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Abstract

This thesis is an investigation of the changes in the magnetic field as measured at

the surface of the Earth on the time-scale of months to decades. In particular the

phenomena of geomagnetic "impulses" or "jerks" are investigated. Vigorous discussion

has surrounded these phenomena since they were first suggested to have been of global

scale, of short duration and originating within the core (Courtillot et a/, 1978), primarily

because of their implications for lower mantle conductivity. A major point of discussion

has been whether they were of internal or external origin, and to what extent external

fields determine their apparent time-scale.

A large quantity of monthly means of the geomagnetic field is analysed here to

investigate the contribution from external and induced fields. A model of the disturbance

fields on the time-scale of months and years is derived. Using the oa geomagnetic index

to represent the temporal dependence, the spatial morphology is found to be primarily

dipolar aligned with the Earth's main dipole. This model allows a better representation

of the core field to be obtained. Seasonal fluctuations in the field are also quantified.

The results are found to be consistent with an insulating mantle down to about 600fcm

and a conductivity of about 0.15m-1 to 15m"1 below that.

A new method is developed to analyse the time-dependence of the improved repre

sentation of the core-field and is applied to a large set of geomagnetic annual means.

This method determines the periods of time for which the field, as measured at different

locations, can be represented by a quadratic time-dependence. Such a representation is

found to be valid typically for 10 years at a time and valid for 93% of the data. Dates at

which the changes from one quadratic time-dependence to another occur are found, to a

certain extent, to be globally synchronous. Particular dates when this occurs are found

to be 1970, 1978 and 1983, the latter events being similar in character to the 1970 jerk,

and are thought to arise from impulses in the third time-derivative of the core field.

Spherical harmonic models ofthe main field with a quadratic time-dependence are

thenderived for epochs 1965.5,1974.5, 1981.5 and 1986.5 using the technique ofstochas

tic inversion. These models are then used to map the changes in secular acceleration

associated with the 1970, 1978 and 1983 jerks. The global extent of the 1978 and 1983

jerks have not previously been investigated. The 1983 jerk is found to be much weaker
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than the others and the 1978 jerk appears anti-correlated with the 1970 jerk.

The role of electromagnetic coupling between the core and mantle is considered in

the presence of a thin conducting layer at the base of the mantle. Time-dependent

torques are computed for the period 1900 to 1980 and found to correlate closely with

the torque required to explain the decade fluctuations in the length of day. If electro

magnetic coupling is solely responsible for the decade fluctuations then this implies the

conductance of the layer must be ~ 7 x 1085. Various other pieces of evidence relating

to lower mantle conductivity are also discussed.



IV

Contents

1 Introduction 1

1.1 The Earth's magnetic field 1

1.1.1 The origin of the geomagnetic field 1

1.1.2 The mantle and the geomagnetic field 3

1.1.3 Observing the geomagnetic field 3

1.2 Geomagnetic jerks 5

1.2.1 At what dates have jerks occurred? 7

1.2.2 The internal nature of jerks 8

1.2.3 The characteristic time-scale of jerks 8

1.2.4 Related topics 9

1.3 Outline of this thesis 9

2 Solar related phenomena of the geomagnetic field 12

2.1 Introduction 12

2.2 Data selection and validation 15

2.3 Method: a time-series model 18

2.3.1 Accounting for the core field and its variation 18

2.3.2 Seasonal effects 19

2.3.3 Disturbance fields 20

2.3.4 Form of the model 22

2.3.5 Parameter estimation and errors 23

2.4 Results 26

2.4.1 Disturbance field results 26



2.4.2 Annual and biannual variations 26

2.5 Discussion 30

2.5.1 The disturbance fields 30

2.5.2 Annual and biannual variations 33

2.6 The core field revealed 35

2.7 Conclusions 38

3 Spatial analysis of the external and induced fields 40

3.1 Introduction 40

3.2 Spherical harmonic analysis 40

3.3 Results 42

3.3.1 Average disturbance field model 42

3.3.2 The annual and biannual variations 49

3.4 Discussion 49

3.4.1 Disturbance phenomena 49

3.4.2 Annual and biannual variations 53

3.5 Response of the upper Earth to the external fields 54

3.5.1 Empirical response estimates 54

3.5.2 Theoretical hmitations — an example from magnetotellurics. ... 58

3.6 Conclusions 60

4 A new method for secular variation analysis 62

4.1 Introduction 62

4.2 Optimal piecewise regression algorithm 64

4.2.1 Formulation 66

4.2.2 Segment confidence regions 67

4.2.3 Piecewise regression algorithm 68

4.2.4 Information criteria and optimisation 69

4.3 Application to synthetic data , 71

4.4 Geomagnetic data analysis 72

4.4.1 Selection and validation of data 72

4.4.2 Correction for the effects of external fields 74



VI

4.4.3 Prior values for the standard deviation 75

4.4.4 Results 79

4.4.5 Analysis of residuals 86

4.5 Summary and Conclusions 89

5 Geomagnetic jerks of 1970, 1978 and 1983 91

5.1 Introduction 91

5.2 Global, simultaneous geomagnetic jerks 91

5.3 Models of the main field, secular variation and secular acceleration .... 98

5.3.1 Stochastic inversion 99

5.3.2 Data 100

5.3.3 Structure of the data covariance matrix 103

5.3.4 Parameter covariance matrix: model norms 105

5.3.5 Results 106

5.3.6 A note on computational efficiency and accuracy 114

5.4 Models of the geomagnetic jerks of 1969, 1978 and 1983 117

5.5 Discussion 118

5.6 Conclusions 124

6 Geomagnetism and the rotation of the Earth 126

6.1 Introduction 126

6.2 Electromagnetic core-mantle coupling 127

6.2.1 A thin conducting layer at the base of the mantle 129

6.2.2 Formulation of the torque integral 131

6.2.3 Field and flow at the core-mantle boundary 135

6.3 Results 136

6.4 Discussion 136

6.4.1 Astronomical observations of Earth rotation 136

6.4.2 The case for electromagnetic coupling 138

6.4.3 Alternative coupling mechanisms 141

6.4.4 Angular momentum budget 143

6.5 Conclusions 145



Vll

7 The electrical conductivity of the lower mantle 146

7.1 Introduction 146

7.2 Electromagnetic core-mantle coupling 149

7.3 Locating the core-mantle boundary geomagnetically 152

7.4 Geomagnetic impulses and mantle conductivity 155

7.4.1 Geomagnetic jerks: the core impulse hypothesis 156

7.4.2 Impulse constants from the 1970, 1978 and 1983 jerks 158

7.5 Propagation times 161

7.6 Conclusions 162

8 Concluding remarks 165

8.1 Summary 165

8.2 Conclusions and future work 167

8.2.1 External and induced fields 167

8.2.2 The time-dependent magnetic field and core flows 168

8.2.3 Mantle conductivity 170

8.2.4 Endpiece 171

References 173

A Summary of data used in field models 187



Vlll

List of Tables

2.1 List of 59 observatories analysed in Chapter 2 17
2.2 Statistics demonstrating stationarity of model parameters 26
2.3 Relative amplitudes of disturbance 27
2.4 Amplitudes and phases of the annual variation 28
2.5 Amplitudes and phases of the biannual variation 29
2.6 Relative amplitudes of disturbance for UK, Japan and N. America .... 32

3.1 Power spectra and misfit, degree 3 disturbance model, geomagnetic refer
ence frame, no damping 44

3.2 Power spectra and misfit, AVDF91 model 44
3.3 Power spectra and misfit, degree 4 disturbance model, geographic refer

ence frame, no damping 44
3.4 Power spectra and misfit, degree 4 model, geographic reference frame,

with damping 44
3.5 Spherical harmonic coefficients of model AVDF91 48
3.6 Power spectra of the amplitudes of the annual and biannual variations. . . 50
3.7 Estimated response to the annual and biannual variations 57

4.1 Details of the 89 single site observatories of Chapter 4 76
4.2 Details of the 30 composite observatories of Chapter 4 78
4.3 OPRA prior values of standard deviations compared to r.m.s. residuals. . 85

5.1 Statistics of the stable secular acceleration models 113
5.2 Comparison of mean residuals to different time-dependent models . . . .116
5.3 Uncertainty estimates for the models of the 1970 jerk 117
5.4 Power spectra of jerk models 123

6.1 Comparison of electromagnetic and LOD torques 141

7.1 Summary of conductivity distributions considered in Chapter 7 147
7.2 Distribution of conductance for 7 published conductivity models 151
7.3 Mean impulse constants for the 1970 jerk from Backus et al (1987) 159
7.4 Estimated impulse constants from the 1970, 1978 and 1983 jerks 160
7.5 Delay and smoothing times for 10 published conductivity models 163

A.l Summary of data contributing to constant secular acceleration models. . . 187



IX

List of Figures

1.1 Mantle conductivity profiles, from Ducruix et al (1980) 4

2.1 Example of the annual variation 19
2.2 Sunspot numbers compared to aa index 22
2.3 Sliding window method used to analyse monthly means 24
2.4 Example assessment of the stationarity of a model parameter 25
2.5 Relative amplitudes of disturbance for X, Y and Z 31
2.6 Amplitudes and phases of the annual variation, X component 34
2.7 Amplitudes and phases of the biannual variation, X component 34
2.8 Monthly means with and without external effects 35
2.9 First differenced monthly means with and without external effects .... 36
2.10 First differenced annual means with and without disturbance effects ... 37

3.1 Distribution of the 59 observatories used in Chapters 2 and 3 43
3.2 Relative ampUtudes of disturbance from model AVDF91 for X> Y and Z . 46
3.3 Confidence intervals for relative amphtudes of disturbance from AVDF91

for X, Y and Z 47
3.4 Trade-off curves for annual and biannual models 50
3.5 Amplitude of the annual variation for X, Y and Z 51
3.6 Amplitude of the biannual variation for X, Y and Z 52
3.7 Response of uniform sphere models to Pf for typical storm frequencies . . 56
3.8 Response of uniform sphere model to P| for the annual variation 58

4.1 Secular change in the Y component at Eskdalemuir, Scotland 63
4.2 Synthetic time-series without noise 71
4.3 Application of the OPRA to synthetic data with Gaussian noise 73
4.4 Example plot of number of segments from OPRA, prior to partitioning . . 80
4.5 OPRA analysis for X at Apia, Bangui and Godhavn 81
4.6 OPRA analysis for Y at Alibag, Argentine Islands and Lerwick 82
4.7 OPRA analysis Z at Fredericksburg, Kerguelen Island and Yakutsk .... 83
4.8 Distribution of normalised residuals to OPRA models 87
4.9 Distribution of unnormalised residuals to OPRA models 88

5.1 RVIF plots, all observatories, 1900-1983 94
5.2 RVIF plots, European versus non-European 95
5.3 RVTF plots, the Americas and East Asia 96
5.4 RVIF plots, northern and southern hemispheres 97



5.5 Normalisation factor used for RVIF plots 98
5.6 Examples of error estimates for secular variation and secular acceleration 103
5.7 Distribution of observatories used in analysis of jerk phenomena 104
5.8 Z component at the CMB for epochs 1965.5, 1974.5, 1986.5 108
5.9 Secular acceleration for epoch 1965.5 109
5.10 Secular acceleration for epoch 1974.5 110
5.11 Secular acceleration for epoch 1981.5 Ill
5.12 Trade-off curves for PR1970 model 113

5.13 Trade-off curves for all 6 models 114

5.14 Resolution curves for constant secular acceleration models 115

5.15 Mean residuals to PR1970 and BJ2 models 116

5.16 The 1970 jerk: change in secular acceleration 119
5.17 The 1978 jerk: change in secular acceleration 120
5.18 The 1983 jerk: change in secular acceleration 121
5.19 Confidence interval plots for the 1970 jerk 122

6.1 Mantle torque required to explain decade fluctuations in length of day . . 127
6.2 Time-dependent electromagnetic torque for period 1900-1980 137
6.3 Toroidal part of the geostrophic flows of Jackson Sz Bloxham (1990) for

epochs 1950, 1965, 1980 139
6.4 Time-dependent torque derived from zonal toroidal part of geostrophic

flows only 140
6.5 Time-dependent EM torque reproduced from Paulus & Stix (1989) .... 142
6.6 Observed and LOD inferred westward drift, from Vestine & Kahle (1968) 144

7.1 Distribution of conductance for 10 published conductivity models 150
7.2 Time-dependent unsigned flux integral at radii from 3400fcm to 4300&ra. 154
7.3 Mantle filter impulse response (from Backus (1983)) 157



GFA1

GFA2

GFA3

KBM

AVDF91

BJ1

BJ2

CMB

GDS

IAGA

IGRF

LI, L2
LOD

MF

ML

OPRA

PAIC

PCA

PRA

PR19xx, P019xx
r.m.s

RVIF

SA

SH

SHA

SI

SSAD

SV

VI

VIE

w.r.t

XI

List of Abbreviations

Gubbins (1983)
Gubbins (1984)
Gubbins & Bloxham (1985)
Kent, Briden & Mardia (1983)

Preferred average disturbance field model of Chapter 3
Time-dependent field model used in Chapter 6
Time-dependent field model of Bloxham & Jackson (1990)
Core-mantle boundary
Geomagnetic deep sounding
International Association of Geomagnetism and Aeronomy
International geomagnetic reference field
Thin layer models of Chapter 7.
Length of day
Main field

Maximum likelihood

Optimal piecewise regression algorithm
Partial Akaike information criterion

Principal components analysis
Piecewise regression algorithm
Stable secular acceleration models (referred to epoch 19xx)
Root mean square
Relative virtual impulse frequency
Secular acceleration

Spherical harmonic
Spherical harmonic analysis
Stochastic inversion

Stable secular acceleration date

Secular variation

Virtual impulse
Virtual impulse epoch
With respect to



Xll

Acknowledgements

Over the 3 years or so spent researching for and preparing this thesis I have been greatly

assisted by many. First and foremost I would like to say a special thank you to my

supervisor Kathy Whaler for initiating this project, being a great source of ideas and

encouragement, giving concrete support when difficulties arose and providing much con

structive criticism during the preparation of this thesis.

I would also like to thank Dave Gubbins who has shown an active interest in this

project since he came to Leeds and in particular with his help in verifying the compu

tation of the torque integrals in Chapter 6. Also at Leeds I would like to thank Keke

Zhang, Robert Davis and Ken Hutcheson for their encouragement and discussions on a

plethora of topics. A special thank you also to Nick Barber, geomagnetic graphics guru

at Leeds without whom the graphical content of this thesis wouldn't be half of what it

is and also to Stuart Borthwick, computer officer at Leeds, for his endless patience and

help. Thanks also to John Kent in the Department of Statistics at Leeds for several

useful discussions regarding the work for Chapter 4 and also for useful comments on a

late draft of that chapter.

Away from Leeds I would particularily like to thank Fritz Busse for his collaboration

in the work on the electromagnetic coupling problem, and for making me feel so welcome

during my stay in Bayreuth. I would also like to thank Wolfram Hirsching and his family

for being so friendly and hospitable during my stay in Germany. Thanks also to Johannes

Wicht for his help with some of the algebra for Chapter 6 and Wolfram Hirsching for

many lengthy and useful discussions.

Special thanks are due to Bob Parker for supervising me during my time at the

Institute of Geophysics and Planetary Physics at La Jolla, and for providing such an

interesting problem to work on while there. I am also indebted to him for providing his

"plotxy" program with which most of the diagrams in this thesis have been prepared.

I can't pass over the subject of La Jolla without saying a special thanks to my diving

buddies Maya, Jerry and Garnet (and family) who made my visit so memorable. I would

also like to thank George Backus for his interest in the project and useful discussions.

Around Britain I would like to thank Dave Barraclough and Dave Kerridge of the

British Geological survey in Edinburgh for providing data and useful information, as well



Xlll

as the latest aa index values hot off the press! I would also like to thank Andy Jackson,

now at Oxford, for kindly supplying his flow models and his and Jeremy Bloxham's

spline models and preprint, as well as many helpful discussions on all things spherical

and harmonic! I would also like to acknowledge the Natural Environment Research

Council for their financial support through grant GT4/88/GS/57.

On a more personal note, I wish to thank my parents not only for their love and

moral support in pursuing my studies but also for their financial assistance throughout

both my first and second degrees. A big thank you also to all my friends in Leeds

and elsewhere for keeping me sane and happy, in particular Dave for sharing so many

thought provoking pints of Guinness, but also to Pat, Jo, Charles, Ali, Salem, Roger,

Gif, Rob, Dick, Graeme, Ant, Gideon and anyone else I haven't mentioned but should

have. Finally, but most importantly, a special thank you to Helen for her support and

love and for picking up the pieces when it all just seemed to be too much!



XIV

Dedication

To my Parents.



Chapter 1

Introduction

1.1 The Earth's magnetic field

1.1.1 The origin of the geomagnetic field

William Gilbert (1600) hypothesised that the Earth behaves in a manner akin to a

large permanent magnet which was thefirst "modern" explanation for the north-seeking

behaviour of compasses. However in 1635 Gellibrand noted that the direction of the

magnetic field changed significantly over a period of decades. These changes amount

to a maximum of around 1% of the field per year which has a typical flux density

of magnitude 50000nr at the Earth's surface. It is now generally accepted that for

the most part this geomagnetic field originates within a liquid shell (the outer core),

consisting largely of liquid iron, lying (approximately) between a radius of 1217 ± lOfcm

and 3485 ± 2km (Melchior, 1986). This conclusion has largely been reached through

the elimination ofalternative hypotheses and the reader is referred to Parkinson (1983)

for a review of these. Beneath this liquid hes a solid inner core which will not be

of direct interest in the present work, and references to "the core" will relate to the

liquid outer core. In order to reconcile the geologically inferred age of the Earth with

the time it would take for the field to decay, were the liquid static, it is now widely

accepted that the magnetic field must undergo a self-regeneration process known as

dynamo action. Dynamo theory is the subject of intensive research today and many

fundamental questions remain unanswered; for example the strength of the magnetic



field within the core (since we can only observe part of the field at the Earth's surface),

the source of energy for the fluid flow and the magnetic diffusion timescale for the core.

For background on dynamo theory see for example Parkinson (1983), Jacobs (1987b),

Parker (1979) or Melchior (1986).

In addition to the core motions, a number of other phenomena contribute to the

observed field. The permanent magnetisation of the crust gives rise to a field with a

density of a few hundred nT and is a significant source of error in determining the core

field accurately. The interaction of the core field with plasma and ionised gas in the

Earth's near-space environment creates a time varying flow of electric currents external

to the solid Earth, with which are associated time varying magnetic fields ("external

fields") (see eg. Chapman & Bartels, 1940; Matsushita & Campbell, 1967; Jacobs, 1989,

1991). These originate in two main regions: the ionosphere, a region of diffuse and

partially ionised gas extending from altitudes of approximately 100km to 500km and

the magnetosphere, a volume of spacein which the Earth's main field is largely confined

due to the pressure of the solar wind. The time-dependence of these external fields also

gives rise to currents (and hence magnetic fields) induced in the crust and mantle, which

lies between the crust and core.

The study of the geomagnetic field plays a key role in our understanding of core

dynamics. The study of the changing magnetic field has, for example, yielded reliable

estimates of the pattern of flow at the top of the core (eg. Bloxham & Jackson 1991a;

Gire &LeMouel, 1990; Whaler &Clarke, 1988; Whaler, 1990; Voorhies, 1986). Although

the long period variations such as geomagnetic reversals and the steady decay of the

dipole field since Romantimes are of interest in themselves, it is the changes in the field

on timescales from 1 to 100 years, commonly known in geomagnetism as the secular

variation (SV), which are most relevant when analysing the historical data (as opposed to

archaeomagnetic and palaeomagnetic data) from this and earlier centuries (eg. Bloxham

&Jackson, 1989; Barraclough et al, 1978; Langel et al, 1986; Gubbins, 1984). Note that

the term secular variation is also commonly used to refer more specifically to the first

derivative of the field with respect to time. In recent years it has been recognised that

significant and global variations in the field on timescales of less than a year or twohave

occurred, these being known in the literature as geomagnetic "jerks" (Malin et al, 1983)



or "impulses" (Courtillot et al, 1978). These form a central theme of this thesis and will

be reviewed in §1.2.

1.1.2 The mantle and the geomagnetic field

As the atmosphere is effectively an insulator the magnetic field can be represented as the

gradient of a scalar potential at the Earth's surface (Kellog, 1953). If the field is to be

represented at the core surface, which is clearly desirable for investigating the physics of

the core, then the surface representation of the field must be downward continued. If the

crust and mantle can be considered to be electrical insulators then this is straightforward

and only the effect of our distance from the source, known as geometrical attenuation,

need be taken into account (eg. Jacobs, 1987b). As a first approximation this is reason

able and is widely used in geomagnetism. Although the effects of mantle conductivity

are probably relatively small for a static core field the effect is thought to be more signif

icant for the secular variation of the field and higher time derivatives (Benton & Whaler,

1983). The apparent lack of secular variation over the Pacific Ocean for example may

stand as evidence of this if the conductivity of the mantle under the Pacific is high. This

highlights a fundamental problem — the conductivity of the mantle is a very poorly

known function, even if assumed to be a function of radius alone, and hence the geo

magnetic field can be considered as the output from an unknown filter with an unknown

input. Figure 1.1 illustrates this situation. Reproduced from Ducruix et al (1980), this

shows estimated radial conductivity profiles from a number of authors and illustrates

how these estimates vary by up to 4 orders of magnitude below a depth of lOOOfcm. At

shallower depths there is in general greater agreement as a result of the applicability

of "top down" methods such as geomagnetic deep sounding and magnetotellurics (for

the crust and lithosphere). These methods have placed an approximate upper bound on

upper mantle conductivity of 15m"1 above 700fcm or so (see for example Parkinson k

Hutton, 1989).

1.1.3 Observing the geomagnetic field

The magnetic field at the Earth's surface is very weak and requires sensitive instrumen

tation to measure it accurately (see eg. Jacobs (1987a) for a review of instrumentation).



Due to the timescales of motions in the core, the determination of the core field and

its changes requires regular and consistent measurements to be made over extended pe

riods of time. To facilitate this, a number of permanent magnetic observatories have

been estabUshed and now number approximately 170. Unfortunately, however, about

75% of these lie in the northern hemisphere with a particular concentration in Europe

which causes difficulties when analysing the global field (see eg. Langel, 1987). In ad

dition to observatory data, measurements are obtained from repeat stations which are

reoccupied intermittently, land, marine and aeromagnetic surveys, as well as magnetic

500

Figure 1.1: Diagram from Ducruix et al (1980) showing conductivity pro
files from the works of McDonald (1957) (M57), Banks (1969) (B69), the
Cantwell-McDonald model (see Banks, 1972) (C-M), AUdredge (1977b)
(A77), and Stacey et al (1978) (S78). The upper horizontal scale gives the
depth in km while the lower scale gives the radius in units of Earth radii.
The vertical axis gives the conductivity in units of 5m-1.



measurements made on satellites. These latter data provide the best global coverage by

far. The satellite Magsat for example has allowed a significant improvement in map

ping of the core field and has led to over 400 related publications (Langel et al, 1991).

However, until such satellites become more regular or have a longer lifetime, observatory

data will continue to provide the most consistent measurements for the determination of

the time-dependence of the geomagnetic field. Temporal homogeneity of data is crucial

here and so only observatory data will be used. The magnetic field, being a vector (B)

requires 3 linearly independent measurements to determine it fully. The combination

most commonly measured in geomagnetism has been declination (D), horizontal inten

sity (H), inclination (J) and also total intensity (F). To ease further analysis these are

often converted to intensities in the directions of local north (X), east (Y) and vertically

down (Z) in a geodetic coordinate system. Modern proton precession magnetometers

allow these latter three components to be measured directly. Observations of the mag

netic field are of course subject to instrumental and observational error as well as being

susceptible to environmental noise (primarily man made), although in general geomag

netic observatories are located so as to minimise this. The problem is such that even

averages of the field over periods of months and years (monthly and annual means) can

be subject to errors of several nT. In this thesis these will be assumed to be random with

zero mean and a Gaussian (normal) distribution for the components X, Y and Z. The

discrepancy between the geodetic coordinate system (with respect to which X, Y and

Z are measured) and the geocentric coordinate system (in which the Earth is assumed

spherical) will be neglected throughout this thesis.

1.2 Geomagnetic jerks

Courtillot & LeMouel (1976a, b), in an investigation ofthe solarcycle related fluctuations

in the geomagnetic field, removed a trend consisting ofa polynomial (intime) from time-

series ofmonthly and annual geomagnetic means and found global coherence among the

residuals from different observatories. They attributed this coherent and systematic

fluctuation to an external magnetic field with a dipolar morphology together with the

induced field one would expect assuming simple induction models for the mantle. They



found, however, that some of their induction results were inconsistent and that there

was a loss of residual coherence in the late 1960s. Courtillot, Ducruix k LeMouel (1978)

extended this work and noted that this departure from the parabolic trend far exceeded

the typical amplitude of the external field fluctuations and the noise in the data within

the space of a year or two. They concluded that this represented a true feature of

the SV originating in the core. Noting its rapidity, internal origin and geographically

wide extent, they recognised that its observability at the Earth's surface had important

implications for the conductivity of the mantle. They suggested this departure could

be well approximated by a sudden change in the secular acceleration (SA) (second time

derivative of the geomagneticfield) and used the term "secular variation impulse" loosely

to describe the event. They also noted that similar events seem to have occurred around

1840 and 1910 and that such events seem to correlate with minima in the rotation rate

of the Earth.

The topic of "secular variation impulses" had been discussed in the geomagnetic

literaturepreviously by Weber k Roberts (1951) and Walker k O'Dea (1952) although

these only arose as an artifact of a data reduction exercise rather than as examples of

a physical phenomenon. However Runcorn (1955), McDonald (1957) and Cox k Doell

(1964) proposed that such impulses imply that the conductivity of the mantle must

thereforebe quite low. Alldredge (1975) pointedout that most of these impulses correlate

with the solar cycle and are therefore unlikely to be associated with the core field.

The phenomenon highlighted by Courtillot et al (1978) was much greater in amplitude

and different in character to these earlier "secular variation impulses" and led to a

significant amount of research. Malin et al (1983) later coined the term geomagnetic

"jerk" by analogy withits usage for the rate ofchange ofmechanical acceleration (Schot,

1978), and this termhas come to be used the most widely in the geomagnetic literature.

The terms jerk, geomagnetic jerk, impulse and geomagnetic impulse will be used (to a

certainextent) synonymously throughout this thesis to refer to such phenomena. Where

something more specific is intended this will be made clear. The investigation and

discussion of jerks falls into several main areas which will now be reviewed in detail.



1.2.1 At what dates have jerks occurred?

The late 1960s event has been identified as occurring at 1967 (Courtillot et al, 1978),

at 1969 (Golovkov et al (1989), McLeod (1989a,b), Courtillot k LeMouel (1984)) and

1970 (Kerridge k Barraclough (1985)). Gubbins k Tomlinson (1986) and Whaler (1987)

found a later emergence time (1971/72) in the Australian region. These disparities in

emergence time may, to a certain extent, be due to the poor temporal resolution arising

from the filtering techniques found to be necessary when dealing with monthly means

(Courtillot k LeMouel (1976a), Gubbins k Tomlinson (1986), Gavoret et al (1986)) and

the use of annual means, particularily when these are pretreated by filters (eg. Malin

et al (1983), Whaler (1987), Golovkov et al (1989)). However theoretical considerations

(Backus, 1983) suggest that impulsive fields of differing spatial length scale will be

propagated through a conducting mantle at different rates which could lead to variations

in the emergence times at different locations for a jerk. The investigation described here

has concentrated primarily on the latter part of this century.

Several authors (Gavoret et al, 1986; Gubbins k Tomlinson, 1986; Langel et al, 1986;

McLeod, 1989a) have suggested that another jerk may haveoccurredaround 1978, while

it has recently been reported that there were sudden changes in secular variation in

1983/84 in Southern Africa (Kotze et al, 1991) and SouthGeorgia (Dowson et al, 1988).

The reality and global extent of these latter events has not previously been investigated

and will be examined in this thesis. Note that although Nevanlinna k Sucksdorff (1981)

have reported a "secular variation impulse" in 1978, they found this to be an impulse

in the first time derivative and of external origin and it is wholly different in character

to the jerks under discussion here. Jerks occurring earlier this century have also been

reported; the dates 1840 and 1910 were originally highlighted by Courtillot et al (1978),

while Courtillot k LeMouel (1984) suggest that a jerk occurred in 1913. McLeod (1989b)

found 1925 and 1940 to be dates of prominent jerks while Golovkov et al (1989) found

1937, 1947 and 1958 as heralding significant jerks. Kerridge k Barraclough (1985)

found an apparent jerk in 1949 which they showed to be an artifact arising from the

poor distribution of geomagnetic observatories and found only one significant jerk (at

1970) in the period 1931 to 1971.



1.2.2 The internal nature of jerks

Malin k Hodder (1982) demonstrated using spherical harmonic analysis (SHA) that the

mean squared value of the jerk field (change in SA) at 1970 was primarily of internal

origin while McLeod (1989a, b) has also shown that the 1969 jerk was of internal origin

and worldwide in extent. Gubbins k Tomlinson (1986) systematically removed changes

in the field of external origin and still found jerks apparent in the resulting time-series,

assumed to be of purely internal origin. Gavoret et al (1986) also carried out a careful

analysis of monthly means and were able to establish the internal nature of several jerks.

Whaler (1987) noted that quantitative analysis of the 1969/70 jerk is hampered by rapid

changes in the field, possibly of external origin, while Backus k Hough (1985) found the

effect of sunspot related field variations to be critical in characterising the 1970 jerk.

Alldredge (1984) challenged the findings of Malin k Hodder (1982) and claimed that

SHA does not demonstrate conclusively the internal originof the 1970 jerk, although he

makes the same error of using Lowes' (1966) formula for the mean square value of the

internal field for quantifying the external field as do Malin k Hodder (1982). This error

works in favour of the argument of Malin k Hodder (1982) and against that of Alldredge

(1984).

1.2.3 The characteristic time-scale of jerks

Perhaps the most remarkable and controversial aspect of jerks is the apparent rapidity

with which they become manifest at the Earth's surface. The recognition of changes

in the core field on the time-scale of a year or so contradicts some previous estimates

of mantle conductivity which in general imply that variations of the core field on the

time-scale of less than about 4 years or so are severely attenuated by transition through

the mantle (eg. Currie, 1967, 1968; Alldredge, 1977b). Alldredge (1975) had earlier

rightly pointed out that most impulses (of the Walker k O'Dea (1952) kind) were most

likely due to external sources but Alldredge (1984) vociferously argued that, although

(perhaps) ofinternal origin, the 1970 "impulse" was in fact a pseudo-periodic variation

with its apparent rapidity arising from mixing with more rapid variations of external

origin. However Alldredge's argument only works if the SV after the jerk is the negative



of the SV before the jerk, thus forming a "V" or inverted "V" shape when plotted.

Nevertheless, Gubbins k TomHnson (1986) asserted that within the resolving power of

their data (6-18 months) the 1970/1971 jerk was "instantaneous" while even the heavily

filtered data of Gavoret et al (1986) shows the duration of the emergence of the 1969

event to take no more than 2 years. Both these studies took careful account of the effects

of external fields.

1.2.4 Related topics

Two other important issues that have arisen in relation to jerks are their relationship to

changes in the length of day and their implications for mantle conductivity. Correlations

between Earth rotation and geomagnetic parameters show wide disagreement, even to

the extent of whether geomagnetic variations lead (LeMouel et al, 1981; Gire k LeMouel,

1986) those of Earth rotation, lag behind (Backus, 1983) or even both (Morner, 1989)!

Correlations that have been suggested in relation to jerks include a direct correlation

betweenjerks of 1840,1910and 1970 and minimain the Earth's rotation rate (Courtillot

et al, 1978) or a common link between the 1969 event and the 1956 "elbow" in Morrison's

(1979) length of day data (Backus, 1983). This question is tied to the issues of core-

mantle coupling and the time taken for the geomagnetic field to propagate from the

core-mantle boundary to the Earth's surface and will be addressed in more detail in

Chapters 6 and 7. The issue of mantle conductivity gained new stimulus with the

recognition of the internal nature and short characteristic time-scale of the 1970 jerk

and this topic will be discussed in Chapter 7 also.

1.3 Outline of this thesis

The aim of this thesis is to investigate the spatial and temporal nature of jerk phenom

ena, as observed at the Earth's surface, and to consider their implications under the

hypothesis that they are the result of a third order impulse in the geomagnetic field at

the core-mantle boundary.

The question ofthe internalor external origin ofgeomagnetic jerks is tackled by first

investigating (in Chapter 2) to what extent phenomena external to the Earth contribute
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to the observed magnetic field. Toachieve this time-series ofobservatory monthly means

are analysed. It is shown how geomagnetic data can be adjusted for the major effect

of such external fields and the associated induced field, thus removing "signal" which

is often treated as merely a source of random error in analyses of the core field. In

Chapter 3 the global morphology of these external field variations is investigated and

their implications for the conductivity of the mantle discussed. This results in a model

which permits time-averaged data from any site to be adjusted for the effects of external

fields. A more accurate representation of the time-dependent core field can therefore be

produced.

One of the observations which has led workers to speculate that jerk phenomena

consist of third order impulses in the core-field is the apparent simplicity of the typical

time-signature of SV at many observatories. The SV appears to change linearly for

many years, undergo a sudden change and then continue linearly for several more years.

This corresponds to a quadratic time-dependence for the main field. One of the main

criticisms levelled against such investigations has been the imposition of the date at

which such transitions occur. In Chapter 4 the question of how well the main field can

be represented bya quadratic time-dependence is addressed. Anew method is developed

which reveals objectively the periodsof time for which such a representation is valid and

is applied to an extensive data set of observatory annual means.

The results of this analysis are then discussed in the contextof geomagnetic jerks in

Chapter 5. It is shown that the dates at which the magnetic field at different locations

changes from one quadratic time-dependence to another are, to a large extent, globally

synchronous. Therefore at certain epochs between such dates it seems reasonable to

consider the geomagnetic field to be in a period of stable secular acceleration. For these

epochs, the analysis of Chapter 4 provides estimates of the quadratic time-dependence

of each component of the field at a number of observatories. These are used in Chap

ter 5 to derive time-dependent models of the geomagnetic field for these epochs, by the

application of the method of stochastic inversion (see eg. Bloxham et al, 1989). This

yields reliable models of geomagnetic jerks at 1970, 1978 and 1983 which are discussed

and compared. These dates will be quoted consistently throughout the thesis for brevity

but are not meant to imply exact knowledge of the dates jerks occurred.
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Chapter 6 examines the viability of electromagnetic coupling as a mechanism for the

transfer of angular momentum between the core and the mantle and considers correla

tions between geomagnetic parameters and the length of day. A model for the conduc

tivity of the mantle consisting of a thin layer of finite conductivity at the base of the

mantle is assumed and the magnitude of conductance required to explain changes in the

length of day is assessed. Some aspects of geomagnetic observations and geomagnetic

jerks in particular, and their implications for the conductivity of the mantle are discussed

in Chapter 7. Results are summarised, conclusions are drawn and possibilities for future

work highlighted in Chapter 8.
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Chapter 2

Solar related phenomena of the

geomagnetic field

2.1 Introduction

The Sun is known to emit a continuous stream of charged particles known as the solar

wind, which is subject to sporadic intensification as a result of solar activity. It is the

interaction of the solar wind with the Earth's core field that gives rise to the transient

and irregular fluctuations in the geomagnetic field observed at the Earth's surface known

as disturbance phenomena (eg. Chapman & Bartels, 1940). The timescale of these

phenomena is primarily of the order of seconds to hours. Although disturbances are

always present to some extent, more systematic disturbance to the field occurs during

geomagnetic storms which are the result of bouts of particularly intense solar activity.

Such storms typically last a few days. The fluctuation of these external fields induces

currents in the Earth, with which are associated time-varying induced fields (Banks,

1969; Parkinson & Hutton, 1989). As mentioned in Chapter 1, the assumption that

monthly and annual geomagnetic means are free from such solar related effects is overly

optimistic. In particular, as the disturbance phenomena are aperiodic, simple time-

averaging of the field is unlikely to eliminate the effects of disturbance phenomena. If an

investigation of the core field and its secular variation (SV) is intended, then an accurate

separation of the external and induced fields from the core field is essential. There exist
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two fundamental obstacles to this task. Firstly, although it is possible, in theory at

least, to use the classical method of spherical harmonic analysis (SHA) to effect an

internal/external spatial separation of the field, this method fails to distinguish between

the core field and the induced fields, which requires some further criterion. Secondly,

the application of techniques such as high or low pass filtering is only appropriate where

the different phenomena are distinct in the frequency domain. Until relatively recently

it was thought that for the geomagnetic field such a distinction could be made, with

the existence of a cutoff period of approximately 4 years (Currie, 1967), below which

rapid core variations are unable to penetrate the full thickness of the mantle, due to its

electrical screening properties. The recognition of the rapid SV apparently originating

within the core (Courtillot, Ducruix & LeMouel, 1978, Malin, Hodder & Barraclough,

1983, Gavoret et al 1986) has led to the idea that the timescale of the observed core field

extends to periods shorter than this cutoff. The long period modulation of solar activity,

together with seasonal effects, leads to the modulation of the external and (therefore)

the induced fields on time scales of up to a decade or so. For example, Courtillot &

LeMouel (1976a) found spectral peaks at 11, 5.5 and 3.7 years period associated with

the solar cycle and its harmonics. It is clear, then, that there is a significant overlap of

the timescales of the core field on the one hand and the external and induced fields on

the other. This has led to controversy and discussion in the literature as to the internal

or external nature of geomagnetic jerks (Alldredge, 1984).

Attempting to identify the external field variations, Alldredge, Stearns & Sugiura

(1979) performed SHA on observatory annual means. They found the external dipole

strength to vary (qualitatively) with the sunspot number and various geomagnetic ac

tivity indices (Mayaud, 1980). They were, however, unable to distinguish the induced

potential because of the large internal contribution from the core. In a more thorough

and extensive study, Yukutake & Cain (1979) also performed SHA. The variation of the

external dipole strength was found to correlate (quantitatively) with geomagnetic indices

on the timescale of several years, but comparison with the sunspot number time-series

revealed only a qualitative, partial correlation. They then attempted to separate the

long period induced component associated with the solar cycle by performing Fourier

analyses of their time-series of 1st degree internal zonal harmonics (see eg. Langel,
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1987). However this presumes the frequency distinction between internal and external

phenomena discussed earlier and also that the solar cycle is an exactly periodic phe

nomenon which is in fact not the case as Harwood & Malin (1977) point out. SHA is

affected by the additional problem that by its nature it can only distinguish the inter

nal and external parts of a global model of the field which relies on good global data

coverage, as well as the choice of truncation level, for its accuracy (Langel, 1987). It

cannot be applied to time-series of geomagnetic data recorded at single locations such as

magnetic observatories. Harwood & Malin (1977) detrended time-series of observatory

annual means with low degree polynomials of time and numerical filters and modelled

what was left as a function of sunspot number and its derivatives. Having done this

for 81 observatories they performed SHA yielding estimates of the external (inducing)

and internal (induced) 1st degree zonal harmonics. Filtering and detrending in this way

(see also Alldredge, 1976), however, may unwittingly remove some variation of the ex

ternal field or alternatively fail to remove some rapid variations of the core field thus

compromising any determination of the induced field.

This chapter quantifies the extent to which the geomagnetic field, on the time scale

of months and years, is affected by the solar related phenomena, including the induced

fields, and attempts to find a practical way of removing these effects. This is achieved

through the analysis of geomagnetic monthly means from a number of observatories.

The method adopted has had to be somewhat unconventional due to the perceived

shortcomings of more traditional methods as described above. The alternative strategy

which is adopted here is to make prior assumptions about the time dependence of the

external and induced fields (described in section 2.3) and to modelseries of geomagnetic

monthly means in the time domain. The estimated external and induced fields may then

be subtracted from the observed field and what is left considered as a "best" estimate of

the time-varying core field. Much of the work reported in this chapter is also reported

by Stewart & Whaler (1992).
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2.2 Data selection and validation

The source of data for this study was the National Geophysical Data Centre (1987)

NGDC01 optical disc data base. This includes a file of monthly means based on all day

measurements from more than 197 observatories worldwide. However, for the purposes

of this study an important criterion in data selection was the length and continuity of

time series with northward (X), eastward (Y) and downward (Z) components either

available or recoverable (for example from declination (£>), horizontal intensity (H) and

Z). An arbitrary length criterion applied was to retain those observatories for which

time series of 12 years or more were available, such that for each component at least

90% of the data were present. This initial selection process yielded 46 observatories

with a total of 1565 observatory years of monthly means. The lengths of individual

time-series are given in Table 2.1. The shortest of these is 12 years (Tbilisi, Republic of

Georgia) and the longest 84 years (Sitka, USA). Clearly, more digitised monthly means

may be available and certainly more monthly means are available in observatory year

books, but a full compilation of such data would be a major task in itself. In the case of

Bangui, however, data for 1972/1 to 1978/12 and 1980/7 to 1981/12 were added from a

published compilation (Godivier, 1982). These digitised monthly means of X, Y and Z

have been submitted to the World Data Centre WDDC-Cl (Edinburgh).

After this initial selection process, time series were subjected to a careful validation

procedure. Firstly all time-series were automatically checked for extreme outliers, by

finding any data lying more than 6a from a locally fitted quadratic of time where a is

the r.m.s. residual to such a parabola. In addition, time-series were visually inspected

for any outlying data clearly resulting from transcription or keying errors (for example

when a minus sign had obviously been omitted). Such data were rejected if they could

not be corrected with confidence.

Having maximised the length and continuity of time-series it was recognised that in

some instances corrections would have to be made for changes in instrumental baseline.

The first method consisted of a cross-validation of the monthly means with the annual

means data set lodged with the World Data Centres. It was found, by forming annual

means from the monthly means and comparing these against the annual meansobtained
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from WDDC-C1, that for some observatories at certain epochs the two data sets failed to

agree. Discussions with WDDC-C1 (D. R. Barraclough, personal communication, 1990)

revealed that instrumental changes that occurred at Eskdalemuir at various epochs can

account for such differences at that observatory. It therefore seems likely that corrections

to allow for known instrumental changes have been applied to the annual means data

set in some cases but not to the monthly means data set. Numerical comparison of

the two data sets reconstructs these instrumental changes which can then be applied

to the monthly means data set. This comparison was performed for the 46 selected

observatories and in the majority of cases the two data sets were found to agree to within

±lnT. However, at a number of observatories, changes in baseline were discovered and

were applied to the monthly means.

It seemedlikely that sometime-series would still contain undetected changes in base

level and so all time-series were carefully visually inspected. Where such a change was

suspected the difference was estimated by a least squares fit of quadratics before and

after the epoch at which it occurred and taking the difference of the constant terms.

This was then used to correct for the base level change.

An inspection of the geographical distribution of the selected observatories revealed

certain areas with very poor coverage. This might have inhibited the interpretation of

the results, so short time-series from 13 observatories in key locations werealso included

(marked byanasterisk inTable 2.1). Special attention was paid to the continuity ofthese

time-series and to the validation of these data by the methods described above. The list

of observatories with lengths of time-series is given, together with summarised baseline

correction information, in Table 2.1. (As the geographical distribution of observatories

is of more relevance in Chapter 3, this is shown in Figure 3.1.)
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Table 2.1: IAGA code, geomagnetic latitude and longitude in degrees, name of obser
vatory, length of time series (in years) and information concerning baseHne corrections
applied. "Short" (see §2.2) time series are marked by an asterisk (*).
Key to baseline corrections:
o: outlier removed;
cc: corrections determined from comparison with annual means followed

by the number of corrections applied to each component;
d: drift correction found from comparison with annual means;
fc: further baseline corrections applied (numerically determined) followed by

the number of corrections applied to each component.

MBC 79.49 259.24 Mould Bay 24

CBB 76.91 298.03 Cambridge Bay 13

BLC 73.79 318.52 Baker Lake 35 cc:4x, 3y, 2z, fc:lx,ly
LRV 69.80 72.28 Leirvogur 24

BRW 69.14 243.36 Barrow 22 o

FCC 68.63 325.68 Fort Churchill 22

GWC 66.35 350.00 Great Whale River 20

CMO 65.02 258.73 College 37

SOD 63.71 120.91 Sodankyla 70

DIK* 63.15 162.35 Dikson 6

LER 62.18 89.75 Lerwick 60 cc:lx,2y,2z, d:z, fc:lz
MEA 61.96 303.57 Meanook 54 fc:2y,lx (undetermined)
TIK* 60.80 192.65 Tbrie 2

SIT 60.29 277.66 Sitka 84 cc:5x,5y,5z, fc:lx,lz
ESK 58.09 84.21 Eskdalemuir 75 cc:lx,2y,2z, d:x,z
STJ 58.09 23.32 St. John's 18

NUR 57.65 113.65 Nurmijarvi 30

LNN 56.08 118.44 Voyeykova 13 cc:lx,ly,lz, fc:lx,ly,lz
RSV 55.55 99.74 Rude Skov 23

NEW 55.21 302.40 Newport 20

AGN 54.83 349.31 Agincourt 38

VIC 54.38 295.27 Victoria 22

HAD 54.24 80.40 Hartland 29 fc:lz
WIT 53.81 92.49 Witteveen 47 1983/84: sign of D is wrong in

source file.

ABN 53.63 84.66 Abinger 31

DOU 53.42 90.66 Dourbes 36 fc:2z

YAK* 51.34 195.23 Yakutsk 2

CLH 49.86 352.63 Cheltenham 56 cc:2x,2z, fc:2z
FRD 49.32 352.02 Fredericksburg 30 cc:lz

BOU 49.00 318.72 Boulder 19

LVV 47.78 107.16 L'Vov 14

AQU 42.54 94.37 L'Aquila 22

IRT 41.10 175.96 Patrony 12

TUC 40.47 314.29 Tucson 77 cc:4x,4y,4z, d:z, fc:2z
TFS 36.55 123.48 Tbilisi 12 o, fc:lx,lz
MMB 34.44 210.03 Memambetsu 29

SJG 29.54 5.06 San Juan 58 cc:2x,ly,lz, fc:lx,ly,lz
VQS 29.29 5.79 Vieques 22 cc:lx,lz, d:x, fc:ly
KAK 26.45 207.60 Kakioka 29

HON 21.42 268.30 Honolulu 79 cc:3x,3y,3z
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Table 2.1 continued...

KNY 20.94 199.69 Kanoya 29

SSH* 20.12 190.88 Sheshan 2

LNP* 14.02 191.13 Lunping 5

ABG 9.51 145.27 Alibag 51 cc:lx,ly,lz
AAE 5.16 110.84 Addis Ababa 13 0

BNG 4.48 90.20 Bangui 19

GUA 4.41 214.61 Guam 27

MUT* 3.40 191.42 Muntinlupa 10

HUA* -.88 355.52 Huancayo 4

PPT* -15.08 284.39 Pamatai 3

API* -15.67 261.90 Apia 2

PMG* -18.15 219.64 Port Moresby 9

NMP* -18.63 106.78 Nampula 3

PIL* -20.54 6.25 Pilar 4

TRW* -32.09 4.67 Trelew 4

HER -33.68 82.40 Hermanus 40

WAT -41.43 187.65 Watheroo 41 cc:3x,lz, d:x,z
AIA -54.10 4.63 Argentine Islands 27

SPA -78.80 0.00 South Pole 13 o

2.3 Method: a time—series model

2.3.1 Accounting for the core field and its variation

An attempt to model a time-series of geomagnetic data must necessarily take some

account of the field from the core as this is the dominant contribution to the observed

field. In addition if these time-series span several years, the SV of the core field cannot be

ignored. The details of the SV,however, cannot be prescribedand it is markedlydifferent

both in rate and orientation at different geographic locations. For this investigation,

where the requirement was to model the secular trend whilst simultaneously modelling

other much more rapid variations ofexternal origin, a cubic polynomialin time wasfelt to

be an adequate representation for the time-dependent core field. Low degree polynomials

in time are recognised as remaining valid for at least a few years (Barraclough et a/, 1975;

Barraclough et a/, 1978). However, over time spans of much more than a decade the

cubic polynomial may break down as an adequate representation of time changes. This

problem is returned to in §2.3.5.
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Figure 2.1: North (X) component of the geomagnetic field at Baker Lake
(Canada) showing the annual variation

2.3.2 Seasonal effects.

Two of the clearest peaks in spectral analyses of the geomagnetic record occur at the

1 year and 6 month periodicities (Courtillot & LeMouel, 1976a). Although the annual

variation is present at most observatories (Malin & Isikara, 1976), at some locations the

phenomenon is especially pronounced as in Figure 2.1 which shows the X component of

the field at Baker Lake in Canada. Such seasonal fluctuations are clearly a significant

feature of the geomagnetic field and must be accounted for in modelling time-series of

monthly means. The induced responseto these fluctuations is expected to be at the same

frequency (Parkinson & Hutton, 1989). Therefore both sine and cosine functions of 12

and 6 month periods were included to account for the annual and biannual (or semi

annual as it is sometimes known) variations, this being equivalent to including both

phase and amplitude as free parameters. Annual and biannual variations are thought

to arise partly from seasonal fluctuations in the amplitude of the (quiet time) regular

daily variation Sg (Campbell, 1982). As Sq is modulated by the solar cycle (Campbell

& Matsushita, 1982), the annual and biannual variations are solar cycle dependent also

(Campbell, 1980). However this effect will besupposed to be averaged outover the time

periods considered here, which are maximised to obtain the best estimates possible for

the effect of the disturbance fields.
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2.3.3 Disturbance fields

As discussed in the introduction to this chapter, it is suspected that part of the observed

field on the time-scale of months and years is the result of disturbance phenomena and

it is this which will be referred to as the "average disturbance field", D. The most sig

nificant feature of the instantaneous field associated with disturbance phenomena is the

dipolar field of the magnetospheric ring current which can be dramatically enhanced

during geomagnetic storms (Chapman & Bartels, 1940). Due to its (temporally) asy-

metric form this storm time field is likely to contribute significantly to D. In addition

to the planetary characteristics of the average disturbance field, more localised effects

may exist. In particular, the average intensification of the auroral electrojets during

periods of increased geomagnetic activity, as evidenced by the close correlation between

the electrojet index AE and other geomagnetic indices (Gavoret et a/, 1986), may result

in additional disturbance to the average field at auroral latitudes. Further, the bombard

ment of the ionosphere by charged particles from the magnetosphere leads to increased

ionisation and an enhancement ofthe regular daily variation (whichcontributes to all day

means (Gavoret et a/, 1986; Campbell, 1987)) in auroral regions duringdisturbedperiods

(W.H.Campbell, personal communication, 1990). Tosummarise, significant variation in

the average disturbance field in different regions is to be expected. Despite variations

in intensity and orientation however, it is hypothesised that on the timescale of months

and years such disturbance variations will correlate very closely with the average level

of geomagnetic activity.

As a result of the irregular nature of the disturbance phenomena no clear spectral

peak can be associated with the external disturbance field and consequently they con

tribute to the spectral continuum (Currie, 1966; Banks, 1969). This does not, however,

preclude the existence of an induced response to this continuum, and indeed Banks

(1969) quantifies such a response. As the time-scale ofdisturbance phenomena is ofthe

order of a few days at most it is further hypothesised that geomagnetic data averaged

over a period of a month or greater will reflect the cumulative effect of both the external

and induced fields, with no associated phase difference on these timescales. As the fre

quency contentof induced fields reflects that of the inducing field (Parkinson & Hutton,
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1989), it is supposed that the average induced disturbance field will also correlate with

the average level of geomagnetic activity.

The time-series of monthly means of the aa geomagnetic index was adopted to rep

resent the overall level of global geomagnetic activity. (The reader is referred to Mayaud

(1980) for a full treatise on geomagnetic indices.) Based on measurements of the range

of variation of the field within three hour intervals, this index characterises geomagnetic

activity at mid-latitudes on a time-scale several orders of magnitude too short to be

associated with the core. One possible objection to the aa index is that it is derived from

observations at only two observatories: Hartland (which succeeded Abinger and Green

wich) in the UK and Canberra (which succeeded Toolangi and Melbourne) in Australia.

It might therefore be suspected that it may give a rather biased representation of the

level of geomagnetic activity. However, statistical comparison with the am index, which

is based on a global network of mid-latitude observatories, reveals an extremely close

correlation on the time-scale of months to years (Mayaud, 1980). It therefore seems

unlikely that the aa index is biased. The Dst index, which was specifically designed

to monitor the intensity of magnetospheric ring current, would be inappropriate here.

Firstly, it is suspected that it may be contaminated by short term secular variation of

the core field due to poor determination of an appropriate base level (eg. Ducruix et a/,

1980; Langel & Estes, 1985) and, secondly, it is only available back to 1957. As the Sun

is the ultimate cause of disturbance phenomena one might expect a correlation to exist

between the sunspot number and geomagnetic activity. However, although a qualitative

correlation does exist, it is little more than this (see Figure 2.2). Even over a wholesolar

cycle, there is a distinct difference in character between the variation of the number of

sunspots and the level of geomagnetic activity, in particular the well known double peak

in geomagnetic activity in eachsolar cycle (Yukutake & Cain, 1979). Finally, it is worth

noting that on the timescale of months to years, a strong correlation exists between the

aa, Ap, AE and Dst geomagnetic indices, with the exception of the Dst index at certain

epochs presumably for the reason mentioned above.

The great advantage of the aa index over all others is the great time span for which

it is available (1868 to the present), which is important here. As the aa index is scaled

in nT, a linear correlation with the average disturbance field is to expected. However,
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Figure 2.2: Plot showing monthly means of the aa index (a) and sunspot
number (b) from 1868 to 1987. Note the qualitative correlation in long term
behaviour.

as the intensity and orientation of the average disturbance field depends on geographical

location, a "relative amplitude of disturbance" parameter c<i must be included for each

time-series analysed. This was multiplied by the aa time-series to represent the distur

bance field. Consequently the ct{ parameters are dimensionless and will have an order of

magnitude of 1.

2.3.4 Form of the model.

Taking the discussions of §2.3.1 to §2.3.3 into consideration, the functional form chosen

for the model was

info) = ^aafoJ +Aisi^^+^co^^-fAacosJ^+^si^^)
3

+ E™fc(';-*)fc
fc=0

where tj is the time expressed in months.

Ui(tj) represents the field value of time series i (monthly means) centred on time tj.

cti is the (constant w.r.t. time) relative ampUtude of disturbance to this component and
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aa(tj) the monthly mean of the aa index centred on tj while the #&,k = 1,..., 4, are

the amplitudes of the sine and cosine terms of the annual and biannual variations (again

assumed constant w.r.t. time).

t is the mean epoch for the data to which the model is fitted.

The 7jfc, k = 0,..., 3, define the cubic polynomial included to model the secular variation.

This gave a total of nine parameters to be determined.

2.3.5 Parameter estimation and errors

For each time-series, all 9 parameters were simultaneously determined by an undamped

least squares fit. The eigenvalue-eigenvector structure of the normal equations matrices

for the problem were examined from which it was concluded that damping did not provide

any significant improvement. The square root of diagonal elements of the covariance

matrix were taken as standard errors for parameters, correlation between parameters

being neglected.

The length of time-series used to estimate model parameters was limited to 133

months as it was felt that a cubic model could not, in general, be expected to emulate the

secular variation for much longer than this. As most of the time-series were significantly

longer than this limit, model estimates were determined from a "shding window" of

data from the time-series. The method is illustrated in Figure 2.3. For a long time-

series of n data Uj,j = 1,..., n, the fit was to the subset of data li*,..., Ufc+132 where k

ranged progressively from 1 to n - 132. At each stage the model parameters (eg. a^)

were determined and assigned to epoch tfc+66- The means of all these estimates were

then calculated and taken as a best estimate of the parameters. Parameter errors were

estimated as the mean of the standard errors or the standard deviation of the means,

whichever was the greater. For the 13 "short" time-series, error estimates were doubled

as an arbitrary recognition of the relatively few data on which they were based. To ensure

the reliability of the parameters, the time series ctik,k = l,...,n —132 were plotted

together with the root mean square residual (r.m.s.r.) for each inversion (Figure 2.3 (a)

and (b)). Where strong peaks in the r.m.s.r. were present (for example in Figure 2.3(a)

prior to 1930) the appropriate sections of the original data series were examined. This
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Figure 2.3: Illustration ofthe "sliding window" method described in the text,
here for the northward (X) component at Eskdalemuir. A 133 month section
of the data series in (c) is enlarged, the inversion of each window yields an
estimate, c<ik> of cti. As the window traverses the data series, the series of
parameter estimates o;^ (b) is produced. The misfit for each inversion (a)
can be used as a guide to parameter reliability.
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usually revealed that the increased r.m.s.r. was associated with undetected changes in

the base level or particularily rapid secular variation for which the cubic model was

inappropriate. In such cases the corresponding model parameters were omitted from the

calculation of means described above.

Stationarity of parameter estimates

In taking the mean of the parameter estimates from each window there is an implicit

assumption that the "true" parameters are constant with respect to time. Due to the

overlap of "windows", i.e. data being shared by adjacent estimates, no formal statistical

method was available to assess this. One method used to investigate this however was

to plot the parameter estimates from each window to see if they stray systematically

beyond their mean by more than the estimated error for the mean. This is illustrated

in Figure 2.4.

It might also be expected that aa; < ^a; would be true for the majority of ar^

series, that is, the standard deviation of the ctik should not exceed the mean standard

1920 1930 1940 1950

tk+66 (yeors)
1960 1970 1980

Figure 2.4: Illustration of the stationarity of the relative disturbance am
plitude estimate determined from each "window" over the full length of the
time-series for the X component at Eskdalemuir. Dashed lines show the
mean ± the estimated error and the solid curve shows the estimate from
each window.
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Table 2.2: Percentages showing distribution of the individual determinations
of aik relative to their mean a, for 9 time-series.

IAGA code Component ltrSi < \aik-ai\ < 2a3. |<*jjfe-ai| > 2(75,.
CLH

CLH

X

Y

38.57%

51.81%

1.79%

0.00%

ESK

ESK

ESK

X

Y

Z

26.09%

31.27%

34.69%

6.44%

4.65%

3.25%

SOD

SOD

SOD

X

Y

Z

40.95%

17.76%

28.95%

0.00%

10.38%

6.72%

HON

HON

Y

Z

33.48%

30.11%

3.67%

4.84%

error. This provided an additional method of assessing the reliability of the results.

Of the 138 long time series analysed, 76 gave results for which 0-57 < aa. and so for

these the ai can be considered constant and that 57j ± crai is a good estimate of the

relative disturbance parameter. Of the remainder, 55 satisfied the less strict condition

Oai < 2aa. leaving 7 for which a^ > 2aa.. If the aik were distributed normally about

ai with standard deviation (73. one would expect Cai < \aik —cf»| < 2oai in the case

of 27% of aik and \aik —a»| > 205. for less than 5% of the aik. The distribution of

the aik was investigated for a small sample of aik series, most of which had failed the

strictest stationarity criterion. These are presented in Table 2.2 and appear to verify

the constancy of the a.

2.4 Results

2.4.1 Disturbance field results

The full results for the relative amplitude of disturbance are presented in Table 2.3.

2.4.2 Annual and biannual variations

Results for the annual and biannual periodic variations are presented in Tables 2.4

and 2.5. Only the results for the "long" time series are presented as the others were

not felt to have been meaningfully determined. Results for @i to /?4 are presented as
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Table 2.5: Estimated amplitudes and phases, with estimated errors, of the
biannual variation. Amplitudes are in nT and phases are in degrees (°).
Observatories are in order of decreasing geomagnetic latitude (6g). Geomag
netic longitude (cf>g) is also given (see §2.5).

IAGA

code •f *l

X com] )onent Y component Z component
Amplitude Phase Amplitude Phase Amplitude Phase

MBC 79 259 2.6± 0.9 -175±22 0.2± 0.9 -158±224 5.7± 1.5 86±12
CBB 76 298 6.6± 1.8 -107±13 0.9± 0.9 -103±53 8.1± 1.3 88±7
BLC 73 318 4.5± 1.2 -116±13 0.7± 0.6 -137±51 6.8± 1.6 87±11
LRV 69 72 4.9± 0.9 -84±9 2.0± 0.5 107±13 3.4± 0.9 140±15
BRW 69 243 6.8± 1.8 -108±13 1.3± 0.9 -86±34 5.6± 1.8 109±16
FCC 68 325 5.4± 1.2 -102±11 1.3± 0.7 -56±28 5.1± 1.3 135±14
GWC 66 350 5.2± 1.7 -97±16 0.4± 0.9 52±132 2.8± 1.1 159±25
CMC- 65 258 6.8± 1.2 -95±7 2.1± 0.5 -73±10 1.5± 0.7 172±31
SOD 63 120 5.4± 1.1 -78±7 1.3± 0.3 105±13 1.6± 1.1 167±42
LER 62 89 3.7± 0.7 -86±7 1.2± 0.3 113±13 0.9± 0.8 254±51
MEA 61 303 4.3± 0.9 -87±9 1.2± 0.5 -49±22 0.7± 0.7 147±61
SIT 60 277 3.8± 0.6 -101±8 1.5± 0.5 -75±12 0.9± 0.7 204±48
ESK 58 84 2.7± 0.6 -97±9 0.9± 0.3 114±15 0.8± 0.8 265±47
STJ 58 23 3.6± 1.0 -107±13 1.0± 0.8 121±46 0.5± 0.7 182±92
NUR 57 113 2.4± 0.6 -87±10 0.2± 0.3 175±79 1.0± 0.6 271±31
LNN 56 118 2.0± 0.6 -89±15 0.3± 0.3 162±72 1.4± 0.8 301 ±28
RSV 55 99 2.2± 0.4 -96±10 0.3± 0.3 -129±52 1.2± 0.6 268±23
NEW 55 302 3.6± 0.5 -101±6 0.8± 0.3 -59±19 0.8± 0.4 198±34
AGN 54 349 5.0± 1.0 -106±10 0.7± 0.7 -77±48 2.0± 1.3 132±37
VIC 54 295 3.2± 1.1 -111±10 0.7± 0.4 -76±23 0.7± 0.5 181±49
HAD 54 80 1.8± 0.4 -100±12 0.4± 0.2 148±28 1.1± 0.4 266±20
WIT 53 92 2.1± 0.6 -91±12 0.4± 0.2 170±42 1.0± 0.6 281±29
ABN 53 84 2.9± 0.5 -94±7 0.9± 0.2 118±13 0.4± 0.5 183±89
DOU 53 90 1.7± 0.5 -98±14 0.3± 0.3 143±65 1.8± 1.1 286±31
CLH 49 352 3.4± 0.5 -102±7 0.4± 0.3 -43±42 0.6± 0.8 152±81
FRD 49 352 3.0± 0.6 -102±10 0.5± 0.2 -55±24 1.1± 0.5 206±25
BOU 49 318 2.9± 0.6 -101±10 0.6± 0.3 -4±30 1.1± 0.4 207±20
LW 47 107 1.6± 0.8 -97±23 0.3± 0.3 -144±71 2.1± 1.4 254±35
AQU 42 94 1.2± 0.6 -102±24 0.7± 0.2 -103±15 0.7± 0.5 305±37
IRT 41 175 1.3± 0.7 -94±27 0.5± 0.3 130±32 0.2± 0.8 279±183
TUC 40 314 2.6± 0.8 -92±13 0.8± 0.3 -42±18 1.4± 0.6 190±27
TFS 36 123 0.3± 0.7 -97±102 0.5± 0.4 159±49 0.4± 0.7 7±99
MMB 34 210 1.7± 0.7 -104±17 0.5± 0.2 94±21 0.3± 0.3 166±70
SJG 29 5 3.1± 0.9 -72±14 0.6± 0.3 -85±26 2.1± 1.0 204±30
VQS 29 5 1.7± 1.1 -90±31 0.3± 0.4 39±82 1.8± 1.4 187±52
KAK 26 207 1.7± 0.7 -86±18 0.4± 0.1 109±20 0.5± 0.2 185±33
HON 21 268 2.0± 0.7 -55±18 0.3± 0.2 34±53 1.8± 0.5 224±15
KNY 20 199 1.6± 0.7 -81±20 0.3± 0.2 112±25 0.5± 0.2 204±30
ABG 9 145 1.3± 1.6 -136±69 0.4± 0.6 79±72 1.2± 1.0 198±57
AAE 5 110 2.9± 0.9 37±18 1.5± 0.7 152±29 0.7± 0.4 177±40
BNG 4 90 1.3± 0.9 -55±38 0.5± 1.3 89±123 0.4± 0.5 105±63
GUA 4 214 1.8± 0.7 -33±23 0.7± 0.3 72±22 1.9± 0.5 231±14
HER -33 82 2.7± 0.6 -25±14 0.4± 0.2 -139±35 1.0± 0.5 65±26
WAT -41 187 2.5± 0.8 -39±18 0.7± 0.3 -176±26 2.2± 0.6 4±19
AIA -54 4 2.2± 0.6 -43±15 0.9± 0.3 -23±19 2.2± 0.5 -19±15
SPA -78 0 1.1± 1.4 -6±79 2.0± 1.3 171±43 5.6± 3.9 -24±43 1
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amplitude A and phase e which were found by equating coefficients in

Asin(u;t —c) = a\ sin(a;t) + ai cos(a;t) (2.1)

where t is time in months, a> is 27r/12 or 27r/6 and (ai,a2) = (01,#2) or (04,/?3) ac

cordingly. Calculation of the estimated variances of A and e was facilitated by the

approximation

Var(^(x1,...,xn)) « (|̂ )Var(z1) +...+(|l)2Var(*»)
+2 £ ^.^•)Cmar^xi) (2-2)

(Hald, 1952, pll8), where 0 is a "well behaved" function ofrandom variables x\%..., xn.

The covariance term was, in this instance, assumed zero. A linearised MacLaurin series

of tan- was used as a further approximation in the calculation of the phase variance.

2.5 Discussion

2.5.1 The disturbance fields

The relative disturbance amplitudes presented in Table 2.3 are shown in Figure 2.5.

Results for the X and Z components are plotted against cos(6g) and sin(0ff) respec

tively, where 9g is the geomagnetic latitude. The linear relationships apparent in Fig

ure 2.5 therefore reveal that the disturbance variations are broadly consistent with a

dipole field aligned with, but of opposite polarity to, the Earth's main field. This is in

agreement with previous workers' findings of an average external field which is dipolar

(eg. Yukutake & Cain, 1979; Langel k Estes, 1985), thought to be associated with the

magnetospheric ring current. This also lends further credence to the assumption of a

tilteddipolar morphology usually made inmagnetotelluric studies (eg. Schultz &Larsen,

1987). The other significant feature inFigure 2.5 istheenhanced disturbance amplitudes

in auroral latitudes which are generally defined as 60° to 75° absolute corrected geomag

netic latitude (Mayaud, 1980). This is the definition adopted here, except (tilted centred

dipole) geomagnetic latitude is used (Matsushita k Campbell, 1967, pl329). This ap

proximation is felt to be negligible considering the magnitude of the parameter errors.
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Figure 2.5: a values versus (a) cos(05) for X component; (b) sin(<f>g) for Y
component; (c) | sin(0fl)| for Z component, where $g and <f>g are the geomag
netic latitude and longitude respectively (see §2.5). AU error bars are ±1
estimated error, o represents non-auroral, northern hemisphere observato
ries, • northern hemisphere auroral observatories and • southernhemisphere
observatories (all non-auroral). Dashed line is best fit (weighted by errors)
to non-auroral observatories.
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Table 2.6: Extract of the full results (given in Table 2.3) for the disturbance
field, arranged to illustrate regional coherence of the field (see §2.5). 9g and
<j>g are the geomagnetic latitude and longitude respectively (as defined in
§2.5). Errors given are 1 estimated error as defined in §2.3.5.

British Isles

IAGA code °l <j>g ax ay c*z

LER 62.18 89.75 -0.711 ± 0.059 0.301 ± 0.032 0.144 ±0.085
ESK 58.09 84.21 -0.649 ±0.066 0.215 ±0.039 0.349 ±0.085
HAD 54.24 80.40 -0.692 ± 0.055 0.276 ±0.044 0.345 ±0.057
ABN 53.63 84.66 -0.638 ±0.048 0.213 ±0.023 0.387 ±0.078

Japan
IAGA code *f 0.<7 ax ay az

MMB 34.44 210.03 -1.206 ±0.072 -0.233 ±0.031 0.325 ±0.040
KAK 26.45 207.60 -1.296 ±0.076 -0.197 ±0.023 0.298 ± 0.035
KNY 20.93 199.69 -1.350 ±0.095 -0.148 ±0.018 0.245 ± 0.034
Western Canada

and Alaska

IAGA code 'f <t>g ax ay <*z
BRW 69.14 243.36 -0.729 ±0.215 -0.579 ± 0.098 1.196 ±0.203
CMO 65.02 258.73 -1.260 ±0.108 -0.699 ±0.062 0.491 ± 0.119
MEA 61.96 303.57 -1.174 ±0.100 -0.447 ±0.127 0.249 ±0.109
SIT 60.29 277.66 -0.836 ± 0.113 -0.353 ± 0.068 0.249 ±0.164
VIC 54.38 295.27 -0.839 ± 0.079 -0.204 ±0.039 0.337 ±0.122

The only auroral observatories in this study lie in the northern hemisphere, however. At

these latitudes the X component receives an additional negative disturbance. To the Z

component, an additional positive disturbance occurs in latitudes north of the central

auroral band (68° to 71°) and a negative disturbance to the south of this band. This

is consistent with a mean westward localised electric current above the Earth and so is

clearly associated with enhancement of the auroral electrojets during periods of mag

netic disturbance. As can be seen from Figure 2.5(b), the results for Y clearly depend

largely on the sine ofgeomagnetic longitude. This is due to the tilt of the geomagnetic

coordinate system with respect to the geographic coordinate system in which X and Y

are measured. This was confirmed by rotation of the X and Y components into the

geomagnetic coordinate system which reduced the azimuthal component close to zero in

most cases.

Closer examination of a selection of the results, in Table 2.6, reveals that the 4

observatories in the BritishIsles have a high degree ofconsistency. Forthe X component
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the a values are not significantly different at the la level and for those for Y are not

significantly different at 2a. However for the Z component at Lerwick the a value is

significantly lower presumably as a result of its proximity to the southern fringes of the

auroral zone where the effect of the auroral electrojets on the Z component is likely

to be most negative. The results for the 3 Japanese observatories also show regional

consistency. In particular, note that although these observatories are spread over almost

15° of geomagnetic latitude the a values for the X component differ little more than

1 standard error although they decrease monotonically in magnitude away from the

geomagnetic equator. They are also significantly higher than those in the British Isles,

as expected, due to their much lower geomagnetic latitude. The results for Y are all

consistently negative due to their location in the western geomagnetic hemisphere. As 4

of the 5 observatories from western Canada and Alaska fall within the auroral zone there

is significant scatter in the results. Notice the particularly high disturbance to the Y

component at Barrow and College presumably due to the particularly large declination

of the field at these locations.

2.5.2 Annual and biannual variations

The amplitudes of the annual variation in the X component (Figure 2.6), typically a few

nT, are suggestive of a degree 2 zonal spherical harmonic (see eg. Langel, 1987), though

this will be quantified in Chapter 3. A very pronounced enhancement of the annual

variation occurs in auroral latitudes, with amplitudes of up to 15 to 20nT being present.

The phases appear to be remarkably well determined considering the small amplitude of

the phenomenon. They imply that in the northern hemisphere the maximum enhance

ment of the X component occurs around May/June at low latitudes and later than this

at higher latitudes. This is in agreement with the results of Campbell (1980).

The amplitudes of the biannual variation, shown in Figure 2.7, are about half that

of the annual and are also subject to great enhancement at high geomagnetic latitudes.

Most of the phases are more tightly clustered than for the annual variation in this case

around —100° and imply maximum enhancement to the X at the winter and summer

solstices. The phase for the southern hemisphere is about -10° to -30° though the

scatter here is quite large.



•= 10
Q.

E
<

34

\ <°> M f

)•

'] : I 1 '

..] ; 1 [ \ 4 T

j/1* ^^K \ AV \\h\
1 1 i i i i 1 ! ,

-60 -40 -20 0 20 40

Lotitude (°)

; W ; i ;.

! Mil

..i l.j ! i
t ': :

If :
i 1 1 1— i . ,

-80 -60 -40 -20 0 20 40 60 BO

Latitude (°)

Figure 2.6: Amplitudes (a) and phases (b) of the annual variation in the
X component against geomagnetic latitude (defined in §2.5). Error bars
indicate ± one estimated error (see §2.3.5). The curve superimposed on
the amplitudes shows the best fitting (by eye) 2nd degree zonal spherical
harmonic aligned with the Earth's tilted dipole.

-60 -40 -20 0 20 40

Latitude (°)

-200

I11
11—

ifir
—

J
•'•'_!1

-80 -60 -40 -20 0 20 40

Latitude (°)

Figure 2.7: Amplitudes (a) and phases (b) of the biannual variation in the
X component of the field against geomagnetic latitude (as defined in §2.5).
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1910 1920 1930 1940 1950 1960

Time (years)
1970 1980

Figure 2.8: X component at Eskdalemuir. Lowest curve is "raw" monthly
means. Middle curve is after removal of disturbance effects (see §2.6). Upper
curve is after removal of annual and biannual variations in addition to dis

turbance effects. Curves offset for clarity. Scale applies absolutely to lowest
curve.

2.6 The core field revealed

As discussed in the introduction, the stimulus for the work in this Chapter was the

need to obtain a more accurate representation of the changes with time of the magnetic

field originating within the core. The relative amplitude of disturbance estimate for a

given component at an observatory may be used to rescale the aa time-series to give

a time-series of the average disturbance field for that component. This can then be

subtracted from the original observatory monthly or annual means time-series to yield

a better representation of the core field and hence its secular variation.

Some examples of this are presented in figures 2.8 to 2.10. Figure 2.8 presents time

series of monthly means of the X component at Eskdalemuir and Figure 2.9 shows the

three point smoothed first differences of these as a representation of X. A clear reduction

in month-to-month variation occurs on removal of the disturbance field (from r.m.s.

= 4.41nT/month to 3.40nT/month) and a further reduction (to 2.62nT/month) occurs

on removal of annual and biannual variations defined by the (3 parameters obtained from

the analysis.
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Figure 2.9: (c) X component at Eskdalemuir obtained by first differenc
ing and three point smoothing has been applied to represent the first time
derivative, (b) is (c) with disturbance effects removed as described in § 2.6.
(a) is (b) but with annual and biannual variations also removed.

One feature that is particularly apparent in the Figure 2.9(b) is the modulation of

the amplitude of the annual variation by the solar cycle. The annual variation appears to

reach a maximum in 1927,1938, 1949and 1960corresponding to approximate maxima in

the sunspot number time-series of Figure 2.2. However, the expected maximum in 1971

does not occur, which is surprising. As most of the time-series analysed are longer than

1 solar cycle (approximately 11 years) the annual and biannual amplitudes determined

here are believedto represent an average amplitude overa "typical" solar cycle, although

no solar cycle appears to be typical (Figure 2.2). It would be possible and worthwhile

to try and account for this in a future analysis.

Figure 2.10 shows first differences of annual means of the X component at 4 widely
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Dashed line is from 'raw' annual means. Solid fine is after removal of the

effect of disturbance phenomena as described in the text, (a) X component
at Kakioka (KAK), Japan, (b) X component at Eskdalemuir (ESK), UK.
(c) X component at Honolulu (HON), USA. (d) X component at Hermanus
(HER) , South Africa.

spaced observatories. It can be seen from these that the removal of disturbance effects

(using a values and annual means ofthe aaindex) significantly reduces the year-to-year

fluctuations in field values, and clarifies the character of the underlying trends which are

concluded to be associated with the core. In particular, sudden changes in trend are

apparent around 1970 at Eskdalemuir and Hermanus, this being the well documented

jerk of 1969/70 to be investigated in Chapters 4 and 5. At Honolulu, a jerk is apparent

in the late 1970s, a phenomenon noted in the Y component at European observatories

by Gavoret et al (1986). This event is also apparent in the X component at Kakioka
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(Japan) together with a jerk in the late 1960s. Before removal of the disturbance effect

both these events are harder to discern.

2.7 Conclusions

In this chapter, estimates of the amplitude of the average disturbance field, relative to

the aa geomagnetic index, have been derived for the X> Y and Z components of the

field at 59 observatories. For most observatories, preHminary analysis suggests that a

tilted dipole may be an adequate representation for the external and induced fields. This

provides a practical solution, for these observatories, to the problem of removing both

the external and induced field variations from observatory data as far back as 1868. The

method can be applied equally to monthly means or any longer average of the field, such

as annual means, as required. A more quantitative analysis of the spatial morphology of

the disturbance and seasonal phenomena will be conducted in Chapter 3 and will allow

the method to be applied to other observatories.

Some examples have shown, firstly, that apparent secular variation on the time-scale

of months is significantly reduced on removal of disturbance, annual and biannual ef

fects. Secondly, when disturbance effects are removed from observatory annual means,

the complexity in plots of secular variation obtained from first differences, is significantly

reduced. The fact that the effects of external and induced fields are not removed simply

by using annual means is of importance not only to the interpretation of secular variation

at individual observatories, but also on a regional scale. It could also have important

consequences for field modelling (discussed in Chapter 4). The linear relationship be

tween the activity index and the observed field, together with the fact that the average

activity index is non-zero, implies that in addition to variations of the average distur

bance field, the very long term average disturbance field is also quantified (ie. the effect

of the ring current during apparently quiet times). This could, for example, be used

to constrain the base level of the Dst index (Mayaud, 1980). The results of this study

have shown that special consideration will have to made in dealing with observatories in

auroral latitudes, as these can be particularly affected by external disturbance fields.

Estimates of the amplitudes and phases of the annual and biannual variations at each
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observatory are an interesting by-product of this investigation. The annual variation

appears to be dominated by a degree 2 zonal spherical harmonic though this will be

clarified in Chapter 3. The results appear to be well determined enough to make an

attempt at their further separation into external and induced components worthwhile.
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Chapter 3

Spatial analysis of the external

and induced fields

3.1 Introduction

The results of the investigation of the disturbance, annual and biannual phenomena

will now be analysed using the technique of spherical harmonic analysis (SHA) (see eg.

Langel, 1987; Barraclough, 1978) which will allow their spatial morphology to be quan

tified and clarified. The development of a spherical harmonic model of the disturbance

phenomena will allow geomagnetic annual and monthly means from any location at any

time back to 1868 to be corrected for these external field effects, giving a better repre

sentation of the core field and its changes (see Chapter 5). The analysis also allows a

separation of the disturbance and seasonal variations into parts of external and internal

origin. It will be assumed that any contribution to these from the core field is negligible.

The implications of this for the conductivity of the mantle will be considered also.

3.2 Spherical harmonic analysis

It is reasonable to assume that the current density in the region where observatorymea

surements are made is negligible and hence the field can be represented as the gradient

of a scalar potential

B = -V$ (3.1)
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(eg. Langel, 1987; Parkinson, 1983). In the absence of monopoles, B is divergence
free and so $ is a solution of Laplace's equation. In the following a spherical Earth

is assumed throughout, heights of observatories above sea level being neglected. The

potential will be assumed to be seperable into a time-dependent amplitude function

A(t) and a time-independent dimensionless potential $(r,9,<f>). In the usual spherical

polar coordinate system, (see eg. Jackson, 1975), $ can be represented as an expansion

in spherical harmonics so that

*(r, 0, 0, t) =A(t)i(r9 0, </>) =A(t)rs £ ]T J[g%< cos(m^) +h%< sin(m^)] (%) *+1
n=lm=0 I ^ T '

+b™« cos(m^) +hp sin(m^)] (£)*} P?(0) (3.2)
where rs is the radius of the Earth, P™ are Schmidt quasi-normalised associated Legen-

dre functions of degree n and order m and i and e denote sources internal and external

to the Earth respectively. In practise the expansion in harmonic degree n is usually

truncated at some finite degree N to obtain estimates of the coefficients.

In Chapter 2 it was assumed that at a given location the relative amplitude of the

annual, biannual and disturbance variations are fixed with respect to time, which is

identical to assuming that the average spatial morphology of these magnetic fields is

fixed over timescales greater than their own characteristic timescale. Therefore using

the appropriate temporal basis function from Chapter 2 as A(t) and denoting the cor

responding relative amplitude parameters by X, Y or Z (for components X, Y and Z

respectively) the disturbance or seasonal fluctuation at a given location and time can be

given as

X(r,M,t) =A{t)X =A(t) (±||) (3.3)

YMt,t) =A(t)Y =A(t)(-^^ (3.4)

Z(r, 0, <j>, t) =A(t)Z =A(t) (^\ . (3.5)

These equations of condition can be solved using the empirical values of X, Y and

Z obtained in Chapter 2 to give truncated spherical harmonic models of the fields.



42

The method of solution employed here was a (damped) weighted least squares fit of a

truncated seriesof the coefficients to the data, the vectorofestimated spherical harmonic

coefficients being given by

m= (GTC"1G + AI)"1GTC-1d (3.6)

where G is the equations ofcondition matrix, d the vector ofdata (relative amplitudes)

and Athe damping constant. The estimated parameter variances derived in Chapter 2

were used as diagonal elements of the data covariance matrix Cc and the off-diagonal

elements assumed zero.

The relative amplitudes of the disturbance field for all 59 observatories analysed in

Chapter 2 were used as data for SHA. The locations of the observatories, the vast major

ity of which lie in the northern hemisphere, are shown in Figure 3.1. It has been noted

already that the annual and biannual variations appear particularily enhanced in auroral

latitudes (refer to §2.5.2). As such intense and localised features cannot be adequately

represented by a low degree spherical harmonic expansion, as will be necessary here due

to the relatively small number of data available, results from observatories with an abso

lute geomagnetic latitude of greater than 60° were omitted from the SHA for the annual

and biannual variations. This was to allow the global character of these phenomena

to be revealed more accurately. Also, none of the results from any observatories with

"short" time series (see §2.2) were used as they were felt to be of too poor quality. This

left 31 observatories providing data for the SHA of annual and biannual variations.

3.3 Results

3.3.1 Average disturbance field model.

The geometry of the field models in this and subsequent sections will be summarised

using the terminology of Lowes (1974), in which the mean square value of the field due

to harmonic degree n is referred to as the "power" of the field for that degree. Hence a

spatial power spectrum may be defined in the obvious way. For fields of internal origin

the power Rn is then defined as

Rn = (n +1) £ ((<«2 + (/C?) (3.7)
m=0
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Figure 3.1: Distribution of observatories from which monthly geomagnetic
means were analysed. Star indicates observatory location and the LAGA code
of the observatory is shown close by. Projection is cylindrical equidistant
with latitude from 90° south to 85° north.

(Lowes, 1966). However, it is important to note that for fields of external origin the

equivalent formula is

m=0

(3.8)

Lowes's (1966) formula does seem to be misused in this respect, eg. Malin & Hodder

(1982), Alldredge (1984), McLeod (1989a).

Spherical harmonic analyses were initially performed in both a geographic reference

frame and a geomagnetic reference frame (as defined in §2.5). The power spectra are

effectively the same for models derived in the two reference frames, with no significant

differences beyond one standard error (Tables 3.1 and 3.2). The power of the external

field is more than six times that of the internal field and 99% of the power due to external

sources comes from the degree 1 harmonics (Table 3.2). The misfit, a is defined by

„2 dTC"1d - AmTGTC-1d
az — - -—

nd - Tr(R)

where n<j is the number of data and 2>(R) the trace of the resolution matrix R (see

eg. Bloxham, Gubbins & Jackson, 1989). In the case of A= 0, lr(R) is simply equal

to the number of spherical harmonic coefficients. For models of maximum degree 3 (30

(3.9)



Table 3.1: Statistics of SHA for de

gree 3 disturbance field model, A=
0, geomagnetic reference frame.
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Table 3.2: Statistics of SHA for

degree 3 disturbance field model,
A = 0, geographic reference frame.

Misfit = 2.362 Misfit = 2.449

Power spectrum Power spectrum
n External Internal n External Internal
1

2

3

1.275±0.078

0.005±0.004

0.004±0.002

0.189±0.021

0.009±0.004

0.004±0.002

1

2

3

1.240±0.077

0.003±0.003

0.005±0.002

0.180±0.021

0.007±0.004

0.004±0.002
Total 1.285±0.078 0.203±0.022 Total 1.249±0.079 0.190±0.021

Table 3.3: Statistics of SHA for

degree 4 disturbance field model,
A = 0, geographic reference frame.

Table 3.4: Statistics of SHA for de

gree 4 disturbance field model, A =
15.0, geographic reference frame.

Misfit = 2.230 Misfit = 2.224

Power spectrum Power spectrum
n External Internal n External Internal

1

2

3

4

1.389±0.120

0.122±0.040

0.130±0.031

0.107±0.015

0.229±0.050

0.156±0.041

0.182±0.035

0.078±0.012

1

2

3

4

1.309±0.111

0.086±0.031

0.093±0.025

0.083±0.013

0.215±0.042

0.109±0.031

0.132±0.028

0.058±0.010

Total 1.749±0.131 0.644±0.074 Total 1.571±0.119 0.513±0.060

parameters), little difference between the fits in the two reference frames could be found

(Table 3.1 and 3.2), the geomagnetic frame giving a slightly lower misfit but a higher

total power.

Having obtained a model estimate, any datum resulting in an absolute weighted

residual more than 3 times the misfit was rejected and the model estimate rederived,

the process being repeated until no more data were rejected. The data excluded for the

model in Table 3.1 were CMO X, LRV X, MEA X, SOD Y and FCC X where the first

three letters are the IAGA code of the observatory and the last letter the component

excluded. Similarily, the data excluded for the model in Table 3.2 were CMO Xy CMO

Y", LRV X and MEA X. All these outliers were most likely due to auroral enhancement

of the disturbance phenomena (see Figure 3.1). Table 3.3 shows the results of a degree 4

truncation with no damping and it is clear that increasing truncation level allowed power

into the higher harmonics. The introduction of damping (Table 3.4) did not appear to
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eliminate power from the higher harmonics preferentially and indeed convergence (by

raising the truncation level) could not be achieved for any level of damping, with power

spectra ultimately being "flattened out". This suggests that a moresophisticatedmethod

such as stochastic inversion (see Gubbins, 1983; Gubbins, 1984; Gubbins & Bloxham,

1985) might be more appropriate. However it isnot clear how the present problem could

be formulated within such a framework given the multiple and ill-defined source regions

with which the external fields are associated. Overall, the solutions have a rather high

misfit suggesting the standard errors may be underestimated by about 30%, or due to

spatial features (eg. auroral enhancement) beyond the resolving power of these models.

The preferred model for the relative amplitude of the average disturbance field is

of degree 3 in a geographic reference frame with no damping (Table 3.2), which when

used in conjunction with the aa index as a temporal basis function, will be denoted

model AVDF91. The spherical harmonic coefficients of this model are presented in

Table 3.5. The relative disturbance amplitudes predicted from this model are plotted

for each component in Figure 3.2. The half width of the 95% confidence region for the

predictions, <o.975V/xTVx (see eg. Wonnacott & Wonnacott 1981, p443), is plotted in

Figure 3.3. x is the equation of condition relating the model vector to the predicted

datum for each position and to.975 is the value of the Student's t distribution (Kendall &

Stuart, 1961) for a lower tail of 97.5% on 143 degrees of freedom. The covariance matrix

V for this model is given by

V = a2(GTCe-1G)"1. (3.10)

Figure 3.3 shows that for all components the model is poorly constrained in the Southern

hemisphere and over the oceans (especially for Z) as is to be expected from the distribu

tion of observatories used. On the other hand, the confidenceregion is particularily tight

over North America, Europe and Japan where most of the observatories are located.
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Figure 3.2: Relative amplitude of the average disturbance field for (a) the X
component (b) the Y component and (c) the Z component, from field model
AVDF91. Cylindrical equidistant projection. Latitude goes from 90° south
to 90° north. Contour intervals are all 0.05.
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Figure 3.3: Confidence region half width for the relative amplitude of the
average disturbance field for (a) the X component (b) the Y component and
(c) the Z component, from field model AVDF91. Cylindrical equidistant
projection. Latitude goes from 90° south to 90° north. Contour intervals
are 0.005 for X and Y and 0.02 for Z.
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Table 3.5: Spherical harmonic coefficients of the preferred average relative disturbance
field model AVDF91. Standard errors quoted are square roots of the diagonal elements
of the covariance matrix V (equation (3.10)). Note the coefficients are dimensionless,
unlike a more conventional spherical harmonic model.

Spherical harmonic model AVDF91
External Internal

* 1.0844 ± 0.0356 pf 0.2837 ± 0.0243

9t 0.0995 ± 0.0365 at 0.0458 ± 0.0343

h\< -0.2325 ± 0.0279 i* -0.0862 ± 0.0250

9°2< -0.0066 ± 0.0256 9°,' -0.0284 ± 0.0215

& -0.0299 ± 0.0240 9l -0.0271 ± 0.0223

hl< 0.0209 ± 0.0223 fy 0.0156 ± 0.0193

& 0.0208 ± 0.0278 9% -0.0016 ± 0.0264

h22' -0.0073 ± 0.0349 h\ 0.0216 ± 0.0335

& 0.0259 ± 0.0181 *3°' 0.0198 ± 0.0159

9l< -0.0183 ± 0.0151 *S' 0.0119 ± 0.0138

h\< -0.0232 ± 0.0156 h\ 0.0092 ± 0.0139

9l< -0.0018 ± 0.0159 9% -0.0009 ± 0.0150

hf 0.0019 ± 0.0194 h$ -0.0062 ± 0.0184

9l< -0.0111 ± 0.0157 9? 0.0157 ±0.0151

4€ 0.0123 ± 0.0162 h% -0.0017 ± 0.0156
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3.3.2 The annual and biannual variations.

With the pruned data set for the annual and biannual analyses, only degree 3 models

were produced. In this instance, damping was found to be beneficial. The trade-off

curves for the damped SHA of/?i-/?4 are shown in Figure 3.4. It is clear from these that

in most cases the provision ofdamping gives a significant reduction in model complexity

for a marginal degradation in the fit to the data, particularily in the case of /?2- The

damping parameters chosen for the inversions for the /?i, #2, /?3 and/?4 were 0.25, 0.5, 0.3

and 0.2 respectively which gave misfits of 1.316, 1.608, 0.767 and 0.354. The amplitude

coefficients of the annual and biannual variations and associated errors were calculated

using equations (2.1) and (2.2). It is apparent from the amplitude power spectra in

Table 3.6 that the annual variation (for mid-latitudes) is dominated by the degree 2

harmonics (though note the large standard error). However for the biannual variation,

degree 1 harmonics account for 34% of the total power, degree 2, 41% and degree 3,

26%. The amplitudes of the annual and biannual variations are plotted in Figures 3.5

and 3.6 respectively for each of the field components X, Y and Z.

3.4 Discussion

3.4.1 Disturbance phenomena

It has been established that the morphology of the disturbance phenemena is almost

entirely accounted for by degree 1 spherical harmonics. Modelling in a tilted coordinate

system was found to offer little advantage over the standard geographic frame. However

with a tilted dipole pole position of 76.9°N and 293.1° E the field of model AVDF91 is

clearly aligned with the Earth's main field. This is in agreement with the results found

by Yukutake & Cain (1979) who applied SHA to filtered time-series of observatory

annual means. (The corresponding pole position for the International Geomagnetic

Reference Field (IGRF) at 1980 (Barraclough, 1981) is 78.8°N and 289.2° E (for degree

one coefficients).) Yukutake & Cain (1979) were unable to draw conclusions regarding

the higher order harmonics as they did not feel their data set was sufficiently accurate.

In the present work, a larger data set has been used, and the problemof separation from
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Table 3.6: Power spectra of the amplitudes of the annual and biannual
variations, with standard errors. Units are (nT)2.

Annual

n External Internal

1

2

3

0.96±0.87

26.66±18.19

3.18±0.61

0.60±0.28

3.86±1.88

2.88±0.39

Total 30.79±18.22 7.34±1.94

48.90 49.00

SSWR

Biannual

n External Internal

1

2

3

4.02±2.00

4.62±1.53

1.80±0.30

1.16±0.41

1.61±0.32

2.11±0.28

Total 10.46±2.55 4.87±0.59

22.40 22 50 22.60 22 70

SSWR

Figure 3.4: Trade-off curves for SHA of fii-fa, (a)-(d) respectively, showing
reduction in model normm.m (and hence model complexity) at the expense
of increased sum of squared weighted residuals (SSWR). Points, running
from left to right are for damping values of (a) 0.0, 0.1, 0.2, 0.3, 0.5, (b) 0.0,
0.1, 0.3, 0.5, 1.0, 1.5, (c) 0.0, 0.1, 0.2, 0.3, 0.5, 0.7, (d) 0.0, 0.1, 0.2, 0.3, 0.5.
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Figure 3.5: Amplitudes of the annual variation in (a) the X component, (b)
the Y component and (c) the Z component. Contour intervals are all O.bnT.
Cylindrical equidistant projection.
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Figure 3.6: AmpHtude the biannual variation for (a) the X component, (b)
the Y component and (c) the Z component. Contour intervals are 0.25n!T
for (a) and (b), 0.5nT for (c). Cylindrical equidistant projection.
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the core field has been dealt with deterministically rather than by the use of filtering

techniques. It is therefore felt that the conclusion that there is insignificant energy in

the higher harmonics is justified.

3.4.2 Annual and biannual variations

The morphology of the annual variation has been found here to be dominated by de

gree 2 spherical harmonics which agrees with the earlier findings of Malin & Isikara

(1976). Since their analysis was based on values ofthe field measured at local midnight,

they therefore concluded that the annual variation was not associated with ionospheric

dynamo activity, attributing it instead to a seasonal shift in the position of the magne-

tospheric ring current as a consequence of the inclination of the Earth's rotational axis

with respect to the solar-ecliptic. However, Campbell (1982, 1989) found significant

annual and biannual variations in the amplitude of Sq and so the ionospheric dynamo

cannot be entirely ruled out. Runcorn & Winch (in Barraclough et al (1992)) performed

SHA of the annual variation for 1964-1965 (a solar minimum period) and determined an

internal field higher than could be explained by induction in the Earth. They were led

to the conclusion that there is a significant contribution from an oceanic dynamo effect

primarily because of an apparent correlation between the associated current function and

the world's oceans (Figure 4, Barraclough et al, 1992). However it has been pointed out

(S. R. C. Malin, personal communication, 1991) that anomalously high internal spher

ical harmonic coefficents can arise if due account is not taken of the very large annual

variation in high latitudes.

The significant power in the degree 1 harmonics of the biannual variation determined

here points to the magnetospheric ring current as being partly responsible, but only

by association, and the physical mechanisms governing both the annual and biannual

variations cannot be determined from the spatial morphology alone. Banks (1969) also

found, from a limited data set, that a P® harmonic is an adequate spatial description

of the biannual variation, and therefore concluded that the magnetospheric ring current

is responsible. Campbell's (1982) Figure 4 is suggestive of P-f geometry for biannual

modulation of Sq and so this cannot be ruled out as a source of the biannual variation

found here. Currie (1966), who gives a comprehensive discussion of both the annual
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and biannual variations, and Banks (1969) both concluded that the annual and biannual

variations were the consequence of different mechanisms. What is clear from the results

presented here is that the global distribution of the biannual variation is described by

both Pi and P§ harmonics in approximately equal measure.

3.5 Response of the upper Earth to the external fields

Schuster (1889) investigated the global morphology of the daily variation of the Earth's

magnetic field during magnetically quiet times. He recognised that part of the observed

variation is due to the induced magnetic response of the Earth to the external fields

as a consequence of its weakly conducting nature. Chapman (1919) followed Schuster's

line of investigation, now known as geomagnetic deep sounding (GDS), and agreed with

Schuster's conclusion that the conductivity must increase with depth. The response is

characterised by response functions; for example Q% = p™«7)CS the ratio of internal

and external coefficientsin a spherical harmonic separation of the field and the inductive

length scale C = -(i/^E^/Bo where i = -y/^I, ify, B$ are horizontal, orthogonal

components of the time-varying electric and magnetic fields of frequency u. The former

of these will be used here. Note that since Q is a ratio, the use of the coefficients of the

dimensionless potential $ defined earlier is fully justified in determining the response.

Assuming the Earth has a spherically symetric conductivity profile, C and Q are related

by

rs(n-(n + l)Q)
n(n + l)(l + Q)' {6'll)

where rs is the Earth's radius (see eg. Schultz & Larsen (1987); Parkinson & Hutton

(1989)). This can be related to the transfer function of magnetotellurics for a 1-D

layered Earth model using the projection of Weidelt (1972) (Schultz & Larsen (1987)).

3.5.1 Empirical response estimates

In the SHA of a, /?i, /?2> Pz and /?4, the square roots of the diagonal elements of the

covariance matrix were taken as estimated standard errors for the spherical harmonic

coefficients. For /?i to /?4 the SH coefficients were converted to phase and amplitude and

errors propagated as described in §2.4.2.
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For the disturbance model AVDF91, the only response estimates to be significantly

non-zero at the 95% level (also non-zero at the 99% level), were forharmonic coefficients

p?, g\% and h\ and were, respectively, 0.261 ± 0.024, 0.461 ± 0.384, 0.371 ± 0.116. No

phase estimates for the disturbance phenomena have beenobtained in the present work

as it was implicitly assumed (in §2.3.3) that any phase lag would be on the time-scale of

the disturbance phenomena themselves and therefore not resolvable by monthly means.

Although the problem of inferring a conductivity distribution from a finite set of

response data is non-unique, if certain simple models of the conductivity are adopted

then the parameters of such models can be determined uniquely. Two such profiles,

which have been widely used in GDS, are the superconducting sphere and the uniformly

conducting sphere models. The former is just a limiting case of the latter. The latter

modelassumes the Earth is an insulator down to a radius ro and has uniform conductivity

cro below that. For an angular frequency of a; = ^, (where Tis the period), the response

Q™ for harmonic degree n and order m is given by (eg. Parkinson & Hutton, 1989;

Parkinson, 1983),

nJn+1(r0k) / x2n+i

(n + l)Jn_i(r0fc) \rsJ '

where rs is the radius of the Earth. In the following let zq = rs—ro denote the depth. The

propagation constant is k = \/—iuiia^ where fx is the permeability, taken to be that of

free space (47r x 10~7Hm~l). Jn is a Bessel function ofthe first kind (eg. Arfken, 1985).

Since the response for this model depends only on degree n, but not on azimuthal order

m, the weighted mean (0.287) for harmonic degree 1 will be considered in the following.

As the primary phenomena contributing to the average disturbance field axe geomagnetic

storms, and the main and recovery phases have typical timescales of the order of 0.5 to

10 days, representative frequencies will be taken as 365cycles/year (c/yr) and 18.25c/yr.

The response of the uniform sphere model to a degree 1 harmonic at these frequencies

is shown in Figure 3.7. For the higher frequency, and for depths ranging from 400km

to 900km, conductivities ranging from 0.0115m"1 to 0.1715m-1 are required to explain

the observed response modulus. For the lower frequency the corresponding range is

0.2155m-1 to 3.4105m-1. Jady (1975), following an analysis of geomagnetic storm

data, concluded that mantle conductivity rises sharply between 500km and 600km to
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Figure 3.7: Nomograms showing dependence of response on depth and con
ductivity for an inducing field of spherical harmonic degree 1. These are for
the uniform sphere model (see §3.5.1). (a) Frequency of 365c/yr; (b) Fre
quency of 18.25c/yr. Observed response modulii are indicated by a dashed
line.

15m-1 and stays reasonably constant to at least 1200km. Representing such a profile

by a uniform sphere model with ao = 15m-1 and zq = 600A;m, the results obtained

here are consistent with those of Jady for 18.25c/yr, but a lower conductivity (by an

order of magnitude) is sufficient to explain the higher frequency. If the depth of the

uniform sphere were between 700fcm and SOOkm there would be closer agreement with

the results of Jady (1975). The reality of a sharp increase in conductivity near 600km

has also gained further support from Jady et al (1983), though they estimate the rise to

occur between 650km and 700km to only 0.15m-1. This is in closer agreement with the

results found here for 365c/yr, which is probably more typical of most storms.

Of the response estimates for the annual and biannual variations, presented in Ta

ble 3.7, most have very wide margins of error — particularily those for the phase. For

the annual variation the best determined response amplitude is for g$, (the dominant

harmonic of the phenomenon), and is surprisingly low though in reasonable agreement

with the value of 0.046 ± 0.007 found by Banks (1969). However the phase for this

harmonic is poorly determined. Figure 3.8shows the theoretical response of the uniform
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Table 3.7: Response estimates for the annual and biannual variations. Errors given were
estimated as described in §3.5.1

Annual

Harmonic Modulus Phase (°)

9? 0.506±0.251 299±49

9l 0.334±0.256 289±128

h\ 0.856±0.565 198±59

9? 0.062±0.006 47±81

9l 0.263±0.063 152±46

H 0.520±0.227 149±55

9l 0.911±0.362 185±39

h\ 1.066±0.522 188±38

9§ 2.028±2.443 101±90

9\ 0.810±0.306 183±32

h\ 1.054±0.409 39±25

9l 0.652±0.234 177±39

hi 0.761±0.292 204±32

»! 0.652±0.236 207±31

hi 0.831±0.367 196±38

Biannual

Harmonic Modulus Phase (°)

rf 0.329±0.029 87±14

9l 0.377±0.197 53±65

h\ 0.556±0.115 199±29

9l 0.242±0.028 180±37

A 1.017±0.344 137±35

h\ 1.933±1.178 170±52

9l 0.528±0.220 191±45

hi 0.929±1.067 40±68

A 1.500±0.595 74±24

9\ 0.623±0.155 172±19

h\ 1.798±0.814 45±19

9l 0.352±0.119 222±51

h\ 0.331±0.176 49±70

9l 1.284±1.126 129±70

hi 6.449±21.593 158±170

sphere model for a degree 2 harmonic of the annual variation. For zq in the 600km to

700km depth range, the observed response requires a conductivity of about 0.85m-1,

in broad agreement with the results for the disturbance field. The phase is too poorly

determined to be of help in determining the depth and conductivity independently.

Of the biannual response estimates only those for g® and p§ are well enough de

termined to be interpretable. However the observed response for g\ would require, for

example, a conductivity ofat least55m-1 below a depth of400km if the uniform sphere

model is to be accepted, and the g% response at least 15m-1 below 400km. These are

both much higher than estimates from the disturbance and annual variations. The phase

for g% is incompatible with the uniform sphere model. The phase for gJ, although ap
parently better determined than for otherharmonics requires a much lower conductivity

than that allowed by the observed reponse modulus. In the above, only a particular

range of depths has been considered. The lack of good phase estimates has meant that
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Figure 3.8: Nomogram of the response of the uniform sphere model to the
02 harmonic of the annual variation. Dashed line indicates the modulus of
the observed response.

conductivity could only be determined if a particular depth was assumed.

3.5.2 Theoretical limitations — an example from magnetotellurics.

The inherent non-uniqueness of determing an arbitrary conductivity distribution from

a finite set of data (even if these were free of observational error), was well illustrated by

the COPROD study (Jones, 1980) in which the samemagnetotelluric data set was given

to a number of investigators to invert for a 1-dimensional conductivity distribution.

Although there were wide variations in the conductivities and thicknesses of conducting

layers, there was broad agreement on the conductance. Response estimates at a finite

set of frequencies cannot even place finite, non-zero upper bounds on the conductivity

at a fixed depth z (Weidelt, 1985). However, Oldenburg (1983) constructed bounds

on conductivity averages over finite depth ranges using a linear approximation to the

non-linear problem. Weidelt (1985) showed that formal bounds can be placed on the

conductance functional
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(3.13)

where H is a finite depth and cr is the conductivity which is a function of depth alone.

For the single frequency case, Weidelt also considered the conductance extremisation

problem in the presence of prior conductivity bounds.

In the following, Weidelt's (1985) results concerning the extremisation of 5 for the

single frequency case withoutpriorconductivity bounds (otherthan a > 0), is confirmed

by an independent method. In equation (3.13), 5 may be considered as a functional

acting on the vector space of pairs {H,<r) where H 6 71 and a € Cl[0,H), the set of

continuously differentiable functions on the closed interval [0, H]. This vector space may

be equipped with an appropriate norm (Smith, 1974, pl53). The electric field in an

infinite half space in which conductivity is a function of depth alone is governed by the

equation

E" = iufi0a(z)E (3.14)

where' denotes differentiation with respect to z. Only a single frequency u is considered

here. By substituting Y—̂ , equation (3.14) reduces to

Y2 + Y' = iu>ti0<T (3.15)

which is simply the Ricatti equation (Ince, 1956, p294). Note that - y/z1_0) = C, the
magnetotelluric response function (Weidelt, 1985). Writing Y = g-ih in equation (3.15)

and considering real and imaginary parts shows that the physical contraint c € 71 is

equivalent to

g' + g2-h2 = 0 (3.16)

and

* = -—-[h' + 2gh] (3.17)

Integration of (3.17) leads to the alternative expression

5 = -J- h(H) - h(0) + 2 / ghdz
Jo

The inequalities

(3.18)
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9<Q,h<0 (3il9)

(since ft(C),S(C) > 0(Weidelt, 1972)), with (3.16) imply therefore that h= -{g'+g2)*.
Consideration of the extremisation of 5 as a calculus of variations problem (eg.

Smith, 1974) leads to the natural boundary condition

9{H) = 0 (3.20)

and the requirement that (gh) must satisfy the Euler-Lagrange equation (Smith, 1974)

d d(gh) d(gh)
dz dg' dg = 0 (3.21)

After some algebra this leads to

// 2(o')2 / ig" = __^LL _ ugg' - 8g*,g ^ 0 (3.22)

Substituting h= ~(g' + g2)* and hence h! = -\{g' + g2)~2 (g" + 2gg') into (3.17) leads
to

1
a —

g" + 6gg' + 4p3
2h

Substitution using (3.16) and (3.22) reduces (3.23) to the simpler form

(3.23)

a=̂ \{h(g2+h2)} (3'24>
Therefore in light of (3.19) and the fact that a > 0, the only physically tenable conduc

tivity profile that leads to an extreme value of the conductance functional 5 is o —0,

except at the boundaries z = 0 and z = H. Thus to yield a non-zero extremum of 5,

a must have a delta function at z = 0 and/or z —H which is (qualitatively) the result

found using non-linear programming by Weidelt (1985)

3.6 Conclusions

The spatial analysis ofthis chapterhas shown that the estimates ofmagnetic fluctuations

associated with both seasonal and disturbance phenomena found in Chapter 2 can be

separated further into parts of internal and external origin. It has also been shown

that the internal part is, on the whole, consistent with the existence of currents induced

in the weakly conducting Earth by the external fields. The problem of inferring the
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conductivity of the Earth from such observations has been discussed. It has been shown

that, adopting the uniform conducting sphere model at a depth of 600A;m to 700fcm,

the mantle must have a conductivity of the order 0.15m-1 to 15m-1 as found by other

workers. The results for the biannual variation seem to be inconsistent with such a

model but are likely to be less reliable due to its smaller amplitude. An analysis of the

biannual variation using daily values could yield interesting and improved results.

The confirmation that the results of Chapter 2 embody the induced fields as well

as the external inducing fields supports the assertion of §2.6 that the major part of the

time-varying non-core field can be removed. The spherical harmonic model AVDF91

developed in this chapter allows such a correction to be made to data from any observa

tory. This eliminates a significant time-varying part of the field, which is often treated

as a random error in geomagnetic annual means, thus allowing a more accurate investi

gation of the SV of the core field. In particular, rapid variations on the time scale of a

few years, such as jerks, should be clarified.
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Chapter 4

A new method for secular

variation analysis

4.1 Introduction

Models of the main geomagnetic field are used for purposes such as the removal of

background fields in the preparation of local and regional magnetic surveys. To reduce

such models to the correct epoch, they are often extrapolated in time using models of

constant secular variation (SV) with reasonable success. In some instances this linear

extrapolationof the field can be a good approximation for as longas ten years (eg. Malin

& Clark, 1974). Walker & O'Dea (1952) approximated the time-dependent main field

at individual locations by series of straight line segments for data reduction purposes

and introduced the use of the term "impulse" in the geomagnetic context. However

this use of the term must not be confused with its use in the context of geomagnetic

jerks. For the estimation of SV in the analysis of repeat station measurements or in the

preparation of navigational charts, the assumption of constant SV at a particular site

is also sometimes made (eg. Simmons, 1986; Dowson et al, 1988). The SV at many

locations, such as Eskdalemuir in Scotland illustrated in Figure 4.1, shows a remarkably

simple long term behaviour. The SV for the ith year is approximated by

Ui = (ui+i - Ui-i)/2 (4.1)
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where the Ui are equally spaced annual means. It is clear from such plots that constant

SV is, in fact a fairly poor approximation to secular changes in the field, and that linear

SV is more appropriate over long periods. The assumption of linear SV has been found

to significantly improve the accuracy of extrapolated models of SV (Malin, 1969; Malin

& Clark, 1974).

Ofmore direct relevance here is the fact that investigations ofgeomagnetic jerks usu

ally assume a period ofconstant geomagnetic secular acceleration (SA) before and after

the jerk epoch; equivalently a linear dependence of SV or a quadratic time-dependence

for the main field. The accurate determination of the coefficients of such a quadratic is

important in the investigation ofmantle filter theory (in particular Backus (1983) and

Backus et al (1987)), as several years "post-jerk" the quadratic represents the asymp

totic response of the mantle filter to a third order impulse (impulse in the third time

derivative). In a number of investigations of jerks, the transition dates between one lin

ear SV segment and the next have been imposed, usually the same at each observatory

1910 1920 1930 1940 1950 1960 1970 1980 1990
Time (years)

Figure 4.1: First derivative, approximated as in equation (4.1), of the Y
component at Eskdalemuir, Scotland.
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and in each field component making the analysis subjective. Malin, Hodder and Barr-

aclough (1983) assumed a jerk epoch of 1970, while LeMouel, Ducruix & Duyen (1982)

determined the date between1967 and 1972 which gave the least r.m.s. residual, (1969),

to straight lines fitted by least squares to first differences of annual means. The latter

method, however, ignores the correlation between succesive first differences and can give

rise to spurious results, particularly in the case of relatively short time-series. Such

methods were criticised for being too subjective by Alldredge (1979). In a more recent

analysis Golovkov et al (1989) also assigned jerk epochs as the dates at which arbitrar

ily fitted hnear SV approximations intersect. The method developed here on the other

hand makes no assumptions about whenand for how long the SV behaves linearly. The

method determines objectivelythe periods of time during which the development of the

main field can be reasonably well approximated by a quadratic time-dependence. The

hypothesis that most geomagnetic time-series can be well approximated by a piecewise

quadratic function (not necessarily continuous) willbe investigated. This willbe referred

to as the "linear SV" hypothesis. Note that the analysis is performed for individual ob

servatories] no assertion is being made, at this stage, about the global synchronicity or

otherwise ofsuddenchanges in slope ofthe SV. This issue will be dealt with in Chapter 5.

However if there are particular epochs when a global jerk occurred then this analysis

should reveal it objectively but in no way impose it. In the context ofgeomagnetic jerks

and mantle filter theory, the quadratic segments need not and should not then be con

strained to be continuous at the date when the first derivatives are equal (Backus et a/,

1987). The quadratic segments are only representations of the asymptotic behaviour of

the field before and after the jerk. Theactual behaviour ofthe field during the transition

is not specified. The rest of this chapter is devoted to the development of the method

and its application to geomagnetic annual means. The interpretation of the results in

the context of geomagnetic jerks is left until Chapter 5.

4.2 Optimal piecewise regression algorithm

The method I develop here is based on an algorithmdeveloped by Kent, Briden and Mar-

dia (1983) (hereafter referred to as KBM). Their algorithm was developed to partition a
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sequence of3 component vector data in TZ3 into an "optimal" spanning set ofHnear seg

ments, a segmentbeing a sub-sequence ofpoints. (The algorithmalsodeterminedplanar

chunks which are not of interest here.) Their method assesses the statistical strength

of each possible segment using principal components analysis (PCA) (eg. Murtagh k

Heck, 1987; Preisendorfer, 1988; Jackson, 1991). The basis of PCA is the determination

of the sum of squares and cross products matrix for a set of realisations of a set of ran

dom variables. The eigenvectors of this matrix are called the principal components. The

correspondingeigenvalues are used to assess how well determined each component is. In

the case of a set of 3 component vector data which all lie, or nearly lie, on a straight

fine one eigenvalue will be much larger than the others and the corresponding eigen

vector will give the direction of the best fitting fine. The smaller the other eigenvalues,

the better the first principal component (or linearity) is determined. KBM's algorithm

considers each possible segment and uses PCA to assess the strengthoflinearity among

these data. Having assessed the strength of each segment their algorithm creates an

optimal partition of the given series into a set ofspanning segments. The partitioning

algorithm used here is closely analogous to KBM's and details will be outlined in §4.2.3.

The partition is optimal in the sense of giving an adequate fit to the data with the fewest

well determined parameters. However it is not always the case that the parameters of

enough segments are statistically well determined, in which case the resulting model does

not span the whole time-series. The advantage of the KBM algorithm is its objective

choice of segments which depends only on the assumed level of noise in the data, that

is, the way in which one defines "adequate fit". However KBM go on to show how this

decision can be made semi-objectively through the use of information criteria.

The method of KBM, developed primarily for the analysis of palaeomagnetic data,

was applied to the analysis ofSVdata by Whaler (1987). Applying the KBM algorithm

to smoothed first differences of geomagnetic biennial means (those of Malin & Hodder

(1982)), for theperiod 1962-1976, Whaler was successful indemonstrating that at several

observatories a bilinear model for the SV, with a transition date around 1969, is an

adequate representation. However Whaler also concluded that at many observatories

the bilinear model is too simple, possibly due to contamination of the biennial means

by external fields for which no account was made in the analysis. There are however,
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drawbacks in the direct application of this algorithm to SV data. Firstly, the algorithm

assumes independence of successive data points, which is not the case with SV estimates

based on first differences (or biennial means for that matter). This is a problem of

which Whaler was well aware, but which cannot be obviously overcome in PCA. Taking

accountof this correlationby useofthe appropriatecovariance matrix in linear regression

leads identically to the first derivative of a quadratic model fitted to the undifferenced

data. Secondly PCA only determines inter-relationships between, in this context, the 3

magneticcomponentsand doesnot elucidate any time-dependence. Hence the algorithm

only determines the "direction" ofthe changes inSV andnot the magnitude ofthe change

from one datum to the next. One could attempt to overcome this by including the time

variable in the analysis but this variable is effectively perfectly known whereas the field

components are subject to significant observational error. Appropriate weighting of the

spatial and temporal variables to reflect this fact was foundto result in the sum ofsquares

and cross-products matrix becoming grossly ill-conditioned. To study jerks, Golovkov

et al (1989) plotted "polarograms" (SV of one field component against another) which

is similar to PCA although their method was entirely graphical rather than statistical.

Therefore, in analysing the linear SV hypothesis, it is more appropriate to investi

gate the quadratic timedependence directly. I therefore develop an algorithm analogous

to that of KBM but based on regression analysis rather than PCA. Although Whaler

(1987) saw some attractionin the simultaneous analysis ofall three components, I choose

to analyse each component separately. In this way there is no assumption made that

changes in the SV should occur simultaneously in allcomponents. In the context ofgeo

magnetic jerks this allows for varying emergence times of jerks, as seen in different field

components, as could occur as a result of the differential propagation of field harmonics

through the mantle (Backus, 1983).

4.2.1 Formulation

Consider a series of geomagnetic annual means for some field component {ut}, i =

1,...,JV. The subset Ik = {ui}yi = a*,... ,/?* will be termed a segment after the

terminology of KBM. Let nk = (3k - ak +1 and U be the central epoch for annual mean

Ui. Define a model for segment Ik by



67

ui = ak((U - ffc)2 - i\) + bk(U - tk) + ck + e< (4.2)

where e{ is the error term (assumed Gaussian with mean 0 andequal variance for a given

observatory's field component), ak,bk and ck are model parameters to be determined, tk

is the mean epoch for the segment and t\ is the mean square deviation of epochs from

the mean. The parameters akibk and ck can then be estimatedby least squares:

m = (G^r^d

where m = (ck, bki ak)T and d = (itafc,..., upk)T. G istheequations ofcondition matrix
with zth row

( i te-ffc) ((*-ffc)2-i!) )

By defining the quadratic model and equations ofcondition in this way it is ensured

that the normal equations matrix (GTG)-1 is diagonal (provided the ui are equally

spaced in time), i.e. the parameter estimates are independent. The estimated data

variance is defined by <j£ = d d~f_3GT<i (since 3parameters are determined). The
* 2

quantity (nk - 3)^ is then distributed as x2 with nk - 3 degrees offreedom where a
is the standard deviation of the data which must be specified a priori. The quadratic

defined by m will be termed a model segment.

4.2.2 Segment confidence regions

To assess the "strength" with which a particular model segment is determined, note

that dfc, 6jt and ck axe independent random variables. Assuming the null hypothesis

2?0 : m = 0, ^-, ^ and j^ all have Student's t-distributions on nk - 3 degrees of
freedom, where

(bc\ 0 0 ^
0 bb\ 0 =<t2(GtG)-1 (4.3)

^0 0 Sal)
(Montgomery & Peck 1982).

Now define qx = (f^)2, q2 = (^-)2. It follows that the better the curvature and
linearity are determined (corresponding to SA and SV respectively), the larger qi and

92 will be; when they are less well determined qi,q2 —• 0. However, as the SV is a more
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dominant effect than the SA, bk will be better determined than d*. Thus q2 will tend

to dominate q\. To curcumvent this problem, define a balanced, joint measure of the

confidence placed in the curvature and linearity estimates by

glg2

Ql + 02

The tighter the joint confidence region for ak and bki the larger q will be.

4.2.3 Piecewise regression algorithm

The algorithm to select the best piecewise quadratic model of the time-series is now

developed in a manner analogous to that of KBM.

• For each segment Ik = {itj},i = ajt,...,/9)t,fitamodel segment by least squares as

described above, where ak = 1,..., N - nm + 1 and (3k = ak + nm - 1,..., N. nm

is the minimum permitted length of segment (see below).

• Reject any segment for which (nk - 3)^ > Xo.95,nfc-3- Tnat is> reject any segment
which has an unexpectedly high misfit (at the 95% confidence level) (Wonnacott

& Wonnacott, 1981, p455).

• Reject any segment if nk < nm = 5. This is purely arbitrary but such short

segments are too poorly determined to be of use.

• Rank all remaining segments in order of decreasing g, i.e. the best determined

segments are placed first.

• Now work through this ordered list, rejecting any segment which overlaps unac-

ceptably with any segment higher up the list (see below).

The result of this algorithm is a partition of the time-series into a set of segments

(possibly spanning), which are well determined and fit the data adequately. The extent

to which consecutive segments should be allowed to overlap one another requires a sub

jective choice. As nothing is assumed about the behaviour of the field betweenquadratic

segments, allowance must be made for data in this transition period to be parameterised

by either segment or both, if this is statistically acceptable. Here, the segments were al

lowed to overlap by up to 3 points. In practise, this was found to partially overcome the



69

problem of misassignment of points to longer (and therefore stronger) model segments

encountered by KBM.

The complete model for the time-series consists of the set of accepted model seg

ments. Clearly it is unacceptable to have points parameterised in two distinct ways

where segments overlap. To clarify this apparent anomaly, the transition date from

one model segment to another was defined as the date at which the first derivatives of

the model segments were equal. Data before this date were parameterised by the first

segment and data after this segment were parameterised by the second.

The output from the piecewise regression algorithm (PRA) is the best determined

piecewise quadratic model which fits the data to a statistically acceptable level. Unlike

the method of B-splines which requires the specification of the number of knots for

example, this algorithm does not require the pre-specification of the transition dates

or the number of segments. What the algorithm does require however, is an a priori

value for the <72, the data variance. The smaller a is the closer the model will have to

follow the data — fewer and shorter segments will be acceptable. As a —> oo, longer,

and ultimately fewer, segments will be acceptable.

4.2.4 Information criteria and optimisation

A range of values of a thus implies a familyof models within which there will be a model

which is in some sense optimal Akaike (1973) extended the maximum likelihood principle

within an information theoretic framework by defining an information criterion based

on the Kullback-Leibler discrepancy. (See for example Linhart & Zucchini, 1986, for

background on discrepancies and model selection criteria.) Akaike defined the criterion
n

-2£log(<^) +2p
*=i

where n is the number of data, p is the number of model parameters and gz is the

likelihood of the ith datum (which has been maximised by the model estimate $i). This

essentially characterises a trade-off between quality of fit to the data and number of

parameters in the model. An optimal model will result in a minimum value for this

criterion.
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KBM define a modified version of the Akaike criterion. They define a PartialAkaike

Information Criterion or PAIC, which has the same form as the criterion which Linhart

& Zucchini (1986) simply refer to as the Akaike Information Criterion:

1=1

Not all models in the family will parameterise the same number of points; for example

for some value of a only one short segment may be acceptable. This obviously affects

the number of points contributing to the joint log-likelihood function. Division by n

simply compensates for this so that a fair comparison between models can be made.

Thus, under the assumption that the residuals are normally distributed, the form of the

PAIC here is

1 ^. , 1 J {ui-UifV M

= -Jfi [-N'logfrVftr) -v 2 ;j+— (4.4)

where M is the total number of model parameters (equal to 3 times the number of

accepted segments), N' is the total number of data which lie on accepted segments, Ui

is the model estimate of the ith datum and o2 is the total r.m.s. residual between the

model segments and the data. Note that in calculating a2, data jointly parameterised by

overlapping segments were assigned to one segment or the other dependent on whether

their central epoch came before or after the date at which the first derivatives of the

model segments w.r.t. t were equal. The essential part of the criterion is therefore

log(27r<r2) + — + 1 (4.5)

as linear scaling of the criterion does not affect its behaviour.

Clearly, in general a model can fit a data set perfectly given enough parameters,

which could occur for large a, thus sending the PAIC trivially to -oo; conversely a

model with a single parameter (ie. a mean value) will give a fit to the data which may

be unacceptably poor. Neither of these extreme cases is particularily useful. Between

these will he an optimal model for some value of a, which will in theory coincide with a

local minimum or plateau of the PAIC when plotted against a. For each prior value of

a specified, the PRA will, in general, yield a different set of accepted segments (model).
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1940

Figure 4.2: The synthetic model analysed using the OPRA algorithm before
the addition of Gaussian noise.

Starting with an initial value <r2 for the data variance, one may specify the apriori data

variance as u = (/?crp)2. The space ofacceptable models may beinvestigated by varying

the controlling parameter p which KBM term the "excess standard deviation". Using

the PAIC as a guide, an optimal piecewise quadratic model can hopefully be found.

For p < 1 the implication is that the initial value for the data variance is too large.

Values of p > 1 imply that either the initial value is too small or that there is some mis-

specification in the model; that is, the true model differs from the quadratic assumed.

This procedure will be referred to as the optimal piecewise regression algorithm (OPRA).

4.3 Application to synthetic data

The OPRA algorithmwas tested on synthetic data. The syntheticswere generated from

models consisting of various numbers of quadratic segments, with different curvatures

and constrained to be continuous at the transition dates, and with various amplitudesof

Gaussian errors added. An example synthetic based on a three segment model and with

no noise added is shown in Figure 4.2. This and all subsequent segment plots will show

the first time derivative of the segments, synthetics and (in §4.4) data, as this makes
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the performance of the PRA clearer, and no relevant information is lost. Again the SV

is approximated as in equation (4.1). The application of OPRA to this synthetic model

(with Gaussian noise of r.m.s. amplitude 2nT added) is illustrated in Figure 4.3. For

the lowest value of the excess standard deviation, p (0.3), only short, well determined

segments are accepted, giving a poorrepresentation ofthe series (Figures 4.3(a) and (d)).

As the value of p is increased the PAIC increases sharply. This was in general found to

correspond to a rapid increase in the number ofacceptable segments. This then gave the

algorithm the freedom to choose the strongest (and usually longest) segments possible.

As p was subsequently increased segments which provided a poorer fit to the data but

were betterdetermined became acceptable, while shorter segments were rejected asbeing

too poorly determined. Thus the number ofparameters required to model the time-series

in general decreased but the misfit increased. For a range of values of p centred around

1.0 the structure determined was stable and consequently there is a plateau in the PAIC

(Figure 4.3(e)). The segments yielded by the PRA for p = 1.0 give a satisfactory and

optimal fit to the time-series (Figure 4.3(b)). For p = 2.7, well beyond the optimal

value, a long segment offering a poor fit to the data is accepted by the algorithm. There

is then only scope for one other short segment to be accepted and so the overall fit to

the data is poor. Having established that the algorithmwas performing as expected, the

next step was to apply the algorithm to geomagnetic data.

4.4 Geomagnetic data analysis

4.4.1 Selection and validation of data

The data for the analysis in this chapter consist of time-series of observatory annual

means. The particular data set used was obtained from WDDC-Cl this being the

most up to date and exhaustive compilation of annual means available. This was then

separated by observatory. Many observatories had to be ignored as they did not have

sufficiently continuous data for the application of OPRA. Gaps of a few years at the

very most were deemed acceptable; longer gaps would have given rise to increasingly

erroneous results. In the case of an observatory closing and moving to a nearby site,

the data from the two sites were combined to form a single time-series. If a known
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Year

Figure 4.3: Model segments determined by the PRA for the indicated values
of p. Plots (a)-(c) show the synthetic data (plus Gaussian noise of r.m.s.
2nT) with model segmentsdetermined. Plots (d)-(f) showthe corresponding
values of po. Note the plateau centred on po=1.0 in (e)
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site change correction was available then this was applied so as to reduce the time-

series to the most recent site. Of the 119 observatories finally used, including composite

observatories, only 26 had any gaps in their time series. Of the total of 37 gaps, 20,

10, 3, 3 and 1 were of length 1, 2, 3, 4 and 5 years repectively. No attempt was made

to interpolate across these gaps as OPRA could still be applied, although slight non-

orthogonality of the covariance matrix (4.3) arises. Table 4.1 details the 89 single site

observatories and Table 4.2 the 30 composite sites. Once collated, each component of

all observatory records was plotted to aid detection ofbasehne changes, obvious keying

errors etc. In addition, approximations to the first derivatives of all time-series were

calculated (using equation (4.1)) and then plotted, as these tended to reveal "glitches"

more readily than plots of the main field. The few that were found were:

• Almeria (ALM), Z, 1986.5 omitted as suspect.

• Barrow (BRW), Z, Pre 1963.5, poor baseline control, 1974.5 removed as suspect.

• Changchun (CNH), Y, constant SV extrapolation to estimate jump of +73nT at

1979.5

• Hatizyo (HTY) - Simosato sitedifferences unknown; values ofold siteextrapolated

by constant SV to estimate: X : -412nr, Y : -860nT, Z : -1301rcT

• Lerwick (LER), Zy 1934.5 jump in Z estimated as +100nT; since re-estimated by
the BGS as +144nr.

• Wingst (WNG), A", 1989.5 value appeared as 19039 in the BGS file. As preceeding

years were 18065 and 18053 this was assumed to be a keying error and taken as

18039.

The time-spans for each time-series are indicated in Tables 4.1 and 4.2. A total

of 5766 vector annual means were analysed, with about one third of these being from
European observatories.

4.4.2 Correction for the effects of external fields

As theannual means consist ofaverages over all hours ofall days, they are affected by the

average disturbance field in the same way as the monthly means analysed in Chapter 2.
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As it was the intention to investigate the variation of the core field, it was necessary to

remove as much of the disturbance and associated inducedfields as possible. To achieve

this, the method described in Chapter 3 was applied, using the disturbance field model

AVDF91 in conjunction with the time-series of annual means of the aa index. For auroral

observatories also analysed in Chapter 2 the actual relative amplitudes determined were

used rather than the AVDF91 model prediction. I believe this removes the major part

of the contribution to annual means from external sources and the associated induced

fields. As discussed in Chapter 3 there may be some residual contribution from the Sq

current systems, but this is neglected. The resulting annual means are considered to

consist solely of core field, crustal anomaly and error.

4.4.3 Prior values for the standard deviation

In section §4.2.4 it was describedhow the OPRA analysis requires some initial estimate,

C7p, of the standard deviation of the data. The excess standard deviation, p, is then

varied until an optimal model is found at p = po say. The implied prior value of the

standard deviation ofthe data is thenu = poap. The actual starting value ctp is therefore

irrelevant though clearly some reasonable value must be chosen and a sufficient range of

values of p explored to cover the full family of possible models. Values of poap finally

chosen for each time-series analysed are given in Table 4.3.
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Table 4.1: Details of the 89 single site geomagnetic observatories used in the
analysis (see §4.4.1). The period given is the period from which data were*
used. Locations of the observatories appear in Figure 5.7

IAGA code Observatory name Latitude Longitude Period

AAA Alma Ata 43.25 76.92 1963-1988
AAE Addis Ababa 9.03 38.76 1958-1989
AIA Argentine Islands -65.25 295.74 1957-1984
ALE Alert 82.50 297.50 1961-1988
ALM Almeria 36.85 357.54 1955-1989
ANN Annamalainagar 11.37 79.68 1957-1988
API Apia -13.81 188.23 1905-1989
AQU L Aquila 42.38 13.32 1960-1989
ASH Vannovskaya 37.95 58.11 1959-1989
BEL Belsk 51.84 20.79 1960-1989
BJI Beijing 40.04 116.18 1957-1988
BJN Bear Island 74.50 19.23 1951-1990
BLC Baker Lake 64.33 263.97 1951-1989

BNG Bangui 4.44 18.57 1955-1988
BRW Barrow 71.38 203.72 1963-1989

CCS Cape Chelyuskin 77.72 104.28 1951-1989
CMO College 64.85 212.17 1959-1989
COI Coimbra 40.21 351.58 1867-1989
CPA ChaPa 22.35 103.83 1955-1980
CWE Cape Wellen 66.16 190.16 1955-1989
DIK Dixon Island 73.50 80.42 1949-1989

DOB Dombas 62.08 9.10 1952-1989

DOU Dourbes 50.10 4.59 1955-1988
EBR Ebro 40.82 0.49 1951-1980
ESK Eskdalemuir 55.32 356.80 1908-1989

FUQ Fuquene 5.47 286.26 1954-1982

FUR Furstenfeldbruck 48.17 11.28 1939-1989
GCK Grocka 44.63 20.77 1958-1989
GUA Guam 13.58 144.87 1957-1989
GZH Guangzhou 23.09 113.34 1958-1988
HLP Hel 54.61 18.82 1955-1989
HRB Hurbanovo 47.87 18.19 1950-1989

HUA Huancayo -12.05 284.66 1922-1988
ISK Istanbul-kandilli 41.06 29.06 1947-1977

KAK Kakioka 36.23 140.19 1930-1989

KGL Port-aux-francais -49.35 70.20 1957-1987

KNY Kanoya 31.42 130.88 1958-1989
KNZ Kanozan 35.25 139.96 1961-1988

KOD Kodaikanal 10.23 77.46 1951-1988
LER Lerwick 60.13 358.82 1923-1989

LGR Logrono 42.46 357.49 1957-1976

LMM Maputo -25.92 32.58 1957-1987
LOV Lovo 59.35 17.83 1929-1989
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Table 4.1: Continued..

IAGA code Observatory name Latitude Longitude Period

LQA La Quiaca -22.11 294.42 1942-1976
LRV Leirvogur 64.18 338.30 1957-1989
LUA Luanda Belas -8.92 13.17 1957-1985
LVV Lvov 49.90 23.75 1957-1989
LZH Lanzhou 36.09 103.85 1959-1988

MAW Mawson -67.61 62.88 1955-1987

MBO M Bour 14.39 343.04 1952-1988
MCQ Macquarie Island -54.50 158.95 1951-1988
MEA Meanook 54.62 246.67 1916-1989
MIR Mirny -66.55 93.02 1956-1988
MMB Memambetsu 43.91 144.19 1952-1989
MNK Pleshenitzi 54.50 27.88 1961-1988
MOS Krasnaya Pakhra 55.48 37.31 1946-1989

MUT Muntinlupa 14.38 121.01 1951-1988
NSM Nagycenk 47.63 16.72 1961-1989

NUR Nurmijarvi 60.51 24.66 1953-1989
NVL Novolazarevskaya -70.77 11.83 1961-1987
ODE Odessa 46.43 30.77 1948-1989

PAG Panagyurishte 42.51 24.18 1948-1983
PET Paratunka 52.90 158.43 1969-1988
PIL Pilar -31.67 296.12 1905-1988
PMG Port Moresby -9.41 147.15 1959-1988
PPT Pamatai -17.57 210.43 1968-1988
QUE Quetta 30.19 66.95 1953-1989

RES Resolute Bay 74.70 265.10 1954-1989
RSV Rude Skov 55.84 12.46 1907-1980

SBA Scott Base -77.85 166.78 1964-1989
SUA Surlari 44.68 26.25 1950-1989

TAM Tamanrasset 22.79 5.53 1952-1981
TEN Canarias 28.48 343.74 1959-1988

TFS Dusheti (Tbilisi) 42.09 44.71 1938-1989
THL Thule 76.53 291.11 1956-1988
THY Tihany 46.90 17.89 1955-1989
TIK Tixie Bay 71.58 129.00 1944-1989
TRD Trivandrum 8.52 77.00 1957-1989
TRO Tromso 69.66 18.95 1931-1990
TUC Tucson 32.25 249.17 1910-1987

VAL Valentia 51.93 349.75 1899-1989

VIC Victoria 48.52 236.58 1956-1989

VLA Gornotayezhnaya 43.68 132.17 1958-1988
VOS Vostok -78.45 106.87 1958-1989
VSS Vassouras -22.40 316.35 1915-1988
WHN Wuhan 30.53 114.56 1959-1988
WNG Wingst 53.74 9.07 1940-1989
YAK Yakutsk 62.02 129.72 1948-1987
YSS Yuzhno Sakhalinsk 46.95 142.72 1950-1989
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Table 4.2: Details of the 30 composite geomagnetic observatories analysed.
Distance is the great circle distance from the previous site (see §4.4.1). The
period given is the period from which data were used. Locations of the
observatories appear in Figure 5.7

IAGA code Observatory name Latitude Longitude Period Dist. (km)
ABG Alibag

Colaba (Bombay)
18.64 72.87 1904-1989

1868-1903

29

ARS Arti

Vysokaya Dubrava
Sverdlovsk (Yekaterinburg)

56.43 58.57 1972-1989

1932-1972

1887-1931

157

29

CAN Canberra

Toolangi
Melbourne

-35.31 149.36 1979-1988

1922-1978

1915-1921

427

54

CLF Chambon-la-foret

Val Joyeux
Pare St.Maur

48.02 2.26 1935-1988

1901-1935

1883-1900

90

34

CNH Changchun (Helong)
Changchun

43.83 125.30 1979-1988

1957-1978

25

EYR Eyrewell
Amberley
Christchurch

-43.42 172.35 1978-1989

1929-1977

1902-1928

42

43

FRD Fredericksburg
Cheltenham

38.21 282.63 1956-1989

1901-1955

74

GDH Godhavn

Godhavn

69.24 306.48 1976-1989

1927-1975

2

GNA Gnangara
Watheroo

-31.78 115.95 1959-1988

1919-1958

163

HAD Hartland

Abinger
Greenwich

50.99 355.52 1957-1989

1925-1956

1900-1924

286

42

HER Hermanus

Cape Town
-34.42 19.23 1941-1989

1932-1940

87

HIS Heiss Island

Tikhaya Bay
80.62 58.05 1959-1989

1951-1957

101

HON Honolulu

Honolulu

Honolulu

21.32 201.94 1961-1989

1947-1960

1902-1946

10

4

HTY Hatizyo
Simosato

33.12 139.80 1979-1989

1954-1977

362

IRT Patrony
Zuy
Irkutsk

52.27 104.27 1959-1989

1915-1958

1887-1914

43

27

KIV Dymer
Kiev

50.72 30.30 1963-1989

1958-1963

0

LNN Voyeykovo (Leningrad)
Slutsk

St. Petersburg

59.95 30.70 1947-1988

1877-1946

1869-1877

31

28

MGD Stekolnyy (Magadan)
Srednikan

60.12 151.02 1966-1989

1936-1965

267

MLT Misallat

Helwan

29.51 30.89 1960-1986

1903-1959

57

MMK Loparskoye
Murmansk

68.25 33.08 1961-1985

1958-1960

77
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Table 4.2: Continued.

NGK Niemegk 52.07 12.68 1932-1989 43

Seddin 1908-1931 12

Potsdam 1890-1907

SIT Sitka

Sitka

57.05 224.66 1940-1989

1902-1939

2

SJG San Juan 18.38 293.88 1965-1989 30
San Juan 1926-1964 75

Vieques 1903-1925
SNA Sanae -70.30 357.63 1980-1989 1

Sanae 1971-1979 9
Sanae 1962-1970 23
Norway Station 1960-1961

SOD Sodankyla
Sodankyla

67.47 26.60 1946-1989

1914-1945

0

SPT San Pablo de Los Montes

Toledo

39.60 355.65 1981-1988

1947-1980

41

SSH Zo-Se (Sheshan) 31.10 121.19 1932-1988 28

Lukiaping 1908-1932 39

Zi-Ka-Wei 1875-1908

TKT Yangi-Bazar
Keles

41.33 69.30 1964-1989

1937-1963

36

WIK Wien-Kobenzl

Wien-Auhof

48.26 16.32 1955-1989

1929-1954

9

WIT Witteveen 52.81 6.67 1938-1987 128
De Bilt 1899-1937 5

Utrecht 1891-1898

4.4.4 Results

In general, KBM found their PAIC to increase monotonically with increasing p usually

with some kind of inflection or plateau, as for the synthetic data shown in Figure 4.3.

Used in conjunction with the PEA applied to geomagnetic data, I have found the PAIC

to behave in a similar manner. For example, in Figure 4.5(e), there is a plateau in the

PAIC curve from p = 0.5 to p = 0.8 following an initial, rapid increase.

This corresponds to the range in pvalues for which the maximum number ofsegments

are acceptable (prior to partitioning) (Figure 4.4), thus giving the optimisation stageof

the algorithm maximum freedom. Such plateaux or inflections centred on some value

p = Po indicate a model or sub-family ofmodels which is stable with respect to p. That

is, the structure (set of accepted model segments) determined by the PRA does not

change significantly for minor deviations of p from p0.

Figures 4.5 to 4.7 show the models determined for a selection of components at
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various observatories. As with the synthetic data, first time derivatives of the model

segments are plotted against first differences of the data for clarity. In some cases, the

plateaux in the PAIC are not so well defined as one would hope, as in Figure 4.5(d)

for example, but in general a reasonable set of segments could be found near a "notch"

or sharp change in gradient. The number of acceptable segments prior to partitioning

was also found to be a useful guide in choosing p (see Figure 4.4). In Figures 4.5 to 4.7,

subplots (d)-(f) show the PAIC plots used as a guide to the selection of the optimalvalue

po of the excess standard deviation. Sub-figures (a)-(c) show the first time derivatives

of the resulting model segments compared to first differences of the data.

In general the model segments were found to correspond to what one might "pick by

eye", and for the optimal value of p the set of accepted segments spans the time-series

analysed. The model segments highlight some interesting features in the plots 4.5 to 4.7.

In particular note the sudden change in SV trend at around 1970 in Figure 4.5(a)-

(c), Figure 4.6(a)-(c) and Figure 4.7(a)-(c). Similar changes occur around 1978 in

Figure 4.5(a) and (c), Figure 4.6(a)-(c) and Figure 4.7(a) and (b). Two sudden changes

around 1978-1980 in Figure 4.7(c) are not properly resolved by the analysis. Changes are

also apparent around 1983 in Figure 4.5(c) and Figure 4.7(b). The main characteristic

of all these changes is that they appear to be complete within about 1 or 2 years.

Average lengths of segments, over all observatories, were 11.5, 10.3 and 10.3 years for

the X, V, and Z components respectively. In the case ofsome of the time-series analysed

certain periods are not adequately represented by any segment. In such cases there is in

Figure 4.4: Number of acceptable segments generated for each value of p
prior to partitioning, for the X component at Bangui.
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Figure 4.5: Plots (a)-(c) show the first differences of the X component at
(a) Apia, south Pacific, (b) Bangui, central Africa and (c) Godhavn, Green
landwith first derivative ofoptimal models, (d)-(f) show the corresponding
plots of Partial Akaike InformationCriterion (PAIC) against excess standard
deviation p.
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1950

Figure 4.7: Plots are as for Figure 4.5 but this time for the Z component,
for observatories (a) Fredericksburg, eastern United States, (b) Kerguelen
Island, Indian Ocean and (c) Yakutsk, Siberia, (d)-(f) as per Figure 4.5.
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effect a "missing segment" which is too short to be resolved by the PRA, ie. less than

six data points long, or a quadratic time-dependence is inadequate for representing

this period. Examples of this are in the X component at Apia (Figure 4.5(a)), in

which data from 1975-1977 and 1985-1989 are not modelled by any segment, and the Z

component at Fredericksburg (from Figure4.7(a)) from 1919 to 1922. In some instances,

although two segments may abut oreven overlap, thereisstillclearly a "missing segment"

or else the SV (at the resolution of annual means) is discontinuous. An example of

such a situation arises at Apia in the X component from 1929 to 1930 (Figure 4.5(a)).

Changing the last criterion in the PRA (the permitted segment overlap) might clarify

suchtransitionsbut would greatly increase computational expense and lead to permitted

models of useless complexity.

The use of composite site observatories could give rise to spurious changes in the

character of SV due to regional variations in SV or local induction anomalies. If this were

so then a correlation between segment transition dates and dates of site changes would

arise. For the 30 composite observatories, there were 135 component-site changes (3 for

eachofthe 45site changes). Thesewere checked to seewhethersegment transition dates,

or the beginning or end of segments in the cases where there was no overlap, occurred

within a fixed period before or after the site change. The number of components for

which this occurred were 7, 24, and 32 for periods of 0.5, 1 and 2 years either side of

the base change. Adopting the typical time scale of ~ 10 years between SV transitions

mentioned above and assuming uniformly distributed and uncorrelated occurrence of

site changes and SV changes, the expected occurrence rates are approximately 13, 27

and 54 respectively. This supports the contention that the analysis has not been unduly

affected by the site changes used here. Such an investigation was not conducted for

baseline changes at single sites catalogued in, and applied from, the BGS annual means

data set on the assumption that these would be less prone to error than site change

corrections.
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Table 4.3: Implied standard deviation of the data, (/ootrp), and r.m.s. resid
ual, tr, for each component at the observatories analysed. (See §4.4.3 and
§4.4.5 respectively.) Units are all nT.

IAGA (Po<rP) a IAGA (po<rp) a

code X Y Z X Y Z code X Y Z X Y Z
AAA 11.0 5.0 4.0 7.4 3.5 2.6 LQA 13.0 5.5 10.5 11.1 3.0 6.8
AAE 7.8 7.3 6.5 4.3 7.1 4.9 LRV 4.6 3.1 3.6 3.4 1.7 3.2
ABG 12.0 5.0 13.0 10.1 4.1 13.0 LUA 10.0 3.0 20.2 7.4 1.8 18.9
AIA 8.0 3.5 6.2 6.2 1.9 5.4 LVV 2.7 2.7 8.1 2.3 1.6 6.2
ALE 10.0 5.0 22.5 5.9 2.7 12.6 LZH 10.0 3.0 10.0 6.7 1.8 6.6
ALM 3.5 3.9 4.9 2.7 5.1 5.9 MAW 7.0 6.0 18.0 4.9 5.1 15.0
ANN 5.0 11.0 15.0 3.4 7.4 12.8 MBO 11.0 5.0 13.5 6.1 4.9 10.4
API 12.0 4.0 12.0 6.3 2.4 10.2 MCQ 8.5 7.5 5.0 7.0 5.9 4.8
AQU 5.4 1.9 4.6 4.0 1.2 5.1 MEA 13.7 8.2 13.4 12.2 6.6 9.5
ARS 9.0 5.0 6.0 9.0 4.5 5.8 MGD 4.0 3.5 10.0 3.8 2.0 10.2
ASH 9.0 10.0 6.0 9.1 11.5 3.6 MIR 13.0 8.5 22.5 12.7 6.2 18.7
BEL 3.0 2.7 4.9 3.1 2.2 2.4 MLT 12.0 6.5 21.0 10.5 7.3 17.2
BJI 10.0 4.0 6.0 6.5 2.0 4.0 MMB 2.5 1.2 2.0 1.9 0.8 2.3
BJN 9.5 7.5 10.0 9.2 5.3 6.0 MMK 3.0 5.0 8.0 3.0 3.6 4.8
BLC 13.5 9.4 13.5 8.4 6.0 7.6 MNK 2.5 3.9 3.5 2.1 3.0 3.6
BNG 7.0 7.0 10.5 5.3 5.1 7.9 MOS 6.0 4.5 3.5 6.3 3.8 3.3
BRW 3.7 5.9 8.8 2.4 4.9 3.5 MUT 10.0 11.0 15.0 8.1 7.7 13.2
CAN 5.0 4.0 4.0 4.0 3.1 3.3 NGK 4.2 3.6 6.0 3.1 2.6 5.1
CCS 4.0 10.0 11.5 3.3 8.6 11.6 NSM 6.5 4.5 3.5 6.2 4.3 2.3
CLF 7.5 4.5 6.0 8.0 3.5 3.2 NUR 5.3 2.1 3.0 4.3 1.7 2.5
CMO 4.7 3.2 3.8 4.3 2.9 2.6 NVL 11.5 7.0 21.8 5.5 6.9 23.5
CNH 7.0 5.0 5.5 4.5 4.3 5.8 ODE 4.0 1.8 2.8 4.1 1.7 3.0
COI 7.0 3.0 5.6 6.9 2.7 5.2 PAG 4.0 2.2 6.3 2.0 1.7 6.1
CPA 15.0 7.5 19.0 15.9 5.0 21.9 PET 5.0 5.5 3.5 3.6 2.2 2.1
CWE 5.0 7.5 6.5 4.7 6.6 5.6 PIL 8.0 4.5 12.0 7.6 3.4 8.6
DIK 6.5 7.0 6.0 5.3 5.5 4.4 PMG 4.0 2.5 10.0 3.0 1.6 7.9
DOB 4.0 3.0 7.0 3.2 3.0 4.8 PPT 4.0 2.5 4.5 2.3 1.8 2.4
DOU 4.0 2.4 3.5 2.6 1.6 2.6 QUE 15.0 5.0 14.0 16.4 3.2 11.5
EBR 7.0 4.5 8.4 6.0 4.5 6.0 RES 3.5 5.0 7.0 3.0 3.5 7.4
ESK 4.1 2.1 4.2 4.1 1.9 3.5 RSV 4.0 2.8 3.3 3.0 2.3 3.2
EYR 5.0 2.5 6.0 4.7 1.9 6.1 SBA 11.0 6.0 15.0 9.9 5.1 14.9
FRD 6.0 3.8 9.5 5.1 2.8 8.2 SIT 3.1 2.2 5.2 2.2 1.8 4.5
FUQ 4.5 7.5 7.5 5.3 7.3 6.8 SJG 8.1 2.8 8.8 6.4 1.8 8.7
FUR 6.5 2.4 3.5 6.4 2.2 2.9 SNA 20.0 19.5 15.0 16.5 19.6 12.4
GCK 4.0 1.5 7.7 2.6 1.0 6.2 SOD 7.1 4.2 6.6 5.7 3.9 4.7
GDH 5.0 4.5 14.5 3.8 3.4 13.1 SPT 2.5 2.1 6.3 2.3 2.1 5.4
GNA 5.0 5.0 5.0 3.9 3.1 5.1 SSH 10.0 5.5 9.0 7.7 4.9 8.5
GUA 5.3 2.2 2.8 2.9 1.4 2.0 SUA 5.0 3.3 7.0 4.7 3.3 7.2
GZH 7.0 7.5 25.0 6.9 5.8 14.3 TAM 12.0 6.0 18.0 7.6 3.9 6.7
HAD 3.9 2.8 3.4 3.8 2.4 2.4 TEN 12.0 6.5 21.0 13.3 5.8 22.5
HER 6.3 4.9 3.8 4.4 4.5 2.5 TFS 4.2 2.0 7.0 2.3 1.8 7.1
HIS 7.5 12.5 15.0 7.0 9.1 10.9 THL 2.5 3.0 5.5 1.6 1.9 4.4
HLP 5.5 3.9 3.5 4.1 2.2 3.7 THY 4.5 4.5 7.0 4.6 4.1 5.8
HON 3.9 1.9 5.4 2.6 1.4 3.4 TIK 4.0 3.5 15.0 3.4 3.2 12.1
HRB 10.0 2.5 8.0 5.5 2.3 15.6 TKT 4.0 2.0 10.0 2.3 1.9 6.2
HTY 8.0 7.5 7.5 6.4 7.1 5.1 TRD 8.0 6.0 10.0 4.5 5.4 7.0
HUA 5.0 4.5 6.0 4.5 2.4 5.2 TRO 5.0 3.5 15.0 3.8 1.8 14.0
IRT 8.0 3.5 12.0 7.5 3.2 11.4 TUC 7.2 2.4 6.1 4.4 1.4 4.1
ISK 7.0 5.5 10.0 6.2 5.9 8.8 VAL 3.5 3.6 9.8 3.0 2.9 8.8
KAK 6.5 1.8 5.9 4.1 1.0 4.3 VIC 4.2 4.5 4.9 2.6 2.3 4.9
KGL 6.0 4.0 4.0 5.4 3.3 7.6 VLA 12.0 3.5 10.0 13.6 2.0 6.8
KIV 5.0 2.1 4.9 3.6 2.0 2.8 VOS 19.0 7.5 27.0 14.9 5.7 23.0
KNY 6.8 1.1 2.7 3.5 0.8 1.2 VSS 7.0 3.5 7.5 6.2 3.3 3.6
KNZ 6.0 2.0 5.0 4.0 0.9 3.8 WHN 13.0 3.5 8.0 7.3 2.5 7.8
KOD 5.0 3.5 5.0 4.2 3.6 4.4 WIK 3.5 2.1 5.6 3.1 2.1 4.8
LER 4.8 3.3 5.8 3.7 2.6 3.5 WIT 4.3 1.8 2.0 3.3 1.5 2.1
LGR 5.0 3.0 3.5 2.5 2.4 1.8 WNG 4.5 1.5 3.5 3.4 1.1 2.7
LMM 10.0 3.5 3.0 3.9 2.6 2.2 YAK 6.5 4.5 8.0 2.7 4.5 5.8
LNN 8.1 3.3 7.2 6.9 2.5 5.4 YSS 8.0 6.0 6.0 5.3 5.4 4.4
LOV 3.5 3.3 5.6 3.1 3.2 3.6
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4.4.5 Analysis of residuals

The models did not always span each time-series: certain epochs were not modelled by

any segment. Hence not alldata points were parameterised. Those pointsjointlyparam

eterised by two segments were assigned to one segment as described in §4.2.4. Therefore,

after the eUmination of a handful ofoutliers from a few poor quality observatories, there

were 5467, 5442 and 5195 residualsfor the A", Y and Z components, respectively. R.m.s

residuals for each component at each observatory are given in Table 4.3 for compari

son with the implied prior value (poap) for the standard deviation of the data given to

the PRA to yield the optimal model. It appears that in most cases the differences are

marginal. Figures 4.8(a)-(c) show the normalised residuals to the segments determined

by the OPRA analysis ofthe geomagnetic data. Normalisation was achieved bydividing

residuals by the r.m.s. residual for each component at each observatory. It appears at

first from these plots that there is little doubt as to their Gaussian distribution, thus

confirming that the piecewise quadratic model is an adequate representation of the time-

varying core field. Figures 4.8(d)-(f) show the normalised residuals of the same models

to the annual means prior to correction for disturbance fields. Again the residuals appear

to be normally distributed. Figures 4.9(a)-(c) show the unnormalised residuals to the

corrected annual means while Figures 4.9(d)-(f) show the unnormalised residuals but

for the uncorrected annual means. The r.m.s. residuals to the corrected X, Y and Z

components were 6.1nT, 3.6nT and 7.6nT respectively, while those for the uncorrected

annual means were 10.7nT, 6.7nT and 10.5nT. Thus removal of disturbance fields has

achieved a 50 to 70 percent reduction in the variance of residuals. The residuals to the

uncorrected X, Y and Z componentswerefound to have mean offsets of -21.0nT, 2.0nr

and 4.8nT.

Figures 4.9(a)-(c) show that the distribution of the unnormalised residuals of the

corrected annual means are consistently more peaked than a normal distribution. This

may well be due to the large number of European observatories in the dataset (37 out of

119) which tend to be of higher quality. The residuals for non-European observatories

were found to have a r.m.s. typically 50-80% larger than European ones which would

tend to centralise the distributions of unnormalised residuals. It is interesting to note
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Figure 4.8: Plot of distribution ofnormalised residuals to piecewise quadratic
models, (a)-(c) are residuals to annual means corrected for disturbance
fields for the A7", Y and Z components respectively, (d)-(f) are residuals to
uncorrected annual means. Residuals from each observatory were normalised
by the r.m.s residual at that observatory for the relevent component. A
standard normal distribution is overplotted for comparison.

from these figures, however, that the Cauchy distribution appears to offera far better fit

to the sample distributions than the Gaussian distribution which is normally assumed

in geomagnetism. A possible cause of this could be that errors in cartesian components

derived from angular (polar) coordinates with uniformerrors have a Cauchydistribution

(Hald, 1952). Bearing in mind that most geomagnetic data are not measured in X, Y

and Z cartesian components but as some combination of angular and intensity data, this

could explain the apparent Cauchy distribution of the residuals. A uniform distribution

of angular errors seems rather implausible however; what is more likely (J. T. Kent,
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Figure 4.9: Plot of distribution of unnormalised residuals to piecewise
quadratic models, (a)-(c) are residuals to annual means corrected for dis
turbance fields for the X, Y and Z components respectively, (d)-(f) are
residuals to uncorrected annual means. In (a)-(c) dashed curves show the
best fitting Gaussian distributions and solid curves show the best fitting (by
eye) Cauchy distributions (see text). In (d)-(f) solid curve is best fitting
Gaussian distribution.

personal communication, 1991) is that the distribution is a combination of Gaussian

and Cauchy distributions. If this is the case, then it may be advisable to use the

components of the data that were originally measured, rather than transforming to

cartesian componentsas is often donewhen deriving geomagnetic field models (eg Benton

et a/, 1987). In the determination of geomagnetic main field models, the use of D, H, I

and F leads to a non-linear inverse problem (eg. Bloxham et a/, 1989) which requires an

iterative solution. The alternative — a maximum liklihood (ML) solution based on the
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Cauchy distribution — would also require an iterative solution, as the ML estimator of

the median (which must be used because the sample mean is an inconsistent estimator

of the population mean) cannot be obtained explicitly (Kendall & Stuart, 1961). This

point warrants further investigation in its own right. This would require a separate

analysis of data measured in X, Y and Z from that measured in D, H and Z though it

is not always clear from published catalogues which axe which.

The distributions of the unnormalised residuals for the uncorrected annual means

show distinct abnormality, are offset from zero and have larger variance due to the

effects ofthe external fields. In particular those for the Y and Z components show strong

positive skewing. The fact that abnormality is apparent in the unnormalised residuals

but not in the normalised is significant — the r.m.s. residuals computed from annual

means uncorrected for external fields over-estimate the true standard deviations. When

such biased estimates are used to achieve the normalisation of the residuals from the

different observatories, the true asymmetric nature of the residuals (as in Figure 4.9(e)

for example) is disguised (as in Figure 4.8(e)). Further, if such biased error estimates are

usedfor data weighting, for example in main field modelling (Langel et al, 1982; Backus

et a/, 1987), thenobservatories most affected by disturbance fields will beunderweighted,

introducing a bias into the field model.

4.5 Summary and Conclusions

In this chapter a new method has been developed specifically for the analysis of the

time-dependence of the geomagnetic field at individuallocations. It is specific in that it

evaluates the validity of a particular, though widely assumed, hypothesis — that of linear

SV. The algorithm considers all possible partitions of a give time-series and determines

the statistically strongest piecewise quadratic model which gives an adequate fit to the

data, while being optimal in the sense of a trade off between fit to the data and number

of parameters required. Transition dates from onequadratic segment to the next are self

selecting. The method was tested on synthetic data. The algorithm was then applied

to a large geomagnetic annual means data set, corrected for the cumulative effects of

time-dependent external magnetic fields.
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The first conclusion from the analysis is that the time-series of geomagnetic annual

means considered can be well represented by piecewise quadratic models. Although this

has not been compared against other methods such as stochastic time-series models

(see eg. Chatfield, 1984) the time-scales over which the quadratic parameterisation is

valid have been assessed semi-objectively and the fit to the data shown to be adequate.

In total approximately 93% of the annual means were parameterised by a quadratic

segment. The typical length of a segment, or period of hnear SV, was found to be

about 10 years. This may not be typical of SV in general since of the 119 observatories

analysed only about 40% were operating before1950 and ofthese only 11 operated before

1900. Consideration of the results from these observatories alone, however, indicates that

even for time-series of 80+ years the typical segment length is only marginally greater.

The weighted residuals are very well fitted by a standard normal distribution while

the unweighted residuals are more Cauchy, though it has been shown that this may be

due to European bias. Residuals to data not corrected for external field effects have

significantly higher variance and show distinct abnormality and could lead to bias for

weighting procedures in deriving field models.

Having shown that for the majority of geomagnetic time-series the dominant char

acteristic is a piecewise quadratic time-dependence, the interesting hypothesis can be

made that such segments be interpreted as the asymptotic output of the electromag

netic mantle filter, with an input which is a third order impulsein the geomagnetic field

at the core-mantle boundary. If this is the case then one would expect to be able to

detect some global synchronicity in the transition dates from one segment to the next.

This hypothesis will now be investigated.
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Chapter 5

Geomagnetic jerks of 1970, 1978

and 1983

5.1 Introduction

The primary aim of this Chapter is to assess whether the jerk of 1970 and supposed

jerks of 1978 and 1983 discussed in Chapter 1 are worldwide and whether each event

occurs at the same time in different locations. As the data analysed in Chapter 4 were

adjusted to remove the effects of external fields and as the results of that chapter are

to be used here such changes in field behaviour will (by default) be considered to be of

internal origin. Having argued that they are simultaneous and global in extent, their

spatial distribution will be mapped using a technique which has alreadybeen developed

and used successfully by others for mapping the field and its changes.

5.2 Global, simultaneous geomagnetic jerks

In Chapter 4 time-series of annual means corrected for the effects of external fields for

field components X, Y and Z for 119 observatories were analysed. It was shown that

the majority of these series can be adequately represented by a succession of quadratic

functions of time. The typical duration of such quadratics (segments) was found to be

of the order of 10 years, and they represent periods in which the secular acceleration

(SA) can be considered constant. If one such period follows closely after another or
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they overlap then the field component being represented could be considered to have

experienced an impulse (within the resolution of the analysis (approximately 3 years))

in its third time derivative. Such an event will be termed a virtual impulse or VI. An

intersectionor overlap ofthe twoquadraticsshows that data in, or close to, this transition

period can be equally well parameterised by either quadratic (within the limits of the

data noise). The date at which the first derivatives of the quadratics are equal is the

date at which the VI occurred and will be termed the virtual impulse epoch or VIE.

Such Vis in the observed field may be the surface expression of an impulse in the third

time-derivative of the field at the CMB as seen through a partially conducting mantle.

Alternatively theVImay occur at a particular date, not astheresult ofsome single global

"event" at the CMB, but merely by chance as a consequence of the piecewise quadratic

representation of the idiosyncratic behaviour of the field at a particular location. If

one accepts the latter hypothesis then an even distribution of Vis in time would be

expected. However in the case of a large scale CMB impulse one would expect Vis at

different observatories to occur at about the same time.

To investigate this point, plots showing the number of Vis occurring in each year

are presented in Figures 5.1 to 5.4. The plots show relative VI frequency (RVIF) —

the number of Vis which occur in a given year normalised by the number of observa

tories operating (times 3 if all components are considered together) for at least 5 years

before and after that year. Figure 5.1(a) shows that considering all components from

all observatories together, the distribution of Vis in time is uneven. It would appear

that for the post 1950 period the dates 1969, 1978 and 1983 are the most prominent

for the occurence of Vis. The peak at 1969 is interpreted as being associated with the

widely investigated jerk at that time and those at 1978 and 1983 to be associated with

similar events (see Chapter 1). These RVIF peaks will therefore be referred to as jerks

for the sake oflucidity. In the interpretation ofthese plots the width ofa peak (ie. the

number of successive years with a high RVTF) is important, as well as its height. For

example, Figure 5.1(a) shows that between 1968 and 1971 47% of all field components

experienced a VI, whereas 19% have a VI during the years 1963 to 1966. However the

primary purpose ofthese plots isqualitative rather than statistical. It is also important

to note that prior to 1957/58 (the International Geophysical Year when a lot of obser-
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vatories were established) the number of observatories contributing to each histogram

drops very sharply (Figure 5.5) and so the RVIF is much less reliable.

In this earlier part of the century there is a slight concentration of Vis in the late

1940s, a date conjectured by Golovkov et al (1989) as a jerk epoch; however, only 40 of

the observatories analysed were operating at that time. There are also some large RVIF

peaks prior to 1920 but fewer than 20 observatories contribute in this period making an

interpretationof thesepeaks as being globally significant less reliable. Figures 5.1(b)-(d)

shows the RVIF for all observatories separatedby field component. In the X component

the 1969 jerk appears to reach a maximum at 1971/1972 and in general is spread over

a longer period than in the Y component, for which the maximum RVIF is reached in

1969 as it is for Z. The 1978 jerk is almost absent from X but in Y is as clear as the

1969 event. For Z, 1965 and 1978 seem to be as significant as 1969 with an apparent

jerk in 1983 which is also present in X but not in Y.

Several studies have highlighted the prominence of the 1969 jerk in the Y component

in Europe (eg. Courtillot et al, 1978; Backus &Hough, 1985; Gavoret et al, 1986), which

might suggest this jerk is a regional feature of the secular variation (SV) rather than

being worldwide in extent. Figure 5.2 compares RVIF for the (37) European and (82)

non-European observatories in the study. "Europe" here means the 37 observatories

represented in Figure 5.7(b). Comparison of Figures 5.2(a.i) and 5.2(a.ii) shows that the

jerks are not confined to Europe. The apparently smallerproportion of field components

affected in Figure 5.2(a.ii) may simply result from some regions being unaffected by the

jerk whereas in others it may be as strongas in Europe. The 1969 eventis represented in

the Y component at the majority of European observatories in either 1969 or 1970 while

in the X component it clearly occurs later and over a longer period. The 1983 event is

very pronounced in the Z component in Europe, with Z at half the observatories being

affected in 1983 alone. Four other geographic sub-regions are considered in Figures 5.3

and 5.4. The smaller number of observatories in the sub-regions "the Americas" (18),

"East Asia" (20) and the southern hemisphere (22) makes the histograms less reliable

and jerks harder to define, and jerks would probably not have been identified from these

sub-plots alone. However the 1970, 1978 and 1983 jerks are all apparent in both the

Americas and East Asia although each jerk appears strongest in different components
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Figure 5.1: RVIF for all 119 observatories analysed. Plots are (a) for all
components, (b), (c), (d), for X, Y and Z components respectively.
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European Non-European

Figure 5.2: RVIF for European (i) and non-European (ii) observatories.
Plots are (a) for all components, (b), (c), (d), for X, Y and Z components
respectively.
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Figure 5.3: RVIF for (i) observatories in north and south America (total 18)
and (ii) East Asian observatories (total 20). Plots are (a) for all components,
(b), (c), (d), for X, Y and Z components respectively.
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Figure 5.4: RVIF for (i) northern hemisphere observatories (total 97) and
(ii) southern hemisphere observatories. Plots are (a) for all components, (b),
(c), (d), for X, Y and Z components respectively.
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Figure 5.5: Number of observatories with time-series extending at least five
years before and after the given date.

in each region. Ducruix et al (1980) claimed the 1970 event was absent in observatory

records from southern hemisphere observatories but Figure 5.4 indicates that this is

not entirely true. There is also an apparent change in the Z component in 1962 which

appears to be confined to the southern hemisphere. It is interesting to note that rapid

changes in the SV in 1983/84 in Southern Africa have been noticed recently (Kotze et

al, 1991) and South Georgia (Dowson et al, 1988).

5.3 Models of the main field, secular variation and secular

acceleration

In the last section it was argued that changes in the time-dependence of the field of

global significance have occurred around 1970 and 1978, and possibly 1983. In this

section, reliable spherical harmonic (SH) models of these phenomena are derived un

der the assumption that they arise from an impulse of finite power in the third time

derivative of the field (third orderimpulse) at the core-mantle boundary (CMB). Under

this hypothesis, the resulting change in the field at the Earth's surface has a quadratic

time-dependence which is only approached asymptotically as a result of the smoothing

effects of the electromagnetic mantle filter (Backus, 1983).

It was shown in Chapter 4 that at most observatories the time-dependence of the

field can be reasonably approximated by quadratics between such jerk events and so a
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quadratic time-dependence will be adopted for the main field (MF) as a whole. The

epochs 1965.5, 1974.5, 1981.5 and 1986.5 (corresponding to minima in the RVIF his

togram of Figure 5.1(a)) will be assumed to be dates at which the global SA is at its

most stable either following or prior to a jerk and at which, therefore, a quadratic time-

dependence is most valid for the main field. For brevity such a date will be referred to as

stable secular acceleration date, or SSAD. Time-dependent SH models for the MF will

be derived for these epochs (SSAD models) and will be used to derive spatial models of

the jerks of 1970, 1978 and 1983 (jerk models).

5.3.1 Stochastic inversion

In the following it will be assumed that the field variations being represented are of

purely internal origin, external fields having been largely removed as described earlier.

It will also be assumed that all observatories involved are at sea-level and that the Earth

is spherical of radius rs = 6371.2km and that the core is also spherical with radius

rc = 3485fcm. The time-dependent magnetic field B can be represented by the gradient

of a scalar potential V using

f-x\
B= +Y =-VV (5.1)

\~Z )
which in turn can be expanded as a spherical harmonic series

V(r,0,<j>;t)=rsYlY,\ fa?COcos(™« +*?Msin(m^)] (-±) \ P?(0) (5.2)
n=lm=0 I \r / )

where P™ are Schmidt quasi-normalised associated Legendre functions. N must be infi

nite to fully represent an arbitrary potential however only a finite number of coefficients

can be estimated from a finite data set. Let each SH coefficient g™ of a SSAD model

have quadratic time-dependence given by

9n(t) = <g[t ~ h? + b™[t - tl] + C™ (5.3)

and similarity for h™(t), where ti is an arbitrary reference epoch. The data, X,Y, Z

and their time-dependence can be related to the model parameters via (5.1), (5.3) and

the derivatives of (5.2) with respect tor, 0 and <f>. For finite vectors d and m of nj data

and p model parameters respectively this relationship can be succinctly expressed as
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d = Gm + e, (5.4)

where G is known as the equations of condition matrix and e is the vector of errors

or more exactly the discrepancy between the data and the model estimate of the data.

The method of least squares has traditionally been used to find the "best-fitting" model

estimate by minimising the sum of squares of the residuals. The least squares solution

is given by

m =(G^r^d. (5.5)

Finding a solution involves an arbitrary truncation of the field at some fixed and finite

value of N, which is equivalent to requiring that all harmonics of degree n > N are

identically zero.

An alternativemethodknown as stochastic inversion (SI) (introduced to geomagnetic

field modelling in a series of papers by D. Gubbins and J. Bloxham during the mid

1980s (Gubbins, 1983; Gubbins, 1984; Gubbins and Bloxham, 1985) hereafter referred

to as GFA1, GFA2 and GFA3 respectively) allows more general prior information to

be introduced. This is achieved by the specification of a covariance matrix Cm for the

model parameters and the solution is then

m = (a^G +C-'r^C^d (5.6)

where Ce is the covariance matrix for the data. This solution minimises the quantity

eTC~1e + mTC~1m, where e is the vector of residuals. The solution is equivalent to
that of simple least squares if C"1 = 0, the zero matrix and C"1 = I, the identity

matrix. It is equivalent to a damped least squares solution if Cm is a scalar multiple of

the identity matrix.

5.3.2 Data

Consider a SSAD ti for which a quadratic time-dependent model ofthe field is required.

The model must be valid for epoch %i and therefore any observatory field components

withan acceptable quadratic model segment (see Chapter 4) in which t2 falls will provide

an estimate of the time-dependence of that component to be used as data for the model.

Let the coefficients of the relevant segment for the ith. observatory field component be
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c, band a with errors, ofestimated variance 6c2, 6b2 and 6a2, which are independent by

the forced orthogonality ofthe quadratics in Chapter 4. Recall from equation (4.2) that

the estimate of the field component from this segment is given by

u{t) = o((* -1)2 - t2) + b(t-i) + c (5.7)

where i is the mean epoch for the segment and t2 is the mean square epoch for the

segment. Although validfor epoch t2, the segment must be defined with respect to some

common reference epoch t\. To do this express u as

u(t) = a'(t - tx)2 + b'(t -1{) + c' (5.8)

and hence

a' = a

b' = 2atd + b I (5.9)

c' = a(t\ - t2) + btd + c

where td = t\ —t.

Rather than using the diagonal elements of the segment parameter covariancematrix

£2G;fG8 as 6c2, 6b2 and 6a2 (where the subscript s indicates that the a and G are

from estimating the segment coefficients in the OPRA analysis) a slight modification is

introduced and (poap)2G^G8 isused instead, where po isthevalue oftheexcess standard

deviation which gave an optimal segment model for this component and <rp is the prior

value for the component's standard deviation used in the OPRA analysis. The value

(po<7p) probably gives a less biased estimate of the standard deviation of the data than

<7 as it is derived from all the segments for a component rather than a single segment.

In practice this correction was found to have a very minor effect on the results of the

inversions.

The short spatial wavelength field associated with crustal magnetisation will con

tribute to c and hence d. This is corrected for here by subtracting crustal anomaly

values. The primary source of these corrections is Bloxham et al (1989) who computed

the anomaly values by comparison of observatory annual means with a model derived

from data from the satellite Magsat at epoch 1980. For observatories for which no such

anomaly value was available, values from GFA3 were used and, failing that, values from
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Langel et al (1982) were used. For observatories at Changchun, Wuhan, Guangzhou

and Lanzhou, for which no correction was available, the variance of c was increased

by (300nT)2, (350nT)2, (500nT)2 for the X, Y and Z components respectively, these

values being representative of the mean squared crustal anomaly (Benton et al, 1987).

At all other observatories, 6c2 was increased by (50nT)2 to allow for error in the crustal

anomaly value.

The error estimates for the a and b coefficients from Chapter 4 were found to be

consistently very optimistic. Figures 5.6(a)-(d) show examples of first differences of the

data plotted with one of the fitted model segments, together with the same segment

with its a coefficient ((a) and (c)) and 6 coefficient ((b) and (d)) perturbed by ten

times their estimated errors. It is clear, particularly for the longer segment, that using

the original estimated errors would be unrealistic and so for the present purpose the

estimated variance is increased by a factor of 100. Note in Figures 5.6(a) and (b) the

small (approximately2nT r.m.s) systematicvariation,which may well be the unmodelled

contribution from the solar cycle modulation of the Sq.

Data for the inversions consisted of the results from the 119 observatories analysed

in Chapter 4, and their geographical distribution is shown in Figure 5.7. Codes, names,

locations and period of operation of these observatories are given in Tables 4.1 and 4.2.

For each of the four SSADs identified, the segments for each observatory field compo

nent "active" at that date were selected and reduced to the common reference epochs

1970.0, 1978.0 and 1983.0. This meant a total of 6 inversions were necessary which could

then be used to derive models of the 3 jerks. If segments overlapped at a SSAD, the

transition date from one segment to the next was defined as in §4.2.4. Not all data were

spanned by a segment in the OPRA analysis and so not all field components at each

observatory provided data for the inversion. Plots ofthe selected segments against data

(first differences again) were visually inspected to ensure they adequately represented

the time-dependence of the field at that epoch. For example, in some cases the SSAD

fell at the very extremity ofa segment, and the behaviour of the field at that epoch was

not entirely clear. The number of components contributing to each of the models, (pre

and post 1970, pre and post 1978, pre and post 1983), were 299, 316, 316, 285, 285, 222

respectively. The start and end years of the quadratic segments used are given for each
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Figure 5.6: Examples of first time-derivative of model segments perturbed
by errors. Solidfine is from the modelsegment, while dashed lines are from
the segment with slope (a coefficient) and offset (6 coefficient) perturbed by
10times the estimated error from Chapter 4. (a) and (b) are for Eskdalemuir
(Y component) while (c) and (d) are for Honolulu (X component). Note the
apparent (unmodelled) solar cycle effect at Eskdalemuir.

of the 6 models in Table A.l in the appendix. The resulting models will henceforth be

referred to as models PR1970, PO1970, PR1978, P01978, PR1983 and P01983. Note

that models PO1970 and PR1978 are derived from the same data set, as are P01978

and PR1983. The difference between them is that PR1970 and PO1970 have their time-

dependence defined w.r.t. reference epoch 1970.0, PR1978 and P01978 w.r.t reference

epoch 1978.0 and PR1983 and P01983 w.r.t. reference epoch 1983.0, which means that

the data covariance matrices, which will be discussed next, are all different.

5.3.3 Structure of the data covariance matrix

The reduction ofthe quadratic coefficients to a common reference epoch introduces cor

relations between the estimates of their standard errors and hence the data covariance

matrix Ce for the problem is non-diagonal. Thus a simultaneous inversion for all co

efficients is necessary. As this matrix is of dimension n& x nd inverting it could be
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Figure 5.7: Distribution of observatories used in the stochastic inversions
and for which OPRA analysis (Chapter 4) was performed. Star indicates
observatory location andthe IAGA code ofthe observatory is shown close by.
(a) Worldwide, excluding "Europe" (shaded). Latitude shown is from 90°
south to 85°north, (b) "European" observatories (Latitude 35° to 65° North;
Longitude 15° west to 40° east). Projections are cylindrical equidistant.
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formidable; however, by ordering the data as

(ci>&i >ai>•••»c^, 6^, a'K)

the covariance matrix is of the form

/ Ci \

Ci (5.10)

V o ... o ... cK)

where the C» are 3 x 3 submatrices, one for each of the K observatory field components

analysed (hence nd = ZK). C"1 is then of form (5.10) with C"1 in place of the C*.

Dropping the subscript i, each covariance submatrix is of form

I (t2d - t2)26a2 +t26b2 +6c2 2td(t2 - i2)6a2 +td6b2 (t2 - t*)6a2 ^
2td(t\ - t2)6a2 + td6b2 At26a2 + 6b2 2td6a2

(t2d - t*)6a2 2td6a2 6a2

(5.11)

/

5.3.4 Parameter covariance matrix: model norms

For the remainder of §5.3 MF, SV and SA will be used to refer to the time-dependence

denned by coefficients c^,, 6™ and a™ respectively (p = g,h) for lucidity, even though

at t = ti the secular acceleration (SA) is defined by 2a™. In choosing the form of

prior information, it is clearly preferrable to make a choice which has some physical

interpretation rather than, for example, the arbitrary and premature truncation of the

field in simple least squares. The quantity rhTC-1m defines a norm of m. The solution

(5.6) has the property that, for a given residual norm eTC~1e, the model norm is a

minimum. The key is to choose Cm such that ri^C"1!!! has a physical interpretation.

GFAl introduced the uniform variance norm, which in essence encodes the information

that the field originates in the core rather than just somewhere within the Earth, and

the minimum energy norm which corresponds to minimising the mean squared radial

field at the CMB. GFA3 considered two further norms: the finite Ohmic heating norm

and the dissipation norm. The former requires that the Ohmic heating in the core be
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finite and is the only one of the four norms which is rigorous whilst the latter minimises

an estimate of the effects of diffusion and is the strongest constraint.

The latter two norms can be used in connection with the MF but cannot be applied

justifiably to its time derivatives. Here the dissipation norm is used for the main field,

following Bloxham et al (1989). The uniform variance norm was introduced in the

analysis of SV in GFA2 and is used here for the SV and SA as it is intuitively attractive.

In specifying the prior information, the spherical harmonics are assumed independent so

that Cm is diagonal. For the dissipation norm the variance of an nth degree harmonic

is

,_l/rc\2n (2n+ l)
1 W (nT

and for the uniform variance norm

>.-&
\ 2n+4 i

j (^+1)5. J=2-3 (5-13)
where Ai, A2 and A3 are damping parameters for MF, SV and SA respectively. As the

damping parameters are increased the implied prior variance for the model coefficients

is decreased (the prior information is imposed more strongly) and the residual normwill

increase.

5.3.5 Results

Substitution of the model coefficients back into equations (5.1) to (5.3) allows the MF

predicted by the model to be plotted for a specified epoch. Differentiation with respect

to time allows the SV and SA to be plotted (although of course SA is constant for each

model). Figure 5.8(a), (b) and (c) show the Z component of MF for epochs 1965.5,

1974.5 and 1986.5. In common with other maps of the radial flux at the CMB (eg.

Bloxham et al, 1989), these maps show some important features of the field including

areas of "reversed" flux in both hemispheres, undulation of the magnetic equator and

concentration of flux in 4 "lobes" at approximately 120° longitude east and west with

equatorial symmetry. There appear to be no significant changes in these main field

maps over the relatively short time period investigated here, probably due to the rather

low spatial resolution (see below and Figure 5.14) which drops off sharply at around
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spherical harmonic degree 9 for the main field. Secular acceleration for epochs 1965.5,

1974.5 and 1981.5 is shown in Figures 5.9 to 5.11, for each of the components X, Y and

Z. These are plotted at the Earth's surface since the uniform variance norm does not

ensure convergent error estimates at the CMB. Downward continuation of the SA and

SV, under the insulating mantle approximation, is less appropriate than for the main

field as the effects of a weakly conducting mantle are expected to be greater for the

higher time derivatives of the field (Benton & Whaler, 1983).

Damping

The non-diagonal nature of the data covariance matrix adds a slight complication to

the exploration of the damping parameter space as, for example, altering Ai (which

determines the part of the model norm relating to the c coefficients) will also affect

the values of the a and b coefficients determined. This effect was investigated for all 6

models and an example is shown in Figure 5.12. These trade-off curves show how as

damping is increased the model norm (and hence model complexity) is reduced at the

expense of increased residual norm. Here the log of the partial model norms was plotted

against approximate misfit ((eTC~1e/nd)2). (The partial model norm is defined here

as that part of mTC~1m arising from the SA, SV and MF separately and with the

damping parameter omitted from C"1.) It is clear that the damping parameters can

be varied independently for all practical purposes. Therefore to explore the parameter

space each damping parameter was varied in turn while the others were held constant.

This is illustrated in Figure 5.13. The trade-off curves were then used to choose the

value of damping parameters for the final models, the upper end of the "knee" being

preferred. The same damping parameters Ai = 10~12, A2 = 10~6 and A3 = 10~3 were

chosen for all 6 models following the Bayesian philosophy (Bloxham al, 1989) that the

prior assumptions about the variance of the model coefficients should not change from

one epoch to the next. This is certainly justifiable for Ai as the physics of the core

should not change from one epoch to the next, however, for the uniform variance norm

it could be argued that for epochs with significantly less data (ie. model P01983) the

variance of the coefficients should be expected to be higher.
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Figure 5.8: Z component of the magnetic field at the CMB for epochs (a)
1965.5, (b) 1974.5 and (c) 1986.5 derived from models PR1970, PR1978
and P01983 respectively. Scale is from -9 x 105nT to 9 x 105nT and the
projection is Mollweide.
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Figure 5.9: Components (a) X, (b) Y and (c) Z of secular acceleration for
epoch 1965.5 from model PR1970. Scale is from -QnT/yr2 to 9nT/yr2 for
all components. Projection is cylindrical equidistant.
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Figure 5.10: Components (a) X, (b) Y and (c) Z of secular acceleration for
epoch 1974.5 from model PR1978. Scales are from -9nT/yr2 to dnT/yr2
for X and Y and -l8nT/yr2 to ISnT/yr2 for Z. Projection is cylindrical
equidistant.
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Figure 5.11: Components (a) X, (b) Y and (c) Z of secular acceleration for
epoch 1981.5 from model PR1983. Scales are from -QnT/yr2 to +9nT/yr2
for X and Y and -ISnT/yr2 to + 18/?T///rJ for Z. Projection is cylindrical
equidistant.
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Resolution and convergence

The resolution matrix R defines the relationship between the model estimate and the

true model and is given by

R = (G^G + C-irH&C^G). (5.14)

The diagonal elements of R give an indication as to what degree the model coefficients

are well determined and these are plotted for each of the models in Figure 5.14. All

models were determined using a truncation at degree N = 14. To check that this was

not too low, the truncation level was gradually increased keeping the damping fixed. Any

changes in the models arising were found to be insignificant, with a typical field power

(Lowes, 1966) ofmagnitude 10"2(nr)2,10-6(nT/yr)2 and10"9(nT/(yr)2)2 for the MF,

SV and SA respectively at degree 14. The trace of R (sum of diagonal elements) gives

the effective number of degrees of freedom of the model and can be evaluated separately

for the MF, SV and SA.

The statistics of the six inversions are given in Table 5.1.

Fit to the annual means

To assess how well the models fit the original annual means in comparison to other

models, residuals to the constant secular acceleration models and to a time-dependent

model of the magnetic field for the period 1840 to 1990 (Bloxham & Jackson, 1990; to

be referred to here as the BJ2 model) were computed. The results of this comparison

are summarised in Table 5.2. It is apparent that over the time periods for which the

constant secular acceleration models are expected to be valid, the BJ2 model gives a

slightly better fit to the data though the difference is marginal. For the shortest time

period (1979.5 - 1983.5) the spline model gives a poorer fit. The BJ2 was based on a

much larger data set than used here, including both satellite and survey data in addition

to observatory data, as well as being greatly over-parameterised (A. Jackson, personal

communication, 1991), and this may account for the slightly better fit. Figure 5.15

shows a plot of mean residuals to both the BJ2 model and model PR1970 calculated

for the years 1961.5 to 1977.5 (thus taking model PR1970 beyond its expected range of

validity). To eliminate the dominant effect ofunmodelled shortwavelength crustal field,
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Table 5.1: Statistics of the stable secular acceleration models. Trace and
model norm are as denned in §5.3.5, while nd is the number of data. The
misfit is denned as (eTC^1e/(nd - Trace(R))1/2. Misfit, trace and nd are
all dimensionless.

Misfit Trace Model norm na

MF SV SA MF SV SA
Units — — — — 1013(nT)2 107 (nT/yr)2 104(nT/yr2)2 —

PR1970 0.93 97.9 72.4 52.1 7.54 5.40 3.59 894
PO1970 0.89 102.6 75.1 49.0 8.01 4.91 4.25 945
PR1978 0.89 102.7 75.7 47.9 8.09 5.26 4.16 945
P01978 0.85 100.6 72.8 43.1 8.45 4.38 2.33 852

PR1983 0.86 100.5 72.0 43.8 8.54 4.16 2.37 852
P01983 0.69 85.8 58.6 32.8 6.51 2.58 1.16 663

(a)

t x,=io-ls
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Figure 5.12: Trade-off curves for model PR1970 showing how the damping
parameters Ai, A2 and A3 can be varied (almost) independently (see §5.3.4
and §5.3.5). Points are for actual values relating to MF (•), SV (o) and SA
(*) for different values of damping parameters and curves are linearly inter
polated. Abscissas are approximate misfit (eTC~1e/nd)1^2 whilst ordinates
are log of partial model norm for the MF, SV and SA separately.
(a) is for Ax = 10-11, A2 = 10-4 and A3 = 10~8 to A3 = 102 increasing by
factors of 10

(b) is for Ai = 10"11, A3 = 10"1 and A2 = 10"9 to A2 = 10~2 increasing by
factors of 10

(c) is for A2 = 10~4, A3 = 10"1 and Ai = 10~15 to Ai = 10~8 increasing by
factors of 10.
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Figure 5.13: Trade-off curves for the SA, SV and MF for all 6 models.
Curves have been horizontally offset for clarity, hence the horizontal scales
are omitted Dashed lines bound the points (indicated by •) corresponding
to the values of damping parameter chosen for the final models (Ai = 10"12,
A2 = 10~6 and A3 = 10~3). (a) shows the partial model normfor the SA for
a range of values of A3, (b) is for the SV for a range of values of A2 and (c)
is for the MF for a range of values of Ai with, in each case, the other two
damping parameters held constant. Damping parameters change by factors
of 10 from one point to th next.

the mean residual for the period 1961.5 to 1969.5 for each observatory was subtracted

from the residuals before forming the mean for all observatories. It can be seen that

model PR1970 gives a good fit to the data prior to 1970 (although there is someevidence

of a systematic error in the X component) but breaks down quite rapidly after this date.

The spline model continues to fit the data well throughout the whole time period.

5.3.6 A note on computational efficiency and accuracy

All computations were performed using double precision arithmetic in FORTRAN 77 on

a Sun Sparc-station. The most time-consuming operation in the inversion procedure is

forming the normal equations matrix GTC~1G. Although this need only be computed

once, the linear system involving (GTC^1G + C"1)-1 must be solved anew for each

choice of damping parameters. Three different algorithms were used for the matrix

inversion. The routine F01ABF of the Numerical Algorithms Group Limited (NAG,

1988) uses Cholesky decomposition with iterative refinement (eg. Press et al, 1989) to

compute the inverse of a positive definitesymmetric matrix to full machine precisionand
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Figure 5.14: Plots of diagonal elements of the resolution (equation 5.14)
against harmonic degree for models (a) PR1970 (b) PR1978 (c) PR1983 (d)
PO1970 (e) P01978 and (f) P01983. The differentcurvesin each plot are for
the three types of spherical harmonic coefficient a™ (leftmost), 6™ (centre)
and c™ (rightmost) from equations (5.2) and (5.3) where p is either g or h
and the ordering of elements is increasing harmonic order within harmonic
degree.

was used as a standard against which other routines could be checked. The drawback of

this routine is that it is very slow which is an important consideration when exploring

the parameter space. Thereforetwoother routines were tried: a Cholesky decomposition

routine based on the method of Lawson & Hanson (1974, pl23) and the NAG routine

F01AAFwhichcalculates the approximateinverse ofa real matrix using Crout's method.

For a model of maximum degree 14 (672 parameters) the times taken to solve the linear

system of equations were 16920, 1940 and 572 seconds respectively on a Sun Sparc 2

workstation running at ZZMHz. Mean absolute differences between elements of the

inverse matrices computed by different methods were found to be 5 x 10"13 for the
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Table 5.2: Comparison of the residuals to the annual means used in this
study to (1) the constant secular acceleration models and (2) model BJ2
(see §5.3.5) for four time periods. Figures given are the r.m.s. residual for
all observatories, though with respect to the mean residual for each observa
tory. Ratios are the mean of the r.m.s. residual to the spline model divided
by the r.m.s. residual to the constant secular acceleration model, for each
observatory. Units are nT.

Model Span X r.m.s. Y r.m.s. Z r.m.s. Ratios

(1) (2) (1) (2) (1) (2) X Y Z
PR1970

PO1970

P01978

P01983

1961.5-1970.5

1971.5-1978.5

1979.5-1983.5

1984.5-1990.5

4.81

4.50

8.07

4.40

4.44

3.01

8.15

3.74

4.01

3.55

13.48

3.54

3.31

3.12

13.69

2.98

7.72

5.72

9.73

6.59

6.15

4.01

9.50

4.93

0.99

0.70

1.14

0.92

0.83

0.82

1.13

0.86

0.79

0.91

0.91

0.95

E-
£

1962 1964 1966 1968 1970 1972 1974 1976 1978

Figure 5.15: Mean residuals (corrected for time-independent crustal bias
as described in §5.3.5) to the PR1970 model and the time-dependent field
model BJ2.
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Lawson & Hanson method versus F01ABF (close to machine precision) and 2 x 10-11

for F01AAF versus F01ABF. The field models resulting from the use of F01AAF were

found to have identical coefficients to at least 7 significant digits, which is sufficient

to parameterise the Earth's magnetic field accurately using observatory data. This

algorithm was therefore used in computing the models presented here.

5.4 Models of the geomagnetic jerks of 1969, 1978 and

1983.

The change in SA for each of the 3 jerk epochs can now be simply calculated as the

difference between the SA predicted by the pre and post jerk models. The covariance

matrix for the jerk is obtained by the sum of4 times the covariance matrices for the pre

and post jerk models. All 3 components of the step change in secular acceleration are

plotted for the 1970, 1978 and 1983 jerks in Figures 5.16 to 5.18.

Estimated errors on jerk values

The reliability of these plots can be assessed to some extent by plotting the half width

of the 99% confidence region, W^a^GTC^G +tf)-^), where t0.995 is the
Student's t statistic on the appropriate number of degrees of freedom (taken as the

trace of the part of the resolution matrix associated with the SA (hence V995 « 2.6)).

a is a single equation of condition which depends on postion. This is shown for each

component of the 1970 jerk in Figure 5.19 and the maximum and minimum values

for each field component for the 1970 jerk is given in Table 5.3. These represent the

variabiHty in the model response arising from poor observatory distribution and data

Table 5.3: Uncertainty estimates (given as half widths of 99% confidence
region) for each component of the 1970 jerk. Units are (nT/yr2)

Component Minimum half width Maximum half width
X

Y

Z

0.005

0.012

0.009

0.110

0.102

0.173
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errors. An additional error, due to the truncation ofthe spatial expansion (5.2) has also

been assessed according to the method of GFAl. For the radial component of the 1970

jerk this was found to be 11.5 x 10"8(nT/yr2). Forthe SA for each model the truncation

error was found to be consistently of the order 10~8 and so is clearly negligible. It is

clear that the total uncertainty is less than the contour intervals in Figures 5.16 to 5.18

and so their reliability is reasonably assured.

5.5 Discussion.

The 1970 jerk

The 1970 jerk has been quite widely investigated previously (refer to the review in

Chapter 1) and plotted by Malin et al (1983) (and by Kerridge & Barraclough (1985)

using the same models). Figure 5.16 shows that the change in secular acceleration

associated with the 1970 jerk consists of several foci which seem to occur particularly,

although by no means exclusively, at highlatitudes. Features present in Figures8, 9 and

10 of Malin et al (1983) are in some cases double the amplitude of the corresponding

features in Figure 5.16, 5.17 and 5.18. In particular their Figure 10 shows a focus

with maximum intensity -19nT/yr2 in the Z component over the east Indian Ocean

which is only -10nT/yr2 in Figure 5.16(c). Similarity they show a focus in the Z

component which reaches -rllnT/yr2 over the Galapagos Islands, an areawithvirtually

no observatory data coverage, which is non-existent in Figure5.16(c). Althoughbasedon

a similar number of data, their analysis was derived from main field models arbitrarily

truncated at degree 6 which is likely to have introduced errors into the coefficients

through aliasing from shorter wavelength features ofthe field (see eg. Whaler& Gubbins

(1981)). These were then successively first differenced to yield a model ofthe change in

secular acceleration associated with the 1970 jerk which was then truncated at degree 4.

Table 5.4 gives the spatial power spectra of secular acceleration change of the 1970,

1978 and 1983 jerks computed here, as well as those for the 1970 jerk as computed by

other authors. Not surprisingly, from the similarity of the jerk maps, the spatial power

spectrum of the 1970 jerk is qualitatively similar to that of Malin et al (1983), being

dominated by degree 2 harmonics. This is also the case for the power of the jerk model
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Figure 5.16: Change in the (a) A', (b) Y and (c) Z components of secular ac
celeration associated with the 1970 jerk. Scales are -9nT/yr2 to +9nT/yr2
for A' and Y and -ISnT/yr2 to +l8nT/yr2 for Z. Projection is cylindrical
equidistant.



to

(b)

(c)

120

•

•

!
Figure 5.17: Change in the (a) X, (b) Y and (c) Z components of secular ac
celeration associated with the 1978 jerk. Scales are —9nT/yr2 to +9nT/yr2
for X and Y and —ISnT/yv to •^•ISnT/yr" for Z. Projection is cylindrical
equidistant.
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Figure 5.18: Change in the (a) A, (b) Y and (c) Z components of secular ac
celeration associated with the 1983 jerk. Scales are -9nT/yr2 to +9nT/yr2
for A' and V and -ISnT/yr2 to +\SnT/yr'2 for Z. Projection is cylindrical
equidistant.
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Figure5.19: 99% Confidence region halfwidthforthe change in secular accel
eration associated with the 1970 jerk (see Figure 5.16) for (a) the X compo
nent (b) the Y component and (c) the Z component. Cylindrical equidistant
projection. Latitude goes from -90 to +90 degrees. Contour intervals are
0.01nT/yr2 for all components. Projection is cylindrical equidistant.
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computed in GFA2 which used stochastic inversion to compute the secular variation from

which the jerk model was derived. The jerk model of Malin & Hodder (1982) differs in

that it is dominated by the degree 3 harmonics although they did not publish all the

coefficients and so a full spectrum cannot be computed here. Their model was based on

a smaller data set and was also derived using a least squares fit to a truncated series of

spherical harmonics.

The 1978 and 1983jerks

The regional features of the 1978 jerk (Figure 5.17) are of comparable amplitude to

those of the 1970 jerk although the overall power is about two thirds that of the 1970

jerk (Table 5.4). There also appears to be an anti-correlation between certain regional

features of the 1970and 1978 jerks, in particular overNorth, Central and South America,

south-east Asia and in Europe (at least in the Y component). Assuming the jerks are

independent the correlation coefficient between the jerk fields,

Table 5.4: Power spectra of the change in secular acceleration associated with
the jerks of 1970,1978and 1983. Error estimates werecomputed usinglinear
propagation (see equation (2.2)) of the diagonal elements of the covariance
matrices. Column headed GFA2 is computed from coefficients in Gubbins
(1984). Column Ml contains the results of Malin et al (1983) for which no
error estimates were available. M2 is computed from Malin & Hodder (1982)
(not all coefficients available). GFA2, Ml and M2 are all for the 1970 jerk.

Degree Impulse ]power ((nT)2(yr)~fi)
GFA2 Ml M2 1970 1978 1983

1 4.04 7.1 14.07±2.05 0.98±0.32 0.15±0.15 0.62±0.41

2 19.83 43.9 22.89±2.44 13.49±1.10 6.07±0.99 3.64±1.04
3 13.12 22.6 32.04±2.19 5.93±0.65 5.73±0.75 1.80±0.61

4 5.40 8.6 13.47±1.34 2.33±0.35 2.72±0.41 1.48±0.44

5 2.16 7.2 — 1.78±0.26 1.54±0.23 0.33±0.12

6 1.33 5.5 — 0.85±0.11 0.62±0.10 0.13±0.05

7 — — — 0.12±0.02 0.12±0.03 0.02±0.01

8 — — — 0.03±0.01 O.OliO.OO O.OOiO.OO

Total 45.88 94.9 82.47±4.09 25.53±1.40 16.98±1.34 8.03±1.35

(to degree 14)
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C = n=lln + *•) 2um=0\9ni97o9ni97B + "ni97o"ni97s)

{[E£.i(»+1) ElUoCm.W.)] [£jL,(n +1)Si_o(C«C»)]}*
was calculated, where .'. denotes the step change in secular acceleration at the epoch

indicated and /QcO denotes integration over the Earth's surface. For the 1970 and 1978

jerks, C = -0.466 which, assuming the jerks to be independent and the number of

degrees of freedom n* to be equal to the trace of the resolution matrix for the secular

acceleration models, (« 50) has a 1.2 x 10~3 probability ofoccurring by chance using a

two-tailed Student's t test. The quantity i =Cjf^ is taken as the sample t statistic
(Kendall & Stuart, 1961). Ofcourse the assumption ofthe independence ofthe jerks is

flawed since they share the same data for the intervening period.

The 1983 jerk has an overall power half that of the 1978 event and its features

are typically half the amplitude of those of the other jerks. Its correlation coefficient

with the 1978 jerk is 0.04 and with the 1970 jerk is -0.21, which has a probability of

approximately 0.15 of occurring by chance. As more data accumulate, through more

observatories reporting data to the world data centres, a more thorough analysis of the

apparent 1983 jerk should be possible but this preliminary investigation suggests that it

is of much less significance than those of 1970 and 1978.

5.6 Conclusions.

The method of stochastic inversion has been used to determine models of the main field

with a quadratic time-dependence for the epochs 1965.5, 1974.5, 1981.5 and 1986.5.

These have been used to produce reliable models of the secular acceleration at these

epochs and of the change in secular acceleration associated with the jerks of1970, 1978

and 1983. It is believed that the resulting maps of the spatial distribution of the jerk

of 1970 eliminate some spurious features that were present in previous maps and give a

more realistic estimate ofthe strength of the supposed impulse. Another jerk occurring

at about 1978, the spatial distribution of which has not previously been investigated,

(5.15)

(5.16)
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has been shown to be of comparable power to that of 1970 and appears to be anti-

correlated with it. The 1983 jerk is much weaker than the others and does not appear

to be similar in its distribution. All three events, however, are ofcomparable strength

to the secular acceleration itself. As the external field model AVDF91 is believed to

remove the most significant contribution to the annual means from external sources it

has been confirmed that the 1970 jerk, and now the 1978 and 1983 jerks, are real features

of the field originating in the core. By comparison with the fit to the data of the BJ2

time-dependent field model, it has been shown that a sequence of field models with

quadratic time-dependence is as effective at representing the observatory data. This

leads to the hypothesis that the evolution of the core field on the decade time-scale

could be adequately modelled by periods ofconstant secular acceleration punctuated by

impulses in the third time-derivative. Whether the observed morphology of the jerks is

consistent with an impulse in the third time-derivative of the field at the CMB will be

addressed in Chapter 7.
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Chapter 6

Geomagnetism and the rotation

of the Earth

6.1 Introduction

In this chapter, supposed correlations betweengeomagnetic variations and one of the few

other measurable geophysical parameters indicative of core dynamics, the rate of Earth

rotation, are investigated. The observed period of the Earth's rotation, or "length of

day" (LOD) is known to varyon a range of time-scales. More precisely, what is actually

observableis the period of rotation of the crust and mantle. Of these observedvariations,

by far the largest are the so called "decade fluctuations", which are of the order of a

few milli-seconds occurring over a period of 10 years or so. By conservation of angular

momentum (AM), changes in the length of day must be accompanied by changes in the

rotation rate of the core, atmosphere or oceans, or a change in the moment of inertia of

the mantle and crust (including oceans and icecaps). Changes on shorter time-scales up

to a year or two can for the most part be explained by changes in the angular momentum

of the atmosphere and the mean bulk displacement of the oceans associated with the so

called El Nino events (Lambeck, 1980; Morner, 1989). Although a change in moment of

inertia is favoured by certain authors (Morner, 1989) to explain the decade fluctuations

also, it is more widely accepted that changes in the rotation rate of the core are more

plausible (Rochester, 1984; Hide, 1986). The question of how the necessary exchange
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1880

Figure 6.1: Torque that must act on the mantle to explain the decade fluc-
tautions in the length of day based on the data of Morrison (1979) and
McCarthy & Babcock (1986) (see §6.4.1).

1980

of angular momentum between core and mantle occurs however, is still the subject of

much current research (see eg. Aldridge et a/, 1990). The primary objective here will

be to consider the viability of electromagnetic (EM) coupling, in which electromagnetic

forces exert a torque on the mantle (and the core necessarily), as a mechanism for the

exchange of AM between the core and the mantle. Time-dependent EM torques will be

computed using recent models of the geomagnetic field and flow at the top of the core

and comparedwith the torque inferred from changes in Earth rotation. The torque that

would be required to act on the the mantle to explain the decade fluctuations inferred

from astronomical observations is shown in Figure 6.1.

6,2 Electromagnetic core—mantle coupling.

The broad scenario of the EM coupling mechanism is that with the core rotating more

slowly than the mantle, as evidenced by the gradual westward drift of the magnetic

field with respect to the Earth's surface (Bullard et a/, 1950), the velocity disparity at

the core-mantle boundary (CMB) gives rise to induced fields in the conducting mantle.

Torques associated with these fields are believed to retard the rotation of the mantle

(Rochester, 1960). Toroidal fields generated by convection in deeper, more rapidly ro-
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tating regions of the core are believed to "leak" into the mantle giving rise to torques

which counterbalance the retarding torque (eg. Stix & Roberts, 1984). Bullard et al

(1950) considered the role ofelectromagnetic coupling associated with the axial dipole

but dismissed it as an insufficient mediator in the exchange of angular momentum be

tween core and mantle. However Rochester (1960) showed that the mantle torque is

significantly increased by the inclusion of the effects of the non-dipole field and is of a

sufficient order ofmagnitude to account for thedecade fluctuations. Roden (1963) mod

ified Rochester's 1960 uniformly conducting lower mantle model to a three-layer model

and concluded that the order of magnitude of the EM torque is sufficient to account for

the irregular fluctuations in LOD —most efficiently if high conductivity is concentrated

toward the CMB. Stix & Roberts (1984) appear to have been the first to attempt to

evaluate a time-dependent EM torque (see also Paulus & Stix, 1986). Using main field

and secular variation (SV) models (truncated at spherical harmonic degree and orders

5 and 6) of Hodder (1981) as an approximation to the poloidal field at the CMB the

torque associated with poloidal and toroidal fields induced in the mantle by advection of

the main field was computed for a series of epochs this century. They concluded that the

induced toroidal (field) torque exceeds the induced poloidal (field) torque by at least an

order of magnitude. They also found the mean EM torque to be negative and 2 orders of

magnitude larger than the mean LOD torque while the fluctuations of the torque are of a

comparable order of magnitude to those related to the LOD. The spherically symmetric

conductivity distribution they used was of the form

-(?)* (6.1)

where r is the radius, rc is the radius of the CMB (assumed spherical) and ctq is the

conductivity of the mantle at the CMB, in common with (eg.) McDonald (1957), All-

dredge (1977b) and Stix (1982). Stix & Roberts (1984) arbitrarily chose a = 30 and

<70 = 30005m-1. Their results failed to show any close correspondence between the

time-dependence of the computed and observed torques. This may in part be due to

poorly determined and (perhaps) overly simplistic (zonal) models of core fluid velocity

(which they determined using a simple SV misfit minimisation method) as well as the

enhancement of errors in the field and SV models by downward continuation from the
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surface to the CMB. However, more recent work has shown significant agreement be

tween the LOD torque and the EM torque and will be discussed later (Paulus, 1986;
Paulus & Stix, 1989).

6.2.1 A thin conducting layer at the base of the mantle.

The following formulationfor the electromagnetic torque associatedwith a thin conduct

ing layer was first suggested and outlined by Professor F. Busse to whom I am indebted.

The expanded algebra and all the numerical formulation and computations however are

my own work.

The result of some recent experiments in high pressure mineral physics suggest that

the baseofthe mantlemayconsist ofa highly reactive zone (Jeanloz, 1990), possibly the

most chemically active region of the Earth (Jeanloz, 1991), in which the conductivity is

extremely high, possibly even comparable to that of the core itself (Li &Jeanloz, 1987).

Stevenson (1990) suggests that there may be infiltration of liquid iron into the mantle

at the CMB interface which would significantly affect the conductivity of the lowermost

mantle. It is thought that this may correspond in part with the seismologically distinct

D" layer at the base ofthe mantle, which is ofthe order 200fcm to 300km thick. In fight

of these ideas, it is interesting to consider what effect such a layer would have on the

electro-magnetic interaction between the core and the mantle. Therefore, as a working

model it is assumed that the mantle is an insulator except in a conducting layer, next

to the CMB, of thickness 6. Magnetic diffusivity in the core is neglected.

In the following, let subscripts C and M relate to quantities in the core and in the

conducting layer at the base of the mantle respectively. The boundary condition for the

electric field at the CMB, assumed spherical of radius rc = 3485&m, reduces to

-rx((Vxr-V>) xBc) = rx(^VxBM) (6.2)

where tj) is the toroidal stream function for the flow at the top of the core, 77m is the

magnetic diffusivity of the conducting layer and r is a radially outward vector of length

r. Poloidal and toroidal decompositions of Bc and BM,

BM = Vx (VxrSM) + VxrrM (6.3)
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Bc = Vx (VxrSc) + VxrTc (6.4)

(where S and T are poloidal and toroidal scalars respectively) can be substituted into
(6.2), and r.Vx applied to give

VmT.Vx (rxVx Vx (rTM)) -l-TTMr.Vx (rxVx Vx Vx (rSM))

= -r.Vx [rx[(Vx W))x(Vx Vx (rSc))] +rx[(Vx (rVO)x(Vx (rrc))]] (6.5)

at r = rc. As the toroidal field does not extend beyond the conducting region and is

therefore not directly observable, it will be assumed that the only toroidal field present

in the conductinglayer is that generated by advection of the poloidalfield by the toroidal

flow at the top of the core.

It can be shown that

rx[(Vx (rVO)x(Vx {rTc))] = 0 (6.6)

(as toroidal flow does not advect toroidal field) which eliminates the second term in the

RHS of (6.5). Also

7/Mr.Vx (rxVx Vx (r!TM)) = -^—(rL2^), (6.7)

-r.Vx (rx((Vx W))x(VxVx (rCM)))) = r2VH.(VHV£2Sc) (6.8)

and

ttmI-.Vx (rxVx Vx Vx (rSM) = 0 (6.9)

where Vh is the horizontal part of the gradient operator and L2 is related to the hori

zontal part of the Laplacian by L2 = -r2V^. Since L2SM = L2SC (by continuity ofthe

radial poloidal field across the boundary), equation (6.5) reduces to

r}M—{rL2TM) = -r2VH.(VH^25M) (6.10)

at r = rc. To solve for TM within the layer, expand the radial dependence of TM in a

Taylor series about r = rc giving

rM(r)« TM(rc) +
dTM

dr
(r - rc) + 0(<52) (6.11)

T=TQ
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This linear approximation is reasonable if 6 < rc, and will be adopted henceforth. At

the upper boundary of the conducting layer, at r = rc+ <5, the toroidal field must vanish

and hence, using (6.11),

0=TM(rc + 6) = TM(rc) + dTM

dr
(rc + 6 - rc)

r=rc

rM(rc) = -
dTM

dr
(6.12)

r=rc

Substitution of (6.12) into (6.11) followed by application of the L2 operator leads to

d(L2TM)L2T = _d(L2TM)
dr

6 +

r=rc
8r

(r - rc) (6.13)
t=tq

Finally, expanding the r derivative in (6.10) and substituting into (6.13) results in

L2TM = (r-6-rc)

where

0=[rVH.(VH^25M)]r=

1 c L2TM
Vm rc

rc

(6.14)
T=TQ

(6.15)

Since \r —rc —6\ < 6 and ^<1, a reasonable approximation to equation (6.14) is

L2TM = -(r-rc-6) — (6.16)

which is the final approximate solution for the toroidal field in the conducting layer.

6.2.2 Formulation of the torque integral.

The torque T about the Earth's rotational axis (in the unit direction k) can be expressed

as

Mr= f f f(kxr).[(VxB)xB]aV (6.17)

where V is the volume of the conducting region of the mantle and fj, the permeability,

taken as that of free space. Thus, in the case of the thin layer under consideration here,

the axial torque arising from the induced toroidal field can be written as (seefor example

Gubbins & Roberts, 1987, p62; Rochester, 1960)

6

- — II
d(L~2G) 2n

do L Sm smOcD, (6.18)
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where / J^£l denotes integration over the core-mantle boundary. Let

E
ni,m.i

denote the double summation

E E
n,=l rrii=—ni

Initially, assume N{ is infinite; later, finite values will need to be adopted for numerical

computation. Expand G, tj> and 5M (at r —rc) as series of fully normalised complex

spherical harmonics Kf1:

G= E <?W- (6.19)
Hi,mi

tf= E vc,2*;?, (6.20)
n2»m2

and

5M = rc E 5-3yn^. (6.21)
•0.3,1713

Y™ are related to the Schmidt quasi-normalised associated Legendre functions P™ by

Y™ =(^lir1)2 eim^m' m-° (6-22)
which satisfy the orthogonality relation

«"(>?)•> = 1 (6.23)

when n = p and m = q, where {.) denotes integration over the unit sphere and * denotes

complex conjugate. Also define Y~m = (-l)m(ynm)* (see eg. Winch, 1974; Jackson &

Bloxham, 1991; Phinney & Burridge, 1973). Substitution of (6.19), (6.20) and (6.21)

into equation (6.15) results in

E gsw = Tl E E CCVH(v,,Ci2yn7) (6.24)

Multiplication by (Y^1)* followed by integration over the unit sphere results in

<C=r2 Y, E C2^33<VH(VHynT^C3)^n?)*> (6.25)
Tl2,Wl2 «3,Tn3

by virtue of the orthogonality relation (6.23). Now,
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VH.(VH1^21^) =n3(nz +l)[(VHy™2).(VHyn73) - ^Mn2 +1)Y£»1™'] (6.26)
which reduces equation (6.25) to

GS1 = r2 Y, E VC22Sn>3(n3 + 1) W*Yp).(VEYZ>))(YZ>)
n.2,TU2 713,717,3

--on2(n2 + i)(yn7)*yn^yn7 (6.27)

Use of the identity (which may be demonstrated using integration by parts)

«yn?r(VHy„?).(VHy™3)> =^[n2(n2 +1) +nz{nz +1) - m(m +l)]Gr (6.28)
where GT is the Gaunt integral ({Y™*YY£*Y™*) (see eg. Winch, 1974), results in the

simpler form

Gni =\ E E ^n22SZZMm +l)[n3(n3 +1) - m(m +1) - n2(n2 +1)]GT. (6.29)
W2 ,7712 713 ,TO3

Thus G can be evaluated given tp and SM. The torque can now be expressed in a

form in which it may readily be evaluated numerically. Noting that

sin0-^-
dO

n
(n + m + l)(n-m +1)

(2n + l)(2n + 3)

(n + m)(n —m)
-(n + 1)

(2n + l)(2n-l)

n+1

n—1 (6.30)

(eg. Chapman & Bartels, 1940) and L2Y™ = n(n + l)y™, substitution of (6.19) and

(6.21) into (6.18) gives

r = —// e(ni
(ni + mi + l)(ni - mi + 1)

(2ni + l)(2m + 3) rni +l

(ni +1)
(ni +mi)(ni -mi)
(2ni + l)(2m-l) Oi ) <C ni(ni + l)

xc 53 {n3(n3 + l)yn73S£3}<*)
113,7713

(6.31)

Again utiUsing the orthogonality of the spherical harmonics, this expression finally re

duces to

r = *aMr2 E ^3n3(n3 + l)
713,7713

(n3 -mz)(nz +111,3)
(2n3-l)(2n3 + l)
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-G
—T7l3 (n3 + m3 + l)(n3 - m3

(n3 + l) n*+1l (2n3 + 3)(2n3 + l)—f) (6.32)

where <rM = (t^)-1 is the conductivity ofthe layer and G™3 = 0 for all m3. Note that

the torque is directly proportional to the conductance of the layer (6crM).

To evaluate the electromagnetic torque, recent results from geomagnetic field mod

elling and core flow calculation will be used. In such work it is common practice to

assume that the mantle is an insulator and so for the purpose of denning the poloidal

field at the CMB and the flow at the top ofthe core this assumption will be temporarily

adopted. The complex sphericalharmoniccoefficients for the poloidalscalar at the CMB

can be related to the real Schmidt quasi-normalised cosine/sine coefficients g™ and h™

for the geomagnetic field potential at the surface by

i(gZ3-ihZ3) ™3>0
P?3 m3 = 0 (6.33)

. 5(-l)m3te3m3+^7T3m3) ™3<0

where rs is the radius of the Earth's surface. Similarily the complexflow coefficients are

related to the real Schmidt flow coefficients ct™ and 9t% (cosine/sine) at the CMB by

CTn3_/Mn3+2 1/ fa \
713 \rcJ n3\2n3 + l)

x <

*-(s£t)**
I ( fm2 _ -• f7712 "\
2\cLn2 **l7i2 )

t°Cl7l2

m2 > 0

m2 = 0 (6.34)

^(-l)m2(ctn2m2+^-^) m2<0

Numerical implementation

The above scheme was implemented in double precision FORTRAN77 with the Gaunt

integrals computed in terms of the Wigner Z-j coefficients (see eg. Edmonds, 1957). As

expression (6.15) for G is identical (within a factor rc(l + 1)) to the expression for the

potential of the secular variation produced by advection by a poloidal flow with defining

scalar tp (Whaler, 1986), it was possible to verify the coefficients of G (equation (6.19))

against independently developed and verified code (K. A. Whaler, personal communi

cation, 1991). The torques were also verified using a single precision implementation of

the scalar spherical transform method, closely related to the vector spherical transform

method of Lloyd & Gubbins (1990) (D. Gubbins, personal communication, 1991). This
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gave 6 significant figure agreement for the coefficients of G and 5 significant figures for

the torques.

6.2.3 Field and flow at the core-mantle boundary

For the magnetic field in the torque calculation single epoch "snap-shots" of the geo

magnetic field at the Earth's surface were taken from an unpublished time-dependent

model of J. Bloxham and A. Jackson for the period 1840 to 1980 (to be referred to here

as BJ1). This was derived by a very similar method to that of Bloxham k Jackson

(1991b) (Jackson, personal commmunication, 1991) with a temporal representation in

B-splines. This gives a much improved temporal fit over earlier time-dependent mod

els (Bloxham, 1987; Bloxham k Jackson, 1989) and eliminates end effects (A. Jackson,

personal communication, 1991). The stochastic inversion method used also ensures spa

tial convergence of the field at the CMB which represents a significant improvement

over more traditional methods, for example those involving an arbitrary truncation of

the spherical harmonic expansion. Previous attempts to calculate the time dependent

electro-magnetic torque (Stix k Roberts, 1984; Paulus k Stix, 1986), have used field

models which are inappropriate for downward continuation.

For the evaluation of the torque, estimates of the toroidal part of the flow at the top

of the core are required. The problem of inferring the flow at the top of the core from the

secular variation has been the focus of much research in recent years. In such work it is

usually assumed that the conductivity of the core is sufficientlyhigh that diffusion in the

core can be neglected and so field lines are effectively frozen in to the liquid and act as

a tracer; this is commonly known as the frozen-flux hypothesis (Roberts k Scott, 1965).

The inherent non-uniqueness of the problem (Backus, 1968) can at least be partially

surmounted through the imposition of prior physical assumptions concerning the flow.

The most commonly investigated of these — steady flow, geostrophic flow and toroidal

flow (Voorhies k Backus, 1985; Voorhies, 1986; Whaler, 1991; Jackson k Bloxham,

1991; LeMouel, 1984; Lloyd k Gubbins, 1990) have led to improved determinations of

the flows. A suite of flow models derived under the assumption of tangential geostrophy

were used here (Jackson k Bloxham, 1990). Although the models include toroidal,

poloidal and shear coefficients,only the toroidal coefficients are required here. The flows
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were of maximum degree and order 14 and were available for epochs 1900 to 1980 at 5
year intervals.

6.3 Results

Calculations were carried out using a layer ofconductance lO8^, which could for exam

ple be a layer of thickness 6 = lOOfcm thick with a conductivity of <rM = lOOOSm"1.

By virtue of the particular formulation used here the torque depends linearly on the

conductance 6aM. These results are shown in Figure 6.2 which also shows how the time

dependent torque converges with increasing harmonic degree offlow included. It can be

seen that the torque is well converged by about degree 3or4for theflow. The computed

torque shows a significant increasing trend as well as fluctuations (Figure 6.2(a)).

6.4 Discussion

6.4.1 Astronomical observations of Earth rotation.

From astronomically inferred variations in the period of the Earth's rotation, Morrison

(1979) found that 1018JVm can be considered as an approximate upper bound on the

torque acting upon the mantle associated with the decade fluctuations. A thorough

analysis ofoccultation data was performed, resulting in a time-series ofvalues ofAT, the

deviation of the instantaneous period ofrotation from its mean or excess length ofday,

for theperiod 1860 to 1978. This can then bescaled to give A0, the sidereal displacement

angle of the Greenwich meridian. The associated torque can then be calculated from the

second time derivative of this quantity. Morrison evaluated this as the second derivative

of a quadratic fitted to his data over an 11 year window. This has been repeated

here though using the estimated data errors to perform a weighted quadratic fit. This

modification was found to make almost no difference to the resulting curves although

it allowed errors based on the weighted misfit to be derived. Morrison's data were first

supplemented by post-1978 data from McCarthy k Babcock (1986), whose results for

the excess length of day essentially reproduce those of Morrison (1979) and Stephenson

k Morrison (1984) prior to this date. However, for consistency in the weighted fit, the
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Figure 6.2: Time-dependent torque based on toroidal part of Jackson k
Bloxham (1990) geostrophic flows andfield models derived from spline model
BJl (see §6.2.3) for epochs 1900 to 1980 at 5yearintervals using (a) field and
flow models for eachepoch, (b) field models from each epoch and flow model
for 1980, (c) field model for 1980 and flow models for each epoch. Curves are
interpolated using splines. In each plot, different symbols are for increasing
maximum degree of the flows included in the torque calculation, (maximum
degrees 1-4 are *, o, • and o respectively.) Torque units are 1018iVm.
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errors of Morrison (1979) are used rather than those of McCarthy k Babcock. The

resulting LOD torque is shown in Figure 6.1.

6.4.2 The case for electromagnetic coupling.

The visual agreement between the EM torque (Figure 6.2(a)) using the full toroidal part

of the geostrophic flows and the LOD torque (Figure 6.1) is poor, even allowing for the

significant linear trend in the former. As the fluctuations in the torque arise primarily

from the time-dependence of the flow, this disagreement may arise from ambiguity in

the flow models. To test this, consider the significant increase in the computed torque

over the period 1950 to 1980 (Figure 6.2(a)). Now consider the plots of the toroidal

part of the geostrophic flows for epochs 1950, 1965 and 1980 (Figure 6.3). The main

feature that develops in these flows over the period 1950 to 1980 is the increase in

predominantly non-zonal flow beneath Siberia, Central Asia and the Arctic Sea north

of Alaska, and so it is likely that this part of the flow is responsible for the changes in

the EM torque over this period. However theseareas correspond to regions in which the

geostrophic constraint does not completely resolve the non-uniqueness of the velocities

(see eg. Backus k LeMouel, 1986; Jackson k Bloxham, 1991). Such regions account

for som 41% of the core surface (Bloxham k Jackson, 1991a). As these features of

the flow are primarily non-zonal, the torques were recomputed, again for a layer of

conductance 1085, this time using only the zonal toroidal coefficients of the geostrophic
flows. Simultaneous fits to the EM torques by a linear trend plus a scalar multiple ofthe

LOD torques for the period 1945-1978 (Figure 6.4(a)) and 1861-1978 (Figure 6.4(b)) for

phase shifts between the EM torque and the LOD torque ranging from -30 to +20 years

were performed. (There were insufficient EM torques to do this just for the post-1955

era of atomic timescale and proton magnetometers.) In both cases the optimal fit was

found for a 6 year lag of the EM torque after the LOD torque. For the former period

the fit ofthe EM torques lies mostly within the 1 standard error limits ofthe LOD data,

but for both cases the fit is reasonable for the whole 1894-1974 period. The statistics

are given in Table 6.1.

The agreement between the EM and LOD torques in Figure 6.4 suggests that EM

coupling may be an important mechanism by which angular momentum is transferred
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Figure 6.3: Toroidal part of the geostrophic flows of Jackson k Bloxham
(1990) for epochs (a) 1950, (b) 1965, (c) 1980. Grid spacing is 30°. Note the
marked increase in flow beneath Siberia, Central Asia and Arctic Canada
from 1950 to 1980.
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Figure 6.4: Time-dependent electromagnetic torque based on zonal toroidal
part of geostrophic flows (see §6.2.3) all taken to degree and order 14. Elec
tromagnetic torque has been scaled, linearly detrended, offset and phase
shiftedby -6 years. Its values are marked by + and interpolated with cubic-
splines. Comparison is with the torquerequired to explain the decade fluctu
ations in the LOD (solid fine with 1 standard error envelope (dashed lines))
as derived from the data of Morrison (1979) (1861-1978) and McCarthy k
Babcock (1986) (1979-1984) (see §6.4.2). Detrending etc. computed for the
time periods (a) 1945-1978 and (b) 1894-1978 (see §6.3). Torque units are
1018JVm.

between core and mantle. The scale factor required to make the decade fluctuations in

the torques agree implies a layer at the base ofthemantle ofconductance (6.67 ±0.88) x

1085m_1 when the torques are compared over the period 1894 to 1974. The implications
of this for the conductivity of the lower mantle will be considered in Chapter 7. The

offset and trend need some explanation. Stix k Roberts (1984) found their EM torque to
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Table 6.1: Results of a simultaneous least squares fit of the EM torques
from zonal flows to the LOD torques plus a linear trend, for (n) epochs (a)
1945,..., 1980 and (b) 1900,..., 1980 with the EM torques phase shifted
by -6 years. When the EM torque for a layer of conductance 1085m_1
is multiplied by the scale factor, and the trend and offset removed, the
result fits the LOD torque with the indicated misfit over the n epochs. (See
Figure 6.4.)

n Misfit Scale factor Offset Trend

Units

(a)
1018#m

0.007 7.88±1.22

1018JV771

1.36±0.28

IQ^Nm/yr
0.014±0.004

0>) 17 0.030 6.67±0.88 0.76±0.14 0.017±0.003

have a mean value of -1.5 x 1018JVm andsuggested that in reality this may be balanced

by the couple due to "leakage" of toroidal flux from the core into the mantle, which has

not beenaccounted for in the present work. This argument restsonthe supposition that

the toroidal field in the core is generated by motions of the deeper core with a longer

characteristic time-scale than the free stream at the top ofthe core. The presence ofthe

significant trend amounting to ~ 0.7 x 1018iVm in 50 years is a little more surprising.

Thismay well result from the rather bold assumption used earlier that the poloidal field

at the Earth's surface may be downward continued to the base ofthe mantle assuming

the mantle to be insulating. This crude approximation could perhaps be refined and

would be worth future investigation. Paulus k Stix (1989) used the Fourier transform

method to solve the induction equation for the magneticfield in the mantle and arrived

at a torque (using zonal flows) which gave good agreement (with no trend) with the

LOD torque though requiring a -18 year phase shift for the EM torque. Their Figure 5

is reproduced in Figure 6.5. Theyused a power law conductivity distribution ofthe form

(6.1) with ao = 6005m-1 and a = 0.5, a rather "flat" conductivity distribution.

6.4.3 Alternative coupling mechanisms

In addition to EM coupling, "topographic" coupling, arising from pressure forces act

ing on departures from spherical (or more precisely ellipsoidal) symmetry on the CMB,

and "viscous" coupling arising from viscous forces acting between core and mantle are

commonly considered as agents of angular momentum transfer. The latter mechanism
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Figure 6.5: The torque required to account for the length of day fluctua
tions (Morrison, 1979; dark curves) and the EM torque of Paulus k Stix
(1989) shifted 18 years into the past. Units are 1018iVm. EM torques were
calculated using field coefficients supplied to these authors by (a) D. R. Bar-
raclough and (b) R. A. Langel. (Personal communications.) Reproduced
from Paulus k Stix (1989)
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is usually considered to be too weak, in the case of the Earth, to account for the ob

servations and most investigations have concentrated on the former (eg. Hide, 1989; R.

Hide in Aldridge et al, 1990). Topographic coupling has excited much recent interest

with the emergence of seismological evidence for significant CMB topography ranging

from about 10km peakto trough amplitude (Morelli k Dziewonski, 1987) to 20fcm peak

to trough (Creager k Jordan, 1986). Although Jault k LeMouel (1989) consider that

topographic coupling is a good candidate mechanism they also conclude that it may be

difficult to compute even given more precise knowledge of the CMB topography and

flow at the top of the core. Using large scale features of the flow and topography alone,

Jault k LeMouel (1989) found the topographic torque to be 2 orders of magnitude too

large to be compatible with LOD fluctuations using the topography model of Morelli

k Dziewonski (1987) and also concluded that smaller scale features would contribute

significantly to the torque. There is however significant uncertainty as to the true mag

nitude of the CMB topography: Neuberg k Wahr (1991) have, for example, recently

argued that such topography may be limited to 2-Zkm on lateral length scales up to

400fcm. Furthermore Gwinn et al (1986) showed that the deviation from hydrostatic

equilibrium can be represented by a P$ harmonic with a peak to trough amplitude of

490± 110m, which is an order of magnitude smaller than that of Morrelli k Dziewonski

(1987).

6.4.4 Angular momentum budget.

Besides the question of the coupling mechanism between core and mantle, the total

angular momentum (AM) of the core-mantle system must be preserved. Vestine k

Kahle (1968) found that by assuming that theexchange ofAM isrestricted to theupper

200fcm of the core, reasonable agreement between the observed drift of the eccentric

dipole and that inferred from the LOD fluctuations could be obtained. It was found that

the observed eccentric dipole drift lags that inferred from LOD by about 5 years (see

Figure 6.6), in agreement with the lag found here. Jault et al (1988) recently derived

a simple expression for the changes in the AM of the core using estimated surficial

velocity fields computed under the assumption that the flow is tangentially geostrophic

and the core is a perfect conductor. They found some agreement between the changes
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Figure 6.6: Westward drift velocity at the surface of the Earth from A,
change in angular momentum of outer 200A:m layer of core necessary to
balance LOD change, and B, observed eccentric dipole motion. Figure 4 of
Vestine k Kahle (1968).

LOD over the period 1969-1985 although the AM is a rather smooth function of time

over this period. Jault et al (1988) also claim reasonable agreement prior to 1970 but

do not show it. They also find no lag between the geomagnetically and LOD inferred

AM. This computation was also made by Jackson (1989), using geostrophic flows he de

rived independently, for the whole of the 20th century, who found qualitative agreement

with LOD fluctuations with a lag of geomagnetically inferred changes between 5 and

25 years after LOD changes (Jackson's (1989) Figure 6.14). More recently, Jackson k

Bloxham (1990) and Jackson et al (1991) find reasonable agreement though are unable

to determine whether geomagnetically predicted LOD leads or lags the actual LOD.

6.5 Conclusions

It has been demonstrated that, assuming the existence of a thin conducting layer at the

base of the mantle, the electromagnetic torque associated with induced toroidal fields
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6.5 Conclusions

It has been demonstrated that, assuming the existence ofa thin conducting layer at the

base of the mantle, the electromagnetic torque associated with induced toroidal fields

arising from advection of poloidal field by toroidal core flow can be calculated. When

computed for a series of epochs this century for a layer of approximate conductance

6.7 ±0.9 x 10 S, the resulting time-dependent torque agrees well over an 80 year period

with that inferred from fluctuations inthelength ofday. The electromagnetic and length

of day torques are out of phase by 6 years with the former lagging behind the latter.

On the assumption that the electromagnetic torque is solely responsible for the decade

fluctuations, useful constraints can be placed on the conductivity distribution in the

lower mantle as will be seen in Chapter 7.
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Chapter 7

The electrical conductivity of the

lower mantle

7.1 Introduction

As was pointed out in Chapter 1 our understanding of the (electrical) conductivity of

the mantle and its lower regions in particular (below about lOOOifcm or so) is very poor.

The purpose of this chapter is to review briefly, current knowledge (primarily from

geomagnetic evidence) of lower mantle conductivity and to advance some suggestions

and supporting evidence pertinent to the conductivity distribution. In particular the

implications of the work in Chapters 5 and 6 will be discussed. For the most part,

conductivity distributions with spherical symmetry will beconsidered, as even with this

approximation our knowledge is imprecise and we are some way from being able to

discern lateral heterogeneities in the lower mantle, although their possible existence will
be briefly investigated and discussed.

Unlike upper mantle conductivity, discussed in Chapter 3, that ofthe lower mantle is

beyond the reach of induction studies based on externally induced field variations, with
a limit of around lOOO&m depth being the norm (see eg. Parkinson &Hutton, 1989),
although Achache et al (1981) used data in the period range 4days to 11 years to obtain
conductivity estimates down to 2000A:m. Instead, estimates have relied primarily, though
not exclusively, upon consideration of the propagation of the secular variation through
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the mantle. Recent experiments in mineral physics at high temperatures and pressures

for example (see eg. Knittle & Jeanloz, 1991) suggest that the base of the mantle could

have an electrical conductivity as high as the core itself (currently accepted to be of the

order 5 x lO^m"1 (Melchior, 1986)).

McDonald (1957) used a conductivity distribution of the form

a(r) =c0(^y (7.1)
(as per equation (6.1)) where rc = 3485fcm is the radius of the core. McDonald con

cluded o-q = 2235m-1 and a = 5.1 as a best estimate for this profile based on the

assumption that the time-averaged spatial spectrum of the magnetic field at the core-

mantle boundary (CMB) is white. This form of conductivity distribution has been used

by many authors since, primarily it seems for mathematical convenience. Table 7.1 sum

marises a selection of these models. Alldredge (1977b) derived a conductivity profile

with a = 25 and <r0 = 1055m_1, a value 3 orders ofmagnitude higher than McDonald's

estimate. Alldredge's main reason forchoosing these particular parameters out ofseveral

combinations that could have explained his results equally well was the requirement that

Table 7.1: Summary ofthe various lower mantle electrical conductivity dis
tributions considered in this chapter.
(Abbreviations: SV, secular variation; EM, electromagnetic; CM, core-
mantle; MHD, magnetohydrodynamic.)

Power law profile
Authors rmin(km) rmax(km) MSm-1) a Method
Alldredge (1977b)
Backus (1983)
Courtillot et al (1984)
Kolomiytseva (1972)
McDonald (1957)
Paulus k Stix (1989)
Stix & Roberts (1984)

3485

3485

3485

3485

3485

3485

3485

5371

5731

5731

6371

5671

5485

5485

100000

3000

1000

710000

223

600

3000

25.0

11.3

19.0

30.0

5.1

0.5

30.0

15/25 year waves
1969/70 jerk
1969/70 jerk
60 year wave
SV spectrum
EM CM coupling
EM CM coupling

Slab/Layered profile
Achache et al (1980)
Currie (1968)
Ducruix et al (1980)

3485

3485

3485

3871

4871

5485

5485

3871

4871

5871

100

200

100

30

1

—

1969/70 jerk
MHD turbulence

1969/70 jerk
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the profile match that of Banks (1969) for the upper mantle at about lOOOfcm. How

ever there is no clear physical reason why such a functional form should pertain to any

particular part of the mantle let alone the whole of the mantle below 600fem. Based on

the assumption that all observed geomagnetic variations with periods less than 13 years

originate externally to the Earth, Alldredge took advantage of apparent periodicities of

15 and 25 years (Alldredge, 1977a) to derive his conductivity distribution by assuming

these originate in the core with equal amplitude. This bold assumption is as arbitrary

as the "white field spectrum" assumption of McDonald (1957) which Alldredge (1977b)

roundly criticises. Alldredge's (1976, 1977a,b) methods of analysis and conclusions were

themselves criticised (McLeod, 1982; Courtillot k LeMouel, 1979) thus casting some

doubt on Alldredge's conductivity estimates. Kolomiytseva (1972) had previously con

cluded however that o; = 30 and cr0 = 7.1 x 1055m-1 which is similar to the profile

favoured by Alldredge. Kolomiytseva considered the phase of an apparent induced 60

year variation from the core and also concluded that a large jump in the conductivity

at the CMB is inconsistent with the observations.

Ducruix et al (1980), Achache et al (1980) and Currie (1968), all considered mean

conductivities for the lower 1500fcm to 2000&m ofthe mantle. Currie (1968) estimated

the mean conductivity ofthe lower 2000&m ofthe mantle to be 2005m-1 after making

assumptions about the spatial spectrum of the magnetic field at the CMB based on

simple theories of magnetohydrodynamic turbulence. The former authors noted the

apparent rapidity of the 1969/70 jerk and assuming it was impulsive in nature estimated

a mean conductivity ofbetween 605m"1 and 1505m"1. A (typical) value of1005m-1 for

Achache et al (1980) will be used in further discussions. Ducruix et al (1980) considered
a more refined, three layer model tobe likely. The estimates ofAchache et al (1980) and

Ducruix et al (1980) were based on a rather simple infinite plane layer "slab" formalism

of Runcorn (1955). Courtillot et al (1984) used Backus's (1983) mantle filter theory (see
§7.4.1) to interpret the 1969/70 jerk and reached a qualitatively similar profile to that
of Backus (loc. cit). Paulus k Stix (1989) solved the induction equation in Fourier

space and found that a rather "flat" conductivity distribution gave theelectromagnetic

(EM) torque closest to the torque that must act on the mantle to explain the decade
fluctuations in the length of day (LOD). The profile quoted in Table 7.1 for Stix k
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Roberts (1984) is one they assumed rather than determined, although they did find EM

torques of an appropriate order of magnitude for the decade fluctuations.

Although there is a variation of several orders of magnitude in the estimates of the

conductivity at the base of the mantle, what most of the models in Table 7.1 have in

common is a rapid drop-off of conductivity with distance from the CMB and hence a

concentration of conductance towards the CMB. This has important implications for

electromagnetic core-mantle coupling (and vice versa) which will now be discussed.

7.2 Electromagnetic core—mantle coupling

It was shown in Chapter 6 that the torque acting on the mantle as a result of the

advection of poloidal field by the zonal toroidal part of particular models of core surface

motions correlates veryclosely with the LOD torque. Morever, if as a working hypothesis

it is assumed that the electromagnetic coupling is the sole agent of angular momentum

transfer between core and mantle, the correlation places important constraints on the

conductance of the lower mantle. In Chapter 6 it was seen that if the conducting

material is concentrated in a homogeneous thin layer just above the CMB then this

must have a conductance of approximately (6.7 ± 0.9) x 1085 (a weighted mean ofthe

two values in Table 6.1). Approximating this by the conductance range 1085 to 1095

(the margin for error has been widened to allow for the trend effect discussed in §6.4.2),
the compatibility of the various conductivity distributions discussed sofar with the LOD

fluctuations can be assessed. Consider the extent to which the conductance associated

with each conductivity model is concentrated within different distances of the core-

mantle boundary (Figure 7.1). Assume that this approximate "equivalent thin layer"
conductance must be inthe range 1085 to1095. The horizontal bars in Figure 7.1 mark
this conductance range at 3radii: 3785fcm, 4085fcm and 4685fcm corresponding to layers
ofthickness 300A;m, 600fcm and 1200&m respectively. Now consider which ofthe models

do and do not have a conductance of the appropriate order of magnitude to sustain the
necessary torque, ie. which conductance profiles intersect the horizontal bars.

Firstly, the model of Ducruix et al (1980) is at least half an order of magnitude
too small to explain the LOD fluctuations, whilst the models of Alldredge (1977b) and
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Table 7.2: Conductivity models from §7.1 for which the lower 6km has a
sufficient conductance to produce EM torques to account for the decade
fluctuations in the LOD. Figures given are the percentage of the conductance
of the whole model which is contained in the layer.

Models 6 = 300 6 = 600 6 = 1200 Total Conductance

(%) (%) (%) 1085
Backus (1983)* 56 80 96 9.8

Courtillot et al (1984)* 76 94 99 1.8

McDonald (1957) 32 55 81 1.6

Paulus k Stix (1989)* 16 32 62 10.6

Stix k Roberts (1984)* 90 99 100 3.3

Achache et al (1980) 14 30 60 2.0

Currie (1968) 14 30 60 4.0

Kolomiytseva (1972) have conductances within 500A;m of the CMB that are 2 to 3 orders

ofmagnitude too large to be consistent with the required torques. This leaves 7 models

which could conceivably be approximated by thin layer models and the concentration

of conductance in the three layers for these 7 is summarised in Table 7.2. Those of

Achache et al (1980) and McDonald (1957) however, are only just adequate (Figure 7.1)
and only ifthelayer thickness is 1200fcm which is pushing the linearised Taylor expansion

approximation for the induced toroidal field in Chapter 6 to the limit. Coming down

further to a 300fcm thick layer, the model of Currie (1968) is also excluded, which leaves

four candidate models indicated by a *in Table 7.2. The Paulus k Stix (1989) profile is
particularily flat and would require the full 1200*m thickness to account for the torque
(see Table 7.2). The models of Stix k Roberts (1984) and Courtillot et al (1984) have
most of the conductivity concentrated in the first 300fcm but the conductivities would

need to be increased by factors of about 3 and 5 respectively. Backus (1983) has the
most appropriate conductance ofall the models and the equivalent layer would need to

be about 600&m thick. It is not surprising, looking back at Table 7.1, to find that these
last 3 models are all qualitatively similar: a conductivity ofa few thousand Sm~l at the

base ofthe mantle with a rapid drop-off away from the CMB.
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7.3 Locating the core—mantle boundary geomagnetically

Hide (1978) proposed a method by which the electrically conducting core of a planet

can be located from external magnetic measurements. Hide applied the method to the

Earth and determined a radius (to be referred to here as the "electromagnetic core-

mantle boundary" or ECMB) which agreed within 2% of the seismologically determined

radius of 3485±5fcm. Hide argued that by assuming the frozen-flux hypothesis and that

the mantle is an insulator, the total absolute magnetic flux (or pole strength) through

the CMB (Q) (assumed spherical and of radius r) given by

MT = / \Br\dQ (7.2)

has to be time-independent. Hide k Malin (1981) used the definitive field model of

Barraclough et al (1978) for 1965.0 and calculated NT for 1964.5 and 1965.5, using

the secular variation coefficients to extrapolate the main field coefficients backwards

and forwards in time, and placed the ECMB at r = 3233 ± 361fcm. They sought the

radius at which AfT (where the dot denotes differentiation w.r.t time) is zero, for various

truncations ofthe field. Their "mean" ECMB radius is arrived at byusing radii at which

Mr reaches a local minimum and only at truncations 3, 4 and 5 do any oftheir curves

actually reach zero and none of these for a radius greater then 3200ifem (their Figure 1).

Voorhies k Benton (1982) and Voorhies (1984) suggest thatfield models separated by

at least 10-20 years ought to be usedin the determinationof the ECMB radius. Voorhies

(1984) calculated the change in MT computed for each of several models relative to a

reference Magsat model for epoch 1980 as a function of r. All the models were based on

spherical harmonic expansions of the field truncated at maximum degrees ranging from 6

to 9. The meanestimateof the ECMB radius from 44determinations was 3506 ± 301ibn

whilst an "appropriate subset" of these gave 3489 ± 35fcm. Voorhies (1984) also noted

a significant decrease in MT at r = 3485fcm from 1600 to the end of the 19th century
using models of Barraclough (1974) but concluded that there was no significant change
during the present century. These observations were based on field models truncated

severely at degree 4. It is not clear how accurate these determinations really are: for

example Voorhies's MT for r = 3485fcm at 1980 up to degree 4 is SAGWb less than

that of Bloxham et al (1989) who used a model up to degree 14 derived using stochastic
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inversion. Benton k Voorhies (1987) found no significant change in MT over the period

1945 to 1985 using Definitive Geomagnetic Reference Field models.

The question of the ECMB radius will now be briefly considered using the model of

Bloxham k Jackson (1990) (kindly supplied by A. Jackson and which will be referred

to as BJ2) as it is felt that this is one of the most reliable representations of the time-

dependent geomagnetic field at the CMB currently available. This model is based on

a temporal expansion in cubic B-splines and is valid for the period 1840-1990. The

determination of the radius r for which the difference betweenMT for two epochsis zero,

as used by Hide k Malin (1981) and Voorhies (1984), depends on the assumption that

Mr varies hnearly in the intervening period. This iscertainly not trueofthe geomagnetic

field itself except as a crude approxiamation over short periods of time and is therefore

unfikely to be true of a non-Hnear functional of the field such as J\fT. Bloxham et al

(1989) noted slight evidence of an increase in MT for r = 3485fcm over this century

though they pointed out that the scatter is large and the increase inconclusive. However

their models were derived individually for a sequence ofepochs whereas model BJ2 was

derived by a simultaneous inversion for both spatial and temporal dependence and is

therefore more temporally homogeneous. The pole strength is plotted as a function

of time for r = 3400&m,... ,4300fcm in lOO&m steps in Figure 7.2. It is immediately
apparent from this that over a 150 year period, MT computed at r = 3500fcm (the 15km

difference being negligible) is definitely not constant and that the depth 3800fem is a

more convincing location for the ECMB. This is somewhat surprising as it is contrary to

all previous magnetic determinations of the core radius. However it is, to my knowledge,
the first use of afully time-dependent field model over such along period for this purpose
and is therefore believed to give a more consistent representation of the time-dependent
pole strength. The significant vascillations in Mr even at r = 3800fcm indicate why
methods depending on the difference between pole strengths at two arbitrary epochs
being zero may not work.

This lack of constancy for the pole strength over the CMB could arise for several

reasons. Firstly, theeffects ofdiffusion are now believed by some authors tobe significant

(Bloxham k Gubbins, 1985, 1986) on the decade time scale by consideration of flux
through patches on the CMB bounded by null-flux curves. Secondly, Hide k Malin (1981)
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beheve that imperfect knowledge of B and its rate of change are the main sources of

uncertainty in ftfT. Thirdly, and more importantly in the context of the present chapter,

the conductivity in the mantle immediately above the CMB may be significantly non

zero. If the conductivity there is sufficiently high then one of Hide's (1978) conditions

for the constancy of the pole strength breaks down. The second of these hypotheses

cannot be tested here as covariance estimates for the BJ2 model coefficients were not

available. However Gubbins k Bloxham (1985) estimated errors for the flux over the

northern hemisphere "patch" of around 30MWb, which might suggest an error of around

0.050GW6 for Mr. Voorhies (1984) typically estimates the error in Mr at r = 3485Jfem

to be of the order 0.2GWb which the changes in Mr over the 150 years in Figure 7.2 for

r = 3500km exceed by an order of magnitude. Fluctuations in Afr at r —3800km are of

approximate amplitude 0.2GWb. Differentiation between the first and last hypotheses

may not be possible: the tests for diffusion (eg. Bloxham k Gubbins, 1986) depend

implicitly on prior knowledge of the core radius. (This is also true of all field models

based on the norms commonly used in geomagnetic stochastic inversion including BJ2

(eg. Gubbins, 1983; Gubbins k Bloxham, 1985 and Bloxham k Jackson, 1990).) It
seems possible however that the changes in the pole strength arise from the presence of

a highly conducting layer at the bottom of the mantle which ends rather abruptly at

r = 3800fcm. If this is the case then it could bring results attributing changes in flux

integrals to the action ofdiffusion in the core into question.

7.4 Geomagnetic impulses and mantle conductivity.

The initial identification of geomagnetic jerks as secular variation originating within the
core with a short characteristic time-scale (Courtillot et al, 1978) produced a particular

flurry of interest in the topic of lower mantle conductivity. The recognition of the 1970

jerk's global character allowed Malin k Hodder (1982) to argue, fairly convincingly, that
the jerk originated within the Earth's core. This was seen as strong evidence that signals
coming from beneath the mantle with a characteristic time-scale shorter than Currie's

(1967) "cutoff" period of 4years are observable at the Earth's surface. Whilst Alldredge
(1975, 1977b, 1984) vociferously refuted a core origin for signals with such a short time-
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scale, others (eg. Ducruix et al, 1980; Achache et al, 1980; Backus, 1982,1983; Courtillot

et al, 1984) took their observation as a stimulus to re-evaluate mantle conductivity

estimates and the theory of propagation of magnetic signals through the mantle. Achache

et al (1980) estimated the mean conductivity of the lower mantle to be between 605m-1

and 1505m-1 using the theory ofRuncorn (1955), values significantly lower than most

previous estimates and insufficient to explain supposed correlations between jerks and

changes in the LOD (Le Mouel k Courtillot, 1981) by electromagnetic coupling. On

the contrary, Backus (1983) argued that the apparent timescale of the 1969 jerk is not

inconsistent with a conductivity as high as 30005m"1 at the baseofthe mantleprovided

the conductivity drops off rapidly away from the CMB. The quantitative interpretation

ofthe jerk results ofChapter 5 will now beconsidered in the context ofBackus's (1983)
theory.

7.4.1 Geomagnetic jerks: the core impulse hypothesis

In Backus's (1983) formahsm for investigating the way in which geomagnetic impulses

are propagated through the mantle, conductivity a is assumed to be a function of radius

alone. Backus showed that themantle would act as a filter on each spherical harmonic of

degree n of the impulse and that the two most useful time constants of the filter are the

zero frequency delay time n(n) and the smoothing time a2(n). Backus further showed

that these time constants could be related to the mantle conductivity by the linear and
quadratic functionals

Ari(n) =fj,0J ra{r) 1- f^J dr (7>3)

AW))°=*££^(»W [(n*.{g) ,(I) })*-(g) *]2drds (7.4)
where rs is the radius ofthe Earth'ssurface, A= 2n+1 and min indicates the minimum

ofthe arguments. Backus further showed that for animpulse in thethird time derivative

of a field harmonic (third order impulse) the output f(t) of the mantle filter asymptot
ically approaches a quadratic /«>(*). (Refer to Figure 7.3 reproduced from Figure 1 of
Backus (1983).) If the quadratic time-dependence of each harmonic coefficient of the

asymptotic behaviour of the field at the Earth's surface before and after the impulse can
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be determined then both the amplitude of the impulse (equal to the resulting asymptotic

change in the second time derivative of the field discussed in Chapter 5), the centroid

date or emergence time tf = to + ^l (where to is the date the impulse occurred at the

CMB presumed independent of n) and the smoothing time <72 for each harmonic degree

and order can all be determined. The asymptotic response of the mantle filter to the

third order impulse is a quadratic which can simply be estimated by the difference of

the asymptotic field behaviour after and before the impulse. Note that /<»(*/) need not

be zero. Thus in determining the asymptotic behaviour of the field before and after the

jerk the quadratics should not be constrained to be equal at the centroid date. No such

constraint was imposed on the field models with quadratic time dependence derived in

Figure 7.3: The input to the mantle filter is an impulse at t = to in the (a)
first (b) second and (c) third time derivative and the output is f(t) (shown
as a dashed fine). The apparent delay time is n, the centroid date is t/
and the output asymptotically approaches a polynomial of order 0, 1 and 2
respectively (bold fine). Figure 1 from Backus (1983).
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Chapter 5 and so these can be used as models of the asymptotic behaviour of the field

before and after the jerks of 1970, 1978 and 1983. Discontinuity does not imply that the

field itself is discontinuous at tf only that its asymptotic time-dependence before and

after the impulse is (which is only a valid representation of the field for \t —tf\ > a2

anyway). Note that to estimate t\ some other means must be used for estimating the

epoch to at which the impulse originated on the CMB. Backus also pointed out that

the field at particular locations can appear to change more rapidly than the smoothing

time on account of mode mixing (between harmonicdegrees). The timescaleof the jerks

certainly appears to be of the order of 1 or 2 years at many observatories.

As the mantle filter constants T\ and a2 and hence the impulse constants tf and a2

depend on harmonic degree but not harmonic order, Backus et al (1987) were able to

quantitatively test the core impulse hypothesis that:

(1) the conductivity of the mantle is a function of radius alone and

(2) before passing through the mantle the jerk was an impulse in the third time deriva

tive of the field.

Backus et al (1987) concluded that the jerk of 1969/70 is not consistent with this hypoth
esis. Their impulse constants and associated statistics for the core impulse hypothesis

(their Table 2) are reproduced in Table 7.3. Only the centroid dates for degrees 2and 3
are rejected as not self-consistent with 99% certainty although this is a rather less strict

interpretation than that of Backus et al (1987). Most of the x2 statistics are quite high
and only one of the smoothing times is significantly non-zero.

7.4.2 Impulse constants from the 1970, 1978 and 1983 jerks

If the asymptotic output from the mantle filter has quadratic time-dependence

/00(t) = <Ct2 +&-t +c- (7>5)

then the impulse constants for this harmonic can be determined from

_ bn
tf ~ ~2a™ (7.6)

n

and

CT2 = ~T ~ (if)2 (7.7)
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Table 7.3: Mean impulse constants of Backus et al (1987) for harmonic
degrees n = 1,..., 7. x2 statistics are for the hypothesis that the (2n+ 1)
values of t\ and a\ for each harmonic degree n are equal. If these exceed
Xc values then this hypothesis, and hence the core impulse hypothesis (see
§7.4.1) must be rejected (with 99% certainty on In degrees of freedom).
6?i(l) and 6o%(l) are the estimated errors.

n to-\-Ti(n)±6fi(n) V2^fi(n) crj(n)±6<72,(n) X2- Xc

1 1968.87±0.33 2.38 1.51±0.42 7.04 9.21

2 1970.06±0.14 28.47 -0.39±0.31 11.59 13.28

3 1969.08±0.24 33.80 -0.04±0.35 3.16 16.81

4 1969.22±0.36 14.07 0.07±0.32 13.46 20.09

5 1969.51±0.59 2.99 -0.07±0.30 6.67 23.21

6 1969.36±0.55 10.68 0.05±0.27 10.28 26.22
7 1968.80±0.74 4.40 0.05±0.26 6.71 29.14

(Backus et al, 1987). The impulse constants tf and a2 were computed for the jerks

of 1970, 1978 and 1983 using models PR1970, PO1970, PR1978, P01978, PR1983 and

P01983 (Chapter 5). These are presented in Table 7.4 (together with the appropriate

statistics for testing the core impulse hypothesis calculated by the method given in

Backus et al (1987)). Only harmonic degrees 1-6 are presented bearing in mind the

resolution curves for the secular acceleration (Figure 5.14). It is immediately clear from

the x statistics that the core impulse hypothesis must be rejected at all three epochs.

This means that either the events do not originate in the core, a possibility that seems

increasingly unlikely in light of the earlier chapters of this thesis, the events were not

impulsive (in the third time derivative), or significant lateral conductivity heterogeneity
exists in the mantle. The second possibility has to be true to some extent—any physical
process takes a finite time; the important question is whether or not the characteristic

timescale of the jerks is short compared to the characteristic timescale of other features

oftheglobal secular variation. Li Chapter 4it was argued that thetypical time between

virtual impulses is of the order of 10 years and so this could be taken as a characteristic

time-scale of SV. The observed changes in SV associated with jerks however seem to

occur within an interval of a year or two. Such evidence certainly suggests that the

change in field at the CMB associated with jerks is probably quite well described by
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Table 7.4: Mean impulse constants for harmonic degrees n = 1,..., 6 from
the (a) 1970jerk (b) 1978 jerk and (c) 1983 jerk from the models presented
in Chapter5. x2 statistics are for the hypothesis that the (2n+ 1) values of
r\ and a\ for each harmonic degree are equal to the mean. If these exceed
the Xc vaiues then this hypothesis, and hence the core impulse hypothesis
(see §7.4.1) must be rejected (with 99% certainty on 2n degrees offreedom).
For an explanation of the computation of these quantities see §7.4.2.

n to + ri(n)±6fi(n) V2^•fi(n) a${n)±6o%(n) X2' x2c
(a) 1 1970.12±0.07 1890 -38.80±2.15 1335 9.21

2 1968.76±0.02 2241 9.11±0.71 3797 13.28
3 1969.84±0.02 3488 -37.25±0.81 6210 16.81
4 1970.15±0.03 1169 -73.56±1.46 1453 20.09

5 1968.01±0.04 742 -2.40±2.29 1774 23.21

6 1970.00±0.06 3564 3.69±2.97 4487 26.22

(b) 1 1976.99±0.17 853 58.39±5.03 1091 9.21
2 1976.97±0.02 329 -17.22±0.79 3002 13.28
3 1977.16±0.02 2694 -29.65±0.96 9030 16.81
4 1977.53±0.03 260 -107.97dbl.22 9400 20.09
5 1977.01±0.04 1383 -0.89±1.37 9403 23.21
6 1977.26±0.05 628 127.62±3.17 5570 26.22

(c) 1 1980.53±0.12 537 126.35±9.62 2246 9.21
2 1983.56±0.05 1968 -40.26±2.01 4530 13.28
3 1981.30±0.07 205 -35.62±2.23 1201 16.81
4 1984.81±0.08 1234 -81.65±3.23 538 20.09
5 1982.57±0.18 1055 -418.10±20.98 1539 23.21
6 1984.67±0.20 527 112.17±10.55 1287 26.22

a third order impulse as a first approximation. Therefore the possibility of significant
lateral heterogeneity in mantle conductivity seems much more likely as an explanation for
the gross inconsistency ofthejerk models with the core impulse hypothesis. The extreme

scatter in the smoothing parameters in Table 7.4 is probably due to their reciprocal

dependence (equation (7.7)) on the aj1 coefficients which are relatively poorly determined
compared to cj? and some ofwhich are therefore suppressed by the stochastic inversion

procedure. The enormous x2 statistics may arise from the inability of the standard errors,
which are believed by some (eg. Langel et al, 1989) to be significantly underestimated
by stochastic inversion, to account for the scatter within each harmonic degree.
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7.5 Propagation times

Although the emergence time tf for each harmonic degree can be determined directly

from the geomagnetic data, the delay time r\ cannot. For this some independent estimate

of the impulsedate at the coremantle boundary to is necessary. Chapter 6 highlighted a

possible direct link between the geomagnetic field and Earth rotation and the observed

phase difference (6 years) is certainly suggestive of a mean delay associated with the

propagation of poloidal field through the mantle. It will be assumed here that a change

in the gross angular momentum of the outer core leads immediately to a change in the

angular momentum of the mantle. Even disregarding the possible role of EM coupling

between the core and mantle, any phase difference between other geomagnetic andLOD

parameters may be indicative of the propagation time. Backus (1983) has hypothesised

a step-like change in the axial angular acceleration ofthe Earth around 1956 as possibly

heralding the occurrence of the geomagnetic impulse which became apparent at the

Earth's surface around 1969. This implies a propagation time of ~ 13 years for changes

in the magnetic field to reach the surface. Le Mouel et al (1981) point to an apparent

correlation between declination and the Earth's rotation rate, with magnetic variation

leading those of the rotation rate by some 10 years rather than lagging behind. This

correlation isfurther supported with theaddition ofmore recent data by Gire k LeMouel

(1986) who also discuss the physical mechanisms proposed by LeMouel k Courtillot

(1982) to explain the core-mantle couple and the phase of the correlation. Contrary
to their findings, however, Vestine k Kahle (1968) found a good correlation between

westward drift inferred from the angular momentum (AM) of the top 200km of the

core consistent with the LOD observations and the drift ofthe eccentric dipole with the

latter lagging 5years behind the former variations (see §6.4.4 and Figure 6.6). This too
suggests a typical time ofaround 5 years for changes in the poloidal magnetic field at

the CMB to reach the surface on the assumption that exchange of AM is between the

mantle and the upper layers of the core as opposed to deeper regions. In Figure 6.4
there is a sharp "elbow" in the LOD torque at around 1964 which could be associated

with the 1970 jerk, themost powerful ofthe three jerks investigated inChapter 5, which

would also suggest a 6 year delay time. There are however no other sharp changes in
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the LOD torque at 1972 and 1977 associated with the 1978 and 1983 jerks.

The evidence considered so far in this chapter has been pointing toward particular

distributions of conductivity with a concentration of conductance toward the CMB. The

impulse delay and smoothing times calculated according to equations (7.3) and (7.4)

for the models examined in §7.1 and §7.2 are presented in Table 7.5 together with two

thin homogeneous layer models of the appropriate conductance to explain the LOD

fluctuations. The 3 published models highlighted earlier as being most compatible with

the LOD data are marked by an asterisk. Bearing in mind the earlier comment that

the conductivities of Stix k Roberts (1984) and Courtillot et al (1984) would have to

be increased by factors of 3 and 5 respectively to account for the LOD fluctuations,

the delay times of the 5 LOD compatible models in Table 7.5 are all of the correct

order of magnitude to account for the phase lag between the torques. However all

these monotonic conductivity profiles lead to delay and smoothing times which decrease

distinctly with harmonic degree, a feature not apparent from the jerk data either in

Tables 7.3 or 7.4. The delay times for the 1970 and 1978 jerks in particular are not

suggestive of any systematic dispersion among different harmonics. The Ll model (a
homogeneous 300fcm conducting layer) shows the least dispersion of the five. All the

models have smoothing times of about 0.6 or more of the delay time, thus a delay time
of around 6 years would also imply a smoothing time of several years which is not

compatible with the observed characteristic time-scale of jerks. Therefore to explain the

apparent rapidity ofthejerks as seen in thedata, significant mode mixing would have to

occur in many different regions which seems unlikely. Backus also showed that certain

consistency conditions relating rx and a2 must hold but as a\ is so poorly determined

these are not useful here. It may be that a simultaneous analysis of all 3jerks could be
performed to yield more reliable estimates of the mantle filter constants as these should

be time-invariant.

7.6 Conclusions.

Several strands of evidence highlighted above have led toward the idea that the lower part
of the mantle, perhaps the bottom 300fcm or so, consists of aregion of high conductivity.
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Firstly a number of previously published models of lower mantle conductivity have been

compared, most of which show a significant concentration of conductance toward the

CMB. If these are approximated by thin homogeneous layers at the base of the mantle,

then only a few of them appear to be compatible with the LOD fluctuations if EM

forces are the sole mechanism of core-mantle coupling. The method of Hide (1978) for

locating the CMB with geomagnetic measurements has failed to give agreement with

Table 7.5: Impulse delay and smoothing times derived using equations (7.3)
and (7.4) for the 10 published models already discussed and two homoge
neous layer models ofconductance 6.7 x 108 and thickness 300&m (Ll) and
600fcm (L2). Models marked * axe compatible with the electromagnetic
coupling results.

Delay times ri(n) (years)
n 1 2 3 4 5 6
Backus (1983)* 12.26 10.62 9.36 8.36 7.55 6.88
Courtillot et al (1984)* 1.42 1.29 1.18 1.09 1.02 0.95
Stix k Roberts (1984)* 1.67 1.57 1.48 1.40 1.33 1.26
Ll (300km)* 3.96 3.76 3.57 3.39 3.23 3.08
L2 (600km)* 7.54 6.84 6.24 5.71 5.26 4.86
Achache et al (1980) 6.03 4.75 3.86 3.23 2.77 2.41
Alldredge (1977b) 80.85 75.08 70.08 65.70 61.84 58.41
Currie (1968) 12.05 9.49 7.73 6.47 5.53 4.82
Ducruix et al (1980) 1.17 0.99 0.85 0.74 0.66 0.59
Kolomiytseva (1972) 395.58 371.61 350.39 331.45 314.46 299.12
McDonald (1957) 3.44 2.81 2.36 2.02 1.77 1.57
Paulus k Stix (1989) 31.01 24.51 20.02 16.79 14.40 12.57

Sinoothing times cr;>(n) (yeajrs)
Backus (1983)* 8.20 6.79 5.73 4.92 4.29 3.78
Courtillot et al (1984)* 0.96 0.85 0.76 0.68 0.62 0.57
Stix k Roberts (1984)* 1.15 1.06 0.98 0.91 0.85 0.80
Ll (300km)* 3.20 2.99 2.82 2.65 2.49 2.35
L2 (600km)* 6.03 5.35 4.76 4.26 3.83 3.45
Achache et al (1980) 4.62 3.40 2.59 2.03 1.63 1.34
Alldredge (1977b) 55.16 50.19 45.94 42.26 39.05 36.25
Currie (1968) 9.24 6.81 5.18 4.05 3.25 2.67
Ducruix et al (1980) 0.83 0.66 0.54 0.45 0.38 0.32
Kolomiytseva (1972) 271.07 250.35 232.18 216.16 201.92 189.20
McDonald (1957) 2.40 1.83 1.44 1.16 0.96 0.80
Paulus k Stix (1989) 23.57 17.41 13.28 10.42 8.38 6.89



164

the CMB radius known from seismology. One reason for this could be a sharp drop in

conductivity at around 300km above the CMB. The impulse propagation characteristics

of such conductivity models seem to be incompatible with the mantle filter constants

derived from the observed jerks of 1970, 1978 and 1983, whilst internal inconsistencies

among the mantle filter constants point to the presence ofsignificant lateral heterogeneity

in the lower mantle conductivity. The preferred model is a 300fcra thick layer of ~

25005m-1 conductivity at the base of the mantle. A final note of caution: to quote

such figures conveys an unwarranted sense of certainty; the main conclusion from the

foregoing discussion ought to be that our knowledge of lower mantle conductivity is still

very sketchy. The geomagnetic evidence certainly appears to point to the concentration

of mantle conductance in the 200fem to 300fcm thick D" layer which is believed from

seismology to be highly heterogeneous (see eg. Anderson, 1989).
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Chapter 8

Concluding remarks

8.1 Summary

The research described in this thesis has been directed at enhancing our understanding

of the ways in which the Earth's magnetic field changes on the month to decade time-

scales. In particular the phenomena known as geomagnetic jerks have been investigated.

In light ofprevious arguments about the internal or external nature ofthe 1969/70 jerk,

special attention has been paid to assessing the extent to which geomagnetic fields of

external origin contribute to time-averaged observatory data. Using monthly means of

the aa index as a temporal basis function the (dimensionless) spatial morphology ofthe

associated relative amplitude function has been shown to be dominated by spherical

harmonics representing a dipole aligned with though of opposite polarity to the Earth's

main tilted dipole field. Seasonal fluctuations in the field have been analysed also,

revealing that the annual variation is dominated by degree 2 harmonics and the biannual

variation by degree 1 and degree 2 in approximately equal measure. The results have

been found to be consistent with an insulating mantle to a depth of about 600km or

700km and a uniform conductance of between 0.15m-1 and 15m-1 below this.

The resulting simple model for the external and induced disturbance fields can be

used to eliminate what is believed to be the most significant time-dependent field of

non-core origin on this time-scale. Quantitative analysis of the resulting improved

representation of the core field using the optimised piecewise regression algorithm de

veloped in Chapter 4 has revealed semi-objectively three approximate dates, 1970, 1978
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and 1983, at which the field appears to have undergone rather abrupt changes in its be

haviour. As most of the major effect of external fields is believed to have been removed

these events are believed to be of internal origin. The analysis has also shown that the

time-dependence of the geomagnetic field at individual sites can be approximated well

by piecewise quadratic functions, the typical duration of which has been found to be

approximately 10 years. Removal of disturbance field effects has been shown to reduce

residual variance to such quadratics by about 50% to 70%.

Spherical harmonic models of the field with a quadratic time-dependence have been

prepared for epochs 1965.5, 1974.5, 1981.5 and 1986.5. The technique of stochastic

inversion, applied simultaneously to estimates of the time-dependence of each field com

ponent at each observatory, has been used. Based on such estimates from about 100

observatories in each case, the resolution of these models extends to about degrees 9,

7 and 6 for the main field, secular variation and secular acceleration respectively. The

models are all truncated at degree 14 but convergence of the models was achieved well

before this value. These models have allowed the jump in secular acceleration ("jerk

field") associated with the jerks of1970, 1978 and 1983 to be mapped. The spatial dis

tribution for the 1969/70 jerkhas been found to be in broad agreement with previously

published results, though the models are believed to be the most reliable jerkmodels yet

produced. All 3 events have been shown clearly to beworldwide inextent. The strength

ofthe 1978 jerk, as measured bythe mean squared value ofthe jerkfield, hasbeen found

to be 16.98±l.Zi(nT/yr2)2 which is significantly smaller than the 25.53±lA0(nT/yr2)2
found for the 1970 jerk. There is also some evidence of an anti-correlation between the

two. The 1983 jerk has been found to be weaker still with a mean squared value of

8.03 ± 1.35(nT/yr2)2. These events are thought to be reasonably well represented by

"step" changes in the secular acceleration of 1 or 2 years duration. However the jerks

seem to be inconsistent with the core impulse hypothesis: that thejerkwas impulsive at

the CMB and mantle conductivity isa function ofradius alone. Failure ofthis hypothesis

is believed to be due primarily to lateral heterogeneity of the conductivity though this

belief is subjective. Thejerkemergence times have been shown to vary significantly with

harmonic degree although it isbelieved the error estimates may beoverly optimistic (see
Chapter 7).
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The relationship between the geomagnetic field and Earth rotation has been inves

tigated by evaluation of the electromagnetic torque that would act on the mantle if the

base of the mantle consists of a thin, homogeneous, conducting layer. The torque has

been computed for epochs 1900 to 1980 at 5 year intervals using recent models of the

field and flow. The resulting time-dependence of the torque has been found to arise

almost entirely from the time-dependence of the flow and certain features of the torque

were shown to correspond to primarily non-zonal core flow in regions where the non-

uniqueness of these flows is unresolved. Therefore a time-dependent torque has been

computed using only the zonal terms of the flow. This preferred torque shows good

agreement with the torque required to explain the decade fluctuations in the length of

day and results in a best estimate of 6.7 ± 0.9 x 108iS for the conductance of such a

layer. However a linear trend in the computed torque remains to be explained and it is

believed this may arise from an over-simplistic downward continuation of the poloidal

field to the base ofthe mantle. Various pieces ofevidence relating to mantle conductivity

have been drawn together in Chapter 7 and the conclusion reached that the base of the

mantle may consist of a (thin) region of high conductivity.

8.2 Conclusions and future work

8.2.1 External and induced fields

The method developed in Chapters 2 and 3 to separate the external, induced and core

fields offers a novel alternative to the application ofmore traditional time-series analysis

techniques such as low, high and band-pass filtering which arbitrarily assume a distinc

tion ofthe externaland induced fields from the core field in the frequency domain. It has

been shown that the method can successfully separate the external and induced fields

from the core field by making prior assumptions about their time-dependence, which

have then been further separated into parts ofexternal and internal (induced) origin.

There are certainly short-comings in the method— for example the cubic time-

dependence assumed for the core field is rather simple leading to a "sliding window"

method which is clumsy though effective. It was also confirmed, after disturbance ef

fects were removed from monthly means, that solar cycle modulations of the annual
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(and perhaps biannual) periodicities can be large and so the estimates obtained for the

amplitudes of these periodicities are probably averages over one or more solar cycles.

A more sophisticated model could be developed in which the core field over a whole

time-series is expanded in B-splines and the annual and biannual fluctuations allowed

to vary with some solar cycle related function, perhaps a sequence of half sine waves of

length 11 years as a crude approximation, or the smoothed sunspot number time-series.

There probably is no "solar cycle variation" as such in the geomagnetic field — merely

a solar cycle modulation of several geomagnetic phenomena.

The origins of the annual and biannual variations could certainly be tested more

specifically; the large quantity of hourly means available on the National Geophysical

Data Centre optical disk data base could be used for a systematic investigation of the

ionospheric daily variation and its modulation on biannual, annual and solar cycle time-

scales, as well as changes in character between quiet and disturbed times. At least one

model of the Sq (solar quiet) field for a solar minimum year already exists (Campbell,

1989) and could be used to partially correct monthly and annual means for ionospheric

effects. Better determinations of magnetic fields related to geo-solar interactions should

allow improvements in our knowledge of the conductivity of the upper mantle, as well

as better representations of the core field.

8.2.2 The time-dependent magnetic field and core flows

The investigation of the time-dependence of the core field can be approached from two

opposing directions; firstly by considering these changes statistically, (as in Chapter 4)

and secondly from the physical standpoint.

In the statistical/observational approach (effectively a "mapping" philosophy) the

question is essentially reduced to one of how best the temporal and spatial dependence of

the field can be summarisedmost concisely without lossof information. The application

of the method of stochastic inversion to large data sets to determine over-parameterised

models (eg. Bloxham & Jackson, 1991b) runs the inherent risk of over-fitting the data.

Appropriate spatial norms for this method have been developed based on the physics

of the geomagnetic field (as discussed in Chapter 5) but the choice of norm for the

temporal expansion remains rather arbitrary — for example minimisation of the second
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time-derivative of the field (Bloxham & Jackson, 1989). Although such time-dependent

models give a good representation ofchanges in the field, the models derived in Chapter 5

appear to give a comparable fit to the data on the time-scale of a decade or so. These

models were based on the assumption that all time-derivatives higher than the second

are zero and therefore have a much simpler parameterisation, though of course this

constraint is as arbitrary as minimisation of the second derivative. The models developed

in Chapter 5 were intended to quantify the quadratic time-dependence of the field at

specific epochs with no continuity constraints between such models. More general time-

dependent models such as that of Bloxham & Jackson (1991b) provide a continuous

representation of the fieldoverlongtime spans and willtherefore have wider applicability.

The simultaneous inversion for main field and secular variation from original data is

probably preferable as in principle it allows models of the secular variation and higher

time-derivatives with convergent error estimates at the core-mantle boundary to be

obtained.

Prom the physical standpoint the ability of inferred core flows to reproduce the

observed secular variation is of key importance. Research in this field has gone beyond

the simple question of whether or not flow models can account for the secular variation

to questions of how accurately this can be done, and which constraints imposed on the

flows are most compatible with the data. The use of models of secular variation for

such investigations introduces an extra step in which statistical uncertainty can mar the

results; proper assessment of flow models is most likely to be best served by relating

flows directly to the data. This isparticularily important in the case ofapparently rapid

features of the secular variation such as geomagnetic jerks. The assumption implicit in

most investigations of flow at the top of the core is that of frozen-flux, ie. that diffusion

in the core is negligible. As spatial resolution and temporal extent ofgeomagnetic data

sets improve, hopefully with the introduction of more vector magnetic satellites with a

significant lifespan and extension of the permanent magnetic observatory network, an

understanding of diffusion in the dynamics of the core and how it can be incorporated

in the determination of flow models will become increasingly important.

The method of piecewise regression analysis of time-series developed in Chapter 4

has applications beyond geomagnetism and probably beyond geophysics. The adapta-
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tion of the method of Kent et al (1983) from principal components to regression analysis

was relatively straightforward and could easily be modifiedfurther for other parameteri-

sations of other data series. (For the pickingof stratigraphic horizons in well-log data for

example.) Although rather computer intensive, the algorithm can offer a useful method

for the objective interpretation of noisy data where the underlying model is believed to

be only piecewise continuous.

8.2.3 Mantle conductivity

As pointed out in Chapter 7 changes in the pole-strength computed at the core-mantle

boundary suggest a possible failure of the frozen-flux hypothesis but could perhaps be

attributable to the presence of a highly conducting region at the base of the mantle. The

presence of such a layer could have profound implications for our understanding of the

geomagnetic field and hence the dynamics of the core. If the conductivity is as high as

the few thousand Sm~l in the lowest few hundred kilometres of the mantle as has been

suggested here then there could be a higher contrast in conductivity at the top of such

a layer than at the core-mantle boundary itself. The forward problem of understanding

the effects of such a layer on the magnetic field leaving the core needs to be carefully

considered if we wish to accurately downward continue the observed field to the core

mantle boundary. This couldbe especially important if significant heterogeneities in the

conductivity at the base of the mantle exist as seems increasingly likely. However the

hope of determining such a conductivity distribution from geomagnetic evidence alone

seems slim. Even if lateral heterogeneity was on a large enough scale to be within the

resolution of geomagnetic data we are faced with the ever present "blind deconvolution

problem" of an unknown input to an unknown filter. However if such heterogeneities are

as small as lOOfcm as has been suggested elsewhere (Jeanloz, 1991) then eventhe forward

modelling problem may have to be treated by a statistical averaging method. Indeed it

has been suggested that apart from the dipole term, the geomagnetic field coefficients

have the characteristics ofa random process for each harmonic degree (Hulot &LeMouel,

1991). If the mantle is largely insulating apart from the metallic alloy products of a

vigorous reaction between perovskite and liquid iron (Knittle & Jeanloz, 1991) then

presumably some solid state diffusive equilibrium must be reached creating a boundary
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layer at the base of the mantle. The radial variation of conductivity within such a layer

does not appear to have been considered yet in the literature. The question of how and

by what mechanism such highly conductive reaction products may be distributed within

such a layer needs further investigation. For example recent work on Earth nutation

forced by electromagnetic coupling (Buffet et a/, 1990) has suggested the existence of a

highly conducting layer at the base ofthe mantle, ofsimilar conductance to that preferred

in Chapter 7 though 2 orders ofmagnitudethinner. Stevenson (1990) has suggested that

permeation of liquid iron from the core into the mantle may occur depending on the

extent of CMB topography, which would have a significant effect on mean conductivity

there, although the extent of such permeation is believed by some to be minor (Poirier

& LeMouel, 1991).

8.2.4 Endpiece

The presence of highly electrically conducting regions at the base of the mantle is ex

pected to lead to a significant interaction between the core and the mantle. As well as

coupling arising from toroidal field induced in the conducting regions, toroidal field from

the core may "leak" into the mantle giving rise to further torques. If torques strong

enough to accelerate and decelerate the mantle arise from a thin conducting region then

the stresses acting within such a region must be very large and the implications of this

need consideration. If the conductivity is highly heterogeneous then advection of the

magnetic field past such regions could lead to local intensification of the field (Jeanloz,

1990). Such locking offlux, perhaps over the time-scales ofthe core flow (several years

say if the conductivity is sufficiently high), could lead to the accumulation of magnetic

energy in a manner analogous to flux ropes in sunspots (see eg. Barnes & Sturrock,

1972). Concentration offlux could then lead to a catastrophic release ofmagnetic en

ergy resulting in a sudden change in the geomagnetic field, such as a jerk (as suggested

by Backus & Hough, 1985), on a time-scale shorter than that of core-flows.

Clearly such ideas are wildly speculative but there seems little doubt that jerks, and

the sudden changes in the secular acceleration that characterise them, are a real phe

nomenon originating in the interior of the Earth. As it is now widely believed that the

secular variation of the geomagnetic field arises primarily from flow in the upper part
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of the core (see eg. Gubbins, 1991) such phenomena are likely to be associated with

such flows also. However the time-scale of changes in the secular variation associated

with such phenomena is so short, even compared to that of the flow, that they may

well arise from some interaction of the magnetic field with the overlying mantle. The

evidence presented in Chapter 6 pointing to electromagnetic core-mantle coupling as

being significant implies that it may not be possible to treat the core and mantle as in

dependently in geomagnetism as has often been the case. A burgeoning of research into

core-mantle interactions is resulting from improved data sets and methods in geomag

netism and seismology. Recent research into pole paths during geomagnetic reversals

point to significant heterogeneity of the lower mantle and control by the mantle of re

versal transitions. Mineral physics experiments point to the lower mantle as possibly

the most chemically active and heterogeneous zone of the Earth. If our understanding

of the deep Earth, its magnetic field and the interaction between the core and mantle is

to be significantly advanced these apparently disparate subjects will have to be skillfully

blended to lead to a better understanding of the dynamics of the Earth and ultimately

other planets.
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Appendix A

Summary of data used in field

models

Table A.l: Start and end years of the segments (see Chapter 4) which define
the quadratic time-dependence used as data in the stochastic inversions
of Chapter 5, resulting in time-dependent field models PR1970, PO1970,
PR1978, PQ1978, PR1983 and P01983.

IAGA code Component PR1970 PO1970/PR1978 P01978/PR1983 P01983
AAA X — 1967.5-1986.5 1967.5-1986.5
AAA Y — 1967.5-1986.5 1967.5-1986.5 —

AAA Z — 1970.5-1976.5 1974.5-1988.5 1974.5-1988.5
AAE X 1958.5-1972.5 1971.5-1979.5 1977.5-1982.5 1984.5-1989.5
AAE Y 1958.5-1963.5 1961.5-1982.5 1961.5-1982.5 1983.5-1989.5

AAE Z 1958.5-1966.5 1968.5-1984.5 1968.5-1984.5 1982.5-198.8.5
ABG X 1944.5-1960.5 1963.5-1985.5 1963.5-1965.5 1983.5-1988.5

ABG Y 1966.5-1971.5 1970.5-1988.5 1970.5-1988.5 —

ABG Z 1947.5-1970.5 1968.5-1983.5 1968.5-1983.5 1983.5-1989.5
AIA X 1957.6-1984.5 1957.6-1984.5 1957.6-1984.5 —

AIA Y 1957.6-1973.5 1971.5-1979.5 1978.5-1984.5 —

AIA Z 1957.6-1979.5 1957.6-1979.5 1978.5-1983.5 —

ALE X 1962.5-1970.5 1968.5-1977.5 1975.5-1985.5 1983.5-1988.5
ALE Y 1962.5-1969.5 1969.5-1974.5 — —

ALE Z 1961.9-1973.5 1974.5-1980.5 1974.5-1980.5 1983.5-1988.5

ALM X 1956.5-1968.5 1972.5-1985.5 1972.5-1985.5 1983.5-1989.5
ALM Y 1956.5-1966.5 1964.5-1984.5 1964.5-1984.5 1982.5-1989.5
ALM Z 1955.5-1978.5 — 1976.5-1989.5 1976.5-1989.5
ANN X 1960.5-1972.5 1971.5-1976.5 — 1977.5-1988.5
ANN Y 1962.5-1975.5 1962.5-1975.5 — 1979.5-1988.5
ANN Z 1962.5-1970.5 1969.5-1985.5 1969.5-1965.5 1983.5-1988.5
API X 1969.5-1974.5 1969.5-1974.5 1978.5-1984.5 —

API Y 1958.5-1972.5 1970.5-1977.5 1975.5-1983.5 1981.5-1988.5
API Z — 1974.5-1986.5 1974.5-1986.5 1984.5-1989.5
AQU X 1964.5-1970.5 1968.5-1989.5 1968.5-1989.5 1968.5-1989.5
AQU Y 1961.5-1969.5 1968.5-1979.5 1978.5-1983.5 1981.5-1989.5
AQU Z 1962.5-1989.5 1962.5-1989.5 1962.5-1989.5 1962.5-1989.5

ARS X 1926.5-1966.5 1971.5-1986.5 1971.5-1986.5
ARS Y 1951.5-1974.5 1972.5-1980.5 — —

ARS Z 1949.5-1971.5 1969.5-1978.5 1976.5-1984.5 —

ASH X 1959.5-1986.5 1959.5-1986.5 1959.5-1986.5 1984.5-1989.5
ASH Y 1959.5-1989.5 1959.5-1989.5 1959.5-1989.5 —

ASH Z 1963.5-1970.5 1968.5-1977.5 1975.5-1989.5 1975.5-1989.5
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BEL X — 1969.5-1984.5 1969.5-1984.5 1963.5-1969.5

BEL Y — 1967.5-1981.5 1982.5-1987.5 1982.5-1987.5

BEL Z — 1960.5-1979.5 1980.5-1985.5 1984.5-1989.5

BJI X 1957.5-1970.5 — 1966.5-1985.5 1983.5-1988.5

BJI Y 1959.5-1971.5 1969.5-1980.5 1978.5-1983.5 1983.5-1988.5

BJI Z 1959.5-1972.5 1971.5-1988.5 1971.5-1988.5 1971.5-1988.5

BJN X 1951.5-1967.5 1967.5-1990.5 1967.5-1990.5 1967.5-1990.5

BJN Y 1951.5-1972.5 1971.5-1980.5 1978.5-1987.5 1985.5-1990.5

BJN Z 1956.5-1964.5 1971.5-1985.5 1971.5-1985.5 1984.5-1989.5
BLC X 1957.5-1982.5 1957.5-1982.5 — 1980.5-1988.5

BLC Y 1951.6-1970.5 1968.5-1981.5 — 1984.5-1989.5

BLC Z 1962.5-1969.S 1967.5-1980.5 1967.5-1980.5 —

BNG X 1955.5-1967.5 1965.5-1988.5 1965.5-1988.5 1965.5-1988.5

BNG Y 1955.5-1971.5 1970.5-1977.5 1977.5-1983.5 1981.5-1988.5

BNG Z 1955.5-1970.5 1968.5-1988.5 1968.5-1988.5 1968.5-1988.5

BRW X 1963.4-1972.5 1971.5-1985.5 1971.5-1985.5 1983.5-1989.5

BRW Y 1963.4-1970.5 1968.5-1989.5 1968.5-1989.5 1968.5-1989.5

BRW Z 1963.4-1976.5 — 1973.5-1986.5 1984.5-1989.5

CAN X 1941.5-1970.5 1970.5-1976.5 1974.5-1987.5 1974.5-1987.5

CAN Y 1947.5-1972.5 1970.5-1980.5 1979.5-1984.5 —

CAN Z 1953.5-1974.5 1973.5-1979.5 1977.5-1987.5 —

CCS X 1954.5-1971.5 1969.5-1980.5 1978.5-1989.5 1978.5-1989.5

CCS Y 1951.5-1989.5 1951.5-1989.5 — 1951.5-1989.5

CCS Z 1954.5-1974.5 1972.5-1987.5 1972.5-1987.5 —

CLF X 1912.5-1977.5 1975.5-1980.5 1975.5-1980.5 —

CLF Y 1921.5-1967.5 1967.5-1981.5 1981.5-1986.5 —

CLF Z 1964.5-1969.5 1967.5-1984.5 1967.5-1984.5 —

CMO X — 1968.5-1983.5 1968.5-1983.5 —

CMO Y 1961.5-1970.5 1968.5-1985.5 1968.5-1985.5 1983.5-1988.5

CMO Z 1961.5-1979.5 1961.5-1979.5 1979.5-1985.5 —

CNH X 1959.5-1970.5 1968.5-1973.5 1972.5-1988.5 1972.5-1988.5

CNH Y 1957.5-1969.5 1967.5-1982.5 1980.5-1985.5 1983.5-1988.5
CNH Z 1957.5-1970.5 1968.5-1974.5 1972.5-1988.5 1972.5-1988.5

COI X — 1966.5-1989.5 1966.5-1989.5 1966.5-1989.5

COI Y 1948.5-1970.5 1968.5-1979.5 1980.5-1989.5 1980.5-1989.5

COI Z 1952.5-1984.5 1952.5-1984.5 1952.5-1984.5 1983.5-1988.5
CPA X 1955.5-1975.5 1955.5-1975.5 — —

CPA Y 1962.5-1969.5 1969.5-1980.5 — —

CPA Z 1955.5-1979.5 1955.5-1979.5 — —

CWE X 1956.5-1977.5 1956.5-1977.5 — —

CWE Y 1960.5-1967.5 1969.5-1989.5 1969.5-1989.5 1969.5-1989.5

CWE Z — 1966.5-1980.5 1978.5-1985.5 1983.5-1989.5
DIK X 1954.5-1972.5 1971.5-1986.5 1971.5-1986.5 1984.5-1989.5
DIK Y 1949.5-1963.5 1964.5-1988.5 1964.5-1988.5 —

DIK Z 1957.5-1967.5 1965.5-1975.5 1973.5-1984.5 1984.5-1989.5

DOB X — 1969.5-1986.5 1969.5-1986.5 1984.5-1989.5

DOB Y 1952.5-1969.5 1967.5-1979.5 1977.5-1984.5 1977.5-1984.5

DOB Z 1959.5-1974.5 1972.5-1985.5 1972.5-1985.5 —

DOU X 1962.5-1972.5 1970.5-1988.5 1970.5-1988.5 1970.5-1988.5

DOU Y 1956.5-1970.5 1968.5-1979.5 1981.5-1987.5 1981.5-1987.5
DOU Z 1961.5-1975.5 1973.5-1984.5 1973.5-1984.5 1982.5-1988.5

EBR X — — —

EBR Y 1951.5-1969.5 1967.5-1980.5 — —

EBR Z 1955.5-1980.5 1955.5-1980.5 — —

ESK X 1948.5-1972.5 1970.5-1988.5 1970.5-1988.5 1970.5-1988.5
ESK Y 1936.5-1971.5 1969.5-1979.5 1980.5-1988.5 1980.5-1988.5
ESK Z 1961.5-1970.5 1968.5-1984.5 1968.5-1984.5 1983.5-1989.5
EYR X 1940.5-1973.5 1971.5-1976.5 1980.5-1985.5 —

EYR Y 1957.5-1973.5 1971.5-1978.5 1976.5-1986.5 1984.5-1989.5

EYR Z 1942.5-1965.5 1965.5-1989.5 1965.5-1989.5 1965.5-1989.5
FRD X 1945.5-1968.5 1968.5-1979.5 1977.5-1989.5 1977.5-1989.5
FRD Y 1959.5-1981.5 1959.5-1981.5 1959.5-1981.5 1981.5-1988.5
FRD Z 1946.5-1972.5 1971.5-1976.5 1974.5-1989.5 1974.5-1989.5
FUQ X 1955.5-1978.5 1955.5-1978.5 1976.5-1981.4 —

FUQ Y 1954.9-1982.5 1954.9-1982.5 1954.9-1982.5 —

FUQ Z 1957.5-1969.5 1968.5-1974.5 1972.5-1981.4 —

FUR X 1939.5-1969.5 1967.5-1989.5 1967.5-1989.5 1967.5-1989.5
FUR Y 1943.5-1971.5 1969.5-1980.5 — 1981.5-1989.5
FUR Z 1954.5-1963.5 1961.5-1978.5 1976.5-1983.5 1981.5-1989.5
GCK X 1962.5-1971.5 1969.5-1985.5 1969.5-1985.5 1983.5-1988.5

GCK Y 1959.5-1970.5 1969.5-1979.5 — 1980.5-1989.5
GCK Z — —

GDH X 1951.5-1968.5 1966.5-1978.5 1976.5-1986.5 1984.5-1989.5
GDH Y 1937.5-1967.5 1965.5-1989.5 1965.5-1989.5 1965.5-1989.5
GDH Z 1962.5-1970.5 1968.5-1982.5
GNA X 1955.5-1976.5 1955.5-1978.5 1976.5-1988.5 1976.5-1988.5

GNA Y 1960.5-1974.5 1972.5-1978.5 1979.5-1988.5 1979.5-1988.5

GNA Z 1953.5-1971.5 1969.5-1978.5 1976.5-1988.5 1976.5-1988.5
GUA X — 1968.5-1980.5 1978.5-1966.5 1984.5-1989.5
GUA Y 1959.5-1968.5 1971.5-1978.5 1976.5-1989.5 1976.5-1989.5

GUA Z 1958.5-1967.5 1969.5-1979.5 1977.5-1984.5 1982.5-1987.5

GZH X 1959.5-1970.5 1968.5-1977.5 1975.5-1986.5 1975.5-1986.5
GZH Y 1964.5-1970.5 1968.5-1981.5 — 1979.5-1988.5
GZH Z 1958.5-1988.5 1958.5-1988.5 1958.5-1988.5 1958.5-1988.5
HAD X 1946.5-1971.5 1969.5-1989.5 1969.5-1989.5 1969.5-1989.5
HAD Y 1933.5-1970.5 1968.5-1979.5 1978.5-1983.5 1982.5-1989.5

HAD Z 1961.5-1971.5 1969.5-1979.5 1981.5-1989.5 1981.5-1989.5
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HER X 1946.5-1967.5 1965.5-1988.5 1965.5-1986.5 —

HER Y 1954.5-1979.5 1954.5-1979.5 1977.5-1989.5 1977.5-1989.5
HER Z 1962.5-1984.5 1962.5-1984.5 1962.5-1984.5 —

HIS X 1959.5-1966.5 — 1966.5-1969.5 1966.5-1989.5

HIS Y 1951.5-1973.5 — — —

HIS Z — — 1973.5-1987.5 —

HLP X 1955.5-1971.5 1969.5-1984.5 1969.5-1984.5 1983.5-1988.5

HLP Y 1957.5-1969.5 1968.5-1980.5 1979.5-1984.5 1984.5-1989.5

HLP Z 1957.5-1963.5 1961.5-1978.5 1976.5-1983.5 1981.5-1989.5

HON X — 1967.5-1978.5 1976.5-1985.5 1983.5-1989.5

HON Y 1959.5-1967.5 1966.5-1976.5 1975.5-1984.5 1982.5-1987.5

HON Z 1962.5-1967.5 1965.5-1978.5 1976.5-1986.5 1984.5-1989.5

HRB X 1965.5-1970.5 1969.5-1988.5 1969.5-1988.5 —

HRB Y 1950.5-1970.5 1969.5-1979.5 1978.5-1964.5 1982.5-1989.5

HRB Z 1950.5-1975.5 — —

HTY X — —

HTY Y — — —

HTY Z — — — —

HUA X 1953.5-1967.5 1965.5-1960.5 1978.5-1987.5 —

HUA Y 1958.5-1972.5 1970.5-1983.5 1970.5-1983.5 1981.5-1986.5

HUA Z 1959.5-1968.5 1966.5-1976.5 1976.5-1988.5 1976.5-1988.5

IRT X 1960.5-1967.5 1967.5-1989.5 1967.5-1969.5 1967.5-1989.5
IRT Y 1957.5-1973.5 1972.5-1984.5 1972.5-1984.5 1984.5-1989.5

IRT Z 1942.5-1970.5 1968.5-1989.5 1968.5-1989.5 1968.5-1989.5

ISK X 1951.5-1977.5 — — —

ISK Y 1947.5-1971.5 1970.5-1977.5 — —

ISK Z 1948.5-1972.5 — — —

KAK X 1959.5-1966.5 1964.5-1977.5 1976.5-1989.5 1976.5-1989.5

KAK Y 1955.5-1967.5 1968.5-1979.5 1977.5-1987.5 1977.5-1987.5
KAK Z 1960.5-1974.5 1972.5-1989.5 1972.5-1989.5 1972.5-1989.5
KGL X 1960.5-1984.5 1960.5-1984.5 1960.5-1984.5 —

KGL Y 1959.5-1969.5 1968.5-1974.5 1972.5-1987.5 1972.5-1987.5

KGL Z 1961.5-1972.5 1970.5-1979.5 1977.5-1983.5 1981.5-1987.5
KIV X 1958.5-1974.5 1973.5-1986.5 1973.5-1986.5 1984.5-1989.5

KIV Y 1958.5-1970.5 1969.5-1979.5 1977.5-1989.5 1977.5-1989.5
KIV Z 1959.5-1964.5 1964.5-1979.5 1977.5-1982.5 1983.5-1989.5
KNY X 1959.5-1965.5 1964.5-1978.5 1976.5-1982.5 1982.5-1987.5

KNY Y 1966.5-1971.5 1969.5-1978.5 1976.5-1989.5 1976.5-1989.5

KNY Z — 1966.5-1979.5 1978.5-1983.5 1981.5-1987.5
KNZ X — 1964.5-1975.5 1973.5-1986.5 1973.5-1986.5

KNZ Y 1961.5-1966.5 1968.5-1978.5 1976.5-1987.5 1976.5-1987.5
KNZ Z — 1968.5-1988.5 1968.5-1988.5 1966.5-1988.5

KOD X 1959.5-1972.5 1973.5-1982.5 1973.5-1982.5 1980.5-1988.5
KOD Y 1964.5-1971.5 — — —

KOD Z 1960.5-1970.5 1971.5-1976.5 1977.5-1985.5 1983.5-1988.5

LER X 1953.5-1971.5 1969.5-1988.5 1969.5-1988.5 —

LER Y 1935.5-1971.5 1969.5-1978.5 1976.5-1989.5 1976.5-1989.5
LER Z 1959.5-1971.5 1969.5-1985.5 1969.5-1985.5 1984.5-1989.5

LGR X — 1970.5-1976.5 — —

LGR Y 1958.5-1970.5 1971.5-1976.5 — —

LGR Z 1963.5-1969.5 1969.5-1976.5 — —

LMM X 1963.5-1972.5 1970.5-1987.2 1970.5-1987.2 1970.5-1987.2
LMM Y 1959.6-1974.5 1973.5-1979.5 1980.5-1985.5 —

LMM Z — 1964.5-1979.5 1978.5-1983.5

LNN X — 1970.5-1987.5 1970.5-1987.5 —

LNN Y 1962.5-1970.5 1968.5-1980.5 1978.5-1983.5
LNN Z 1951.5-1968.5 1968.5-1973.5 1973.5-1985.5 —

LOV X 1947.5-1975.5 1974.6-1986.5 1974.5-1986.5 —

LOV Y 1945.5-1971.5 1969.5-1980.5 — —

LOV Z 1954.5-1962.5 1972.5-1985.5 1972.5-1985.5 1984.5-1989.5
LQA X — — —

LQA Y — — —

LQA Z — — — —

LRV X 1957.8-1975.5 1957.8-1975.5 1973.5-1986.5 1984.5-1989.5
LRV Y 1958.5-1969.5 1968.5-1979.5 1979.5-1986.5 1979.5-1986.5
LRV Z 1961.5-1970.5 1969.5-1983.5 — 1984.5-1989.5
LUA X 1957.8-1974.5 1975.5-1985.5 1975.5-1985.5
LUA Y 1960.5-1975.5 1960.5-1975.5 1975.5-1982.5
LUA Z 1957.8-1966.5 1964.5-1985.5 1964.5-1985.5 —

LVV X 1963.5-1973.5 1971.5-1981.5 1971.5-1981.5 1979.5-1989.5
LVV Y 1957.5-1971.5 1969.5-1977.5 1977.5-1983.5 1982.5-1989.5
LVV Z 1961.5-1979.5 1961.5-1979.5 1977.5-1982.5 1982.5-1989.5
LZH X 1961.5-1968.5 1966.5-1986.5 1966.5-1986.5

LZH Y 1959.5-1969.5 1970.5-1977.5 1977.5-1987.5
LZH Z 1961.5-1971.5 1970.5-1988.5 1970.5-1988.5
MAW X 1957.5-1970.5 1969.5-1987.5 1969.5-1987.5 1969.5-1967.5
MAW Y 1958.5-1971.5 1969.5-1984.5 1969.5-1984.5
MAW Z 1955.8-1973.5 1971.5-1987.5 1971.5-1987.5 1971.5-1987.5
MBO X 1952.6-1967.5 —

MBO Y 1961.5-1967.5 1965.5-1987.5 1965.5-1987.5
MBO Z 1955.5-1984.5 1955.5-1984.5 1955.5-1984.5
MCQ X 1951.2-1969.5 1972.5-1977.5 1977.5-1988.5 1977.5-1988.5
MCQ Y 1951.2-1974.5 1972.5-1977.5 1976.5-1981.5 1982.5-1988.5
MCQ Z 1962.5-1970.5 1971.5-1980.5 1978.5-1988.5 1978.5-1988.5
MEA X 1916.6-1978.5 1916.8-1978.5 1976.5-1982.5 1981.5-1986.5
MEA Y 1920.5-1972.5 1970.5-1979.5 1980.5-1986.5 1980.5-1986.5
MEA Z 1962.5-1967.5 1965.5-1989.5 1965.5-1989.5 1965.5-1989.5
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MGD X 1967.5-1972.5 1970.5-1986.5 1970.5-1986.5 1984.5-1989.5
MGD Y 1960.5-1969.5 1969.5-1979.5 1977.5-1982.5 1980.5-1987.5
MGD Z 1961.5-1968.5 1966.5-1989.5 1966.5-1989.5 1966.5-1989.5
MIR X 1957.5-1975.5 1973.5-1988.5 1973.5-1988.5 1973.5-1988.5
MIR Y 1956.5-1973.5 1971.5-1985.5 1971.5-1985.5 1983.5-1988.5
MIR Z 1956.5-1967.5 1965.5-1968.5 1965.5-1988.5 1965.5-1988.5
MLT X 1929.5-1980.5
MLT Y 1941.5-1972.5

MLT Z 1933.5-1979.5 —

MMB X 1962.5-1967.5 1965.5-1975.5 1973.5-1986.5 1984.5-1989.5
MMB Y 1959.5-1971.5 1969.5-1979.5 1979.5-1986.5 1984.5-1989.5
MMB Z 1963.5-1969.5 1968.5-1973.5 1971.5-1989.5 1971.5-1989.5
MMK X 1958.8-1971.5 1971.5-1984.5 1971.5-1984.5
MMK Y 1959.5-1970.5 1968.5-1982.5 1980.5-1985.5
MMK Z 1961.5-1975.5 — 1976.5-1983.5
MNK X 1962.5-1972.5 1970.5-1981.5 1979.5-1986.5
MNK Y 1964.5-1969.5 1967.5-1980.5 1978.5-1983.5 1983.5-1968.5
MNK Z — 1963.5-1978.5 1976.5-1985.5 1983.5-1988.5
MOS X 1947.5-1975.5 1973.5-1988.5 1973.5-1988.5
MOS Y 1962.5-1971.5 1971.5-1980.5 — 1981.5-1989.5
MOS Z 1954.5-1968.5 1966.5-1978.5 1976.5-1984.5 1981.5-1988.5
MUT X 1952.5-1966.5 1964.5-1982.5

MUT Y 1953.5-1983.5 1953.5-1983.5
MUT Z 1951.5-1974.5 — 1976.5-1987.5
NGK X 1946.5-1971.5 1969.5-1986.5 1969.5-1986.5 1984.5-1989.5
NGK Y 1943.5-1971.5 1969.5-1980.5 —

NGK Z 1960.5-1979.5 1960.5-1979.5 — 1979.5-1989.5
NSM X 1961.5-1970.5 1966.5-1986.5 1968.5-1986.5 1984.5-1989.5
NSM Y 1961.5-1967.5 1965.5-1981.5 1981.5-1987.5 1981.5-1987.5
NSM Z — 1963.5-1978.5 1976.5-1982.5 1980.5-1989.5
NUR X 1953.5-1973.5 1971.5-1987.5 1971.5-1987.5
NUR Y 1953.5-1967.5 1968.5-1979.5 1977.5-1989.5 1977.5-1989.5
NUR Z 1958.5-1964.5 1962.5-1976.5 1974.5-1984.5 1982.5-1989.5
NVL X —

NVL Y 1962.5-1975.5 1973.5-1987.5
NVL Z 1961.5-1987.5 1961.5-1987.5
ODE X 1953.5-1974.5 1973.5-1986.5 1973.5-1986.5 1984.5-1989.5
ODE Y 1951.5-1971.5 1969.5-1979.5 1977.5-1982.5 1981.5-1989.5
ODE Z 1950.5-1968.5 1966.5-1978.5 1976.5-1985.5 1983.5-1989.5
PAG X 1961.5-1967.5 1970.5-1981.5 1970.5-1981.5
PAG Y 1953.5-1972.5 1970.5-1979.5 1977.5-1982.5
PAG Z 1948.5-1972.5 1970.5-1975.5 1976.5-1981.5
PET X — 1969.5-1986.5 1969.5-1986.5 1969.5-1986.5
PET Y — 1969.5-1976.5 1975.5-1981.5 1982.5-1987.5
PET Z — 1969.5-1983.5 1969.5-1983.5 1982.5-1988.5
PIL X 1926.5-1954.5 1962.5-1978.5 1976.5-1983.5 1983.5-1988.5
PIL Y 1942.5-1966.5 1969.5-1981.5 1969.5-1981.5
PIL Z — 1956.5-1986.5 1956.5-1986.5
PMG X 1964.5-1970.5 — 1974.5-1985.5 1983.5-1988.5
PMG Y 1961.5-1968.5 1966.5-1981.5 1979.5-1988.5 1979.5-1988.5
PMG Z 1959.5-1967.5 1968.5-1976.5 1974.5-1988.5
PPT X — 1969.5-1977.5 1975.5-1986.5
PPT Y — 1970.5-1984.5 1970.5-1984.5 1982.5-1988.5
PPT Z — 1968.5-1978.5 1976.5-1984.5 1982.5-1988.5
QUE X 1953.9-1987.5 1953.9-1987.5 1953.9-1987.5
QUE Y 1958.5-1968.5 —

QUE Z 1953.9-1974.5 —

RES X 1954.5-1968.5 1966.5-1978.5 1976.5-1984.5 1982.5-1989.5
RES Y 1960.5-1969.5 1967.5-1977.5 1977.5-1989.5 1977.5-1989.5
RES Z 1958.5-1974.5 1974.5-1987.5 1974.5-1987.5 1974.5-1987.5
RSV X 1950.5-1975.5 1973.5-1978.5
RSV Y 1944.5-1971.5 1969.5-1980.5 _

RSV Z 1960.5-1976.5 1960.5-1976.5
SBA X — 1964.5-1989.5 1964.5-1969.5 1964.5-1989.5
SBA Y

— 1966.5-1989.5 1966.5-1989.5 1966.5-1989.5
SBA Z — 1966.5-1989.5 1966.5-1989.5 1966.5-1989.5
SIT X 1962.5-1972.5 1970.5-1981.5 1979.5-1985.5 1983.5-1988.5
SIT Y 1961.5-1969.5 1969.5-1980.5 1978.5-1985.5 1983.5-1989.5
SIT Z 1959.5-1976.5 — 1977.5-1987.5 1977.5-1987.5
SJG X — 1965.5-1979.5 1977.5-1987.5
SJG Y 1963.5-1969.5 1967.5-1980.5 1978.5-1989.5 1978.5-1989.5
SJG Z 1955.5-1971.5 1969.5-1982.5 1969.5-1982.5 1980.5-1987.5
SNA X 1960.5-1989.5
SNA Y 1960.5-1978.5

SNA Z 1960.5-1989.5
SOD X 1963.5-1968.5 1968.5-1987.5 1968.5-1987.5 1968.5-1987.5
SOD Y 1947.5-1972.5 1970.5-1980.5
SOD Z 1954.5-1966.5 — 1974.5-1984.5 ^

SPT X 1953.5-1966.5 1968.5-1988.5 1968.5-1988.5 1968.5-1988.5
SPT Y 1948.5-1971.5 1969.5-1979.5 1980.5-1988.5
SPT Z 1947.5-1985.5 1947.5-1985.5
SSH X 1944.5-1966.5 1964.5-1981.5 1979.5-1984.5 1983.5-1988.5
SSH Y 1956.5-1969.5 1967.5-1981.5 1980.5-1986.5
SSH Z 1952.5-1967.5 1965.5-1988.5 1965.5-1968.5 —
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SUA X — — 1971.5-1962.5 1984.5-1989.5

SUA Y 1960.5-1969.5 1967.5-1982.5 1967.5-1982.5 1980.5-1988.5
SUA Z — 1961.5-1969.5 1961.5-1989.5 1961.5-1989.5
TAM X — —

TAM Y — —

TAM Z — — —

TEN X — 1960.5-1988.5 1960.5-1988.5 1960.5-1988.5

TEN Y — 1964.5-1985.5

TEN Z — — —

TFS X 1961.5-1966.5 1970.5-1983.5 1970.5-1983.5 1981.5-1987.5
TFS Y 1962.5-1970.5 1971.5-1977.5 1977.5-1989.5 1977.5-1989.5
TFS Z 1948.5-1972.5 1970.5-1979.5 — 1981.5-1989.5
THL X 1956.5-1971.5 1969.5-1977.5 1975.5-1985.5 1983.6-1988.5
THL Y 1957.5-1979.5 1957.5-1979.5 1978.5-1986.5 1978.5-1988.5
THL Z 1957.5-1974.5 1972.5-1981.5 1979.6-1987.5 1979.5-1987.5
THY X 1955.5-1974.5 1972.5-1978.5 1978.5-1987.5 —

THY Y 1955.5-1972.5 1970.5-1978.5 1976.5-1989.5 1976.5-1989.5

THY Z 1961.5-1989.5 1961.5-1989.5 1961.5-1989.5 —

TIK X 1961.5-1971.5 1967.5-1977.5 1976.5-1986.5 1984.5-1989.5
TIK Y 1949.5-1964.5 1964.5-1979.5 1977.5-1987.5 1977.5-1987.5
TIK Z 1956.5-1969.5 1956.5-1989.5 1956.5-1989.5 1956.5-1989.5
TKT X 1960.5-1968.5 1970.5-1984.5 1970.5-1984.5 1962.5-1989.5
TKT Y 1964.5-1969.5 1966.5-1987.5 1968.5-1987.5 1968.5-1967.5
TKT Z 1947.5-1971.5 1969.5-1979.5 1978.5-1983.5 —

TRD X 1965.5-1970.5 1969.5-1978.5 — —

TRD Y — 1966.5-1980.5 1966.5-1980.5 1982.5-1989.5
TRD Z 1957.9-1972.5 1970.5-1981.5 1979.5-1985.5 1983.5-1989.5
TRO X 1958.5-1967.5 1972.5-1986.5 1972.5-1986.5 1984.5-1989.5

TRO Y 1958.5-1968.5 1967.5-1979.5 1977.5-1982.5 1981.5-1990.5
TRO Z 1931.5-1965.5 1965.5-1990.5 1965.5-1990.5 1965.5-1990.5
TUC X — 1967.5-1980.5 — —

TUC Y 1956.5-1964.5 1963.5-1978.5 1976.5-1985.5 —

TUC Z 1961.5-1967.5 1965.5-1981.5 1979.5-1984.5 —

VAL X — 1969.5-1988.5 1969.5-1988.5 1969.5-1988.5
VAL Y 1951.5-1969.5 1967.5-1979.5 1984.5-1989.5 1984.5-1969.5
VAL Z — 1965.5-1985.5 1965.5-1985.5 —

VIC X — 1968.5-1981.5 — 1980.5-1989.5
VIC Y 1961.5-1968.5 1966.5-1980.5 1979.5-1984.5 1964.5-1989.5
VIC Z 1960.5-1970.5 1968.5-1989.5 1968.5-1989.5 1966.5-1989.5
VLA X 1958.5-1988.5 1958.5-1988.5 1958.5-1988.5
VLA Y 1958.5-1968.5 1966.5-1981.5

VLA Z 1959.5-1970.5 1968.5-1988.5 1968.5-1988.5 1968.5-1988.5
VOS X —

VOS Y

VOS Z —

VSS X 1954.5-1971.5 1970.5-1981.5 1970.5-1981.5 1982.5-1968.5
VSS Y 1962.5-1972.5 — 1976.5-1987.5 1976.5-1987.5
VSS Z 1958.5-1979.5 1958.5-1979.5 1977.5-1984.5 1962.5-1987.5
WHN X 1960.5-1967.5 1965.5-1977.5 — 1983.5-1988.5
WHN Y 1961.5-1972.5 1971.5-1976.5 1976.5-1981.5 1980.5-1988.5
WHN Z 1963.5-1968.5 1966.5-1988.5 1966.5-1988.5 1966.5-1988.5
wnc X 1946.5-1966.5 1969.5-1986.5 1969.6-1986.5 1984.5-1989.5
WIK Y 1945.5-1970.5 1968.5-1980.5 1978.5-1989.5 1978.5-1989.5
wnc Z — 1961.5-1979.5 1977.5-1983.5 1983.5-1989.5
WIT X 1951.5-1971.5 1969.5-1986.5 1969.5-1986.5 1969.5-1986.5
WIT Y 1959.5-1970.5 1969.5-1979.5 1980.5-1987.5 1980.5-1987.5
WIT Z 1961.5-1972.5 1973.5-1981.5 1973.5-1961.5 1982.5-1987.5
WNG X 1946.5-1971.5 1969.5-1987.5 1969.5-1987.5 1969.5-1987.5
WNG Y 1960.5-1970.5 1969.5-1978.5 1978.5-1989.5 1978.5-1989.5
WNG Z 1960.5-1975.5 1973.5-1984.5 1973.5-1984.5 1983.5-1989.5
YAK X 1963.5-1972.5 1970.5-1986.5 1970.5-1986.5 1970.5-1986.5
YAK Y 1949.5-1970.5 1968.5-1979.5 1977.5-1983.5
YAK Z 1950.5-1966.5 1966.5-1979.5 1977.5-1987.5
YSS X 1961.5-1989.5 1961.5-1989.5 1961.5-1989.5
YSS Y 1950.5-1969.5 1967.5-1983.5 1967.5-1983.5
YSS Z 1950.5-1963.5 1964.5-1983.5 1964.5-1983.5 —
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