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ABSTRACT 

Insulin signalling regulates crucial processes of metabolism, growth and differentiation, and 

insulin is an essential medicine for treatment of diabetes mellitus. The insulin receptor (IR) is an (αβ)2  

dimeric transmembrane protein responsible for mediating the effects of insulin and, to a degree, 

insulin-like growth factors. It is over 1000 amino acids long, multi-domain, highly glycosylated and 

stabilized by multiple disulphide bridges. These considerations have limited our structural 

understanding of the receptor and its interactions with insulin despite its great medical importance. 

Insulin binding is complex: IR binding sites are contained entirely within the extracellular α chain, 

and each monomeric chain contains two distinct sub-sites that bind insulin to form a high-affinity 

crosslink. Despite being a symmetrical dimer, the full-length receptor binds only one insulin molecule 

with high affinity, presumably because an asymmetric fit induced by ligand forming one sub-site 

crosslink prevents formation of the other.  

This work seeks to produce and characterize novel, high-affinity heterodimeric constructs of IR α 

chain modified to only contain one possible site 1-2 crosslink. To this end, expression vectors were 

engineered based on plasmids obtained from Novo Nordisk A/S coding for fusion proteins of IR1-593 

and IR310-601.678-719/731 receptor fragments connected with poly(Gly-Ser) linkers containing 

protease recognition sites. Expression levels were found to be comparable to those of established IR 

constructs like IR(1-310). Two alternative signal peptides were tested, but did not improve protein 

expression or secretion. Two constructs were expressed and purified on a preparative scale and their 

oligomerization state and cleavage was assessed. Purification of a construct with a 3C protease site 

linker showed that producing two receptor fragments from a single polypeptide chain is a viable 

approach. If a site 1 – site 2’ limited heterodimers could be reconstituted, it would open an exciting 

new approach to structural studies of insulin/IR complexes. 
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1 INTRODUCTION 

1.1 INSULIN 

1.1.1 The discovery of insulin 

Insulin is a 51 amino acids long peptide hormone synthesised in the β-cells of the islets of 

Langerhans in the pancreas. It is crucial to the regulation of metabolism and growth, and dysfunctions 

in insulin signalling are the cause of diabetes mellitus. As a relatively simple protein with crucial 

medical applications, it has a special place in the history of biochemistry and biotechnology for being 

a number of ‘firsts’: it was the first protein to have its primary sequence determined by Frederic 

Sanger [1–4], one of the first proteins to have its 3D structure determined by means of X-ray 

crystallography by Dorothy Hodgkin and colleagues [5] and the first biopharmaceutical to be 

produced using recombinant DNA technology. Its discovery is attributed to Frederick Banting, who 

first described a process of isolating it from bovine pancreas in 1922 [6] along with Charles Best and 

James Collip (a more complete story of insulin discovery can be found in ref. 7). Shortly after the 

announcement of its discovery, insulin production patents were secured by the American 

pharmaceutical company Eli Lilly which started commercial distribution under the brand name Iletin 

in 1923. At the same time, Danish Nobel Prize winner August Krogh founded Nordisk Insulin 

Laboratory in Copenhagen, a non-profit organisation that would later become Novo Nordisk A/S and 

make Denmark the second biggest producer of insulin after the United States.  

1.1.2 The basics of insulin signalling 

Insulin and the tightly related Insulin-like Growth Factors (IGFs) are ancestral peptide hormones 

that play a crucial role in metazoan processes of metabolism, growth and differentiation. Insulin-like 

peptides are highly evolutionarily conserved and can be found in invertebrates [8], plants [9] and 

even unicellular eukaryotes [10] where they play a developmental role. The metabolic control exerted 

by insulin in vertebrates appears to be a recent evolutionary development coinciding with IGFs 

becoming a major mitogenic hormone [11]. Physiological effects of insulin are well-established and 

include increase of nutrient uptake, primarily glucose, by muscle, fat and liver cells, increase in 

glycogen, fatty acid and protein synthesis and decreased catabolism and autophagy. Maintaining 

homeostasis by regulation of blood glucose levels is also a key consequence of insulin’s ability to 

stimulate nutrient uptake. 
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Insulin action is mediated primarily through two pathways: the PI3K/Akt pathway and the Ras 

(MAPK) pathway [12,13]. The dimeric insulin receptor has two cytosolic tyrosine kinase domains that 

trans-autophosphorylate upon insulin binding and subsequently phosphorylate their intracellular 

substrates (IRS, insulin receptor substrate proteins). Phosphorylated IRS proteins are recognized by 

intracellular effectors that contain Src-homology-2 (SH2) domains, including the p85 subunit of 

phosphoinositide 3-kinase and Grb2 that activates the Ras pathway. Activation of the PI3K pathway 

and protein kinase B (Akt/PKB) has a plethora of effects including glucose uptake (through regulation 

of Glut-4 glucose transporter trafficking), glycogen synthesis (through glycogen synthase kinase 3) or 

inhibition of apoptosis (through the Beclin protein family). Through the PI3K pathway, insulin can 

also enhance mTor signalling that regulates various processes of growth and the cell cycle. The insulin 

signalling network is complex and beyond the scope of this work; please see ref. 13 for a review. 

1.1.3 Insulin biosynthesis 

The product of the insulin gene is a 110 amino acid precursor peptide with a 24 amino acid 

N-terminal signal peptide that directs it to the secretion pathway and is cleaved off in the rough 

endoplasmic reticulum [14,15]. The remaining amino acids form proinsulin comprising three 

segments: the N-terminal B chain, the C-terminal A chain and a connecting C chain [16,17]. This 

precursor undergoes further proteolytic processing with the subtilisin-like prohormone convertases 

PC2 and PC3 to remove the intervening C-peptide [18,19], and carboxypeptidase H to remove dibasic 

residues at the B chain C-terminus [20]. The liberated C peptide has been reported to bind to 

membranes of several cell types, in particular renal tubular cells, and saturate its receptor at 

physiological concentrations [21]. As such, administration of the C-peptide has no effect on healthy 

patients and its physiological function has long been elusive; in diabetic patients it appears to limit 

nerve and renal damage associated with the disease [22].  

1.1.4 The structure of insulin 

The mature form of insulin is a 5808 Da heterodimer comprising of two chains, 21 amino acid 

chain A and 30 amino acid long chain B. The two chains are disulphide bonded through cysteines 

A7-B7 and A20-B19. The third cysteine bridge, A6-A11, stabilizes the parallel structure of two A chain 

α-helices (A1-8 and A12-18). 
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Figure 1.1| The structure of insulin 
A| Porcine insulin molecule 1 from 2-zinc insulin crystals (PDB 4INS). B| T→R transition in insulin hexamers. B chain residues 1-8 

can adopt a fully extended conformation called the T-state or an α-helical conformation called the R-state. Hexamers can exist as 

T6 (left, 4INS), T3R3 (middle, 1ZNI) or R6 (right, 1ZNJ) states depending on the crystallization conditions. B chain residues 1-8 are 
shown in purple, HisB10 side chains in cyan, A chains in grey and B chain residues 9-30 in brown. Made with ccp4mg [23]. 

The structure of insulin (Figure 1.1A) and its numerous analogues has been studied extensively by 

both X-ray crystallography and NMR methods. Insulin hexamers form rhombohedral crystals in the 

presence of divalent metal cations, particularly Zn2+ [5]; hexameric crystals are also the pancreatic 

storage form of insulin. In the absence of zinc, insulin dimers can form cubic crystals, particularly 

under alkaline conditions and in the presence of trace amounts of organic solvents [24]. The A chain 

of insulin comprises of two antiparallel α-helices (A1-8 and A12-18) connected by a non-canonical 

turn. The B chain has one central α helix (B9-19) surrounded by type II’ (B7-10) and type I (B20-23) 

β-turns. Whereas the C-terminal portion of the B chain forms a flexible β-strand, the N-terminus (B1-
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B8) adopts two distinct conformations: an extended T-state or an α-helical R-state that forms a part 

of the central helix [25]. 

The T→R transition (Figure 1.1B) represents a major variation in crystal structures of insulin [26]. 

In the classical 2-Zn structure [5], three symmetrical dimers surround two axial Zn2+ ions coordinated 

by three water molecules and three B10 histidyl residues, and all molecules adopt the extended T 6 

conformation. With the addition of chloride ions, a transitional crystalline form T 3R3 is adopted 

[25,27] and the twofold symmetry of the dimer is lost: the B chain N-terminus of molecule 1 forms an 

extension of the central α-helix while molecule 2 retains the conformation found in the T6 hexamer. 

An R6 hexamer in which a B1-19 helix is present in all molecules can be stabilized by small cyclic 

alcohols, notably phenol, which bind in a pocket created by the B1-8 helix and several A-chain 

residues, particularly cysteines A6 and A11 [28,29]. NMR studies suggest that insulin monomer 

adopts a T-like fold in solution and has a similar structure to 2-Zn insulin [30]. 

1.2 THE INSULIN RECEPTOR 

Insulin and IGFs are recognized by highly similar transmembrane receptors with intracellular 

tyrosine kinase effector domains and a dimeric (αβ)2 subunit structure. 

The insulin receptor is a multi-domain, over 300 kDa extracellular membrane protein. The 

receptor monomer is expressed as a single polypeptide chain that is proteolytically cleaved into an 

extracellular α subunit and a transmembrane β subunit containing the intracellular tyrosine kinase 

domain. These subunits are covalently bound by a single disulphide bridge to form a monomer of the 

(αβ)2 receptor; monomer-monomer interactions, as well as the intra-subunit structure, are further 

stabilized by a number of disulphide bridges . 

1.2.1 Primary structure of the IR 

The human insulin receptor cDNA was first isolated and described in 1985 [31,32]. The  gene, 

located on chromosome 19, consists of 22 exons, 11 for each subunit, spread over 120 kb [33]. The IR 

gene mRNA undergoes alternative splicing in a tissue-specific and developmentally regulated manner 

[34], giving rise to two isoforms differing by the presence of a 36 bp exon 11. The IR has multiple 

domains (see Figure 1.2 in section 1.2.4) and most domain boundaries coincide with exon boundaries 

[35]: exon 1 encodes the signal peptide, exon 2 the leucine-rich domain 1 (L1), exon 3 the cysteine-

rich (CR) domain and exons 4-6 the second leucine-rich domain (L2). These are followed by three 

fibronectin type III domains FnIII-1 (exons 7-8), FnIII-2 (exon 9 and 3’ region of exon 12) and FnIII-3 

(exons 13-14). FnIII-2 spans across both subunits and is interrupted by the insert domain (ID, exons 

10, 11 and 5’ region of exon 12); furin cleavage site is located within the ID, between exons 11 and 12. 
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The β subunit consists of ID, FnIII-2 and FnIII-3 on the extracellular side, a single-pass 

transmembrane domain (exon 15) and the tyrosine kinase (exons 16-22) on the cytosolic side. 

1.2.2 IR post-translational modifications 

The (αβ)2 subunit composition of the receptor has been known since 1980 [36], and the primary 

sequence provided evidence that the protein is expressed as a single chain, 1382 amino acid long 

precursor. The precursor chain is synthesised in the ER and needs to undergo both partial 

glycosylation [37] and disulphide pairing/dimerization [38] before being processed in the trans-Golgi 

network and inserted into the membrane. The main pro-IR processing enzyme is the subtilisin-like 

proprotein convertase furin, which recognises a consensus site RKRR↓ [39]. The mature, glycosylated 

receptor consists of a ~135 kDa α subunit and a ~90 kDa β subunit, connected with a single cysteine 

bridge in each monomer. 

The IR primary sequence contains 37 cysteines in the α subunit, 4 cysteines in the β subunit 

extracellular region, and 6 in the β subunit cytosolic region. A small number of disulphide bonds that 

stabilize the IR homodimer and are highly susceptible to reducing agents were termed class I bonds; 

by contrast, the α-β bond (class II) can tolerate DTT concentrations as high as 50 mM [40]. The only 

α-β bond, connecting aligned domains FnIII-2 and FnIII-3, was determined to be C647-C872 by mass 

spectrometry and N-terminal sequencing of fragments obtained by CNBr and enzymatic digestions 

[41]; a later X-ray crystal structure [42] presented a conflicting view where C872 was unpaired and 

C647-C860 was the α-β bond. The main class I α-α bond is C524-C524 [43] but C524 mutants retain 

their dimeric structure despite lowered tyrosine kinase activity [44,45]. The other α-α bond appears 

to be formed by C682, as only C524S,C682S double mutants express predominantly as αβ monomers 

[46]; the other cysteines of the C682, C683, C685 triplet are suspected to form small intra-chain loops 

or additional dimer bonds [41]. N-ethylmaleimide alkylation studies suggest there is one free thiol 

group per αβ monomer located in the β subunit [47], and the other cysteines are expected to form 

stabilizing intra-chain disulphides [48]. 

The IR glycosylation accounts for ~50 kDa of its apparent molecular weight [37,49]. The β subunit 

has six O-linked mucin-type glycans, all found at residues within the ID/FnIII-2 region: T744, T749, 

S757, S758, T759, and T763 [50]. N-linked glycans can be found in both subunits and include complex 

(endoglycosidase F sensitive) and high-mannose (endoglycosidase H sensitive) species at residues 

16, 25, 111, 215, 255, 295, 418, 514, 606, 624, 671, 742, 755, and 893 [51].  
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1.2.3 Alternative splicing produces IR-A and IR-B isoforms 

Alternative splicing of exon 11 [34] gives rise to the two isoforms of the insulin receptor, IR-A 

(exon 11 minus) and IR-B (exon 11 plus). Exon 11 is 36 bp long and encodes 12 amino acids located 

at the binding-critical C-terminus of the α subunit (residues 717-728). The main functional 

consequence of IR alternative splicing is IR-A affinity for IGF-II. Comparative competition studies with 

radiolabeled insulin [52] reveal a slight difference between IR-A and -B in affinity for insulin (EC50 of 

0.9 and 1.0 nM, respectively) but significantly different affinities for IGF-II (EC50 of 2.5 and >20 nM); 

similar results were obtained when comparing insulin- or IGF-II induced autophosphorylation. The 

same study found that IR-A affinity for IGF-II is very similar to that of IGF-I receptor (IGF-IR), which 

is considered the physiological receptor of both IGF-I and IGF-II, and that neither IR isoform binds 

IGF-I with high affinity. IR-A also preferentially stimulates mitogenic or metabolic pathways based on 

activation with IGF-II or insulin: IGF-II is better at activating the Shc/ERK pathway than insulin, which 

is more effective at activating the PI3K/Akt pathway [53], and the differences in signalling effects 

were observed at gene expression levels as well [54]. IGF-II, but not IGF-I, can stimulate proliferation 

of IGF1R-/IR cells [55]. In mouse embryos, a double Igf1r-/Ir- knockout produces a phenotype with 

30% of wild-type weight, as does a double Igf1r-/Igf2- knockout [56]. An Igf1r-/Igf1- mutant shows 

less severe growth retardation at 45% of wild-type weight, and an Igf1r-/Igf2r- mutant which 

produces an excess of IGF-II due to abrogation of IGF2R mediated turnover is normal birth weight. 

This Igf2r- rescue effect is abolished in Igf1r-/Igf2r-/Ir- triple mutants which exhibit the 30% 

phenotype. Together, biochemical and in vivo data suggest that IR-A is an IGF-II receptor important 

for mediating its mitogenic effects. Consistently, IR-A is ubiquitous but predominantly expressed 

during prenatal development and in cancerous cells [52], whereas IR-B is located in tissues that are 

targets for metabolic actions of insulin like liver, kidneys, muscle and adipocytes [57]. As both 

isoforms are expressed by all insulin-sensitive cells to some extent, IR-A/IR-B heterodimeric hybrid 

receptors also exist, which further complicates the picture of IR activation by different ligands. 

However, it has been suggested that exon 11 acts as a sorting signal to direct IR isoforms to different 

plasma membrane domains and to limit heterodimerization [58]. 

1.2.4 Structure of the IR 

The earliest IR-related structure to be solved was the tyrosine kinase of the β subunit in its basal 

(un-phosphorylated) state [59], and structures of active (phosphorylated) TK domain followed 

[60,61]. The first of these (PDB ID 1IRK) comprised 306 residues (IR978-1283) organised into a two-

lobe structure similar to serine kinases like the cyclic-AMP-dependent protein kinase, with an N-

terminal lobe made of an α-helix and a β-sheet of 5 antiparallel β strands, and a C-terminal lobe 
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composed of 8 α-helices and 4 β-strands. The placement of an activation loop where three tyrosine 

phosphorylation sites (Y1158, Y1162 and Y1163) are located revealed a novel autoinhibitory 

mechanism where Tyr1162 is bound in the cis active site in a way that prevents simultaneous binding 

of ATP. The second structure (1IR3) shows a major displacement of the activation loop upon 

phosphorylation of the three tyrosine residues that allows for ATP- and substrate binding. The third 

structure (1P14) shows that the juxtamembrane region residue Tyr984, which was mutated to 

phenylalanine in previous studies, represses IRK activity in the basal state by interacting with the N-

terminal lobe α-helix and preventing a hinge movement necessary for ATP binding. 

Structures of the IR ectodomain relevant to this work were solved later, and are far less numerous 

than those of the cytosolic region. Post-translational modifications, including a large number of 

disulphide bonds and heavy glycosylation, combined with generally low expression yields constitute 

a significant barrier to producing protein of adequate purity, homogeneity and concentration for 

crystallographic studies. Nevertheless, the Melbourne-based group of Professor Mike Lawrence and 

Dr Colin Ward published three structures of the apo ectodomain [42,62,63], as well as several 

structures of minimized constructs in complex with insulin and its analogues [64–66]. There is a 

certain level of redundancy in the apo structures: 2HR7 [62] shows L1-CR-L2 domains (non-insulin 

binding construct IR.1-485), whereas 3LOH [63] represents a re-refinement of 2DTG [42] and both 

cover the same dimeric IRΔβ ectodomain construct (IR1-917 with a Δ735-753 deletion that removed 

all O-glycosylation sites) in complex with four Fab molecules, a pair from 83-7 and 83-14 antibodies 

[67] each, as well as 20 N-terminal residues of an insulin mimetic peptide S519 [68]. The first, 3.8 Å 

resolution, ectodomain structure revealed an unanticipated antiparallel ‘folded over’ domain 

organisation resembling an inverted V (Figure 1.2). This finding is contrary to previous models of IR 

and IR-insulin interactions based on scanning transmission electron microscopy data which proposed 

a crossing of the monomers and an insulin-binding pocket created by adjacent apical L1 domains 

[69,70]. Also surprising is also re-evaluation of the α-β connecting disulphide bond, which appears to 

be between C647 and C860 in the structure despite strong previous evidence for a C647-C872 cystine 

[41]. This structure provided a point of reference for further theories of the structural changes 

occurring upon insulin binding, as well as the model of binding itself: it became apparent how insulin 

could crosslink a binding surface of the L1 domain of one monomer (binding site 1) and loops in the 

FnIII-1 domain (site 2) of the other. Neither the mimetic peptide nor most of the insert domain 

residues (IR.656-754) were resolved in the initial structure 2DTG.  
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Figure 1.2| Domains and structure of the human insulin receptor. 

Panel A| Schematic drawing (domain length to scale) of the insulin receptor dimer. L1 – first leucine-rich domain, CR – cysteine-
rich, L2 – second leucine-rich domain, Fn1, 2 and 3 – fibronectin type III domains; ID – insert domain, TM – transmembrane 
domain, TK – tyrosine kinase. 1, 2 and 3 represent inter-chain disulphide bonds. Panel B| Crystal structure of insulin receptor 
extracellular domain (PDB ID: 2DTG, representation created using ccp4mg [23]). One monomer is represented in grey and the 

other in colours corresponding to fig. A. Non-coloured parts of panel A (ID, α C-terminus and β subunit beyond FnIII-3) are not 
visible in the structure. 

The re-refined structure 3LOH includes residues 693-710, corresponding to a part of the binding-

critical C-terminus of the α subunit (αCT), situated lying across the central β-sheet of L1 domain. 

These two elements constitute the so-called tandem binding element of site 1, which explains how 

neighbouring residues of insulin B chain can interact with distal N- and C-terminal parts of IR α 

subunit. The IR-insulin structures are covered later in the text. 

1.3 INSULIN-IR INTERACTIONS 

1.3.1 Insulin binding by the IR exhibits complex kinetic properties 

Insulin-IR interactions have been studied extensively with radioligand binding analyses and 

mutagenesis of both IR and insulin [71]. The curvilinear Scatchard plots of 125I-insulin binding were 

initially thought to represent two sites of varying affinity [72]. In 1973, an alternative explanation 

was suggested based on the fact that cold insulin accelerates dissociation of 125I-insulin: the two 

binding sites of the IR exhibit negative cooperativity [73]. The existence of two binding sites in the IR 
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has also been confirmed by photoaffinity labelling [74] and the fact that  purified IR binds only one 

molecule of insulin with full, sub-nanomolar affinity has been established with crosslinking 

experiments [75]. Negative cooperativity of the two sites depends on the integrity of IR structure: 

soluble, non-anchored ectodomain constructs bind two molecules with equal nanomolar affinity and 

produce linear Scatchard plots [76] while αβ monomers bind one molecule of insulin, also with 

nanomolar affinity [77]. This has led to the development of a model in which each α subunit has two 

binding sub-sites (sites 1 and 2) and bound insulin cross-links two sub-sites (site 1 and 2’ or sites 1’ 

and 2) from each subunit [78,79]. The site 1 – site 2’ crosslink has an apparent affinity of 0.2 nM, an 

order higher than the affinity of its constituents (6 nM and 400 nM for sites 1 and 2 respectively). This 

cross-linking would induce an asymmetric conformation and prevent two insulin molecules from 

simultaneous bridging of a site 1-2’ pair. However, binding of a second molecule to the vacant site 1’ 

in insulin/IR complex could still occur and the receptor could oscillate between site 1-2’ and 1’-2 

cross-linked states. Depending on structural details of the active conformation, a third molecule could 

bind to the vacant site 2 at high enough concentrations and a 3-insulin state would be unable to switch 

between active conformations of a 2-insulin state. A mathematical description of possible states of IR-

insulin complex termed the ‘harmonic oscillator’ model has been developed to explain the binding 

kinetics of insulin, as well as IGF-I and possibly other allosteric receptors activated by ligand cross-

linking [80]. 

1.3.2 Residues involved in insulin-IR binding revealed by biochemical studies 

Insights from mutations found in some diabetic patients, as well as alanine scanning mutagenesis, 

accurately determined which insulin residues were important for IR binding. The classical binding 

site was identified first and corresponds to residues of the B chain, many of which are involved in 

insulin dimerization, such as GlyB8, LeuB11, ValB12, TyrB16, PheB24, PheB25, TyrB26,  as well as 

additional contacts in the A-chain: GlyA1, IleA2, ValA3, GlnA5, TyrA19 and AsnA21 [81]. These 

residues have been termed site 1 and shown to interact with site 1 of IR, which consists of residues 

of L1 domain [82,83] from one α subunit, and the C-terminus of the other α subunit [84,85]. The 

second binding site involves residues of the hexamer-forming surface of insulin SerA12, LeuA13, 

GluA17, HisB10, GluB13, and LeuB17 [79,86] and loops at the C-terminus of the first FnIII domain 

[42,87,88]. 

Structure-function studies of insulin analogues provide more insights into the conformational 

changes in insulin necessary for IR binding. The fact that the AlaA1 – LysB29 cross-linked analogue is 

completely inactive despite adopting the same structure as wild-type insulin [89] led to the 

development of a detachment hypothesis stating that residues B22-30 need to rotate away from the 
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insulin core and expose several nonpolar residues implicated in site 1 binding that are buried in the 

crystal structures of wild-type insulin, such as IleA2, ValA3 and TyrA19. Consistently, a GlyB24 

mutant (of the naturally invariant PheB24 residue) that is a complete IR agonist was found by NMR 

to have a disordered B20-30 region [30]. A more limited detachment downstream of PheB24 was 

proposed with the discovery of super-active (~200–400% of wild type insulin affinity), B27-30 

truncated analogues that contain an N-methylated B25-26 peptide bond or D-amino acids in the B26 

position resulting in a type two β-turn between B24-B26 [90]. Full-length insulin analogues with 

natural amino-acid substitutions that adopt a B26 turn-like conformation were also described [91]. 

While their structures show that a B26-30 detachment is plausible in full-length insulin, they do not 

possess the super-active properties of previous chemically modified analogues (40-80% wild-type 

insulin activity). Interestingly, one of them (AsnB26 insulin) is more active than wild-type insulin in 

respect to the IR-B isoform (142%), but not IR-A (83%). The relevance of the T/R structural transition 

of the B chain N-terminus is less clear. GlyB8 is an invariant residue that is implicated in the switch 

due to its small side chain and lack of chiral restrictions. L-amino acid substitutions at this position 

impair folding and disulphide pairing but not necessarily activity as the L-SerB8 mutant is 90% as 

active as wild-type insulin  [92,93]. On the other hand D-amino acid substitutions can stabilize a T-

like fold but greatly impair activity [93]. A recent systematic analysis of T/R-like locked analogues 

substituted at residues B3, B5 and B8 revealed that the R-state likely does not meet requirements for 

IR binding [94]. At this time it is apparent that the N-terminal flexibility of the B-chain is important 

for insulin-IR interactions, and that T state represents an inactive storage form, but neither of the 

conformations adopted by the hexamer can account for the bound state [26,94]. 

1.3.3 Structure of site 1 complex was solved by X-Ray crystallography 

Three papers published recently by the Melbourne group describe the site 1 interactions of insulin 

and insulin analogues with two IR constructs as well as a hybrid IR/IGF-1R construct [64–66]. The 

previous structure of the ectodomain dimer (PDB 3LOH)  [63] revealed that the C-terminal residues 

of the α subunit (residues 693-710 in the structure) form an α helix in contact with the central β sheet 

of the L1 domain, and both the L1 domain and the αCT were previously implicated in IR binding site 

1 [82–85]. Four breakthrough structures from 2013 [64] included (i) the ‘microreceptor’ construct, 

consisting of IR.1-310 (L1-CR domains) with exogenous αCT(704-719), in complex with human 

insulin and a Fab fragment of 83-7 antibody [67], PDB 3W11/4OGA (ii) the same µIR in complex with 

83-7 Fab and high affinity B26-truncated insulin analogue [D- ProB26]-DTI-NH2 [90], PDB 3W12 (iii) 

a µIR consisting of IR.1-310 and a longer αCT(697-719) in complex with 83-7 Fab and  [D- ProB26]-

DTI-NH2, PDB 3W13, and (iv) a IR.1-593.704-719 construct (L1-CR-L2-FnIII-1 domains fused to αCT 



19 
 

fragment) in complex with bovine insulin and a Fab fragment of 83-14 antibody [67], PDB ID 3W14. 

The structures were solved to resolutions between 3.9-4.4 Å and presented a consistent view of the 

interactions between insulin A chain, B chain central helix, αCT and L1 domain (Figure 1.3). The αCT 

is displaced on the surface of the L1 domain in respect to the apo structure and facilitates crucial 

insulin-IR contacts. His710 is a key residue that fits into a pocket formed by ValA3, GlyB8, SerB9, and 

ValB12 while Phe714 fits a pocket of GlyA1, IleA2, TyrA19, LeuB11, ValB12, and LeuB15. L1 residues 

provide contacts for the αCT peptide as well as B chain residues ValB12 and TyrB16. 

 
Figure 1.3| Structure of insulin/µIR complex 
The structure of insulin in complex with microreceptor construct based on PDB file 4OGA [65]. IR1-310 is drawn in coral, αCT 

peptide in grey, insulin chain A in light blue and chain B in yellow. Chain A interacts with αCT positioned on the central β sheet of 
L1 domain and chain B interacts with both L1 and the αCT. B chain C-terminus is detached in respect to inactive insulin 
conformation (see Figure 1.1) to avoid steric clash with αCT and allow access to A chain site 1 residues. Site 2 interactions are 

notably absent from this and other constructs. Made with ccp4mg [23]. 

Neither B chain termini were visible in the four complex structures, but a follow-up paper [65] 

described a re-refinement of the insulin-µIR complex structure which resolved the B22-B27 segment. 

A partial detachment hypothesis was confirmed: the B20-27 segment is rotated by about 10° and a 

more dramatic change can be seen downstream of B24 as the B24-27 segment is rotated by about 

50°. The detachment of the C-terminal segment allows for the aforementioned contacts of the IR with 

A2, A3, and B12 while B20-B27 residues contact both the L1 domain and the αCT. PheB24 contacts 

mostly the L1 domain (Asn15, Leu37, Phe39, and Phe714), PheB25 inserts between Val715 and 

Pro718, and the TyrB26 side chain contacts only L1 residues Asp12 and Arg14.  

Finally, a 2015 publication presents structures that add coherency and address issues relevant to 

the previous set [66]. 4XST is a ligand-less structure of the µIR with exogenous αCT(697-719) 

crystallized in the absence of 83-7 Fab and solved at 3.0 Å resolution. It shows an arrangement of αCT 
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similar to the one seen in the Fab-stabilized apo ectodomain structure 3LOH, in the same position on 

the L1 β-sheet but with an intermediary rotation in respect to structures of insulin complexes and the 

apo ectodomain. This finding validates the αCT rearrangement seen from 3LOH to 3W11 as a 

consequence of insulin binding and not construct minimization or antibody influence. The second 

structure 4XSS is of a hybrid µIR composed of IR1-310 and IGF1R.αCT(691-706) in complex with IGF-

I solved to 3.0 Å resolution. IR αβ halves can form heterodimeric hybrid receptors with analogous 

IGF-1R fragments [95] and these hybrid receptors have higher affinity for IGF-I than insulin [96]. The 

IGF1RαCT occupies the same position on the IR as the insulin-bound IRαCT, with similar contacts in 

convergent sequence elements. IGF-1 residues 6-25 (B domain) and 42-52 (A domain) were resolved, 

equivalent to insulin central B helix and C-terminal portion and the A chain respectively. Both show 

a similar arrangement as the insulin structure, with a partial detachment of the B domain C terminus 

into a crevice formed by L1 and IGF1RαCT residues. IGF-1 connecting C domain (unlike insulin IGFs 

are single chain) is however invisible, and the authors speculate that amino acids 31-40 might loop 

around the αCT to create an interesting threaded topology. 

The known structures of IR ectodomain constructs are summarized in Table 1.1. 

Table 1.1| Summary of known IR structures 

Construct  Ligand Fab Resolution [Å] PDB Ref. 

IR1-485 - - 2.3 2HR7 [62] 
IR1-917Δ735-753 - 83-7 and 

83-14 
3.8 
3.8 

2DTG 
3LOH 

[42] 
[63] 

IR1-310+αCT (704-719) human insulin 83-7 3.9 
3.3 

3W11 
4OGA 

[64] 
[65] 

IR1-310+αCT (704-719) [D-ProB26]-DTI-NH2 
[90] 

83-7 4.3 3W12 [64] 
 

IR1-310+αCT (697-719) [D-ProB26]-DTI-NH2 
[90] 

83-7 4.3 3W13 [64] 
 

IR1-593.704-719 bovine insulin 83-14 4.4 3W14 [64] 
 

IR1-310+IGF1RαCT (691-
706) 

IGF-I - 3.0 4XSS [66] 

IR1-310+αCT (697-719) - - 3.0 4XST [66] 
Known structures of insulin receptor constructs. Construct – amino acid coverage of the employed construct. ‘+αCT’ means the 
αCT peptide was added exogenously and not part of the main IR construct chain. Fab denotes the antibody binding fragments in 

the complex, both described in ref. 67.  
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1.3.4 Site 2 structure and model of activation still a point of contention 

The recent IR/insulin complex structures revealed the details of site 1 interactions between 

insulin, the IR L1 domain and the αCT segment, rationalized a great amount of biochemical data and 

confirmed key concepts in insulin research such as the detachment of the B chain C-terminus 

hypothesis. They also determined the two key directions of future IR structural research. 

The first of these directions is the recapitulation of the lower affinity binding site 2, and obtaining 

a comprehensive picture of the site 1 – site 2 crosslink. While mutagenesis studies and the recent 

structures identified key residues involved in site 1 binding, a significant effort was also undertaken 

to create IR constructs that reconstitute the high affinity insulin binding. The µIR construct used for 

nearly all structural studies has an affinity of ~30 nM [64], several orders of magnitude lower than 

the affinity of the hIR estimated at 5-20 pM [35,79]. Minimized IR constructs published so far include 

the already mentioned µIR, a soluble ectodomain construct (sIR) with a nanomolar affinity [97], and 

a monomeric ‘minireceptor’ (mIR) consisting of residues IR1-468 fused to αCT(704-719). A few 

constructs include the FnIII-1 domain, most notably the Melbourne group’s construct of 

IR1-593.αCT(704-719) described as ‘complex D’ in the 2013 paper [64] and Novo Nordisk’s 

mIR.Fn0/Ex10 construct (IR residues 1-601 fused to 650-719) which recapitulates the picomolar 

affinity of hIR [35]. IR1-593.αCT is the only one of these to be crystallized and have its structure 

solved, but not only is it lacking several of purported site 2 residues such as Ile602, Lys616, Asp620, 

and Pro621 [88], the construct also forms a non-physiological tetrameric assembly in the crystal 

wherein αCT segments of a IR593.αCT homodimer form tandem binding sites with L1 domains of 

another IR593.αCT homodimer (see supplementary information for [64] and discussion in the 

comments of [98]). 

The second key direction is the ‘big picture’ of ligand-induced transmembrane activation. Several 

contradictory models of activation have been postulated recently. Based on their interpretation of 

apo ectodomain and IR593.αCT/insulin structures, as well as FRET experiments on IGF1R, Kavran et 

al. [98] proposed that upon insulin binding a rotation of L1-CR about a hinge between CR and L2 

disrupts the interface between L1 and FnIII2’-3’ that forces the transmembrane domain separation 

at 120 Å apart. This disruption would then result in TM and TK domain proximity and 

transphosphorylation. An opposite view is presented by Lee et al. [99] based on their very interesting 

finding that TM-mimicking peptides can activate the IR: they propose that TM domains are held close 

in the inactive state and their separation upon insulin binding drives IR activation. The authors do 

not address how this model fits within the known IR structures, especially the ectodomain structures 

which show a clear separation of the inverted V ‘legs’ even if the distance between TM domains is less 
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in the full-length receptor, and instead mention the older cryo-EM structures referenced before [69]. 

Finally, in a review of novel structural insights from their four insulin/µIR complexes [100], Ward 

et al. postulate that a yet unknown conformational change abrogates the interaction of 

juxtamembrane region with TK domains (see [61]) and releases them to autophosphorylate; this is a 

so-called ‘yo-yo’ model. 

This work seeks mostly to answer the question of full affinity binding, and aims to create novel 

heterodimeric IR constructs that would be useful to study a site 1-site 2’ crosslink structure. This is 

based on Novo Nordisk’s unpublished observations that such constructs’ affinity is comparable to 

that of hIR and their mIR.Fn0/Ex10, the structure of which could not be solved.  

  



23 
 

2 PROJECT GOALS 

The goal of this work was to express and purify a heterodimeric, high-affinity IR construct based 

on previously unpublished work by Novo Nordisk A/S, containing one copy of binding sites 1 and 2 

(Figure 2.1). The purpose of this construct would be primarily to be used in structural studies by 

means of X-ray crystallography in an attempt to further the understanding of insulin-IR binding to 

sites 1 and 2’ and the asymmetric ligand-induced state of the receptor. 

 
Figure 2.1| Design of the heterodimeric single-site IR constructs 
A| Schematic representation of designed heterodimeric IR constructs composed of fragments IR1-593 and IR310-601.678-719 
connected with a single cysteine bridge at Cys524. B| Projected structure based on 3LOH [63] obtained by deleting fragments of 

the apo ectodomain in front and top views. Colour code corresponds to panel A. Beyond FnIII -1 domain only residues 693-710 of 
the αCT are visible, represented by a grey α-helix. 

To this end, the approach of a single-chain fusion protein with a cleavable linker was chosen. 

Constructs created on the basis of Novo Nordisk’s IM1242 single-chain heterodimeric IR(1-593)-

(GGGS)5GGG-(310-601)-(678-731)C682,683,685S-FLAG construct could be cleaved either in vitro 

(using 3C rhinovirus protease) or in the secretory pathway during expression (utilizing a furin 

cleavage sequence) and purified with common peptide tags 6×His or StrepII.  

 
Figure 2.2| Schematic representation of pIM1242-derived heterodimeric IR constructs 
Site-directed mutagenesis was performed on pIM1242 plasmid obtained from Novo Nordisk A/S to yield vectors coding for a single 

polypeptide chain containing amino acids 1-593 of the human IR, three different linker sequence variants followed by IR amino 
acids 310-601 and 678-719, followed by two different variants of C-terminal peptide tags and/or IR exon 11 (IR720-731). 
Disulphide bridge forming cysteines 682,683 and 685 have been mutated to serines. Disulphide-forming Cys524 was left intact in 

both copies of the FnIII-1 domain. 
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The initial goal was to create a library of DNA plasmids based on the IM1242 template (Figure 2.2). 

These would then be assessed in small-scale expression tests and selected constructs expressed on 

preparative scale and purified. Further goals include polypeptide cleavage, heterodimer formation, 

activity studies and ultimately structural studies.  
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3 MATERIALS AND METHODS 

3.1 MATERIALS 

3.1.1 List of reagents 

Reagent Supplier 

Ammonium persulfate Sigma 

30% Acrylamide/Bis Solution, 37.5:1 Fisher 

Agar Lab M Ltd. 

Agarose Melford 

Agarose, low melting point Sigma 

Ampicilin, sodium salt Sigma 

Bromophenol Blue Sigma 

Coomassie Brilliant Blue R250 Fisher 

Ethanol Fisher 

Glycerol Fisher 

Glycine, electrophoresis grade Fisons 

Imidazole, low UV Sigma 

Isopropanol Fisher 

Methanol Fisher 

Sodium chloride Melford 

Sodium Dodecyl Sulfate (SDS), granulated Melford 

Tris base Melford 

Enzymes and molecular biology reaction buffers 

Q5® buffer, 5X NEB 

ClaI Promega 

CutSmart® buffer NEB 

Dimethyl sulfoxide (DMSO) NEB 

dNTPs, 10 mM ea. Thermo Fisher 

Q5® Polymerase NEB 

SacII Promega 

SYBR® Safe DNA Gel Stain Thermo Fisher 
T4 Ligase NEB 

T4 ligase buffer, 10X NEB 

T4 Polynucleotide kinase Promega 

 

3.1.2 Antibodies 

Mouse monoclonal anti-polyhistidine peroxidase conjugate antibody was supplied by Sigma 

(catalogue number A7058) and StrepMAB Classic antibody by IBA (2-1502-0010). Primary mouse 
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83-7 anti-IR antibody was supplied by Merck (MAB1138) and secondary goat anti-mouse IgG 

peroxidase conjugate antibody by Sigma (A4416). 

3.1.3 Bacterial strains and mammalian cell lines 

E. coli XL-10 Gold (Stratagene) of phenotype endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte 

Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 tetR F'[proAB lacIqZΔM15 Tn10(TetR Amy CmR)] was used for 

cloning. 

Two mammalian cell lines were used for expression: Chinese Hamster Ovary (CHO) K1 cells were 

obtained from Sigma (catalogue no. 85051005) and Human Embryonic Kidney (HEK) 293T cells were 

a gift from Dr Jared Cartwright (Biology Technology Facility, University of York). 

3.1.4 Growth media 

Bacterial media 

Bacterial cultures were grown in Miller Luria-Bertani Broth containing 10 g/l tryptone, 5 g/l yeast 

extract, 10 g/l NaCl and 1.5g/l Tris (pH 7.2) prepared from pre-made granulated capsules (Melford 

Laboratories). Solid cultures were grown on 2% agar-LB plates with appropriate antibiotics.  

Tissue culture growth media and reagents 

Gibco™ reagents were used for all mammalian tissue culture work. Cells were cultured in 

DMEM/F12 medium with HEPES, L-Glutamine and Phenol Red (catalogue number 31330095) 

supplemented with 10% Fetal Bovine Serum. 1X Phosphate Buffered Saline pH 7.4 (10010056) and 

10X (0.5%) trypsin-EDTA (15400-054) were also used. 

3.1.5 Plasmid vectors 

The pIM1242 vector used as the initial template for all constructs created with site-directed 

mutagenesis was obtained from Dr Jakob Brandt, Novo Nordisk A/S. 

The pOPINE vector [101] coding for L1-CR-CD4 IR construct was obtained from Dr Tim Ganderton 

at York Structural Biology laboratory, as was pcDNA3-YFP vector coding for Yellow Fluorescent 

Protein. 

3.1.6 Oligonucleotides 

All oligonucleotides were synthesised by Eurofins Genomics. Lyophilized oligonucleotides were 

dissolved in TE buffer (10 mM Tris pH 8.5, 1 mM EDTA) to stock concentration of 100 µM and stored 

at -20 °C. A list of oligonucleotides used in this work can be found in Table 3.1. 
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Table 3.1| List of oligonucleotides used in this study 
Non-overlapping primers for site-directed mutagenesis. Melting temperatures for PCR primers calculated using NEB Tm calculator/Q5 Polymerase for template-annealing fragments (uppercase) 

only. 

Name Sequence (5’->3’) Description 
Length 

(bp) 
Tm 
(°C) 

GC 
(%) 

mk5F TAGTCTAGAGGATCTGGGGTGGCATCC 

Remove FLAG tag (5F/5Ra) or 
FLAG tag and exon 11 (5F/5Rb) 

27 71 56 

mk5Ra AGATGGTCTAGGGACGAAAACCACGTTGTGC 31 74 52 

mk5Rb AGATGGTCTAGGGTCCTCGGCACC 24 73 63 

mk7F 
cctcagttcgagaagggtggcctggaggttctgttccaggggccaCACC

TGTACCCCGGAGAGGTGTGTCC Add N-terminal HLYPGE-6His-GG-
StrepII-GG-3C 

71 75 63 

mk7R 
gtggctccagccaccgtggtggtggtgatgatgctctccggggtacagg

tgGCCCGCGGCGCCCAGTAGCAG 
72 80 69 

mk8Fa cgcaggGGAGGTGGCAAGGTGTGCCAC Replace part of poly-GS linker with 
furin site: FnIII-GGG-RKRR-GGG-L2 

27 72 70 

mk8Ra tttccgGCCACCACCGGTGGCATCTGT 27 74 63 

mk9F caccaccacTAGTCTAGAGGATCTGGGGTGGCATCC 

Add 6×His tag to IR-A (9F/9Ra) or 
IR-B (9F/9Rb) C-terminus 

36 71 58 

mk9Ra gtgatgatgAGATGGTCTAGGGACGAAAACCACG 34 69 50 

mk9Rb gtgatgatgAGATGGTCTAGGGTCCTCGGCACC 33 73 58 

mk10F cagttcgagaagTAGTCTAGAGGATCTGGGGTGGCATCC Add StrepII tag to IR-A 
(10F/10Ra) or IR-B (10F/10Rb) 
C-terminus 

39 71 54 

mk10Ra agggtggctccaAGATGGTCTAGGGACGAAAACCACG 37 69 57 

mk10Rb agggtggctccaAGATGGTCTAGGGTCCTCGGCACC 36 73 64 

mk11F ttccaggggccaGGAGGTGGCAAGGTGTGC Replace part of poly-GS linker with 
3C site: FnIII-GGG-3C-GGG-L2 

30 68 67 

mk11R cagaacctccagGCCACCACCGGTGGCATC 30 71 67 

mk13F cgcaggtcccttGGAGGTGGCAAGGTGTGC Replace part of linker with furin 
site: FnIII-GGG-PSRKRRSL-GGG-L2 

30 68 67 

mk13R tttccgagatggGCCACCACCGGTGGCATC 30 71 63 

tgF gaagttctgtttcagggcccgCACCTGTACCCCGGAGAGGTG Add 6×His-3C sequence to the N-
terminus 

42 70 62 

tgR caggtgatggtgatgGTGATGGCCCGCGGCGCCCAGTAGCAG 42 80 67 
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Table 3.1 continued: sequencing primers. 

Name Sequence (5’->3’) Description Length (bp) GC (%) 

mks1F CAACCCCTCTGTGCCCCTG 
Sequencing primer (5’->3’) for C-terminus and 3’ flanking 
sequence (anneals to sequence for IR amino acids 594-599) 

19 68 

mks1R CAGGGGCACAGAGGGGTTG 
Sequencing primer (3’->5’) for linker and second FnIII-1&L2 
domains (anneals to sequence for IR amino acids 594-599) 

19 68 

mks2F ATGCCTGGGTCCCTGTC 
Sequencing primer (5’->3’) for first FnIII-1&L2 domains 
(anneals to sequence for IR amino acids 303-309) 

17 65 

mks3F CTAACTGACACACATTCC 
Sequencing primer (5’->3’) for N-terminus and 5’ flanking 
sequence (anneals to SV40 promoter fragment) 

18 44 

cv3 CCATGGGCACCGGGGG 
Sequencing primer (5’->3’) for L1 and CR domains (anneals to 
start of signal peptide sequence) 

16 81 

cv14 CCTTCGATGACAGAGCAATTCTCCAG 
Sequencing primer (3’->5’) for N-terminus and 5’ flanking 
sequence (anneals to bases coding for N-terminal AA in L1) 

26 50 

M13F TGTAAAACGACGGCCAGT 
Sequencing primer (3’->5’) for C-terminus and 3’ flanking 
sequence (anneals to lacZ gene fragment) 

18 50 
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3.2 MICROBIOLOGY AND DNA ANALYSIS 

3.2.1 Preparation of competent E. coli cells 

Based on the method of Inoue et al. [102] E. coli strain XL-10 Gold (Stratagene) was streaked on 

LB-Agar plates with appropriate antibiotics and incubated overnight at 37 °C. One colony was 

transferred to 3 ml LB medium with appropriate antibiotics and cultured for 12 h at 37 °C. 150 µl of 

culture was transferred to 250 ml LB with appropriate antibiotics and cultured with shaking at 18 °C 

and 220 RPM. 

The culture was placed on ice for 10 min. when the OD600 reached 0.6 and then harvested in sterile 

centrifuge bottles at 3000 RPM and 4 °C for 10 min. The supernatant was discarded and the cell pellet 

was gently resuspended by swirling in 80 ml of 55 mM MnCl2, 15 mM CaCl2 and 250 mM KCl solution 

in 10 mM PIPES-KOH buffer (pH 6.7). The cell suspension was placed on ice for 10 min., centrifuged 

at 3000 RPM and 4 °C for 10 min. and the pellet was again gently resuspended in 20 ml of the same 

solution. 1.4 ml of sterile DMSO was added to 7% final concentration and the suspension was placed 

on ice for 10 min. After incubation on ice, 200 µl aliquots were frozen in liquid N2 and stored at -80 °C. 

3.2.2 Plasmid transformation of E. coli cells 

Based on the method of Inoue et al. [102] a microcentrifuge tube of competent XL-10 Gold cells 

was thawed on ice. Approx. 1 ng of plasmid was added to 50 µl of cells and the suspension was gently 

mixed by flipping. The tube was incubated on ice for 30 min, transferred to a 42 °C water bath for 45 s 

and incubated on ice for 2 min. 950 µl of sterile LB medium was added and 100 µl was plated on LB-

agar plates with relevant antibiotics (for ampicillin, outgrowth phase was generally not performed). 

3.2.3 Agarose gel electrophoresis 

Agarose was dissolved to a desired concentration in 50 ml of 1x TAE buffer (40 mM Tris, 20 mM 

acetic acid, 1 mM EDTA) by heating in microwave. SYBR® Safe DNA Gel Stain was added at a dilution 

of 1:100 000, and the solution was mixed and poured into a casting tray with comb. The gel was left 

to solidify and placed in a horizontal electrophoresis cell.  

DNA samples were mixed with 6X Gel Loading Dye, Purple (NEB) at a 5:1 ratio, and were loaded 

onto a gel and separated for 45 min. at a constant voltage of 100 V. Developed gels were visualized 

under UV light. 
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3.2.4 Plasmid propagation 

Bacterial cells were transformed and grown on LB-Agar plates with 100 µg/ml ampicillin (3.2.2). 

Chosen colonies were transferred to disposable glass culture tubes containing 5 ml of liquid LB and 

100 µg/ml ampicillin and incubated with shaking at 250 RPM for 16 hours at 37 °C. Cultures were 

stopped and centrifuged for 10 minutes at 4 °C at 5000 RPM. The supernatant was discarded and 

cellular plasmid DNA was isolated using a QIAprep Spin Miniprep Kit (QIAGEN) following the 

manufacturer’s instructions. 

Plasmids to be used for mammalian cell transfection were additionally produced on the midiprep 

scale. 400 ml of LB medium with 100 µg/ml ampicillin was inoculated with a single colony off a freshly 

transformed plate and grown overnight at 37 °C and 250 RPM. Cells were harvested by centrifugation 

at 5000×g for 10 min. at 4 °C. The supernatant was discarded and plasmid DNA was isolated using 

NucleoBond® Xtra Midi kit (Macherey-Nagel) according to the manufacturer’s instructions. 

3.3 SITE-DIRECTED MUTAGENESIS 

Site directed mutagenesis was used to generate deletions and insertions introducing affinity tags 

and protease cleavage sites. Q5® High-Fidelity DNA Polymerase (NEB) was used to amplify whole 

plasmids by PCR with mutagenic primers, followed by enzymatic phosphorylation and blunt-ended 

ligation to re-close linearized plasmids. PCR primers were designed to be non-overlapping and 

contain 5’ overhangs introducing desired insertions (see Table 3.1 for a list of primers used). 

PCR 

25 µl polymerase chain reactions were pre-mixed on ice according to Table 3.2 (typically prepared 

using a multi-reaction master mix). The reactions were transferred to a pre-heated thermocycler and 

a two-step cycling program was used for whole-plasmid amplification (Table 3.3). 5 µl samples of PCR 

products were analysed by electrophoresis on a 0.7% agarose gel. If non-specific products appeared 

(commonly, an ~800 bp secondary product for primers annealing within the polypeptide linker 

sequence, i.e. mk8, mk11, mk13) the reactions were repeated in 60 µl volume, separated on a 0.7% 

low melting point agarose gel and the desired bands were excised and purified using a QIAquick Gel 

Extraction Kit (QIAGEN) according to manufacturer’s instructions. 

After PCR, 1 µl (10 U) of DpnI (NEB) was added to the reaction mix and the template plasmid was 

subjected to overnight digestion at 37 °C. The remaining product was purified with a PCR Clean-up 

Kit (QIAGEN) according to the manufacturer’s instructions. The products were quantified by 

measuring UV light absorbance at 260 nm. 
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Table 3.2| 25 µl PCR reaction mix for whole-plasmid amplification with Q5 polymerase 

 c v [µl] cfinal 

Q5 buffer 5x 5 1x 

template ~1 ng/µl 1.25 ~0.05 ng/µl 

dNTP mix 10 mM 0.5 2 mM 

Q5® Polymerase 2000 U/ml 0.25 20 U/ml 

Forward primer 10 μM 1.25 0.5 μM 

Reverse primer 10 μM 1.25 0.5 μM 

DMSO 100% 0.75 3% 

MilliQ H2O  14.75  

total  25  

Table 3.3| PCR thermal cycling scheme for two-step whole-plasmid amplification with Q5 polymerase 

Temperature Time Cycle repetitions Step 

98 °C pause  Thermal cycler pre-heating 

98 °C 1 min.  Initial denaturation 

98 °C 15 s 
30x 

Denaturation 

72 °C 4 min. Extension 

72 °C 10 min.  Final extension 

4 °C pause   

 

Phosphorylation and ligation 

1 µl of each purified reaction product was added to 3 µl of MilliQ water, 0.5 µl of 10X T4 ligase 

buffer (NEB) and 1 µl of T4 Polynucleotide Kinase (Promega). Control reactions were also set up in 

which the enzyme was replaced with equal volume of MilliQ water. Samples were incubated at 37 °C 

for 30 minutes. After incubation, 4 µl of MilliQ water, 0.5 µl of T4 ligase buffer and 0.5 µl of T4 ligase 

(NEB) were added to each reaction, and MilliQ water was added instead of T4 ligase to control 

reactions. Reactions were incubated at room temperature for 60 minutes. 

5 µl of each reaction and control was used to transform 50 µl salt-competent XL-10 Gold cells as 

previously described. Cells were plated on LB-Agar with 100 µg/ml ampicillin and incubated 

overnight at 37 °C.  
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3.4 MAMMALIAN CELL LINE MAINTENANCE 

CHO K1 and HEK 293T cells were initially obtained from ATCC and stocks were stored under liquid 

N2. Working cell stocks were maintained in Corning CellBIND® T75 flasks in 10 ml DMEM/F-12 

medium supplemented with 10% FBS and passaged twice a week at regular intervals. All tissue 

culture plates, flasks and roller bottles were incubated at 37 °C under 5% CO2 atmosphere. All media 

were warmed up to 37 °C before being used in cell culture. All work was performed in a laminar flow 

hood, sterilized with 10 min. irradiation with UV light and 70% ethanol wipe prior to use, and all 

equipment and consumables entering the flow hood was sprayed with 70% ethanol.  

To passage the cells, media was aspirated and the monolayer was gently washed twice with 10 ml 

PBS. 2 ml of trypsin-EDTA was added and incubated for approx. 2 minutes (until detachment). 8 ml 

of DMEM/F-12 with 10% FBS was added and the solution was aspirated and centrifuged for 5 min. at 

200×g. The supernatant was discarded and cells were resuspended in 10 ml DMEM/F-12 

supplemented with 10% FBS. 1 ml of cell suspension was added to 9 ml of DMEM/F-12 supplemented 

with 10% FBS in a fresh, sterile T75 flask for a 1:10 split. 

3.5 SMALL SCALE MAMMALIAN EXPRESSION 

PEI transfection protocols were based on the method of Aricescu et al. [103], mammalian 

expression guidelines developed in York Structural Biology Laboratory by Dr. Tim Ganderton and 

optimization experiments performed during the course of this work (see section 4.2). 

The generated constructs were used to transiently transfect either CHO K1 or HEK 293T 

mammalian cells to check for expression. For small scale expression tests, each well of a 6-well plate 

was seeded with 250 000 cells and grown for 24 h at 37°C/5% CO2 in 2 ml of growth media 

supplemented with 10% Fetal Bovine Serum, either DMEM for HEK 293T or DMEM/F10 for CHO K1. 

Cells were allowed to reach 50-60% confluency (typically after ~24h of growth) before being 

transfected. Polyethylenimine (PEI) was used as a transfection reagent at varying DNA:PEI ratios: PEI 

MAX MW 4,000 and linear PEI 25,000 (Polysciences, Inc.) were used with CHO K1 and HEK293T cell 

lines, respectively.  

Transfection 

Immediately before transfection, 1 ml of cultured media was discarded and 1 ml of fresh medium 

not containing FBS was added, lowering the FBS concentration to 5%. In a microcentrifuge tube, an 

appropriate amount of PEI was added to 200 µl of relevant pre-warmed growth medium and 

incubated for 10 min. at room temperature. 2 µg of midiprep DNA was added to the medium-PEI 

mixture, incubated for 10 min. at room temperature and the mixture was added to a single well of a 
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6-well plate. Valproic acid was added to a concentration of 500 µg/ml. 16h post-transfection, the 

growth medium was discarded and 2 ml of fresh FBS-free medium was added. The cells were allowed 

to grow for additional 2 days, after which the cells and media were collected for protein analysis. 

Sample preparation 

Cells were dislodged with a cell scraper and transferred to a microcentrifuge tube with the 

cultured media. The samples were centrifuged for 5 min. at 700×g and the supernatant was 

transferred to a clean microcentrifuge tube. 1 ml of Lysis Buffer (1% CHAPS, 0.1% SDS in 1x TBS pH 

7.4) was added to the cell pellets which were briefly vortexed to facilitate lysis. 80 µl of media and 

lysate samples were added to 20 µl of the appropriate 5x Sample Buffer (reducing, non-reducing, or 

native) and applied directly to gel or frozen at -20 °C. 

3.6 LARGE-SCALE PROTEIN EXPRESSION 

Leading up to large-scale expression experiment, cells from working stock cultures were expanded 

into multiple T175 flasks. T75 working stocks were passaged as per the usual protocol (section 3.4), 

except 9 ml of final cell re-suspension were evenly divided into four T175 tissue culture flasks 

(Corning) and 30 ml of DMEM-F12 supplemented with 10% FBS was added. The cells were cultured 

for 72 h, and expanded in the same way into twenty T175 flasks (1:5 split). After 96h of growth, cells 

were detached from flasks as previously described, divided evenly into six 2125 cm2 tissue culture 

roller bottles (Greiner) with 300 ml DMEM/F-12 supplemented with 10% FBS. Assuming 105 

cells/cm2 at confluency, it would translate to a seeding density of 2.7×104 per cm2 of roller bottles 

(5.8×107 cells per bottle). 

The cells were grown under standard conditions on a rolling platform, rotating at ~0.7 RPM, and 

transfected after 48 h. Prior to transfection, FBS concentration was lowered to 5% by exchanging 

150 ml media for fresh, FBS-free DMEM/F-12. Per bottle, 2 mg of PEI MAX was incubated at room 

temperature for 10 min. in 40 ml of FBS-free DMEM/F-12. Subsequently, 500 µg of plasmid DNA was 

added and incubated for 30 min., and the mix was added to the cells which were then incubated for 

further 12 h. The media was then exchanged for 300 ml of fresh serum-free DMEM/F-12 and cells 

were cultured for additional 96 h before harvesting.  
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3.7 PROTEIN PURIFICATION FROM CULTURED MAMMALIAN MEDIA 

Sample preparation 

In this study, two constructs were purified from cultured media: mk11 (section 4.4) and mk13 

(section 4.5), both of them bearing a C-terminal 6×His tag. Both constructs were purified using a metal 

affinity chromatography step followed by anion exchange and gel filtration. 

Cultured media (300 ml per roller bottle) was harvested and centrifuged at 5000×g for 10 min. 

The media was concentrated down to ~80 ml and further diafiltrated against 2 l of IMAC binding 

buffer (25 mM Tris pH 8.0, 500 mM NaCl, 20 mM imidazole) using a KrosFlo® Research IIi Tangential 

Flow Filtration System with a 30 kDa cut-off hollow-fibre mPES filter (Spectrum Labs) running at 0.8 

ml∙min.-1 and 8 psi of transmembrane pressure. 

Ion Metal Affinity Chromatography 

A 1 ml HisTrap FF (GE Healthcare) column was connected to an ÄKTA Pure FPLC system (GE 

Healthcare) and equilibrated with IMAC binding buffer (25 mM Tris pH 8.0, 500 mM NaCl, 20 mM 

imidazole) over 20 CV.  

Concentrated and buffer exchanged media was loaded onto the column using a sample pump at a 

flow rate of 1 ml∙min.-1 After sample application, the column was washed with 20 CV of buffer. Bound 

proteins were eluted either with a linear or step gradient to elution buffer (25 mM Tris pH 8.0, 500 

mM NaCl, 500 mM imidazole) and the eluate was collected in 1 ml fractions which were analysed with 

SDS-PAGE and Western Blotting. 

Anion exchange chromatography 

Protein-containing eluate fractions were diluted 30-fold in 25 mM Tris pH 8.0 buffer, with a final 

NaCl concentration of 16 mM. A 1 ml HiTrapQ HP (GE healthcare) column was connected to an ÄKTA 

Pure FPLC system and equilibrated with 25 mM Tris pH 8.0 buffer over 20 CV.  

Concentrated and buffer exchanged media was loaded onto the column using a sample pump at a 

flow rate of 1 ml∙min.-1 After sample application, the column was washed with 20 CV of equilibration 

buffer. Bound proteins were eluted either with a linear or step gradient to elution buffer (25 mM Tris 

pH 8.0, 1 M NaCl) and the eluate was collected in 1 ml fractions which were analysed with SDS-PAGE 

and Western Blotting. Chosen fractions were pooled and concentrated in a 30 kDa cut-off Vivaspin 

centrifugal filter unit (GE). 

Gel filtration 

Gel filtration was performed on a Superdex S200 10/300 GL chromatography column (GE 

Healthcare) connected to an ÄKTA Pure FPLC system in a 25 mM Tris pH 8.0, 200 mM NaCl buffer at 

0.5 ml∙min-1 flow rate.  
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3.8  PROTEIN ANALYSIS (SDS-PAGE AND WESTERN BLOT) 

Protein samples were subject to analysis on SDS-PAGE under reducing and non-reducing 

conditions, differing by the presence of 5% β-mercaptoethanol in the sample buffer. Samples were 

mixed with 5X sample buffer in 4:1 ratio, boiled for 5 min. at 95 °C and typically 20 µl was loaded on 

discontinuous 4/10% or 4/7.5% gels. The proteins were separated under 200 V for approx. 60 

minutes in 1X running buffer. After electrophoresis, gels were stained by incubation with Coomassie-

based instant dye (60 mg/L of Coomassie Brilliant Blue G-250 in 35 mM HCl) and de-stained in 

deionised water. Native PAGE, without SDS in sample buffer or gel formulations, was also routinely 

used. In these cases, the samples were not boiled and the gels used were continuous 7.5% acrylamide, 

ran under 100V for ~110 min. Size markers were not used for native PAGE. Gel recipes are presented 

in Table 3.4. 

Table 3.4| SDS-PAGE gel formulation 

SDS-PAGE resolving gel 

 5% 7.5% 10% 

H2O 5.7 ml 4.9 ml 4.0 ml 

30% acrylamide/bis-, 37.5:1 1.7 ml 2.5 ml 3.3 ml 

Resolving buffer (1.5 M Tris pH 8.8, 0.4% SDS) 2.5 ml 

10% APS 50 µl 

TEMED 8 µl 

Total 10 ml 

SDS-PAGE stacking gel 

H2O 3.2 ml 

30% acrylamide/bis-, 37.5:1 0.5 ml 

Stacking buffer (0.5 M Tris pH 6.8, 0.4% SDS) 1.3 ml 

10% APS 25 µl 

TEMED 8 µl 

Total 10 ml 

native PAGE continuous 7.5% gel 

H2O 9.8 ml 

30% acrylamide/bis-, 37.5:1 5 ml 

Resolving buffer (1.5 M Tris pH 8.8) 5 ml 

10% APS 100 µl 

TEMED 8 µl 

Total 10 ml 
Table shows the ingredient volumes for preparation of 2 gels each. 

For Western Blotting, proteins were transferred to a PVDF membrane using a BioRad semi-dry 

blotting system in 1X Towbin buffer for 45 min. under 25V. The membrane was blocked overnight in 

blocking buffer (5% Bovine Serum Albumin in TBS-Tween). 
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The membranes were probed either with an IR-specific antibody 83-7 (Life Technologies) or tag-

specific antibodies StrepMAB-Classic HRP conjugate (IBA GmbH) and Monoclonal Anti-

polyHistidine−Peroxidase antibody (SIGMA). Peroxidase conjugate antibodies were incubated with 

the membrane for 1 h with shaking at room temperature in 0.5% BSA/TBS-Tween (StrepMAB 

1:10 000, anti-His 1:5000), followed by three 15 min. washes in TBS-Tween. 83-7 anti-IR antibody 

was incubated with the membrane for 1 h with shaking at room temperature in 0.5% BSA/TBS -

Tween at 1:2000 dilution, followed by three 15 min. washes in TBS-Tween and incubation for 1h with 

a secondary goat anti-mouse IgG HRP conjugate antibody (SIGMA) at 1:2000 dilution in TBS-Tween. 

Antibodies were detected using the luminol-based Amersham ECL reagent: 0.75 ml of substrates 

A and B each were mixed, applied to membrane and incubated for 5 min. The chemiluminescent signal 

was detected using a SynGene G:BOX XT16 imager at fully open aperture and 2 min. exposure time.  

5x  native PAGE Sample Buffer 5x SDS-PAGE Sample Buffer (non-reducing) 

Tris-HCl, pH 6.8 
Glycerol 
Bromophenol blue 

250 mM 
50% (v/v) 

0.25% (w/v) 

Tris-HCl, pH 6.8 
SDS 
Glycerol 
Bromophenol blue 

250 mM 
10% (w/v) 
50% (v/v) 

0.25% (w/v) 

5x SDS-PAGE Sample Buffer (reducing) 1X SDS-PAGE running buffer 

Tris-HCl, pH 6.8 
SDS 
Glycerol 
Bromophenol blue 
β-mercaptoethanol 

250 mM 
10% (w/v) 
50% (v/v) 

0.25% (w/v) 
5% (v/v) 

Tris base 
Glycine 
SDS 

25 mM 
250 mM 

0.1% (w/v) 

1X  native PAGE running buffer 1X  Towbin buffer 

Tris base 
Glycine 

25 mM 
250 mM 

Tris base 
Glycine 
methanol 

25 mM 
192 mM 

5% (v/v) 
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4 RESULTS 

4.1 CREATION OF SINGLE-CHAIN HETERODIMERIC IR CONSTRUCTS BY SITE-DIRECTED 

MUTAGENESIS 

A plasmid based on the pZem vector [104], containing the sequence of a single-chain 

heterodimeric IR construct with a non-cleavable 25 AA linker pIM1242 [signal sequence-(1-593)-

(GGGS)5GGG-(310-601)-(678-731)C682,683,685S-FLAG], was obtained from Dr Jakob Brandt, Novo 

Nordisk A/S  (Figure 4.1). 

 
Figure 4.1| Map of pIM1242 plasmid 
pIM1242 contains the single-chain, heterodimeric IR construct IM1242 sequence cloned into Novo Nordisk’s pZem vector under 
the control of SV40 promoter sequence. The construct contains a native human IR signal sequence, a non -cleavable (GGGS)5GGG 
linker and a C-terminal FLAG tag. 

Site-directed mutagenesis, by whole-plasmid PCR followed by phosphorylation and ligation of the 

linear product (section 3.3) was undertaken to introduce deletions, insertions and substitutions. After 

site directed mutagenesis, plasmid DNA was isolated from bacterial colonies and endonuclease 

digestions were used to select clones that behaved consistently with the expected size and location of 

restriction sites (Figure 4.2). Afterwards, chosen clones were sequenced at GATC Biotech, covering 

the mutagenesis region, to select the correct mutants. Due to the number of constructs and length of 

sequence (2991 bp for IM1242), only a limited number of constructs have been sequenced in full 

(specifically mk11-14 and mk35). 
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Figure 4.2| Example digests of plasmids isolated after mutagenesis with restriction endonucleases ClaI and SacII 
Three clones of pZem-mk1 (lanes 1-3) and pZem-mk2 (lanes 4-6) each were isolated from single bacterial colonies after site-
directed mutagenesis and subjected to a 3-hour double digest using SacII and ClaI restriction endonucleases. Lane 7 shows parent 

vector pIM1242 cleaved with the same enzymes. M – NEB 1kb ladder, sizes in kilobases. Expected fragment sizes after digestion: 
6180 and 1526 bp for mk1, 6216 and 1526 bp for mk2, 6240 and 1526 bp for pIM1242. First clones of both mk1 and mk2 (lanes 1 
and 4) were sequenced in the mutagenesis region and confirmed to have the desired mutation.  

Series of mutagenic primers annealing to pIM1242 (Table 3.1) were designed to: 

a) remove the C-terminal FLAG tag, 

b) create an isoform A construct lacking exon 11, 

c) introduce a 6×His or a StrepII peptide tag on the C-terminus, 

d) substitute part of the poly-GS linker for a 3C rhinovirus protease or a furin cleavage site, 

e) introduce a cleavable N-terminal 6×His tag, 

f) substitute the native signal peptide with heterologous sequences from human interleukin -2 

and Gaussia princeps luciferase. 

A combinatorial approach to mutagenesis was taken (Figure 4.3), generating constructs presented 

in Table 4.1. 
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Figure 4.3| Summary of mutagenesis process 
An overview of the mutagenesis steps taken to generate given constructs from Table 4.1 is given, with a summary of added 
features and primers (see Table 3.1) used for each mutagenesis reaction. 

Table 4.1| List of constructs generated on the basis of pIM1242 

Name Signal Linker CT 
isoform 

NT tag CT tag Sequenced with 

mk1 hIR (GGGS)5GGG A     M13F  

mk2 hIR (GGGS)5GGG B     M13F 

mk3 hIR GGG-RKRR-GGG A     mks1R 

mk4 hIR GGG-RKRR-GGG B     mks1R 

mk5 hIR GGG-3C-GGG A     mks1R  

mk6 hIR GGG-3C-GGG B     mks1R  

mk7 hIR (GGGS)5GGG A   His M13F  

mk8 hIR (GGGS)5GGG A   StrepII M13F 

mk9 hIR (GGGS)5GGG B   His M13F 

mk10 hIR (GGGS)5GGG B   StrepII M13, mks1R 

mk11 hIR GGG-RKRR-GGG A   His M13F, mks1R, cv14, cv3, 
mks2F 

mk12 hIR GGG-RKRR-GGG A   StrepII M13F, mks1R, cv14, cv3, 
mks2F 

  

IM1242

• obtained from Jakob Brandt, Novo Nordisk A/S
• hIR_SP-(1-593)-(GGGS)5GGG-(310-601)-(678-731)C682,683,685S-FLAG in pZem vector

mk1-2

• FLAG tag/FLAG+Exon 11 removal for untagged C-termini and A (mk1) or B (mk2) isoform
• mk5 primer set

mk3-6

•Cleavage site added in linker: 3C protease (LEVLFQGP) or furin (RKRR)
•mk8 (3C) and mk11 (RKRR) primer sets

mk7-18

• Addition of C-terminal 6×His/StrepII
• mk9 and mk10 primer sets

mk19-20

• substitution of IR signal peptide for one derived from human interleukin-2 (mk19-23) or G. 
princeps luciferase (mk24-28) in pIM1242 and mk11-14

• sp2 and sp3 primer sets

mk29-34

•Addition of N-terminal 6×His-3C sequence to mk1-6
•tg primer set

mk35-40

•introduction of extended furin site PSRKRRSL into linker of mk1-2 and mk7-10
•mk13 primer set
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Table continued from page 39 
mk13 hIR GGG-3C-GGG A   His M13F, mks1R, cv14, cv3, 

mks2F 
mk14 hIR GGG-3C-GGG A   StrepII M13F, mks1R, cv14, cv3, 

mks2F 
mk15 hIR GGG-RKRR-GGG B   His M13, mks1R 

mk16 hIR GGG-RKRR-GGG B   StrepII M13, mks1R 

mk17 hIR GGG-3C-GGG B   His M13, mks1R 

mk18 hIR GGG-3C-GGG B   StrepII M13, mks1R 

mk19 IL-2 GGG-RKRR-GGG A   His mks3F 

mk20 IL-2 GGG-RKRR-GGG A   StrepII mks3F 

mk21 IL-2 GGG-3C-GGG A   His mks3F 

mk22 IL-2 GGG-3C-GGG A   StrepII mks3F 

mk23 IL-2 (GGGS)5GGG A   FLAG mks3F 

mk24 luc GGG-RKRR-GGG A   His mks3F 

mk25 luc GGG-RKRR-GGG A   StrepII mks3F 

mk26 luc GGG-3C-GGG A   His mks3F 

mk27 luc GGG-3C-GGG A   StrepII mks3F 

mk28 luc (GGGS)5GGG A   FLAG mks3F 

mk29 hIR (GGGS)5GGG A His-3C   mks3F 

mk30 hIR (GGGS)5GGG B His-3C   mks3F 

mk31 hIR GGG-RKRR-GGG A His-3C   mks3F 

mk32 hIR GGG-RKRR-GGG B His-3C   mks3F 

mk33 hIR GGG-3C-GGG A His-3C   mks3F 

mk34 hIR GGG-3C-GGG B His-3C   mks3F 

mk35 hIR GGG-PSRKRRSL-GGG A     M13F, mks1R, mks3F, 
cv3, mks2F 

mk36 hIR GGG-PSRKRRSL-GGG B     mks1R 

mk37 hIR GGG-PSRKRRSL-GGG A   His mks1R 

mk38 hIR GGG-PSRKRRSL-GGG A   StrepII mks1R 

mk39 hIR GGG-PSRKRRSL-GGG B   His mks1R 

mk40 hIR GGG-PSRKRRSL-GGG B   StrepII mks1R 

Table includes all constructs generated during the course of this work. Name – construct name in mkxx format; signal – N-terminal 
signal sequence: hIR – native, IL-2 – human interleukin-2, luc – G. princeps luciferase (see main text for details); linker – linker 
sequence between FnII-1 (first repeat) and L2 (second repeat) domains, 3C – 3C protease site LEVLFQGP; CT isoform indicates 

presence (B) or absence (A) of exon 11 at the C-terminus; NT/CT tag – affinity tags present at either terminus. Last column indicates 
the extent of sequencing for each construct by listing primers used in sequencing reactions (see Table 3.1 for details on primers). 
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First constructs: mk1-mk18 

First, the FLAG-tag was removed from pIM1242 yielding mk1 (untagged IR-A C-terminus) and mk2 

(IR-B) to allow for use of more economically viable affinity resins in purification. 

Subsequently, 3C protease (LEVLFQGP [105]) or furin (RKRR present between α and β subunits of 

native IR [39]) cleavage sites were added to yield mk3-mk6. C-terminal 6×His or StrepII [106] peptide 

tags were added to mk1-2 to create non-cleavable linker constructs mk7-10, and to mk3-6, to yield 

constructs mk11-18, which contained both cleavable linkers as well as C-terminal peptide tags. 

Alternative signal peptides 

Subsequently, the native IR signal sequence was replaced in pIM1242 and mk11-14. N-terminal 

signal peptides direct transmembrane and extracellular proteins to the secretory pathway where 

they are proteolytically removed [107]. These peptides can influence protein expression and/or 

secretion levels [108,109] and therefore two alternatives to the native signal sequence were tested: 

a) the signal peptide derived from human interleukin-2 precursor (UniprotKB P60568), a 

sequence commonly used in industrial production of recombinant biopharmaceuticals [108], 

amino acid sequence MYRMQLLSCIALSLALVTNS; 

b) the signal peptide derived from marine copepod Gaussia princeps luciferase precursor 

(UniProtKB Q9BLZ2), which has been shown to increase protein secretion levels compared to 

albumin signal peptide for recombinant proteins like human endostatin [110], amino acid 

sequence MGVKVLFALICIAVAEA. 

N-terminal tagging 

An attempt was made to introduce an N-terminal HLYPGE-HHHHHH-StrepII-3C sequence with the 

rationale of creating N-terminally double-tagged constructs. Based on unpublished observations from 

Novo Nordisk that introducing a FLAG-tag between the signal peptide and the first 6 N-terminal 

amino acids can significantly lower expression levels, it was also attempted to duplicate these amino 

acids before the tags using the mk7 primer set. The PCR could not be optimized for these primers , 

likely owing to their propensity to create both hetero- and homodimers. A gradient of 3-6-9% DMSO 

concentrations and 62-65-68-72 °C annealing temperatures, as well as one-primer PCR followed by a 

two-primer PCR strategy were all attempted and failed to yield any product. 

Using the ‘tg’ primer set, a simpler N-terminal tag was introduced instead with a HHHHHH-

LEVLFQGP sequence added to the N-terminus of mk1-6 after the signal peptide (constructs mk29-

34). 
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Extended furin cleavage sequence 

Furin is a major subtilisin-like proprotein convertase ubiquitous in the Golgi apparatus and 

secretion pathway [111]. Furin cleaves after consensus site R-X-K/R-R, and RKRR site is present in 

the human insulin receptor between α and β subunits [39] and was hence introduced into a number 

of previous constructs as an attempt to engineer an IR heterodimer processed in the secretion 

pathway. It has been reported that the presence of this site is however not sufficient for efficient furin 

cleavage which requires two polar regions outside of the core sequence [112]. PiTou, a bioinformatic 

tool for prediction of furin cleavage sites which analyses a 20 amino acid motif [113], was used to 

score possible variants of furin site in the context of the poly-glycine linker in the heterodimer 

construct (Table 4.2). It was found that an addition of 2 amino acids from each side of native hIR furin 

cleavage sequence to the basic RKRR motif results in PiTou score as high as the native cleavage site 

between hIR subunits. Thus, the PSRKRRSL site was introduced into the linker of mk1-2 and mk7-10 

to create mk35-40, six constructs with the same linker and alternative C-termini (A/B isoforms 

untagged/StrepII-tagged/His-tagged). 

Table 4.2| PiTou scoring of furin linker variants 

Sequence Motif-P14-P1 Motif-P1'-P6' PiTou Score 
native IR α/β site HNVVFVPRPSRKRR SLGDVG 14,0595 

Fn1-GGG-RKRR-GGG-L2 YVQTDATGGGRKRR GGGKVC 6,98861 
Fn1-GGGSRKRRSGGG-L2 VQTDATGGGSRKRR SGGGKV 10,2293 

Fn1-GGGPSRKRRSGGG-L2 QTDATGGGPSRKRR SGGGKV 10,8181 
Fn1-GGGSRKRRSLGGG-L2 VQTDATGGGSRKRR SLGGGK 13,7215 

Fn1-GGGPSRKRRSLGGG-L2 QTDATGGGPSRKRR SLGGGK 14,3103 
Amino acids flanking native IR furin site (purple) were added around RKRR site in the sequence of heterodimer construct mk11 

and the altered sequences were scored with PiTou furin site prediction software [113] until a sequence with a score at least equal 
to wild-type hIR was found. 
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4.2 EVALUATION OF EXPRESSION AND DETECTION CONDITIONS 

Detection 

mk11 was the first construct to be expressed in 6-well plate cultures of CHO K1 cell line using 1:1, 

3.5:1 and 6:1 PEI:DNA ratios (w/w). mk11 is present in cultured media and when not reduced, it can 

be detected by the 83-7 monoclonal antibody  [67] which recognizes an epitope within the CR domain 

(Figure 4.4). Because the antibody appears to be more sensitive when the proteins are first separated 

with native rather than denaturing PAGE (compare panel B, where faint signal appears only for one 

transfection sample, to panel C and Figure 4.6 below), this method has been used for all other analyses 

of expression media containing IR constructs. Anti-His antibody produced no signal, raising questions 

about the integrity and accessibility of His-tagged C-terminus.  

 
Figure 4.4| Detection of mk11 in CHO K1 media and lysate samples 
Panel A| CHO K1 cells were cultured in a 6-well dish and transfected with 2 µg of pZem-mk11 (section 3.5). Cultured media (lanes 
1 and 3-8) and lysate (lanes 2 and 9-14) samples were analysed on 10% SDS-PAGE under reducing (lanes 1-5 ad 9-11) and non-

reducing (lanes 6-8 and 12-14) conditions. Three PEI:DNA ratios were used (1:1 in lanes 3, 6, 9, 12; 3.5:1 in lanes 4, 7, 10, 13; 6:1 
in lanes 5, 8, 11, 14). Lanes 1 and 2 come from untransfected cells. Panel B| Equivalent gel was blotted onto a PVDF membrane 
and developed using the 87-3 anti-IR antibody. Only one sample produced any signal, most likely equivalent of gel lane 7 or 8; this 

signal is very weak, resulting in a high background when compared to pane l C. This experiment was repeated in HEK 293T cells 
with the same result (not shown). Repeat blots were probed against with anti-His antibody, which did not produce any signal. 
Panel C| CHO K1 cells were transfected with pZem-mk11 (lanes 9-12) at 4:1 PEI:DNA ratio. L1-CR-CD4 construct (lanes 1-4) and 
full-length hIR with C-terminal mCherry fusion protein (lanes 5-8) expression vectors were obtained from Dr Tim Ganderton and 

used as controls; YFP coding vector was used for visual control of transfection efficiency. Cultured media (odd numbered lanes) 
and lysate (even numbered lanes) samples were applied to 7.5% native PAGE and probed with the 83-7 antibody. Cells were 
optionally treated (+/- lanes) with valproic acid after transfection and no change in protein levels was observed. 

Transfection and expression 

Initially, PEI MAX MW 4,000 (catalog number 24885) from Polysciences Inc. was used to transfect 

CHO K1 cells and linear PEI MW 25,000 (catalog number 23966) was used to transfect HEK 293T cells  

according to established lab practice. A small-scale transfection of both cells with a pcDNA3-YFP 

vector coding for Yellow Fluorescent Protein showed similar transfection efficiencies for both 

reagents in CHO K1 cells. However, higher levels of cell detachment and death were observed in 

HEK 293T cells at typical harvest time using the higher MW linear PEI reagent (Figure 4.5). Thus, PEI 

MAX was used for further experiments in both cell lines. 
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Figure 4.5| HEK 293T cells 72h post-transfection with a pcDNA3-YFP vector with two different PEI reagents 
HEK293T cells were cultured in two 6-well plates and transfected according to small-scale expression protocol (section 3.5) with 

2 µg of pcDNA3-YFP plasmid. Two different reagents were used (PEI MAX MW 4,000 and linear PEI MW 25,000 from Polysciences, 
Inc.) in concentrations routine for these reagents, expressed in PEI:DNA (w/w) ratios under each well photo. Photos taken at 10x 
magnification. More cells expressing YFP can be seen using PEI MAX as transfection reagent, and greater cell detachment and cell 

death can be seen using the linear PEI MW 25,000 (compare mostly un-transfected, but almost confluent culture when 2 µg PEI 
MAX is used, to mostly transfected but more sparsely populated cultures when linear PEI is used). 

With mk11 as the reference construct, a range of 1:1-1:6 DNA:PEI MAX ratios was investigated: 

CHO K1 and HEK 293T cells grown in 6-well plates were transfected using different ratios of DNA to 

PEI and samples of cultured media were analysed after 72h by native PAGE followed by Western 

Blotting using the 83-7 anti-IR antibody (Figure 4.6, panel A). For both cell lines the signal appears 

stronger at PEI:DNA ratio greater than 3:1. A ratio of 4:1 was chosen for further experiments with 

these constructs to limit PEI-related cytotoxicity as increased PEI amount do not seem to increase 

protein in media. Another factor that can affect transfection efficiency and protein yield is confluenc y 

at the time of transfection, with various sources stating between 50 and 90% as the optimal 

confluency [103,114]. This factor was investigated indirectly by transfecting CHO K1 and HEK 293T 

cells with mk11 plasmid 24 hours after seeding at different cell densities: 2, 3, 4, 5, 6 or 7 ×104 cells 

per cm2 of a well in a 6-well culture plate. Samples of cultured media were analyzed after 72 h by 

native PAGE followed by Western Blotting using the 83-7 anti-IR antibody (Figure 4.6, panel B).  

Increases in protein levels in media can be seen up to a seeding density of 5×104 cells∙cm-2 which was 

used for further experiments.
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Figure 4.6| Influence of PEI:DNA ratio and cell seeding density on mk11 levels in cultured media 

CHO K1 and HEK 293T cells were cultured in a 6-well dish and transfected with 2 µg of pZem-mk11. Samples of 72 h cultured 
media were subjected to native PAGE and Western Blotting with the 83-7 antibody. Sample of cultured media from CHO K1 cells 
expressing L1-CR-CD4 construct obtained from Dr Tim Ganderton (YSBL) was also included as a positive control.  Panel A| The 
influence of PEI:DNA ratio on Western Blot signal. CHO K1 and HEK 293T cells were transfected using increasing amounts of PEI in 

each well (expressed in PEI:DNA ratio at 1:1, 2:1, 3:1, 4:1, 5:1 and 6:1). Lane 1 – L1-CR-CD4 cultured media, lanes 2-6: mk11/CHO 
K1 cultured media, lanes 7-12: HEK 293T/mk11 cultured media. CHO K1 1:1 PEI:DNA sample was lost due to a bacterial infection. 
Panel B| The influence of cell seeding density. Both cell lines were seeded at increasing cell densities per well (2, 3, 4, 5, 6 or 

7 ×104 cells per cm2) 24 h before transfection. Lane 1 – L1-CR-CD4 cultured media, lanes 2-6: CHO K1/mk11 cultured media, lanes 
7-12: HEK 293T/mk11 cultured media. 
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4.3 CONSTRUCT EVALUATION 

4.3.1 mk11-mk14, expression and detection 

mk11, mk12, mk13 and mk14 were the first constructs to be expressed on a small scale (Figure 

4.7). All of these lack exon 11, have either a 6×His (mk11 and mk13) or a StrepII (mk12 and mk14) 

tag on the C-terminus and contain either a furin site RKRR (mk11 and mk12) or a 3C protease site 

LEVLFQGP (mk13 and mk14) in the linker sequence. 

The constructs are present in the expression media in amounts comparable to  the L1-CR-CD4 

construct expressed from a pOPINE vector [101]. L1-CR-CD4 is based on the IR.1-310 construct used 

previously in structural studies [64–66] and became a reference standard in our lab.  

 
Figure 4.7| Small scale expression of mk11-mk14 constructs 
L1-CR-CD4 (lanes 1 and 6), mk11 (lanes 2 and 7), mk12 (lanes 3 and 8), mk13 (lanes 4 and 9) and mk14 (lanes 5 and 10) were 
expressed in HEK 293T and CHO K1 cells cultured in 6-well plates (section 3.5). The media samples were applied to a 7.5% non-
reducing, non-denaturing PAGE, transferred to a PVDF membrane and probed with the 83-7 IR-specific antibody. L1-CR-CD4 is 

included as a positive control for 83-7 and size reference. Furin-linker constructs appear as one band with significant smearing, 
whereas 3C-linker constructs appear as two bands. Repeat blots were probed with anti -His (SIGMA) and StrepMAB Classic (IBA) 
HRP-conjugate antibodies, but produced no signal. 

 The constructs could be detected in media only with the 83-7 monoclonal antibody that 

recognizes a conformational epitope in the CR domain [67]. Neither the anti-His nor StrepMAB Classic 

HRP conjugate antibodies produced any signal. This could be caused by C-terminal degradation, 

inaccessibility of the C-terminal tag to antibodies, or simply lower sensitivity of tag-specific, HRP-

conjugated antibodies than the 83-7 primary/secondary system. 
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This failure to detect signals from tag-specific antibodies presents a major limitation of Western 

Blots in studying these constructs in cultured media samples. All IM1242-derived constructs have 

two copies of the FnIII-1 domain fragment containing a free cysteine that forms an inter-subunit 

disulphide bond in native IR (Figure 2.2), as an attempt to create a heterodimeric IR construct 

connected by these domain fragments. Previously, anti-His antibodies did not produce signals on 

blots from SDS-PAGE, with or without a reducing agent in the sample buffer. In this experiment, tag-

specific antibodies produced no signal on blots from native PAGE; the experiment was also repeated 

using PAGE without SDS but with β-Me in the sample buffer and none of the three antibodies (anti-

His, StrepMAB Classic or 83-7) produced any signal. This made it impossible to compare the 

behaviour of these constructs under reducing and non-reducing conditions, which could have 

revealed what kind of homo- and heterodimers are formed before choosing constructs for large-scale 

expression. 

Interestingly, on native PAGE mk11 and mk12 constructs behave differently to mk13 and mk14: 

mk11 and mk12 run as a single band with more smearing, whereas mk13 and mk14 run as two 

distinct bands, possibly indicating higher order oligomers owing either to differences in processing 

(due to the furin site present in mk11/mk12), or a linker with greater length or flexibility more 

accommodating of oligomer formation. 

4.3.2 Alternative signal peptides 

Five constructs: pIM1242 and mk11-14 were mutated to contain alternative signal peptides 

derived from human interleukin-2 and G. princeps luciferase (section 4.1), giving constructs mk19-

mk28 (Table 4.1). The expression of these constructs was assessed with small-scale transfections and 

native PAGE followed by Western Blotting of cultured media (Figure 4.8). 

Prior to this experiment, samples of cultured media from BHK cells stably expressing IM1242 and  

CHO Lec8 cells stably expressing IR ‘midireceptor’ construct IM1010 (IR1-601.678-

731.C682S.C683S.C685S-FLAG) were obtained from Novo Nordisk A/S. They were included in each 

expression blot for concentration and size comparisons. 

Neither of the two tested signal peptides improved levels of secreted protein in the media for any 

construct. Comparison of signal from these expression screens to IM1242 and IM1010 reference 

samples suggests that higher levels of secreted proteins were achieved in the HEK 293T cell line 

(Figure 4.8: compare signal in lanes 4, 7, 10 vs. lane 1 and lanes 16, 19, 22 vs. lane 15 on both blot 

pairs). 
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Figure 4.8| Small-scale expression of constructs with alternative signal peptides 

IM1242, mk11, mk12, mk13 and mk14 with signal peptides derived from native IR sequence ( IR), human interleukin-2 (IL-2) or G. 
princeps luciferase (luc) were expressed in 6-well plate cultures of CHO K1 (above) and HEK 293T (below) cell lines, separated on 
a 7.5% native PAGE and blotted with the 83-7 IR-specific antibody. Every blot includes L1-CR-CD4 expressed during the course of 
the same experiment as an internal positive control (lanes 3 and 13) as well as cultured media from BHK cells stably expressing 

IM1242 (lanes 1 and 15) and CHO Lec8 cells stably expressing IM1010 homodimeric ‘midireceptor’ construct (lanes 2 and 14)  
obtained from Novo Nordisk A/S as external reference for size and concentration. IM1242-derived constructs appear twice (lanes 
4-6 and 16-18). Lanes 7-9 are mk11 and its derivatives (mk19 and mk24), 10-12 mk12 and derivatives (mk20 and mk25), 19-21 

mk13 and derivatives (mk21 and mk26) and 22-24 mk14 and derivatives (mk22 and mk27). Descriptions above lanes refer to signal 
peptide, linker sequence, isoform and C-terminal tag of the construct. 

Constructs that include IR Cys524, for example a mIR.Fn0 construct which comprises of IR 

residues 1-601 followed by residues 704-719, have been shown to exist as a mixture of dimeric and 

monomeric forms [35] and both IM1010 and IM1242 exhibit the same double band behavior. The 

single band observed previously for mk11 and mk12 (Figure 4.7) has the same mobility as the dimer 

band of IM1242 (Figure 4.8: compare lanes 7, 10 vs. lane 4) whereas mk13 and mk14 are recognized 
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by the antibody as three bands: fastest migrating band similar to IM1242 monomer; middle band 

similar to IM1242 dimer; and the slowest migrating band, presumably of higher oligomeric species 

or aggregate (Figure 4.8: compare lanes 19, 22 vs. lane 16).  

4.3.3 N-terminal tags and extended furin site constructs 

Two later sets of constructs include the N-terminally His-tagged constructs mk29-mk34 as well as 

constructs that include an extended furin cleavage site PSRKRRSL. 

The N-terminal 6×His-3C tag in constructs mk31 and mk33 does not affect the amount of protein 

in media compared to their C-terminally tagged equivalents mk11 and mk13 (Figure 4.9). Mk35, an 

untagged A-isoform construct that includes the extended furin cleavage site PSRKRRSL in its linker 

sequence, behaves drastically different to IM1242 or mk11 and does not appear as a single band but 

rather a smear running similarly to a IM1242 monomer; this would suggest that this construct 

undergoes a greater degree of processing (possibly indicating no cleavage of RKRR-site constructs 

and close to full cleavage for PSRKRRSL-site constructs) resulting in a greater heterogeneity of the 

oligomeric species or a monomer of greater flexibility in the native environment. 

 
Figure 4.9| Small scale expression of constructs with N-terminal tags and extended furin cleavage site 
IM1242 (lane 1), mk11 (lane 2), mk35 (lane 3), mk31 (lane 4), mk13 (lane 5) and mk33 (lane 6) were expressed in a 6-well plate 
culture of HEK 293T cells and the cultured media samples were analysed by native PAGE followed by blotting with the 83-7 

antibody. mk31 and mk33 are N-terminally tagged equivalents of mk11 and mk13, respectively, and mk35 is an untagged 
A-isoform construct with extended furin site in linker (GGG-PSRKRRSL-GGG).  
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4.4 MK11: LARGE SCALE EXPRESSION AND PURIFICATION OF A CONSTRUCT WITH A FURIN 

SITE LINKER 

mk11 is an A-isoform construct containing a C-terminal 6×His tag and a linker sequence with furin 

cleavage site RKRR (Figure 4.10) in a pZem expression vector.  

mk11 
mk11 cleaved at RKRR↓ 

N-terminal C-terminal 

length [aa] 943 length [aa] 600 length [aa] 343 

MW [Da] 107975 MW [Da] 68787 MW [Da] 39206 

pI 6.69 pI 7.02 pI 6.34 

ε0.1% [(mg/mL)-1cm-1] 1.40 ε0.1% [(mg/mL)-1cm-1] 1.35 ε0.1% [(mg/mL)-1cm-1] 1.48 

 
Figure 4.10| mk11 construct map and properties 
mk11 is an IR(1-593)-GGGRKRRGGG-IR(310-601)-IR(678-719)-6×His heterodimeric construct with C682S, C683S, C685S mutations. 
MW – molecular weight of polypeptide chain (excluding glycans), pI – isoelectric point, ε0.1% - extinction coefficient at 280 nm 

[(mg/mL)-1cm-1]. Parameters were calculated using ProtParam [115].  

mk11 was expressed according to section 3.6, but two roller bottles were lost to bacterial infection 

leaving 1.2 l of viable cultured media. The sample was loaded onto a 1 ml HisTrap FF column using an 

ÄKTA Pure FPLC system, washed with binding buffer over 20 CV and eluted with a linear gradient of 

20-500 mM imidazole over 20 CV (Figure 4.11). Collected fractions were analysed by native and 

denaturing PAGE as well as Western Blotting. 

SDS-PAGE of eluate fractions shows a very heterogeneous protein mixture, with no discernible 

band likely to represent mk11 (Figure 4.12, panel A). Signals produced on a Western Blot by anti-His 

antibodies was similarly non-specific and inconclusive, and based on these as well as previous results 

the use of anti-His antibodies for these constructs is not recommended. However, the 83-7 antibody 

confirmed the presence of IR epitope in eluted fractions separated under native conditions (Figure 

4.12, panel B).
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Figure 4.11| Elution of mk11 from a nickel affinity resin 
mk11 was loaded onto a 1 ml HisTrap FF column, washed with 20 mM imidazole over 20 CV and eluted with a linear gradient of 

20-500 mM imidazole over 20CV. 1 ml fractions were collected (shown by purple points with labels above every other fraction) 
and subjected to gel electrophoresis and western blotting.
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Figure 4.12| Electrophoretic and Western Blot analysis of mk11 His-tag purification 

Samples from mk11 purification steps were subjected to PAGE (left) and Western Blot (right) analysis. Panel A| Purification 
samples were separated by SDS-PAGE (left) on a 10% acrylamide gel under reducing conditions (5% β-Me in sample buffer). The 
samples were transferred to a PVDF membrane and probed with monoclonal anti-His HRP conjugate antibody (right). 1 – 

expression medium, 2 – tangential flow filtration permeate, 3 – column flow-through, 4 – column wash, A1-A10 – elution fractions 
(see Figure 4.11). Green channel – visible light signal, red – chemiluminescence signal. Panel B| Purification samples were 
separated by native, non-reducing PAGE (left), transferred to a PVDF membrane and probed with 83-7 (anti-CR) antibody (right). 

1 – expression medium, 2 – column flow-through, 3 – column wash, A1-A10 – elution fractions (see Figure 4.11). 

Eluate fractions A4-A8 were pooled and diluted in 150 ml of 25 mM Tris pH 8.0 buffer (to a final 

NaCl concentration of 16 mM). The sample was loaded onto a 1 ml HiTrapQ HP anion exchange 

column, washed with 20 CV of 25 mM Tris pH 8.0 buffer and eluted with a linear 0-500 mM NaCl 

gradient over 20 CV (Figure 4.13). 



53 
 

 
Figure 4.13| Elution of mk11 from an anion exchange resin 
Combined fractions from IMAC purification applied to a 1 ml HiTrap Q HP, washed with equilibration buffer over 20 CV and eluted 
with a linear gradient of 0-500 mM NaCl over 20CV. 1 ml fractions were collected (shown by purple points with labels above every 

other fraction) and subjected to gel electrophoresis and western blotting (Figure 4.14). 

 
Figure 4.14| SDS-PAGE and Western blot analysis of mk11 purification using anion exchange column 

After His-tag purification, mk11 was further purified using a 1ml HiTrap Q anion exchange column and purification samples were 
analyzed using SDS-PAGE and Western Blot analysis. Panel A| Purification samples were separated by SDS-PAGE on a 10% 
acrylamide gel under reducing conditions (5% β-Me in sample buffer). 1 – column flow-through, 2 – column wash, M – PageRuler 

prestained protein ladder, A3-C3 – elution fractions (see Figure 4.13). Suspected mk11 band marked with an arrow. Panel B| 
Purification samples were separated by native, non-reducing PAGE (gels not shown), transferred to a PVDF membrane and probed 
with 83-7 (anti-CR) antibody. 1242 – sample of expression medium containing IM1242 (from small scale screen, 4.3.2), A5-C3 – 

elution fractions (see Figure 4.13). 
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Proteins bound to the anion exchange elute in two broad, overlapping peaks, one corresponding 

to approximately 200 mM NaCl and another around 400 mM NaCl. Western Blots show that mk11 is 

present primarily in the first peak (fractions A7-B1, Figure 4.14, panel B) and comparing its 

abundance in each fraction to SDS-PAGE gel, it is likely that the band of nearly 180 kDa marked with 

an arrow in Figure 4.13 represents mk11 (with glycosylation accounting for apparent mobility being 

lower than expected from calculated molecular mass alone). 

Fractions A7-B1 were pooled and concentrated to approximately 100 µl in a 30 kDa cut-off Amicon 

concentrator; A280 was measured at 0.720 giving a yield of approximately 72 µg total protein, 

assuming that 1 AU = 1 mg/ml for a low purity sample. This sample was applied to both reducing and 

non-reducing SDS-PAGE in an attempt to determine whether in vivo furin cleavage was taking place 

(Figure 4.15). The rest of the sample was applied to a Superdex 200 10/300 GL gel filtration column 

in a non-reducing buffer (25 mM Tris pH 8.0, 200 mM NaCl). 

 
Figure 4.15| mk11 after purification using IMAC and anion exchange resins under reducing and non-reducing conditions. 

After anion exchange purification step, concentrated sample was separated with SDS-PAGE under reducing (R) and non-reducing 
(NR) conditions. Pictured are fragments of two 7.5% acrylamide gels differing by addition of 5% β-mercaptoethanol in sample 
buffer. Arrows 1 and 2 mark bands suspected to be the mk11 construct. M – PageRuler Prestained Protein Ladder.  

In both reducing and non-reducing conditions, mk11 appears to be a single band with mobility 

similar to un-cleaved mk13 (analogous construct containing a 3C-cleavable linker, see Figure 4.24). 

A band that runs well above the 180 kDa marker band under non-reducing conditions disappears 

upon addition of 5% β-mercaptoethanol in SDS-PAGE sample buffer and a less homogeneous band 

just below 180 kDa appears.  

In gel filtration using the Sephadex S200 GL10/300 column under non-reducing conditions, a 

similar high molecular weight protein appears in a peak at 11.3 ml, but a number of impurities persist 

even after gel filtration (Figure 4.16, Figure 4.17). 



55 
 

 
Figure 4.16| Elution profile of mk11 from a Superdex 200 10/300 GL column 
After IMAC and anion exchange purifications, mk11 sample was applied to a Superdex 200 10/300 GL gel filtration column. 0.5 ml 

fractions were collected (marked by purple points with labels above every other fraction).  

 
Figure 4.17| SDS-PAGE analysis of mk11 gel filtration 
After IMAC and anion exchange purifications, mk11 sample was applied to a Superdex 200 10/300 GL gel filtration column and 
0.5 ml fractions were collected (Figure 4.16). Every other fraction from B5-D3 was applied to a 10%% SDS-PAGE gel under non-

reducing conditions. 
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4.6 MK13: LARGE SCALE EXPRESSION AND PURIFICATION OF A 3C-CLEAVABLE 

CONSTRUCT 

mk13 is an A-isoform construct containing a C-terminal 6×His tag and a linker sequence with 3C 

cleavage site LEVLFQGP (Figure 4.18) in a pZem expression vector. 

mk13 
mk13 cleaved at LEVLFQ↓GP 

N-terminal C-terminal 

length [aa] 947 length [aa] 602 length [aa] 345 

MW [Da] 108262 MW [Da] 68920 MW [Da] 39360 

pI 6.34 pI 6.34 pI 6.34 

ε0.1% [(mg/mL)-1cm-1] 1.40 ε0.1% [(mg/mL)-1cm-1] 1.35 ε0.1% [(mg/mL)-1cm-1] 1.48 

 
Figure 4.18| mk13 construct map and properties 
mk13 is an IR(1-593)-GGGLEVLFQGPGGG-IR(310-601)-IR(678-719)-6×His heterodimeric construct with C682S, C683S, C685S 
mutations. MW – molecular weight of polypeptide chain (excluding glycans), pI – isoelectric point, ε0.1% - extinction coefficient at 

280 nm [(mg/mL)-1cm-1]. Parameters were calculated using ProtParam [115].  

mk13 was expressed in HEK 293T cells according to section 3.6 and purified from 1.8 l of cultured 

media according to section 3.6. In the IMAC step, the imidazole concentration in the wash buffer was 

increased to 32 mM (2.5% elution buffer) and the protein was eluted with 500 mM imidazole instead 

of a linear gradient (Figure 4.19). At this step, it is unclear whether this improved the purity of mk13 

in eluates compared to mk11 preparation (section 4.4). Collected fractions were analysed by 

non-reducing SDS-PAGE followed by Western Blotting with the 83-7 antibody (Figure 4.20) which 

proved sufficiently sensitive to analyse purification samples. Similarly to blots from native PAGE of 

expression media, the mk13 protein is present in 3 distinct oligomeric forms, albeit poorly resolved 

on the 10% gel.  
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Figure 4.19| Elution of mk13 from a nickel affinity resin 
After concentration and buffer exchange of mk13 expression media with a Tangential  Flow Filtration system, sample was loaded 

onto a 1 ml HisTrap FF column, washed with 32 mM imidazole over 20 CV and eluted with 500 mM imidazole. 1 ml fractions were 
collected (shown by purple points) and subjected to gel electrophoresis and western blotting.  

 
Figure 4.20| SDS-PAGE and Western Blot analysis of mk13 His-tag purification 

Samples from mk13 purification steps were subjected to SDS-PAGE and Western Blot analysis. Panel A| Purification samples were 
separated by SDS-PAGE on a 10% acrylamide gel under non-reducing conditions (5% β-Me in sample buffer). Panel B| The samples 
were transferred to a PVDF membrane and probed with monoclonal 83-7 (anti-CR) antibody. 1 – IM1242 (for mobility reference) 

expression media from small-scale tests, 2 – mk13 expression media, 3 – column flow-through, 4 – column wash, A1-A10 – elution 
fractions (see Figure 4.19). Green channel – visible light signal, red – chemiluminescence signal. 

Fractions A2-A6 were pooled, diluted and loaded onto a 1 ml HiTrapQ HP anion exchange column. 

Instead of the linear gradient used in mk11 purification, mk13 was eluted with a stepwise 50-200-

500 mM NaCl gradient, each step over 5 CV and a final column flush with 1 M NaCl (Figure 4.21). 
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Figure 4.21| Elution of mk13 from an anion exchange resin 
Combined fractions from IMAC purification were diluted 30-fold in salt-free buffer and loaded onto a 1 ml HiTrap Q HP column 
using an ÄKTApure liquid chromatography system, washed with equilibration buffer over 20 CV and eluted with a stepwise 

gradient of 50-200-500 mM NaCl over 5CV each. 1 ml fractions were collected (shown by purple points with labels above every 
other fraction) and subjected to gel electrophoresis and western blotting (Figure 4.22). 

 
Figure 4.22| SDS-PAGE and Western blot analysis of mk13 purification using anion exchange column 

After His-tag purification, mk13 was further purified using a 1ml HiTrap Q anion exchange column and purification samples were 
analyzed using SDS-PAGE and Western Blot analysis. Purification samples were separated by SDS-PAGE on a 7.5% acrylamide gel 
under non-reducing conditions (panel A), transferred to a PVDF membrane and probed with 83-7 (anti-CR) antibody (panel B). 1 
– sample of expression medium containing IM1242 (from expression screening), 2 – column flow-through, 3 – column wash, M – 

PageRuler prestained protein ladder, A7-B7 – elution fractions (see Figure 4.21). 
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After anion exchange purification, fractions A8-A12 were collected and concentrated to approx. 

100 µl. Absorbance at 280 nm was measured to be 1.260, corresponding to 126 µg of total protein 

assuming ε280=1 (mg/mL)-1cm-1 for a heterogeneous protein mixture. The purity achieved in these 

two steps, while not sufficient for structural studies, represents a significant improvement over the 

mk11 purification (compare lanes 1 and 2 on Figure 4.24, panel B) likely owing to the utilization of 

more aggressive washing and step elutions. 

After this step, the sample was divided and 70 µl was used for cleavage testing while 30 µl was 

used to determine elution volume of un-cleaved mk13 from a Superdex S200 column.  

4.6.1 Cleavage using 3C rhinovirus protease 

Cleavage in non-reducing conditions 

On non-reducing gels, both native and denaturing, mk13 runs as three distinct bands, likely 

representing a monomer, a dimer and a higher oligomeric form, and the two high molecular weight 

forms are only clearly resolved by low percentage gels. mk13 also contains a 3C rhinovirus protease 

cleavage site between two differently truncated IR sequences. mk13 cleavage was tested in non-

reducing conditions (25 mM Tris pH 8.0, 200 mM NaCl buffer) to determine whether a) the site was 

undergoing cleavage and b) the cleavage affected the oligomerization state (Figure 4.23). 

 
Figure 4.23| Cleavage of mk13 3C protease site under non-reducing conditions 

mk13 purified by nickel affinity and anion exchange was visualized by SDS-PAGE under reducing (R) and non-reducing (NR) 
conditions. Same protein sample incubated for 24h was also applied to the gel under reducing and non -reducing conditions. The 
samples were run on a 5% acrylamide gel (left panel), transferred to a PVDF membrane and developed using the 83-7 anti-CR 

monoclonal antibody (middle panel), and then the same blot was washed and developed using the monoclonal anti -His HRP 
conjugate antibody (right panel). M – PageRuler Prestained Protein Ladder, -3C/+3C – mk13 incubated for 24h in a non-reducing 
buffer with and without 3C protease, 1242 – expression media containing IM1242 for size reference. 

 

Incubation of mk13 sample with 3C protease does not lead to any significant cleavage under non-

reducing conditions. As the 3C protease is a cysteine protease, it is possible that its thiol group is 

becoming oxidized in the non-reducing environment, inhibiting the cleavage process. Another 

possibility is that the cleavage site is occluded in the oligomeric states seen in non-reducing buffer 
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conditions. There is also a clear signal from the anti-His antibody, suggesting that the C-terminus is 

intact and previous attempts to optimize this antibody for His-tagged constructs (e.g. Figure 4.12) 

failed due to low concentrations of target protein in cultured media and initial purification steps. 

Cleavage in the presence of a reducing agent 

Cleavage was further investigated in the same buffer with an addition of a gradient of DTT 

concentrations (Figure 4.24). Two high molecular weight oligomers present in mk13 sample in non-

reducing buffer persist in 0.05 mM DTT, even though they are mostly disrupted and majority of the 

sample is cleaved in this buffer. 0.1 mM DTT is enough to facilitate near-complete cleavage as well as 

complete disruption of oligomeric species presumably mediated by disulphide bond between FnIII-1 

cysteines (Figure 4.24, lane 5 in both panels).  

 
Figure 4.24| mk13 3C protease cleavage in a range of DDT concentrations 
IMAC and anion exchange purified mk13 sample was subjected to overnight cleavage with 3C protease. The samples were  treated 
with non-reducing (panel A) or reducing (panel B) sample buffer and analysed on 7.5% SDS-PAGE to determine oligomeric state 
in cleavage buffer (non-reducing gel) and cleavage completeness (reducing gel).  M – PageRuler prestained protein ladder, lane 1 

– sample of mk11 purification (IMAC+IEC, section 4.4), lanes 2-9: samples of mk13 incubated overnight with or without 3C 
protease in a range of DTT concentrations (0.05, 0.1, 0.5 and 1 mM). Three arrows mark likely mk13 bands: un-cleaved 
monomer (i), cleaved N-terminal portion (ii) and cleaved C-terminal portion (iii). Band iv represents MBP-3C fusion protein (69 

kDa).  

Gel filtration in cleavage buffer 

The leftover protein sample (30 µl) was applied to a Superdex S200 10/300 GL column in 0.1 mM 

DTT, 25mM Tris pH 8.0, 200 mM NaCl buffer. In this buffer mk13 eluted in a single peak at 11 ml, 

similarly to mk11 dimers in non-reducing buffer (Figure 4.25). 
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Figure 4.25| Elution profile of mk13 from a Superdex 200 10/300 GL column 
After IMAC and anion exchange purifications, 30 µl of mk13 sample was applied to a Superdex 200 10/300 GL gel filtration column. 

0.5 ml fractions were collected (peak fractions marked by purple points). Fractions B8-C1 corresponding to the peak were 
concentrated and analysed on SDS-PAGE (see below).  

Fractions B8-C1 corresponding to the peak from gel filtration were pooled and concentrated back 

to 30 µl in a Vivaspin™ 500 30 kDa cut-off centrifugal filter unit. Protein concentration was measured 

by absorbance at 280 nm to be 0.14 mg/ml (for a total of 4.3 µg) using mk13 calculated extinction 

coefficient. 

The concentrated sample was divided into three 10 µl fractions: the first one was mixed with 

5×SDS-PAGE sample buffer (non-reducing) and incubated overnight at 4 °C. The second fraction was 

incubated overnight with 3C protease at 1:10 (w/w) ratio at 4 °C and treated with 5× sample buffer 

(non-reducing). The third fraction was treated with 3C protease the same as second fraction, and 

subsequently buffer-exchanged by diluting to 500 µl in a 25 mM Tris pH 8.0, 200 mM NaCl buffer, 

concentrating to 10 µl and repeating the process for a total of five times before mixing with non-

reducing sample buffer. All three fractions were applied to a 7.5% SDS-PAGE (Figure 4.26). 

The untreated sample appears to be highly pure mk13, but surprisingly, contains all three 

oligomeric species despite eluting in a single peak from the gel filtration column. As DTT is highly 

unstable [116], it is possible that the eluted protein was primarily monomeric but during the course 

of gel filtration and 3C treatment of the rest of the sample (2 days in total), the thiol groups underwent 

re-oxidation. It is also possible that in 0.1 mM DTT the mk13 monomer is unfolded and elutes with 

higher oligomers.  3C-treated sample contains a trace of the higher oligomer and similar amounts of 

monomer and two cleavage products. This could represent incomplete cleavage, or cleavage products 

forming a bond between their Cys524 residues and both of these events would be consistent with 
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DTT degradation in buffer. This was not explored due to insufficient amount of sample at that time 

point. The third fraction (3C-treated and buffer-exchanged) did not appear on the gel presumably due 

to losses in the buffer exchange process. 

 
Figure 4.26| mk13 size exclusion in 0.1 mM DTT followed by 3C treatment and buffer exchange 
Elution fractions B8-C1 from size exclusion chromatography (Figure 4.25) were pooled, concentrated and divided into three 
fractions. Fraction 1 was applied to gel as-is (lane 1), fraction 2 was treated overnight with 3C protease (lane 2) and fraction 3 had 

DTT removed by a series of dilution and concentration procedures (lane 3) . M – PageRuler prestained protein ladder. 
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5 DISCUSSION 

The creation of a library of novel heterodimeric insulin receptor constructs forms the core of this 

work. If successfully crystallized, these constructs could provide insights into the missing structure 

of site 1 – site 2’ crosslinks [71] as well as the ongoing debate about models of signal transduction in 

the IR and related receptors [98–100]. Guidelines for detection and expression have also been 

established and levels of proteins produced in transiently transfected cells approach those of  

established stable cell lines (section 4.3.2). However, obtaining amounts of pure protein sufficient for 

crystallographic studies has not been accomplished and represents a bottleneck to overcome in 

future studies of these constructs.  

Two constructs, mk11 and mk13, have been produced on preparative scales in HEK293T cells. A 

purification procedure utilizing immobilized metal affinity chromatography followed by anion 

exchange chromatography and gel filtration has been optimized to yield pure, albeit not 

homogeneous, samples of mk13 (see Figure 4.26). As StrepII-tagged constructs have also been made, 

a change to streptavidin-based affinity chromatography as the initial purification step presents an 

opportunity to improve the process that has not been explored. 

Three major questions were raised in the course of analysing protein samples obtained during this 

work: what is their pre-cleavage oligomeric state of the single-chain constructs, can they be cleaved, 

and can a heterodimer consisting of two halves of the cleaved polypeptide be reformed? 

Surprisingly, seemingly small modifications in the linker between two fusion partners greatly 

affect the potential for oligomerisation of the pre-cleavage chain. Compared to IM1242, a construct 

with a 25 amino acid Gly-Ser linker which exists as a mixture of dimeric and monomeric protein, mk11 

exists solely as a dimer and mk13 as a monomer, a dimer, and an unspecified higher oligomeric form. 

In the course of investigating mk13 cleavage conditions, it was established that a relatively small 

amount of reducing agent (0.1 mM DTT) can disrupt the oligomeric species. It is unclear if other 

disulphide bonds necessary for proper folding and activity of these constructs are preserved, but it 

would not be surprising as (αβ) hemireceptors have been reported to bind insulin in the presence of 

1 mM DTT [40].  

The construct containing a furin site in the linker sequence, mk11, is not cleaved in vivo. A series 

of constructs with an extended furin site incorporating additional amino acids flanking the RKRR 

motif in full-length IR have been made. One of those constructs has been expressed in a small-scale 

screen, and it behaviour is intriguingly different than that of mk11 in Western Blot experiments (see 

Figure 4.9), but its precise state has not been determined. 
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A construct with a 3C protease site in the linker sequence, mk13, is cleavable in mildly reducing 

conditions (at least 0.1 mM DTT) which also disrupts the oligomers formed by this protein. This 

shows that the approach to producing IR fragments as a single polypeptide chain to simplify 

purification and stoichiometry (compared to co-transfection or polycistronic vectors) is a viable one. 

It is currently unclear whether cleavage products would form the desired heterodimer after removal 

of the reducing agent; this question represents the most immediate point of further inquiry.  

Alternatively, the 3C site could be replaced with a different recognition site, for example thrombin. As 

a serine protease thrombin does not require reducing conditions to work, although the recognition 

site might still be rendered inaccessible by oligomer formation. 

As the construct design implies only one binding site comprising of both sub-sites (Figure 2.1), 

unlike any other with a solved structure so far (see Table 1.1), further attempts to reconstitute and 

characterize it are a worthwhile pursuit. 
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