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Abstract

Stellar rotation plays an important role in maintaining the magnetic fields inside
the stellar interior through convection, and starspots are the most visible mani-
festation of the interplay between stellar rotation rate and magnetic fields. It is
revealed through high end observations of evolution of magnetic fields and rota-
tion rate of the Sun and other solar type stars that they exhibit a wide range of
variation among their rotation rates yet there are some common ingredients such
as rotational shear, turbulent transport and various nonlinear transport mecha-
nisms which contribute towards the evolution and maintenance of the magnetic
activity displayed by them. Also, these observations provide us with valuable
information about the dependence of differential rotation and magnetic activity
on rotation rate of stars with different ages and different rotation rates. Thus,
the main challenge in dynamo theory is to explain these observations which is in
fact a very strenuous problem and is challenging to do with full MHD simulations
due to the various constraints such as expensive computations in terms of time
and resolution. Therefore, it is useful to construct a simple parameterized model
in order to understand the evolution of rotation rate and magnetic fields which
can provide valuable insight into the various observations.
This thesis discusses the modelling of solar dynamo and spindown of solar-type
stars by using ODE and the effect of shear in kinematic dynamo in full MHD.
We propose a simple parameterized model to understand the effect of nonlinear
transport coefficients as well as mean/fluctuating differential rotation in the gen-
eration and destruction of magnetic fields and their capability in the working of
dynamo near marginal stability. This model is then utilised to discuss detailed
dynamics to understand the self-regulation of magnetic fields in solar/stellar dy-
namo. This work is further extended to understand the spindown of solar-type
stars where the angular momentum loss is dynamically prescribed via equation
of evolution of rotation rate and magnetic fields. The results obtained from this
model are consistent with observations. Furthermore, regulatory behaviour of a
kinematic dynamo by shear flow is investigated. Specifically, we study the in-
duction equation by prescribing small scale velocity field to which a large scale
radial/latitudinal shear is added in the direction of zonal flow. The results from
numerical simulations are analysed and we conclude that the presence of large
scale shear suppresses the small scale flows and results in quenching of a kinematic
dynamo.
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Chapter 1

Introduction

Since the ancient times, researchers and scientists from around the world have

been intrigued and fascinated by the study of the Sun and stars in the universe.

With the technological advancements in computational power and high resolu-

tion observations, researchers have consistently made an effort to understand the

detailed complexities of the origin of magnetic activity inside the Sun. The mag-

netic field inside the Sun is far from static and is responsible for all phenomena

occurring in the solar interior and its atmosphere, such as solar flares, coronal

mass ejections, solar winds etc. Sunspots are the most visible manifestation of

magnetic activity occurring in the Sun. These are cool dark patches on the surface

of the Sun and some of them are large enough to be seen by naked eye. The first

evidence of sunspots was recorded around 325 B.C. by Theophrastus of Athens,

one of Aristotle’s students. Written evidences of non-telescopic, yet systematic,

observations of sunspots are credited to Chinese observers around 165 BC. In the

seventeenth century, with the invention of telescope, new and more accurate ob-

servations were made by Galileo which were a breakthrough in the development

of observing and recording data connected to sunspots. For more than a hundred

years observers carried on to simply document the presence of sunspots until

the German astronomer called Heinrich Schwabe (1798-1875) discovered various
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Chapter 1. Introduction

properties of sunspots. In 1843, he announced his discovery of the variation of

sunspots on the solar surface with a possible period of 10 years which is known as

solar cycle (presently known as a period of 11 years (Thomas and Weiss, 2008)).

Followed by Schwabe’s discovery, Richard Carrington (1826 - 1875) found the

relation between the appearance of sunspots at certain latitude and the phase

of the solar cycle. He mentioned that at the beginning of the solar cycle, spots

appear on the surface of the Sun at the latitude of ±40◦ . The preferred latitude

of sunspot emergence drifts towards the equator with the progress of the solar

cycle and finally vanishes in the next minimum. Through his observations, he

also found that the rapid rotation of sunspots decreases with increasing latitude,

indicating that the Sun rotates differentially - a discovery that is considered to

be a landmark in the solar dynamo theory.

Many theories were proposed for the existence of sunspots but the major break-

through in the understanding of sunspots was reported in the beginning of twen-

tieth century when the existence of sunspots was linked to the solar magnetic

field. Hale (1908a) observed a strong magnetic field of strength 3000 G (Gauss)

in the sunspot by measuring the Zeeman splitting of spectral lines, and at the

same time, he also detected the polarization of split component of these lines

(Hale, 1908b). With the detection of extraterrestrial magnetic field, new direc-

tion was given to the research of magnetic fields in other stars and astronomical

bodies. Further systematic observations revealed the magnetic polarity reversals

of sunspot cycle with a period of 22 years of solar magnetic activity which is

thought to be a manifestation of a strong toroidal magnetic field generated in the

solar interior.

1.1 Magnetism in other stars

During the extensive study of other stars it was revealed that the Sun is not

the only body that exhibits magnetic activity but there are other stars across

the Hertzsprung-Russell (H-R) diagram that exhibit similar phenomena. It is

2



1.1. Magnetism in other stars

now widely accepted that the rotation rate and stellar magnetism are inextrica-

bly connected to each other and are responsible for the stellar magnetic activity.

Observations of nearby main sequence stars indicate a wide range of magnetic

activity (Vaughan and Preston, 1980; Soderblom et al., 1991; Henry et al., 1996;

Wright et al., 2004). In the stars of same spectral type and with deep con-

vective envelopes, the chromospheric activity increases with increasing rotation

rate and eventually becomes constant for very high rotation rates (see Fig.(1.1)

-(1.2))(Noyes et al., 1984; Delfosse et al., 1998; Pizzolato et al., 2003; Wright

et al., 2011).

Observations of lower-mass main sequence stars such as K- and M-type stars

Figure 1.1: X-ray to bolometric luminosity ratio plotted against the Rossby num-
ber, Ro = Prot

τc
, for all stars in a sample of 824 solar and late-type stars with X-ray

luminosities and photometric rotation periods by Wright et al. (2011). The best-
fitting saturated and non-saturated activity–rotation relations are shown as a
dashed red line.

with convection zones and tachoclines display presence of global scale magnetic

activity. Observations of fully convective stars (M-dwarfs ≤ 0.35 solar mass)

3



Chapter 1. Introduction

Figure 1.2: Magnetic activity of stars with different spectral type as a function
of rotation period as shown by Pizzolato et al. (2003). For G-, K-, and M- type
stars, the growth of activity is almost similar.

with no tachoclines have shown signatures of stronger magnetic activity. Since

these stars do not have tachoclines, a distinct stellar dynamo than the Sun is

believed to work in them.

Rotation rate and stellar magnetism are the main ingredients for the stellar spin-

down. Rapidly rotating star generates a strong magnetic field and is believed

to produce an outward transport of angular momentum via stellar winds which

eventually help in spindown of the star (MacGregor and Brenner, 1991; Keppens

et al., 1995; Allain, 1998; Leprovost and Kim, 2010; Spada et al., 2011; Reiners

and Mohanty, 2012; Gallet and Bouvier, 2013). Spindown of stars also depends

upon the age and mass of stars. It is observed that the solar-type stars slowdown

less rapidly as compared to low mass G- and K-type stars, but tend to lose most

of their angular momentum by the age of 109 years. The observations of solar

wind and angular momentum loss demonstrate that spindown time scales range

from 107 − 109 years. Through the study of angular momentum loss and stellar

4



1.2. Fundamentals of dynamo theory

spindown as a function of age/mass provides a direct connection between stellar

magnetism and rotation rate.

Nowadays, the main challenge in dynamo theory is to explain the observations

theoretically. Therefore, a detailed analysis of stellar magnetism and rotation

rate is required to establish a theoretical understanding of rotation-activity rela-

tionship and spindown of stars. To explain this a detailed analysis of idealized

models is required to probe the effect of rotation rate, differential rotation (shear)

and nonlinear transport on the working of stellar dynamo in the framework of

dynamo theory. This establishes the basis of Chapters (2-4) in this thesis.

1.2 Fundamentals of dynamo theory

It is believed that solar (and stellar) magnetic activity is the result of a dynamo

process which maintains a magnetic field by a rotating, convecting and electrically

conducting fluid. Substantial research has been carried out in this field and

various theories have been proposed to comprehend the complex nature of the

dynamo process. It was Sir Joseph Larmor (1919) who, for the first time, proposed

a tentative dynamo process for the maintenance of the solar magnetic field when

he raised an important question “How could a rotating body such as the Sun

become a magnet?”. The aim of the dynamo theory is to understand how an

inductive motion of electrically conducting fluid induces the electric current that

maintains the magnetic field. This mechanism is explained step by step as follows

(Tobias, 2002):

i. an electric field u×B is induced by motion u of electrically conducting fluid

across a magnetic field B .

ii. electric field is also related to the rate of change of flux using Faraday’s

equation ∂B
∂t

= −∇× E .

iii. a current j is generated by this electric field that is related to current using

5



Chapter 1. Introduction

Ohm’s Law in a moving medium j = σ(E + u×B), where σ denotes the

electrical conductivity.

iv. a magnetic field is then generated by electric current by using Ampere’s law

in the absence of displacement currents given by ∇×B = µj , where µ is the

magnetic permeability.

v. a Lorentz force j×B is produced by the interaction of magnetic fields and

current that back reacts on the motion of electrically conducting fluid.

The induction equation is obtained by eliminating E from i.-iv. and is given as:

∂B

∂t
= ∇× (u×B)−∇× (η∇×B), (1.1)

∇.B = 0, (1.2)

where η = (µσ)−1 is the magnetic diffusivity, ∇× (u×B) is the induction term

and ∇× (η∇×B) is the diffusion term. If U and L are the typical velocity and

length scales, then the advective (convective) time scale and diffusion time scale

are defined as τc = L
U

and τd = L2

η
, respectively. The ratio of diffusion time scale

to advective time scale is known as magnetic Reynolds number and is given by

Rm = τd
τc

= UL/η. If Rm � 1, induction dominates over diffusion, whereas when

Rm � 1, diffusion dominates over induction.

In the incompressible limit, the flows satisfy the momentum equation in the

presence of Lorentz force and other body forces F , and it can be written as

∂u

∂t
+ u · ∇u = −1

ρ
∇p+

1

ρ
F +

1

µρ
(∇×B)×B + ν∇2u, (1.3)

∇.u = 0, (1.4)

where, ρ is the density, p is the pressure, u is the velocity of fluid, B is the

magnetic field and ν is the diffusivity. In simple words, the induction equation

describes the evolution of magnetic field, whereas the effect of B on flow is

6
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included in the Navier-Stokes equations by

j×B =
1

µ
(∇×B)×B =

1

µ
(−∇(

1

2
|B|2) + (B.∇B)). (1.5)

Equation (1.5) shows that the force can be divided into magnetic pressure, which

reduces the gas pressure in strong field regions, and a magnetic tension, acting

to straighten the magnetic field lines.

For more complex systems such as stellar interiors, apart from induction equation

and momentum equation, other equations such as energy and continuity are also

required.

1.3 Classification of Dynamos

After introducing the basic mechanism of a dynamo process and various equa-

tions, here we explain how and when a dynamo is considered to be linear or

nonlinear in the traditional dynamo theory.

1.3.1 Kinematic versus dynamical dynamos

Theoretically, the dynamo process is classified into two categories: linear and

nonlinear. In linear regime the induction equation is solved in the presence of

prescribed velocity field in the limit when the magnetic field is very small as

compared to velocity field and does not alter the flow. Dynamos studied in

this framework are known as “kinematic dynamos”. The exponentially growing

solutions can be obtained in this case for some values of Rm as magnetic field is

amplified by the prescribed velocity field. However, the kinematic theory is no

longer valid if the magnetic field becomes strong enough to alter the velocity field,

i.e., the fluid motions are affected by the Lorentz force term which inhibits the

growth of the magnetic field, and the system then becomes nonlinear. These types

of dynamos are known as “non-linear dynamos”. Due to being computationally

expensive in time, the induction equation is often solved in the framework of

7



Chapter 1. Introduction

kinematic dynamo theory.

1.3.2 Fast versus slow dynamos

For a prescribed velocity field, the growth rate of magnetic field, σ(ε), depends

upon magnetic Reynolds number, Rm and a distinction between fast or slow

dynamos can be made by studying the behavior of σ(ε) with Rm , where Rm

is related to ε as Rm = 1
ε
. If σ(ε) is positive and bounded away from zero

for Rm → ∞ or ε → 0 then the dynamo is considered to be a “fast dynamo”

(Childress and Gilbert, 1995). The rate at which the magnetic field grows is

comparable to convective timescale of the flow. Therefore, a fast dynamo is

defined by

σ0 = lim
ε→0

σ(ε) > 0,

where σ0 is the growth rate for fast dynamo. For sufficiently small ε , if the growth

rate is not bounded above zero, that is, σ0 ≤ 0 then the dynamo is considered to

be a “slow dynamo”. This distinction is only applicable if the flow is prescribed.

Various observations reveal that the stellar magnetic fields vary on a timescale

faster than the diffusive timescale, e.g., the evolution of the magnetic field of the

solar convection zone varies on convective timescale of months (sunspots) to years

(solar cycle).

The mechanism responsible for fast dynamo action was proposed by Vainshtein

and Zel’dovich (1972) and is known as ‘Stretch - Twist - Fold’ mechanism illus-

trated in Fig. (1.3). The magnetic field strength is increased by stretching while

dissipative effects of magnetic diffusion are minimised by constructive folding.

1.3.3 Large scale versus small scale dynamos

Depending upon the nature of flow, the dynamos are categorised as large scale

and small scale dynamos. For large scale dynamos, magnetic fields grow on large
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1.4. Mean Field Theory

Figure 1.3: The schematic diagram of stretch-twist-fold mechanism taken from
Roberts (1994).

scale, that is, fields are evolving on large scale by averaging and considering the

mean part of the governing equations, specifically the induction equation, and are

known as mean field dynamos. To study small scale dynamos the flows are chosen

to be on small scale, which may be realised under fully isotropic conditions. Small

scale or fluctuating dynamos play a crucial role in understanding the fundamental

physical processes in astrophysical bodies as these are common random flows in

conducting fluid (Brandenburg and Subramanian, 2005).

1.4 Mean Field Theory

Physical phenomena which are observed on large spatial or temporal scales are

believed to be manifestations of processes happening on much smaller scales. To

compute and resolve the dynamics on all relevant scales is computationally unfea-

sible. In the case of the Sun, the dynamical ranges being so large, it is virtually

9



Chapter 1. Introduction

impossible to apply this approach. To overcome this problem, the dynamo theory

is studied in the framework of mean field electrodynamics (Steenback et al., 1966;

Moffatt, 1978). In this approach, a physical quantity is expressed as the sum of

mean and fluctuating parts as

F = 〈F 〉+ F ′,

where F ′ is the fluctuating part; 〈F ′〉 = 0. Here 〈; 〉 represents the average. The

Reynolds averaging rules that are required to solve the MHD equations are given

as:

〈〈F 〉〉 = 〈F 〉,

〈F ′〉 = 0,

〈F +G〉 = 〈F 〉+ 〈G〉,

〈〈F 〉+ 〈G〉〉 = 〈F 〉+ 〈G〉,

〈〈F 〉G′〉 = 0.

Splitting velocity u and magnetic field B into its mean and fluctuating parts, we

have

u = 〈u〉+ u′, (1.6)

B = 〈B〉+ B′, (1.7)

Using Eqs. (1.4) and (1.5), the mean and fluctuating parts of the induction Eq.

(1.1) can be written as:

∂〈B〉
∂t

= ∇× (E + 〈u〉 × 〈B〉)−∇× (η∇× 〈B〉), (1.8)

∂B′

∂t
= ∇× (〈u〉 ×B′ + u′ × 〈B〉+ G)−∇× (η∇×B′). (1.9)

10



1.5. Kinematic Dynamo

where E = 〈u′ ×B′〉 and G = u′ ×B′ − 〈u′ ×B′〉 . In Eq. (1.9), E is electro-

motive force arising from the interactions of the turbulent motion and field which

can be determined from Eq. (1.7). Here 〈u〉 is neglected. Introducing first or-

der smoothing, G , can be neglected and u′ acts on the mean 〈B〉 causing the

generation of the turbulent field B′ . Therefore, we can write

Ei = αij〈Bj〉+ βijk
∂〈Bj〉
∂xk

, (1.10)

where the tensors αij and βijk depend upon the local structure of velocity field

i.e. u′ and 〈u〉 . Assuming that the field is isotropic, then αij = αδij , βijk = βεijk

and E = α〈B〉 − β∇× 〈B〉 . If τc is very small compared to τd , α is found to be

α = − τc
3
〈u.(∇× u)〉 . The quantity 〈u.(∇× u)〉 is a measure of flow helicity and

is thought to be important in the mean field dynamo theory (Moffatt, 1978).

1.5 Kinematic Dynamo

The generation of large scale magnetic fields in solar/stellar interior and their

maintenance against the turbulent motions is much researched area in the as-

trophysics. The results obtained from high resolution observations inspire the

community to develop a better understanding of these observations from a the-

oretical point of view. Despite being investigated for almost a century, the un-

derstanding of stellar magnetism and rotation rate is still incomplete. Various

models have been developed to investigate the dynamo process but the most

dominant model in this field is the αΩ dynamo model in which the poloidal

magnetic field is produced from toroidal magnetic field via α-effect while differ-

ential rotation (Ω-effect) is thought to generate toroidal magnetic field through

poloidal magnetic field and closes the dynamo loop. The magnetic field lines are

twisted due to Sun’s rotation and cyclonic motions inside the convection zone.

This twisting of magnetic field lines is shown in Fig. (1.4a) and is known as

α-effect. The stretching and wrapping of magnetic field lines around the Sun due
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Chapter 1. Introduction

to differential rotation is called Ω- effect (See Fig. (1.4b); courtesy of NASA,

http://solarscience.msfc.nasa.gov/dynamo.shtml).

(a) α -effect (b) Ω-effect

Figure 1.4: Twisting of magnetic field lines due to cyclonic convection and stretch-
ing due to solar differential rotation is shown in (a) and (b), respectively.

The magnetic field amplification of a dynamo cycle is explained with the help of

a diagram taken from Love (1999). In Fig. 1.5, panel a shows the poloidal mag-

netic field lines which are wrapped by the differential rotation (panels b and c)

inside the stellar interior which gives rise to toroidal field (panel d). The toroidal

field lines are distorted by the helical motions (panels e and f ), thus producing

the poloidal field lines and completing the dynamo loop.

Therefore, in the dynamo process, the stellar rotation rate plays an important

role. Mean helicity produces the α-effect due to rotation rate (Moffatt, 1978;

Parker, 1979) and is defined by a parameter α = − τc
3
< u.(∇× u) > , where

u is the convective velocity with magnitude U and τc = L/U is the convective

turnover time on characteristic length scale L. The quantity Dα = αL/η is a non-

dimensional parameter which measures the α-effect, where η = L2/τc is turbulent

magnetic diffusivity. The differential rotation (shear) is responsible for the gener-

ation of toroidal magnetic field and is measured by a magnetic Reynolds number

DΩ = Ω′L3/η , where Ω′ ∝ Ω/L is the gradient of rotation rate, Ω. The dynamo

action is controlled by a dimensionless parameter known as dynamo number, D,
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1.5. Kinematic Dynamo

Figure 1.5: Dynamo cycle in an αΩ dynamo model

which is given by

D = DαDΩ =
αL

η
.
Ω′L3

η
. (1.11)

In mean field dynamo theory, α is often considered to be proportional to rotation

rate and dynamo number D is given by

D ∝ Ω2. (1.12)

For stars with same spectral type, the power law dependence of cycle period Pcyc

of the magnetic field on rotation rate Ω is given as Pcyc ∝ D−
1
2 ∝ Ω−1 in case of

kinematic dynamo theory. Further, the frequency of magnetic fields is related to

Ω as ω ∝ P−1
cyc ∝ Ω, that is, as rotation rate increases, the period of the magnetic

field decreases and this relationship is compatible with observations. However, in

13



Chapter 1. Introduction

case of nonlinear dynamo, the dynamo saturation inhibits the growth of magnetic

fields, and questions the validity of linear relationship of frequency and rotation

rate.

1.6 Stellar dynamo saturation mechanisms

In nonlinear dynamo theory, the Lorentz force acts back on the magnetic field

and leads to dynamo saturation by inhibiting the infinite growth of magnetic field

strength. In the present thesis, we have incorporated the following saturation

mechanisms for the better understanding of the solar/stellar dynamo (Sood and

Kim, 2013)

i. Quenching is the source of generation of magnetic field (e.g. α-quenching):

the total helicity reduced by the large scale magnetic field can cause the

saturation of the growth of the mean field.

ii. Ω-quenching (shear quenching): the reduction in Ω-effect is caused by the

tension in magnetic field lines due to Lorentz force that opposes the mean dif-

ferential rotation, for example, the presence of torsional oscillations observed

in the Sun (Labonte and Howard, 1982)

iii. magnetic flux loss: magnetic field can be lost by the magnetic flux which is

eliminated from the areas where dynamo functions. For example, magnetised

fluid is lighter as compared to the unmagnetised plasma, leading to a reduc-

tion in magnetic pressure and density inside the magnetic flux tube. These

flux tubes move upwards against the gravity, escaping from the regions where

the dynamo operates.
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1.7 Stellar magnetic activity and dynamical sys-

tems

The interaction of flows and magnetic fields inside the stellar interior constitutes a

complex dynamical system. It is useful to utilise low order models to understand

the behavior of a system and other complicated processes such as self-organisation

of magnetic fields inside the Sun and stars. These low order models are basically

dynamical systems which describe the evolution of important variables in time.

Mathematically, a dynamical system is defined as a set of ordinary differential

equations (ODE) with dependent variables as function of time (Ott, 1993) and is

given as

dx1

dt
= F1(x1, x2, . . . , xn),

dx2

dt
= F2(x1, x2, . . . , xn), (1.13)

... =
...

dxn
dt

= Fn(x1, x2, . . . , xn),

which can be written in vector form as

dx

dt
= F [x(t)], (1.14)

where x is the n-dimensional vector. Equation (1.14) can be solved by taking

initial state x(0) to obtain the solution of the system x(t).

Previously, in dynamo theory, low order models are used to explain the cyclic

behavior of magnetic activity (Ruzmaikin, 1981; Ostriakov and Usoskin, 1990;

Serre and Nesme-Ribes, 2000; Popova and Potemina, 2013). Low order models

used to explain the features of solar dynamo are constructed by truncating the

partial differential equations (PDE) of mean field electrodynamics and form a set
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of ordinary differential equations. This method is advantageous as the truncated

system of ODE provides an equivalent physical interpretation of each term derived

from corresponding system of PDE. However, this procedure has the disadvantage

of being sensitive to the level of truncation and could be responsible for losing

some of the information. There is another method of constructing low order

models which uses the nonlinear dynamics by applying symmetry argument or

bifurcation theory (Tobias et al., 1995a; Knobloch and Landsberg, 1996; Knobloch

et al., 1998). Though dynamics obtained in these models is robust yet physical

interpretation of low order equations is not much clear as the terms in such a

system do not provide any physical analogue for the given terms.

1.8 Summary

The present thesis is divided into six chapters. In Chapter 2-4, the role of non-

linear transport coefficients as well as mean/fluctuating shear is investigated to

understand the working of stellar dynamo and self-organisation process. This

work is further extended to model the spindown of stellar interior. In Chapter

5, the induction equation is solved numerically to understand the effect of large

scale shear in the quenching of a dynamo. A brief synopsis of individual chapters

is as follows:

• Chapter 1 is the introduction which provides the brief background to the

present work.

• Chapter 2 proposes a minimum rotation and dynamo model which repro-

duces the observations such as linear increase of cycle frequency with ro-

tation rate and saturation of magnetic activity for rapidly rotating stars.

This work is published in Astronomy and Astrophysics (Sood, A. & Kim,

E. 2013, A&A, 555, A(22)).
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• In Chapter 3, we investigate how nonlinear transport coefficients help in

the self-regulation of a stellar dynamo by studying the system for different

limits of mean/fluctuating differential rotation. This work is published in

Astronomy and Astrophysics (Sood, A. & Kim, E. 2014, A&A, 563, A(100)).

• In Chapter 4, the model for spindown of solar type stars is proposed in the

presence of equation of evolution for magnetic field and rotation rate. For

the first time, angular momentum loss is prescribed dynamically instead of

kinematically to model the spindown of fast rotating and slow rotating stars.

To this end, we evolve the stellar rotation and magnetic field simultaneously

over stellar evolution time by extending our work in Chapter 2-3 on dynamo

model which incorporates the nonlinear feedback mechanisms on rotation

and magnetic fields. We show that our extended model reproduces key ob-

servations and is capable of explaining the presence of the two branches of

(fast and slow rotating) stars which have different relations between rota-

tion rate (Ω) - time (t), magnetic field strength ( |B|)-rotation rate and

frequency of magnetic field (ωcyc ) - rotation rate (Sood, A., Hollerbach, R.

& Kim, E., 2015, ApJ, under review).

• Chapter 5 studies the effects of large scale shear on kinematic dynamo

where the velocity field is considered to be small scale. The results suggest

the quenching of dynamo in the presence of shear. This work is done in

collaboration with Prof. Rainer Hollerbach, University of Leeds, UK.

• Chapter 6 summarises the results and concludes the thesis.
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Chapter 2

Consistent model of dynamo:

activity and rotation

In order to understand the data obtained through observations, we investigate
a dynamic model of dynamo and rotation which consistently reproduces the de-
pendence of magnetic activity and differential rotation, ∆Ω, on stellar rotation
rate, Ω. In particular, a minimal seventh-order nonlinear dynamical system is
presented by incorporating the effects of generation and destruction of magnetic
fields through quenching of α-effect, magnetic flux losses and differential rotation.
We investigate different combinations of α-quenching and flux losses to study how
frequency of magnetic fields, ω , magnetic field strength, |B| , and the differen-
tial rotation, ∆Ω, vary with the rotation rate, Ω. We investigate three different
cases: α-quenching and no flux loss; flux loss and no α-quenching; α-quenching
and flux loss. We find that results are in best agreement with observations for the
last case where we have α-quenching as well as poloidal/toroidal flux loss in equal
amounts. The localized frequency of maximum intensity of magnetic fields de-
pends upon Ω as ω ∝ Ω0.80 , which is consistent with the observations. Magnetic
activity and mean differential rotation tend to saturate for higher rotation.
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Chapter 2. Consistent model of dynamo: activity and rotation

2.1 Introduction

In the realms of astrophysics it is established that the stellar magnetic activity

is the result of dynamo action, which generates and sustains the magnetic fields

by inductive motion of conducting fluid. Various models have been proposed

and investigated to interpret the origin of magnetic activity occurring inside the

stellar interior. In 1955, for the first time, Parker successfully proposed a dy-

namo model to explain the generation of toroidal field from poloidal field and

a poloidal field from toroidal field, respectively, by considering the co-action of

non-uniform rotation and cyclonic convection. Subsequently, over the years, sev-

eral other models have been presented to explain the magnetic activity and its

features such as butterfly diagrams, and sunspots by imposing several necessary

conditions on the boundaries of the stellar surface. Stellar rotation rate is the key

characteristic which is strongly correlated with the strength of observed magnetic

field. Further, the two main components for mean field theory namely α-effect

and differential rotation are thought to increase linearly with rotation rate while

the rotation rate depends upon a dimensionless parameter known as dynamo

number D. Previously, the behaviour of nonlinear dynamos with varying D was

investigated by Gilman (1983a,b) by numerical simulations of 3D MHD equations.

On the other hand, Cattaneo et al. (1983) and Weiss et al. (1984) investigated

nonlinear dynamos by using low-order models. Noyes et al. (1984), in their his-

toric paper, showed that in lower main sequence, the chromospheric activity and

magnetic activity of stars rely on the the inverse Rossby number σ = τc/Prot ,

with τc as the convective turnover time and Prot as the stellar rotation period at

the base of the convection zone. By examining the behavior of magnetic activity

and dynamo number, D, they obtained the dependence of cycle period Pcyc on

stellar rotation period Prot as Pcyc ∝ P β
rot for stars of same spectral type, where

β is the value 1.25 ± 0.5. It has been revealed through detailed and organised

investigation of different types of stars that there are two branches of stars with
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different scaling exponents, β = 0.8 for active branch for all the young and fast

rotating stars, and β = 1.15 for inactive branch containing all the old and slow

rotating stars (Saar and Brandenburg, 1999; Saar, 2002).

In the α − Ω dynamo, the differential rotation is considered to be a crucial in-

gredient and is observed in stars due to the variation of stellar rotation rate with

latitude. Differential rotation plays an important role in understanding the vari-

ous activities occurring inside the stellar interior. The most visible manifestation

of the differential rotation rate is starspots. Stellar rotation rate is observed to

decrease with increasing latitude. However, it is still uncertain how differential

rotation depends on stellar rotation, and this makes it an interesting subject for

further investigations. Observationally, it has been revealed that stellar angular

rotation, Ω, depends upon its latitudinal difference, ∆Ω, with power law depen-

dence ∆Ω ∝ Ωn , where n takes a variable range of values as 0 < n < 1 (Arlt

and Fröhlich, 2012; Hotta and Yokoyama, 2011; Donahue et al., 1996; Reiners

and Schmitt, 2003; Barnes et al., 2005), which indicates the increase in velocity

difference, ∆Ω, while decrease in the relative difference, ∆Ω/Ω, with increasing

stellar rotation rate, Ω. For example, two different results were shown by Barnes

et al. (2005) and Saar (2011), respectively. While the former suggested that in

the cool stars differential rotation is not virtually dependent on rotation rate as,

∆Ω ∝ Ω0.15 , the latter demonstrated a very different dependence of differential

rotation and rotation rate as ∆Ω ∝ Ω0.68 . Results obtained by Saar (2011) are

almost similar to results obtained by Donahue et al. (1996), i.e., ∆Ω ∝ Ω0.70 .

Variation in differential rotation with time has also been shown recently by, e.g.,

Fröhlich et al. (2009); Hotta and Yokoyama (2011).

In the traditional α − Ω mean field dynamo theory, the efficiency of working

of a dynamo is governed by a dynamo number, D, which scales with rotation

rate as D ∝ Ω2 , where the α-effect is proportional to Ω. In linear dynamo

theory, the dependence of cycle period Pcyc of stars with the same internal struc-

tures on dynamo number is given by a relationship of the form Pcyc ∝ D−
1
2
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which further relates to rotation rate as Pcyc ∝ Ω−1 , i.e., cycle period of star

decreases with increasing rotation rate. Although this linear dependence is com-

patible with observations in case of kinematic dynamo theory, yet in the case

of nonlinear dynamo theory the validity of this relationship is but questionable,

as the amplification of magnetic field is inhibited by back reaction from Lorentz

force, as well as various saturation mechanisms. In particular, we have consid-

ered α- quenching, Ω-quenching and magnetic flux losses which act as dynamo

saturation mechanisms in case of nonlinear dynamo. Previous results where the

growth of magnetic field is controlled by the quenching of α-effect or differen-

tial rotation (Jepps, 1975; Ivanova and Ruzmaikin, 1977; Yoshimura, 1978) were

inconsistent with observations of rotation rate and activity cycle period. The

advection-dominated dynamo (e.g., Dikpati and Charbonneau (1999)) is one of

the most widely used and popular model for describing the various features of

solar activity cycle. With no consensus on a precise form of the solar/stellar dy-

namo at present, one of the fundamental question in any dynamo theory is how

stellar magnetic fields apparently manage to maintain almost the same depen-

dence of their frequency on rotation rate as in a linear dynamo theory.

The purpose of this Chapter is to explain how the frequency of magnetic field

and its strength (inferred from magnetic activity) and differential rotation de-

pend on stellar rotation rate by using the aforementioned observational data. To

accomplish this, a minimal dynamical model for magnetic fields and differential

rotation is proposed. A detailed analysis is carried out by varying various pa-

rameters to reproduce the results consistent with observational data of ω = Ωβ ,

where β = 1.25±0.5 (Noyes et al., 1984) and ∆Ω ∝ Ω0.70 (Donahue et al., 1996),

the strength of magnetic field increases with rotation rate Ω before saturation,

as previously noted. Specifically, we investigate a low order model comprising

of seven coupled equations for magnetic field and differential rotation by taking

α-quenching, magnetic flux loss, and the Lorentz force on mean and fluctuating

differential rotations into account and comparing the outcome with observations.
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The remainder of the Chapter 2 is organized as follows. In section 2.2, we present

our extended dynamo model. Section 2.3 mentions the results obtained from the

seventh-order system. In section 2.4 we investigate the system in the limit where

fluctuating differential rotation is dominated by mean differential rotation, while

the system is studied in the opposite limit in section 2.5. The basic property of

the seventh-order system mentioned in Section 2.2 is discussed in detail in section

2.6, in particular, we investigate a more general seventh-order system to check

parameter dependencies by taking the balance among various nonlinearities into

account. In section 2.7, we discuss and conclude our results.

2.2 Model Construction1

A simple parameterized dynamo model is constructed by considering the dynam-

ical interactions between the magnetic fields and differential rotation. The model

is based upon α-Ω dynamo constructed by Cattaneo et al. (1983). We consider

plane wave solutions propagating in x-direction (Parker, 1979), in the presence of

azimuthal velocity v = (V(z)+W(x,z,t))ŷ , where rotation velocity is represented

by V = Ωz (where z is the radial coordinate) while W(x,z,t) represents the dif-

ferential rotation due to back reaction. Here, the local cartesian co-ordinates x , y

and z point northward, westward and radially outward, respectively (Weiss et al.,

1984). The magnetic field B in k -mode is given as B = (0, B(t)eikx, ikA(t)eikx)

by assuming the periodic boundary conditions in terms of fourier mode. Lorentz

force is quadratic in B (details can be seen in Appendix A) and hence differential

rotation takes the form ∂W
∂z

= w0(t) + w(t)exp(2ikx), where w0(t) and w(t) are

the mean and fluctuating differential rotation which leads to a low-order dynamo

model provided by seven first-order coupled differential equations in the following

1The dimensionless model represented by a set of Eqs. (2.1)-(2.4) in the absence of nonlinear
transport coefficients is originally obtained by Cattaneo et al. (1983) and Weiss et al. (1984). A
detailed derivation of these Eqs. is provided in the Appendix A as noted in Weiss et al. (1984).
In present thesis, the model is extended by adding nonlinear transport coefficients represented
by a system of Eqs. (2.5) - (2.8) and forms the basis of Chapters 2, 3 & 4, respectively.
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dimensionless forms (Cattaneo et al., 1983):

Ȧ = 2DB − A, (2.1)

Ḃ = i(1 + w0)A− 1

2
iA∗w −B, (2.2)

ẇ0 =
1

2
i(A∗B − AB∗)− ν0w0, (2.3)

ẇ = −iAB − νw. (2.4)

Here, notation dot (·) represents the ordinary derivative with respect to time, t.

The poloidal magnetic field, A , the toroidal magnetic field ,B , and fluctuating

differential rotation, w , are complex whereas mean differential rotation, w0 , is

real. We note that w0 and w have zero and twice the frequency of A and B ,

respectively. The complex conjugates of A and B are denoted by A∗ and B∗ ,

respectively. We also note that poloidal magnetic field, A , is generated by the

toroidal magnetic field, B , (e.g. α-effect through helicity) which is assumed to

be proportional to rotation rate Ω (see Eq. (2.1)). Equation (2.2) represents

the toroidal magnetic field, B , and is generated by the poloidal magnetic field,

A , where the quenching of Ω-effect is incorporated by total shear 1 + w0 . The

differential rotation is inhibited by the tension in the magnetic field lines via

Lorentz force and causes the quenching of Ω-effect. Due to back reaction of

shear, the total shear is reduced from 1 to 1 + w0 < 1 as w0 is always negative

and is given by 1 + w0 = 4Ω
Ω

. Generation of mean differential rotation w0 and

fluctuating differential rotation w is represented by Eq. (2.3) and Eq. (2.4),

respectively. The constant parameters ν and ν0 represent viscosity of mean

and fluctuating differential rotations, respectively, and D is the dynamo number

(Sood and Kim, 2013). The linear dispersion relation ω = k2[−1± (1 + i)D1/2] is

obtained for Eqs. (2.1)-(2.4) and is similar to the results by Weiss et al. (1984),

which provides finite amplitude nonlinear solutions for D > 1. By taking into

account α-quenching and magnetic flux loss, we extend the above system (2.1)-
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2.3. Seventh-Order System

(2.4) as follows :

Ȧ =
2DB

1 + κ1(|B|2)
− [1 + λ1(|B|2)]A, (2.5)

Ḃ = i(1 + w0)A− 1

2
iA∗w − [1 + λ2(|B|2)]B, (2.6)

ẇ0 =
1

2
i(A∗B − AB∗)− ν0w0. (2.7)

ẇ = −iAB − νw. (2.8)

Here, λ1(|B|2), λ2(|B|2), and κ1(|B|2) are considered to be functions of |B| that

incorporate the feedback of growing magnetic field onto itself: the effect on the

generation of the magnetic field is represented by λ1(|B|2), whereas the effects on

the dissipation of magnetic field are captured by λ2(|B|2) and κ1(|B|2). These

terms are assumed to increase monotonically with |B| (Robinson and Durnery

1982, Weiss et al 1984) and are zero when |B| = 0. For our minimal model,

λ1(|B|2) = λ1|B|2 , λ2(|B|2) = λ2|B|2 , and κ1(|B|2) = κ1|B|2 with constant

coefficients of λ1 , λ2 , and κ1 . Thus, quenching of nonlinear α-effect is repre-

sented by non-zero κ1 while loss of poloidal and toroidal fields due to enhanced

magnetic dissipation is depicted by non-zero λ1 and λ2 , respectively. In our

extended model, the efficiency of the generation of poloidal magnetic field from

toroidal field (for instance, by helicity) is governed by α which is supposed to

increase linearly with rotation rate. As noted in introduction, D ∝ αΩ, where

α is linearly scaled with Ω. Previously, Noyes et al. (1984) has used quadratic

α-quenching and flux loss to investigate fourth-order system without considering

the feedback from Lorentz force.

2.3 Seventh-Order System

We investigate our extended model (2.5) to (2.8) for the following three cases

by taking ν = 1.0 and ν0 = 35.0 and by varying D from 1 to 400. We note

that the seventh-order system can be reduced to fifth- and sixth-order systems
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Chapter 2. Consistent model of dynamo: activity and rotation

depending upon the values of ν and ν0 , respectively. The effects of fluctuating

differential rotation become zero if ν → ∞ , w → 0 and the system behaves

as fifth-order whereas mean differential rotation has no effect on the system if

ν0 →∞ , w0 → 0, the system becomes sixth order (for more details see sections

2.4 and 2.5). Therefore, the values of ν and ν0 are chosen in such a way that the

system includes the combined effect of mean and fluctuating differential rotations.

We further note that dynamo number and rotation rate are related to each other

as Ω = D
1
2 , with rotation rate of 30 for younger Sun, i.e., when the Sun was born

it was rotating thirty times faster than the present solar rotation rate and hence,

the maximum value of D = 400, i.e., Ω = 20 in dimensionless units converts to

1.5 day rotation period.

Case 1: α-quenching and no flux loss i.e., λ1 = λ2 = 0, κ1 6= 0

Case 2: no α-quenching and flux loss i.e., λ1 = λ2 , κ1 = 0

Case 3: α-quenching and flux loss i.e., λ1 = λ2 = κ1

Equations (2.5) to (2.8) are solved numerically to investigate the behavior of

frequency of magnetic activity, ω , with dynamo number, D , and rotation rate,

Ω. Frequency of maximum intensity for the magnetic activity of each dynamo

number is determined by obtaining a time series of B . Fast Fourier transforms

are used to determine a Fourier series of B and power spectrum of frequency

for each dynamo number is computed. After computing the power spectra for all

dynamo numbers, the colors are assigned according to the color coding as depicted

in the color bar next to the figure, where frequency of maximum intensity to low

intensity is illustrated from bright yellow to dark colors. We further examine

the variation of magnetic field strength |B| and differential rotation ∆Ω with

rotation rate Ω. The dependence of the total shear on rotation rate, Ω, is given

by a power law relationship as 1 + w0 = Ωδ , where δ is the scaling exponent.

Normalized differential rotation is given as 1 + w0 = ∆Ω/Ω. Using these values

in 1 +w0 = Ωδ , we obtain the scaling of differential rotation as ∆Ω = Ωδ+1 = Ωξ

(ξ = δ + 1)(Sood and Kim, 2013).
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2.3. Seventh-Order System

Case 1: α-quenching causes the saturation (i.e., λ1 = λ2 = 0, κ1 = 2.5). We

investigate the variation in frequency, say ωM , of B of maximum intensity with

Ω by a power law relationship as ωM = Ωβ , where β is the scaling exponent (cf.

Fig. 2.1(a)). We then examine how magnetic field strength |B| behaves with

change in rotation rate and total shear change with rotation rate while change

in total shear with Ω is investigated using power law ∆Ω = Ωξ , where ξ is the

power law index (Fig. 2.1(b), 2.1(c)). In Fig. 2.1(a), the frequency ofB is plotted

as a function of rotation rate, where high to low intensity of the frequency is

represented by bright yellow to dark black colors. Interestingly, we find a gradual

increase in ωM , represented by bright yellow, with rotation rate Ω. The frequency

of maximum intensity ωM depends on Ω with a power law using ωM = Ωβ where

β is found to vary for slow and high rotation rate with two scaling exponents as

β = 0.67 for Ω < 8.3 depicted in purple color and 1.20 for Ω ≥ 8.3 illustrated

in red color in Fig. 2.1(d), respectively. These results are not in agreement

with observation. The dispersion in the frequency is depicted by the band in red

around ωM , and its width is slowly reduced with increasing Ω. In Figure 2.1(b)

the behavior of the strength of toroidal magnetic field |B| as a function of Ω can

be seen. Clearly, |B| is noticed to increase up to Ω ∼ 6 with increasing Ω beyond

which it starts decreasing for Ω ≥ 10. The decreasing behavior of |B| for Ω > 10

is due to the quenching of mean differential rotation, w0 , which is caused by the

Lorentz force of magnetic fields. This shear quenching can be seen in Fig. 2.1(c),

by plotting total shear 1 +w0 against Ω. This total shear approaches very small

value for high rotation and does not display a significant power-law scaling. In

the power law scaling of ∆Ω = Ωξ = Ωδ+1 , we find too much variation in ξ (ξ

has values 0.88 (1 ≤ Ω ≤ 2.23), 0.51 (2.23 ≤ Ω ≤ 5), -0.33 (5 ≤ Ω ≤ 10), -1.09

(10 ≤ Ω ≤ 20)).

Case 2: magnetic flux loss alone causes the saturation (i.e., λ1 = λ2 = 2.5, κ1 =

0.0). Again the frequency of maximum intensity ωM , the magnetic field strength

|B| , and the total shear for different values of rotation rate are investigated
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Chapter 2. Consistent model of dynamo: activity and rotation

(a) ωM as a function of Ω (b) |B| as a function of Ω

(c) Total shear as a function of Ω
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(d) Log-log plot of ωM as a function of Ω

Figure 2.1: Frequency of maximum intensity ωM , magnetic field strength |B|
and total shear are plotted as a function of Ω for κ1 = 2.5, λ1 = λ2 = 0 for Case
1 in the seventh-order system.

(cf. Fig. 2.2(a)- 2.2(c)). The frequency of B plotted as a function of rotation

rate can be seen in Fig. 2.2(a). In Fig. 2.2(a) we study how frequency ωM

of maximum intensity varies with rotation rate. Interestingly, we notice two

branches of frequency in this case: a main branch of frequency ωM of maximum

intensity followed by a second branch of frequency of localized intensity. The

main branch of frequency illustrated in yellow increases with rotation rate Ω

with faster rate as compared to the rate observed in Fig. 2.1(a). In this case we

find that power law exponent β decreases its value from slow to high rotation

rate, that is, β = 1.08 for Ω ≤ 7, β = 0.87 for 7 < Ω < 10 and β = 0.73 for
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2.3. Seventh-Order System

Ω > 10, represented by purple, green and red colors, respectively in Fig. 2.2(d).

For slow rotation rate, that is, Ω ≤ 10, the values of β are within the observed

range of β ∼ 0.80 to β ∼ 1.15 while for high rotation rate, that is, for Ω > 10,

β = 0.73 is near the observed value of β ∼ 0.80 for active branch. The dispersion

in frequency around ωM , depicted in red, increases its width with increase in Ω.

Surprisingly, the second branch of frequency, depicted in red, is noticed above

the main branch, increases very fast as rotation rate increases and is caused by

the fluctuating differential rotation. Further, we find that the toroidal magnetic

field strength |B| increases initially for Ω ≤ 6 but starts declining for Ω ≥ 6.

This decrease in |B| is slower than in Case 2.1 (cf. Fig. 2.1(b)). Here again, the

decreasing behavior of |B| for Ω > 6, which is shown in Fig. 2.2(c), is caused by

mean differential rotation, w0 , due to the Lorentz force. Using the power law,

∆Ω = Ωξ , we examine the value of ξ (ξ has values 0.96 (1 ≤ Ω ≤ 2.23), 0.54

(3 ≤ Ω ≤ 6), -0.43 (6 ≤ Ω ≤ 10), -1.06 (10 ≤ Ω ≤ 20) ) which in this case also

varies too much with rotation rate.

Case 3: Saturation is due to the combined action of α-quenching and loss

due to magnetic flux (i.e. λ1 = λ2 = κ1 = 2.5). Figure 2.3(a) shows that

frequency of maximum intensity ωM is increasing very slowly with rotation rate

for which the power law scaling is obtained β ∼ 0.80 for active stars. The red

band which depicts the dispersion in frequency around the well-defined frequency

is found to increase reasonably and is broader than what is noticed in Case 1 and

Case 2. The magnetic field strength is found to increase with rotation rate and

attains the asymptotic value of 1.25 in Fig. 2.3(b). It is worth noting here that

for given parameters, the magnetic field strength will decrease if rotation rate is

increased further, i.e., for Ω > 20. Fig. 2.3(c) shows the shear quenching and

we find a decrease in total shear with rotation rate. This decreasing behaviour

is slower than the decline observed in Fig. 2.1(c) and Fig. 2.2(c). We find

the dependence of differential rotation on rotation rate in Fig. 2.3(d) to be a

power law ∆Ω = Ωξ with ξ = 0.70 for certain range of Ω (7 < Ω < 10). This
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(a) ωM as a function of Ω (b) |B| as a function of Ω

(c) Total shear as a function of Ω
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Figure 2.2: Frequency of maximum intensity ωM , magnetic field strength |B| ,
and total shear are plotted as a function of Ω for κ1 = 0.0, λ1 = λ2 = 2.5 for
Case 2 in the seventh-order system.

power law no longer holds for stars with rotation rate Ω ≤ 7.3 (approximately)

and Ω ≥ 9.6 (approximately).Variation in ξ outside this range is noted as 0.98

(1 ≤ Ω ≤ 2.23), 0.93 (3 ≤ Ω ≤ 5), 0.84 (5 ≤ Ω ≤ 7), 0.44 (10 ≤ Ω ≤ 14) ,-0.03

(14 ≤ Ω ≤ 17) and -0.62 (17 ≤ Ω ≤ 20).

The comparison of all the three cases investigated above shows that Case 1 and

Case 2 are not in agreement with observations. In these cases the magnetic field

reduces the total shear by the back reaction from the Lorentz force. Therefore,

the dynamo action is less efficient in the presence of either α-quenching or both

flux losses. We find our results from Case 3 are in agreement with observations
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2.4. Reduced Fifth-Order System

which shows an equal amount of α-quenching and both flux losses. In particular,

in this case the scaling of well localized frequency with rotation rate is ωM ∝

Ω0.80 , whereas, the magnetic field strength and mean differential rotation tend to

saturate for high rotation. It is clear from these results that the generation and

destruction of magnetic fields are balanced effectively to gain saturated behaviour

of magnetic fields and high rotation which is explained in detail in Section 2.6.

2.4 Reduced Fifth-Order System

In the previous section, we notice that a very strong mean differential rotation

is responsible for inefficient dynamo action. To understand the role of mean

differential rotation, w0 , in a mean field dynamo, a much weaker fluctuating

differential rotation, w , than mean differential rotation, w0 , is considered, that

is, as ν →∞ is w → 0 and equations (2.5) to (2.8) can be written in the form

Ȧ =
2DB

1 + κ1(|B|2)
− [1 + λ1(|B|2)]A, (2.9)

Ḃ = i(1 + w0)A− [1 + λ2(|B|2)]B, (2.10)

ẇ0 =
1

2
i(A∗B − AB∗)− ν0w0. (2.11)

We examine this fifth-order system with ν0 = 35.0 by varying D for the following

different three cases;

Case 1: κ1 6= 0, λ1 = λ2 = 0,

Case 2: κ1 = 0, λ1 = λ2 6= 0,

Case 3: κ1 = λ1 = λ2 6= 0.

Case 1: Saturation occurs through quenching of α-effect only (i.e., λ1 = λ2 =

0, κ1 = 1.0). The behavior of frequency of the magnetic field, ωM , the mag-

netic field strength, |B| , (Fig. 2.4(a), 2.4(b)) and the total shear (Fig. 2.4(c))

as a function of rotation rate Ω is investigated. The investigations of localized

frequency of maximum intensity ωM with rotation rate reveal the presence of
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Chapter 2. Consistent model of dynamo: activity and rotation

(a) ωM = Ω0.80 (b) |B| as a function of Ω

(c) Total shear as a function of Ω (d) Log-log plot of ωM with rotation rate, where
curve fitting is represented with ‘+’ symbol.

Figure 2.3: Frequency of maximum intensity ωM , magnetic field strength |B| ,
and total shear are plotted as a function of Ω for κ1 = λ1 = λ2 = 2.5 for Case 3
in the seventh-order system.

finite amplitude wave with a fixed frequency of maximum intensity depicted in

yellow colour in Fig. 2.4(a) which is contrary to the observations. The behavior

of magnetic field can be seen in Fig. 2.4(b) where the toroidal magnetic field

strength |B| is shown to increase initially with rotation rate up to Ω ∼ 6 but

starts decreasing for Ω ≥ 6 which is due to the severe quenching in α-effect and

Ω-effect. Also, total shear is noticed to decrease very rapidly up to Ω ∼ 10 past
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2.4. Reduced Fifth-Order System

which it becomes almost zero (see Fig. 2.4(c)). This type of severe quenching

of differential rotation was also seen in full MHD simulations of a flux transport

dynamo model (Rempel, 2006).

Case 2: Dynamo action is ceased by loss due to magnetic flux only (i.e.,

(a) ωM as a function of Ω (b) |B| as a function of Ω

(c) Total shear as a function of Ω

Figure 2.4: ωM , |B| , and total shear are plotted as a function of Ω for λ1 = λ2

= 0, κ1 = 1.0 for Case 1 in the fifth-order system.

λ1 = λ2 6= 0, κ1 = 0). The behavior of ωM , |B| , and total shear with Ω is exam-

ined (cf. Fig. 2.5(a), 2.5(b), 2.5(c)). In Fig. 2.5(a), the frequency of maximum

intensity ωM is noticed to change with rotation rate in this case unlike Case 1.

Interestingly, the power law exponent β is obtained to be 0.91 for 1 ≤ Ω ≤ 5

which lies in the observed range of 0.80 to 1.15. However, this relationship breaks

down for Ω ≥ 5, that is, ωM decreases in a range 5 ≤ Ω ≤ 10 and changes very
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Chapter 2. Consistent model of dynamo: activity and rotation

slightly with Ω for Ω ≥ 10. Fig. 2.5(b) shows the behavior of magnetic field

strength |B| with rotation rate. Clearly, |B| is found to decrease for Ω ≥ 8 after

attaining a maximum value of 1.25 approximately around Ω = 7. This decreas-

ing behaviour of |B| is due to quenching of mean differential rotation which is

illustrated in Fig. 2.5(c). The decrease in shear is not as fast as noted in Fig.

2.4(c) and it approaches zero for Ω ≥ 12.

Case 3: Now the saturation of dynamo action is caused by the equal combi-

(a) ωM as a function of Ω (b) |B| as a function of Ω

(c) Total shear as a function of Ω

Figure 2.5: ωM , |B| , and total shear are plotted as a function of Ω for λ1 = λ2

= 2.5, κ1 = 0.0 for Case 2 in the fifth-order system.

nation of α-quenching and magnetic flux loss (i.e., κ1 = λ1 = λ2 = 3.5). Figure

2.6(a) shows the behaviour of frequency spectrum of magnetic field, |B| , against

rotation rate. A slow increase in ωM with rotation rate Ω with two power law
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scalings can be seen in Fig. 2.6(d) where purple color represents β = 0.63 for

Ω ≤ 10 and red color depicts β = 0.45 for Ω > 10 which are not consistent

with observations. The dispersion in frequency depicted in red band around ωM

is noticed to widen slowly with increasing Ω. Also, the strength of magnetic

field |B| can be seen increasing slowly with Ω in Fig. 2.6(b) which is again in

disagreement with observations. The behaviour of total shear as a function of

Ω is examined in Fig. 2.6(c) and a rapid decrease in total shear is observed for

higher Ω.

It is very clear from all the cases of fifth order system that the results are not

compatible with observations for frequency and magnetic field strength. There-

fore, it is imperative to investigate the role of fluctuating differential rotation,

which is investigated in the following section.

2.5 Reduced Sixth-Order System

To examine the effects of fluctuating differential rotation the system (2.5)-(2.8)

is studied by taking ν0 → ∞ and w0 → 0. Therefore, the reduced sixth order

system in the presence of α-quenching and both flux losses takes the following

form

Ȧ =
2DB

1 + κ1(|B|2)
− [1 + λ1(|B|2)]A, (2.12)

Ḃ =
iA

1 + κ2(|B|2)
− 1

2
iA∗w − [1 + λ2(|B|2)]B, (2.13)

ẇ = −iAB − νw. (2.14)

In this sixth order system, the reduction of Ω-effect via shear-quenching is in-

corporated by including 1 + κ2|B|2 in Eq. (2.8). The system (2.12)-(2.14) is

investigated for the following cases by taking ν = 1.0 and varying D.

Case 1: λ1 = λ2 = κ1 = κ2 6= 0,
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(a) ωM as a function of Ω (b) |B| as a function of Ω

(c) Total shear as a function of Ω
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Figure 2.6: ωM , |B| , and total shear are plotted as a function of Ω for κ1 = λ1 =
λ2 = 3.5 for Case 3 in the fifth-order system.

Case 2: κ1 = 0, κ2 = λ1 = λ2 6= 0.

We note that Eqs. (2.12) to (2.14) are reduced to Weiss model (1984) when

λ1 = λ2 = κ1 = κ2 = 0.

Case 1: Now this dynamo action is saturated by an equal combination of α-

quenching, shear quenching, and loss due to magnetic flux (i.e., for λ1 = λ2 =

κ1 = κ2 = 0.5). Frequency of magnetic field B and magnetic field strength, |B| ,

are plotted as a function of rotation in Fig. 2.7 (a-b). A well-defined frequency

of maximum intensity ωM , illustrated in yellow is observed to increase with Ω

for which the power law exponent is β = 0.90. This value of β is within the
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observed range of β = 0.80 and β = 1.15. A red band of localized frequencies

around ωM thickens with increasing Ω. The magnetic field strength |B| can

be seen increasing with Ω in Fig. 2.7(b). Almost similar results have been ob-

tained by considering λ1 = 0, λ2 = κ1 = κ2 6= 0, λ2 = 0, λ1 = κ1 = κ2 6= 0,

λ1 = λ2 = 0, κ1 = κ2 6= 0 and κ2 = 0, λ1 = 0, λ2 = κ1 6= 0.

Case 2: We investigate the dynamo action in the presence of shear-quenching

(a) ωM as a function of Ω (b) |B| as a function of Ω

Figure 2.7: Frequency of maximum intensity ωM and strength of magnetic field
|B| as a function of rotation rate Ω for κ1 = κ2 = λ1 = λ2 = 0.5 for Case 1 in
the sixth-order system.

and both magnetic flux losses in the absence of α-quenching (i.e., κ1 = 0, κ2 =

λ1 = λ2 = 0.5). Again, the frequency of maximum intensity ωM is found to in-

crease with rotation rate Ω in Fig. 2.8(a) with power law exponent β = 1.25±0.5

(Noyes et al. 1984). Dispersion in frequency depicted in red colour around ωM is

found to expand gradually with rotation rate. Also, there is a second branch of

localized frequency which is noticed above the main branch. This second branch

is due to the effects of fluctuating differential rotation. In Fig. 2.8(b) the mag-

netic field strength |B| is shown to increase very rapidly with Ω. The rate at

which |B| increases is almost double of what we observed in previous case. Sim-

ilar results are obtained for λ1 = λ2 6= 0, κ1 = κ2 = 0.

The results obtained from different cases of sixth-order system suggest that the
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Chapter 2. Consistent model of dynamo: activity and rotation

absence of mean differential rotation leads to infinite growth of magnetic field

strength with Ω. This also illustrates that the severe quenching of dynamo and

total shear in fifth-order system is balanced by fluctuating differential rotation

which further emphasises the role of both differential rotations in the working of

stellar dynamo.

(a) ωM as a function of Ω (b) |B| as a function of Ω

Figure 2.8: Frequency of maximum intensity ωM and |B| as a function of rotation
rate Ω for κ1 = 0, κ2 = λ1 = λ2 = 0.5 for Case 2 in the sixth-order system.

2.6 Minimal Dynamical Model: parameter de-

pendencies

From previous investigations, it is clear that Case 3 of seventh-order system

reproduces the results which are in best agreement with observations. In this case

α-source term and flux losses are considered in equal amount with coefficient of

order one. Case 3 is successful in reproducing observations due to its ability to

keep a dynamical balance not only in generation and destruction of magnetic fields

but also in mean and fluctuating differential rotations. This balance determines

the working of dynamo near the dynamo instability, which eventually leads to

almost linear increase in frequency, flattening of magnetic energy for high rotation
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and rapid decrease in total shear, in agreement with observations. Now, we

highlight how the seventh-order system is ‘minimal’ and how various parameters

are necessary, by probing a more general seventh-order system which integrates

various nonlinear power-law dependence of α quenching and flux loss on |B| in

equations (2.5) and (2.6) and by exploring parameter dependencies. Generalized

equations are written as:

Ȧ =
2DB

1 + κ1(|B|m)
− [1 + λ1(|B|n)]A, (2.15)

Ḃ = i(1 + w0)A− 1

2
iA∗w − [1 + λ2(|B|n)]B, (2.16)

ẇ0 =
1

2
i(A∗B − AB∗)− ν0w0, (2.17)

ẇ = −iAB − νw, (2.18)

where m and n represent the power-law index of the α-quenching term and the

flux-loss terms, respectively. By investigating about 35 cases where the values of

m , n , κ1 , λ1 and λ2 are varied systematically and by comparing the generation

and dissipation terms on right and left hand sides of Eqs. (2.15) and (2.16),

we conclude that our model can reproduce the observations only if the α-source

term and magnetic dissipation are balanced in Eq. (2.15) while the generation

of A by shear and dissipation are balanced in Eq. (2.16). From this detailed

and extensive analysis, it is found that there should be a quadratic increase in

the α-quenching power law and magnetic dissipation (m ≥ 2, n ≥ 2) for the

coefficient of order 1 (i.e., 0.5 < κ1, λ1, λ2 < 2.5). Among these cases, we present

results for the following four cases as examples:

Case 1: m = n =1 & κ1 = λ1 = λ2 = 2.5,

Case 2: m = n =3 & κ1 = λ1 = λ2 = 2.5,

Case 1: The saturation of dynamo occurs through weaker α-quenching and flux

loss due to magnetic field (i.e., m = n =1 & κ1 = λ1 = λ2 = 2.5). The frequency

of maximum intensity, ωM , as a function of rotation rate can be seen in Fig 2.9(a),
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where high to low intensity of frequency is depicted via yellow to dark black colors.

A slow increase in frequency of maximum intensity with rotation rate is noticed

along with a band of lower frequency of maximum intensity that widens gradually

with rotation. The power law scaling exponent β is obtained to be variable in

this case with two values β ∼ 0.80 (purple) for Ω ≤ 10, β ∼ 0.91 (red) for

Ω < 10 which are within the observed range of β ∼ 0.80 and β ∼ 1.15 (See

Fig. 2.9(d)). Whereas, the magnetic field strength shows an opposite behavior

to the observations, that is, |B| is found to show a reducing behavior for high

rotation after attaining a maximum value around Ω ∼ 15 (See Fig. 2.9(b)).

Shear quenching shown in Fig.2.9(c) causes this drop in |B| . Shear quenching

is too small for high rotation and using power law ∆Ω = Ωξ , the value of ξ

is noticed to vary between 0.80 to -0.74 with rotation rate in this case. This

variation of ξ for different ranges of ω is noticed as 0.80 for Ω(1 ≤ Ω ≤ 4), 0.87

for Ω(4 ≤ Ω ≤ 6), 0.66 for Ω(6 ≤ Ω ≤ 9), 0.36 for Ω(9 ≤ Ω ≤ 12), -0.20 for

Ω(12 ≤ Ω ≤ 15) and -0.74 for Ω(15 ≤ Ω ≤ 20). The value of ξ is found to be

closer to the observations only for Ω(6 ≤ Ω ≤ 9) with a value of ξ=0.66.

Thus, less efficient quenching of α and flux losses generates a strong magnetic

field which further reduces the total shear resulting in the drop of magnetic field

strength, |B| . Almost similar results are noticed for weaker α-quenching and

stronger magnetic flux losses i.e., m = 1, n = 2 & κ1 = λ1 = λ2 = 2.5.

Case 2: The dynamo action is ceased by the action of stronger α-quenching and

flux loss due to the magnetic field (i.e., m = n =3 & κ1 = λ1 = λ2 = 2.5). We

find that stronger α-quenching and flux losses slow down the growth of frequency

of magnetic fields and |B| depicted in Fig. 2.10 (a-b). The frequency ωM is shown

to increase at a slow rate with Ω with power law exponent β ∼ 0.75, closer to

the observations. The width of red band around ωM is constant. The value of

|B| does not saturate for high rotation but keeps on growing gradually which is

associated with the slow decline in the total shear shown in Fig. 2.10(c). To study

the differential rotation and rotation rate behavior we use power law ∆Ω = Ωξ .
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2.6. Minimal Dynamical Model: parameter dependencies

(a) ωM as a function of Ω (b) |B| as a function of Ω

(c) Total shear as a function of Ω
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Figure 2.9: Case 1: Frequency of maximum intensity ωM , magnetic field strength
|B| , and total shear are plotted as a function of Ω for m=n=1 and κ1 = λ1 =
λ2 = 2.5.

We find that ξ decreases its value from 0.95 to 0.60 as Ω increases.

Further, the comparison of all nonlinear terms on RHS of Eqs. (2.15) and

(2.16) shows an imbalance between not only the α-source term and the magnetic

dissipation in Eq. (2.15) but also between the generation of poloidal magnetic

field by shear and dissipation in Eq. (2.16). We confirm that this imbalance in the

nonlinear terms is responsible for the disagreement of results with observations.

Therefore, we confirm that our model mentioned in section 2.2 is the minimal

model that has the right balance between all nonlinear terms, their respective

coefficients and is capable of reproducing the results consistent with observations.
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Chapter 2. Consistent model of dynamo: activity and rotation

(a) ωM as a function of Ω (b) |B| as a function of Ω

(c) Total shear as a function of Ω

Figure 2.10: Case 2: Frequency of maximum intensity ωM , magnetic field
strength |B| , and total shear are plotted as a function of Ω for m=n=3 and
κ1 = λ1 = λ2 = 2.5.

2.7 Conclusions

We investigate a seventh-order nonlinear system by including the effects of α-

quenching, magnetic flux loss, and the Lorentz force on mean and fluctuating

differential rotations. For different degrees of α-quenching and magnetic flux

losses we examine the behavior of magnetic field strength, frequency of magnetic

field and total shear with rotation rate. Results obtained from the investigations

such as linear increase in frequency, saturation of magnetic activity and quench-

ing of shear with rotation rate are in good agreement with observations for the

case where the combined effects of α-quenching and flux losses with a quadratic

42



2.7. Conclusions

dependence on |B| are considered. Further, investigations of seventh-, fifth- and

sixth-order system highlight that a proper balance between w0 and w is essen-

tial to reproduce the results that agree with observations. This indicates the

importance of upward (w0 ) and downward (w) scale coupling to the differential

rotation for the working of a dynamo.

It is interesting to emphasize that this balance suggests an organized process in

the stellar dynamo, which helps the working of a dynamo near marginal stability

as a consequence of a balance among generation and destruction of magnetic field

and between toroidal and poloidal magnetic fields as well as mean and fluctuating

differential rotations. This indicates that self-organisation process could be re-

sponsible for the stellar dynamo where a long range correlation in stellar interiors

and open boundary is important. Almost linear dependence of frequency of mag-

netic fields on rotation rate could be another signature of self-organisation. We

highlight the importance of this balance in the self-regulation of stellar dynamo

and rotation in subsequent chapter.

Our simple parameterised model has some limitations, such as, failing to capture

the spatial evolution of stellar magnetic fields, yet it has the advantages of being

less sensitive to the precise form of dynamo (Sood and Kim, 2013). Moreover, our

model is able to provide an explanation to the observed frequency and strength

of magnetic field and the differential rotation for stars with different rotation

rates and serves as a full dynamo model. In next chapter, we explain how this

dynamical model emphasizes the role of nonlinear generation and destruction of

magnetic fields through α-effect and flux losses in the self-regulation of a stellar

dynamo. It is worth noting that signatures of self-organisation have been ob-

served by using reduced dynamical model in shear flow dynamics (Newton et al.,

2013) and stochastic dynamo (Newton and Kim, 2013).
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Chapter 3

Signature of Self-regulation in a

Nonlinear Dynamo

To understand the role of self-regulation in a dynamo via α-quenching, flux losses
and feedback by mean/fluctuating differential rotations, we investigate a nonlin-
ear dynamical system analytically and numerically. Our detailed investigations
reveal how the presence of these transport coefficients in the limit of very weak
mean and/or fluctuating differential rotation effects the frequency, p , of magnetic
field, phase, ϕ , and magnetic field strength, |B| . In the absence of back reaction
due to fluctuating differential rotation, p and ϕ are found to be controlled by
both flux losses with no α-quenching. Similar effects of poloidal flux loss and
toroidal flux loss on p and |B| are noticed when there is no back reaction from
shear. However, in the presence of back reaction from shear their effects are ob-
served to be different. From our detailed investigations it becomes clear that in
the presence of fluctuating shear, poloidal flux loss is less effective than toroidal
flux loss with or without α-quenching. Moreover, α-quenching is more effective
when combined with toroidal flux loss which indicates that the presence of α-
quenching and flux loss helps in the self-regulation of dynamo. The importance
of various nonlinear transport coefficients and both differential rotations (mean
and fluctuating) in the self-regulation of dynamo is highlighted from our results.
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Chapter 3. Signature of Self-regulation in a Nonlinear Dynamo

3.1 Introduction

Self-organisation is a process of spontaneously emerging new structures with-

out being imposed by an external agent and is an important phenomenon for

all evolutionary systems. A system is known to be a self-organised, nonequi-

librium system if it is,“a distinguishable collection of matter, with recognizable

boundaries, which has a flow of energy, and possibly matter, passing through it,

while maintaining, for time scales long compared to the dynamical time scales of

its internal processes, a stable configuration far from thermodynamic equilibrium.

This configuration is maintained by the action of cycles involving the transport

of matter and energy within the system and between the system and its exterior.

Further, the system is stabilized against small perturbations by the existence of

feedback loops which regulate the rates of flow of the cycles.”(Simon, 1997, pg.51).

Various examples of self-organistaion such as crystallisation, snow-flakes, Benard

convection, etc., can be seen in day to day life. In the area of astrophysics, the

Sun is the most observed and investigated complex system as various processes

occurring inside the solar interior emerge on their own without being triggered

from the outside. The presence of well structured and organised small/large scale

magnetic fields in the solar interior have been revealed through high-resolution

observations available these days. Due to the interactions between these mag-

netic fields and rotation, the Sun displays a definite and significant intensity of

self-organisation on large scales in terms of magnetic activity cycle, formation of

sunspots, appearance of butterfly diagrams and polarity reversals, etc. To un-

derstand these observations, the behavior of magnetic field is studied by using

nonlinear dynamo theory in which the magnetic field is amplified by inductive

motion of conducting fluid. These structured and well organised magnetic fields

owe their exitance to the interplay among various nonlinear transport coefficients

which provide a way in the working of solar/stellar dynamo.

To understand the complexity of self-regulated magnetic fields and dynamo pro-
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cess, a dynamical system was first used in early 80’s to explain the various features

of solar magnetic field such as magnetic activity of 11 years (Weiss et al., 1984).

Interestingly, they explained the change in system from regularity to chaos by

varying a control parameter known as ‘dynamo number’. Thereafter, dynamical

systems and parameterized models have been used to reproduce various observa-

tions in Sun and sun-like stars (Tobias et al., 1995b; Mininni et al., 2001; Pontieri

et al., 2003; Wilmot-Smith et al., 2005; Passos and Lopes, 2008; Lopes and Passos,

2009; Passos and Lopes, 2011). There is another dynamo model known as flux

transport dynamo model which has gained popularity in recent years due to its

capability of explaining various properties of solar cycle. This model deals with

the transport of magnetic fields on global scale through meridional circulation and

buoyant rise of magnetic field (Dikpati and Charbonneau, 1999; Rempel, 2006).

Continuous efforts have been made to further develop dynamo models which are

able to explain various features of solar magnetic activity and its differential rota-

tion, revealed through high-resolution observational data (Yoshimura, 1975, 1978;

Jepps, 1975; Ivanova and Ruzmaikin, 1977).

Furthermore, Sood and Kim (2014) emphasized the importance of simple pa-

rameterised models in explaining the observations of magnetic fields of Sun and

other stars, “A simple parameterised dynamo model can serve as a useful model

to understand how various nonlinear transport coefficients influence the evolu-

tion of magnetic fields and rotation rate during the stellar spin-down. In fact,

the observations of the evolution of magnetic fields and rotation of other stars of

different ages with different rotation rates have been providing us with valuable

information about the relation among rotation, differential rotation, and magnetic

activity, which can be utilised to test a dynamo theory against observations for

improvement. It can work not only for the Sun but also for other solar-type stars

with different rotation rates. The exploration of the relation between magnetic

activity and rotation for a broad range of rotation rates is, however, a very chal-

lenging problem and cannot be practically performed by full MHD simulations due
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to the required high computational demand (e.g., the resolution of a broad range

of length and time scales, etc). An illustrative theoretical model for a minimal

number of key quantities is, thus, valuable to gain an insight into this problem.

This is particularly the case in view of the limitations inherent in any model (e.g.,

in parameterisations of transport coefficients in MHD simulations)” (Sood and

Kim, 2014).

The main aim of this chapter is to provide detailed analysis of non-linear dynamo

models by elucidating the effect/role of various non-linear interactions which are

proposed previously, and thus to recognise the self-regulatory behavior in a fea-

sible solar/stellar dynamo model which is capable of explaining the observations.

To achieve this, the nonlinear effect through nonlinear transport coefficients such

as α-quenching and flux losses and feedback of differential rotation (mean and

fluctuating) on frequency p of magnetic field and magnetic field strength |B| are

examined. It is then signified that self-regulation by the “near” balance among the

(nonlinear) generation and destruction of the magnetic fields is the most desired

feature of a successful model. In particular, this self-regulatory behavior gives

rise to “the almost linear increase in frequency with rotation rate and flattening

of magnetic energy for high rotation, and quenching in total shear consistent with

observations” (Sood and Kim, 2013, 2014).

The remainder of this chapter is organised as follows. In section 3.2, the model is

introduced. In sections 3.3-3.5, we provide step by step detailed analysis of this

model: nonlinear effects through transport coefficients are discussed in section

3.3; section 3.4 (3.5) focuses on nonlinear effects through mean (fluctuating) dif-

ferential rotation. The implications of our results together with key observational

data are provided in section 3.6. Section 3.7 discusses conclusions.

3.2 Model equations

Here we again investigate the dynamical system represented by equations (2.5)-

(2.8) in Chapter 2, section 2.2 (Sood and Kim 2013; Weiss et al. 1984), consisting
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3.2. Model equations

of seven coupled ordinary differential equations (ODE) rewritten in the following

dimensionless form

(∂t + F2)A = 2DB,where D =
D0

F1

, (3.1)

(∂t + F3)B = i(1 + w0)A− 1

2
iA∗w, (3.2)

(∂t + ν0)w0 =
1

2
i(A∗B − AB∗), (3.3)

(∂t + ν)w = −iAB. (3.4)

Here, A , B, w0 and w represent the poloidal magnetic field, toroidal magnetic

field, mean and fluctuating differential rotations, respectively, where mean and

fluctuating differential rotations are due to a nonlinear back reaction of A and B

and have zero and double the frequency of A and B , respectively. A, B, w are

complex, whereas w0 is real. The complex conjugate of A and B are represented

by A∗ and B∗ , respectively. In dimensionless units, 1 +w0 = ∆Ω
Ω

gives the total

mean differential rotation; thus, as a result of back reaction, w0 always possesses

a negative sign to reduce the total shear from 1 to 1 +w0 < 1. This reduction in

shear is caused by the tension in the magnetic field lines through Lorentz force

which inhibits the differential rotation (i.e., causing the quenching of Ω-effect.).

The constant parameters ν and ν0 represent the viscosity of fluctuating and mean

differential rotation, respectively.

The dynamo number D0 ∝ αΩ is the main control parameter, described in Eq.

(3.1) while F1, F2 , and F3 are the ‘nonlinear’ transport coefficients, defined as

F1 = 1 + κ1|B|2,

F2 = 1 + λ1|B|2,

F3 = 1 + λ2|B|2,
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where κ1 , λ1 , and λ2 are constant parameters; the α source term (i.e., helicity

by the magnetic field) due to the back reaction by magnetic field is represented

by F1 , which was previously studied by Pouquet et al. (1976). Here, F2 and F3

represent the enhanced magnetic dissipation via the loss of toroidal and poloidal

magnetic fluxes, respectively, which eliminates magnetic flux from the area where

the dynamo works. It is worth noting that this is totally different from the sup-

position of depletion in magnetic dissipation used in some previous works. Based

upon the traditional αΩ dynamo, α is assumed to increase with rotation as

α ∝ Ω in our model and, therefore, our dynamo number D0 is scaled with rota-

tion rate Ω as D0 ∝ Ω2 (Sood & Kim, 2013). In this chapter, we focus mainly

on the dynamic balance through F1 − F3 . We note that according to our non-

dimensionlization, the physical poloidal magnetic field, A , is obtained by dividing

our dimensionless poloidal magnetic flux A in Eqs. (3.1)-(3.4) by rotation rate,

Ω.

We expect that the self-regulatory behavior weakens chaos in our nonlinear dy-

namo model and thus propose the following finite-amplitude solution to Eqs.

(3.1)-(3.4) as (Sood and Kim, 2014)

A = aeipt, B = bei(pt+ϕ), w = ca2e2ipt, w0 = real constant, (3.5)

where a > 0 and b > 0 are supposed to be positive and real constants; c

is a complex constant; p is real angular frequency; w0 is a real constant which

measures the amplitude of mean differential rotation generated as a result of back

reaction of Lorentz force; ϕ represents the phase difference between toroidal b

and poloidal a magnetic fields. We use finite amplitude solution of these forms

in Eqs. (3.1)- (3.4) to obtain the following five relations among a , b , ϕ , p , and
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w0

−p2 + F2F3 =
−(2p2 + F2ν)εa2

2(4p2 + ν2)
, (3.6)

(F2 + F3)p = 2D − pa2

ν0

+
(2F2 − ν)pεa2

2(4p2 + ν2)
, (3.7)

w0 =
−pa2

2ν0D
, (3.8)

a =
2Db√
p2 + F 2

2

, (3.9)

tanϕ =
p

F2

, (3.10)

where D = D0

F1
, F1 = 1 +κ1b

2 , and F2,3 = 1 +λ1,2b
2 . In the above equations, the

presence of fluctuating shear, w , is tracked by a parameter, ε , which is given by

ε =

 1, w 6= 0,

0, w = 0.

Therefore, in the absence of fluctuating shear (ε = 0), Eqs. (3.6)-(3.7) are sim-

plified as

p = ±
√
F2F3, (3.11){

(F2 + F3) +
4D2

0b
2

ν0F 2
1F2(F2 + F3)

}
F1

√
F2F3 = 2D0, (3.12)

where Eqs. (3.11) and (3.9) were used in obtaining Eq. (3.12). We note that

ignoring nonlinear terms in the above equations (i.e., F1 = F2 = F3 = 1, w0 = 0)

provides the linear dispersion relation for the onset of bifurcation as p = 1 and

ϕ = π/4.

It is interesting to note that the frequency, p , of the magnetic field is equal to the

geometric mean of F2 and F3 represented by Eq. (3.11) and is determined by the

dissipation of both magnetic fields. This results in an increase in p with b due to

the enhanced magnetic dissipation represented by F2 = 1+λ1b
2 or F3 = 1+λ2b

2 .

51



Chapter 3. Signature of Self-regulation in a Nonlinear Dynamo

However, α-quenching (F1 ) does not influence p which shows different effects of

α-quenching and magnetic flux losses on p . The phase, ϕ , between b and a is

determined by F2 and F3 as ϕ =
√
F3/F2 ; that is, variation in the phase, ϕ ,

between b and a depends upon the fact that stronger (weaker) is toroidal flux loss

F2 than poloidal flux loss F3 , i.e., b is removed more (less) systematically than a ,

the more increase (decrease) is observed in the phase, ϕ , between b and a . It is

clear from Eq. (3.8) that w0 is negative definite and always reduces the total mean

differential rotation 1 +w0 < 1. Explicit examples of these can be seen in Sects.

3.4-3.5 where detailed investigations of finite amplitude solution are provided by

considering the different limits of F1 , F2 , and F3 as well as w0, w → 0. This

emphasizes the role of nonlinear transport coefficients such as α-quenching, flux

losses as well as mean and fluctuating differential rotation to understand the

self-regulatory behaviour of magnetic activity/cycle. We confirm our analytical

predictions in Sects. 3.3-3.4 by numerical simulations. In particular, for the

numerical parts, Eqs. (3.1)-(3.4) are solved by time-stepping for all variables A ,

B , w , and w0 using ν = 0.5, ν0 = 35.0 for different values of D0 varied between

1 - 400 (see Sood and Kim, 2013, 2014 for more details). We also note that for

numerical simulations, the values of parameters, i.e., κ1 , λ1 , and λ2 are assumed

to have the same value, i.e., κ1 = λ1 = λ2 ≡ λ = 2.5.

3.3 Nonlinear effects through transport coeffi-

cients

Nonlinear transport processes such as α-effect and flux losses play a very im-

portant and critical role in capturing the overall effects of small scale unresolved

turbulence. These transport mechanisms are tailored by the feedback of growing

magnetic fields and eventually depend upon magnetic fields. The self-consistent

behavior of dynamo depends upon these nonlinear transport mechanisms as the

unresolved turbulence helps in the working of a dynamo. In order to understand
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the effects of nonlinear transport, it is important to further probe the behavior

of the system in the limit of a very weak mean or fluctuating differential rotation

by assuming w0, w → 0 and Eqs. (3.11), (3.12) followed by Eqs. (3.8) to (3.9)

are summarised as follows:

p = ±
√
F2F3, (3.13)

(F2 + F3)F1

√
F2F3 = 2D0, (3.14)

a =
2D0b

F1

√
p2 + F 2

2

, (3.15)

tanϕ =
p

F2

. (3.16)

The behavior of p , b , and a with rotation is examined for different cases of F1 ,

F2 , and F3 .

1. F1 = F = 1 + λb2, F2 = F3 = 1. In the presence of α-quenching only with no

flux loss, equations (3.13)-(3.16) are simplified as

p = 1, (3.17)

2(1 + λb2) = 2D0, (3.18)

a =
2D0b

(1 + λb2)
, (3.19)

tanϕ = 1. (3.20)

Equation (3.17) clearly illustrates that though the growth rate of magnetic field

is saturated by the nonlinear damping provided by the α-quenching (F1 ), it does

not effect the frequency p = 1, i.e., the value of the frequency remains constant

with rotation rate. In addition, the phase, ϕ , maintains a linear value π
4

without

being altered by α-quenching. For D0 � 1, the scalings of a as a ∼ Ω and b as

b ∼ Ω are obtained by using Eqs. (3.18)-(3.20)

These analytical results are further compared with numerical simulation of Eqs.

(3.1)-(3.4). The analytical scalings are consistent with the results obtained from
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numerical simulations, as shown in Fig. 3.1. The intensity of frequency spectrum

for various values of rotation rate is depicted in Fig. 3.1a, where bright to dark

colours represent high-to-low intensity. The frequency of maximum intensity

illustrated by a yellow color strip, does not change with Ω by keeping the same

scaling (p = 1) as estimated by analytical results. The quantities b and a as

functions of Ω are shown in Fig. 3.1(b-c), and scalings identical to the analytic

values are obtained, which confirms the validity of our finite amplitude solutions.

2. F1 = 1, F2 = F3 = F = 1 + λb2 . Now, both flux losses are taken into

(a) p as a function of Ω (b) |A| as a function of Ω

(c) |B| as a function of Ω

Figure 3.1: Frequency of maximum intensity p , poloidal magnetic field |A| and
toroidal magnetic field |B| as a function of rotation rate Ω for F1 = F, F2 =
F3 = 1.0 for Case 1 in the fourth-order system.

account in the absence of α-quenching and Eqs. (3.13)-(3.16) take a form of
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p ∼ (1 + λb2), 2D0 = 2(1 + λb2)2 , a ∼ 2D0/2
1/2(1 + λb2)3/2 , and tanϕ = 1.

Clearly, the frequency p ∼ (1 + λ1,2b
2) increases with b in the presence of both

flux losses, while cancelling their effects in the phase shift ϕ = π
4

. In the limit of

D0 � 1, we obtain the scalings of p , b , and a to be p ∼ Ω, b ∼ Ω
1
2 , and a ∼ Ω

3
2

and we confirm them by numerical simulations (cf. Table (3.1)). The behavior

of p , |B| and |A| with respect to rotation rate can be seen in Fig. (3.2).

3. F1 = F2 = F3 = F = 1 + λb2 . Here, α-quenching and enhanced flux

(a) p as a function of Ω (b) |A| as a function of Ω

(c) |B| as a function of Ω

Figure 3.2: Frequency of maximum intensity p , poloidal magnetic field |A| and
toroidal magnetic field |B| as a function of rotation rate Ω for F1 = 1.0, F2 =
F3 = F for Case 2 in the fourth-order system.

losses due to poloidal magnetic field and toroidal magnetic field have equal input
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towards magnetic fields saturation for large rotation rates. Equations (3.13)-

(3.16) provide p ∼ F ∼ 1 + λb2 , D0 = (1 + λb2)3 , a = 2D0b/2
1/2(1 + λb2)3 , and

tanϕ = 1. Clearly, the maximum frequency, p , of the magnetic field is decided

by both poloidal and toroidal flux losses, respectively; p is found to grow with

Ω. These results are similar to the case where the effect of both flux losses is

taken into account. Further, both a and b are noticed to rise with rotation rate

(cf. Fig. 3.3(a) to 3.3(c)). It is interesting to note that equal contribution of

F2 and F3 does not alter the phase between a and b , with its value ϕ = π
4

.

In the limit of D0 � 1, we obtain p ∼ Ω
2
3 , a ∼ Ω, and b ∼ Ω

1
3 . The scalings

obtained from numerical simulations are almost same for p , b and a (cf. Table

(3.1)). Therefore, the combined effect of α-quenching, enhanced poloidal flux loss

and toroidal flux loss with the equal contribution causes stronger quenching in

magnetic field for a higher rotation rate, through which a strong dynamic balance

can be provided towards the working of nonlinear dynamo.

4. F1 = F2 = F = 1 + λb2, F3 = 1. The presence of only α-quenching

and enhanced poloidal magnetic flux loss, we simplify the various scalings to

p ∼ (1 + λb2)1/2 , 2D0 = (2 + λb2)2(1 + λb2)1/2 , a = 2D0b/(2 + λb2)1/2(1 + λb2)2 ,

tanϕ ∼ 1/(1 +λb2)1/2 . Thus, ϕ is obtained to decrease for large b (or large D0 )

as a result of which the phase shift between b and a is found to reduce to zero.

Furthermore, in the limit of D0 � 1, these provides us p ∼ Ω
2
5 , b ∼ Ω

2
5 , and

a ∼ Ω
4
5 .

5. F1 = F3 = F = 1 + λb2, F2 = 1. In this case the nonlinear effects through α-

quenching and flux loss due to toroidal magnetic field are considered; Eqs. (3.13)

to (3.16) provide p ∼ (1 +λb2)1/2 , 2D0 = (1 +λb2)5/2 , a = 2D0b/(2 +λb2)1/2(1 +

λb2)2 , and tanϕ = 1. Clearly, the frequency, p , of magnetic field is affected

by the toroidal magnetic field, b , due to toroidal flux loss. The frequency of

maximum intensity p increases at a very slow rate. The toroidal magnetic field,

b , initially increases very fast but as Ω increases, slower increase in b is noticed.

In this case a increases rapidly as compared to the previous cases. α-quenching

56



3.3. Nonlinear effects through transport coefficients

(a) p as a function of Ω (b) |A| as a function of Ω

(c) |B| as a function of Ω

Figure 3.3: Frequency of maximum intensity p , poloidal magnetic field |A| and
toroidal magnetic field |B| as a function of rotation rate Ω for F1 = F2 = F3 = F
for Case 3 in the fourth-order system.

and flux loss due to b do not alter the phase shift between poloidal flux loss, a ,

and toroidal flux loss due to b , keeping the value of ϕ almost linear i.e. π
4

. For

D0 � 1, the obtained scalings of p , b , and a are p ∼ Ω
2
5 , b ∼ Ω

2
5 , and a ∼ Ω

6
5 .

Clearly, change from toroidal to poloidal flux loss only impacts the scaling of a

with Ω.

6. F3 = F = 1+λb2, F1 = F2 = 1. This is the case where flux loss due to toroidal

magnetic field tracks the amplitude of b for large Ω, by obtaining equations

(3.13) - (3.16) into the form p = (1 + λb2)1/2 , 2D0 = (2 + λb2)(1 + λb2)1/2 ,
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a = 2D0b/(1 + λb2)1/2 , and tanϕ ∼ (1 + λb2)1/2 . Hence, toroidal flux loss

contributes to the growth of the frequency in fashion similar to the strength of b ,

which is prescribed dynamically. The phase, ϕ , between a and b increases with

a value π
2

as D0 � 1. In the limit of D0 � 1, power-law scalings are p ∼ Ω
2
3 ,

b ∼ Ω
2
3 , and a ∼ Ω2 .

7. F2 = F = 1 + λb2, F1 = F3 = 1. The frequency, toroidal magnetic field

strength and poloidal magnetic field strength are determined by the poloidal

flux loss by simplifying equations (3.13) - (3.16) as p = (1 + λb2)1/2 , 2D0 =

(2 + λb2)(1 + λb2)1/2 , a = 2D0b/(1 + λb2)(2 + λb2)1/2 , tanϕ = (1 + λb2)−1/2 .

For D0 � 1, the scalings obtained are p ∼ Ω2/3 , b ∼ Ω2/3 and a ∼ Ω4/3 ,

tanϕ ∼ Ω−2/3 . Therefore, compared to case where toroidal flux loss is considered

(i.e., Case 6), the scalings of a and ϕ are different here and we obtain reduced

power law scalings for a and ϕ with Ω.

It is clear from above studies, that α-quenching, F1 , and flux losses, F2 and

F3 , have different effects in the absence of mean and fluctuating shear. Here,

flux losses, F2 and F3 , determine the behavior of p , which is not influenced

by α-quenching, F1 , i.e., p remains constant with value 1 when α-quenching is

considered, whereas the increasing behavior of p is obtained due to flux losses.

Similar effects of F2 and F3 are noticed which give same scalings for p and b with

Ω. The ratio of F2 and F3 determines the phase, ϕ . In all the above cases, b is

noticed to increase with Ω as b ∝ Ωβ , where β ∈ [1/3, 1]. The largest value of

β = 1 is obtained for the case where the dynamo is saturated through quenching

of α-effect, while the smallest value (β = 0.4) is obtained for the combined effects

of all nonlinear terms of the same magnitude. Thus, in the absence of mean and

fluctuating shear, b continues to rise with Ω, without being flattened for large

Ω. Table (3.1) summarizes the numerical and analytic values of scaling exponent

for p , b and a , respectively. We find that analytic and numerical values both

agree with each other as the effects of mean and fluctuating differential rotations

are not taken into account.
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3.4. Nonlinear effect through mean differential rotation

Transport coefficients Numerical Scalings Analytic Scalings
ξ β γ ξ β γ

F1 = F, F2 = F3 = 1 0 1.0 1.0 0 1 1
F1 = 1, F2 = F3 = F 1.0 0.50 1.55 1 1/2 3/2
F1 = F2 = F3 = F 0.66 0.41 1.08 2/3 1/3 1
F1 = F2 = F, F3 = 1 0.41 0.47 0.84 2/5 2/5 4/5
F1 = F3 = F, F2 = 1 0.41 0.47 1.55 2/5 2/5 6/5
F1 = F2 = 1, F3 = F 0.67 0.69 2.03 2/3 2/3 2
F1 = F3 = 1, F2 = F 0.67 0.69 1.35 2/3 2/3 4/3

Table 3.1: Scaling exponents for p , |B| , and |A| for Ω ≥ 5 in the cases of the
fourth-order system where p = Ωξ , |B| = Ωβ , and |A| = Ωγ .

3.4 Nonlinear effect through mean differential

rotation

In the previous sections, nonlinear effect due to the modification of differential

rotation by magnetic fields is incorporated and the role of mean differential ro-

tation in self-regulatory behaviour of a dynamo is examined. Here, the main

focus is to recognise the effect of mean differential rotation, therefore we do not

consider the effects of fluctuating differential rotation. The effects of fluctuating

differential rotation are discussed in the next section. The main equations are

Eqs. (3.6)-(3.10) for w = 0, and for numerical simulations ν0 is considered to be

equal to 35.

1. F1 = F2 = F3 = 1. In the absence of α-quenching or any flux loss, the satu-

ration of dynamo occurs through the back reaction of mean differential rotation,

w0 , which confirms a finite-amplitude solution by reducing Eqs. (3.6)-(3.10) to

p = ±1, (3.21)

b = D
−1/2
0 ν

1/2
0 (1−D−1

0 )1/2, (3.22)

a = D
1/2
0 ν

1/2
0

√
(2(1−D−1

0 )), (3.23)

w0 = −1 +
1

D0

, (3.24)
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tanϕ = 1. (3.25)

It is clear from Eq. (3.21) that the frequency of magnetic field does not depend

upon the rotation rate, without being effected by w0 . For high rotation rate,

i.e., D0 � 1, Eqs. (3.22)-(3.25) provide us with analytical scalings of b , a , and

total shear 1 + w0 with Ω as b ∼ Ω−1 , a ∼ Ω and 1 + w0 ∼ Ω−2 � 1 for

Ω� 1. The linear value of the phase angle between the poloidal magnetic field,

a , and toroidal magnetic field, b , is maintained with a value ϕ = π
4

(cf. Eq.

(3.25)). A remarkable shear quenching is shown by power law relationship of

the total shear on rotation rate Ω−2 . Analytic results are verified by numerical

simulations. A single dominant frequency, p ∼ 1 can be seen in Fig. 3.4(a) with

almost no dependence on rotation. The localized frequency of maximum intensity

is surrounded by a broad red band of weak intensity frequency whose width

changes with increasing rotation rate. Initially, there is an increases in its width

which is found to decline slowly for higher rotation. This behaviour is caused

by the shear quenching due to Lorentz force which is too strong to significantly

quench the magnetic field strength, b , for Ω � 1. The poloidal magnetic field

|A| is obtained to increase linearly with rotation rate Ω in Fig. 3.4(b) while the

toroidal magnetic field strength, |B| , is observed to initially increase with Ω for

slower rotation rate and is found to decrease as we increase the rotation rate Ω

(see Fig. 3.4(c)). Figure 3.4(d) shows the rapid decrease in total shear, which

approaches zero for a higher rotation rate (Ω ≥ 12), and illustrates the severe

shear quenching due to the effect of magnetic fields on mean differential rotation.

We find scalings of |B| , |A| and total shear 1 +w0 numerically for high rotation

which are a ∼ Ω1.02 , b ∼ Ω−0.98 , 1 + w0 ∼ Ω−2.0 ∼ D−1
0 , and are similar to

analytic results.

2. F1 = F = 1 + λb2, F2 = F3 = 1. This case studies the effect of α-quenching

alone without taking the flux losses into consideration, and, Eqs. (3.6) to (3.10)
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3.4. Nonlinear effect through mean differential rotation

(a) p as a function of rotation rate. (b) |A| as a function of Ω

(c) |B| a function of Ω (d) Total shear as a function of rotation rate.

Figure 3.4: Frequency of maximum intensity p , poloidal magnetic field |A| ,
toroidal magnetic field |B| and total shear as a function of rotation rate Ω for
F1 = F2 = F3 = 1 for Case 1 in the fifth-order system.

become

p = ±1, (3.26)

F 2 +
D2

0b
2

ν0

= D0F, (3.27)

a =

√
2D0b

F
, (3.28)

w0 = −D0b
2

Fν0

, (3.29)

tanϕ = 1. (3.30)
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Again, the rotation rate does not affect the frequency, p . The Eqs. (3.26)-(3.30)

are used to obtain analytical scalings for the limit of high rotation rate. For

high rotation rate, D0 � 1, the scalings are found to be b ∼ Ω−1 , a ∼ Ω, and

(1 +w0) ∼ Ω−2 . Thus, it is clear that a strong mean differential rotation w0 < 0

is generated by Lorentz force efficiently, which is responsible for the significant

reduction in the magnetic field.

3. F2 = F3 = F = 1 +λb2, F1 = 1. In the presence of both flux losses, Eqs. (3.6)

- (3.10) give us

p = ±F, (3.31)

F 4 +
D2

0b
2

ν0

= D0F
2, (3.32)

a =

√
2D0b

F 3/2
, (3.33)

w0 = −D0b
2

F 2ν0

, (3.34)

tanϕ = 1. (3.35)

Due to the effects of nonlinear flux losses, F2 and F3 , a change in p is noticed as

b alters with Ω (cf. Eq. (3.31)) . In the limit of the high rotation rate, D0 � 1,

the scalings are b ∼ Ω−1 � 1, 1 + λb2 ∼ 1, a ∼ Ω, and 1 + w0 ∼ Ω−2 . The

quenched behavior of toroidal magnetic field with Ω is credited to the severe

shear quenching present in the system. Further, due to the equal amounts of the

toroidal and poloidal magnetic fluxes the phase shift between a and b remains

unaltered as π
4

.

4. F1 = F2 = F3 = F = 1 + λb2 . Equations (3.6)-(3.10) are simplified for the

equal amount of α-quenching and flux losses and are given by

p = ±F, (3.36)

F 6 +
D0b

2

ν0

= D0F
3, (3.37)
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3.4. Nonlinear effect through mean differential rotation

a =

√
2D0b

F 3/2
, (3.38)

w0 = −D0b
2

F 2ν0

, (3.39)

tanϕ = 1. (3.40)

In the presence of F1, F2 , and F3 , interesting behavior is obtained for large Ω. A

sudden change in p , |B| , |A| , and total shear for very high rotation rate is noticed

(cf. Figs. 3.5(a)-3.5(d), i.e., the system’s behaviour changes at Ω = 19.7 and

further investigations of time series and frequency analysis reveal the damping

behavior of the system beyond Ω = 19.7. Figure 3.5(a) shows that well-defined,

single, frequency, p , increases initially up to Ω ∼ 19.7 and then p suddenly drops

its value with increasing Ω. In addition to this dominant frequency, a red band of

lower frequencies with very weak intensity is also visible. Fig. 3.5(c) shows that

b grows and attains a maximum value of |b| = 1.296 at Ω ∼ 17; For Ω ≥ 17,

there is a decrease in b till Ω = 19, and then there is a sudden drop in the value

of b . The poloidal magnetic field, a , grows almost linearly with rotation rate

Ω for higher rotation rate till Ω ∼ 19, and there is a sharp increase in |a| near

ω = 19.7 (Fig. 3.5(b)). The total shear is also observed to decrease very rapidly

up to Ω ∼ 19 whereas for Ω = 19.7, there is a sudden drop in total shear before

it reaches its minimum value (cf. Fig. 3.5(d)). For higher rotation rate, the

scaling exponents for p , b , a and total shear vary with rotation rate which are

very different from what we find analytically. These results suggest a possible

change in the dynamo due to a strong mean shear.

5. F1 = F2 = F = 1 + λb2, F3 = 1. In this case the Eqs. (3.6)-(3.10) reduce to

p = ±
√
F , (3.41)

b2 = 2−1D−1
0 F 6(1 + F−1)(F 1/2 − 1− F−1), (3.42)

a =
2D0b

F 2
√
F + 1

, (3.43)
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Chapter 3. Signature of Self-regulation in a Nonlinear Dynamo

(a) p as a function of rotation rate. (b) |A| as a function of Ω

(c) |B| a function of Ω (d) Total shear as a function of rotation rate.

Figure 3.5: Frequency of maximum intensity p , poloidal magnetic field |A| ,
toroidal magnetic field |B| and total shear as a function of rotation rate Ω for
F1 = F2 = F3 = F for Case 4 in the fifth-order system.

w0 =
−pa2F

2ν0D0

, (3.44)

tanϕ = F−1/2. (3.45)

Here, p is noted to be affected by b as p ∼ b (cf. Eq. 3.41). Within the limit

of a very high rotation rate, i.e., D0 � 1, the analytical scalings are obtained as

p ∼ Ω2/5 , b ∼ Ω2/5 , a ∼ Ω4/5 , and (1+w0) ∼ Ω−2 , while the phase shift between

a and b is found to decrease with increasing rotation rate. These analytical re-

sults are very similar to numerically obtained results and also scalings for p , |B| ,
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3.4. Nonlinear effect through mean differential rotation

Transport coefficients Numerical Scalings Analytic Scalings
ξ β γ δ ξ β γ δ

F1 = F2 = F3 = 1 0 -0.98 1.02 -2.0 0 -1 1 -2
F1 = F, F2 = F3 = 1 0 -1.39 1.42 -3.46 0 -1 1 -2
F1 = 1, F2 = F3 = F -0.99 -1.56 1.30 -4.30 -1 -1 1 -2
F1 = F2 = F3 = F varies varies varies varies 2/3 2/3 2/3 -2/3
F1 = F2 = F, F3 = 1 0.39 0.45 0.93 -0.16 2/5 2/5 4/5 -2
F1 = F3 = F, F2 = 1 -0.43 -1.45 1.66 -4.40 -1/2 -1/2 5/2 -7/2
F1 = F2 = 1, F3 = F -0.30 -1.02 1.20 -2.76 -3/2 -3/2 7/2 -5/2
F1 = F3 = 1, F2 = F -0.57 -1.62 1.30 -3.21 -3/2 -3/2 5/2 -7/2

Table 3.2: Scaling exponents for p , |B| , |A| , and 1 + w0 for Ω ≥ 5 in the cases
of the fifth-order system where p = Ωξ , |B| = Ωβ , |A| = Ωγ , and 1 + w0 = Ωδ .

and |A| match with the results obtained in the fourth-order system in the case

of α-quenching and flux loss. The behaviour of p , |A| , |B| and total shear with

rotation rate, Ω, can be seen in Fig. 3.6(a-d).

Almost similar results are found for different cases and are briefly discussed here.

For F1 = F3 = F, F2 = 1, and F3 = F, F1 = F2 = 1, the frequency, p , and

phase shift are influenced by b . For F2 = F, F1 = F3 = 1, p and phase shift

are similar to what we obtain in Case 5. All the numerical and analytic results

for high rotation, Ω ≥ 5 are listed in Table (3.2). We find disagreement between

numerical and analytic results which is caused by the strong shear quenching in

the system.

The results obtained in this section are now compared with the results obtained

from fourth-order system. We find that flux losses F2 and F3 control the fre-

quency of magnetic field p and phase shift ϕ with no influence of α-quenching,

which are consistent with fourth order system. In the absence of all nonlinear

transport coefficients (F1 = F2 = F3 = 1), p is independent of rotation rate.

Interestingly, for F1 = F, F2 = F3 = 1, p again does not depend upon rotation

rate which is similar to the Case 1 in Sect. (3.3). However, F2 and F3 no longer

behave in similar fashion like in fourth-order system and this behavior is caused

by the mean differential rotation. Also, scalings obtained from analytic results

and numerical simulations are not consistent as in fourth-order system, with a
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Chapter 3. Signature of Self-regulation in a Nonlinear Dynamo

(a) p as a function of rotation rate. (b) |A| as a function of Ω

(c) |B| a function of Ω (d) Total shear as a function of rotation rate.

Figure 3.6: Frequency of maximum intensity p , poloidal magnetic field |A| ,
toroidal magnetic field |B| and total shear as a function of rotation rate Ω for
F1 = F2 = F, F3 = 1 for Case 5 in the fifth-order system.

close match for two cases only (e.g., F1 = F2 = F3 = 1 and F1 = F2 = F, F1 = 1).

Decreasing behavior of b and a for higher Ω is observed for almost all cases ex-

cept for F1 = F2 = F, F3 = 1, that is, b and a are noticed to increase with

rotation for F1 = F2 = F, F3 = 1, which are consistent with Case 4 of Sect. (3.3).

There are some cases where the presence of F1 , F2 and F3 in equal amounts is

responsible for the fast growth of A/Ω as compared to |B| for higher Ω.

In summary, the dynamo action is inhibited by the severe quenching of magnetic

field for large rotation rate owing to the mean differential rotation generated by

the Lorentz force, i.e., in the absence of fluctuating differential rotation, quenching
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3.5. Nonlinear effect through fluctuating differential rotation

in mean differential rotation is perhaps very strong and suppresses the dynamo

for large Ω. Therefore, this highlights the importance of fluctuating differential

rotation to the self-regulatory behavior of differential rotation for the efficient

working of dynamo. This will be discussed in detail in the next section.

3.5 Nonlinear effect through fluctuating differ-

ential rotation

The aim of this section is to recognize/grasp the effect of fluctuating differential

rotation by assuming w0 = 0 in Eqs. (3.5)-(3.9). We solve the system numeri-

cally in order to investigate the behaviour of scalings of a , b , and p with Ω in

different cases as analytical solutions do not provide specific insights. For nu-

merical simulation ν is chosen to be 0.5 and the effects of nonlinear terms are

highlighted to show that the chaos is controlled in the presence of these terms.

I. F1 = F2 = F3 = 1: In this case, the system is investigated in the absence of

nonlinear transport coefficients. We find an increasing behaviour of frequency p

with rotation rate. Fluctuations are observed in the rapidly growing behaviour

of toroidal and poloidal magnetic fields with rotation rate. This behaviour owes

to the fluctuating differential rotation because of Lorentz force and gives rise to

chaotic behaviour for high rotation (cf Fig. 3.7(a-c)).

II. To understand the behaviour of p , b , and a with respect to rotation rate

in the presence of nonlinear transport coefficients, the local slopes α , β , and γ

are investigated and the scalings are summarised in Table 3.3. For α-quenching

case, i.e., F1 = F, F2 = F3 = 1, b is noted to grow very fast with Ω as com-

pared to the slow increase in frequency, p , and poloidal magnetic field. For equal

magnitude of α-quenching and toroidal flux loss there is a decrease in local slope

of magnetic field strength, b , by approximately half of what is observed in the

case of α-quenching considered without the influence of flux losses. Furthermore,

when equal amounts of poloidal flux loss are added to α-quenching and toroidal
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(a) p as a function of Ω (b) |A| as a function of Ω

(c) |B| as a function of Ω

Figure 3.7: Frequency of maximum intensity p , poloidal magnetic field |A| and
toroidal magnetic field |B| as a function of rotation rate Ω for F1 = F2 = F3 = 1
for Case 1 in the sixth-order system.

flux loss, the magnetic field strength, frequency and poloidal magnetic field are

shown to increase slowly indicating the role of poloidal flux loss and it is clear

that there is almost no contribution of poloidal flux loss in controlling the growth

of magnetic field strength.

For F2 = F3 = F , i.e., in the presence of equal amounts of both toroidal and

poloidal flux losses, a fast growth of toroidal magnetic and poloidal magnetic field

is observed as compared to the case where only toroidal flux loss is considered.

Interestingly, the scaling exponent, α , is found to have the same value of 6
5

in
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3.5. Nonlinear effect through fluctuating differential rotation

Transport coefficients ξ β γ
F1 = F, F2 = F3 = 1 0.63 0.73 0.71
F1 = F2 = F, F3 = 1 0.57 0.50 0.78
F1 = F2 = F3 = F 0.78 0.40 1.01
F1 = F3 = F, F2 = 1 0.81 0.36 0.95
F1 = 1, F2 = F3 = F 1.20 0.52 1.39
F1 = F2 = 1, F3 = F 1.20 0.44 1.24
F1 = F3 = 1, F2 = F - - -

Table 3.3: Scaling exponents for p , |B| , and |A| for Ω ≥ 5 in the cases of the
sixth-order system where p = Ωξ , |B| = Ωβ , and |A| = Ωγ .

both the cases. The case of poloidal flux loss only, (F2 = F, F1 = F3 = 1) shows

fluctuating behavior of p , b and a for higher rotation which is depicted from the

scattered behavior of local slopes of p , b and a in Fig. 3.8(a-c). This indicates

that the effects of fluctuating differential rotation are not reduced by poloidal

flux loss efficiently.

It is very clear from the detailed investigations of different cases of nonlinear

transport coefficients that fluctuating differential rotation is responsible for the

infinite growth of magnetic field strength. The magnetic field strength is reduced

by magnetic dissipation mechanisms such as α-quenching and toroidal flux loss

while poloidal flux loss helps generating the magnetic fields which can be seen in

the results where its addition to α-quenching and toroidal flux loss has helped in-

creasing the growth of b and a . This further suggests that fluctuating differential

rotation is necessary to balance the effects of shear-quenching caused by mean

differential rotation. The scalings of p , |B| , and |A| are are found to be highly

variable with Ω, particularly for small Ω. Therefore, we investigate the behavior

of p , |B| , and |A| as a function of Ω by calculating the local scalings and by

plotting them in Figs. 3.8(a-c). For different combinations of F1 , F2 , and F3 ,

we plot the results using different colours/linestyles in Figs. 3.8(a-c). We denote

the local scaling exponents of p , |B| , and |A| as ξ1 , β1 , and γ1 , respectively.

Clearly, the change in local scalings of p , |B| , and |A| becomes less variable for

high-rotation Ω ≥ 5 (cf. Figs. 3.8(a-c)).
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(c) β1 as a function of Ω

Figure 3.8: Local scalings ξ1 for p , γ1 for |A| , and β1 for |B| are plotted as
functions of rotation rate for different combinations of F1 , F2 , and F3 , where for
different combinations, different colours/linestyles are assigned as: for F1 = F2 =
F3 = F black/solid line, F1 = F2 = F, F3 = 1 green/dot, F1 = F3 = F, F2 = 1
gold/dash, F1 = 1, F2 = F, F3 = F pink/dash dot, F1 = F, F2 = F3 = 1
turquoise/dash dot dot, F1 = F2 = 1, F3 = F red/long dash, F1 = F3 = 1, F2 =
F turquoise/’+’.
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3.6 Self-regulatory behavior of seventh-order sys-

tem

It is important to note that the cases considered in section 3.3-3.5 are not con-

sistent with observations. In order to understand these observations, we have

already numerically investigated seventh-order system represented by Eqs. (2.1)-

(2.4) in Chapter 2. A thorough parameter study is performed by taking differ-

ent choices of nonlinear transport coefficients as well as ν = 1 and ν0 = 35.

The importance of dynamical balance among generation and destruction of mag-

netic fields is emphasised and dynamo is shown to work near marginal stability

which leads to almost linear increase in frequency and flattening of magnetic field

strength. It is also demonstrated that both mean and fluctuating differential ro-

tation are necessary for the working of a dynamo and could be a manifestation of

self-regulatory behaviour of magnetic fields and back reaction from Lorentz force.

This regulatory behaviour of seventh-order system is demonstrated by investi-

gating the balance among various effects of nonlinear transport coefficients and

mean/fluctuating differential rotation by using ν = 0.5. For the fixed value of

D = 2, dynamical balance of nonlinear terms is depicted in Fig. 3.9(a-b). The

balance between α-quenching term and poloidal flux loss term (depicted in black

and red color respectively) show that dissipation and generation of magnetic fields

are balanced in this case. Further, the dissipation of magnetic fields is found to

be double than the generation of magnetic fields for higher values of dynamo

number. The toroidal flux loss (red color) is noticed to balance the poloidal

magnetic field due to shear (black color). The detailed investigation of p and b

as well as the dynamical balance among various terms thus highlight that mean

and fluctuating differential rotations are required for the onset of dynamo near

marginal stability.
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(a) p as a function of rotation rate Ω. (b) Magnetic field strength |B| as a function of
rotation rate Ω.

Figure 3.9: Frequency p of magnetic field and toroidal magnetic field |B| are
plotted as a function of rotation rate Ω for F1 = F2 = F3 = F in case of the
seventh-order system for ν = 0.5 and ν0 = 35.0

(a) Dynamical balance between nonlinear terms on
R.H.S. of Eq(1).

(b) Dynamical balance between nonlinear terms
on R.H.S. of Eq(2).

Figure 3.10: Time series of different nonlinear terms for F1 = F2 = F3 = F in
case of the seventh-order system for ν = 0.5 and ν0 = 35.0

3.7 Conclusions

Upon conducting detailed study of nonlinear dynamo model in the presence of

above mentioned limiting cases, it is found that in the absence of mean differential

rotation and fluctuating differential rotation the system works near marginal sta-

bility. Linear growth of frequency, toroidal magnetic field and poloidal magnetic
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3.7. Conclusions

field with respect to rotation rate agree with theoretical predictions of kinematic

dynamo theory but shows no agreement with observations. Due to the back re-

action of Lorentz force, there is a strong shear quenching in the presence of mean

differential rotation which causes the shutting down of dynamo action even after

adding the various nonlinear transport coefficients to the system. This further

suggests that fluctuating differential rotation is required to diminish the effects

of shear-quenching which is another indication of self-consistent behaviour of two

differential rotations. Further, the indefinite growth of frequency, toroidal and

poloidal magnetic field due to fluctuating differential rotation is slowed down

without being saturated in the presence of various dynamo saturation mecha-

nisms. These results highlight that a shear-quenching is required to balance

the effect of fluctuating differential rotation. Thus we conclude from the results

obtained for various combinations of nonlinear transport coefficients in the pres-

ence of mean and fluctuating differential rotations that the right amount of both

differential rotations combined with different nonlinear transport coefficients is

required for the working of a dynamo near marginal stability which itself is a

signature of self-regulation of magnetic fields.
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Chapter 4

Spindown of solar type stars

We propose a spin-down model where the loss of angular momentum by magnetic
fields is dynamically treated, instead of being kinematically prescribed. To this
end, we evolve stellar rotation and magnetic field simultaneously over the stellar
evolution time by incorporating the nonlinear feedback mechanisms on rotation
and magnetic fields and examine the behaviour of rotation rate, Ω, with time, t ,
magnetic field strength, |B|, and frequency of magnetic field, ωcyc , with rotation
rate, Ω. Initially, rotation rate is found to decrease very rapidly with time until
there is a sudden transition from fast to slow spin down of stars. The dependence
of rotation rate on time illustrates exponential spin-down for rapid rotators and
power law spin-down for slow rotators. For fast rotators, the strength, |B| ,
is found to saturate for large Ω while for slow rotators, |B| increases almost
linearly with Ω. The analysis of the local frequency of magnetic fields reveals the
existence of the two (active and inactive) branches of magnetic fields for stars
with different frequencies ωcyc which have different scalings with rotation rate,
Ω: the active and inactive branches with power law scaling exponents 0.85 and
1.16, respectively. The transition from fast to slow rotators occurs very rapidly
with the disappearance of the active branch. The Vaughan-Preston (V-P) gap is
consistently explained in our model by the shortest spin-down timescale in this
transition from fast to slow rotators. All these results successfully reproduce the
key observations and capture the V-P gap in a self-contained model.
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Chapter 4. Spindown of solar type stars

4.1 Introduction

Modelling the rotational evolution of stars is among the most difficult problems

in astrophysics. Stellar angular momentum loss is assumed to play an important

role in the spindown of stars but its origin and evolution is still an unresolved

issue. With improved technical facilities over the years and availability of high

resolution data, it is important to develop models which can provide an insight

into the various observations such as rotation rate, magnetic activity and stel-

lar spin-down etc. For the past few decades, a number of models have been

developed to understand the rotational evolution of stars: double zone models

(DZM)(MacGregor and Brenner, 1991; Keppens et al., 1995; Allain, 1998; Lep-

rovost and Kim, 2010; Spada et al., 2011; Reiners and Mohanty, 2012; Gallet and

Bouvier, 2013), symmetrical empirical model (SEM) (Barnes, 2010; Barnes and

Kim, 2010) and metastable dynamo model (MDM)(Brown, 2014). Recently, Matt

et al. (2015) proposed a stellar wind torque model which derives the dependence

of stellar wind torque on the Rossby number.

Spindown of stars is a complex process as a star undergoes various internal

changes since its birth, as a collapsing giant molecular cloud to pre-main se-

quence phase. We recall that during early pre-main sequence evolutionary stage,

the young stars are fully convective and experience changes in their internal struc-

ture. When the star is in early protostar evolutionary phase, a thick stellar core

is developed as a result of adiabatic contraction. This stellar core leads to the

formation of radiative core due to various changes in the star. This radiative core

rotates faster than convective envelope, and as a result, of strong coupling be-

tween core and envelope, rotation of convective envelope increases. In the whole

process, there is a loss of angular momentum via stellar wind which gradually

stops the spin up of convective envelope and a fast spin down starts as the star

reaches the main sequence. It has been thought that the loss in angular momen-

tum slows down the surface layers and a differential rotation is produced beneath
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the outer convective zone. When this differential rotation is unstable, it can lead

to turbulence which transports angular momentum between the interior and the

convection zone.

Depending on the spindown process the stars are divided into two groups of Ac-

tive (A) and Inactive (I) based upon a power law relationship between the cycle

periods Pcyc of magnetic fields and rotation period Prot of the stars (Brandenburg

et al., 1998; Saar, 2002; Barnes, 2003). The power law dependence of cycle period

on rotation period was first established by Noyes et al. (1984) as Pcyc ∝ P n
rot with

a power law index n = 1.25± 0.5. Further, Brandenburg et al. (1998) and Saar

(2002) explained the existence of two branches, namely active and inactive with

active branch consisting of rapidly rotating young stars with Pcyc ∝ P 0.80
rot and

inactive branch comprising of slow rotating old stars with Pcyc ∝ P 1.15
rot . It is

observed that magnetic activity is saturated for fast rotating young stars while

it increases linearly with rotation for slow rotating old stars (Saar, 2002; Barnes,

2003; Pizzolato et al., 2003; Wright et al., 2011). The relationship of Ω with t

is also different for fast rotators and slow rotators. For fast rotators, there is an

exponential dependence of Ω on t as Ω ∝ emt where m is a negative constant.

For slow rotators, a power law dependence of Ω on t is observed, for instance,

as Ω ∝ t−0.50 (Skumanich, 1972). The gap between active and inactive branch

is known as Vaughan-Preston (V-P) gap which was first observed by Vaughan

and Preston in 1980 in Mount Wilson Observatory (MWO). Various reasons have

been proposed for the presence of this gap such as the possibility of different dy-

namos for two sequences, a change in morphology of magnetic field, change in

character of convection, absence of radiative core causing the change in magnetic

field generation, etc. (Durney et al., 1981; Scholz, 2009; Böhm-Vitense, 2007).

Barnes (2003, 2010) has done notable work explaining the reasons for this gap

between active and inactive branches and why the spindown timescale for the

stars in the gap is much shorter than the time scale for stars in active sequence

which itself is shorter than the time scale in case of inactive sequence.
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In this Chapter we propose a new dynamical model of spindown by treating the

evolution of magnetic fields and rotation on the same footing and successfully

reproducing the key observations noted above. The remainder of this Chapter is

organised as follows. We discuss our model in Section 4.2, results in section 4.3

and conclusions are summarised in section 4.4.

4.2 Model

We propose a dynamical model for the evolution of rotation rate and magnetic

field in spindown by extending our nonlinear system mentioned in Chapter 2 by

replacing D with time dependent Ω2 in Eq. (2.5) (see Chapter 2, Section 2.2)

and adding the equation of evolution for rotation rate in the system (2.5)-(2.8).

Specifically, this extended model takes the following dimensionless form

Ȧ =
2Ω2B

1 + κ(|B|2)
− [1 + λ1(|B|2)]A, (4.1)

Ḃ = i(1 + w0)A− 1

2
iA∗w − [1 + λ2(|B|2)]B, (4.2)

ẇ0 =
1

2
i(A∗B − AB∗)− ν0w0, (4.3)

ẇ = −iAB − νw, (4.4)

Ω̇ = −ε1|B|2Ω− ε2
|A|2

Ω2
Ω. (4.5)

Equations (4.1)-(4.4) are same as Eqs. (2.5) -(2.8) and are explained in detail in

Section 2.2. Equation 4.5 represents the spindown of stars due to loss of angular

momentum by magnetic field. The constant parameters ε1 and ε2 represent the

efficiency of angular momentum loss1 via toroidal and poloidal magnetic fields,

respectively, as a result of magnetised stellar winds (Keppens et al. 1995). Here,

|B| represents the strength of toroidal magnetic field and |A|
Ω

(the second term

on R.H.S of Eq. 4.5) is the strength of poloidal magnetic field in physical units

1Effectively, the value of ε1 and ε2 determines the required total computation time to slow
down the younger Sun rotating 30 times faster to the present solar rotation. We have confirmed
that the values of these two constants have no effect on our results.
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due to our non-dimensionalisation (see Sood & Kim 2013).

4.3 Results

The system is investigated by taking ν = 0.5, ν0 = 35.0, κ = 0.025, λ1,2 = 1.125

and ε1,2 = 0.000035. To model spindown, we take initial value of Ω to be 30,

which corresponds to the thirty times solar rotation (Ω = 1 at present in our

non-dimensionalisation)

4.3.1 The Ω− t relationship

Figure 4.1(a-c) show the relationship between Ω and t . A sharp decrease in Ω can

be seen for smaller time which slows down as time starts increasing (Fig. 4.1(a)).

We fit this Ω−t curve using exponential law, i.e., Ω ∝ emt , where m is a negative

exponential scaling exponent and power law, i.e., Ω ∝ tn , where n is the power

law exponent. In Fig. 4.1(b), for smaller time (very high rotation rate) we obtain

exponential fitting with scaling exponent m = −0.0002 for rapidly rotating stars

with rotation periods 3 < Prot ≤ 1. For larger time we obtain power law scaling

which varies for different rotation rates and decreases from -1.73 to -0.51. For

larger time (slow rotation rate), the power law exponent n is found to be -0.51

for slow rotating stars with rotation periods in the range 25.6 ≤ Prot < 23 (see

Fig 4.1(c)). For different rotation rates we summarise the scalings in Table (4.1).

Table 4.1: Power law exponent n for stars with different rotation period in days

n Ω Prot(days)
-1.73 Ω ∈ [5.8, 3.5] 5.17 - 8.57
-1.38 Ω ∈ [3.5, 1.99] 8.57- 15
-0.97 Ω ∈ [1.99, 1.50] 15 - 20
-0.70 Ω ∈ [1.50, 1.28] 20 - 23.4
-0.51 Ω ∈ [1.28, 1.17] 23.4 - 25.6
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Figure 4.1: Behaviour of rotation rate Ω is shown as function of time.

4.3.2 The |B| − Ω relationship

The magnetic field strength, |B| , is shown as a function of rotation rate in Fig.

4.2(a-b). We note that |B| behaves differently for two different rotation rate

regimes. For slow rotation rate regime, we can clearly see the increasing behavior

of |B| with rotation rate which attains a maximum value at Ω ≈ 5.8. Interest-

ingly, there is decrease in |B| which continues up to Ω ' 12.5. For Ω ≥ 12.5,

i.e., for very high rotation rate regime, we find a fluctuating behaviour (doubly

periodic) of |B| for which time averaged value of maximum and minimum, de-

picted in red color, is noticed to become independent of rotation rate. These
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fluctuations in |B| are due to the presence of two modes of |B| with different

frequencies. The fluctuating behaviour of |B| with Ω can be seen in Fig. 4.2(b)

for a small cut of Ω ∈ [23.30, 23.31] and clearly fluctuations are observed to be

more rounded at the top while narrow at the bottom. That is, for rapid rotation

|B| spends more time near the top as compared to near the bottom and therefore,

the time averaged value of |B| is a bit higher than the average value of maximum

and minimum (see Fig. 4.2(a)). Furthermore, we notice a gap between the two

different rotation rate regimes in the region Ω ∈ [5.8, 12.5].
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Figure 4.2: Magnetic field strength |B| is shown as a function of Ω. Also, fluctu-
ating behavior |B| for high rotation rate regime is shown for Ω ∈ [23.30, 23.31]

4.3.3 The Power spectra of B and the ωcyc−Ω relationship

We use fast Fourier transforms (FFT) to analyse the time series of B . We divide

the data in equal number of bins of size 150000 and use FFT for further investi-

gations where time is computed using bin-size and time step. The power spectra

of B is noted in Fig. 4.3(a-d) from high to slow rotation rate. Note that the

plots in each subfigure are plotted in four rows and two columns and they must

be seen in rows. The number written at the top of each plot represents the time

for which power spectrum is obtained. In Fig 4.3(a), for the first row, there are
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Chapter 4. Spindown of solar type stars

two subplots. We can clearly see that in case of smaller time there are two peaks

of frequency followed by localised frequencies for the first subplot and the subse-

quent plot in the same row. Almost similar behavior can be seen for all subplots

in second, third and fourth row of Fig. 4.3(a), respectively. We find that peaks

gradually shift towards lower frequency as time increases. Figure 4.3(b-c) show

the gradual shift of peaks towards lower frequency with increasing time. This be-

havior continues until we reach approximately 4200, beyond which the multiple

peaks of frequency are found to diminish. For time ∈ [4200, 30000], we find only

a single peak of frequency (see Fig. 4.3(d)) which depicts time ∈ [4200, 4800]).

The behavior of power spectra of B clearly shows that the second peak of fre-

quency vanishes as time increases, that is, the rotation rate decreases.

We further use an advanced method to find FFT of the system using short time

Fourier transforms (STFT) to show the behavior of localised frequency of maxi-

mum intensity with time and rotation rate, respectively. In the STFT technique,

again, the magnetic field data is divided into equal chunks of 150000 and these

chunks are overlapped to find the maximum intensity frequency of the magnetic

field. We observe two branches of frequency of maximum intensity ωcyc (depicted

in red color) with time (Fig. 4.4(a)). The upper line has larger amplitude of

frequency (say ωAcyc ) than the lower line (say ωIcyc ), where the upper and the

lower lines correspond to active and inactive branches of stars, respectively. We

find a decreasing behavior of both branches of frequency of maximum intensity

with time. It is interesting to see that the upper branch, ωAcyc , vanishes near the

time ' 4200 and we are left with only the lower branch of frequency, ωIcyc , which

slowly decreases with time. Figure 4.4(b) depicts the behavior of frequency of

maximum intensity, ωcyc , with rotation rate, Ω. Again, we notice that for high

rotation rate we have two branches of frequency whereas, for slow rotation rate

we only have one branch of frequencies. We use the power law relationship, i.e.,

ωAcyc ∝ Ωr , where r is the power law exponent for upper branch of frequency

of maximum intensity and ωIcyc ∝ Ωq , where q is the scaling exponent for lower
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branch of frequency. We find the value of r = 0.85 for stars with rotation periods

1 ≤ Prot ≤ 2, which is very close to the scaling exponent for stars in the active

branch. It is noticed that the scaling exponent q of lower branch varies with

rotation rate. It takes a value of 1.16 for Sun-like stars with rotation periods in

the range [8.75, 25.6], which is in good agreement with observed scaling exponent

for old Sun-like stars lying on the inactive branch. For different rotation rates

we summarise the scalings for lower branch of frequency of maximum intensity

in Fig. 4.4(b) with rotation rate Ω, that is, ωIcyc ∝ Ωq in Table (4.2).

Table 4.2: Power law exponent q for lower branch of frequency ωIcyc with rotation
rate Ω for stars with different rotation periods.

q Ω Prot(days)
1.16 Ω ∈ [1.17, 3.5] 25.6 -8.7
0.98 Ω ∈ [3.5, 6] 8.7 - 5
0.80 Ω ∈ [6, 13] 5 - 2.30
1.06 Ω ∈ [16, 30] 1.88 - 1

4.3.4 The total shear - Ω relationship

In our dimensionless unit, the total shear is given by 1 + w0 . We present how

this quantity changes with rotation rate Ω in Fig. 4.5. As Ω increases from

Ω = 1, the total shear is seen to decrease by 90% from 1 to 0.1 with increasing

Ω. This reduction in total shear results from the effect of magnetic back-reaction

on the shear. The saturation of the total shear for high rotation indicates that

the dynamo efficiency is not saturated beyond certain rotation rate. After taking

the minimum value around Ω = 12.5, the total shear increases with Ω in a small

interval Ω ∈ [12.5, 17] and then remains almost constant for high rotation rate

Ω ≥ 17. It is important to note that the apparently broad band of the total

shear for Ω ≥ 12.5 in Fig. 4.5 is due to the two different modes with different

frequencies existing in this interval. The inset in Fig. 4.5 shows the total shear

for a small range of Ω ∈ [29.82, 29.84] to highlight the fluctuation in total shear

due to the two modes. Finally, the Ω = 12.5 value where the total shear takes its
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Figure 4.3: Power spectra of magnetic field B is shown as a function of frequency.
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minimum value and is related to a very rapid transition in rotational evolution

and is related to the V-P gap as shall be discussed later.
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Figure 4.5: Total shear 1 + w0 as a function of rotation rate Ω.

4.3.5 The |B| - Age Relationship

Figure 4.6(a) depicts the behavior of magnetic field strength, |B| , with dimen-

sionless time. We find that |B| is fluctuating (doubly periodic) for time up to

t ≈ 4200 followed by an increasing behavior until it attains a maximum value
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around 7313. After this |B| is found to decrease with time. In Fig. 4.6(b) the

magnetic field strength is shown as a function of age where we have presented

the age on x-axis in physical units by scaling our dimensionless time by the age

of present Sun of 4 × 109 years with initial age of 3 × 107 years. The magnetic

field strength |B| is observed to maintain almost the same mean value fluctuating

with finite amplitude for very young fast rotating stars of age up to 590 Myrs

(Mega years). This fluctuation is due to the presence of two different modes, as

is discussed in subsection (4.3.1). The magnetic activity is noticed to increase

with age in the range ∈ [590, 830] Myrs as |B| ∼ ts with a power law exponent

s = 0.53, after which the magnetic activity remains almost constant in the age

interval ∈ [830, 1100] Myrs. Beyond this value the magnetic activity decreases

very rapidly with increasing age. We find that the power law exponent, s , varies

with different values for stars with different ages and are provided in Table (4.3).

This decrease in magnetic activity becomes steeper as the star ages and is in

good agreement with observations carried out by Pace et al. (2009). In their

observational analysis of a sample of almost 40 stars, which includes Hyades and

Praesepe (both 0.7 Gyrs) along with five open clusters IC4756, NGC5822, NGC

3680, IC4651, and M67 with ages 1.2, 1.4, 1.7 and 4.3 in Gyrs, respectively, they

concluded that after 700 Myrs there is no correlation between magnetic activity

and age. They also observed a rapid transition from active to inactive branch

between the ages of 1.2 Gyrs to 1.4 Gyrs with a fast drop in magnetic activity

between these ages. It is imperative to highlight that the sample size studied

in above mentioned observations is very small and Pace et al. (2009) have par-

ticularly emphasised that owing to the small sample size and the method of

calculating the ages of the stars, high end observations of larger sample size are

required for accurate results (Pace, 2010).
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Figure 4.6: Magnetic field strength |B| is shown as function of dimensionless
time in (a) while (b) depicts the magnetic field strength as a function of age in
physical units by scaling the x-axis with age of the Sun.

Table 4.3: Power law exponent s for magnetic activity with age t of stars ∈
[1.066, 4]Gyrs

s Age (Gyrs)
-0.61 t ∈ [1.100, 1.363]
-0.97 t ∈ [1.363, 2.030]
-1.13 t ∈ [2.030, 2.697]
-1.25 t ∈ [2.697, 3.364]
-1.40 t ∈ [3.364, 4.03]

4.3.6 The time-scale for spindown

In order to quantify the time scale of spindown, we numerically compute the

characteristic spindown time, τ = |Ω/∂tΩ| , by using Eq. (4.5) as we evolve the

system, and then show the suitable averaged value in Fig. 4.7(a) and Fig. 4.7(b)

by using linear and log scales, respectively. The time on the x-axis is given in

physical time unit by scaling our dimensionless time1 by the age of present Sun of

4× 109 years. In Fig. 4.7(a), red color depicts the mean value2 of timescale over

time. Clearly, we observe a spindown timescale of 300 Mega years (Myrs) for very

2This mean value is obtained over the 1
420 fraction of the interval.
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young fast rotating stars of ages from 30 Myrs to 590 Myrs approximately, beyond

which the spindown timescale decreases with increasing age for a short interval

[590, 900]. This decline in spindown time reaches a minimum of approximately

233 Myrs for age 900 Myrs. After this, the spindown timescale starts increasing

with the age of the stars. Specifically, the spindown timescale increases linearly

for solar typle stars with ages approximately 4 Giga years (Gyrs). The shortest

spindown timescale is obtained in the region [590, 1100] Myrs (Ω ∈ [5.8, 12.5])

noted previously, and interestingly corresponds to V-P gap, transition region

between fast and slow rotators, i.e., this is the region where a star suddenly

jumps from active to inactive branch staying for a short timescale due to the

fast spin down. To summarise, our results show that the spindown time for fast

rotating stars in that region is shorter than the spindown time for slow rotating

stars while the spindown timescale for stars in the transition region is even much

shorter than the spindown timescale for fast rotating stars. These results are in

good agreement with observations for spindown timescale (Barnes, 2003).
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Figure 4.7: Spindown timescale as function of age in Gyrs (1G = 109) depicted
in linear- and log-scale respectively.

88



4.4. Conclusions

4.3.7 Summary of results

Investigations of Ω−t , |B| , ωcyc , 1+w0 , with Ω, magnetic activity and spindown

timescale with age show that all the results are consistent with observations for

spindown process for fast and slow rotating stars, respectively. Abrupt transition

of stars from active (A) to inactive branch (I ) and its underlying physics are still

an unsolved issue. There have been different reasons proposed to explain the ex-

ponential spindown for fast rotators and power law spindown for slow rotators, for

instance, as a consequence of changes in dynamo due to various nonlinear trans-

port coefficients. During most of the pre-main sequence evolution, the changing

internal structure of star dominates other effects and star spins up to become

differentially rotating object (Keppens et al., 1995). This differential rotation

produced beneath the outer convection zone leads to mild turbulent diffusion

and an angular momentum is transported from interior to the outer convection

zone. For rapidly rotating stars the convection zone is not large and stellar lay-

ers are not very deep where dynamo operates (Böhm-Vitense, 2007). Since the

star is differentially rotating, it experiences back reaction of shear produced by

Lorentz force and α-effect is quenched as a result of rapid rotation. Thus, the

growth of magnetic field is inhibited by various transport coefficients and dy-

namo action is saturated for rapid rotators. In the case of slow rotating old stars

there are deeper surface layers and large convection zones where the magnetic

field strength produced is strong enough to sustain its linear growth against ro-

tation rate despite the back reaction of shear and other quenching mechanisms.

Even without incorporating these other effects, our dynamical model coupled to

spindown successfully captures the V-P gap.

4.4 Conclusions

We investigate a dynamical model of dynamo and rotation for spindown. The

motivation of our work stems from the idea that the generation of magnetic field
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and spindown are closely inter-linked processes, i.e., the generation of magnetic

fields depends on rotation of stars and, thus spindown, while spindown process

crucially depends upon the magnetic field (e.g. generation, destruction) and dif-

ferential rotation. For the first time our model evolves magnetic field and rotation

rate in spindown at the same time by taking into account various feedback mech-

anisms that are important in generation and destruction of magnetic fields during

the spindown of stars.

We have already mentioned the importance of nonlinear transport coefficients in

the evolution of magnetic field and self-regulation of dynamo (Sood and Kim,

2013, 2014). Based upon our previous results and recent investigations we pro-

vide an explanation for linear increase of magnetic field strength in case of slow

rotating stars and flattening of magnetic field strength in case of fast rotating

stars. These nonlinear transport coefficients capture the effect of generation and

destruction of magnetic fields and control the growth of magnetic field strength

for higher rotation rate. Strong shear quenching in our model is also responsible

for inhibition of magnetic fields. We note that evolution of magnetic fields and

rotation rate is a self-regulated process which depends upon various internal and

structural changes during star formation. Shear is thought to produce among

the layers for stars with developed radiative cores which causes the generation of

large scale magnetic fields essential for dynamo action (Barnes, 2003). Fast ro-

tating stars being fully convective have weak differential rotation dependence on

rotation rate (Donati and Collier Cameron, 1997) and an unstable magnetic field

is produced beneath the surface layers which does not sustain a linear dynamo

or in other words, dynamo is saturated.

Despite being a simple parameterised model our working framework successfully

reproduces the observations for spindown of stars which cannot be explained by

full 3D MHD simulations. In particular, we have found exponential spindown,

saturation of magnetic field strength and power law dependence of frequency of

magnetic fields of active and inactive branches for rapidly rotating stars. For
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slow rotators, we obtained power law spindown, linear increase of magnetic field

strength and power law relationship of ωcyc on Ω with power law scaling 1.16 for

inactive branch. The transition from fast to slow rotating stars is quantitatively

shown to occur very rapidly, thereby providing an explanation for the V-P gap.
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Chapter 5

Regulation of kinematic dynamo

by shear flow

Magnetic fields and shear flows play an important role in many systems including
astrophysical, geophysical and laboratory plasmas. Here we investigate how the
growth of magnetic fields is modified by large-scale shear flow by investigating a
kinematic dynamo in a spherical shell of highly conducting fluid surrounded by
an insulator. A small scale prescribed velocity field is taken to be axisymmetric,
steady and strongly helical. Small-scale flow is chosen in such a way that it
allows the dipole/quadrupole decoupling for magnetic field B . On the other
hand, large-scale shear flows are taken to be in radial or latitudinal directions.
By numerically solving the induction equation with the prescribed small-scale
flow and large-scale shear flow, we investigate the effects of large scale shear on
dynamo for different azimuthal m modes for large magnetic Reynolds number
Rm such as the growth rate and structures of magnetic field B . In all the cases,
the growth rate of the magnetic field is found to decrease as the strength of shear
flow increases, which indicates that the dynamo is suppressed in the presence of
shear.
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5.1 Introduction

Sun and stars possess small scale and large scale magnetic fields maintained by the

inductive motion of conducting fluid known as dynamo process (Parker, 1955).

This dynamo process is thought to produce the magnetic activity cycle of 11 years

and generation of sunspots at the surface of the Sun. Theoretically, the dynamo

process is categorised in two regimes: linear and nonlinear. In linear regime the

induction equation is solved in the presence of prescribed velocity field such that

the magnetic field is very small as compared to the velocity field and does not

alter the flow. The dynamos studied in this framework are known as kinematic

dynamos. The kinematic theory is no longer valid if the magnetic field becomes

strong enough to alter the velocity field and the Lorentz force acts back on the

velocity field and induction then becomes nonlinear. These types of dynamos

are known as nonlinear dynamos. Due to the complex nature of the equation

and being computationally expensive in time, generally the induction equation

is solved in the framework of kinematic dynamo theory. Further, dynamos are

divided into two categories namely large scale and small scale dynamos. For large

scale dynamos the flows are chosen to be large scale, i.e., the fields are evolved

on large scale by averaging and considering the mean part of the governing equa-

tions, specifically, the induction equation and are known as mean field dynamos.

To study small scale dynamos, the flows are chosen to be small scale and these

type of dynamos work under fully isotropic conditions. Small scale or fluctuating

dynamos play a crucial role in understanding of the fundamental physical pro-

cesses in astrophysical bodies as these are common to random flows in conducting

fluid (Brandenburg and Subramanian, 2005). Small scale dynamos could be fast

or slow depending upon the nature of the growth rate of magnetic field with

magnetic Reynolds number (Childress and Gilbert, 1995). A small scale dynamo

is assumed to be fast dynamo if the growth rate of the magnetic field becomes

constant for large Rm , that is, advection dominates the process, otherwise, a
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small scale dynamo is considered to be a slow dynamo.

It is revealed through high end observations that shear is produced in the base

of convection zone near tachocline and is the main ingredient in the working of

a solar dynamo. In traditional α-Ω dynamo theory, shear is believed to play

an important role for the generation of toroidal field from poloidal field whereas

helicity is thought to produce poloidal field from toroidal field (Moffatt, 1978).

Dynamo action in the presence of shear is investigated numerically in a number of

studies (Yousef et al., 2008a,b; Käpylä and Brandenburg, 2009; Hughes and Proc-

tor, 2009, 2013; Heinemann et al., 2011; Mitra and Brandenburg, 2012; Proctor

and Hughes, 2011) indicating that the presence of shear enhances the growth rate

of large scale magnetic field which helps in the working of a dynamo. However,

theoretical studies, by taking a stable shear flow parallel to the large scale mag-

netic field (Leprovost and Kim, 2008) and by considering no direct interaction of

large scale shear with magnetic field in kinematic limit without backreacting on

the velocity field (Leprovost and Kim, 2009), predict the quenching of α effect

and other turbulent transport coefficients. Recently, Tobias and Cattaneo (2013)

considered interaction between helical flow and shear, and observed that shear

reduces the generation of magnetic fields at small scale instead of enhancing the

generation of magnetic fields at large scale.

Most of the numerical studies noted above are carried out in the periodic box

domain by imposing uniform shear in the presence of different set of conditions

such as forced helical/nonhelical turbulence (Yousef et al., 2008a,b). Our investi-

gations of dynamo action in spherical shell are more realistic and relevant to the

astrophysical bodies, specifically, the Sun and helps us to provide valuable insight

in the working of dynamo. Previously, the dynamo action in spherical shell by

taking small scale flows has been studied by Hollerbach et al. (1995) which turns

out to be a fast dynamo. Transition form large scale to small scale dynamos in

spherical geometry was investigated by Richardson et al. (2012). We know that

a large scale radial shear is produced at the base of solar convection zone and a
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strong latitudinal shear also works at the same time. Therefore, it is compelling

to investigate the effect of large scale radial and latitudinal shear on small scale

flows in spherical geometry to enhance the understanding of how large scale shear

effects the properties of small scale flows.

The remainder of the chapter is arranged as follows. In Section 5.2 we discuss the

mathematical formulation of the problem and governing equations. Section 5.3

discusses the results obtained from numerical simulations followed by conclusions

in Section 5.4.

5.2 Governing Equations

In the framework of kinematic dynamo theory, we solve induction equation

∂B

∂t
= ∇× (ut ×B) +R−1

m ∇2B, (5.1)

in a spherical shell where Rm represents magnetic Reynolds number and is defined

as Rm = UL/η . Here, U is the characteristic velocity scale, η is the magnetic

diffusivity and L is the characteristic length scale equivalent to the radius of

shell. The prescribed velocity field, ut , is axisymmetric and is chosen in such a

way that we have small scale cells separated by large scale.

ut = vtêϕ +∇× (ψsêϕ). (5.2)

Here vt represents the zonal flow, ψs represents the meridional circulation and

êϕ is the unit vector in azimuthal direction. The nature of flow is steady and

strongly helical such that the cells are like Roberts flow near equator (Roberts,

1970, 1972). The total zonal flow is given by

vt = vs + Spr sin θvl, (5.3)
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where, vs is the small scale velocity field similar to Richardson et al. (2012)1 rep-

resents large scale shear in the azimuthal direction and Sp is the shear strength

of large scale shear. Here

vs = sin

(
(r − ri)
(r0 − ri)

Nrπ

)
sin θ cos(Nθθ), (5.4)

vl =

 (r − 0.75), is the radial shear,

(cos2 θ − 0.5), is the lattitudinal shear,
(5.5)

ψs is the small scale meridional circulation

ψs =
1

Nθ

r cos θ sin

(
(r − ri)
(r0 − ri)

Nrπ

)
sin θ cos(Nθθ), (5.6)

Here, vs has equatorial symmetry whereas the factor of cos θ in ψs changes the

equatorial symmetry of ψs to be opposite of vs . Hence, we have dipole/quadrupole

decoupling for B . In addition, ri and ro are the inner boundary and outer bound-

ary of the shell, respectively. Nθ = 4Nr , where Nr and Nθ are the number of

cells in r and θ , respectively. Therefore, we investigate two flows in the current

simulations: Flow1 and Flow2. Flow1 is the small scale flow in the presence of

large scale radial shear and equation is given as

ut = (vs + Spr sin θ(r − 0.75))êϕ +∇× (ψsêϕ). (5.7)

Flow2 is the small scale flow in the presence of large scale latitudinal shear with

equation of the flow noted as

ut = (vs + Spr sin θ(cos2 θ − 0.5))êϕ +∇× (ψsêϕ). (5.8)

1Our vs is similar to Richardson et al. (2012) but ψs has an extra term of cos θ so that ψs

has opposite symmetry to vs .
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Figure 5.1: Here we represent the dimensionless velocity components ur , uθ and
uϕ of the flow in the presence of radial shear in azimuthal direction depicted
in first, middle and last panel, respectively. Clearly, ur is symmetric, uθ is
antisymmetric while uϕ is symmetric.

We use the spherical-shell MHD code described by Hollerbach (2000) to investi-

gate the above flows numerically. The brief details of the code are noted here.

This code solves the induction equation in kinematic regime for axisymmetric

velocity field by decomposing the magnetic field into its poloidal and toroidal

components such that B ∝ exp(imϕ) where m 6= 0. The decomposition of the

magnetic field in toroidal and poloidal components is given as:

B = ∇× gêr +∇×∇× hêr, (5.9)
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Figure 5.2: Here we represent the dimensionless velocity components ur , uθ
and uϕ of the flow in the presence of latitudinal shear in azimuthal direction
illustrated in first, middle and last panel, respectively. Clearly, ur is symmetric,
uθ is antisymmetric while uϕ is symmetric.

where g and h are the toroidal and poloidal scalar fields, respectively and êr is

the unit vector in radial direction. Further, the toroidal and poloidal parts of

the magnetic field are expanded in their spectral coefficients such as Legendre

function in θ and Fourier expansion in ϕ as follows:

g =
Lmax∑
l=m

glm(r)Pm
l (cos θ)exp(imϕ), (5.10)

h =
Lmax∑
l=m

hlm(r)Pm
l (cos θ)exp(imϕ), (5.11)
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where m is fixed and Lmax represents the largest value of l for which the sums

are truncated. The radial structures of g and h are expanded in Chebyshev

polynomial series with maximum Chebyshev collocation point Kmax . Since the

shell is fully conducting, the inner and outer regions of the shell are considered

to be insulating with boundary condition

glm = 0

(
∂

∂r
− l + 1

r

)
hlm = 0, for r = ri,

glm = 0

(
∂

∂r
− l

r

)
hlm = 0, for r = ro.

The inner boundary of the shell is ri = 0.5 and outer boundary of the shell

is ro = 1, which are in dimensionless units with characteristic lengthscale L ,

considered to be the radius of the shell.

5.3 Results

In this section we summarise the results from the numerical simulation for two

flows, i.e., in the presence of radial shear and latitudinal shear. For (Nr, Nθ) =

(5, 20), the numerical simulations are performed by varying the magnetic Reynolds

number from Rm ∈ [100, 10000] and m ∈ [1, 50] with times step dt = 0.002,

Kmax = 180 and Lmax = 360. For (Nr, Nθ) = (10, 40), we have carried out the

numerical simulations by varying Rm in same range as above, with m ∈ [1, 20],

dt = 0.001, Kmax = 300 and Lmax = 360.

5.3.1 Growth rate as a function of Rm

This section studies the growth rates evaluated in terms of eigenmodes as a func-

tion of magnetic Reynolds number, Rm , for (Nr, Nθ) = (5, 20) and (Nr, Nθ) =

(10, 40), respectively, for different m modes by considering the velocity field in

the absence/presence of shear. First, we study the behavior of growth rate for

(Nr, Nθ) = (5, 20) in Fig. 5.3 in the absence of shear flow by taking Rm on
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logarithmic scale. The growth rates are found to increase initially showing the

onset of the dynamo for small Rm . After attaining a maximum value for a crit-

ical magnetic Reynolds number Rmc , the growth rates are observed to decrease

with increasing Rm in Fig. 5.3(a) indicating a slow dynamo. m = 10 is noticed

to be the most excited mode in this case beyond which peak amplitude of the

growth rate starts decreasing with increasing the m value. Addition of radial

(Flow1) or latitudinal shear (Flow2) in the flow shows almost similar behavior

of growth rates with Rm and can be seen in Fig. 5.3(b-c) for shear strength 3,

i.e., the amplitude of growth rate is reduced in the presence of both shears, how-

ever, latitudinal shear is found to suppress the growth rates more as compared

to radial shear. Modes with m = 15, 20 are the most excited modes in case of

Flow1 and Flow2 which ensures that if we further increase the value of m , it will

show a decline in the amplitude of the growth rate. Almost similar results are

obtained for (Nr, Nθ) = (10, 40) in the absence/presence of shear (see Fig.5.4(a-

c)). Therefore, we conclude that presence of the large scale shear suppresses the

small scale flows depicting the quenching of dynamo.

5.3.2 Growth rates with shear strength

Here, we study the behavior of growth rates with shear strength (Fig. 5.5(a-b))

for Nr = 5, 10, respectively, with fixed Rm = 1000 and fixed modes m = 5, 10

in case of Flow1 and Flow2. Clearly, the amplitude of growth rate is observed

to decrease with shear strength in both flows for Nr = 5 for mode m = 5 and

m = 10 in Fig. 5.5(a), when the shear strength is increased in positive or negative

direction. Similar results have been obtained in case of Nr = 10 (cf. Fig. 5.5(b)),

i.e., the growth rate is found to decrease in the case of increasing shear strength.

This trend indicates that the small scale flows are suppressed with increased

shear parameter in the presence of large scale radial and latitudinal shear in the

direction of azimuthal velocity field.

101



Chapter 5. Regulation of kinematic dynamo by shear flow

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

R
m

G
ro

w
th

 R
ta

e

Shear parameter =0, N
r
 =5

 

 

m 1
m 2
m 3
m 5
m 7

m 10
m 15
m 20
m 30
m 50

(a) No shear, Nr = 5

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

R
m

G
ro

w
th

 R
at

e

Shear parameter =3, N
r
 =5, Flow1

 

 

m 1
m 2
m 3
m 5

m 7
m 10
m 15
m 20

(b) Shear parameter = 3, Flow1, Nr = 5
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(c) Shear parameter = 3, Flow2, Nr = 5

Figure 5.3: Here we plot the behavior of growth rates for (Nr, Nθ) = (5, 20). Fig.
5.3(a) shows the behavior of growth rates with no shear while 5.3(b) and 5.3(c)
show the behavior of growth rates with Rm for Flow1 and Flow2, respectively,
for shear strength 3. The decreasing behavior of growth rates with increasing Rm

ensures the slow dynamo in the presence of either shear.

5.3.3 Contour plots and energy spectrum

Here, we investigate the generation of magnetic field for different combinations

of m and Nr for Rm = 1000 in case of Flow1 and Flow2 for shear strengths 1, 3

and 7. Note that we choose m = 5, 10 and Nr = 5, 10.
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(b) Shear parameter = 3, Flow1, Nr = 10
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Figure 5.4: The same as in Fig. (5.3), but here (Nr, Nθ) = (10, 40).

I. m = 5, Nr = 5, Nθ = 20, Rm = 1000

The magnetic field structures of ϕ component of B for Flow1 and Flow2 can be

seen in Fig. (5.6 (a-f)) with color coding on a spectrum of blue to red representing

a range of negative to positive values, respectively. Fig. (5.6(a)) shows the

contour plot of Bϕ for shear strength 1 for Flow1 and we find that magnetic

field is generated near the edge of the shell. Cells are distorted and concentrated

at the inner boundary of the shell. Similar trend is noticed in case of shear
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Figure 5.5: Growth rate as a function of shear strength for (Nr, Nθ) = (5, 20)
and (Nr, Nθ) = (10, 40) for fixed values of Rm and m as Rm = 1000, m = 5, 10
for Flow1 and Flow2.

strengths 3 and 7 in Fig. 5.6(b) and 5.6(c), for Flow1. Fig.5.6(d-f) represent

the behavior of magnetic field structures in case of Flow2 which are again shown

to be distorted and pushed towards the middle of inner boundary of the shell in

case of shear strengths 1, 3 & 7. The toroidal magnetic energy for Flow1 and

Flow2 is plotted as a function of L in Fig.5.7(a-b) for different shear strengths

represented in different colors, for example, blue color depicts shear strength 1,

red illustrates shear strength 3 and cyan represents shear strength 7. Fig. 5.7(a)

clearly shows a decline in magnetic energy with L for all shear strengths in case

of Flow1. A similar trend of energy can be seen in Fig.5.7(b) in the case of Flow2.

II. m = 5, Nr = 10, Nθ = 20, Rm = 1000.

We investigate the ϕ component of B for Flow1 and Flow2 for m = 5, Nr = 10,

Rm = 1000 with shear strengths = 1, 3, 7, respectively (cf. Fig.5.8(a-f)), with

dark blue to bright red colors representing negative to positive values on the color

bar, respectively. For Flow1, the magnetic field is again generated above the edge

of the shell which is found to be pushed towards the inner boundary of the shell

with distorted structures in case of all shear strengths in Fig.5.8(a-c). For Flow2,

the magnetic field generation is almost the same for shear strengths 1 & 3, that is,
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Figure 5.6: Contour plots for Bϕ component of magnetic field for Flow1 (a-c) and
Flow2 (d-f) for shear parameters 1,3, and 7, respectively, by taking m = 5, Nr =
5, Rm = 1000.

the magnetic field is distorted, concentrated near the inner boundary of the shell

(Fig.5.8(d-e)). Interestingly, for shear strength 7, the magnetic field is generated

exactly near the edge of the shell which can be seen in Fig. 5.8(f). Though

the structures are distorted but they are not pushed towards the inner boundary

of the shell which is quite different from the behavior observed in Fig. 5.7(a-f)

and Fig. 5.8(a-d). Again, the toroidal magnetic energy for Flow1 and Flow2

is plotted against L in Fig. 5.9(a-b) for shear strengths 1, 3 & 7 illustrated in

blue, red and cyan colors respectively. The magnetic energy is noticed to decrease

with increasing L in case of Flow1 as shown in Fig. 5.9(a) followed by scattered

behaviour whereas the magnetic energy in case of Flow2 is found to decrease

smoothly with different shear strengths in Fig. 5.9(b).
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Figure 5.7: Energy spectrum for Flow1 and Flow2 is depicted in (a) and (b)
respectively, by taking m = 5, Nr = 5, Rm = 1000.
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Figure 5.8: Contour plots for Bϕ component of magnetic field for Flow1 (a-c) and
Flow2 (d-f) for shear parameters 1,3, and 7, respectively, by taking m = 5, Nr =
10, Rm = 1000.
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0 50 100 150 200 250 300 350 400
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

L

M
ag

ne
tic

 e
ne

rg
y

m = 5, N
r
 =10, Flow2

 

 
shear parameter =1
shear parameter =3
shear parameter =7

(a)

0 50 100 150 200 250 300 350
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

L

M
ag

ne
tic

 E
ne

rg
y

m=5, N
r
 =10, Flow2

 

 
shear parameter =1
shear parameter =3
shear parameter =7

(b)

Figure 5.9: Energy spectrum for Flow1 and Flow2 is depicted in (a) and (b)
respectively, by taking m = 5, Nr = 10, Rm = 1000. We note that the resolution
is marginal here.

III. m = 10, Nr = 5, Nθ = 10, Rm = 1000.

Since m = 10 is observed to be the most excited mode in case of Nr = 5, it

would be compelling to know how magnetic field structures and energy spectrum

behave for Flow1 and Flow2 for shear strengths 1, 3, & 7 in this case (cf. Fig.

5.10 (a-f)). In case of Flow1, for shear strength 1, the magnetic field is generated

near the middle of the shell which is found to be distorted and concentrated near

the inner boundary of the shell (see Fig. 5.11(a)). Further, for shear parameter

3, the magnetic field is observed to generate in the middle of the shell far from the

edges of the shell which can be seen in Fig. 5.11(b) in case of Flow1. Interestingly,

the structures are distorted and concentrated in the middle of the shell instead

of the inner boundary. Fig. 5.11(c) shows the magnetic field structure for shear

strength 7 for Flow1, and we find that in this case magnetic field is generated

in the middle of the shell but pushed towards the outer boundary of the shell.

The magnetic field is not as strong as observed in Fig 5.11(a-b). We find almost

similar trends of magnetic field generation in case of Flow2 for shear strengths

1, 3&7 in Fig. 5.11(d-f) and conclude that the presence of radial/latitudinal shear
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Chapter 5. Regulation of kinematic dynamo by shear flow

suppresses the magnetic field generation for larger shear strength which further

quenches the dynamo action. Again, the magnetic energy is shown to decrease

with increasing L in case of both flows for said shear strength in Fig. 5.12(a-b).

Shear parameter =1, m =10, N
r
 =5, Flow1

 

 

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Shear parameter =1, Flow1

Shear parametrer =3, m =5, N
r
 =10, Flow1

 

 

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) Shear parameter = 3, Flow1

Shear parameter = 7, m =10, N
r
 =5, Flow1

 

 

−3

−2

−1

0

1

2

3

(c) Shear parameter = 7, Flow1

Shear parameter =1, m =10, N
r
 =5, Flow2

 

 

−3

−2

−1

0

1

2

3

(d) Shear parameter =1, Flow2

Shear Parameter =3, m =10, N
r
 =5, Flow2

 

 

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(e) Shear parameter = 3, Flow2

Shear Parameter =7, m =10, N
r
 =5, Flow2

 

 

−3

−2

−1

0

1

2

3

4

(f) Shear parameter = 7, Flow2

Figure 5.10: Contour plots for Bϕ component of magnetic field for Flow1 (a-c)
and Flow2 (d-f) for shear parameters 1,3, and 7, respectively, by taking m =
10, Nr = 5, Rm = 1000.

IV. m = 10, Nr = 10, Nθ = 40, Rm = 1000

Magnetic field structures in case of Flow1 are depicted in Fig. 5.12(a-c) for shear

strengths 1, 3, & 7. Clearly, the magnetic field is generated far from edges of

the shell and is found to be concentrated almost at the middle of shell. Also, the

cells are distorted and pushed towards the inner boundary of the shell. Similar

magnetic field generation is observed in case of Flow2 for shear strengths 1 ,3,

& 7 (cf. Fig. 5.12(d-f)). The behavior of magnetic energy can be seen in Fig.

5.13(a-b) for Flow1 and Flow2. The magnetic energy is found to decrease with

L in both the cases for shear strengths 1, 3, & 7. The scattering of energy is
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Figure 5.11: Energy spectrum for Flow1 and Flow2 is depicted in (a) and (b)
respectively, by taking m = 10, Nr = 5, Rm = 1000.

more in case of Flow1 as compared to Flow2.

We investigate a small scale flow in the presence of large scale shear to observe the

behavior of growth rate with Rm for different modes, growth rates against shear

strength and magnetic field structures at different shear strengths and the results

indicate that a slow dynamo works in the presence of large scale radial/latitudinal

shear by suppressing the small scale flows, and by distorting and concentrating

the magnetic field structures near the edge of inner boundary of the shell. All

these results are in agreement with the predictions of Leprovost and Kim (2008)

and Leprovost and Kim (2009).

5.4 Conclusions

The problem is studied in kinematic regime according to which the amplitude

of magnetic field is small compared to the velocity field and does not alter the

velocity field. The nature of flow is strongly helical and steady and flow is chosen

to be small scale with large scale separation. The addition of large scale shear

in radial/latitudinal direction alters the growth of magnetic field by quenching
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(f) Shear parameter = 7, Flow2,
m = 10, Nr = 10

Figure 5.12: Contour plots for Bϕ component of magnetic field for Flow1 (a-c)
and Flow2 (d-f) for shear parameters 1,3, and 7, respectively, by taking m =
10, Nr = 10, Rm = 1000.

the amplitude and properties of small scale flows by distorting the magnetic field

structures and pushing them towards the middle of spherical shell near the inner

boundary. In all the cases we have investigated, the dynamo is observed to be a

slow dynamo as growth is found to decrease for large value of magnetic Reynolds

number, that is, the process is dominated by magnetic diffusivity instead of ad-

vection. The results obtained so far, such as, quenching of growth rate with high

Rm , the decrease in magnetic energy and decline in the amplitude of growth

rate with shear strength support the theoretical prediction, that the presence

of large scale shear quenches the turbulent flows, made by Leprovost and Kim

(2008, 2009). It is clear from these investigations that small scale magnetic fields

are suppressed by large scale shear and could help in the manifestation of large
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Figure 5.13: Energy spectrum for Flow1 and Flow2 is depicted in (a) and (b)
respectively, by taking m = 10, Nr = 10, Rm = 1000. We note that the resolution
is marginal here. Shear parameter is denoted by sp in some of the plots.

scale magnetic fields as noted by Tobias and Cattaneo (2013). For this problem,

the feedback from Lorentz force is not taken into account, therefore it would be

interesting to investigate the problem by extending it into nonlinear regime for

future work. The tendency of magnetic field structures to concentrate near the

inner boundary of shell could be due to some other effects that come into play due

to magnetic diffusion such as turbulent pumping. Sun has both small scale and

large scale dynamos working together and there is no clear line of demarcation

between the two. Therefore, further investigations in this problem in nonlinear

regime will help us to understand the various physical mechanisms in the working

of solar dynamo.
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Chapter 6

Conclusions

6.1 Summary of the results

In the second chapter we investigate a dynamic model of dynamo which comprises

of seven coupled nonlinear differential equations. Specifically, we include the ef-

fects of α-quenching, flux losses through poloidal and toroidal magnetic fields and

Lorentz force on mean/fluctuating differential rotation. We unfold how frequency

of magnetic fields, magnetic field strength and total shear depends upon the ro-

tation rate. We find that the results are in good agreement with observations if

the α-quenching and both flux losses are taken in equal amount with quadratic

dependence on B along with the effects of mean/fluctuating differential rotation.

We find that our model is able to reproduce the linear increase in frequency of

magnetic field with rotation, flattening of magnetic energy as well as quenching

of total shear for higher rotation. These results further suggest the necessity of a

dynamic balance in the generation and destruction of magnetic fields as well as

mean and fluctuating differential rotations for the working of stellar dynamo.

The third chapter is an extension of second chapter where the role of nonlin-

ear transport coefficients in the self-regulation of a dynamo process and genera-

tion/destruction of magnetic fields is emphasized in detail by studying the model
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6.1. Summary of the results

analytically and numerically. We find that in the absence of effects of mean

and fluctuating differential rotations the magnetic field strength and frequency

of magnetic field keeps on growing with rotation rate. Although analytic and

numerical results are in agreement with each other, yet, the results obtained are

not in good agreement with observations. In the presence of mean shear, we find

a severe quenching in total shear, which in turn, quenches the growth rate of

magnetic field and frequency which is further responsible for the shutting down

of the dynamo. The presence of fluctuating shear shows opposite results to the

case where only mean shear is taken into account and we notice that fluctuating

shear is accountable for the chaos in the system. Though the addition of non-

linear transport coefficients is able to control the chaos and indefinite growth of

magnetic fields up to an extent, but is incapable to reproduce the observation.

Therefore, self-regulatory behavior of the system is represented in the presence of

mean and fluctuating differential rotations in the presence of equal amount of all

nonlinear transport coefficients to emphasize the importance of dynamic balance

among all nonlinear terms to the working of a stellar dynamo.

We extend our seventh-order system by adding equation of evolution in rotation

rate in the fourth chapter to understand the spindown of solar type stars. In par-

ticular, we prescribe the angular momentum loss dynamically through equation

of evolution and explain the existence of two branches of frequency, two different

spindown mechanisms, that is, exponential spindown for fast rotators and power

law spindown for slow rotators, decrease in magnetic activity with increasing age

and shorter spindown timescale for fast rotators while larger spindown timescale

for slow rotators. The shortest spindown timescale in our system constantly ex-

plains the V-P gap. For the first time a model is proposed which provides an

explanation for V-P gap in the framework of α− Ω dynamo.

The fifth chapter summarises the results of a kinematic dynamo in the presence

of large scale shear. In this chapter, the induction equation is solved numerically

to understand the effects of large scale shear on the working of the dynamo. In

113



Chapter 6. Conclusions

particular, an axisymmetric, steady, helical small scale velocity field is consid-

ered, to which a large scale radial/latitudinal shear in the azimuthal velocity field

is added. The decreasing behavior of growth rates for larger Reynolds number,

Rm , suggests a slow dynamo in the presence of radial as well as latitudinal shear.

The growth rate is found to decline with shear strength while the magnetic field

structures are found to be distorted and concentrated near inner or outer bound-

aries depending upon the values of m and Nr . Our investigations clearly show

that large scale shear suppresses the small scale flows and quenches the kinematic

dynamo.

6.2 Future Work

The spin evolution of stars is an important problem in astrophysics since it has

a direct impact on, e.g., asteroseismology, disk and planet formation, magnetic

field generation, and a host of observational signatures. For solar-type stars, a

magnetic stellar wind is thought to be the primary source of angular momentum

loss and hence spin-down of stars. Therefore, future studies will be conducted

on the spin-down of Sun-like stars by extending my previous work in 2D MHD

by investigating the effects of various instabilities caused by shear, in spherical

geometry and to investigate the ‘gap’ between two branches of stars commonly

known as ‘Vaughan–Preston Gap’.
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Appendix A

Derivation of nonlinear

dynamical system represented by

Eqs. (2.1) - (2.4)

This appendix provides the detailed derivation of Eqs. (2.1)-(2.4) as noted in

Weiss et al. (1984). In nonlinear dynamo theory, the induction equation

∂B

∂t
= ∇× (u×B) + η∇2B, (A.1)

and the equation of motion

ρ
[∂u

∂t
+ (u · ∇)u

]
= ρg −∇p+ j×B + ρν∇2u, (A.2)

are solved together with energy equation for magnetic field, B , and velocity field,

u , where other symbols have their usual definitions. An axissymmetric magnetic

field in spherical polar coordinates (r, θ,Φ) is given by

B = Bp + Bt, (A.3)
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Appendix A. Derivation of nonlinear dynamical system represented by Eqs.
(2.1) - (2.4)

where, Bp = ∇×[A(r, θ, t)]Φ̂ is the poloidal magnetic field, Bt = B(r, θ, t)Φ̂ is

the toroidal magnetic field and Φ̂ is a unit vector in Φ-direction. It is assumed

that in rapidly rotating system, no mean motions exist except rotation, and in

that case velocity is given by u = (0, 0,Ωr sin θ) (Parker, 1955; Moffatt, 1978),

and decomposition of induction equation in its mean field poloidal and toroidal

parts can be written as follows:

∂A

∂t
= αB + η[∇2 − (r sin θ)−2]A, (A.4)

∂B

∂t
= r sin θBp · ∇Ω + η[∇2 − (r sin θ)−2]B. (A.5)

In a nonlinear dynamo model, the effect of Lorentz force on fluid motions is taken

into account and the growth of magnetic field is thus inhibited. Therefore, the

azimuthal component of velocity, v, can be written as

∂v

∂t
= F(r) + ρ−1j×B · Φ̂ + ν[∇2 − (r sin θ)−2]v, (A.6)

where volume force, ρF , and diffusivity, ν , specify the turbulent transport of

angular momentum. If V (r) and w(r, t) are the mean and fluctuating parts of

v , then it can be written as v = V(r) + w(r, t). Since convection drives mean

flow V , therefore

F + ν[∇2 − (r sin θ)−2]V = 0, (A.7)

while the fluctuating part is driven by Lorentz force and becomes

∂w

∂t
=

1

µ0ρ
[∇× (BΦ̂)]×BpΦ̂ + ν[∇2 − (r sin θ)−2]w. (A.8)

Weiss et al. (1984) considered a thin spherical shell with local cartesian coor-

dinates x-, y - and z -axis pointing northward, westward and radially outward,
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respectively. By considering magnetic field, B , and velocity, u , in plane layer as:

B = ∇×[A(z, x, t)ŷ] +B(z, x, t)ŷ, (A.9)

u = [0, V (z), 0], (A.10)

they obtained Eqs. (A.11) and (A.12) as follows

∂A

∂t
= αB + η∇2A, (A.11)

∂B

∂t
=
∂A

∂x

dV

dz
+ η∇2B, (A.12)

To eliminate the z -dependence of A and B , they averaged Eqs. (A.11) and

(A.12) vertically over the layer and considered a plane wave solutions propa-

gating in x-direction (Parker, 1979), in the presence of azimuthal velocity v =

(V(z) + W(x,z,t))ŷ , where the rotation velocity is represented by V = Ωz while

the differential rotation due to back reaction is represented by W(x,z,t) . By as-

suming the periodic boundary conditions in terms of fourier mode and k -mode

of magnetic field as B = (0, B(t)eikx, ikA(t)eikx), the dynamo Eqs. (A.11) and

(A.12) reduce to

dA

dt
= αB + ηk2A, (A.13)

dB

dt
= ikV ′A+ ηk2B, (A.14)

where V ′ represents the value of the velocity shear dV
dz

. Equations (A.13) and

(A.14) represent a linear system and if the perturbations are considered to vary

as exp(st), this system possesses a linear dispersion relation, s = ηk2[−1± (1 +

i)D1/2] , as noted by Weiss et al. (1984), where D is the dynamo number and is

given by

D =
αV ′

2η2k3
. (A.15)
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Appendix A. Derivation of nonlinear dynamical system represented by Eqs.
(2.1) - (2.4)

Further, if A = B = 0, then linear system (A.13) and (A.14) is stable for |D| < 1

and a Hopf bifurcation occurs at D = 1, while the system grows exponentially for

D > 1. To induce the nonlinear effects, the system was subjected to nonlinearities

such as saturation of α-effect, magnetic buoyancy loss and quenching of velocity

by choosing α = α0f(|B|2), g(B)2 and v′ = v′0f(|B|2) then following nonlinear

system is obtained

dA

dt
= α0f(|B|2)B + ηk2A, (A.16)

dB

dt
= ikv′A+ ηk2g(B)2B, (A.17)

where f(b2) = (1 + κb2)−1 and g(b2) = (1 + λb2) with κ and λ as constants.

Differential rotation is generated by the Lorentz force which takes the form ∂W
∂z

=

w0(t)+w(t)exp(2ikx), where w0(t) and w(t) are mean and fluctuating differential

rotation. A net torque, G , with a value ν0V
′ , is exerted during the generation

of V ′ as a result of which spatially uniform and varying components of velocity

shear obtained by Weiss et al. (1984) are

dw0

dt
= µ2k(A2B1 − A1B2)− ν0w0, (A.18)

dw

dt
= −µ2kiAB − νw, (A.19)

where ν0 and ν are the viscosities of mean and fluctuating differential rotation.

The quantities A1, B1 , A2 and B2 are arisen during the evaluation of nonlin-

ear terms (Weiss et al., 1984) where terms with prefix 1 represent real parts of

poloidal/toroidal magnetic fields while terms with prefix 2 represent imaginary

part of poloidal/toroidal magnetic fields in Eq. (A.12). Further, the toroidal

magnetic field, B , is affected by the presence of time dependent velocity shear

and Eq. (A.17) takes the form

dB

dt
= ik(V ′ + w0)A− 1

2
kA∗w − ηk2[1 + λ|B|2]B. (A.20)

118



Eventually, Eqs. (A.16), (A.20), (A.18) and (A.19) were reduced to dimensionless

form by Cattaneo et al. (1983) and Weiss et al. (1984) where various variables

are rescaled and transformed appropriately as follows.
A

B

w0

w


new

=


µA/ηk

AB/V ′

w0/V
′

w/V ′

 ,


κ

λ

ν0

ν


new

=


µ2V ′κ/η4K4

µ2V ′λ/η4K4

nu0/ηk
2

nu/ηk2

 . (A.21)

The seventh order system in the dimensionless form is thus given as (Cattaneo

et al., 1983; Weiss et al., 1984):

Ȧ = 2D(1 + κ|B|2)−1B − A, (A.22)

Ḃ = i(1 + w0)A− 1

2
iA∗w −B(1 + λ|B|2), (A.23)

ẇ0 =
1

2
i(A∗B − AB∗)− ν0w0, (A.24)

ẇ = −iAB − νw. (A.25)

The system (A.22) - (A.25) is further reduced by setting κ = λ = 0 to

Ȧ = 2DB − A, (A.26)

Ḃ = i(1 + w0)A− 1

2
iA∗w −B, (A.27)

ẇ0 =
1

2
i(A∗B − AB∗)− ν0w0, (A.28)

ẇ = −iAB − νw. (A.29)

Equations (A.26) - (A.29) represent Eqs. (2.1) - (2.4) which are further modified

to investigate the effects of nonlinear transport coefficients in the present thesis.
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