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Abstract 

The effects of substituting (pseudo)halide for imidate ligands in Au(I) and Au(III) 

([AuBr(NHC)] and  [AuBr3(NHC)]), Ru(II) ([RuCl2(CHR)(L2)]) and Pd(II) ([Pd(OAc)2]) 

complexes has been investigated. The activity of these complexes as (pre)catalysts in 

enyne cycloisomerisation and propargylic nucleophilic substitution, diene ring-closing 

metathesis and ring-opening metathesis polymerisation and direct arylation reactions, 

respectively, has been determined.  

[Au(�-imidate)(NHC)] and [AuBr2(�-imidate)(NHC)] complexes were prepared and the 

structure and bonding of the complexes examined spectroscopically and 

crystallographically. The [AuBr2(�-imidate)(NHC)] complexes, in combination with co-

catalytic silver salts, were tested for activity in the cycloisomerisation of 1,5- and 1,6- 

enynes and found to be more effective than tribromide analogues. Kinetic analysis of the 

reactions showed subtle changes to the imidate structure had a pronounced effect on the 

activity of the complexes and the use of the silver salt Ag[Al(OC(CF3)3)4] as a co-catalyst 

greatly increased catalytic activity. The complexes were also found to catalyse a unique 

tandem nucleophilic substitution-cycloisomerisation of propargyl alcohols and allylsilanes. 

[AuBr2(�-tfs)(I
t
Pe)] was found to be an effective precatalyst for this reaction whilst 

Au(III) tribromide and Au(I) complexes were ineffective. 1,3-Diarylbicyclo[3.1.0]hexenes 

products were found to undergo a post-reaction ambient temperature 1,3-carbon shift 

isomerisation. 

The complex [Ru(�-tfs)2(o-
i
PrO-CHPh)(IMesH2)] was prepared and characterised 

spectroscopically and crystallographically. The complex was found to be inactive in the 

ring-closing metathesis and ring-opening metathesis polymerisation of alkenes. Attempts 

to selectively substitute chloride for imidate ligands derived from imides with higher pKa’s 

of 8.3-9.7 (in water) resulted in decomposition of the alkylidene or benzylidene ligand.  

[Pd(imidate)2(MeCN)] and [Pd(imidate)2(THT)] complexes were prepared and analysed 

by NMR and infra-red spectroscopy. The complexes were tested for activity in the direct 

arylation of imidazole with iodoarenes without added base or neutral ligands. The activity 

of the complexes was to some degree dependant on the structure of the imidate ligand, 

possessing moderate activity in comparison with [Pd(OAc)2]. The activity of other 

palladium sources and conditions for this reaction were investigated and it was found that 

the formation of Pd nanoparticles may be key to reaction progression.  
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Ac acetyl 

app. apparent 

Ar aryl  

aq. aqueous 

asym. asymmetric 

br broad 

Bu butyl 
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Cy cyclohexyl  

d doublet 

dbs 2,3-dibromosuccinimidate 
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HMPA hexamethylphosphoramide 
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IR infra-red 

LDA lithium diisopropylamide 

Lit. literature 

LUMO lowest unoccupied molecular orbital  

m (IR) medium 

m (NMR) multiplet 
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M molar 

mal maleimidate 

Me methyl 

Mes mesityl 

mg milligrams 

MHz mega hertz 

mol moles 

mmol millimoles 

Ms mesyl 

MS mass spectrum 

NMR  nuclear magnetic resonance 

obs o-benzoic sulfimidate 

Pe pentyl 

Ph phenyl 

Pr propyl 

ptm phthalimidate 

Py pyridine  

q quartet 

r.t. room temperature 

s (IR) strong 

s (NMR) singlet 

succ succinimidate 

t triplet 
t
Bu tert-butyl 

temp. temperature 

Tf triflate 

tfs tetrafluorosuccinimidate 

THF tetrahydrofuran 

TLC thin layer chromatography 

TMS trimethylsilyl 
t
Pe tert-pentyl 

sym. symmetric 

UV ultra-violet 

w weak 

w.r.t.  with respect to 
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Chapter 1. Introduction 

 

1.1. Halide ligands in organometallic chemistry 

Metal halogen bonds are prevalent throughout organometallic chemistry and appear in a 

significant number of homogenous transition metal catalysts. Optimisation of these anionic 

ligands is often neglected despite there being many examples of the nature of the anionic 

ligand affecting catalytic efficiency. Halide ligands can influence a catalyst in a number of 

ways, principally electronically, but also by polarisability, nucleophilicity, the trans effect 

and sterics.
1
 The effects of changing a halide ligand is not always easily predictable due to 

their σ and π donor properties, for example although fluorine is the weakest σ donor due to 

electronegativity, it is the strongest π donor as it possesses more contracted p orbitals.
2
 

Also, the ligand effect in catalysis will depend upon the electronic structure of the metal 

atom, as π donation can stabilise (for low electron counts) or destabilise (for high electron 

counts) the reaction transition states and intermediates. The combination of hard and soft 

ligands and metals will also significantly effect metal halide bond strengths. 

The nature of the halide ligand can effect many aspects of the reactivity of a transition 

metal complex. For example, the rate and mechanism of the phosphine catalysed 

isomerisation of cis-[PtX2(PR3)2] (where R is Me, Et or o-tolyl and X is halide) to trans-

[PtX2(PR3)2] is dependant on the halide ligand. The rate of isomerisation is in the order: 

I>Br>Cl. This reflects the stability of the proposed five coordinate [PtX2(PR3)3] 

intermediates.
3
 Similar effects are observed in analogous Pd(II) complexes.

4
  

Variation of halide ligands cannot only affect the rate and yield of a reaction it can also 

have less expected results, such as affecting product distribution and enantiomeric excess 

(ee). Zhang and co-workers
5
 have observed a significant halide effect in the Rh(I) 

catalysed enantioselective hydrogenation of ketones (Scheme 1). For example, with 

acetophenone 1 it was found that using a [{Rh(1,5-COD)Cl}2] catalyst, in combination 

with chiral phosphane ligand 3, 45% conversion to 2 in 57% ee was observed, which was 

improved to 67% ee (44% conversion) using a LiCl additive (one equivalent relative to 

Rh). However, with KBr both conversion (89%) and ee (92%) improved dramatically. The 

bromide is speculated to replace the chloride ligand in the Rh complex to generate a more 

active catalyst.  



 2 

O OH
[{Rh(1,5-COD)Cl}2], 3, additive

H2, MeOH, 20
 oC, 24 h

 

Entry Additive Conversion 
(%) 

ee  

(%) 

1 - 45 57 

2 LiCl 44 67 

3 KBr 89 92 

Scheme 1. Effect of halide salt additives on the outcome of the Rh(I) catalysed 

asymmetric hydrogenation of acetophenone (1). 

 

Cooper and Caulton
6
 have studied the effect of halide ligand variation on the Ir(III) 

catalysed isomerisation of 3-phenylprop-1-ene (4) to 1-phenylprop-1-ene (5) (Scheme 2). 

They found that the use of a fluoride ligand increased the reaction rate 55.4 times relative 

to iodide and that pseudohalide OCH2CF3 and OH ligands were 35.4 and 10.0 times more 

efficient than iodide, respectively. The authors concluded that stronger π donor ligands 

stabilised a coordinatively unsaturated 14 electron active catalytic species (believed to be 

[IrH(η
2
-C6H4P

t
Bu2)(X)]). This demonstrates the significant effect imparted by π-donating 

halide ligands on the outcome of a reaction. 

 

Ir

tBu2PhP

tBu2PhP

X
H
H

C6H6, r.t.  

Entry X Relative 
rate 

1 I 1 
2 Br 2.5 

3 Cl 6.2 

4 OH 10.0 

5 OCH2CF3 35.4 

6 F 55.4 

Scheme 2. The effect of changing the nature of the halide ligand in an [IrX(H)2(P
t
Bu2Ph)2] 

catalysed isomerisation reaction. 

 

5 4 

1 2 

3 

P P
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Ashimori et al.
7
 have studied the effect of adding halide and pseudohalide salts to the 

palladium catalysed asymmetric Heck reaction of 6 to 7 (Scheme 3). The highest yield for 

the reaction (72%) is achieved with no halide salt added, however the enantiomeric excess 

(ee) is low (43%), a similar outcome is observed with added [Bu4N]OTf. Adding [Bu4N]Cl 

or [Bu4N]Br produces a large improvement in ee (93%) at the expense of yield (52% and 

59%, respectively). Adding [Bu4N]I gives a better yield (62%) with a slight reduction in ee 

(90%). The halide is thought to influence the reaction by coordinating to the Pd(II) species 

(formed from oxidative addition of the aryltriflate) during the enantioselective step of 

alkene coordination. In the absence of added halide (or with added triflate) the anion 

dissociates after oxidative addition and the alkene coordinates to a coordinatively 

unsaturated cationic Pd(II) species with reduced enantioselective bias. 

 

OTf

N

O
OTBS

N
O

OTBS[Pd-(R)-BINAP] (10 mol%)

[Bu4N]X (1 equiv.), PMP (4 equiv.)

DMA, 100 oC

 

Entry X Yield (%) ee (%) 

1 None 72 43 
2 OTf 70 42 

3 Cl 52 93 

4 Br 59 93 

5 I 62 90 

{(R)-BINAP is (R)-(+)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl, PMP is 1,2,2,6,6-pentamethylpiperidine, 

TBS is tert-butyldimethylsilyl} 

Scheme 3. The effect of [Bu4N]X additives on the yield and enantiomeric excess of a [Pd-

(R)-BINAP] catalysed asymmetric Heck reaction. 

 

Bovens et al.
8
 observed a similar effect of halide salt additives on the yield and 

enantiomeric excess of a palladium catalysed asymmetric allylic alkylation (Scheme 4). In 

the absence of a halide salt high yield (90%) but moderate ee (66%) was observed, and 

addition of [NBu4]Br gave similar results. Added [NBu4]Cl however reduces the yield 

slightly (85%) but gives much improved ee (83%), whereas  addition of [NBu4]I poisons 

the catalyst resulting in only 4% yield and 51% ee.  

6 7 
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Pd
N

N N

N

OAc

Ph Ph

CO2MeMeO2C

Ph Ph

CO2MeMeO2C
[Pd(C3H5){(R)-L}](PF6) (5 mol%)

[NBu4]X (10 mol %)
*

+

+

[Pd(C3H5){(R)-L}](PF6)

BSA, CH2Cl2, r.t.

PF6
-

 

Scheme 4. The effect of [NBu4]X additives on the  yield and enantiomeric excess of a Pd 

catalysed asymmetric allylic alkylation reaction. 

 

These examples demonstrate not only the impact anionic ligands and additives can have 

on all aspects of a reaction outcome but also the difficulty of predicting the effect of the 

nature of the ligand on the reaction. Optimising a catalyst for both yield and enantiomeric 

excess using the limited halide series of ligands is a significant challenge. 

 

1.2. Imidate anions as pseudohalides 

The groups of Fairlamb, Taylor and Serrano
9
 found that the nature of the anionic ligand 

in Pd(II) catalysed Stille cross coupling reactions had a considerable impact on product 

yields, with imidate
10

 ligands, such as succinimidate, found to be particularly effective 

(Table 1). For example, in the reaction of benzyl bromide (11) with ethyl (Z)-3-

(tributylstannyl)propenoate (12) [PdBr(�-succ)(PPh3)2]
11

 was  found to be very efficient 

(99% yield in 1.5 hours) relative to Pd(PPh3)4 (17% in 18 hours) and Pd(OAc)2/PPh3 (16% 

in 18 hours). A significant effect of the imidate ligand on reactivity was observed, 

[PdBr(�-succ)(PPh3)2] was shown to be more active than [PdI(�-succ)(PPh3)2] (56%, 18 

hours), [PdBr2(PPh3)2] (23%, 18 hours),  [Pd(�-succ)2(PPh3)2] (10%, 48 hours) and 

[PdBr(�-ptm)(PPh3)2] (73%, 1.5 hours).  

 

Entry X Yield (%) ee (%) 

1 None 90 66 
2 Cl 85 83 

3 Br 88 67 

4 I 4 51 

 {BSA is �,O-bis(trimethylsilyl)acetamide} 

8 10 9 
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Table 1. The effect of changing anionic ligands on rate and yield in a palladium catalysed 

Stille cross coupling reaction. 

Br

Bu3Sn

CO2Et
CO2Et

+
[Pd] (5 mol%)

toluene, 60 oC
 

Entry Complex Time 
(hrs) 

Yield 
(%) 

1 [PdBr(�-succ)(PPh3)2] 1.5 99 

2 [Pd(PPh3)4] 18 17 

3 Pd(OAc)2/PPh3 18 16 

4 [PdI(�-succ)(PPh3)2] 18 56 

5 [PdBr2(PPh3)2] 18 23 

6 [Pd(�-succ)2(PPh3)2] 48 10 

7 [PdBr(�-ptm)(PPh3)2] 1.5 72 

 

The validity of succinimidate as a halide mimic (pseudohalide) was established by 

Adams et al.
12

 who studied the σ and π donor properties of the succinimidate ligand using 

a method developed by Graham.
13

 This method involves the synthesis of [MnX(CO)5] 

complexes, where X is the anionic ligand under study, and the measurement of the 

carbonyl stretching frequencies of the CO ligands by infra-red spectroscopy. This data is 

used to calculate force constants for the bonds from which σ and π, donor and acceptor 

bonding parameters are calculated relative to [Mn(CH3)(CO)5] (Table 2).  

 

Table 2. Calculated σ and π bonding parameters for anionic ligands in [MnX(CO)5] 

complexes. 

Entry X σ 

(mdyn.Å-1) 

π 

(mdyn.Å-1) 

1 CH3 0 0 

2 succinimidate 1.32 -0.65 

3 Cl 1.25 -0.57 

4 Br 1.03 -0.44 

5 I 0.73 -0.27 

 

Large positive σ values correspond to weak σ donor ligands (strictly as the ligands are 

assumed to be neutral in the model they correspond to strong σ acceptors of the electron 

density in the Mn-X bond) and large negative π values correspond to strong π donor 

13 12 11 
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ligands. These values show that, as would be expected, chloride is a weaker σ donor but 

stronger π donor than bromide and iodide. Succinimidate is calculated to have comparable 

properties to chloride, with slightly weaker σ donor and slightly stronger π bonding 

parameters.  

 

1.3. Scope of this project 

This project specifically focuses on studying the effect of substituting halide for imidate 

pseudohalide ligands in homogeneous organometallic transition metal catalysts. The 

principal imidate ligands that have been employed are succinimidate (14), 2,3-

dibromosuccinimidate (15), tetrafluorosuccinimidate (16), maleimidate (17), phthalimidate  

(18) and o-benzoic sulfimidate (19). The electronic properties of the imidate ligand is 

dependant on the substituents on the ligand backbone.
14

 Succinimidate is a legitimate 

mimic of a chloride ligand (vide supra), the other imidates under study contain electron 

withdrawing functionality and so would be expected to be weaker σ donors and stronger π 

donors based on the pKa of the parent imide (Figure 1).  

 

NO O

NO ONO O

F FFFBr Br

succinimidate 2,3-dibromosuccinimidate tetrafluorosuccinimidate 

 

NO O

NO O N
S

O
O

O

maleimidate phthalimidate o-benzoic sulfimidate 

Figure 1. Imidate anions used as pseudohalide ligands in this study. The pKa’s of the 

parents imides in water are given where known.
15

 

 

14 15 

19 

16 

18 17 

(1.6)
 
 (9.5) (8.3) 

(2.1 estimated) (9.7)
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Imidate ligands have been reported to coordinate to metal atoms in three general ways; 

�-monodentate (I),
16

 �,O-bidentate chelating (II)
17

 and �,O-bidentate bridging (III)
18

 

(Figure 2).  

 

NO
O

NO O

MM

NO
O

MM

NO
O

MM

NO
O

M  

Figure 2. The three general coordination modes of imidate ligands in transition metal 

complexes. 

 

This study will investigate the effect of substituting halide for imidate ligands in three 

topical transition metal catalysed processes studied within the Fairlamb research group, Au 

catalysed enyne cycloisomerisation,
19

 Ru catalysed diene metathesis
20

 and Pd catalysed 

direct arylation of arylhalides and heteroarenes.
21

 A series of complexes containing the 

range of imidate ligands shown above will be prepared in order to study the effect of the 

nature of the imidate ligand on the properties and reactivity of these, relative to parent 

halide, complexes.  

The results of this study are divided into three chapters, Chapter 2: Au complexes, 

Chapter 3: Ru complexes and Chapter 4: Pd complexes. A detailed introduction to these 

specific areas is given at the beginning of each chapter to aid and direct the reader. 

 
 
 
 
 
 
 
 
 
 
 
 

III  I II 
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Chapter 2: Au(I) and Au(III) imidate complexes; synthesis and catalytic 

activity 

 

2.1. Introduction 

2.1.1. Au catalysis 

2.1.1.1. Au catalysts and Au catalysed transformations 

In recent years there has been a surge in interest in the catalytic properties of gold in 

applied synthetic chemistry.
1
 Au-complexes efficiently catalyze the transformation of C=C 

and C≡C bonds
2
 in a diverse array of reactions including: nucleophilic substitution,

3
 

hydration,
4
 cycloaddition,

5
 rearrangement,

6
 hydrosilylation,

7
 polymerisation,

8
 oxidation,

9
 

carbene transfer (C-H functionalisation/activation),
10

 epoxidation,
11

 hydroamination,
12

 

cycloisomerisation
13

 and many tandem and domino processes.
14

  

Au(I) complexes, typically of the type [AuXL], where L is a phosphine
15

 or N-

heterocyclic carbene (NHC)
16

 ligand and X is a weakly coordinating anion (usually 
-
OTf or 

-
PF6), have been widely used as catalysts for these reactions. First isolated by Arduengo

17
 

in the early 1990’s, NHCs are N-stabilised Fischer carbenes based on an N-substituted 

imidazole unit.
18

 These are stronger σ donors than phosphines, with little or no back 

donation, but without the drawback of sensitivity to oxygen. They are also easily 

electronically and sterically tuneable by changing the imidazole nature (e.g. saturation) and 

N substituents. NHCs also provide valuable information spectroscopically of the nature of 

trans-ligands and the electronic properties of the coordinated metal atom (by monitoring of 

the 
13

C NMR signal of the carbene carbon).
19

 Many different types have been prepared, 

mainly focusing on the variation in N substituents for saturated and unsaturated imidazole 

rings. tert-Butyl groups have been used to probe steric and inductive effects, but tert-pentyl 

have not. These alkyl groups are very similar electronically but the pentyl groups offer 

enhanced steric control and directing ability,
20

 especially when combined with other 

asymmetric directing groups.  

Inorganic Au(III) complexes and related salts, such as AuCl3 and Na[AuCl4], have also 

been used to carry out similar transformations.
21

 Generally, less attention has been directed 

toward the development of organometallic Au(III) catalysts and complexes.
22

 Key 

examples include pyridine-derived iminophosphorane 20
23

 and ortho-carboxylate 21
24

 

precatalysts (Figure 3). This is perhaps surprising, as Au(III) can promote Lewis acid-type 
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catalysis.
3a,25

 Some examples include: hydrogenation,
26

 hydrosilation,
27

 addition of water 

and alcohols to triple bonds,
28

 cycloisomerisation24 and coupling of aldehydes, amines and 

terminal alkynes to produce propargyl amines.
29

  

N

N

Au Cl

Cl
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[ClO4]
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OAu
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OHO
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Figure 3. Pyridine-derived iminophosphorane (20) and ortho-carboxylate (21) precatalysts. 

 

2.1.1.2. Active catalytic species in Au catalysis 

Au(I) and Au(III) can display markedly different behaviour in reactions, proceeding via 

separate mechanisms to give different products and substitution patterns.
30

 For example, 

the cycloisomerisation of 1,7-allenyne 22 in the presence of Au(I) results in exo- and endo-

cyclohexenes 23 and Au(III) results in tetrahydroindene 24 (Scheme 5).21d
 

 

.

MeO

MeO

AuCl3[Au(PPh3)SbF6]

1:1 exo:endo

MeO

MeO

MeO

MeO

 

Scheme 5. Divergent cycloisomerisation of a 1,7-allenyne (22) in the presence of Au(I) 

and Au(III) catalysts (exo/endo refers to the position of the C=C bond in the product).  

 

There is some contention about the role played by Au(III) in these reactions. It is known 

that Au(III) can be reduced to Au(I) during the course of reactions31 and so Au(I) may be 

the catalytically active species in such processes. However, Au(I) can disproportionate into 

Au(0) and Au(III) photochemically,32 thermally33 and chemically,34 a process used in the 

preparation of Au(0) nanoparticles. It is possible that both oxidation states could play a role 

in reactions, for example, Au(I) could be the active species where a soft π-acid is required 

(such as in cycloisomerisations), whereas Au(III) may be the active species where Lewis 

acidity is required (in neutral or cationic form).35 Straub has carried out DFT calculations 

on the Au(I) and Au(III) catalysed intramolecular benzannulation of ethynyl benzaldehyde 

21 20 

24 22 23 
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and ethyne and found out that the overall activation barriers were essentially identical for 

both Au(I) and Au(III) catalysts.36 Nolan37 has stated that he suspects that the active 

catalyst in the reported hydration of alkynes and polymerisation of styrene mediated by 

[AuBr3(NHC)] complexes and Au(III) salts is actually an Au(I) species formed by 

reductive elimination of the halide ligands. Au(III) is suspected to be the active species in 

other transformations38 and protons may also play a role.39 There is much spectroscopic 

and crystallographic evidence for the existence of Au(I)+ ions in solution and the binding of 

alkenes and alkynes to such ions.40 However, there has been no direct evidence of binding 

to Au(III)+ ions and only some tentative NMR spectroscopic evidence of styrene binding to 

an Au(III)+ ion (which has not been substantiated).41  

 

2.1.1.3. Relativistic effects in Au catalysis 

The unique reactivity of Au complexes stems from relativistic effects which are greatest 

for Au of all the elements (as the 4f and 5d orbitals are filled), although it is also large for 

Pt and Hg. Relativity becomes important where electrons have a velocity which is 

significant relative to the speed of light (about 58% for Au), when electrons are close to the 

heavy nucleus, increasing electron mass and causing orbital contraction of 6s and 6p and 

expansion of 5d orbitals. This results in increased metal-ligand bond strengths, decreased 

sensitivity to water and oxygen, reduced cycling between Au(I) and Au(III) oxidation 

states, reduced LUMO energy, and high electronegativity, ionisation energy and electron 

affinity. The low LUMO energy results in Lewis acidity, allowing Au to bind to alkenes 

and alkynes (binding is stronger to alkenes but only alkynes are reactive due to a lower 

LUMO). The anti-bonding orbitals are too high in energy for π back-bonding from Au and 

so the alkyne is efficiently activated for nucleophilic attack. Au is however able to back-

bond into lower energy empty p orbitals which may be critical for the stabilisation of 

carbocationic intermediates in catalytic transformations.
42

 

 

2.1.2. Au catalysis in the synthesis of biologically active molecules 

As a result of these properties Au catalysts have found application in the total syntheses 

of natural products of biological importance.43 An example is the total synthesis of 

ventricos-7(13)-ene (25),44 a natural product found in liverwort (Lophozia ventricosa),45 

reported by Sethofer et al.. This synthesis utilises an Au(I) catalyst to carry out a tandem 

cyclisation/semipinacol rearrangement of cyclopropanol 26 to form hydrated 



 

13 

cyclobuta[c]pentalene 27, which, following allylation and a palladium catalysed oxidative 

ring expansion, yields the hydrated cyclopenta[c]pentalene core (Scheme 6). 

 

H

H
HO

H

H
O[AuCl(PPh3)]/AgSbF6 

(3 mol%)

CH2Cl2, 87%

 

Scheme 6. Key Au-catalysed transformation in the total synthesis of ventricos-7(13)-ene 
(25). 

 
 Another example from the group of Toste is that of (+)-lycopladine A (28),46 a natural 

product from the club moss Lycopodium complanatum.47 Au-catalysed cycloisomerisation 

of 1,5-enyne 29 yields the bicyclo[4.3.0]nonane core (30) (Scheme 7). 
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H

BnO

I O

H
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N

[AuCl(PPh3)]/AgBF4
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CH2Cl2, MeOH, 95%

 

Scheme 7. Key Au-catalysed transformation in the total synthesis of (+)-lycopladine A 

(28). 

 

2.1.3. Cycloisomerisation 

2.1.3.1. 1,n-Enyne cycloisomerisation 

The cycloisomerisation of 1,n-enynes, mediated by Au(I) and Au(III) salts, has received 

considerable attention, particularly 1,5-
15,48

 and 1,6-,
49

 although 1,7-
50

 and 1,8-enynes
51

 

have also been investigated. Enyne cycloisomerisation can be catalysed by Ru,
52

 Pd,
53

 Pt,
54

 

Ir,
55

 Rh,
56

 Re
57

, Ga
58

 and In,
59

 however Au(I) is usually more active and displays very high 

(and often different) selectivity.
60

 Investigations have been carried out into the mechanisms 

of these reactions, as the reaction pathways are very dependant on the nature of the 

catalysts and substrates employed and result in a variety of cyclic alkene and diene 

products.49a,49c,61
 For example, 1,6-enynes (31) can undergo either 5-exo-dig or 6-endo-dig 

cyclisations to give bicyclo[3.1.0]hexane (32) or bicyclo[4.1.0]heptane (33) intermediates 

depending on the site of nucleophilic attack (Scheme 8).61 

27 26 25 

29 28 30 
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Scheme 8. 5-Exo-dig and 6-endo-dig cyclisations of 1,6-enynes.61 

 

In combination with the array of possible subsequent rearrangements involving 

migrations and fragmentations, a number of possible cycloisomerisation products (34-39) 

are observed (Scheme 9). 
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Scheme 9. Products observed in 1,6-enyne cycloisomerisation processes. 

 

2.1.3.2. 1,5-Enyne cycloisomerisation; production of bicyclo[3.1.0]hexanes 

The cycloisomerisation of 1,5-enynes is particularly facile.
15,48 For example, the group of 

Toste has shown that a range of alkyl and aryl substituted 1,5-enynes (40) undergo Au(I) 

and Au(III) catalysed cycloisomerisation to afford bicyclo[3.1.0]hexyl ring systems (41) 

(Scheme 10).
15 
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Scheme 10. The Au(I) catalysed cycloisomerisation of 1,5-enynes (40) to produce 

bicyclo[3.1.0]hex-2-enes (41). 

 

There are a number of natural products containing the bicyclo[3.1.0]hexane core, for 

example, 4',1'a-methanocarbocyclic thymidine (42) (an anti herpes virus agent)
62

 and 

prostaglandin El analogues such as 43 (key intermediates in E1 synthesis) (Figure 4).
63
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Figure 4. The structures of 4',1'a-methanocarbocyclic thymidine (42) and a prostaglandin 

El analogue (43). 

 

Another example is that of A-cubebene (44) (a tricyclic sesquiterpene) isolated from 

commercial cubeb oil (Piper cubeba L.), used in flavourings and traditional medicines, 

which contains a tricyclo[4.4.0.01,5]decane core (Figure 5).64 Fürstner has carried out a total 

synthesis of A-cubebene using a PtCl2-catalysed tandem 1,5-enyne cycloisomerisation-

allylic acetate rearrangement as the key step.65  

 
 

H
H  

Figure 5. Structure of A-cubebene (44).  

 

Fürstner has also prepared a range of sesquisabinene and sesquithujene terpenoids 

containing the bicyclo[3.1.0]hexane core using [AuCl3(pyridine)] catalysed 

cycloisomerisation of 1,5-enynes. These include sesquisabinene (45), found in pepper 

40 41 

43 42 

44 

1' 
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3' 4' 
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(Piper nigrum), and sesquithujene (46), a major constituent of the essential oil of ginger 

(Zingiber officinale). They have also completed a formal total synthesis of cedrine and 

cedrol (48) (from oil of cedar, used for fragrances and flavourings) by preparing key 

intermediate 47 (Figure 6).66  

 

O

OH

H  

Figure 6. Structures of sesquisabinene A (45), sesquithujene (46) and cedrol (48). 

 

2.1.3.3. Tandem nucleophilic substitution-cycloisomerisation 

Georgy et al. have reported that Au(III) salts can catalyse the nucleophilic substitution of 

propargyl alcohols with allyltrimethylsilane to produce 1,5-enynes.25a A small amount 

(11%) of the cycloisomerisation product was produced using the Au salt, HAuCl4.3H2O 

and 1-phenylhex-2-yn-1-ol. Nucleophilic substitution of propargyl alcohols has 

traditionally been carried out by multi-step stoichiometric reactions involving cobalt 

(Nicholas reaction-[Co2(CO)8])67 or chromium68 and there have been several recent reports 

in the literature of efficient catalysts for the direct nucleophilic substitution of propargyl 

alcohols, including: FeCl3,69 I2,70 PTSA,71 [ReCl3O(dppm)],72 BiCl3,73 BCl3 (with n-

BuLi),74 [{RuCl(Cp*)(�2-SMe)}2]75 and Cu(BF4)2.76 There have been three examples of 

two catalyst systems which can carry out the nucleophilic substitution of propargyl 

alcohols with allylsilanes using a Lewis or Brønsted acid followed by a cycloisomerisation 

of the resultant 1,5-enyne using an Au(I) catalyst/precatalyst. Toste15 and co-workers 

reported a Re and Au catalyst combination which can catalyse the nucleophilic 

substitution-cycloisomerisation of 1,3-diphenylprop-2-yn-1-ol and allyltrimethylsilane. 

Georgy et al. used a combination of AuCl3 followed by [Au(OTf)(PPh3)] to catalyse the 

reaction of 1-phenyloct-2-yn-1-ol (49) and allyltrimethylsilane to generate 

bicyclo[3.1.0]hexene 50 via 1,5-enyne 51 (Scheme 11).77 Sanz et al. have developed a 

45 

48 47 

46 
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para-toluenesulfonic acid catalysed nucleophilic substitution which is followed by a 

[AuCl(PPh3)]/AgSbF6 catalysed cycloisomerisation.78 

 

Ph

OH

Ph
Ph

AuCl3 (5 mol%) [Au(OTf)(PPh3)] (5 mol%)

r.t., 5 hrs, CH2Cl2 r.t., 89%
4 4

4

Si

 

Scheme 11. Concurrent AuCl3 catalysed nucleophilic substitution and [Au(OTf)(PPh3)] 

catalysed cycloisomerisation. 

 

2.1.4. Au imidate and (HC complexes; therapeutic and catalytic properties 

Au complexes have demonstrated activity against many biological targets including 

HIV79 and bacteria.80 The Au complex 2,3,4,6-tetra-O-acetyl-1-thio-A-D-pyranosato-S-

(triethylphosphine)gold(I) (Auranofin) is used therapeutically to treat rheumatoid arthritis81 

and the investigation into Au(I) and Au(III) complexes for therapeutic applications is 

ongoing, particularly due to cytotoxic activity.
82

 Electron-deficient biocompatible imidate 

anions ligate both Au(I) and Au(III),83 an attribute that has been exploited therapeutically.84 

In the 1920’s, Pope prepared a series of succinimidate (14) gold complexes, including 

H[Au(�-succ)2], [Au(�-succ)2(NH3)2]Cl, and [Au(�-succ)3(NH3)] (�-succ is �-

succinimidate), citing the use of such compounds as therapeutic agents where it is desirable 

to administer the compounds in a form not as auric acid or ions.83a
 Further studies were 

carried out by Tyabji and Gibson, who claimed to have prepared K[AuX2(�-imidate)2] 

complexes (where X is Br, Cl and OH),84a
 and also by Kharasch and Isbell who prepared 

NH4[Au(�-imidate)4] and H[Au(�-imidate)4] complexes.84b
 However, later investigations 

by Malik et al., who synthesised a sodium bis(�-methylhydantoinato)gold(I) complex, 

suggested that these were most likely anionic gold(I) bisimidate complexes.83b
  

Kilpin et al. prepared a range of Au(III) complexes using the anions of phthalimide (18), 

o-benzoic sulfimide (saccharin) (19) and isatin as ligands in complexes of the type [Au(�-

imidate)2(2-bp)] and [Au(�-imidate)(damp)] (2-bp is 2-benzylpyridyl; damp is 

Me2NCH2C6H4) which exhibited anti-tumour and anti-microbial activity.83c
 The first Au 

complex of the type [Au(�-imidate)L], [Au(�-succ)(PPh3)] (52), was prepared by 

Goodgame et al. in 1993,
85

 and later Bonatti et al. prepared [Au(�-ptm)(PCy3)] and [Au(�-

obs)(PCy3)] (�-ptm is �-phthalimidate (18); �-obs is �-o-benzoic sulfimidate (19)).84c
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More recently, Berners-Price et al. reported a number of [Au(�-imidate)(PR3)] complexes, 

including [Au(�-ptm)(PEt3)], trans-[AuBr2(�-ptm)(PEt3)] (53), [Au(�-rib)(PEt3)] and 

[Au2(�-ptm)2(µ-depe)] (rib is the anion of riboflavin; depe is 1,2-

bis(diethylphosphino)ethane).84d
 These gold complexes exhibit anti-inflammatory activity.  

Nolan and co-workers have produced the first [Au(N-imidate)(NHC)] complex, [Au(�-

obs)(IPr)] (54) (IPr is bis(2,6-diisopropylphenyl)imidazol-2-ylidene), and also [Au(S-

tgt)(IPr)] (S-tgt is 2,3,4,6-tetra-O-acetyl-1-thio-β-D-pyranosatothiolato anion).84e
 Nolan’s 

group has previously prepared a series of Au(III) complexes of the type [AuBr3(NHC)], by 

oxidative bromination of [AuBr(NHC)] complexes, which have been shown to catalyze the 

addition of water to phenyl acetylene86 and to effectively promote styrene polymerisation.
87

 

More recently they have reported a series of [AuCl3(NHC)] complexes37 (only synthetic 

and structural studies). Ricard and Gagosz have synthesised a related series of N-

heterocyclic carbene Au(I) bis(trifluoromethanesulfonyl)imidate complexes.
88

 Baker et al. 

have prepared a range of [AuX(I
t
Bu)] complexes (I

t
Bu is N,N’-di-tert-butyl-butylimidazol-

2-ylidene), where X is a range of pseudohalide ligands, and found that the σ donor capacity 

of the pseudohalide ligand had a direct effect on the length of the carbene-gold bond.
89
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Figure 7. Structures of reported Au(I) and Au(III) imidate complexes 52-54. 

 

Phthalimide has been used in conjunction with gold catalytically. Cui et al.
90

 found that 

the addition of sulfonic acids to alkynes to give vinyl sulfonates could be catalysed by 

[Au(NO3)(PPh3)] (2 mol%) and when they added phthalimide (4 mol%) the yield increased 

from 58 to 74%. The authors speculated that [Au(�-ptm)(PPh3)] formed and observed a  

53% yield when [Au(�-ptm)(PPh3)] (2 mol%) was added to the reaction. The conditions 

used are harsh (100 ˚C for 4 hours), which certainly results in colloidal gold formation, and 

so the nature of the catalytically active species is unclear. 
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2.1.5. Aims 

 The initial aim of this study was to investigate the structure and bonding of Au(I) and 

Au(III) complexes containing NHC and imidate ligands. The complexes would then be 

applied to Au(III)-catalysed processes and the effect of the nature of the imidate and NHC 

ligands on catalytic activity investigated. Au(III) imidate complexes are likely to act as soft 

π-acidic 1,5-enyne cycloisomerisation catalysts, and as Lewis acid catalysts which is 

advantaged by the highly electron-withdrawing imidate ligands. It was hypothesised that 

these properties could be combined into a single catalyst system, enabling an efficient 

tandem nucleophilic substitution-cycloisomerisation process. It was also intended to study 

the effects of new super non-coordinating anions91 on these transformations. 
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2.2. Results and discussion 

2.2.1. Synthesis and characterisation of Au complexes  

2.2.1.1. Synthesis and characterisation of Au(I) complexes 

A range of [Au(N-imidate)(NHC)] complexes (55-57) {N-imidate is N-succinimidate 

(14), N-tetrafluorosuccinimidate (16), N-maleimidate (17), N-phthalimidate (18) and N-o-

benzoic sulfimidate (19); NHC is N,N'-di-tert-butyl-butylimidazol-2-ylidene (ItBu) (58), 

N,N'-di-tert-pentyl-butylimidazol-2-ylidene (ItPe) (59) and N,N'-bis(2,4,6-

trimethylphenyl)imidazol-2-ylidene (IMes) (60)} were prepared in order to study the 

electronic properties of the imidate ligands and as precursors to [AuBr2(N-imidate)(NHC)] 

complexes (Figure 8). 

 

N

N
Au N

O

O

N

N
Au N

O

O

N

N
Au N

O

O

 

 

 

Figure 8. [Au(N-imidate)(NHC)] complexes prepared, including yields. 

 

Preparation of [Au(N-imidate)(NHC)] (55-57) complexes was first attempted by the 

method described for related phosphine Au(I) complexes.84d The reaction of sodium 

imidates with [AuCl(NHC)] (55f-57f) complexes in an ethanol/water solvent system gave 

low yields, presumably due to the sensitivity of the carbene centre(s) to water. Use of neat 

ethanol gave improved yields, but virtually quantitative yields (87-96%) were achieved by 

treatment of the parent [AuCl(NHC)] (55f-57f) complex with the silver salt of the relevant 

imidate in dichloromethane (Scheme 12). In the case of the N-tfs (16) and N-obs (19) 

ligands the silver salts were prepared in situ due to the hygroscopic nature of the salts and 

the sensitivity of tetrafluorosuccinimide and its silver salt to water. Tetrafluorosuccinimide 

55a = N-succinimido (87%) 
55b = N-tetrafluorosuccinimido (91%) 
55c = N-maleimido (93%) 
55d = N-phthalimido (92%) 
55e = N-o-benzoic sulfimido (89%) 

56a = N-succinimido (93%) 
56b = N-tetrafluorosuccinimido (93%) 
56c = N-maleimido (96%) 
56d = N-phthalimido (96%) 
56e = N-o-benzoic sulfimido (94%) 

57a = N-succinimido (97%) 
57b = N-tetrafluorosuccinimido (87%) 
57c = N-maleimido (93%) 
57d = N-phthalimido (94%) 
57e = N-o-benzoic sulfimido (90%) 
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is prepared from tetrafluorosuccinamide by reaction with stoichiometric neat sulphuric acid 

at 190 ˚C followed by isolation via sublimation.  

 

S Au Cl

N

N
Ag Cl

R

R

CH2Cl2, 25 
oC, 3 h N

N
Au Cl

R

R

NAg

O

O

CH2Cl2, 25 
oC, 1 h N

N
Au

R

R

N

O

O  

Scheme 12. Preparation of [Au(N-imidate)(NHC)] complexes. 

 

 The novel NHC ligand, namely N,N'-di-tert-pentyl-butylimidazol-2-ylidene (ItPe) (59), 

was synthesised from the hydrochloride salt (61) by a method similar to that reported 

(Scheme 13).92 This allows a comparison of any subtle electronic and steric effects with the 

related ItBu NHC ligand (58) and provides steric control for intended combination with 

chiral imidates for asymmetric catalysis. The hydrochloride salt ItPe.HCl (61) could not be 

prepared by the method analogous to that of ItBu.HCl (62) due to poor reactivity (or 

solubility) in the first step resulting in recovery of tPeNH2.HCl only. 

 

N

N Cl

H2N H

O O

H
NN+

EtOH / H2O

Formic acid cat.

r.t., 2 days

HO O
H
n

Toluene, 70 oC, 18 h

HCl

34%

 
Scheme 13. Synthesis of ItPe.HCl (61). 

 

The Au(I) complexes are white powders which are air stable but decompose slowly in 

water. Attempts were also made to synthesise an IMe analogue, however this ligand proved 

unstable, resulting in multiple products and decomposition, when synthesis of the 

[AuCl(IMe)] complex was attempted. The Au(I) complexes were fully characterised by 1H, 
19F, 13C, IR and ESI-MS studies and several by X-ray diffraction studies.  

The novel ItPe ligand (59) shows very similar electronic properties to the ItBu ligand 

(58).93 The NMR spectroscopic data of the compounds is consistent with greater electron 

donation from the tPe compared with the tBu group. The imidazolium protons of the ItPe 

group have a small upfield shift in the hydrochloride salt (61) (0.19 ppm) and chloride 

61 

55-57 f 55-57 (a-e) 
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complex (56f) (0.05 ppm) and the imidazole carbon signals have a small downfield shift 

(0.8-0.9 ppm), relative to the ItBu analogues. The imidate ligand protons are shifted upfield 

by up to 0.4 ppm compared to the neutral imides which is consistent with a more electron 

deficient environment. 

The NHC ligands have a noticeable effect on the imidate proton NMR signals. The IMes 

ligand (60) shifts the proton signals upfield with respect to ItBu (58) and ItPe (59) in the 

order: IMes < I
t
Pe ≤ ItBu. There is little difference (< 0.05 ppm) between ItBu (55) and ItPe  

(56) complexes but up to 0.25 ppm difference between the signals of IMes (57) and ItBu  

(55) complexes. However, there is little change in the carbon signals of the imidates (< 0.4 

ppm). The phosphine Au(I) complexes reported85 exhibit similar imidate NMR chemical 

shifts to the ItPe (56) and ItBu (55) complexes. 

The imidate ligands have a moderate impact on the NHC 1H NMR signals but a trend is 

revealed in the chemical shift of the NHC imidazole proton signals of: 

Cl ≤ Br ≤ N-succ ≤ N-mal < N-ptm < N-obs < N-tfs 

(with ranges of: 55 a-g 7.09-7.15 ppm, 56 a-g 7.04-7.11 ppm, 57 a-g 7.09-7.17 ppm) 

The N-succ (55-57 a), N-mal (55-57 c) and N-ptm (55-57 d) complexes show similar 

spectra to the chloride (55-57 f) and bromide analogues (55-57 g), with less than 0.03 ppm 

difference in the imidazole proton signals. However, the more electron-withdrawing 

imidate ligands, N-tfs and N-obs, shift the imidazole signal downfield by up to 0.07 and 

0.06 ppm, respectively. This is in part reflected in the Au-C carbene carbon shift (Table 3) 

where the following trend is revealed:  

N-tfs < N-obs < Cl < N-mal ≤ N-succ < N-ptm < Br 

(with ranges of: 55 a-g 167.0-172.4 ppm, 56 a-g 167.5-172.3 ppm, 57 a-g 171.9-176.9 

ppm) 

Less than 0.4 ppm difference is observed between the N-succ (55-57 a), N-mal (55-57 c) 

and N-ptm (55-57 d) complexes but an upfield shift of up to 3.9 ppm is observed for the N-

tfs (55-57 b) and N-obs (55-57 e) complexes. The related bromide analogues (55-57 g) 

appear downfield relative to the imidates, although the chloride analogues (55-57 f) appear 

upfield. This upfield shift in the electron-deficient complexes is seen in other types of 

Au(I) complexes,85,86 and is speculated to be due to the polarisation of the NHC ligand by 

the more electron-deficient Au(I) atom. The imidazole proton and carbene carbon signals 

are similar to those reported by Baker (62 and 63).89 These similarities confirm the validity 
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of imidate anions as pseudohalide ligands, and are in keeping with other trends reported for 

metal imidate complexes.94 

 

Table 3. The 13C NMR chemical shifts of the carbene carbon of [Au(N-imidate)(NHC)] 

complexes (55-57).a 

Entry Complex 
0C    

(ppm) 
Entry Complex 

0C     

(ppm) 

1 [Au(N-succ)(ItBu)] (55a) 170.8 13 [AuCl(ItPe)] (56f) 168.1 

2 [Au(N-tfs)(ItBu)] (55b) 167.0 14 [AuBr(ItPe)] (56g) 172.3 

3 [Au(N-mal)(ItBu)] (55c)  170.5 15 [Au(N-succ)(IMes)] (57a) 174.9 

4 [Au(N-ptm)(ItBu)] (55d) 170.9 16 [Au(N-tfs)(IMes)] (57b) 171.9 

5 [Au(N-obs)(ItBu)] (55e) 167.5 17 [Au(N-mal)(IMes)] (57c) 175.1 

6 [AuCl(ItBu)]89 (55f) 168.2 18 [Au(N-ptm)(IMes)] (57d) 175.2 

7 [AuBr(ItBu)]89 (55g) 172.4 19 [Au(N-obs)(IMes)] (57e) 172.9 

8 [Au(N-succ)(ItPe)] (56a) 170.8 20 [AuCl(IMes)]86 (57f) 173.4 

9 [Au(N-tfs)(ItPe)] (56b) 167.5 21 [AuBr(IMes)]86 (57g) 176.9 

10 [Au(N-mal)(ItPe)] (56c) 170.7 22 [Au(ONO2)(ItBu)]89 (62) 156.3 

11 [Au(N-ptm)(ItPe)] (56d) 171.0 23 [Au(CH3)(ItBu)]89 (63) 198.7 

12 [Au(N-obs)(ItPe)] (56e) 167.9    

a In CDCl3 at 400 MHz. 

 
The stretching frequencies of the imidate ligand carbonyl bonds (Table 4) are 53-78 cm-1 

lower than the free imides, which would suggest more electron density on the imidate 

nitrogen in the complexes than in the free imide.95 This has been observed in other imidate 

metal complexes and there have been several explanations proposed.96 The most 

convincing of these97 is that there is a degree of ionic character associated with the metal-

imidate bond resulting in the shift of electron density from the Au-N into the N-C bond and 

so from the carbonyl bond on to the carbonyl oxygen. The stretching frequencies reflect the 

NMR spectroscopic data allowing the following trend to be established:  

N-succ < N-mal < N-ptm < N-obs < N-tfs 

(with ranges of: 55 a-e 1645-1704 cm-1, 56 a-e 1644-1704 cm-1, 57 a-e 1648-1705 cm-1) 
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The range is up to 60 cm-1 with the higher frequencies (stronger carbonyl bonds) 

reflecting the increased electron-withdrawing capacity of the imidates. This also largely 

reflects the pKa of the parent imides:  

obs (1.6)98 < tfs (2.1 est.)99 < ptm (8.3)98 < mal (9.5)100 < succ (9.7)101 

The pKa of tfs does not fit the pattern exactly, although this is an estimated value. The 

pKa was estimated by comparison of the pKa of succinimide to pyrollidium (11.31) and 

3,3,4,4-tetrafluoropyrrolidinium (4.05) ions. The NHC ligands have little effect on the 

carbonyl stretching frequencies of the imidate ligands (<4 cm-1). The effect on the 

frequency of each imidate follows the trend:  

ItPe < ItBu < IMes 

 

Table 4. The infra-red absorbance frequencies of the imidate carbonyl groups in [Au(N-

imidate)(NHC)] complexes and free imides in CH2Cl2.a 

Entry Complex 
υmax       

(cm-1) 
Entry Complex 

υmax        

(cm-1) 

1 [Au(N-succ)(ItBu)] (55a) 1645 11 [Au(N-succ)(IMes)] (57a) 1648 

2 [Au(N-tfs)(ItBu)] (55b) 1704 12 [Au(N-tfs)(IMes)] (57b) 1705 

3 [Au(N-mal)(ItBu)] (55c)  1662 13 [Au(N-mal)(IMes)] (57c) 1662 

4 [Au(N-ptm)(ItBu)] (55d) 1667 14 [Au(N-ptm)(IMes)] (57d) 1667 

5 [Au(N-obs)(ItBu)] (55e) 1689 15 [Au(N-obs)(IMes)] (57e) 1680 

6 [Au(N-succ)(ItPe)] (56a) 1644 16 succinimide 1722 

7 [Au(N-tfs)(ItPe)] (56b) 1704 17 maleimide 1731 

8 [Au(N-mal)(ItPe)] (56c) 1660 18 phthalimide 1741 

9 [Au(N-ptm)(ItPe)] (56d) 1667 19 o-benzoic sulfimide 1742 

10 [Au(N-obs)(ItPe)] (56e) 1689    

a Carbonyl stretching frequency of tetrafluorosuccinimide not obtained due to poor solubility in CH2Cl2. 
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The complexes, [Au(N-succ)(ItBu)] (55a), [Au(N-ptm)(ItBu)] (55d) and [Au(N-

succ)(IMes)] (57a), were crystallised from fluorobenzene in a solution saturated with 

pentane, which allowed their structures to be determined by X-ray diffraction (Figure 9). 

Selected bond lengths of these and related complexes are displayed in Table 5. 

 

 

 

              

Figure 9. Molecular structures of 55a, 55d and 57a. Displacement ellipsoids are shown at 

the 50% probability level. Hydrogen atoms have been omitted for clarity.

55a 55d 

57a 
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Complexes 55a (which contains two [Au(N-succ)(ItBu)] conformers), 55d and 57a have 

two-coordinate linear structures with N-Au-C bond angles close to 180˚ {176.17(18)˚ and 

176.98(18)˚ for 55a, 178.30(10)˚ for 55d and 179.65(9)˚ for 57a}. The solid-state structure 

of 55d is planar, whilst 55a has torsion angles of 70.5˚ and 69.6˚ and 57a a 76.1˚ torsion 

angle between the NHC imidazole and N-succ rings. The crystal structures show that there 

is little variation in equivalent bond lengths of the imidate ligands in complexes 55a, 55d, 

57a and [Au(N-ptm)(PPh3)] (64). The imidate Au-N bond length for 55a (2.037(4) Å and 

2.042(4) Å) is slightly longer (statistically significant) by 0.016(6) and 0.021(6) Å than 57a 

{2.021(2) Å}. The Au-N bond is significantly shorter in these complexes {up to 0.056(5) 

Å} than in [Au(NTf2)(IMes)] (65)88 due to greater electron withdrawing ability of the 

triflate substituents. Phthalimide has bond lengths in the range of those of the phosphine 

complex and 57d, highlighting the similarity (and isolobal relationship) between the Au(I) 

centre and a proton.  

The Au-anion bond lengths in the ItBu complexes 55a and 55d (2.040(4) and 2.029(3), 

respectively) are significantly shorter than the analogous chloride (55f) and bromide (55g) 

complexes (2.2742(7) and  2.3994(5) Å, respectively), however they are similar to the -CN 

(2.009(7) and 2.043(6) Å), acetate (2.040(2) Å), and -ONO2 (2.056(3) Å) complexes 

reported by Baker.89  

The bond lengths observed for the NHC ligands are also similar; complex 57a has a 

shorter Au-C bond than 55a (by 0.040(7) to 0.043(7) Å) and 55d (by 0.022(6) Å), 

consistent with similar complexes;37,86 55a and 55d are not significantly different. All three 

complexes have similar C-N and C=C bonds lengths. Complexes 55a and 55d have similar 

bond lengths to the analogous Au(I) bromide complex 55g and complex 57a to the 

analogous NTf2 and chloride (57g) complexes has a slightly longer Au-C bond by 0.034(9) 

Å).  

The complexes are reasonably stable in air and solution (although with some 

susceptibility to hydrolysis) with formation of colloidal gold after several weeks at ambient 

temperature. Anionic ligand exchange is facile. Treatment of [Au(N-tfs)(ItPe)] (56b) with 

one equivalent of [(nBu)4N]Br results in partial exchange of tfs and Br anions, similarly 

with [Au(N-succ)(IMes)] (57a) and LiBr.  

Interestingly, the [Au(N-mal)(NHC)] complexes 55d and 56d can undergo a dimerisation 

reaction by a π2S + π2S cycloaddition (Scheme 14). This has been reported for neutral 

maleimide under the influence of UV light, but no examples involving metal complexes are 
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known.104 Formation of the dimer (55h and 56h) was observed in up to 33% (relative to 

undimerised complex) for 56d and 7% for 55d, depending on the age of the sample. 

Evidence for this transformation was provided by mass spectral and NMR analysis, with 

the 1H NMR signal for the imidate protons shifting from 6.54 to 3.33 ppm in 56d (6.56 to 

3.34 ppm in 55d). These NMR changes are consistent with a conversion of alkene to 

cyclobutane. The relative stereochemistry (cis or trans-disposed), which will be influenced 

by the packing of the solid state structure, was not determined. No cycloaddition was 

observed for 57d. Exposure of the complexes to natural light (for 2 weeks) did not 

significantly increase the proportion of dimerised complex.  
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Scheme 14. Photodimerisation of 56d to 56h. 

 

2.2.1.2. Synthesis and characterisation of Au(III) complexes 

A range of Au(III) complexes of the type [AuBr2(N-imidate)(ItBu)] (66), [AuBr2(N-

imidate)(ItPe)] (67) and [AuBr2(N-imidate)(IMes)] (68) were prepared by treatment of 

[Au(N-imidate)(NHC)] complexes (55-57) with bromine using the method of Nolan et al.86 

(Scheme 15, Figure 10). Complexes 66(a, c, e, f), 67(a, c, e, f) and 68(a, c) were prepared 

by this method. The analogous IMes complexes (68) containing the N-tfs and N-obs 

ligands could not be prepared due to decomposition of the complexes on treatment with 

bromine. 
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Scheme 15. General method for the preparation of [AuBr2(N-imidate)(NHC)] complexes 

(66-68). 
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Figure 10. The [AuBr2(N-imidate)(NHC)] complexes prepared in this study, including 

yields. 

 
The N-mal complexes 66d, 67d and 68b were prepared by the same method at -78 oC 

with one equivalent of bromine due to competing bromination of the maleimidate double 

bond and Au-maleimidate bond. N-dbs (N-2,3-dibromosuccimidate) complexes 66b and 

67b can be prepared by treatment of [Au(N-mal)(NHC)] complexes (55c and 56c) with two 

equivalents of bromine or [AuBr2(N-mal)(NHC)] complexes (66d and 67d) with one 

equivalent of bromine at ambient temperature. The IMes complex containing a N-dbs 

ligand cannot be prepared under these conditions due to preferential addition of bromine to 

the Au-imidate bond even at low temperatures. This may occur via an Au(III) complex as 

seen for other Au(I) oxidative halogenation reactions.105 Attempts to prepare the free 2,3-

dibromomaleimidate anion (15) were unsuccessful because treatment of the neutral imide 

with base resulted in elimination of HBr to form 2-bromomaleimide, rather than 

deprotonation (Scheme 16). Preparation of silver 2,3-dibromomaleimidate directly by 

bromination of silver maleimidate was also unsuccessful due to AgBr formation. 

66a = N-succinimido (84%) 
66b = N-2,3-dibromosuccinimido (93%) 
66c = N-tetrafluorosuccinimido (91%) 
66d = N-maleimido (90%) 
66e = N-phthalimido (89%) 
66f = N-o-benzoic sulfimido (92%) 

67a = N-succinimido (98%) 
67b = N-2,3-dibromosuccinimido (87%) 
67c = N-tetrafluorosuccinimido (93%) 
67d = N-maleimido (87%) 
67e = N-phthalimido (97%) 
67f = N-o-benzoic sulfimido (94%) 

68a = N-succinimido (86%) 
68b = N-maleimido (96%) 
68c = N-phthalimido (95%) 
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Scheme 16. Reaction of maleimide and [Au(N-mal)(NHC)] complexes with bromine in 

CH2Cl2. 

 

The analogous [AuBr3(NHC)] complexes (66g, 67g and 68d) were prepared by the same 

synthetic method.86,89 The Au complexes were isolated in high yields (84-98%) as air stable 

yellow solids via simple purification, involving precipitation from 

dichloromethane/pentane and washing with pentane and cold diethyl ether. Berners-Price et 

al.84d reported that analogous “trans-AuPR3” complexes underwent isomerisation to the cis 

isomeric form over a period of days. This was not observed in the NHC Au(III) complexes 

due to the greater steric bulk of the ligands. Ligand exchange occurs in solution, treatment 

55-57c 

68b 68d 

66b, 67b 66d, 67d 
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of [AuBr2(N-tfs)(ItPe)] 67c with [(nBu)4N]Br results in formation of [AuBr3(ItPe)] (67g). 

However, exchange does not occur between complexes, mixing 67d and 68a in solution 

did not result in ligand exchange and so the exchange presumably occurs associatively 

rather than dissociatively. There was no π2S + π2S cycloaddition observed for the Au(III) 

maleimidate complexes (66d, 67d and 68b) as was seen with Au(I) complexes 55d and 

56d, presumably due to unfavourable crystal packing and reduced electron density in the 

maleimidate alkene bond. The complete library of Au(III) complexes have been fully 

characterised by 1H, 13C, IR, ESI-MS, and for selected examples, by crystallography using 

X-ray diffraction.  

As for Au(I) the ItPe ligand 59 has similar NMR characteristics to ItBu 58. The ItPe 

imidazole protons are shifted slightly more downfield (< 0.1 ppm), however, the Au-C 

carbene carbon is up to 1.1 ppm further downfield (Table 6). There is little difference in 

imidazole and carbon imidate signals for the two sets of complexes and this is consistent 

with Au(I) [Au(N-imidate)(NHC)] complexes (55 and 56). 

Au(III) complexes containing the IMes ligand (68) have more upfield imidazole (up to 

0.19 ppm) and imidate proton signals (up to 0.24 ppm) than the ItBu (66) and ItPe (67) 

containing complexes. The Au-C carbene carbon signals are up to 10.7 ppm and the 

imidazole signals up to 3.5 ppm more downfield, which is concurrent with other known 

Au(I) and Au(III) complexes.37,86 The imidate carbon signals are similar to those of ItBu 

and ItPe containing Au(III) complexes (66 and 67).  
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Table 6. The Au-C carbene carbon chemical shifts of [AuBr2(N-imidate)(NHC)] 
complexes.a 

Entry Complex 
0C    

(ppm) 
Entry Complex 

0C     

(ppm) 

1 [AuBr2(N-succ)(ItBu)] (66a) 131.9 11 [AuBr2(N-mal)(ItPe)] (67d) 132.0 

2 [AuBr2(N-dbs)(ItBu)] (66b) 128.1 12 [AuBr2(N-ptm)(ItPe)] (67e) 132.4 

3 [AuBr2(N-tfs)(ItBu)] (66c) 124.9 13 [AuBr2(N-obs)(ItPe)] (67f) 126.6 

4 [AuBr2(N-mal)(ItBu)] (66d) 131.3 14 [AuBr3(ItPe)] (67g) 135.6 

5 [AuBr2(N-ptm)(ItBu)] (66e) 131.5 15 [AuBr2(N-succ)(IMes)]  (68a) 142.2 

6 [AuBr2(N-obs)(ItBu)] (66f) 125.6 16 [AuBr2(N-mal)(IMes)] (68b) 141.4 

7 [AuBr3(ItBu)]86 (66g) 134.2 17 [AuBr2(N-ptm)(IMes)] (68c) 142.2 

8 [AuBr2(N-succ)(ItPe)] (67a) 132.6 18 [AuBr3(IMes)]86 (68d) 144.4 

9 [AuBr2(N-dbs)(ItPe)] (67b) 128.7 19 [AuCl3(ItBu)]37 (69) 135.7 

10 [AuBr2(N-tfs)(ItPe)] (67c) 126.0 20 [AuCl3(IMes)]37 (70) 144.6 

a In CDCl3 at 400 MHz. 

 

The chemical shift of the NHC imidazole proton signal is also correlated with the 

electronic properties of the imidate ligands. The more electron-withdrawing imidates shift 

the signal downfield, with a range of 0.07-0.10 ppm, in the order: 

N-succ < N-mal < N-ptm (≈ Cl3) < N-dbs < Br < N-obs < N-tfs 

(with ranges of: 66 a-g 7.41-7.51 ppm, 67 a-g 7.36-7.43 ppm, 68 a-d 7.26-7.32 ppm) 

There is a similar trend in Au-C carbene 13C chemical shifts, the more electron-

withdrawing imidates result in a shift upfield, in the order: 

N-tfs < N-obs < N-dbs < N-mal < N-ptm < N-succ < Br3 (< Cl3) 

(with ranges of: 66 a-g 131.9-134.2 ppm, 67 a-g 132.6-135.6 ppm, 68 a-d 142.2-144.4 

ppm) 

 The N-tfs containing Au(III) complexes (66c and 67c) are shifted up to 9.6 ppm further 

upfield than the tribromide complexes (66g and 67g) (and up to 10.8 ppm further than the 

trichloride complexes). The N-mal, N-succ and N-ptm ligands give similar values. The 

greater electron-withdrawing capacity of the imidate results in greater polarisation of NHC 

ligand resulting in a shift upfield, as seen in similar complexes.89 
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On oxidative bromination, from Au(I) to Au(III), the 13C NMR signals of the NHC 

substituents are shifted downfield by up to 6.0 ppm and the Au-C 13C carbene signals 32-42 

ppm upfield. The greatest difference is seen with the more electronegative N-tfs ligand. 

This upfield chemical shift of the carbene signal on oxidation of the Au atom has been seen 

in other classes of Au complexes86,105 and is postulated to be due to polarisation of the NHC 

ligand by the electrophilic Au(III) centre. In addition, the NHC imidazole protons are 

shifted up to 0.40 ppm and the imidate protons 0.25 ppm downfield on oxidation, as would 

be expected for ligands in a more electron poor complex. However, in ItPe containing 

Au(III) complexes (66), the tPe group methylene signal is shifted upfield by 0.42-0.51 

ppm. This could be due to a non-bonding interaction between the methylene protons and 

bromide ligands, although this is not evidenced in the crystal structure (vide infra). The 

imidate carbonyl 13C NMR signals also move upfield by 2.0-5.5 ppm.   

The imidate carbonyl stretching frequencies (Table 7) also show a trend of increasing 

frequency, with a range of up to 55 cm-1, in the order: 

N-succ < N-mal < N-ptm < N-dbs < N-obs < N-tfs 

(with ranges of: 66 a-f 1663-1718 cm-1, 67 a-f 1663-1716 cm-1, 68 a-c 1665-1683 cm-1) 

This order reflects the electron-withdrawing capacity of the imidates, with decreasing 

C=O bond order, which is consistent with Au(I) complexes 55-57 and the observations 

made by NMR spectroscopy vide supra. There is little effect of the NHC ligand on the 

frequencies, with less than 2cm-1 variation. On oxidation, from Au(I) (55-57) to Au(III) 

(66-68) complexes, the frequency is increased by 14-18 cm-1, reflecting the greater 

donation of the imidate nitrogen lone pair into the Au-N rather than the N-C bond, 

resulting in more C=O bond character.  
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Table 7. The infra-red absorbance frequencies of the imidate carbonyl groups in [AuBr2(N-

imidate)(NHC)] complexes and free imides in CH2Cl2.a 

Entry Complex 
υmax       

(cm-1) 
Entry Complex 

υmax        

(cm-1) 

1 [AuBr2(�-succ)(I
t
Bu)] (66a) 1663 11 [AuBr2(�-ptm)(I

t
Pe)] (67e) 1682 

2 [AuBr2(�-dbs)(I
t
Bu)] (66b) 1690 12 [AuBr2(�-obs)(I

t
Pe)] (67f) 1694 

3 [AuBr2(�-tfs)(I
t
Bu)] (66c) 1718 13 [AuBr2(�-succ)(IMes)] (68a) 1665 

4 [AuBr2(�-mal)(I
t
Bu)] (66d) 1675 14 [AuBr2(�-mal)(IMes)] (68b) 1677 

5 [AuBr2(�-ptm)(I
t
Bu)] (66e) 1682 15 [AuBr2(�-ptm)(IMes)] (68c) 1683 

6 [AuBr2(�-obs)(I
t
Bu)] (66f) 1694 16 succinimide 1722 

7 [AuBr2(�-succ)(I
t
Pe)] (67a) 1663 17 2,3-dibromosuccinimide 1744 

8 [AuBr2(�-dbs)(I
t
Pe)] (67b) 1690 18 maleimide 1731 

9 [AuBr2(�-tfs)(I
t
Pe)] (67c) 1716 19 phthalimide 1741 

10 [AuBr2(�-mal)(I
t
Pe)] (67d) 1675 20 o-benzoic sulfimide 1742 

a Carbonyl stretching frequency of tetrafluorosuccinimide not obtained due to poor solubility in CH2Cl2. 

 

The carbonyl stretching frequency of the imidate ligands were compared to the 13C NMR 

carbene carbon shift of the NHC ligands for both [Au(N-imidate)(NHC)] (55-57) and 

[AuBr2(N-imidate)(NHC)] (66-68) complexes (Figure 11). The plot clearly shows the 

difference in 13C NMR carbene carbon shift between the Au(I) and Au(III) complexes, and 

the electronic similarity of ItBu and ItPe ligands compared to IMes. N-succ, N-mal and N-

ptm ligands are relatively similar in both carbonyl stretching frequency and the carbene 

chemical shift. N-Obs (for Au(I)) and particularly N-tfs (for Au(I) and Au(III)) are outlying 

in both respects due to the electron withdrawing ability of their substituents creating a more 

electron deficient Au atom. 
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Figure 11. Comparison of the 13C NMR carbene carbon shiftsa and carbonyl C=O 

stretching frequencies of [Au(N-imidate)(NHC)] and [AuBr2(N-imidate)(NHC)] 

complexes.b 

a In CDCl3 at 400 MHz. b In CH2Cl2. 

 

Complexes 66a, 66e, 67a, 67c and 68c were crystallised from fluorobenzene in a pentane 

saturated solution, which allowed their structures to be determined by X-ray diffraction 

(Figure 12). Selected bond lengths of these and related complexes are displayed in Table 8. 
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Figure 12. Molecular structures of 66a, 66e, 67a, 67c and 68c. Displacement ellipsoids are 

shown at the 50% probability level. Hydrogen atoms have been omitted for clarity.  
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The structures are all four coordinate, square planar, complexes with bond angles 

between the ligands of 87.73(8)-92.04(7)°. The imidate and NHC imidazole rings are 

approximately coplanar and perpendicular to the AuBr2 plane, which minimises steric 

interactions between the ligands. The unit cell of complex 66a contains two [AuBr2(N-

succ)(ItBu)] conformers. One has torsion angles of 73.7(4)-107.3(4)° between the imidate 

ring and AuBr2 plane and 86.2(3)-94.9(3)° for the imidazole ring and the second 71.5(3)-

108.5(3)° and 85.0(3)-95.8(3)°, respectively. Complex 66d has coplanar ligands with 

torsion angles of 89.5(4)-90.5(4)°. Complex 67a contains two [AuBr2(�-succ)(I
t
Pe)] 

conformers and a C6H5F molecule, the NHC ligands are coplanar with the AuBr2 plane 

with torsion angles of  87.7(2)-91.6(2)° and 87.8(3)-92.6(3)°, respectively, and the imidates 

are out of plane by 74.8(2)-106.0(2)° and 72.8(2)-106.8(2)°. Complex 67c contains one 

conformer in the unit cell but it has disorder about the imidate backbone (one C=O and the 

C-F bond). The rings are relatively coplanar, 85.1(6)-94.3(6)° for the NHC and 80.7(6)-

99.4(8)° for the imidate ligand. Complex 68c is non-planar with torsion angles of 79.2(3)-

101.7(3)° for the imidate ring and 69.3(3)-111.6(3)° for the imidazole ring.  

Complex 68c has a slightly longer Au-N bond (by 0.033(8) Å) than the analogous 

complex 66e, whilst the imidate bond lengths are similar. These bond lengths are also 

similar to those reported for [Au(N-ptm)2(2-bp)] (71) by Kilpin et al.,83c and those of the 

neutral imide.  

The N-succ ligand in complex 66a has a longer Au-N bond (0.024(8)-0.038(8) Å) and 

shorter N-C bonds (0.013(10)-0.037(10) Å) than the N-ptm ligand in analogue 66d, 

suggesting transfer of electron density from the Au-N to N-C bonds. Complexes 66a and 

67a have similar bond lengths, as do 67a and 67c.  

 Complexes 66a, 66d and 68c and the analogous tribromide complexes, 66g and 68d, all 

possess similar NHC bond lengths. Complexes 66a and 66d also have similar bromide 

bond lengths to the tribromide complex 66g. This is also observed for complex 68c and the 

analogous tribromide complex 68d. On oxidative bromination, from Au(I) to Au(III), there 

is little variation in bond lengths for complex 66d (compared with 55c), which has been 

reported in other Au(III) NHC complexes.37,86 

The Au-N bonds in 66a and 66e are significantly shorter than the Au-Cl and Br bonds 

trans to the NHC ligand in complexes 66g and 69. For example, for complex 66a the 

differences are 0.3933(9) Å and 0.273 (6) Å, respectively, and analogously for 68c, 66d 

and 70 (0.373 (4) Å and 0.257(5) Å differences, respectively).  
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2.2.1.3. 15N labelling of Au(I) and Au(III) N-succinimidate complexes 

[Au(15N-succ)(ItPe)] (72) and [AuBr2(15N-succ)(ItPe)] (73) were synthesised from 15N-

succinimide by the normal method and fully characterised. The 13C NMR spectra in CDCl3 

show coupling of the labelled nitrogen to the adjacent carbonyl, the succinimide CH2 

groups and the carbene carbon through the Au atom. This coupling is observed as the 

expected doublet (Table 9) and is consistent with the findings of Berners-Price et al..84d 

 

Table 9. 15N to 13C coupling constants in the 13C NMR spectra of [Au(15N-succ)(ItPe)] (72) 

and [AuBr2(15N-succ)(ItPe)] (73). 

Au 15N

O

O

N

N Br

Br 1

2
3

1

2

 

  Coupling constant (Hz) 

Entry Nuclei coupled to 
15
N 

[Au(15N-succ)(ItPe)] 

(72) 

[AuBr2(15N-succ)(ItPe)] 

(73) 

1 succ 13C=O (1) 8 9 

2 succ 13CH2 (2) 4 5 

3 carbene 13C (3) 15 25 

 

The data shows that coupling of 15N to the C=O and CH2 carbons of the succinimidate 

ligand is approximately the same for both complexes, increasing slightly for 73, as the 

ligand’s electronic structure would not alter much on oxidation of the Au atom. However, 

the coupling to the carbene carbon of ItPe is comparatively very strong, 15 Hz for 72 and 

25 Hz for 73. There is clearly significant communication between the two ligands via the 

Au atom. This would suggest that more electron density is present in the σ bond for 72,106 

as the imidate would donate more electron density to the more electropositive Au atom. In 

the solid state-structure (for the related ItBu series, 55a and 66a) the bonds get slightly 

longer for Au(III) (although not statistically significant), also in the Au(I) crystal structure 

the imidate and NHC imidazole rings are perpendicular, however in the Au(III) structure 

they are approximately coplanar, which would alter the orbitals involved in π bonding on 

the metal.  
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The 15N NMR spectrum (50 MHz, CD2Cl2) of 72 contains only a singlet at 209.4 ppm, 

and that of 73 a singlet at 179.4 ppm. The upfield signal of the Au(III) complex relative to 

Au(I) reflects the behaviour seen for the carbene carbon in the 13C NMR spectrum, 

however the bonding and orbitals of the two ligands are very different. Another aspect may 

be the different orientations of the succinimidate ligands in the Au(I) and Au(III) 

complexes as described above. 

It has been reported that, based upon spectroscopic evidence (particularly 13C NMR), N-

aryl substituted NHCs are actually stronger σ donors than N-alkyl analogues, resulting in 

N-alkyl complexes being more Lewis acidic than N-aryl. Likewise it is proposed that 

NHCs with chloride substituents on the imidazole ring decrease the Lewis acidity of a 

coordinated metal and methyl substituents increase the acidity relative to the unsubstituted 

analogue.37,89 This is in contradiction to computational studies by Radius and Bickelhaupt 

who found that a N-isopropyl substituted NHC is a better σ donor than a N-phenyl 

substituted NHC.107 The computational findings would appear to be more logical, based 

upon chemical intuition. 

The spectroscopic characterisation does not give a clear indication as to whether the N-

alkyl substituted NHCs (ItBu and ItPe) are better donors relative to  the N-aryl (IMes) for 

the Au(I) and Au(III) imidate complexes. 1H and 13C NMR spectra of the imidate ligands 

suggest IMes is more donating (than ItBu and ItPe) as the signals are more upfield (on 

oxidation from Au(I) to Au(III) they shift downfield). 13C NMR signals of the IMes ligand 

carbene carbon are shifted downfield, intuitively suggesting it is less donating, although 

the carbene signal moves upfield on oxidation of a coordinated metal. The infra-red 

carbonyl stretching frequencies suggest IMes is less donating, as the signal is at higher 

wavenumber (a stronger carbonyl bond indicates the nitrogen lone pair is more localised in 

the Au-N rather than N-C bond). X-ray diffraction data is inconclusive as the IMes Au-C 

bond is shorter in Au(I) complexes but longer in Au(III). Experimental evidence, such as 

the instability of [AuBr2(N-imidate)(IMes)] complexes with very electron withdrawing 

imidates N-tfs, N-dbs and N-obs suggests IMes is less electron donating and so less able to 

stabilise the electron deficient complexes. 
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2.2.2. Catalysis 

2.2.2.1. Cycloisomerisation of 4-phenyl-1-hexen-5-yne 

The 1,5-enyne, 4-phenyl-1-hexen-5-yne (74), has been shown to undergo Au(I) and 

Au(III) catalysed cycloisomerisation to afford a bicyclo[3.1.0]hexyl ring system (Scheme 

17).15 

 

[Au]+
H

H  

Scheme 17. The gold catalysed cycloisomerisation of 4-phenyl-1-hexen-5-yne (74) to 

produce 3-phenylbicyclo[3.1.0]hex-2-ene (75). 

 

The group of Toste15 has shown that simple Pd or Pt complexes {[PdCl2(MeCN)2] and 

PtCl2} achieve less than 5% conversion. However, AuCl3 shows a 50% conversion after 3 

hours without added salts, and quantitative conversion when 3 equivalents of AgBF4 was 

added at 5 mol % Au loading. [Au(PPh3)]X salts (X is PF6 or BF4) give complete 

conversion at 1% Au loading in under 5 minutes.  

The first step of the reaction15 involves the binding of a gold cation (typically formed by 

halide abstraction from a gold complex by a silver salt) to the alkyne (Scheme 18, Step I). 

This withdraws electron density from the bond, due to a lack of back-bonding from gold to 

the alkyne antibonding orbitals,42 making it susceptible to nucleophilic attack. The alkene 

acts as a nucleophile and attacks the alkyne in the Markovnikov position to form the 

bicyclo[3.1.0]hexane structure via a 5-endo-dig108 cyclisation (Step II). The Au complex is 

thought to help stabilise the carbocation by π-backbonding to give the Au-carbon bond 

carbene character (the lower energy of the empty carbocation p orbital allows backbonding, 

c.f. gold alkyne bonding).35 A hydride then migrates to form a carbocation at the adjacent 

position (Step III) which is quenched by elimination of Au to give the bicyclohexene 75 

(Step IV). From this mechanism it would be logical to assume that a more electropositive 

Au cation would bind and activate the alkyne more strongly, although this may be to the 

detriment of stabilisation of the carbocationic intermediate. As the Au(III) imidate 

complexes possess trans geometries, the free site generated by bromide abstraction will 

occur trans to the other bromide rather than to the NHC which occurs with [AuBr(NHC)] 

75 74 
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and [AuBr3(NHC)] precatalysts. This will presumably have the effect of promoting binding 

and activation of the alkyne and also help stabilise the carbocation (as π-donation from 

bromide would be greater than from the NHC ligand). It would be reasonable to assume 

that the complexes with more electron withdrawing imidate ligands should be more active 

in reactions involving alkyne activation. 
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Scheme 18. The mechanism of gold catalysed 5-endo-dig cycloisomerisation of  4-phenyl-

1-hexen-5-yne (74) to produce 3-phenylbicyclo[3.1.0]hex-2-ene (75). 

 

Conditions for the reaction catalysed by [AuBr2(N-imidate)(NHC)] (66-68) complexes 

were determined using complex 66a and a 0.5 M solution of 74 in CH2Cl2 in the presence 

and absence of AgOTf (Table 10). 
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Table 10. Cycloisomerisation of 4-phenyl-1-hexen-5-yne (74) using 66a and AuCl3.a 

Entry Au catalyst 
Amount 

(mol%) 

Ag 

additive 

Amount 

(mol%) 

Temp 

(˚C) 

Conv. 

(%)b 

1 AuCl3 1 - - 25 60 

2 - - AgOTf 1 25 0 

3 [AuBr2(N-succ)(ItBu)] (66a) 1 - - 25 0 

4 [AuBr2(N-succ)(ItBu)] (66a) 1 AgOTf 1 25 32 

5 [AuBr2(N-succ)(ItBu)] (66a) 2 AgOTf 2 25 > 99 

6 [AuBr2(N-succ)(ItBu)] (66a) 1 AgOTf 1 35 95 

a Conditions: 0.5 M 4-phenyl-1-hexen-5-yne (74) in CH2Cl2, 3 h. b Conversion determined by 1H NMR 

spectroscopic analysis of the crude reaction mixture (average of two runs). 

 

The results show that the reaction is not catalysed independently by either 66a or AgOTf. 

This is consistent with previous work15,86 and suggests that a cationic Au centre is required 

for effective catalytic cycloisomerisation. Consequently, when 66a was treated with 1 

equivalent of AgOTf, a 32 % conversion was achieved at 1 mol% catalyst loading, over 3 

hours at 25 ˚C. If the temperature was increased to 35 ˚C, or the Au loading increased to 2 

mol%, essentially the reaction reached quantitative conversion. It is interesting to note that 

analogous Au(I), [Au(N-imidate)(NHC)], complexes do not catalyse the reaction under the 

equivalent conditions, due to the requirement for a cationic Au centre. 

Initial studies on the reaction kinetics of the 1,5-enyne cycloisomerisations revealed that 

there is a significant variation in the rate of bromide extraction by the silver additive 

(metathesis) depending on the type of imidate ligand employed. Qualitative tests revealed 

that there is a correlation between the electronegativity of the imidate ligand and the rate at 

which the bromide ligand is abstracted. In the case of the tribromide and succinimidate 

complexes, bromide extraction occurs immediately on mixing in solution, which is 

observable by the precipitation of silver(I) bromide. Complexes containing more electron-

withdrawing imidates are activated more slowly, with gradual precipitation seen using 

phthalimidate and maleimidate, and no observable formation with tetrafluorosuccinimidate 

and o-benzoic sulfimidate complexes. This results in very low product conversions when 

the catalyst is added to the reaction solution without prior formation of the active catalyst 

for the electron-withdrawing imidates (Table 11). However, when the catalyst and silver 
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salt are mixed in CH2Cl2 and the solvent is removed in vacuo, redissolution in the reaction 

solvent results in immediate precipitation of silver(I) bromide. In order to ensure reliable 

results preactivation was carried out before each test. 

 

Table 11. Effect of active catalyst preformation on the efficiency of [AuBr2(N-

imidate)(ItPe)] complexes in the cycloisomerisation of 4-phenyl-1-hexen-5-yne (74).a 

  Conversion (%)b 

Entry Complex No preformation Preformation 

1 [AuBr2(N-succ)(ItPe)] (67a) 29 35 

2 [AuBr2(N-tfs)(ItPe)] (67c) 3 89 

3 [AuBr2(N-ptm)(ItPe)] (67e) 31 66 

a Conditions: 0.5 M solution of 4-phenyl-1-hexen-5-yne (74) in CH2Cl2, 1 mol% Au catalyst, 1 mol% 

AgOTf, 3 h, 25˚C. b Conversion determined by 1H NMR spectroscopic analysis of the crude reaction mixture 

(average of two runs). 

 

The remaining [AuBr2(N-imidate)(NHC)] complexes (66-68) were tested for activity in 

this reaction, at 1 mol% Au and AgOTf loading, at 25 ˚C over 3 hours (Table 12). 
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Table 12. Comparison of [AuBr2(N-imidate)(NHC)] (66-68) complexes using AgOTf for 

4-phenyl-1-hexen-5-yne (74) cycloisomerisation.a 

Entry Complex 
Conv. 
(%)b Entry Complex 

Conv. 
(%)b 

1 [AuBr2(�-succ)(I
t
Bu)] (66a) 32 11 [AuBr2(�-ptm)(I

t
Pe)] (67e) 66 

2 [AuBr2(�-dbs)(I
t
Bu)] (66b) 87 12 [AuBr2(�-obs)(I

t
Pe)] (67f) 95 

3 [AuBr2(�-tfs)(I
t
Bu)] (66c) 81 13 [AuBr3(I

t
Pe)] (67g) 32 

4 [AuBr2(�-mal)(I
t
Bu)] (66d) 94 14 [AuBr2(�-succ)(IMes)] (68a) 51 

5 [AuBr2(�-ptm)(I
t
Bu)] (66e) 53 15 [AuBr2(�-mal)(IMes)] (68b) 66 

6 [AuBr2(�-obs)(I
t
Bu)] (66f) 83 16 [AuBr2(�-ptm)(IMes)] (68c) 51 

7 [AuBr3(I
t
Bu)]86 (66g) 34 17 [AuBr3(IMes)]86 (68d) 3 

8 [AuBr2(�-succ)(I
t
Pe)] (67a) 35 18 [AuBr(I

t
Bu)]86 (55g) 98 

9 [AuBr2(�-dbs)(I
t
Pe)] (67b) 95 19 [AuBr(I

t
Pe)] (56g) 99 

10 [AuBr2(�-tfs)(I
t
Pe)] (67c) 89 20 [AuBr(IMes)]86 (57g) 68 

11 [AuBr2(�-mal)(I
t
Pe)] (67d) 99    

a Conditions: 0.5 M solution of 4-phenyl-1-hexen-5-yne (74) in CH2Cl2, 1 mol% Au catalyst, 1 mol% 

AgOTf, 3 h, 25˚C. b Conversion determined by 1H NMR spectroscopic analysis of the crude reaction mixture 

(average of two runs). 

 

The results show that there is a significant effect of the nature of the imidate ligand on 

the catalytic activity of ItBu and ItPe Au(III) complexes. These sets of complexes (66 and 

67) give very similar results due to the electronic similarities of the ligands. The 

succinimidate and tribromide complexes (66a, 66g, 67a and 67g) exhibit low catalytic 

activity, giving approximately 30% conversion. The phthalimidate complexes (66e and 

67e) give higher conversion at 53 and 66%, respectively, due to the formation of more 

electropositive Au(III) complexes that are able to activate the alkyne more effectively. The 

maleimidate Au(III) complexes (66d and 67d) give more than 90% conversion. This 

outcome is surprising considering the electronic similarity to the phthalimidate ligand.  

The N-tfs (66b and 67b), N-dbs (66c and 67c) and N-obs (66f and 67f) Au(III) 

complexes give high % conversions, of 87 and 95, 81 and 89, and 83 and 95, respectively, 

presumably due to the greater acidity of the activated catalysts. The Au(I) bromide 
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catalysts (55g and 56g) show virtually quantitative conversion. The higher conversion 

despite the lower acidity of the active Au(I) cation could be caused by a number of factors 

including; reduced steric hindrance in the linear complex, better stabilisation of carbocation 

intermediates, less competitive binding to the cation and easier formation of the naked 

cation. Another explanation is that the Au(III) complexes decompose to Au(I) which could 

be the active catalytic species, as observed in other reactions,31 and the conversions reflect 

the ease of reduction to Au(I).  

 The IMes substituted complexes do not follow this trend. The, N-succ, N-mal and N-ptm 

complexes (68a, 68b and 68c) all give similar conversions of 51, 66 and 51%, respectively, 

although 68b is the most active as with 66d and 67d. The Au(I) bromide (57g) resulted in 

68% conversion and the tribromide (68d) less than 5%.   

A selection of the catalysts were tested using a very weakly coordinating anion derived 

from the silver salt, Ag[Al(OC(CF3)3)4] (76) (Table 13).91 The results show that, as 

predicted, the use of this anion greatly increases the rate of reaction. For complex 67b > 

99% conversion occurs in under 30 minutes at 25 ˚C, compared with 95% after 3 hours at 

25 ˚C using AgOTf. In fact 90% conversion was achieved at 0 ˚C in just 30 minutes. The 

weakly coordinating anion (76) creates a more ‘naked’ Au cation which is better able to 

coordinate the alkyne and catalyse the reaction.  

A selection of the ItPe containing complexes were then tested at 0 ˚C, with a reaction 

time of 15 minutes. As expected the Au(I) complex [AuBr(ItPe)] (56g) gave the highest 

conversion at 95%. Under the conditions, complexes 67c and 67f showed the highest 

conversion of the imidate complexes at 90% and 87%, respectively. However, 67b gave 

only 63% and 67g 79%. The high conversion achieved for the tribromide on combination 

with 76 relative to AgOTf suggests that the bromide is relatively active but unstable at 

longer reaction times. The efficiency of catalyst activation will also have a more significant 

effect for short reaction times. 
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Table 13. Comparison of [AuBr2(N-imidate)(ItPe)] (67) complexes with 

Ag[Al(OC(CF3)3)4] (76) in the cycloisomerisation of 4-phenyl-1-hexen-5-yne (74).a   

Entry Au Catalyst Time (mins) Conversion 

(%)b 

1 [AuBr2(N-dbs)(ItPe)] (67b) 30 90 

2 [AuBr2(N-dbs)(ItPe)] (67b) 15 63 

3 [AuBr2(N-obs)(ItPe)] (67f) 15 87 

4 [AuBr(ItPe)] (56g) 15 95 

5 [AuBr2(N-tfs)(ItPe)] (67c) 15 90 

6 [AuBr3(ItPe)] (67g) 15 79 

a Conditions: 0.5 M solution of 4-phenyl-1-hexen-5-yne (74) in CH2Cl2, 1 mol% Au complex, 1 mol% 

Ag[Al(OC(CF3)3)4] (76), 0 ˚C. b Conversion determined by 1H NMR spectroscopic analysis of the crude 

reaction mixture (average of two runs). 

 
The silver salts AgOTf and AgSbF6 were then tested under these conditions (but without 

preactivation) using complex 67c (Table 14). 

 
Table 14. Comparison of silver salts for the cycloisomerisation of 4-phenyl-1-hexen-5-yne 

(74) with 67c.a 

Entry Ag co-catalyst Time 

(mins) 

Conversion 

(%)b 

1 AgOTf 15 <1 

2 Ag[Al(OC(CF3)3)4] (76) 15 90 

3 AgSbF6 15 >99 

a Conditions: 0.5 M solution of 4-phenyl-1-hexen-5-yne (74) in CH2Cl2, 1 mol% Ag co-catalyst, 1 mol% 

67c, 0 ˚C. b Conversion determined by 1H NMR spectroscopic analysis of the crude reaction mixture.  

 

Ag[Al(OC(CF3)3)4] (76) is predictably superior to AgOTf under these conditions, with 

<1% conversion for the triflate salt. However, AgSbF6 appears to be even more efficient 

which is very surprising given that it is more strongly coordinating than 76. Due to the 

short reaction time the solubility of the Ag salts will be a significant factor and so these 

results may not reflect the true efficiency of the Ag co-additives.  
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2.2.2.2. Kinetics of 4-phenyl-1-hexen-5-yne cycloisomerisation 

The kinetic profile of the Au-catalysed cycloisomerisation of enyne 74 was followed by 

gas chromatography. 1,2-Dichloroethane was used as solvent at a concentration of 0.2 M 

with a positive pressure of argon in order to reduce the effects of sampling on the reaction 

(1 mol% Au complex and 1 mol% AgOTf were used). Initially complex 76c was tested to 

determine the order and initial rate of this reaction by plotting [enyne] and ln[enyne] 

against time (Figure 13 and Figure 14). As would be expected the intramolecular 

isomerisation reaction is to a good approximation first order (standard error is 3.4% using 

linear least squares regression, R2 is 0.958) with an observed initial rate of 10.05 x10-5 

mol.dm-3.s-1.  
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Figure 13. Plot of [enyne] against time to test for 0th order kinetics. 
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Figure 14. Plot of ln[enyne] against time to test for 1st order kinetics. 

 

A representative sample of the complexes were analysed in this manner (Figure 15), 

initial rates and observed rate constants were calculated by this method (Method A) 

assuming 1st order kinetics. The data was further analysed using a nonlinear least-squares 

regression curve fitting program (Dynafit, published by Biokin)109 which fits the 

experimental kinetic data to predetermined molecular mechanisms (Method B). This was 

used to determine the order of reaction, observed rate constants and initial rates and to fit 

curves to the kinetic data (Table 15, fitted curves are shown in Figure 15).  
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Figure 15. Kinetic profiles for Au catalysts in the cycloisomerisation of 4-phenyl-1-hexen-

5-yne (74).a 

a Conditions: 0.2 M solution of 4-phenyl-1-hexen-5-yne (74) in 1,2-dichloroethane, 1 mol% Au complex, 

1 mol%  AgOTf, 25 ˚C. Conversion determined by gas chromatographic analysis of 10 µl aliquots of the 

crude reaction mixture, quenched with NBu4Br. Curves fitted using Dynafit software with standard errors < 

5%. 
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Table 15. Observed rate constants and initial rates for Au catalysts in the 

cycloisomerisation of 4-phenyl-1-hexen-5-yne (74). 

  Method A (linear) Method B (curve fitting) 

Entry Complex Time 
period 
(mins) 

kobs x10-4 
(s-1) 

Ratea Standard 
Error 
(%) 

kobs x10-4 

(s-1) 
Ratea Standard 

Error 
(%) 

1 [AuBr(I
t
Pe)] (56g) 0-50 11.90 23.84 3.1 13.98 27.96 4.2 

2 [AuBr2(�-succ)(I
t
Pe)] (67a) 0-120 0.11 0.21 2.8 0.25 0.50 8.4 

  180-240 1.16 2.30 6.0    

3 [AuBr2(�-tfs)(I
t
Pe)] (67c) 0-240 5.03 10.05 3.4 5.52 11.04 3.0 

4 [AuBr2(�-ptm)(I
t
Pe)] (67e) 0-240 4.12 8.20 3.4 4.49 8.97 4.2 

5 [AuBr3(I
t
Pe)] (67g) 0-50 6.11 12.24 7.5 -

b
 21.87 2.3 

6 [AuBr2(�-ptm)(IMes)] (68c) 0-240 2.05 4.10 2.1 2.07 4.14 2.0 

a
 Rate at T0 x10

-5 
(mol.dm

-3
.s

-1
). 

b 
Second order, k1obs = 5468 x10

-4
 mol

-1
.dm

3
.s

-1
, k2obs = 9.07 x10

-4
 s

-1
 (error 

3.0%). 

 

The results show the reactions were more efficient under these conditions than in 0.5 M 

CH2Cl2 (in air). This is possibly due to reduced bimolecular decomposition under more 

dilute conditions, and less expeditious water and oxygen due to the argon atmosphere. 

Complexes 56g, 67c, 67e and 68c show reasonable first order kinetics by both Methods 

A (linear regression analysis of ln[enyne] vs time plot) (standard error is 2.1-3.4%) and B 

(curve fitting using Dynafit) (error is 2.0-4.2%). The two methods of analysis gave similar 

rate constants where errors were low, but there were greater discrepancies where the error 

was higher, particularly for 56g which has a rate constant of 11.90 x10
-4

 s-1 calculated by 

Method A and 13.98 x10
-4

 s
-1

 by B (only the initial, most linear, 50 minutes was used for 

the calculation by Method A, whereas all of the data was used for Method  

B).  

Complexes 67a and 67g did not display 1st order kinetics. Complex 67a has an 

induction period with slow conversion (rate = 0.21 x10-5 mol.dm-3.s-1, Method A) for the 

first 180 minutes and then more rapid conversion (rate = 2.30 x10-5 mol.dm-3.s-1, Method 

A). This suggests that despite the complex being preactivated (vide supra) an additional 

catalyst activation step is required for this complex. When 67a and AgOTf are mixed the  

precipitation of a yellow solid immediately occurs, it is believed that activation may 

involve dissolution of this precipitate. An alternative explanation is that the succinimidate 
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complex takes longer to decompose to an active Au(I) complex as it possesses the most 

electron donating imidate ligand. Complex 67a could not be fitted using Method B even if 

an activation rate was factored into the kinetic model. 

The tribromide complex 67g also exhibits unusual kinetics. The reaction is fast for 50 

minutes (rate at T0 = 12.24 x10-5 mol.dm-3.s-1, Method A) achieving 80% conversion, but 

then the complex rapidly becomes inactive. The reaction was however found to fit very 

well to a second order rate equation using Method B in which it was assumed that the Au 

catalyst decomposed over time and that the rate depended on both the concentration of 

enyne and catalyst. The second order rate equation is: 

Initial rate =  k1obs[enyne]0[Au]0 = 21.87 x10
-5

 mol.dm
-3

.s
-1

 

where k1obs {5468 mol-1.dm3.s-1} is the rate constant for the equation:  

enyne + Au         Au + product 

The rate of catalyst decomposition was: 

Initial rate of decomposition = k2obs[Au]0 = 1.81 x10
-6

 s
-1

 

where k2obs (9.07 x10
-4

 s
-1

) is the rate constant for the decomposition of the Au active 

catalyst.  

This model fitted the data well with low errors for k1obs and k2obs of 2.3 and 3.0%, 

respectively. The other complexes fitted the first order assumption with lower error than 

the second order model. These results clearly suggest complex 67g is a very active catalyst, 

with an initial rate faster much faster than the Au(III) imidate complexes and close to that 

of 56g, but decomposes rapidly, this also fits the experimental data (vide supra).  

Taking into account the issues described above the order in initial rates is:  

 56g > 67g ≥ 67c  > 67e > 68c > 67a 

This does not entirely mirror what is seen in the % conversions (for the 3 hour, 0.5 M 

CH2Cl2 reactions):  

 56g > 67c > 67e > 68c > 67a > 67g 

Noticeably 67g behaves differently. In 0.5M CH2Cl2 this complex recorded a 32% 

conversion in 3 hours. This disparity also occurred when Ag[Al(OC(CF3)3)4] (76) was used 

(0 ˚C, 15 min, CH2Cl2, 0.5 M). These results are explained by the kinetic analysis with the 

complex having high activity but low stability due to the lack of a stabilising imidate 

ligand {to prevent bimolecular decomposition to give colloidal Au(0)}. The complex 
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therefore gives relatively high conversion for fast, facile transformations but low 

conversions in slower more difficult processes.  

It was noticed that the reaction rate was highly dependant upon the purity of the enyne 

(74). Freshly distilled enyne reacted much faster than ‘aged’ enyne (stored for 4 weeks), 

which becomes yellow in colour over time. Unfortunately this impurity has not been 

identified, multiple species including oxidation products (aldehydes) are observed  

(about 5%, relative to 74) by 1H NMR spectroscopy. A set of kinetic profiles were carried 

out with aged enyne to investigate the effect of impurities on the course of the reaction 

(Figure 16, Table 16).  
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Figure 16. Kinetic profiles for Au catalysts in the cycloisomerisation of ‘aged’ 4-phenyl-1-

hexen-5-yne (74).a 

a Conditions: 0.2 M solution of ‘aged’ 4-phenyl-1-hexen-5-yne (74) in 1,2-dichloroethane, 1 mol% Au 

catalyst, 1 mol% AgOTf, 25 ˚C. Conversion determined by gas chromatographic analysis of 10 µl aliquots of 

the crude reaction mixture, quenched with NBu4Br. Curves fitted using Dynafit software with standard errors 

< 5%. 
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Table 16. Observed rate constants and initial rates for Au catalysts in the 

cycloisomerisation of ‘aged’ 4-phenyl-1-hexen-5-yne (74).a 

  Method A (linear) Method B (curve fitting) 

Entry Complex 
Time 

period 
(mins) 

kobs x10-4 

(s-1) 
Rateb  

Standard 
error 
(%) 

kobs x 10-4 

(s-1) 
Rateb 

Standard 
error 
(%) 

1 [AuBr(I
t
Pe)] (56g) 0-180 

3.27 
(2.58) 

6.54   
(5.17) 

5.3    
(6.1) 

6.39 
(3.70) 

12.79 
(7.39) 

8.4    
(9.3) 

2 [AuBr2(�-succ)(I
t
Pe)] (67a) 

0-75     
(0-90) 

0.54 
(0.41) 

1.08  
(0.82) 

3.4    
(3.6) 

0.98 
(0.67) 

1.97 
(1.34) 

8.0    
(7.8) 

3 [AuBr2(�-dbs)(I
t
Pe)] (67b) 0-180 4.32 8.63 4.9 7.12 14.24 4.2 

4 [AuBr2(�-tfs)(I
t
Pe)] (67c) 0-180 

3.33 
(2.87) 

6.66   
(5.74) 

1.6    
(2.1) 

3.14 
(2.94) 

6.28 
(5.87) 

2.5    
(1.8) 

5 [AuBr2(�-mal)(I
t
Pe)] (67d) 0-180 

1.77 
(1.65) 

3.54  
(3.29) 

7.0    
(4.5) 

2.40 
(1.87) 

4.80 
(3.75) 

8.0    
(5.3) 

6 [AuBr2(�-ptm)(I
t
Pe)] (67e) 0-180 1.78 3.57 5.2 1.45 2.89 4.2 

7 [AuBr2(�-obs)(I
t
Pe)] (67f) 0-180 3.75 7.50 4.4 -

c
 13.68 4.4 

8 [AuBr3(I
t
Pe)] (67g) 0-180 2.60 5.20 4.9  3.61 7.22 9.5 

9 [AuBr2(�-ptm)(IMes)] (68c) 0-180 1.26 2.51 4.0 1.37 2.73 2.9 

a
 Repeat runs in brackets. b at T0 x10-5 (mol.dm-3.s-1). c Second order k1obs = 3420 x10

-4
 mol-1.dm3.s-1, k2obs = 

3.19 x 10
-4

 s
-1

 (error 10%). 

 

For the ‘aged’ enyne complexes 67d (error is 7.0% for Method A and 8.0% for B) and 

56g (5.3% for A and 8.4% for B) do not give good fits to the first (or second) order models. 

Complex 67g also did not fit very well to first (4.9% for A and 9.5% for B) or second order 

(13% for k1obs for B) kinetics particularly using Method B. Complex 67f modelled slightly 

better for second order (4.4% for B) than first order (4.4% for A, 5.3% for B), although the 

errors are similar and relatively high for both and so a clear distinction cannot be made. 

The rate of decomposition of the catalyst was calculated to be 6.38 x10-7 mol.dm
-3

.s
-1 (k2obs 

= 3.19 x 10
-4

 s
-1

, 10% error). Complexes 67c (1.6% error for A, 2.5% error for B) and 68c 

(4.0% and 2.9%) again displayed good fits to first order kinetics for both Methods A and B. 

Complexes 67b (4.9% and 4.2%) and 67e (5.2% and 4.2%) also gave acceptable first order 

fits using Method B. Attempts to factor in the effects of impurities into the kinetic models 

using the Dynafit software resulted in larger errors for the calculated rate constants.  
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The ‘aged’ enyne significantly reduces the rate of the reaction, relative to ‘fresh’ enyne, 

although the effect is not felt evenly for all the complexes. Complex 67a has an increased 

rate (1.08 x10
-5

 mol.dm
-3

.s
-1

 for A and 1.97 x10
-5

 mol.dm
-3

.s
-1

 for B), although it is still the 

least active of the tested complexes. The reaction rate for 56g is significantly reduced, from 

23.84 to 6.54 x10
-5

 mol.dm
-3

.s
-1

 for Method A (27.96 to 14.24 x10
-5

 mol.dm
-3

.s
-1

 for B, 

although with 8.4% error). Similarly for 67g with the rate reduced from (12.24) to (5.20) 

x10
-5

 mol.dm
-3

.s
-1

 for A (21.87 to 7.22 x10
-5

 mol.dm
-3

.s
-1

 for B), 67e and 67c are also 

strongly affected.  

The calculated rates are generally higher using Method B than Method A except in the 

cases where the error is low. There are particularly large discrepancies with 56g, 67b and 

67f. The order of rates calculated using Method A for the complexes is:  

67b > 67f > 67c ≥ 56g > 67g > 67e ≥ 67d > 68c  > 67a 

Using Method B a slightly different order is obtained: 

67b > 67f > 56g > 67g > 67c > 67d > 67e > 68c > 67a 

The difference in order may be caused by large discrepancies in the calculated rates 

between Methods A and B for 56g and 67g, which had large errors, and for 67b and 67f, 

which did not fit well to first order kinetics. Again these results do not mirror what was 

observed in the 0.5M CH2Cl2 reaction: 

56g > 67d > 67b = 67f > 67c > 67e > 68c > 67a > 67g 

Complexes 56g and 67g are noticeably lower down the order relative to fresh enyne. 

Complex 67d, the most active imidate complex in 0.5M CH2Cl2 is also much less active 

than expected. It would seem that the most active catalysts are most strongly inhibited by 

the enyne impurities. Also as the kinetics are not modelled well by 1
st
 or 2

nd
 order kinetics 

it is not possible to determine the relative initial rates of the complexes under these 

conditions to a high degree of accuracy. 

Repeat runs show that the kinetic profiles are reasonably reliable, although the rate for 

56g was further reduced in the repeat (from 6.54 to 5.17 x10
-5

 mol.dm
-3

.s
-1

 for A, from 

12.79 to 7.39 x10
-5

 mol.dm
-3

.s
-1

 for B). This may be due to further decomposition of the 

enyne. 

The effect of varying the catalyst loading using complex 67e was investigated. Catalyst 

loading was tested at 0.5, 1 and 2 mol% (Figure 17, Table 17) (ratio of 67e to AgOTf 1:1). 
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Figure 17. Effect of loading of 67e on the kinetic profiles for the cycloisomerisation of 4-

phenyl-1-hexen-5-yne (74).a 
a Conditions: 0.2 M solution of 4-phenyl-1-hexen-5-yne (74) in 1,2-dichloroethane, 25 ˚C. Conversion 

determined by gas chromatographic analysis of 10 µl aliquots of the crude reaction mixture, quenched with 

NBu4Br. Curves fitted using Dynafit software. 

 

Table 17. Observed rate constants and initial rates for catalyst 67e at various loadings in 

the cycloisomerisation of 4-phenyl-1-hexen-5-yne (74). 

  Method A (linear) Method B (curve fitting) 

Entry 

Catalyst 

Loading 

(mol%) 

kobs x10
-4 

(s-1) 
Rate a 

Standard 

error (%) 

kobs x 10
-4 

(s
-1

) 
Rate

a
 

Standard 
error (%) 

1 0.5 1.93 3.86 4.3 -
b
 4.93 3.5 

2 1 4.12 8.20 3.4 4.49 8.97 4.2 

3 2 5.53 11.06 4.0 5.445 10.89 3.3 

a at T0 x10-5 (mol.dm-3.s-1). b Second order k1obs = 2463 x10
-4

 mol-1.dm3.s-1, k2obs = 1.25 x 10-4 s-1 (error 10%). 
 

As would be expected there is a trend of increasing rate with catalyst loading. The rate is 

reduced significantly by reducing the loading from 1 mol% to 0.5 mol% (8.20 to 3.86 x10-5 

mol.dm-3.s-1 for Method A). The rate increases slightly to 11.06 x10-5 mol.dm-3.s-1 when the 

loading is increased to 2%. Similar results were obtained using Method B, with reasonable 

approximation to first order for 1 and 2 mol% loadings but a better second order (3.5% 

error) than first order (4.5%) fit for 0.5 mol%, with a catalyst decomposition rate of 2.50 

0.5 mol% 

1 mol% 

2 mol% 
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x10-7 mol.dm-3.s-1, (k2obs is 1.25 x10-4 s-1, error 10%). The error is high but the 

decomposition rate is low and doesn’t play a major role in the kinetics. 

The effect of the reaction concentration on the kinetic profile of 67e was then investigated 

at 0.1, 0.2 and 0.5 M (Figure 18, Table 18). 
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Figure 18. Effect of reaction concentration on the kinetic profile of 67e for the 

cycloisomerisation of 4-phenyl-1-hexen-5-yne (74).a 

a Conditions: 4-phenyl-1-hexen-5-yne (74) in 1,2-dichloroethane, 1 mol% 5e, 1 mol%  AgOTf, 25 ˚C. 

Conversion determined by gas chromatographic analysis of 10 µl aliquots of the crude reaction mixture, 

quenched with NBu4Br. Curves fitted using Dynafit software. 

 

Table 18. Observed rate constants and initial rates for catalyst 67e in the 

cycloisomerisation of 4-phenyl-1-hexen-5-yne (74) at various concentrations. 

  Method A (linear) Method B (curve fitting) 

Entry 
[Enyne] 

(mol.dm
-3

) 
kobs x 10

-4 

(s
-1

) 
Rate

a
 

Standard 
error (%) 

kobs x 10
-4 

(s
-1

) 
Rate

a
 

Standard 
error (%) 

1 0.1 5.53 5.53 2.0 6.15 6.15 1.6 

2 0.2 4.12 8.20 3.4 4.49 8.97 4.2 

3 0.5 1.54 7.70 6.1 -
b
 19.20 5.7 

a at T0 x10-5 (mol.dm-3.s-1). b Second order k1obs = 768 x10
-4

 mol-1.dm3.s-1, k2obs = 2.36 x10-4 s-1 (error 11%). 

0.1 M 

0.2 M 

0.5 M 

 



 

 58 

Surprisingly, the results show that increasing the concentration of the reaction reduces the 

rate constants (the initial rates increase with concentration as they relate to the change in 

enyne concentration over time).  

The results show that increasing the concentration from 0.1 M to 0.2 M reduced the 

observed rate constant from 5.53 to 4.10 x10-4 s-1 for Method A 6.15 to 4.49 x10-4 s-1 for B), 

both concentrations fitted well to the first order model. From visual analysis of Figure 18 it 

is clear that the reaction is even slower at 0.5 M (kobs = 1.54 x10-4 s-1 for A) however the 

data does not fit well to the first order approximation (6.1% error for A). Using Method B 

the data fitted slightly better, although with high error (5.7%, 1st order 6.4%) to a 2nd order 

model, which results in a much higher calculated rate. The rate constant for the 

decomposition of the catalysts was calculated to be 2.36 x10-4 s-1 with a rate of 1.18 x10-6 

mol.dm-3s-1 (11% error).  

The reduction of the rate with increasing concentration could be due to reduced 

aggregation and bimolecular decomposition of the catalysts {to colloidal Au(0)} or 

substrate (enyne) induced decomposition. This would explain why complexes are more 

active in the kinetic profiles, than in the reactions run at 0.5 M concentration in CH2Cl2.  

Finally, the effect of using 2 mole equivalents of AgOTf relative to 67c in the reaction 

was investigated (Figure 19, Table 19).  
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Figure 19. Effect of AgOTf loading relative to 67c on the kinetic profile of the 

cycloisomerisation of 4-phenyl-1-hexen-5-yne (74).a 

a Conditions: 4-phenyl-1-hexen-5-yne (74) in 1,2-dichloroethane, 1 mol% 67c catalyst, 25 ˚C. Conversion 

determined by gas chromatographic analysis of 10 µl aliquots of the crude reaction mixture, quenched with 

NBu4Br. Curves fitted using Dynafit software. 

 

Table 19. Observed rate constants and initial rates for catalyst 67c with 1 and 2 equivalents 

of AgOTf co-catalyst in the cycloisomerisation of 4-phenyl-1-hexen-5-yne (74). 

  Method A (linear) Method B (curve fitting) 

Entry 
Equiv. of Ag 

w.r.t. 67c 
kobs x10

-4    

(s
-1

) 
Rate

a
 

Standard 
error (%) 

kobs x 10
-4 

(s
-1

) 
Rate

a
 

Standard 
error (%) 

1 1 3.33 6.66 1.6 3.14 6.28 2.5 

2 2 4.48 8.97 2.7 4.16 8.32 3.3 

a at T0 x10-5 (mol.dm-3.s-1). 

 

There is a slight increase in rate of 8.20 to 8.97 x10
-5 

mol.dm
-3

.s
-1

 (6.28 to 8.32 x10
-5 

mol.dm
-3

.s
-1

, Method B) when 2 equivalents of AgOTf are used. This suggests that the 

excess AgOTf does not react with Au to form an Au(III)
2+

 ion {Au(III)
2+

 complexes have 

however been reported to be formed by oxidation}.
110

 The additional Ag
+
 will presumably 

aid the formation of the active catalyst although the 
-
OTf counter ion will likely inhibit the 

reaction by competing with the enyne for coordination to the active catalyst. Analysis by 

Method B gave lower rates than A but both showed good fits to first order kinetics. 

1 equiv. 

2 equiv. 
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2.2.2.3. Cycloisomerisation of dimethyl allylpropargylmalonate  

Cycloisomerisation of dimethyl allylpropargylmalonate (77) (2-allyl-2-prop-2-ynyl-

malonic acid dimethyl ester), a 1,6-enyne prepared from allylmalonate,
111

 is catalysed by a 

number of transition metal complexes producing three typical products, 78-80, in differing 

ratios (Scheme 19, Table 20). 

 

O

O

O

O O

O

O

O

O

O

O
O

O

O

O
O[M]

++

 

Scheme 19. Typical products from the cycloisomerisation of dimethyl 

allylpropargylmalonate (77). 

 

Table 20. Products obtained in transition metal catalysed cycloisomerisation of dimethyl 

allylpropargylmalonate (77). 

a cyclometallated:  
 

 

 

 

A combination of [AuCl(PPh3)] and AgSbF6 yields products 78 and 79, the distribution 

depending on the reaction conditions, with temperature having a significant effect (Table 

21). At ambient temperature the product ratio is 78:79 1:2; as the temperature is lowered 

the proportion of 78 is reduced until only 79 is produced at -45 ˚C. 

Entry Catalyst Solvent Temperature (˚C) 

(Time) 

Products 

1 [NiCl2(Ph3P)2] + CrCl2
112

 THF r.t. (15 mins) 79 + 80 (2.5:1) 

2 [AuCl(Ph3P)] + AgSbF6
49e

 CH2Cl2 0 (20 mins) 78 + 79 (1:7) 

3 [RhCl(COD)]2 + P(4-F-Ph)3
113

 DMF 85 (24 h) 79  

4 FeCl3
114

 Toluene 90 (17 h) 78  

5 [Pt]
a,49c

 CH2Cl2 20 (2 h) 78  

77 78 79 80 

Pt
P

RR

R = o-toluene

NCMe

NCMe
[SbF6]
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 Table 21. Product distributions for the Au(I) catalysed cycloisomerisation of dimethyl 

allylpropargylmalonate (77) in CH2Cl2. 

Entry Catalyst Loading 
(mol%) 

Temp. (˚C) 

(Time) 

Product(s) Yield 
(%) 

1 [AuCl(PPh3)] + AgSbF6
49e

 2 0 (20 mins) 78 + 79 (1:7) 77 

2 [AuCl(PPh3)] + AgSbF6
115

 5 -45 (90 mins) 79 49 

3 [Au(NCMe)(PPh3)]SbF6
49e

 2 23
 
(20 mins) 78 + 79 (1:2) 82 

 

A selection of the Au(III) imidate complexes were tested for activity in this 

transformation in combination with AgOTf and Ag[Al(OC(CF3)3)4] (76) (Table 22). The 

Au(III) complexes yield products 78 and 79, with 78 as the major product, in contrast to 

the reported [AuCl(PPh3)]/AgSbF6 combination. The 1,6-enyne (77) cycloisomerisation is 

significantly slower than that of the 1,5-enyne (74) with only 13% conversion occurring 

with 68b and 7% with 68d in 3 hours at 25 ˚C (1 mol% Au and Ag loadings). The ratio 

78:79 is approximately 6:1 in each case. Increasing the temperature to 35 ˚C only increases 

conversion to 17%. Increasing 68b:AgOTf ratio to 1:2 has a significant effect, increasing 

the conversion to 26%, and increasing the catalysts loading from 1 to 5 mol% increases the 

conversion to 87% with a 7.5:1 78:79 ratio, although a complex mixture of other products 

(oligomers and polymers) is also formed (the amount of polymer produced relative to 78 

and 79 was not determined). Use of highly active catalyst 67d with 5 mol% loading over 

16 hours achieved complete conversion and a 9:1 ratio, however significant polymerisation 

had occurred. Complex 67b (1 mol%) in combination with Ag[Al(OC(CF3)3)4] (76) at 0 ˚C 

(for 3 hours) resulted in full conversion (including  polymerisation) and an A:B 78:79 ratio 

of 5:1, when this reaction was run at 25 ˚C the ratio dropped to 1.7:1. 
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Table 22. Conversions for the Au(III)-catalysed cycloisomerisation of dimethyl 

allylpropargylmalonate (77).a 

Entry Au catalyst Loading 

(mol%) 

Silver Salt Time   

(h) 

Temp 

(˚C) 

Conv.b 

(%) 

Ratio 

A:B 

1 [AuBr2(�-mal)(IMes)] (68b) 1 AgOTf 3 25 13 5.5:1 

2 [AuBr3(IMes)]86 (68d) 1 AgOTf 3 25 7 6:1 

3 [AuBr2(�-mal)(IMes)] (68b) 1 AgOTf 3 35 17 7.5:1 

4 [AuBr2(�-mal)(IMes)] (68b) 1 AgOTf (2 mol%) 3 25 26 5.5:1 

5 [AuBr2(�-mal)(IMes)] (68b) 5 AgOTf 3 25 87c 7.5:1 

6 [AuBr2(�-mal)(I
t
Bu)] (66d) 5 AgOTf 16 25 100c 9:1 

7 [AuBr2(�-dbs)(I
t
Bu)] (66b) 1 Ag[Al(OC(CF3)3)4] (76) 3 25 100c 1.7:1 

8 [AuBr2(�-dbs)(I
t
Bu)] (66b) 1 Ag[Al(OC(CF3)3)4] (76) 3 0 100c 5:1 

a Conditions: 0.5 M dimethyl allylpropargylmalonate (77) in CH2Cl2. Conversion determined by 1H NMR 

spectroscopic analysis of the crude reaction mixture. b Conversion of starting material. c Significant 

polymerisation and formation of multiple products (the amount of polymer produced relative to 78 and 79 

was not determined). 

 

2.2.2.4. 1,5- and 1,6-enyne cycloisomerisation kinetics 

Kinetic profiles (by gas chromatographic analysis) were obtained for the 

cycloisomerisation of 1,5- and 1,6-enynes (74 and 77) to study the effect of Au(III) on the 

product distribution and to try to determine if Au(I)+ or Au(III)+ is the catalytically active 

species in the Au(III) imidate mediated reactions. Initially both 1,5- and 1,6-enynes (74 and 

77) were added to the same reaction and the kinetics monitored. Complexes 56g, 67c and 

67e were tested in this way (Figure 20, Table 23).  
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Figure 20. Kinetic profile for the concurrent cycloisomerisation of 4-phenyl-1-hexen-5-

yne (74) and dimethyl allylpropargylmalonate (77) using complexes 56g, 67c and 67e.a  

a
 Conditions: 0.2 M 4-phenyl-1-hexen-5-yne (74), 0.2 M dimethyl allylpropargylmalonate (77) in 1,2-

dichloroethane, 1 mol% Au, 1 mol% AgOTf, 25 ˚C. Conversion determined by gas chromatographic analysis 

of 10 µl aliquots of the crude reaction mixture, quenched with Bu4NCl. Curves fitted using Dynafit software. 

 

The kinetic profiles show that the cycloisomerisation of the 1,6-enyne 76 with rates of 

0.51-0.56 x10-5 mol.dm-3.s-1 using Method A (0.56-1.30 x10-5 mol.dm-3.s-1 for Method B) is 

significantly slower than that of the 1,5-enyne 74 with rates of 2.10-2.36 x10-5 mol.dm-3.s-1 

(2.53-5.28 x10-5 mol.dm-3.s-1 for B) and the addition of the 76 predictably reduces the rate 

of the cycloisomerisation of 74.  

Complex 56g fitted better to 1st than 2nd order approximations but with high error, errors 

of 5.6% and 4.5% were calculated for the reactions of 74 and 76, respectively (5.3 and 

8.4% errors using Method B). Complex 67c shows slightly better adherence to a first order 

approximation for the transformations of both 74 and 76 (errors are 4.6% and 4.9% for 

Method A, respectively, and 3.2 and 4.7% errors for Method B) but was found to fit better 

to a second order approximation (errors of 2.6 and 3.8%, respectively). The initial rate of 

decomposition of the catalyst was calculated to be 2.55 x10-7 mol.dm-3.s-1 (9.2% error). 

Complex 67e also fitted slightly better to second order (4.2 and 5.6% error, respectively) 

than first (5.7 and 8.4%), with an initial catalyst decomposition rate 6.08 x 10-7 mol.dm-3.s-1 

(8.0% error).  

 [AuBr(ItPe)] (X) 1,6

 5c 1,6

 5e 1,6

 [AuBr(ItPe)] (X) 1,5

 5c 1,5

 5e 1,5

1,5-enyne 74 
56g 

67c 

67e 

1,6-enyne 77 
56g 

67c 

67e 
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Using Method A for analysis, 56g, 67c and 67e show very similar rates for both 

transformations. Analysis using Method B, however, calculates 67e to be the most efficient 

catalyst with rates of 5.28 x10-5 mol.dm-3.s-1 for the reaction of 74 and 1.30 x10-5 mol.dm-

3.s-1 for 77, followed by 67c (3.47 and 0.85 x10-5 mol.dm-3.s-1) and 56g the slowest (2.53 

and 0.56 x10-5 mol.dm-3.s-1). This is opposite to the order of activity that would be 

expected, although the differences in activity are relatively small. This may be due to the 

1,6-enyne {or impurities produced by decomposition (aging) of the enynes} inhibiting the 

more active catalysts, such as 56g, more significantly than the less active analogues, such 

as 67e, as was observed in the reaction of the ‘aged’ 1,5-enyne (vide supra). 

 

Table 23. Observed rate constants and initial rates for the concurrent cycloisomerisation of 

4-phenyl-1-hexen-5-yne (74) and dimethyl allylpropargylmalonate (77) using complexes 

56g, 67c and 67e. 

  Method A (linear) Method B (curve fitting)  

Entry Complex 
kobs x10-4 

(s-1) 
Ratea R2 

kobs x10-4 
(s-1) 

Ratea 
Error 
(%) 

Ratio 
78:79b 

1,5-enyne 74 

1 [AuBr(I
t
Pe)] (56g) 1.05 2.10 5.6 1.27 2.53 5.3 - 

2 [AuBr2(�-tfs)(I
t
Pe)] (67c) 1.15 2.31 4.6 -

c,d
 3.47 2.6 - 

3 [AuBr2(�-ptm)(I
t
Pe)] (67e) 1.18 2.36 6.9 -

e,f
 5.28 4.2 - 

1,6-enyne 76 

4 [AuBr(I
t
Pe)] (56g) 0.28 0.51 4.5 0.28 0.56 8.4 0.28 

5 [AuBr(I
t
Pe)] (56g) 1,6 only 1.02 2.03 2.1 1.08 2.15 2.2 0.30 

6 [AuBr2(�-tfs)(I
t
Pe)] (67c) 0.28 0.56 4.9 -

d,g
 0.85 3.8 0.45 

7 [AuBr2(�-ptm)(I
t
Pe)] (67e) 0.29 0.53 6.9 -

f,h
 1.30 5.6 0.36 

a
 Rate at T0 x10

-5
 (mol.dm

-3
.s

-1
). b

 After 300 minutes. 
c
 Second order k1obs = 868.5  x10

-4
 mol

-1
.dm

3
.s

-1
.
 d
 k2obs 

= 6.38 x10
-5

 s
-1

 (error 9.2%). 
e
 Second order k1obs = 1321 x10

-4
 mol

-1
.dm

3
.s

-1
. 

f
 k2obs = 1.52 x 10

-4
 s

-1
 (error 

8.0%). 
g
 Second order k1obs = 212.8 x10

-4
 mol

-1
.dm

3
.s

-1
. 

h
 Second order k1obs = 324.2 x10

-4
 mol

-1
.dm

3
.s

-1
. 

 

Under these conditions 79 is the major product, from the cycloisomerisation of 77, in 

contrast to the ratio observed for reactions carried out on 77 in isolation in CH2Cl2 (vide 

supra). The differences between these reactions are the solvent (CH2Cl2 compared to 1,2-

dichloroethane), concentration (0.2 M compared to 0.5 M), the presence and competition of 
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74 in the reaction mixture and the exact nature of the complexes used. Given the sensitivity 

of the ratio to the reaction conditions it is possible that any of these conditions could have 

caused the change in selectivity. 

The product ratio profiles (Figure 21) show that the ratio of the two 1,6-enyne 

cycloisomerisation products drops (increased amount of 79 relative to 78) as the reaction 

proceeds but then levels off after 60-120 minutes, presumably the changing concentrations 

of the reactants and products affects the selectivity. The ratio for the three Au complexes is 

significantly different. Complex 67c gives the highest ratio (0.450 after 300 minutes), 

followed by 67e (0.357) and 56g (0.279) with the highest selectivity for 79. A repeat of the 

profile for 56g showed good reproducibility. These results suggest that either the nature of 

the active catalyst is different in each case {i.e. Au(III)+ versus Au(I)+} or that reduction of 

Au(III) to Au(I) occurs, which carries out the catalysis, and that the resultant 

decomposition species (e.g. tetrafluorosuccinimide, N-bromo tetrafluorosuccinimide or 

bromine) in solution are able to influence the selectivity.  
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Figure 21. Product ratio profile for the cycloisomerisation of dimethyl 

allylpropargylmalonate (77) using complexes 56g, 5c and 5e.b 

a No 4-phenyl-1-hexen-5-yne (74) added. b Conditions: 0.2 M 4-phenyl-1-hexen-5-yne (74) and 0.2 M 

dimethyl allylpropargylmalonate (77) in 1,2-dichloroethane, 1 mol% Au, 1 mol% AgOTf at 25 ˚C. 

Conversion determined by gas chromatographic analysis of 10 µl aliquots of the crude reaction mixture.  

56g 

56ga  

67c  

67e 

 

 [AuBr(ItPe)] (x)

 [AuBr(ItPe)] (X)*

 5c

 5e
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The cycloisomerisation of 77 was also run in isolation using complex 56g. It was found 

that the reaction proceeded much faster without competition from 1,5-enyne 74 with an 

initial rate of 2.03 x10-5 mol.dm-3.s-1 using Method A (2.15 x10-5 mol.dm-3.s-1 using B) and 

a much better adherence to a 1st order model (error is 2.1% for A and 2.2% for B). The 

ratio of 78:79 however remained similar  at 0.301, although without a defined initial drop. 

As the ratio does not change the presence of the 1,5-enyne 74 clearly does not cause the 

switch in selectivity with respect to the reactions carried out in CH2Cl2. 

Subsequently, Ag[Al(OC(CF3)3)4] (76) was tested in place of AgOTf as the silver 

additive, using complexes 56g and 67c (Figure 22, Table 24). No preactivation was carried 

out in order to determine if this effects the ratio of products (and also to reduce the rate of 

the reaction). Under these conditions 56g carried out the cycloisomerisation extremely 

quickly achieving quantitative conversion of 74 in under 20 minutes (too quickly to 

measure the kinetics accurately) and 77 in under 60 minutes (with a rate of 31.07 x10-5 

mol.dm-3.s-1 using Method A and 33.04 using B). The reaction of 77 showed a very good fit 

to 1st order kinetics (2.5% error for Method A and 1.9% for B). This mirrors the increased 

activity of this Au/Ag combination (56g/76) seen with enyne 74 in isolation (vide supra). 

Complex 67c however is inactive in both transformations for 180 minutes. This underlines 

the difficulty in activating the Au(III) complexes relative to Au(I). Even after 180 minutes 

the conversion is relatively slow (although faster than with AgOTf). The reaction was 

further analysed after 20 hours and it was determined to have gone to completion. 

For both complexes, 78 was now found to be the major product from the 

cycloisomerisation of 77, with a 78:79 ratio of 2.20 for 56g and 2.16 for 67c (after 240 

minutes). Clearly the product distribution observed is dependant on the silver salt 

employed. After 20 hours, the ratios had changed to 1.78 for 56g and 0.003 for 67c. It 

appears by 1H NMR spectroscopic analysis that significant polymerisation of 78 occurs in 

the presence of 67c; virtually all of 78 had been consumed in this time frame. This could 

explain the lower 78:79 ratios seen for the Au(III) reactions, relative to Au(I). 
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Figure 22. Kinetic profile for the concurrent cycloisomerisation of 4-phenyl-1-hexen-5-

yne (74) and dimethyl allylpropargylmalonate (77) using complexes 56g and 67c with 

Ag[Al(OC(CF3)3)4] (76). 

a Conditions: 0.2 M 4-phenyl-1-hexen-5-yne (74) and 0.2 M dimethyl allylpropargylmalonate (77) in 1,2-

dichloroethane, 1 mol% Au, 1 mol% Ag[Al(OC(CF3)3)4] (74) at 25 ˚C. Conversion determined by gas 

chromatographic analysis of 10 µl aliquots of the crude reaction mixture, quenched with Bu4NCl. Curve 

fitted using Dynafit software. 

 

Table 24. Observed rate constants and initial rates for the concurrent cycloisomerisation of 

4-phenyl-1-hexen-5-yne (74) and dimethyl allylpropargylmalonate (77) using complexes 

56g and 67c with Ag[Al(OC(CF3)3)4] (76).  

  Method A (linear) Method B (curve fitting)  

Entry Complex 
kobs x10-4  

(s-1) 
Ratea R2 

kobs x10-4   
(s-1) 

Ratea 
Error 
(%) 

Ratio 
A:Bb 

1,6-enyne 77c 

1 [AuBr(I
t
Pe)] (56g) 15.54 31.07 2.5 16.52 33.04 1.9 2.20 

2 [AuBr2(�-tfs)(I
t
Pe)] (67c) too slow 2.16 

a
 Rate at T0 x10

-5
 (mol.dm

-3
.s

-1
). b

 After 240 minutes. 
c
 The reaction of 74 was too fast for 56g and too slow 

for 67c for kinetic data to be determined accurately. 

 

 

1,5-enyne 74 
56g 

67c 

 

1,6-enyne 77 
56g 

67c 

 

 [AuBr(ItPe)] (X) 1,6

 5c 1,6

 [AuBr(ItPe)] (X) 1,5

 5c 1,5
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2.2.2.5. Cycloisomerisation of 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene 

The 1,5-enyne 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene (81) can be prepared by 

treating trans-cinnamyl chloride (82) with LDA according to the method of Florio and 

Troisi (Scheme 20).116 

 

Cl

Cl

Cl

Cl
LDA LDA

-HCl

 

Scheme 20. The synthesis of 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene (81) from trans-

cinnamyl chloride (82). 

 

In order to investigate the anomalous activity of the IMes series of catalysts (68) further, 

they were tested against the bromide analogue (68d) in the cycloisomerisation of 1,1'-(1E)-

hex-1-en-5-yne-1,4-diyldibenzene (81) to 3,6-diphenylbicyclo[3.1.0]hex-2-ene (83) 

(Scheme 21, Table 25). 

 

[Au], AgOTf, CH2Cl2

H

H  

Scheme 21. The Au(III) catalysed cycloisomerisation of 1,1'-(1E)-hex-1-en-5-yne-1,4-

diyldibenzene (81) to 3,6-diphenylbicyclo[3.1.0]hex-2-ene (83). 

83 

81 82 

81 
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Table 25. Comparison of [AuBr2(N-imidate)(IMes)] complexes (68 a-d) in the 

cycloisomerisation of 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene (81).a 

Entry Au catalyst Time 

(mins) 

Conversion 

(%)b 

1 [AuBr2(N-succ)(IMes)] (68a) 30 22 

2 [AuBr2(N-mal)(IMes)] (68b) 30 67 

3 [AuBr2(N-mal)(IMes)] (68b) 180 >99 

4 [AuBr2(N-ptm)(IMes)] (68c) 30 37 

5 [AuBr3(IMes)] (68d) 30 15 

6 [AuBr3(IMes)] (68d) 180 43 

a Conditions: 0.5 M solution of 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene (81) in CH2Cl2, 1 mol% Au 

catalyst, 1 mol% AgOTf, 25˚C. b Conversion determined by 1H NMR spectroscopic analysis of the crude 

reaction mixture (average of two runs). 

 

The results show that 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene (81) undergoes 

cycloisomerisation much more rapidly than 4-phenyl-1-hexen-5-yne (74), due to the 

phenyl activated alkene, with complete conversion occurring in under 3 hours at 25 ˚C 

using complex 68b. For this enyne there is a significant imidate effect, following the trend 

observed for 4-phenyl-1-hexen-5-yne (74) with the ItBu (66) and ItPe (67) analogues. 

Complex 68a gives just 22% conversion, 68b 67% and 68c 37%, over 30 minutes. The 

bromide analogue (68d) gives just 15% conversion over 30 minutes and only 43% after 3 

hours.  

 

2.2.2.6. Cycloisomerisation of dimethyl diallylmalonate 

The cycloisomerisation of dimethyl diallylmalonate (84), a 1,6-diene, was attempted 

(Table 26). This was a test to observe if the Au(III) complexes could activate the alkene to 

intramolecular nucleophilic attack by the tethered alkene. However, under a variety of 

conditions, including high temperature, there was no reaction. Although Au can bind 

alkenes even more efficiently than alkynes it does not lower the LUMO sufficiently to 

allow nucleophilic attack by another alkene.42 
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Table 26. Comparison of Au(III) complexes and reaction conditions for the attempted 

cycloisomerisation of dimethyl diallylmalonate (84).a 

[Au]
No reaction

MeO2C

MeO2C

 

Entry Complex Silver salt Time  

(h) 

Temp. 

(˚C) 

Conv.b 

(%) 

1 AuCl3 - 20 25 0 

2 AuCl3 - 1 95c 0 

3 [AuBr2(N-succ)(ItPe)] (67a) AgOTf 1 90c 0 

4 [AuBr2(N-dbs)(ItBu)] (66b) Ag[Al(OC(CF3)3)4] (76) 3 25 0 
a Conditions: 0.5 M dimethyl diallylmalonate in CH2Cl2, 1 mol% Au catalyst, 1 mol% silver salt. b 

Conversion of 84 determined by 1H NMR spectroscopic analysis of the crude reaction mixture. c Microwave 

heating. 

 

2.2.2.7. Cycloisomerisation of ethyl 4-phenyl-1-hepten-5-yn-7-oate 

The ability of Au(III) to activate carbon-carbon unsaturated bonds was further tested 

using the 1,5-enyne ethyl 4-phenyl-1-hepten-5-yn-6-oate (85). This was easily prepared 

from 4-phenyl-1-hexen-5-yne (74) using ethyl chloroformate.117 No reaction was observed 

with complex 68b or 68d (Scheme 22, Table 27). The ester group will withdraw electron 

density from the alkyne increasing its nucleophilicity (by lowering energy of the LUMO), 

however it is the 5- rather than 6- position that would be activated, which does not favour 

bicyclo[3.1.0]hexane formation by 5-endo-dig cycloisomerisation. Additionally, the 

electron-deficient alkyne would make Au(III) binding less favourable, with the carbonyl 

oxygen providing a better binding site for the Au(III)+ ion. 

 

Scheme 22. The attempted Au(III) catalysed cycloisomerisation of ethyl 4-phenyl-1-

hepten-5-yn-6-oate (85) to bicyclo[3.1.0]hexene 86. 

O

O
X O

O

H
[Au(III)]+

 

 

86 85 

84 
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Table 27. Comparison of Au(III) complexes and reaction conditions for the attempted 

conversion of ethyl 4-phenyl-1-hepten-5-yn-6-oate (85). 

Entry Complex Temperature 
(˚C) 

Conversion 
(%) 

1 [AuBr2(N-mal)(IMes)] (68b) 25 0 

2 [AuBr3(IMes)] (68d) 25 0 

3 [AuBr2(N-mal)(IMes)] (68b) 35 0 

Conditions: 0.5 M ethyl 4-phenyl-1-hepten-5-yn-6-oate (85) in CH2Cl2, 1 mol% Au, 1 mol% AgOTf, 3 h. 

 

2.2.2.8. Attempted synthesis of 2,4-dimethyl-2-(2-phenyl-1-ethynyl)-4-penten-1-ol 

The cycloisomerisation of racemic 2,4-dimethyl-2-(2-phenyl-1-ethynyl)-4-penten-1-ol 

(87) to furnish 1,5-dimethyl-3-phenyl-6-oxabicyclo[3.2.1]oct-2-ene (88) has been reported 

by Kosmin (Scheme 23).118 It was found that AuCl3 and [AuCl(PPh3)] in combination with 

AgClO4 were effective catalysts. Attempts were made to prepare this enyne in order to 

investigate the effects of the imidate complexes on the synthesis of this heterocyclic 

structure.  

 

OH

Ph

O

Ph

[Au]

MeCN

 

Scheme 23. The Au catalysed cycloisomerisation of 2,4-dimethyl-2-(2-phenyl-1-ethynyl)-

4-penten-1-ol (87) to produce 1,5-dimethyl-3-phenyl-6-oxabicyclo[3.2.1]oct-2-ene (88). 

 

The enyne is prepared in a three step procedure from ethyl-2-methylacetoacetate (89) 

(Scheme 24).119  

87 88 
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O

OO

OH

O

O

O

OH

Cl

Cl

Na, EtOH, reflux,  3 h

i)

ii) KOH, r.t., 18 h

H2SO4, toluene

O

O

i) LDA, HMPA, THF, -78 oC, 30 min LiAlH4, THF, 0 
oC, 2 h

ii) , -78 oC, r.t., 18 h

EtOH, reflux, 20 h

 

Scheme 24. Synthesis of 2,4-dimethyl-2-(2-phenyl-1-ethynyl)-4-penten-1-ol (87) from 

ethyl-2-methylacetoacetate (89). 

 

A key step in the synthesis is the alkynylation of enoate 92 to produce enyne 94. 

However, under the reported conditions a complex mixture of products was obtained with 

only 20% conversion to enyne 94, which could not be isolated. Subsequently this method 

was abandoned and a more efficient route to the synthesis of enynes considered. 

 

2.2.2.9. Synthesis of FLEXIphosO analogues 

In order to utilise the bicyclo[3.1.0]hexene framework created in the cycloisomerisation 

of 1,5-enynes, the synthesis of an analogue of the reported FLEXIphosO ligand, (+/-)-

bicyclo[3.2.0]heptane-3,6-diyl bis[diphenyl(phosphinite)] (95), was considered.120 This 

ligand has been shown to possess conformational flexibility, forming an exo-envelope 

conformation in the solid-state and in some Pd(0) complexes, such as 

[Pd2(FLEXIphosO)3], but an endo-envelope conformation in solution and other Pd(0) and 

Pd(II) complexes, such as [Pd(FLEXIphosO)2] and [PdCl2(FLEXIphosO)] (in solution and 

the solid-phase) (Figure 23).  This conformational flexibility allows the ligand to alter its 

bite angle on a metal by ‘flipping’ from endo (cis-square planar) to exo (pseudo-

tetrahedral) conformation.  

91 

90 

93 

92 

94 87 

89 
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Pd
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O

O

H
H

Ph

Ph Ph

Ph

Cl

BAr4

Ar = bis-3,5-trifluoromethylphenyl 

Figure 23. The structures of (+/-)-bicyclo[3.2.0]heptane-3,6-diyl 

bis[diphenyl(phosphinite)] (FLEXIphosO) (95) and [PdCl(FLEXIphosO)]BAr4 (96). 

 

The complex [PdCl(FLEXIphosO)]BAr4 (96) is an efficient catalyst for the 

cycloisomerisation of 1,6-dienes such as diethyl diallylmalonate, in which other bidentate 

bisphospinite ligands are inefficient. This is because the ‘flipping’ to exo-conformation 

allows the formation of a catalytically active hydride species which the more stable endo-

form does not (Figure 24).   
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Figure 24. Endo/exo envelope conformational ‘flip’ of [PdCl(FLEXIphosO)]BAr4 (96). 

 

It was envisaged that the bicyclo[3.1.0]hexane structure might behave in a similar 

manner. Unsubstituted bicyclo[3.1.0]hexane (97) adopts a boat conformation,121 but with 

3,6-disubstituted bicyclo[3.1.0]hexanes {such as dimorpholino (98 and 98')} both boat (in 

the case of an endocyclic substituent at the 3- position) and chair (in the case of exocyclic) 

are possible (Figure 25).122 
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Figure 25. Conformational equilibrium in bicyclo[3.1.0]hexane (97) and conformations of 

6A-3,6-dimorpholinobicyclo[3.1.0]hexanecarbonitriles (98 and 98').123 

 

The enyne precursor for the Au-catalysed synthesis of the bicyclo[3.1.0]hexane ring 

system can be prepared by the method of Florio and Troisi.116 This method is simple and 

expedient, however it places some constraints on the ligand design; the substituent’s would 

have a 3,6-substitution pattern (which is desired) and be identical (also desirable) and the 

phosphinite group would have to be linked to the bicyclo[3.1.0]hexane core by at least one 

carbon atom (otherwise the starting allyl chloride would be an enol). This methodology 

also allows easy control of the stereochemistry of the cyclopropane ring substituent, an E-

alkene (E-100) will give an exo substituent (exo-101) and a Z-alkene (Z-100) an endo 

substituent (endo-101) (Scheme 25).15 This will allow control over the favoured 

conformation of the target ligand.  
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Scheme 25. Proposed preparation of 6-exo and 6-endo substituted bicyclo[3.1.0]hexenes. 

 

E-99 

Z-99 

E-100 

Z-100 

exo-101 

endo-101 

97 

98 98' 



 

 75 

The preparation of the 6-exo {(+/-)-101} and 6-endo {(+/-)-102} substituted isomers of 

(+/-)-3-endo-bicyclo[3.1.0]hexane-3,6-diylbis(methylene) bis(diphenylphosphinite) (Figure 

26) and the investigation of their properties as ligands in organometallic complexes, and 

activity in 1,6-diene cycloisomerisation reactions in comparison with FLEXIphosO was 

proposed. 

 

Ph2PO OPPh2Ph2PO OPPh2
H

H

H

H  

Figure 26. Structures of 6-exo {(+/-)-101} and 6-endo {(+/-)-102} isomers of (+/-)-3-endo-

bicyclo[3.1.0]hexane-3,6-diylbis(methylene) bis(diphenylphosphinite), potential 

FLEXIphosO analogues. 

 

The proposed synthesis of (+/-)-3-endo-6-exo-bicyclo[3.1.0]hexane-3,6-

diylbis(methylene) bis(phosphinite) {(+/-)-101} involves the reaction of commercially 

available isobutyl but-3-enoate (103) with N-chlorosuccinimide and phenylselenyl chloride 

to produce the allyl chloride, isobutyl (2E)-4-chlorobut-2-enoate (104). Treatment of this 

with LDA should furnish diisobutyl(E)-5-(1-ethynyl)-2-hexenedioate (105) by Florio and 

Troisi’s method. Au-catalysed cycloisomerisation should give access to the 

bicyclo[3.1.0]hexene core-structure (106), followed by reduction of the esters by LiAlH4 to 

give the diol (107). Addition of H2 to the exocyclic face of the alkene using hydrogen and 

catalytic palladium, followed by phosphorylation with Ph2PCl, is intended to yield the 

desired target ligand {(+/-)-101} with the desired stereochemistry (Scheme 26). 

 

(+/-)-101 (+/-)-102 
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Scheme 26. Proposed retrosynthesis of (+/-)-3-endo-6-exo-bicyclo[3.1.0]hexane-3,6-

diylbis(methylene) bis(phosphinite) {(+/-)-101)}. 

 

The synthesis of 104 by treatment of 103 with phenylselenylchloride and N-

chlorosuccinimide proceeded as expected, although only in an unoptimised 19% yield after 

distillation (Scheme 27).124 

 

O

O

O

O

ClN-chlorosuccinimide (1.1 equiv.)

MeCN, r.t., 4 h

PhSeCl (10 mol%)

19 %  

Scheme 27. The synthesis of isobutyl (2E)-4-chlorobut-2-enoate (104). 

 

The second step however was not successful. This involved treatment of 104 with lithium 

diisopropylamide (LDA) in tetrahydrofuran (THF) at -78 ˚C and resulted in multiple alkene 

and ester products being formed in addition to isomerised (cis) starting material (Scheme 

28).  
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Scheme 28. The proposed synthesis diisobutyl(E)-5-(1-ethynyl)-2-hexenedioate (105). 
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The failure of this reaction to produce the desired product may be due to the effects of the 

ester group which will be reactive to nucleophilic attack  by carbanions generated by LDA 

(by direct attack at the carbonyl and by Michael addition) but will also stabilise the 

carbanions - reducing their reactivity (resulting in the observed cis/trans isomerisation). As 

a result an alternative protecting group for the diol, which is stable to nucleophilic attack 

and does not reduce the carbanion reactivity, is required, and so it was envisaged that a 

benzyl group would be more successful. The synthesis could then proceed in a similar 

manner to above with a debenzylation rather than an ester reduction deprotection step.  

This required a new retrosynthesis (Scheme 29) starting from cis-1,4-but-2enediol (109), 

(cis was used initially due to the availability of the starting material). One alcohol would be 

benzylated using benzyl bromide (110) and the other substituted for chlorine using mesyl 

chloride and triethylamine followed by lithium chloride (111). Formation of the enyne 

(112) could then be carried out using LDA, followed by the gold catalysed 

cycloisomerisation (the cis alkene would result in 6-endo stereochemistry) to give the 

bicyclohexene (113). Reductive hydrogenation catalysed by palladium should hopefully 

reduce the alkene and remove the benzyl protecting groups to yield the diol (114) which 

could be phosphorylated by Ph2PCl to give the target (+/-)-3-endo-6-endo-

bicyclo[3.1.0]hexane-3,6-diylbis(methylene) bis(diphenylphosphinite) {(+/-)-115}. 
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Scheme 29. Proposed retrosynthesis of (+/-)-3-endo-6-endo-bicyclo[3.1.0]hexane-3,6-

diylbis(methylene) bis(diphenylphosphinite) {(+/-)-115}. 
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Synthesis of 1-chloro-4-benzyloxybut-2-ene (111) proceeded well in 63% over 2 steps. 1-

Chloro-4-benzyloxy-(Z)-but-2-ene (110) was prepared by treatment of (Z)-1,4-but-2-

enediol (109) with sodium hydride, followed by benzyl bromide, in 80% yield.
125

 

Substitution of the second alcohol by chlorine was carried out by mesylation of the alcohol 

with triethylamine and methanesulfonyl chloride followed by substitution using lithium 

chloride in 79% yield (Scheme 30).126  

 

OHHO
OHO

ClO

Br

i) NaH (1.1 equiv.), THF/DMSO             

0 oC - r.t., 30 min

Et4NI (1.1 equiv.), 15 h, 70 
oC

80%

ii)

OHO

i) NEt3 (1.5 equiv.), MsCl (2 equiv.) 

CH2Cl2, 0 
oC - r.t. 4 h

ii) LiCl (3 equiv.), THF, r.t., 2 h
79%

1.1 equiv.

 

Scheme 30. Synthesis of 1-chloro-4-benzyloxy-(Z)-but-2-ene (111). 

 

Unfortunately, preparation of the enyne 112 by treatment of the allyl chloride 111 with 

LDA did not produce the desired product (Scheme 31), giving instead a mixture of 

unidentified products formed from reaction of the benzyl and vinyl CH2 groups, including 

a significant amount of benzyl alcohol. 

 

ClO

LDA, THF, -78 oC

O

O

 

Scheme 31. Attempted synthesis of 1,6-dibenzyloxy-(Z)-5-(1-ethynyl)-2-hexene (112) 

from 1-chloro-4-benzyloxy-(Z)-but-2-ene (111). 

 

The presence of protic benzyl and vinyl groups clearly led to the failure of the reaction to 

yield the desired enyne and so another new retrosynthesis was required to design an allyl 

chloride with no protic positions other than the allyl chloride methylene group. This could 

be achieved by the use of protected phenol substituents in both the 3- and 6- positions, 

109 

111 

111 

110 

110 

112 
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although this would not then be an exact analogue of the FLEXIphosO ligand, the use of 

the phenol groups would allow extra control over the ligand bite angle by having ortho, 

meta or para hydroxyl groups. Initially it was proposed to prepare ortho-phenol substituted 

bicyclo[3.1.0]hexanes {(+/-)-116 and (+/-)-117} as this would potentially be closest to the 

bite angle displayed by the FLEXIphosO ligand (Figure 27).  

 

OPR2 OPR2OPR2 OPR2

H H

H H

 

Figure 27. Proposed 6-exo {(+/-)-116} and 6-endo {(+/-)-117} stereoisomers of (+/-)-3-

endo-bicyclo[3.1.0]hexane-3,6-diyldi-2,1-phenylene bis(diphenylphosphinite) isomers as 

FLEXIphosO analogues. 

 

Synthesis of the 6-endo stereoisomer {(+/-)-117} was attempted first, as a retrosynthesis 

was envisaged starting from commercially available coumarin (118) (Scheme 32). This can 

be reduced to 2-[(1Z)-3-hydroxyprop-1-en-1-yl]phenol (119). The phenol could then be 

protected with a methoxy group (120) and the allyl alcohol substituted with chlorine to 

give 1-[(1Z)-3-chloroprop-1-en-1-yl]-2-methoxybenzene (121). This contains no protic 

groups other than the methylene protons and so treatment with LDA should hopefully then 

lead to the enyne (122). Gold-catalysed cycloisomerisation followed by reduction of the 

alkene and deprotection of the hydroxyl groups should yield the diol (125), which can then 

be phosphorylated to give the target (+/-)-3-endo-6-endo-bicyclo[3.1.0]hexane-3,6-diyldi-

2,1-phenylene bis(diphenylphosphinite) {(+/-)-117}. 

 

(+/-)-116 (+/-)-117 
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Scheme 32. Proposed retro synthesis of (+/-)-3-endo-6-endo-bicyclo[3.1.0]hexane-3,6-

diyldi-2,1-phenylene bis(diphenylphosphinite) ((+/-)-117). 

 

The first step, reduction of coumarin (118) using LiAlH4, was precedented
127

 and 

proceeded as expected to give 119 in 34% yield (Scheme 33). The yield is limited as the 

reaction has to be stopped before completion to prevent reduction of the alkene. The 

protection of the phenol alcohol using MeI to give 120 was also facile
128

 and was achieved 

in 60% yield, as was substitution of the allyl alcohol with chloride to give 121 (83% 

yield).126 The key enyne synthesis step, treatment of 121 with lithium diisopropylamide at -

78 ˚C, fortunately produced the desired enyne 122 in 47% yield. The yield is low due to the 

difficulty in purifying the non-polar product.  

A combination of  1 mol% of [AuBr2(N-dbs)(ItBu)] (66b) and 1 mol% 

Ag[Al(OC(CF3)3)4] (76) was used for the cycloisomerisation of enyne 122 giving the 

bicyclo[3.1.0]hexene product 123 in 71% impure yield. It was not possible to entirely 

purify this by column chromatography on silica-gel due to the non-polar nature of the 

product, starting material and side products. It was decided to take this impure material 

through to the next stage to determine the efficiency of the alkene reduction step. However, 

this resulted in a mixture of more than four inseparable products all of which were fully 

reduced. Due to this and the difficulty of obtaining pure material it was decided not to 

122 

(+/-)-117 125 

123 124 

121 120 

119 118 



 

 81 

further pursue this synthesis, although the limitations of Florio and Troisi’s method for the 

synthesis of enynes has been exposed. 

 

O O OH OH

O OH O Cl

O

H

H

OO

O

i) LiAlH4, THF, 0 
oC, 15 mins

ii) HCl 34%

K2CO3, MeI, Acetone

Reflux, 3 h 60%

i) Collidine (1.5 eq.), MsCl (2 equiv.), THF, 6 h, 0 oC - r.t.

ii) LiCl (4 equiv.), r.t., 18 h 83%

LDA (1.2 equiv.), THF

-78-0 oC, 2 h 47%

66b (1 mol%), Ag[Al(OC(CF3)3)4] (1 mol%)

CH2Cl2, 25 
oC, 3 h 71%a

H2, 10% Pd/C (10 mol%), EtOAc
Multiple inseperable products

 

Scheme 33. Attempted synthesis of (+/-)-3-endo-6-endo-bicyclo[3.1.0]hexane-3,6-diyldi-

2,1-phenylene bis(diphenylphosphinite) {(+/-)-117}. 
a Impure yield. 

 

2.2.2.10. Tandem nucleophilic substitution-cycloisomerisation 

 Having demonstrated the efficiency of the Au(III) imidate complexes (66-68) in 

conjunction with Ag[Al(OC(CF3)3)4] (76) as catalyst systems for 1,5- and 1,6-enyne 

cycloisomerisations, attention was turned to probing the Lewis acid properties of the 

Au(III) complexes. In order to exploit the activity of the complexes in cycloisomerisation 

reactions as well as probing the Lewis acidity, a two step tandem reaction requiring these 

two properties was required. This would necessiate the synthesis of an enyne, as a 

cycloisomerisation precursor, in the first step by a Lewis acid mediated reaction. As the 

Au(III)-catalysed nucleophilic-subsitution of propargyl alcohols with allylsilanes has been 

reported,
25a

 this was selected to study, as a tandem nucleophilic substitution-

cycloisomerisation. 
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 The reaction of 1-phenyl-prop-2-yn-1-ol (126) and allyltrimethylsilane (127a), producing 

3-phenylbicyclo[3.1.0]hex-2-ene (75), via 3-phenylhex-1-en-5-yne (74), was chosen for 

initial screening due to the proven efficiency of the Au(III) imidate complexes in the 

cycloisomerisation step (Scheme 34).   

 

OH

Si

H

H
+

[Au(III)], Ag+

CH2Cl2

 

Scheme 34. Tandem nucleophilic substitution-cycloisomerisation of 1-phenylprop-2-yn-1-

ol (126). 

 

Complex 67c was selected for use in screening reaction conditions for the 

transformation, as it has high activity in the cycloisomerisation reactions but also is likely 

to be the most Lewis acidic complex due to the electron withdrawing ability of the 

tetrafluorosuccinimidate ligand (as shown by spectroscopic analysis). The reaction was 

first attempted using 2 mol% 67c, 2 mol% Ag[Al(OC(CF3)3)4] (76) and a 0.2 M solution of 

1-phenylprop-2-yn-1-ol (126) in CH2Cl2 (this concentration was used on the basis of the 

results of Georgy et al.25a and kinetic data on the cycloisomerisation of 3-phenylhex-1-en-

5-yne (74)). Initially the reaction was run at ambient temperature for 18 hours which gave 

an unsatisfactory 20% conversion to 3-phenylbicyclo[3.1.0]hex-2-ene (75), with the 

remaining material oligomeric or polymeric in nature (Table 28). The temperature was then 

lowered to -40 ˚C in order to try to reduce the polymerisation, however only 8% 

conversion was achieved after 6 hours, with 27% of the starting material (126) remaining, 

27% 3-phenylhex-1-en-5-yne (74) and 11% of symmetric ether (formed by condensation of 

two 1-phenylprop-2-yn-1-ol (126) molecules). Allowing the reaction to run to completion 

at this temperature was impractical and so the reaction was run at 0 ˚C and allowed to 

warm to ambient temperature over 18 hours. This gave a more satisfactory 38% conversion 

with 8% symmetric ether and the remaining material polymeric.  
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Table 28. Effect of reaction temperature on the tandem nucleophilic substitution-

cycloisomerisation of 1-phenylprop-2-yn-1-ol (126) and allyltrimethylsilane (127a).a 

OH

Si

H

H
+

[Au] (67c) (4 mol%), 
[Ag] (76) (4 mol%)

(3 equiv.)
CH2Cl2

 

Entry Time      

(h) 

Temperature 

(˚C) 

Conversion 

(%) 

1 18 r.t. 20 

2 6 -40 8 

3 18 0 - r.t. 38 

a Conditions: 2 mol% 67c, 2 mol% Ag[Al(OC(CF3)3)4] (76), 0.2 M 1-phenylprop-2-yn-1-ol (126) in 

CH2Cl2. 

 

Having identified a practical reaction temperature, the effect of catalyst loading and the 

concentration of allyltrimethylsilane (127a) was explored (Table 29). It was found that 

increasing the number of equivalents of 127a relative to 126 from 1.5 to 3 had a negative 

impact on the conversion to product with just 17% recorded, the remainder being 

uncharacterised polymeric material. It was then decided to attempt the reaction with an 

increased catalyst loading of 4 mol%. With 1 equivalent of 127a there was no product 

observed, and with 1.5 equivalents only 1%, however with 3 equivalents the conversion 

improved to 46% (the remainder being polymeric). Further increasing the loading to 6 

equivalents reduced the product to 19%, and increasing catalyst loading to 10 mol% 

allowed no conversion to product. It appears that there is a significant impact of the 

catalyst to allyltrimethylsilane (127a) loading ratio on the reaction, with 4 mol% and 3 

equivalents being optimal, lowering or raising this ratio reduces conversion, due to 

polymerisation. To try and improve on the 46% conversion the reaction was tried with 8 

mol% of Ag[Al(OC(CF3)3)4] (76) (4 mol% 67c), however this also reduced the conversion 

(23%). Finally, preactivation of the complex prior to the reaction was carried out but this 

gave only 14% product, presumably as slow activation of the catalyst is required to reduce 

polymerisation. 
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Table 29. Effect of catalyst loading and equivalents of allyltrimethylsilane (127a) on the 

tandem nucleophilic substitution-cycloisomerisation of 1-phenylprop-2-yn-1-ol (126) and 

127a.a 

CH2Cl2,  0 
oC - r.t., 15 h

OH

Si

H

H
+

[Au] (67c), [Ag] (76)

 

Entry Loading (mol%) Equivalents of 

allyltrimethylsilane  

(127a) 

Conversion 

(%) 

1 2 1.5 38 

2 2 3 17 

3 4 1 0 

4 4 1.5 1 

5 4 3 46 

6 4 6 19 

7 4 (8 mol% Ag) 3 23 

8 10 3 0 

9 4b 3 14 

a Conditions: 0.2 M 1-phenylprop-2-yn-1-ol (126) in CH2Cl2, 67c:76 1:1 (unless otherwise stated), 0 ˚C – r.t., 

15 hours. b Catalyst preactivated. 

 

Screening of the reaction solvent showed dichloromethane to be the most effective; 

coordinating solvents such as tetrahydrofuran and acetonitrile gave no conversion to 

product (only ethers), 1,2-dichloroethane gave 23% and carbon tetrachloride 15% (Table 

30). 
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Table 30. Effect of reaction solvent on the tandem nucleophilic substitution-

cycloisomerisation of 126 and 127a.a 

(3 equiv.)
 0 oC - r.t., 15 h

OH

Si

H

H
+

[Au] (67c) (4 mol%), 
[Ag] (76) (4 mol%)

 

Entry Solvent Conversion 

(%) 

1 Acetonitrileb 0 

2 Tetrahydrofuran 0 

3 Carbon tetrachloride 15 

4 1,2-Dichloroethane 23 

5 Dichloromethane 46 

a Conditions: 4 mol% 67c and Ag[Al(OC(CF3)3)4] (76), 0.2 M, 0 ˚C - r.t., 15 hours, 3 equivalents of 

allyltrimethylsilane (127a). b Ambient temperature and 70 ˚C gave no conversion to product. 

 

The effect of the silver salt follows the coordinating ability of the anion with 

Ag[Al(OC(CF3)3)4] (76) being the most efficient and AgOTf the least (Table 31), in fact 

AgOTf is very inefficient, with trace product, only 3% of 3-phenylhex-1-en-5-yne (75) and 

77% starting material. In the absence of an added silver salt the reaction did not proceed at 

all, with only starting material observed. 
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Table 31. The effect of different silver salt additives on the tandem nucleophilic 

substitution-cycloisomerisation of 126 and 127a.a 

(3 equiv.)
CH2Cl2, 0 

oC - r.t., 15 h

OH

Si

H

H
+

[Au] (67c) (4 mol%), 
[Ag] (4 mol%)

 

Entry Silver salt additive Conversion 

(%) 

1 AgOTf <1 

2 Ag[Al(OC(CF3)3)4] (76) 46 

3 AgSbF6 14 

4 - 0 

a
 Conditions: 4 mol% 67c and silver additive, 0.2 M 1-phenylprop-2-yn-1-ol (126) in CH2Cl2, 0 ˚C - r.t., 15 

hours, 3 equivalents of allyltrimethylsilane (127a). 

 

In order to determine the sensitivity of the reaction to possible contaminants the reaction 

was run with the addition of 0.1 equivalents of water and also with 0.1 equivalents of 1,3-

diphenylprop-2-yn-1-one (128) (the oxidation product of 1,3-diphenylprop-2-yn-1-ol, used 

for ease of synthesis) (Table 32). The results show that adding water has a moderate effect, 

reducing conversion to product from 46% to 24% (with 17% starting material). Clearly, the 

catalysts can tolerate small amounts of water in solution and so rigorously dry conditions 

are not necessary (although they are ideal). The propynone 128 however has a more 

pronounced effect, reducing conversion to just 8% (33% starting material), presumably due 

to competing but unproductive coordination to the catalyst. The propynone forms slowly 

from the propynol at room temperature and so must be freshly distilled and stored at -20 ˚C 

(although 1-phenylprop-2-yn-1-ol (126) oxidises very slowly, with more substituted 

propargyl alcohols oxidation can be relatively rapid).  
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Table 32. The effect of additives on the tandem nucleophilic substitution-

cycloisomerisation of 1-phenylprop-2-yn-1-ol (126) and allyltrimethylsilane (127a).a 

(3 equiv.)
CH2Cl2, 0 

oC - r.t., 15 h

OH

Si

H

H
+

[Au] (67c) (4 mol%), [Ag] (76) (4 mol%)

Additive (0.1 equiv.)

 

Entry Additive 
Conversion 

(%) 

1 Water 24 

2 1,3-diphenylprop-2-yn-1-one (128) 8 

a
 Conditions: 4 mol% 67c and Ag[Al(OC(CF3)3)4] (76), 0.2 M 1-phenylprop-2-yn-1-ol (126) in CH2Cl2, 0 

˚C - r.t., 15 hours, 3 equivalents of allyltrimethylsilane (127a), 0.1 equivalents of additive.  

 

A range of allyl and vinyl nucleophiles were tested under the reaction conditions, 

however only allyltrimethylsilane (127a) was effective (Table 33, Figure 28). 

Allyltriphenylsilane (127b) gave the only other observable formation of product (4%) (the 

reaction was run with just one equivalent of silane due to the high molecular weight). 

Allyltrimethoxysilane (127c) and allyltributyltin (127d) gave no product.  
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Table 33. Effect of various allyl and vinyl nucleophiles in the tandem nucleophilic 

substitution-cycloisomerisation of 1-phenylprop-2-yn-1-ol (126).a 

Entry Nucleophile 
Conversion 

to product 

(%) 

Other products  

1 allyltrimethylsilane (127a) 46  

2 allyltriphenylsilaneb (127b) <4  

3 allyltrimethoxysilane (127c) 0 8% cinnamaldehyde (131) 

4 allyltributyltin (127d) 0  

5 vinyloxytrimethylsilane (127e) 0 4%  4-yn-1-one (129a) 

6 vinyloxytrimethylsilanec (127e) 0 38% 4-yn-1-one (129a) 

7 1-phenyl-1-trimethylsiloxy ethylenec (127f) 0  

8 allyl alcohol (127g) 0 36% cinnamaldehyde (131) 

9 N-methyl-N-allylamine (127h) 0  

10 N,O-bistrimethylsilyl acetamidec (127i) 0  

a Conditions: 4 mol% 67c and Ag[Al(OC(CF3)3)4] (76), 0.2 M 1-phenylprop-2-yn-1-ol (126) in CH2Cl2, 0 

˚C - r.t., 15 hours, 3 equivalents of silane, alcohol, or stanane. b 1 Equivalent of allyltriphenylsilane (127b). c 

1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-ol (133g) was used in place of 126.  
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O
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Figure 28. Allyl and vinyl compounds tested in the tandem nucleophilic substitution-

cycloisomerisation of 1-phenylprop-2-yn-1-ol (126). 
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Vinyloxytrimethylsilane (127e) and 1-phenyl-1-trimethylsiloxyethylene (127f) were also 

tested. These would be expected to form alk-4-yn-1-ones (129), which has been observed 

with [{RuCl(η
5
-C5Me5)(η

2
-SMe)}2]

129
 and [ReBr(CO)3(THF)]2

130
 catalysts (Scheme 35). 

 

OH
O

[Au]
+

HO
Si

 

Scheme 35. Proposed Au catalysed nucleophilic substitution of 1-phenylprop-2-yn-1-ol 

(126) with trimethylsiloxyethylene (127e) to give 3-phenylpent-4-yn-1-one (129a). 

 

Alkynones have been shown to undergo gold-catalysed cycloisomerisation to give highly 

substituted furans (Scheme 36).131  

 

O

R3

R2 R4

R1 O

R2

R1

R4

R3[AuCl(PPh3)] / AgOTf (2 mol%)

p-TsOH (5 mol%)

toluene, r.t., 20-300 mins

 

Scheme 36. Au(I) catalysed cycloisomerisation of alk-4-yn-1-ones (129) to form 

substituted furans (130). 

It was anticipated that 126 would react with 127e to produce 2-methyl-3-phenylfuran 

(130a) via 3-phenylpent-4-ynal (129a) (Scheme 37) in a tandem nucleophilic substitution-

cycloisomerisation reaction.  

 

O
[Au]

O

OH

+
HO

Si

 

Scheme 37. Proposed tandem Au catalysed nucleophilic substitution-cycloisomerisation of 

1-phenylprop-2-yn-1-ol (126) and trimethylsiloxyethylene (127e) to give 2-methyl-3-

phenylfuran (130a) via 3-phenylpent-4-ynal (129a). 
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Unfortunately the reaction yielded none of the cycloisomerisation product 130a; only 4% 

of the aldehyde 129a was observed (along with 8% cinnamaldehyde (131) and 7% starting 

material). The reaction was retried using 1-(4-chlorophenyl)-3-phenylprop-2-yn-1-ol 

(133g) as the propargyl alcohol in the hope that the phenyl group would help stabilize the 

cationic intermediates. In this case 38% of the aldehyde, 3-(4-chlorophenyl)-5-phenylpent-

4-ynal (129b), was formed but again none of the furan, 2-benzyl-3-(4-chlorophenyl)furan 

(130b), the mass balance being polymeric material. The reaction was also tried with 1-(4-

chlorophenyl)-3-phenylprop-2-yn-1-ol (133g) and 1-phenyl-1-trimethylsiloxyethylene 

(127f). However, no ketone, 3-(4-chlorophenyl)-1,5-diphenylpent-4-yn-1-one, (129c) or 

furan, 2-benzyl-3-(4-chlorophenyl)-5-phenylfuran (130c), were formed. 

Allyl alcohol (127g) predictably slowed down the reaction {as it is likely to coordinate to 

the Au cation, as with coordinating solvents (vide supra)} and 24% starting material was 

observed, there was also 36% of cinnamaldehyde (131) from the Meyer-Schuster 

rearrangement. This reaction (previously reported to be catalysed by Au(I) complexes by 

Nolan and co-workers)132 is promoted by alcohols but also requires the presence of a 

catalytic amount of water (it does not proceed under anhydrous conditions) (Scheme 38). 

N-Methyl-�-allylamine (127h) did not react (presumably as it will coordinate to Au 

cations) and neither did �,O-bistrimethylsilylacetamide (127i). 

 

OH

H

O
[Au]

H2O catalyst

 

Scheme 38. The Meyer-Schuster rearrangement of 1-phenylprop-2-yn-1-ol (126) to 

produce cinnamaldehyde (131). 

 

 Using these optimised conditions (0.2 M solution of 1-phenylprop-2-yn-1-ol (126) in 

CH2Cl2, 3 equivalents of allyltrimethylsilane (127a), 4 mol% 67c, 4 mol% 

Ag[Al(OC(CF3)3)4] (76), 0 ˚C – r.t., 15 hours) a selection of Au(I) and Au(III) complexes 

and salts were screened for activity in the tandem nucleophilic substitution-

cycloisomerisation of 126 and 127a (Table 34). 

 

131 126 
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Table 34. Comparison of Au precatalysts for the tandem nucleophilic substitution-

cycloisomerisation of 1-phenylprop-2-yn-1-ol (126) and allyltrimethylsilane (127a).
a
 

(3 equiv.)
CH2Cl2, 0 

oC - r.t., 15 h

OH

Si

H

H
+

[Au] (4 mol%), 
[Ag] (76) (4 mol%)

 

Entry Au source 
Conversion 

(%)
b
 

1 [AuBr2(�-succ)(I
t
Pe)] (67a) 2 

2 [AuBr2(�-dbs)(I
t
Pe)] (67b) 15 

3 [AuBr2(�-tfs)(I
t
Pe)] (67c) 46 

4 [AuBr2(�-mal)(I
t
Pe)] (67d) 11 

5 [AuBr2(�-ptm)(I
t
Pe)] (67e) 7 

6 [AuBr3(I
t
Pe)] (67g) 9 

7 [AuBr(I
t
Pe)] (56g) <1 

8 AuCl3
c
 <1 

9 Na[AuCl4]
c
 <1 

10 [AuBr2(�-ptm)(IMes)] (68c) 10 

11 - 0 

a
  Conditions: [Au] (4 mol%), Ag[Al(OC(CF3)3)4] (76) (4 mol%), 0.2 M, 127a (3 equiv), in CH2Cl2, 0 ˚C - 

r.t., 15 hours. 
b
 Conversion by 

1
H NMR spectroscopic analysis of the crude product(s). 

c
 No 

Ag[Al(OC(CF3)3)4] (76) added. 

 

The results revealed that as anticipated 67c was the most efficient precatalyst for the 

reaction. Of the Au(III) imidate complexes 67a, 67b, 67d and 67e gave only 2, 15, 11 and 

7% conversions, respectively. Given the higher conversions achieved by 67b and 67d in 

the cycloisomerisation of 3-phenylhex-1-en-5-yne (74) relative to 67c it appears that the 

higher Lewis acidity of 67c is key to the initial nucleophilic substitution step, in fact the 

conversions achieved appear to follow the expected Lewis acidity of the complexes. 

Complex 68c gave 10% conversion, slightly higher than analogue 67e. 

Bromide 67g gave only 9% conversion, unsurprising considering its lower relative Lewis 

acidity and activity in the cycloisomerisation step. Simple Au(III) complexes and salts, 

AuCl3 and Na[AuCl4] gave only trace product (<1%) under these conditions, as did the 

Au(I) complex 56g – cinnamaldehyde (131) was the only identifiable product (24%). Given 

127a 126 75 
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the high activity of Au(I) sources in 1,5-enyne cycloisomerisation it was evident that Au(I) 

sources do not mediate an efficient nucleophilic substitution step, having less Lewis acidic 

character than the Au(III) complexes. In a control test, the reaction did not proceed in the 

absence of a gold complex (with only starting material observed). 

Georgy et al.77 reported that the Na[AuCl4] (5 mol% with 1.2 equivalents of 127a in 

CH2Cl2, 4 hours at ambient temperature) catalysed nucleophilic substitution resulted in 

only 9% yield of 74, claiming that the low yield was “mainly due to the instability of the 

compound, which rapidly decomposes at room temperature.” However, our tests have 

shown the product and starting material to be fairly stable under ambient conditions and 

the low yield is likely to be due to polymerisation. The low yield highlights the difficulty 

associated with the nucleophilic substitution step. 

 Using the optimum conditions a library of propargyl alcohols were evaluated (Table 35).  
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Table 35. Conversions of propargyl alcohols to bicyclo[3.1.0]hexenes using complex 67c.a 

R1

OH
H

R3
R1

R3R2

R2

(isomer A)

R1

H

R3

Thermal [1,3]-
carbon shift

(isomer B)

R2

[Au] (67c) (4 mol%)

[Ag] (76) (4 mol%)

(3 equiv.)

Si+
CH2Cl2, 0 

oC - r.t., 15 h

 

Entry 
Starting 
alcohol 

R
1
 R

3
 Product 

Conv. 
(%)

b
 

Yield 
(%) 

Ratio of 
isomers

g 

1 126 Phenyl H 75 46 - - 

2 132a Phenyl Methyl 133a 30 - - 

3 132b Phenyl 
n
Butyl 133b 81 76 94:6 

4 132c Phenyl TMS 133c >99
c
 75

d
 - 

5 132d Phenyl Phenyl 133d >99 91 - 

6 132e 2-Napthyl Phenyl 133e >99 68
e
 56:44 

7 132f Mesityl Phenyl 133f >99 72
e
 35:65 

8 132g 4-Cl-Phenyl Phenyl 133g >99 90 59:41 

9 132h 4-CF3-Phenyl Phenyl 133h 75 62 50:50 

10 132i 3-Methoxyphenyl
 

Phenyl 133i 67 53 49:51 

11 132j 3,5-Dimethoxy phenyl Phenyl 133j 15 - - 

12 132k Ethyl Methyl 133k 0 - - 

13 132l Ethyl Phenyl 133l 0 - - 

14 132m Phenyl
f
 Phenyl 133m 0 - - 

15 132n Phenyl
f
 H 133n 0 - - 

16 132o Cyclohexyl
h
 Phenyl 135a 33

i
 - - 

17 132p Methyl
j
 Phenyl 135b 14

i
 - - 

18 132q Cyclohexyl Dimer
k
 133q 0 - - 

19 132r Phenyl Dimer
l
 133r <5 - - 

a
 Conditions: 67c (4 mol%), Ag[Al(OC(CF3)3)4] (76) (4 mol%), 0.2 M (0.38 mmol), 126 or 132 (1 equiv.), 

127a (3 equiv.), in CH2Cl2, 0 ˚C – r.t., 15 hours, R
2
 = H unless otherwise specified. 

b
 Conversion by 

1
H NMR 

spectroscopic analysis of the crude product(s). 
c
 99% enyne, 1% 133c after 15 h, >99 % 133c after 10 days. 

d
 

68:32 silylated:desilylated product observed (R
3
 = H). 

e
 Reaction run on 0.19 mmol scale. 

f
 R

2
 = Ph. 

g
 Ratio 

of isomer A:isomer B by 
1
H NMR. 

h
 R

1
 and R

2
 form a cyclohexyl ring. 

i
 1,3-Cyclohexadiene product. 

j
 R

2
 = 

methyl.  
k
 

OH HO

. 
l
 

OHHO

. 

 

  

127a 

133 

132 
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 The results show that a methyl group at R
3
 (132a) is not tolerated well (30% conversion 

to 133a). However, the butyl derivative 132b gives 81% conversion to 133b, which likely 

stabilizes the carbocation intermediate (or affects the relative rate of cycloisomerisation 

versus polymerisation). This is supported by the work of Georgy et al.
77

 who showed that 

butyl and pentyl derivatives gave good yields of the nucleophilic subsitution product with 

Na[AuCl4] (they did not report any methyl derivatives).  

 A trimethylsilyl (TMS) group at R
3
 (132c) greatly reduced the cycloisomerisation rate, 

with 99% conversion to the 1,5-enyne (134) after 15 hours, but less than 1% of 133c. 

Following prolonged reaction (10 days), the reaction had gone to completion (32% 

desilylated product, 75, was present). The cycloisomerisation step of this reaction was 

investigated using 1-trimethylsilyl-3-phenylhex-5-en-1-yne (134) (Table 36). It was found 

that at ambient temperature the cyclosiomerisation proceeded very slowly (15% of 133c 

and 75 after 15 hours) allowing significant desilylation of the product 133c (87%) to form 

75 and polymer formation (15%). At 60 ˚C (in 1,2-dichloroethane) the reaction was 

accelerated with 51% product (133c and 75) of which only 25% was desilylated - the mass 

balance being uncharacterised polymer. The Au(I) complex 56g gave only 9% 

cycloisomerisation product at ambient temperature (11% desilylated) with no 

polymerisation, however at 60 ˚C 72% product (133c and 75) (14% desilylated) and 26% 

polymer was observed. It would appear from these results that Au(III) promotes the 

desilyation of the enyne (and possibly the product as well) as suggested by the higher 

conversion than Au(I) at ambient temperature, it also promotes polymerisation of the enyne 

(presumably this competes with cycloisomerisation so that at low cycloisomerisation rates 

the polymerisation is more pronounced). 

 

Table 36. Effect of temperature on the Au catalysed cycloisomerisation of 1-trimethylsilyl-

3-phenylhex-5-en-1-yne (134).a 

Entry Complex Conversion (%) 

  

Temp (˚C) 

Silylated (133c) Desilylated (75) Polymer
b
 

1 [AuBr2(�-tfs)(I
t
Pe)] (67c) r.t. 2 13 15 

2 [AuBr2(�-tfs)(I
t
Pe)] (67c) 60

c
 38 13 49 

3 [AuBr(I
t
Pe)] (56g) r.t. 8 1 - 

4 [AuBr(I
t
Pe)] (56g) 60

c
 62 10 26 

a
 Conditions: : [Au] (4 mol%), Ag[Al(OC(CF3)3)4] (76) (4 mol%), 0.2 M 1-trimethylsilyl-3-phenylhex-5-en-1-

yne (134) in CH2Cl2, 15 hours. 
b
 Not characterised.  

c
 1,2-dichloroethane solvent. 
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Encouragingly a phenyl group at R
3
 (132d) showed quantitative conversion, giving 133d 

in 91% yield. A variety of aromatic groups are tolerated under the optimised conditions. 

Quantitative conversions were noted for propargylic substrates possessing 2-napthyl 

(132e), mesityl (132f) and 4-chlorophenyl (132g) moieties. Catalyst loadings for 132g can 

also be reduced to 1 mol% with 1.1 equivalents of allyltrimethylsilane (127a), whilst still 

allowing quantitative conversion to be attained. 

The 4-CF3 derivative (132h) was found to proceed only to 75% product conversion 

(mass balance being polymer), this may be due to the electron withdrawing group making 

carbocation formation less favourable. Methoxy substitution was also less successful with 

3-methoxyphenyl (132i) giving 67% conversion and 3,5-dimethoxyphenyl (132j) only 

15% with a complex mixture of products. This may be due to aromatic propargylation of 

the dimethoxy-aryl group by the carbocation, generated by abstraction of the hydroxyl 

group, which has been reported in the literature as an effective nucleophile for propargylic 

substitution.25a,69-71,73 

Alkyl substitution at R1 is not tolerated with either methyl (132k) or phenyl (132l) at R3, 

resulting in polymeric/oligomeric product formation. This is due to the nucleophilic 

substitution step not proceeding efficiently, which has been demonstrated by Georgy et 

al.77 who observed no reaction when treating alkyl (R1) substituted propargyl alcohols with 

allyltrimethylsilane (127a) and Na[AuCl4]. 

 1,1-Diphenyl substituted propargyl alcohols (132m and 132n) did not undergo 

cycloisomerisation and the nucleophilic substitution is also difavoured (Georgy et al.
77

 

reported lower yields with 1,1-disubstituted propargyl alcohols). Where R
3
 was also phenyl 

(132n) only 30% of the enyne was detected and where R
3
 was

 
H (132m) only 

polymerisation was observed.  

1,1-Dialkyl-substituted propargyl alcohols (132o and 132p) also gave disappointing 

results due to the reduced efficiency of the nucleophilic substitution. Although conversions 

to cycloisomerisation products of 33% in the cyclohexyl (132o) case and 14% in the 

methyl case (132p) were achieved, these were not to the expected products. These 

cycloisomerisation products were identified as 3-phenylspiro[5.5]undeca-1,3-diene (135a) 

(Scheme 39) and (4,4-dimethylcyclohexa-1,5-dien-1-yl)benzene (135b), respectively.  

 



 

 96 

OH

CH2Cl2, 0 
oC - r.t., 15 h

[Au] (67c) (4 mol%), 
[Ag] (76) (4 mol%)

(3 equiv.)

Si+

33% conv.  

Scheme 39. Gold catalysed tandem nucleophilic substitution-cycloisomerisation of 1-

(phenylethynyl)cyclohexanol (132o) and allyltrimethylsilane (127a) to yield (4,4-

dimethylcyclohexa-1,5-dien-1-yl)benzene (135a). 

 

The cycloisomerisation step of this transformation was further investigated by 

preparation of the intermediate enyne (136) {by FeCl3 catalysed nucleophilic substitution 

of the alcohol (132o) with allyltrimethylsilane (127a)}. Complexes 67c and 56g were then 

tested (4 mol%, with 4 mol% 76, 0.2 M in CH2Cl2 at 0 ˚C to ambient temperature for 15 

hours). The reaction proceeded very well with 60% conversion to the product (135a) for 

67c and 93% for 56g, the remaining material was a complex mixture of products. It was 

found that the product was relatively unstable, with almost complete decomposition to a 

mixture of products (including the aromatised oxidation product) over 96 hours in solution, 

thus the lower conversion obtained for 67c is likely due to more rapid decomposition of the 

product by Au(III) (as a more efficient polymerisation catalyst).  

This usual transformation has been previously reported for a range of similar substrates 

by the group of Kosmin. For example, 2,4-dimethyl-2-(phenylethynyl)pent-4-en-1-yl 

tertbutyldimethlysiloxane (137) was found to undergo cycloisomerisation to yield (1,5-

dimethyl-4-phenylcyclohexa-2,4-dien-1-yl)methyl tert-butyldimethlysiloxane (138) 

(Scheme 40).133 

 

OTBS

[M] TBSO

 

Scheme 40. The cycloisomerisation of 2,4-dimethyl-2-(phenylethynyl)pent-4-en-1-yl 

tertbutyldimethlysiloxane (137) to afford (1,5-dimethyl-4-phenylcyclohexa-2,4-dien-1-

yl)methyl tert-butyldimethlysiloxane (138). 

 

132o 127a 135a 

138 137 
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Kosmin and co-workers found that the reaction did not proceed well at 20 ˚C in CH2Cl2; 

AuCl3 (5 mol%) achieving 22% yield, AuCl 16% and surprisingly [Au(PPh3)SBF4] (as 

reported, this may be SbF6 or BF4) less than 5%. However, the authors did find that PtCl2 

in toluene (with one equivalent of MeCN) at 80 ˚C gave a 66% yield (<5% at 20 ˚C with 15 

mol%), the reaction with Au sources at higher temperatures resulted in multiple 

unidentified products. They showed that this transformation occurred for a range of 

substrates with disubstitution at the propargyl position, including where the propargyl 

position forms part of a cyclohexane ring, however other ring sizes were not investigated. 

Other groups have also shown similar results with PtCl2
134 and [{RuCl(Cp*)(µ2-SMe)}2] 

which gives a 1,3-cyclohexadiene even with monosubstitution at the propargyl position 

(the mechanism in this case is believed to proceed via a ruthenium vinylidene complex).135 

The mechanism for this reaction has been proposed by Kosmin et al. (Scheme 41, Route 

A).133 Nucleophilic attack by the alkene upon the Au-activated alkyne (139c) (Step I) to 

produce a bicyclo[3.1.0]hexane is believed to occur first as in the usual mechanism. Then, 

rather than migration of one of the carbon atoms forming the cyclohexyl ring, migration of 

the adjacent cyclopropyl carbon (Step II) occurs to form a bicyclo[2.1.1]hexane. A 

carbocation at R2 results in a further migration (Step III) to reform a bicyclo[3.1.0]hexane, 

then the metal aids the fragmentation of the bridging C-C bond (Step IV) to form a 

cyclohexene ring followed by elimination (Step V) to give the final 1,3-cyclohexadiene 

(140).  
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Scheme 41. Mechanism of cycloisomerisation of dipropargyl substituted 1,5-enynes (139) 

to form: a) 1,3-cyclohexadienes (140), b) bicyclo[3.1.0]hexenes (141) and c) 

tricyclo[4.1.0.02,4]heptanes (142).  

 

The group of Toste has reported that where the propargyl position forms a cyclobutane 

(139a) or cyclopentane ring (139b) (Scheme 41, Route B) the typical mechanism of 

migration of one the groups at the propargyl position (Step VI) occurs resulting in a ring 

expanded hexahydro-1H-cyclopropa[a]pentalene (141a) or octahydrocyclopropa[a]indene 

(141b) structure, respectively (Step VII).15 Later Toste reported that cycloheptane (139d) 

and cyclooctane (139e) rings at the propargyl position result in C-H insertion at the A-CH2 

position of the ring to give products 142a and 142b, respectively. This mechanism is 

similar to the usual mechanism except C-H insertion (Step VIII) rather than migration 

occurs. The reaction of a cyclohexyl substituted enyne was not reported despite 

hypothesising that it would undergo C-H insertion.136 Specific examples reported by Toste 

using Au(I) phosphine catalysts are shown in Scheme 42.  

 

n = 1: 139a 
 2: 139b 
 3: 139c 
 4: 139d 
 5: 139e 

140 

n = 1: 141a 
 2: 141b 

n = 4: 142a 
 5: 142b 
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n

n

[Au(BF4)(PPh3)] (cat.)

n = 1  72%
n = 2  66%

H

H

n
n HH

H[AuCl(PtBu3)] (2 mol%) 

AgSbF6 (2 mol%)

0.2 M CH2Cl2, r.t., 60 min

n = 1  80%
n = 2  82%  

Scheme 42. Au(I) catalysed cycloisomerisations of 1-allyl-1-ethynyl cycloalkanes reported 

by Toste. 

 

Toste also found that the cycloisomerisation of 1-phenyl-3,3-dimethyl-hex-5-en-1-yne 

(147) in methanol catalysed by [Au(SbF6)(PPh3)] gave 1-phenyl-3,3-dimethyl-5-

methoxycyclohex-1-ene (148) formed by nucleophilic trapping of a carbocationic 

intermediate by methanol (135b, formed from 132p via 147, was found to have a 1,4 and 

not 1,3-relationship between the phenyl and dimethyl positions), however curiously the 

outcome of the reaction in CH2Cl2 was not reported (Scheme 43).15 

 

O

[Au(SbF6)(PPh3)] (5mol%)

MeOH, r.t.

85%
 

Scheme 43. Au(I) catalysed cycloisomerisation of (3,3-dimethylhex-5-en-1-yn-1-

yl)benzene (147) in methanol reported by Toste. 

 

The production of 1,3-cyclohexdienes (150) (as a minor product with 1,4-

cyclohexadienes (151) as the major product) has also been observed for 1,5-enynes with 

mono-substitution at the propargyl position that contain a heteroatom bound to the enyne 

(149). The heteroatom aids the transformation via a ketene intermediate (in the case of 

disubstitution at the propargyl position only the 1,3-diene was formed, with no heteroatom 

the bicyclo[3.1.0]hexene was formed) (Scheme 44).118,133,137 

148 147 

143a 

143b 

 

144a 

144b 

 

146a 

146b 

 

145a 

145b 
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TIPSO

AuCl (1 mol%)

CH2Cl2, 20 
oC, 99%

+

TIPSO 1 : 4
 

Scheme 44. Au-catalysed cycloisomerisation of 1,5-enynol 149 to give 1,3- (150) and 1,4- 

(151) cyclohexadienes reported by Kosmin.137b 

 

Finally, the tandem nucleophilic substitution-cycloisomerisation was attempted with two 

diynes, 1,1'-buta-1,3-diyne-1,4-diyldicyclohexanol (132q) and 1,6-diphenylhexa-2,4-

diyne-1,6-diol (132r). The cyclohexyl analogue did not yield any product, only 45% of the 

dienyne. With the phenyl analogue mostly starting material was observed with less than 

5% of product 133r. This lack of reactivity is mainly attributable to very low solubility of 

the propargyl alcohol in CH2Cl2. 

The 1,3-diaryl (133d-133i) {and to a small extent the 1-phenyl-3-butyl (133b)} 

cycloisomerisation products showed significant isomerisation by a 1,3-carbon shift, which 

essentially switches the aryl group positions (Table 37). This phenomenon has been 

reported for other bicyclo[3.1.0]hexenes at elevated temperatures,138 but not for 1,3-diaryl 

derivatives for which this process appears surprisingly facile, with the aryl substitution 

apparently aiding the isomerisation.  

Tests to determine the cause of the isomerisation showed that it was most likely a 

thermal process and it was not promoted by silica-gel (it occurred equally in the absence of 

silica-gel). It was found that once the isomerisation had reached equilibrium further heating 

did not affect the ratio of isomers. The isomerisation does not occur to any appreciable 

extent with alkyl substituted variants and is not observed with the 1,3-diphenyl analogue 

133d as the 1,3-carbon shift isomers are identical. It would appear that more electron-

donating aryl substituents in the R1 position aid the isomerisation with the equilibrium 

lying to the right with more of the carbon shift isomer, although they do not fit well to the 

Hammett equation.139 

 

149 151 150 
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Table 37. Ratio of isomers of bicyclo[3.1.0]hexene cycloisomerisation products.a 

R3

H

R1

Isomer A
 (cylcoisomerisation product)

Isomer B
(Rearranged product)

R3 H

R1

 

Entry R1 R3  A:B crude A:B purified 

1 Phenyl Butyl 133b 96:4 94:6 

2 Phenyl Phenyl 133d - - 

3 2-Napthyl Phenyl 133e 83:17 56:44 

4 Mesityl Phenyl 133f 97:3 35:65 

5 4-Cl-phenyl Phenyl 133g 88:12 59:41b 

6 4-CF3-phenyl Phenyl 133h 91:9 50:50c 

7 3-Methoxyphenyl Phenyl 133i 73:27 49:51 
a R2 = H. b Heating at 60 ˚C for 3 days did not affect the ratio. c Stirring with silica-gel overnight did not 

effect the ratio of products. 

 

Doering et al.140 have studied the kinetics of the thermal isomerisations of an A2-thujene 

system (152) containing a bicyclo[3.1.0]hexene ring system at 207 and 237 ˚C. They found 

that, as with other similar systems,141 there were three significant isomerisation processes, 

1,3-carbon shifts with sr (suprafacial with retention) and ai (antarafacial with inversion) 

stereochemistry (ksr and kai) and ring flipping (inversion of chirality, kring-flip) (Scheme 45). 

These symmetry forbidden isomerisations are thought to occur via a diradical intermediate 

(153). The relative importance of these processes are ksr:k(ring-flip):kai - 56:24:20, with a 

calculated activation energy of 182 kJ.mol
-1

 (in the gas phase). Doering and co-workers 

found that the relative importance of each process depended on the substituents on the 

bicyclo[3.1.0]hexene ring system but not on temperature, which only affected the rate of 

isomerisation.142 
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Scheme 45. Thermal isomerisation pathways of a A2-thujene (152) via a diradical 

intermediate (153) reported by Doering et al.. 

 
These processes for the 1,3-diarylbicyclo[3.1.0]hexene cycloisomerisation products 

(133d-i) result in two observed species by NMR spectroscopy, the starting 1,3-diaryl 

(isomer A) and the observed 1,3-diaryl isomerisation product (isomer B). Both enantiomers 

of the starting and product species would be interconverted but this could not be monitored 

by NMR spectroscopy as the starting material was racemic (Scheme 46).  
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Scheme 46. Proposed thermal isomerisation pathways of 1,3-diarylbicyclo[3.1.0]hexenes 

(133d-i). 
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Interestingly, Sanz et al.78 have also reported the tandem nucleophilic substitution- 

cycloisomerisation of allyltrimethylsilane (127a) and 1-(3-methoxyphenyl)-3-

phenylpropynol (133i) using p-toluenesulfonic acid followed by [AuCl(PPh3)]/AgSbF6 as a 

catalytic system. They reported a 61% yield but did not report any isomerisation and the 

characterisation data quoted corresponds to isomer A. This is an intriguing result and it is 

not immediately obvious why the results are different to those in this study. 

In order to determine if the nucleophilic substitution was actually catalysed by 

degradation products of the Au(III) complex rather than the metal itself, the reaction was 

tested in the presence of bromine and N-bromosuccinimide. It was found that the 

nucleophilic substitution of 1-(4-chlorophenyl)-3-phenylprop-2-yn-1-ol (132g) is catalysed 

by bromine although a 4% loading gave only a 67% conversion to the enyne nucleophilic 

substitution product after 2 days at ambient temperature (with the mass balance being 6% 

oligomerisation and 27% starting material). This suggests the bromine may aid 

nucleophilic substitution but it is not the principal agent. N-bromosuccinimide alone did 

not catalyse the reaction under these conditions.  

The catalytic properties of the complexes indicate that the IMes ligand is less electron 

donating than the alkyl analogues. The poor cycloisomerisation ability of the IMes series 

with 4-phenyl-1-hexen-5-yne (74) but higher conversions with the more reactive 1,1'-(1E)-

hex-1-en-5-yne-1,4-diyldibenzene (81), suggest the complexes have reasonable activity but 

poor stability, presumably due to an electron deficient Au atom. The relatively high 10% 

conversion in the tandem nucleophilic substitution-cycloisomerisation reaction suggests 

relatively high Lewis acidity despite poor cycloisomerisation ability. 

Studies to try and determine the catalytically active species involved in these reactions are 

detailed in Appendix 1. 



 

 104 

2.3. Conclusion 

A general method for the preparation of a library of [Au(N-imidate)(NHC)] (55-57) and 

[AuBr2(N-imidate)(NHC)] (66-68) complexes in high yield has been developed. A 

comprehensive analysis shows that the spectroscopic characteristics of the gold complexes 

are determined by the electronic properties of the NHC and imidate ligands. The Au(III) 

complexes (66-68) exhibit good catalytic activity in the cycloisomerisation of 4-phenyl-1-

hexen-5-yne (74) and 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene (81). In the case of 

[AuBr2(N-tfs)(ItPe)] (67c) an efficient and unique tandem nucleophilic substitution-

cycloisomerisation reaction of propargyl alcohols (132) and allylsilanes (127) to give 

bicyclo[3.1.0]hexenes (133) was made possible. The use of Ag[Al(OC(CF3)3)4] (76) in 

comparison to AgOTf as an additive greatly increased the rate of reactions. It is anticipated 

that the gold catalysis field could benefit from the use of this non-coordinating anion for 

highly active Au-catalysis. The ItBu and ItPe complexes exhibit similar spectroscopic 

properties and catalytic activity, whereas IMes complexes exhibited poor stability and low 

catalytic activity. A significant effect of the structure of the imidate ligand on catalytic 

activity was observed, with more electronegative imidates resulting in higher conversions. 

An exception was the maleimidate Au complexes which possess high activity despite a 

relatively low electronegativity.  

Kinetic analysis of the cycloisomerisation of 74 showed that [AuBr(ItPe)] (56g) and 

[AuBr2(N-ptm)(ItPe)] (67e), and particularly [AuBr2(N-tfs)(ItPe)] (67c) and [AuBr2(N-

ptm)(IMes)] (68c) complexes observed first order kinetics, suggesting stable active 

catalytic species. [AuBr3(ItPe)] (67g) fitted well to second order kinetics, indicating 

relatively rapid decomposition of the active catalyst during the reaction. [AuBr2(N-

tfs)(ItPe)] (67a) did not fit to first or second order kinetics due to a long initiation period.  

Kinetic analysis of the complexes using ‘aged enyne’ resulted in reduced reaction rates, the 

impurity clearly playing a role in the kinetics. These results show that the use of 

pseudohalide ligands, as mimics for bromide, significantly increases the stability of NHC 

Au(III) catalysts. The product distribution from the cycloisomerisation of dimethyl 

allylpropargylmalonate (77) was found to be dependant on the nature of the silver additive 

used, the oxidation state of the Au precatalyst and the reaction conditions employed. 

The identity of the catalytically active species in these reactions remains unclear and the 

involvement of Au(I)+ species cannot be ruled out, the binding of Ag+ by alkenes 

solubilises the silver salt which is likely to play a role in catalyst activation and possibly 

the cycloisomerisation mechanism.  
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2.4. Future Work 

In order to increase the efficiency of [AuBr2(N-imidate)(NHC)] precatalysts the rate of 

formation, solubility (in CH2Cl2) and stability (to reduction) of the Au(III) cation generated 

by halide abstraction must be improved. Solubility could be improved by incorporating 

additional hydrocarbon groups onto the imidate or NHC ligands. To improve stability 

reductive elimination of bromine and N-bromoimides from the Au complex must be 

prevented which could be achieved by tethering the NHC and anionic ligands (as 

polydentate ligands) (Figure 29).  
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Figure 29. Depiction of Au(III) complexes bearing tethered NHC and anionic ligands. 

 

Further investigation of the mechanism and active catalytic species formed from 

[AuBr2(N-imidate)(NHC)] complexes (and other Au(III) complexes) is required to 

determine if Au(III) complexes are precursors to Au(III) or Au(I) cations as the active 

catalytic species.  

The development of the unique single catalyst nucleophilic substitution-

cycloisomerisation process should lead to the use of Au(III) imidate and other catalysts in 

further tandem processes where Lewis acidity as well as alkyne activation is required.  

The demonstration of the benefits of pseudohalide ligands in this study should prompt the 

investigation of other electron-withdrawing pseudohalides as ligands in Au(III) complexes 

for catalytic applications, for example perfluoro-carboxylates (Figure 30).  
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Figure 30. Depiction of Au(III) complexes bearing perfluorocarboxylate ligands. 

X = anionic ligand 
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The efficiency of highly electron-withdrawing imidate ligands, particularly 

tetrafluorosuccinimidate, should lead to their implementation in other catalytic systems 

involving transition metal (pseudo)halide catalysts, especially where reduced electron 

density on the metal will increase activity. 

The Au(I) and Au(III) imidate complexes should also be tested for biological activity, as 

gold complexes have shown activity against cancer,82 HIV79 and bacteria,80 as well as being 

used to treat rheumatoid arthritis.81 
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2.5. Experimental 

2.5.1. General Details 

All reactions involving silver salts were carried out in the absence of light. 

Dichloromethane, acetonitrile and diethyl ether were dried by passing through a column of 

activated alumina, tetrahydrofuran was distilled from sodium benzophenone ketyl, ethanol 

was distilled from sodium ethoxide, acetone was distilled from calcium chloride and 

dimethyl sulphoxide was distilled from calcium hydride. Infra-red spectra were recorded on 

a Unicam Research Series FT-IR spectrometer. Mass spectrometry was carried out using a 

Bruker Daltronics micrOTOF instrument. 
1
H, 

13
C and 

19
F NMR spectra were collected on a 

JEOL ECX400 spectrometer operating at 400, 101 and 376 MHz, respectively, and 

referenced to residual solvent signals.
 13

C NMR signals are singlets unless otherwise stated. 

15
N NMR spectra were collected on a Bruker AMX500 spectrometer operating at 50 MHz. 

All column chromatography was performed using silica-gel (mesh 220-440) purchased 

from Fluka Chemicals with the solvent systems specified within the text. TLC analysis was 

performed using Merck 5554 aluminium backed silica plates, compounds were visualised 

using UV light (254 nm) and a basic aqueous solution of potassium permanganate. Melting 

points were measured in open capillary tubes using a Stuart SMP3 Digital Melting Point 

Apparatus and are uncorrected. 1-Phenyl-2-propyn-1-ol, allyltrimethylsilane and 

silver(I)triflate were purchased from Alfa Aesar. Tetrafluorosuccinamide was purchased 

from Fluorochem. All other chemicals were purchased from Sigma Aldrich Inc. and used 

without further purification unless otherwise stated. 

 

2.5.2. Gas chromatography 

Gas chromatography was carried out on a Varian 430 instrument with a Factor Four 

Capillary column (VF-1ms, 15 m, 0.25 mm) and a flame ionisation detector. Samples of 10 

Al were taken via syringe from the reaction mixtures at the specified time points. The 

samples were immediately quenched by addition of the aliquots to a solution of tetra-n-

butylammonium chloride (8 mM, 20 Al) in CH2Cl2. Conversion was determined via gas 

chromatography using a 1 Al sample injected directly into the instrument via syringe. 

Further sampling was carried out on selected aliquots over a period of time to ensure no 

further conversion occurred after quenching. The instrument settings and retention times 

for specific species are specified within the text.  
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Values for the integrated areas of the GC signals corresponding to starting materials and 

products were inputted into Microsoft Excel spreadsheet software. This software was used 

to calculate percent conversions by comparison of starting material and product signal 

areas. The concentration of the species in solution was determined from the percent 

conversions and the initial starting material concentration. Selected aliquots were analysed 

by 
1
H NMR spectroscopy to ensure consistency with conversions measured by GC. The 

reaction kinetics were calculated assuming a first order kinetic model by plotting ln[enyne] 

against time. Linear least-squares regression was used to calculate observed rate constants, 

initial rates and standard errors. The calculated concentrations of starting materials and 

products during the course of the reactions were also inputted into Dynafit software 

(published by Biokin).
109

 Nonlinear least-squares regression was used to fit the 

experimental kinetic data to predetermined molecular mechanisms as described in the text. 

This was used to determine the order of reaction, observed rate constants, initial rates and 

standard errors and to fit curves to the kinetic data.  

 

2.5.3. X-Ray crystallography 

Diffraction data were collected at 110 K on a Bruker Smart Apex diffractometer with 

Mo-Kα radiation (λ = 0.71073 Å) using a SMART CCD camera. Diffractometer control, 

data collection and initial unit cell determination was performed using “SMART” (v5.625 

Bruker-AXS). Frame integration and unit-cell refinement software was carried out with 

“SAINT+” (v6.22, Bruker AXS). Absorption corrections were applied by SADABS 

(v2.03, Sheldrick). Structures were solved by direct methods using SHELXS-97 

(Sheldrick, 1990) and refined by full-matrix least squares using SHELXL-97 (Sheldrick, 

1997). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed 

using a “riding model” and included in the refinement at calculated positions. 
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2.5.4. Compounds 

ItBu.HCl (62) 

N

N Cl

 

Prepared by a protocol reported by Herrmann et al..143 Paraformaldehyde (0.901 g, 30.0 

mmol, 1 equiv.) was dissolved in toluene (30ml, dry) and tbutyl amine (3.20 ml, 2.23 g, 

30.0 mmol, 1 equiv.) was added dropwise. The suspension was stirred at 50 ˚C until a clear 

solution formed (20 min). It was cooled to 0 ˚C and tbutyl amine (3.20 ml, 2.23 g, 30.0 

mmol, 1 equiv.) was added dropwise. HCl (3 M aq., 10 ml, 30.0 mmol) was added 

dropwise to give a clear solution. Glyoxal (40% aq., 3.4 ml, 30.0 mmol) was added 

dropwise and the solution was stirred at 40 ˚C for 15 hours. The solution was diluted (50 

ml saturated aq. NaHCO3), washed with diethyl ether (3 x 6 ml) and reduced to dryness in 

vacuo. The crude solid was extracted with dichloromethane (3 x 15 ml) and reduced to 

dryness in vacuo to give a brown solid. This was purified by washing with a minimum 

amount of cold acetone (this differs from the literature preparation) to give the product as a 

white powder (2.68g, 12.4 mmol, 41%). 1H NMR (400 MHz, CDCl3) δ 10.26 (t, J = 1.7 

Hz, 1H, N2CH), 7.59 (d, J = 1.7 Hz, 2H, imidazole CH), 1.72 (s, 18H, tBu CH3). 13C NMR 

(400 MHz, CDCl3) δ 134.5 (N2CH), 119.5 (imidazole CH), 60.5 (tBu quaternary C), 30.1 

(tBu CH3). IR (CH2Cl2, cm-1) υmax 3655 (w), 3316 (w), 3164 (m), 3070 (m), 3038 (m), 2955 

(s), 2813 (w), 2548 (w), 2324 (w), 1624 (w), 1556 (m), 1537 (m), 1469 (m), 1407 (w), 

1384 (m), 1281 (m), 1237 (w), 1201 (s), 1127 (m). ESI+-MS m/z 181.2 (100%, [M-Cl]+). 

ESI+-HRMS calcd. for C11ClH22N2 ([MH]+) 181.1699; found 181.1697. Data in accordance 

with the literature.143 

 

[AuCl(ItBu)] (55f) 

N

N
Au Cl

 

Prepared by a protocol reported by Baker et al..89 ItBu.HCl (62) (0.330 g, 1.53 mmol, 

1.85 equiv.) and silver(I) oxide (0.208 g, 0.897 mmol, 1.1 equiv.) in dichloromethane (60 

ml) were stirred at room temperature for 15 hours under a N2 atmosphere. The solution was 

added via cannula filtration to [AuCl(SMe2)] (0.414 g, 1.40 mmol, 1 equiv.) and stirred at 
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room temperature (18 hours). The solution was filtered through CeliteTM, concentrated to 2 

ml and pentane (20 ml) added. The resulting white precipitate was separated by filtration, 

washed (pentane, diethyl ether) and dried in vacuo to yield the title compound as a white 

powder (0.598 g, 1.45 mmol, 95%). 1H NMR (400 MHz, CDCl3) δ 7.09 (s, 2H, imidazole 

CH), 1.86 (s, 18H, tBu CH3). 13C NMR (100 MHz, CDCl3) δ 167.7 (carbene Au-C), 116.4 

(imidazole CH), 58.8 (tBu C(CH3)3), 31.7 (tBu C(CH3)3). IR (CH2Cl2, cm-1) υmax 3735 (w), 

3172 (w), 3045 (w), 2975.19 (m), 2359 (w), 1670 (w), 1568 (w), 1541 (w), 1476 (w), 1407 

(m), 1378 (m), 1369 (m), 1304 (w), 1233 (w), 1213 (m), 1189 (m), 1158 (w). ESI+-MS m/z 

418.2 (100%, [MH]+), 349.1 (1%), 293.0 (3%). ESI+-HRMS calcd. for C13H23AuN3 

([MH]+) 418.1552; found 418.1554. Data in accordance with the literature.89 

 

[Au(N-succ)(ItBu)] (55a) 

N

N
Au N

O

O
 

[AuCl(ItBu)] (55f) (121 mg, 294 µmol, 1 equiv.) and silver succinimidate (60.3 mg, 294 

µmol, 1 equiv.) were dissolved in dichloromethane (10 ml) and stirred at room temperature 

for 1 hour. The suspension was filtered through CeliteTM and the filtrate reduced to dryness 

in vacuo. The resulting white powder was precipitated from dichloromethane/pentane and 

washed with diethyl ether to give the title compound as a white powder (122 mg, 256 

µmol, 87%). 1H NMR (400 MHz, CDCl3) δ 7.08 (s, 2H, imidazole CH), 2.64 (s, 4H, succ 

CH2), 1.89 (s, 18H, tBu C(CH3)3). 13C NMR (400 MHz, CDCl3) δ 188.8 (succ C=O), 170.8 

(carbene Au-C), 116.4 (imidazole CH), 59.1 (tBu C(CH3)3), 31.8 (tBu C(CH3)3), 31.6 (succ 

CH2). IR (CH2Cl2, cm-1) υmax 3684 (w), 3172 (w), 3045 (w), 2972 (m), 2932 (m), 1712 (w), 

1645 (s), 1458 (w), 1434 (w), 1408 (w), 1380 (w), 1352 (m), 1285 (m), 1230 (m), 1158 

(w). ESI+-MS m/z 498.1 (9%, [MNa]+), 476.2 (100%, [MH]+), 420.1 (4%, [M-tBu+2H]+), 

405.1 (31%), 349.1 (8%), 293.0 (3%). ESI+-HRMS calcd. for C15H25AuN3O2 ([MH]+) 

476.1607; found 476.1596. Melting point 230 °C decomposes. 
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Tetrafluorosuccinimide 

NH

O

O

F

F
F

F
 

Prepared using a protocol similar to that of Henne and Zimmer.144 

Tetrafluorosuccinamide (1.00 g, 5.31 mmol, 1 equiv.) was placed in a dry Schlenk tube 

under an atmosphere of N2 and conc. sulphuric acid (0.29 ml, 5.44 mmol, 1.03 equiv.) was 

added via syringe. The mixture was stirred under a static vacuum (0.7 mm Hg, 10 mins), 

placed under an atmosphere of N2 and a cold finger (-196 ˚C) added. The apparatus was 

placed under a static vacuum (0.7 mm Hg) and heated to 120 ˚C over 1 hour. The product 

was collected as a white solid on the cold finger and resublimed (taking care not to expose 

it to moisture) (0.7 mmHg, 60 ˚C) to give the title compound as a white crystalline powder 

(0.793 g, 4.64 mmol, 87%). 1H NMR (400 MHz, CDCl3) δ 9.12 (br s, NH). 1H NMR {400 

MHz, (CD3)2CO} δ 11.5 (br. s, NH). 19F NMR (376 MHz, CDCl3) δ -127.4 (s, CF2). 19F 

NMR {376 MHz, (CD3)2CO} δ -128.1 (s, CF2). 13C NMR (100 MHz, CDCl3) δ 159.8 (t, J 

= 33 Hz, C=O), 105.8 (tt, J = 269 and 23 Hz, CF2). 13C NMR {100 MHz, (CD3)2CO} δ 

162.2 (t, J = 32 Hz, C=O), 107.0 (tt, J = 267 and 22 Hz, CF2). IR (solid, cm-1) υmax 3232 (m 

br), 3145 (m), 2161 (w), 2022(w), 1751 (s), 1685 (w), 1390 (m), 1334 (w), 1300 (s), 1173 

(m), 1131 (s), 1060 (s) 984 (m), 774 (s), 695 (m). ESI--MS m/z 188.0, (10%, [M+OH]-), 

170.0 (100%, [M-H]-). ESI--HRMS: calcd. for C4F4NO2 ([M-H]-) 169.9871; found 

169.9888. Melting point 64-66 ˚C (Lit. 66-68 ˚C). Data in accordance with the literature.144 

 

[Au(N-tfs)(ItBu)] (55b) 

N

N
Au N

O

O

F

F

F

F

 

[AuCl(ItBu)] (55f)  (70.9 mg, 172 µmol, 1 equiv.), silver(I) oxide (24.0 mg, 103 µmol, 

0.6 equiv.) and tetrafluorosuccinimide (32.5 mg, 190 µmol, 1.1 equiv.) were mixed in 

dichloromethane (5 ml) under an atmosphere of N2 and stirred at room temperature for 2 

hours. The suspension was filtered through CeliteTM and the filtrate reduced to dryness in 

vacuo. The resulting white powder was precipitated from dichloromethane/pentane, 

washed with diethyl ether and dried in vacuo to give the title compound as a white powder 

(85.6 mg, 157 µmol, 91%). 1H NMR (400 MHz, CDCl3) δ 7.15 (s, 2H, imidazole CH), 1.88 
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(s, 18H, tBu C(CH3)3). 19F NMR (376 MHz, CDCl3) δ -127.5 (s, tfs CF2). 13C NMR (101 

MHz, CDCl3) δ  170.4 (m, tfs C=O),145  167.0 (carbene Au-C), 116.9 (imidazole CH),  

107.4 (tt, J = 267, 22 Hz, tfs CF2),  59.2 (tBu C(CH3)3), 31.8 (tBu C(CH3)3). IR (CH2Cl2, 

cm-1) υmax 3471 (w), 3196 (w), 3172 (w), 3061 (w), 2974 (m), 2360 (m), 2341 (m), 1704 (s), 

1408 (m), 1400 (m), 1381 (m), 1371 (m), 1305 (s), 1269 (s), 1192 (s), 1150 (s), 1067 (m), 

1016 (m). ESI+-MS m/z 611.1 (16%, [MNa+MeCN]+), 570.1 (100%, [MNa]+), 548.1 (1%), 

445.1 (2%), 418.2 (13%). ESI+-HRMS calcd. for ([MNa]+) C15H20AuF4N3NaO2 570.1055; 

found 570.1047. Melting point 166-168 °C. 

 

[Au(N-mal)(ItBu)] (55c)  

N

N
Au N

O

O
 

A protocol similar to that used for 55a gave the title compound as a white solid {from 

120 mg, 291 µmol, of [AuCl(ItBu)] (55f)} (128.7 mg, 272 µmol, 93%). 1H NMR (400 

MHz, CDCl3) δ 7.09 (s, 2H, imidazole CH), 6.56 (s, 2H, mal CH), 1.88 (s, 18H, tBu 

C(CH3)3). 13C NMR (400 MHz, CDCl3) δ 182.4 (mal C=O), 170.5 (carbene Au-C), 136.0 

(mal CH), 116.3 (imidazole CH), 59.0 (tBu C(CH3)3), 31.8 (tBu C(CH3)3). IR (CH2Cl2, cm-

1) υmax 3171 (w), 3053 (m), 2973 (m), 1662 (s), 1641 (m), 1608 (w), 1567 (w), 1475 (w), 

1408 (m), 1380 (m), 1370 (m), 1347 (s), 1304 (w), 1281 (w), 1234 (w), 1213 (m), 1178 

(m), 1158 (w). ESI+-MS m/z 474.1 (100%, [MH]+), 418.2 (8%), 181.2 (1%, [ItBuH]+). 

ESI+-HRMS calcd. for C15H23AuN3O2 ([MH]+) 474.1450; found 474.1439. Melting point 

190 °C decomposes. 

 

[Au(N-ptm)(ItBu)] (55d) 

N

N
Au N

O

O
 

A protocol similar to that used for 55a gave the title compound as a white solid {from 

121.4 mg, 295 µmol of [AuCl(ItBu)] (55f)} (142 mg, 271 µmol, 92%). 1H NMR (400 

MHz, CDCl3) δ 7.70 (dd, J = 5.4 Hz and 3.0 Hz, 2H, ptm aromatic CH), 7.55 (dd, J = 5.4 

Hz and 3.0 Hz, 2H, ptm aromatic CH), 7.11 (s, 2H, imidazole CH), 1.92 {s, 18H, tBu 
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C(CH3)3}. 13C NMR (400 MHz, CDCl3) δ 178.9 (ptm C=O), 170.9 (carbene Au-C), 136.4 

(ptm ortho aromatic C), 132.1 (ptm meta aromatic CH), 121.6 (ptm para aromatic CH), 

116.4 (imidazole CH), 59.1 {tBu C(CH3)}, 31.8 {tBu C(CH3)3}. IR (CH2Cl2, cm-1) υmax 3677 

(w), 3171 (w), 3058 (w), 2973 (m), 2364 (w), 1736 (m), 1667 (s), 1639 (s), 1606 (m), 1568 

(w), 1540 (w), 1464 (m), 1422 (w), 1407 (m), 1374 (s), 1352 (m), 1309 (s), 1214 (m), 1190 

(m), 1176 (m), 1158 (w), 1124 (m). ESI+-MS m/z 524.2 (100%, [MH]+), 418.2 (3%), 181.2 

(61%, [ItBuH]+). ESI+-HRMS calcd. for C19H25AuN3O2 ([MH]+) 524.1607; found 524.1588. 

Melting point 160 °C decomposes. 

 

[Au(N-obs)(ItBu)] (55e) 

N

N

Au N
S

O

O O

 

[AuCl(ItBu)] (55f) (70.9 mg, 172 µmol, 1 equiv.), silver(I) oxide (24.0 mg, 103 µmol, 0.6 

equiv.), and o-benzoic sulfimide (34.7 mg, 190 µmol, 1.1 equiv.) were mixed in 

dichloromethane (5 ml) under an inert atmosphere and stirred at room temperature for 2 

hours. The suspension was filtered through CeliteTM and the filtrate reduced to dryness in 

vacuo. The resulting white powder was precipitated from dichloromethane/pentane, 

washed with diethyl ether and dried in vacuo to give the title compound as a white powder 

(85.0 mg, 152 µmol, 89%). 1H NMR (400 MHz, CDCl3) δ 7.94-7.90 (m, 1H, obs aromatic 

CH), 7.85-7.81 (m, 1H, obs aromatic CH), 7.72-7.64 (m, 2H, obs aromatic CH), 7.12 (s, 

2H, imidazole CH), 1.91 (s, 18H, tBu C(CH3)3). 13C NMR (101 MHz, CDCl3) δ 167.5 

(carbene Au-C), 166.1 (obs C=O), 141.7 (obs aromatic C), 132.9 (obs aromatic CH), 132.8 

(obs aromatic CH), 131.8 (obs aromatic C), 124.1 (obs aromatic CH), 120.3 (obs aromatic 

CH), 116.7 (imidazole CH), 59.1 {tBu C(CH3)3}, 31.8 {tBu C(CH3)3}. IR (CH2Cl2, cm-1) 

υmax 3364 (m), 3172 (w), 3061 (m), 2973 (m), 1742 (m), 1689 (s) 1559 (w), 1540 (w), 1521 

(w), 1459 (m), 1400 (m), 1382 (m), 1371 (m), 1338 (m), 1303 (s), 1266 (s), 1249 (s), 1212 

(m), 1173 (s), 1157 (s), 1122 (m), 1057 (w). ESI+-MS m/z 714.5 (3%), 675.2 (3%), 582.1 

(100%, [MNa]+), 528.2 (2%), 435.1 (41%, [MNa-obs+Cl]+), 394.2 (13%, [M-obs+NH3]+), 

360.3 (2%), 274.3 (1%), 172.1 (7%). ESI+-HRMS calcd. for C18H24AuN3NaO3S ([MNa]+) 

582.1096; found 582.1083. Melting point 150 °C decomposes. 
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[AuBr(ItBu)] (55g) 

N

N
Au Br

 

A protocol reported by de Frémont et al. was used.86 [AuCl(ItBu)] (55f) (105 mg, 255 

Amol, 1 equiv.) and LiBr (186 mg, 2.13 mmol, 8.4 equiv.) were mixed in acetone (4 ml) at 

room temperature for 24 hours. The resulting solution was reduced to dryness in vacuo and 

redissolved in dichloromethane, dried (MgSO4) and filtered through a plug of silica-gel. 

The volume was reduced to <0.5 ml and pentane was added resulting in a white precipitate. 

This was separated by filtration, washed with cold pentane and dried in vacuo to give the 

title compound as a white powder (99.2 mg, 217 Amol, 85%). 1H NMR (400 MHz, CDCl3) 

δ 7.09 (s, 2H, imidazole CH), 1.87 (s, 18H, tBu CH3). 13C NMR (100 MHz, CDCl3) δ 172.5 

(carbene Au-C), 116.3 (imidazole CH), 59.1 (tBu quaternary C), 31.8 (tBu CH3). ESI+-MS 

m/z 479.0 (2%, [MNa]+), 405.1 (9%, [M-Br+CO]+), 349.1 (21%, [M-Br-tBu+H+CO]+), 

293.0 (100%, [M-Br-2tBu+2H+CO]+), 266.0 (3%). ESI+-HRMS calcd. for 

C11H20AuBrN2Na ([MNa]+) 479.0368; found 479.0359. Data in accordance with the 

literature.86 

 

I
t
Pe.HCl (61) 

N

N Cl

 

A protocol similar to that reported by Jafarpour et al.. was used.92 tert-Pentylamine (5.18 

g, 59.4 mmol, 2 equiv.) and glyoxal (3.35 ml, 29.8 mmol, 1 equiv., 40% in water) were 

dissolved in ethanol (50 ml). Formic acid (4 drops) was added and the solution was stirred 

at room temperature for 2 days. The resulting yellow solution was reduced in vacuo to give 

a yellow oil and redissolved in toluene (60 ml). Paraformaldehyde (0.612 g, 20.4 µmol, 0.7 

equiv.) was added and the suspension stirred at 100 °C until a clear solution formed. HCl 

(5.10 ml, 20.4 µmol, 0.7 equiv., 4 M in dioxane) was added at 40 °C and the solution was 

then stirred at 70 °C overnight. The resulting white precipitate was separated by filtration 

and washed with acetone to give the title product as a white powder (2.50 g, 10.2 mmol, 

34%). 1H NMR (400 MHz, CDCl3) δ 10.45 (t, J = 2 Hz, 1H, N2CH), 7.48 (d, J = 2 Hz, 2H, 
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imidazole CH), 2.04 (q, J = 7.5 Hz, 4H, tPe CH2CH3), 1.75 (s, 12H, tPe C(CH3)2), 0.75 (t, J 

= 7.5 Hz, 6H, tPe CH2CH3). 13C NMR (101 MHz, CDCl3) δ 135.3 (N2CH), 119.7 

(imidazole CH), 63.5 (tPe quaternary C), 35.3 (tPe CH2CH3), 27.4 {C(CH3)2}, 8.1 (tPe 

CH2CH3). IR (CH2Cl2, cm-1) υmax 3657 (w), 3338 (w), 3165 (w), 3041 (w), 2972 (s), 2358 

(w), 1534 (w), 1463 (m), 1386 (m), 1274 (m), 1184 (m), 1126 (m). ESI+-MS m/z 209.2 

(100%, [MH]+),  139.1 (4%). ESI+-HRMS calcd. for C13H26ClN2 ([MH]+) 209.2012; found 

209.2014. Melting point 228-230 °C. 

 

 [AuCl(I
t
Pe)] (56f)

 

N

N

Au Cl

 

A protocol similar to that used for [AuCl(ItBu)] (55f) gave the title compound as a white 

solid (from 390 mg, 1.60 mmol of ItPe.HCl) (0.642 g, 1.46 mmol, 99%). 1H NMR (400 

MHz, CDCl3) δ 7.04 (s, 2H, imidazole CH), 2.48 (q, J = 7.5 Hz, 4H, tPe CH2CH3), 1.79 (s, 

12H, tPe CH3), 0.64 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 13C NMR (400 MHz, CDCl3) δ 168.1 

(carbene Au-C), 117.3 (imidazole C), 61.7 (tPe quaternary C), 36.3 (tPe CH2CH3), 29.3 (tPe 

CH2CH3), 7.8 {tPe C(CH3)2}. IR (CH2Cl2, cm-1) υmax 3680 (w), 3196 (w), 3172 (w), 3046 

(m), 2972 (s), 2929 (m), 2880 (m), 2360 (w), 1604 (w), 1567 (w), 1460 (m), 1407 (m), 

1393 (s), 1377 (s), 1339 (w), 1309 (m), 1228 (m), 1190 (s), 1152 (w). ESI+-MS m/z 463.1 

(100%, [MNa]+), 226.9 (5%). ESI+-HRMS calcd. for C13H24AuClN2Na ([MNa]+) 463.1186; 

found 463.1186. Melting point 157-158 °C. 

 

[Au(�-succ)(I
t
Pe)] (56a) 

N

N
Au N

O

O

 

A protocol similar to that used for 55a gave the title compound as a white solid {from 

120 mg, 269 µmol, of [AuCl(ItPe)] (56f)} (126 mg, 251 µmol, 93%). 1H NMR (400 MHz, 

CDCl3) δ 7.05 (s, 2H, imidazole CH), 2.62 (s, 4H, succ CH2), 2.48 (q, J = 7.5 Hz, 4H, tPe 

CH2), 1.82 {s, 12H, tPe C(CH3)2}, 0.66 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 13C NMR (400 
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MHz, CDCl3) δ 188.7 (succ C=O), 170.8 (carbene Au-C), 117.3 (imidazole CH), 61.9 (tPe 

quaternary C), 36.3 (tPe CH2CH3), 31.6 (succ CH2), 29.3 {tPe C(CH3)2}, 7.9 (tPe CH2CH3). 

IR (solid, cm-1) υmax 2963 (w), 2160 (m), 2028 (m), 1631 (s), 1561 (w), 1460 (w), 1395 (w), 

1378 (w), 1353 (s), 1284 (w), 1260 (w), 1227 (s), 1140 (w), 1009 (m), 817 (m), 739 (m), 

703 (m), 656 (m), 621 (m). IR (CH2Cl2, cm-1) υmax 3670 (w), 3172 (w), 3052 (m), 2970 (m), 

2936 (m), 2880 (m), 2360 (w), 1644 (s), 1461 (m), 1435 (w), 1407 (m), 1393 (m), 1379 

(m), 1352 (s), 1310 (w), 1285 (m), 1230 (s), 1191 (m). ESI+-MS m/z 504.2 (100%, [MH]+), 

433.2 (21%), 363.1 (6%), 292.0 (4%), 209.2 (4%). ESI+-HRMS calcd. for C17H29AuN3O2 

([MH]+) 504.1920; found 504.1916. Melting point 140-142 °C. 

 

[Au(�-tfs)(I
t
Pe)] (56b) 

N

N
Au N

O

O

F

F

F

F

 

A protocol similar to that used for 55b gave the title compound as a white solid {from 

100 mg, 228 µmol, of [AuCl(ItPe)] (56f)} (122  mg, 212 µmol, 93%). 1H NMR (400 MHz, 

CDCl3) δ 7.11 (s, 2H, imidazole CH), 2.48 (q, J = 7.5 Hz, 4H, tPe CH2CH3), 1.83 {s, 12H, 

tPe C(CH3)2}, 0.69 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 19F NMR (376 MHz, CDCl3) δ -127.5 

(s, CF2). 13C NMR (101 MHz, CDCl3) δ 170.4 (m, C=O),145 167.5 (carbene Au-C), 117.8 

(imidazole CH), 107.4 (tt, J = 267 and 22 Hz, tfs CF2), 62.1 (tPe quaternary C), 36.6 (tPe 

CH2CH3), 29.4 {tPe C(CH3)2}, 7.9 (tPe CH2CH3). IR (CH2Cl2, cm-1) υmax 3173 (w), 2971 (s), 

2930 (m), 2880 (m), 1784 (w), 1704 (s), 1559 (w), 1540 (w), 1461 (m), 1394 (m), 1380 

(m), 1305 (s), 1271 (s), 1260 (s), 1193 (s), 1150 (s), 1067 (s), 1016 (s). ESI+-MS m/z 598.1 

(95%, [MNa]+), 463.1 (23%), 422.2 (100%), 239.2 (6%). ESI+-HRMS calcd. for 

C17H24AuF4N3NaO2 ([MNa]+) 598.1362; found 598.1380. Melting point 145-147 ˚C. 
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[Au(�-mal)(I
t
Pe)] (56c) 

N

N
Au N

O

O

 

A protocol similar to that used for 55a gave the title compound as a white solid {from 

117 mg, 267 µmol, of [AuCl(ItPe)] (56f)} (128 mg, 256 µmol, 96%). 1H NMR (400 MHz, 

CDCl3) δ 7.05 (s, 2H, imidazole CH), 6.54 (s, 2H, mal CH), 2.50 (q, J = 7.5 Hz, 4H, tPe 

CH2CH3), 1.82 {s, 12H, tPe C(CH3)2}, 0.67 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 13C NMR (400 

MHz, CDCl3) δ 182.3 (mal C=O), 170.7 (carbene Au-C), 135.9 (mal CH), 117.3 

(imidazole CH), 61.8 (tPe quaternary C), 36.3 (tPe CH2CH3), 29.3 (tPe C(CH3)2), 7.9 (tPe 

CH2CH3). IR (CH2Cl2, cm-1) υmax 3680 (w), 3195 (w), 3172 (w), 3062 (w), 2971 (s), 2933 

(m), 2880 (w), 1660 (s), 1608 (w), 1567 (w), 1460 (m), 1407 (w), 1393 (m), 1380 (m), 

1347 (s), 1310 (w), 1228 (m), 1179 (m). ESI+-MS m/z 524.2 (3%, [MNa]+), 502.2 (100%, 

[MH]+), 433.2 (46%), 363.1 (16%), 293.0 (8%), 272.8 (2%). ESI+-HRMS calcd. for 

C17H27AuN3O2 ([MH]+) 502.1763; found 502.1760. Melting point 135-137 ˚C. 

 

[Au(N-ptm)(ItPe)] (56d) 

N

N
Au N

O

O

 

A protocol similar to that used for 55a gave the title compound as a white solid {from 

127 mg, 288 µmol, of [AuCl(ItPe)] (56f)} (152 mg, 277 µmol, 96%). 1H NMR (400 MHz, 

CDCl3) δ 7.69 (dd, J = 5.4 and 3.0 Hz, 2H, ptm aromatic CH), 7.54 (dd, J = 5.4 and 3.0 Hz, 

2H, ptm aromatic CH), 7.06 (s, 2H, imidazole CH), 2.56 (q, J = 7.4 Hz, 4H, tPe CH2CH3), 

1.85 (s, 12H, tPe C(CH3)2), 0.68 (t, J = 7.4 Hz, 6H, tPe CH2CH3). 13C NMR (400 MHz, 

CDCl3) δ 178.8 (ptm C=O), 171.0 (carbene C), 136.4 (ptm ortho aromatic C), 132.1 (ptm 

meta aromatic CH), 121.5 (ptm para aromatic CH), 117.3 (imidazole CH), 61.9 (tPe 

quaternary C), 36.3 (tPe CH2CH3), 29.3 (tPe C(CH3)2), 7.9 (tPe CH2CH3). IR (CH2Cl2, cm-1) 

υmax 3674 (w), 3172 (w), 3056 (m), 2970 (m), 2933 (w), 2879 (w), 2360 (w), 1736 (w), 

1667 (s), 1638 (m), 1606 (m), 1539 (w), 1462 (m), 1393 (m), 1373 (s), 1352 (m), 1309 (s), 

1227 (w), 1191 (m), 1176 (m). ESI+-MS m/z 552.2 (100%, [MH]+), 482.1 (6%), 433.2 
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(5%), 363.1 (2%), 272.8 (5%). ESI+-HRMS calcd. for C21H29AuN3O2 ([MH]+) 552.1920; 

found 552.1927. Melting point 140 ˚C decomposes. 

 

[Au(N-obs)(ItPe)] (56e) 

N

N
Au N

S

O

O O

 

A protocol similar to that used for 55e gave the title compound as a white solid {from 

90.3 mg, 205 µmol, of [AuCl(ItPe)] (56f)} (113 mg, 193 µmol, 94%). 1H NMR (400 MHz, 

CDCl3) 7.92-7.88 (m, 1H, obs aromatic CH), 7.83-7.80 (m, 1H, obs aromatic CH), 7.73-

7.64 (m, 2H, obs aromatic CH), 7.10 (s, 2H, imidazole CH), 2.52 (q, J = 7.4 Hz, 4H, tPe 

CH2CH3), 1.85 (s, 12H, CH3), 0.70 (t, J = 7.4 Hz, 6H, tPe CH2CH3). 13C NMR (101 MHz, 

CDCl3) δ 167.9 (carbene Au-C), 166.0 (obs C=O), 141.8 (obs aromatic C), 132.9 (obs 

aromatic CH), 132.8 (obs aromatic CH), 131.8 (obs aromatic C), 124.0 (obs aromatic CH), 

120.3 (obs aromatic CH), 117.6 (imidazole CH), 62.0 (tPe quaternary C), 36.4 (tPe 

CH2CH3), 29.4 {tPe (C(CH3)2}, 7.9 (tPe CH2CH3). IR (CH2Cl2, cm-1) υmax 3362 (w), 3172 

(w), 3061 (m), 2971 (s), 2931 (m), 2880 (w), 1741 (m), 1689 (s), 1596 (m), 1461 (m), 1380 

(m), 1303 (s), 1260 (s), 1249 (s), 1173 (s), 1157 (s), 1123 (m), 1057 (m). ESI+-MS m/z 

678.1 (4%), 610.1 (90%, [MNa]+), 556.2 (3%), 504.1 (11%), 463.1 (100%, [MNa-

obs+Cl]+), 422.2 (3%), 157.1 (5%). ESI+-HRMS calcd. for C20H28AuN3NaO3S ([MNa]+) 

610.1409; found 610.1408. Melting point 150 ˚C decomposes. 

 

[AuBr(I
t
Pe)] (56g) 

N

N
Au Br

 

A protocol similar to that used for [AuBr(ItBu)] (55g) gave the title compound as a white 

solid {from 83.6 mg, 190 µmol of [AuCl(ItPe)] (56f)} (87.9 mg, 180 µmol, 95%). 1H NMR 

(400 MHz, CDCl3) δ 7.05 (s, 2H, imidazole CH), 2.48 (q, J = 7.5 Hz, 4H, tPe CH2CH3), 

1.81 {s, 12H, tPe C(CH3)2}, 0.65 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 13C NMR (400 MHz, 

CDCl3) δ 172.3 (carbene Au-C), 117.2 (imidazole CH), 61.8 (tPe quaternary C), 36.3 (tPe 
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CH2CH3), 29.3 {tPe C(CH3)2}, 7.9 (tPe CH2CH3). IR (CH2Cl2, cm-1) υmax 3196 (w), 3172 

(w), 3047 (m), 2972 (s), 2930 (m), 2880 (w), 1704 (w), 1566 (w), 1558 (w), 1461 (m), 

1406 (w), 1266 (m), 1260 (m), 1229 (m), 1271 (s), 1227 (m), 1191 (s), 1064 (w), 1037 (w), 

1005 (w). ESI+-MS m/z 507.1 (6%, [MNa]+), 433.2 (15%),  413.3 (2%), 363.1 (19%), 

293.0 (100%), 266.0 (2%). ESI+-HRMS calcd. for  C13H24AuBrN2Na ([MNa]+) 507.0681; 

found. 507.0675. Melting point 149-151 ˚C. 

 

[{Au(N-mal)(ItPe)}2] (56h) 

N

N
Au N

O

O

N

N
AuN

O

O

 

Not isolated {[Au(N-mal)(ItPe)] (56c):[{Au(N-mal)(ItPe)}2] (56h) 76:24}. 1H NMR (400 

MHz, CDCl3) selected peaks δ 7.05 (s, 2H, imidazole CH), 3.33 (s, 2H, imidate CH), 2.50 

(q, J = 7.5 Hz, 4H, tPe CH2CH3), 1.82 (s, 12H, tPe C(CH3)2), 0.67 (t, J = 7.5 Hz, 6H, tPe 

CH2CH3). ESI+-MS m/z 1025.3 (100%, [MNa]+), 1003.3 (84%, [MH]+), 906.3 (99%, 

[(ItPe)2Au2(mal)]+). ESI+-HRMS calcd. for C34H52Au2N6NaO4 ([MNa]+) 1025.3273; found 

1025.3279. 

 

[AuCl(IMes)] (57f) 

N

N
Au Cl

 

A protocol similar to that used for [AuCl(ItBu)] (55f) gave the title compound as a white 

powder (from 0.604 g, 1.78 mmol of IMes.HCl) (0.572 g, 1.07 mmol, 98%). 1H NMR (400 

MHz, CDCl3) δ 7.09 (s, 2H, imidazole CH), 6.99 (s, 4H, Mes aromatic CH), 2.34 (s, 6H, 

Mes para CH3), 2.10 (s, 12H, Mes ortho CH3). 13C NMR (100 MHz, CDCl3) δ 173.4 

(carbene Au-C), 139.8 (Mes aromatic C), 134.7 (Mes aromatic C), 129.5 (Mes aromatic C), 

122.2 (imidazole CH), 21.2 (Mes para CH3), 17.8 (Mes ortho CH3). ESI+-MS m/z 559.1 

(27%, [MNa]+), 542.2 (100%, [M-Cl+MeCN]+), 529.2 (8%), 518.2 (4%). ESI+-HRMS 
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calcd. for C21H24AuClN2Na 559.1186; found 559.1186. Data in accordance with the 

literature.86 

 

[Au(N-succ)(IMes)] (57a)  

N

N
Au N

O

O

 

A protocol similar to that used for 55a gave the title compound as a white solid {from 

38.2 mg, 71.3 µmol, of [AuCl(IMes)] (57f)} (41.6 mg, 69.4 µmol, 97%). 1H NMR (400 

MHz, CDCl3) δ 7.10 (s, 2H, imidazole CH), 7.01 (s, 4H, Mes aromatic CH), 2.40 (s, 4H, 

succ CH2), 2.34 (s, 6H, Mes para CH3), 2.16 (s, 12H, Mes ortho CH3). 13C NMR (101 

MHz, CDCl3) δ 188.5 (succ C=O), 174.9 (carbene Au-C), 139.4 (Mes aromatic C), 134.7 

(Mes aromatic C), 134.6 (Mes aromatic C), 129.4 (Mes aromatic C), 122.3 (imidazole CH), 

31.4 (succ CH2), 21.1 (Mes para CH3), 17.9 (Mes ortho CH3). IR (CH2Cl2, cm-1) υmax 3670 

(w), 3141 (m), 3052 (m), 2981 (m), 2359 (w), 1648 (s), 1540 (w), 1488 (m), 1435 (w), 

1415 (w), 1351 (m), 1285 (m), 1230 (m). ESI+-MS m/z 622.2 (15%, [MNa]+), 600.2 

(100%, [MH]+), 528.2 (49%). ESI+-HRMS calcd. for C25H29AuN3O2 ([MH]+) 600.1925; 

found 600.1924. Melting point 170 ˚C decomposes. 

 

[Au(N-tfs)(IMes)] (57b) 

N

N
Au N

O

O

F

F

F

F

 

A protocol similar to that used for 55b gave the title compound as a white solid {from 

101 mg, 188 µmol, of [AuCl(IMes)] (57f)} (109 mg, 163 µmol, 87%).  1H NMR (400 

MHz, CDCl3) δ 7.17 (s, 2H, imidazole CH), 7.04 (s, 4H, Mes aromatic CH), 2.36 (s, 6H, 

Mes para CH3), 2.16 (s, 12H, Mes ortho CH3). 19F NMR (376 MHz, CDCl3) δ -127.6 (s, tfs 

CF2). 13C NMR (101 MHz, CDCl3) δ 171.9 (carbene Au-C), 170.0 (m, tfs C=O),145 140.0 
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(Mes aromatic C), 134.6 (Mes aromatic C), 134.2 (Mes aromatic C), 129.6 (Mes aromatic 

CH), 122.8 (imidazole CH), 107.1 (tt, J = 267 and 22 Hz, tfs CF2), 21.1 (Mes para CH3), 

17.8 (Mes ortho CH3). IR (CH2Cl2, cm-1) υmax 3167 (w), 3141 (w), 3055 (m), 2923 (w), 

1784 (w), 1772 (w), 1705 (s), 1670 (w), 1609 (w), 1559 (w), 1540 (w), 1487 (m), 1420 

(m), 1381 (w), 1324 (w), 1305 (m), 1235 (w), 1192 (s), 1150 (m), 1067 (m), 1016 (m). 

ESI+-MS m/z 694.1 (100%, [MNa]+), 542.2 (55%, [M-tfs+MeCN]+), 413.3 (3%), 358.1 

(5%), 336.1 (5%). ESI+-HRMS calcd. for C25H24AuF4N3NaO2 ([MNa]+) 694.1362; found 

694.1355. Melting point 200 ˚C decomposes. 

 

[Au(N-mal)(IMes)] (57c)  

N

N
Au N

O

O

 

A protocol similar to that used for 55a gave the title compound as a white solid {from 

151 mg, 282 µmol, of [AuCl(IMes)] (57f)} (157 mg, 263 µmol, 93%). 1H NMR (400 MHz, 

CDCl3) δ 7.10 (s, 2H, imidazole CH), 7.00 (s, 4H, Mes aromatic CH), 6.31 (s, 2H, mal 

CH), 2.33 (s, 6H, Mes para CH3), 2.16 (s, 12H, Mes ortho CH3). 13C NMR (101 MHz, 

CDCl3) δ 182.1 (mal C=O), 175.1 (carbene Au-C), 139.5 (Mes aromatic C), 135.7 (mal 

CH), 134.7 (Mes aromatic C), 134.6 (Mes aromatic C), 129.4 (Mes aromatic C), 122.3 

(imidazole CH), 21.1 (Mes para CH3), 18.0 (Mes ortho CH3). IR (CH2Cl2, cm-1) υmax 3677 

(w), 3167 (w), 3141 (w), 3063 (w), 2922 (m), 1730 (m), 1662 (s), 1640 (m), 1608 (m), 

1488 (m), 1415 (m), 1380 (m), 1345 (s), 1235 (m), 1177 (m). ESI+-MS m/z 598.2 (11%, 

[MH]+), 528.2 (92%), 305.2 (100%, [IMesH]+). ESI+-HRMS calcd. for C25H27AuN3O2 

([MH]+) 598.1763; found 598.1737. Melting point 200 ˚C decomposes. 
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[Au(N-ptm)(IMes)] (57d)  

N

N
Au N

O

O

 

A protocol similar to that used for 55a gave the title compound as a white solid {from 

71.1 mg, 132 µmol of [AuCl(IMes)] (57f)} (80.3 mg, 124 µmol, 94%). 1H NMR (400 

MHz, CDCl3) δ 7.54 (dd, J = 5.4 and 3.0, 2H, ptm aromatic CH), 7.44 (dd, J = 5.4 and 3.0 

Hz, 2H, ptm aromatic CH), 7.12 (s, 2H, imidazole CH), 7.02 (s, 4H, Mes aromatic CH), 

2.33 (s, 6H, Mes para CH3), 2.20 (s, 12H, Mes ortho CH3). 13C NMR (101 MHz, CDCl3) δ 

178.6 (ptm C=O), 175.2 (carbene Au-C), 139.5 (Mes aromatic C), 136.2 (ptm aromatic C), 

134.7 (Mes aromatic C), 134.6 (Mes aromatic C), 131.8 (ptm aromatic CH), 129.4 (Mes 

aromatic CH), 122.3 (imidazole CH), 121.3 (ptm aromatic CH), 21.1 (Mes para CH3), 18.0 

(Mes ortho CH3). IR (CH2Cl2, cm-1) υmax 3674 (w), 3458 (w), 3140 (w), 3063 (w), 3045 

(m), 2983 (m), 2921 (m), 2324 (w), 1737 (m), 1667 (s), 1639 (m), 1607 (m), 1540 (w), 

1488 (m), 1414 (m), 1372 (m), 1351 (m), 1308 (m), 1236 (m), 1176 (m), 1124 (m). ESI+-

MS m/z 648.2 (2%, [MH]+), 528.2 (50%), 305.2 (100%, [IMesH]+), 267.2 (4%), 136.1 

(3%). ESI+-HRMS calcd. for C29H29AuN3O2 ([MH]+) 648.1920; found 648.1908. Melting 

point 150 ˚C decomposes. 

 

[Au(N-obs)(IMes)] (57e) 

N

N
Au N

S

O

O O

 

A protocol similar to that used for 55e gave the title compound as a white solid {from 

99.9 mg, 186 µmol, of [AuCl(IMes)] (57f)} (115 mg, 168 µmol, 90%). 1H NMR (400 

MHz, CDCl3) δ 7.78-7.76 (m, 1H, obs aromatic CH), 7.72-7.70 (m, 1H, obs aromatic CH), 

7.62-7.55 (m, 2H, obs aromatic CH), 7.16 (s, 2H, imidazole CH), 7.04 (s, 4H, Mes 
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aromatic CH), 2.35 (s, 6H, Mes para CH3), 2.19 (s, 12H, Mes ortho CH3). 13C NMR (101 

MHz, CDCl3) δ 172.9 (carbene Au-C), 165.8 (obs C=O), 141.6 (obs aromatic C), 139.8 

(Mes aromatic C), 134.6 (Mes aromatic C), 134.4 (Mes aromatic C), 132.7 (obs aromatic 

CH), 132.6 (obs aromatic CH), 131.7 (obs aromatic C), 129.5 (Mes aromatic CH), 123.9 

(obs aromatic CH), 122.5 (imidazole CH), 120.1 (obs aromatic CH), 21.2 (Mes para CH3), 

17.9 (Mes ortho CH3). IR (CH2Cl2, cm-1) υmax 3167 (w), 3141 (w), 3054 (m), 2982 (w), 

2952 (w), 2922 (m), 2861 (w), 1689 (s), 1608 (w), 1599 (w), 1559 (w), 1540 (w), 1487 

(m), 1459 (w), 1419 (m), 1380 (m), 1337 (w), 1303 (s), 1248 (m), 1173 (s), 1157 (s), 1123 

(w). ESI+-MS m/z 706.1 (13%, [MNa]+), 542.2 (100%, [M-obs+MeCN]+), 413.3 (2%), 

235.1 (2%). ESI+-HRMS calcd. for C28H28AuN3NaO3S ([MNa]+) 706.1409; found 

706.1415. Melting point 160 ˚C decomposes. 

 

[AuBr(IMes)] (57g) 

N

N
Au Br

 

A protocol similar to that used for [AuBr(ItBu)] (55g) gave the title compound as a white 

solid {from 101 mg, 188 µmol of [AuCl(IMes)] (57f)} (94.0 mg, 162 Amol, 86%). 1H 

NMR (400 MHz, CDCl3) δ 7.09 (s, 2H, imidazole CH), 6.99 (s, 4H, aromatic CH), 2.34 (s, 

6H, Mes para CH3), 2.11 (s, 12H, Mes ortho CH3). 13C NMR (100 MHz, CDCl3) δ 176.9 

(carbene Au-C), 139.7 (Mes aromatic C), 134.6 (Mes aromatic C), 134.6 (Mes aromatic C), 

129.5 (Mes aromatic C), 122.1 (imidazole CH), 21.1 (Mes para CH3), 17.7 (Mes ortho 

CH3). ESI+-MS m/z 603.1 (9%, [MNa]+), 542.2 (100%, [M-Br+MeCN]+), 529.2 (6%, [M-

Br+CO]+). ESI+-HRMS calcd. for C21H24AuB[rN2Na ([MNa]+) 603.0681; found 603.0668. 

Data in accordance with the literature.86 
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[AuBr2(N-succ)(ItBu)] (66a)  

N

N
Au N

O

O
Br

Br

 

[Au(N-succ)(ItBu)] (55a) (28.5 mg, 59.9 µmol, 1 equiv.) was dissolved in 

dichloromethane (1 ml), bromine (10.5 mg, 65.9 µmol, 1.1 equiv.) was added and the 

brown solution stirred for 1 hour at room temperature. The solution was reduced in vacuo 

to <0.5 ml and pentane (5 ml) added producing a yellow precipitate. This was separated by 

filtration, washed (pentane/diethyl ether) and dried in vacuo to give the title compound as a 

yellow powder (32.2 mg, 50.6 µmol, 84%). 1H NMR (400 MHz, CDCl3) δ 7.41 (s, 2H, 

imidazole CH), 2.72 (s, 4H, succ CH2), 1.96 {s, 18H, tBu C(CH3)3}. 13C NMR (400 MHz, 

CDCl3) δ 183.8 (succ C=O), 131.9 (carbene Au-C), 122.1 (imidazole CH), 62.4 (tBu 

C(CH3)3), 32.1 (tBu C(CH3)3), 31.4 (succ CH2). IR (CH2Cl2, cm-1) υmax 3168 (w), 3063 (w), 

2988 (m), 2360 (w), 1663 (s), 1576.1 (m), 1480 (w), 1415 (w), 1375 (m), 1352 (m), 1284 

(w), 1230 (m), 1196 (w), 1182 (m), 1156 (w). ESI+-MS m/z 636.0 (81%, [MH]+), 418.2 

(66%), 259.1 (15%, [ItBuBr]+), 181.2 (100%, [ItBuH]+). ESI+-HRMS calcd. for 

C15H23AuBr2N3O2 ([MH]+) 633.9949; found 633.9974. Melting point 160 ˚C decomposes. 

 

[AuBr2(N-dbs)(ItBu)] (66b) 

N

N
Au N

O

O
Br

Br Br

Br

 

[Au(N-mal)(ItBu)] (55c) (30.1 mg, 63.6 µmol, 1 equiv.) was dissolved in 

dichloromethane (1 ml), bromine (20.4 mg, 128 µmol, 2 equiv.) was added and the yellow 

solution stirred for 1 hour at room temperature. The solution was reduced in vacuo to <0.5 

ml and hexane (5 ml) added producing a yellow precipitate. This was separated by 

filtration, washed (pentane, diethyl ether) and dried in vacuo to give the title compound as 

a yellow powder (37.5 mg, 59.2 µmol, 93%). 1H NMR (400 MHz, CDCl3) δ 7.47 (s, 2H, 

imidazole CH), 4.82 (s, 2H, dbs CH), 1.99 {s, 18H, tBu C(CH3)3}. 13C NMR (400 MHz, 

CDCl3) δ 175.7 (dbs C=O), 128.1 (carbene Au-C), 122.4 (imidazole CH), 62.6 (tBu 

C(CH3)3), 46.6 (dbs CH), 32.1 {tBu C(CH3)3}. IR (CH2Cl2, cm-1) υmax 3054 (m), 2986 (m), 

2360 (m), 2341 (m), 1733 (m), 1690 (s), 1653 (m), 1636 (m), 1559 (m), 1540 (m), 1521 
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(m), 1507 (m), 1497 (m), 1473 (m), 1457 (m), 1437 (m), 1420 (m), 1376 (m), 1338 (m), 

1271 (s), 1230 (m), 1179 (m). ESI+-MS m/z 815.8 (100%, [MNa]+), 733.9 (3%, [MNa–

HBr]+), 664.9 (4%), 596.9 (4%), 528.9 (4%). ESI+-HRMS calcd. for C15H22AuBr4N3NaO2 

([MNa]+) 815.7963; found 815.7958. Melting point 160 ˚C decomposes. 

 

[AuBr2(N-tfs)(ItBu)] (66c) 

N

N
Au N

O

O
Br

Br
F

F

F

F

 

A protocol similar to that used for 66a gave the title compound as a yellow powder 

{from 57.0 mg, 104 µmol, of [Au(N-tfs)(ItBu)] (55b)} (67.2 mg, 95.0 µmol, 91%). 1H 

NMR (400 MHz, CDCl3) δ 7.51 (s, 2H, imidazole CH), 1.98 {s, 18H, tBu C(CH3)3}. 19F 

NMR (376 MHz, CDCl3) δ -127.1 (s, tfs CF2). 13C NMR (100 MHz, CDCl3) δ 167.1 (m, tfs 

C=O),145 124.9 (carbene Au-C), 122.8 (imidazole CH), 106.8 (tt, J = 269 and 23 Hz, tfs 

CF2), 62.8 {tBu C(CH3)3}, 32.0 {tBu C(CH3)3)}. IR (CH2Cl2, cm-1) υmax 3491 (w), 3200 (w), 

3168 (w), 3056 (w), 2987 (m), 1789 (w), 1718 (s), 1584 (w), 1479 (m), 1418 (m), 1386 

(m), 1376 (m), 1322 (m), 1305 (s), 1197 (s), 1156 (s), 1065 (m), 1017 (m). ESI+-MS m/z 

797.9 (3%), 729.9 (100%, [MNa]+), 498.9 (2%), 259.1 (6%, [ItBu+HBr]+), 227.0 (3%), 

191.1 (1%), 107.2 (2%). ESI+-HRMS calcd. for C15H20AuBr2F4N3NaO2 ([MNa]+) 729.9396; 

found 729.9390. Melting point 160˚C decomposes. 

 

[AuBr2(N-mal)(ItBu)] (66d) 

N

N
Au N

O

O
Br

Br

 

[Au(N-mal)(ItBu)] (55c) (51.2 mg, 108 µmol, 1 equiv.) was dissolved in dichloromethane 

(1 ml), bromine (17.3 mg, 108 µmol, 1 equiv.) was added and the brown solution stirred 

for 1 hour at -78˚C. The solution was reduced under vacuum to <0.5 ml and pentane (5 ml) 

added producing a yellow precipitate. This was separated by filtration, washed (pentane, 

diethyl ether) and dried in vacuo to give the title compound as a yellow powder (61.3 mg, 

96.8 µmol, 90%). 1H NMR (400 MHz, CDCl3) δ 7.44 (s, 2H, imidazole CH), 6.64 (s, 2H, 

mal CH), 2.01 {s, 18H, tBu C(CH3)3}. 13C NMR (100 MHz, CDCl3) δ 177.3 (mal C=O), 
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136.8 (mal CH), 131.2 (carbene Au-C), 122.2 (imidazole CH), 62.4 {tBu C(CH3)3}, 32.1 

{tBu C(CH3)3}. IR (CH2Cl2, cm-1) υmax 3200 (w), 3169 (w), 3055 (m), 2985 (m), 1733 (m), 

1676 (s), 1653 (w), 1589 (w), 1540 (w), 1506 (w), 1417 (m), 1376 (m), 1346 (s), 1321 (w), 

1271 (s), 1233 (m), 1181 (s), 1155 (m), 1063 (w). ESI+-MS m/z 656.0 (100%, [MNa]+), 

498.9 (4%, [MNa-2Br]+), 430.9 (4%), 289.2 (10%). ESI+-HRMS calcd. for 

C15H22AuBr2N3NaO2 ([MNa]+) 655.9617; found 655.9649. Melting point 190 ˚C 

decomposes. 

 

[AuBr2(N-ptm)(ItBu)] (66e) 

N

N
Au N

O

O
Br

Br

 

A protocol similar to that used for 55a gave the title compound as a yellow powder 

{from 99.1 mg, 189 µmol, of [Au(N-ptm)(ItBu)] (55d)} (115 mg,  168 µmol, 89%). 1H 

NMR (400 MHz, CDCl3) δ 7.71 (dd, J = 5.4 and 3.0 Hz, 2H, ptm meta aromatic CH), 7.57 

(dd, J = 5.4 and 3.0 Hz, 2H, ptm para aromatic CH), 7.45 (s, 2H, imidazole CH), 2.04 {s, 

18H, tBu C(CH3)3}. 13C NMR (101 MHz, CDCl3) δ 174.4 (ptm C=O), 136.4 (ptm aromatic 

C), 132.2 (ptm aromatic CH), 131.5 (carbene Au-C), 122.1 (imidazole CH), 121.9 (ptm 

aromatic CH), 62.5 {tBu C(CH3)3}, 32.2 {tBu C(CH3)3}. IR (CH2Cl2, cm-1) υmax 3053 (m), 

2987 (m), 2359 (w), 1682 (s), 1646 (m), 1609 (w), 1540 (w), 1465 (m), 1417 (m), 1374 

(m), 1352 (m), 1312 (s), 1178  (m), 1157 (w),  1128 (m). ESI+-MS m/z 684.0 (51%, 

[MH]+), 418.2 (51%), 338.3 (18%), 259.1 (36%, [ItBuBr]+), 181.2 (100%, [ItBuH]+). ESI+-

HRMS calcd. for C19H25AuBr2N3O2 ([MH]+) 681.9974; found 681.9988. Melting point 210 

˚C decomposes. 

 

[AuBr2(N-obs)(ItBu)] (66f) 

N

N
Au N

S

O

O
Br

Br

O

 

A protocol similar to that used for 66a gave the title compound as a yellow powder 

{from 38.4 mg, 68.7 µmol, of [Au(N-obs)(ItBu)] (55e)} (45.4 mg, 63.1 µmol, 92%). 1H 

NMR (400 MHz, CDCl3) δ 7.93-7.84 (m, 2H, aromatic CH), 7.72-7.66 (m, 2H, aromatic 

CH), 7.50 (s, 2H, imidazole CH), 2.03 {s, 18H, tBu C(CH3)3}. 13C NMR (100 MHz, 
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CDCl3) δ 164.0 (obs C=O), 142.3 (obs aromatic C), 133.0 (obs aromatic CH), 131.3 (obs 

aromatic C), 125.6 (carbene Au-C), 124.1 (obs aromatic CH), 122.7 (imidazole CH), 120.5 

(obs aromatic CH), 62.7 {tBu C(CH3)3}, 32.0 {tBu C(CH3)3)}. IR (CH2Cl2, cm-1) υmax 3676 

(w), 3062 (w), 2986 (m), 2929 (m), 1734 (w), 1694 (s), 1653 (w), 1597 (w), 1559 (w), 

1460 (m), 1417 (m), 1376 (m), 1336 (w), 1315 (s), 1287 (m), 1247 (m), 1192 (w), 1176 (s), 

1158 (m), 1124 (w), 1014 (w), 979 (m), 971 (m). ESI+-MS m/z 741.9 (100%, [MNa]+), 

698.0 (2%), 640.9 (1%), 582.1 (2%), 481.0 (7%), 435.1 (6%), 336.1 (1%), 259.1 (15%), 

215.1 (2%), 181.2 (4%), 147.0 (2%). ESI+-HRMS calcd. for C18H24AuBr2N3NaO3S 

([MNa]+) 741.9448; found 741.9442. Melting point 150 ˚C decomposes. 

 

[AuBr3(ItBu)] (66g) 

N

N
Au Br

Br

Br

 

Prepared by a protocol reported by de Frémont et al..86 [AuBr(ItBu)] (55g) (40.7 mg, 89.1 

Amol, 1 equiv.) was dissolved in dichloromethane (2 ml) and bromine (0.80 ml, 98 Amol, 

1.1 equiv.) was added. The orange solution was stirred at room temperature for 1 hour. The 

volume was reduced in vacuo to <0.5 ml and hexane added to give an orange precipitate. 

This was separated by filtration, washed (hexane) and dried in vacuo to give the title 

compound as an orange powder (53.1 mg, 86.1 Amol, 97%). 1H NMR (400 MHz, CDCl3) δ 

7.45 (s, 2H, imidazole CH), 1.94 (s, 18H, tBu CH3). 13C NMR (100 MHz, CDCl3) δ 134.8 

(carbene Au-C), 122.2 (imidazole CH), 62.4 (tBu quaternary C), 32.0 (tBu CH3). ESI+-MS 

m/z 656.8 (61%, [MK]+), 640.9 (100%, [MNa]+), 633.9 (30%), 582.8 (12%), 526.7 (8%), 

481.0 (7%, [MNa-2Br]+), 429.4 (16%), 413.3 (58%), 369.3 (36%), 349.1 (24%), 293.0 

(70%), 259.1 (77%). ESI+-HRMS calcd. for C11H20N2AuBr3Na 640.8694 ([MNa]+); found 

640.8677. Data in accordance with the literature.86 
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[AuBr2(N-succ)(ItPe)] (67a) 

N

N
Au N

O

O
Br

Br

 

A protocol similar to that used for 66a gave the title compound as a yellow powder 

{from  98.8 mg, 196 µmol, of [Au(N-succ)(ItPe)] (56a)} (127 mg, 192 µmol, 98%). 1H 

NMR (400 MHz, CDCl3) δ 7.36 (s, 2H, imidazole CH), 2.74 (s, 4H, succ CH2), 2.04 (s, 

12H, tPe C(CH3)2), 2.03 (q, J = 7.5 Hz, 4H, tPe CH2CH3), 0.84 (t, J = 7.5 Hz, 6H, tPe 

CH2CH3). 13C NMR (101 MHz, CDCl3) δ 183.9 (succ C=O), 132.6 (carbene Au-C), 122.1 

(imidazole CH), 65.4 (tPe quaternary C), 36.8 (tPe CH2CH3), 31.4 (succ CH2), 29.8 {tPe 

C(CH3)2}, 8.5 (tPe  CH2CH3). IR (solid, cm-1) υmax 2967 (w), 1665 (s), 1461 (w), 1414 (w), 

1224 (s), 1003 (s), 798 (s), 683 (m). IR (CH2Cl2, cm-1) υmax 3686 (w), 3052 (m), 2979 (m), 

2940 (w), 2882 (w), 1663 (s), 1540 (w), 1465 (m), 1434 (w), 1414 (w), 1387 (m), 1352 

(m), 1284 (m), 1230 (m), 1176 (w). ESI+-MS m/z 664.0 (100%, [MH]+), 593.9 (72%), 

523.9 (86%), 472.9 (21%), 433.2 (34%), 414.3 (93%), 391.3 (99%), 289.1 (58%), 217.0 

(42%), 149.0 (58%), 127.3 (23%). ESI+-HRMS calcd. for C17H29AuBr2N3O2 ([MH]+) 

662.0287; found 662.0313. Melting point 190 ˚C decomposes. 

 

[AuBr2(N-dbs)(ItPe)] (67b) 

N

N

Au N

O

O
Br

Br Br

Br

 

A protocol similar to that used for 66b gave the title compound as a yellow powder 

{from 31.4 mg, 62.7 µmol, of [Au(N-mal)(ItPe)] (56c)} (36.2 mg, 54.8 µmol, 87%). 1H 

NMR (400 MHz, CDCl3) δ 7.39 (s, 2H, imidazole CH), 4.81 (s, 2H, dbs CH), 2.03 {m, 

16H, tPe CH2CH3 and tPe C(CH3)2}, 0.85 (t, J = 7.4 Hz, 6H, tPe CH2CH3). 13C NMR (100 

MHz, CDCl3) δ 175.7 (dbs C=O), 128.7 (carbene Au-C), 122.4 (imidazole CH), 65.6 (tPe 

quaternary C), 46.6 (dbs C-H), 36.8 (tPe CH2CH3), 29.7 {tPe C(CH3)2}, 8.5 (tPe CH2CH3). 

IR (CH2Cl2, cm-1) υmax 3421 (w), 3200 (w), 2976 (w), 2976 (m), 2930 (w), 2360 (m), 2341 

(m), 1741 (m), 1690 (s), 1465 (m), 1419 (m), 1387 (m), 1337 (s), 1269 (s), 1227 (m), 1198 

(w), 1174 (w). ESI+-MS m/z 843.8 (100%, [MNa]+). ESI+-HRMS calcd. for 
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C17H26AuBr4N3NaO2 ([MNa]+) 843.8277; found 843.8288. Melting point 170 ˚C 

decomposes. 

 

[AuBr2(N-tfs)(ItPe)] (67c) 

N

N
Au N

O

O
Br

Br
F

F

F

F

 

A protocol similar to that used for 66a gave the title compound as a yellow powder 

{from 50.5 mg, 87.8 µmol, of [Au(N-tfs)(ItPe)] (56b)} (60.0 mg, 81.6 µmol, 93%). 1H 

NMR (400 MHz, CDCl3) δ 7.43 (s, 2H, imidazole CH), 2.05 {s, 12H, tPe C(CH3)2}, 2.04 

(q, J = 7.5 Hz, 4H, tPe CH2CH3), 0.86 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 19F NMR (376 

MHz, CDCl3) δ -127.1 (s, CF2). 13C NMR (101 MHz, CDCl3) δ 167.0 (m,145 C=O), 126.0 

(carbene Au-C), 122.8 (imidazole CH), 107.0 (tt, J = 269 and 23 Hz, CF2), 65.8 (tPe 

quaternary C), 36.8 (tPe CH2CH3), 29.7 (tPe C(CH3)2), 8.5 (tPe CH2CH3). IR (CH2Cl2, cm-1) 

υmax 3490 (w), 3200 (w), 3166 (w), 2979 (m), 2941 (w), 2884 (w), 1819 (w), 1789 (w), 

1720 (m), 1716 (s), 1586 (w), 1480 (w), 1465 (w), 1417 (w), 1387 (m), 1322 (m), 1305 

(m), 1195 (s), 1156 (m), 1065 (m), 1017 (m). ESI+-MS m/z 799.0 (6%, [MNa+MeCN]+), 

758.0 (100%, [MNa]+), 598.1 (3%), 463.1 (4%). ESI+-HRMS calcd. for 

C17H24AuBr2F4N3NaO2 ([MNa]+) 757.9714; found 757.9703. Melting point 150 ˚C 

decomposes. 

 

[AuBr2(�-mal)(I
t
Pe)] (67d)  

N

N
Au N

Br

Br

O

O

 

A protocol similar to that used for 66d gave the title compound as a yellow powder 

{from 30.1 mg, 60.1 µmol, of [Au(�-mal)(I
t
Pe)] (56c)} (34.7 mg, 52.5 µmol, 87%). 

1
H 

NMR (400 MHz, CDCl3) δ 7.38 (s, 2H, imidazole CH), 6.64 (s, 2H, mal CH), 2.07 {s, 

12H, 
t
Pe C(CH3)2}, 2.03 (q, J = 7.5 Hz, 4H, 

t
Pe CH2CH3), 0.86 (t, J = 7.5 Hz, 6H, 

t
Pe 

CH2CH3). 
13

C NMR (101 MHz, CDCl3) δ 177.3 (mal C=O), 136.8 (mal CH), 132.0 

(carbene Au-C), 122.2 (imidazole CH), 65.4 (
t
Pe quaternary C), 36.9 (

t
Pe CH2CH3), 29.8 
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{
t
Pe C(CH3)2}, 8.6 (

t
Pe CH2CH3). IR (CH2Cl2, cm

-1
) υmax 3054 (m), 2979 (m), 2940 (w), 

2883 (w), 2360 (m), 2342 (m), 1734 (m), 1676 (s), 1437 (m), 1419 (m), 1348 (s), 1269 (s),  

1180 (m). ESI
+
-MS m/z 684.0 (100%, [MNa]

+
), 649.2 (33%), 619.0 (9%), 524.2 (12%). 

ESI
+
-HRMS calcd. for C17H26AuBr2N3NaO2 683.9935; found 683.9901. Melting point 160 

˚C decomposes. 

 

[AuBr2(N-ptm)(ItPe)] (67e) 

N

N
Au N

Br

Br

O

O

 

A protocol similar to that used for 66a gave the title compound as a yellow powder {98.5 

mg, 179 µmol, of [Au(N-ptm)(ItPe)] (56d)} (123 mg, 173 µmol, 97%). 1H NMR (400 

MHz, CDCl3) δ 7.70 (dd, J = 5.4 and 3.0 Hz, 2H, ptm aromatic CH), 7.56 (dd, J = 5.4 and 

3.0 Hz, 2H, ptm aromatic CH), 7.39 (s, 2H, imidazole CH), 2.10 {s, 12H, tPe C(CH3)2}, 

2.05 (q, J = 7.4 Hz, 4H, tPe CH2CH3), 0.86 (t, J = 7.4 Hz, 6H, tPe CH2CH3). 13C NMR (101 

MHz, CDCl3) δ 174.3 (ptm C=O), 136.2 (ptm ortho aromatic C), 132.4 (carbene Au-C), 

132.3 (ptm meta aromatic C), 122.3 (ptm para aromatic C), 121.8 (imidazole CH), 65.3 

(tPe quaternary C), 36.8 (tPe CH2CH3), 29.8 {tPe C(CH3)2}, 8.5 (tPe CH2CH3). IR (CH2Cl2, 

cm-1) υmax 3199 (w), 3057 (w), 2979 (m), 2940 (w), 2882 (w), 1742 (w), 1682 (s), 1646 (m), 

1609 (w), 1540 (w), 1465 (m), 1416 (m), 1373 (m), 1352 (m), 1311 (s), 1284 (m), 1214 

(w), 1175 (m), 1128 (m). ESI+-MS m/z 712.0 (100%, [MH]+), 642.0 (41%, [MH-tPe]+), 

571.9 (35%, [MH2-2tPe]+), 472.9 (6%), 391.3 (68%), 363.1 (3%), 289.1 (16%, [ItPeBr]+), 

272.7 (18%), 217.0 (14%, [ItPeBrH-tPe]+), 149.0 (24%), 127.3 (5%). ESI+-HRMS calcd. 

for C21H29AuBr2N3O2 ([MH]+) 710.0287; found 710.0309. Melting point 220 ˚C 

decomposes. 
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[AuBr2(N-obs)(ItPe)] (67f) 

N

N
Au N

Br

Br S

O

O O

 

A protocol similar to that used for 66a gave the title compound as a yellow powder 

{from 40.6 mg, 69.2 µmol, of [Au(N-obs)(ItPe)] (56e)} (48.6 mg, 65.1 µmol, 94%). 1H 

NMR (400 MHz, CDCl3) δ 7.97-7.93 (m, 1H, obs aromatic CH), 7.90-7.87 (m, 1H, obs 

aromatic CH), 7.72-7.66 (m, 2H, obs aromatic CH), 7.43 (s, 2H, imidazole CH), 2.12 {s, 

12H, tPe C(CH3)2}, 2.05 (q, J = 7.4 Hz, 4H, tPe CH2CH3), 0.88 (t, J = 7.4 Hz, 6H, tPe 

CH2CH3). 13C NMR (100 MHz, CDCl3) δ  164.0 (obs C=O),  142.3 (obs aromatic C),  

133.0 (obs aromatic 2CH),  131.3 (obs aromatic C), 126.6 (carbene Au-C),  124.1 (obs 

aromatic CH), 122.7 (imidazole CH), 120.4 (obs aromatic CH), 65.8 (tPe quaternary C), 

36.9 (tPe CH2CH3), 29.7 {s, tPe C(CH3)2}, 8.6 (s, tPe CH2CH3). IR (CH2Cl2, cm-1) υmax 3675 

(w), 3199 (w), 3063 (w), 2979 (m), 2940 (m), 2883 (m), 1694 (s), 1653 (w), 1596 (m), 

1506 (w), 1461 (m), 1417 (m), 1388 (m), 1337 (w), 1315 (s), 1287 (s), 1248 (s), 1192 (w), 

1176 (s), 1160 (m), 1124 (w), 1059 (w). ESI+-MS m/z 838.0 (4%), 770.0 (100%, [MNa]+), 

633.0 (12%), 446.2 (11%). ESI+-HRMS calcd. for C20H28AuBr2N3NaO3S ([MNa]+) 

769.9761; found 769.9764. Melting point 180 ˚C decomposes. 

 

[AuBr3(I
t
Pe)] (67g) 

N

N

Au Br

Br

Br

 

A protocol similar to that used for 66g gave the title compound as an orange solid {from 

40.7 mg, 89.1 µmol, of [AuBr(ItPe)] (56g)} (53.1 mg, 86.1 µmol, 97%). 1H NMR (400 

MHz, CDCl3) δ 7.39 (s, 2H, imidazole CH), 2.02 (q, J = 7.5 Hz, 4H, tPe CH2CH3), 2.01 {s, 

12H, tPe C(CH3)2}, 0.86 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 13C NMR (101 MHz, CDCl3) δ 

135.6 (carbene Au-C), 122.2 (imidazole CH), 65.5 (tPe quaternary C), 36.7 (tPe CH2CH3), 

29.6 {tPe C(CH3)2}, 8.6 (tPe CH2CH3). IR (CH2Cl2, cm-1) υmax 3200 (m), 3165 (m), 3050 

(m), 2979 (s), 2941 (m), 2883 (m), 1585 (w), 1465 (m), 1413 (m), 1382 (m), 1281 (w), 

1260 (s), 1199 (m), 1175 (s), 1161 (m), 1067 (w), 1033 (w), 1006 (w). ESI+-MS m/z 666.9 
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(100%, [MNa]+), 507.1 (54%), 463.1 (8%), 289 (37%). ESI+-HRMS calcd. for  

C13H24AuBr3N2Na ([MNa]+) 666.9027; found 666.9066. Melting point 170 ˚C decomposes. 

 

[AuBr2(N-succ)(IMes)] (68a) 

N

N
Au N

O

O
Br

Br

 

A protocol similar to that used for 66a gave the title compound as a yellow powder {57.9 

mg, 96.7 µmol, of [Au(N-succ)(IMes)] (57a)} (63.3 mg, 83.4 µmol, 86%). 1H NMR (400 

MHz, CDCl3) δ 7.26 (s, 2H, imidazole CH), 7.06 (s, 4H, Mes aromatic CH), 2.52 (s, 4H, 

succ CH2), 2.37 (s, 6H, Mes para CH3), 2.33 (s, 12H, Mes ortho CH3). 13C NMR (100 

MHz, CDCl3) δ 183.1 (succ C=O), 142.2 (carbene Au-C), 140.6 (Mes aromatic C), 135.0 

(Mes aromatic C), 133.0 (Mes aromatic C), 129.9 (Mes aromatic CH), 125.5 (imidazole 

CH), 31.3 (succ CH2), 21.2 {Mes para C(CH3)}, 19.5 {Mes ortho C(CH3)}. IR (CH2Cl2, 

cm-1) υmax 3677 (w), 3144 (w), 3055 (m), 2979 (w), 2924 (w), 2363 (w), 1723 (w), 1665 (s), 

1608 (w), 1540 (w), 1482 (m), 1434 (m), 1381 (w), 1351 (m), 1281 (m), 1232 (m), 1168 

(w). ESI+-MS m/z 782.0 (10%, [MNa]+), 760.0 (100%, [MH]+), 542.2 (5%). ESI+-HRMS 

calcd. for C25H29AuBr2N3O2 ([MH]+) 758.0287; found 758.0282. Melting point 180 ˚C 

decomposes. 
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[AuBr2(N-mal)(IMes)] (68b) 

N

N
Au N

O

O
Br

Br

 

A protocol similar to that used for 66d gave the title compound as a yellow powder {105 

mg, 176 µmol, of [Au(N-mal)(IMes)] (57c)} (129 mg, 170 µmol, 96%). 1H NMR (400 

MHz, CDCl3) δ 7.27 (s, 2H, CH imidazole), 7.07 (s, 4H, Mes aromatic CH), 6.39 (s, 2H, 

mal CH), 2.33 (m, 18 H, Mes CH3). 13C NMR (101 MHz, CDCl3) δ 176.6 (mal C=O), 

141.4 (carbene Au-C), 140.7 (Mes aromatic C), 136.7 (mal CH), 135.0 (Mes aromatic C), 

133.0 (Mes aromatic C), 129.9 (Mes aromatic CH), 125.6 (imidazole CH), 21.2 (Mes para 

CCH3), 19.5 (Mes ortho CCH3). IR (CH2Cl2, cm-1) υmax 3686 (w), 3143 (w), 2984 (w), 2352 

(w), 1677 (s), 1608 (m), 1540 w), 1484 (m), 1432 (w), 1380 (w), 1349 (m), 1284 (w), 1229 

(m), 1181 (m), 1128 (w). ESI+-MS m/z 758.0 (1%, [MH]+), 620.2 (12%, [MNa-2Br]+), 

598.2 (88%, [MH-2Br]+), 550.2 (4%), 529.2 (64 %), 385.1 (31%, [IMesBr]+), 335.2 (2%), 

305.2 (100%, [IMesH]+), 267.2 (2%). ESI+-HRMS calcd. for C25H27AuBr2N3O2 ([MH]+) 

758.0115; found 758.0185. Melting point 190 ˚C decomposes. 

 

[AuBr2(N-ptm)(IMes)] (68c) 

N

N
Au N

O

O
Br

Br

 

A protocol similar to that used for 66a gave the title compound as a yellow powder {40.3 

mg, 62.3 µmol, of [Au(N-ptm)(IMes)] (57d)} (48.0 mg,  59.4 µmol, 95%). 1H NMR (400 

MHz, CDCl3) δ 7.56 (dd, J = 5.4 and 3.0 Hz, 2H, ptm aromatic CH), 7.44 (dd, J = 5.4 and 

3.0 Hz, 2H, ptm aromatic CH), 7.29 (s, 2H, imidazole CH), 7.09 (s, 4H, Mes aromatic 

CH), 2.38 (s, 6H, Mes para CCH3), 2.34 (s, 12H, Mes ortho CCH3). 13C NMR (400 MHz, 

CDCl3) δ 173.7 (ptm C=O), 142.2 (carbene Au-C), 140.6 (Mes aromatic C), 136.3 (ptm 
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ortho aromatic C), 135.0 (Mes aromatic C), 133.1 (Mes aromatic C), 132.0 (ptm meta 

aromatic CH), 129.9 (Mes aromatic CH), 125.6 (imidazole CH), 121.7 (ptm para aromatic 

CH), 21.2 {Mes para C(CH3)}, 19.5 {Mes ortho C(CH3)}. IR (CH2Cl2, cm-1) υmax 3686 (w), 

3421 (w), 3170 (w), 3143 (w), 2925 (w), 2360 (w), 1777 (w), 1741 (m), 1683 (s), 1646 

(m), 1609 (m), 1540 (w), 1484 (m), 1418 (w), 1372 (m), 1351 (m), 1310 (m), 1230 (m), 

1172 (m), 1129 (m). ESI+-MS m/z 808.0 (100%, [MH]+), 728.1 (2%, [M-Br]+), 648.2 (48%, 

[MH-2Br]+), 622.1 (4%), 542.2 (84%). ESI+-HRMS calcd. for C29H29AuBr2N3O2 ([MH]+) 

808.0268; found 808.0283. Melting point 125-127 ˚C. 

 

[AuBr3(IMes)] (68d) 

N

N
Au

Br

Br

Br

 

A protocol similar to that used for 66g gave the title compound as an orange solid {from 

65.8 mg, 113 µmol, of [AuBr(IMes)] (57g)} (55.6 mg, 75.1 Amol, 66%). 1H NMR (400 

MHz, CDCl3) δ 7.27 (s, 2H, imidazole CH), 7.01 (s, 4H, aromatic CH), 2.36 (s, 6H, Mes 

para CH3), 2.30 (s, 12H, Mes ortho CH3). 13C NMR (100 MHz, CDCl3) δ 144.2 (carbene 

Au-C), 140.8 (Mes aromatic C), 135.1 (Mes aromatic C), 132.7 (Mes aromatic C), 129.9 

(Mes aromatic C), 125.6 (imidazole CH), 21.1 (Mes para CH3), 19.5 (Mes ortho CH3). 

ESI+-MS m/z 1081.2 (4%, [{(IMes)Au}2Br]+), 965.2 (17%, [(IMes)2AuBr2]+), 762.9 (4%, 

[MNa]+), 693.0 (8%, [M-Br+MeOH]+), 661.0 (7%, [M-Br]+), 605.1 (5%, [MNa-2Br]+), 

542.2 (6%, [(IMes)Au+MeCN]+), 385.1 (29%, [IMesBr]+), 305.3 (100%, [IMesH]+). ESI+-

HRMS calcd. for C21H24AuBr3N2Na ([MNa]+) 762.9032; found 762.9020. Data in 

accordance with the literature.86 

 

2,3-Dibromosuccinimide 

NH

O

O

Br

Br
 

A protocol based on that reported by Davis was used.146 Maleimide (100 mg, 1.04 mmol, 

1 equiv.) was dissolved in dichloromethane (5ml) and a solution of bromine (173 mg, 1.08 
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mmol, 1.04 equiv.) in dichloromethane (1 ml) was added dropwise. The solution was 

stirred (r.t., 3 days) to give an orange solution and reduced in vacuo to a white powder. The 

product was precipitated from dichloromethane/hexane, filtered and purified by 

recrystallisation (diethyl ether/ hexane) to give the title compound as a white powder (101 

mg, 0.393 mmol, 38%). 1H NMR (400 MHz, CD3OD) δ 5.07 (s). 13C NMR (100 MHz, 

CD3OD) δ 173.1, 45.8. IR (CH2Cl2, cm-1) υmax 3374 (br, m), 3056 (m), 2927 (w), 2360 (m), 

2341 (m), 2305 (w), 1801 (w), 1783 (w), 1744 (s), 1653 (w), 1605 (m), 1559 (w), 1540 

(w), 1506 (w), 1421 (m), 1337 (br m), 1271 (s), 1170 (s), 1136 (w), 921 (w). ESI+-MS m/z 

317.2 (14%), 301.1 (100%), 257.9 (18%, [MH]+), 245.1 (27%), 239.2 (9%), 227.1 (26%), 

143.1 (41%), 124.9 (21%), 100.1 (13%, [succH]+). ESI+-HRMS calcd. for C4H4Br2NO2 

([MH]+) 255.8603; found 255.8612. Data in accordance with the literature.146 

 

2-Bromomaleimide 

NH

O

O

Br

 

2,3-Dibromosuccinimide (53.5 mg, 202 Amol, 1 equiv.) and sodium hydroxide (9.2 mg, 

230 Amol, 1.1 equiv.) were mixed in water (10 ml) (r.t., 18 hours). The solution was 

reduced in vacuo and the residue redissolved in dichloromethane, filtered and reduced in 

vacuo to give the title compound as a white powder (24.6 mg, 140 Amol, 67%). 1H NMR 

(400 MHz, CD3OD) δ 7.02 (s). 13C NMR (100 MHz, CDCl3) δ 171.1, 167.9, 166.1, 134.3, 

132.5. IR (solid, cm-1) υmax 3235 (s), 3152 (w), 3102 (m), 2923 (m), 2852 (w), 2682 (w), 

2447 (m), 2384 (m), 2161 (m), 2032 (m), 1977 (w), 1780 (m), 1763 (m), 1707 (br s), 1577 

(s), 1330 (s), 1231 (m), 1207 (m), 1125 (m), 996 (m), 961 (w), 910 (w), 870 (m), 844 (w), 

767 (w), 716 (w), 673 (m), 657 (m). EI+-MS m/z 175 (73%, [M]+), 132 (100%, [M-

CONH]+), 106 (54%, [C2HBr]+), 79 (6%, Br+), 53 (31%). EI+-HRMS calcd. for. 

C4H2NO2Br ([M]+) 174.9269; found 174.9264. Data in accordance with the literature.147 
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[Au(N15-succ)(ItPe)] (72) 

N

N
Au 15N

O

O

 
15N-Succinimide (15.8 mg, 15.8 Amol, 1.1 equiv.), silver(I) oxide (20.0 mg, 86.2 Amol, 

0.6 equiv.) and [AuCl(ItPe)] (56f) (63.2 mg, 144 Amol, 1 equiv.) were mixed in 

dichloromethane (2 ml) in the absence of light for 18 hours. The suspension was filtered 

through CeliteTM, reduced to <0.5 ml and pentane added, resulting in a white precipitate. 

This was washed (cold pentane and diethyl ether) and dried in vacuo to give the title 

compound as a white powder (65.2 mg, 130 Amol, 90%). 1H NMR (400 MHz, CDCl3) δ 

7.04 (s, 2H, imidazole CH), 2.61 (s, 4H, succ CH2), 2.48 (q, J = 7.5 Hz, 4H, tPe CH2), 1.81 

{s, 12H, tPe C(CH3)2}, 0.65 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 13C NMR (100 MHz, CDCl3) 

δ 188.7 (d, J = 8 Hz, succ C=O), 170.8 (d, J = 15 Hz, carbene Au-C), 117.3 (imidazole 

CH), 61.8 (tPe quaternary C), 36.3 (tPe CH2CH3), 31.6 (d, J = 4 Hz, succ CH2), 29.3 (tPe 

C(CH3)2), 7.9 (tPe CH2CH3). 15N NMR (50 MHz, CD2Cl2) δ 209.4 (s). IR (solid, cm-1) υmax 

2964 (m), 2933 (w), 2533 (w), 2160 (m), 2028 (m), 1978 (m), 1646 (s), 1561 (w), 1459 

(w), 1396 (w), 1378 (w), 1333 (s), 1279 (m), 1212 (s), 1152 (w), 1067 (w), 1039 (w), 1006 

(w), 972 (w), 919 (w), 816 (m), 759 (m), 759 (w), 732 (m), 701 (m), 653 (m), 620 (m). IR 

(CH2Cl2, cm-1) υmax 3020 (m), 2971 (m), 2937 (w), 2880 (w), 2005 (w), 2360 (w), 2342 (w), 

1646, 1559 (w), 1522 (w), 1461 (w), 1436 (w), 1406 (w), 1393 (w), 1379 (m), 1336 (m), 

1310 (w), 1284 (m), 1269 (s), 1217 (s), 1005 (w), 917 (w), 896 (m). ESI 
+-MS m/z 527.2 (12%, [MNa]+), 505.2 (100%, [MH]+), 433.2 (1%), 209.2 (3%, [ItPeH]+). 

ESI+-HRMS calcd. for C17H29Au14N2
15NO2 ([MH]+) 505.1896; found 505.1891. 

 

[AuBr2(15N-succ)(ItPe)] (73) 

N

N
Au 15N

O

O
Br

Br

 

[Au(15N-Succ)(ItPe)] (72) (41.3 mg, 81.9 Amol, 1 equiv.) was dissolved in 

dichloromethane (2 ml) and bromine (14.4 mg, 90.0 Amol, 1.1 equiv.) was added dropwise. 

The yellow solution was stirred at room temperature for 1 hour. The volume was reduced 
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to <0.5 ml in vacuo and hexane added resulting in a yellow precipitate. This was separated 

by filtration, washed (cold hexane and diethyl ether) and dried in vacuo to give the title 

compound as a yellow powder (51.1 mg, 70.0 Amol, 94%). 1H NMR (400 MHz, CDCl3) δ 

7.36 (s, 2H, imidazole CH), 2.73 (s, 4H, succ CH2), 2.06 {s, 12H, tPe C(CH3)2}, 2.04 (q, J 

= 7.5 Hz, 4H, tPe CH2CH3), 0.84 (t, J = 7.5 Hz, 6H, tPe CH2CH3). 13C NMR (101 MHz, 

CDCl3) δ 183.9 (d, J = 9 Hz, succ C=O), 132.8 (d, J = 25 Hz, carbene Au-C), 122.3 

(imidazole CH), 65.6 (tPe quaternary C), 37.0 (tPe CH2CH3), 31.5 (d, J = 5 Hz, succ CH2), 

29.9 {tPe C(CH3)2}, 8.7 (tPe  CH2CH3). 15N NMR (50 MHz, CD2Cl2) δ 179.4 (s). IR (solid, 

cm-1) υmax 2976 (s), 2165 (m), 2037 (m), 1662 (s), 1461 (m), 1419 (w), 1392 (w), 1331 (s), 

1280 (m), 1211 (s), 1164 (m), 1065 (w), 1002 (w), 809 (m). IR (CH2Cl2, cm-1) υmax 2978 

(m), 2941 (w), 2881 (w), 1744 (w), 1702 (w), 1662 (s), 1583 (w), 1481 (w), 1464 (w), 

1413 (w), 1385 (w), 1337 (m), 1283 (w), 1216 (m), 1176 (w), 1163 (w), 1151 (w), 1066 

(w), 1035 (w), 1003 (w). ESI+-MS m/z 728.0 (2%, [MNa+MeCN]+), 687.0 (5%, [MNa]+), 

665.0 (100%, [MH]+), 610.2 (1%), 591.3 (3%), 536.2 (3%), 505.2 (2%, [MH-2Br]+), 401.0 

(5%), 287.1 (38%, [ItPeBr]+), 209.2 (51%, [ItPeH]+), 176.4 (3%). ESI+-HRMS calcd. for 

C17H29AuBr2
14N2

15NO2 ([MH]+) 665.0242; found 665.0232. 

 

General procedure for the cycloisomerisation of 4-phenyl-1-hexen-5-yne (74) 

H

H

[Au] (1 mol%)
AgOTf (1 mol%)

CH2Cl2, 25 
oC, 3 h

 

To a solution of 4-phenyl-1-hexen-5-yne (74) (50.0 mg, 321 µmol, 1 equiv.) in 

dichloromethane (0.64 mL, 0.50 M), AgOTf (0.8 mg, 3.1 µmol, 0.01 equiv.) and gold 

complex (3.2 µmol, 0.01 equiv.) were added. The solution was stirred at 25 ˚C for 3 hours 

and filtered through a plug of silica-gel which was washed with dichloromethane (2 ml). 

The solution was reduced in vacuo and conversion was determined by 
1
H NMR 

spectroscopy. For characterisation purposes the product can be purified by column 

chromatography on silica-gel using petroleum ether (40-60) as eluent (R.F. 0.76). Fractions 

containing the product were combined and reduced in vacuo to give the title compound as a 

white powder.  

 

75 74 
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General procedure for the kinetic evaluation of the gold catalysed cycloisomerisation 

of 4-phenyl-1-hexen-5-yne (74) by gas chromatography. 

H

H

ClCH2CH2Cl, 25 
oC

[Au] (1 mol%)
AgOTf (1 mol%)

 

Au complex (3.2 µmol, 0.01 equiv.) and AgOTf (0.8 mg, 3.2 µmol, 0.01 equiv.) were 

mixed in dichloromethane in a screw cap vial (1 min) and the solvent removed in vacuo. A 

solution of 4-phenyl-1-hexen-5-yne (74) (50.0 mg, 321 µmol, 1 equiv.) in 1,2-

dichloroethane (1.60 ml, 0.20 M) was added, the vial sealed with a rubber septum and a 

positive pressure of argon applied via an argon balloon. The mixture was stirred at 25 ˚C in 

the absence of light. Samples of 10 µl were taken via syringe and added immediately to a 

solution of tetra-n-butylammonium chloride (8 mM, 20 µl) in CH2Cl2. Conversion was 

determined via gas chromatography using a 1 µl sample. The chromatogram was run with 

an injector temperature of 250 ˚C and an initial oven temperature of 80 ˚C (0.5 mins), 

heated to 160 ˚C, at a rate of 20 ˚C.min
-1

, and maintained at 160 ˚C (1 minute). The 

retention times were: 2.58 minutes for 4-phenyl-1-hexen-5-yne (74) and 3.89 minutes for 

3-phenylbicyclo[3.1.0]hex-2-ene (75). 

 

1-Phenylprop-2-yn-1-yl chloroacetate 

O

O

Cl

 

Prepared by a protocol reported by Schwier et al..148 1-Phenyl-prop-2-yn-1-ol (126) (1.85 

g, 14.0 mmol, 1 equiv.), pyridine (1.58 ml, 19.6 mmol, 1.4 equiv.) and dimethyl 

aminopyridine (5 mg, 40 Amol, 0.003 equiv.) were dissolved in dichloromethane (15 ml, 

dry) under an atmosphere of N2. The solution was cooled to 0 ˚C and chloroacetyl chloride 

(1.35 ml, 16.8 mmol, 1.2 equiv.) was added dropwise. The resulting solution was stirred 

overnight (r.t.). The reaction was quenched with HCl (2 M aq., 20 ml), extracted (3 x 10ml 

diethyl ether), washed (sat. aq. NaHCO3 10ml, brine 10ml), dried (MgSO4), filtered and 

reduced in vacuo. The resulting brown oil was purified by column chromatography on 

silica-gel, eluting with petroleum ether (40-60):ethyl acetate 100:0 to 95:5, to give the title 

compound as a colourless oil (2.41 g, 11.6 mmol, 83%).1H NMR (400 MHz, CDCl3) δ 

7.57-7.53 (m, 2H), 7.43-7.39 (m, 3H), 6.52 (app. d, J = 2.3 Hz, 1H), 4.10 (m, 2H), 2.72 (d, 

J = 2.3 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 166.1, 135.5, 129.4, 128.8, 127.8, 79.2, 

74 75 
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76.4, 67.1, 40.8. ESI+-MS m/z 242.3 (1%), 231.0 (100%, [MNa]+), 191.1 (15%), 180.1 

(1%), 116.1 (3%), 107.0 (11%). ESI+-HRMS calcd. for. C11H9ClNaO2 ([MNa]+) 231.0183; 

found 231.0179. Data in accordance with the literature.148 

 

4-Phenyl-1-hexen-5-yne (74) 

 

Synthesis was achieved by two methods. 

Method 1:148 1-Phenylprop-2-yn-1-yl chloroacetate (3.17 g, 15.2 mmol, 1 equiv.) and 

allyltrimethylsilane (127a) (2.57 g, 22.5 mmol, 1.5 equiv.) were mixed in dichloromethane 

(15 ml, dry) and a solution of B(C6F5)3 (202 mg, 0.395 mmol, 0.026 equiv.) in 15 ml 

dichloromethane was added. The mixture was stirred (r.t., 18 hours) to give a brown 

solution. This was filtered through a plug of silica-gel and concentrated in vacuo. 

Purification was achieved by column chromatography, eluting with 100% petroleum ether 

(40-60), followed by distillation (Kugelohr) (1 mm Hg, 50 ˚C) to give the title compound 

as a colourless oil (1.53 g, 9.80 mmol, 65%).  

Method 2:69 1-Phenyl-prop-2-yn-1-ol (126) (2.53 ml, 20.4 mmol, 1 equiv.) and 

allyltrimethylsilane (9.78 ml, 61.4 mmol, 3 equiv.) were mixed in acetonitrile (40 ml, dry). 

FeCl3 (anhydrous, 166 mg, 1.02 mmol, 0.05 equiv.) in acetonitrile (5 ml, dry) was added 

dropwise. The reaction was stirred (2 hours, r.t.). FeCl3 (anhydrous, 166 mg, 1.02 mmol, 

0.05 equiv.) in acetonitrile (5 ml dry) was added dropwise and the reaction stirred (1 hour, 

r.t.). The solution was reduced in vacuo and the product was purified by column 

chromatography, eluting with 100% petroleum ether (40-60), to give the title compound as 

a colourless oil (2.70 g, 17.3 mmol, 85%). 1H NMR (400 MHz, CDCl3) δ 7.41-7.32 (m, 

4H), 7.29-7.24 (m, 1H), 5.87 (ddtd, J = 17.1, 10.2, 7.0 and 1.3 Hz, 1H), 5.13-5.06 (m, 2H), 

3.72 (td, J = 7.2 and 2.4 Hz, 1H), 2.54 (t, J = 7.2 Hz, 2H), 2.32 (app. d, J = 2.4 Hz, 1H). 13C 

NMR (100 MHz, CDCl3) δ 140.7, 135.1, 128.5, 127.4, 126.9, 117.1, 85.3, 71.4, 42.4, 37.6. 

EI+-MS m/z 156 (4%, [M]+), 155 (7%), 141 (8%, [M-CH3]+), 128 (6%, [M-C2H4]+), 115 

(100%, [M-allyl]+), 91 (6%), 89 (8%), 65 (3%), 63 (5%). EI+-HRMS calcd. for. C12H12 

([M]+) 156.0939; found 156.0943. Data in accordance with the literature.148 
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3-Phenylbicyclo[3.1.0]hex-2-ene (75) 

H

H

 
1
H NMR (400 MHz, CDCl3) δ 7.45-7.42 (m, 2H), 7.38-7.33 (m, 2H), 7.26 (m, 1H), 6.48 

(q, J = 2 Hz, 1H), 3.08 (ddd, J = 17, 7.5 and 2 Hz, 1H), 2.80 (app. d, J = 17 Hz, 1H), 2.01 

(m, 1H), 1.79 (m, 1H), 1.00 (td, J = 7.5 and 4 Hz, 1H), 0.17 (dd, J = 7 and 4 Hz, 1H). 
13

C 

NMR (101 MHz, CDCl3) δ 139.7, 136.6, 129.6, 128.2, 126.7, 125.1, 36.3, 23.8, 17.6, 15.4. 

EI
+
-MS 156 (100%, [M]

+
), 141 (56%), 128 (39%), 115 (43%), 102 (7%), 91 (18%), 77 

(12%), 63 (5%), 51 (6%). EI
+
-HRMS calcd. for C12H12 ([M]

+
) 156.0939; found 156.0934. 

Data in accordance with the literature.15 

 

General procedure for the kinetic evaluation of the gold catalysed concurrent 

cycloisomerisation of 4-phenyl-1-hexen-5-yne (74) and dimethyl 

allylpropargylmalonate (77) by gas chromatography. 

H

H
[Au] (1 mol%)
AgOTf (1 mol%)

ClCH2CH2Cl, 25 
oC, 3 h

O

O

O

O

O

O

O
O

O

O

O
O+

 

Au complex (3.2 µmol, 0.01 equiv.) and AgOTf (0.8 mg, 3.2 µmol, 0.01 equiv.) were 

mixed in dichloromethane in a screw cap vial (1 min) and the solvent removed in vacuo. A 

solution of 4-phenyl-1-hexen-5-yne (74) (50.0 mg, 321 µmol, 1 equiv.) and dimethyl 

allylpropargylmalonate (77) (67.4 mg, 321 µmol, 1 equiv.) in 1,2-dichloroethane (1.60 ml, 

0.20 M) was added, the vial sealed with a rubber septum and a positive pressure of argon 

applied via an argon balloon. The mixture was stirred at 25 ˚C in the absence of light. 

Samples of 10 µl were taken via syringe and added immediately to a solution of tetra-n-

butylammonium chloride (8 mM, 20 µl) in CH2Cl2. Conversion was determined via gas 

chromatography using a 1 µl sample. The chromatogram was run with an injector 

temperature of 250 ˚C and an initial oven temperature of 80 ˚C (0.5 mins), heated to 160 

˚C, at a rate of 10 ˚C.min
-1

, and maintained at 160 ˚C (1 minute). The retention times were: 

4.04 minutes for 4-phenyl-1-hexen-5-yne (74), 7.94 minutes for 3-phenylbicyclo[3.1.0]hex-

74 

78 77 79 

75 
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2-ene (75), 5.53 minutes for dimethyl allylpropargylmalonate (77), 7.73 minutes for 78 and 

8.15 minutes for 79.  

 

Dimethyl allylpropargylmalonate (77) 

O

O

O

O  

A protocol based on that reported by Ojima et al. was used.111 Sodium methoxide (1.63 g, 

30.2 mmol, 1.3 equiv.) was dissolved in methanol (10 ml, dry) and a solution of dimethyl 

allylmalonate (3.75 ml, 23.3 mmol, 1 equiv.) in methanol (6 ml) was added dropwise under 

an atmosphere of N2 and the solution stirred (30 min, r.t.). Propargyl bromide (80% w/v in 

toluene, 3.10 ml, 27.8 mmol, 1.2 equiv.) was added in a slow stream and the solution 

stirred at 45 ˚C for 2 hours. The solution was cooled to 0 ˚C, quenched with water (10ml), 

extracted with diethyl ether, dried (MgSO4), filtered and reduced in vacuo. The crude oil 

was purified by Kugelrohr distillation (0.7 mm Hg, 90 ˚C) to give the title compound as a 

colourless oil (3.61 g, 17.2 mmol, 74%). 1H NMR (400 MHz, CDCl3) 5.60 (m, 1H), 5.20-

5.10 (m, 2H), 3.73 (s, 6H), 2.79, (dt, J = 7.5 and 1.0 Hz, 2H) and 2.78 (d, J = 2.6 Hz, 2H), 

2.01 (t, J = 2.6 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 170.0, 131.5, 119.8, 78.5, 71.4, 

56.7, 52.5, 36.3, 22.5. ESI+-MS m/z 233.1 (85%, [MNa]+), 211.1 (100%, [MH]+), 179.1 

(27%, [M-MeO]+), 151.1 (35%), 137.1 (10%), 119.1 (13%), 91.1 (11%). ESI+-HRMS 

calcd. for.C11H15O4 ([MH]+) 211.0965; found 211.0969. Data in accordance with the 

literature.111 

 

General procedure for the Au catalysed cycloisomerisation of 1,1'-(1E)-hex-1-en-5-

yne-1,4-diyldibenzene (81).  

H

H
CH2Cl2, 25 

oC

[Au] (1 mol%)
AgOTf (1 mol%)

 

To a solution of 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene (81) (50.0 mg, 216 µmol, 1 

equiv.) in CH2Cl2 (0.5 M), AgOTf (0.6 mg, 2.1 µmol, 0.01 equiv.) and Au complex (2.1 

µmol, 0.01 equiv.) were added. The solution was stirred at 25 ˚C for 30 minutes and 

filtered through a plug of silica-gel which was washed with dichloromethane (2 ml). The 

solution was reduced in vacuo and conversion was analysed by 
1
H NMR spectroscopy. For 

characterisation purposes the product can be purified by column chromatography using 

81 83 
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petroleum ether (40-60) as eluent. Fractions containing the product were combined and 

reduced in vacuo to give the title compound as a white powder. 

 

1,1'-(1E)-Hex-1-en-5-yne-1,4-diyldibenzene (81) 

 

Prepared by a protocol reported by Florio and Troisi.116 Diisopropyl amine (4.83 ml, 34.6 

mmol, 1.2 equiv.) was dissolved in tetrahydrofuran (20 ml, dry) under an atmosphere of N2 

and cooled to -78 ˚C. n-Butyl lithium (2 M in hexanes, 13.8 ml, 34.6 mmol, 1.2 equiv.) 

was added dropwise and the solution warmed slowly to 0 ˚C and then cooled to -78 ˚C. 

trans-Cinnamyl chloride (82) (4.4 ml, 29 mmol, 1 equiv.) was added dropwise, stirred (-78 

˚C, 30 minutes) and warmed to ambient temperature. The reaction was quenched (saturated 

aq. NH4Cl) and extracted with diethyl ether, washed (water, brine), dried (MgSO4), filtered 

and reduced in vacuo. Purification was achieved by Kugelrohr distillation (2 mmHg, 150 

˚C) to give the title compound as a colourless oil (1.46 g, 6.29 mmol, 44%). 1H NMR (400 

MHz, CDCl3) δ 7.50-7.26 (m, 10H), 6.50 (app. d, J = 15.8 Hz, 1H), 6.34 (app. dt, J = 15.8 

and 7.3 Hz, 1H), 3.86 (m, 1H), 2.74 (m, 2H), 2.39 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 

140.6, 137.3, 132.3, 128.5, 128.4, 127.4, 127.1, 126.9, 126.8, 126.1, 85.3, 71.7, 41.6, 38.0. 

EI+-MS m/z 232.1 (10%, [M]+), 217.1 (4%), 204.1 (1%), 191.1 (1%), 154.1 (1%), 117.1 

(100%, [PhC3H4]+), 115.1 (46%), 91.1 (12%). EI+-HRMS calcd. for. C18H16 ([M+]) 

232.1252; found 232.1244. Data in accordance with the literature.116 

 

3,6-Diphenylbicyclo[3.1.0]hex-2-ene (83) 

a
b
c

d

e
f

H

H  

Preparation by the general procedure gave the title compound as a white solid (from 100 

mg, 431 µmol, of 1,1'-(1E)-hex-1-en-5-yne-1,4-diyldibenzene (81) and 3.2 mg, 4.2 µmol, 

of 68b) (88.9 mg, 383 µmol, 90%). 1H NMR (400 MHz, CDCl3) δ 7.49 (m, 2H, aromatic 

CH), 7.40-7.21 (m, 6H, aromatic CH), 7.11-7.08 (m, 2H, aromatic CH), 6.55 (dd, J = 3.9 

and 1.9 Hz, 1H, f CH), 3.24 (ddd, J = 17.3, 7.0 and 1.9 Hz, 1H, b CH2), 3.02 (d, J = 17.3 

Hz, 1H, b CH2), 2.33 (m, 1H, e CH), 2.15 (m, 1H, c CH), 1.61 (app. t, J = 3.0 Hz, 1H, d 

CH) . 13C NMR (101 MHz, CDCl3) δ 142.7 (a C), 141.3 (aromatic C), 136.2 (aromatic C), 

128.4 (f CH), 128.3 (aromatic CH), 128.3 (aromatic CH), 127.0 (aromatic CH), 125.3 
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(aromatic CH), 125.2 (aromatic CH), 125.2 (aromatic CH), 37.3 (b CH2), 36.8 (e CH), 35.4 

(d CH), 27.5 (c CH). IR (CH2Cl2, cm-1) υmax 3303 (w), 3064 (m), 3033 (s), 2903 (m), 2837 

(m), 2359 (m), 2342 (m), 1947 (w), 1876 (w), 1804 (w), 1701 (w), 1606 (s), 1958 (s), 1493 

(s), 1453 (m), 1446 (m), 1325 (m), 1304 (m), 1210 (m), 1173 (m), 1154 (m), 1075 (m), 

1058 (m). EI+-MS m/z 232 (100%, [M]+), 215 (26%), 202 (14%), 154 (14%, [M-Ph]+), 141 

(50%), 128 (20%), 115 (24%), 91 (64%). EI+-HRMS calcd. for C18H16 ([M]+) 232.1252; 

found 232.1255. 

 

Dimethyl diallylmalonate (84) 

O

O

O

O

 

Prepared by a protocol reported by Harrowven et al..149 Sodium hydride (60% in mineral 

oil, 3.67 g, 91.7 mmol, 3.5 equiv.) was suspended in dry tetrahydrofuran (50 ml) under an 

inert atmosphere and cooled to 0 ˚C. A solution of dimethyl malonate (2.94 ml, 25.7 mmol, 

1 equiv.) in dry tetrahydrofuran (20 ml) was added dropwise and the solution stirred (r.t., 2 

h). The solution was cooled to 0 ˚C and allyl bromide (5.58 ml, 64.5 mmol, 2.5 equiv.) was 

added dropwise and the mixture stirred (r.t., 16 h). The solution was filtered through a pad 

of CeliteTM and eluted with hexane. The filtrate was concentrated to a yellow oil in vacuo 

and purified by column chromatography, eluting with petroleum ether (40-60):ethyl acetate 

95:5, to give the title compound as a colourless oil (3.31 g, 19.3 mmol, 75%). 1H NMR 

(400 MHz, CDCl3) δ 5.60 (m, 2H), 5.07-5.01 (m, 4H), 3.65 (s, 6H), 2.57 (d, J = 7.5 Hz, 

4H). 13C NMR (100 MHz, CDCl3) δ 171.0, 132.1, 119.1, 57.5, 52.2, 36.8. ESI+-MS m/z 

235.1 (100%, [MNa]+), 213.1 (5%), 181.1 (4%), 149.1 (5%), 121.1 (4%). ESI+-HRMS 

calcd. for C11H16NaO4 ([MNa]+) 235.0941; found 235.0942. Data in accordance with the 

literature.149 

 

Ethyl 4-phenyl-1-hepten-5-yn-7-oate (85) 

O

O

 

A protocol based on that reported by Cai et al. was used.117 4-Phenyl-1-hexen-5-yne (396 

mg, 2.54 mmol, 1 equiv.) was dissolved in tetrahydrofuran and cooled to -78 ˚C. n-Butyl 

lithium (1.84 M, 1.38 ml, 2.55 mmol, 1 equiv.) was added dropwise and stirred at -78 ˚C 
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for 30 minutes. Ethyl chloroformate (0.360 ml, 3.79 mmol, 1.5 equiv.) was added dropwise 

and stirred at -78 ˚C for 30 minutes. The orange solution was warmed to ambient 

temperature resulting in a white precipitate. The reaction was quenched (saturated aq. 

NH4Cl) and the product was extracted with diethyl ether, washed (brine, water), dried 

(MgSO4), filtered and reduced in vacuo to give an orange oil. The crude product was 

purified by column chromatography on silica-gel, eluting with petroleum ether (40-

60):ethyl acetate 100:0 to 95:5, followed by Kugelrohr distillation (0.7 mm Hg, 120 ˚C), to 

give the title compound as a colourless oil (0.373 g, 1.63 mmol, 64%). 1H NMR (400 MHz, 

CDCl3) 7.38-7.30 (m, 4H), 7.30-7.23 (m, 1H), 5.80 (ddt, J = 16.9, 10.4 and 7.0 Hz, 1H), 

5.10 (dq, J = 8.0 and 1.5 Hz, 1H), 5.07 (t, J = 1.3 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.81 

(dd, J = 7.9 and 6.5 Hz, 1H), 2.57 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) δ 153.7, 138.8, 134.1, 128.6, 127.4, 127.2, 117.8, 89.0, 75.6, 61.8, 41.4, 37.7, 13.9. 

IR (Neat, cm-1) υmax 3648 (w), 3469 (br, m), 3064 (w), 2981 (w), 2371 (w), 2233 (s), 2161 

(w), 2031 (m), 1977 (m), 1737 (w), 1707 (s), 1674 (m), 1619 (w), 1597 (m), 1494 (w), 

1449 (m), 1394 (w), 1367 (m), 1301 (w), 1247 (s), 1184 (m), 1095 (s), 1017 (m), 920 (m), 

858 (m), 752 (m), 698 (m). ESI+-MS m/z 385.1 (15%), 346.2 (27%), 318.2 (16%), 299.1 

(13%), 283.1 (22%), 267.1 (12%, [MK]+), 251.1 (100%, [MNa]+), 229.1 (54%, [MH]+), 

217.1 (11%), 187.1 (22%), 155.1 (12%), 142.0 (28%), 123.0 (20%), 97.0 (22%), 83.0 

(73%), 67.0 (10%). ESI+-HRMS calcd. for. C15H16NaO2 ([MNa]+) 251.1043; found 

251.1037.  

 

Ethyl-2,4-dimethyl-4-pentenoate (92) 

O

O

 

Prepared by a protocol reported by Wollowitz and Halpern.119 Sodium metal (0.582 g, 

25.3 mmol, 1.2 equiv.) was dissolved in ethanol (45 ml, dry) and the solution cooled to 

ambient temperature. Ethyl-2-methylacetoacetate (89) (3.00 ml, 21.3 mmol, 1 equiv.) and 

3-chloro-2-methyl propene (2.80 ml, 28.5 mmol, 1.35 equiv.) were added and the solution 

refluxed (3 hours). After cooling to ambient temperature, KOH (5.00 g, 89.3 mmol, 4.2 

equiv.) was added and stirred (r.t., 18 hours). The solution was reduced to dryness in 

vacuo, dissolved in water (50 ml), washed with diethyl ether (15 ml) and acidified (conc. 

HCl). The product was extracted with diethyl ether (3 x 25 ml), dried (MgSO4), filtered and 

reduced in vacuo to give a yellow oil. The crude oil was dissolved in a mixture of toluene 

(20 ml), ethanol (10 ml) and sulphuric acid (conc., 3 drops) and refluxed in Dean Stark 
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apparatus for 20 hours. The volume was reduced to half in vacuo and diethyl ether (15 ml) 

added. The solution was washed with water (1 x 15 ml), saturated aq. NaHCO3 (2 x 15 ml), 

water (1 x 15 ml) and brine (1 x 10ml), dried (K2CO3), filtered and reduced in vacuo to 

give a yellow oil. Purification was achieved by Kugelrohr distillation (1 mmHg, 30 ˚C) to 

give the title compound as a colourless oil (2.54 g, 16.3 mmol, 76%). 1H NMR (400 MHz, 

CDCl3) δ 4.73 (m, 1H), 4.67 (m, 1H), 4.09 (app. q, J = 7.0 Hz, 2H), 2.60 (m, 1H), 2.38 (dd, 

J = 14.1 and 7.5 Hz, 1H), 2.05 (dd, J = 14.1 and 7.5, 1H), 1.68 (s, 3H), 1.21 (t, J = 7.1 Hz, 

3H), 1.10 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 176.3, 128.1, 112.1, 60.1, 

41.8, 37.7, 26.8, 22.0, 16.7. EI+-MS m/z 156 (4%, [M]+), 141 (3%, [M-Me]+), 111 (8%, [M-

OEt]+), 95 (2%, [M-O2Et]+), 83 (100%, [M-CO2Et]+), 67 (15%), 55 (51%), 41 (26%). Data 

in accordance with the literature.119 

 

1-Chloro-2-phenylacetylene (93) 

Cl
 

Prepared by a protocol reported by Barluenga et al..150 Phenyl acetylene (7.65 ml, 69.7 

mmol, 1 equiv.) was dissolved in tetrahydrofuran (300 ml) under an atmosphere of N2. 

Lithium aluminium hydride (95%, 0.90 g, 23.7 mmol, 0.33 equiv.) was added and the 

mixture was stirred (r.t., 1 hour) resulting in effervescence. N-Chlorosuccinimide (9.27 g, 

69.7 mmol, 1 equiv.) was added and the solution stirred (r.t., 30 mins). Water (500 ml) was 

added and the solution extracted with dichloromethane (3 x 500 ml), dried (MgSO4), 

filtered and reduced in vacuo. Purification was achieved by Kugelrohr distillation (3 

mmHg, 50 ˚C) to give the title compound as a colourless oil (3.13 g, 22.9 mmol, 33%). 1H 

NMR (400 MHz, CDCl3) δ 7.67-7.27 (m, 5H). 13C NMR (100 MHz, CDCl3) δ 133.0, 

128.6, 128.4, 122.0, 69.3, 67.2. EI+-MS m/z 136 (44%, [M]+), 102 (100%, [MH-Cl]+), 76 

(17%), 50 (6%). Data in accordance with the literature.150 

 

Isobutyl (2E)-4-chlorobut-2-enoate (104) 

O

O

Cl

 

Prepared by a protocol similar to that reported by Mellegaard-Waetzig et al..124b 

Phenylselenyl chloride (408 mg, 2.13 mmol, 0.1 equiv.) was dissolved in acetonitrile (dry, 

50 ml) under an atmosphere of N2. Molecular sieves (4 Å, a few) and isobutyl vinyl acetate 

(103) (3.37 ml, 21.1 mmol, 1 equiv.) were added, followed by dropwise addition of N-
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chlorosuccinimide (3.09 g, 23.2 mmol, 1.1 equiv.) in acetonitrile (50 ml). The solution was 

stirred (r.t., 18 hours) and reduced to 10 ml in vacuo. Diethyl ether was added and the 

mixture filtered, washed (water), dried (MgSO4), filtered and reduced in vacuo. The crude 

oil was purified by distillation (80 ˚C, 0.7 mm Hg) to give the title compound as a 

colourless oil (719 mg, 4.07 mmol, 19%). 1H NMR (400 MHz, CDCl3) δ 6.92 (dt, J = 15.4 

and 6.1 Hz, 1H), 6.07 (dt, J = 15.4 and 1.5 Hz, 1H), 4.12 (dd, J = 6.1 and 1.5 Hz, 2H), 3.89 

(d, J = 6.7 Hz, 2H), 1.91 (app. nonet, J = 6.5 Hz, 1H), 0.89 (d, J = 6.7 Hz, 6H). 13C NMR 

(100 MHz, CDCl3) δ 165.5, 141.5, 123.9, 70.6, 42.4, 27.6, 18.9. ESI+-MS m/z 213.1 (1%), 

199.1 (3%, [MNa]+), 177.1 (21%, [MH]+), 146.1 (1%), 121.0 (100%, [M-C4H7]+), 101.0 

(3%). ESI+-HRMS calcd. for. C8H14ClO2 ([MH]+) 177.0677; found 177.0676. Data in 

accordance with the literature.124b 

 

(2Z)-4-(Benzyloxy)but-2-en-1-ol (110) 

OHO
 

Prepared by a protocol reported by Schomaker et al..125 Sodium hydride (95%, 1.32 g, 

55.0 mmol, 1.1 equiv.) was dissolved in tetrahydrofuran/dimethyl sulphoxide 4:1 (dry, 250 

ml) and cis-butene-1,4-diol (109) (4.10 ml, 49.9 mmol, 1 equiv.) in tetrahydrofuran (120 

ml) was added dropwise at 0 ˚C. The mixture was stirred (r.t., 30 min) and benzyl bromide 

(6.61 ml, 55.6 mmol, 1.1 equiv.) in tetrahydrofuran (120 ml) was added dropwise at room 

temperature. Tetraethyl ammonium iodide (9.25 g, 36.0 mmol, 0.72 equiv.) was added, the 

mixture stirred (70 ˚C, 15 hours) and water (500 ml) added. The product was extracted 

with diethyl ether, washed (brine), dried (Na2SO4), filtered and reduced in vacuo to give an 

orange oil. Purification was achieved by Kugelrohr distillation (130-140 ˚C, 1 mmHg) to 

give the title compound as a colourless oil (7.13g, 40.1 mmol, 80%). 1H NMR (400 MHz, 

CDCl3) δ 7.43-7.27 (m, 5H, aromatic CH), 5.77 (m, 2H, alkene CH), 4.53 (s, 2H, benzyl 

CH2), 4.14 (d, J = 5.9 Hz, 2H, vinyl CH2), 4.09 (d, J = 5.7 Hz, 2H, vinyl CH2), 2.75-2.50 

(br s, 1H, OH). 13C NMR (100 MHz, CDCl3) δ 137.7, 132.4, 128.4,  127.9, 127.8, 127.7, 

72.3, 65.5, 58.4. ESI+-MS m/z 393.2 (68%), 375.2 (46%), 349.1 (10%), 323.1 (11%), 305.1 

(40%), 291.1 (15%, [M +Bn-H]+), 229.1 (11%), 201.1 (60%, [MNa]+), 181.1 (13%), 161.1 

(13%, [M-OH]+), 143.1 (18%), 131.1 (11%), 117.1 (4%), 91.1 (100%, [Bn] +). EI+-MS m/z 

160 (1%), 131 (1%), 107 (9%), 105 (18%), 91 (100%), 79 (8%), 77 (9%), 65 (9%). ESI+-

HRMS calcd. for. C11H14NaO2 ([MNa]+) 201.0886; found 201.0888. Data in accordance 

with the literature.125 
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Benzyl (2Z)-4-chlorobut-2-en-1-yl ether (111) 

O Cl
 

A protocol based on that reported by Gansäuer et al. was used.126 (2Z)-4-(Benzyloxy)but-

2-en-1-ol (110) (1.99 g, 11.2 mmol, 1 equiv.) and triethylamine (2.33 ml, 16.8 mmol, 1.5 

equiv.) were dissolved in dichloromethane (22 ml) under an atmosphere of N2 and mesyl 

chloride (1.74 ml, 22.4 mmol, 2 equiv.) was added dropwise at 0 ˚C and stirred (4 h, 0 ˚C- 

r.t.). The solution was reduced in vacuo and tetrahydrofuran (30 ml) and lithium chloride 

(1.41 g, 33.6 mmol, 3 equiv.) added and stirred (r.t., 2 hours). Cold water (20 ml) was 

added and the organic phase was washed (saturated aq. NaHCO3, water and brine), dried 

(MgSO4), filtered and reduced in vacuo. The crude oil was dissolved in hexane (20 ml) 

washed with water, dried (MgSO4), filtered and reduced in vacuo. The crude oil was 

purified by Kugelrohr distillation (110 ˚C, 0.7 mm Hg) to give the title compound as a 

colourless oil (1.74 g, 8.85 mmol, 79%). 1H NMR (400 MHz, CDCl3) δ 7.38-7.29 (m, 5H), 

5.87-5.78 (m, 2H), 4.54 (s, 2H), 4.16-4.14 (m, 2H), 4.12-4.10 (m, 2H). 13C NMR (100 

MHz, CDCl3) δ 137.8, 130.7, 128.4, 128.4, 127.7, 127.7, 72.3, 65.0, 39.1 EI+-MS m/z 161 

(2%, [M-Cl]+), 131 (5%), 126 (5%), 107 (4%), 105 (5%, [M-PhCH2]+), 91 (100%, 

[PhCH2]+), 79 (14%), 77 (14%), 65 (15%). ESI+-MS m/z 311.0 (9%), 291.1 (100%, [MNa-

Cl+OBn]+), 281.1 (11%), 271.1 (51%), 233.1 (4%), 219.0 (17%, [MNa]+), 202.1 (3%), 

179.1 (29%, [M-Cl+OH2]+), 161.1 [16%, [M-Cl]+), 143.1 (33%), 131.1 (5%), 117.1 (9%), 

91.1 (69%, [PhCH2]+). ESI+-HRMS calcd. for. C11H13ClNaO ([MNa]+) 219.0547; found 

219.0548. Data in accordance with the literature.151 

 

2-[(Z)-3-Hydroxy-1-propenyl] phenol (119) 

OH OH

 

Prepared by a protocol reported by Wang et al..127 Coumarin (118) (2.51 g, 17.2 mmol, 1 

equiv.) was dissolved in diethyl ether (dry, 60 ml) under an atmosphere of N2 and cooled to 

0 ˚C. Lithium aluminium hydride (1.30 g, 34.3 mmol, 2 equiv.) in diethyl ether (30 ml) 

was added via cannula and the mixture stirred (0 ˚C, 15 min) followed by dropwise 

addition of HCl (1 M aq., 120 ml) to give an orange solution/suspension. The product was 

extracted with diethyl ether, dried (MgSO4), filtered and reduced in vacuo. Purification by 

recrystallisation (dichloromethane/ethyl acetate) yielded the title compound as a white 

powder (0.872 g, 5.81 mmol, 34%). 1H NMR {400 MHz, (CD3)2CO} δ 8.37 (br s, 1H, Ar-
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OH), 7.08 (m, 2H, aromatic CH), 6.88 (app. d, J = 7.4 Hz, 1H, aromatic CH), 6.79 (tdd, J = 

7.9, 1.2 and 0.5 Hz, 1H, aromatic CH), 6.61 (dq, J = 11.8 and 0.4 Hz, 1H, benzylic CH), 

5.83 (dt, J = 11.8 and 6.4 Hz, 1H, alkene CH), 4.29 (dd, J = 6.4 and 1.7 Hz, 2H, CH2), 4.02 

(br s, 1H, CH2OH). 13C NMR {100 MHz, (CD3)2CO} δ 155.6, 132.7, 131.0, 129.3, 125.9, 

124.7, 119.9, 116.1, 59.7. EI+-MS m/z 284 (35%), 266 (5%), 237 (4%), 177 (4%), 159 

(32%), 151 (5%), 145 (7%), 133 (75%, [M-OH]+), 131 (51%), 121 (45%), 107 (100%, [M-

HOCH2C]+), 91 (36%), 77 (64%), 65 (6%). Data in accordance with the literature.127 

 

(2Z)-3-(2-Methoxyphenyl)prop-2-en-1-ol (120) 

O OH

 

Prepared by a protocol similar to that reported by Huang et al..128 Potassium carbonate 

(231 mg, 1.67 mmol, 1 equiv.) and iodomethane (237 mg, 1.67 mmol, 1 equiv.) were 

suspended in acetone (dry, 4 ml). 2-[(Z)-3-Hydroxy-1-propenyl] phenol (119) (250 mg, 

1.67 mmol, 1 equiv.) was added and the mixture refluxed (3 hours). The solution was 

cooled to ambient temperature, filtered, reduced in vacuo and purified by column 

chromatography, eluting with dichloromethane:methanol 92:2, to give the title compound 

as a yellow oil (165 mg, 1.01 mmol, 60%). 1H NMR (400 MHz, CDCl3) δ 7.27 (td, J = 8.0 

and 1.8 Hz, 1H, aromatic CH), 7.11 (dd, J = 7.5 and 1.7 Hz, 1H, aromatic CH), 6.89 (dd, J 

= 15.6 and 7.9 Hz, 2H, aromatic CH), 6.69 (d, J = 11.6 Hz, 1H, benzylic CH), 5.93 (dt, J = 

11.6 and 6.7 Hz, 1H alkene CH), 4.32 (dd, J = 6.7 and 1.3 Hz, 2H, CH2), 3.85 (s, 3H, 

OCH3), 1.67 (br s, 1H, CH2OH). 13C NMR (100 MHz, CDCl3) δ 156.8, 130.9, 130.2, 128.8, 

126.7, 125.3, 120.1, 110.4, 59.7, 55.4. ESI+-MS m/z 187.1 (100%, [MNa]+), 172.1 (8%). 

ESI+-HRMS calcd. for. C10H12NaO2 ([MNa]+) 187.0730; found 187.0729. Data in 

accordance with the literature.152 

 

1-[(1Z)-3-Chloroprop-1-en-1-yl]-2-methoxybenzene (121) 

O Cl

 

Prepared by a protocol based on that of Gansäuer et al..126 (2Z)-3-(2-

Methoxyphenyl)prop-2-en-1-ol (120) (1.74 g, 10.6 mmol, 1 equiv.) and collidine (2.11 ml, 

16.0 mmol, 1.5 equiv.) were dissolved in dry tetrahydrofuran (30 ml) under N2 and cooled 

to 0 ˚C. Mesyl chloride (1.65ml, 21.2 mmol, 2 equiv.) was added and stirred (6 hours, 0 ˚C 

- r.t.). Lithium chloride (1.78g, 42.4 mmol, 4 equiv.) was added and the mixture stirred 
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(r.t., 15 hours). Cold water (20 ml) was added, the product extracted with diethyl ether, 

washed (20ml 2 M aq. HCl, saturated aq. NaHCO3, water and brine), dried (MgSO4), 

filtered and reduced in vacuo. The crude product was dissolved in hexane, washed (water), 

dried (MgSO4), filtered, reduced in vacuo and purified by column chromatography, eluting 

with hexane:ethyl acetate 6:1, to give the title compound as a colourless oil (1.59 g, 8.76 

mmol, 83%). 1H NMR (400 MHz, CDCl3) δ 7.31 (m, 2H, aromatic CH), 6.98 (dt, J = 7.5 

and 0.8 Hz, 1H, aromatic CH), 6.91 (dd, J = 8.6 and 0.8 Hz, 1H, aromatic CH), 6.76 (d, J = 

11.3 Hz, 1H, benzylic CH), 5.93 (dt, J = 11.3 and 8.0 Hz, 1H, alkene CH), 4.23 (dd, J = 8.0 

and 1.0 Hz, 2H, CH2), 3.85 (s, 3H, OCH3). 13C NMR (100 MHz, CDCl3) δ 157.0 (aromatic 

C), 129.9 (aromatic CH), 129.3 (aromatic CH), 129.1 (aromatic  CH), 126.8 (aromatic 

CH), 124.4 (aromatic C), 120.3 (alkene benzyl CH), 110.8 (alkene CH), 55.4 (OCH3), 41.3 

(CH2). EI+-MS m/z 182 (10%, [M]+), 163 (2%), 155 (6%), 147 (100%, [M-Cl]+), 131 

(46%), 121 (20%), 115 (34%, [M-Cl-OMe]+), 103 (28%), 91 (73%), 77 (38%), 63 (12%), 

51 (19%). EI+-HRMS calcd. for. C10H11OCl ([M]+) 182.0498; found 182.0502.  

 

1,1'-(1Z)-Hex-1-en-5-yne-1,4-diylbis(2-methoxybenzene) (122) 

O

O

 

A protocol based on that of Florio and Troisi was used.116 1-[(1Z)-3-Chloroprop-1-en-1-

yl]-2-methoxybenzene (121) (0.647 g, 3.55 mmol, 1 equiv.) was dissolved in 

tetrahydrofuran (10 ml) and cooled to -78 ˚C. Lithium diisopropylamide (1.3 M in hexanes, 

3.28 ml, 4.26 mmol, 1.2 equiv.) was added dropwise and the solution stirred (-78 - 0 ˚C, 2 

hours). Saturated aq. NH4Cl was added and the product extracted with diethyl ether, 

washed (water, brine), dried (MgSO4), filtered and reduced in vacuo. The crude product 

was purified by column chromatography, eluting with hexane, to give the title compound 

as a colourless oil (0.241 g, 0.826 mmol, 47%). 1H NMR (400 MHz, CDCl3) δ 7.57 (dd, J 

= 7.6 and 1.7 Hz, 1H, aromatic CH), 7.26-7.18 (m, 3H, aromatic CH), 6.96 (m, 1H, 

aromatic CH), 6.91-6.82 (m, 3H), 6.63 (d, J = 11.7 Hz, 1H, PhCH=CH), 5.94 (dt, J = 11.7 

and 7.4 Hz, 1H, PhCH=CH), 4.28-4.23 (m, 1H, PhCH), 3.82 (s, 3H, OCH3), 3.78 (s, 3H, 

OCH3), 2.81-2.73 (m, 1H, CH2), 2.65-2.57 (m, 1H, CH2), 2.29 (d, J = 2.5 Hz, 1H, alkyne 

CH). 13C NMR (100 MHz, CDCl3) δ 157.0 (C), 156.1 (C), 130.0 (CH), 129.4 (CH), 129.0 

(C), 128.4 (CH), 128.0 (CH), 127.9 (CH), 126.3 (C), 126.0 (CH), 120.6 (CH), 119.9 (CH), 
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110.3 (CH), 110.3 (CH), 85.8 (C), 70.7 (CH), 55.4 (CH3), 55.2 (CH3), 34.9 (CH2), 31.2 

(CH). Assignments from DEPT 135. IR (neat, cm-1) υmax 3295 (w), 3061 (w), 3025 (w), 

2932 (m), 2372 (w), 2161 (s), 2031 (m), 1977 (m), 1671 (w), 1598 (s), 1489 (s), 1463 (s), 

1437 (m), 1397 (w), 1374 (w), 1289 (m), 1241 (s), 1177 (w), 1162 (w), 1108 (m), 1051 

(w), 1028 (m), 750 (s), 699 (m), 636 (w). ESI+-MS m/z  343.3 (9%), 311.3 (3%), 293.2 

(100%, [MH]+), 265.1 (4%), 221.1 (3%), 185.1 (5%), 159.1 (6%), 121.1 (9%). ESI+-HRMS 

calcd. for C20H21O2 ([MH]+) 293.1536; found 293.1525.  

 

3,6-Bis(2-methoxyphenyl)bicyclo[3.1.0]hex-2-ene (123) 

H

H

OO

 

1,1'-(1Z)-Hex-1-en-5-yne-1,4-diylbis(2-methoxybenzene) (122) (0.241 g, 826 Amol, 1 

equiv.) was dissolved in dichloromethane (1.5 ml), [AuBr2(N-dbs)(ItPe)] (67b) (6.5 mg, 8.2 

Amol, 0.01 equiv.) and Ag[Al(OC(CF3)3)4] (76) (8.9 mg, 8.3 Amol, 0.01 equiv.) were added 

and the mixture stirred in the absence of light (r.t., 3 hours). The reaction mixture was 

filtered through a plug of silica-gel, eluting with dichloromethane, and reduced in vacuo. 

Partial purification was achieved by column chromatography, eluting with hexane, to give 

the title compound as a white solid {172 mg, 588 Amol, 71% (impure)}. 1H NMR (400 

MHz, CDCl3) δ 7.27-7.24 (dd, J = 7.5, 1.7 Hz, 1H), 7.21-7.17 (app. dt, J = 7.7 and 1.7 Hz, 

1H), 7.14-7.10 (app. dt, J = 7.8 and 1.7 Hz, 1H), 6.94-6.78 (m, 6H), 3.88 (s, 3H), 3.82 (s, 

3H), 3.24 (dd, J = 17.2 and 7.0 Hz, 1H), 3.00 (app. d, J = 17.2 Hz, 1H), 2.28 (dq, J = 6.2 

and 2.6 Hz, 1H)), 2.02 (td, J = 6.5 and 3.7 Hz, 1H), 1.93  (dd, J = 3.3 and 2.6 Hz, 1H). 13C 

NMR (100 MHz, CDCl3) δ 157.8, 151.4, 141.6, 141.1, 137.9, 133.3, 128.5, 127.6, 125.9, 

124.1, 1205, 120.4, 110.8, 110.2, 55.5, 55.2, 39.2, 36.7, 28.6, 26.2. EI+-MS m/z 292 (84%, 

[M]+), 280 (6%), 515 (5%), 186 (14%), 171 (8%), 167 (10%), 149 (39%), 131 (9%), 121 

(100%, [PhOMeCH2]+), 115 (7%), 91 (59%). EI+-HRMS calcd. for C20H20O2 ([M]+) 

292.1263; found 292.1471. 

 

1,3-Diphenylprop-2-yn-1-one (128) 

O

 

Prepared by a protocol reported by Cox et al..153 Benzoyl chloride (0.500 g, 413 Al, 3.56 

mmol, 1.5 equiv.) and phenyl acetylene (242 mg, 260 Al, 2.37 mmol, 1 equiv.) were 
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dissolved in dry tetrahydrofuran (5 ml) under an atmosphere of N2. [PdCl2(PPh3)2] (15.0 

mg, 0.021 mmol, 0.009 equiv.) was added followed by copper(I) iodide (13.5 mg, 0.071 

mmol, 0.03 equiv.) and the solution stirred (1 min). Triethylamine (300mg, 413 Al, 2.96 

mmol, 1.25 equiv.) was added and the solution stirred (r.t., 2 hours). The mixture was 

diluted with diethyl ether, extracted with dichloromethane and washed with water. The 

organic fraction was dried (MgSO4), filtered, reduced in vacuo and purified by column 

chromatography, eluting with petroleum ether (40-60):ethyl acetate 95:5, to give the title 

compound as a yellow oil (441 mg, 2.14 mmol, 90%). 1H NMR (400 MHz, CDCl3) δ 8.35-

8.22 (m, 2H), 7.71-7.67 (m, 2H), 7.65-7.61 (m, 1H), 7.55-7.46 (m, 3H), 7.45-7.40 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 178.1, 137.0, 134.2, 133.2, 130.9, 129.7, 128.8, 128.7, 

120.2, 93.2, 87.0. EI+-MS 206 (58 %, [M]+), 178 (100%), 152 (8 %), 129 (58%), 101 (8%), 

77 (7%), 75 (9%), 51 (6%). EI+-HRMS calcd. for C15H10O ([M]+) 206.0732; found 

206.0731. Data in accordance with the literature.154 

 

General procedure for the tandem nucleophilic substitution-cycloisomerisation of 

propargyl alcohols 

R1

OH
H

R3

+

R1R3

R2

R2

67c (4 mol%) 
76 (4 mol%)

CH2Cl2, 0 
oC - r.t., 15 h

Si

 

Propargyl alcohol (126 and 132) (378 Amol, 1 equiv.) was dissolved in dichloromethane 

(2 ml, 0.2 M) and allyltrimethylsilane (127a) (180 Al, 1.13 mmol, 3 equiv.) was added, 

followed by Ag[Al(OC(CF3)3)4] (76) (16 mg, 15 Amol, 0.04 equiv.) and [AuBr2(N-

tfs)(ItPe)] (67c) (11 mg, 15 Amol, 0.04 equiv.). The solution was stirred in the dark at 0 oC 

and allowed to warm to ambient temperature over 15 hours. The solution was filtered 

through a plug of silica-gel which was washed with dichloromethane (2 ml). The solution 

was reduced in vacuo and conversion analysed by 1H NMR spectroscopy. For 

characterisation purposes the products can be purified by column chromatography on 

silica-gel using petroleum ether (40-60) as eluent. Fractions containing the products were 

combined and reduced in vacuo to give the title compounds. 

 

 

 

 

 

127a 75 and 133 126 and 132 
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1-Phenyl-2-heptyn-1-ol (132b) 

HO

 

1-Hexyne (0.465 g, 0.650 ml, 5.66 mmol, 1.2 equiv.) was dissolved in tetrahydrofuran 

(15 ml) under an atmosphere of N2 and cooled to -40 ˚C. n-Butyl lithium (2.5 M, 2.0 ml, 

4.95 mmol, 1.05 equiv.) was added dropwise and the solution stirred (-50 ˚C, 30 mins). 

Benzaldehyde (0.500 g, 0.48 ml, 4.70 mmol, 1 equiv.) was added and the mixture was 

stirred and allowed to warm to ambient temperature overnight. The reaction was quenched 

with water, poured into saturated brine and extracted with diethyl ether. The solution was 

reduced in vacuo and purified by column chromatography, eluting with petroleum ether 

(40-60):ethyl acetate 9:1, to give the title compound as a colourless oil (0.709 g, 3.77 

mmol, 80%). 1H NMR (400 MHz, CDCl3) δ 7.57-7.54 (m, 2H), 7.41-7.31 (m, 3H), 5.45 (t, 

J = 2.2 Hz, 1H), 2.45 (br s, 1H), 2.29 (td, J = 7.1, 2.1 Hz, 2H), 1.59-1.51 (m, 2H), 1.49-

1.39 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 141.2, 128.4, 128.1, 

126.6, 87.5, 79.9, 64.7, 30.6, 21.9, 18.4, 13.5. EI+-MS 188 (62%, [M]+), 170 (6%), 145 

(47%), 131 (31%), 128 (41%), 117 (26%), 115 (46%), 106 (72%), 105 (100%), 91 (21%), 

77 (96%), 67 (36%). EI+-HRMS calcd. for C13H16O ([M]+) 188.1201; found 188.1194. Data 

in accordance with the literature.155 

 

1-Phenyl-3-trimethylsilyl-2-propyn-1-ol (132c) 

OH

Si

 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

0.388 ml, 2.75 mmol, 1.1 equiv. of trimethylsilyl acetylene and 0.265 g, 2.50 mmol, 1 

equiv. of benzaldehyde) (0.190 g, 0.931 mmol, 37%).1H NMR (400 MHz, CDCl3) δ 7.55 

(d, J = 7.3 Hz, 2H, ArH), 7.41-7.31 (m, 3H ArH), 5.45 (d, J = 5.5 Hz, 1H, CHOH), 2.42 (d, 

J = 5.5 Hz, 1H, OH), 0.22 {s, 9H, Si(CH3)3}. 13C NMR (101 MHz, CDCl3) δ 140.3, 128.5, 

128.3, 126.7, 104.9, 91.5, 64.9, -0.2. EI+-MS 204 (50%, [M]+), 187 (10%, [M-OH]+), 173 

(6%), 161 (100%, [M-C3H9]+), 145 (6%), 128 (12%), 114 (81%), 105 (13%), 83 (13%), 77 

(33%), 73 (57%). EI+-HRMS calcd. for C12H16OSi ([M]+) 204.0970; found 204.0963. Data 

in accordance with the literature.155 
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1,3-Diphenyl-2-propyn-1-ol (132d) 

OH

 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

1.30 ml, 11 mmol, 1.1 equiv. of phenyl acetylene and 1.06 g, 10.0 mmol, 1 equiv. of 

benzaldehyde) (1.79 g, 8.61 mmol, 86%). 1H NMR (400 MHz, CDCl3) δ 7.67-7.63 (app. d, 

J = 7.2 Hz, 2H, Ar H), 7.53-7.50 (m, 2H, Ar H), 7.46-7.33 (m, 6H, Ar H), 5.72 (s, 1H, 

CHOH), 2.81 (br s, 1H, OH). 13C NMR (101 MHz, CDCl3) δ 140.6 (Ar C), 131.7 (Ar CH), 

128.6 (Ar CH), 128.5 (Ar CH), 128.3 (Ar CH), 128.2 (Ar CH), 126.7 (Ar CH), 122.3 (Ar 

C), 88.7 (alkyne C), 86.5 (alkyne C), 64.9 (CHOH). EI+-MS 208 (68%, [M]+), 207 (100%), 

191 (46%), 189 (32%), 178 (86%), 165 (29%), 129 (58%), 105 (33%), 102 (60%), 77 

(42%), 51 (9%). EI+-HRMS calcd. for C15H12O ([M]+) 208.0888; found 208.0883. Data in 

accordance with the literature.155 

 

1-(2-Napthyl)-3-phenyl-2-propyn-1-ol (132e) 

HO

 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

0.300 ml, 2.73 mmol, 1.1 equiv. of phenyl acetylene and 0.390 g, 2.50 mmol, 1 equiv. of 2-

napthaldehyde) (0.608 g, 2.36 mmol, 94%). 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 

7.93-7.85 (m, 3H), 7.75 (dd, J = 8.6 and 1. 7 Hz, 1 H), 7.55-7.48 (m, 4H), 7.37-7.31 (m, 

3H), 5.87 (d, J = 5.6 Hz, 1H), 2.42 (d, J = 6.0 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 

137.9, 133.2, 133.1, 131.7, 128.6, 128.6, 128.3, 128.2, 127.7, 126.3, 126.3, 125.5, 124.6, 

122.3, 88.7, 86.9, 65.2. EI+-MS 258 (78% [M]+), 241 (100%, [M-OH]+), 239 (58%), 229 

(43%), 215 (14%), 202 (6%), 181 (8%), 165 (8%), 155 (70%), 152 (16%), 127 (91%), 102 

(76%), 77 (14%), 63 (7%), 51 (8%). EI+-HRMS calcd. for C19H14O ([M]+) 258.1045; found 

258.1043. Data in accordance with the literature.155 
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1-Mesityl-3-phenyl-2-propyn-1-ol (132f) 

OH

 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

0.300 ml, 2.73 mmol, 1.1 equiv. of phenyl acetylene and 0.370 g, 2.50 mmol, 1 equiv. of 

2,4,6-trimethylbenzaldehyde) (0.525 g, 2.10 mmol, 84 %). 1H NMR (400 MHz, CDCl3) δ 

7.47-7.40 (m, 2H, ArH), 7.34-7.28 (m, 3H, ArH), 6.89 (s, 2H, Mes ArH), 6.13 (d, J = 3.5 

Hz, 1H, CHOH), 2.57 (s, 6H, o-CH3), 2.29 (s, 3H, p-CH3), 2.12 (d, J = 3.7 Hz, 1H, OH). 

13C NMR (101 MHz, CDCl3) δ 137.8, 136.5, 133.5, 131.6, 130.0, 128.3, 128.2, 122.8, 88.8, 

85.6, 60.7, 20.8, 20.3. EI+-MS 250 (5%, [M]+), 235 (100%), 219 (13%), 202 (14%), 192 

(9%), 159 (8%), 147 (19%), 129 (8%), 119 (12%), 115 (10%), 105 (10%), 102 (15%), 91 

(9%), 77 (8%). EI+-HRMS calcd. for C18H18O ([M]+) 250.1358; found 250.1353.  

 

1-(4-Chlorophenyl)-3-phenyl-2-propyn-1-ol (132g) 

OH

Cl  

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

0.300 ml, 2.73 mmol, 1.1 equiv. of phenyl acetylene and 0.352 g, 2.50 mmol, 1 equiv. of 4-

chlorobenzaldehyde) (0.433g, 1.78 mmol, 71%). 1H NMR (400 MHz, CDCl3) δ 7.58-7.55 

(app. d, J = 8.5 Hz, 2H, ArH), 7.49-7.46 (m, 2H, ArH), 7.40-7.31 (m, 5H, ArH), 5.68 (d, J 

= 2.7 Hz, 1H, CHOH), 2.39 (d, J = 3.9 Hz, 1H, OH). 13C NMR (101 MHz, CDCl3) δ 139.1 

(Ar C), 134.2 (Ar C), 131.7 (Ar CH), 128.8 (Ar CH), 128.4 (Ar CH), 128.1 (Ar CH), 122.1 

(Ar C), 88.2 (alkyne C), 87.0 (alkyne C), 64.4 (CHOH). EI+-MS 242 (19% [M]+), 241 

(27%), 225 (12%), 207 (100%), 189 (17%), 178 (57%), 139 (15%), 129 (25%), 111 (14%), 

102 (20%), 77 (15%), 75 (15%). EI+-HRMS calcd. for C15H11ClO ([M]+) 241.0420; found 

241.0429. Data in accordance with the literature.155 
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3-Phenyl-1-[4-(trifluoromethyl)phenyl]-2-propyn-1-ol (132h) 

OH

F

F
F

 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

0.300 ml, 2.73 mmol, 1.1 equiv. of phenyl acetylene and 0.435 g, 0.341 ml, 2.50 mmol, 1 

equiv. of 4-trifluoromethylbenzaldehyde) (0.671 g, 2.43 mmol, 97%). 1H NMR (400 MHz, 

CDCl3) δ 7.74 (d, J = 8.2 Hz, 2H, CF3ArH), 7.65 (d, J = 8.2 Hz, 2H, CF3ArH), 7.48-7.44 

(m, 2H, PhH), 7.38-7.29 (m, 3H, PhH), 5.75 (s, 1H, CHOH), 3.19 (br s, 1H, OH). 13C 

NMR (101 MHz, CDCl3) δ 144.5, 131.7, 130.3 (q, J = 32 Hz), 128.8, 128.3, 126.9, 125.5 

(q, J = 4 Hz), 124.0 (q, J = 272 Hz), 122.0, 88.0, 87.0, 64.2. 19F (376 MHz, CDCl3) δ -62.5 

(s). EI+-MS 276 (100%, [M]+), 275 (99%), 259 (21%), 207 (76%), 178 (46%), 145 (22%), 

131 (13%), 129 (28%), 103 (10%), 77 (14%). EI+-HRMS calcd. for C16H11F3O ([M]+) 

276.0762; found 276.0767. Data in accordance with the literature.156 

 

1-(3-Methoxyphenyl)-3-phenyl-2-propyn-1-ol (132i) 

O

HO

 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

0.604 ml, 5.51 mmol, 1.1 equiv. of phenyl acetylene and 0.609 ml, 5.01 mmol, 1 equiv. of 

3-methoxybenzaldehyde) (0.945 g, 3.97 mmol, 79%). 1H NMR (400 MHz, CDCl3) δ 7.50-

7.47 (m, 2H), 7.35-7.29 (m, 4H), 7.23-7.19 (m, 2H), 6.90 (ddd, J = 8.2, 2.5 and 1.0 Hz, 

1H), 5.67 (s, 1H), 3.82 (s, 3H), 2.97 (br s, 1H). 13C NMR (100 MHz, CDCl3) δ 159.7, 

142.2, 131.6, 129.6, 128.5, 128.2, 122.3, 118.9, 114.0, 112.1, 88.7, 86.4, 64.8, 55.2. EI+-

MS m/z 238 (100%, [M]+), 223 (28%, [M-Me]+), 207 (41%, [M-OMe]+), 194 (43%), 189 

(10%), 178 (52%), 165 (39%), 160 (9%), 152 (23%), 135 (9%), 129 (43%), 109 (14%), 

102 (13%), 92 (8%), 77 (26%, [Ph]+). EI+-HRMS calcd. for. C16H14O2 ([M]+) 238.0994; 

found 238.0998. Data in accordance with the literature.155 
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1-(3,5-Dimethoxyphenyl)-3-phenyl-2-propyn-1-ol (132j) 

OH

O

O
 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

0.300 ml, 2.73 mmol, 1.1 equiv. of phenyl acetylene and 0.415 g, 2.50 mmol, 1 equiv. of 

3,5-dimethoxybenzaldehyde) (0.664 g, 2.48 mmol, 99%). 1H NMR (400 MHz, CDCl3) δ 

7.50-7.45 (m, 2H, phenyl ArH), 7.35-7.29 (m, 3H, phenyl ArH), 6.80 (d, J = 2.3 Hz, 2H, 

dimethoxyphenyl ortho ArH), 6.45 (t, J = 2.3 Hz, 1H, para dimethoxyphenyl ArH), 5.63 

(d, J = 5.6 Hz, 1H, CHOH), 3.82 (s, 6H, OCH3), 2.60 (br s, 1H, OH). 13C NMR (101 MHz, 

CDCl3) δ 160.9, 143.0, 131.7, 128.6, 128.3, 122.3, 104.6, 100.4, 88.5, 86.4, 65.0, 55.4. 

ESI+-MS 307.1 (1%, [MK]+), 291.1 (45%, [MNa]+), 269.1 (2%, [MH]+), 251.1 (100%), 

213.1 (1%). ESI+-HRMS calcd. for C17H16NaO3 ([M]+) 291.0992; found 291.0998. 

 

1-Phenyl-2-pentyn-3-ol (132l) 

OH 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

1.30 ml, 11.0 mmol, 1.2 equiv. of phenyl acetylene and 0.532 g, 9.16 mmol, 1 equiv. of 

propionaldehyde) (1.08 g, 6.73 mmol, 73%). 1H NMR (400 MHz, CDCl3) δ 4.46-7.41 (m, 

2H, ArH), 7.32-7.26 (m, 3H, ArH), 4.56 (dd, J = 12.0 and 6.1 Hz, 1H, CHOH), 2.82-2.36 

(br s, 1H, OH), 1.91-1.76 (m, 2H, CH2), 1.08 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (101 

MHz, CDCl3) δ 131.6, 128.2, 128.2, 122.6, 90.0, 84.8, 64.0, 30.9, 9.5. EI+-MS 160 (9%, 

[MH]+), 159 (7%, [M]+), 131 (100%, [M-Et]+), 129 (11%), 115 (9%, [M-OEt]+), 103 (34%, 

[M-COEt]+), 77 (23%, [Ph]+), 51 (6%). EI+-HRMS calcd. for C11H11O ([M]+) 159.0810; 

found 159.0812. Data in accordance with the literature.157 

 

1,1-Dimethyl-3-phenyl-2-propyn-1-ol (132p) 

OH

 

A protocol similar to that used for 132b gave the title compound as a colourless oil (from 

0.300 ml, 2.73 mmol, 1 equiv. of phenyl acetylene and 0.174 g, 3.00 mmol, 1.1 equiv. of 

acetone) (172 mg, 1.08 mmol, 40%). 1H NMR (400 MHz, CDCl3) δ 7.46-7.40 (m, 2H, 
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ArH), 7.33-7.29 (m, 3H, ArH), 2.23-2.16 (br s, 1H, OH), 1.63 (s, 6H, CH3). 13C NMR (101 

MHz, CDCl3) δ 131.6, 128.2, 122.7 , 93.7, 82.1, 65.6, 31.5. EI+-MS 160 (19%, [M]+), 145 

(100%, [M-CH3]+), 141 (8%), 129 (7%), 117 (14%), 115 (19%), 102 (23%), 77 (6%), 43 

(15%). EI+-HRMS calcd. for C11H12O ([M]+) 160.0888; found 160.0894. Data in 

accordance with the literature.158 

 

1,6-Diphenylhexa-2,4-diyne-1,6-diol (132r) 

OHHO

 

Prepared by a protocol similar to that reported by Smith et al..159 1-Phenylprop-2-yn-1-ol  

(126) (1.50 g, 11.4 mmol, 1 equiv.), tetramethylethylenediamine (1.71 ml, 11.4 mmol, 1 

equiv.) and copper(I) chloride (1.13 g, 11.4 mmol, 1 equiv.) were mixed in acetone (25 ml) 

under a positive pressure of air (via balloon) and stirred (r.t., 15 hours). The reaction 

mixture was filtered, reduced in vacuo and purified by column chromatography, eluting 

with petroleum ether (40-60):ethyl acetate 100:0 to 60:40, to give the title compound as a 

yellow powder (1.20 g, 4.59 mmol, 80%). 1H NMR {400 MHz, (CD3)2CO} δ 7.54-7.51 (m, 

4H), 7.41-7.36 (m, 4H), 7.34-7.30 (m, 2H), 5.60 ( d, J = 5.8 Hz, 2H, OH), 5.31 (d, J = 5.8 

Hz, 2H). 13C NMR {100 MHz, (CD3)2CO} δ 141.8, 129.2, 128.8, 127.2, 81.7, 69.8, 64.6. 

ESI+-MS m/z 301.1 (5%, [MK]+), 285.1 (24%, [MNa]+), 245.1 (100%, [M-OH]+), 217.1 

(27%), 202.1 (1%), 139.1 (3%). ESI+-HRMS calcd. for. C18H14NaO2 ([MNa]+) 285.0886; 

found 285.0883. Data in accordance with the literature.160 

 

1-Butyl-3-phenylbicyclo[3.1.0]hex-2-ene (133b) 

H H

A B  

Ratio of isomers A:B 94:6 (By 1H NMR) 

Preparation by the general procedure gave the title compound as a colourless oil {from 

71.1 mg, 378 µmol, of 1-phenyl-2-heptyn-1-ol (132b)} (61.1 mg, 288 µmol, 76%). Isomer 

A (94%): 
1
H NMR (400 MHz, CDCl3) δ 7.42-7.36 (m, 2H), 7.34-7.28 (at, J = 7.5 Hz, 2H), 

7.21 (m, 1H), 6.35 (br s, 1H), 3.07 (ddd, J = 17, 7 and 2 Hz, 1H), 2.72 (d, J = 17 Hz, 1H), 

1.74 (m, 1H), 1.56-1.33 (m, 6H), 0.97-0.91 (m, 3H), 0.84 (m, 1H), 0.28 (m, 1H). 
13

C NMR 

(101 MHz, CDCl3) δ 138.6, 137.7, 132.2, 128.2, 126.6, 125.1, 36.8, 36.5, 33.1, 30.8, 23.2, 
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22.8, 21.3, 14.2. EI
+
-MS 212 (19%, [M]

+
), 170 (53%), 155 (100%), 141 (21%), 128 (14%), 

115 (14%), 91 (12%), 77 (6%). EI
+
-HRMS calcd. for C16H20 ([M]

+
) 212.1561; found 

212.1565. {Isomer B (6%): Selected Peaks, 
1
H NMR (400 MHz, CDCl3) δ 5.81 (s, 1H), 

2.77 (dd, J = 17 and 6.5 Hz, 1H), 2.32 (d, J = 17 Hz, 1H), 2.09 (app. t, J = 7.5 Hz, 2H), 

0.63 (m, 1H), 0.12 (m, 1H) (other peaks overlapping with isomer A). 
13

C NMR (101 MHz, 

CDCl3) δ (selected peaks) 143.0, 128.5, 128.2, 125.9, 125.2, 38.8, 38.6, 30.5, 30.3, 26.7, 

25.1, 22.4, 14.0.} Data in accordance with the literature (Isomer A).78 

 

1-Trimethylsilyl-3-phenylbicyclo[3.1.0]hex-2-ene (133c) 

 

H

Si

H

H

A B  

Ratio A:B 68:32 (By 
1
H NMR) 

Preparation by the general procedure gave the title compound as a colourless oil {from 

76.9 mg, 377 µmol, of 1-phenyl-3-trimethylsilyl-2-propyn-1-ol (132c)} (57.6 mg, 281 

µmol, 75%). 
1
H NMR (400 MHz, CDCl3) δ 7.40-7.36 (m, 2H, A and B), 7.33-7.27 (m, 2H, 

A and B), 7.24-7.18 (m, 1H, A and B), 6.42 (q, J = 2 Hz, 1H, B), 6.34 (t, J = 2 Hz, 1H, A), 

3.02 (app. ddd, J = 17, 7 and 1.5 Hz, 1H, A and B), 2.89 (app. ddd, J = 17, 2 and 1 Hz, 1H, 

A), 2.75 (app. ddd, J = 17, 3.5 and 1.5 Hz, 1H, B), 1.96 (m, 1 H, B), 1.75 (m, 1H, b), 1.69 

(tdd, J = 7, 4 and 1 Hz, 1H, A), 0.98-0.93 (m, 1H, A and B), 0.28 (dd, J = 4 and 3.5 Hz, 

1H, A), 0.11 (q, J = 4 Hz, 1H, B), 0.05 (s, 9H, A). 
13

C NMR (101 MHz, CDCl3) δ 139.8 

(A), 139.7 (B), 136.7 (A), 136.6 (B), 132.4 (A), 129.6 (B), 128.2 (A and B), 126.7 (B), 

126.5 (A), 125.1 (B), 125.0 (A), 36.7 (A), 36.3 (B), 24.1 (A), 23.8 (B), 21.9 (A), 20.5 (A), 

17.6 (B), 15.4 (B), -2.4(A). EI
+
-MS 228 (30%, [M(A)]

+
), 213 (10%), 154 (100%), 135 

(19%), 128 (8%), 115 (10%), 73 (48%), 59 (15%), 45 (11%). EI
+
-HRMS calcd. for 

C15H20Si 228.1334 ([M(A)]
+
) ; found 228.1325. 
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1,3-Diphenylbicyclo[3.1.0]hex-2-ene (133d) 

H

 

Preparation by the general procedure gave the title compound as a white powder {from 

78.6 mg, 378 µmol, of 1,3-diphenyl-2-propyn-1-ol (132d)} (80.2 mg, 346 µmol, 91%). 
1
H 

NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8 Hz, 2H), 7.40-7.22 (m, 8H), 6.67 (s, 1H), 3.27 

(dd, J = 17 and 7 Hz, 1H), 2.88 (d, J = 17 Hz, 1H), 2.00 (m, 1H), 1.68 (dd, J = 8 and 4 Hz, 

1H), 0.82 (app. t,  J = 4 Hz, 1H). 
13

C NMR (101 MHz, CDCl3) δ 142.4, 139.7, 136.3, 

130.9, 128.4, 128.3, 127.1, 126.3, 125.7, 125.3, 39.7, 37.0, 26.7, 25.1. EI
+
-MS m/z 232 

(100%, [M]
+
), 217 (44%), 202 (22%), 191 (6%), 153 (13%), 141 (13%), 128 (11%), 115 

(14%), 91 (12%), 69 (6%). EI
+
-HRMS calcd. for C18H16 ([M]

+
) 232.1252; found 232.1243. 

Data in accordance with the literature.15  

 

3-(2-(apthyl)-1-phenylbicyclo[3.1.0]hex-2-ene (133e) 

H H

A B   

Ratio of isomers A:B 56:44 (Crude 83:17) (By 1H NMR) 

Preparation by the general procedure gave the title compound as a white powder {from 

48.7 mg, 189 µmol, of 1-(2-napthyl)-3-phenyl-2-propyn-1-ol (132e)} (36.2 mg, 128 µmol, 

68%). 
1
H NMR (400 MHz, CDCl3) δ 7.85-7.68 (m, 5H, A and B), 7.52-7.21 (m, 7H, A and 

B), 6.77 (s, 1H, A), 6.73 (s, 1H, B), 3.40-3.26 (m, 1H, A and B), 2.99 (d, J = 17 Hz, 1H, 

A), 2.89 (d, J = 17 Hz, 1H, B), 2.09-2.00 (m, 1H, A and B), 1.78 (dd, J = 8 and 4 Hz, 1H, 

B), 1.69 (dd, J = 8 and 4 Hz, 1H, A), 0.89-0.83 (m, 1H, A and B). 
13

C NMR (101 MHz, 

CDCl3) (Mixture of isomers A and B, all data quoted) δ 142.4, 140.0, 139.9, 139.8, 136.3, 

133.7, 133.5, 133.5, 132.6, 131.9, 131.7, 130.9, 128.4, 128.3, 128.0, 127.9, 127.8, 127.6, 

127.6, 127.4, 127.1, 126.4, 126.2, 126.1, 125.7, 125.6, 125.3, 125.2, 125.2, 124.5, 123.9, 

123.8, 40.0, 39.9, 37.0 (2 peaks), 26.9, 26.8, 25.5, 25.1. EI
+
-MS 282 (100%, [M]

+
), 267 

(39%), 265 (29%), 252 (19%), 239 (5%), 203 (5%), 191 (16%), 178 (6%), 165 (6%), 141 

(25%). EI
+
-HRMS calcd. for C22H18 ([M]

+
) 282.1409; found 282.1418. {Isomer A from 

analysis of crude product: 
1
H NMR (400 MHz, CDCl3) δ 7.85-7.76 (m, 3H), 7.74-7.68 

(m, 2H), 7.52-7.43 (m, 2H), 7.39-7.32 (m, 4H), 7.25 (m, 1H), 6.77 (t, J = 2 Hz, 1H), 3.36 
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(ddd, J = 17, 7 and 2 Hz, 1H), 2.99 (d, J = 17 Hz, 1H), 2.05 (m, 1H), 1.69 (dd, J = 8 and 4 

Hz, 1H), 0.86 (t, J = 4 Hz, 1H).} 

 

3-Mesityl-1-phenylbicyclo[3.1.0]hex-2-ene (133f) 

H H

A B  

Ratio of isomers A:B 35:65  (Crude 97:3) (By 
1
H NMR) 

Preparation by the general procedure gave the title compound as a white powder {from 

47.3 mg, 189 µmol, of 1-mesityl-3-phenyl-2-propyn-1-ol (132f)} (37.5 mg, 137 µmol,  

72%). 
1
H NMR (400 MHz, CDCl3) δ 7.45-7.21 (m, 5H, A and B), 6.97-6.85 (m, 2H, A and 

B), 6.31 (t, J = 1.5 Hz, 1H, B), 5.95 (t, J = 2 Hz, 1H, A), 3.25 (ddd, J = 17, 7 and 1.5 Hz, 

1H, B), 3.03 (ddd, J = 17.5, 7 and 2 Hz, 1H, A), 2.96 (dd, J = 17 and 1 Hz, 1H, B), 2.59 (d, 

J = 17.5 Hz, 1H, A), 2.52 (br s, 3H, B), 2.30 (m, 9H A and 6H B), 2.02-1.92 (m, 1H, A and 

B), 1.68 (dd, J = 8.5 and 4 Hz, 1H, A), 1.24 (dd, J = 8.5 and 4 Hz, 1H, B), 0.96 (t, J = 4 

Hz, 1H, A), 0.87 (t, J = 4 Hz, 1H, B). 
13

C NMR (101 MHz, CDCl3) (Mixture of isomers A 

and B, all data quoted) δ 142.8, 140.6, 138.6, 136.4, 136.3, 136.3, 135.9, 134.6, 134.5, 

133.5, 131.7, 128.8, 128.3, 128.0, 126.9, 126.1, 15.5, 125.2, 40.0, 39.7, 37.0, 36.2, 27.4, 

26.2, 24.5, 24.0, 20.9, 20.9, 20.1. EI
+
-MS m/z 274 (100%, [M]

+
), 259 (73%), 244 (27%), 

229 (30%), 215 (15%), 202 (11%), 197 (7%), 183 (11 %), 170 (21%), 157 (17%), 141 

(9%), 133 (15%), 128 (12%), 115 (12%), 103 (5%), 91 (8%), 77 (6%). EI
+
-HRMS calcd. 

for C21H22 ([M]
+
) 274.1722; found 274.1725. {Isomer A from analysis of crude product: 

1
H NMR (400 MHz, CDCl3) δ 7.45-7.22 (m, 5H), 6.94 (s, 2H), 5.95 (t, J = 2 Hz, 1H), 3.03 

(ddd, J = 17.5, 7 and 2 Hz, 1H), 2.59 (d, J = 17.5 Hz, 1H), 2.32 (s, 3H), 2.29 (s, 6H), 1.97 

(m, 1 H), 1.68 (dd, J = 8.5 and 4 Hz, 1H), 0.96 (t, J = 4 Hz, 1H).}  
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3-(4-Chlorophenyl)-1-phenylbicyclo[3.1.0]hex-2-ene (133g) 

H

Cl

H

Cl
A B  

Ratio of isomers A:B 59:41 (Crude 88:12) (By 1H NMR) 

Preparation by the general procedure gave the title compound as a white powder {from 

91.7 mg, 378 µmol, of 1-(4-chlorophenyl)-3-phenyl-2-propyn-1-ol (132g)} (90.6 mg, 340 

µmol, 90%). 
1
H NMR (400 MHz, CDCl3) δ 7.45 (m, 1H, B), 7.39-7.19 (m, 9H A and 8H 

B), 6.62 (t, J = 1.5 Hz, 1H, A), 6.56 (t, J = 1.5 Hz, 1H, B), 3.28-3.16 (m, 1H, A and B), 

2.87-2.77 (m, 1H, A and B), 2.02-1.91 (m, 1H, A and B), 1.67-1.58 (m, 1H, A and B), 

0.82-0.77 (m, 1H, A and B). 
13

C NMR (101 MHz, CDCl3) (Mixture of isomers A and B, 

all data quoted) δ 142.1, 141.0, 140.2, 138.6, 136.1, 134.8, 132.6, 131.6, 131.3, 130.3, 

128.5, 128.4, 128.3, 127.8, 127.2, 126.5, 126.3, 125.8, 123.3, 39.8, 39.3, 37.0, 36.9, 26.9, 

26.7, 25.2, 25.1. EI
+
-MS 266 (100%, 

35
Cl[M]

+
), 251 (18%), 231 (35%), 229 (11%), 215 

(49%), 202 (7%), 189 (6%), 153 (11%), 141 (10%), 125 (10%), 115 (8%), 101 (6%), 91 

(14%). EI
+
-HRMS calcd. for C18H15Cl ([M]

+
) 266.0862; found 266.0865. {Isomer A from 

analysis of crude product: 
1
H NMR (400 MHz, CDCl3) δ 7.39-7.19 (m, 9H, ArH), 6.62 

(t, J = 1.5 Hz, 1H), 3.21 (ddd, J = 17, 7 and 2 Hz, 1H), 2.81 (dd, J = 17 and 1 Hz, 1H), 1.99 

(m, 1H), 1.65 (dd, J = 8 and 4 Hz, 1H), 0.79 (t, J = 4 Hz, 1H).} 

 

3-(4-CF3-phenyl)-1-phenylbicyclo[3.1.0]hex-2-ene (133h) 

H

F

F
F

H

F
F

F

A B  

Ratio of isomers A:B 50:50 (Crude 91:9) (By 1H NMR) 

Preparation by the general procedure gave the title compound as a white powder {from 

51.6 mg, 187 Amol, of 1-(4-CF3-phenyl)-3-phenyl-2-propyn-1-ol (132h)} (32.2 mg, 117 

µmol, 62%). 1H NMR (400 MHz, CDCl3) δ 7.60-7.50 (m, 4H A and 2H B), 7.48-7.44 (m, 

2H, B), 7.39-7.21 (m, 5H, A and B), 6.74 (app. t, J = 1.7 Hz, 1H, A), 6.62 (dd, J = 1.9 and 

1.3 Hz, 1H, B), 3.30-3.20 {m, (overlapping ddd’s), 1H, A and B}, 2.87 (d, J = 17.0 Hz, 1H, 
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B), 2.86 ( d, J = 16.9 Hz, 1H, A), 2.06-1.99 (m, 1H, A and B), 1.70 (dd, J = 7.8 and 4.2 Hz, 

1H, B), 1.68 (dd, J = 7.8 and 4.2 Hz, 1H, A), 0.89 (app. t, J = 4.5 Hz, 1H, B), 0.81 (app. t, J 

= 4.5 Hz, 1H, A). 19F (376 MHz, CDCl3) δ -62.1 (s, B), -62.3 (s, A). 13C NMR (101 MHz, 

CDCl3) (Mixture of isomers A and B, all data quoted) δ 146.8, 141.8, 140.6, 139.7 (q, J = 2 

Hz), 138.5, 136.0, 133.8, 129.5, 128.8 (q, J = 32 Hz), 128.4, 128.4, 127.8 (q, J = 32 Hz), 

127.4, 126.4, 126.3, 125.9, 125.4, 125.3, 125.3 (q, J = 4 Hz), 125.2 (q, J = 4 Hz), 124.3 (q, 

J = 272 Hz), 124.2 (q, J = 272 Hz), 40.0, 39.5, 36.9, 36.9, 27.7, 26.7, 25.8, 25.2. EI+-MS 

300 (100%, [M]+), 285 (26%), 259 (11%), 231 (10%), 215 (21%), 202 (5%), 153 (8%), 141 

(11%), 128 (6%), 115 (7%), 91 (11%). EI+-HRMS calcd. for C19H15F3 ([M]+) 300.1126; 

found 300.1129. {Isomer A from analysis of crude product: 1H NMR (400 MHz, 

CDCl3) δ 7.56 (app. dd, J = 23.0 and 8.3 Hz, 4H), 7.38-7.32 (m, 2H), 7.32-7.28 (m, 2H), 

7.27-7.22 (m, 1H), 6.76 (t, J = 1.9 Hz, 1H), 3.25 (ddd, J = 17.1, 6.9 and 1.8 Hz, 1H), 2.86 

(d, J = 17.1 Hz, 1H), 2.07-2.00 (m, 1H), 1.69 (dd, J = 8.2 and 4.2 Hz, 1H), 0.82 (app. t, J = 

4.5 Hz, 1H).} 

 

3-(3-Methoxyphenyl)-1-phenylbicyclo[3.1.0]hex-2-ene (133i) 

H
H

A B

O
O

 

Ratio of isomers A:B 51:49 (Crude 74:26) (By 1H NMR) 

Preparation by the general procedure gave the title compound as a white powder {from 

89.7 mg, 377 Amol of 1-(3-methoxyphenyl)-3-phenyl-2-propyn-1-ol (132i)} (52.4 mg, 200 

Amol, 53%). 1H NMR (400 MHz, CDCl3) δ 7.45 (m, 1H, B), 7.37-7.30 (m, 6H A and 5H 

B), 7.30-7.20 (m, 5H, A and B), 7.06 (dt, J = 7.6 and 1.2 Hz, 1H, A), 6.99 (t, J = 2.0 Hz, 

1H, A), 6.89 (dd, J = 7.7 and 0.89 Hz, 1H, B), 6.85 (t, J = 2.0 Hz, 1H, B), 6.81 (ddd, J = 

8.0, 2.6 and 0.7 Hz, 1H, A), 6.77 (ddd, J = 8.1, 2.5 and 0.8 Hz, 1H, B), 6.64 (t, J = 1.8 Hz, 

1H, A), 6.62 (t, J = 1.8 Hz, 1H, B), 3.85 (s, 3H, A), 3.83 (s, 3H, B), 3.24 (overlapping 

ddd’s, J = 16.7, 7.0 and 1.7 Hz, 1H, A and B), 2.84 (app d, J = 16.9 Hz 1H, A and B), 1.97 

(td, J = 7.5 and 4.5 Hz, 1H, A and B), 1.65 (overlapping dd’s, J = 8.1 and  4.1 Hz, 1H, A 

and B), 0.79 (t, J = 4.4 Hz, 1H, A and B). 13C NMR (100 MHz, CDCl3) δ 159.7 (A), 159.6 

(B), 144.2 (B), 142.4 (A), 139.8 (B), 139.6 (A), 137.8 (A), 136.3 (B), 131.4 (A), 130.7 (B), 

129.3, 129.3, 128.3 (2C), 128.3 (2C), 127.1 (B, 2C), 126.3 (A, 2C), 125.7(A), 125.3 (B), 

118.7 (B), 117.9 (A), 112.4, 112.3, 111.0, 110.9, 55.2 (2C, A and B), 39.8 (A), 39.7 (B), 



 

 163 

37.0 (A), 36.9 (B), 26.9 (A), 26.7 (B), 25.2 (A), 25.1 (B). ESI+-MS m/z 263.1 (100%, 

[MH]+), 213.1 (5%), 150.0 (5%), 131.0 (3%). ESI+-HRMS calcd. for. C19H19O ([MH]+) 

263.1430; found 263.1434. {Isomer A from analysis of crude product: 1H NMR (400 

MHz, CDCl3) δ 7.35-7.18 (m, 6H, ArCH), 7.05 (app. d, J = 7.6 Hz, 1H), 6.98 (app s, 1H), 

6.80 (dd, J = 8.1 and 2.9 Hz, 1H), 6.62 (app s, 1H), 3.83 (s, 3H), 3.23 (ddd, J = 16.7, 7.0 

and 1.7 Hz, 1H), 2.83 (d , J = 16.9 Hz, 1H), 1.96 (td, J = 7.5 and 4.5 Hz, 1H), 1.63 (dd, J = 

8.1 and 4.1 Hz, 1H), 0.80 (t, J = 4.4 Hz, 1H).} Data in accordance with the literature 

(Isomer A).78 
 

6-Trimethylsilyl-4-phenyl-1-hexen-5-yne (134) 

Si
 

A protocol similar to that used for 4-phenyl-1-hexen-5-yne (74), method B, gave the title 

compound as a colourless oil {from 0.300 g, 1.47 mmol, 1 equiv. of 1-phenyl-3-

trimethylsilyl-2-propyn-1-ol (126) and 0.503 g, 4.41 mmol, 3 equiv. of allyltrimethylsilane 

(127a)} (0.239 g, 1.05 mmol, 71%). 1H NMR (400 MHz, CDCl3) δ 7.41-7.32 (m, 4H), 

7.29-7.24 (m, 1H), 5.87 (m, 1H), 5.09 (m, 1H), 5.06 (t, J = 1.2 Hz, 1H),  3.74 (t, J = 7.1 

Hz, 1H), 2.52 (tt, J = 7.1 and 1.1 Hz, 2H), 0.22 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 

141.0, 135.3, 128.4, 127.5, 126.7, 117.0, 107.7, 87.8, 42.8, 38.9, 0.15. EI+-MS m/z 228 

(1%, [M]+), 213 (1%, [M-CH3]+), 195 (2%), 187 (86%, [M-C3H4]+), 172 (6%), 159 (100%, 

[M-C5H8]+), 145 (10%), 131 (5 %), 105 (6%), 83 (11%), 73 (14%, [Si(CH3)3]+), 59 (6%). 

EI+-HRMS calcd. for. C15H20Si ([M]+) 228.1334; found 228.1333. Data in accordance with 

the literature.25a 

 

[(1-Allylcyclohexyl)ethynyl]benzene (136) 

 

Prepared by a protocol based on that of Zhan et al..69 1-Phenylethynyl cyclohexanol 

(132o) (0.50 g, 2.5 mmol, 1 equiv.) and allyltrimethylsilane (127a) (1.19 ml, 7.5 mmol, 3 

equiv.) were mixed in acetonitrile (5 ml, dry) and FeCl3 (anhydrous, 40 mg, 0.25 mmol, 0.1 

equiv.) in acetonitrile (1 ml, dry) was added dropwise. The reaction was stirred at 60 ˚C for 

18 hours, reduced in vacuo and the product purified by column chromatography, eluting 

with petroleum ether (40-60), to give the title compound as a colourless oil (0.249 g, 1.11 
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mmol, 44%). 1H NMR (400 MHz, CDCl3) δ 7.44-7.40 (m, 2H), 7.32-7.23 (m, 3H), 6.05 

(ddt, J = 12.4, 9.3 and 7.5 Hz, 1H), 5.12 (m, 1H), 5.09 (m, 1H), 2.26 (dt, J = 7.2 and 1.3 

Hz, 2H), 1.87-1.58 (m, 7H), 1.28-1.12 (m, 3H). 13C NMR (100 MHz, CDCl3) δ 135.0, 

131.6, 128.1, 127.4, 124.2, 117.1, 95.1, 83.3, 47.4, 37.6, 37.0, 26.1, 23.1. ESI+-MS m/z 

301.1 (100%, [M+Ph]+), 279.2 (11%), 245.1 (61%), 225.2 (68%, [MH]+), 195.1 (20%), 

167.1 (11%), 149.0 (23%, [MH2-Ph]+), 126.0 (30%). ESI+-HRMS calcd. for C17H21 ([MH]+) 

225.1638; found 225.1633. 

 

(4,4-Dimethylcyclohexa-1,5-dien-1-yl)benzene (135a) 

a b c

de

f

 

[AuBr(ItPe)] (56g) (3.6 mg, 7.4 Amol, 0.02 equiv.), Ag[Al(OC(CF3)3)4] (76) (8.0 mg, 7.4 

Amol, 0.02 equiv.) and [(1-allylcyclohexyl)ethynyl]benzene (136) (78.3 mg, 0.350 mmol, 1 

equiv.) were dissolved in dichloromethane (2 ml) and stirred (0 ˚C - r.t., 15 hours). The 

reaction mixture was reduced in vacuo and purified by column chromatography, eluting 

with petroleum ether (40-60), to give the title compound as a colourless oil (64.8 mg, 0.289 

mmol, 83%). 1H NMR (400 MHz, CDCl3) δ 7.46-7.43 (m, 2H, aromatic CH), 7.39-7.34 

(m, 2H, aromatic CH), 7.31-7.26 (m, 1H, aromatic CH), 6.30 (dd, J = 9.9 and 1.8 Hz, 1H, 

alkene CH d), 6.05 (app. t, J = 4.8 Hz, 1H, alkene CH c), 5.97 (d, J = 9.9 Hz, 1H, alkene 

CH e), 2.36 (d, J = 4.8 Hz, 2H, CH2 b), 1.64-1.39 (m, 10H, cyclohexyl CH2). 13C NMR 

(100 MHz, CDCl3) δ 140.3 (C), 137.8 (2 peaks, alkene CH e), 134.9 (C), 128.3 (CH), 

126.8 (CH), 125.3 (CH), 123.4 (alkene CH d), 122.0 (alkene CH c), 36.3 (broad, 

cyclohexyl CH2), 36.2 (alkene CH2 b), 33.4 (cyclohexyl C), 26.3 (cyclohexyl CH2), 21.8 

(cyclohexyl CH2). EI+-MS m/z 224 (100%, [M]+), 181 (7%), 167 (34%), 153 (8%), 142 

(7%), 115 (6%), 91 (6%), 49 (34%). 
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2.5.5. Crystallographic data 

Table 38. Crystallographic data for complexes 55a, 55d and 57a. 

 55a 55d 57a 

 [Au(�-succ)(ItBu)] [Au(N-ptm)(ItBu)] [Au(N-succ)(IMes)] 

formula C15H24AuN3O2 C19H24AuN3O2 C25H28AuN3O2 

Mr 475.34 523.38 599.47 

cryst syst Orthorhombic Orthorhombic Monoclinic 

space group Pca2(1) Pnma P2(1)/c 

crystal size/mm3 0.43 x 0.15 x 0.03 0.15 x 0.13 x 0.04 0.27 x 0.23 x 0.17 

cell constants    

   a(Å) 11.3451(8) 11.8766(6) 9.6744(4) 

   b(Å) 10.6675(7) 17.1592(9) 20.2249(9) 

   c(Å) 27.4051(19) 9.4378(5) 12.7004(6) 

   �(deg) 90.00 90.00 90.00 

   �(deg) 90.00 90.00 109.8040(10) 

   �(deg) 90.00 90.00 90.00 

V(Å3) 3316.7(4) 1923.36(17) 2338.04(18) 

Z 8 4 4 

A(Å) 0.71073 0.71073 0.71073 

�(calcd)(g/cm3) 1.904 1.807 1.703 

�(mm-1) 8.879 7.665 6.318 

F(000) 1840 1016 1176 

T(K) 110(2) 110(2) 110(2) 

2�max (deg) 56.60 60.02 60.00 

no. of rflns measd 32064 14707 26386 

no. of indep rflns 8209 2870 6750 

Rint 0.0345 0.03091 0.0280 

no. of 
data/restraints/params 

8209 /  7 / 392 2870 / 0 / 121 6750 / 0 / 286 

Goodness-of-fit on F2 1.037 1.022 1.047 

R indices (all data) R1 = 0.0282, ωR2 = 
0.0472 

R1 = 0.0246, ωR2 = 
0.0456 

R1 = 0.0271, ωR2 = 
0.0540 

Final R indices 
[I>2sigma(I)] 

R1 = 0.0213, ωR2 = 
0.0450 

R1 = 0.0200, ωR2 = 
0.0441 

R1 = 0.0229, ωR2 = 
0.0525 

max, min A� (e Å-3) +1.733, -0.686 +1.363, -0.605 +3.317, -0.759 
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Table 39. Crystallographic data for complexes 66a, 66d and 67a. 

 66a 66d 67a 

 [AuBr2(N-succ)(ItBu)] [AuBr2(N-ptm)(ItBu)] 
2[{AuBr2(N-

succ)(ItPe)}].C6H5F 

formula C15H24AuBr2N3O2 C19H24AuBr2N3O2 C40H61Au2Br4FN6O4 

Mr 635.16 683.20 1422.52 

cryst syst Triclinic Orthorhombic Triclinic 

space group P-1 Pnma P-1 

crystal size/mm3 0.23 x 0.21 x 0.20 0.44 x 0.15 x 0.03 0.44 x 0.20 x 0.07 

cell constants    

   a(Å) 9.7911(5) 19.8674(17) 11.8901(9) 

   b(Å) 13.9362(7) 13.3922(11) 14.8899(11) 

   c(Å) 15.3479(8) 8.3251(7) 15.2604(12) 

   �(deg) 72.3520(10) 90.00 106.6900(10) 

   �(deg) 74.0220(10) 90.00 107.2830(10) 

   �(deg) 86.4790(10) 90.00 96.2640(10) 

V(Å3) 1918.02(17) 2215.0(3) 2414.6(3) 

Z 4 4 2 

A(Å) 0.71073 0.71073 0.71073 

�(calcd)(g/cm3) 2.200 2.049 1.957 

�(mm-1) 11.848 10.267 9.426 

F(000) 1200 1296 1364 

T(K) 110(2) 110(2) 110(2) 

2�max (deg) 60.08  56.56  60.00 

no. of rflns measd 22084 20843 27421 

no. of indep rflns 10877 2847 13566 

Rint 0.0333 0.0546 0.0261 

no. of 
data/restraints/params 

10877 / 0 / 427 2847 / 0 / 133 13566 / 0 / 525 

Goodness-of-fit on F2 1.007 1.073 1.032 

R indices (all data) R1 = 0.0421, ωR2 = 
0.0688 

R1 = 0.0352, ωR2 = 
0.0871 

R1 = 0.0300, ωR2 = 
0.0639 

Final R indices 
[I>2sigma(I)] 

R1 = 0.0307, ωR2 = 
0.0654 

R1 = 0.0319, ωR2 = 
0.0845 

R1 = 0.0247, ωR2 = 
0.0617 

max, min A� (e Å-3) +2.371, -1.315 +2.581, -2.380 +2.342, -1.576 
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Table 40. Crystallographic data for complexes 66a, 66d and 67a. 67c, and 68c. 

 67c 68c.C6H5F 

 [AuBr2(N-tfs)(ItPe)] 
[AuBr2(N-

ptm)(IMes)] .C6H5F 

formula C17H24AuBr2F4N3O2 C35H33AuBr2FN3O2 

Mr 735.18 903.43 

cryst syst Orthorhombic Monoclinic 

space group Pbca P2(1)/c 

crystal size/mm3 0.44 x 0.33 x 0.13 0.28 x 0.24 x 0.18 

cell constants   

   a(Å) 13.5158(18) 17.6109(3) 

   b(Å) 18.242(2) 12.2187(3) 

   c(Å) 18.874(2) 16.6542(3) 

   �(deg) 90.00 90.00 

   �(deg) 90.00 111.8490(10) 

   �(deg) 90.00 90.00 

V(Å3) 4653.7(10) 3326.26(12) 

Z 8 4 

A(Å) 0.71073 0.71073 

�(calcd)(g/cm3) 2.099 1.804 

�(mm-1) 9.806 6.866 

F(000) 2784 1752 

T(K) 110(2) 110(2) 

2�max (deg) 60.12 54.96 

no. of rflns measd 66257 44337 

no. of indep rflns 6784 7619 

Rint 0.0403 0.0509 

no. of 
data/restraints/params 

6784 / 91 / 332 7619 / 0 / 456 

Goodness-of-fit on F2 1.439 1.072 

R indices (all data) R1 = 0.0502, ωR2 = 
0.1011 

R1 = 0.0401, ωR2 = 
0.0613 

Final R indices 
[I>2sigma(I)] 

R1 = 0.0430, ωR2 = 
0.0989 

R1 = 0.0285, ωR2 = 
0.0581 

max, min A� (e Å-3) +1.345, -1.236 +0.634, -1.076 
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Chapter 3: Ru imidate complexes; synthesis and catalytic activity 

 
3.1. Introduction 

3.1.1. Ru imidate complexes 

There have been several ruthenium imidate complexes reported, including succinimidate, 

phthalimidate and bis(2-pyrimidyl)carboimidate complexes, although with no applications 

envisaged. Islam and Uddin1 have reported triaquaruthenium(III) trisuccinimido and 

triphthalimido complexes, as well as terpyridine and diethylenetriamine analogues, with  

monodentate �-ligated imidate ligands, by reaction of the relevant imidate with 

RuCl3.3H2O. Sahajpal et al.
2 have prepared several bridged dinuclear ruthenium 

succinimidate structures including: [Ru2(µ-Cl)(µ-H)(µ-�,O-succ)2(CO)(PPh3)3], [Ru2(µ-

Cl)(µ-H)(µ-�,O-succ)2(CO)2(PPh3)2] and [Ru2(µ-Cl)(µ-H)(µ-�,O-succ)2(PPh3)4] (154), by 

mixing succinimide with either [RuCl2(PPh3)3]/NEt3 or [RuCl(H)(PPh3)3]. The hydride 

ligand may originate from methanol added during workup. The complexes contain �,O-

ligated bidentate bridging succinimidate ligands, and bridging hydride and chloride 

ligands. Shaver et al.
3
 have reported phthalimidate complexes (with monodentate �-ligated 

phthalimidate ligands) bearing pentadienyl and thioether ligands, including [Ru(C5H5)(�-

ptm)(PPh3)2] and [Ru2(C5H5)(�-ptm)2(µ-SCH3){µ-SCH(CH3)2}] (155). 

Metcalfe et al.
4 have reported (but not isolated) [Ru{bis(2-

pyrimidyl)carboimidato}(1,10-phenanthroline)](PF6) (156). This is formed (along with 

other products) by the reaction of Ru(phen)2Cl2.2H2O with tpymt {2,4,6-tris(2-pyrimidyl)-

1,3,5-triazine} in refluxing methanol. The tpymt ligand is hydrolyzed to form the bis(2-

pyrimidyl)carboimidato ligand. Selected structures are displayed in Scheme 47. 
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Scheme 47. The structures of [Ru2(µ-Cl)(µ-H)(µ-�,O-succ)2(PPh3)4] (154), [Ru2(C5H5)2(�-

ptm)2(µ-SCH3){µ-SCH(CH3)2}] (155) and [Ru{bis(2-pyrimidyl)carboimidato}(1,10-

phenanthroline)](PF6) (156). 
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3.1.2. Diene Metathesis 

Alkene metathesis is the transformation of olefins by alkene bond formation and scission, 

there are several types, including: ring-closing (cyclisation of dienes) (I), ring-opening 

(formation of dienes from cyclic olefins) (II), cross (also called acyclic diene metathesis, 

involving the combination of two different olefins to produce two new olefins) (III), ring-

rearrangement metathesis (where there are cyclic and acyclic olefins in one molecule) (IV) 

and ring-opening metathesis polymerisation (formation of polymers from cyclic olefins) 

(V) (Scheme 48).5  
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Scheme 48. Types of diene metathesis. 

 

Metathesis is an extremely powerful method for the formation of carbon-carbon bonds 

and has been widely used industrially in various applications and in natural product 

synthesis. A major industrial example is that of the Shell Higher Olefins Process (SHOP), 

which is a method of producing C11 to C14 linear olefins from ethene for the production of 

detergents. A key step uses a heterogeneous molybdate catalyst in a cross metathesis 

reaction as a means of producing linear olefins in the range C11-C14 from mixtures of short 

and long chain olefins. This process is used to produce more than a million tonnes of linear 

olefins a year.6 

Scheme 48. 
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There are many examples of natural products syntheses which employ metathesis as a 

key step in the process; ring-closing metathesis (RCM) by homogeneous ruthenium and 

molybdenum catalysts to form macrocycles is widely used.7 One example is the use of 

ring-closing metathesis to create the macrocyclic core in the synthesis of pochonin C (157), 

a natural product with antiviral properties (Scheme 49). The intermediate macrocycle 159 

is formed from diene 158 as one regio and stereoisomer, in the presence of ester, enone and 

epoxide functional groups, demonstrating the broad applicability of this method.8 
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Scheme 49. Macrocyclisation by ring-closing metathesis in the synthesis of pochonin C 

(157). 

 

Ring-opening metathesis polymerisation (ROMP) is also used industrially for the 

synthesis of polymers.9 

 

3.1.3. Metathesis catalysts 

3.1.3.1. Ill-defined catalytic systems 

Due to the great synthetic and industrial potential of the alkene metathesis reaction there 

has been a huge amount of research into catalysts that promote the transformation.10 

However, it was only in the 1960’s that the metathesis reaction and the first metathesis 

catalysts were discovered serendipitously during research into Ziegler-Natta catalysis. The 

first was the so called ‘disproportionation’ of olefins by Banks and Bailey in 1964 who 

160 157 

159 158 
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used a heterogeneous M(CO)6/Al2O3 (M is Mo or W) combination to carry out metathesis 

of propylene (at 90-315 ˚C).11 In the same year Natta reported that a homogenous 

MCl6/AlEt3 (M is Mo or W) combination could promote the homopolymerisation (ROMP) 

of cyclopentene.12 Calderon et al. used a homogenous WCl6/EtAlCl2/EtOH system to 

transform 2-pentene into a statistical mixture of 2-butene, 2-pentene and 3-hexene, coining 

the term ‘Olefin Metathesis’ for the reaction.13 Rh systems were also discovered which 

used a combination of PPh3 and AlEt3 with ReCl4 or ReOCl3 to promote metathesis.14 

Research into a possible mechanism for this class of reactions led to the ‘Chauvin 

mechanism’ being reported in 1971.15 However, the catalysts themselves were ill-defined 

mixtures which were poorly understood, were very moisture sensitive, intolerant of any 

functionality in the olefins, required harsh conditions and long initiation times. 

 

3.1.3.2. Well-defined Mo, W and Ta systems 

In 1964 Fischer reported the first (unisolated) metal carbene, [W(COCH3)(CH3)(CO)5], 

this type of heteroatom stabilised carbene has since been termed a ‘Fischer carbene’.16 

Schrock isolated the first ylide carbene bearing an alpha hydrogen in 1974, 

[Ta(CH2C(CH3)3)3{CHC(CH3)3}]17 and the first methylene example, 

[Ta(C5H5)2(CH3)(CH2)] in 1975.18 These types of unstabilised carbenes have since been 

termed ‘Schrock carbenes’. Investigation of the reactions of these complexes with 

alkenes19 resulted in the development of the first well-defined organometallic metathesis 

catalysts by Schrock (with Nb, Ta and W), such as [Ta(CHCMe3)Cl(OCMe3)2(PMe3)], 

which were short lived but could metathesise simple alkenes such as cis-2-pentene.20 Other 

tungsten complexes were prepared and shown to be active metathesis catalysts, such as, 

[WCl2{CHC(CH3)3}(O)(PEt3)].
21 

Variation of the anionic ligands in complexes using bulky alkoxy groups, such as 

[W(OCH2
tBu)2X2(CHtBu)] (where X is Br or Cl), which when activated by AlCl3, led to 

highly active catalysts comparable to early ill-defined systems.22 The use of bulky imido 

ligands and electron withdrawing alkoxy ligands led to Lewis acid free catalytic systems, 

such as [W(NAr){OCMe(CF3)2}2(CHtBu)] (Ar = 2,6–diisopropylphenyl).23 Later 

analogous Mo complexes were prepared in order to try to improve functional group 

tolerance, catalyst life time and selectivity at the expense of activity.24 Variation of the 

alkylidene ligand resulted in the preparation of the ‘Schrock Catalyst’, 
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[Mo(NAr){OCMe(CF3)2}2{CHC(CH3)2Ph}] (161), which has been very widely utilised 

(Figure 31).25 This catalyst is highly active and selective, and more tolerant of some 

functional groups than earlier catalysts, however it is sensitive to air, water and many 

functional groups, particularly protic groups.  
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Figure 31. Structure of [Mo(NAr){OCMe(CF3)2}2{CHC(CH3)2Ph}] (161) - the ‘Schrock’ 

catalyst. 

 

3.1.3.3. Ru catalysts 

The intolerance of early Schrock type catalysts to air, water and functionality led to the 

investigation of Ru and Os complexes as potential metathesis catalysts. Early research by 

Grubbs et al. found that simple Ru and Os complexes (RuCl3, [RuCl3(3,5-COD)] and 

OsCl3) could carry out ROMP in water26 and ROMP of unprotected norbornenol 

derivatives which Schrock type catalysts could not.27 Grubbs subsequently prepared the 

first ruthenium alkylidene complex,  [RuCl2(CHCH=CPh2)(PPh3)2], which could catalyse 

ROMP in protic media28 and RCM of functionalised dienes.29 Ligand variation of halide 

and phosphine ligands resulted in the finding that a Cl/PCy3 combination gave the best 

performance allowing broader metathesis activity and the metathesis of acyclic olefins.30 

Variation of the alkylidene ligand, via diazoalkanes, culminated with the preparation of 

[RuCl2(CHPh)(PCy3)2] (162), since termed Grubbs 1st generation catalyst (Figure 32), 

which allowed the metathesis of acyclic and functionalised olefins with 20-1000 times 

higher activity than earlier Ru catalysts. The complex is also remarkably robust, being 

stable at 60 ˚C in solution and tolerant of water, alcohols and amines, although sensitive to 

air (O2 increases the initiation and decomposition rates).31   

 

161 
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Figure 32. The structure of [RuCl2(CHPh)(PCy3)2] (162) – ‘Grubbs’ 1st generation 

catalyst. 

 

The superior stabilising effect of PCy3 over PPh3 (analogues containing PPh3 decompose 

in a few hours in solution) led to the investigation of more electron donating ligands, 

notably �-heterocyclic carbenes, to stabilise the catalysts.32 Three research groups then 

published the preparation of [RuCl2(CHPh)(IMes)(PCy3)], which has a very fast initiation 

rate and good stability.33 A further increase in the electron donating ability of the NHC 

ligand in the form of saturated IMesH2 led to another milestone with the preparation of 

[RuCl2(CHPh)(IMesH2)(PCy3)] (160) - Grubbs 2nd generation catalyst (Figure 33), which 

is similar to the Schrock catalyst in terms of activity, can yield di, tri and tetra-substituted 

olefins by RCM and is active at very low catalyst loadings (0.05 mol%).34 

There have been a number of subsequent modifications which have increased the utility 

of this type of catalyst. Hoveyda et al. synthesised [RuCl2(o-iPrO-CHPh)(PCy3)] and found 

it to be stable enough to be purified by silica-gel column chromatography in air,35 followed 

by a second generation analogue [RuCl2(o-iPrO-CHPh)(IMesH2)] - the Grubbs-Hoveyda 

catalyst (163), with increased activity towards electron deficient (such as acrylonitrile) and 

tri-substituted olefins and greatly improved stability of the precatalyst due to the absence 

of phosphine ligands (although slower initiation).36 Grubbs substituted the phosphine 

ligand in the 2nd generation complex with pyridine37 and subsequently 3-bromopyridine38 

ligands to yield [RuCl2(CHPh)(IMesH2)(3-BrPy)2] (164) which proved to be a very fast 

initiator with high activity for acrylonitrile cross-metathesis.  
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Figure 33. Structures of [RuCl2(CHPh)(IMesH2)(PCy3)] (160), [RuCl2(o-iPrO-

CHPh)(PCy3)] (163) and [RuCl2(CHPh)(IMesH2)(3-BrPy)2] (164). 
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Piers et al. have prepared a cationic phosphonium alkylidene catalyst (165) that has a 

vacant site rather than a second neutral ligand (Figure ). This results in extremely rapid 

initiation, significantly faster than other Ru and Schrock type catalysts.39 Other advances 

include chiral40
 and water/ionic liquid soluble analogues.41 
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Figure 34. Structure of Ru phosphonium alkylidene complexes (165) reported by Piers.  

 

3.1.3.4. Ru pseudohalide catalysts 

The use of electron withdrawing alkoxy ligands led to the development of Lewis acid 

free23 as well as highly efficient chiral42 catalytic systems for the Schrock series of 

catalysts described above, however only chloride is routinely used as an anionic ligand in 

Ru catalysts. The effects of varying the nature of halide ligands in Ru complexes has 

however been reported, a generic example is the catalyst [RuX2(CHCHCPh2)(PCy3)2] 

(166) (where X is the halide ligand). The exchange of an iodide ligand for a chloride 

results in a more than thirteen fold increase in turnover frequency (TOF) in the ring closing 

metathesis of diethyl diallylmalonate (167) (Scheme 50),43 demonstrating the pronounced 

effect of the nature of the halide ligand on metathesis activity and the potential for 

improvement of the catalysts by the use of pseudohalide ligands.  
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Scheme 50. The effect of varying the nature of the halide ligand in the ring closing 

metathesis of diethyl diallylmalonate (167) by [RuX2(CHCHCPh2)(PCy3)2] (166). 
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There have been a significant number of pseudohalide ligated Ru benzylidene complexes 

reported, with fluorinated carboxylates widely used. Buchowicz et al. have prepared 

[Ru2(O2CCF3)2(µ-O2CCF3)2(CHPh)2(µ-OH2)(PCy3)2] (169),44 which is significantly less 

active than the parent dichloride complex in RCM as the bridging OH2 ligand is required to 

dissociate to generate an active monomeric catalyst. A monomeric complex, 

[Ru(O2CCF3)2(CHPh)(PCy3)2] (170), can be generated by treatment of 169 with PCy3 

although this too has low metathesis activity (Scheme 51).45  
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Scheme 51. Preparation of [Ru(O2CCF3)2(CHPh)(PCy3)2] (169) from [Ru2(O2CCF3)2(µ- 

O2CCF3)2(CHPh)2(µ-OH2)(PCy3)2] (170). 

 
Buchmeiser and co-workers have reported [Ru(O2CCF3)2(o-iPrO-CHPh)(IMesH2)],

46 

which has good stability and activity similar to the parent chloride complex, a low activity 

OSO2CF3 analogue, and O2CCF3 and O2CC6F5 complexes (for use as alkyne metathesis 

catalysts).47 Braddock48 monitored the exchange of Br, Cl, O2CCF3 and O2CC2F5 ligands 

between Grubbs-Hoveyda 2nd generation (163) type complexes and found that anionic 

ligand exchange between complexes occurred readily in solution. This was presumed to 

occur via bridged dimers, with exchange between dicarboxylate complexes occurring 

faster than dihalide complexes. 

Perfluorocarboxylate ligands have been used to link Ru benzylidene complexes to solid 

supports. These have lower activity than the parent dichloride complexes but result in very 

low Ru residues in the purified product, and allows the recovery and reuse of the catalyst. 

Mol and co-workers have reported a Grubbs 1st generation analogue linked to a silica 

support via a fluorinated dicarboxylate (171) (Figure 35).49 The Blechert and 

Buchmeiser46,50 groups reported the preparation of Grubbs and Grubbs-Hoveyda 1st and 2nd 

generation complexes containing O2CCF3, O2CC2F5, OC6F5 and fluorinated carboxylates 

linked to polystyrene supports51 and found that monosubstituted complexes had better 

activity than disubstituted complexes (although significantly less than the parent 

dichloride).52  

170 169 
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Figure 35. Grubbs 1st generation type Ru benzylidene complex (171) linked to a silica 

support by a fluorinated dicarboxylate ligand reported by Mol. 

 
Fogg and co-workers have prepared a series [Ru(catecholate)(CHPh)(IMes)(Py)] (Py is 

pyridine) complexes (172) with substituted catecholate ligands spanning 4.5 pKa units 

(Figure 36). The catecholate ligand allows the variation of electronic parameters without 

disturbing steric parameters. They found that activity declines with increasing electron 

withdrawal, with both initiation and particularly propagation rates affected.53 Increased 

steric bulk of the ligands may also reduce metathesis activity. They also prepared related 

complexes containing chelating dichloro o-sulfonato aryloxide ligands which possessed 

good metathesis activity.54 
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Figure 36. [Ru(catecholate)(CHPh)(IMes)(Py)] (172) complexes prepared by Fogg. 

 

Many of the pseudohalide ligands used have been bidentate, via linkage to a pendant 

neutral ligand. These include �,O-prolinate, ortho-diphenylphosphino benzoate and ortho-

carboxylate substituted furans ligands reported by Grubbs,55 tridentate �,�,O-

heteroscorpionate ligands reported by Burzlaff56 and bidentate �,O-coordinated Schiff base 

ligands reported by Verpoort57 and Hermann.58 The use of bi and tridentate �,O- and 

�,O,O-amino-benzyloxy ligands by Jensen has resulted in complexes (173) with very low 

activity and poor thermal stability (Figure 37).59 Related bidentate cyclohexanoxy ligands 

with pendant pyridine groups have been reported by Vosloo60 with low activity at room 

temperature but activity superior to that of the parent complex at 70 ˚C for linear alkene 

metathesis. Raines61 has used an �,O-chelated salicylaldimine ligand in conjunction with 

Grubbs 1st and 2nd generation type complexes (174) resulting in slow initiation but good 

RCM activity in protic solvents, including the highest reported rate for the RCM of �,�-

diallylamine hydrochloride in water. Fogg has prepared a bidentate iminopyrrole complex 

(175) which mediate RCM in air with high selectivity (for RCM over cross metathesis).62 

171 

172 

     pKa        pKa 
X=X'=H    9.36    X=X'=F    6.26 
X=H, X'=Me   9.92    X=X'=Cl   5.83 
X=H, X'=Cl   8.10    X=X'=Br   5.49 
X=H, X'=Br   7.98 
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These complexes typically have low activity due to slow initiation but activity can be 

increased by the use of harsh conditions, phosphine scavengers (e.g. CuCl or TlPF6) or 

Lewis acids, such as HSiCl3, an attribute useful in ROMP processes. 
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Figure 37. Ru benzylidene complexes bearing; a tridentate �,�,O-amino-benzyloxy (173) 

ligand reported by Jensen, an �,O-chelated salicylaldimine ligand (174) reported by Raines 

and a bidentate iminopyrrole ligand (175) reported by Fogg. 

 

Grela63 has created a system where a Grubbs-Hoveyda 2nd generation type complex 

bearing a tridentate O,O-benzylidene carboxylate ligand (176) is activated in situ by a 

protic acid to create a new complex bearing a Cl, O3SCF3 or O2C(CF2)7CF3 ligand (177) 

(Scheme 52).  
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Scheme 52. Preparation of pseudohalide complexes by reaction of a Ru benzylidene 

complex bearing a tridentate O,O-benzylidene carboxylate ligand (176) with acid to create 

a complex bearing a new anionic ligand (177).  

 

 Hoveyda has prepared a range of chiral Grubbs-Hoveyda 2nd generation complexes 

(178) with chelating binolate substituted NHC ligands which have modest activity but give 

high ee and trans selectivity in air (Figure 38).64 
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Figure 38. The structure of a chiral Ru benzylidene complex (178) containing a chelating 

binolate substituted NHC ligand reported by Hoveyda. 

 

The group of Fogg have prepared [RuCl(OC6F5)(CHPh)(IMes)(Py)],65 which possesses 

similar activity to the parent dichloride complex and is highly stable, generating turnover 

numbers in excess of 40,000, significantly more than the parent complex. In addition, the 

complex is easy to remove from the product with less than 100 ppm Ru residue remaining 

after column chromatography. They also prepared [Ru(OC6X5)Y(CHPh)(IMes)(Py)] (X = 

Cl, Br, F;  Y = Br, Cl) complexes (179), which had higher activity but lower lifetimes than 

the parent complex, and good selectivity for RCM over cross metathesis (Figure 39). They 

found that, for ligand Y, Br generates a more active catalyst than Cl, in contrast to findings 

reported for [RuX2(CHCHCPh2)(PCy3)2] (vide supra).43 The halide substituents on the 

phenoxide ligand are necessary to prevent isomerisation from σ to π ligation, which 

occurred with unsubstituted phenoxide.65,66 Grubbs reported [RuX2(CHPh)(PCy3)] {X = 

OtBu, OC(CF3)2CH3, OC(CF3)} complexes, which had essentially no activity in RCM due 

to the steric congestion in the complex despite having a free coordination site.67  
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Figure 39. Ruthenium benzylidene complexes (179) bearing halogenated phenoxy ligands. 

 

3.1.4. Metathesis catalyst design 

Despite considerable research and an ever increasing library of ruthenium benzylidene 

catalysts there are continuing efforts to produce new catalysts driven by several factors. 

Firstly, catalysts have a limited lifetime and turnover numbers which inhibits commercial 

application, as despite the fact that the precatalysts are stable, the active catalysts are 

179 

178 
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sensitive to oxygen and species such as allylic alcohols, as well as soft donors such as 

alcohols and thiols, which compete for coordination to the metal. Also ruthenium 

complexes do not have the level of activity of Schrock type catalysts and stereoselectivity, 

cis/trans selectivity and cross-metathesis selectivity is still limited. Additionally, it is 

desirable to develop catalysts that can function in water or ionic liquids for green 

chemistry, are reusable (recoverable with long lifetimes) and leave low Ru contamination 

in the final product (by heterogenisation or facile separation). It has been found that 

specific catalysts are required for specific applications, as no catalyst with all round 

attributes has yet been developed. The cost of the catalysts is also an issue, with the ever-

increasing complexity of ligands, the price of ruthenium and the patenting of many catalyst 

systems.10,68  

 

3.1.5. Metathesis mechanism 

The mechanism of a typical Ru-catalysed metathesis reaction has been proposed by 

Grubbs43 on the basis of the Chauvin mechanism.15 The initial step is (in all cases where 

there are two neutral ligands coordinated to Ru) dissociation of one neutral ligand (Step I) 

(Scheme 53). The alkene reagent can then bind to the vacant site (Step II) and, providing 

the alkene and alkylidene have both adopted their active conformations, they can rearrange 

(via [2+2] oxidative cycloaddition) into a ruthena(IV)cyclobutane (Step III). Subsequent 

[2+2] reductive rearrangement then results in fragmentation and reformation of an olefin 

and alkylidene (this may be degenerate or create new species) (Step IV). In the case of 

cross metathesis the olefin can then dissociate (or rearrange again) (Step V) and the new 

ruthenium alkylidene can carry on reacting in subsequent cycles. In the case of RCM the 

alkylidene will now have a pendant alkene. Entropically this alkene is then likely to bind to 

the ruthenium, undergo rearrangement with the alkylidene (Step VI) and generate a cyclic 

olefin and a methylidene ligand (Step VII). The cycloalkene can then dissociate and the 

ruthenium methylidene (Step VIII) can catalyse further transformations. This mechanism 

suggests that the use of less electron donating anionic ligands will allow better alkene 

binding at the expense of phosphine dissociation. Smaller anionic ligands will have a 

similar impact. 
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Scheme 53. Mechanism of Ru alkylidene catalysed ring-closing metathesis of dienes 

proposed by Grubbs. 

 

The dissociation of a neutral ligand, typically a phosphine, pyridine or one part of a 

bidentate ligand (e.g. OiPr for Grubbs-Hoveyda type complexes) in the first step is 

essential for catalysis and the ease of dissociation is key to the initiation rate in most cases. 

The dissociation rate is principally determined by the nucleophilicty (Lewis basicity) of the 

ligand, the steric constraints upon the ligand, whether it is polydentate and the influence of 

the neutral ligand trans to it in the coordination sphere. The ease of dissociation of the 

leaving group is in the order: 

BrPy > Py > PPh3 > PCy3 > IMes 

The nature of the trans ligand aids the observed dissociation (and stabilisation of 

intermediate 14 electron species) in the order:  

IMesH2 > IMes > PCy3 > PPh3 

However, computational and thermodynamic calculations69 and NMR spectroscopic 

analysis70 found that the lability of PCy3 depended on the nature of the trans ligand in the 

order: 

PPh3 > PCy3 > NHC 

 The difference in the observed and calculated initiation rates is proposed to be due to the 

stabilisation of inactive (180 a-c) and active (181a) conformations of the alkene and 

carbene ligands (Figure 40). 
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Figure 40. Inactive and active conformations of alkene and carbene ligands in Ru 

metathesis catalysts. 

 

The geometry of the complex affects the stabilisation of the conformations. A decreased 

L-Ru-alkene angle (where L is a neutral phosphine or NHC ligand) results in the L-Ru 

interaction becoming more antibonding, this in turn increases the bonding interaction of 

the Ru d orbitals with the alkylidene ligand, stabilising the active (2s +2s) conformation of 

the carbene (181b) (Figure 41). More electron donating ligands (e.g. NHCs) have a greater 

influence upon the Ru d orbitals, which in turn leads to increased stabilisation of the active 

carbene conformation. Steric interaction, such as large NHC mesityl substituents, 

decreases the L-Ru-alkene angle. In contrast, a decrease in the Cl-Ru-Cl angle leads to an 

increase in the antibonding interaction between the anionic ligands and the Ru d orbitals, 

resulting in the stabilisation of an inactive alkylidene conformation (180d). As a result 

smaller, more electron withdrawing, anionic ligands will minimise the interaction between 

the antibonding orbital and Ru orbitals reducing stabilisation of the inactive conformation 

(180d).69 In contradiction to this theory, Getty et al. have calculated that NHCs are actually 

weaker σ-donors than phosphines, despite having stronger bonds, due to a significant 

electrostatic component to the Ru-NHC bond, and they propose that this explains the 

observations above.71 

 

(2a+2a)  180b (2s+2a)  180c (2a+2s)  180a (2s+2s)  181a 
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Figure 41. Effect of decreasing L-Ru-alkene and Cl-Ru-Cl angles on orbital interactions in 

Ru metathesis catalysts and the resultant stabilisation of active (181b) and inactive (180d) 

alkylidene conformations. 

 
Straub72 has carried out computational calculations to determine the effect of different 

pseudohalide ligands on the efficiency of Ru benzylidene catalysts by studying di-

substituted methoxide, methane thiolate, fluoride and mesylate neutral complexes, as well 

as cationic complexes with water and ammonia ligands. Although no difluoride complexes 

have been prepared it is logical that they would be more active than dichloride analogues 

due to the observed order in activity of: 

dichloride > dibromide > diiodide 

 However, it was found that fluoride actually stabilised the inactive carbene 

conformation, as  its compact orbitals overlap well with those of the Ru atom. They found 

that phosphine dissociation occurred easiest for low activity first generation iodo 

complexes but high activity second generation complexes had high barriers to dissociation. 

This anomaly was explained by there being high steric repulsion between chloride and 

phosphine ligands, whereas the chlorides can fit between NHC substituents resulting in 

less repulsion. Alkoxides were found to strongly favour the inactive conformation (by 45-

60 kJ.mol-1) resulting in poor activity. Thiolate was more active due to more diffuse 

orbitals but inferior to chloride. Mesylate (-O3SCH3) ligands have weaker σ donor ability 

meaning there is no significant stabilisation of the inactive conformation. Additionally, one 

181b 

180d 
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of the other O atoms can bind to Ru aiding phosphine dissociation, resulting in very low 

overall barriers to metathesis. Metal sulfonates however tend to ionise and the free 

coordination site is filled with water, solvent or functional groups on the substrates. For the 

cationic complexes water significantly stabilises the active conformation giving very low 

barriers to catalysis, however activation by ligand dissociation is very unfavourable.  

A series describing the ability of ligands to stabilise active relative to inactive 

conformations was devised. Ligands early in the series actually stabilise the active 

conformation and later in the series the inactive conformation: 

alkyne/alkene (at a free coordination site) > OH2/OR2 ≈ NH3/NR3 > R3P > O3SR > Cl > Br 

> I > NHC ≈ F ≈ SR > OR > NR2 > aryl > alkyl 

The author came to the conclusion that strong σ donors are required trans to the alkene 

and weak donors cis to the alkene. This will stabilize the active carbene conformation and 

maximise the ability to rearrange ruthenacyclobutanes in order to carry out metathesis. 

 

3.1.6. Decomposition of Ru metathesis catalysts 

The impact of decomposition on catalyst efficiency and turnover numbers, and 

interference of Ru decomposition products in other catalytic cycles (such as alkene 

isomerisation) has encouraged research into the decomposition of precatalysts and catalysts 

in the presence and absence of substrate.73 In the absence of substrate (and to a lesser 

extent in the presence of substrate) a number of decomposition pathways have been 

uncovered. Ru propylidenes, such as [RuCl2(CHCH2CH3)(PCy3)2],  have been found to 

decompose via a presumably bimolecular pathway resulting in the formation of trans-3-

hexene.74 Faced bridged dimers were formed derived from [RuCl2(CHCHCMe2)(dcypb)] 

{dcypb is 1,4-bis(dicyclohexylphosphino)butane} which may be the cause of 

decomposition of the Grubbs precatalyst [RuCl2(CHCHCMe2)(PPh3)2].
75 Decomposition 

of Grubbs 1st generation methylidene complex [RuCl2(CH2)(PCy3)2] is believed to occur 

via a unimolecular route involving incorporation of hydride from the methylidene ligand 

into the phosphine ligands.74 Grubbs and co-workers76 have investigated decomposition of 

a series of phosphine methylidene complexes, such as 182 (Scheme 54), and found that 

they all decomposed to form methylphosphonium salts (R-PR3
+.X-) (183) and inactive 

binuclear Ru complexes (185) via the attack of a phosphine ligand on the alkylidene ligand 

(184). 



 192 

 

MesN NMes

Ru

Cy3P

Cl

Cl

N NMes

Ru

Cl

Cl

Cl
Ru

HMesN
NMes

MesN NMes

Ru
PCy3

Cl

Cl

MesN NMes

Ru

PCy3

Cl

Cl

+

CH3PCy3 Cl  

Scheme 54. Decomposition of a Grubbs II type Ru methylidene complex (182) via 

phosphine attack on the methylidene ligand. 

 

In the presence of an olefin substrate other decomposition pathways can occur. For 

example intermediate ruthenacyclobutanes (186) can decompose to Ru(IV) allyl hydrides 

(187) and subsequently to Ru(II) propene complexes (188) with the complete loss of the 

alkylidene ligand (Scheme 55).77 
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Scheme 55. Decomposition of Ru(IV) ruthenacycles (186) via allyl hydride formation. 

 

The group of Mol reported that 1st and 2nd generation complexes decomposed in the 

presence of primary alcohols to carbonyl hydride complexes of the type 

[RuCl(H)(CO)(PCy3)L].78 Grubbs found that the phosphine free Grubbs-Hoveyda 2nd 

generation complex decomposed in the presence of ethylene to form unidentified Ru 

hydride species.76a It has also been reported that decomposition can occur via insertion of 

Ru into a mesityl methyl C-H bond.79
 Hong et al.

80 found a similar decomposition pathway 

in a related system 189 (Scheme 56), where C-H activation of a phenyl NHC substituent 

occurs following phosphine dissociation. The resultant hydride (191) adds to the 

benzylidene to give a benzyl ligand (192) which combines with the NHC phenyl group to 

give an inactive Ru(II) species (193) which can then also add into the remaining aryl NHC 

group (194). 

182 

186 

185 
184 

183 

188 187 
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Scheme 56. Decomposition of a Grubbs II type Ru benzylidene complex (189) by C-H 

insertion and hydride formation. 

 

3.1.7. Aims 

The initial aim of this study was to investigate the structure and bonding of Ru 

benzylidene complexes containing imidate ligands (195) (Figure 41). The complexes 

would then be applied to Ru catalysed ring-closing metathesis and ring-opening metathesis 

polymerisation processes, and the effect of the imidate ligands on these transformations 

determined. It was envisaged that utilising a series of imidates spanning a range of pKa 

values would allow the investigation of the impact of electronic effects on the Ru 

complexes. Ideally a balance between the stabilisation of active catalytic conformations by 

highly electron withdrawing imidates and enhanced activation by better electron donors 

would be obtained. 
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Figure 41. The proposed imidate benzylidene complexes (195) this study will investigate. 
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3.2. Results and discussion 

3.2.1. Synthesis and characterisation of Ru complexes 

3.2.1.1. Strategy for the synthesis of imidato Ru benzylidene complexes 

The usual synthesis of Grubbs 1st generation catalyst, [RuCl2(CHPh)(PCy3)2] (162), is 

carried out from RuCl3.3H2O (196), and the complex is now available commercially along 

with many other ruthenium benzylidene complexes.31 RuCl3.3H2O is reacted with 

triphenylphosphine in methanol at reflux to generate [RuCl2(PPh3)3] (197). This is then 

treated with phenyldiazomethane to give [RuCl2(CHPh)(PPh3)2] and in situ phosphine 

exchange yields [RuCl2(CHPh)(PCy3)2] (162) (Scheme 57). 

 

PPh3 (6 equiv.)

MeOH, reflux, 2 h
[RuCl2(PPh3)3]

i)            , CH2Cl2, -78 
oC

ii) PCy3, -78 
oC

RuCl3.3H2O
N2 Ru

PCy3

PCy3

Cl

Cl Ph
 

Scheme 57. Synthesis of [RuCl2(CHPh)(PCy3)2] (162) from RuCl3 (196). 

 

This route allows potential anionic ligand exchange at three points in the synthesis; 

RuCl3.3H2O (196), [RuCl2(PPh3)3] (197) and the final product [RuCl2(CHPh)(PCy3)2] 

(162). The initial strategy to prepare an imidate ligand containing ruthenium benzylidene 

complex was to attempt the synthesis of imidate containing analogues of these three 

complexes.  

There have been a number of other synthetic routes to such complexes devised but these 

have limitations regarding the possibility for anionic ligand exchange. Van der Schaaf et 

al.
81 have reported a synthesis starting from [RuCl2(3,5-COD)] (198), which progresses via 

[RuClH(PiPr3)2] (199), a dihydrogen (200) and a vinyl species (201) to yield 

[RuCl2(CHPh)(PiPr3)2] (203) {subsequent phosphine exchange will afford 

[RuCl2(CHPh)(PCy3)2] (162)} (Scheme 58). However, this reaction is carried out in one-

pot using HCl as a protic acid and chloride source and so limits the possibility of exploiting 

imidate ligand exchange.  

 

196 197 
162 
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Scheme 58. Synthesis of [RuCl2(CHPh)(PiPr3)2] (203) from [RuCl2(3,5-COD)] (198). 

 

Another method, developed by the research groups of Werner and Grubbs, also starts 

from [RuCl2(3,5-COD)] (198) and proceeds via formation of Ru hydride (204) and vinyl 

carbene (205) complexes. This system has potential for halide ligand exchange using 

[RuCl2(3,5-COD)] (198), although the first step requires the use of hydrogen under 

pressure which has general synthetic limitations (Scheme 59).82 
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Scheme 59. Synthesis of [RuCl2(CHPh)(PR3)2] (162 and 203) via [RuClHH2(PR3)2] (204). 

 

3.2.1.2. Synthesis and reactivity of [Ru(�-imidate)3(OH2)3] complexes 

The synthesis of triaquaruthenium(III) trisuccinimido and triphthalimido complexes, 

[Ru(�-succ)3(OH2)3] (206) and [Ru(�-ptm)3(OH2)3] (207), has been reported by Islam and 

Uddin1 by refluxing the potassium imidate salt and RuCl3.3H2O (196) in water. The 

complexes were successfully prepared by this method, however the solubility in all 

solvents was extremely low. Attempts to prepare [Ru(�-imidate)2(PPh3)2] complexes by 

methods similar to the synthesis of terpyridine and diethylenetriamine analogues (6 

equivalents of PPh3 in isopropyl alcohol at 80 ˚C for 15 hours) were unsuccessful due to 

the low solubility and only starting material was recovered even under forcing conditions.  
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3.2.1.3. Attempted synthesis of [Ru(�-succ)2(PPh3)3] 

Synthesis of [Ru(�-succ)2(PPh3)2] (208) by reaction of [Ru2Cl4(PPh3)4] (209) with 

succinimidate salts was also attempted. Exchange of chloride ligands for pseudohalides in 

this complex has been reported, for example in [Ru(OAc)2(PPh3)2] (210).83 Attempts using 

Spencers83 conditions for the preparation of 210 (treatment of 209 with 10 equivalents of 

sodium acetate in refluxing t-butanol) were unsuccessful due to the formation of a mixture 

of unidentified products and starting material, as were attempts to exchange the acetate in 

this complex for imidate directly. Conditions used for the reported preparation of [Ru2(µ-

Cl)(µ-H)(µ-�,O-succ)2(PPh3)4] (154) by Sahajpal et al.
2 (1.25 equivalents of succinimide 

in CH2Cl2/NEt3 at ambient temperature) were employed, with the use of methanol during 

work-up avoided to prevent hydride formation. However, a mixture of inseparable (by 

chromatography and recrystallisation) unidentified products and starting material was 

obtained. Variation of solvent, base and temperature failed to increase the ratio of products 

to starting material, although there was evidence of small amounts of bound succinimide, 

these products could not be isolated and quickly decomposed in solution. The use of halide 

scavenging cations, Ag+ and Tl+, gave similar results. 

In fact treatment of [RuBr2(PPh3)3] (211), [RuCl2(PPh3)3] (197) and [Ru2Cl4(PPh3)4] 

(209) with a range of succinimidate salts under various conditions (from room temperature 

up to 110 ˚C and for 30 minutes up to 48 hours) (Table 41) resulted in a mixture of starting 

materials, free succinimidate and unidentified products. In most cases small amounts of 

bound succinimidate were identified amongst a complex mixture of products (by 1H and 
31P NMR), however the nature of these products varied depending upon the conditions 

used. These results show that, although ruthenium succinimidate complexes may be 

formed in some cases, quantitative conversion and isolation was not possible. The species 

observed were also unstable in solution. 
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Table 41. Conditions and reactants used in the attempted synthesis of [Ru(�-

succ)2(PPh3)3] (208). 

[RuX2(PPh3)3]

N

O

O

X

X [Ru(N-succ)2(PPh3)3] 

Salts/ bases Solvents Ru sources 

H/NEt3 CH2Cl2 [RuCl2(PPh3)3] (197) 

Li THF [Ru2Cl4(PPh3)4] (209) 

K Toluene [Ru(OAc)2(PPh3)2] (210) 

Na Methanol [RuBr2(PPh3)3] (211) 

Ag t-Butanol  

Tl   

 

3.2.1.4. Attempted synthesis of [Ru(�-succ)2(CHPh)(PCy3)2] and analogues 

Reported syntheses of pseudohalide-containing ruthenium benzylidene complexes are 

generally carried out from the chloride analogue of the complex, e.g. 

[RuCl2(CHPh)(PCy3)2] (162), typically using an Ag+47,48,49 or Tl+53,54 salt. In order to 

prepare [Ru(�-succ)2(CHPh)(PCy3)2] (212), reaction conditions were used based upon 

those developed by the group of Buchmeiser51 {2.5 equivalents of Ag(�-succ) in CH2Cl2 at 

ambient temperature}, however 1H NMR spectroscopic analysis showed that the desired 

substitution product had not been formed and there was no longer a signal corresponding to 

the carbene proton. Benzaldehyde (less than one equivalent with respect to the amount of 

162 used) and protonated succinimide were identified in the reaction mixture, no hydride 

species (down to -25 ppm) were observed. In the 31P spectrum, AgCl.PCy3 and OPCy3 

were observed. The resulting black powder had low solubility in most solvents. A similar 

outcome was obtained with toluene as solvent, with increased Ag(�-succ) loading and with 

shorter reaction times. 

In order to avoid loss of PCy3 by AgCl.PCy3 formation, conditions developed by the 

group of Fogg were employed {3.7 equivalents of Tl(�-succ) in toluene for 3 days at 

ambient temperature} but this yielded similar results. A less reactive and soluble imidate 

salt, K(�-succ), (2.1 equivalents in CH2Cl2 for 8 hours at 30 ˚C), as expected resulted in a 

208 197, 209-211 
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slower reaction with little conversion at 30 ˚C after 8 hours, and starting material still 

remained after 2 hours at reflux. Direct conversion of the carbene signal to the aldehyde 

signal with no intermediate carbene formation was observed. Sodium succinimidate and 

potassium maleimidate gave similar results.  

To improve the solubility of the imidate salts tetrahydrofuran was used as solvent {with 

1 equivalent of Tl(�-succ)}. After 2.5 hours 20% decomposition to the aldehyde was 

observed but there was also 4% (relative to total material) of a new carbene signal in the 
1H NMR spectrum at 18.92 ppm (compared to the parent dichloride at 17.78 ppm). After 

19 hours the reaction was still incomplete but the new carbene signal has disappeared. 

Increasing the temperature to 50 ˚C (19 hours) resulted in complete decomposition. Slow 

addition of the succinimidate salt was also tried under the same conditions but only starting 

material and decomposition was detected. This suggests that the desired succinimidate 

complex may form but subsequently decomposes.  

Buchowicz et al.44 found that the reaction of [RuCl2(CHPh)(PCy3)2] (162) with 

AgO2CCF3 in tetrahydrofuran resulted in complete decomposition of the carbene, but 

found that [Ru2(O2CCF3)2(µ-O2CCF3)2(CHPh)2(µ-OH2)(PCy3)2] (169) could be prepared in 

hexane (162 has the lowest metathesis activity and highest stability in hexane). However, 

the use of Ag(�-succ) and Tl(�-succ) in hexane and diethyl ether resulted in the typical 

decomposition. Attempts to carry out ligand exchange on 169 and using Cu2O to generate 

Cu(�-succ) in situ were also unsuccessful. 

In view of the decomposition of the carbene ligand in the above reactions, more stable 

later generation ruthenium benzylidenes were tested. Grubbs 2nd generation complex, 

[RuCl2(CHPh)(IMesH2)(PCy3)] (160), was tested with Ag, Tl, Na and K imidate salts in 

CH2Cl2 and toluene and was found to decompose yielding the corresponding aldehyde. 

Similar results were observed with the phosphine-free complexes 

[RuCl2(CHPh)(IMesH2)(Py)] (213) and [RuCl2(o-iPrO-CHPh)(IMesH2)] (163) with both 

succinimidate and maleimidate salts (Table 42). 
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Table 42. Conditions and reactants used in the attempted synthesis of Ru benzylidene 

imidate complexes. 

Salts/ 
bases 

Solvents Ru sources 

Ag CH2Cl2 [RuCl2(CHPh)(IMesH2)(PCy3)] (160) 

Tl THF [RuCl2(CHPh)(PCy3)2] (162) 

K Hexane [RuCl2(o-iPrO-CHPh)(IMesH2)] (163) 

Na Diethyl ether [RuCl2(CHPh)(IMesH2)(Py)] (213) 

Cu Toluene  

 

As the carbene ligand was responsible for the decomposition of the complexes, several 

Grubbs type ruthenium complexes were tested with alternative carbene ligands, including 

SPh, Onbutyl, and n-propyl substituted carbenes (Figure 42). These are easily prepared by 

treatment of [RuCl2(CHPh)(PCy3)2] (162) with the relevant alkene.84  

 

Ru

PCy3

PCy3
Cl

Cl
 

O
Ru

PCy3

PCy3
Cl

Cl
 

S
Ru

PCy3

PCy3
Cl

Cl
 

Figure 42. Ruthenium carbene complexes tested for anionic ligand exchange with imidate 

salts. 

 

Treatment of the n-propyl carbene complex 214 with imidate salts {1.1 equivalents of 

Ag(�-succ) in CH2Cl2} led to the decomposition of the carbene. However, the Onbutyl 

carbene complex 215 showed trace amounts of other carbene complexes (CH carbene 

signals at 15.69, 15.55 and 15.21 ppm compared with the parent complex at 14.75 ppm in 

the 1H NMR spectrum) along with significant decomposition. There were a number of 

alkene signals in the proton spectrum and so the new carbene complexes could be formed 

by carbene rather than anionic ligand exchange. These new species rapidly decomposed in 

solution. Using Tl(�-succ) (2 equivalents in tetrahydrofuran) only starting material and 

decomposition products were observed. Treatment of the thioether complex 216 with Tl(�-

succ) (1.1 equivalents in tetrahydrofuran) resulted in decomposition and starting material 

recovery only, with the detection of alkene species in the 1H NMR spectrum. 

 
 

215 216 214 
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3.2.1.5. Synthesis of [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] 

Buchowicz et al.
85 synthesised a range of Grubbs 1st generation complex (162) analogues 

containing carboxylates, including O2CCF3, O2CC2F5, O2CC6F5 and O2CCl3, but found that 

the same reaction with AgO2CCH3, TlO2CCH3, AgO3SCF3 and AgO3SC6H4Me did not 

yield the benzylidene complex. They concluded that the pKa of the corresponding acid 

must lie within the range of -7 to +3 to stabilise the carbene ligand. Succinimide (9.70 in 

water)86, maleimide (9.46)87 and phthalimide (8.30)88 all lie outside this range which may 

explain the failure to generate the desired complex. The anion of tetrafluorosuccinimide 

with an estimated pKa of 2.189 should therefore give better results.  

Treatment of [RuCl2(CHPh)(PCy3)2] (162) with tetrafluorosuccinimide (1 equivalent) 

and copper(I) oxide (2.3 equivalents) in tetrahydrofuran resulted only in decomposition. 

Subjecting [RuCl2(o-iPrO-CHPh)(IMesH2)] (163) to the same conditions however led to 

six new species with trace proton NMR carbene signals at 17.52 (d, J = 0.5 Hz), 17.07, 

16.93, 16.91 and a larger broad signal at 16.22 ppm (compared with the parent dichloride 

at 16.58 ppm), as well as significant decomposition (although only 1% of the aldehyde). 

Multiple peaks in the 19F NMR spectrum suggest these were tetrafluorosuccinimidate 

ruthenium benzylidene complexes. In order to improve the selectivity of the reaction 

Ag(�-tfs) (prepared in situ) was used (1.05 equivalents) resulting in only three new major 

species, with carbene signals at 17.81 (19%), 17.52 (34%) and 17.15 (14%) ppm, as well 

as the starting dichloride and decomposition products, after 5 hours.  

In order to prevent the formation of statistical ratios of unsubstituted, monosubstituted 

and disubstituted complexes during anionic ligand exchange (as reported by Tanaka et 

al.)48 and encourage the formation of only one species, 4 equivalents of Ag(�-tfs) were 

used. This resulted in a purple solution containing two new species with carbene proton 

NMR signals at 17.90 (59%) and 17.81 ppm (6%), as well as aldehyde decomposition 

product (35%), and only one major signal in the 19F spectrum (a singlet at -126.5 ppm). 

The reaction mixture was subjected to column chromatography on silica-gel under an inert 

atmosphere, allowing the isolation of an air sensitive purple powder, which was then 

washed with hexane (to remove the aldehyde). The powder was found to consist of one Ru 

species, with a carbene proton NMR signal at 18.24 ppm, which was analysed by 1H, 19F 

and 13C NMR spectroscopy and X-ray diffraction analysis and found to be the disubstituted 

complex [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] (217) (Scheme 60). 
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Scheme 60. Reaction of [RuCl2(o-iPrO-CHPh)(IMesH2)] (163) with silver(I) 

tetrafluorosuccinimidate to give [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] (217). 

 
Proton NMR spectroscopic analysis (in dry, degassed CDCl3) showed that the tfs 

complex 217 has a benzylidene carbene CH proton signal (18.24 ppm) that is 1.66 ppm 

downfield of the parent chloride complex 163 (16.58 ppm). This suggests that the 

tetrafluorosuccinimidate ligands withdraw significant electron density from Ru, relative to 

chloride, reducing backbonding from Ru to the carbene and so reducing electron density on 

the carbene carbon. The signal is also downfield relative to related [RuXX'(o-iPrO-CHPh)( 

IMesH2)] complexes, where X and X' are anionic ligands such as, Cl/(O3SCF3) (218) 

(17.49 ppm),46 (O2CCF3)2 (219) (17.38 ppm),46 (O2CC6F5)2 (220) (17.33 ppm),51 (OC6F5)2 

(221) (17.10 ppm),51 Cl/{O2CC3F6CON(Me)C3H6Si(OMe)3} (222) (17.11 and 17.09 

ppm)52b,90 and {O2CC3F6CON(Me)C3H6Si(OMe)3}2 (223) (17.51 ppm),52b however it is 

upfield relative to (O3SCF3)2 (224) (18.49 ppm) (Table 43).46 The remaining proton NMR 

signals are slightly upfield relative to the dichloride 163, notably the isopropyl CH signal 

with a 0.31 ppm shift upfield (4.60 ppm for 217 and 4.91 ppm for 163) and imidazole CH2 

signals with a 0.20 ppm shift upfield (3.97 ppm for 217 and 4.17 ppm for 163). The 

imidazole signal is also more upfield than related pseudohalide complexes, for example 

224 (4.16 ppm) and 220 (3.98 ppm). 

 

Table 43. Selected 1H NMR signals of [RuXX'(o-iPrO-CHPh)(IMesH2)] complexes.a 

Entry X Ligand pKa X'  1H ?MR chemical shift (ppm) 

  (in water)   Ru=CHAr iPr CH imidazole 
CH2 

1 Cl -8.091 Cl 163 16.58 4.91 4.17 
2 �-tfs 2.189 �-tfs  217 18.24 4.60 3.97 
3 Cl -8.0 O3SCF3

46 218 17.49 4.74 4.12 
4 O2CCF3 -0.2591 O2CCF3

46 219 17.38 4.55 4.05 
5 O2CC6F5 1.892 O2CC6F5

51 220 17.33 4.57 3.98 
6 OC6F5 5.593 OC6F5

51 221 17.10 3.82b 4.10 
7c Cl -8.0 O2CC3F6R

d,52b 222 17.11, 17.09 4.68 4.14 
8c O2CC3F6R

d - O2CC3F6R
d,52b 223 17.51 4.55 4.12 

9 O3SCF3 -1491 O3SCF3
46 224 18.49 4.72 4.16 

a In CDCl3 solution. b As reported. c In CD2Cl2 solution. d O2CC3F6R is O2CC3F6CON(Me)C3H6Si(OMe)3.  

163 
217 
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The 13C NMR benzylidene carbene carbon signal of [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] 

(217) is 27.1 ppm downfield of the dichloride complex 163 (324.0 ppm for 217 and 296.9 

ppm for 163) due to the lower electron density on the Ru atom (Table 44). The signal is 

also downfield relative to related [RuXX'(o-iPrO-CHPh)(IMesH2)] complexes 218 (313.8 

ppm),46 219 (314.7 ppm),46 220 (313.5 ppm),51 221 (296.3 ppm),51 222 (306.9 ppm)52b and 

223 (316.0 ppm),52b although downfield of 224 (332.4 ppm).46 This mirrors the trend 

observed for the benzylidene carbene CH proton NMR signal. 

There is an 8.5 ppm upfield shift of the NHC carbene carbon signal (202.6 ppm for 217 

and 211.1 ppm for 163) which is consistent with an NHC ligand bound to a more electron 

deficient metal (the NHC carbene carbon signal is considered an accurate probe for the 

electron density on the metal).94 The signal is also upfield of the related pseudohalide 

complexes 218 (207.1 ppm),46 219 (209.1 ppm),
46 220 (211.6 ppm),51 221 (210.4 ppm),51 

222 (210.9 ppm)52b and 223 (210.3 ppm).52b In contrast to the benzylidene carbene NMR 

signals, the NHC carbene carbon signal is also upfield of complex 224 (203.9 ppm).46  

The mesityl methyl (21.2 and 18.7 ppm) and isopropyl methyl (20.9 ppm) 13C NMR 

signals for 217 are also significantly upfield relative to the dichloride 163  (30.6, 25.8 and 

21.1 ppm, respectively) the reason for which is unclear but is consistent with other 

pseudohalide complexes.46,51,52b Smaller differences are observed for the other signals. The 

tfs ligand CF2 signal is a triplet of triplets (J is 267 and 22 Hz) which is also observed in 

the neutral imide and so is not an indication of asymmetric binding, the carbonyl signal 

however is an unresolved multiplet whereas in the neutral imide it appears as a triplet (J is 

33 Hz) which may indicate interaction of the carbonyl group with other species.  

 

Table 44. Selected 13C NMR signals of [RuXX'(o-iPrO-CHPh)(IMesH2)] complexes.a 

Entry X X'  1H ?MR chemical shift 
(ppm) 

    Ru=CHAr ?HC 
1 Cl Cl 163 296.9 211.1 
2 �-tfs �-tfs  217 324.0 202.6 
3 Cl O3SCF3

46 218 313.8 207.1 
4 O2CCF3 O2CCF3

46 219 314.7 209.1 
5 O2CC6F5 O2CC6F5

51 220 313.5 211.6 
6 OC6F5 OC6F5

51 221 296.3 210.4 
7b Cl O2CC3F6R

c,52b 222 306.9 210.9 
8b O2CC3F6R

c O2CC3F6R
c,52b 223 316.0 210.3 

9 O3SCF3 O3SCF3
46 224 332.4 203.9 

a In CDCl3 solution.  b In CD2Cl2 solution. c O2CC3F6R is O2CC3F6CON(Me)C3H6Si(OMe)3. 
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There appears to be a trend for the pseudohalide complexes linking pKa to the NMR 

analytical data (the chloride complexes do not fit this trend), however 

tetrafluorosuccinimidate is a noticeable outlier in each case, suggesting its pKa is 

significantly lower than the 2.1 value estimated by Hine et al..89 The pKa of 

tetrafluorosuccinimide was estimated by the authors by comparison of the pKa of 

succinimide (a pKa value of 9.35 in water was used) to pyrrolidinium (11.31) and 3,3,4,4-

tetrafluoropyrrolidinium (4.05) ions.  Tetrafluorosuccinimidate could also be an outlier due 

to the differences in σ and π electron donation between the N- and O-coordinated ligands. 

It is apparent that the tfs complex 217 is very electron deficient relative to other chloride 

and pseudohalide complexes other than the di substituted O3SCF3 complex 224, to which it 

appears to have relatively similar properties. The benzylidene carbene carbon and proton 

NMR signals have a good correlation of increasing chemical shift with decreasing pKa 

(Figure 43 and Figure 44) but the NHC carbene carbon signal is not as well correlated with 

decreasing chemical shift with decreasing pKa (Figure 45). 
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Figure 43. Plot of benzylidene CH proton NMR signal against pKa (in water) of the 

pseudohalide ligands for [RuX2(o-iPrO-CHPh)(IMesH2)] complexes.a 

a Line corresponds to line of best fit for complexes 219-221 and 224, R2 = 0.991. 
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Figure 44. Plot of benzylidene CH carbon NMR signal against pKa (in water) of the 

pseudohalide ligands for [RuX2(o-iPrO-CHPh)(IMesH2)] complexes.a 

a Line corresponds to line of best fit for complexes 219-221 and 224, R2 = 0.886. 
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Figure 45. Plot of NHC carbene carbon NMR signal against pKa (in water) of the 

pseudohalide ligands for [RuX2(o-iPrO-CHPh)(IMesH2)] complexes. a 

a Line corresponds to line of best fit for complexes 219-221 and 224, R2 = 0.897. 
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In order to determine a more reliable pKa value for tetrafluorosuccinimide, 

computational calculations were carried out by collaborators (the group of Zhenyang Lin 

of the Hong Kong University of Science & Technology) using the method of Fu et al..95 

The geometry of the molecule was calculated in the gas phase using the B3LYP/6-31+G(d) 

method and the electronic energy using B3LYP/6-311++G-(2df,p) and MP2/6-

311++G(d,p) methods. A polarised continuum model (developed by Tomasi and co-

workers)96 was used to calculate solvation free energies for the molecule and so calculate 

the pKa.  

The pKa in water of tetrafluorosuccinimide was calculated to be -10.0 which fits well to 

the lines of best fit (generated form the other complexes) of the plots of pKa against the 

benzylidene ligand CH proton and carbon NMR chemical shifts (Figure 43 and Figure 44). 

It however does not fit as closely to the plot of pKa against the carbene carbon NMR 

chemical shift (Figure 45), although the correlation between pKa and the NMR signal is not 

as good in this case.  

The pKa value of -10.0 was calculated assuming a simple ionisation process involving 

the imide dissociating into a proton and an imidate anion. In reality the imide forms 

hydrogen bonded dimers and higher clusters,89 which will significantly effect the energy of 

the ionisation process, and so the calculated pKa is not the same as would be obtained 

experimentally. For example, the pKa of succinimide was calculated by this method as 0.43 

and the experimental value is reported as 9.7.86 However, this pKa value is a useful 

indication of the basicity of the tetrafluorosuccinimidate anion, because, as the imidate is 

ligated to Ru, dimerisation and hydrogen bonding processes will not be relevant. This 

allows comparison with the other Ru benzylidene complexes (219-221 and 224), assuming 

these factors will not be as significant for the carboxylate, triflate and phenolate 

pseudohalide ligands. Interestingly, the acyclic analogue of tetrafluorosuccinimide, 

(CF3CO)2NH, has an experimentally derived pKa of 1.2 in water and 2.2 in DMSO.97 The 

pKa of the acylic analogue of succinimide, (CH3CO)2NH, in DMSO is 17.9 (the value in 

water has not been reported).98 The difference in these values (15.7) is comparable to the 

difference between the calculated value for tetrafluorosuccinimide and the experimental 

value for succinimide in water (19.7).  

Complex 217 has a 19F NMR spectrum containing two second order doublets at -126.5 

and -125.6 ppm with couplings of 280 Hz (forming an apparent double doublet at -126.0 

ppm) in CDCl3. This suggests an asymmetric environment for the �-tfs ligands, which 



 206 

 

could be due to hydrogen bonding or solvent coordination. The signal is 1.4 ppm 

downfield of neutral tetrafluorosuccinimide (a singlet at -127.4 ppm)99 and downfield of  

�-tfs ligated Au(I) (55-57 b) and Au(III) (66c, 67c) complexes (Chapter 2).  

Complex 217 has a tetrafluorosuccinimidate carbonyl stretching frequency of 1682 cm-1 

(solid state), which is 69 cm-1 lower than the parent imide. This reduction in the stretching 

frequency on coordination to a metal is typical of imidate ligands.100 Au(I) (55-57 b) and 

Au(III) (66c, 67c) tetrafluorosuccinimidate complexes have higher frequencies although 

these are not directly comparable as they were taken in CH2Cl2 solution. Reported Pd (225, 

226), Ir (227) and Rh (228) complexes100c have similar stretching frequencies in the range 

1679-1686 cm-1 (Table 45). 

 

Table 45. Carbonyl stretching frequencies of tetrafluorosuccinimidate ligands in transition 

metal complexes. 

Entry Complex Carbonyl stretching 
frequency (cm-1) 

1 [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] (217) 1682a 

2 Tetrafluorosuccinimide  1751a 

3 [Au(�-tfs)(ItPe)] (56b) 1704b 

4 [AuBr2(�-tfs)(ItPe)] (67c) 1716b 

5 [Au(�-tfs)(ItBu)] (55b) 1704b 

6 [AuBr2(�-tfs)(ItBu)] (66c) 1718b 

7 cis-[PdCl(�-tfs)(Ph2PCH2CH2PPh2)]
100c (225) 1682c 

8 [{Pd(µ-tfs)(C6H4CH=NPh)}2].CH2Cl2
d,100c (226) 

1780 (sym.)  

1660 (asym.)c 

9 trans-[Ir(�-tfs)(CO)(PPh3)2]
100c (227) 1686c 

10 trans-[Rh(�-tfs)(CO)(PPh3)2]
100c (228) 1679c 

a Solid state. b CH2Cl2 solution. c KBr disk. d �,O-bridging tetrafluorosuccinimidate ligand. 

 

Complex 217 was crystallised by layering hexane on a CD2Cl2 solution which co-

crystallised with [Ru(�-tfs)3(IMesH2)(OH2)2] (229). This allowed the structure to be 

determined by X-ray diffraction (Figure 46). Selected bond lengths of these and related 

complexes are displayed in Table 46. Note: this co-crystal does not represent the bulk 

material (as observed by NMR spectroscopy). 
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Figure 46. Molecular structure of [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)].[Ru(�-

tfs)3(IMesH2)(OH2)2] (217.229). Displacement ellipsoids are shown at the 30% probability 

level. Hydrogen atoms have been omitted for clarity (except for OH2 and benzylidene 

carbene protons).  
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There are no significant bond length differences between [Ru(�-tfs)2(o-iPrO-

CHPh)(IMesH2)] (217) and the related dichloride complex 163, other than the Ru-N bond 

to the imidate is an average of 2.077(28) Å compared with 2.334(24) Å for the Ru-Cl bond 

distance, a difference of 0.258 Å. It is however similar to the Ru-O length in 

[RuCl(O3SCF3)(o-iPrO-CHPh)(IMesH2)] (218) (2.0986(19) Å) and [Ru(O3SCF3)2(o-iPrO-

CHPh)(IMesH2)] (224) (2.0312(31) Å). The similarity between the complexes is surprising 

given the differences in NMR chemical shifts. 

The Ru(III) complex [Ru(�-tfs)3(IMesH2)(OH2)2] (229) has longer Ru-N bonds 

{2.130(44) Å} than 217 {2.077(28) Å} and a longer Ru-IMes bond {2.112(17) Å 

compared to 2.020(17) Å}, presumably due to the increased hardness of the Ru(III) atom 

and reduced backbonding. There are no statistically significant differences in the bond 

lengths between 217 and related tetrafluorosuccinimidato transition metal complexes 67c 

and 227. 

In complex 217 there is a close contact between a tetrafluorosuccinimidate carbonyl 

oxygen and the benzylidene carbene carbon of 2.885 Å (3.027 Å from the other face). It is 

speculated that this close contact plays a role in the facile decomposition of this complex 

and the difficulty of synthesizing related imidate complexes, either the carbonyl attacks 

directly or assists water or oxygen molecules in attacking the carbene. 

Complex 229 has a number of hydrogen bonds between the tfs carbonyl groups and H2O 

ligands. These are O-O 2.579 Å (1.862 Å O-H) for the ligands cis to the IMes ligand and 

2.979 Å O-O (2.661 Å O-H) for trans.  

Hydrogen bonding between imidate carbonyl groups and water molecules has also been 

observed in the crystal structure of trans-[Pd(�-succ)2(PMe2Ph)2].2H2O (230) (Figure 47), 

obtained within the Fairlamb research group. The two water molecules, which each bridge 

the two imidate ligands, are approximately 45-47˚ out of the plane of the Pd atom and 

imidate ligands. The hydrogen bond lengths are O-O 2.826 and 2.858 Å (2.046 and 2.085 

Å O-H) which are O-O 0.279 and 0.247 Å (0.184 and 0.223 Å O-H) longer than the 

hydrogen bonds to the cis ligands in 229 and O-O 0.576 and 0.615 Å (0.121 and 0.153 Å 

O-H) shorter than the bonds to the trans ligands.  
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Figure 47. Molecular structure of  trans-[Pd(�-succ)2(PMe2Ph)2].2H2O (230). 

Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms have 

been omitted for clarity (except for H2O).  

 

The [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] complex (217) has a distorted square pyramidal 

geometry, although less distorted than the parent [RuCl2(o-iPrO-CHPh)(IMesH2)] complex 

(163). Complex 217 has a smaller C2-Ru-C1 bond angle {91.21(7)˚} than 163 {101.5(14)˚} 

by 10.3˚ (Table 47). The C1-Ru-O angle is also smaller by 5.98˚ {170.22(6)˚ for 217 and 

176.2(14)˚ for 163}, C2-Ru-X2 smaller by 7.37˚ {92.73(7)˚ and 100.1(15)˚, respectively}, 

X1-Ru-X2 larger by 5.57˚ {162.07(6)˚ and 156.5(5)˚} and C1-Ru-X2 larger by 3.5˚ 

{94.40(6)˚ and 90.9(12)˚}. These differences may be caused by steric interactions between 

the larger anionic ligands in 217 (hence the larger angles between the anionic and other 

ligands but smaller angles between the neutral ligands). The larger X1-Ru-X2 angle is 

significant as it will result in a reduced antibonding interaction between the anionic ligand 

orbitals and Ru d orbitals and so reduce stabilisation of the carbene conformation inactive 

in metathesis.69,72  

Two other reported pseudohalide [RuXX'(o-iPrO-CHPh)(IMesH2)] complexes; 

[RuCl(O3SCF3)(o-iPrO-CHPh)(IMesH2)] (218) and [Ru(O3SCF3)2(o-iPrO-

CHPh)(IMesH2)] (224) have bond angles closer to those of the parent dichloride 163 than 

the tfs complex 217. Complex 218 has a smaller C2-Ru-C1 angle by 11.13˚ than 217 

{102.34(11)˚ for 218 and 91.21(7)˚ for 217} but only 0.8˚ less than 163 {101.5(14)˚} and 

similarly with the C1-Ru-O angle {178.17(8)˚ and 170.22 (6)˚, respectively} with a 

difference of 7.95˚ from 217 and only 2.0˚ from 163 {176.2(14)˚}. The C1-Ru-X1 angle 

{93.50(9)˚ and 98.73(6)˚} is smaller by 5.23˚ than 217 but larger by 3.1˚ than 163 

{96.6(12)˚}. Complex 224 has bond angles similar to the monosubstituted analogue 218. 



 

 211 

 

The [Ru(�-tfs)3(IMesH2)(OH2)2] complex (229) has a slightly distorted octahedral 

geometry with bond angles between the IMes ligand and the tetrafluorosuccinimidate 

ligands cis to it of 94.21(6)˚ and 95.92(6)˚ {with an angle of 169.87(6)˚ between the tfs 

ligands}. Interestingly there have been no similar [RuX3(NHC)] complexes reported. 

 

Table 47. Bond angles in [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)].[Ru(�-

tfs)3(IMesH2)(OH2)2] (217.229) and related transition metal complexes.a 

C2

RuC1

N

N

O

X

X'

 

a ESD values are displayed in brackets. 

  Bond angle (˚) of  [RuXX'(o-iPrO-CHPh)(IMesH2)] 

Entry Angle X = Cl 

X' = O3SCF3 
(218) 

X = X' = 
O3SCF3 

(224) 

X = X' = Cl 
(163) 

X = X' = �-tfs 
(217) 

1 C2-Ru-C1 102.34(11) 100.83(9) 101.5(14) 91.21(7) 

2 C2-Ru-X1 98.87(10) 103.11(8) 100.2(15) 99.12(7) 

3 C1-Ru-X1 93.50(9) 92.31(7) 96.6(12) 98.73(6) 

4 C2-Ru-O 79.31(10) 79.20(8) 79.3(17) 79.11(6) 

5 C1-Ru-O 178.17(8) 178.93(8) 176.2(14) 170.22(6) 

6 X1-Ru-O 85.43(7) 88.73(7) 86.9(9) 84.29(5) 

7 C2-Ru-X2 97.21(9) 97.91(8) 100.1(15) 92.73(7) 

8 C1-Ru-X2 93.12(7) 92.26(7) 90.9(12) 94.40(6) 

9 X1-Ru-X2 160.87(6) 157.23(6) 156.5(5) 162.07(6) 

10 O-Ru-X2 87.44(5) 86.67(7) 85.3(9) 84.80(5) 
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Grubbs Hoveyda conversion of dimethyldiallyl malonate

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Time (min)

C
o
n
v
er
s
io
n
 (
%
)

  Cl2

  (N-tfs)2

3.2.2. Catalysis 

3.2.2.1. Activity of [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] in RCM and ROMP 

processes 

The [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] complex (217) was tested for activity in the 

ring-closing metathesis of dimethyl diallylmalonate (84), and compared to the parent 

dichloride complex (163), under the conditions reported by Grubbs et al..101 Complex 163 

showed the expected kinetics with 99% conversion after 30 minutes, a kobs value of 2.86 

x10-3 s-1 {Grubbs reported a kobs value of 3.0 x10-3 s-1 for diethyl diallylmalonate (167)} 

and an initial rate of 2.86 x10-4 mol.dm-3.s-1 (with a standard error of 1.3% assuming first 

order kinetics using Dynafit software) (Figure 48). Complex 217 however showed no 

detectable turnover, or even initiation, after 30 minutes.  
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Figure 48. Conversion of dimethyl diallylmalonate (84) to dimethyl cyclopent-3-ene-1,1-

dicarboxylate (231) catalysed by [RuCl2(o-iPrO-CHPh)(IMesH2)] (163) and [Ru(�-tfs)2(o-
iPrO-CHPh)(IMesH2)] (217).a 

a Conditions: 0.1 M solution of dimethyl diallylmalonate (84) in CD2Cl2, 1 mol% Ru catalyst, 30 ˚C. 

Anhydrous, oxygen free conditions. 
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After 20 hours at 30 oC less than 0.5% turnover was observed for complex 217. Analysis 

of the solution after this time by 1H NMR spectroscopy revealed a complex mixture of 

carbene signals (including triplet and double triplet signal splitting),102 as well as some 

decomposition by aldehyde formation, and only a trace of the benzylidene signal 

corresponding to 217. Clearly initiation via dissociation of the isopropoxy ligand had 

occurred, followed by metathesis of the benzylidene ligand, resulting in a range of 

methylidene and alkylidene complexes which must also be essentially inactive in 

metathesis.  

To test the effect of the less electron withdrawing succinimidate ligand, potassium 

succinimidate (1.9 mol %) was added to a dry degassed solution of [RuCl2(CHPh)(PCy3)2] 

(162) (1 mol%) and dimethyl diallylmalonate (84) (0.1 M) in CD2Cl2  and stirred at 30 ˚C 

for 2 days. Only 10% conversion occurred compared to 100% for the control with no 

imidate added. The added succinimidate inhibits the efficiency of the catalyst presumably 

by mediating decomposition. 

The activity of the tfs complex 217 was also tested in the ring-opening metathesis 

polymerisation of 1,5-cyclooctadiene (232) (Scheme 61), but showed less than 5% 

conversion to 233 over 2 hours compared with quantitative conversion for the dichloride 

complex 163 (1 mol% loading in 0.5 M CH2Cl2 at 30 ˚C for 2 hours). 

 

[Ru] (1 mol%)

0.5 M, CH2Cl2, 30 
oC, 2 h n  

Scheme 61. Ruthenium catalysed ring-opening metathesis polymerisation (ROMP) of 1,5-

cyclooctadiene (232). 

 

The principal cause of the lack of activity of complex 217 in RCM and ROMP processes 

is presumably the strong coordination of the isopropyl oxygen to the Ru atom preventing 

the reagent alkene from coordinating to Ru and initiating the reaction. The tfs ligands 

withdraw more electron density from the Ru atom relative to chloride increasing the Ru-O 

bond strength. The activated catalyst was also inactive in the RCM process, which is 

surprising given the predicted reduced stabilisation of the inactive carbene conformation in 

the precatalyst (due to a larger X-Ru-X angle and reduced electron donation of the anionic 

ligand relative to the dichloride complex 163, vide supra). 

233 232 
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Fogg and co-workers recently reported that for a series of catecholate Ru complexes 

(172) reducing the electron donation of the catecholate ligand, and consequently the 

electron density on the ruthenium, reduces the metathesis activity of the catalyst (Figure 

36). This may explain why complex 217 containing tfs ligands, which have a significantly 

lower pKa than the catecholate ligands, is inactive for these particular metathesis 

reactions.53  

Fogg determined that decreased electron density on Ru affects both initiation (by 

inhibiting ligand dissociation) and propagation (by raising the energy of the Ru(IV) 

intermediate). Buchowicz et al.
85 found that out of the range of Grubbs 1st generation 

analogues they prepared containing O2CCF3, O2CC2F5, O2CC6F5 and O2CCl3 ligands, the 

O2CC6F5 complexes were inactive in metathesis due to insufficient electron density on Ru. 

In contrast computational studies on gas phase reactions found that reducing electron 

density on the Ru atom actually increased the activity of complexes in metathesis reactions 

(although the calculations did not take initiation into account).103 

Hence, although initiation is inhibited, the effect of reduced Ru electron density on 

propagation rates is not clear cut. An active catalyst may therefore possibly be obtained by 

use of a more labile neutral ligand, harsh conditions or an irreversible activation process. 

The instability of the precatalyst however precludes further investigation. 

 



 

 215 

 

3.3. Conclusion 

 In summary, it was possible to prepare the novel tetrafluorosuccinimidate-containing 

ruthenium benzylidene complex [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] (217). NMR 

spectroscopic analysis, particularly of the characteristic NHC and benzylidene carbene 1H  

and 13C signals, showed that this complex was electron deficient due to reduced electron 

donation by the tetrafluorosuccinimidate ligand, relative to the parent dichloride (163). The 

crystal structure of [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] (217) was obtained {which co-

crystallised with [Ru(�-tfs)3(IMesH2)(OH2)2] (229)} by X-ray diffraction. This showed 

there to be little difference in bond lengths between complex 217 and the parent dichloride 

163, other than a significantly longer Ru–tfs than Ru-Cl bond length. It was found that 

there was a greater angle between the tetrafluorosuccinimidate ligands in 217 than the 

chloride ligands in 163 due to the greater steric bulk of the imidate ligands and shorter Ru-

anionic ligand bond lengths. This complex was found to be near-inactive in benchmark 

ring-closing metathesis and ring-opening metathesis polymerisation reactions. The electron 

deficiency of the complex would appear to reduce the rate of activation and possibly 

propagation. The air sensitivity of complex 217 relative to 163 also precludes its practical 

use as a catalyst. 

Unfortunately, it was not possible to prepare Ru(II) alkylidene or benzylidene complexes 

containing succinimidate, maleimidate or phthalimidate ligands, due to decomposition of 

the alkylidene and benzylidene ligands. These results show that anionic ligands with 

relatively low electronegativity result in decomposition of the carbene ligand whereas 

highly electronegative ligands result in deactivation of the complex in catalysis. Tuning of 

the electronic properties of the anionic ligand are clearly paramount to the stability and 

activity of these complexes. 
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3.4. Future Work 

Further investigation of [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)] (217) is required in order to 

develop conditions enabling the activation of the precatalyst, via labilisation of the 

isopropoxy ligand and binding of the alkene reagent, which might be achieved by the use 

of higher temperature. The use of monodentate benzylidene and neutral ligands, such as 2-

bromopyridine, will also aid activation at the expense of complex stability. These 

developments would allow the activity of the catalyst in the propagation steps of RCM and 

ROMP processes to be investigated and the determination of whether inhibited activation 

in electron deficient Ru benzylidene complexes masks high or low propagation activity. 

The air sensitivity of complex 217 relative to the parent dichloride 163 ultimately impairs 

its practicality as a catalyst and so other imidates derived from imides with pKas 

intermediate between tetrafluorosuccinimide and succinimide, such as 1,2-

dibromosuccinimide and other halogenated imides, should be tested. Complexes with one 

electron deficient pseudohalide and one halide ligand have in some cases been found to be 

more active than bis-pseudohalide analogues.43,52 Complexes such as [RuX(�-tfs)(o-iPrO-

CHPh)(IMesH2)] (where X is Br and Cl), which will have increased electron density on 

Ru, may therefore prove more catalytically active. This will require an improved synthetic 

method to prevent the formation of mixtures of products.  

Should these studies produce an effective catalyst then the investigation of imidate 

ligands tethered to solid supports, to produce recyclable catalysts and to reduce Ru 

contamination of metathesis products, should be undertaken. Chiral imidate ligands {such 

as those derived from naturally occurring L-(+)-tartaric acid} could be investigated for the 

preparation of chiral Ru benzylidene complexes for application in enantioselective 

catalysis. 
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3.5. Experimental  

3.5.1. General Details 

All reactions involving ruthenium complexes were carried out using anhydrous, degassed 

solvents under an inert atmosphere, using Schlenk line or dry box techniques. All reactions 

involving silver salts were carried out in the absence of light. Solvents were degassed by 

several freeze-pump-thaw cycles. Dichloromethane, hexane, diethyl ether and toluene were 

dried by passing through a column of activated alumina. Methanol and t-butanol were 

distilled from magnesium alkoxides, acetone was distilled from calcium chloride and 

tetrahydrofuran was distilled from sodium benzophenone ketyl. Infra-red spectra were 

recorded on a Unicam Research Series FT-IR spectrometer. Mass spectrometry was carried 

out using a Bruker Daltronics micrOTOF instrument. 1H, 13C, 19F and 31P NMR spectra 

were collected on a JEOL ECX400 spectrometer operating at 400, 101, 376 and 162 MHz, 

respectively, and referenced to residual solvent signals. 13C NMR signals are singlets 

unless otherwise stated. 1H-NMR kinetic experiments were carried on a Bruker AMX500 

spectrometer operating at 500 MHz. All column chromatography was performed using 

silica-gel (mesh 220-440) purchased from Fluka Chemicals with the solvent systems 

specified within the text. All TLC analysis was performed using Merck 5554 aluminium 

backed silica plates and visualised using UV light (254 nm) or an aqueous solution of 

potassium permanganate. Melting points were measured in open capillary tubes using a 

Stuart SMP3 Digital Melting Point Apparatus and are uncorrected. Ruthenium trichloride 

hydrate was purchased from Precious Metals Online (www.precmet.com.au), 

tetrabutylammonium bromide, methyltriphenylphosphonium bromide, trifluoroacetic acid, 

tert-butylamine, glyoxal and tert-pentylamine were purchased from Alfa Aesar, 

copper(I)chloride was purchased from Fisons, silver(I)oxide was purchased from Strem 

Chemicals Inc.. All other chemicals were purchased from Sigma Aldrich Inc. and used 

without further purification unless otherwise stated. Ag(N-mal),
104
 Ag(N-succ),

105
 Tl(N-

succ),65 AgO2CCF3,
106
 [Ru(N-succ)3(OH2)3]1 and [Ru(N-ptm)3(OH2)3]1 were prepared by the 

reported procedures. 

 

3.5.2. X-Ray crystallography 

Diffraction data were collected at 110 K on a Bruker Smart Apex diffractometer with 

Mo-Kα radiation (λ = 0.71073 Å) using a SMART CCD camera. Diffractometer control, 

data collection and initial unit cell determination was performed using “SMART” (v5.625 
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Bruker-AXS). Frame integration and unit-cell refinement software was carried out with 

“SAINT+” (v6.22, Bruker AXS). Absorption corrections were applied by SADABS 

(v2.03, Sheldrick). Structures were solved by direct methods using SHELXS-97 

(Sheldrick, 1990) and refined by full-matrix least squares using SHELXL-97 (Sheldrick, 

1997). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed 

using a “riding model” and included in the refinement at calculated positions. 

 

3.5.3. Compounds 

[RuCl2(CHPh)(PCy3)2] (162) 

Ru

PCy3

PCy3

Cl

Cl Ph
 

Prepared by a protocol reported by Schwab et al..31 Benzaldehyde tosylhydrazone (0.302 

g, 1.05 mmol, 5 equiv.), potassium methoxide (0.138 g, 1.97 mmol, 9.4 equiv.) and 

triethylene glycol (2 ml) were stirred in vacuo until all methanol was removed. The 

solution was then stirred (62 °C, 45 mins) to give a deep red solution which was poured 

into ice water producing a white precipitate. The red solution was extracted with pentane 

(2 x 5 ml), centrifuged, cold filtered (-40 °C) and the solvent removed in vacuo to give a 

red oil. This was dissolved in dichloromethane (2 ml), cooled to -50 °C and added to a 

solution of [RuCl2(PPh3)3] (197) (196 mg, 204 µmol, 1 equiv.) in dichloromethane (7 ml) 

at -78 °C. The resultant green solution was stirred at room temperature (5 mins). 

Tricyclohexylphosphine (125 mg, 448 µmol, 2.2 equiv.) in dichloromethane (4 ml) was 

added at -78 °C and the solution stirred at room temperature (30 mins) to give a red brown 

solution. The solution was reduced to 2 ml in vacuo and methanol (15 ml) added. The 

resultant purple precipitate was isolated by cannula filtration and washed with methanol (3 

x 1 ml) and acetone (3 x 1 ml) and dried in vacuo to give the title compound as a purple 

powder (99.7 mg, 131 µmol, 64%). 1H NMR (400 MHz, CD2Cl2) δ 20.02 (s, 1H, carbene 

Ru=CHPh), 8.45 (d, J = 7.5 Hz, 2H, phenyl ortho CH), 7.57 (t, J = 7.5 Hz, 1H, phenyl 

para CH), 7.33 (t, J = 7.5 Hz, 2H, phenyl meta CH), 2.60 (m, 2H, Cy CH), 1.68-1.75 (m, 

10H, Cy CH), 1.48-1.40 (m, 6H, Cy CH), 1.25-1.15 (m, Cy CH). 13C NMR (101 MHz, 

CD2Cl2) δ 294.7 (m, carbene Ru=CHPh), 153.2 (phenyl C), 131.2 (phenyl C), 129.5 

(phenyl C), 129.3 (phenyl C), 32.5 (t, J = 9 Hz, PCy3 ipso C), 30.0 (PCy3 meta C), 28.2 (t, 

J = 5 Hz, PCy3 ortho C), 27.0 (PCy3 para C). 31P NMR (162 Mhz, CD2Cl2) δ 36.8 (s, 
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PCy3). ESI+-MS m/z 822.4 (9%, [MH]+), 787.4 (100%, [M-Cl]+), 767.4 (38%), 657.3 

(12%), 615.4 (68%), 593.5 (59%), 509.2 (71%). ESI+-HRMS calcd. for C43H72ClP2Ru 

([M-Cl]+) 787.3844; found 787.3853. No high resolution signal for [MH]+ due to overlap 

of the signal with other peaks. Data in accordance with the literature.31 

 

Benzaldehyde tosylhydrazone 

S

O

O

HN
N

 

Prepared by a protocol reported by Closs and Moss.107 p-Toluenesulfonhydrazide (5.02 

g, 26.9 mmol, 1 equiv.) was dissolved in refluxing methanol (20 ml), cooled to 50 °C and 

benzaldehyde (2.86 g, 26.9 mmol, 1 equiv.) was added. This was stirred at 50 °C (3 mins) 

and then at -70 °C (2 hours). The resultant white precipitate was separated by filtration and 

recrystallised from methanol to yield the title compound as a white powder (5.04 g, 17.5 

mmol, 65%). 1H NMR (270 MHz, CDCl3) δ 8.29 (s, 1H, NH), 7.88 (d, J = 8.3 Hz, 2H, 

aromatic CH), 7.77 (s, 1H, NCHPh), 7.55 (m, 2H, aromatic CH), 7.31 (m, 5H, aromatic 

CH), 2.39 (s, 3H, CH3). 
13C NMR (101 MHz, CDCl3) δ 148.0 (NCH), 144.2 (CSO2), 135.1 

(Aryl C), 133.1 (Aryl C), 130.3 (Aryl C), 129.7 (Aryl C), 128.5 (Aryl C), 127.8 (Aryl C), 

127.3 (Aryl C), 21.5 (CH3). ESI+-MS m/z 297.1 (79%, [MNa]+), 275.1 (100%, [MH]+), 

157.0 (14%, [H3CPhSO2H2]
+). ESI+-HRMS calcd. for C14H15N2O2S ([MH]+) 275.0849; 

found 275.0856. Data in accordance with the literature.107 

 

Tricyclohexylphosphine 

P

 

Prepared by a protocol reported by Issleib and Brack.108 All reagents were distilled and 

degassed prior to use and all operations were carried out under an inert atmosphere. 

Cyclohexylbromide (7.51 ml, 61.5 mmol, 6 equiv.) was gradually added to activated 

magnesium turnings (1.50 g, 61.5 mmol, 6 equiv.) in diethyl ether (20 ml) with cooling. A 

solution of PCl3 (0.890 ml, 10.2 mmol, 1 equiv.) in diethyl ether (5 ml) was added 

dropwise, the solution stirred at room temperature (1 hr) and then refluxed (90 mins) to 

give a white gelatinous precipitate. A solution of ammonium chloride (2.50 g, 47.2 mmol, 
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4.6 equiv.) in water (15 ml) was added. The organic layer was extracted (diethyl ether) and 

reduced in vacuo to give a yellow oil. Carbon disulfide (0.460 ml, 7.65 mmol, 0.75 equiv.) 

was added resulting in a red/brown precipitate. This was separated by filtration, washed 

with hexane (3 x 5ml) and dried in vacuo. The resultant powder was dissolved in methanol 

(6 ml) and refluxed to give a red solution, carbon disulfide and ethanol were removed by 

distillation giving the title compound as a white solid (0.683 g, 2.43 mmol, 24%). 1H NMR 

(400 MHz, CD2Cl2) δ 2.04-1.12 (m, 33H). 31P NMR (162 MHz, CD2Cl2) δ 11.08 (s). 13C 

NMR (101 MHz, CD2Cl2) δ 31.9, 31.6, 31.5, 31.3, 27.9, 27.8. ESI+-MS m/z 297.2 (100%, 

[MHO]+), 281.2 (42%, [MH]+). ESI+-HRMS calcd. for C18H34P ([MH]+) 281.2393; found 

281.2392. Data in accordance with the literature.108 

 

[RuCl2(CH-o-iPrO-C6H4)(IMesH2)] (163) 

Ru
Cl

Cl

O

NN

 

Prepared by a protocol reported by Garber et al..36 [RuCl2(CHPh)(IMesH2)(PCy3)] (160) 

(103 mg, 122 µmol, 1 equiv.) and CuCl (12.1 mg, 122 µmol, 1 equiv.) were mixed in 

dichloromethane (2 ml) under an atmosphere of N2. A solution of 2-isopropoxystyrene 

(20.1 mg, 124 µmol, 1 equiv.) in dichloromethane (2 ml) was added and the mixture 

refluxed (2 hours) to give a green solution. The solution was reduced to dryness in vacuo 

and redissolved in a 1:1 mixture of dichloromethane and hexane (5 ml) and filtered through 

a silica-gel plug, which was washed with dichloromethane. The solution was reduced to 

dryness in vacuo to give the title compound as a green powder (33.7 mg, 53.8 µmol, 44%). 

1H NMR (400 MHz, CDCl3) δ 16.58 (s, 1H, carbene Ru=CH), 7.49 (m, 1H, aromatic CH), 

7.05 (s, 4H, mesityl aromatic CH), 6.92 (dd, J = 7.3 and 1.5 Hz, 1H, aromatic CH), 6.85 

(dd, J = 7.3 and 7.0 Hz, 1H, aromatic CH), 6.78 (d, J = 8.6 Hz, 1H, aromatic CH), 4.91 

{septet, J = 6.3 Hz, 1H, iPr (CH3)2CHOPh}, 4.17 (s, 4H, imidazole CH), 2.48 (s, 12H, 

mesityl ortho CH3), 2.41 (s, 6H, mesityl para CH3), 1.28 {d, J = 5.9 Hz, 6H, iPr 

(CH3)2CHOAr}. 13C NMR (101 MHz, CDCl3) δ 296.9 (benzyl carbene Ru=CH), 211.1 

(mesityl carbene Ru=CN2), 152.0, 145.1, 145.0, 138.4, 129.5, 129.4, 129.0, 122.7, 122.1, 

112.9, 74.5, 51.2, 30.6, 25.8, 21.1. ESI+-MS m/z 592 (14%, [M-Cl]+), 555 (10%), 441 

(19%), 405 (100%). Data in accordance with the literature.36 
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2-Isopropoxystyrene 

O

 

A protocol similar to that reported by Krause et al. was used.46 Methyl 

triphenylphosphonium bromide (3.28 g, 9.18 mmol, 1 equiv.) was suspended in anhydrous 

tetrahydrofuran (15 ml) under an atmosphere of N2. n-Butyl lithium (5.87 ml, 9.17 mmol, 1 

equiv., 1.56 M in hexanes) was added dropwise at 0 °C and stirred (30 mins, 0 °C) to give 

a red solution. 2-Isopropoxybenzaldehyde (1.50 g, 9.15 mmol, 1 equiv.) was dissolved in 

tetrahydrofuran (10 ml, anhydrous) and added dropwise at 0 °C and the solution was 

stirred (r.t., 3 days). Water (2 ml) was added and the solvent reduced to <10 ml in vacuo. 

The product was extracted with diethyl ether (3 x 5 ml), dried (MgSO4), filtered and 

reduced in vacuo. Purification was achieved by column chromatography, eluting with 

petroleum ether (40-60):ethyl acetate 98:2, to give the title compound as a colourless oil 

(0.942 g, 5.81 mmol, 64%). 1H NMR (400 MHz, CDCl3) δ 7.54 (dd, J = 7.7 and 1.8 Hz, 

1H, aromatic CH), 7.24 (m, 1H, aromatic CH), 7.11 (dd, J = 17.8 and 11.2 Hz, 1H, 

H2C=CHPh), 6.93 (m, 2H, aromatic CH), 5.80 (dd, J = 17.8 and 1.6 Hz, 1H, trans-

HHC=CHPh), 5.29 (dd, J = 11.2 and 1.6 Hz, 1H, cis-HHC=CHPh), 4.57 (septet, J = 6.1 

Hz, 1H, iPr CH), 1.40 (d, J = 6.1 Hz, 6H, iPr CH3). 
13C NMR (101 MHz, CDCl3) δ 155.0, 

131.9, 128.6, 127.7, 126.4, 120.5, 114.0, 70.6, 22.1 (1 peak overlapping). EI+-MS m/z 162 

(32%, [M]+), 120 (100%, [M-(CH3)2C]+), 91 (47%), 77 (7%), 65 (12%), 51 (6%), 43 

(10%). EI+-HRMS calcd. for C11H14O ([M]+) 162.1045; found 162.1043. Data in 

accordance with the literature.46 

 

2-Isopropoxybenzaldehyde 

O O

 

A protocol similar to that reported by Krause et al. was used.46 Salicylaldehyde (2.75 ml, 

25.8 mmol, 1 equiv.), tetrabutylammonium bromide (7.69 g, 23.9 mmol, 0.93 equiv.) and 

isopropyl iodide (6.10 ml, 61.2 mmol, 2.37 equiv.) were dissolved in dichloromethane (90 

ml). A solution of sodium hydroxide (1.07 g, 26.8 mmol, 1.04 equiv.) in 50 ml of water 

was added dropwise with vigorous stirring and the yellow solution stirred at room 
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temperature (2 days). The product was extracted with dichloromethane (3 x 20 ml), 

reduced in vacuo and dissolved in ethyl acetate. The solution was filtered, dried over 

Na2SO4, filtered and reduced in vacuo to give the crude product as a yellow oil. 

Purification was achieved by Kugelrohr distillation (100 ˚C, 0.7 mm Hg) to give the title 

compound as a colourless oil (2.15 g, 13.1 mmol, 51%). 1H NMR (400 MHz, CDCl3) δ 

10.47 (s, 1H, aldehyde), 7.80 (dd, J = 7.9 and 1.8 Hz, 1H, aromatic H), 7.49 (ddd, J = 8.4, 

7.3 and 1.8 Hz, 1H, aromatic H), 6.98-6.94 (m, 2H, aromatic H), 4.66 (septet, J = 6.0 Hz, 

1H, isopropyl H), 1.38 (d, J = 6.0 Hz, 6H, ispropyl CH3). 
13C NMR (100 MHz, CDCl3) δ 

190.1, 160.5, 135.7, 128.1, 125.6, 120.3, 113.9, 71.0, 21.9. EI+-MS m/z 164 (9%, [M]+), 

122 (80%), 121 (100%, [M-isopropyl]+), 104 (13%), 93 (10%), 76 (8%), 65 (16%), 51 

(5%). EI+-HRMS calcd. for C10H12O2 ([M]+) 164.0837; found 164.0834. Data in 

accordance with the literature.46 

 

[Ru2(O2CCF3)2(µ-O2CCF3)2(CHPh)2(µ-OH2)(PCy3)2] (169) 

Ru

Ph

ORu

O

C2F5CO2 O O
O2CC2F5

PCy3
O

Cy3P

C2F5

C2F5

Ph

H

H

 

Prepared using a protocol reported by Buchowicz et al..44 [RuCl2(CHPh)(PCy3)2] (162) 

(50.1 mg, 65.9 µmol, 1 equiv.) was dissolved in hexane and cooled to 0 °C. Silver 

trifluoroacetate (29.7 mg, 134 µmol, 2 equiv.) in tetrahydrofuran (2 ml) was added 

dropwise and the solution was stirred (0°C, 30 mins) to give a brown precipitate and green 

solution. The mixture was filtered and the filtrate reduced to dryness in vacuo to give the  

title compound as a green powder (40.8 mg, 28.9 µmol, 88%). 1H NMR (400 MHz, 

CD2Cl2) δ 20.68 (d, J = 5.7 Hz, 2H, carbene Ru=CH), 11.75 (s, 2H, OH2), 8.15 (d, J = 7.5 

Hz, 4H, phenyl ortho CH), 7.76 (t, J = 7.5 Hz, 2H, phenyl para CH), 7.44 (t, J = 7.8, 4H, 

phenyl meta CH), 2.03-0.84 (m, 66H, PCy3). 13C NMR (101 MHz, CD2Cl2) δ 327.1 (d, J = 

16 Hz, carbene Ru=CH), 172.7 (q, J = 38 Hz, O2CCF3), 169.2 (q, J = 38 Hz, O2CCF3), 

158.5 (phenyl ipso C), 134.7 (phenyl CH), 133.4 (phenyl CH), 133.3 (phenyl CH), 116.6 

(q, J = 282 Hz, O2CCF3), 35.04 (PCy3 ipso C), 30.85 (d, J = 9.8Hz, PCy3 CH2), 29.31 

(PCy3 CH2), 26.12 (PCy3 CH2). 
31P NMR (162 MHz, CD2Cl2) δ 43.97 (s, PCy3). 

19F NMR 

(270 MHz, CD2Cl2) δ 75.38 (s, O2CCF3), -76.14 (s, O2CCF3). Data in accordance with the 
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literature.44 

 

[RuCl2(PPh3)3] (197) 

Cl
Ru

PPh3

PPh3

PPh3
Cl

 

Prepared by a protocol reported by Stephenson and Wilkinson.109 Ruthenium trichloride 

trihydrate (196) (0.201 g, 0.769 mmol, 1 equiv.) was dissolved in methanol (40 ml) under 

an atmosphere of N2 and refluxed (5 mins) to give a purple solution. On cooling to ambient 

temperature, triphenylphosphine (1.20 g, 4.58 mmol, 6 equiv.) was added and the solution 

refluxed (3 hours). The resulting brown precipitate was separated by filtration, washed 

with tetrahydrofuran (3  x 5 ml) and dried in vacuo to yield the title compound as a brown 

powder (0.672 g, 0. 701 mmol, 91%). 1H NMR (400 MHz, CD2Cl2) δ 7.65-6.80 (m, 15H, 

PPh3).
 31P NMR (162 MHz, CD2Cl2) δ -4.75 (s, free PPh3), 28.13 {s, Ru2Cl2(PPh3)4}, 

41.73 {br s, RuCl2(PPh3)3}. 13C NMR (101 MHz, CD2Cl2) δ 135.5 (m), 134.0 (m), 133.9, 

132.2 (m), 129.7, 129.0, 128.8 (m), 127.7 (m). ESI+-MS m/z 1095.1 (35%, 

[Ru2Cl3(PPh3)3]
+), 835.2 (30%, [Ru2Cl3(PPh3)2]

+), 661.0 (54%, [RuCl(PPh3)2]
+), 625.1 

(100%, [Ru(PPh3)2]
+), 547.2 (52%, [Ru(PPh3)(PPh2)]

+), 363.1 (42%, [Ru(PPh3)]
+). Data in 

accordance with the literature.110 

 

[Ru(O2CCH3)2PPh3)2] (210) 

O
Ru PPh3

O O
O

PPh3  

Prepared by a protocol reported by Mitchell et al..83 [RuCl2(PPh3)3] (197) (150 mg, 157 

µmol, 1 equiv.) and sodium acetate (130 mg, 1.59 mmol, 10 equiv.) were finely ground 

together using a pestle and mortar and mixed in t-butanol (7.5 ml). The suspension was 

refluxed (1 hr) and the resulting orange precipitate was separated by filtration, washed with 

water (1 x 2 ml), methanol (1 x 2 ml) and diethyl ether (1 x 2 ml) and dried in vacuo to 

give the title compound as an orange powder (20.3 mg, 26.0 µmol, 17%). 1H NMR (400 

MHz, CD2Cl2) δ 7.45 (m, 12H, PPh3 CH), 6.90 (m, 18H, PPh3 CH), 1.38 (s, 6H, CH3). 
13C 

NMR (101 MHz, CD2Cl2) δ 190.7, 137.5 (t, J = 45 Hz), 136.5 (t, J = 5 Hz), 131.6, 129.8 (t, 

J = 5 Hz), 25.4. 31P NMR (162 MHz, CD2Cl2) δ 64.69 (s, PPh3). ESI+-MS m/z 767.1 (19%, 

[MNa]+), 726.1 (100%, [Ru2(PPh3)2]
+), 685.1 (82%, [M-OAc]+), 625.1 (4%). Data in 
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accordance with the literature.83 

 

[RuBr2(PPh3)3] (211) 

Br Ru

PPh3

PPh3
PPh3

Br

 

Prepared by a protocol reported by Stephenson and Wilkinson.109 Ruthenium trichloride 

trihydrate (196) (150 mg, 0.574 mmol, 1 equiv.) and sodium bromide (354 mg, 3.44 mmol, 

6.0 equiv.) were dissolved in dry methanol (2.5 ml) under an atmosphere of N2 and stirred 

(60 ˚C, 10 hours) to give a red solution. On cooling to ambient temperature, dry methanol 

(10 ml) was added followed by triphenylphosphine (692 mg, 2.64 mmol, 4.6 equiv.). The 

solution was refluxed (3 hours) to give a pale yellow solution and brown precipitate. The 

precipitate was filtered under an atmosphere of N2, washed with methanol and dried in 

vacuo to give the title compound as a brown powder (0.409 g, 0.391 mmol, 68%). 1H 

NMR (400 MHz, CD2Cl2) δ 7.32-7.24 (m, 27H, ArH), 7.06-7.00 (app. t, J = 7.5 Hz, 18H, 

ArH). 13C NMR (101 MHz, CD2Cl2) δ 135.6 (m), 129.8 (s), 127.7 (m). 31P NMR (162 

MHz, CD2Cl2) δ  42.5 (v. br s), 27.8 (s). ESI+-MS m/z 987.2 (4%), 980.2 (1%), 919.2 

(4%), 904.2 (1%), 857.2 (13%), 702.1 (1%), 689.1 (1%), 661.1 (5%), 625.1 (3%), 579.2 

(100%), 557.2 (7%). Data in accordance with the literature.109 

 

[RuCl2(CHPh)(IMesH2)(Py)] (213) 

Ru
Cl
Cl

Ph
N

NN

 

Prepared using a protocol reported by Sanford et al..37 [RuCl2(CHPh)(PCy3)(IMesH2)] 

(160) (101 mg, 119 µmol, 1 equiv.) was dissolved in toluene (0.5 ml) and pyridine (1.0 ml, 

12.3 mmol, 103 equiv.) was added. The green solution was stirred (r.t., 10 mins) and added 

to pentane (3 ml, -10 °C) by cannula transfer. The resulting green precipitate was separated 

by filtration, washed with hexane (3 x 5 ml) and dried in vacuo to give the title compound 

as a green powder (52.6 mg, 84.0 µmol, 61%). 1H NMR (400 MHz, C6D6) δ 19.70 (s, 1H, 

carbene Ru=CH), 8.88 (br s, 2H, Py CH), 8.43 (br s, 2H, Py CH), 8.11 (d, J = 7.7 Hz, 2H, 

phenyl CH), 7.18 (t, J = 7.3 Hz, 1H, phenyl CH), 6.93 (t, J = 7.7 Hz, 2H, phenyl CH), 

6.87-6.36 (m, 7H, IMes CH and Py CH), 6.07 (br s, 2H, phenyl CH), 3.41 (br d, J = 16.9 
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Hz, 4H, IMes CH2), 2.82 (br s, 6H, Mes CH3), 2.49 (br s, 6H, Mes CH3), 2.07 (br s, 6H, 

Mes CH3). 
13C NMR (101 Mhz, C6D6) δ 317. 9 (benzyl carbene Ru=CH), 220.8 (IMes 

Ru=CN2), 153.8, 150.9, 139.4, 138.3, 137.7, 135.2, 134.6, 131.1, 129.2, 129.1, 128.3, 

124.9, 52.4, 51.7, 21.5, 21.1, 19.5. ESI+-MS m/z 605.1 (7%), 585.1 (6%), 569.1 (10%, [M-

2Py]+), 509.1 (20%), 495.1 (44%), 453.1 (36%), 435.1 (54%), 423.1 (94%), 405.1 (100%). 

Data in accordance with the literature.37 

 

[RuCl2(CHSPh)(PCy3)2] (214) 

S
Ru

PCy3

PCy3
Cl

Cl
 

Prepared by a protocol reported by Louie and Grubbs.84 [RuCl2(CHPh)(PCy3)2] (162) 

(98.4 mg, 129 µmol, 1 equiv.) was dissolved in dichloromethane (6 ml) and cooled to -20 

°C. Anhydrous phenylvinylsulfide (300 µl, 2.30 mmol, 18 equiv.) was added and the 

solution was stirred (r.t., 30 mins). The red/brown solution was reduced to dryness in 

vacuo and washed with cold methanol (3 x 2 ml) and acetone (3 x 2 ml) to give the title 

compound as a red/brown powder (55.1 mg, 69.6 µmol, 54%). 1H NMR (400 MHz, 

CD2Cl2) δ 17.78 (s, 1H, carbene Ru=CH), 7.40 (m, 5H, phenyl CH), 2.61 (m, 6H, PCy3 

ipso CH), 1.94 (m, 10H, PCy3 CH2), 1.74 (m, 18H, PCy3 CH2), 1.57-1.25 (m, 32H, PCy3 

CH2). 
13C NMR (101 MHz, CD2Cl2) δ 280.4 (t, J = 77 Hz, carbene Ru=CH), 141.6 (Aryl 

C), 129.8 (Aryl C), 129.6 (Aryl C), 128.8 (Aryl C), 32.7 (t, J = 9 Hz, PCy3 ipso C), 30.0 

(PCy3 meta C), 28.1 (t, J = 5 Hz, PCy3 ortho C), 26.9 (PCy3 para C). 31P NMR (162 MHz, 

CD2Cl2) δ 33.26 (s, PCy3). ESI+-MS m/z 860.4 (46%), 819.4 (100%, [M-Cl]+), 757.4 

(90%), 593.5 (64%), 539.1 (17%, [M-PCy3Cl]+). Data in accordance with the literature.84 

 

[RuCl2(CHO(C3H6)CH3)(PCy3)2] (215) 

O
Ru

PCy3

PCy3
Cl

Cl
 

Prepared by a protocol similar to that reported by Schwab et al..31 [RuCl2(CHPh)(PCy3)2] 

(162) (0.101 g, 133 µmol, 1 equiv.) was dissolved in dichloromethane (6 ml) and cooled to 

-20 °C. Anhydrous n-butylvinyl ether (200 µl, 2.58 mmol, 19 equiv.) was added and the 

solution was stirred (r.t., 30 mins). The bright red solution was reduced to dryness in vacuo 

and washed with cold methanol (3 x 2 ml) to give the title compound as an orange powder 
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(68.1 mg, 90.1 µmol, 68%). 1H NMR (400 MHz, C6D6) δ 14.75 (t, J = 1.0 Hz, 1H, 

Ru=CHO), 3.82 (t, J = 6.4 Hz, 2H, OCH2), 2.84 (m, 6H, Cy ipso CH), 2.10 (m, 10H, Cy 

CH2, OCH2C2H4), 1.76-1.64 (m, 32 H, Cy CH2, OCH2C2H4), 1.31-1.22 (m, 22H, Cy CH2, 

OCH2C2H4), 0.79 (t, J = 7.4 Hz, 3H, CH3). 
13C NMR (101 MHz, CD2Cl2) δ 277.6 (t, J = 10 

Hz, carbene Ru=CH), 81.3 (Ru=CHOCH2), 32.1 (t, J = 9 Hz, PCy3 ipso C), 30.3 

(OCH2CH2), 29.9 (PCy3 meta C), 28.3 (t, J = 5 Hz, PCy3 ortho C), 27.0 (PCy3 para C), 

19.3 (CH2CH3), 13.8 (CH2CH3). 
31P NMR (162 MHz, C6D6) δ 35.24 (s, PCy3). ESI+-MS 

m/z 856.5 (43%), 824.4 (100%), 783.4 (21%, [M-Cl]+), 757.4 (25%), 725.3 (84%), 691.4 

(9%).   

 

[RuCl2(CH(CH2)2CH3)(PCy3)2] (216) 

Ru

PCy3

PCy3
Cl

Cl
 

Prepared by a protocol similar to that reported by Schwab et al..31 [RuCl2(CHPh)(PCy3)2] 

(162) (51.2 mg, 61.4 µmol, 1 equiv.) was dissolved in dichloromethane (2 ml) under an 

atmosphere of N2 and cooled to -20 °C. Anhydrous 1-pentene (64.1 mg, 916 µmol, 15 

equiv.) was added and the solution was warmed to ambient temperature over 20 minutes. 

The resulting purple/brown solution was reduced to dryness in vacuo and washed with cold 

(0 °C) methanol (3 x 2 ml) to give the title compound as a purple powder (34.1 mg, 43.2 

µmol, 70%). 1H NMR (400 MHz, CD2Cl2) δ 19.23 (t, J = 5.2 Hz, 1H, carbene Ru=CH),  

2.71 (m, 2H, CHCH2), 2.65-2.40 (m, 6H, Cy ipso CH), 1.83-1.09 (m, 66H, Cy CH2, 

CH2CH3), 1.00 (t, J = 7.4 Hz, 3H, CH3). 
13C NMR (100 MHz, CD2Cl2) δ 320.6 (m, 

carbene Ru=CH), 62.3 (Ru=CHCH2), 32.3 (t, J = 9 Hz, PCy3 ipso C), 30.0 (PCy3 meta C), 

28.4 (t, J = 5 Hz, PCy3 ortho C), 27.1 (PCy3 para C), 21.8 (CH2CH3), 14.3 (CH2CH3). 
31P 

NMR (162 MHz, CD2Cl2) δ 36.20 (s, PCy3). ESI+-MS m/z 1082.5 (5%), 911.7 (18%), 

802.3 (24%), 667.4 (100%), 615.4 (19%). 
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[Ru(�-tfs)2(CH-o-OiPr-C6H4)(IMesH2)] (217) 

Ru

IMesH2

O
N

N

O

OO

O
F
F
F F

F

F

F F

 

Silver(I) oxide (38.6 mg, 166 µmol, 2.0 equiv.) and tetrafluorosuccinimide (55.4 mg, 324 

µmol, 4.0 equiv.) were mixed in tetrahydrofuran (5ml) under an inert atmosphere in the 

absence of light. The mixture was stirred (r.t., 1 hour) and [RuCl2(CH-o-OiPr-

Ph)(IMesH2)] (163) (51.0 mg, 81.3 mmol, 1 equiv.) was added and the mixture stirred (6 

hours, r.t.). The resultant purple solution was reduced in vacuo, redissolved in dry 

dichloromethane and filtered via cannula onto a small column of dried silica-gel under an 

inert atmosphere. The purple product band was eluted with dichloromethane, reduced to 

dryness in vacuo and washed with dry hexane to give the title compound as a purple 

powder (30.1 mg, 33.6 µmol, 41%). 1H NMR (400 MHz, CDCl3) δ 18.24 (s, 1H, carbene 

CH), 7.44-7.37 (m, 2H, ArH), 7.01 (app. t, J = 7.5 Hz, 1H, ArH), 6.92 (s, 4H, mesityl 

ArH), 6.76 (d, J = 8.3 Hz, 1H, ArH), 4.60 (septet, J = 6.3 Hz, 1H, ispropyl CH), 3.97 (s, 

4H, IMesH2 CH2), 2.50 (s, 12H, mesityl ortho CH3), 2.27 (s, 6H, Mes para CH3), 1.13 (d, J 

= 6.3 Hz, 6H, isopropyl CH3). 
13C NMR (101 Mhz, CDCl3) δ 324.0, 202.6, 171.4 (m),111 

154.1, 141.7, 138.8, 136.3, 136.1, 132.7, 129.8, 124.9, 122.7, 113.8, 77.4, 105.1 (tt, J = 

267 and 22 Hz), 52.4, 21.2, 20.9, 18.7. 19F NMR (376 Mhz, CDCl3) δ -126.0 (app. dd, J = 

280 and 59 Hz). IR (solid, cm-1) υmax 2925 (w), 2498 (w), 2160 (m), 2030 (m), 1977 (m), 

1682 (s), 1592 (w), 1481 (m), 1455 (w), 1408 (w), 1288 (m), 1262 (m), 1139 (s), 1061 (s), 

1014 (s), 925 (m), 852 (w), 749 (m), 623 (m). ESI+-MS m/z 919.2 (1%, [MNa]+), 767.2 

(100%, [M-tfs+MeCN]+), 726.2 (48%, [M-tfs]+), 701.2 (6%), 676.1 (2%), 619.1 (1%). 

ESI+-HRMS calcd. for C39H38F8N4NaO5Ru ([MNa]+) 919.1650; found 919.1633. Melting 

point 95˚C decomposes.  
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3.5.4. Crystallographic data 

Table 48. Crystallographic data for 217.229. 

 217.219 

 [Ru(�-tfs)2(o-iPrO-CHPh)(IMesH2)].[Ru(�-
tfs)3(IMesH2)(OH2)2] 

formula C72H68F20N9O13Ru2 

Mr 1849.49 

cryst syst Monoclinic 

space group P2(1)/c 

crystal size/mm3 0.27 x 0.09 x 0.05  

cell constants  

   a(Å) 16.0998(7) 

   b(Å) 17.0984(8) 

   c(Å) 27.1413(12) 

   α(deg) 90.00 

   β(deg) 94.9960(10) 

   γ(deg) 90.00 

V(Å3) 7443.1(6) 

Z 4 

λ(Å) 0.71073 

ρ(calcd)(g/cm3) 1.650  

µ(mm-1) 0.526  

F(000) 3740 

T(K) 110(2) 

2θmax (deg) 56.60 

no. of rflns measd 76376 

no. of indep rflns 18517 

Rint 0.0291 

no. of data/restraints/params 18517 / 0 / 1075 

Goodness-of-fit on F2 1.012 

R indices (all data) R1 = 0.0404, ωR2 = 0.0709 

Final R indices [I>2sigma(I)] R1 = 0.0283, ωR2 = 0.0653 

max, min ∆ρ (e Å-3) +0.533, -0.585 
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Chapter 4: Pd(II) imidate complexes; synthesis and catalytic activity 

 

4.1. Introduction 

4.1.1. Pd imidate complexes 

Relative to Au and Ru complexes, imidate anions including succinimidate, maleimidate, 

tetrafluorosuccinimidate, dibromomaleimidate, phthalimidate, o-benzoic sulfimidate, 

glutarimidate and 1,2,4,5-benzenetetracarboxylic acid diimidate have been widely utilised 

as ligands in Pd(II) complexes. In 1970 Roundhill1 reported trans-[Pd(�-succ)2(PPh3)2] 

and [Pd(η2-Hmal)(PPh3)2] in which the maleimide ligand is coordinated to Pd(0) via the 

olefin. Louey et al.
2 prepared an interesting chloroform soluble binuclear Pd(II) complex 

(234) containing a bridging pentadentate �,�,O,O,S-coordinated ligand and also a 

bidentate �,O-coordinated bridging maleimidate ligand (Figure 49).  
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Figure 49. Binuclear Pd(II) complex (234) containing a bridging �,O-coordinated 

maleimidate ligand reported by Louey. 

 

In the early 1980’s [PdH(�-succ)(PCy3)2] was reported by Yamamoto et al.,3 [Pd(�-

ptm)2(L)]4 (where L is �-(m-tolyl)-�’-benzoylthiocarbamide) and trans-[Pd(�-

ptm)2(pyridine)2]
5 by Sharma et al. and Komorita and Yamada6 prepared a series of 

M2[Pd(�-imidate)4].nH2O and trans-[Pd(�-imidate)2(am)2].nH2O complexes (where M is 

Li+, Na+, K+, Rb+ or Cs+; imidate is succ, mal, ptm or the anion of hydantoin; am is 

ammonia, methylamine or pyridine). Kurosawa et al.
7 found that when complexes of the 

type [Pd(Ar)(allylR)(dppe)] and [Pd(Ar)(η3-allyl)(PPh3)] {Ar is C6F5 or 2,3,5,6-C6HCl4; R 

is H or Me; dppe is 1,2-bis(diphenylphosphino)ethane} were treated with �-

bromosuccinimide (NBS) [PdAr(�-succ)(dppe)] and [Pd(η3-allyl)(�-succ)(PPh3)] 

complexes were formed, respectively.  

234 



 235 

Adams et al.
8 have prepared trans-[Pd(Ph)(�-imidate)(PPh3)2] (where imidate is succ, 

ptm or tfs) and cis-[Pd(Ph)(�-imidate)(dppe)].nCHCl3 (235) (where imidate is succ or ptm) 

complexes from the relevant imides and trans-[PdCl(Ph)(PPh3)2] and cis-[PdCl(Ph)(dppe)] 

(236), respectively (Scheme 62). Tetrafluorosuccinimide reacted anomalously with cis-

[PdCl(Ph)(dppe)] (236), forming cis-[PdCl(�-tfs)(dppe)] (237), possibly by oxidative 

addition of the imide and reductive elimination of benzene via a Pd(IV) intermediate. 

Complexes containing �,O-bridging imidate ligands, [{Pd(o-C6H4CH=NPh)(µ-�,O-

imidate)}2].CH2Cl2 (where imidate is succ or tfs) and [{Pd(o-C6H4CH2NMe2)(µ-�,O-

succ)}2], were also prepared by reaction of imides with [{Pd(o-C6H4CH=NPh)(OAc)}2] 

and [{PdCl(o-C6H4CH2NMe2)}2], respectively.  
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Scheme 62. Divergent reactivity of imides with cis-[PdCl(Ph)(dppe)] (236). 

 

Colquhoun et al.
9 reported an octapalladium box-like structure (238) formed from 

bridging pyromellitimidato (1,2,4,5-benzenetetracarboxylic acid diimidate) ligands 

prepared by reaction of [Pd2(µ-Cl)2(1,2-C6H4NMe2)2] with pyromellitimide and 

triethylamine (Figure 50). More recently they have treated the chloro-bridged dimeric 

complex [Pd{η5-C5H3CH2N(CH3)2Fe(η5-C5H5)}(µ-Cl)]2 with succinimide to yield a 

racemic mixture of the chiral succinimidate bridged analogue [Pd{η5-

C5H3CH2N(CH3)2Fe(η5-C5H5)}(µ-�,O-succ)]2. Treatment of the chloride complex with 

parabanic acid resulted in a homochiral (R,R,R,R,R,R or S,S,S,S,S,S) hexanuclear complex 

(239) in which each parabanato ligand is linked to four Pd atoms by the two N and two O 

atoms. 
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Figure 50. Tetradentate �,�,O,O-coordination of pyromellitimidato and parabanate(2-) 

ligands in Pd(II) complexes (238 and 239) reported by Colquhoun et al.. 

 

Other Pd imidate complexes reported include cis-[Pd(�-succ)2(phen)] and cis-[Pd(�-

succ)2(bipy)] (phen is 1,10-phenanthroline; bipy is 2,2'-bipyridine) prepared by Islam et 

al.,10 trans-K2[PdC12(�-glutarimidate)2].4.5H2O and trans-KNa[PdCl2(�-

glutarimidate)2].6H2O prepared by Michalska et al.
11

 and trans-[PdCl(�-obs)(PPh3)2] by 

Henderson et al..12 Shimomura et al.
13 have prepared trans-[Pd(�-succ)2LL'] complexes (L 

is S-1-phenylethylamine and L' the R or S enantiomer) and found three different staggered 

rotamers around the N-C bond of the phenylethylamine ligand. Aresta et al.
14 found that 

when [PdCl{CONCH2(CH2OCH2)CH2}(L)]  and [PdCl{CON(CH2)4CH2}(L)] (where L is 

phen or bipy) were reacted with �-chlorosuccinimide, complexes of the type [PdCl(�-

succ)(L)] were formed (along with ClC(O)N(CH2)4CH2 and ClC(O)NCH2(CH2OCH2)CH2, 

respectively).  

Palladium(II) imidate complexes have also been applied catalytically in cross-coupling 

reactions particularly by the research groups of Fairlamb, Taylor and Serrano. In 1999 

Serrano et al.
15 reported cis-[PdBr(�-succ)(PPh3)2] and [PdBr(�-succ)(dppe)] complexes 

prepared by reaction of [Pd(DBA)2] {DBA is (E,E)-dibenzylideneacetone} with NBS and 

PPh3 or dppe. Crawforth et al.
16 found [PdBr(�-succ)(PPh3)2]

 to be more efficient than 

other halide and imidate analogues in Stille cross-coupling reactions (Table 1, Chapter 1). 

It is however only efficient at coupling benzyl type halides not aryl halides, which is 

opposite to the normal observed selectivity with Pd(II) complexes.  

Fairlamb et al.
17 found that trans-[Pd(�-succ)2(PPh3)2]

1 was an efficient catalyst for the 

Suzuki cross-coupling of aryl halides and organoboronic acids in air and also showed 

trans-[Pd(�-ptm)2(PPh3)2] (prepared by reaction of phthalimide with [Pd(PPh3)4]) to be an 

active precatalyst for Suzuki–Miyaura cross-coupling of aryl bromides with aryl and 

heteroarylboronic acids.18 

Serrano et al.
19 prepared a range of dinuclear cyclometallated [{Pd(phpy)(µ-�,O-

imidate)}2] and [{Pd(azb)(µ-�,O-imidate)}2] (240) complexes {where phpy is 2-

238 239 
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phenylpyridine; azb is azobenzene; imidate is succ (a), mal (b) or ptm (c)} by treatment of 

the analogous phpy and azb (241) acetate complexes with the relevant imide. The 

succinimidate complexes were then treated with a range of phosphines to prepare 

mononuclear [Pd(phpy)(�-succ)(PR3)] and [Pd(azb)(�-succ)(PR3)] (242) complexes {PR3 

is PPh3, PPh2Me, PPhMe2, P(4-F-C6H4)3 or P(4-MeO-C6H4)3} with monodentate �-ligated 

imidates (Scheme 63).  
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Scheme 63. Preparation of [{Pd(µ-�,O-succ)(azb)}2] (240a) and [Pd(azb)(�-succ)(PR3)] 

(242) complexes reported by Serrano et al.. 

 

Fairlamb and co-workers in collaboration with the research group of Serrano20 prepared 

an analogous range of [{Pd(bzq)(µ-�,O-imidate)}2] complexes (where bzq is 7,8-

benzoquinolyl; imidate is succ, mal or ptm) and treated these and the azb and phpy series 

with phosphines to yield [Pd(L)(�-imidate)(PR3)] type complexes (L is azb, bzq or phpy; 

R is Ph, 4-F-C6H4  or 4-MeO-C6H4). The nature of the imidate was found to influence the 

decomposition temperature and (to some extent) the catalytic activity of the dinuclear and 

mononuclear complexes for the Suzuki–Miyaura cross-coupling reactions of aryl bromides 

with aryl boronic acids, and the Sonogashira reactions of aryl halides with phenyl 

acetylene {in the presence and absence of Cu(I) salts}. It was also demonstrated that these 

catalysts could be recycled several times without loss of activity in a poly(ethylene 

oxide)/methanol solvent system after removal of non-polar material and products by 

extraction.  

The groups21 also reported analogous series of [{Pd(µ-�,O-imidate)(phox)}2] and [Pd(�-

imidate)(phox)(PR3)] complexes {imidate is succ, mal, ptm, 2,3-dibromomaleimidate or 
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glutarimidate; phox is  2-(2-oxazolinyl)phenyl; R is Ph, 4-F–C6H4 or CH2CH2CN} (from 

[{Pd(µ-OH)(phox)}2]) which showed promising activity in Suzuki–Miyaura cross-

coupling reactions of aryl bromides with aryl boronic acids. 

[NBu4]2[Pd2{C4(COOMe)4}2(µ-�,O-imidate)2] (243) and [NBu4][Pd{C4(COOMe)4}(�-

imidate)L] complexes {imidate is succ (a), mal (b) and ptm (c); L is PPh3, P(4-F-C6H4)3, 

PBu3, Py, 4-MeC6H4NH2 and THT (tetrahydrothiophene)} were prepared in a similar way 

from [NBu4]2[Pd2{C4(COOMe)4}2(µ-OH2)2].
22 The complexes were tested for catalytic 

activity in the cross-coupling of benzyl bromide (11) with ethyl (Z)-3-

(tributylstannyl)propenoate (12). The dinuclear imidate complexes had modest activity but 

were found to be more active than chloro, bromo and hydroxy analogues. The 

mononuclear complexes were very effective, in particular [NBu4][Pd{C4(COOMe)4}(�-

succ)(Py)], [NBu4][Pd{C4(COOMe)4}(�-succ)(THT)] and [NBu4][Pd{C4(COOMe)4}(�-

ptm)(THT)], with succinimidate generally superior to maleimidate and phthalimidate and 

the previously reported [PdBr(�-succ)(PPh3)2] complex. Complexes containing THT 

ligands were more active than pyridine and phosphine analogues. 
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Figure 51. Structure of [NBu4]2[Pd2{C4(COOMe)4}2(µ-�,O-succ)2] (243a) reported by 

Serrano et al.. 

 
Ruiz et al.

23 have prepared [Pd(C6F5)(�-imidate)(N–N)] complexes {N–N is 2,2'-

bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me2bipy) or �,�,�',�'-

tetramethylethylenediamine (tmeda); imidate is succ, mal or ptm}, such as [Pd(C6F5)(�-

succ)(bipy)] (244a), from the analogous hydroxy complexes. [NBu4][Pd(C6F5)(�-

succ)2(H2O)] and [NBu4][Pd(C6F5)(�-succ)2(L)] (245) were prepared by reaction of 

[NBu4]2[{PdBr(µ-Br)(C6F5)}2] and [{Pd(C6F5)(µ-Cl)(L)}2] {L is PPh3 (a) and tBuNC} with 

succinimide and [NBu4]OH (Figure 52). The complexes were found to be moderately 
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active for the Suzuki cross-coupling of aryl bromides and chlorides with phenylboronic 

acid, and activity was also dependant on the nature of the imidate ligand.  
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Figure 52. [Pd(C6F5)(�-succ)(bipy)] (244a) and [NBu4].cis-[Pd(C6F5)(�-succ)2(PPh3)] 

(245a) reported by Ruiz et al.. 

 

More recently Kumar et al.
24 reported that the air stable and water soluble complex 

[Pd2(µ-Cl)2(�-obs)2] (246) showed high activity and turnover numbers in Suzuki, Heck 

and Sonogashira reactions (Figure 53). For example, a 0.00025 mol% catalyst loading for 

the Heck coupling of 4-bromoanisole with styrene in water gave a 93% yield and turnover 

number of 372000 compared to 71% yield and a TON of 1,420 for Pd(OAc)2 (247). 
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Figure 53. [Pd2(µ-Cl)2(�-obs)2] (246) reported by Kumar et al.. 

 

Whitfield and Sanford25 have reported a unique Pd(IV) imidate complex, [PdCl(�-

succ)(2-phenylpyridine)2] (248), formed by reaction of [Pd(2-phenylpyridine)2] (249) and 

�-chlorosuccinimide (NCS) (Scheme 64). They propose this as a possible intermediate in 

the Pd-catalysed conversion of arene C-H bonds into carbon-halogen bonds by �-

halosuccinimides26 (and also PhICl2) suggesting a Pd(II)/Pd(IV) catalytic cycle. Heating of 

the complexes led to reductive elimination, forming Pd(II).  
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Scheme 64. Preparation of [PdCl(�-succ)(2-phenylpyridine)2] (248) by Whitfield and 

Sanford. 

 
4.1.2. Pd-catalysed direct arylation 

Since direct arylation was first observed in the 1980’s as an unexpected side reaction in 

attempted Mizoroki-Heck reactions by Ames and Bull,27 substantial research into direct 

arylation, the carbon-carbon coupling of an aryl(pseudo)halide with an unactivated arene, 

has led to the development of efficient procedures for the preparation of a range substituted 

arenes typically using low oxidation state complexes of Rh, Ru and Pd. It has however 

only been in the past decade that the true potential of direct arylation has been investigated 

and exploited.28 It has the advantage over cross-coupling methodologies of not requiring 

the prefunctionalisation of one coupling partner as an organometallic compound. This 

results in a shorter, cheaper and greener synthetic route with good atom economy and 

reduced metal usage. However, there are significant challenges; the high energy of aryl C-

H bonds, selectivity (as there tend to be many aryl C-H bonds in aromatic compounds) and 

the fact that the C-H bond is typically one of the least reactive functional groups in a 

molecule.28 

Direct arylation has been used to form the biaryl motifs of many natural products and 

biomolecules, particularly via the ‘lactone method’29 (an ester linkage is used to join the 

coupling partners which are coupled intramolecularly to form a lactone which can then be 

hydrolysed to give a biaryl motif).28b For example, Bringmann et al.
30 have prepared the 

5,8'-coupled naphthylisoquinoline alkaloids, korupensamines (250), which have 

antimalarial properties (and are precursors to anti-HIV1 homo- and hetero-dimeric 

naphthylisoquinolines), using direct arylation to furnish a lactone (251) from aryl bromide 

252 as a key step. One atropisomer of the configurationally unstable lactone is 

subsequently selectively cleaved. The Herrmann-Beller31 catalyst (253) gave a 74% yield 

whereas a combination of Pd(OAc)2 (247) and PPh3 gave only 26% demonstrating the 

benefits of catalyst design (Scheme 65). 
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Scheme 65. Key direct arylation step in the synthesis of korupensamines A (250a) and B 

(250b) using the Herrmann-Beller catalyst (253) as reported by Bringmann et al.. 

 

4.1.3. Direct arylation of heterocycles  

The direct arylation of heteroarenes with aryl halides has been a significant area of 

research, due to their prevalence in natural and biologically active molecules. Many 

different heterocycles, such as thiazoles, oxazoles, pyrimides, pyridines, imidazoles, 

benzimidazoles and quinolines, have been arylated in this way. An example is that of 

Gaunthier et al. who used direct arylation methodology to prepare a range of GABAA 

agonist candidates.32 These included the direct arylation of an imidazo[1,2-a]pyrimidine 

(254) with a biaryl bromide (255) as a key step in the synthesis of a R2/3-selective GABAA 

agonist (256) (Scheme 66).33 Interestingly, water (<5 mol%) aided the reaction. 
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Scheme 66. Direct arylation of an imidazo[1,2-a]pyrimidine (254) with a biaryl bromide 

(255) in the synthesis of an R2/3-selective GABAA agonist (256) reported by Gaunthier. 
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Heteroaromatic compounds facilitate arylation, as certain C-H bonds are activated in 

preference to others, allowing control over regioselectivity and negating the need for 

tethers or directing groups commonly required for non heteroatom-containing systems. 

Regioselectivity is also determined by the substrate type, catalyst (electronics and sterics), 

solvent and additives.28c The N-substituent of N-heterocycles can also effect selectivity, 

which has been observed by Akita et al. who found that unsubstituted and alkyl substituted 

indoles were arylated at C2 where as tosylate substituted indoles were arylated at C3.34 

Imidazoles are an important class of heterocycles, due to their prevalence in nature, and 

their arylation has been well studied. The molecule has challenges of C5 versus C2 

selectivity as well as competition from the nitrogen. The group of Miura35 carried out 

initial investigation of the direct arylation of 1,2-dimethylimidazole using Pd(OAc)2 (247) 

and developed optimised conditions (DMF solvent at 140 ˚C) with K2CO3 base for aryl 

bromides and Cs2CO3 for iodides. This system worked well for the C5 arylation of 

imidazoles and other heterocycles using both electron rich and poor, as well as sterically 

hindered, aryl halides. They also found that using a CuI additive gave increased yields in 

some cases (particularly with sulfur heterocycles). With �-methyl imidazole arylation 

occurred preferentially at C5 followed by C2, in the presence of CuI and Pd C2 arylation 

was increased and in the absence of Pd it occurred at C2 exclusively (although in low 

yields) possibly via a Cu(I)/base nucleophilic substitution of the aryl iodide.36 The group of 

Sames37 also investigated arylation of �-substituted imidazoles {for example  [2-

(trimethylsilyl)ethoxy]methyl (SEM) substitution} using a bulky NHC palladium catalyst 

achieving modest yields but high C5 selectivity.  

Bellina et al.
38 developed conditions for the arylation of �-aryl substituted imidazoles {5 

mol% Pd(OAc)2 (247), with AsPh3 ligand and CsF base additives, in DMF at 140 ˚C} 

which gave reasonable yields for neutral and electron rich substituents but did not proceed 

for electron poor substituents. For the arylation of 1-phenyl-1H-imidazole (257) with 4-

iodoanisole (258a), they observed good C5 (259c) selectivity with some C2 arylation 

(259a) and C2,C5 diarylation (259b) (Entry 1, Table 49). They also observed that added 

CuI increased selectivity for C2 (259a) and optimised the conditions to give high C2 

(259a) selectivity, in some cases exclusively (although with moderate yields) (Entries 2-

4).39 Bellina et al.
40 also managed to develop conditions for selective C2 arylation of 

unprotected imidazoles (oxazoles, thiazoles, benzimidazoles and indoles) with aryl iodides 

without the need for added base or donor ligands in reasonable yields. These conditions 
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also worked well for substituted imidazoles (1-alkyl, 5-aryl and 1,4-diaryl imidazoles), 

thiazole, oxazole, benzimidazole and benzothiazole (Entry 5).41 These conditions have 

been utilised by Besselièvre et al.
42 with microwave heating to C2 arylate oxazole with less 

reactive aryl bromides. Huang et al.
43 have managed to modify the Pd/Cu system in order 

to use low catalyst loadings and catalytic Cu(I) (0.25% Pd and 1 mol% [CuI(Xantphos)] at 

100 ˚C for 18 hours in toluene) for the efficient arylation of benzothiazoles and 

benzoxazole, although yields were moderate for �-methyl benzimidazole. 

 

Table 49. Effect of additives on the outcome of the direct arylation of 1-phenyl-1H-

imidazole (257) with 4-iodoanisole (258a).a 

Pd(OAc)2, AsPh3, CuI, CsFN

N

ArI
N

N
Ar

N

N

N

N
Ar

Ar Ar+ + +
DMF, 140 oC

 

 

 Loading Ratio of products Yield (%) 

Entry Pd(OAc)2 

(mol%) 

AsPh3 

(equiv.) 

CuI  

(equiv.) 

CsF 

(equiv.) 

C2 

(259a) 

C2, C5 

(259b) 

C5 

(259c) 

C2 

(259a) 

C5 

(259c) 

1b 5 10 - 2 5 0 95 - 49 

2c 10 - 0.5 2 35 0 65 11  - 

3c 5 - 2 2 81 18 1 62  - 

4c - - 2 2 100 0 0 26d - 

5e 5 - 2 - 100 - - 70  - 
a Conditions: 1 equiv. 1-phenyl-1H-imidazole (257) in 0.2 M DMF at 140 ˚C, 2 equiv. 4-iodoanisole (258a). 

b 42 hours reaction time. c 48 hours reaction time. d 44% conversion. e 26 hours reaction time. 

 

Another solution to the problem of C2, C5 selectivity in the arylation of imidazoles has 

been developed by Kondo et al.
44 by immobilisation of the aryl iodide on a polymer resin 

which prevents diarylation. Complete selectivity for C2 or C5 could then be achieved by 

the presence or absence or CuI, respectively. 

The Pd/Cu methodology has been applied to the C8 arylation of nucleosides by the 

Hocek and Fairlamb groups. Hocek developed conditions for the direct arylation of 

purines45 and adapted the technology to C8 arylation of adenosines.46 The Fairlamb group 

257 C2 259a 

258a 

C5 259c C2, C5 259b 

Ar is 4-methoxyphenyl 
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have also studied C8 arylation of adenosines and 2'-deoxyadenosines (260) in depth to 

prepare fluorescent biological probes,47 developing efficient conditions for lower 

temperature direct arylation. They found that on lowering the temperature from 120 ˚C to 

80 ˚C the reaction yield was variable, determining that trace Me2NH48 (from DMF 

decomposition) was required, the concentration of which was affected by reaction 

temperature and solvent purification conditions.49 Other secondary amines such as 

piperidine (0.4 equivalents) had the same effect (Scheme 67).  
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Scheme 67. Conditions for the direct arylation of 2'-deoxyadenosine (260) with 

iodobenzene (261) developed by Storr et al.. 

 

4.1.4. Direct arylation mechanisms 

The typical Pd-catalysed C5 arylation and the C2 Cu/Pd mediated arylation of imidazole 

are believed to occur via separate mechanisms. The first step of the Pd-catalysed 

mechanism is reduction of the usual Pd(OAc)2 precatalyst (247) to the Pd(0) active catalyst 

(by DMF or phosphine) which is ligated by neutral ligands (typically phosphine) (Step I, 

Scheme 68). The aryl halide oxidatively adds to the Pd(0) species (Step II), forming a 

Pd(II) species, which then adds to the imidazole at the C5 position by electrophilic attack 

with loss of the halide ligand (Step III). Loss of a proton neutralises the resultant 

carbocation and restores the aromaticity (Step IV), followed by reductive elimination to 

yield the C5 arylated imidazole and regenerate the Pd(0) catalyst (Step V).35 

The copper-mediated C2 arylation also proceeds by initial oxidative addition of the aryl 

halide to the Pd(0) species (Step II), however transmetallation with an organo-C2-cuprate 

formed from imidazole and CuI then occurs (Step VI). Deprotonation (Step VII) followed 

by reductive elimination then gives the C2 arylated imidazole and regenerates the active 

Pd(0) species (Step VIII).39
 The reaction rate is greater with electron withdrawing N-

substituents which provides evidence for organocuprate formation due to the increased 

261 260 
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acidity of the C2 proton. Lowering CuI or increasing Pd loading reduces selectivity 

suggesting the organocuprate is in equilibrium with free CuI and imidazole. 
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Scheme 68. Proposed mechanisms for the Pd mediated C5 arylation and Pd/Cu mediated 

C2 arylation of imidazole. 

 

Although electrophilic aromatic substitution (SEAr) is thought to occur in the Pd 

catalysed C5 arylation, a number of other mechanisms28,50 have been proposed for the 

functionalisation of the C-H bonds in direct arylation reactions including; a concerted SE3 

process,51 σ-bond metathesis (concerted metallation/deprotonation),52 Heck-type 

carbometallation53 and oxidative addition,54 depending on the conditions and substrates 

involved (Scheme 69).28c,55 
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Scheme 69. Possible mechanisms for the functionalisation of C-H bonds in direct arylation 

reactions. 

 

4.1.5. Anion effects in direct arylation reactions 

As described above direct arylation is believed to occur via a Pd(0)/Pd(II) mechanism 

with a Pd(II) complex acting as a stable precatalyst to the active Pd(0) species, the nature 

of the Pd(II) anionic ligands will affect the rate of reduction to and the stability of the 

Pd(0) species. Fagnou found that, when using [{PdCl2(IMes)}2] to carry out intramolecular 

coupling of arenes with pendant aryl chlorides, initiation of this dimeric catalyst was very 

slow and irreproducible. However, when silver acetate was added the reaction proceeded 

well and reproducibly with a similar TON to [Pd(OAc)2(IMes)(OH2)].
56 The further 

involvement of anionic species in the reaction has also been proposed in a number of cases. 

There have been a number of reports of the addition of pivalic acid as a co-catalyst57 or 

CsOPiv as a base54a,58 aiding direct arylation reactions. The pivalate anion is suspected to 

coordinate to the ArPd(II)X species (after oxidative addition) in place of the halide.59 It 

then acts as a proton shuttle in concerted metallation/deprotonation (σ-bond metathesis)52 

of the C-H arene, after which normal reductive elimination occurs and the pivalate anion is 

regenerated via deprotonation by the added base. The O,O-chelation of the pivalate anion 

also increases the regioselectivity of the arylation. Fagnou has also utilised the pivalic acid 

system to arylate nitrobenzene using substoichiometric pivalic acid {30 mol% and 15 

mol% HP(tBu)3BF4}.60 He also used similar methodology to carry out arylation of 
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unactivated arenes, such as benzene, with arylbromides,55 and the room temperature direct 

arylation of azole N-oxides.61 Larrosa used a p-nitrobenzoic acid/silver(I) oxide base 

combination for the room temperature direct C2 arylation of indoles.62 

Pd(II)/Pd(IV) catalytic cycles63 which intrinsically involve anionic ligands have also 

been proposed in some direct arylation reactions. Sanford reported the direct arylation of 2-

aryl pyridines using [Ph2I][BF4] for which mechanistic studies suggested a II/IV cycle.64 

Sanford also reported the C2 arylation of indoles at ambient temperature using this method. 

The mechanism is proposed to occur via electrophilic palladation of the indole C2 position 

by Pd(OAc)2, followed by oxidative addition of the aryl iodide ([Ar2I][BF4]) to the Pd(II) 

species.65 Daugulis et al. used a silver acetate (2.2 equiv.) additive and trifluoroacetic acid 

solvent combination to carry out the direct arylation of aniline,66 benzylamine,67 pyridine 

and pyrazole68 using aryl iodides, competition experiments suggested a II/IV mechanism.66  

Amatore and Jutand69 have proposed an ionic Pd(0)/Pd(II) cycle operating in addition to 

the usual neutral cycle in Pd-catalysed cross-coupling reactions, which may also be 

relevant to direct arylation reactions (Scheme 70). This involves tricoordinate anionic 

Pd(0) complexes, such as [Pd(0)Cl(PR3)2]
- and [Pd(0)(OAc)(PR3)2]

- (262), in which the 

anion directly effects the kinetics of oxidative addition of ArI and the reactivity of the 

resultant Pd(II) species, [Pd(Ar)I(Cl)(PR3)2]
- and [Pd(Ar)I(OAc)(PR3)2]

- (263).  
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Scheme 70. Anionic Pd(0)/Pd(II) cycle proposed by Amatore and Jutand. 

 

 
Additionally, the group of Jutand70 has found that [Pd(0)(PPh3)2] in the presence of 

chloride ions actually consists of a dynamic equilibrium of anionic species; 

[{Pd(0)C1(PPh3)2}2]
2-, [Pd(0)C1(PPh3)2]

- and [Pd(0)C12(PPh3)2]
2- by the use of 31P NMR 

263 262 
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spectroscopy and electrochemistry. The presence of the chloride ions stabilises the Pd(0) 

species although the rate of oxidative addition is reduced. Amatore et al.
71 also 

investigated these effects using acetate and trifluoroacetate ions with the support of DFT 

calculations. Pd(O2CCF3)2 was found to be reduced to [Pd(0)(O2CCF3)(PAr3)n]
- (n = 2 or 

3) species in the presence of triarylphosphines and [Pd(0)(O2CCF3)(PAr3)2]
- was found to 

be the active species for oxidative addition of iodobenzene to give trans-

[Pd(Ph)(O2CCF3)(PPh3)2] and trans-[Pd(Ph)(DMF)(PPh3)2]
+ in equilibrium. It was found 

that the rate of formation of [Pd(0)(O2CCX3)(PAr3)2]
- from Pd(O2CCX3)2 and its reactivity 

towards PhI is higher for triflouroacetate (X=F) than acetate (X=H). The equilibrium 

constant of trans-[Pd(OCOCX3)(Ph)(PPh3)2] and trans-[Pd(Ph)(DMF)(PPh3)2]
+ is also 

influenced by the nature of X. 

 

4.1.6. Aims 

The aim of this study was to investigate the structure and bonding of Pd(II) bisimidate 

complexes, containing acetonitrile, tetrahydrothiophene and triphenylphosphine ligands, of 

the type [Pd(L)2(imidate)2]. These complexes would then be applied to the direct arylation 

of imidazole using the ligand and base free conditions of Bellina et al.
40 and the effect of 

the nature of the imidate and neutral ligands investigated. Through the investigation of the 

effect of the nature of the anionic ligand it was hoped that some details of the mechanism 

of the reaction under these unusual conditions could be elucidated. 
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4.2. Results and discussion 

4.2.1. Synthesis and characterisation of Pd complexes 

4.2.1.1. Synthesis of [Pd(imidate)2(L)2] complexes 

A range of palladium imidate complexes were prepared on the basis of results obtained 

previously within the group, those of collaborators and literature reports.5,10 Initially 

complexes of the type [Pd(imidate)2(MeCN)2] (264) {imidate is succ (264a), tfs (264b), 

mal (264c), ptm (264d) and obs (264e)} were prepared. These were synthesised by stirring 

Pd(OAc)2 (247) and two equivalents of the relevant imide in acetonitrile overnight at 

ambient temperature, which resulted in the precipitation of the desired complexes. In the 

case of the tfs complex (264b) precipitation did not occur spontaneously and diethyl ether 

was added to the reaction solution resulting in precipitation. Purification was achieved by 

washing of the crude powders with acetonitrile, petroleum ether (40-60) and diethyl ether. 

The products were isolated as off-white powders, in 43-84% yield (Table 50), which 

proved to have very low solubility in all solvents, preventing crystallisation and effective 

analysis by solution phase spectroscopy, other than ESI-MS, and so solid-state IR and 

solid-state 13C NMR spectra were obtained.  

Tetrahydrothiophene (THT) complexes (265) of the type [Pd(imidate)2(THT)2] {imidate 

is succ (265a), ptm (265b) and obs (265c)} were prepared by treatment of the analogous 

acetonitrile complexes (264) with 2 equivalents of THT in ethanol. These were prepared on 

the basis of results reported by Serrano et al..22 Stirring the solutions overnight at ambient 

temperature again resulted in precipitation of the desired complexes. The products were 

isolated as off-white powders, in 52-87% yield (Table 50), which had moderate solubility 

in chloroform allowing solution phase 1H and 13C NMR spectra to be obtained (although 

signals were broad in 1H and weak in 13C NMR spectra) in addition to IR and ESI-MS 

spectra.  

[Pd(imidate)2(PPh3)2] (266) complexes {imidate is succ (266a), mal (266b), ptm (266c) 

and obs (266d)} were obtained to allow comparison with reported complexes and to aid in 

the analysis of MeCN (264) and THT (265) analogues. The compounds were prepared by 

treatment of the analogous acetonitrile complexes (264) with 2 equivalents of phosphine at 

ambient temperature in CDCl3. These complexes were not isolated but analysed directly by 
1H and 13C NMR, IR spectroscopy and ESI-MS. The tfs complex however could not be 

prepared, as no reaction with phosphine was observed under a range of conditions. The 
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complexes are predicted to have trans geometry with �-ligated imidate ligands on the basis 

of reported similar [Pd(�-imidate)2L2] complexes.1,4,5,17 

 

Table 50. Isolated yields of [Pd(imidate)2(MeCN)2] and [Pd(imidate)2(THT)2] complexes. 

Entry Complex  Yield (%) 

1 [Pd(succ)2(MeCN)2] (264a) 58 

2 [Pd(tfs)2(MeCN)2] (264b) 43 

3 [Pd(mal)2(MeCN)2] (264c) 64 

4 [Pd(ptm)2(MeCN)2] (264d) 66 

5 [Pd(obs)2(MeCN)2] (264e) 84 

6 [Pd(succ)2(THT)2] (265a) 87 

7 [Pd(ptm)2(THT)2] (265b) 52 

8 [Pd(obs)2(THT)2] (265c) 86 

 

 

4.2.1.2. Characterisation by :MR spectroscopy 

The acetonitrile complexes (264) were analysed by solid state 13C NMR and the THT 

(265) and PPh3 (266) complexes by CDCl3 solution phase 1H and 13C NMR spectroscopy 

(Table 51), although 13C NMR has been infrequently used12,19,24,25 as a method to 

characterise the many reported palladium imidate complexes.  

Solid-state 13C NMR proved to be a reliable method for analysis of the essentially 

insoluble [Pd(imidate)2(MeCN)2] complexes (264), as analysis of the spectra revealed only 

signals corresponding to the predicted structures. All complexes had a signal between 

125.0-127.5 ppm corresponding to the CN carbon of the acetonitrile ligand and at 1.0-5.3 

ppm for the methyl carbon (Table 51). The succinimidate complex (264a) has a large 

signal at 2.7 and a smaller peak at 1.0 ppm for the methyl carbon which are significantly 

upfield of the other imidate complexes (4.5-5.3 ppm) which have only one signal 

corresponding to the methyl carbon (an upfield shift would be expected as the 

succinimidate complex is the most electron rich). The additional peak at 1.0 ppm may 

correspond to a different polymorph or environment in a [Pd(succ)2(MeCN)2] type 

complex or could be due to acetonitrile ligated to residual acetate complex. There does not 
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appear to be a clear pattern in the relative order of the acetonitrile peaks as the peaks are 

broad and generally similar in chemical shift.  

The imidate carbonyl signals appear at 164.8-194.4 ppm for the MeCN complexes (264), 

166.2-188.1 ppm for the THT complexes (265) (in CDCl3) and 164.3-186.5 ppm for the 

PPh3 complexes (266) (in CDCl3). For each series of complexes the carbonyl carbon 

signals are in the order: 

succ > mal > ptm > tfs > obs 

This is consistent with Au(I) (55-57) and Au(III) (66-68) imidate complexes (Chapter 2) 

and reflects the increasing acidity of the parent imide {with the exception of obs, which 

does not share the same N(COR)2 structure}. 

In each case, with the exception of the obs complexes, the MeCN signals of complexes 

264 occur down field relative to THT (265) and PPh3 (266) analogues {and related Au(I) 

(55-57) and (III) (66-68) imidate complexes}, which may be an effect of the different 

media. The signals of the THT complexes (265) are more upfield than those of the PPh3 

complexes (264) by 1.4-1.9 ppm reflecting the weaker donor ability of acetonitrile and 

THT ligands relative to PPh3 (sterics may also be a factor). This is also largely true for the 

other imidate carbon signals. 

The 13C NMR spectra of the mal (264c) (2 CO signals and multiple C=C signals), succ 

(264a) (3 CO and 2 CH3 signals) and tfs (264b) (2 CO signals) acetonitrile complexes have 

more signals than would be expected for single symmetric [Pd(imidate)2(MeCN)2] 

structures. For the maleimidate complex (264c) infra-red spectroscopy (vide infra) 

suggests that the imidate ligands are bidentate �,O-coordinated to Pd. The two carbonyl 

carbon signals at 186.4 and 181.8 ppm and the broad mulitplet for the imidate CH carbons 

are consistent with this type of coordination.19 The chemical shifts of the three carbonyl 

carbon signals in the succinimidate (264a) spectrum appear to be consistent with a mixture 

of (or an equilibrium between) monodentate �- and bidentate �,O-coordination, although 

there is no evidence of this in the infra-red spectrum. There is only one broad signal for the 

imidate CH2 carbons (for �,O-coordination only a small change in chemical shift would be 

expected for the two carbons, relative to �-coordination).  

The phthalimidate complex (264d) has only a single carbonyl and single methyl carbon 

signal but twice as many aromatic signals as would be expected (the signals have very 

similar chemical shifts) which is not consistent with bidentate �,O-binding (as confirmed 
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by the infra-red spectrum). There is also an additional broad signal at the base of the 

carbonyl carbon signal which may correspond to the extra aromatic peaks. The extra 

signals may be from an asymmetric structure, the different environments in a oligomeric or 

cluster structure, impurities such as uncoordinated ligands, residual free or coordinated 

acetate or different crystalline polymorphs or amorphous material of the same complex. 

The spectrum of the obs complex (264e) contains comparatively sharp signals suggesting a 

symmetric complex with a crystalline structure.  

The tfs complex (264b) has a spectrum containing two carbonyl carbon peaks with 

similar chemical shifts (169.4 and 168.4 ppm) which is not consistent with �,O-bidentate 

binding (as confirmed by the infra-red spectrum) and there is only one signal for each 

MeCN carbon. The imidate CF2 carbon signal is a broad multiplet, which is consistent with 

some C-F coupling. 

 

Table 51. 13C NMR carbon signals of [Pd(imidate)2(L)2] complexes. 

Entry 
13

C :MR chemical shift (ppm) 

 Imidate ligand :CCH3 ligand 

 

Complex 

C=O :C CH3 

1 [Pd(succ)2(MeCN)2]
a (264a) 194.4, 189.9, 188.6 125.4 2.7, 1.0 

2 [Pd(tfs)2(MeCN)2]
a (264b) 169.4, 168.4 125.0 4.5 

3 [Pd(mal)2(MeCN)2]
a (264c)  186.4, 181.8 126.0 4.9 

4 [Pd(ptm)2(MeCN)2]
a (264d)  178.4 125.8 4.3 

5 [Pd(obs)2(MeCN)2]
a (264e) 164.8 127.5  5.3 

6 [Pd(succ)2(THT)2]
b (265a)  188.1   

7 [Pd(ptm)2(THT)2]
b (265b)  178.3   

8 [Pd(obs)2(THT)2]
b (265c)  166.2   

9 [Pd(succ)2(PPh3)2]
b (266a) 186.5   

10 [Pd(mal)2(PPh3)2]
b (266b) 179.9   

11 [Pd(ptm)2(PPh3)2]
b (266c) 176.9   

12 [Pd(obs)2(PPh3)2]
b (266d) 164.3   

a Solid state NMR (101 MHz). b CDCl3 solution NMR (101 MHz). 
 

31P NMR spectroscopic analysis of the [Pd(imidate)2(PPh3)2] complexes (266) gave a 

single PPh3 signal for each complex at 19.3-21.8 ppm (Table 52).  
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Table 52. 
31P NMR chemical shift of PPh3 ligands in [Pd(imidate)2(PPh3)2] (266) 

complexes.  

Entry Complex 
31

P :MR chemical 

shift (ppm)
a
 

1 [Pd(succ)2(PPh3)2] (266a) 19.9 

2 [Pd(mal)2(PPh3)2] (266b) 19.3 

3 [Pd(ptm)2(PPh3)2] (266c) 19.8 

4 [Pd(obs)2(PPh3)2] (266d) 21.8 
a In CDCl3 solution (109 MHz). 

 

The mal (266b) and ptm (266c) complexes have the most upfield signals (19.3 and 19.8 

ppm, respectively) which is surprising as the parent imides are more acidic than 

succinimide (266a)  (19.9 ppm). This is however consistent with other reported series of 

palladium imidate complexes, such as, [NBu4][Pd{C4(COOMe)4}(imidate)(PPh3)] (267) 

(Table 53) and [Pd(imidate)(phox)(PPh3)] (268), and the reported chemical shifts for the 

succ (266a) and ptm (266c) complexes (20.4 and 20.0 ppm, respectively, in CDCl3 

solution). The electron deficient obs complex (266d) has the most downfield signal (21.8 

ppm). The chemical shifts of these complexes are lower than those reported for related 

Pd(II) imidate complexes, such as, [PdBr(�-succ)(PPh3)2] (269) (33.1 and 24.1 ppm) and 

[PdCl(obs)(PPh3)2] (270) (24.1 ppm). 
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Table 53. 31P NMR chemical shifts of PPh3 ligands in reported palladium imidate 

complexes. 

Entry Complex 
31

P :MR chemical 

shift (ppm)
a
 

1 [NBu4][Pd{C4(COOMe)4}(succ)(PPh3)]
22 (267a) 28.7 

2 [NBu4][Pd{C4(COOMe)4}(mal)(PPh3)]
22 (267b) 28.1 

3 [NBu4][Pd{C4(COOMe)4}(ptm)(PPh3)]
22 (267c) 28.3 

4 [Pd(phox)(succ)(PPh3)]
21 (268a) 41.9 

5 [Pd(mal)(phox)(PPh3)]
21 (268b) 41.8 

6 [Pd(phox)(ptm)(PPh3)]
21 (268c) 41.9 

7 trans-[Pd(succ)2(PPh3)2]
17 (266a) 20.4 

8 [Pd(ptm)2(PPh3)2]
18 (266c) 20.0 

9 cis-[PdBr(succ)(PPh3)2]
15 (269) 

33.1 (d, J = 8.8 Hz), 

24.1 (d, J = 8.8 Hz) 

10 [PdCl(obs)(PPh3)2]
12 (270) 24.1 

a In CDCl3 solution. 

 
1H and 13C NMR spectroscopic analysis of the THT ligands of [Pd(imidate)2(THT)2] 

complexes (265) showed single sets of broad signals for the ligands suggesting monomeric 

symmetrical complexes (Table 54). 

The 1H and 13C NMR signals of the CH2 2 position of THT shift downfield in the order: 

obs > ptm > succ (by 0.14-0.22 and 5.4-5.8 ppm, respectively), when coordinated to Pd 

relative to the free ligand, whereas at the 3 position the signals shift upfield in the order: 

succ > ptm > obs (by 0.10-0.14 and 1.3-1.8 ppm, respectively). This is in agreement with 

reported [NBu4][Pd{C4(COOMe)4}(imidate)(THT)]22 complexes (271) reflecting the 

increased electron donation of succinimidate ligands relative to phthalimidate and 

especially o-benzoic sulfimidate. 
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Table 54. 1H and 13C NMR chemical shifts of THT ligands in [Pd(imidate)2(THT)2] (265) 

and related reported complexes. 

S
1

2

3

 

Entry Compound 
1
H :MR

a
  

shift (ppm) 

13
C :MR

b
 

shift (ppm) 

  CH2 2 CH2 3 C2 C3 

1 THT  2.82 1.94 31.8 31.2 

2 [Pd(succ)2(THT)2] (265a) 2.96 1.92 37.2 29.9 

3 [Pd(ptm)2(THT)2] (265b) 2.96 1.84 37.3 29.8 

4 [Pd(obs)2(THT)2] (265c) 3.04 1.80 37.6 29.4 

5 [NBu4][Pd{C4(COOMe)4}(succ)(THT)]22 (271a) 2.93 1.86 35.1 30.2 

6 [NBu4][Pd{C4(COOMe)4}(mal)(THT)]22 (271b) 2.91 1.84 34.9 30.1 

7 [NBu4][Pd{C4(COOMe)4}(ptm)(THT)]22 (271c) 2.98 1.82 35.0 30.1 
a In CDCl3 solution (400 MHz). b In CDCl3 solution (101 MHz). 

 

ESI-mass spectra of the complexes (264-266) showed only the desired molecular ion 

peaks and fragment peaks from sequential loss of ligands. No signals corresponding to 

complexes containing residual acetate ligands were observed by high resolution ESI-MS.  

 

4.2.1.3. Characterisation by IR spectroscopy 

Infra-red spectroscopy is a useful tool for the analysis of palladium imidate complexes as 

the stretching frequency of the imidate ligand carbonyl bond is characteristic and provides 

information on the electron density on the coordinated Pd atom and the bonding mode 

(mono or bidentate) of the imidate. Infra-red spectra of the complexes were taken in the 

solid state and are displayed in Table 55. 
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Table 55. The infra-red absorbance frequencies of the imidate carbonyl groups in 

[Pd(imidate)2L2] complexes (264-266). 

Entry  Imidate carbonyl stretching frequency (cm
-1

)
a
 

[Pd(imidate)2L2] L =  

imidate = MeC: THT PPh3 Free imide 

1 succ 1633 1632 1642 168372 

2 tfs 1716 - - 1751 

3 mal 1616 (1725) - 1653 170573 

4 ptm 1660 1654 1661 172774 

5 obs 1686 1677 1675 172575 
a Solid state.  

 

The bound imidate carbonyl stretching frequencies are 35-89 cm-1 lower than the free 

imides, consistent with related Au, Ru and other reported imidate complexes.1,8,76 The 

frequencies are lower than related Au(I) (55-57) and Au(III) (66-68) imidate complexes 

(Chapter 2). The frequencies of the [Pd(imidate)2(MeCN)2] (264) complexes span a large 

range of 100 cm-1 (1616-1717 cm-1), in the order: 

mal < succ < ptm < obs < tfs 

The mal complex (264c) is anomalous as it has a lower stretching frequency than the 

succ complex (264a) and has the largest shift relative to the free imide. However, there is a 

second carbonyl stretching signal in the spectrum at 1725 cm-1 which is consistent with 

bidentate �,O-coordination of the maleimidate ligand to Pd as observed in 

[NBu4]2[Pd(C4{COOMe}4(µ-�,O-mal)]2 (243b) (1714 and 1626 cm-1), [{Pd(µ-�,O-

mal)(phpy)}2] (272) (1724 and 1620 cm-1) and [{Pd(µ-�,O-mal)(bzq)}2] (273) (1720 and 

1614 cm-1) (Table 56). Interestingly, the remaining complexes appear to have monodentate 

�-coordination of the imidate ligands to palladium (although the signal for the 

succinimidate carbonyl is broad suggesting several similar bonding modes). This is 

surprising given the low solubility of the complexes, although it is typical for 

[Pd(imidate)2(L)2] species bearing two neutral donor ligands.1,4,5,17  

The frequencies for the [Pd(imidate)2(THT)2] complexes (265) are slightly lower than 

those for MeCN complexes (264) which is consistent with a more electron rich palladium 

atom. The frequencies follow the order: succ < ptm < obs, with a range of 45 cm-1 (1632-

1677 cm-1) as would be expected. The [Pd(imidate)2(PPh3)2] complexes (266) are in the 
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order: succ < mal < ptm < obs, with a range of 33 cm-1 (1642-1675 cm-1), consistent with 

related Au(I) (55-57) and (III) (66-68) imidate complexes and the previously reported succ 

(266a)1,17 and ptm (266c)18 complexes. The frequencies are similar to those for the THT 

complexes (265). No pattern emerges when the PPh3 series (266) is compared to the 

MeCN series (264) of complexes.  

The stretching frequencies of these complexes are at higher wavenumbers than many 

reported Pd(II) imidate complexes, such as; cis-[PdBr(�-succ)(PPh3)2] (269) (1631 cm-1), 

trans-[Pd(Ph)(�-succ)(PPh3)2] (274a) (1605 cm-1), trans-[Pd(Ph)(�-tfs)(PPh3)2] (274b) 

(1673 cm-1), trans-[Pd(Ph)(�-ptm)(PPh3)2] (274c) (1640 cm-1), other than [Pd(C6F5)(�-

mal)(L)] complexes, such as [Pd(C6F5)(�-mal)(tmeda)] (275) (1652 cm-1) and 

[Pd(C6F5)(�-mal)(bipy)] (244b) (1660 cm-1), which have slightly higher frequencies. This 

would suggest that the [Pd(imidate)2(L)2] complexes (264-266) are more electron deficient 

than these complexes other than those containing the highly electron withdrawing 

pentafluorophenyl ligands. 

 

Table 56. Infra-red stretching frequencies of imidate carbonyl groups in Pd complexes 

reported in the literature. 

Entry Complex  Stretching Frequency 

(cm
-1

) 

1 [NBu4]2[Pd(C4{COOMe}4(µ-�,O-mal)]2
22  (243b) 1714, 1626a 

2 [{Pd(µ-�,O-mal)(phpy)}2]
19 (272) 1724, 1620a 

3 [{Pd(bzq)(µ-�,O-mal) }2]
20 (273) 1720, 1614a 

4 trans-[Pd(�-succ)2(PPh3)2]
1  (266a) 1645a 

5 [Pd(�-ptm)2(PPh3)2]
18 (266c) 1663c 

6 cis-[PdBr(�-succ)(PPh3)2]
16a (269) 1631b 

7 trans-[Pd(Ph)(�-succ)(PPh3)2]
8 (274a) 1605b 

8 trans-[Pd(Ph)(�-tfs)(PPh3)2]
8 (274b) 1673b 

9 trans-[Pd(Ph)(�-ptm)(PPh3)2]
8 (274c) 1640b 

10 [Pd(C6F5)(�-mal)(tmeda)]23 (275) 1652a 

11 [Pd(C6F5)(�-mal)(bipy)]23 (244b) 1660a 
a Nujol mull. b KBr disk. c CH2Cl2 solution. 

 

 



 258 

A plot of the carbonyl carbon 13C NMR chemical shift against the carbonyl stretching 

frequency of the imidate ligands reveals that a reasonable linear correlation exists for the 

PPh3 (266) and particularly the THT (265) complexes (Figure 54). For the MeCN 

analogues (264) the succ (264a), ptm (264d) and obs (264e) complexes also follow a linear 

correlation (although 264a has multiple 13C NMR signals), the tfs (264b) and mal (264c) 

complexes however do not. Complex 264c is anomalous due to the apparent bidentate 

�,O-coordination of the imidate ligand, the reason for the divergence of complex 264b is 

less clear. 
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Figure 54. Comparison of [Pd(imidate)2(L)2] (264-266) carbonyl carbon 13C NMR 

chemical shift and carbonyl C=O stretching frequency. 
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4.2.2. Catalysis 

4.2.2.1. Direct arylation of imidazole with 4-iodoanisole 

Bellina et al.
40,41 have developed conditions for the direct arylation of unprotected 

imidazole (276a) with iodoarenes, such as 4-iodoanisole (258a), to afford 2-arylated 

imidazoles (277) in reasonable yields (Scheme 71). These conditions do not involve the 

use of intentionally added base, which is normally required for such reactions, or neutral 

ligands to stabilize the proposed Pd(0) active species.  

 

I O

N

N
H

N

N
H

O+
Pd(OAc)2 (5 mol%), CuI (2 equiv.)

DMF, 140 oC, 48 h, 53%
 

Scheme 71. Direct arylation of imidazole (276a) with 4-iodoanisole (258a) to yield 2-[4-

(methyloxy)phenyl]-1H-imidazole (277a).  

 

The reaction of imidazole with 4-iodoanisole was used to compare the efficiency of 

[Pd(imidate)2(MeCN)2] (264) and [Pd(imidate)2(THT)2] (265) complexes against  

Pd(OAc)2 (247) and [Pd(OAc)2(MeCN)2] (278). This reaction was chosen as the moderate 

53% yield achieved with 247 under harsh conditions allows for the identification of more 

active catalysts, the imidazole has three reactive C-H groups as well as the N-H group 

allowing the testing of selectivity and the exact mechanism and the active catalytic species 

are unknown. 

The reaction was carried out in Radleys carousel apparatus under the reported conditions, 

with the reactions maintained under a flow of argon in analogy to the reported method 

(Table 57). No product was isolated using Pd(OAc)2 (247), [Pd(succ)2(MeCN)2] (264a), or 

[Pd(ptm)2(MeCN)2] (264d) complexes, although low yields were recorded with tfs (264b) 

(12%), mal (264c) (27%) and obs (264e) (23%) analogues. The succ (265a) and ptm 

(265b) THT complexes were slightly more effective giving 7% and 15%, respectively, but 

the obs complex (265c) gave only 9%.  

The complete inefficiency of the reaction with complex 247 is surprising, however it is 

possible that in these base- and ligand-free conditions the interactions of the DMF solvent 

may be critical. DMF or the dimethyl amine decomposition product (generated at high 

temperatures) may act as bases and ligands.48,77 DMF has been shown to reduce Pd(II) to 

277a 276a 258a 



 260 

colloidal palladium78 by formation of either CO,79 formic acid (which requires trace 

water)80 or dimethylamine (with trace water)81 (anaerobic conditions are required for 

reduction to prevent reoxidation).82 DMF can also mediate the dehalogenation of aryl 

iodides and bromides.83  

It has been observed within the Fairlamb research group49 that the addition of piperidine 

to the Pd catalysed C8-phenylation of 2'-deoxyadenosine (260) has a beneficial effect. This 

is presumed to act as a less volatile mimic of the dimethylamine produced by DMF 

decomposition. Consequently, selected reactions were repeated with 0.1 equivalents (based 

on 2 mole equivalents of piperidine per Pd complex) and 0.4 equivalents (the optimum 

loading determined)49 of added piperidine. 

Using Pd(OAc)2 (247) it was found that adding 0.1 equivalents of piperidine had a 

beneficial effect, giving a 25% yield, and using a preformed [Pd(OAc)2(piperidine)2] 

complex (279) (reported by Storr et al.
49) a similar 22% yield was achieved. Increasing the 

loading to 0.4 equivalents increased the yield to 33%. However, the piperidine had a 

inhibitory effect on the imidate complexes with reduced yields observed for tfs (264b) 

(11%), mal (264c) (5%) and obs (264e) (6%) complexes using 0.1 equivalents of 

piperidine, although with 0.4 equivalents a 19% yield was reported for 264c.  

 

Table 57. Isolated yields obtained in the Pd catalysed direct arylation of imidazole (276a) 

with 4-iodoanisole (258a) in unsealed Radleys carousel apparatus.a 

Entry Palladium source Isolated yield (%) 

  
0 equiv. 

piperidine 

0.1 equiv. 

piperidine 

0.4 equiv. 

piperidine 

1 Pd(OAc)2 (247) 0  25 (22)b 33 

2 [Pd(succ)2(MeCN)2] (264a) 0 - - 

3 [Pd(tfs)2(MeCN)2] (264b) 12 11 - 

4 [Pd(mal)2(MeCN)2] (264c) 27 5 19 

5 [Pd(ptm)2(MeCN)2] (264d) 0 - - 

6 [Pd(obs)2(MeCN)2] (264e) 23 6 - 

7 [Pd(succ)2(THT)2] (265a) 7 - - 

8 [Pd(ptm)2(THT)2] (265b) 15 - - 

9 [Pd(obs)2(THT)2] (265e) 9 - - 
a Conditions: 0.2 M solution of imidazole (276a) in DMF, 5 mol% Pd complex, 2 equiv. 4-iodoanisole 

(258a), 2 equiv. CuI, 135 ˚C (internal temp.), 48 h. b [Pd(OAc)2(Py)2] (279). 
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From these results it is clear that the secondary amine aids the reaction mediated by 

Pd(OAc)2 and so it can be postulated that in the absence of piperidine the formation of 

dimethylamine by decomposition of DMF is required for the reaction to proceed. Under 

the reaction conditions dimethylamine (boiling point of 7 ˚C) would be gaseous and so 

would be rapidly lost in the argon flow. In order to trap the amine the reactions were 

repeated with the vessels sealed. Under these conditions there was a significant increase in 

yield (Table 58). With Pd(OAc)2 (247) a 33% yield was achieved, identical to that 

observed with 0.4 equivalents of piperidine, although this is significantly below the 53% 

reported by Bellina.40 The imidate complexes also gave improved yields of 29-45%, other 

than an anomalous 0% yield for the tfs complex (264b). The electron deficient obs 

complex (264e) gave a promising 45%, mal (264c) 41%, ptm (264d) 34% and the more 

electron rich succ complex (264a) just 26%. The results appear to show that, at least for the 

MeCN imidate complexes, higher yields are achieved with complexes 264c and 264e 

relative to 264a.  

 

Table 58. Isolated yields obtained in the Pd catalysed direct arylation of imidazole (276a) 

with 4-iodoanisole (258a) in sealed Radleys carousel apparatus.a 

Entry Palladium source Isolated yield (%) 

  
Commercial 

laboratory 

University 

laboratory 

1 Pd(OAc)2 (247) 33 57 

2 [Pd(OAc)2(MeCN)2] (278) - 43 

3 [Pd(succ)2(MeCN)2] (264a) 26 35 

4 [Pd(ptm)2(MeCN)2] (264d) 34 - 

5 [Pd(mal)2(MeCN)2] (264c) 41 40 

6 [Pd(tfs)2(MeCN)2] (264b) 0 - 

7 [Pd(obs)2(MeCN)2] (264e) 45 49 

a Conditions: 0.2 M solution of imidazole (276a) in DMF, 5 mol% Pd complex, 2 equiv. 4-iodoanisole 
(258a), 2 equiv. CuI, 135 ˚C (internal temp.), 48 h. 

 

These initial results were obtained in a commercial chemistry laboratory (at 

GlaxoSmithKline laboratories in Harlow) and they were repeated in University laboratories 

(at the University of York). It was found that the yields were improved at the University 

laboratories with the highest yield of 57% achieved using Pd(OAc)2 (247), comparable to 

the 53% reported by Bellina, 35% for succ (264a) and 49% for the obs complex (264e). 
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[Pd(OAc)2(MeCN)2] (278) was also tested and a 43% yield observed, suggesting that 

MeCN ligands actually reduce the efficiency of the Pd complexes. There were a number of 

variables in the materials and conditions available in the commercial and University 

laboratories although in both cases Radleys carousel apparatus was used with the same 

vessel size and heating and stirring rates. Batches of the chemicals used were unchanged, 

however the DMF solvent batches (form commercial sources) were different, in the 

commercial laboratory DMF was purchased dry but not degassed and was degassed by 

bubbling argon through it, whilst in the University laboratory it was purchased dried and 

degassed. The sources of argon were also different which may have effected the levels of 

oxygen and water in the reactions. Product purification by column chromatography on 

silica-gel at the commercial laboratory was carried out using an automated Biotage SP4 

system running a CH2Cl2/MeOH/NH3 100/0/0 to 90/10/0.05 gradient solvent system, 

giving a better chromatographic separation than in the University laboratories where it was 

carried out manually. 

In the University laboratory a series of experiments were carried out to probe the 

different results obtained in sealed and unsealed conditions and in commercial and 

University laboratories (Table 59). To test the observation that the reaction worked well in 

a sealed reaction vessel, the reactions using Pd(OAc)2 (247) and the mal complex (264c) 

were carried out under rigorously dry and anaerobic conditions in fully sealed Schlenk tube 

apparatus, surprisingly only trace product was obtained (Entries 1 and 2). Presumably the 

Schlenk system is more completely sealed than the Radleys system suggesting a partially 

sealed system is required for the reaction to progress.  

In order to determine why the reaction did not proceed in the Schlenk system, the 

possible effects of a partially-sealed system were explored using complex 247. To test if 

O2 was required for the reaction 30 ml of air was added via syringe, resulting in no 

product, as did brief exposure of the reaction to air (Entries 3 and 4). Water alone was also 

added (5 mol%) on the basis of reports which suggest trace water is required to reduce 

Pd(II) to Pd(0) (via formic acid formation80 or in conjunction with dimethylamine),81 

however this only gave trace product (Entry 5). Changing the solvent to NMP, which has 

similar properties to DMF but does not as readily decompose, was also tried and again 

resulted in no product (Entry 6). A Cu(II), Cu(OAc)2, rather than Cu(I) source was used 

with the same result (Entry 7). On the hypothesis that a moderate pressure of 

dimethylamine was required for the reaction the pressure was regulated, firstly by the use 



 263 

of an argon balloon, giving trace product, and secondly using a mineral oil bubbler, which 

gave only 7% yield (Entries 8 and 9). To test the assumption that reduction of Pd(II) to 

Pd(0) is required for catalyst activation a Pd(0) source, [Pd(OMe-DBA)2] (280) {OMe-

DBA is di(4-methoxybenzylidene)acetone}, was used but once again gave only trace 

product (Entry 10). This reaction was repeated using the Radleys system and gave only a 

35% yield, significantly less than the Pd(II) source Pd(OAc)2 (Entry 11). Finally, Pd(0) 

nanoparticles {poly(�-vinyl-2-pyrrolidone, PVP, stabilised} (281) were tested in the 

Radleys system which gave a 67% yield, 10% higher than that achieved with Pd(OAc)2 

(Entry 12). 

 

Table 59. Isolated yields obtained in the Pd catalysed direct arylation of imidazole (276a) 

with 4-iodoanisole (258a) under various conditions.a 

Entry Palladium source Conditions Yield (%) 

1 Pd(OAc)2 (247)  trace 

2 [Pd(mal)2(MeCN)2] (264c)  trace 

3 Pd(OAc)2 (247) 30 ml air 0 

4 Pd(OAc)2 (247) trace air trace 

5 Pd(OAc)2 (247) H2O trace 

6 Pd(OAc)2 (247) NMP 0 

7 Pd(OAc)2 (247) Cu(OAc)2 0 

8 Pd(OAc)2 (247) balloon trace 

9 Pd(OAc)2 (247) bubbler 7 

10 [Pd(OMe-DBA)2] (280)  trace 

11 [Pd(OMe-DBA)2]
b (280)  35 

12 Nanoparticlesb (281)  67 
a Conditions: 0.2 M solution of imidazole (276a) in DMF, 5 mol% Pd complex, 2 equiv. 4-iodoanisole 

(258a), 2 equiv. CuI, 135 ˚C (internal temp.), 48 h in sealed Schlenk tube apparatus. b In Radleys carousel 
apparatus. 

 

4.2.2.2. Direct arylation of imidazoles with iodoarenes 

The most efficient mal imidate complex (264c) was used to compare to the benchmark 

Pd(OAc)2 complex (247) with a range of other substrates in the sealed Radleys carousel 

system (in the commercial laboratory) (Table 60). Firstly the iodoarene was varied, 

iodobenzene (258b) gave a 50% yield of 277b with 247 and 54% with 264c compared to 
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the reported yield of 89%, displaying little difference between the complexes but the 

deficiency of the conditions. However, with 2-iodotoluene (258c) the complex 247 gave 

55% and 264c 46% which compare favourably with the literature yield of 47% of 277c. 

With 4-trifluoromethyl iodobenzene (258d) yields of 68% and 60% were achieved with 

complexes 247 and 264c, respectively, compared with an 84% literature yield of 277d.40 

Similar results were observed when the imidazole was varied. With 1-[4-

(methyloxy)phenyl]-1H-imidazole (276b) the literature 66% yield of 277e was replicated 

with complexes 247 (63%) and 264c (66%). Benzimidazole (276c) was tested and yields of 

69% and 72% of 277f were observed with 247 and 264c, respectively, slightly below the 

reported yield of 81%.40,41 

 

Table 60. Isolated yields obtained in the Pd catalysed direct arylation of imidazoles with 

iodoarenes.a 

I

N

N
+

[Pd] (5 mol%), CuI (2 equiv.)

DMF, 135 oC, 48 h
R1 R2

N

N

R1
R2

(2 equiv.)  

 

Entry Reactants Product Pd source Yield (%) 

 Imidazole Iodoarene    

  247 50  

1 277b 264c 54 

  

N

N
H  (276a)  

I

 (258b) 
 Lit.40 89 

  247 55 

2 277c 264c 46 

  

N

N
H  (276a)  

I

 (258c)  Lit.40 47 

  247 68 

3 277d 264c 60 

  

N

N
H  (276a)  

I CF3
 (258d) 

 Lit.40 84 
  247 63 

4 277e 264c 66 

 
 

N
N O

 
                 (276b)     

I O

 (258a) 
 Lit.41 66 

  247 69 

5 277f 264c 72 
  

N

N
H  (276c)  

I O

 (258a) 
 Lit.40 81 

a Conditions: 0.2 M solution of imidazole (276) in DMF, 5 mol% Pd complex, 2 equiv. iodoarene (258), 2 

equiv. CuI, 135 ˚C (internal temp.), 48 hrs.  

258 277 276 
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These experiments have shown that there is little difference in the yields obtained with 

Pd(OAc)2 (247) or [Pd(mal)2(MeCN)2] (264c) complexes as Pd sources. The reduced yield 

observed with [Pd(OAc)2(MeCN)2] (278) suggests that lower yields obtained in the 

reaction of imidazole and iodoanisole using imidate complexes may be a consequence of 

the MeCN ligands. There did appear to be an effect of the nature of the imidate ligand on 

the outcome of this reaction, which may be attributable to the rate of reduction of the 

Pd(II) complex to an active Pd(0) species. The obs complex (264e) was most efficient, 

presumably as its ligand is derived from the most acidic imide which may aid its reduction 

to the catalytically active Pd(0) species. The mal complex (264c) was almost as efficient, 

despite the less electron withdrawing ligand, which may be related to the bidentate �,O-

coordination of the imidate.  

The succ complex (264a) was less effective as the more electron rich Pd atom would be 

less susceptible to reduction. The tfs complex (264b) was anomalous in many respects; it 

failed to precipitate from solution during synthesis, the phosphine analogue could not be 

prepared and analysis of the 13C NMR chemical shifts and carbonyl bond stretching 

frequencies did not fit the linear correlation observed with other complexes. Adams et al.
8
 

have also reported that Pd(II) complexes containing tetrafluorosuccinimidate ligands can 

behave differently to other imidate complexes. This may explain why it was inactive in the 

sealed Radleys carousel apparatus. 

The catalysis of the reaction by the Pd(0) source [Pd(OMe-DBA)2] (280) in Radleys 

carousel apparatus and by PVP-stabilised nanoparticles (281), as well as the minor 

differences observed with varied Pd(II) sources, indicates that the reaction proceeds by a 

Pd(0)/Pd(II) catalytic cycle in which the anionic ligands are not directly involved.  

It was found that literature yields could generally be reproduced but only in ‘sealed’ 

Radleys carousel apparatus (and more effectively in the University laboratory) and that the 

apparatus used and the nature of the seal had a significant impact on yields. This may in 

part be explained by the processes involved in the generation and stabilisation of the 

catalytically active Pd(0) species. This requires reduction of the Pd(II) complexes to Pd(0) 

which could be achieved by the DMF78 solvent via CO,79 dimethylamine81 or formic acid80 

formation. CO and dimethylamine are volatile species which may be lost in an unsealed 

reaction vessel. Formation of formic acid requires water, as may the reduction of Pd(II) by 

dimethylamine, the water may only be able to enter the reaction vessel if it is not 

completely sealed (such as in the Radleys apparatus), although addition of water to the 
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reactions did not have a beneficial effect. The addition of piperidine may play the same 

role as dimethylamine.  

The exact nature of the active Pd(0) species in solution is unknown, it may be a 

monomeric (L)nPd(0) species (282) where L could be DMF, dimethylamine (or 

piperidine), MeCN or even imidazole ligands. However, in the absence of a strongly 

coordinating donor ligand (such as phosphine) Pd nanoparticles or clusters (283) 

(specifically surface defect sites)84 could act as the Pd(0) species to which oxidative 

addition of arylhalide occurs followed by release of ArPd(II)X (284) into solution as a 

monomeric species.85 Methoxy-DBA ligands stabilize the Pd(0) monomeric species (282) 

slowing down both oxidative addition and particularly cluster formation, explaining the 

reduced yields observed with this Pd source (Scheme 72).85 

 
Pd(OAc)2

LnPd(0)

Cluster/ Nanoparticles ArPdX

Pd black

ArX

Reduction

Pd(0)/Pd(II) catalytic cycle
ArX

 
 

Scheme 72. Reduction of  Pd(OAc)2 (247) to form catalytically active Pd(0) species. 

 

247 

283 

282 

284 
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4.3. Conclusion 

A series of [Pd(imidate)2(MeCN)2] (264) and [Pd(imidate)2(THT)2] (265) complexes 

have been prepared and characterised by IR and NMR spectroscopy. 

[Pd(imidate)2(MeCN)2] (264) complexes have low solubility but solid-state 13C NMR and 

IR spectroscopy were found to be effective methods of characterisation. THT (265) and 

PPh3 (266) Pd complexes possess monodentate imidate ligands, whereas 

[Pd(mal)2(MeCN)2] (264c) was found to have �,O-bidentate bound maleimidate ligands. 

Succinimidate (264a) and tetrafluorosuccinimidate (264b) complexes appeared to have 

asymmetric or multiple bonding modes by 13C NMR spectroscopy but did not appear 

bidentate by IR spectroscopy.  

The application of these complexes to base and ligand-free direct arylation of imidazole 

(276a) with 4-iodoanisole (258a) showed that the maleimidate (264c) and o-benzoic 

sulfimidate (265e) MeCN complexes were the most active and succinimidate (264a) the 

least. The differences in reactivity are likely to be a consequence of different rates of 

reduction to afford the active Pd(0) species. The substitution of acetate for imidate ligands 

in this process was not beneficial with the most active maleimidate complex (264c) 

possessing similar activity to Pd(OAc)2 (247) in the direct arylation of substituted and 

unsubstituted imidazoles with iodoarenes. The [Pd(tfs)2(MeCN)2] complex (264b) was 

anomalous in terms of both spectroscopic characteristics (such as carbonyl stretching 

frequencies) and reactivity.  

It was found that the direct arylation of imidazole (276a) with 4-iodoanisole (258a) 

under these conditions only proceeded in sealed Radleys carousel apparatus and not in 

unsealed Radleys or sealed Schlenk apparatus. The addition of sub-stoichiometric 

piperidine allowed the reaction to proceed under ‘unsealed’ conditions and variation of the 

Pd source revealed that the reaction proceeds most efficiently with PVP stabilised 

nanoparticles (281), but slower with [Pd(OMe-DBA)2] (280). It is speculated that 

dimethylamine formed by DMF degradation is required for the reaction to occur and that 

trace water may also be required in order to aid in the reduction of the Pd(II) precatalyst to 

the suspected Pd(0) active catalyst. It is not known if the first step of the reaction 

mechanism proceeds via monomeric Pd(0) complexes or Pd(0) nanoparticles, although 

considering the ligand-free conditions and results observed, a mechanism involving Pd 

nanoparticles seems likely.   



 268 

4.4. Future Work 

The reason for the differences observed when direct arylation reactions are carried out 

under base and ligand-free conditions, in sealed and unsealed Radleys carousel and sealed 

Schlenk apparatus requires investigation. This may be achieved by studying the influence 

of the concentration of water and secondary amines on the reaction and the specific role 

played by DMF solvent. The identification of the active catalytic species and the 

mechanism of its formation will allow the design of improved and more reliable reaction 

conditions for ‘base and ligand-free’ processes and other related direct arylation reactions. 

It also has to be determined whether nanoparticles are involved in the reaction (either as a 

source of monomeric Pd(0) species or as the reactive species for oxidative addition).  

Further analysis of [Pd(imidate)2(MeCN)2] (264) complexes is required to accurately 

resolve their structure and bonding, particularly for the tetrafluorosuccinimidate (264b) 

and maleimidate (264c) complexes. As [Pd(OAc)2(MeCN)2] (278) and imidate THT 

complexes (266) were less active than Pd(OAc)2 (247) and MeCN (264) analogues, 

respectively, [Pd(imidate)2] complexes, without neutral ligands, should be prepared and 

tested in these reactions.  

Although not beneficial in this particular process the activity of the imidate complexes 

(264 and 265) relative to Pd(OAc)2 (247) should be examined in direct arylation reactions 

where Pd(II)/(IV) and anionic Pd(0)/(II) mechanisms, in which anionic ligands are integral 

to the mechanism, are suspected to be involved. 
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4.5. Experimental 

4.5.1. General Details 

Acetonitrile was dried by passing through a column of activated alumina, ethanol was 

distilled from sodium ethoxide. Dimethylformamide was either purchased dry and 

degassed from Acros or dry from Fischer and degassed by bubbling argon through it. Infra-

red spectra were recorded on a Unicam Research Series FT-IR spectrometer. Mass 

spectrometry was carried out using a Bruker Daltronics micrOTOF or Waters Aquity Ultra 

Performance LC-MS instrument. 1H, 13C, 19F and 31P NMR spectra were collected on a 

JEOL ECX400 or Bruker Ultra Shield 400 spectrometer operating at 400, 101, 376 and 

162 MHz, respectively, and referenced to residual solvent peaks. 13C NMR signals are 

singlets unless otherwise stated. Solid-state 13C NMR were collected on a Varian VNMRS 

spectrometer operating at 101 MHz by the EPSRC national service at the University of 

Durham. Melting points were measured in open capillary tubes using a Stuart SMP3 

Digital Melting Point Apparatus and are uncorrected. All column chromatography was 

performed using silica-gel (mesh 220-440) purchased from Fluka Chemicals with the 

solvent systems specified within the text or using prepacked silica-gel columns in a 

Biotage SP4 automated flash chromatography system. TLC analysis was performed using 

Merck 5554 aluminium backed silica plates, compounds were visualised using UV light 

(254 nm) and a basic aqueous solution of potassium permanganate. Palladium(II) acetate 

was purchased from Precious Metals Online (www.precmet.com.au). All other chemicals 

were purchased from Sigma Aldrich Inc. or Alfa Aesar and used without further 

purification unless otherwise stated.  

 

4.5.2. Compounds 

[Pd(succ)2(MeC:)2] (264a) 

Succinimide (90.4 mg, 913 µmol, 2 equiv.) and Pd(OAc)2 (247) (103 mg, 457 µmol, 1 

equiv.) were placed in a Schlenk tube under an atmosphere of N2. Acetonitrile (7 ml, dry) 

was added, the vessel sealed, and the mixture stirred for 15 hours at room temperature. A 

white precipitate formed which was separated by filtration, washed {acetonitrile, 

petroleum ether (40-60) and diethyl ether} and dried in vacuo to give the title compound as 

an off-white powder (101 mg, 264 µmol, 58%). 13C NMR (101 MHz, solid) δ 194.4 (s, 

CO), 189.9 (s, CO), 188.6 (s, CO), 125.4 (br m, CN), 31.1 (s, succ CH2), 2.7 (s, CH3), 1.0 

(s, CH3). IR (solid, cm-1) υmax 2979 (m), 2921 (m), 2344 (w), 2314 (m), 2160 (br m), 2034 
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(m), 1978 (w), 1633 (br s), 1437 (w), 1416 (w), 1351 (s), 1284 (m), 1241 (s), 1219 (w), 

1032 (w), 1003 (w), l814 (m), 663 (m). ESI+-MS m/z 433.9 (1%), 407.0 (10%, [MNa]+), 

385.0 (6%, [MH]+), 366.0 (4%, [MNa-MeCN]+), 344.0 (10%, [MH-MeCN]+), 324.9 (9%, 

[MNa-2MeCN]+), 302.9 (2%, [MH-2MeCN]+), 286.0 (100%, [M-succ]+), 273.0 (10%). 

ESI+-HRMS calcd. for C12H14N4NaO4Pd ([MNa]+) 406.9942; found 406.9943. Melting 

point 200 ˚C decomposes. 

 

[Pd(tfs)2(MeC:)2] (264b) 

Tetrafluorosuccinimide (274 mg, 1.60 mmol, 2 equiv.) and Pd(OAc)2 (247) (180 mg, 

0.80 mmol, 1 equiv.) were placed in a Schlenk under an atmosphere of N2, acetonitrile (7 

ml, dry) was added, the vessel sealed and the reaction stirred for 15 hours at room 

temperature to give a pale orange solution. Diethyl ether and petroleum ether were added 

until a homogenous solution formed. The resultant white precipitate was separated by 

filtration, washed {cold acetonitrile, petroleum ether (40-60) and diethyl ether} and dried 

in vacuo to give the title compound as a light grey/white powder (181 mg, 343 µmol, 

43%). 13C NMR (101 MHz, solid) δ 169.4 (s, CO), 168.4 (s, CO), 125.0 (m, CN),  105.5 

(br m, CF2), 4.5 (s, CH3). IR (solid, cm-1) υmax 3478 (w), 3007 (w), 2936 (w), 2371 (w), 

2344 (m), 2317 (w), 2160 (br, m), 2034 (m), 1978 (w), 1784 (w), 1716 (s), 1703 (w), 1303 

(s), 1190 (s), 1140 (s), 1063 (s), 1013 (s), 749 (m), 620 (m). ESI+-MS m/z 550.9 (20%, 

[MNa]+), 528.9 (100%, [MH]+), 509.9 (7%, [MNa-MeCN]+), 487.9 (5%, [MH-MeCN]+), 

467.9 (1%), 390.0 (7%), 357.9 (59%, [M-tfs]+). ESI+-HRMS calcd. for C12H7F8N4O4Pd 

([MH]+) 528.9373; found 528.9378. Anal. calcd. for C12H6F8N4O4Pd C 27.31, H 1.15, N 

10.62; found C 27.10, H 1.21, N 10.27. Melting point 240 ˚C decomposes.  

 

[Pd(mal)2(MeC:)2] (264c) 

A protocol similar to that used for 264a gave the title compound as a light grey/white 

powder {from 168 mg, 0.750 mmol, of Pd(OAc)2 (247) and 146 mg, 1.50 mmol, of 

maleimide} (183 mg, 481 )mol, 64%). 13C NMR (101 MHz, solid) δ 186.4 (s, CO), 181.8 

(s, CO), 138.6 (m, mal CH), 126.0 (m, CN), 4.9 (s, CH3). IR (solid, cm-1) �max 3080 (v. br 

s), 3079 (m), 2933 (m), 2161 (br m), 2033 (m), 1978 (w), 1725 (m), 1616 (br s), 1586 (w), 

1359 (s), 1195 (s), 836 (m), 692 (m), 664 (w). ESI+-MS m/z 403.0 (4%, [MNa]+), 361.9 

(14%, [MNa-MeCN]+), 340.0 (38%, [MH-MeCN]+), 320.9 (49%, [MNa-2MeCN]+), 301.1 

(4%), 284.0 (100%, [M-Mal]+), 270.9 (44%), 242.9 (6%, [M-Mal-MeCN]+). ESI+-HRMS 
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calcd. for C12H10N4NaO4Pd ([MNa]+) 402.9634; found 402.9634. Melting point 140 ˚C 

decomposes. 

 
[Pd(ptm)2(MeC:)2] (264d) 

A protocol similar to that used for 246a gave the title compound as a light grey/white 

powder {from 180 mg, 0.80 mmol, of Pd(OAc)2 (247) and 235 mg, 1.60 mmol, of 

phthalimide} (252 mg, 525 )mol, 66%). 13C NMR (101 MHz, solid) δ 178.4 (s, CO), 135.7 

(s, aromatic C), 134.7 (s, aromatic C), 133.6 (s, aromatic CH), 130.2 (s, aromatic CH), 

126.0 (m, CN), 121.3 (s, aromatic CH), 120.1 (s, aromatic CH), 4.30 (s, CH3). IR (solid, 

cm-1) �max 2971 (m), 2914 (m), 2345 (w), 2314 (m), 2160 (br m), 2032 (m), 1977 (w), 1660 

(s), 1636 (w), 1606 (w), 1464 (w), 1417 (m), 1374 (m), 1349 (w), 1310 (m), 1284 (w), 

1186 (m), 1175 (m), 1137 (s), 862 (m), 712 (s), 683 (w). ESI+-MS m/z 503.0 (36%, 

[MNa]+), 481.0 (29%, [MH]+), 462.0 (8%, [MNa-MeCN]+), 440.0 (13%, [MH-MeCN]+), 

421.0 (11%, [MNa-2MeCN]+), 413.3 (8%), 375.0 (28%, [M-ptm+MeCN]+), 334.0 (100%, 

[M-ptm]+), 304.3 (17%), 249.2 (8%), 191.0 (21%). ESI+-HRMS calcd. for C20H15N4O4Pd 

([MH]+) 481.0123; found 481.0119. Melting point 220 ˚C decomposes. 

 

[Pd(obs)2(MeC:)2] (264e) 

A protocol similar to that used for 246a gave the title compound as a light grey/white 

powder {from 205 mg, 913 µmol, of Pd(OAc)2 (247) and 335 mg, 1.83 mmol, of o-benzoic 

sulfimide} (425 mg, 769 µmol, 84%). 13C NMR (101 MHz, solid) δ 164.8 (s, CO), 141.1 

(s, aromatic C), 134.3 (s, aromatic CH), 133.4 (s, aromatic CH), 130.3 (aromatic C), 127.5 

(s, CN), 122.5 (s, aromatic CH), 119.8 (s, aromatic CH), 5.34 (s, CH3). IR (solid, cm-1) υmax 

3006 (w), 2937 (w), 2342 (m), 2160 (br m), 2033 (m), 1978 (w), 1686 (s), 1596 (w), 1457 

(w), 1328 (w), 1298 (s), 1282 (s), 1241 (s), 1166 (s), 1147 (m), 1124 (m), 1056 (w) 1028 

(m), 980 (s), 797 (m), 787 (m), 756 (m), 674 (m). ESI+-MS m/z 575.0 (17%, [MNa]+), 

552.9 (22%, [MH]+), 512.0 (7%, [MH-MeCN]+), 477.9 (10%), 411.0 (26%, [M-

obs+MeCN]+), 369.9 (100%, [M-OBS]+), 321.9 (17%), 233.0 (28%), 191.0 (16%). ESI+-

HRMS calcd. for C18H15N4O6PdS2 ([MH]+) 552.9462; found 552.9447. Anal. calcd. for 

C18H14N4O6PdS2 C 38.78, H 2.51, N 10.05; found C 38.76, H 2.56, N 9.88. Melting point 

220 ˚C decomposes.  
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[Pd(succ)2(THT)2] (265a) 

[Pd(succ)2(MeCN)2] (264a) (97.4 mg, 254 µmol, 1 equiv.) was placed in a Schlenk tube 

under an atmosphere of N2, ethanol (dry, 5 ml) and tetrahydrothiophene (45 µl, 510 µmol, 

2 equiv.) were added and the mixture was stirred for 15 hours at room temperature. The 

resulting white precipitate was separated by filtration, washed {acetonitrile, petroleum 

ether (40-60) and diethyl ether} and dried in vacuo to give the title compound as a white 

powder (105 mg, 220 µmol, 87%). 1H NMR (400 MHz, CDCl3) δ 2.96 (br s, 8H, THT 

CH2S), 2.61 (s, 8H, succ CH2), 1.92 (m, 8H, THT CH2CH2). 
13C NMR (101 MHz, CDCl3) 

δ 188.1 (succ C=O), 37.2 (THT CH2S), 31.4 (succ CH2), 29.9 (THT CH2CH2). IR (solid, 

cm-1) υmax 2963 (w), 2937 (m), 2863 (w), 2320 (w), 2161 (br m), 2033 (m), 1978 (w), 1632 

(vs), 1462 (w), 1443 (w), 1340 (s), 1286 (m), 1271 (w), 1222 (s), 1077 (m), 1010 (w), 884 

(w), 819 (w), 664 (m). ESI+-MS m/z 541.9 (4%, [MNa+MeCN]+), 501.0 (18%, [MNa]+), 

479.0 (20%, [MH]+), 454.0 (27%, [MNa-THT+MeCN]+), 413.0 (38%, [MNa-THT]+), 

391.0 (41%, [MH-THT]+), 333.0 (17%, [M-succ-THT+MeCN]+), 313.9 (15%), 292.0 

(100%, [M-succ-THT]+), 237.0 (11%), 222.9 (6%), 192.9 (3%). ESI+-HRMS calcd. for 

C16H25N2O4PdS2 (MH+) 479.0290; found 479.0277. Anal. calcd. for C16H24N2O4PdS2 C 

40.08, H 5.01, N 5.85; found C 39.62, H 5.00, N 5.64. Melting point 180 ˚C decomposes.  

 

[Pd(ptm)2(THT)2] (265b) 

A protocol similar to that used for 265a gave the title compound as a white powder (from 

98.7 mg, 206 µmol, of 264d) (61.0 mg, 106 µmol, 52%). 1H NMR (400 MHz, CDCl3) δ 

7.70-7.65 (app. dd, J = 5.4 and 3.0 Hz, 4H, ptm aromatic CH), 7.57-7.53 (app. dd, J = 5.4 

and 3.0 Hz, 4H, ptm aromatic CH), 2.96 (br s, 8H, THT CH2S), 1.84 (m, 8H, THT 

CH2CH2). 
13C NMR (101 MHz, CDCl3) δ 178.3 (ptm C=O), 136.1 (ptm aromatic C), 132.2 

(ptm aromatic C), 121.5 (ptm aromatic C), 37.3 (THT CH2S), 29.8 (THT CH2CH2). IR 

(solid, cm-1) υmax 3514 (m), 3455 (w), 2954 (w), 2938 (m), 2160 (br m), 2031 (m), 1978 

(w), 1654 (s), 1631 (w), 1603 (w), 1463 (w), 1434 (m), 1352 (s), 1303 (s), 1268 (w), 1175 

(m), 1126 (s), 1073 (w), 882 (w), 860 (m), 720 (s), 680 (w). ESI+-MS m/z 597.0 (3%, 

[MNa]+), 575.0 (6%, [MH]+), 550.0 (3%, [MNa-THT+MeCN]+), 509.0 (4%, [MNa-

THT]+), 487.0 (6%, [MH-THT]+), 440.0 (3%, [MH-2THT+MeCN]+), 381.0 (2%, [M-ptm-

THT+MeCN]+), 361.9 (6%), 340.0 (100%, [M-ptm-THT]+). ESI+-HRMS calcd. for 

C24H25N2O4PdS2 ([MH]+) 575.0293; found 575.0292. Melting point 180 ˚C decomposes. 
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[Pd(obs)2(THT)2] (265c) 

A protocol similar to that of 265a was used  to give the title compound as a white powder 

(from 103 mg, 187 µmol, of 264e) (104 mg, 160 µmol, 86%). 1H NMR (400 MHz, CDCl3) 

δ 7.92-7.89 (m, 2H, obs aromatic CH) 7.86-7.83 (m, 2H, obs aromatic CH) 7.72-7.67 (m, 

4H, obs aromatic CH), 3.04 (br s, 8H, THT CH2S), 1.80 (s, 8H, THT CH2CH2). 
13C NMR 

(101 MHz, CDCl3) δ 166.2 (obs C=O), 142.5 (obs aromatic C), 133.1 (obs aromatic C), 

133.0 (obs aromatic C), 130.1 (obs aromatic C), 123.9 (obs aromatic C), 120.3 (obs 

aromatic C), 37.6 (THT CH2S), 29.4 (THT CH2CH2). IR (solid, cm-1) υmax 2937 (w), 2160 

(br m), 2029 (m), 1978 (w), 1677 (s), 1595 (w), 1463 (m), 1441 (w), 1339 (w), 1297 (s), 

1282 (m), 1233 (s), 1160 (s), 1123 (m), 1056 (w), 970 (s), 788 (m), 748 (m), 678 (m). 

ESI+-MS m/z 621.9 (4%, [MNa-THT+MeCN]+), 600.0 (12%, [MH-THT+MeCN]), 580.9 

(2%), 552.9 (4%), 505.0 (4%, [M-obs+MeCN]+), 484.9 (2%), 458.0 (8%), 417.0 (100%, 

[M-obs-THT+MeCN]+), 397.9 (4%), 369.9 (16%), 328.0 (8%), 280.0 (46%), 234.0 (48%), 

194.9 (2%). Anal. calcd. for C22H24N2O6PdS4 C 40.67, H 3.70, N 4.31; found C 40.13, H 

3.65, N 4.38. Melting point 190 ˚C decomposes.  

 

[Pd(�-succ)2(PPh3)2] (266a) 

[Pd(succ)2(MeCN)2] (264a) (50.0 mg, 130 µmol, 1 equiv.) and PPh3 (68.2 mg, 260 µmol, 

2 equiv.) were mixed in CDCl3 (10 minutes, r.t.) and NMR spectra taken. The solution was 

reduced to dryness in vacuo for ESI-MS and IR analysis. 1H NMR (400 MHz, CDCl3) δ 

7.84-7.78 (m, 12H, Ph aromatic CH), 7.43-7.33 (m, 18H, Ph aromatic CH), 1.44 (s, 8H, 

succ CH2). 
13C NMR (101 MHz, CDCl3) δ 186.5 (succ C=O), 134.8 (t, J = 7 Hz, Ph 

aromatic o-C), 130.6 (Ph aromatic p-C), 129.3 (t, J = 24 Hz, Ph aromatic i-C), 127.9 (t, 5 

Hz, Ph aromatic m-C), 30.4 (succ CH2). 
31P NMR (162 MHz, CDCl3) δ 19.9 (s). IR (solid, 

cm-1) υmax 3050 (w), 2926 (w), 2537 (br m), 2372 (w), 2160 (s), 2030 (m), 1977 (m), 1642 

(vs), 1572 (w), 1482 (w), 1433 (s), 1348 (m), 1307 (w), 1279 (m), 1231 (s), 1190 (w), 1120 

(w), 1092 (m), 743 (m), 693 (s), 656 (m). ESI+-MS m/z 849.1 (23%, [MNa]+), 827.1 (85%, 

[MH]+), 769.1 (100%, [M-succ+MeCN]+), 728.1 (55%, [M-succ]+), 629.1 (6%), 579.2 

(8%), 466.0 (13%, [M-succ-PPh3]
+), 385.1 (3%), 339.0 (6%), 301.0 (16%). ESI+-HRMS 

calcd. for C44H39N2O4P2Pd ([MH]+) 827.1430; found 827.1423. Data in accordance with 

the literature.1,17 
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[Pd(�-mal)2(PPh3)2] (266b) 

A protocol similar to that of 266a was used (from 13.2 mg, 34.7 µmol, of 264c). 1H 

NMR (400 MHz, CDCl3) δ 7.76-7.71 (m, 12H, Ph aromatic CH), 7.39-7.29 (m, 18H, Ph 

aromatic CH), 5.69 (s, 4H, mal CH). 13C NMR (101 MHz, CDCl3) δ 179.9 (mal C=O), 

136.0 (Ph aromatic p-C), 134.9 (t, J = 6.6 Hz, Ph aromatic o-C), 130.6 (mal CH), 129.3 (t, 

J = 23.8 Hz, Ph aromatic i-C), 128.2 (t, J = 5.2 Hz, Ph aromatic m-C). 31P NMR (162 

MHz, CDCl3) δ 19.3 (s). IR (solid, cm-1) υmax 3085 (w), 2356 (w), 2159 (m), 2036 (w), 

1966 (w), 1653 (s), 1482 (m), 1434 (m), 1342 (s), 1183 (m), 1093 (m), 998 (w), 830 (m), 

740 (m), 691 (s). ESI+-MS m/z 845.1 (68%, [MNa]+), 823.1 (96%, [MH]+), 767.1 (100%, 

[M-Mal+MeCN]+), 726.1 (69%, [M-Mal]+), 629.1 (4%), 583.0 (12%, [MNa-PPh3]
+), 464.0 

(18%, [M-Mal-PPh3]
+), 339.1 (9%), 315.0 (4%), 301.1 (10%). ESI+-HRMS calcd. for 

C44H34N2NaO4P2Pd ([MNa]+) 845.0936; found 845.0926. 

 

[Pd(�-ptm)2(PPh3)2] (266c) 

A protocol similar to that of 266a was used (from 40.2 mg, 83.6 µmol, of 264d). 1H 

NMR (400 MHz, CDCl3) δ 7.77-7.71 (m, 12H, Ph aromatic CH), 7.19-7.09 (m, 22H, ptm 

and Ph aromatic CH), 7.07-7.04 (m, 4H, ptm aromatic CH). 13C NMR (101 MHz, CDCl3) 

δ 176.9 (ptm C=O), 136.7 (ptm aromatic CH), 134.8 (t, J = 7 Hz, Ph aromatic o-C), 130.5 

(Ph aromatic p-C), 130.3 (ptm aromatic CH), 129.2 (t, J = 24 Hz, , Ph aromatic i-C), 128.0 

(t, J = 5 Hz, Ph aromatic m-C), 120.2 (ptm aromatic CH). 31P NMR (162 MHz, CDCl3) δ 

19.8 (s). IR (solid, cm-1) υmax 3054 (w), 2529 (br m), 2372 (w), 2161 (s), 2029 (s), 1977 (s), 

1661 (vs), 1633 (m), 1606 (m), 1573 (w), 1482 (m), 1462 (w), 1435 (s), 1370 (m), 1356 

(m), 1303 (s), 1282 (w), 1176 (m), 1122 (m), 1097 (m), 1073 (w), 999 (w), 860 (w), 743 

(w), 721 (m), 691 (s). ESI+-MS m/z 945.1 (19%, [MNa]+), 923.1 (100%, [MH]+), 817.1 

(10%, [M-ptm+MeCN]+), 776.1 (13%, [M-ptm]+), 683.0 (3%), 639.2 (3%), 514.0 (6%, 

[M-ptm-PPh3]
+), 301.0 (6%). ESI+-HRMS calcd. for C52H39N2O4P2Pd ([MH]+) 923.1432; 

found 923.1445. Data in accordance with the literature.18 

 

[Pd(�-obs)2(PPh3)2] (266d) 

A protocol similar to that of 266a was used (from 21.0 mg, 38 µmol, of 264e). 1H NMR 

(400 MHz, CDCl3) δ 7.93-7.87 (m, 12H, Ph aromatic CH), 7.32-7.29 (m, 4H, obs and Ph 

aromatic CH), 7.24-7.12 (m, 20H, obs and Ph aromatic CH), 6.97 (d, J = 7.6 Hz, 2H, obs 

aromatic CH). 13C NMR (101 MHz, CDCl3) δ 164.3 (obs C=O), 143.0 (obs aromatic C), 
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135.4 (t, J = 7 Hz, Ph aromatic o-C), 131.2 (obs aromatic C), 131.1 (obs aromatic C), 130.9 

(obs aromatic C), 130.5 (Ph aromatic p-C), 129.3 (t, J = 25 Hz, Ph aromatic i-C), 127.6 (t, 

J = 5 Hz, Ph aromatic m-C), 122.7 (obs aromatic C), 118.8 (obs aromatic C). 31P NMR 

(162 MHz, CDCl3) δ 21.8 (s). IR (solid, cm-1) υmax 2358 (w), 2160 (m), 2018 (m), 1675 (s), 

1435 (s), 1309 (s), 1244 (m), 1173 (s), 1153 (s), 1098 (m), 958 (s), 794 (m), 747 (s), 693 

(s). ESI+-MS m/z 1118.1 (1%), 1017.1 (2%, [MNa]+), 857.2 (16%), 812.1 (30%, [M-obs]+), 

764.1 (2%), 697.1 (18%), 656.1 (33%), 579.1 (28%), 550.0 (16%, [M-obs-PPh3]
+), 445.0 

(2%), 339.1 (100%, [PPh4]
+), 301.1 (28%, [OPPh3Na]+). ESI+-HRMS calcd. for 

C50H38N2NaO6P2PdS2 ([MNa]+) 1017.0590; found 1017.0612. 

 

General procedure for the direct arylation of imidazole (276a) with 4-iodoanisole 

(258a). 

I O

N

N
H

N

N
H

O+

[Pd] (5 mol%), CuI (2 equiv.)

DMF, 135 oC, 48 h  

Based on a protocol reported by Bellina et al..40 Imidazole (34.0 mg, 0.500 mmol, 1 

equiv.), 4-iodoanisole (234 mg, 1.0 mmol, 2 equiv.), palladium precatalyst (25 µmol, 0.05 

equiv) and copper(I) iodide (190 mg, 1.00 mmol, 2 equiv.) were added to a Radleys 

carousel or Schlenk tube under a stream of argon. The flask was evacuated and filled with 

argon three times and dry, degassed �,�-dimethylformamide (DMF) (purchased dry from 

Acros or Fischer) (2.5 ml) was added via syringe. The apparatus was sealed and stirred at 

135 ºC (internal temperature) for 48 hours. After cooling to ambient temperature the 

reaction was diluted with ethyl acetate (10 ml) and poured into a saturated solution of 

ammonium chloride (10 ml). This was stirred (30 mins) and the organic layer was 

extracted three times with ethyl acetate. The organic phase was washed (water, 10 ml), 

dried (MgSO4), filtered and reduced in vacuo to give a brown oil. The crude product was 

added to a silica-gel Biotage SP4 column, eluting with CH2Cl2/MeOH/NH3 100/0/0 to 

90/10/0.05 v/v/v, or purified manually by column chromatography on silica-gel. Fractions 

containing the product by UV visualisation were combined and the solvent removed in 

vacuo to give the title compound as a white powder. 

 

 

 

276a 277a 258a 
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General procedure for the direct arylation of heteroarenes (276) with iodoarenes 

(258). 

I

N

N
+

[Pd(mal)2(MeCN)2] (264c) (5 mol%)

CuI (2 equiv.), DMF, 135 oC, 48 h
R1 R2

N

N

R1
R2

 

Based on a protocol reported by Bellina et al..40 The heteroarene (0.500 mmol, 1 equiv.) 

(if solid), iodoarene (1.00 mmol, 2 equiv.), [Pd(mal)2(MeCN)2] (264c) (9.5 mg, 25 µmol, 

0.05 equiv.) and copper(I) iodide (190 mg, 1.00 mmol, 2 equiv.) were added to a 

RadleysTM carousel tube under a stream of argon. The flask was evacuated and filled with 

argon three times and dry, degassed �,�-dimethylformamide (purchased dry from Fischer) 

(2.5 ml) (and heteroarene if liquid) was added via syringe. The apparatus was sealed and 

stirred at 135 ºC (internal temperature) for 48 hours. After cooling to ambient temperature, 

the reaction was diluted with ethyl acetate (10 ml) and poured into a saturated solution of 

ammonium chloride (10 ml). This was stirred (30 mins) and then the organic layer was 

extracted three times with ethyl acetate. The organic phase was washed (water, 10 ml), 

dried (MgSO4), filtered and reduced in vacuo to give a brown oil. The crude product was 

added to a silica-gel Biotage SP4 column and eluted with CH2Cl2/MeOH/NH3 100/0/0 to 

90/10/0.05 v/v/v. Fractions containing the product by UV visualisation were combined and 

the solvent removed in vacuo to give the title compound as a white powder. 

 

2-[4-(Methyloxy)phenyl]-1H-imidazole (277a) 

N

N
O

 

Prepared using the general procedure to give the title compound as a white powder {from 

34.0 mg, 0.500 mmol, of imidazole (258a) and 234 mg, 1.00 mmol, of 4-iodoanisole 

(276a)} (36.1 mg, 0.207 mmol, 41%). 1H NMR (400 MHz, MeOD) δ 7.77 (app. d, J = 8.9 

Hz, 2H, phenyl CH), 7.07 (s, 2H, imidazole CH), 6.97 (app. d, J = 8.9 Hz, 2H, phenyl CH), 

3.80 (s, 3H, OCH3). 
13C NMR (101 MHz, MeOD) δ 161.6, 148.1, 127.8, 124.1, 123.4, 

115.2, 55.7. ESI+-MS m/z 174.97 (100%, [MH]+). ESI--MS m/z 173.01 (100%, [M-H]-). 

Data in accordance with the literature.40  

 

 

 

 

 

258 277 276 
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2-Phenyl-1H-imidazole (277b) 

N

N

 

Prepared using the general procedure to give the title compound as a white powder {from 

34.0 mg, 0.500 mmol, of imidazole (276a) and 0.111 ml, 1.00 mmol, of iodobenzene 

(258b)} (39.1 mg, 0.271 mmol, 54%). 1H NMR (400 MHz, MeOD) δ 7.87-7.84 (m, 2H, 

aromatic CH), 7.45-7.40 (m, 2H, aromatic CH), 7.34 (m, 1H, aromatic CH), 7.12 (s, 2H, 

imidazole CH). 13C NMR (101 MHz, MeOD) δ 148.0, 131.5, 129.9, 129.7, 126.3 (one 

peak overlapping). ESI+-MS m/z 144.95 (100%, [MH]+). ESI--MS m/z 142.99 (100%, [M-

H]-). Data in accordance with the literature.40  

 

2-(2-Methylphenyl)-1H-imidazole (277c) 

N

N

 

Prepared using the general procedure to give the title compound as a white powder {from 

34.0 mg, 0.500 mmol, of imidazole (276a) and 0.127 ml, 1.00 mmol, of 1-iodo-2-

methylbenzene (258c)} (35.2 mg, 0.223 mmol, 46%). 1H NMR (400 MHz, MeOD) δ 7.44 

(m, 1H, phenyl CH), 7.33-7.22 (m, 3H, phenyl CH), 7.13 (s, 2H, imidazole CH), 2.41 (s, 

3H, CH3). 
13C NMR (101 MHz, MeOD) δ 148.2, 137.9, 131.9, 131.8, 130.5, 130.0, 126.9, 

123.5, 20.5. ESI+-MS m/z 159.01 (100%, [MH]+). ESI--MS m/z  242.75 (11%), 180.96 

(18%), 157.01 (100%, [M-H]-). Data in accordance with the literature.40  

 

2-[4-(Trifluoromethyl)phenyl]-1H-imidazole (277d) 

N

N
CF3

 

Prepared using the general procedure {from 34.0 mg, 0.500 mmol, of imidazole (276a) 

and 0.147 ml, 1.00 mmol, of 4-iodobenzotrifluoride (258d)} to give the title compound as 

a white powder (63.5 mg, 0.299 mmol, 60%). 1H NMR (400 MHz, MeOD) δ 8.04-8.00 (m, 

2H, phenyl CH), 7.75-7.71 (m, 2H, phenyl CH), 7.19 (s, 2H, imidazole CH). 13C NMR 

(101 MHz, MeOD) δ 126.7 (s), 126.9 (q, J = 4 Hz), 131.2 (q, J = 33 Hz), 135.0 (q, J = 1.3 

Hz), 146.3 (s), 125.6 (q, J = 272 Hz) (one peak overlapping). ESI+-MS m/z 212.97 (100%, 

[MH]+). ESI--MS m/z 210.96 (100%, [M-H]-), 112.81 (23%). Data in accordance with the 

literature.40  
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1,2-Bis[4-(methyloxy)phenyl]-1H-imidazole (277e) 

N

N

O

O
 

Prepared using the general procedure to give the title compound as a white powder {from 

87.0 mg, 0.500 mmol, of 1-[4-(methyloxy)phenyl]-1H-imidazole (276b) and 234 mg, 1.00 

mmol, of 4-iodoanisole (258a)} (97.6 mg, 0.331 mmol, 66%). 1H NMR (400 MHz, 

MeOD) δ 7.26-7.21 (m, 3H, aromatic CH), 7.13-7.10 (m, 3H, aromatic CH), 6.94-6.91 (m, 

2H, aromatic CH), 6.82-6.79 (m, 2H, aromatic CH), 3.78 (s, 3H, OCH3), 3.72 (s, 3H, 

OCH3). 
13C NMR (101 MHz, MeOD) δ 161.5, 161.0, 148.3, 132.4, 131.2, 128.5, 128.4, 

124.2, 123.5, 115.7, 114.8, 56.0, 55.7. ESI+-MS m/z 280.98 (100%, [MH]+). ESI--MS m/z 

248.96 (16%), 154.78 (100%). Data in accordance with the literature.41 

 
2-[ 4-(Methyloxy)phenyl]-1H-imidazole (277f) 

N

N
O

 

Prepared using the general procedure {from 59.1 mg, 0.500 mmol of benzimidazole 

(276c) and 234 mg, 1.00 mmol, of 4-iodoanisole (258a)} to give the title compound as an 

off-white powder (94.5 mg, 0.358 mmol, 72%). 1H NMR (400 MHz, MeOD) δ 8.02-7.98 

(m, 2H, aromatic CH), 7.58-7.53 (m, 2H, aromatic CH), 7.23-7.19 (m, 2H, aromatic CH), 

7.06-7.02 (m, 2H, aromatic CH), 3.83, (s, 3H, OCH3). 
13C NMR (101 MHz, MeOD) δ 

162.9, 153.4, 129.4, 123.6, 123.4, 115.5, 114.7, 55.9 (one peak overlapping). ESI+-MS m/z 

225.00 (100%, [MH]+). ESI--MS m/z 222.94 (100%, [M-H]-), 207.91 (10%). Data in 

accordance with the literature.40 
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5. Conclusion 

 

In summary, imidate anions have incorporated into stable complexes of Au(I), Au(III), 

Pd(II) and Ru(II). The succinimidate, maleimidate and phthalimidate ligands displayed 

similar reactivity during the synthesis of imidate organometallic compounds, forming 

stable Au(I) (55-57) and Au(III) (66-68) complexes bearing ItBu, ItPe and IMes ligands but 

not Ru alkylidene or benzylidene complexes (due to destabilisation of the carbene ligand). 

However, although the three ligands all formed complexes bearing MeCN and PPh3 

ligands with Pd(II), the maleimidate complex [Pd(mal)2(MeCN)2] (264c) appeared to have 

bidentate �,O-coordinated imidate ligands, the succinimidate analogue (264a) appeared to 

have multiple monodentate and bidentate coordination modes and the phthalimidate 

complex (264d) a monodentate �-coordination mode. 

The tetrafluorosuccinimidate and o-benzoic sulfimidate (and to an lesser degree 2,3-

dibromosuccimidate) ligands reacted differently to succ, mal and ptm. They formed stable 

Au(I) complexes bearing ItBu (55), ItPe (56) and IMes (57) ligands but only formed stable 

Au(III) complexes bearing ItBu (66) and ItPe (67) and not IMes ligands. Additionally, the 

reaction of the Au(III) (pseudo)halide complexes (66-68) with Ag salts (as observed by 

AgBr precipitation) appeared to follow the pKa of the parent imide/acid, with succ and 

bromide complexes reacting very rapidly and tfs and obs complexes very slowly. The tfs 

ligand (dbs and obs ligands were not tested) formed a stable (although air sensitive) Ru 

benzylidene complex, [Ru(�-tfs)2(o-
iPrO-CHPh)(IMesH2)] (217), unlike succ, mal and 

ptm ligands. The tfs ligand also reacted differently with Pd, the acetonitrile complex 

[Pd(tfs)2(MeCN)2] (264b), which appeared to possess multiple monodentate �-

coordination modes, did not spontaneously precipitate from the reaction solution during 

synthesis and failed to react with triphenylphosphine. The obs ligand however behaved 

analogously to the succ, mal and ptm ligands, with spontaneous precipitation of the 

acetonitrile complex (264e) from the reaction solution, forming a monomeric, monodentate 

�-coordinated complex, which reacted with PPh3 to form the expected phosphine complex 

(266d).  

By using a range of substituted imidate ligands it has been possible to monitor the 

electronic impact of the ligands on the metal centre and ancillary ligands by NMR 

spectroscopy. It was found that succ, mal and ptm ligands have relatively similar electronic 

properties, such as σ and π bonding parameters, which is reflected in the impact of the 
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imidate ligands on the NMR signals of the ancillary ligands. Generally of the three ligands 

ptm is the least electron-donating and succ the most, although due to the similarity of the 

ligands this trend was not always reflected in NMR chemical shifts values {for example, 

with the 31P NMR signals of PPh3 ligands in [Pd(imidate)2(PPh3)2] complexes (266)}. 

These three ligands were found to have comparable electronic properties to bromide and 

chloride analogues in Au(I) (55-57) and Au(III) (66-68) complexes.  

The tfs and obs ligands (and dbs) are much less electron-donating than the other imidates 

causing large shifts in the NMR signals of the ancillary ligands relative to halide parent 

complexes. The tetrafluorosuccinimidate ligand consistently reduced the electron density 

of coordinated metal atoms and ancillary ligands more than the obs ligand. The reported 

pKa of 2.1 for tetrafluorosuccinimide was found not to correlate with the electronic effect 

of the conjugate base as a ligand. The calculated value of -10.0 was found to be a more 

accurate reflection of the electronic properties (although it is unlikely to reflect the solution 

phase acidity of the parent imide) which were similar to those of  -O3SCF3. 

X-Ray diffraction studies of crystals of the complexes showed that there were no 

significant differences in bond lengths between analogous imidate complexes {with the 

exception of a longer metal-imidate bond in the Ru(III) complex [Ru(�-

tfs)3(IMesH2)(OH2)2] (229)}. There was also little difference between the imidate 

complexes and the halide parent complexes, although the metal-imidate bond length was 

shorter by 0.24-0.27 Å than directly analogous metal bromide and chloride bonds. The Ru-

imidate bond length in [Ru(�-tfs)2(o-
iPrO-CHPh)(IMesH2)] (217) was found to be similar 

to the Ru-O3SCF3 bond length in [Ru(O3SCF3)2(o-
iPrO-CHPh)(IMesH2)] (224).  

The catalytic activity of the imidate complexes only partially reflected the pKa of the 

parent imide. The activity of the Au(III) complexes (66-68) in cycloisomerisation 

processes was found to follow the order: 

mal > dbs ≥ obs > tfs > ptm > succ ≥ Br 

The most electron donating succ and ptm ligands were more active than the parent 

bromide but less active than the more electron-withdrawing obs and tfs complexes. 

However, mal, dbs and obs complexes were all more active than the tfs complex. The 

activity of the mal complexes is particularly surprising, suggesting intermediate basicity of 

the imidate ligand is required for optimal activity. However, in tandem nucleophillic 
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substitution-cycloisomerisation processes, which rely on Lewis acidity as well as 

cycloisomerisation ability, the activity reflected the pKa of the parent imide: 

tfs > dbs > mal > ptm > succ 

The Ru benzylidene complex [Ru(�-tfs)2(o-
iPrO-CHPh)(IMesH2)] (217) was found to be 

inactive in diene metathesis processes, whilst the parent dichloride possesses high activity. 

In this case the tfs ligand appears to be too electron-withdrawing, preventing the formation 

of the active catalyst by dissociation of the isopropoxy ligand. 

The activity of the Pd(II) complexes (264 and 265) in direct arylation processes in some 

ways reflected the effects of the imidate ligands in Au(III)-catalysed cycloisomerisation 

processes. The succ (264a) and ptm (264d) complexes were once again the least and the 

mal (264c) and obs (264e) complexes the most active, with similar activity to the parent 

diacetate (247). The tfs complex (264b) behaved anomalously and was found to be inactive 

under the most reliable reaction conditions. The role of the basicity of the imidate ligands 

in the activity may be reflected in the ease of reduction of the complexes to catalytically 

active Pd(0) species. The relatively high activity of the mal complex (264c) despite the 

moderate pKa of the parent imide may be caused by the bidentate �,O-coordination mode 

of the imidate ligand in this complex. The lack of activity of the tfs complex (264b) may 

be a consequence of its reduced reactivity, reflected in its failure to form a phosphine 

complex. 

Relative to parent bromide complexes, imidate ligands impart greater stability to Au(III) 

precatalysts (66-68) and catalysts resulting in improved yields in cycloisomerisation 

processes (particularly with maleimidate) and the facilitation of the unique nucleophillic 

substitution-cycloisomerisation reaction (with tetrafluorosuccinimidate) that was not 

possible with Au(I) and Au(III) bromide analogues. This study highlights the benefits, 

particularly in terms of stability, of using pseudohalide ligands in Au(III) catalysis, as well 

as expanding the small number of Au(III) organometallic precatalysts reported.  

Imidate ligands either destabilised (succ, mal and ptm) or deactivated (tfs) Ru alkylidene 

and benzylidene complexes in diene metathesis reactions, and so were clearly not 

beneficial in this case. The synthesis of an imidate Ru complex however expands the 

library of known Ru benzylidene pseudohalide complexes, which contains few anions 

ligated via nitrogen. The lack of catalytic activity of the Ru tfs complex (217) and the 

synthetic challenges uncovered with the attempted synthesis of other Ru imidate 
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complexes demonstrates the limitations of anionic ligand exchange in these complexes but 

helps to define the range of pKa values of the anionic ligands for which the catalysts are 

stable and active. 

Imidate ligands were also not beneficial to Pd catalysed direct arylation processes, under 

the ‘base and ligand-free’ conditions, relative to the parent acetate complex (247). 

However, there was an effect of the nature of the imidate ligand on the activity of the 

complexes which may be applicable to other direct arylation processes. The underlying 

research into the ‘base and ligand’ free reaction conditions has uncovered more reliable 

reaction conditions, as well as going someway towards uncovering the active catalyst 

identity and mechanism of formation in these reactions. 

This project has reinforced the validity of imidate ligands as pseudohalides, which should 

lead to the screening of this range of anions, in conjunction with other pseudohalides, as  

ligands for further transition metal mediated processes. The highly electron-withdrawing 

tetrafluorosuccinimidate ligand (and o-benzoic sulfimidate as a cheap and stable 

alternative), as an alternative to commonly used perfluorocarboxylate ligands, and the 

maleimidate ligand, which has been shown to generate very active catalysts, in particular 

should prove beneficial.  
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A1. Appendix 1: Studies to determine the catalytically active species in 

Au(III) mediated processes 

 

A1.1. Stoichiometric reaction of Au(III) complexes and Ag salts 

The exact nature of the catalytically-active species in the Au(III)-mediated 

cycloisomerisation and nucleophillic substitution reactions reported in Chapter 2 are not 

known. There is some contention about the role played by Au(III) in these reactions. It is 

known that Au(III) can be reduced to Au(I) during the course of reactions1 and so Au(I) 

may be the catalytically active species in such processes. Both oxidation states could play a 

role, for example, Au(I) could be the active species where a soft π-acid is required (such as 

in cycloisomerisations), whereas Au(III) may be the active species where Lewis acidity is 

required (in neutral or cationic form).2 Nolan3 has stated that he suspects that the active 

catalyst in the reported hydration of alkynes and polymerisation of styrene mediated by  

the parent [AuBr3(NHC)] complexes is actually an Au(I) species formed by reductive 

elimination of the halide ligands. A series of studies were therefore carried out to 

determine whether Au(I)+ or Au(III)+ is the catalytically active species in the 

cycloisomerisation and nucleophillic substitution reactions in the presence of [AuBr2(N-

imidate)(NHC)] complexes (66-68) and silver salts. 

It was noticed during catalysis experiments that when [AuBr2(N-succ)(ItPe)] (67a) was 

mixed with one equivalent of AgOTf in CH2Cl2 a yellow precipitate was formed (this was 

not observed with complexes with more electron withdrawing imidates). The yellow colour 

of the solid suggests it is an Au(III) species and the low solubility suggests a new complex. 

Presumably an ionic complex, [AuBr(N-succ)(ItPe)]X (285) (where X is an anion, such as  
-OTf), has formed by extraction of a bromide ligand by Ag+. This precipitate was isolated 

by filtration and, due to lack of solubility in non-coordinating and instability in 

coordinating solvents, it was analysed by solid state IR spectroscopy. This showed that the 

precipitate has a 46 cm-1 lower carbonyl stretching frequency (1619 cm-1) than [AuBr2(N-

succ)(ItPe)] (67a) (1665 cm-1) (Table 61). This frequency is even lower than that of [Au(N-

succ)(ItPe)] (56a) at 1631 cm-1.  

 This is surprising, as it would be expected that, following the trend of oxidation from 

Au(I) to Au(III), the wavenumber would increase due to a more electropositive Au atom if 

an Au(III) cation had formed. This is because electron density from the nitrogen lone pair 
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would be donated into the Au-N, rather than the succinimidate C-N, bond which would 

consequently reduce electron density in the C=O bond. This is supported by X-ray 

diffraction data in the ItBu analogues 55a and 66a. The Au(I) complex [Au(N-succ)(ItBu)] 

(55a) C=O bond is on average 0.013 Å longer than in the Au(III) complex [AuBr2(N-

succ)(ItBu)] (66a) (although this is not statistically significant). This anomaly could be 

explained by the theory of Adams, Dubuc and Zakrewski,4 which states that as the ionic 

component of the metal imidate bond increases (due to a harder metal centre) then more 

electron density is localised on the imidate nitrogen, rather than into the metal imidate 

bond, which results in a weaker C=O bond. This theory explains why imidate complexes 

have C=O stretching frequencies 54-59 cm-1 lower than the free imides.  

 

Table 61. Carbonyl bond IR stretching frequencies of [Au(�-succ)(I
t
Pe)] (55a), [AuBr2(�-

succ)(I
t
Pe)] (66a) and [AuBr(�-succ)(I

t
Pe)]X (285). 

Entry Complex Carbonyl stretching frequency (cm-1) 

  Solid Solution (CH2Cl2) 

1 [Au(N-succ)(ItPe)] (55a) 1631 1644 

2 [AuBr2(N-succ)(ItPe)] (66a) 1665 1663 

3 [AuBr (N-succ)(ItPe)]X (285) 1619 insoluble 

 

It was found that if a coordinating species, such as pyridine, was added to the solution 

then the precipitate dissolved. In order to try to characterise this species (285), believed to 

be [AuBr(N-succ)(ItPe)][OTf], by NMR spectroscopy [AuBr2(15N-succ)(ItPe)] (73) was 

treated with one equivalent of AgOTf in CD2Cl2. The resulting precipitate dissolved on 

addition of one equivalent of pyridine. 15N NMR spectroscopy revealed a single (low 

resolution) peak (179.5 ppm) corresponding to the parent complex (179.4 ppm). It would 

appear that the addition of pyridine converts the new species back to the parent complex, 

suggesting that [AuBr(N-succ)(ItPe)][OTf] formation by irreversible bromide extraction 

had not occurred. It is also possible that the pyridine solubilises the AgBr side product 

allowing the reverse reaction to take place, if this is the case then it would suggest that 

there would be an equilibrium between [AuBr(N-succ)(ItPe)][OTf] / AgBr and [AuBr2(N-

succ)(ItPe)] / AgOTf.  
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In order to monitor the formation of cationic Au species in solution the reaction of Au 

complexes and silver salts was monitored by proton NMR spectroscopy. Spectra of 55b, 

67a, 67c, 56g and 67g in combination with AgOTf and Ag[Al(OC(CF3)3)4] (76) were taken 

over time. The ItPe imidazole proton signals were followed as these are the most 

characteristic and most sensitive to changes in the Au electronic configuration. Initially 

spectra were run in d6-acetone to increase the solubility of the silver salts and any ionic 

species that are formed (Figure 56). 

Figure 56. Reaction of 67c and AgOTf in d6-acetone over time (monitoring the ItPe 

imidazole proton signal by 1H NMR spectroscopy, referenced to the residual d5-acetone 

solvent signal at 2.05 ppm). 

 

The [AuBr(ItPe)] (56g) imidazole signal shifts 0.15 ppm downfield on treatment with 

AgOTf, which is presumably due to the quantitative formation of an [Au(ItPe)]+ species 

(286). [AuBr2(N-tfs)(ItPe)] (67c) in the presence of AgOTf however degrades almost 

quantitatively to [Au(N-tfs)(ItPe)] (56b) with no observable formation of an Au(III) 

cationic species, although with a trace amount of the [Au(ItPe)]+ (286) species observable 

after 4.5 hours. These results would suggest that Br2 is formed {the final solution is brown 

67a + AgOTf after 4.5 hours 

56g + AgOTf after 22.5 hours 

55b 

56g 

67g (aged solution) 

67c + AgOTf after 22.5 hours 

67c + AgOTf after 4.5 hours 

67c + AgOTf after 10 minutes 

67c (aged solution) 

67c 

δ (ppm) 
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and added 1-hexene is brominated to form 1,2-dibromohexane (vide infra)}. Ageing of 

[AuBr3(ItPe)] (67g) over 48 hours in solution in the absence of AgOTf resulted in 

significant decomposition to 56g. Ageing of 67c led to slow formation of 56b, 56g and 

67g. [AuBr2(N-succ)(ItPe)] (67a) was also treated with AgOTf, only 67a and the formation 

of trace 286 were observed.  

19F NMR spectroscopy was used to monitor the tetrafluorosuccinimidate ligand fluorine 

signal (Figure 57). Loss of the signal relating to 67c occurs along with the formation of 

56b, however a second minor signal at -128.1 ppm, which may relate to free 

tetrafluorosuccinimidate (or N-bromotetrafluorosuccinimide), is observed. Interestingly, 

this peak has maximum intensity after 4.5 hours and then is reduced after 22.5 hours. A 

possible explanation is that the free ligand recombined with [Au(ItPe)]+ (286) to form 56b 

{or exchanged with [Au(ItPe)Br] (56g)}. This would suggest that reduction of 67c to 56b 

occurs via loss of tetrafluorosuccinimidate anion or N-bromotetrafluorosuccinimidate. A 

small amount of hydrolysed tetrafluorosuccinimidate was also observed.  

 

Figure 57. Reaction of 67c and AgOTf in d6-acetone over time (monitoring the tfs fluorine 

signal by 19F NMR spectroscopy). 

 

δ (ppm) 

67c + AgOTf after 22.5 hours 

67c + AgOTf after 4.5 hours 

67c + AgOTf after 10 minutes 

67c 
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The same experiment was carried out using Ag[Al(OC(CF3)3)4] (76) as the silver source 

which gives almost identical results (Figure 58). However, there is an additional 

unidentified broad signal in the Au(I) imidazole region for 67c. 

 

Figure 58. Reaction of 67c and Ag[Al(OC(CF3)3)4] (76) in d6-acetone over time 

(monitoring the I
t
Pe imidazole proton signal by 

1
H NMR spectroscopy, referenced to the 

residual d5-acetone solvent signal at 2.05 ppm). 

 

In the presence of Ag[Al(OC(CF3)3)4] (76) the 19F spectrum again shows the loss of the 

[AuBr2(N-tfs)(ItPe)] (67c) and growth of the [Au(N-tfs)(ItPe)] (56b) signal, however the 

peak at -128.0 ppm is much more significant accounting for more than half of the fluorine 

signal after 24 hours (Figure 59). This may indicate that the broad signals observed in the 
1H spectrum are Au(I) signals from [Au(ItPe)]+ (286) and [AuBr(ItPe)] (56g) species. 

δ (ppm) 

67c + AgOTf after 22.5 hours 

56b 

67c + AgOTf after 10 minutes 

67c 

67c + Ag[Al(OC(CF3)3)4] after 7 hours 

67c + Ag[Al(OC(CF3)3)4] after 24 hours 

67c + Ag[Al(OC(CF3)3)4] after 10 minutes 
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Figure 59. Reaction of 67c and Ag[Al(OC(CF3)3)4] (76) in d6-acetone over time 

(monitoring the tfs fluorine signal by 
19

F NMR spectroscopy, referenced to the residual d5-

acetone solvent signal at 2.05 ppm). 

 

The experiment was repeated using a 3:1 mixture of CD2Cl2 and CD3CN as solvent, 

CD3CN was added to help solubilise ionic species. In this case complex 67c appears to be 

relatively stable over 24 hours in the presence of AgOTf and Ag[Al(OC(CF3)3)4] (76), with 

little decomposition over a 24 hour period. There is a small shift in the signal position 

depending on the silver salt added, possibly due to a close interaction between the silver 

salt and gold complex (Figure 60). In order to test this theory 67c was treated with 0.5 

equivalents of AgOTf. This gave only one peak, although it was broader than the control 

and the signal seen with one equivalent of AgOTf and intermediate between them in 

chemical shift, suggesting this variability is due to an interaction with the silver salt. 

 

δ (ppm) 

67c 

67c + Ag[Al(OC(CF3)3)4] after 7 hours 

67c + Ag[Al(OC(CF3)3)4] after 24 hours 

67c + Ag[Al(OC(CF3)3)4] after 10 minutes 
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Figure 60. Reaction of 67c with AgOTf or Ag[Al(OC(CF3)3)4] (76) in 3:1 CD2Cl2:d3-

MeCN over time (monitoring the I
t
Pe imidazole proton signal by 

1
H NMR spectroscopy, 

referenced to the residual CDHCl2 solvent signal at 5.31 ppm). 

 

The 19F NMR spectra do not show any significant change over the timeframe, however 

there is a small 56b signal, suggesting slow decomposition (Figure 61). There is a small 

shift in the 19F signal when 67c is treated with 1 equivalent rather than 0.5 equivalents of 

AgOTf. This signal also has a small shoulder that could be a new Au(III) species forming 

by interaction with the silver salt. When 2 equivalents of AgOTf were used the same result 

was observed but there was also a small amount of an Au(I) species formed.  

 

67c 

67c + Ag[Al(OC(CF3)3)4] after 6 hours 

67c + Ag[Al(OC(CF3)3)4] after 24 hours 

67c + Ag[Al(OC(CF3)3)4] after 10 minutes 

67c + AgOTf (0.5 equiv.) after 6 hours 

67c + AgOTf (1 equiv.) after 6 hours 

δ (ppm) 
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-128.02-127.92-127.82-127.72-127.62

1

2

3

4

5

5c + AgOTf (1 equiv.) 10 minutes

5c

5c + AgOTf (1 equiv.) after 6 hours

5c + AgOTf (0.5 equiv.) after 1 hours

5c + AgOTf (0.5 equiv.) after 18 hours

 

Figure 61. Reaction of 67c and AgOTf in 3:1 CD2Cl2:d3-MeCN over time (monitoring the 

tfs fluorine signal by 
19

F NMR spectroscopy). 

 

Overall these experiments do not provide evidence for the formation of an Au(III)+ 

species, although there is some evidence for interaction between 67c and the silver salts. In 

the CD2Cl2/d3-MeCN solvent system the complexes are stable over 24 hours in the 

presence of silver salts, however the nucleophilic substitution and cycloisomerisation 

reactions proceed to completion during this time frame, suggesting either the catalytic 

species is in trace concentration {as would be expected if the [Au(III)]+/AgBr is in 

equilibrium with [Au(III)]Br/Ag+ (vide supra)} or that the organic reactants are involved in 

catalyst activation. In the d6-acetone solvent system a relatively rapid decomposition of 67c 

to 56b was observed, with some evidence for [Au(ItPe)]+ (286) formation particularly in 

the presence of Ag[Al(OC(CF3)3)4] (76). As 56b is catalytically inactive small amounts of 

286 may be the active catalyst in the cycloisomerisation reactions, but another species must 

mediate the nucleophillic substitution reactions. 
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67c + AgOTf (0.5 equiv.) after 18 hours 

67c + AgOTf (1 equiv.) after 6 hours 

67c + AgOTf (0.5 equiv.) after 1 hour 

67c + AgOTf (1 equiv.) after 10 minutes 
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A1.2. Binding of 1-hexene to Au and Ag cations 

Binding of 1-hexene5 and other alkenes and alkynes to Au(I) complexes has been 

observed spectroscopically and crystallographically.6 However, there have been no reports 

of binding to Au(III) and so complexes 67a and 67c was treated with 1-hexene and AgOTf 

in order to observe the effect of the alkene on catalyst activation and to monitor any 

binding of the alkene to the Au species. The complexes [AuBr2(N-tfs)(ItPe)] (67a) and 

[AuBr2(N-tfs)(ItPe)] (67c) and one equivalent of AgOTf were mixed in CD2Cl2 for one 

hour before addition of 1-hexene (1 and 2 equivalents), 1H NMR was then used to monitor 

the reaction (Figure 62), allowing comparison to the reported Au(I) 1-hexene complex, 

[Au(µ2-H2C=CHC4H9)(IPr)][SbF6] (287).5 

 

Figure 62. 1H NMR spectra of complexes 67a and 67c when treated with AgOTf and 1-

hexene in CD2Cl2, after 10 minutes and 24 hours (referenced to the residual CDHCl2 

solvent signal at 5.31 ppm). 

 

The spectra show that no binding occurs to the neutral Au(III) imidate complexes in the 

absence of AgOTf (Table 62). Upon mixing of 67a and AgOTf the expected yellow 

precipitate formed, addition of 1-hexene (1 equivalent) resulted in settling of the 

67c + 2 equiv. 1-hexene 
after 10 minutes 

67c + 1 equiv. 1-hexene 
after 10 minutes  

67a + 1 equiv. 1-hexene  
after 10 minutes 

 
67c + 2 equiv. 1-hexene 
after 24 hours 

1-Hexene  

δ (ppm) 
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precipitate. The imidazole signal did not change but there was a small downfield shift (0.09 

ppm) in the 1-hexene signals with no change in coupling constants. This shift is typical of 

simple alkenes bound to a metal where there is little π-back donation from the metal to the 

alkene antibonding orbitals and is consistent with the reported Au(I) 1-hexene complex.5 In 

the reported complex 287 the coupling constants of the alkene protons are reduced by up to 

2 Hz, as would be expected due to π-back donation which would increase the p character 

of the orbitals.  

For complex 67c in the presence of 1 equivalent of 1-hexene and AgOTf there is again no 

change in the imidazole signal but the alkene signals are shifted even further downfield, by 

up to 0.44 ppm. Coupling constants of 18.0 Hz for the trans coupling and 8.7 Hz for the cis 

coupling were observed. This increased shift relative to 67a would be expected as the more 

electron deficient 67c adduct would withdraw more electron density from the alkene. For 

complex 67c in the presence of AgOTf and 2 equivalents of 1-hexene the alkene signals 

shift downfield by up to 0.18 ppm, with little change in coupling constants relative to free 

1-hexene.  

 

Table 62. 
1
H NMR chemical shifts and coupling constants of 1-hexene alkene proton A in 

the presence of 67a, 67c and AgOTf and for reported complex 287.
a
 

H
A

H
C

H
B  

Entry Complex/ Salt Equiv. of 

1-hexene 

δ H
A 

(ppm) 

Coupling 

constants 

(Hz)
b
 

1 - - 5.82 17.0, 10.1, 6.7 

2 [AuBr2(�-tfs)(I
t
Pe)] (67c) 1 5.82 17.0, 10.1, 6.7 

3 AgOTf 2 6.21 17.7, 8.9, 6.6 

3 [AuBr2(�-succ)(I
t
Pe)] (67a) + AgOTf 1 5.91 17.0, 10.0, 6.7 

4 [AuBr2(�-tfs)(I
t
Pe)] (67c) + AgOTf 1 6.26 18.0, 8.7, 6.5 

5 [AuBr2(�-tfs)(I
t
Pe)] (67c) + AgOTf 2 6.00 17.0, 10.1, 6.7 

6 [Au(µ2-H2C=CHC4H9)(IPr)][SbF6] (287) 1 6.05 17, 9, 4.5 

a In CD2Cl2 at 400 MHz. b Signal observed as a ddt. 
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Control tests however suggest that the 1-hexene alkene shifts observed in the presence of 

67a, 67c and AgOTf may be due to Ag+ binding, with the coupling constants and chemical 

shifts varying upon the relative amounts of Ag+ and 1-hexene in solution (reported to bind 

in a 1:2 ratio) (Figure 63).7 
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Figure 63. 1-Hexene alkene 1H NMR signals when treated with increasing equivalents of 

of AgOTf in CD2Cl2 (referenced to the residual CDHCl2 solvent signal at 5.31 ppm).  

 
An additional spectrum of 2 equivalents of 1-hexene in the presence of 67c and AgOTf 

was taken after 24 hours and the spectrum had changed significantly, with a number of 

small ItPe imidazole signals corresponding to Au(I) and Au(III) species and also a large  

broad signal (80% of the total imidazole signal) in the Au(I) region. This was also 

accompanied by a very broad signal (4.45-4.09 ppm) in the 1-hexene alkene region 

suggesting a fluxional Au(I) alkene complex, of either 56b or [Au(ItPe)]+ (286). There 

were also signals corresponding to free 1-hexene and a new set corresponding to 1,2-

dibromohexane (about 50% abundance compared to free 1-hexene). There was now no 

evidence of 1-hexene binding to Ag+ suggesting this would now have formed AgBr. The 
19F NMR spectrum also showed a very large broad signal (-182.2 ppm) suggesting the 

observed alkene complex is that of 56b.  

0.5 equiv. 1-Hexene 

0 equiv. AgOTf 

10 equiv. 1-Hexene 

4 equiv. 1-Hexene 

2 equiv. 1-Hexene 

1 equiv. 1-Hexene 

δ (ppm) 
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These results again do not provide evidence of an Au(III)+ alkene complex, and only Ag+ 

binding can be assumed. The alkene does however mediate the relatively rapid 

decomposition of 67c to 56b (not observed in the absence of alkene in CD2Cl2), forming a 

fluxional complex with 56b and the production of bromine which is trapped by 

bromination of the alkene. This demonstrates that the unsaturated reagents in the reaction 

mixture are involved in the solubilisation of the silver salt and the mediation of the 

decomposition of the Au complex and presumably the formation of the active catalytic 

species.  

Attempts were made to obtain crystals of the complexes in the presence of alkenes and 

pyridine and silver salts, however these were unsuccessful and resulted in decomposition 

over time rather than crystal formation. 
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