysed them and suggested a technique which uses an algorithm to select a viscosity 

nanofluid model. This technique is based on user defined parameters such temperature, 

volume fraction, type of nanoparticle material and particle radius.  
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1.2.2: Heat transfer characteristic analyses of nanofluids 

Previous studies concerning the evaluation of a nanofluid’s heat transfer performance 

within a system or application may be classified into two main areas experimental analysis 

and numerical analysis. 

- Experimental studies 

The experimental studies may also be divided into two subcategories: whole system 

energy analyses or studies on convective heat transfer within tubes and pipes. The main 

advantage of the whole system analyses, which are less common, is the ability to evaluate 

the heat transfer enhancement of the whole system as a single part by measuring the 

thermal performance and the energy consumption of the whole system. However, this 

comes at the disadvantage of having to incorporate many factors and severely increases 

the complexity of such studies. 

 Roberts and Walker [39] investigated the heat transfer performance of a 

commercial electronic liquid cooling system for computational processing units using 

Al2O3 nanofluids with different concentrations up to 1.5 vol.%. They observed that the 

heat transfer coefficient was enhanced using nanofluids by 18% compared to the base 

fluid (deionized water). Rafati et al. [40] used three different nanofluids Al2O3, TiO2 and 

SiO2 in a mixture of deionized water and ethylene glycol for cooling a computer 

processor. Their results indicated that using nanofluids enhances the heat transfer by 

decreasing the operating temperature of the processor when compared to the base fluid 

and Al2O3 nanofluid gave the best cooling at volume fraction 1% by reducing the 

operating temperature from 49 to 44 C. 

 Minsheng et al. [41] measured and compared the thermal conductivity of different 

nanofluids and investigated the effect of multi-walled carbon nanotube (MWNT)/water 

as a nanofluid on the performance of a 10-TR water chiller (air conditioner). Their results 

showed better thermal performance when using the nanofluid, which increased the 

cooling capacity by 4.2% at the standard rating conditions. Shengshan Bi et al. [42] 

investigated the thermal performance of domestic refrigerators by using TiO2-R600a 
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nanorefigerants and pure R600a as a working fluids and found that TiO2-R600a 

nanorefrigerant worked safely and normally. The energy consumption of the refrigerator 

decreased by 5.94% and 9.60% by adding 0.1 g/L and 0.5 g/L of TiO2-R600a respectively.  

Peyghambarzadeh et al. [43] used a nanofluid in an automobile radiator for 

enhancing the convection heat transfer by adding nanoparticles of Al2O3 into water at five 

different concentrations from 0.1 to 1.0 vol. % and at different operating inlet temperature 

(37-49 oC). Their results indicate that the Nusselt number was increased by up to 45% 

compared to the base fluid and this was strongly dependent on the particle concentration 

and the flow conditions, it was weakly dependent on the temperature. This enhancement 

of Nusselt number is attributed to the particle movement. Peyghambarzadeh et al. [44] 

also considered a water/ethylene glycol/Al2O3 nanofluid for the same application which 

gave a good agreement with the previous study: the Nusselt number was enhanced by up 

to 40% for both nanofluids and strongly depended on the particle concentration and the 

flow conditions, and was also weakly dependent on the temperature. 

Naraki et al. also experimently investigated the overall themal performance of a 

car radiator using CuO-water nanofluids [45]. Data is given for CuO-water nanofluids 

with concentration range from 0.0 to 4.0 vol.% and under laminar flow behaviour. Their 

results showed that the heat transfer coefficient increased with increasing nanofluid 

concentrations and the enhancement was up to 8% at volume fraction 4.0 vol.%. This is 

significantly lower than Peyghambarzadeh et al. [43], and may suggest that Al2O3 

nanofluids offer superior heat transfer because the Al2O3 nanoparticle has higher thermal 

conductivity when compared to CuO nanoparticle. 

Teng et al. applied a Al2O3-water nanofluid in an air-cooled exchanger under 

laminar flow [46]. Their results indicated that, in general, the heat exchanger capacity was 

higher than with water for all concentrations and under their experimental conditions; they 

achieve 93% and 5.6% enhancement in the heat exchange capacity and pressure drop, 

respectively. Several researchers investigated using nanofluids in a flat plate solar 

collector [47-50]. They found the efficiency of the solar collectors increased by using 

nanofluids. 



15 

 

Experiments that deal with specific components, and not the system as a whole, 

have their own merits. The heat and flow characteristics of the fluid can be calculated 

accurately and in isolation of other effects.  The outcome of these procedures can also 

contribute to or correlate with a numerical analysis. Previous studies concerning the 

evaluation of a nanofluid’s convective heat transfer performance used forced convection, 

either experimentally or numerically for laminar and turbulent regimes. Experimental 

studies are reviewed first followed by numerical studies later in this section. 

Williams et al. [25] experimentally investigated the heat transfer coefficient and 

pressure drop behaviour of fully developed turbulent flow (the same technique used in the 

present study). The tests were conducted for alumina (Al2O3)-water and zirconia (ZrO2)-

water nanofluids. Under the test conditions, their results indicate that using conventional 

correlations (Dittus–Boelter correlation) and models can predict the heat transfer 

coefficient and pressure drop of nanofluids. They also noted that the enhancement of heat 

transfer for the specified nanofluids was not abnormal under the test conditions. Heyhat 

et al. [26] also measured the heat transfer coefficient and pressure drop of Al2O3-water 

nanofluids at constant surface temperatures using a fully developed turbulent flow.  They 

showed that the heat transfer coefficient and pressure drop of nanofluids could be 

estimated by applying conventional correlations and models. They argued that increasing 

the volume fraction of a nanofluid increases the heat transfer coefficient whilst there is 

minimal effect on the heat enhancement with increasing Reynolds number at a fixed 

nanoparticle concentration. Fotukian and Esfahany [51] also used γAl2O3-water nanofluid 

with volume concentration  < 0.2% within a turbulent flow regime to measure the 

convective heat transfer and pressure drop experimentally. Their results showed that using 

nanofluids noticeably increased the heat transfer performance. They also found that at Re 

= 10,000 with a volume fraction of 0.054%, the heat transfer was increased by 48% when 

compared to pure water and that traditional correlations of the heat transfer coefficient 

underestimated their results. The results indicated that pressure loss increases with 

increasing nanoparticles concentration.            

Heat transfer and flow behaviour of Al2O3-water nanofluids were investigated 

experimentally by Sahin et al. [52]. The tests were conducted by varying the Reynolds 
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number from 4000 to 20,000 with volume fractions of 0.5, 1.0, 2.0 and 4.0 vol.%. They 

noted that heat transfer and pressure drop increase with increasing nanoparticle 

concentration with a notable exception that nanoparticle concentrations lower than 2.0 

vol.% gave a higher heat transfer. It is found that at Re = 8000 and 0.5 vol.% the heat 

transfer enhancement is the highest and a correlation for convective heat transfer was 

developed.        

Xuan and Li [53] used turbulent forced convection to investigate the heat transfer 

coefficient of Cu-water nanofluids flowing within a uniformly heated tube. They noticed 

that the heat transfer coefficient of the nanofluid increased significantly with increasing 

nanoparticle loads (volume fractions). Using a constant Reynolds number, the heat 

transfer coefficient of the nanofluids increased from 6% to 39% upon increasing 

nanoparticle loads from 0.5 vol.% to 2.0 vol.%. It was also noticed that, at the same 

Reynolds number, no significant pressure drop increase was found for any nanofluid 

concentrations. Interestingly, the experimental results showed that, at the same velocity, 

the nanofluid heat transfer coefficient increased with increasing nanoparticle 

concentrations. Furthermore, the existing conventional correlation (Dittus-Boelter 

correlation) poorly predicted the heat transfer coefficient. In contrast, the theoretical 

prediction of pressure drop shows better agreement when predicting the nanofluid 

pressure drop. 

Pak and Cho [23] experimentally investigated the heat transfer performance of γ-

Al2O3 (13 nm) and TiO2 (27 nm) water based nanofluids under turbulent flow within a 

uniformly heated tube. Their results show that the Nusselt number of a nanofluid increases 

with increasing nanoparticle load and Reynolds number. However, they also noted that at 

a constant average velocity, the convective heat transfer coefficient of the nanofluid was 

12% lower than that of pure water. The effect of nanoparticle diameter on heat transfer 

and pressure drop was studied by Arani and Amani [54]. The tests were conducted within 

the turbulent regime of TiO2-water nanofluids with varying diameters (10, 20, 30 and 

50nm) and Reynolds numbers. Their results showed that decreasing nanoparticle diameter 

had a minimal effect on heat transfer enhancement whilst the pressure drop increased 

noticeably with increasing Reynolds number and with decreasing nanoparticle diameter. 
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It was found that the nanoparticles with diameter 20nm gave the highest thermal 

performance factor under test conditions.      

The turbulent heat transfer coefficient and pressure drop of TiO2-water nanofluids 

with volume fractions of less than 0.25% in a circular tube and fully developed turbulent 

flow were investigated by Sajadi and Kazemi [55]. Their results were consistent with the 

previous study in that the heat transfer coefficient increased by about 22% and the 

pressure drop went up by 25% when compared to pure water. Also the comparison of the 

experimental data was in disagreement with the published correlation of Nusselt number 

such as Pak and Cho [23] and Xuan and Li [53] with the average discrepancy being about 

30% too low. 

He et al. investigated the heat transfer and flow characteristics of TiO2-water 

nanofluid in a vertical pipe for laminar and turbulent flows [56, 57]. Their results showed 

that an increase in nanoparticle concentration enhanced the convective heat transfer 

coefficient at a given Reynolds number and particle size whereas the pressure drop of the 

nanofluid remained similar to the base fluid.  Kayhani et al. [58] investigated the effect 

of particle volume fraction concentrations of TiO2 nanoparticles (average size 15nm) in 

distilled water on heat transfer convective performance and pressure drop within the 

turbulent flow regime in a horizontal tube with constant heat flux boundary condition. 

They found that adding nanoparticles increases the heat transfer coefficient and pressure 

drop; however, the increase was not considered significant compared to the base fluid at 

a given Reynolds number. Sajadi and Kazemi [59] studied the heat transfer performance 

and pressure drop under turbulent flow of low concentration (less than 0.25 vol. %) TiO2 

nanoparticles in water. They found that there is a noticeable enhancement in heat transfer 

when adding nanoparticles. However, this enhancement was not affected by increasing 

nanoparticle concentration whilst the pressure drop increased with increasing nanoparticle 

concentrations. Also they found that increasing the Reynolds number decreased the ratio 

of heat transfer coefficient of the nanofluid with respect to the base fluid.  
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Convective heat transfer performance and pressure loss of CuO-water nanofluids 

(≥ 0.3%) under turbulent flow in a tube was investigated by Fotukian and Esfahany [60].  

The study’s results tended to overestimate values up to 15% of the published values. 

The heat transfer coefficient of γAl2O3–water nanofluid in a single tube (1.02 

mm diameter) under constant heat flux and laminar flow were examined by Lai et al. [61] 

and Wen and Ding [62]. Their results show that the convective heat transfer coefficient 

increases with increasing nanoparticle concentration and volumetric flow rate. The effect 

of sonication on TiO2–water nanofluid performance in a convective heat transfer loop 

under laminar flow with constant heat flux was studied by Rayatzadeh et al. [63]. Their 

results illustrated that using continuous sonication during the test enhanced the heat 

transfer performance of the nanofluid, especially at high concentration of nanoparticles. 

The convective heat transfer and pressure drop characteristics for Al2O3–water and ZrO2–

water nanofluids within a laminar flow regime are investigated experimentally by Rea et 

al. [64]. It is found that the heat transfer coefficient increased by 27% for 6 vol.% Al2O3–

water nanofluids and by and 3% for 3.5 vol.% ZrO2–water nanofluids compared to their 

base fluid; and that the pressure drop for both nanofluids was significantly higher than 

that of the base fluid. The prediction of traditional correlations of single-phase liquid 

showed good agreement with their results. The effect of particle size in Al2O3water 

nanofluids on convective heat transfer characteristics in laminar developing regions in a 

tube was investigated by Anoop et al. [65]. The experiment was carried out with constant 

heat flux and two average sizes of nanoparticle (45 nm and 150 nm). The results indicated 

that both nanofluids with different particle sizes enhanced convective heat transfer 

considerably. Also, the nanofluid with average diameter 45 nm showed a higher heat 

transfer coefficient than the one with 150 nm; for example, at concentration 4 wt.% the 

enhancement in heat transfer coefficient with respect to base fluid was 25% and 11% for 

the nanofluid with 45 nm and 150 nm respectively. The result also showed a higher heat 

transfer characteristic with increase in nanoparticle concentration. 

 Heris et al. [66] experimentally investigated the heat transfer coefficient of CuO-

water and Al2O3water nanofluids in a circular tube at constant wall temperature under 

laminar flow. They found that nanofluids enhanced the convective heat transfer and that 
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the Al2O3water nanofluid was superior to the CuO-water nanofluid. The heat transfer 

coefficient of nanofluid gives a higher value with respect to the correlation of single-phase 

liquid. On the other hand, convective heat transfer of tube with square cross section was 

investigated under constant heat flux and laminar flow using Al2O3water nanofluid by  

Heris et al. [67]. The results indicated that using nanofluids enhanced the heat transfer 

rate compared to the base fluid through the square tube and the predicted traditional 

correlation of single-phase liquid for laminar flow (by Sieder–Tate correlation) gave 

lower value to the experiment results. The present author believes that the enhancement 

of convictive heat transfer is due to not only the thermal conductivity increase but also 

Brownian motion, particle migration and dispersion.  

To conclude the experimental studies, various experimental forced convection 

heat transfer studies were reviewed comprehensively by Gupta et al. [68]. They found that 

in general, using nanofluids enhanced the convective heat transfer coefficient with respect 

to the base fluid and this enhancement increased with increasing nanoparticle 

concentration and Reynolds number. Lack of agreement is likely due to no standardised 

testing method and poor research into or characterisation of agglomeration. Further 

research needs to show when agglomeration takes place.    
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- Numerical studies 

Computational Fluid Dynamics (CFD) is also used to analyse thermal and flow 

characteristics of nanofluids. There are several commercial CFD programmes like Fluent 

and COMSOL available. These convert the governing fluid equations to algebraic 

equations using control volume, finite difference or finite element methods, allowing the 

governing equations to be solved numerically. The results of this are pressure, temperature 

and velocity distributions which can be used to calculate heat transfer and flow 

characteristics, etc... The studies on nanofluid were considered to dealing with nanofluid 

as a single phase (by considering the fluid phase and nanoparticles to be in thermal 

equilibrium with the same velocity) and a two-phase model (considering the fluid and 

nanoparticles to have different velocities). This section describes a selection of numerical 

studies on nanofluids. 

A number of researchers have previously numerically studied forced convection 

of a nanofluid. Demir et al. [69] used CFD (Fluent) to investigate the flow and thermal 

performance in a horizontal tube by using TiO2-water and Al2O3-water nanofluids with 

different volume fractions. Their results showed that the nanofluids significantly 

enhanced the heat transfer and this enhancement increased with increasing particle 

concentration, but also increased the pressure drop. The heat transfer in a horizontal 

circular tube with Al2O3-water nanofluids was also studied numerically using a two-phase 

Eulerian model considering the fluid and nanoparticles to have different velocities by 

Lotfi et al. [70]. They also compared their results from a single-phase model and a two-

phase mixture model to published experiment results; the mixture model predicted the 

Nusselt number of the experimental results much better than the other two models. 

 Santra et al. [71] used the finite difference method to analyse two-dimensional 

steady-state heat transfer in a rectangular duct with two walls at a constant temperature 

using a copper-water nanofluid. Their study considered the effect of assuming the 

nanofluid to be Newtonian and non-Newtonian, using Reynolds numbers of 5 to 1500 and 

volume fractions of 0.0 to 5.0 vol.%. The results show that the heat transfer coefficient of 

the nanofluid is higher than for the base fluid and increases with increasing Reynolds 
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number and volume fraction for both cases. Raisi et al. [72] also studied the heat transfer 

of microchannel which was heated partially from the top and bottom walls using water 

and copper-water nanofluids as a coolant by applying a control volume method. The effect 

of varying Reynolds number from10 to 500 and volume fractions of 0.0 to 5.0 vol.% with 

slip and no slip boundary conditions on heat transfer was investigated. It was observed 

that there is a high heat transfer rate at high Reynolds numbers, which increases with 

increasing volume fractions. At low Reynolds numbers, the effects of volume fraction and 

slip boundary condition are negligible. However, the slip velocity increased the heat 

transfer rate significantly at higher Reynolds numbers. 

 The heat transfer coefficient of a straight tube was numerically investigated under 

the laminar flow regime using Fluent by He et al. [73]. The results indicated that the effect 

of thermal conductivity was dominant on convective heat transfer and the effect of 

Brownian force and thermophoretic force was negligible. Fard et al. [74] calculated the 

heat transfer coefficient of different nanofluids using single-phase and two-phase models 

under laminar flow and constant wall temperature conditions within a circular tube. Their 

results showed that both models gave a good agreement with the empirical results, but the 

two-phase model was more accurate. They predicted that using nanofluids enhanced the 

heat transfer coefficient, which increased with increasing nanofluid concentrations and 

Peclet numbers. Moraveji and Esmaeili [75] also numerically studied single-phase and 

two-phase models to predict the heat transfer performance of water-Al2O3 nanofluids in a 

circular tube under constant heat flux and laminar flow conditions. Their results indicated 

that single phase and two-phase models showed good agreement with each other and with 

the literature. 
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1.2.3: Nanofluids economic analysis 

Using nanofluids in practical applications is subject to an economic analysis evaluation; 

since nanofluids increase both the heat transfer and the pressure drop they may only 

provide an economic benefit in certain applications where pumping costs are low or high 

density cooling is required. Besides this the high cost of nanofluids increases capital costs 

and is considered one of the key obstacles in employing nanofluids in some applications 

[40, 68, 76]. 

 There are few studies applying economic analysis to nanofluids. Faizal et al [77] 

analysed the solar collector economically using various nanofluids to achieve the same 

output temperature. The results showed that reduction in solar collector area compared to 

conventional one was estimated to be 25.6%, 21.6%, 22.1% and 21.5% for CuO, SiO2, 

TiO2 and Al2O3 nanofluids respectively. This could therefore reduce the weight and cost 

to manufacture the collector. The solar collector payback period was estimated to be 2.4 

and 2.5 years using nanofluids and traditional fluids, respectively. Otanicar and Golden 

[76] also investigated the economic impact of using nanofluids in a solar collector. Their 

results showed that the nanofluid improved the solar collector efficiency and they found 

the conventional solar collector gave a slightly shorter payback period with respect to 

using nanofluid; they attribute this to the cost of nanofluids. 
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1.2.4: Data centre cooling 

A major part of the energy consumed in a data centre is due to the cooling system needed 

to manage the heat generated from the servers processors and memory [78].  Therefore, 

reducing these loads and finding a new way to efficiently cool the servers both protects 

their components and increases the performance and reliability; this is one of the most 

important energy conservation measures in a data centre [3]. The use of nanofluids as 

liquid cooling in data centre cooling system will serve this very objective [40]. 

 There are several techniques for cooling the electronic systems within data centres 

such as forced air cooling, liquid cooling and direct contact cooling (immersion cooling) 

[3, 78-81]. Air cooling methods are the most common means of cooling a data centre [3], 

see Figure 1.4. The computer room air conditioning (CRAC) units supply the cool air 

through an under floor plenum to the front of the rack which passes through the servers 

to cool them, then the hot air flows back to the CRAC units which cools the air and re-

circulates back to the under floor plenum. This method needs to maintain a relative 

humidity within the recommended operating envelope to avoid condensation which can 

cause corrosion issues or too dry an air which causes electrostatic discharge risk [82, 83]. 

Liquid cooling methods bring the cooled water to the rack or into the server as a heat 

exchanger on the front or rear of the rack or alternatively to heat sinks on the top of the 

chips, see Figure 1.5 and Figure 1.6 respectively. The back or front door cooling method 

uses cool air as in Figure 1.5, which is passed through servers to remove the heat and 

passes it through the heat exchanger to dissipate the gained heat by fans; then the cool air 

circulates again. Whereas Figure 1.6 shows a system bringing the cool water into the 

server through the cooled plate over the chip to remove the heat directly. There is, 

however, the risk of water leaks from liquid cooling methods which may damage 

electronic components of the server and result in data loss [84, 85]. Therefore, using a 

dielectric liquid coolant, such as mineral oil or fluorocarbons (i.e. perfluorocarbons types 

and hydrofluoroethers (HFE)) which are among the most commonly used in direct cooling 

systems [86, 87], is desirable to protect the server electronic components.  

 The direct contact liquid cooling technology is used in two ways; the servers can 

be submerged in either an open or a closed bath of dielectric liquid as shown in Figure 
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1.7 and Figure 1.8, respectively. In the open bath system the cooled dielectric liquid is 

pumped to the bath to remove the heat from the server component and then pumped back 

to the heat exchanger to dissipate the heat. Whereas, in the closed bath, the dielectric 

liquid removes the heat from the chip by boiling and then condenses to liquid again at the 

cooling coils; the difference between the opened and the closed bath cooling system is 

that the latter does not need a pump to circulate the dielectric liquid. The other technique 

of immersion methods is offered by a manufacturer of liquid cooling equipment, Iceotope 

[3], see Figure 1.9.  The server is sealed as a bath and filled with a dielectric liquid (HFE) 

to immerse the server motherboard to remove the generated heat of the electric 

components by applying heat exchanger on the wall of server bath. The heat exchanger 

coolant (water) is circulated to cool.  

In this study, an analysis of the thermal performance and the flow characteristic on a data 

centre server based on the server of Iceotope model using nanofluids as a coolant is carried 

out.     

 

Figure 1.4: A diagram of air cooling data centre [3] 
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Figure 1.5: Rear door rack liquid cooling system 

(http://www.icsdatacentrecooling.co.uk/server-rack-cooling-systems/) 

 

 

Figure 1.6: The picture shows server cooling by liquid cooling system [88] 

 

http://www.icsdatacentrecooling.co.uk/
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Figure 1.7:  Open bath immersion cooled cooling system(http://www.grcooling.com/ 

gallery/) 

 

 

 

Figure 1.8: close path two-phase immersion cooled cooling system (http://www.allied-

control.com/immersion-cooling) 
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Figure 1.9: A diagram of the direct contact liquid cooling of Iceotope liquid cooling 

system [89]. 
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1.3: Summary of Literature Review 

In general, there is a need to standardise the experimental procedure for the measurement 

of properties such as the thermal conductivity (as Buongiorno et al.  [12]) and viscosity 

of nanofluids since there is no consistent method in the literature for determining and 

calculating these values. In addition, there is a need to make comparisons with published 

values and to establish methods of calculating values as dynamic viscosity for a specific 

type of nanofluid as a function of the nanoparticle type, nanoparticle size, volume 

concentration and temperatures as well as corrections for the stability of the nanofluids as 

it ages. In addition, the viscosity of nanofluids, which are used to evaluate the thermal 

performance and the pump power, needs to be considered in detail.  

 Determination of the thermal characteristics of many different specific 

components of a system as well as the system as a whole, using refined thermal properties 

of nanofluids and accurate representations of the heat transfer characteristics, is needed 

since there are differing opinions on the true benefits and costs of employing nanofluids 

to enhance heat transfer. Using nanofluids has the potential to improve heat transfer but 

there are still difficulties in determining the true benefits and costs of using nanofluids 

and significant disagreements between experimental and theoretical studies. There is also 

controversy on whether to deal with a nanofluid as a homogeneous liquid or a two-phase 

material. A great deal of investigation is still required in order to calculate the optimum 

concentration of nanofluids recommended for a specific application to work normally, 

safely and efficiently by calculation of the thermal performance and the energy 

consumption of the system as well as its pressure drop. 

 The thermal performance and the energy transfers within a system depend upon 

the type of the nanoparticles and their concentration within the base fluid, and the system 

itself. An economic analysis is required along with the heat transfer calculations in order 

to determine the optimum nanofluid to use in a system since nanofluids have high costs. 
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 There are different cooling techniques to reduce the temperature of a data centre 

as well as the temperature of the electronic components of a server; nanofluids are seen 

as a promising cooling technique. 

1.4: Practical Relevance 

The viscosity of various nanofluids measured in the present study is used in the 

experimental and computational thermal analyses, also carried out in this thesis. These 

properties could also be of use to other investigators, especially since there is a general 

shortage of detailed and reliable measurements of nanofluid viscosity. The present 

experimental activity also includes measurements of the viscosity of nanofluids at 

different temperatures and nanoparticle concentrations. Such information is useful since 

the nanofluids are usually subjected to large temperature fluctuations in practical 

applications, and dynamic viscosity can vary appreciably with nanoparticle concentration 

and temperature.  

The thermal performance (heat transfer coefficient) and flow characteristics 

(pressure drop) of nanofluids measured in specific components are important. 

Comparisons with data in the literature are carried out and also dealing with nanofluid as 

a single phase or two phases flow is of vital importance, since there is a controversy of 

nanofluid behaviour. 

Another important issue that concerns the practical relevance of the present thesis 

is the determination of recommended nanofluid concentrations for typical data centre 

cooling systems. This issue is of vital importance with regard to energy conservation in 

data centres.  The use of a nanofluid with an optimum volume fraction is a major step 

towards optimizing the total cost, which comprises the cost of energy consumption due to 

the electronic devices (servers in the data centre), cooling system and pump plus the cost 

of the nanofluids itself. The volume fraction calculated for typical nanofluids under the 

considered conditions should benefit the energy conservation in data centres.  
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1.5: Objectives 

There are three main objectives in the present work.  The first objective is measuring the 

thermophysical properties of nanofluids and proposing a correlation viscosity.  The 

second objective is the measurement and calculation of the thermal and flow 

characteristics of various nanofluids. The third objective is simulating nanofluids within 

a data centre cooling liquid loop using different nanofluids and predicting the 

recommended volume fraction for these nanofluids by the application of an economic 

analysis.  In general, all objectives can be summarised as follows:   

1. Survey and collect samples of nanofluids produced by commercial companies and 

also try to produce nanofluids in our laboratory. 

2. Measure the viscosity of the nanofluids as a function of temperature as well as 

nanoparticle volume fraction. 

3. Suggest and propose a correlation for viscosity as a function of volume fraction and 

temperature. Then compare this with current theoretical and empirical correlations.  

4. Build an experimental loop to evaluate heat transfer performance and pressure drop 

of commonly used nanofluids. 

5. Measure thermal and flow characteristics of nanofluids by applying them in the test 

loop.  A comparison with the conventional and existing correlation will be made in 

terms of heat transfer coefficient and pressure drop.  

6. Survey and collect information of data centre cooling techniques and collect data 

regarding the thermal properties of server materials. 

7. By utilising a model based on the finite-element method (COMSOL program), 

evaluate and compare the thermal performance and flow characteristics of a cooling 

nanofluid within a data centre server based on various nanoparticle volume fractions. 

8. Evaluate the benefit of nanofluids within the cooled plate of immersed liquid cooling 

scenarios. 
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9. Determine the optimum nanoparticle concentration and recommended nanofluids for 

the application under work conditions and given types of nanofluids and 

nanoparticles concentration. These would be subject to certain (thermal performance) 

thermal conditions of the data centre and specific values of a number of economic 

parameters. 

10. Investigate the effects of some parametric study on the optimum nanoparticles 

concentration such as changing the configuration of server and the effect of economic 

factors 
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CHAPTER 2: NANOFLUIDS PREPARATION AND 

CHARACTERISTICS 

2.1: Introduction 

There are many types of nanofluids available; these differ with the base liquid type such 

as water, ethylene glycol and oil. They also differ in regards to nanoparticle material, size, 

shape and concentration [90]. An important issue facing scientists in creating a nanofluid 

is dispersing the nanoparticles homogeneously within the base fluid and the stability of 

these over time. Another issue is reducing the agglomeration of nanoparticles to avoid 

sedimentation due to gravity [91].  

There are two main techniques for dispersing nanoparticles into a base fluid when 

preparing a nanofluid: the single step technique and the two step technique. The single 

step technique involves simultaneously producing and dispersing nanoparticles into a 

base fluid at the same time. The two step method involves first producing the 

nanoparticles and then dispersing them into the base fluid, this needs high shear and 

ultrasound to aid dispersion of the nanoparticles into the fluid. This technique is mainly 

used to produce nanofluids with oxide nanoparticles and is preferred by researchers [11, 

90-92] since it is easy to find the oxide nanoparticles and prepare nanofluids. However, 

the single step method is characterised by stability and less agglomeration of nanoparticles 

and also it is easier to control the size and the shape of the nanoparticles, but is more 

expensive.  

 The nanoparticles of the two step technique are produced by physical processing 

such as mechanical grinding and ball milling or can be synthesised by chemical processes 

such as Chemical Vapour Deposition (CVD) or chemical precipitation. The output of 

these processes is a powder with different size and shape and a variety of types such as 

carbon nanotubes, oxide ceramics, nitride ceramics, carbide ceramics, metals or 

composite materials [11, 90]. 
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From the previous studies, the procedures of nanofluid preparation and evaluation can be 

summarized in the diagram shown in Figure 2.1. The abbreviations of TEM and SEM 

refer to Transmission Electron Microscopy and Scanning Electron Microscopy, 

respectively. 

 

 

Figure 2.1: Diagram showing a preparation procedure of a nanofluid. 
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2.2: Nanofluids Preparation 

In this study, aluminium oxide (Al2O3-water), titanium oxide (TiO2-water) and copper 

oxide (CuO-water) nanofluids were chosen because they are the most commonly used, 

easiest to prepare and are commercially available as a nanofluid. 

 The alumina (Al2O3-water) nanofluids were prepared using the two step technique 

mentioned above. The nanoparticles were supplied by Sigma-Aldrich with an average size 

of 50 nm and added to distilled water using magnetic stirring and ultrasonic agitation to 

disperse the nanoparticles in the base fluid to get a nanofluid with mass fraction of 20 

wt.%. While titanium oxide (TiO2-water) and copper oxide (CuO-water) nanofluids were 

purchased premixed from Alfa Aesar as a colloidal dispersion nanofluid with mass 

fractions of 50 wt.% and 45 nm average nanoparticle size for TiO2-water nanofluid and 

35 wt.% with nanoparticle size 30 nm for the CuO-water nanofluid. These concentrations 

of the nanofluids were diluted into distilled water to get nanofluids with a variety of 

volume fractions, as explained in the next section. The dilution process was undertaken 

by stirring and shaking the mixture without any additional processes. 

2.3: Dilution Processes  

The nanofluids discussed above with mass fractions 20 wt.%, 50 wt.% and 35wt% were 

diluted into distilled water to get nanofluids with a variety of volume fraction 

concentrations i.e. 0.5, 0.9, 1.8, 2.7, 3.6, 4.7, 5.9 vol.% for Al2O3-water and 0.5, 1.5, 2.5, 

3.5, 4.5 vol.%; and 0.4, 0.8, 1.2 and 1.6 vol.% for TiO2-water and CuO-water nanofluids. 

It should be emphasised here that the dilution was calculated based on the properties of 

the base fluid and nanoparticles at room temperature (22 C). Also because of the high 

cost of CuO-water nanofluid, only low concentration amounts were prepared. 

The dilution process calculations are as follows. 

The mass fraction, f and volume fraction,  of the nanofluid are calculated from: 
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where mt  and Vt are respectively the total mass and volume of the base fluid and 

nanoparticles together (i.e. the nanofluid), and mp  and Vp are respectively the mass and 

volume of the nanoparticles. Hence mt = mbf +mp and Vt = Vbf +Vp where  mbf and Vbf are 

respectively the mass of volume of the base fluid. Naturally, the density of the base fluid 

is given by bf  = mbf  / Vbf  and that of the particles is p  = mp  / Vp .  

The relationship between volume fraction and mass fraction is: 
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and the nanofluid density is calculated by  pbfnf  )1( . 

It is assumed that the purchased nanofluid’s advertised specific mass fraction )1(f  is 

precise and accurate, and further volume fractions used are diluted from this assumed 

value. From Eq. (2.1), the volume fraction of the nanofluid )1(  can be calculated. In 

order to create a nanofluid sample of the required volume fraction ),2( the stock 

nanofluid should be diluted with a volume )add(bfV  of distilled water. If the initial 

volume of nanofluid is ),1(tV  the volume of the nanoparticles within this volume is 
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as the volume of distilled water required to achieve the desired nanoparticle concentration.  
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2.4: Nanoparticle Imaging 

The morphology of the nanoparticles within the synthesized and purchased nanofluids 

was explored using Transmission Electron Microscopy (TEM) images (Jeol JEM-2100F 

model) to verify the nanoparticles’ size and shape. The TEM images were produced by 

the author by taking two spots of a sample; two images can be seen in each of Figures 2.2 

to 2.4 for the three different nanofluids. The images, Figure 2.2, Figure 2.3 and Figure 2.4 

show that Al2O3 and TiO2 nanoparticles are of non-spherical and irregular shape and 

variety of sizes; the average size of the particles is about 50 nm and 45 nm respectively. 

In contrast, CuO is almost spherical in shape with typical diameter of 30 nm, as stated by 

the manufacturer. The TEM was also used to determine the nanofluid agglomeration – as 

observed from Figure 2.2 - 2.4; the nanoparticles aggregate forming larger particles. 

However, the drawback of the TEM is that the sample of nanofluid should be dried out 

before insertion inside the device. This causes the nanoparticle agglomeration, and so the 

agglomeration observed in Figures 2.2 to 2.4, could be a result of the drying process rather 

than existing in the original sample. 

 

Figure 2.2: TEM images showing the shape and diameter of the Al2O3 nanoparticles. 
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Figure 2.3: TEM images showing the shape and diameter of the TiO2 nanoparticles 

 

 

Figure 2.4: TEM images showing the shape and diameter of the CuO nanoparticles 
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2.5: Conclusion 

Nanofluids are composed of a base fluid, such as water or ethylene glycol, and a 

nanoparticle, which enhances the thermal conductivity and heat transfer performance of 

the base fluid. There are two methods to produce a nanofluid namely the single step 

technique or the two step technique. The two step method is commonly used when 

producing a nanofluid which contains oxide metals. In this study the aluminium (Al2O3-

water), titanium oxide (TiO2-water) and copper oxide (CuO-water) nanofluids were 

chosen because they are most commonly used. In order to produce a variety of volume 

fractions of these nanofluids, a dilution process was followed. Transmission Electron 

Microscopy (TEM) was used to verify the nanoparticle morphology. 
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CHAPTER 3: MEASUREMENTS OF THE VISCOSITY OF 

 NANOFLUIDS 

3.1: Introduction 

Estimation of the heat transfer coefficient and pressure drop of a nanofluid within an 

application depends strongly on the fluid’s viscosity and thermal conductivity. Accurate 

CFD analyses of such systems require the thermo physical property values of the fluid as 

an input, therefore accurate and reliable representations of the nanofluid properties are 

essential. Within the literature, previous experiments carried out on nanofluid properties 

have specifically focussed on measuring the thermal conductivity of nanofluids and few 

experiments have examined the measurement of viscosity [18, 22, 24, 34, 35, 38]. Within 

these experiments, there is little or no consistency in the prediction of specific viscosities 

[18, 19]. 

 The accuracy of these property values is sometimes questionable since complete 

and important information is often lacking. On many occasions, viscosity values are 

quoted for nanofluids without giving the type of nanofluid and temperature.  Besides, the 

viscosity of many nanofluids is subject to nanoparticle stability effects, which also depend 

upon nanoparticle size and the nanofluid synthesis method. In general, the properties of 

nanofluids depend on the nanoparticle concentration, temperature, type, as well as particle 

size and structure or aggregation [63, 64, 66] which may significantly affect nanofluid 

viscosity. Therefore, it is very important to develop a database for nanofluid properties 

and especially commercially manufactured nanofluids. 

 The present study uses an accurate experimental technique for measuring the 

viscosity of some commonly used nanofluids. The effects of temperature and volume 

fraction variations on the viscosity are also examined and comparisons are made with 

previous experimental and theoretical studies.   
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3.2: Experimental Methods 

3.2.1: General methods for measuring viscosity 

There are many instruments available for measuring viscosity, which is defined as the 

continuous deformation (shear rate) of fluid under the action of a shear stress or more 

generally as the resistance of a liquid to flow [93]. These instruments are based on 

different principles and techniques. The techniques are broadly classified as, those which 

measure the resistance of liquid to flow using a stationary object such as a capillary 

viscometer, or those which measure viscosity using moving objects such as rotational 

viscometers [94]. In principle, Capillary viscometers calculate the flow rate of a liquid 

sample of known dimensions, where the flow from one side to the other is governed by a 

pre-determined pressure drop or gravity. For this type of viscometer, the testing time is a 

function of the sample’s viscosity. Rotational viscometers, on the other hand, measure the 

torque required to rotate a spindle in a liquid. Therefore, rotational viscometers are 

distinguished or preferred mainly by their ease of use and the short time, typically in the 

region of a couple of minutes, required to obtain the desired results.   

3.2.2: The Kinexus system 

The Malvern Kinexus Pro rheometer, which utilises the rotational rheometer platform 

technique, was used in the present work to measure the viscosity of the nanofluids (see 

Figure 3.1). The following sections give a brief description of this technique and its 

theoretical background. More details and the technical use of various other options and 

extensions that the apparatus can support can be found in the user manual [95]. 
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Figure 3.1: Diagram of the Malvern Kinexus Pro rheometer and a typical element and 

sample arrangement[95]. 
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3.2.3: Description 

The Malvern Kinexus Pro rheometer is designed to measure viscosity, based on the theory 

of controlled shear deformation of a sample by applying torque [94]. The test sample is 

placed on the lower geometry (circular plate) and the spindle cone, with diameter 40 mm 

and incline 4, is positioned above the lower plate; the gap between them is  0.03 mm (see 

Figure 3.1).  

 The main advantages of the Kinexus rheometer are: accuracy (the manufacturer 

quotes a value of ± 1% but this is verified in the next section); that it gives a wide range 

of viscosity measurements; that it produces results in a relatively short time; and that it 

can use different spindle sizes to accommodate different sample types. It is however 

constrained to a sample size of about 5ml. The temperature of the sample can be 

controlled, since rheological properties are a strong function of temperature, within the 

range -40 to 200C with resolution of 0.01C.  The sample is covered to protect it from 

environmental conditions and contamination. 

3.2.4: Measurement procedure  

The first part of the experiment involved measuring the dynamic viscosity of water at 

different temperatures to verify the accuracy of the Kinexus rheometer. The second part 

involved measuring the viscosity of all nanofluids, which had been previously prepared, 

at atmospheric pressure and different mean temperatures in the range 15 to 40 oC. 

Measurements were carried out for three specimens of each test sample of the nanofluids; 

the viscosity was measured for each specimen by applying shear rates from 200 to 1400 

s-1 for the whole range of test temperatures, then mean values of viscosity were obtained 

by averaging.  

The nanofluid rheological behaviour was checked just for the highest concentration 

of each nanofluid by applying variable shear rates from 100 to 1400 s-1 for the whole of 

the temperature range studied. Since the nanoparticles in nanofluids tend to settle over 

time, they were shaken using ultrasonic agitation prior to each measurement test. The 

results of the experiment will be discussed in the next section. 
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3.3: Experimental Verification Test 

The accuracy of the Kinexus rheometer was checked by measuring the viscosity of  

distilled water at different temperatures from 15 to 40 C and compared to data from the 

literature using equation (3.1)[54]. The results show that the dynamic viscosity values are 

within 5% of average values (see Figure 3.2 and Table 3.1). 

2
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                         (3.1) 

where bf is the base fluid viscosity in (Pa.s) and T is the temperature in (C). 

Table 3.1 summarizes the values of the measured viscosity of water under investigation 

conditions at atmospheric pressure. The measured viscosity values are presented based on 

average data ± a standard deviation and also the fitting value which comes from the 

relation between shear stress and shear rate; they show that the results are within 5% and 

7% of average, respectively. This indicates that the measured dynamic viscosity in this 

study is accurate and precise. 

 
 

Figure 3.2: Average viscosity measurements for pure water with standard viscosity 

values; at atmospheric pressure and various temperatures 
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Table 3.1: Comparison of viscosity measurements for pure water with standard viscosity 

values; at atmospheric pressure and various temperatures 

Temperature 

(C) 

Viscosity 

(fitting) 

(Pa.s) 

Viscosity (averaging) 

(Pa.s) 

Reference 

water 

viscosity 

(Pa.s) 

Discrepancy 

(%) 

Discrepancy 

(averaging) 

(%) 

15 1.16×10-3 1.18×10-3 ± 5.8×10-5 1.150×10-3 0.55 2.73 

20 1.04×10-3 1.06×10-3 ± 5.2×10-5 1.0106×10-3 2.76 4.60 

25 9.42×10-4 9.60×10-3 ± 5.5×10-5 8.9528×10-4 5.25 7.22 

30 8.43×10-4 8.60×10-3 ± 4.8×10-5 7.9917×10-4 5.49 7.61 

35 7.50×10-4 7.69×10-3 ± 5.1×10-5 7.1840×10-4 4.45 7.09 

40 6.69×10-4 6.93×10-3 ± 6.2×10-5 6.5002×10-4 2.88 6.62 
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3.4: Nanofluid Viscosity Results 

After checking the accuracy of the apparatus, the nanofluids’ rheological behaviour was 

tested and dynamic viscosity measured. Since nanofluids are synthesised from base fluids 

and nanoparticles, they must possess higher viscosity values relative to the base fluid due 

to their nanoparticle loads.   

 Figures 3.3 - 3.5 present the variation in shear stress against shear rate for the 

highest concentration nanofluids studied, in the temperature range 15 to 40 C. The 

measurements indicate that, over the shear rate range considered, the shear stress increases 

with increasing shear rate. The relation between shear stress and shear rate becomes, in 

general, practically linear and converges to zero shear stress at zero shear rates. Under the 

conditions of the present study, all of the nanofluids studied behaved as a Newtonian fluid. 

 

 

Figure 3.3: The variations of the shear stress with shear rate for the highest 

concentration (5.9 vol%) Al2O3-water nanofluid at different temperatures 
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Figure 3.4: The variations of the shear stress with shear rate for the highest 

concentration (4.5 vol%) TiO2-water nanofluid at different temperatures 

 

 

Figure 3.5: The variations of the shear stress with shear rate for the highest 

concentration (1.6 vol%) CuO-water nanofluid at different temperatures 
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The dynamic viscosity of nanofluids was measured for the same temperature range 

(15 to 40 C) and various volume fractions at atmospheric pressure for all nanofluids. The 

measured nanofluids’ viscosity results are presented as an average viscosity ± the standard 

deviation for Al2O3, TiO2 and CuO water nanofluids; see Appendix A for the raw data. 

The results are summarized in Figure 3.6 to 3.8, which give the results for the whole 

temperature range and various volume fractions for each type of nanofluid. These results 

are also presented and discussed in a line chart in order to highlight and clarify the 

comparative differences. Figures 3.6 - 3.8 present the variations in viscosity with 

temperature and volume fraction concentration for all investigated nanofluids. For 

comparison, the corresponding curves of the base fluid (distilled water) are presented as 

dashed lines in the figures. The measurements indicate that, over the temperature and 

concentration ranges considered, the viscosity decreases with increasing temperature, 

while it increases with increasing nanoparticle concentration. It is apparent that increases 

in temperature have less of an impact on viscosity than increases in nanoparticle 

concentration. 

 

 

Figure 3.6: Dynamic viscosity measured for an Al2O3-water nanofluid at different 

temperatures and concentrations; numbers quoted with nanoparticle types refer to 

volume fraction concentrations. 
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Figure 3.7: Dynamic viscosity measured for a TiO2-water nanofluid at different 

temperatures and concentrations; numbers quoted with nanoparticle types refer to 

volume fraction concentrations. 

 

Figure 3.8: Dynamic viscosity measured for a CuO-water nanofluid at different 

temperatures and concentrations; numbers quoted with nanoparticle types refer to 

volume fraction concentrations. 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 5 10 15 20 25 30 35 40 45

V
is

co
si

ty
 (

P
a.

s)

Temperature (C)

Water

TiO2 0.5%

TiO2 1.5%

TiO2 2.5%

TiO2 3.5%

TiO2 4.5%

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 5 10 15 20 25 30 35 40 45

V
is

co
si

ty
 (

P
a.

s)

Temperature (C)

Water

CuO 0.4%

CuO 0.8%

CuO 1.2%

CuO 1.6%



49 

 

The relative viscosity of the nanofluids (i.e. the ratio of nanofluid viscosity to base 

fluid viscosity) is plotted as a function of temperature in Figures 3.9 - 3.11 for Al2O3, 

TiO2 and CuO nanofluids respectively. It is worth mentioning that the relative viscosity 

increases almost linearly (but very little) with temperature, except for the higher volume 

fractions of the nanofluid Al2O3 (i.e. 4.75% and 5.9%), where the relative viscosity 

increases more rapidly with increasing temperature. This has also been noted by other 

researchers [20, 29]. It should also be mentioned that even if a nanofluid has a constant 

relative viscosity, its actual viscosity is still depends on the base fluid viscosity and 

nanoparticle volume fraction. 

Figures 3.12 - 3.14 show the effect of volume fraction on the relative viscosity at 

different temperatures. It can be seen that the relative viscosity increases with increasing 

nanoparticle concentration as expected. The relative viscosity of Al2O3-water nanofluid 

increases by 1.13, 1.27, 1.59, 1.94, 2.57, 4.89 and 5.65 times base fluid viscosity for 0.5 

vol.%, 0.9 vol.%, 1.8 vol.%, 2.7 vol.%, 3.6 vol.%, 4.7 vol.% and 5.9 vol.% volume 

fractions respectively. While TiO2 viscosity  increases  by 1.18 to 2.38 times, compared 

to base fluid for 0.5 to 4.5 vol.% volume fraction; and the viscosity of CuO-water was 

higher than the based fluid by 1.04 to 1.33 times; for volume fraction from 0.4 to 1.6 

vol.%. It is noted that at low concentrations, the viscosity values of all nanofluid types are 

close, but at higher concentration there was a significant difference; for example the value 

for Al2O3-water is two times higher than that of TiO2-water, at 4.6%. This indicates that 

the viscosity also depends significantly on the type of nanoparticles used. From the above, 

it is clear that nanofluid viscosity depends weakly on the temperature and strongly on the 

type of nanofluid nanoparticle and its concentration. Further study is needed to investigate 

nanofluid properties under comparable condition such as the same nanofluid type, 

nanoparticle size and concentration as well as a similar temperature range. 
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Figure 3.9: Relative viscosity measured for an Al2O3-water nanofluid at different 

temperatures; numbers quoted with nanoparticle types refer to volume fraction 

concentrations 

 

Figure 3.10: Relative viscosity measured for a TiO2-water nanofluid at different 

temperatures; numbers quoted with nanoparticle types refer to volume fraction 

concentrations 
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Figure 3.11: Relative viscosity measured for a CuO-water nanofluid at different 

temperatures; numbers quoted with nanoparticle types refer to volume fraction 

concentrations 

 

Figure 3.12: Relative viscosity measured for an Al2O3-water nanofluid at different 

volume fractions 
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Figure 3.13: Relative viscosity measured for a TiO2-water nanofluid at different volume 

fractions 

 

 

Figure 3.14: Relative viscosity measured for a CuO-water nanofluid at different volume 

fractions 
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3.5: New Correlations of Viscosity Data   

Using the relative viscosity measurements determined in the previous section a linear 

relation between viscosity and temperature can be observed (see Figures 3.12 - 3.14). 

When plotted using Excel the equations can be determined by regression analysis. For the 

averaged data of Al2O3, TiO2 and CuO water nanofluids the relative viscosities are given 

by equations (3.2), (3.3) and (3.4), respectively:  

 
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These equations are used for comparison later in this chapter as well as in the heat transfer 

performance and pressure drop calculations in subsequent chapters. It should be noted 

that because of the effect of temperature on the relative viscosity at higher volume fraction 

concentrations of Al2O3-water nanofluids (i.e. 4.75% and 5.9%), the developed equation 

is limited to volume fraction up to  = 4.0 vol.%. It should also be mentioned that the 

equation of Al2O3-water nanofluids viscosity is similar to the equations of Williams et al. 

[25] and Heyhat et al. [26], but with different factors; this is further discussed in section 

3.6.1.  

 Figure 3.15 shows the plot of the developed equations for all nanofluids. It can be 

seen that Al2O3 nanofluid gives the highest viscosity; however at volume fractions up to 

1.5 vol.%, the Al2O3 nanofluid’s viscosity is almost the same as the TiO2 nanofluid’s 

viscosity. On other hand, the CuO nanofluids show the lowest overall viscosities. It can 

be seen from Figure 3.15 that the nanofluid viscosity depends strongly on the nanoparticle 

material type and its concentration and temperature.  
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Figure 3.15: Relative viscosity measured for developed equations of Al2O3,  TiO2 and 

CuO nanofluids. 
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3.6: Comparison with Previous Work 

Since there are few experimental results on the viscosity of nanofluids, it is worth 

comparing the results from the present work (captured in equations 3.2-3.4) with 

experimental and theoretical results in the literature, especially those using similar particle 

sizes to eliminate the effect of size on the results.  

3.6.1: Experimental viscosity comparison 

Williams et al. [25], Heyhat et al.[26]and Pak and Cho [23] measured the viscosity of 

Al2O3-water nanofluids with 46, 40 and 13 nm nanoparticle size respectively. Under their 

test conditions their results indicated that the viscosity of the nanofluid increased 

significantly with increasing nanoparticle concentration. In addition, the relative viscosity 

of the nanofluid with respect to the base fluid is independent of temperature. Therefore, 

the nanofluid viscosity models of Williams et al. and Heyhat et al. were created as a 

function of the base fluid viscosity and the nanoparticles load (see equations (1.4) and 

(1.5)). Figure 3.16 shows comparisons between the relative viscosity results of the present 

study for Al2O3-water nanofluids and those of Williams et al. [25], Heyhat et al. [26] and 

Pak and Cho [23]. It can be seen that there is a close agreement between the Williams et 

al. and Heyhat et al. results; the results of this study agree with Heyhat’s model with a 

maximum difference of 4% for the considered concentrations. The Williams et al. model 

gives a much closer agreement (maximum difference of 2% for volume fractions up to 

2.4 vol.%), however this deviates at higher concentrations and the discrepancy continues 

to rise with increasing volume fractions to reach about 14% at 4.0 vol.% loading. It is 

worth mentioning that the good agreement of the result is attributed to similar 

nanoparticles size and the differences could be attributed to the effects of agglomeration, 

nanofluid preparation, and the technique and apparatus used for viscosity measurement. 

On the other hand, the Pak and Cho result gives a significant difference, with their model 

overestimating the viscosity by an average error of about 15%. This discrepancy is most 

likely due to the smaller nanoparticle size (13 nm) of Pak and Cho study (this experiment 

used 50 nm) [23, 30]. 
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 The TiO2-water nanofluids’ relative viscosity results are compared to the 

experimental results of Fedele et al. with nanoparticle 76 nm [22] and Turgut et al. with 

nanoparticle 21 nm [28] in Figure 3.17. At low concentrations, up to a volume fraction of 

1.8 vol.%, the measured relative viscosity for TiO2-water nanofluid shows a reasonably 

close agreement with the values claimed by Turgut et al. with their results underestimated. 

However, above that volume fraction their results are overestimated. For example, the 

viscosity at 3 vol.% in the Turgut et al. study is nearly the same as the measured viscosity 

result at the volume fraction 4.2 vol.% in the present study. Fedele et al. observe a much 

larger difference where the predicted relative viscosity values are significantly 

underestimated when compared to the measured ones. This difference could be due to the 

difference in the nanoparticle size, which were 76 nm and 21 nm for Fedele et al and 

Turgut et al., respectively, whereas it was 50 nm in the present work. 

 Comparisons between the observed CuO-water nanofluids’ relative viscosities 

with those of previous studies by Nguyen et al. [29] and Pastoriza et al. [30] with 

nanoparticles size 30 nm are summarized in Figure 3.18. At low volume fraction, all three 

studies give similar values: up to volume fraction 0.8% the results are all within 5% of 

each other. However, even from zero volume fraction, the divergence of the results with 

increasing volume fraction is clear, with both previous results yielding lower relative 

viscosity. This is somewhat surprising given that all three studies used a similar 

nanoparticle size. However, there are several other factors to consider – in particular the 

fact that a different preparation method was used previously, which may have resulted in 

a different nanoparticle shape, and also that surfactant was used to disperse the 

nanoparticles rather than the ultrasonic anti-agglomeration technique used in this study.  

A different measuring viscosity technique was also used in the previous work, though this 

should not produce such large discrepancies. 

The differences seen between the present work and previous studies highlight the 

difficulties in developing universal relationships describing nanofluid properties. 
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Figure 3.16: Comparison between the relative viscosity measured results with Williams 

et al. [25], Heyhat et al. [26] and Pak and Cho [23]  results for an Al2O3-water 

nanofluids. 

 

 
Figure 3.17: Comparison between the relative viscosity measured results and those of 

Fedele et al. [22] and Turgut et al. [28]Turgut et al. for the viscosity of a TiO2-water 

nanofluids. 
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Figure 3.18: Comparison between the measured results and those of Nguyen et al. [29] 

and Pastoriza et al. [30] Pastoriza for the viscosity of a CuO-water nanofluid. 
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model fails to estimate the viscosity of all types of nanofluids except that of the low 

concentration CuO-water nanofluids. It can also be seen that the model underestimates 

the measured viscosities significantly; this was also observed by other researchers [29, 

31]. 

 

 

Figure 3.19: Comparison the measured relative viscosity results to Brinkman theoretical 

model for of all nanofluids. 
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3.7: Concluding Remarks 

In this thesis, common nanofluids were prepared in various nanoparticle concentrations 

and the Kinexus rheometer technique was used to measure the dynamic viscosity of 

Al2O3, TiO2 and CuO with varying volume fraction concentrations and temperature 

levels, which were representative of typical working temperatures for the fluids. A 

nanofluid viscosity–temperature relationship of all nanofluids was developed in equations 

(3.2), (3.3) and (3.4).  These results were compared with other workers’ experimental 

studies as well as existing theoretical models. 

The results in general indicate that the viscosity of a nanofluid increases with increasing 

volume fraction whilst it decreases with increasing temperature. The measured values of 

dynamic viscosity for Al2O3 nanofluids were in close agreement with the Williams et al. 

and Heyhat et al. models. This is due to the similar nanoparticle sizes in the test and 

supported by the discrepancy shown by Pak and Cho’s study, which used a much smaller 

nanoparticle size. However these studies recorded lower viscosities for TiO2 and CuO 

nanofluids than measured values, this may be because their nanoparticle shape may have 

been different (though the size was similar) as they used a different preparation technique 

and added surfactant to the nanofluid instead of the ultrasound anti-agglomeration 

technique used in this study. They also used a different measuring technique. Based on 

comparison with the previous experimental studies, it is noted that the viscosity of the 

nanofluid with small nanoparticles size is higher than nanofluid with large nanoparticles 

see Figures 3.16 and 3.17. Finally, the theoretical correlation (Brinkman model) greatly 

underestimated the recorded experimental values. This result has been observed by other 

workers [29, 31], and this underestimation could be due to many factors not considered 

by the model such as agglomeration or the shape and type of nanoparticle; which the 

theoretical correlations assumed to be spherical. With regard to rheological behaviour, 

Newtonian behaviour was observed for these nanofluids under the test conditions. 

  



61 

 

CHAPTER 4: CONVECTIVE HEAT TRANSFER AND  

   PRESSURE DROP CHARACTERISTICS OF 

  NANOFLUIDS 

4.1: Introduction  

As mentioned before, the aim of this research is to evaluate the heat transfer performance 

and pressure drop characteristics of nanofluids under dynamic conditions, as is the case 

in most practical applications. Nanofluids may play an important role in affecting thermal 

characteristics such as the heat transfer coefficient as well as the dynamic flow 

characteristic, including the pressure drop. Thus testing the thermal performance of a 

nanofluid under dynamic conditions is essential to characterise its behaviour. 

In this chapter an experimental study of turbulent forced convection heat transfer and 

pressure drop characteristics of common nanofluids with varying volume fraction 

concentrations through a uniformly heated horizontal circular tube are investigated, the 

nanoparticles under investigation are Aluminium oxide (Al2O3), Titanium dioxide (TiO2) 

and Copper oxide (CuO) with a fluid base of distilled water. 
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4.2: Measurement Technique and Methodology  

An experimental apparatus has been created and is described in detail in section 4.2.1, the 

nanofluids tested were prepared using the method described in chapter 2.  

4.2.1: Heat transfer experiments 

This study uses a forced convective heat transfer experimental technique to evaluate the 

heat transfer performance and pressure drop of nanofluids. The following sections briefly 

describe this technique and its theoretical background.  

The convection loop setup is shown in Figure 4.1 and Figure 4.2. It can be seen 

that the loop consists of a two test sections, namely the heated test section and the 

isothermal test section. Both sections consist of a hollow circular tube of stainless steel 

(seamless stainless steel (SS) 316 / 316L based on ASTM standards and manufactured by 

SANDVIK Company under model number of 3R60) with outer and inner diameter and 

length of 0.5in (0.0127 m), 0.37in (0.0094 m) and 121.6in (3.040 m), respectively. In 

addition to the tubes, there is a pump to circulate the fluid through the loop, a heat 

exchanger to control the inlet test section temperature, an accumulator tank and various 

measurement devices connected to the loop. These measurement devices include; a flow 

meter (turbine flow meter (FTB-902, OMEGA), with accuracy 0.5% within flow range 

0.75 to 5 GPM), differential pressure transducers (OMEGA PX293- 030D5V with 

operating range 0 to 207 kPa (0 to 30 psid) and accuracy within 0.5%,) and a gauge 

pressure transducer. A DC power supply (GENESYS 10 kW (20 V and 500 A), TDK-

Lambda Americas Inc) was utilized to uniformly generate heat within the body of the 

heated test-section. The power supply was capable of displaying its power output with an 

accuracy of 0.5% of its rated (maximum designated) output. The current of the test was 

333 A; hence, the accuracy will be ±1.7 A. 

 In order to circulate the fluid inside the loop, the pump (1 HP stainless steel STA-

RITE pump) pulls fluid from the accumulator tank and pumps it into the heated test 

section, heated by the principle of Joule heating using the power supply. Before and after 

the test section the fluid bulk temperature and pressure drop were measured using the 
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submerged thermocouples and differential pressure transducer. Its outer surface 

temperature was also measured using 14 T-type thermocouples (T-type thermocouples 

(TJC36-CPSS-032U-12, OMEGA); accuracy of 0.5 ᵒC or 0.4% from 0 – 350 C) attached 

along the test sections top outer surface every 0.203 m. These procedures enabled detailed 

measurement of the temperature variation over the top surface of the heated test section. 

The fluid was cooled by passing it through the heat exchanger before entering the 

unheated test section. The temperature and pressure before and after the unheated test 

section are measured by submerged thermocouples and a differential pressure transducer. 

The fluid finally returns to the accumulator tank where the cycle is started again. 

In order to control the flow rate of the loop, a by-pass valve to the accumulator 

tank was installed. All data is acquired and recorded using a National Instruments’ data 

acquisition device and LabView software.  
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Figure 4.1: Picture of the forced convection loop. 

 

 

Figure 4.2: Schematic of the experimental loop setup 
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The goal of the experimental technique is to determine the Nusselt number or the 

convective heat transfer coefficient from the measurable quantities by applying the 

relevant equations.      

The Nusselt number is defined as: 

k

hD
Nu=         (4.1) 

Where h is heat transfer coefficient of fluid; D is the diameter of the test section and k is 

the thermal conductivity of fluid.  

The heat transfer coefficient is the ratio of the heat input at the boundary to that transferred 

to the fluid when the fluid flows over a solid surface [96]. In order to calculate the heat 

transfer coefficient, the following equation is applied:  

TA

q
h=


   

Where q is the heat input at boundary, A is surface area and T is the temperature 

difference between the boundary near the solid surface and the far field in the fluid. The 

interpretation of this T  varies but the common assumption is that the temperature near 

the surface is the same as the temperature of the surface and the temperature of the far 

field fluid is the average temperature between the inlet and outlet of the tube [96]. This 

assumption is used in this study as T = Ts,in - Tb,m and then the heat transfer coefficient 

is : 

)( ,, mbins TTA

q
h=


       (4.2) 

where q is heat source or heat flux of the test section, A is inside surface area of the test 

section (calculated from A=DinL, where Din(m) is the test section diameter and L(m) test 

section length), Ts,in is the inside surface test section temperature and Tb,m is the average 

bulk temperature along the test section (see eq.(4.4)). 
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The heat source of the test section, q, could be obtained directly from the current, 

I, and voltage difference, V, of the test section (both measured using a digital clamp 

meter); since q=IV. Assuming there is no heat lost from the heated test section i.e. that 

the test section has perfect thermal insulation, then the fluid heat gained is given by: 

   )( ,, inboutbp TTCmq=   

Where m is mass flow rate of fluid; calculated from Qm  (kg/m3) where  is fluid 

density, Q  is flow rate (m3/s) (is measured by flow meter), pC  is specific heat of the fluid 

and Tb, in and Tb, out are inlet and outlet bulk temperature of the test section fluid 

respectively (measured by the submerged thermocouples). This insulation assumption is 

challenged and verified later in Figure 4.5, which shows that the test section has an 

adequate thermal insulation. 

The thermocouples give the temperature distribution over the outer surface of test 

section. From these temperatures, the inner surface temperature of the test section tube, 

Ts, in, is calculated from the analytical solution for a perfect insulation tube with uniform 

heat generation and known outer surface temperature [97]. That means that it is possible 

to calculate the inner surface temperature of the test section using: 

in

out
out

tube

inout

tube

outsins
D

D
D

Vk

q
DD

Vk

q
TT ln

8
)(

16

222

,,    (4.3) 

where outsT , is outside surface test section temperature (measured by thermocouples), 

Dout and Din are the test section tube diameter outside and inside respectively, and tubek  

is thermal conductivity of test section tube which is known as the tube was made of 

stainless steel [98],  23188.130127.0 , outstube T=k   where outsT , is in C; since the tube 

thickness is very small (1.65mm). V is the volume of the test section tube and calculated 

as: LDDV= inout )(
4

1 22   
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It should be emphasized here that the thermo physical properties of the fluids 

(water and nanofluid) are taken at the average bulk temperature,
mbT ,

, [23, 25, 55], which 

are calculated from: 

2

,,

,

outbinb

mb

TT
T


        (4.4)                                                   

The local Nusselt number and local heat transfer coefficient can be determined by 

applying energy conservation from the equation 4.5:  

p

in
inbxb

Cm

xDq
TT



)(
,,


        (4.5) 

In equation (4.5) the heat flux of the test section, q  , x  is the distance from the inlet of 

the test section )0( Lx  .  

Alternatively the average Nusselt number and average heat transfer coefficient can 

be obtained by applying the local bulk temperature along the heated test section which 

could be determined by applying energy conservation from the equation below.   

k

Dh
=Nu ave

ave
 
and  

)( ,,, mbaveins

ave
TTA

q
=h


 

Where aveinsT ,, is the average inner surface temperature; was obtained from 

14

14

,,

,,


n

nins

aveins

T

=T  

4.2.2: Measurement procedure  

Measurements were carried out for one specimen of each concentration for each 

nanofluid; this was repeated three times for each specimen and then averaged to give the 

mean value. The inlet bulk temperature of the test section was maintained at 20 C, the 
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heat generated uniformly at about 5000W and the flow rate was varied from 0.75 to 2.0 

GPM (gallon per minute) (i.e. 5×10-5 to 0.00013 m3/s) for each sample. This process was 

initially run with water and then the nanofluids to provide a basis for comparison. The 

loop system was considered to be steady state under constant inlet temperature and 

constant heat flux. Therefore, all the outer surface temperatures and the bulk temperature 

profiles of the test section, which were measured by the thermocouples, should give a 

linear and parallel trend to each other with respect to time. This means that the difference 

between the test section surface-temperature and the bulk-temperature along the tube 

should be constant. After the tests reached steady state condition the temperature and 

pressure and flow rate data were recorded for three minutes duration at a rate of two data 

recordings per second; this was repeated three times for each sample and then averaged. 

 For ease of setup, the nanofluid with the highest nanoparticle concentration was 

examined first and then diluted according to the procedure detailed in chapter 2. 

 In order to compare the experimental results using the well-known correlation of 

Nusselt number or heat transfer coefficient for water and to measure the heat transfer 

coefficient and pressure drop of the nanofluids, the required properties used are detailed 

and explained in section 4.2.3.  

4.2.3: Base fluid, Nanoparticles and Nanofluids properties  

The thermal and physical properties of water and the nanoparticles were calculated from 

the existing literature and these properties are used to calculate and determine the 

nanofluids properties. 

 The properties of water were taken from Abbasian and Amani [54] with 

uncertainty of about 1.3%, as the below correlation Eqs. (4.6), (4.7), (4.8) and (4.9) for 

density, specific heat, thermal conductivity and viscosity, respectively:  

Water density (kg/m3):  

48

342

103391589

10364893107714568025151519475639764

 T×.

T×.T.T..

-

bf  
 (4.6)                    
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Water specific heat (J/kg.K): 

5845

32

105178214106161337

051269940236306817853934289469049298531

T×.T.

T.T.T..Cp,bf

 


 (4.7)   

Water thermal conductivity (W/m.K): 

3825 109401.2106596730155395205494041 T× T×.T..kbf
   (4.8) 

Water dynamic viscosity (Pa.s): 

2
15.273

68.7
15.273

44.624.1
001792.0

)(
ln 





























TT

Tbf
  (4.9)              

Where bf, Cp,bf, kbf and µbf are the base fluid (water) density, thermal conductivity, 

specific heat and dynamic viscosity; and T is the temperature in (K). 

The properties of Al2O3, TiO2 and CuO nanoparticles at room temperature were taken 

from the literature and are summarized in Table 4.1 below. 

Table 4.1: Nanoparticles properties and its size used. 

Nanoparticle 

type 

Density 

(p) 

(kg/m3) 

Thermal conductivity 

(kp)  

(W/m.K) 

Specific heat capacity  

(Cp,p) 

(J/kg.K) 

Nanoparticle 

size (nm) 

Al2O3 [26] 3900 42.34 880 50 

CuO [99] 6310 18 549 30 

TiO2 [55] 4170 11.8 711 45 

 

Regarding the nanofluids thermophysical properties, the main nanofluid 

composite is a combination of the base fluid and nanoparticles. Therefore, the 

thermophysical properties may differ from the literature. Some experiments and 

correlations of previous studies are performed to estimate the nanofluid thermophysical 

properties. In this study, the nanofluids thermophysical properties calculated as below:     
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The nanofluid density and specific heat are taken from the equation of mixture 

theory and thermal equilibrium; as give a good agreement with experimental results [23, 

26, 27, 35, 100]. 

Density of nanofluid (nf):                   pbfnf  )1(     (4.10)                               

Heat capacitance of nanofluid (Cp,nf):   ppbfpnfp CCC )()1()()(    (4.11) 

Where is the volume fraction and; p and Cp,p are density and specific heat of 

nanoparticle respectively. 

The thermal conductivity of nanofluids knf  can be represented by Yu and Choi’s model  

[101] as:    






















3

3

)1)((22

)1)((22

bfpbfp

bfpbfp

bfnf
kkk+k

+kkkk
 =kk                (4.12) 

Where kbf and kp are the thermal conductivity of the base fluid and nanoparticles 

respectively;  is the ratio between the nanolayer thickness, surrounding the nanoparticle 

and the nanoparticle radius and is taken to be 0.1. This equation was used due to the good 

agreement between experiments for different nanofluid types on thermal conductivity by 

multiple researchers [25-27, 102]. 

 The viscosities of the previously prepared nanofluids are obtained from laboratory 

measurements detailed in Chapter 3. It is noted that the viscosity of the nanofluids vary 

according to the type of nanoparticles used and many other factors such as nanoparticles 

concentration, temperature, etc. The fit of the viscosity equation of Al2O3-water 

nanofluid, TiO2-water nanofluid and CuO-water nanofluid are summarised in chapter 3 

by Eq. (3.2), (3.3) and (3.4) respectively.  
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4.3: Experimental Verification  

In the present section, the measurement of water convection characteristics and pressure 

loss are measured initially to validate the experimental setup (loop); as its properties and 

performance are well-known in the literature [54, 97]. 

4.3.1: Heat transfer verification test for water 

The accuracy of the experimental results are validated by comparison with calculations 

made with conventional correlations carried out by Gnielinski’s correlation [97]; because 

of the range of Reynolds number 3000 ≤ Re ≤ 5×106 and Prandtl number 0.5 ≤ Pr ≤ 2000  

as:  

)1(Pr)8/(7.121

Pr)1000)(Re8/(
3/22/1 



f

f
Nu= , 0.5 ≤ Pr ≤ 2000 and 3000 ≤ Re ≤ 5×106 (4.13) 

Where f  is the friction factor; was obtain by Petukhov relation [97] as: 

2)64.1Reln790.0( f=   for 3000 ≤ Re ≤ 5×106   (4.14) 

Where Re is Reynolds number and Pr is Prandtl number and calculated from: 

 


VD
Re    ,     

k

C p
Pr  

Where , µ, k, Cp are density, dynamic viscosity, thermal conductivity and specific heat 

of fluid, V  the average fluid velocity and D is the diameter of a tube. 

The validation is carried out by using water with Reynolds numbers (Re) ranging from 

(8900 to 19500), as dictated by varying the flow rate. 

 Figure 4.3 and Figure 4.4 compare the measured local and average Nusselt number 

of water to the predicted Nusselt number by using Gnielinski’s correlation. In order to 

compare, the error +/-5% and +/-10% of the measured result and the predicted results are 

presented as dotted lines in the figures. It can be seen that all the data of local and average 

Nusselt number falls within 10% and 5% of the predicted values respectively. Based on 

this close agreement the experiment loop is considered reliable and accurate to measure 

the turbulent heat transfer coefficient. All raw data for the test is detailed in Appendix B. 



72 

 

It should be noted that experimental uncertainty of the measured Nusselt numbers are 

estimated to be ±5% as shown in Appendix C.  

With regard to the effect of heat loss, the local heat transfer coefficient of water 

was calculated by  the fluid heat gain )( ,, inboutbp TTCmq=  and compared to the 

theoretical maximum which considers no heat loss i.e. q=IV, as shown in Figure 4.5. It 

shows that the difference in local heat transfer coefficient is within about 5%. This 

indicates that the loop has very good insulation over the test section and therefore 

validates the use of Eq. (4.3) to calculate the inner surface temperature of the test section. 

In order to show more details of the test section surface temperature along the test section 

at the outside surface (Ts,out) are presented in Figure 4.6. These are given for water at 

different Reynolds numbers. It can be observed that temperature varies in a linearly along 

the test section indicating that the test has reached a steady state condition. It is also shown 

that the temperature increases linearly along the test section at constant heat flux, but it 

decreases as Reynolds number increases as expected.  
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Figure 4.3: Comparison between the measured and the predicted (using Gnielinski’s 

correlation) local Nusselt number for water-test 

 

 

Figure 4.4: Comparison between the measured and the predicted (by Gnielinski’s 

correlation) average Nusselt number for water-test 

 

0

15

30

45

60

75

90

105

120

135

150

165

0 15 30 45 60 75 90 105 120 135 150 165

M
ea

su
re

d
 N

u
 [

D
im

en
si

o
n

le
ss

]

Predicted Nu [Dimensionless]

+/- 10%

0

40

80

120

160

0 40 80 120 160

M
ea

su
re

d
 N

u
av

e
[D

im
en

si
o
n
le

ss
]

Predicted Nuave [Dimensionless]

+/-5%



74 

 

 

Figure 4.5: Comparison the actual local heat transfer coefficient with heat loss to the 

ones obtained by assuming no heat loss 

 

 

Figure 4.6: Temperature distribution along the test-section axis for water 
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4.3.2: Pressure drop verification test for water 

When assessing the potential benefits of nanofluids, it is important to know the viscosity, 

which is a function of the fluids pressure drop. To investigate the pressure drop across the 

loop, first the measured pressure drop of water was compared with the existing correlation 

for a fully developed turbulent flow; where the surface of the tube is assumed to be smooth 

[97].  

 















2

2V

D

L
P=f

in


       (4.15) 

Where L and Din are the length and inner diameter of test section tube, respectively. The 

friction factor, f, can be calculated from Eq. (4.14) and V is the inlet velocity which 

measured from the flow rate. 

The pressure drop measurement results for heated test section and isothermal test 

were in close agreement with the conventional semi-theoretical Eq. (4.15) as shown in 

Figure 4.7 with differences of less than 10%. It should be noted that the average 

experimental uncertainty of the measured pressure drop and friction factor are estimated 

to be ±7% and 8%, respectively, as shown in Appendix C. 

 
Figure 4.7: Water pressure drop comparison-test the heated and isothermal test sections. 
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From the above two tests (heat transfer and pressure drop), it can be concluded that 

the experimental set-up is reliable for further measurements of the heat transfer coefficient 

and the pressure drop of turbulent liquid flows. The next section describes and measures 

the nanofluid’s convectional heat transfer and pressure drop.  

4.4: Nanofluids Results and Discussion   

This section presents the nanofluids convectional heat transfer performance and pressure 

drop as a function of the volume fraction concentration.  

4.4.1: Convection Heat Transfer and Pressure Drop of Nanofluids 

The convective heat transfer coefficient and pressure drop for all nanofluids were 

measured and compared to the base fluid (water). Also a comparison with the 

conventional correlations was performed to determine the viability of using existing 

correlations of single phase fluids to predict the heat transfer coefficient and pressure 

drop, since there is still controversy between researchers. A comparison to the existing 

correlations for nanofluids is also performed. All raw data for the following tests are given 

in Appendix B.   

As mentioned above, the reliable experimental closed loop on forced convection for 

constant heat flux was used to measure the convective heat transfer coefficient and 

viscous pressure loss. Different nanofluid types (Al2O3-water nanofluid, TiO2-water 

nanofluid and CuO-water nanofluid) were investigated with various nanoparticle 

concentrations. 

In previous studies, a popular approach to assessing the thermal performance of 

nanofluids is by considering the Nusselt number and how this varies with Reynolds 

number. Adopting this approach, for now, using the data from the present study, leads to 

the plots in Figures 4.8 – 4.10 for the three types of nanofluid considered. In each plot, 

the performance of the water base fluid is given for comparison. For TiO2 nanofluids, the 

nanoparticle loading has no distinguishable effect on the value or variation of the average 

Nusselt number with Reynolds number (see Figure 4.9). For CuO nanofluids (Figure 
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4.10), the nanoparticle loading has more influence, with lower concentrations giving 

slightly lower values of Nusselt number at given Reynolds number, but 1.2% and 1.6% 

concentrations giving slightly higher Nusselt number.  In contrast, for the Al2O3 

nanofluids the nanoparticle loading has a marked effect on the behaviour, with the average 

Nusselt number increasing with nanoparticle load for a given Reynolds number, as seen 

in Figure 4.8. For example, at a Reynolds number of about 8000 the Nusselt number 

increased by 7%, 10% 22%, 39%, and 54% for Al2O3-water nanofluids 0.5 vol.%, 0.9 

vol.%, 1.8 vol.%, 2.7 vol.% and 3.6 vol.% respectively.  

These plots give the impression that using Al2O3-water nanofluids would be 

beneficial – i.e. would lead to an enhanced heat transfer rate. However, these plots are 

misleading because both Nu and Re are themselves dependent on the nanoparticle 

loading, . The Nusselt number is scaled with thermal conductivity, which is a function 

of , while Re includes the density and viscosity and both these properties also depend on 

the nanoparticle concentration. Moreover, the viscosity of each nanofluid is higher than 

the base fluid, and increases with increasing nanoparticle concentration, so each nanofluid 

requires a higher pumping power in order to achieve the same corresponding Reynolds 

number as the base fluid. 

To reveal the true effect of using nanofluids, the actual (dimensional) heat transfer 

coefficient should be considered, as a function of the (dimensional) flow rate. This leads 

to Figures 4.11 to 4.13., which give representative results of the variation of the average 

heat transfer coefficient with volumetric flow rate and different volume fraction 

concentrations of Al2O3-water nanofluid, TiO2-water nanofluid and CuO-water nanofluid, 

respectively.  This is in order to check the effect of the concentration of nanofluid on the 

convective heat transfer coefficient for a given type of nanofluid. In order to compare, the 

corresponding curves of base fluid (distilled water) are presented as solid lines in the 

figures.  

It is now clear that the base fluid (i.e. water) actually outperforms all of the 

nanofluids considered – it has the highest heat transfer coefficient under the experiment 

conditions. In other words, nanofluids deteriorate the convective heat transfer rate and 
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this deterioration increases with increasing nanoparticle load. For example, the convective 

heat transfer coefficient decreases noticeably with Al2O3-water nanofluids concentrations 

of 0.5 - 5.9 vol.% by about 5 - 55%, respectively. Whereas, TiO2-water nanofluids with 

volume fraction 0.5 vol.%, 1.5 vol.%, 2.5 vol.%, 3.5 vol.% and 4.5 vol.% give respective 

decreases in heat transfer coefficient of 11%, 24%, 34%, 43% and 50% compared to the 

base fluid. With regard to CuO-water nanofluid, at given volumetric flow rate, the base 

fluid has the highest heat transfer coefficient by an average of 8%. The performance of 

these nanofluids gives smaller thermal performance differences when compared to each 

other. Note that (as explained in chapter 2) only low concentrations of CuO-water 

nanofluid were prepared. Therefore, a comparison with other nanofluids at the higher 

concentrations cannot be undertaken. 

This decrease in the heat transfer coefficient could be due to the increase of the 

boundary layer thickness because of increases in viscosity with increasing nanoparticles 

loads of nanofluid. This result was predicted by MacDevette at el. [96] using a theoretical 

model for nanofluid.     

Note that the heat transfer performance of the nanofluids is actually even worse 

than indicated in Figures 4.11 to 4.13 when one considers the pressure drop in the system. 

As the nanoparticle concentration increases, the viscosity of the nanofluid increases, and 

therefore the pressure gradient required to achieve a certain flow rate also increases. 

Hence if the heat transfer coefficient at fixed pressure gradient were considered, the 

reduction in heat transfer coefficient with increasing nanoparticle concentration would be 

even greater. The influence of the pressure penalty on the overall value of using 

nanofluids is included in the economic model presented in Chapter  6. 

It should be emphasized here that the Reynolds number at low flow rates i.e. less 

than 1.5 GPM and the highest volume fractions of Al2O3-water nanofluids i.e. 4.7 vol.% 

and 5.9 vol.% the flow was most likely laminar. In addition, the maximum flow rate of 

Al2O3-water nanofluid was 2.0 GPM at the maximum volume fraction; this is due to the 

higher viscosity, which increases with increasing nanoparticle loads. At the lowest flow 

rates, the highest concentrations of Al2O3-water nanofluid and TiO2-water nanofluids 
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could not be measured because the measured test section surface temperatures reached 

the boiling temperature of water. More details for the surface of test section temperature 

will be given later (Appendix D) 

It should be re-emphasized that some of the nanofluid properties are measured and 

some are calculated using initial values that are taken from the literature. The thermal 

conductivity of Al2O3 particle is higher than CuO particles and TiO2 particles by 2.3 and 

3.6 times, respectively. This explains that the Al2O3-water nanofluid has higher heat 

transfer performance than others.  

In order to show more details of the test section surface temperature variations as 

affected by nanofluids concentration and flow rate, the temperature distribution for 

specific flow rate and nanofluid various volume fractions at the outside surface of the test 

section (Ts,out) are presented in Appendix D. 
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Figure 4.8: Average Nusselt numbers vs. Reynolds number of water and Al2O3-water 

nanofluid tests. 

 

 
Figure 4.9: Average Nusselt numbers vs. Reynolds number of water and TiO2-water 

nanofluids tests 
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Figure 4.10: Average Nusselt numbers vs. Reynolds number of water and CuO-water 

nanofluids tests. 

 

 

Figure 4.11: Average heat transfer coefficient vs. volumetric flow rate of water and 

Al2O3-water nanofluid tests 
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Figure 4.12: Average heat transfer coefficient vs. volumetric flow rate of water and 

TiO2-water nanofluid tests 

 

 

Figure 4.13: Average heat transfer coefficient vs. volumetric flow rate of water and 

CuO-water nanofluids tests 
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4.4.2: Comparison with existing Nusselt number correlations 

The comparison of average Nusselt numbers nanofluids results to the predicted 

conventional correlation such as Gnielinski’s correlation [97] was made as has been 

mentioned before to see the possibility of estimating Nusselt number. In order to compare, 

the error +/-10% and +/-20% of the measured result and the predicted results are presented 

as dot and central lines in the figures, respectively. It is found the measured Nusselt 

number values of Al2O3-water nanofluid and TiO2-water nanofluid are shown in Figures 

4.14 and 4.15, respectively. It is clearly seen that the results of the average Nusselt number 

are within a difference of about 20% when compared to Gnielinski’s correlation. Whereas 

the average Nusselt numbers for CuO-water nanofluid agree well to within 10% with 

those predicted as shown in Figure 4.16. It is interesting to note that estimating Nusselt 

number using Gnielinski’s correlation gives an overestimate for Al2O3-water nanofluid 

and a slight underestimate for TiO2-water nanofluid. It is emphasized that the strategy 

adopted in the present study is to calculate the Reynolds number and Prandtl number the 

thermal and physical properties of the fluids (water and nanofluid) were obtained at the 

average bulk temperature, 
mbT ,

. Such a difference could be due to the aggregation of 

nanoparticles, which affect the flow characteristics and measurement conditions. It should 

be noted that experimental uncertainty of the measured Nusselt numbers for Gnielinski’s 

correlation and nanofluids are estimated to be ± 10% and 3-9%, respectively.  
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Figure 4.14: Comparison results of the measured and the predicted Gnielinski’s 

correlation average Nusselt numbers for Al2O3-water nanofluids 

 

Figure 4.15: Comparison results of the measured and the predicted Gnielinski’s 

correlation average Nusselt numbers for TiO2-water nanofluids. 
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Figure 4.16: Comparison results of the measured and the predicted Gnielinski’s 

correlation average Nusselt numbers for CuO-water nanofluids. 
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4.4.3: Comparison with existing nanofluid Nusselt number 

 correlations 

In this section, a comparison of the measured Nusselt numbers to existing experimental 

nanofluid correlations will be discussed. Pak and Cho [23], Sahin et al. [52] and Sajadi 

and Kazemi [55] have proposed Nusselt number correlation for predicting the heat 

transfer coefficient of nanofluids. There are limitations to using these correlations. Pak 

and Cho [23] established their correlation based on their experimental data on γ-Al2O3-

water and TiO2-water nanofluids with volume fraction (), Reynolds number (Re), and 

Prandtl number (Pr) ranging from 0 - 3 vol%, 104 to 105, and 6.54 to 12.33, respectively. 

Sahin et al. [52] constructed their correlation using  experimental data on Al2O3-water 

nanofluids with limitations on Reynolds number, volume concentration, and Prandtl 

number range  4000 ≤ Re ≤ 20000, 0.005 ≤  ≤ 0.04 and Pr  5–7, respectively. Sajadi 

and Kazemi [55] derived the correlation based on their experimental data on TiO2-water 

nanofluids with respect to volume fraction of  ≤ 0.25% and a Reynolds number (Re) 

range between 5000 and 30000.  

Their correlations are presented below:  

             Pak and Cho [23] correlation:             5.08.0 PrRe021.0=NuPak  

 Sajadi and Kazemi [55] correlation :  Re0005.0PrRe067.0 35.071.0 =NuSajadi  

 Sahin et al.[52]correlation:
258.01096.0588.0 Pr)0.1(Re106.0 =NuSahin  

It should be emphasized that the properties of the nanofluid are used to calculate Reynolds 

number (Re), and Prandtl number (Pr). 

 The Pak and Cho, Sahin et al. correlations are chosen to predict the present 

experimental results of Nusselt number for Al2O3-water nanofluids under their conditions 

in Figure 4.17. It is clearly seen that the Pak and Cho correlation predicts the Nusselt 

number within 5% of observed values. It should be noted that experimental uncertainty 

of the measured Nusselt numbers are estimated to be ±3 - 9%. On the other hand, Sahin 

et al’s correlation gives a noticeable overestimation of the experimental results. This could 

be because of the Prandtl number (Pr) which the correlation was based on; the Prandtl 
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number (Pr) of this experiment is higher than that of the studies because the measured 

viscosity of Al2O3-water nanofluid result was higher. For example Prandtl number is Pr 

= 11 at volume fraction 3.6 vol.%.    

 Regarding TiO2-water nanofluids Pak and Cho’s correlation and Sajadi and 

Kazemi’s correlation are used to predict the Nusselt number of the present experimental 

results in Figure 4.18. It can be seen that Pak and Cho’s correlation overestimates the 

average Nusselt number by up to 20%. However, Sajadi and Kazemi’s correlation gives 

a significant overestimation of the expemental data by over 40%. This is possible because 

they used Einstein’s model to predict the viscosity of nanofluids for the correlation and, 

as mentioned in chapter 3, this theoretical viscosity model significantly underestimated 

the nanofluid viscosity. It should be emphasized here that the thermophysical properties 

of the nanofluids are taken at the average bulk temperature, Tb,m, and used to calculate the 

dimensionless numbers, i.e. Reynolds number (Re) and Prandtl number (Pr).  

 

 

Figure 4.17: Comparison of various correlations in predicting the Nusselt numbers 

measured in the present study for Al2O3-water nanofluids. 
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Figure 4.18: Comparison of various correlations in predicting the Nusselt numbers 

measured in the present study for TiO2-water nanofluids. 
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4.4.4: Comparison of experimental pressure drop 

Since nanofluids have an improved thermal performance at a specific Reynolds number 

when compared to the corresponding base fluid but an increased viscosity compared to 

their base fluid, as mentioned in chapter 3, a higher pumping power is required to maintain 

a specific Reynolds number. Therefore, the nanofluid pressure drop is vital for predicting 

the nanofluids performance in a practical situation.  

 In this section the viscous pressure loss of a nanofluid was tested and compared 

to the conventional semi-theoretical correlation Eq. (4.15) to determine the ability to 

predict a nanofluids pressure drop.  This was compared with the base fluid (water) 

pressure drop to highlight the effect of increasing nanoparticles loads. The pressure drops 

of the test sections for nanofluids were measured, using differential pressure transducers. 

 Figures 4.19 - 4.21 present the variations in pressure drop with Reynolds number 

and volume fraction concentration of the test section for all investigated nanofluids 

(Al2O3-water nanofluid and TiO2-water nanofluid and CuO-water nanofluid). The 

measurements indicate that over the Reynolds number and concentration ranges 

considered the pressure drop increases with both increasing Reynolds number and more 

significantly with increasing nanoparticle loads.  For example, at a Reynolds number of 

about 8000, the pressure drop of Al2O3-water nanofluids with volume fraction 0.5 vol%, 

0.9 vol.%, 1.8 vol.%, 2.7 vol.% and 3.6 vol.% is higher than the base fluid (water) by 1.6, 

1.7, 2.5, 4.7 and 6.4 times, respectively. On the other hand, TiO2 and CuO water 

nanofluids gives higher pressure drop compared to water by about 1.5 - 5.0 times and 1.2 

- 1.8 times with respect to the volume fractions 0.5 - 4.5 vol.% and 0.4 - 1.6 vol.%, 

respectively. It is interesting to note that at similar concentrations of all the tested 

nanofluids the Al2O3-water nanofluid gave highest pressure drop. 

 Figures 4.22 – 4.24 show the corresponding pressure loss of the test section of all 

investigated nanofluids versus flow rate for various volume fractions.  It is apparent that 

the measured pressure drop increases with increasing flow rates and more significantly 
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with increasing nanoparticle load. Therefore, it is unlikely these nanofluids can be utilised 

in practical heat transfer applications without modifying the flow rate 

It can be seen from Figure 4.26 and Figure 4.27 that the conventional theoretical 

Eq. (4.15) can predict the pressure drop of TiO2-water nanofluid and CuO-water nanofluid 

within 10% of the recorded values for all volume fractions under the test conditions. The 

same happens also to predict the pressure drop of Al2O3-water nanofluid for low volume 

concentration as presented Figure 4.25. The conventional correlation estimates the 

pressure drop to within 10% at lower concentrations but deviates with higher 

concentrations with a maximum error of approximately 20%. This could be due to the 

large temperature fluctuation along the test section that was observed, because at higher 

concentration, the flow becomes laminar or transitional, therefore the fully developed 

region is larger than that of turbulent flow; see Appendix D.  

The highest value of the viscous pressure losses and friction factors are observed 

for the nanofluid with the highest nanoparticles load. This is mainly due to the fact that 

viscosity increases with nanoparticle load. It is interesting to mention that the friction 

factors of nanofluids with respect to base fluid follow their relative viscosity trend (see 

chapter 3, Figures 3.12 - 3.14); as shown in Figure 4.28, 

It should be emphasized again that the thermophysical properties of the nanofluids 

are taken at the average bulk temperature, Tb,m, and used to calculate the dimensionless 

numbers,  i.e. Reynolds number (Re), Prandtl number (Pr) and friction factors ( f).     

  



91 

 

 

Figure 4.19: Pressure drop of Al2O3-water nanofluids versus Reynolds number 

 

 

Figure 4.20: Pressure drop of TiO2-water nanofluids versus Reynolds number 
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Figure 4.21: Pressure drop of CuO-water nanofluids versus Reynolds number 

 

 

Figure 4.22: Pressure drop of Al2O3-water nanofluids versus flow rate 
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Figure 4.23: Pressure drop of TiO2-water nanofluids versus flow rate 

  

 

Figure 4.24: Pressure drop of CuO-water nanofluids versus flow rate 
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Figure 4.25: The measured pressure drop comparing to predicted pressure drop using 

Eq. (4.15) for Al2O3-water nanofluids. 

 

 

Figure 4.26: The measured pressure drop comparing to predicted pressure drop using 

Eq. (4.15) for TiO2-water nanofluids. 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30

M
ea

su
re

d
 p

re
ss

u
re

 d
ro

p
 [

b
ar

]

Predicted pressure drop [bar]

DP of heated section Al2O3-water nanofluids

+/-10%

+/-20%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30

M
ea

su
re

d
 p

re
ss

u
re

 d
ro

p
 [

b
ar

]

Predicted pressure drop [bar]

DP of heated section TiO2-water nanofluids

+/-10%



95 

 

 

Figure 4.27: The measured pressure drop comparing to predicted pressure drop using 

Eq. (4.15) for CuO-water nanofluids. 

 

 
Figure 4.28: The Relative friction factor of nanofluids to the base fluid 
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4.5: Convection Heat Transfer and Pressure Drop of 

Dielectric Liquid (HFE) 

In this section, an experimental study of turbulent forced convection heat transfer and 

pressure drop characteristics of dielectric liquid (hydrofluoroethers (HFE)) through a 

uniform heated horizontal circular tube are investigated. The evaluation of the heat 

transfer and pressure drop of the dielectric liquid (HFE) are compared to calculations 

made with the conventional correlations carried out by Gnielinski’s and shown by Eq. 

(4.13) and the existing correlation of fully developed turbulent flow shown by Eq. (4.15); 

these correlations assume the internal surface of the tube to be smooth [97]. 

 As with previous chapters, the properties of the fluids are obtained at the average 

bulk temperature (Eq. 4.4). The thermophysical properties of the dielectric liquid (HFE) 

are provided by the supplier [103, 104] and described in Table 4.2. It should be 

emphasized here also that the thermophysical properties of the dielectric liquid (HFE) are 

assumed to be constant and taken at 25C; with the exception of the density and viscosity 

which are calculated as a function of the fluid temperature. 

Table 4.2: Shows material properties of based liquids and nanoparticles. 

Property dielectric liquid (HFE) comments 

ρ ( kg/m3) ( T0024.07162.1  )×1000 T is temperature in (C) 

v (m2/s) 1758.2)46578.14)log(74465.2( T  T is temperature in (K) 

Cp(J/kg.K) 1140 - 

k (W/m.K) 0.063 - 

β (1/K) 1.51×10-3 - 

 

Measurements were carried out for one specimen of dielectric liquid (HFE) and were 

repeated three times and averaged. The inlet bulk temperature of the test section was 

maintained at a constant, the uniform heat generation at about 5000W and the flow rate 
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was changed from 1.00 to 2.25 GPM (gallon per minute) (i.e. 5×10-5 to 0.00013 m3/s) for 

each sample. 

 The results show that the conventional correlations predicts the heat transfer 

coefficient and pressure drop of the dielectric liquid (HFE) very well with a difference  of 

less than 10%; see Figures 4.29 and 4.30 for local and average Nusselt number 

respectively, the pressure drop correlation is given by Figures 4.31. This difference could 

be due to the thermal conductivity and specific heat which is assumed to be constant, see 

Table 4.2. In addition, the uncertainty is calculated in section 4.6. It is 5% for average 

Nusselt number and 3.5 - 8.0% for fraction factor and pressure drop; see Appendix C.  

The comparison of average heat transfer coefficient of the dielectric liquid (HFE) and 

water is presented in Figure 4.32. The results show that the heat transfer coefficient of 

water is significantly higher than dielectric liquid (HFE), this is because the thermal 

conductivity and specific heat of water is higher by 10 and 4 times respectively. For 

example at Reynolds number 13000, the heat transfer coefficient is 6500 and 850 W/m2.K 

for water and dielectric liquid (HFE), respectively. Also it can be noticed that the heat 

transfer coefficient of water increases sharply with increasing Reynolds number 

compared to the dielectric liquid (HFE).    
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Figure 4.29: Comparison between the measured and the predicted (using 

Gnielinski’s correlation) local Nusselt number of dielectric liquid (HFE) 

 

Figure 4.30: Comparison between the measured and the predicted (by Gnielinski’s 

correlation) average Nusselt number of dielectric liquid (HFE) 
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Figure 4.31: Dielectric liquid (HFE) pressure drop comparison-test the heated and 

isothermal test sections.  

 

Figure 4.32: Comparison between the measured and average heat transfer coefficient of 

water and dielectric liquid (HFE) 
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4.6: Uncertainty of Experiment Results  

In experimental work, in order to give a best estimate of the measured variables it is 

necessary to predict a percentage of error of the variables, which called the uncertainty. 

The experimental uncertainty inherent in the results occur due to the base errors, which 

come from the measuring devices accuracy, and random errors, which come from the 

variation of reading in the experimental results. The uncertainty of the variables in the 

measurement is calculated by the following equation [105]. 

22 RBu=   

Where u is uncertainty, B is the base error and R is the random error. 

The Nusselt number was calculated from the equation; 
k

hD
Nu=  , therefore the 

uncertainty of Nusselt number should be function of h , D  and k  uncertainties    
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Whereas the heat transfer coefficient is obtained by equation; 
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Where q is heat source, A inside surface area of the test section, Ts,in is inside surface test 

section temperature and Tb,m  is average bulk temperature along the test section. Whereas 

q is heat source and obtained from q=IV or )( ,, inboutbp TTCmq=  , where I is test 

section pass current, V is test section different voltage both is (measured by digital clamp 
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meter). m is mass flow rate, Cp specific heat of fluid, Tb,in and Tb,out are inlet and outlet 

bulk temperature of the test section respectively (measured by thermocouples).  

The uncertainty of heat source is calculated from   )( ,, inboutbp TTCmq=   
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The uncertainty of the inside surface area of the test section is calculated from: A=πDinL 

where inD (m) test section diameter and L (m) test section length 
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The uncertainty of the mass flow rate is calculated from the equation Qm  ; where 

(kg/m3) is fluid density and Q is flow rate (m3/s) (measured by flow meter)  
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With regard to the inside surface tube temperature could be obtained from the flowing 

equation [97]. 
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then the uncertainty is :  
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Ts,out is outside surface test section temperature (measured by thermocouples) and ktube is 

thermal conductivity of test section tube (which made of stainless steel)  

23188.130127.0 , outstube T=k where Ts,out is in C 

The properties of water and nanofluid are taken at average bulk temperature Tb,m : 

2
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In order to calculate the uncertainty of pressure drop and friction factor a similar 

procedure are flow by using Eq. (4.15): 
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From the above, it was found that the uncertainties of Nusselt number, pressure drop and 

friction factor were ranging from 3 - 5%, 4 - 8%,  and 3.5 - 8%, respectively, for the base 

fluid (water) and dielectric liquid (HFE); and for nanofluid was 3 – 8%, 3 - 11% and 4 – 

11%, respectively (for more details see Appendix C, Tables A22 - A26). It should be 

mentioned that the uncertainty of the variables which were used in the calculation of the 

experiment results, i.e. Nusselt number, pressure drop and friction factor, were taken into 

account with the exception of the uncertainties of density and  specific heat of the 

nanoparticles as well as nanofluid concentration were neglected. 
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4.7: Concluding Remarks 

The aim of this study was to evaluate the heat transfer performance of common 

nanofluids: Al2O3-water, TiO2-water and CuO-water nanofluids. The experiment was set 

up for forced convection to measure and evaluate the heat transfer performance and 

pressure drop of nanofluids within the turbulent regime. The results show that: 

  The heat transfer rate increases with increasing flow rate of the base fluid and 

nanofluids. However, the heat transfer of the base fluid was better than all nanofluids 

considered at a specific flow rate under the experimental conditions. This means that 

using nanofluids at constant flow rate deteriorated the heat transfer rate compared to 

the base fluid and this deterioration increased with increasing nanoparticles load. 

 Assessing the thermal performance of nanofluids by considering the Nusselt number 

and its variation with Reynolds number is misleading because both Nusselt number 

and Reynolds number depend on the nanofluid properties (i.e. thermal conductivity, 

density and viscosity that are function of the volume fraction). This can lead to a false 

impression that some nanofluids produce an improvement in heat transfer 

performance. In addition, using nanofluid will require additional pumping power to 

achieve the corresponding base fluid’s Reynolds number. 

 The pressure drop of nanofluids increased significantly with increasing flow rate and 

nanofluid concentration due to the nanofluid viscosity, which increased with 

increasing nanoparticle load.  

 Nanofluids heat transfer performance is mostly dependent on the nanoparticles 

thermal conductivity. 

 The heat transfer coefficient and pressure drop of nanofluids can be predicted very 

accurately using the existing conventional correlation of single phase correlations, if 

the properties of the nanofluid are used. This was also noted by [25, 26, 58].  

From the above, There are no benefits to using nanofluids to increase the heat transfer 

performance, however if nanofluids are used as they also increase the fluid's viscosity 

their use will increase pumping losses and their practical application must be subject to 

economic evaluation to balance this trade off, this is discussed in Chapter 6.  
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CHAPTER 5: CFD ANALYSIS OF IMMERSED SERVER 

COOLING 

5.1: Introduction 

In a data centre it is important to remove the heat, which is generated mainly within the 

server by its processors and memory, and finding new ways to cool the servers efficiently 

to ensure the protection of its components and increase the performance and reliability of 

the entire data centre. This is one of the most important energy conservation measures 

that can be applied to a data centre. From the literature, there are several techniques for 

cooling data centre servers such as forced air cooling, liquid cooling and direct contact 

cooling (immersion cooling) [3, 78, 79]. In this study, the direct contact liquid cooling 

strategy is simulated based on Iceotope’s design, and the possibility of enhancing the 

thermal performance using nanofluids is explored.   

 The direct contact liquid cooling technology is offered by a manufacturer of liquid 

cooling equipment, Iceotope [3]. The server is sealed in a bath of dielectric liquid (HFE) 

that submerges the server motherboard and the generated heat is removed by natural 

convection to a cooled wall of the server bath. This cooled wall maintains its temperature 

by circulated coolant water see Figure 1.9. In this study, it is attempted to analyse the 

thermal performance and the flow characteristics of the immersed server based on the 

Iceotope design but using nanofluids as a coolant.     

 It was found in the literature that using nanofluids instead of traditional cooling 

fluids boosts the heat transfer by increasing the thermal conductivity of the nanofluid 

compared to the base fluid. However, adding nanoparticles to the base fluid will also 

increase the viscosity, therefore, increasing the pressure drop, which will require higher 

pumping power. The heat transfer experiments performed in chapter 4 observed that at a 

given flow rate, the base fluid has a higher heat transfer coefficient than the nanofluids. 

However, at given Reynolds number, the nanofluids have higher Nusselt numbers. 

Therefore, by achieving a corresponding Reynolds number when using a nanofluid the 

file:///F:/Thesis-proof_read%20Aadm1.docx%23_ENREF_5
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thermal performance may increase but it requires more pumping power than the base 

fluid. Therefore, the optimisation of the efficient heat transfer versus pumping power is 

important for the evaluation of the limitations of using nanofluids. An economic analysis 

is required to evaluate the use of nanofluids in real world applications and optimise the 

recommended nanoparticles concentration required. 

 The present problem is solved by using a CFD model based on the finite-element 

method.  The details of the numerical solution procedure are given later in section 5.2. 

The numerical solution gives the temperature distribution through the server and the 

pressure drop of nanofluids circulated to cool the dielectric liquid. The temperature and 

pressure drop are predicted by the model and used as parameters when calculating the 

power consumption of the server, cooling system and pumping power with various 

nanofluid types and concentrations. This feeds into an economic analysis in order to 

determine the optimum concentration of nanoparticles for each type of nanofluid.  The 

details of the economic analysis are described later in chapter 6. 

 The procedures of numerical analysis and economic analysis may be summarised 

in the diagram shown in Figure 5.1. The CFD model needs a geometric representation, 

reliably measured materials properties, accurate boundary conditions to estimate the flow 

and thermal characteristics accurately. The thermal and flow characteristics of the 

nanofluids with varying concentrations are fed into an economic analysis based on the 

present worth method in order to determine the most efficient nanofluid concentration. 
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Figure 5.1: Diagram showing a procedure of numerical and economic analysis 
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5.2: Mathematical  Model 

This section describes the model used to calculate the thermal and flow characteristics of 

the data centre server using different nanofluids concentrations. Section 5.2.1 describes 

the server configuration properties investigated and summarizes the thermal properties of 

base fluid and nanofluids.  The governing equations of the mathematical formulation are 

explained in Section 5.2.2. 

5.2.1: Geometry and boundary conditions 

The geometry of the server is based upon the Iecotope server design with dimensions 25 

cm wide, 40 cm long, 3 cm high and includes two CPUs, in order to save computational 

time and memory, only half of the server with one CPU is investigated with a symmetrical 

condition imposed. Also in order to investigate the effect of the cooled plate configuration 

on the optimum nanofluid concentration, two configurations are investigated; one uses a 

half server with cooled plate comprising of two parallel tubes and the second models half 

server with cooled plate consisting of a serpentine tube. A schematic representation of 

two half servers based on the Iecotope server model with two different cooled plate 

configurations is presented in Figure 5.2 (a) and (b).  

Figure 5.2 (a) presents the half server with cooled plate comprising two parallel 

tubes and Figure 5.2 (b) presents the half server with cooled plate having a serpentine 

tube. Both of them have one CPU (Since the CPU consumes the most power when the 

server is active [106]) and the same boundary conditions and model geometry. The two 

servers are composed of two parts; the first part is sealed enclosure filled with dielectric 

liquid (HFE) and containing the CPU (chip) which dissipates heat (q) via natural 

convection throughout the fluid region. The second part is a cooled plate, which cools the 

sealed enclosure by passing a chilled fluid (i.e. water or a nanofluid) at low inlet 

temperature (Tc). The server models are in vertical position and assumed to be insulated 

from the outside. 
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With regard to the fluids (nanofluid in the cooled plates and dielectric liquid (HFE) 

in the server enclosure), it is important to classify the fluid flows Reynolds number to 

determine whether the fluid within the tubes is laminar or turbulent for advection or 

Rayleigh number for natural convection at a certain critical value. 

In the cooled plates it is assumed the flow is laminar because when the Reynolds 

number is determined the fluid velocity required to maintain the chip (CPU) at a safe 

operational temperature gives a Reynolds number less than 2300[97]; as calculated :  



VD
Re   

Where  and µ are density and dynamic viscosity of the fluid (water or nanofluids) 

respectively, V average fluid velocity and D is the diameter of the cooled plate tube. 

Using the above equation and assuming that all of the chips (CPU) power 

consumption is dissipated as heat and the safe operational temperature of the chip (CPU) 

is limited to be less than 85 C [107]. Therefore, in this study, the power consumption of 

the CPU should be 80W and the corresponding Reynolds number values to maintain the 

chip (CPU) at the safe operation temperature are calculated as 50 - 225 for cooled plate 

with two parallel tubes and 200 - 700 for cooled plate with serpentine tube.  

 With regards to the heat dissipation of the CPU,  the dielectric liquid (HFE) in the 

enclosure should be turbulent flow as within  the enclosure the corresponding Rayleigh 

number; 
v

TgL
Ra






3

 was calculated to be about 108 (the flow is turbulent flow if the 

Ra ≥ 106 [108]). Here is β, α and ν are thermal expansion coefficient, thermal diffusivity, 

kinematic viscosity of dielectric liquid (HFE) and g, L are gravity acceleration and 

characteristic length, respectively. T is the difference between the cooled and high 

temperature of the enclosure. 

The inlet temperature Tc is taken to be 15 C, because this is the highest chilled 

water value that the chiller unit produces at 8 - 15 C [109]. Since the nanofluids have 

lower Reynolds number compare to base fluid due to they have a relatively higher 
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viscosity, the mass flow rate ( m ) in the cooled plate is changed to achieve a corresponding 

particular Reynolds number (Re) of the base fluid; based on the equation of Reynolds 

number 
D

A
m

Re
  where A is the cross sectional area of the inlet tube. 

The chip is assumed to be made of aluminium with thermal conductivity 160 

W/m.K, and dimensions of 5.0 cm wide, 5.0 cm long, 0.5 cm high and it is located in the 

middle of the wall of the server opposite the cooling plate (see Figure 5.2). The heat sink 

fins of the chip are chosen as copper with thermal conductivity 400 W/m.K and its 

geometry, the base heat sink fins is 9.0 cm in width, 10 cm length and 0.6 cm in height. 

The fin is 0.2 cm in width, 10 cm length, 0.6 cm in height and the number of fins is 23. 

The server is assumed to be half of a server with one CPU with dimension is 12.5 cm in 

width, 40 cm length and 3 cm in height.  

 Both of the cooled plates are assumed to be aluminium rectangular plates in the 

top surface of server, with the same thermal characteristics as the chip, with dimensions 

12.5 cm wide, 40 cm long and 1.5 cm high. It has circular tubes along the plate with 

diameter 1.0 cm that divides the cooled plate into equal parts to remove the heat from the 

server.  

Thermal interfaces between the chip and heat sink fins, and the server and cooled 

plate are assumed to be in perfect contact and therefore, the interface thermal resistances 

are assumed negligible. This is of course an idealization and in practical applications, this 

assumption is often violated unless special measures are used. 

With regards to the thermophysical properties of the fluids (i.e. the base fluid 

(water), nanofluids and dielectric liquid (HFE)), the properties of water and nanofluids 

used are explained in chapter 4, whereas the properties of dielectric liquid (HFE) is taken 

from the supplier [103, 104] and described in chapter 4, Table 4.2.  
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Figure 5.2: Schematic showing the physical model (server) geometry and boundary 

conditions (a) with cooled plate having two parallel tubes, (b) with cooled plate having 

serpentine tube benders 
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5.2.2: Mathematical formulation  

The heat transfer process through a server involves both forced convection, from the 

cooled plates tube, and natural convection within the server enclosure model, which is 

filled with dielectric liquid (HFE). The flow and heat transfer are governed by solving the 

appropriate form of the conservation of mass, momentum (Navier –Stokes equation) and 

energy equations. These equations will be solved subject to initial and boundary 

conditions appropriate to the physical situation under consideration. 

The mass conservation equation:    0



V

t



     (5.1) 

Momentum equation:                FVP
Dt

DV
 ).(    (5.2) 

Energy equation :                   QTkTV
t

T
C p 













).(.)(    (5.3) 

 

Where , µ, k, Cp are density, dynamic viscosity, thermal conductivity and specific heat 

of fluid (water or nanofluids); V and T are fluid velocity vector and temperature. Q and F 

are energy source and body force respectively. 

5.2.2.1: Laminar flow 

Laminar flow is when a fluid flows with smooth layers [110]. The fluid in the cooled plate 

tubes is laminar as the previous calculations regarding Reynolds number suggest. With 

regard to the nanofluids, it is assumed that there is no slip between the base fluid and 

nanoparticles and therefore, it is possible to consider the base fluid and nanoparticles as a 

homogenous nanofluid with new thermofluid characteristics. This indicates that the above 

equations can be used. 

 The flow and heat transfer equations in the cooled plate are formulated using the 

following basic assumptions: 

i. Steady state conditions 

ii. Incompressible flow 
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iii. no chemical reaction  

iv. dilute mixture 

v. negligible viscous dissipation  

vi. negligible radiative heat transfer  

vii. nanoparticles and base fluid are locally in thermal equilibrium 

Based on the above assumptions, the general governing equation is reduced to the 

following form:   

The mass conservation equation:       0 V      (5.4) 

Momentum equation:        ).().( VPgVV      (5.5) 

Energy equation :                   ).(.)( TkTVCp      (5.6) 

 

5.2.2.2: Turbulent flow 

In turbulent flow, the flow becomes random and fluctuating with eddies of varying length 

scales [110]. The fluid in the enclosure is moved due to buoyancy forces (natural 

convection) in turbulent regime regarding the Rayleigh number, as mentioned previously. 

The flow and heat transfer are governed by solving the governing equations and applying 

the Boussinesq approximation in the direction of gravity force. In order to estimate the 

turbulent flow, there are multiple potential models. This study uses the Reynolds 

Averaged Navier Stokes (RANS) equation which is the most common method used to 

solve turbulent flow in the CFD models [110]. This method considers the fluctuation of 

turbulence by the summation of average the variable of Navier –Stokes equation and its 

variation. 

The mass conservation equation:    

0 V         (5.7) 

 

Momentum equation: 

FVPVV turbulent   .).().(     (5.8) 

Energy equation :         
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where Pr and ν are the Prandtl number and kinematic viscosity of the fluid respectively 

and the subscript t indicates their turbulent counterparts (i.e. the eddy viscosity). The 

additional term on the right side of Eq.(5.8) accounts for the turbulence fluctuations (the 

eddy viscosity). turbulent is a tensor known as the specific Reynolds stress tensor.  

 In order to calculate the turbulent term, there are many turbulence models; the 

common used are the k- model, the k- model [110]. In this study, the  K-ε turbulence 

model is used which was established by Launder and Spalding [111], to calculate the eddy 

viscosity. The k-ε model needs two extra equations to be solved simultaneously with 

equations of conservation of mass, momentum and energy; these are: turbulent kinetic 

energy, k and the turbulent dissipation rate, ε; as shown below:  

Transport equation for the turbulent kinetic energy, k: 

𝜌
𝜕𝑘

𝜕𝑡
+ 𝜌𝑢. 𝛻𝑘 = 𝛻. [(𝜇 +

𝜇𝑇
𝜎𝑘
)𝛻𝑘] + 𝑝𝑘 − 𝜌𝜀 (5.10) 

Transport equation for the turbulent dissipation rate, ε: 

𝜌
𝜕𝜀

𝜕𝑡
+ 𝜌𝑉. 𝛻𝜀 = 𝛻. [(𝜇 +

𝜇𝑇
𝜎𝜀
)𝛻𝜀] + 𝐶𝑒1

𝜀

𝑘
𝑃𝑘 − 𝐶𝑒2𝜌

𝜀2

𝑘
 (5.11) 

The production term can be obtained from 

𝑝𝑘 = 𝜇𝑇 [𝛻𝑉: (𝛻𝑉 + (𝛻𝑉)𝑇) −
2

3
(𝛻. 𝑉)2] −

2

3
𝜌𝑘𝛻. 𝑉 (5.12) 

The turbulent dynamic viscosity can be defined as 

μT = 𝜌𝐶𝜇
𝑘2

𝜀
  

Where, V is average velocity, VT is average velocity transport, μT is turbulent viscosity, ρ 

density, σε is Prandtl number of ε and σk is Prandtl number of k. The empirical turbulent 

model constant parameters: 

σk = 1, σe = 1.3, Ce1= 1.44, C= 0.09 and Ce2= 1.92 
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5.2.2.3: Conjugate heat transfer  

In the server model, there are heat transfers through the solids of the heat sink and through 

the cooled plate by conduction and from these solids to the surrounding fluids (dielectric 

liquid and nanofluid) by convection; this process is called conjugate heat transfer. 

The heat transfer in a solid is dominated by conduction heat transfer : 

0.  ss Tk         (5.13) 

The heat transfer in a fluid is dominated by convection heat transfer, represented by : 

0.)(  fp TVC
       

(5.14) 

where  Ts is the solid temperature and Tf is the fluid temperature on the wall between the 

solid and fluid and these temperature are the same at the wall. Therefore, the heat flux 

between the solid and fluid is given by Fourier’s law: 

                        ffss TkTk         (5.15) 
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5.3: Validation of CFD Model  

Firstly, the validation of the CFD model COMSOL is presented by considering natural 

convection in an enclosure and forced convection in a channel. The flow and heat transfer 

are governed by solving the appropriate form of the conservation of mass, momentum 

(Navier –Stokes equation) and energy equations. 

Dimensionless approach 

For a given a simplicity with studying flow and heat transfer characteristics a 

dimensionless parameter should be investigated. There are two considerations of 

dimensionless approach related to the absence and presence of a reference velocity [112].   

 In the absence of a reference velocity, as with natural convection, the non-dimensional 

variables will be [112]: 
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Where  is thermal diffusivity and defined as: k /(Cp) where k is thermal conductivity, 

 is density and Cp is specific heat.  

There are some assumptions, which describe the nanoparticles movement within 

the base fluid from the literature. All these assumptions consider the density to vary 

according to the Boussinesq approximation )1(0 T 
 
and this variation appears 

in the body force term. 

Under these scaling, the dimensionless governing equations are:  

Continuity equation:  0
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116 

 

Momentum equation  x-direction   
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Momentum  equation y-direction   











Pr

2

2

2

2

2

Ra
Y

V

X

V

Y

P

Y

V
V

X

V
U

V

bfnf

nfnf

bfnf

nf



















































  (5.18) 

Energy equation 






































2

2

2

2

YXY
V

X
U

bf

nf 








      (5.19) 

Where Rayleigh number (Ra) and Prandtl number (Pr) are defined: 
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In the presence of a reference of velocity (uin), as in forced convection, the non-

dimensional variable will be [112]: 
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where ch TTT   

Under these scaling, the dimensionless governing equations are:  

Continuity equation:   0
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       (5.20) 

Momentum equation x-direction: 



















































2

2

2

2

Re

1

Y

V

X

U

vX

P

Y

U
V

X

U
U

U

bfnf

nf






    (5.21) 

 



117 

 

Momentum equation y-direction: 
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Energy equation: 
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Where Re is Reynolds number  
bf

in

v

Lu
Re  and Pr is Prandtl number 
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where uin is the reference of velocity of the flow, v is kinematic viscosity 
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 is thermal diffusivity 
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The Nusselt number 

The expression of local Nusselt number is 
k

hL
Nu   . If the fluid is between two walls one 

is heated at constant temperature Th and another is cooled at temperature Tc, therefore:   
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The average Nusselt number for characteristic length (L) will be:  



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Case Study 1: 

In the present case study, the accuracy of the COMSOL programme is validated by 

comparisons with previous literature.  The validation is carried out by using the natural 

convection for air (Davis’s results [113]) and water (Lai and Yang [114]) with Prandtl 

number 0.71 and 7.02, respectively; in two dimensional square enclosure heated and 

cooled from the sidewalls and the top and the bottom walls are insulated (as shown on 

Figure 5.3). 

 

Figure 5.3: Schematic representation of the physical model of square enclosure and 

coordinates [113]. 

 The effect of the number of elements on results is investigated by comparison the 

average Nusselt number with Davis’s results [113] ,and the results are shown in Table 

5.2. It is clearly seen that the results of average Nusselt number are grid independent for 

all element number.    

 The comparison observes that the CFD program (COMSOL) gives a good 

agreement results. Table 5.3 and Table 5.4 summarize the results of the average Nusselt 
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number showing comparisons between the present study and literatures for air and water 

and respectively. 

Table 5.1: the effect of element numbers on average Nusselt number for different 

Rayleigh number 

 

Table 5.2: comparison with average Nusselt number of Air for validation 

Ra 
Nuave 

present 

Nuave 

(Davis [113]) 

1103 1.1171 1.118 

1104 2.241 2.243 

1105 4.507 4.519 

1106 8.766 8.799 

 

 

Table 5.3: comparison with average Nusselt number of water for validation 

Ra 
Nuave 

present 

Nuave 

Lai and Yang[114] 

1103 1.117 1.128 

1104 2.270 2.286 

1105 4.703 4.729 

1106 9.160 9.173 

 

  

Average Nusselt number 

(Davis) [113] 
Number of elements 

Ra 2554 2800 3908 8240 24912 

1103 1.118 1.114 1.115 1.117 1.117 1.118 

1104 2.243 2.231 2.232 2.239 2.2413 2.244 

1105 4.519 4.471 4.478 4.499 4.50661 4.519 

1106 8.799 8.653 8.681 8.743 8.7663 8.807 
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Case study 2 

This case presents and validates the results obtained for forced convection within a 

horizontal channel completely heated and partially heated at a constant temperature (see 

Figure 5.4 and Figure 5.5) by using a Cu-water nanofluid (see Table 5.5 for nanoparticle 

properties) at inlet temperature Tc. It demonstrates the effects of different volume 

fractions of nanoparticles with various Reynolds number on thermal characteristics. The 

comparison of average Nusselt number with the literature is given in Table 5.6 and Table 

5.7 for completely heated channel and partially heated channel, respectively. The 

thermophysical properties of the nanofluid are assumed to be constant. The results of 

COMSOL model also show a good agreement with the literature. In addition, the detail 

of isotherm contours for the both channels with various Reynolds number and 

concentrations are shown the same behaviour, as shown in Figure 5.6 and Figure 5.7,  

 Table 5.4: showing materials thermal properties used. 

Nanoparticle 

type 

Density 

(p) 

(kg/m3) 

Thermal conductivity 

(kp) 

(W/m.K) 

Specific heat capacity 

(Cp,p) 

(J/kg.K) 

Nanoparticle 

size (nm) 

Water 1000 0.6 4182 - 

Al2O3[26] 3900 42 880 50 

CuO  [99] 6310 18 549 30 

TiO2[55] 4170 11.8 711 45 

Cu[71] 8954 386 383 100 

 

 
Figure 5.4: Schematic representation of the physical model for heated channel and 

coordinates [71]. 

.  
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Figure 5.5: Schematic representation of the physical model for partially heated channel 

and coordinates [72]. 

 

Table 5.5: average Nusselt number   for various Reynolds number (Re) and volume 

fraction; showing comparison with Santra et al. [71]. 

Table 5.6: average Nusselt number at various Re and volume fraction; showing 

comparison with Raisi et al. [72]. 

Volume 

friction 

Nuave of present work Nuave of Santra et al.[71] 

R=500 R=1500 Re =500 Re =1500 

0% 4.59 7.09 4.7 7.0 

1% 4.88 7.54 4.9 7.5 

2% 5.17 7.98 5.2 8.0 

3% 5.45 8.42 5.5 8.3 

4% 5.73 8.85 5.7 8.8 

5% 6.00 9.28 6.1 9.2 

Volume 

friction 

Nuave  Present work Nuave Raisi et al.[72] 

R =10 Re =100 Re =500 Re =10 Re =100 Re =500 

0% 0.7547 3.4118 6.2309 0.769 3.410 6.055 

1% 0.7548 3.6274 6.6303 0.770 3.627 6.465 

2% 0.7541 3.8351 7.0227 0.770 3.836 6.868 

3% 0.7528 4.0351 7.4097 0.770 4.038 7.267 

4% 0.7513 4.2276 7.7923 0.769 4.233 7.661 

5% 0.7495 4.4125 8.1715 0.768 4.419 8.051 
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      (a) 

 

 

(b) 

 

Figure 5.6: Isotherm  contour for Re = 500 comparing with  (Santra et al.[71]) ; (a)  = 

0% and, (b)  = 5% 
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Figure 5.7: Isotherm  contour for Re = 10, 100 and 500 comparing with  (Raisi et 

al.[72]) soled line; for  = 3%. 
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5.4: The Effect of Considering the nanofluid as homogeneous 

material model and dispersion model on Heat Transfer 

Nanofluids consist of a base fluid and nanoparticles; therefore, there are two 

considerations when modelling nanofluids to describe the nanoparticles in the base fluid. 

One is the homogeneous model, which considers the nanofluid as a pure material; thus, 

the base fluid and nanoparticles are dispersed very well and maintained in thermal 

equilibrium. The second is the dispersion model, which considers the nanofluid as a dilute 

liquid and allows nanoparticles to move within the base fluid. Therefore, the modelling 

of heat convection of nanofluid might be considered into two methods; the homogeneous 

model and the dispersion model [115].  

 This section attempts to analyse the thermal and flow characteristics of a nanofluid 

under laminar flow for constant wall temperature (Th) as shown in Figure 5.4, by 

considering nanofluids as a homogeneous material model or a dispersion model.  

 Homogeneous model 

This approach treats the nanofluids as pure fluid with new thermal properties and applies 

the conservation equations (5.1), (5.2), and (5.3).  

 Dispersion model 

This approach treats the nanofluid as mixture or dilute liquid and the enhancement of heat 

transfer comes from the higher thermal conductivity of the nanoparticles and the 

dispersion of nanoparticles inside fluid. It is worth mentioning that the heat transfer 

coefficient is proportional to thermal conductivity. However, the enhancement in the heat 

transfer is much higher than the enhancement of thermal conductivity by adding 

nanoparticles [116]. This enhancement might be attributed to movement of nanoparticles 

in the base fluid. The dispersion of nanoparticles into base fluid due to particle-particle 

interaction and particle surface interaction which depend on particle size, particle 

movement, particle concentration, fluid velocity and fluid temperature [11]. Buongiorno 

[115] summarized the possibility of nanoparticles dispersion in fluid during convection 
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in the absence of turbulent flow: Inertia, Brownian diffusion, thermophoresis, 

diffusionphoresis, Magnus effect, fluid drainage, and gravity. It was also observed that 

only Brownian and thermophoresis diffusion attribute to dispersion of nanoparticles in 

fluid. 

In general, the expression of mass conservation in system is [117]: 
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where  and A are control volume and surface respectively. But nanofluid consists of 

liquid and nanoparticles, therefore: 

Mass conservation of liquid: 

Mass conservation of liquid is          0. )1( 
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But the volume fraction of nanoparticles is so small compared to the liquid and 

therefore can be neglected, so the equation becomes: 
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Mass conservation of nanoparticles: 

The continuity equation for each type of nanoparticles present in the fluid is given by 

following [117]. 
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But Brownian diffusion and thermophoresis are responsible for the diffusion, therefore: 

 jp = jB + jT 
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Where jB and jT are the mass flux of nanoparticles due to Brownian and thermophresis 

diffusion respectively. 
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Brownian diffusion (jB)  

It is defined as the movement of nanoparticles within the liquid due to collision between 

the nanoparticles and the molecules of the base fluid [115]. It could be evaluated by:   

  Bp DjB
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3
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Where DB, p, µ, are Brownian diffusion coefficient, nanoparticle density, dynamic 

viscosity of fluid; B  Boltzmann constant and T is temperature reference.  

Thermophoresis (jT) 

It is defined as the migration of a colloidal particle in a solution due to a temperature 

gradient [118]. It could be calculated from: 
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Where DT is thermal diffusion coefficient; p and kp are nanoparticle density and thermal 

conductivity; µ and kf are fluid dynamic viscosity and thermal conductivity; β 

thermophoretic coefficient and T is temperature reference.  

Mass diffusions due to Brownian diffusion (jB) and thermophresis (jT) will be: 

T

T
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and the mass diffusion of nanoparticles in nanofluid will be: 
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Therefore, the expression of energy equation and mass diffusion for nanofluid will be: 

TCjTkTV
t

T
C ppnfnfp 













).(.)(  








 















T

TT
DTDCTkTV

t

T
C TBpppnfnfp

.
.)().(.)(    (5.25) 

The dimensionless approach of the energy equation and the mass diffusion will be:  

In the absence of a reference velocity, as in natural convection, the Non-dimensional 

equation using same scales as before will be [112]: 
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- Mass diffusion equation of nanoparticles: 
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In the presence of a reference of velocity, like force convection, the Non-dimensional 

equations using same scales as before will be [112]: 
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Mass diffusion of nanoparticles:   
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Case study 3 

This case presents the results obtained for forced convection in a horizontal channel 

heated completely at constant temperature Th (see Figure 5.4) and cooled by flow Al2O3-

water nanofluids (see Table 5.5 for nanoparticle properties) at inlet temperature (Tc = 20 

C) showing the effects of nanoparticles using homogeneous model and dispersion model 

on thermal characteristic at different volume fraction of nanoparticles with various 

Reynolds number on thermal characteristics. The thermophysical properties of the 

nanofluid are assumed to be constant. 

Figures 5.6 and 5.7 illustrate the average Nusselt number using a homogenous model and 

a dispersion model for Al2O3-water nanofluids at various temperature differences (Th - 

Tc) 10 and 70 C respectively, for varying Reynolds number with different volume 

fraction. In general, it is clearly seen that the average Nusselt number increase 

monotonically with increasing Reynolds numbers and volume fractions. From Figures 5.8 

and 5.9, it is observed that the average Nusselt number of dispersion model and 

homogeneous model is similar. Specifically, there is an enhancement in heat transfer for 

dispersion model but it is a very small because of the Brownian and thermophresis 

coefficient having very small values about (1×10-10). For example, under the study 

considerations the maximum enhancement of dispersion model Nusselt number to 

homogeneous model are 0.1% and 0.25% for Al2O3-water nanofluids at temperature 

differences 10 and 70 respectively, at Re = 2000 and volume fraction 5.0%. It is also 

mentioned by MacDevette at el. [96] that the effects of Brownian motion and 

thermophoresis are negligible.  Therefore, in this thesis it is considered that the nanofluid 

behaves as a homogenous liquid.    
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Figure 5.8: Average Nusselt number for various Reynolds number (Re) and volume 

fraction for Al2O3-water nanofluid; showing comparison the homogeneous model and 

dispersion model results at temperature difference (Th - Tc = 10)  

  

Figure 5.9: Average Nusselt number for various Reynolds number (Re) and volume 

fraction of Al2O3-water nanofluid; showing comparison the homogeneous model and 

dispersion model results at temperature difference (Th - Tc = 70)  
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5.5: The Immersion Server Result and Discussion  

This section presents and discusses the thermal and flow characteristics of the server 

models under consideration by using different nanofluid types and concentrations at 

varying Reynolds number. The characteristics such as the average top surface temperature 

of the chip and the cooled plate pressure drop of the half server with cooled plate having 

two parallel tubes and the half server with cooled plate having serpentine tube are 

calculated and presented in sections 5.5.1 and section 5.5.2 respectively. These results 

will be used in an economic analysis in chapter 6.  

 According to calculation of the Reynolds numbers of the flow through the cooled 

plate having two parallel tubes and serpentine tube, the Reynolds number for the cooled 

plate with two parallel tubes is between 50 and 300; whereas the cooled plate having a 

serpentine tube requires a higher pressure drop when compared to the cooled plate having 

two parallel tubes. Therefore, the Reynolds number should be higher and it is calculated 

that  Reynolds number should be between 200 and 700. It is interesting to mention that 

the parallel flow when the inlet flow is from the top to the bottom of the server’s cooled 

plate gives better thermal performance than the counter flow when the inlet flow is 

opposite direction under the consideration of this study. Therefore, the server with parallel 

flow rate is considered in this study.   

 The effect of the number of elements on results is investigated by comparing the 

average chip surface temperature and cooled plate pressure drop for water at Reynolds 

number  (Re = 100). The results are shown in Table 5.7 and it can clearly be seen that the 

results are grid independent for all element numbers.    

Table 5.7: The effect of element numbers on average chip temperature and cooled plate 

pressure drop for water at Re = 200. 

Numbers of element Temperature (C) Pressure drop (Pa) 

692207 83.7 1.96 

1677338 82.5 1.83 

1952951 81.9 1.89 

2553442 81.80 1.88 
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5.5.1: Half server with cooled plate having two parallel tubes 

After validation and mesh sensitivity tests, the average temperature of the top chip surface 

and pressure drop of the cooled plate of the half server with cooled plate having two 

parallel tubes are summarised in Figure 5.10 – 5.12 for all nanofluids. Each figure gives 

the results for Reynolds numbers (Re = 50 – 300) and various volume fractions for a given 

type of nanofluid. Figure 5.10 summarises the results for Al2O3-water nanofluids using a 

cooled plate with two parallel tubes configuration. The results of temperature are 

presented in terms of (C). It is clearly seen that the chip temperature decreases 

monotonically with increasing Reynolds number and volume fractions. In general, the 

decrease in the temperature is linear with increasing volume fraction for a particular 

Reynolds number and it is relatively large and then becomes smaller with a further 

increase in Reynolds number. Therefore, the temperature difference for a low 

concentration and a high concentration of a particular Reynolds number decreases with 

increasing Reynolds number for example the temperature difference are about 3C and 

1.5 C for Re = 50 and 300 respectively. The same behaviour repeats itself for all others 

nanofluids studied, as presented in Figure 5.11 and Figure 5.12 for TiO2-water and CuO-

water nanofluids respectively. This feature of reducing the chip temperature is favourable 

with regard to reliability and reducing the energy consumption of the chip [7, 119-121].      

 In contrast to the chip temperature, the pressure drop of the cooled plate with two 

parallel tubes gives an opposite overall behaviour as presented in Figure 5.13- 5.15 for 

Al2O3-water, TiO2-water and CuO-water nanofluids, respectively. It can be seen that the 

pressure drop increases monotonically with increasing Reynolds number and volume 

fraction. In general, the increase in pressure drop is relatively large with increasing 

nanofluid volume fraction for particular Reynolds number. For example, for Reynolds 

numbers the pressure drop of Al2O3-water nanofluid increases about 25% and 700% with 

respect to the base fluid for the volume fractions 0.5 and 4 vol.%, respectively. It is also 

noted that the pressure drop of Al2O3-water nanofluids are higher than TiO2-water and 

CuO-water nanofluids; this is due to the Al2O3-water nanofluids having a higher viscosity 

(see chapter 3). The consequence of having relatively higher pressure drop with increasing 
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the volume fraction is unfavourable with regard to increasing the pump energy 

consumption.  

It is interesting to note that Al2O3-water nanofluids give lower average chip temperature 

when compared to the other nanofluids due to their higher thermal conductivity. However, 

Al2O3-water nanofluids have higher pressure drop at cooled plate resulted from having 

higher viscosity compared to others nanofluids. 

 

 
Figure 5.10: Chip temperature of server with cooled plate having two parallel tubes; 

using Al2O3-water nanofluids with various volume fractions and Reynolds numbers 

 

 

 

 

 

 

 

 

 

Figure 5.11: Chip temperature of server with cooled plate having two parallel tubes; 

using TiO2-water nanofluids with various volume fractions and Reynolds numbers. 
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Figure 5.12: Chip temperature of server with cooled plate having two parallel tubes; 

using CuO-water nanofluids with various volume fractions and Reynolds numbers. 

 

 

 
Figure 5.13: Cooled plate with two parallel tubes pressure drop usingAl2O3-water 

nanofluids with various volume fractions and Reynolds numbers. 
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Figure 5.14: Cooled plate with two parallel tubes pressure drop usingTiO2-water 

nanofluids with various volume fractions and Reynolds numbers. 

 

 

 
Figure 5.15: Cooled plate with two parallel tubes pressure drop using CuO-water 

nanofluids with various volume fractions and Reynolds numbers. 
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The temperature of the cross section in the middle of the server and the temperature 

contour of the cross section in the middle of the cooled plate having two parallel tubes ; 

using water and Al2O3-water nanofluid with volume fractions ( = 0.04) at Reynolds 

numbers Re = 50 and 200 is presented in Figures 5.16 and 5.17, respectively.  

From Figure 5.16, it can be noticed that the highest temperature is in the CPU and the 

temperature of the fluid (dielectric liquid) is higher at the top of the server and decrease 

when go down because of the buoyancy, which dominates the flow of the fluid. Also the 

temperature of the CPU decreases with increasing Reynolds number and nanofluid 

concentration as demonstrated by Figure 5.17. It can be seen that the temperature contour 

has low value and distributes more uniformly along the cross section of the cold plate 

with high Reynolds number and concentration.     
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Figure 5.16: Temperature of the cross section in the middle of the server with cooled 

plate having two parallel tubes; using water and Al2O3-water nanofluid with volume 

fractions ( = 0.04) at Reynolds numbers Re = 50 and 200 

Re = 50 and  = 0 Re = 200 and  = 0 

Re = 200 and  = 0.04 Re = 50 and  = 0.04 
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Figure 5.17: Temperature contour of the cross section in the middle of cooled plate 

having two parallel tubes; using water and Al2O3-water nanofluid with volume fractions 

( = 0.04) at Reynolds numbers Re = 50 and 200 

Re = 50 and  =0.04 

Re = 200 and  =0 Re = 50 and  =0 

 Re = 200 and  =0.04 
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5.5.2: Half server with cooled plate having serpentine tube 

This section considers the half server with a cooled plate with a serpentine a tube and 

various nanofluids. The server chip temperature and the cooled plate pressure drop are 

calculated and summarized in Figures 5.18 – 5.20 and Figures 5.21 – 5.23, respectively. 

Each figure gives the results for all Reynolds numbers considered (Re = 200 – 700) and 

various volume fractions for each given type of nanofluid.  

 Figure 5.18 summarises the results for Al2O3-water nanofluids. The results of chip 

temperatures are presented in terms of (C). It can clearly be seen that the chip temperature 

decreases monotonically with increasing Reynolds number and volume fraction. In 

general, the decrease in the temperature is relatively large and then becomes smaller with 

further increases in Reynolds number. Similar remarks can be noticed on all others studied 

nanofluids, as presented in Figure 5.19 and Figure 5.20 for TiO2 and CuO nanofluids 

respectively. This feature of reducing the chip temperature is favourable with regards to 

reliability and reducing the chip energy consumption. It can be observed that using Al2O3-

water nanofluids result in lower chip temperatures with respect to other nanofluids at the 

same volume fraction; this is a result of the higher thermal conductivity of Al2O3 

nanoparticle compared to TiO2 and CuO nanoparticles.   

 In contrast the pressure drop of the cooled plate with serpentine tube gives an 

opposite overall behaviour as presented in Figure 5.21 – 5.23. It can be seen that the 

pressure drop increases monotonically with increasing Reynolds number and volume 

fraction. In general, the increase in pressure drop is relatively large with increasing 

nanofluid concentrations. It is also noteworthy that the pressure drops of Al2O3-water 

nanofluids are higher than TiO2- water and CuO-water nanofluids; this is due to the Al2O3-

water nanofluids having a higher viscosity (see chapter 3). The consequence of having 

relatively higher pressure drop with increasing the volume fraction is unfavourable with 

regard to increasing the pump energy consumption.  

 It is interesting to note that using Al2O3-water nanofluids give lower average chip 

temperatures when compared to the other nanofluids due to their higher thermal 

conductivity. However, it has the highest pressure drop at the cooled plate as a result of 
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having the highest viscosity of the studied nanofluids. It is also noted that the half server 

with cooled plates of the serpentine tube design show higher thermal performance and 

lower chip temperatures with respect to the half server with cooled plate having two 

parallel tubes. On the other hand, the half server cooled plates with a serpentine tube gives 

a higher pressure drop when compared to the half server cooled plate with two parallel 

tubes. 

 

 
Figure 5.18: Chip temperature of server with cooled plate having serpentine tube; using 

Al2O3-water nanofluids with various volume fractions and Reynolds numbers. 

 

 
Figure 5.19:Chip temperature of server with cooled plate having serpentine tube; 

usingTiO2-water nanofluids with various volume fractions and Reynolds numbers. 
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Figure 5.20: Chip temperature of server with cooled plate having serpentine tube; using 

CuO-water nanofluids with various volume fractions and Reynolds numbers. 

 

 
Figure 5.21: Cooled plate with serpentine tube pressure drop for Al2O3-water nanofluids 

with various volume fractions and Reynolds numbers. 
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Figure 5.22: Cooled plate with serpentine tube pressure drop for TiO2-water nanofluids 

with various volume fractions and Reynolds numbers. 

 

 
Figure 5.23: Cooled plate with serpentine tube pressure drop for CuO-water nanofluids 

with various volume fractions and Reynolds numbers. 
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The temperature of the cross section in the middle of the server and the temperature 

contour of the cross section in the middle of the cooled plate with serpentine tube ; using 

water and Al2O3-water nanofluid with volume fractions ( = 0.04) at Reynolds numbers 

Re = 200 and 600 is presented in Figures 5.24 and 5.25, respectively. It can be seen that 

the temperature contour in the cross section of cooled plate show low value at high 

Reynolds number and volume fraction and this contribute to reduce the temperature of 

the CPU. It is interesting to note that the temperature contour of the cooled plate cross 

section using water at Re = 600 is almost similar to that using Al2O3-water nanofluid with 

volume fractions  = 0.04 at Re = 200. 
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Figure 5.24: Temperature of the cross section in the middle of the server with cooled 

plate with serpentine tube; using water and Al2O3-water nanofluid with volume fractions 

( = 0.04) at Reynolds numbers Re = 50 and 200 

Re = 200 and  = 0 

Re = 200 and  = 0.04 

Re = 600 and  = 0 

Re = 600 and  = 0.04 
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Figure 5.25: Temperature contour of the cross section in the middle of cooled plate with 

serpentine tube; using water and Al2O3-water nanofluid with volume fractions ( = 0.04) 

at Reynolds numbers Re = 50 and 200 

Re = 200 and  = 0 

Re = 600 and  = 0.04 Re = 200 and  =0.04 

 Re = 600 and  = 0 
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5.6: Concluding Remarks 

The COMSOL CFD package which is based on the finite element method has been used 

to calculate the temperature of the (CPU) chip surface and the pressure drop of the cooled 

plate through two different half-server configurations; one with a cooled plate that has 

two parallel tubes and another with cooled plate that has a serpentine tube. Both half 

servers are based on the immersion design by Iceotope and use various nanofluids (Al2O3-

water nanofluids, TiO2-water nanofluids and CuO-water nanofluids) with varying volume 

fractions. The variations of the chip temperature and cooled plate pressure drop of typical 

nanofluid with different volume fractions and Reynolds number were calculated under 

steady state conditions.  

First of all, It is interesting to mention that the parallel flow when the inlet flow is 

from the top to the bottom of the server’s cooled plate is used in this study because it 

showed better thermal performance than the counter flow when the inlet flow is opposite 

direction under the consideration of this study. The results of calculation for both servers 

showed that the average temperature of chip decreased monotonically with increasing 

Reynolds number of cooled plate and the volume fraction of nanofluid. In contrast, 

pressure drop of both cooled plate gave the opposite behaviour.  

The Al2O3-water nanofluids gave better thermal performance (lower chip 

temperature) compared to TiO2-water and CuO-water nanofluids for both half servers 

mainly due to their higher thermal conductivity (see Table 4.1). However, they also gave 

higher pressure drops than the other fluids due to their higher viscosity (see Figure 3.15). 

The half server with cooled plate having serpentine tube was thermodynamically better 

than the half server cooled plate with two parallel tubes and resulted in lower chip 

temperatures. In contrast, the pressure drop of the cooled plate tubes with a serpentine 

tube was much higher than the pressure drop of the cooled plate having two parallel tubes.  

The results from the analysis in this chapter will be used in the next chapter to 

formulate an economic assessment of using nanofluids in these cooling systems.  
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CHAPTER 6: ECONOMIC ANALYSIS OF THE USE OF 

NANOFLUIDS IN ELECTRONICS COOLING 

6.1: Introduction 

The purpose of this chapter is to assess the feasibility of using nanofluid coolants from an 

economic perspective, in the context of the server cooling systems considered in chapter 

5. 

 In this economic analysis, the costs and benefits are evaluated of some alternative 

engineering projects using the present worth method which applied by converting all the 

cash flow of the project over its lifetime to single sum equivalent at the present [122]. 

Therefore the heat transfer efficiency, pressure drop and nanofluids cost versus nanofluid 

concentration which were calculated by the previous numerical analysis (chapter 5) are 

fed into an economic analysis model based on the present worth method [123, 124] in 

order to determine the minimum total projected cost. It is expected that as the 

concentration of nanoparticles increases the cost of the nanofluid increases while the 

server power consumption decreases as a consequence of decreasing the components 

temperature [7, 119-121]; through high heat transfer performance of nanofluid and the 

cooling system efficiency may increase (run at high load) and consequently the energy 

cost decrease or remain constant. However, the pump power consumption will increase 

by adding nanoparticles; due to the viscosity increases [125]. The optimum nanofluid 

concentration is the concentration at which the total cost of nanofluid and the present 

value of energy consumption cost due to pump, server and refrigerator system over the 

estimated lifetime of a system is a minimum. A methodology is proposed by considering 

only the heat generation through the Central Processing Unit (CPU).  The heat generated 

by the CPU is only considered to simplify the power consumption calculations as the CPU 

is generally the dominant part of the total heat generation load within a server and its 

power consumption is dependent on its temperature [6-8]. In some cases within a data 

centre, reducing the power consumption of the server is more efficient than reducing the 

power of cooling system by decreasing the environmental temperature [7]. 
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6.2: Details of the Economic Analysis 

The total cost (ctot) to be determined is the sum of the initial cost of the nanofluid (cnf) 

which is paid at the time of construction, plus the present value of the cost of energy 

consumption over the lifetime of using nanofluid in the system (cenr) taking into account 

the inflation and interest (discount) rates. 

The total cost is given by: 

 ctot = cnf  + cenr        = cnf ()+ Ce PWF      (6.1) 

where cnf is the purchase cost of nanofluid and is presumably a function of nanoparticle 

concentration, Ce is the current yearly total cost of energy (£/year) and PWF is the present 

worth factor. 

Assuming an inflation rate in energy cost ri, an interest rate rd and an expected lifetime of 

using nanofluid m (years), the present worth factor is calculated as[124]: 

In case rd ≠ ri, 
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In case rd = ri, 

PWF 
dr1

m


          (6.3) 

The yearly total cost of energy (Ce) is calculated from the yearly total energy 

consumption (Etot), including the server CPU power (Es), cooling system power (Ec) and 

the pump power (Ep). Based on the findings of the earlier chapters, the heat that the CPU 

produces during its running is predicted to decrease with increasing nanofluid 

concentration whereas pump power consumption is predicted to increase with increasing 

nanofluid concentrations.  The yearly cost depends on the method and efficiency of the 

server type, cooling system and pump type.  Let the total heat gain from server CPU per 



148 

 

year be Qg. For vapour-compression cooling the electric energy consumption Ec is given 

by [126]: 

Ec = Qg / pc         (6.4)  

Where pc = COP is the average coefficient of performance of the refrigeration system.  

 The COP is the ratio of the heat removed (Qg) to the amount of energy (Ec) needed 

to remove the heat; and the COP is a function of the supply temperature of the 

refrigeration system and the heat load. The COP of the cooling system ranges from 2 - 12 

depend on the supply temperature and the heat load of the chiller as well as the speed of 

the chiller [127, 128]. In this study it is assumed that COP = 5.0. 

 The CPU energy consumption (Es) depends on the workload of the CPU and its 

resulting temperature [7, 119-121, 129] and this power consumption is an exponential 

relationship with temperature [130-132]. The CPU power consumption is a combination 

of dynamic power which is due to the CPU activity power and static power which is due 

to the CPU leakage current [106, 131, 133]. 

Es = Pstatic + Pdynamic        (6.5)  

The dynamic power (Pdynamic ) can be calculated as [106]: 

Pdynamic = V2        (6.6)  

Where  is the activity factor of the processor, V is the supply voltage and  is the 

clockspeed of the CPU (GHz). 

The static power (Pstatic) can be calculated as [106]: 

Pstatic = Ileak V,         (6.7) 

where Ileak is the leakage current, but the leakage current depends on the voltage and 

temperature; therefore, Frenkel-Poole emission is used to estimate the leakage current 

[134, 135]: 
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Substituting Eq. (6.8) into Eq. (6.7) gives: 
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where B, C, E,  are constants related to the CPU and its running and T is the CPU 

temperature (K). 

From Eqs. (6.6)  and (6.9), the CPU energy consumption (Es) is: 
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In this study, the Intel i7-3770K processor (CPU) is chosen and the corresponding 

parameter values are [135]: 

 = 14.91, B = 4408.2, C = 56.4, E = 2020.9 

By substitution in Eq. (6.10), the CPU energy consumption will be: 

22
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The operating parameters of the CPU such as voltage (V) and frequency (clockspeed) () 

have been adjusted for each configuration of servers to produce heat (80 W) under 

operation temperature of using base fluid at lower Reynolds number. Therefore, by 

applying Eq. (6.12) the half server with cooled plate having two parallel tubes 

configuration the lower Reynolds was 50 and the voltage 1.124 V, the clockspeed of the 

CPU to produce 80 W should be is 2.97GHz. Whereas it was 3.06 GHz at the same voltage 

and Re = 200 for half server with cooled plate having serpentine tube. 
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As for increasing nanofluid concentrations, the pressure drop across the system 

will increase. The use of the pump is assumed to be ideal for which the electric energy 

consumption Ep is given by [125]: 

p

p
p

pm
E






         (6.13) 

where m is mass flow rate, p is the pressure drop,  is the density of liquid (base fluid 

and nanofluid) and pp is the performance factor which is the main part of the pump type 

and it is taken 0.85 see Table 6.1.  

Therefore, the yearly total electric energy consumption is: 

Etot = Ec + Ep + Es         (6.14) 

And the yearly total cost of electricity (Ce) is: 

 Ce = Etot ce                    (6.15) 

Where ce is the current local cost of electricity (£/kWh). 

In summary the input to the economic analysis model is the yearly values of Qg 

and pressure drop versus the volume fractions (), which are obtained from the numerical 

analysis in chapter 5, as well as values of the parameters to be specified later (Table 6.1).  

The output from the economic model is the values of total cost (ctot) versus nanofluid 

volume fraction (). 

6.3: Economic Parameters 

The nominal values of the parameters used in this economic model are summarised in 

Table 6.1. Where cnf is the cost of nanofluids, cbf is the cost of the base fluid, ce is an 

average local charge of business and commercial electricity, Pc is the coefficient of 

performance of cooling system, Pp is the pump efficiency, m is the lifetime of the system, 

rd is the discount rate, and ri is the inflation rate are taken as the average value over the 

previous ten years [136, 137]; see Figure 6.1.       
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Table 6.1 : Nominal values of parameters used in the optimization model. 

Cnf 

(£/kg) 

cbf 

(£/kg) 
ce 

(£/kWh) 

[138] 

pc 
pp 

[139] 

m (years) 

[140, 141] 

rd 

(%) 

[136] 

ri 

(%) 

[137] water 

* 0.35 0.108  5 0.85 3  3.4 2.7 
*Cost depends on nanofluid type and its concentration used; see Table 6.2. 

 

 

Figure 6.1: Average annual value of interest and inflation rate of the UK over ten years 

[136, 137]. 
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24.17 £/kg for mass fraction concentration 20 wt% (from Alfa company [142]); and from 

that it may be assumed that the cost of nanofluid increases linearly with nanoparticle 

concentration taking into account the cost of the base fluid at no nanoparticle load (for 

water £ 0.35 per kg at room temperature).  

Table 6.2 : cost of nanofluid in commercial companies (Alfa Company) 

Nanofluids 
cnf 

(£/kg)** 
Comments 

Al2O3/water[142] 24.17 20wt% or 6.0 vol % 

CuO/water[142] 446 50 wt% or 13.6 vol% 

TiO2/water[142] 67.50 35 wt% or 11.0 vol% 

**cost of nanofluid at the purchase concentration  

It must be noted that special exemptions are not accounted for by the economic 

model. For example, the temperature of the chip was calculated by assuming that the chip 

consumes and generates 80 W as in chapter 5, but in the economic model, the CPU power 

consumption is calculated based on the temperature of the CPU. Therefore the cooling 

system power consumption is assumed constant with regard to the power consumption of 

the chip when using base fluid (water). Also, there are generally connection pipes between 

the system (server) and the pump that would add an extra pressure drop and therefore 

increasing the pump power consumption related costs; such costs are not included in the 

present economic analysis. Therefore, the total cost referred to in the study comprises the 

costs of nanofluids as a function in volume fraction used that are paid for at the time of 

installation plus the present worth of the cost of electric energy consumption over the 

lifetime of the system.  The optimization of nanofluid concentrations used in the present 

study is based on the chip power consumption as a function of its temperature, cooling 

system to remove the assumed 80 W heat generated by the chip, and the pump power 

consumption due to the pressure drop required to circulate the cooing fluid through the 

server only. 
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6.4: Total Cost versus Nanofluids Concentration 

6.4.1: Half server with cooled plate having two parallel tubes 

Firstly, the base fluid performance for the half server with the two parallel tubes cooled 

plate configuration at various Reynolds number is presented in Figure 6.2. The results 

show that the total cost is higher at low Reynolds number because the CPU was not cold 

enough, when increasing the Reynolds number the temperature of the CPU decreased 

corresponding the total decrease to reach the optimum total cost at Re = 200. Then when 

increasing the Reynolds number the total cost increase again because the pumping power 

costs dominated the savings due to the decreased temperatures and therefore decreased 

power of the CPU.      

 
Figure 6.2: Total cost variation with various Reynolds number using the base fluid 

(water) for half server with cooled plate having two parallel tubes. 
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On the other hand, Figure 6.3 gives representative results of the variation of the total cost 

as a function of volume fraction for the half server with cooled plate having two parallel 

tubes configuration using Al2O3-water nanofluid.  Each curve on the figure shows a 

minimum total cost (cost of energy and nanofluid) that gives a corresponding value for 

the optimum concentration for that particular Reynolds number. It is noted that Reynolds 

numbers of 200, 250 and 300 give minimum total cost values corresponding when the 

coolant is pure water (i.e. volume fraction  = 0). This is because the nanofluid and 

pumping cost dominates. While Re = 50 and 100 give the minimum total cost at the 

optimum volume fraction 3.5 and 0.5 vol.% respectively. It is worth mentioning that pure 

water at Re = 200 gives the lowest minimum total cost. In addition, the total cost curve of 

Al2O3-water nanofluids at Re = 50 changes more gradually with changing volume 

fraction.  Accordingly the exact value for its optimum volume fraction is more flexible in 

the sense that the optimum volume fraction (opt) values lies within the range of about 3.0 

to 4.0 vol.% which gives practically the same minimum total cost. However, none of the 

Al2O3-water nanofluids offer a saving over using just the base fluid operated at an optimal 

Reynolds number.   

With regards to TiO2-water nanofluids, Figure 6.4, the optimum volume fraction 

of TiO2-water nanofluids for all Reynolds number are pure water (i.e. volume fraction  

= 0), except using nanofluid at Re 50, gives optimum volume fraction 1.0 vol.%. 

However, the lowest minimum total cost is base fluid (water) is still used at Reynolds 

number 200. CuO-water nanofluids results are shown in Figure 6.5. It is noted that using 

base fluid (water) gives the lowest minimum total cost and none of nanofluids gives an 

optimum volume fraction compared to the base fluid at the same Reynolds number. In 

addition, the total cost curve changes sharply with a small change in the volume fraction. 

This is a result of the high purchase cost of CuO-water nanofluids (per unit kilogram) and 

their lower thermal conductivity compared to Al2O3-water nanofluids. 

At the other extreme, pure water at Re = 200 gives the lowest minimum total cost (£ 

262.76) and therefore they are most cost effective among those investigated under the 

conditions and factors used in the present study. It is should be mentioned that the 

optimum volume fraction at Re = 50 for Al2O3-water nanofluid and TiO2-water nanofluid 
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are 3.5 and 1.0 vol.% respectively; but Al2O3-water nanofluid gave lower minimum total 

cos (£ 264.86 for Al2O3-water nanofluid and £ 265.5 for TiO2-water nanofluid). Although, 

the viscosity of Al2O3-water nanofluid is higher than TiO2-water nanofluid at these 

concentration (see chapter3). This is because of Al2O3-water nanofluid has lower cost and 

higher thermal conductivity compared to TiO2-water nanofluid. 

 

Figure 6.3: Total cost variation with volume fraction using Al2O3-water nanofluids for 

half server with cooled plate having two parallel tubes. 
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Figure 6.4: Total cost variation with volume fraction usingTiO2-water nanofluids for 

half server with cooled plate having two parallel tubes. 

 
Figure 6.5: Total cost variation with volume fraction using CuO-water nanofluids for 

half server with cooled plate having two parallel tubes. 
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Table 6.3 : The cost effectiveness for the tenth lowest minimum total cost in order. 

Order 
Type of 

nanofluid 

Volume 

fraction 

(vol%) 

Re 
Minimum total cost 

(£) 

1 Water 0.0 200 262.76 

2 Water 0.0 150 262.87 

3 Water 0.0 250 262.88 

4 Al2O3 0.5 200 262.95 

5 Al2O3 0.5 150 262.96 

6 TiO2 0.5 150 263.08 
7 TiO2 0.5 200 263.10 

8 Water 0.0 300 263.11 

9 Al2O3 1.0 150 263.14 

10 Al2O3 0.5 250 263.16 

11 Al2O3 1.0 200 263.24 

12 TiO2 0.5 250 263.32 

13 Al2O3 1.5 150 263.37 

14 TiO2 1.0 150 263.41 

15 Al2O3 0.5 100 263.43 
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6.4.2: Half server with cooled plate having serpentine tube 

The base fluid performance for the half server with cooled plate having the serpentine 

tube configuration at various Reynolds number is given in Figure 6.6. It can be seen that 

the total cost decreases with increasing Reynolds number due to the CPU's decreasing 

temperature and the minimum total cost at Re = 600. As the Reynolds number is increased 

past 600 the pumping power becomes more significant and the system less economical. 

 

 

Figure 6.6: Total cost variation with various Reynolds number using the base fluid 

(water)  for the half server with cooled plate having serpentine tube. 

 Figures 6.7 - 6.9 show representative results of the variation of the total cost with 

volume fractions for the half server with cooled plate having serpentine tube configuration 

using Al2O3-water, TiO2-water and CuO-water nanofluids, respectively.  Each curve on 

the figures show a minimum total cost that gives a corresponding value for the 

recommended concentration for that particular Reynolds number. It is found that using 

base fluid (water) at Re = 600 gives the lowest minimum total cost and the greatest cost 

effectiveness at £ 263.80 for the considerations and parameters of this study. 
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 Figure 6.7 shows the total cost variation using Al2O3-water nanofluids. It is clearly 

seen that at Re = 200 the nanofluid gives minimum total cost at 1.5 vol.% and the total 

cost curve changes more gradually with changing volume fraction between 1.0 and 2.0 

vol.%. Other Reynolds numbers show that using the base fluid give the minimum total 

cost. This is due to the cost of nanofluid and the pumping power. 

 For TiO2-water nanofluids, it can be seen that using the base fluid gives minimum 

total cost compared to all nanofluid concentrations at the same Reynolds number except 

Reynolds numbers 200 which give an optimum volume fraction with TiO2-water 

nanofluids at 0.5 vol.%. It is noted that at this Reynolds number Al2O3-water 

nanofluids give an optimum volume fraction of 1.5 vol.% which is higher than the 

optimum volume fraction of TiO2 nanofluids with lower minimum total cost; this is 

due to Al2O3-water nanofluid having a lower cost and higher thermal conductivity 

compared to TiO2-water nanofluids. The results for the CuO-water nanofluids are 

shown in Figure 6.9.  It is clearly seen that all Reynolds numbers show that using the 

base fluid (water) gives the lowest minimum total cost and none of the nanofluids do 

give an optimum volume fraction.  In addition, it can be seen that the total cost curve 

changes sharply with a small changes in the volume fraction. This is a result of its 

highest cost of CuO-water nanofluids (per unit kilogram) and its lowest thermal 

conductivity compared to Al2O3-water nanofluids.  
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Figure 6.7: Total cost variation with volume fraction using Al2O3-water nanofluids for 

half server with cooled plate having serpentine tube. 

 

 
Figure 6.8: Total cost variation with volume fraction using TiO2-water nanofluids for 

half server with cooled plate having serpentine tube. 
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Figure 6.9: Total cost variation with volume fraction using CuO-water nanofluids for 

half server with cooled plate having serpentine tube. 

 

Table 6.4 : The cost effectiveness for the tenth lowest minimum total cost in order. 

Order 
Type of 

nanofluid 

Volume 

fraction (vol%) 
Re 

Minimum total cost 

(£) 

1 Water 0.0 600 263.80 

2 Water 0.0 700 263.82 

3 Water 0.0 500 263.87 

4 Al2O3 0.5 600 264.00 

5 Al2O3 0.5 500 264.02 

6 Al2O3 0.5 700 264.07 

7 Water 0.0 400 264.08 

8 TiO2 0.5 600 264.14 

9 TiO2 0.5 500 264.16 

10 Al2O3 0.5 400 264.17 

11 TiO2 0.5 700 264.21 

12 Al2O3 1.0 500 264.23 

13 TiO2 0.5 400 264.28 

14 Al2O3 1.0 600 264.29 

15 Al2O3 1.0 400 264.33 
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 In terms of cost effectiveness, Table 6.3 and Table 6.4 show the order of some 

lowest minimum total cost using all nanofluids for the half server with cooled plate having 

two parallel tubes and the half server with cooled plate having serpentine tubes 

configuration respectively.  This order of optimisation is highly affected by the cost and 

thermophysical properties (i.e. thermal conductivity and viscosity) of the nanofluids.  

Therefore, it must be emphasised here that if different thermal properties and material 

costs were used for the different types of nanofluid then the optimisations would be 

significantly altered.  Also of note is that, this optimisation is highly dependent on the 

type of application. Other properties of nanofluids could be very significant such as 

erosion and corrosion which were not taken into consideration in the present evaluation 

[143].   

It is interesting to mention that increasing the Reynolds number to use nanofluids 

instead of base fluid has its limitation, with regard to the type of the practical application 

configuration and type of nanofluid with its concentration. For example, the half server 

with cooled plate having two parallel tubes it is worth increasing the Reynolds number up 

to 100 for Al2O3-water and TiO2-water nanofluids up to 50; however, it is not worth to 

increase the Reynolds number for CuO-water nanofluids. Whereas for the serpentine 

cooling plate it is worth to increase the Reynolds number up to 200 for Al2O3-water and 

TiO2-water nanofluids, but it is not worth to use CuO-water nanofluids under the 

conditions and parameters used in the present study. 

 It is worth mentioning that any extra installation costs arising from such as the 

configuration of the two cooled plates (used to cool the half server) or adding another 

symmetric half server to become one whole server will not affect the optimum nanofluids 

concentrations as it will only shift the total cost versus the volume fraction curve in the 

vertical direction.  Also if the study were expanded to include a number of servers as is 

normally found in a rack in data centre will not affect the optimum nanofluids 

concentration. Therefore, extra cost not accounted for in the present analysis, for 

comparison as required, may be added to the total cost value (including the minimum total 

cost). Of course, the rest of the economic factors, as mentioned in Table 6.1, affect the 
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values of the optimum nanofluid volume fraction as well as the total cost. Section 6.5 

investigates the effect of the economic factors.   

6.5: Parametric Study of Economic Factors  

A parametric study is carried out in order to investigate the effects of changing economic 

factors on the optimum nanofluids concentration and minimum total cost.  This study is 

done by employing the half server with cooled plate having serpentine tube and by using 

Al2O3-water nanofluids as coolant. 

 Tables 6.5 to 6.10 summarise the results of the investigation.  In general, the 

nominal values of the economic parameters are used as a datum for comparison with the 

results obtained by halving and doubling their values.  For example, Table 6.5 compares 

the values calculated for optimum volume fraction (opt) and minimum total cost by 

halving the cost of nanofluids from 24.2 £/kg to 12.1 £/kg, and by doubling the cost to 

48.4 £/kg; this is done while keeping the rest of the economic parameters at their nominal 

values (see Table 6.1).  After this is performed, the cost of the nanofluid is changed back 

to its nominal value and the effect of changing others parameters is investigated as shown 

in the next tables.  This is repeated for the rest of the economic parameters noting that the 

middle row each table gives the results with the parameters set at their nominal values.  It 

is also noted that the volume fraction would be the recommended optimum volume 

fraction (opt) for the particular values of Reynolds numbers used, based on the minimal 

total cost; and the lowest minimum total cost would be the recommended value of all 

Reynolds numbers. For example, at the nominal economic parameter values, the optimum 

volume fraction of all considered Reynolds numbers 200, 300, 400, 500, 600 and 700 are 

1.5, 0.0, 0.0, 0.0, 0.0 and 0.0 vol.% respectively; but, the lowest minimum total cost was 

£ 263.80; at Re = 600 and opt = 0.0 vol.% (nanofluid is the base fluid, water).  

 It may be argued that by halving and doubling the nominal values of the economic 

parameters would give a wide range of values that may not be very realistic at the present 

time.  However, it is believed that this would be quite useful to understand the effect of 

these economic parameters on optimum nanofluids volume fraction and minimum total 

cost. Also it is acceptable over a long span of time. Besides, the energy charge was 
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expected to increase from 2011 to 2021 by 88% from 7.8 to 14.7 p/kWh [144]; and with 

regard to the inflation rate and interest rate, the average value was taken because they 

were fluctuated over the previous ten years [136, 137]; see Figure 6.1. 

 The striking feature of the results summarized in Tables 6.5 to 6.10 are that the 

optimum volume fraction (opt) and the corresponding minimum total cost substantially 

with the change in the economic parameters. While decreasing the cost of a nanofluid 

forces the optimum volume fraction (opt) to increase, decreasing the cost of electricity 

has quite the opposite effect; see Tables 6.5 and 6.6. It is interesting to note that halving 

the cost of nanofluid, for example, and doubling the cost of electricity have the same 

effect on the optimum volume fraction (opt). It is also interesting to note that by doubling 

nanofluid price and halving the cost of electricity, it is expected that using base fluid for 

all Reynolds number give the lowest minimum total cost. However, using the base fluid 

at Re 600 gives the greatest cost effectiveness.  

 With regard to the effect of changing the efficiency of pump, Table 6.7 shows that 

decreasing this value decreases the optimum volume fraction (opt) with increasing the 

minimum total cost. It is interesting to note that increasing and decreasing the pump 

efficiency gives the minimum total cost with using base fluid (water) at Re = 700 and Re 

=500, respectively. From Table 6.8, it is clear that as the system lifetime decreases, the 

optimum volume fraction (opt) decreases with similar effect on the minimum total cost 

and by doubling the system lifetime suggests that the optimum volume fraction increase 

but still using the base fluid at Re = 600 gives the same minimum total cost. It is also 

interesting to note that halving and doubling the cost of electricity, for example, and 

halving and doubling the system lifetime have the same effect on the optimum volume 

fraction (opt) and the minimum total cost by halving and doubling the system lifetime is 

nearly the same that obtained by halving and doubling the cost of electricity. 

It is noted that the effect of the inflation rate (ri) on optimum volume fraction opt 

is quite the opposite to that of the discount rate (rd) as shown in Table 6.9 and Table 6.10. 

For example, if the inflation rate is expected to increase in the future, it is therefore wise 

to invest more money now on nanofluid.  
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It is clear that the changes can be affected by halving and doubling the values of 

the economic factors. Accordingly, the recommended application of nanofluids in 

practical applications should be looked upon with extreme care. 

 

Table 6.5: Effect of change in the cost of nanofluid value on the optimum nanofluids 

volume fraction and minimum total cost for Al2O3-water nanofluids using the half 

server with cooled plate having serpentine tube. 

Cnf (£/kg) Re opt (vol%) Minimum total cost (£) 

12.1 

200 3.5 264.83 

300 1.5 264.38 

400 0.5 264.04 

500 0.0 263.87 

600 0.0 263.80* 

700 0.0 263.82 

24.2 

200 1.5 265.45 

300 0.0 264.56 

400 0.0 264.08 

500 0.0 263.87 

600 0.0 263.80* 

700 0.0 263.82 

48.4 

200 0.0 265.69 

300 0.0 264.56 

400 0.0 264.08 

500 0.0 263.87 

600 0.0 263.80* 

700 0.0 263.82 

* The lowest minimum total cost  
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Table 6.6: Effect of change in the cost of electricity value on the optimum nanofluids 

volume fraction and minimum total cost for Al2O3-water nanofluids using two tubes 

heat sink configuration 

ce (£/kWh) Re opt (vol%) Minimum total cost (£) 

0.055 

200 0.0 132.86 

300 0.0 132.30 

400 0.0 132.06 

500 0.0 131.96 

600 0.0 131.92* 

700 0.0 131.93 

0.11 

200 1.5 265.45 

300 0.0 264.56 

400 0.0 264.08 

500 0.0 263.87 

600 0.0 263.80* 

700 0.0 263.82 

0.22 

200 3.5 529.66 

300 1.5 528.75 

400 0.5 528.09 

500 0.0 527.70 

600 0.0 527.56* 

700 0.0 527.59 

* The lowest minimum total cost  
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Table 6.7: Effect of change in the pump efficiency values on the optimum nanofluids 

volume fraction and minimum total cost for Al2O3-water nanofluids using two tubes 

heat sink configuration 

Pp (%) Re opt (vol%) Minimum total cost (£) 

50 

200 1.0 265.93 

300 0.0 265.10 

400 0.0 264.81 

500 0.0 264.78* 

600 0.0 264.89 

700 0.0 265.09 

85 

200 1.5 265.45 

300 0.0 264.56 

400 0.0 264.08 

500 0.0 263.87 

600 0.0 263.80* 

700 0.0 263.82 

100 

200 1.5 265.34 

300 0.0 264.44 

400 0.0 263.93 

500 0.0 263.67 

600 0.0 263.57 

700 0.0 263.54* 

* The lowest minimum total cost  
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Table 6.8: Effect of change in the system lifetime value on the optimum nanofluids 

volume fraction and minimum total cost for Al2O3-water nanofluids using two tubes 

heat sink configuration 

m (year) Re opt (vol%) Minimum total cost (£) 

1.5 

200 0.0 133.54 

300 0.0 132.97 

400 0.0 132.73 

500 0.0 132.63 

600 0.0 132.59* 

700 0.0 132.60 

3 

200 1.5 265.45 

300 0.0 264.56 

400 0.0 264.08 

500 0.0 263.87 

600 0.0 263.80* 

700 0.0 263.82 

6 

200 3.0 524.34 

300 1.5 523.43 

400 0.5 522.77 

500 0.0 522.37 

600 0.0 522.24* 

700 0.0 522.27 

* The lowest minimum total cost  
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Table 6.9: Effect of change in inflation rate value on the optimum nanofluids volume 

fraction and minimum total cost for Al2O3-water nanofluids using two tubes heat sink 

configuration 

ri(%) Re opt (vol%) Minimum total cost (£) 

1.35 

200 1.5 279.58 

300 0.0 278.68 

400 0.0 278.18 

500 0.0 277.95 

600 0.0 277.88* 

700 0.0 277.90 

2.7 

200 1.5 265.45 

300 0.0 264.56 

400 0.0 264.08 

500 0.0 263.87 

600 0.0 263.80* 

700 0.0 263.82 

5.4 

200 1.5 258.57 

300 0.0 257.68 

400 0.0 257.22 

500 0.0 257.01 

600 0.0 256.94* 

700 0.0 256.96 

* The lowest minimum total cost  
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Table 6.10: Effect of change in the discount rate value on the optimum nanofluids 

volume fraction and minimum total cost for Al2O3-water nanofluids using two tubes 

heat sink configuration 

rd(%) Re opt (vol%) Minimum total cost (£) 

1.7 

200 1.5 274.38 

300 0.0 273.48 

400 0.0 272.99 

500 0.0 272.77 

600 0.0 272.70* 

700 0.0 272.71 

3.4 

200 1.5 265.45 

300 0.0 264.56 

400 0.0 264.08 

500 0.0 263.87 

600 0.0 263.80* 

700 0.0 263.82 

6.8 

200 1.5 248.99 

300 0.0 248.11 

400 0.0 247.66 

500 0.0 247.46 

600 0.0 247.40* 

700 0.0 247.41 

* The lowest minimum total cost  
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6.6: Concluding Remarks 

The variations of temperature and pressure drop with a nanofluid concentration (volume 

fraction) and Reynolds number under steady state conditions were calculated using the 

finite element solver program (COMSOL). These characteristics were then used in an 

economic analysis model in order to calculate and optimise the total cost versus the 

volume fraction of the nanofluids.  The optimum volume fraction was determined for 

three types of nanofluids (Al2O3-water nanofluids, TiO2-water nanofluids and CuO-water 

nanofluids) and each was used in two different cooled plate configurations of half of a 

server, as described in chapter 5 (Figure 5.2). By plotting the sum of the cost of a nanofluid 

as a function of volume fraction and the present value of energy consumption the chip 

and pump and cooling system over the lifetime of the system versus the volume fraction 

of each type nanofluid, the optimum volume fraction was determined at the lowest 

minimum total cost for a particular Reynolds number.  

In terms of cost effectiveness for the values of the economic factors used, pure water at 

Re = 200 was shown to be the most cost effective for the half server with cooled plate 

having two parallel tubes at £ 262.76. Whereas, using the base fluid (water) at Re = 600 

in the half server with cooled plate having serpentine tube configuration was found to be 

the most cost effective at £ 263.80. It is interesting to note that the half server with cooled 

plate having two parallel tubes gives lower cost effectiveness than the half server with 

cooled plate having serpentine tube, however, the clockspeed for the CPU of the half 

server with cooled plate having serpentine tube is higher than the CPU of the half server 

with cooled plate having two parallel tubes. It means that if the CPU of the half server 

with cooled plate having two parallel tubes is running at the same clockspeed will 

consume more power. The minimum total cost and optimum volume fraction was a 

function of the cost and thermophysical properties of the nanofluid, its intended 

application as well as other economic factors (see Table 6.1).  
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

CONCLUSIONS 

In this study, an evaluation of the thermal performance and pressure drop of common 

nanofluids in electronics cooling applications was carried out and the feasibility of using 

nanofluids to cool a data centre were investigated with the aim of determining the 

optimum volume fraction of each nanofluid.  

 The dynamic viscosity of some commonly used nanofluid (Al2O3, TiO2 and CuO 

water nanofluids) by researchers was measured by using the rotational rheometer called 

the Malvern Kinexus Pro rheometer. The results of the measurements showed that: 

 The viscosity of the nanofluid was strongly dependant on the temperature, volume 

fraction and type of nanoparticle and that viscosity increased with increasing 

nanofluid volume fractions but decreased with increasing temperature. 

  The relative viscosity of all nanofluids tested is a function of the volume fraction 

and its type over the volume fraction and temperature range considered in the 

study and it was observed that the viscosity of Al2O3-water nanofluids was highest 

when compared to other nanofluids with similar volume fractions.  

 The new correlation of the viscosity measurement data was developed and used 

for comparison with literature values. The measured values of dynamic viscosity 

for Al2O3 nanofluids were in good agreement with previous empirical claimed 

values.  

 When comparing the nanofluids tested viscosity with previous experimental 

studies, the viscosity of the nanofluid with smaller nanoparticle sizes is higher 

than the nanofluids with large nanoparticle sizes. 

  A large difference was found when comparing the theoretical correlations, all of 

which greatly underestimated the experimental values.  
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 All tested nanofluids were found to behave as a Newtonian fluid over the volume 

fractions and temperature range considered in this investigation. 

 The heat transfer coefficient and pressure drop of the above nanofluids were 

investigated experimentally. This used a closed loop of circular tube with forced 

convection heat transfer within the turbulent regime under constant heat flux. It was found 

that: 

 Evaluating heat transfer coefficient by the popular approach of considering the 

Nusselt number versus Reynolds number is misleading, and creates the impression 

that, at least for Al2O3-water nanofluid, heat transfer is enhanced by using the 

nanofluid. The problem is that both Nu and Re are dependent on the nanoparticle 

load. 

 The most significant result of this experiment is that using a nanofluid decreased 

the actual heat transfer rate and this deterioration increased with increasing 

nanoparticles load.  

  The heat transfer coefficient increases with increasing flow rate, however, it 

decreases with increasing volume fraction. At a constant flow rate, the base fluid 

(water) gave the highest heat transfer coefficient with respect to the nanofluids. 

With regard to the pressure drop of nanofluids, it increases significantly with 

increasing flow rate and nanofluid concentration. 

 Nusselt number and pressure drop increased monotonically with increasing 

Reynolds number and volume fraction, but the pressure drop increased 

significantly. At constant Reynolds number, the nanofluid showed better Nusselt 

number, but it cost more energy to pumping the fluid to achieve the same Reynolds 

number.  

 The thermal performance of Al2O3-water nanofluids was higher when compared 

to the other nanofluids and this is attributed to the fact that the Al2O3 nanoparticle 

has highest the thermal conductivity.  
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 A comparison with the existing nanofluid Nusselt number correlations was made 

and showed that the Pak and Cho [23] correlation estimated the Nusselt number 

of Al2O3-water nanofluids with an agreement of within 5%.  

 It is worth mentioning that by using the properties of nanofluid the existing 

conventional correlation of single phase could predict the heat transfer coefficient 

and the pressure drop.  

 A computer program (COMSOL) which is based on the finite element method 

was used to calculate the variation of temperature across a CPU chip surface and the 

pressure drop across the cooled plate with volume fraction of the above nanofluids 

through two different half servers; one with a cooled plate which has a two parallel tubes 

and another with a cooled plate which has a serpentine tube. Both half servers use an 

immersion design created by Iceotope. The variations of the chip temperature and cooled 

plate pressure drop of typical nanofluid with different volume fractions and Reynolds 

number of each server was calculated under steady state conditions. The results of the 

calculations for both servers showed that: 

 The server’s cooled plates with parallel flow (when the inlet flow is from the top 

to the bottom) gave better thermal performance than the counter flow. 

 The average temperature of chip decreased monotonically with increasing 

Reynolds number of the cooled plate and the volume fraction of nanofluid.  

 The pressure drop of both cooled plates increased monotonically with increasing 

Reynolds number and volume fraction. 

 The thermal performance of nanofluids depends on the nanofluids thermal 

properties, for example a higher thermal conductivity of Al2O3-water nanofluids 

gave better thermal performance when compared to TiO2-water and CuO-water 

nanofluids for both half servers.     

The variation of chip temperatures and cooled plate pressure drop with nanofluids volume 

fraction were used in an economic analysis in order to find the optimum volume fraction, 
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which corresponded to the minimum total cost. By plotting the sum of the cost of 

nanofluid as a function of the volume fraction and the present value of power consumption 

of the chip, pump and cooling system over the lifetime of the system versus the volume 

fraction of each type nanofluid, the optimum volume fraction was determined at the point 

of minimum total cost for a particular Reynolds number. Under the economic factors used 

it was shown that: 

 The most cost effective conditions were using a base fluid (water) at Re = 200 for 

the half server with cooled plate having two parallel tubes. Whereas, it was the 

base fluid (water) at Re = 600 for the half server with cooled plate having 

serpentine tube.  

 This cost effectiveness was highly affected by the cost and the properties of 

nanofluid and also other economic parameters such as the cost of energy and 

lifetime of the application. Therefore, it should be emphasized that had different 

thermal properties and costs been used for the different types of nanofluids the 

cost effectiveness would have been significantly affected.  

 It is interesting to note that the half server with cooled plate having serpentine 

tube has higher thermal performance than the half server with cooled plate having 

two parallel tubes according to the clockspeed of the CPU. Therefore, the cost 

effectiveness depend upon the type of application the cost as well. 

 Properties such as such as erosion and corrosion were not taken into consideration 

in the present evaluation. 

 Based on, the parameters study and the assumption considered in this thesis, using 

nanofluid in the immersion cooling server is probably not economical.    
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FUTURE WORK 

Following on from this study, future work should include: 

 There is a need to perform more systematic and detailed measurements of 

properties such as the thermal conductivity and viscosity of nanofluids since there 

is no consistent method in the literature for determining and calculating these 

values. Future studies should investigate the effects of different nanoparticles, 

particular type of nanofluid especially on the nanofluid viscosity and thermal 

conductivity, since adding nanoparticles enhance both the heat transfer and 

increase the pressure drop. 

 Other nanofluid properties and specifically tribological effects such as erosion and 

corrosion could be very important, depending upon the intended application (i.e. 

nuclear power); studies should aim to characterise and minimise their adverse 

effects. 

 Further experimental and numerical analyses are needed to investigate the heat 

transfer performance and the flow characteristics of the pressure drop of 

nanofluids under laminar and turbulent regimes. The practical application of 

nanofluids should also be examined further with the objective of minimizing their 

adverse effects. 

 The economic analysis of using nanofluids should be expanded to include other 

factors such as the cost of nanofluid adverse effects (i.e. erosion and corrosion)   

 Further experimental and numerical analysis is needed to investigate the optimum 

volume fraction of different nanofluids and recommend nanofluid for specific 

applications. 

 There is a need to perform more systematic work on specific applications where 

the thermal performance of a nanofluid is more significant than the pressure drop.  
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 Further investigation should be conducted investigating the effect of the geometry 

of the cooled plate using nanofluids [145]. By changing the flow behaviour of the 

nanofluid across the cooled plate to achieve a design with optimum heat transfer.  

 The cost of a nanofluid is a function of mass fraction or volume fraction, which 

must be calculated since the suppliers provide the nanofluid at one high 

concentration. It is suggested that the nanofluid cost (Cnf) should consider the cost 

of a nanofluid as combination of three components; the cost of base fluid (Cbf), 

the cost of nanoparticles (Cp) as a function of mass fraction or volume fraction and 

the cost of preparing the nanofluid (Cpre).  

Cnf  = Cbf + Cp + Cpre. 

 Further study should establish the viability of using nanoparticles in a dielectric 

liquid as it should be investigated at which fraction and particle type causes the 

fluid to begin to conduct electricity.  

 Further investigation is needed to utilise nanofluids within a data centre since there 

are many cooling techniques, which could use nanofluids instead of traditional 

cooling liquids such as on-chip liquid cooling or rear door rack liquid cooling 

systems. 
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APPENDICES 
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APPENDIX (A): 

RAW DATA OF THE NANOFLUIDS VISCOSITY TESTS 

The measuring of the viscosity of all nanofluids (Al2O3-water TiO2-water and CuO-water 

nanofluid) at atmospheric pressure and different mean temperatures in the range 15 to 40 

oC was conducted. The measurements were carried out for three specimens of each test 

sample of the nanofluids. The viscosity was measured for each specimen then the mean 

values of viscosity were obtained by averaging; see Tables A1 to A3.   
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Table A 1: Measurement average viscosity of Al2O3-water nanofluid for various 

temperatures and volume fractions 

Al2O3  nanofluid 

 volume fraction 

Temperature 

(°C) 

Averaging 

viscosity (Pa.s) 

Standard 

deviation  

Discrepancy 

 (%) 

0.5 vol% 

15 0.00130 4.5680×10-5 3.53 

20 0.00116 4.0399×10-5 3.47 
25 0.00106 4.2937×10-5 4.06 
30 0.00095 4.3818×10-5 4.63 
35 0.00084 4.6666×10-5 5.56 
40 0.00075 5.0020×10-5 6.66 

0.9 vol% 

15 0.00144 5.1571×10-5 3.57 
20 0.00129 4.2604×10-5 3.30 
25 0.00117 4.3243×10-5 3.68 
30 0.00106 4.6421×10-5 4.40 
35 0.00094 4.7816×10-5 5.07 
40 0.00085 4.13675×10-5 4.90 

1.8 vol% 

15 0.00182 10.1579×10-5 5.59 
20 0.00162 6.60387×10-5 4.08 
25 0.00146 4.50829×10-5 3.09 
30 0.00132 4.74005×10-5 3.58 
35 0.00118 5.68007×10-5 4.83 
40 0.00105 5.42866×10-5 5.16 

2.7 vol% 

15 0.00219 5.89628×10-5 2.70 
20 0.00195 5.04856×10-5 2.58 
25 0.00177 4.46652×10-5 2.52 
30 0.00160 4.25924×10-5 2.65 
35 0.00145 4.46177×10-5 3.08 
40 0.00131 4.92458×10-5 3.76 

3.6 vol% 

15 0.00286 6.33813×10-5 2.21 
20 0.00255 5.24546×10-5 2.06 
25 0.00231 4.76655×10-5 2.07 
30 0.00211 4.33474×10-5 2.06 
35 0.00192 4.10906×10-5 2.14 
40 0.00175 4.46296×10-5 2.54 

4.7 vol% 

15 0.00524 19.1512×10-5 3.65 
20 0.00467 9.45604×10-5 2.02 
25 0.00428 8.23931×10-5 1.92 
30 0.00398 7.24793×10-5 1.82 
35 0.00375 5.7016×10-5 1.52 
40 0.00359 5.06364×10-5 1.41 

5.9 vol% 

15 0.00625 24.7169×10-5 3.96 
20 0.00550 13.2237×10-5 2.40 
25 0.00497 10.8867×10-5 2.19 
30 0.00456 9.17028×10-5 2.01 
35 0.00427 9.50113×10-5 2.23 
40 0.00408 14.1684×10-5 3.47 
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Table A 2: Measurement average viscosity of TiO2-water nanofluid for various 

temperatures and volume fractions 

TiO2  nanofluid 

 volume fraction 

Temperature 

(°C) 

Averaging 

viscosity (Pa.s) 

Standard 

deviation  

Discrepancy 

(%) 

0.5 vol% 

15 0.001324 4.3754×10-5 3.30 

20 0.001186 3.7475×10-5 3.16 

25 0.001071 3.9274×10-5 3.67 

30 0.000968 3.7909×10-5 3.92 

35 0.000878 3.4509×10-5 3.93 

40 0.000797 4.0784×10-5 5.12 

1.5 vol% 

15 0.001666 5.0022×10-5 3.00 

20 0.001479 4.3351×10-5 2.93 

25 0.001317 3.9264×10-5 2.98 

30 0.001185 3.9049×10-5 3.30 

35 0.001071 4.1643×10-5 3.89 

40 0.000966 4.6140×10-5 4.78 

2.5 vol% 

15 0.00199 6.4614×10-5 3.25 

20 0.001766 6.0530×10-5 3.43 

25 0.001576 6.2641×10-5 3.98 

30 0.00141 5.9982×10-5 4.25 

35 0.001272 5.2440×10-5 4.12 

40 0.001146 5.4301×10-5 4.74 

3.5 vol% 

15 0.00239 6.5989×10-5 2.76 

20 0.002108 5.7878×10-5 2.75 

25 0.001868 5.2334×10-5 2.80 

30 0.001673 4.4541×10-5 2.66 

35 0.001526 4.1130×10-5 2.70 

40 0.00141 4.1311×10-5 2.93 

4.5 vol% 

15 0.00278 8.3520×10-5 3.00 

20 0.002437 6.6829×10-5 2.74 

25 0.002155 6.0635×10-5 2.81 

30 0.001926 5.2110×10-5 2.71 

35 0.001746 4.9682×10-5 2.85 

40 0.001591 5.1017×10-5 3.21 
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Table A 3: Measurement average viscosity of CuO-water nanofluid for various 

temperatures and volume fractions 

CuO nanofluid 

 volume fraction 

Temperature 

(°C) 

Averaging 

viscosity (Pa.s) 

Standard 

deviation  

Discrepancy 

(%) 

0.4 vol% 

15 0.001192 4.6482×10-5 3.90 

20 0.001069 4.2914×10-5 4.01 

25 0.000959 4.3493×10-5 4.54 

30 0.00086 4.0576×10-5 4.72 

35 0.000775 3.7944×10-5 4.89 

40 0.000693 4.7935×10-5 6.92 

0.8 vol% 

15 0.001282 4.7129×10-5 3.68 

20 0.001147 4.1226×10-5 3.59 

25 0.00103 4.3828×10-5 4.25 

30 0.000928 4.1125×10-5 4.43 

35 0.000834 3.8395×10-5 4.61 

40 0.000739 4.2342×10-5 5.73 

1.2 vol% 

15 0.001358 6.0440×10-5 4.45 

20 0.001218 5.4451×10-5 4.47 

25 0.001094 5.8497×10-5 5.35 

30 0.000991 6.0399×10-5 6.10 

35 0.000904 7.6978×10-5 8.51 

40 0.0008 8.0639×10-5 10.08 

1.6 vol% 

15 0.001511 4.8078×10-5 3.18 

20 0.001349 4.1649×10-5 3.09 

25 0.001214 4.3990×10-5 3.62 

30 0.001097 4.6525×10-5 4.24 

35 0.000981 4.2572×10-5 4.34 

40 0.000874 4.4547×10-5 5.10 
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APPENDIX (B): 

RAW DATA OF THE CONVECTION TESTS 

The raw data of the convection test is presented in this section. The measurements were 

carried out firstly on water for one specimen and repeated the test three times, then, the 

mean values of the results were obtained by averaging. The inlet bulk temperature of the 

test section was maintained at around 20 C and the uniform heat generation at about 

5000W and the flow rate was changed from 0.75 to 2.0 GPM (gallon per minute) (i.e. 

5×10-5 to 0.00013 m3/s). The similar conditions of the test conducted for all nanofluids 

(Al2O3-water TiO2-water and CuO-water nanofluid) and for each concentration of 

nanofluid for comparison. The data is present below in Tables A4 to A21 
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Table A 4: Convection test of distilled water test 

Measured items 
Runs distilled water for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 

Inlet temp. of the heated test-

section [ C] 
21.00 20.59 20.25 20.16 20.34 20.35 

Outlet temp. of the heated test-

section [C] 
43.74 38.63 34.90 32.38 30.81 29.42 

Inlet temp. of the isothermal test-

sect. [C] 
18.94 18.96 18.94 19.11 19.47 19.64 

0.203m, Surface thermocouple 1 

[C] 
39.07 35.86 33.62 32.15 31.25 30.36 

Surface thermocouple 2 [C] 40.19 36.78 34.40 32.81 31.82 30.85 

Surface thermocouple 3 [C] 41.37 37.77 35.22 33.50 32.42 31.38 

Surface thermocouple 4 [C] 42.58 38.74 35.99 34.14 32.98 31.86 

Surface thermocouple 5 [C] 43.89 39.77 36.85 34.86 33.59 32.40 

Surface thermocouple 6 [C] 45.28 40.90 37.75 35.62 34.24 32.96 

Surface thermocouple 7 [C] 46.60 41.96 38.62 36.35 34.87 33.51 

Surface thermocouple 8 [C] 47.43 42.62 39.15 36.78 35.23 33.82 

Surface thermocouple 9 [C] 49.01 43.90 40.20 37.67 36.00 34.50 

Surface thermocouple 10 [C] 50.52 45.12 41.20 38.50 36.72 35.13 

Surface thermocouple 11 [C] 51.79 46.13 42.02 39.19 37.31 35.64 

Surface thermocouple 12 [C] 53.20 47.27 42.96 39.98 37.99 36.23 

Surface thermocouple 13 [C] 54.42 48.26 43.75 40.64 38.55 36.72 

2.842m, Surface thermocouple 

14 [C] 
55.79 49.36 44.65 41.39 39.21 37.29 

Voltage [V] 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp] 337.40 337.40 337.40 337.40 337.40 337.40 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.79 1.03 1.26 1.51 1.75 2.04 

DP heated test-section [bar] 0.0338 0.0494 0.0703 0.0948 0.1226 0.1565 

DP isothermal test-section [bar] 0.0286 0.0437 0.0641 0.0885 0.1156 0.1488 
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Table A 5: Convection test of AL2O3 (0.5 vol%) nanofluid test 

Measured items 
Runs Al2O3 (0.5 vol%)for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 

Inlet temp. of the heated test-

section [ C] 
19.82 19.67 19.43 19.96 19.37 19.74 

Outlet temp. of the heated test-

section [C] 
41.84 37.27 33.88 32.29 29.64 28.77 

Inlet temp. of the isothermal 

test-sect. [C] 
17.79 18.07 18.11 18.87 18.46 18.98 

0.203m, Surface thermocouple 1 

[C] 
38.47 35.51 33.24 32.32 30.44 29.94 

Surface thermocouple 2 [C] 39.54 36.38 33.98 32.97 30.98 30.42 

Surface thermocouple 3 [C] 40.61 37.31 34.76 33.65 31.56 30.94 

Surface thermocouple 4 [C] 41.68 38.19 35.50 34.28 32.10 31.41 

Surface thermocouple 5 [C] 42.85 39.16 36.32 34.99 32.69 31.94 

Surface thermocouple 6 [C] 44.13 40.21 37.19 35.74 33.31 32.48 

Surface thermocouple 7 [C] 45.36 41.21 38.04 36.48 33.94 33.04 

Surface thermocouple 8 [C] 46.00 41.73 38.46 36.83 34.23 33.29 

Surface thermocouple 9 [C] 47.59 43.05 39.56 37.80 35.05 34.02 

Surface thermocouple 10 [C] 49.02 44.21 40.53 38.63 35.74 34.63 

Surface thermocouple 11 [C] 50.22 45.19 41.34 39.33 36.32 35.15 

Surface thermocouple 12 [C] 51.58 46.27 42.25 40.12 36.99 35.75 

Surface thermocouple 13 [C] 52.73 47.21 43.02 40.78 37.54 36.23 

2.842m, Surface thermocouple 

14 [C] 
54.05 48.27 43.91 41.53 38.18 36.79 

Voltage [V] 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp] 333.60 333.60 333.60 333.60 333.60 333.60 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.79 1.03 1.26 1.48 1.77 2.03 

DP heated test-section [bar] 0.0334 0.0503 0.0714 0.0937 0.1291 0.1613 

DP isothermal test-section [bar] 0.0295 0.0458 0.0664 0.0883 0.1228 0.1542 
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Table A 6: Convection test of Al2O3 (0.9 vol%) nanofluid test 

Measured items 
Runs Al2O3 (0.9 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 

Inlet temp. of the heated test-

section [ C] 
20.91 20.67 20.37 20.27 19.99 20.14 

Outlet temp. of the heated test-

section [C] 
43.86 38.92 35.13 32.48 30.35 29.33 

Inlet temp. of the isothermal 

test-sect. [C] 
18.74 18.97 18.99 19.13 19.04 19.34 

0.203m, Surface thermocouple 1 

[C] 
40.43 37.15 34.55 32.76 31.25 30.56 

Surface thermocouple 2 [C] 41.53 38.05 35.31 33.40 31.79 31.05 

Surface thermocouple 3 [C] 42.65 39.00 36.11 34.08 32.38 31.58 

Surface thermocouple 4 [C] 43.76 39.92 36.86 34.71 32.92 32.05 

Surface thermocouple 5 [C] 44.97 40.93 37.70 35.41 33.52 32.60 

Surface thermocouple 6 [C] 46.31 42.01 38.60 36.16 34.15 33.15 

Surface thermocouple 7 [C] 47.59 43.03 39.45 36.87 34.78 33.72 

Surface thermocouple 8 [C] 48.32 43.63 39.92 37.27 35.11 34.00 

Surface thermocouple 9 [C] 49.87 44.91 40.98 38.17 35.89 34.70 

Surface thermocouple 10 [C] 51.36 46.13 41.98 39.00 36.59 35.33 

Surface thermocouple 11 [C] 52.62 47.12 42.80 39.68 37.17 35.85 

Surface thermocouple 12 [C] 54.01 48.26 43.73 40.46 37.85 36.45 

Surface thermocouple 13 [C] 55.22 49.23 44.51 41.11 38.40 36.94 
2.842m, Surface thermocouple 

14 [C] 
56.57 50.31 45.41 41.86 39.04 37.51 

Voltage [V] 14.80 14.80 14.80 14.80 14.80 14.80 

Current [Amp] 337.60 337.60 337.60 337.60 337.60 337.60 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.75 1.01 1.25 1.50 1.76 1.99 

DP heated test-section [bar] 0.0354 0.0522 0.0745 0.1022 0.1347 0.1654 

DP isothermal test-section [bar] 0.0302 0.0465 0.0682 0.0951 0.1266 0.1560 
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Table A 7: Convection test of Al2O3 (1.8 vol%) nanofluid test 

Measured items 
Runs Al2O3 (1.8 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 

Inlet temp. of the heated test-

section [ C] 
20.28 20.33 20.16 20.10 20.08 20.02 

Outlet temp. of the heated test-

section [C] 
43.66 39.42 35.11 32.34 30.64 29.30 

Inlet temp. of the isothermal test-

sect. [C] 
17.99 18.49 18.71 18.89 19.07 19.15 

0.203m, Surface thermocouple 1 

[C] 
41.56 38.57 35.41 33.41 32.14 31.13 

Surface thermocouple 2 [C] 42.63 39.47 36.18 34.04 32.68 31.60 

Surface thermocouple 3 [C] 43.64 40.40 36.95 34.70 33.27 32.13 

Surface thermocouple 4 [C] 44.71 41.31 37.69 35.31 33.81 32.61 

Surface thermocouple 5 [C] 45.88 42.31 38.50 36.01 34.41 33.15 

Surface thermocouple 6 [C] 47.16 43.41 39.40 36.75 35.05 33.71 

Surface thermocouple 7 [C] 48.42 44.45 40.25 37.46 35.68 34.27 

Surface thermocouple 8 [C] 49.11 45.02 40.70 37.83 36.00 34.54 

Surface thermocouple 9 [C] 50.64 46.32 41.76 38.73 36.78 35.24 

Surface thermocouple 10 [C] 52.13 47.58 42.76 39.56 37.50 35.88 

Surface thermocouple 11 [C] 53.35 48.59 43.56 40.21 38.08 36.39 

Surface thermocouple 12 [C] 54.72 49.72 44.48 40.98 38.75 36.99 

Surface thermocouple 13 [C] 55.90 50.71 45.26 41.63 39.31 37.48 

2.842m, Surface thermocouple 14 

[C] 
57.23 51.82 46.15 42.37 39.95 38.05 

Voltage [V] 14.80 14.80 14.80 14.80 14.80 14.80 

Current [Amp] 337.50 337.50 337.50 337.50 337.50 337.50 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.74 0.98 1.25 1.51 1.75 2.00 

DP heated test-section [bar] 0.0372 0.0524 0.0789 0.1102 0.1413 0.1756 

DP isothermal test-section [bar] 0.0332 0.0482 0.0739 0.1039 0.1341 0.1671 
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Table A 8: Convection test of Al2O3 (2.7 vol%) nanofluid test 

Measured items 
Runs Al2O3 (2.7 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 

Inlet temp. of the heated test-

section [ C] 
20.06 19.99 19.99 20.44 20.00 20.14 

Outlet temp. of the heated test-

section [C] 
43.43 38.93 35.21 32.97 30.75 29.55 

Inlet temp. of the isothermal test-

sect. [C] 
17.72 18.09 18.41 19.21 18.95 19.25 

0.203m, Surface thermocouple 1 

[C] 
43.62 39.64 36.55 34.67 32.82 31.83 

Surface thermocouple 2 [C] 44.67 40.57 37.27 35.30 33.36 32.31 

Surface thermocouple 3 [C] 45.51 41.36 38.01 35.96 33.94 32.83 

Surface thermocouple 4 [C] 46.51 42.27 38.75 36.56 34.48 33.30 

Surface thermocouple 5 [C] 47.61 43.18 39.53 37.24 35.08 33.84 

Surface thermocouple 6 [C] 48.76 44.22 40.43 38.01 35.73 34.41 

Surface thermocouple 7 [C] 49.92 45.25 41.28 38.73 36.35 34.97 

Surface thermocouple 8 [C] 50.50 45.70 41.65 39.03 36.62 35.20 

Surface thermocouple 9 [C] 51.99 46.99 42.74 39.97 37.43 35.93 

Surface thermocouple 10 [C] 53.48 48.22 43.76 40.82 38.17 36.59 

Surface thermocouple 11 [C] 54.66 49.21 44.55 41.48 38.75 37.09 

Surface thermocouple 12 [C] 55.95 50.29 45.46 42.26 39.43 37.70 

Surface thermocouple 13 [C] 57.08 51.25 46.23 42.90 39.99 38.19 

2.842m, Surface thermocouple 14 

[C] 
58.40 52.33 47.14 43.66 40.64 38.76 

Voltage [V] 14.80 14.80 14.80 14.80 14.80 14.80 

Current [Amp] 337.20 337.20 337.20 337.20 337.20 337.20 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.76 1.00 1.25 1.51 1.75 2.01 

DP heated test-section [bar] 0.0379 0.0550 0.0805 0.1121 0.1463 0.1837 

DP isothermal test-section [bar] 0.0343 0.0513 0.0762 0.1069 0.1395 0.1752 
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Table A 9: Convection test of Al2O3 (3.6 vol%) nanofluid test 

Measured items 
Runs Al2O3 (3.6 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 

Inlet temp. of the heated test-

section [° C] 
20.60 20.73 20.77 20.70 20.59 20.32 

Outlet temp. of the heated test-

section [°C] 
44.20 39.76 35.96 32.95 31.24 29.34 

Inlet temp. of the isothermal test-

sect. [°C] 
18.20 18.79 19.20 19.45 19.49 19.34 

0.203m, Surface thermocouple 1 

[°C] 
46.11 41.65 38.12 35.50 33.94 32.25 

Surface thermocouple 2 [°C] 47.03 42.52 38.82 36.06 34.45 32.67 

Surface thermocouple 3 [°C] 47.71 43.26 39.54 36.65 34.99 33.14 

Surface thermocouple 4 [°C] 48.65 44.11 40.25 37.26 35.53 33.60 

Surface thermocouple 5 [°C] 49.65 45.00 41.02 37.91 36.13 34.10 

Surface thermocouple 6 [°C] 50.80 46.00 41.88 38.62 36.76 34.64 

Surface thermocouple 7 [°C] 51.89 46.98 42.72 39.30 37.36 35.17 

Surface thermocouple 8 [°C] 52.43 47.41 43.07 39.58 37.59 35.36 

Surface thermocouple 9 [°C] 53.87 48.66 44.12 40.48 38.40 36.06 

Surface thermocouple 10 [°C] 55.27 49.85 45.14 41.31 39.13 36.68 

Surface thermocouple 11 [°C] 56.43 50.82 45.91 41.94 39.67 37.14 

Surface thermocouple 12 [°C] 57.68 51.90 46.80 42.69 40.33 37.72 

Surface thermocouple 13 [°C] 58.79 52.83 47.56 43.32 40.89 38.20 

2.842m, Surface thermocouple 14 

[°C] 
60.11 53.94 48.48 44.09 41.56 38.79 

Voltage [V] 14.80 14.80 14.80 14.80 14.80 14.80 

Current [Amp] 337.40 337.40 337.40 337.40 337.40 337.40 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.73 1.00 1.25 1.53 1.76 2.06 

DP heated test-section [bar] 0.0399 0.0593 0.0867 0.1232 0.1560 0.2034 

DP isothermal test-section [bar] 0.0359 0.0540 0.0806 0.1160 0.1472 0.1924 
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Table A 10: Convection test of Al2O3 (4.7 vol%) nanofluid test 

Measured items 
Runs Al2O3 (4.7 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 

Inlet temp. of the heated test-

section [ C] 
20.00 19.88 19.91 19.97 19.91 20.03 

Outlet temp. of the heated test-

section [C] 
43.78 39.27 35.42 32.72 30.75 29.60 

Inlet temp. of the isothermal 

test-sect. [C] 
17.52 17.86 18.32 18.67 18.83 19.09 

0.203m, Surface thermocouple 1 

[C] 
51.13 45.49 40.39 37.18 34.99 33.75 

Surface thermocouple 2 [C] 54.54 46.20 41.12 37.82 35.52 34.21 

Surface thermocouple 3 [C] 54.49 46.64 41.62 38.32 36.04 34.68 

Surface thermocouple 4 [C] 54.16 47.32 42.29 38.92 36.56 35.14 

Surface thermocouple 5 [C] 54.59 48.10 43.02 39.53 37.10 35.63 

Surface thermocouple 6 [C] 55.09 48.95 43.75 40.22 37.70 36.19 

Surface thermocouple 7 [C] 55.80 49.73 44.55 40.92 38.33 36.76 

Surface thermocouple 8 [C] 56.11 50.02 44.81 41.15 38.54 36.93 

Surface thermocouple 9 [C] 57.21 51.12 45.80 42.02 39.30 37.63 

Surface thermocouple 10 [C] 58.41 52.20 46.77 42.88 40.05 38.32 

Surface thermocouple 11 [C] 59.48 53.15 47.54 43.51 40.59 38.80 

Surface thermocouple 12 [C] 60.61 54.13 48.37 44.25 41.24 39.38 

Surface thermocouple 13 [C] 61.42 54.92 49.07 44.84 41.76 39.85 

2.842m, Surface thermocouple 

14 [C] 
62.68 55.95 49.94 45.59 42.40 40.42 

Voltage [V] 14.80 14.80 14.80 14.80 14.80 14.80 

Current [Amp] 337.20 337.20 337.20 337.20 337.20 337.20 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.74 0.99 1.24 1.50 1.76 2.01 

DP heated test-section [bar] 0.0398 0.0587 0.0877 0.1280 0.1705 0.2110 

DP isothermal test-section [bar] 0.0405 0.0614 0.0906 0.1261 0.1661 0.2042 
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Table A 11: Convection test of Al2O3 (5.9 vol%) nanofluid test 

Measured items 
Runs Al2O3 (5.9 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 

Inlet temp. of the heated test-

section [ C] 
- 20.49 20.03 20.13 20.34 20.44 

Outlet temp. of the heated test-

section [C] 
- 44.01 35.54 32.98 31.42 30.20 

Inlet temp. of the isothermal 

test-sect. [C] 
-- 18.28 18.33 18.72 19.17 19.45 

0.203m, Surface thermocouple 

1 [C] 
- 67.01 46.90 43.15 39.61 37.55 

Surface thermocouple 2 [C] - 76.54 49.45 43.28 40.11 38.07 

Surface thermocouple 3 [C] - 84.67 50.36 43.51 40.40 38.34 

Surface thermocouple 4 [C] - 87.66 50.30 43.98 40.88 38.82 

Surface thermocouple 5 [C] - 92.10 50.32 44.55 41.40 39.27 

Surface thermocouple 6 [C] - 80.51 50.22 45.03 41.92 39.73 

Surface thermocouple 7 [C] - 75.98 50.44 45.47 42.42 40.25 

Surface thermocouple 8 [C] - 74.14 50.52 45.72 42.60 40.38 

Surface thermocouple 9 [C] - 73.31 51.42 46.44 43.28 41.02 

Surface thermocouple 10 [C] - 72.32 51.99 47.07 43.94 41.68 

Surface thermocouple 11 [C] - 71.20 52.54 47.65 44.46 42.15 

Surface thermocouple 12 [C] - 70.70 53.25 48.30 45.03 42.65 

Surface thermocouple 13 [C] - 70.02 53.64 48.70 45.48 43.08 

2.842m, Surface thermocouple 

14 [C] 
- 70.06 54.37 49.38 46.10 43.65 

Voltage [V] - 14.80 14.80 14.80 14.80 14.80 

Current [Amp] - 337.60 337.60 337.60 337.60 337.60 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
- 0.99 1.25 1.51 1.75 1.99 

DP heated test-section [bar] - 0.0454 0.0935 0.1420 0.1855 0.2313 

DP isothermal test-section [bar] - 0.0504 0.0943 0.1381 0.1792 0.2220 
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Table A 12: Convection test of TiO2 (0.5 vol%) nanofluid test 

Measured items 
Runs TiO2 (0.5 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
19.69 19.88 19.74 19.83 19.41 19.62 19.49 

Outlet temp. of the heated test-

section [C] 
41.98 38.22 34.47 32.01 29.80 28.68 27.73 

Inlet temp. of the isothermal 

test-sect. [C] 
17.68 18.22 18.45 18.78 18.51 18.87 18.82 

0.203m, Surface thermocouple 

1 [C] 
39.89 36.92 34.18 32.48 30.85 30.09 29.41 

Surface thermocouple 2 [C] 40.85 37.76 34.88 33.06 31.35 30.53 29.80 

Surface thermocouple 3 [C] 41.83 38.67 35.66 33.74 31.94 31.04 30.28 

Surface thermocouple 4 [C] 42.97 39.72 36.57 34.54 32.67 31.71 30.91 

Surface thermocouple 5 [C] 44.11 40.70 37.41 35.24 33.27 32.24 31.39 

Surface thermocouple 6 [C] 45.35 41.77 38.28 35.97 33.88 32.77 31.86 

Surface thermocouple 7 [C] 46.50 42.77 39.11 36.68 34.50 33.32 32.37 

Surface thermocouple 8 [C] 46.48 42.75 39.09 36.65 34.48 33.30 32.34 

Surface thermocouple 9 [C] 48.70 44.65 40.68 37.99 35.64 34.32 33.28 

Surface thermocouple 10 [C] 49.84 45.59 41.45 38.64 36.18 34.80 33.71 

Surface thermocouple 11 [C] 51.29 46.84 42.47 39.51 36.94 35.48 34.34 

Surface thermocouple 12 [C] 52.60 47.96 43.40 40.29 37.62 36.07 34.88 

Surface thermocouple 13 [C] 53.72 48.88 44.15 40.91 38.15 36.52 35.29 

2.842m, Surface thermocouple 

14 [C] 
54.61 49.65 44.76 41.42 38.60 36.92 35.66 

Voltage [V] 14.70 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp] 330.70 332.00 333.00 333.10 334.40 333.90 333.90 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.77 1.00 1.24 1.49 1.74 2.02 2.21 

DP heated test-section [bar] 0.0369 0.0522 0.0755 0.1038 0.1358 0.1721 0.2016 

DP isothermal test-section 

[bar] 
0.0328 0.0476 0.0704 0.0981 0.1300 0.1661 0.1959 
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Table A 13: Convection test of TiO2 (1.5 vol%) nanofluid test 

Measured items 
Runs TiO2 (1.5 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
19.61 19.74 19.66 19.94 19.69 19.84 19.59 

Outlet temp. of the heated test-

section [C] 
41.60 37.65 33.98 32.09 30.00 28.88 27.60 

Inlet temp. of the isothermal 

test-sect. [C] 
17.47 18.03 18.30 18.79 18.74 19.03 18.91 

0.203m, Surface thermocouple 

1 [C] 
42.35 38.60 35.47 34.00 32.31 31.38 30.31 

Surface thermocouple 2 [C] 43.24 39.41 36.13 34.56 32.79 31.81 30.68 

Surface thermocouple 3 [C] 44.02 40.20 36.84 35.20 33.35 32.30 31.13 

Surface thermocouple 4 [C] 45.08 41.13 37.67 35.95 34.02 32.92 31.71 

Surface thermocouple 5 [C] 46.08 42.05 38.46 36.64 34.62 33.46 32.18 

Surface thermocouple 6 [C] 47.15 43.01 39.28 37.35 35.23 33.99 32.65 

Surface thermocouple 7 [C] 48.26 43.98 40.08 38.07 35.85 34.54 33.15 

Surface thermocouple 8 [C] 47.82 43.64 39.81 37.81 35.62 34.33 32.96 

Surface thermocouple 9 [C] 50.23 45.69 41.52 39.32 36.92 35.51 34.01 

Surface thermocouple 10 [C] 51.19 46.51 42.18 39.90 37.43 35.94 34.39 

Surface thermocouple 11 [C] 52.69 47.78 43.24 40.83 38.23 36.66 35.04 

Surface thermocouple 12 [C] 53.94 48.85 44.12 41.60 38.89 37.26 35.57 

Surface thermocouple 13 [C] 54.96 49.71 44.82 42.19 39.40 37.70 35.96 

2.842m, Surface thermocouple 

14 [C] 
55.77 50.37 45.37 42.68 39.82 38.07 36.30 

Voltage [V] 14.70 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp] 330.00 331.80 333.00 333.20 334.60 334.60 334.30 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.73 1.00 1.26 1.49 1.76 2.01 2.28 

DP heated test-section [bar] 0.0389 0.0556 0.0818 0.1069 0.1417 0.1776 0.2194 

DP isothermal test-section 

[bar] 
0.0346 0.0514 0.0772 0.1014 0.1345 0.1689 0.2084 
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Table A 14: Convection test of TiO2 (2.5 vol%) nanofluid test 

Measured items 
Runs TiO2 (2.5 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
19.80 19.84 19.84 19.73 19.56 19.96 19.68 

Outlet temp. of the heated 

test-section [C] 
41.94 37.77 34.26 31.85 29.86 29.17 27.91 

Inlet temp. of the isothermal 

test-sect. [C] 
17.48 18.01 18.35 18.51 18.54 19.09 18.94 

0.203m, Surface 

thermocouple 1 [C] 
46.83 41.51 37.72 35.28 33.32 32.61 31.41 

Surface thermocouple 2 [C] 47.58 42.32 38.35 35.82 33.79 33.03 31.79 

Surface thermocouple 3 [C] 48.11 42.93 38.97 36.40 34.32 33.52 32.23 

Surface thermocouple 4 [C] 48.85 43.79 39.78 37.12 34.97 34.12 32.79 

Surface thermocouple 5 [C] 49.87 44.64 40.51 37.77 35.53 34.65 33.27 

Surface thermocouple 6 [C] 50.75 45.53 41.30 38.46 36.13 35.19 33.75 

Surface thermocouple 7 [C] 51.65 46.41 42.09 39.14 36.74 35.73 34.25 

Surface thermocouple 8 [C] 51.03 45.91 41.66 38.81 36.44 35.44 33.99 

Surface thermocouple 9 [C] 53.40 47.98 43.41 40.31 37.77 36.68 35.09 

Surface thermocouple 10 

[C] 
54.22 48.70 44.06 40.87 38.25 37.11 35.49 

Surface thermocouple 11 

[C] 
55.76 49.99 45.12 41.79 39.04 37.83 36.15 

Surface thermocouple 12 

[C] 
56.85 50.97 45.98 42.53 39.69 38.43 36.69 

Surface thermocouple 13 

[C] 
57.79 51.79 46.63 43.10 40.18 38.86 37.07 

2.842m, Surface 

thermocouple 14 [C] 
58.56 52.42 47.18 43.55 40.58 39.22 37.40 

Voltage [V] 14.70 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp] 331.40 335.10 333.60 334.00 336.60 333.60 334.90 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.75 1.01 1.27 1.51 1.78 1.99 2.25 

DP heated test-section [bar] 0.0380 0.0567 0.0844 0.1152 0.1534 0.1856 0.2272 

DP isothermal test-section 

[bar] 
0.0352 0.0537 0.0807 0.1105 0.1471 0.1775 0.2167 
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Table A 15: Convection test of TiO2 (3.5 vol%) nanofluid test 

Measured items 
Runs TiO2 (3.5 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
19.67 19.72 19.72 19.64 19.87 19.70 19.98 

Outlet temp. of the heated 

test-section [C] 
42.04 37.81 34.19 32.07 30.48 28.96 28.43 

Inlet temp. of the isothermal 

test-sect. [C] 
17.28 17.81 18.20 18.35 18.80 18.77 19.20 

0.203m, Surface 

thermocouple 1 [C] 
51.62 45.47 40.03 37.32 35.26 33.53 32.87 

Surface thermocouple 2 [C] 55.37 46.04 40.66 37.87 35.72 33.94 33.24 

Surface thermocouple 3 [C] 56.08 46.44 41.12 38.36 36.22 34.40 33.67 

Surface thermocouple 4 [C] 55.41 46.98 41.81 39.05 36.85 34.98 34.22 

Surface thermocouple 5 [C] 55.35 47.87 42.53 39.67 37.39 35.47 34.68 

Surface thermocouple 6 [C] 55.49 48.54 43.25 40.31 37.98 36.00 35.16 

Surface thermocouple 7 [C] 55.66 49.32 43.97 40.99 38.59 36.56 35.68 

Surface thermocouple 8 [C] 54.79 48.60 43.43 40.51 38.16 36.17 35.31 

Surface thermocouple 9 [C] 57.17 50.67 45.19 42.11 39.58 37.44 36.50 

Surface thermocouple 10 [C] 57.62 51.21 45.76 42.63 40.06 37.87 36.90 

Surface thermocouple 11 [C] 59.08 52.49 46.84 43.56 40.86 38.58 37.56 

Surface thermocouple 12 [C] 60.03 53.37 47.62 44.26 41.51 39.16 38.10 

Surface thermocouple 13 [C] 60.77 54.07 48.21 44.82 41.99 39.58 38.48 

2.842m, Surface 

thermocouple 14 [C] 
61.34 54.62 48.70 45.25 42.36 39.91 38.78 

Voltage [V] 14.70 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp] 326.00 326.00 330.60 331.00 332.30 332.30 333.30 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.71 1.00 1.27 1.49 1.75 2.02 2.21 

DP heated test-section [bar] 0.0355 0.0571 0.0879 0.1167 0.1561 0.2004 0.2350 

DP isothermal test-section 

[bar] 
0.0334 0.0564 0.0865 0.1143 0.1518 0.1940 0.2262 
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Table A 16: Convection test of TiO2 (4.5 vol%) nanofluid test 

Measured items 
Runs TiO2 (4.5 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
 - 20.08 20.15 20.03 19.90 19.71 19.55 

Outlet temp. of the heated 

test-section [C] 
 - 38.38 35.00 32.53 30.49 29.16 28.21 

Inlet temp. of the isothermal 

test-sect. [C] 
 - 18.07 18.55 18.72 18.82 18.78 18.72 

0.203m, Surface 

thermocouple 1 [C] 
 - 50.44 44.39 40.09 37.16 35.44 34.29 

Surface thermocouple 2 [C]  - 53.75 44.88 40.73 37.70 35.92 34.72 

Surface thermocouple 3 [C]  - 54.85 45.18 41.08 38.09 36.33 35.11 

Surface thermocouple 4 [C]  - 54.33 45.71 41.60 38.56 36.74 35.51 

Surface thermocouple 5 [C]  - 54.19 46.32 42.16 39.06 37.20 35.95 

Surface thermocouple 6 [C]  - 53.86 46.90 42.77 39.64 37.75 36.45 

Surface thermocouple 7 [C]  - 53.72 47.53 43.39 40.22 38.28 36.95 

Surface thermocouple 8 [C]  - 52.62 46.65 42.72 39.61 37.75 36.45 

Surface thermocouple 9 [C]  - 54.80 48.57 44.41 41.12 39.11 37.72 

Surface thermocouple 10 [C]  - 55.15 49.00 44.88 41.55 39.53 38.11 

Surface thermocouple 11 [C]  - 56.27 50.08 45.81 42.38 40.26 38.79 

Surface thermocouple 12 [C]  - 57.07 50.78 46.47 42.97 40.80 39.31 

Surface thermocouple 13 [C]  - 57.52 51.31 46.97 43.43 41.22 39.68 

2.842m, Surface 

thermocouple 14 [C] 
 - 57.92 51.68 47.32 43.73 41.50 39.96 

Voltage [V]  - 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp]  - 327.60 328.40 329.20 330.00 332.20 333.30 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
 - 1.00 1.25 1.50 1.77 2.00 2.19 

DP heated test-section [bar]  - 0.0545 0.0880 0.1227 0.1673 0.2059 0.2414 

DP isothermal test-section 

[bar] 
 - 0.0549 0.0882 0.1220 0.1648 0.2017 0.2353 
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Table A 17: Convection test of CuO (0.4 vol%) nanofluid test 

Measured items 
Runs CuO (0.4 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
19.89 20.23 20.01 19.60 20.11 19.56 19.81 

Outlet temp. of the heated 

test-section [C] 
42.36 37.86 34.42 31.66 30.32 28.67 27.88 

Inlet temp. of the isothermal 

test-sect. [C] 
17.63 18.53 18.63 18.46 19.17 18.74 19.13 

0.203m, Surface 

thermocouple 1 [C] 
38.99 36.12 33.85 31.97 31.23 29.99 29.52 

Surface thermocouple 2 [C] 40.14 37.06 34.65 32.66 31.82 30.52 30.00 

Surface thermocouple 3 [C] 41.25 38.00 35.44 33.32 32.40 31.04 30.46 

Surface thermocouple 4 [C] 42.33 38.88 36.19 33.97 32.95 31.54 30.91 

Surface thermocouple 5 [C] 43.52 39.87 37.03 34.69 33.58 32.11 31.42 

Surface thermocouple 6 [C] 44.92 41.01 37.99 35.49 34.24 32.70 31.94 

Surface thermocouple 7 [C] 46.15 42.02 38.82 36.21 34.89 33.29 32.48 

Surface thermocouple 8 [C] 45.66 41.56 38.39 35.83 34.51 32.94 32.13 

Surface thermocouple 9 [C] 48.40 43.81 40.29 37.45 35.94 34.21 33.29 

Surface thermocouple 10 

[C] 
49.50 44.69 41.01 38.06 36.45 34.68 33.70 

Surface thermocouple 11 

[C] 
51.03 45.91 42.02 38.90 37.18 35.32 34.28 

Surface thermocouple 12 

[C] 
52.38 47.01 42.93 39.67 37.86 35.94 34.83 

Surface thermocouple 13 

[C] 
53.58 47.96 43.72 40.33 38.40 36.41 35.25 

2.842m, Surface 

thermocouple 14 [C] 
54.47 48.65 44.29 40.82 38.81 36.78 35.56 

Voltage [V] 14.70 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp] 335.60 335.60 335.60 335.60 335.60 335.60 335.60 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.77 1.03 1.26 1.51 1.77 2.00 2.27 

DP heated test-section [bar] 0.0337 0.0515 0.0731 0.0992 0.1310 0.1605 0.1983 

DP isothermal test-section 

[bar] 
0.0276 0.0447 0.0657 0.0911 0.1219 0.1506 0.1863 
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Table A 18: Convection test of CuO (0.9 vol%) nanofluid test 

Measured items 
Runs CuO (0.8 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
19.55 19.45 19.51 19.75 20.53 20.20 19.41 

Outlet temp. of the heated test-

section [C] 
42.23 37.63 34.06 31.80 30.82 29.34 27.50 

Inlet temp. of the isothermal 

test-sect. [C] 
17.44 17.78 18.14 18.60 19.57 19.38 18.68 

0.203m, Surface thermocouple 

1 [C] 
38.97 35.83 33.56 32.24 31.84 30.78 29.34 

Surface thermocouple 2 [C] 40.07 36.79 34.36 32.93 32.45 31.32 29.82 

Surface thermocouple 3 [C] 41.13 37.71 35.13 33.59 33.01 31.82 30.28 

Surface thermocouple 4 [C] 42.18 38.60 35.88 34.22 33.56 32.32 30.72 

Surface thermocouple 5 [C] 43.36 39.61 36.72 34.94 34.20 32.89 31.23 

Surface thermocouple 6 [C] 44.74 40.77 37.67 35.75 34.91 33.53 31.80 

Surface thermocouple 7 [C] 45.93 41.75 38.48 36.45 35.51 34.07 32.28 

Surface thermocouple 8 [C] 45.43 41.29 38.06 36.02 35.05 33.64 31.91 

Surface thermocouple 9 [C] 48.16 43.59 39.97 37.69 36.56 35.00 33.10 

Surface thermocouple 10 [C] 49.26 44.48 40.69 38.29 37.08 35.46 33.52 

Surface thermocouple 11 [C] 50.73 45.68 41.67 39.11 37.79 36.09 34.07 

Surface thermocouple 12 [C] 52.08 46.79 42.57 39.87 38.46 36.68 34.59 

Surface thermocouple 13 [C] 53.27 47.74 43.35 40.53 39.02 37.19 35.04 

2.842m, Surface thermocouple 

14 [C] 
54.10 48.39 43.85 40.92 39.34 37.46 35.29 

Voltage [V] 14.70 14.70 14.70 14.70 14.70 14.70 14.70 

Current [Amp] 333.40 333.40 333.40 333.40 333.40 333.40 333.40 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.76 1.01 1.25 1.50 1.75 1.99 2.25 

DP heated test-section [bar] 0.0368 0.0540 0.0781 0.1051 0.1357 0.1666 0.2070 

DP isothermal test-section 

[bar] 
0.0306 0.0474 0.0710 0.0979 0.1265 0.1564 0.1948 
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Table A 19: Convection test of CuO (1.2 vol%) nanofluid test 

Measured items 
Runs CuO (1.2 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
19.95 19.95 19.79 19.51 19.75 19.43 19.49 

Outlet temp. of the heated 

test-section [C] 
42.34 38.00 34.30 31.64 30.07 28.45 27.55 

Inlet temp. of the isothermal 

test-sect. [C] 
17.58 18.08 18.28 18.24 18.71 18.56 18.78 

0.203m, Surface 

thermocouple 1 [C] 
39.13 36.18 33.71 31.89 30.89 29.71 29.11 

Surface thermocouple 2 [C] 40.21 37.10 34.45 32.52 31.44 30.20 29.55 

Surface thermocouple 3 [C] 41.27 38.03 35.23 33.19 32.02 30.70 30.01 

Surface thermocouple 4 [C] 42.34 38.92 35.96 33.81 32.55 31.18 30.43 

Surface thermocouple 5 [C] 43.54 39.92 36.79 34.51 33.16 31.70 30.91 

Surface thermocouple 6 [C] 44.80 40.99 37.67 35.25 33.79 32.25 31.40 

Surface thermocouple 7 [C] 46.05 42.02 38.52 35.98 34.42 32.81 31.90 

Surface thermocouple 8 [C] 46.69 42.54 38.93 36.32 34.70 33.05 32.10 

Surface thermocouple 9 [C] 48.32 43.89 40.06 37.28 35.54 33.79 32.78 

Surface thermocouple 10 [C] 49.75 45.07 41.01 38.08 36.24 34.40 33.33 

Surface thermocouple 11 [C] 50.95 46.07 41.82 38.76 36.82 34.91 33.79 

Surface thermocouple 12 [C] 52.30 47.18 42.74 39.54 37.49 35.50 34.32 

Surface thermocouple 13 [C] 53.47 48.13 43.51 40.19 38.04 35.99 34.76 

2.842m, Surface 

thermocouple 14 [C] 
54.80 49.21 44.39 40.94 38.68 36.54 35.26 

Voltage [V] 14.60 14.60 14.60 14.60 14.60 14.60 14.60 

Current [Amp] 337.10 337.10 337.10 337.10 337.10 337.10 337.10 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.76 1.01 1.25 1.50 1.75 2.03 2.26 

DP heated test-section [bar] 0.0342 0.0506 0.0746 0.1017 0.1339 0.1708 0.2071 

DP isothermal test-section 

[bar] 
0.0301 0.0460 0.0693 0.0958 0.1271 0.1626 0.1970 
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Table A 20: Convection test of CuO (1.6 vol%) nanofluid test 

Measured items 
Runs CuO (1.6 vol%) for flow rate (gpm) 

0.75 1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-

section [ C] 
20.15 20.02 20.06 19.96 19.79 20.04 20.14 

Outlet temp. of the heated 

test-section [C] 
42.76 37.88 34.59 31.96 30.09 29.12 28.48 

Inlet temp. of the isothermal 

test-sect. [C] 
17.64 18.06 18.46 18.68 18.71 19.13 19.13 

0.203m, Surface 

thermocouple 1 [C] 
39.51 36.19 34.04 32.29 30.99 30.37 29.92 

Surface thermocouple 2 [C] 40.59 37.09 34.78 32.92 31.54 30.85 30.37 

Surface thermocouple 3 [C] 41.67 38.00 35.56 33.58 32.11 31.35 30.84 

Surface thermocouple 4 [C] 42.73 38.88 36.30 34.19 32.65 31.82 31.27 

Surface thermocouple 5 [C] 43.89 39.86 37.12 34.89 33.24 32.36 31.76 

Surface thermocouple 6 [C] 45.17 40.92 38.00 35.62 33.87 32.92 32.27 

Surface thermocouple 7 [C] 46.40 41.92 38.84 36.33 34.49 33.47 32.79 

Surface thermocouple 8 [C] 46.97 42.36 39.20 36.61 34.73 33.67 32.96 

Surface thermocouple 9 [C] 48.64 43.75 40.36 37.60 35.60 34.45 33.69 

Surface thermocouple 10 

[C] 
50.08 44.91 41.33 38.40 36.29 35.06 34.25 

Surface thermocouple 11 

[C] 
51.28 45.88 42.14 39.08 36.87 35.58 34.73 

Surface thermocouple 12 

[C] 
52.65 46.99 43.06 39.86 37.55 36.18 35.29 

Surface thermocouple 13 

[C] 
53.81 47.93 43.82 40.49 38.09 36.66 35.73 

2.842m, Surface 

thermocouple 14 [C] 
55.11 48.99 44.69 41.23 38.73 37.23 36.25 

Voltage [V] 14.60 14.60 14.60 14.60 14.60 14.60 14.60 

Current [Amp] 337.60 337.60 337.60 337.60 337.60 337.60 337.60 

Vol. flow rate at inlet of the 

heated test-sect. [gal/min] 
0.77 1.01 1.25 1.51 1.76 2.02 2.22 

DP heated test-section [bar] 0.0340 0.0527 0.0762 0.1062 0.1392 0.1741 0.2031 

DP isothermal test-section 

[bar] 
0.0314 0.0495 0.0721 0.1015 0.1331 0.1669 0.1947 

 

  



201 

 

Table A 21: Convection test of dielectric liquid (HFE) 

Measured items 
Runs distilled water for flow rate (gpm) 

1.0 1.25 1.5 1.75 2.0 2.25 

Inlet temp. of the heated test-section 

[° C] 
28.227 26.317 24.816 23.576 22.651 22.036 

Outlet temp. of the heated test-

section [°C] 
63.350 54.934 49.698 45.320 41.785 39.158 

Inlet temp. of the isothermal test-

sect. [°C] 
24.086 22.709 21.640 20.785 20.164 19.779 

0.203m, Surface thermocouple 1 

[°C] 
77.418 67.704 62.368 57.576 53.640 50.754 

Surface thermocouple 2 [°C] 79.410 69.375 63.948 58.985 54.901 51.889 

Surface thermocouple 3 [°C] 80.538 70.733 64.939 59.780 55.687 52.638 

Surface thermocouple 4 [°C] 82.180 71.919 65.764 60.538 56.425 53.361 

Surface thermocouple 5 [°C] 84.140 73.633 67.210 61.689 57.507 54.309 

Surface thermocouple 6 [°C] 86.287 75.469 68.980 63.350 58.781 55.485 

Surface thermocouple 7 [°C] 87.765 76.635 70.130 64.439 59.732 56.331 

Surface thermocouple 8 [°C] 86.322 75.365 69.013 63.460 58.843 55.496 

Surface thermocouple 9 [°C] 90.854 79.240 72.370 66.376 61.557 58.015 

Surface thermocouple 10 [°C] 92.503 80.631 73.669 67.449 62.512 58.831 

Surface thermocouple 11 [°C] 94.730 82.458 75.278 68.878 63.861 60.069 

Surface thermocouple 12 [°C] 96.565 84.162 76.774 70.188 65.083 61.179 

Surface thermocouple 13 [°C] 98.150 85.422 77.970 71.150 65.951 61.936 

2.842m, Surface thermocouple 14 

[°C] 
99.017 86.359 78.718 72.091 66.563 62.396 

Voltage [V] 14.7 14.7 14.7 14.7 14.7 14.7 

Current [Amp] 325 325 325 325 325 325 

Vol. flow rate at inlet of the heated 

test-sect. [gal/min] 
1.016 1.283 1.500 1.736 2.009 2.278 

DP heated test-section [bar] 0.080 0.115 0.148 0.189 0.240 0.295 

DP isothermal test-section [bar] 0.077 0.111 0.144 0.184 0.231 0.284 
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APPENDIX(C): 

THE UNCERTAINTY OF CONVECTION TESTS  

The uncertainty of Nusselt number, friction factor and pressure drop for the convection 

test of the water, nanofluids and dielectric liquid (HFE) are calculated as shown in chapter 

4 (section 4.6).  

 

Table A 22: the uncertainty of Nusselt number and pressure drop of water at different 

flow rate 

 
Flow rate 

(gpm) 

Uncertainty of 

Nuave 

(%) 

Uncertainty of 
friction  factor 

(%) 

Uncertainty of 
drop pressure 

(%) 

water 

0.75 3.05 8.36 8.30 

1.0 3.23 6.70 6.58 

1.25 3.54 6.04 5.85 

1.5 3.82 6.16 5.90 

1.75 4.20 5.40 5.01 

2.0 4.85 4.22 3.52 

 

Table A 23: the uncertainty of Nusselt number and pressure drop of dielectric liquid 

(HFE) at different flow rate 

 
Flow rate 

(gpm) 

Uncertainty of 

Nuave 

(%) 

Uncertainty of 
friction  factor 

(%) 

Uncertainty of 
drop pressure 

(%) 

water 

1.0 4.83 8. 70 8.66 

1.25 4.74 4.79 4.72 

1.5 4.75 6.09 6.04 

1.75 4.76 4.13 4.05 

2.0 4.78 3.75 3.67 

2.25 4.80 3.61 3.52 
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Table A 24: the uncertainty of Nusselt number and pressure drop of Al2O3-water 

nanofluids at different flow rate 

Nanofluid 
Flow rate 

(gpm) 

Uncertainty of 

Nuave 

(%) 

Uncertainty of 

friction  factor 

(%) 

Uncertainty of 

drop pressure 

(%) 

AL2O3 

 (0.5 vol%) 

0.75 3.29 7.27 7.20 

1.0 3.20 5.91 5.77 

1.25 3.49 5.30 5.08 

1.5 3.74 4.61 4.27 

1.75 4.09 4.56 4.08 

2.0 4.54 4.35 3.69 

AL2O3 

(0.9 vol%) 

0.75 3.20 6.19 6.11 

1.0 3.11 7.62 7.51 

1.25 3.51 3.57 3.24 

1.5 3.73 3.88 3.46 

1.75 4.10 4.19 3.67 

2.0 4.52 3.49 2.65 

AL2O3 

 (1.8 vol%) 

0.75 3.60 8.01 7.94 

1.0 3.13 5.30 5.15 

1.25 3.37 6.04 5.85 

1.5 3.66 4.82 4.48 

1.75 3.96 3.79 3.21 

2.0 4.38 3.73 2.95 

AL2O3 

 (2.7 vol%) 

0.75 3.77 15.68 9.56 

1.0 3.11 7.82 7.72 

1.25 3.41 4.54 4.28 

1.5 3.59 3.91 3.50 

1.75 3.85 3.73 3.15 

2.0 4.27 3.93 3.20 

AL2O3 

 (3.6 vol%) 

0.75 4.02 13.85 9.51 

1.0 3.17 7.01 6.89 

1.25 3.31 3.16 2.78 

1.5 3.57 2.96 2.36 

1.75 3.84 3.23 2.52 

2.0 4.42 3.43 2.50 

AL2O3 

 (4.7 vol%) 

0.75 5.42 9.76 9.71 

1.0 3.62 4.80 4.64 

1.25 3.39 3.62 3.30 

1.5 3.55 3.19 2.66 

1.75 4.25 3.49 2.84 

2.0 4.06 3.10 2.09 

AL2O3 

 (5.9 vol%) 

1.0 49.43 29.65 29.63 

1.25 5.95 5.81 5.61 

1.5 3.83 2.72 2.07 

1.75 3.82 2.45 1.39 

2.0 4.11 5.73 5.26 
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Table A 25: the uncertainty of Nusselt number and pressure drop of TiO2-water 

nanofluids at different flow rate 

Nanofluid 
Flow rate 

(gpm) 

Uncertainty of 

Nuave 

(%) 

Uncertainty of 
friction  factor 

(%) 

Uncertainty of 
drop pressure 

(%) 

TiO2 
(0.5 vol%) 

0.75 2.76 9.46 9.40 
1.0 3.73 7.50 7.40 
1.25 3.52 5.13 4.91 
1.5 3.81 4.53 4.18 
1.75 4.07 4.48 4.01 
2.0 4.49 4.12 3.42 
2.25 4.79 4.11 3.26 

TiO2 
(1.5 vol%) 

0.75 2.61 9.60 9.54 
1.0 3.64 6.99 6.88 
1.25 3.49 5.40 5.18 
1.5 3.69 4.75 4.42 
1.75 3.94 3.61 3.00 
2.0 4.27 3.66 2.85 
2.25 4.64 3.43 2.26 

TiO2 
 (2.5 vol%) 

0.75 2.52 7.18 7.10 
1.0 3.81 4.77 4.60 
1.25 3.61 3.97 3.67 
1.5 3.67 3.42 2.93 
1.75 3.87 3.26 2.54 
2.0 4.12 3.36 2.48 
2.25 4.43 3.29 2.09 

TiO2 
 (3.5 vol%) 

0.75 2.70 8.90 8.85 
1.0 8.03 4.75 4.58 
1.25 4.11 4.00 3.70 
1.5 3.74 3.36 2.87 
1.75 3.89 3.20 2.49 
2.0 4.07 3.23 2.26 
2.25 4.33 3.21 2.02 

TiO2 
(4.5 vol%) 

0.75 - - - 
1.0 3.78 8.12 8.02 

1.25 8.55 4.02 3.73 

1.5 4.11 3.47 3.00 

1.75 3.93 3.24 2.52 
2.0 4.01 3.36 2.48 

2.25 4.10 3.25 2.10 
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Table A 26: the uncertainty of Nusselt number and pressure drop of CuO-water 

nanofluids at different flow rate. 

Nanofluid 
Flow rate 

(gpm) 

Uncertainty of 

Nuave 

(%) 

Uncertainty of 
friction  factor 

(%) 

Uncertainty of 
drop pressure 

(%) 

CuO 
 (0.4 vol%) 

0.75 3.00 7.55 7.48 

1.0 3.25 5.54 5.39 

1.25 3.48 5.63 5.42 

1.5 3.75 4.55 4.20 

1.75 4.16 4.61 4.13 

2.0 4.49 3.84 3.08 

2.25 4.91 4.01 3.08 

CuO  
(0.8 vol%) 

0.75 2.97 6.99 6.92 

1.0 3.19 5.90 5.76 

1.25 3.41 3.45 3.10 

1.5 3.73 4.98 4.66 

1.75 4.12 4.32 3.82 

2.0 4.44 4.38 3.75 

2.25 4.77 3.86 2.91 

CuO  
(1.2 vol%) 

0.75 3.04 11.60 11.56 

1.0 3.23 4.69 4.52 

1.25 3.48 4.32 4.05 

1.5 3.82 4.91 4.59 

1.75 4.12 4.10 3.57 

2.0 4.51 3.71 2.91 

2.25 5.06 3.76 2.76 

CuO 
 (1.6 vol%) 

0.75 3.13 7.38 7.30 

1.0 3.33 5.55 5.40 

1.25 3.95 5.48 5.27 

1.5 3.80 4.39 4.02 

1.75 4.23 4.62 4.15 

2.0 4.97 4.24 3.57 

2.25 4.89 4.08 3.22 
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APPENDIX (D): 

TEST SECTION SURFACE TEMPERATURE 

In order to show more details of the test section surface temperature variations as affected 

by nanofluids concentration, the temperature variation along the test section at the outside 

surface (Ts,out) for Al2O3-water nanofluid, TiO2-water nanofluid and CuO-water nanofluid 

are presented in Figures A.1 to A. 6, Figures A. 7 to A.13 and A. 14 to A. 20, respectively. 

These data are given for different volume fractions and various flow rate (Gallon per min). 

It should be emphasized here again that at the low flow rate i.e. less than 1.5 GPM and 

high volume fraction of Al2O3-water nanofluid i.e. 4.7 vol.% and 5.9 vol.%. The flow was 

laminar or transitional flow and the maximum flow rate of Al2O3-water nanofluid was 2.0 

GPM at maximum volume fraction. In addition, at the lowest flow rate (0.75 GPM) and 

the highest concentration of Al2O3-water nanofluid (5.9 vol.%) and TiO2-water nanofluid 

(4.5 vol.%.), it could not be measured because the measured test section surface 

temperature reached the boiling temperature of water.  

From the figures, it is clearly seen that the temperature of the test section increases 

and varies in a linear trend along the test section. This indicates that the test has reached 

a steady state. The effect of the nanoparticles load is clearly seen from these figures that 

at constant flow rate, the surface temperature increases with increasing nanoparticle load. 

This is due to the higher viscosity, which increases with increasing nanoparticle load. It 

is also noted that the surface temperature decreases as the flow rate increases, as expected.  

It also should be mentioned that for Al2O3-water nanofluid at highest nanoparticle 

loads (4.7 vol.% and 5.9 vol.%) and low flow rate 1.25, 1.0 and 0.75 GPM, the 

temperature distribution at the entrance was nonlinear and beyond a critical point becomes 

linear. As mentioned above, this due to that at low flow rate for Al2O3-water nanofluid, 

the flow was laminar or transition. Therefore, the hydrodynamical and thermal entry 

length to achieve fully developed conditions is x = 0.05Re Din and x = 0.05Re Pr Din for 

laminar flow, respectively, but it is 10≤ x/Din≤ 60 and x=10Din for turbulent flow  [97]. It 

seems that laminar flow takes a long distance to achieve fully developed. Besides, the 

effect of nanoparticle on fluid flow is due to increase the viscosity. Regarding TiO2-water 
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nanofluid at the highest nanoparticles loads and the low flow rate (1.0 and 0.75 GPM) 

also there is a nonlinear in the temperature distribution at entrance of test section; this 

could be due to the acidity of the liquid.    
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Figure A 1: Show temperature distribution along the test-section for Al2O3-water 

nanofluids with difference volume fraction, at flow rate (2.0 GPM). 

 

 

Figure A 2: Show temperature distribution along the test-section for Al2O3-water 

nanofluids with difference volume fraction, at flow rate (1.75 GPM). 
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Figure A 3: Show temperature distribution along the test-section for Al2O3-water 

nanofluids with difference volume fraction, at flow rate (1.5 GPM). 

 

 

Figure A 4: Show temperature distribution along the test-section for Al2O3-water 

nanofluids with difference volume fraction, at flow rate (1.25 GPM). 



210 

 

 

Figure A 5: Show temperature distribution along the test-section for Al2O3-water 

nanofluids with difference volume fraction, at flow rate (1.0 GPM). 

 

 

Figure A 6: Show temperature distribution along the test-section for Al2O3-water 

nanofluids with difference volume fraction, at flow rate (0.75 GPM). 
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Figure A 7: Show temperature distribution along the test-section for TiO2-water 

nanofluids with difference volume fraction, at flow rate (2.25 GPM). 

 

 

Figure A 8: Show temperature distribution along the test-section for TiO2-water 

nanofluids with difference volume fraction, at flow rate (2.0 GPM). 
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Figure A 9: Show temperature distribution along the test-section for TiO2-water 

nanofluids with difference volume fraction, at flow rate (1.75 GPM). 

 

 

Figure A 10: Show temperature distribution along the test-section for TiO2-water 

nanofluids with difference volume fraction, at flow rate (1.5 GPM). 
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Figure A 11: Show temperature distribution along the test-section for TiO2-water 

nanofluids with difference volume fraction, at flow rate (1.25 GPM). 

 

 

Figure A 12: Show temperature distribution along the test-section for TiO2-water 

nanofluids with difference volume fraction, at flow rate (1.0 GPM). 
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Figure A 13: Show temperature distribution along the test-section for TiO2-water 

nanofluids with difference volume fraction, at flow rate (0.75 GPM). 
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Figure A 14: Show temperature distribution along the test-section for CuO-water 

nanofluids with difference volume fraction, at flow rate (2.25 GPM). 

 

 

Figure A 15: Show temperature distribution along the test-section for CuO-water 

nanofluids with difference volume fraction, at flow rate (2.0 GPM). 
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Figure A 16: Show temperature distribution along the test-section for CuO-water 

nanofluids with difference volume fraction, at flow rate (1.75 GPM). 

 

 

Figure A 17: Show temperature distribution along the test-section for CuO-water 

nanofluids with difference volume fraction, at flow rate (1.5 GPM). 



217 

 

 

Figure A 18: Show temperature distribution along the test-section for CuO-water 

nanofluids with difference volume fraction, at flow rate (1.25 GPM). 

 

 

Figure A 19: Show temperature distribution along the test-section for CuO-water 

nanofluids with difference volume fraction, at flow rate (1.0 GPM). 
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Figure A 20: Show temperature distribution along the test-section for CuO-water 

nanofluids with difference volume fraction, at flow rate (0.75 GPM). 
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