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Abstract 

 

Leaf shape varies considerably between natural accessions of Arabidopsis thaliana. In this 

project we aimed to identify the genetic basis of this naturally occurring leaf shape variation. 

To score natural variation in leaf shape, we used a geometric morphometric approach, 

recording the shape of leaves with co-ordinates. We identified and scored the major shape 

variations in datasets of leaf shape models using Principal Component Analysis (PCA). To 

identify loci associated with differences in leaf shape, we used genetic mapping. We scored 

leaf shape in the Bay-0 x Shahdara Recombinant Inbred Line (RIL) population and carried out 

Quantitative Trait Loci (QTL) mapping. We also scored leaf shape in multiple growth 

experiments at different harvest points for a collection of over three hundred natural 

Arabidopsis accessions, and carried out Genome Wide Association (GWA) mapping. We 

identified loci associated with variation in our leaf shape traits in both approaches. 

Indicative of leaf shape as a polygenic quantitative trait, associated loci were typically of 

small to medium effect. However, we did identify, associated with variation in a leaf size and 

margin morphology trait, one single large locus, suggesting that naturally occurring loci can 

also have a dramatic effect on leaf morphology. We also found correlations between leaf 

shape and hypocotyl length and leaf number, suggesting natural leaf shape variation may 

coincide with other changes in plant morphology. Several of the loci associated with leaf 

shape traits in our GWA mapping contained Nucleotide Binding Leucine Rich Repeat (NBLRR) 

genes, and so we tested for leaf shape differences in T-DNA insertion lines annotated for 

these associated NBLRR genes. We found several of these T-DNA lines had differences in leaf 

shape and hypocotyl length, and that some of these differences in morphology were specific 

to temperature and light conditions.  
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Chapter 1.   Introduction 

1.1.1 The diversity of leaf shape in flowering plants  

Massive variation in leaf shape exists within flowering plants. Leaves can be relatively 

simple, formed as single lamina attached to a petiole such as for birch leaves. Leaves can be 

lobed, like those of oak trees, formed of a single lamina with an undulating margin. They can 

be compound, made up of multiple laminas formed along a central petiole or rachis as in 

horse chestnut trees and tomato plants. They can be complex, such as the intricate patterns 

found in carrot leaves. These are broad categorisations, and leaf shape varies dramatically 

within each of these groups. Not only do great differences in shape exist between species of 

plants, but leaf shape within a species or even a single individual also varies considerably. 

Natural leaf shape variation is particularly intriguing due to the sessile nature of plants and 

the inherent link between the form of a leaf and its function. Leaves intercept light, 

harvesting this energy for growth. As such, interception of optimal light is critical. As most 

plants are rooted to a single position, they are limited in their range of movement, and 

exposed to great environmental variation. It may be that some variation in leaf shape is 

adaptive for different environmental and ecological conditions, and so it is possible variation 

in leaf shape among plants reflects a combination of evolutionary history and environmental 

circumstance. Leaf shape could be related to environmental properties such as light capture, 

heat retention or loss, wind resistance and air circulation, or water droplet dispersion. 

Trends between leaf size and such environmental properties appear more common in the 

literature than for leaf shape, for which relatively few possible adaptive trends have been 

identified (Nicotra et al., 2011). The striking array of leaf shapes amongst plants invites 

questions on the significance of leaf shape variation from developmental, evolutionary, 

environmental and genetic perspectives. 

1.1.2 Variation in leaf shape in differing environmental conditions  

Studies in leaf morphology over environmental gradients largely report trends for size 

(Nicotra et al., 2011). This may be a result of measurement bias due to the complexity of 

accurately measuring leaf shape differences, though some studies do include measurements 

of leaf length and width as proxies for shape. Across 386 perennial plant species in south 

eastern Australia, narrow leaves are associated with greater mass per leaf area, although no 

environmental correlations were found with soil phosphorous levels or rainfall and leaf 
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shape (Fonseca et al., 2000). In another study, leaf size, width and length were all found to 

decrease with rainfall amongst 690 south east Australian plant species (McDonald et al., 

2003). The trend is strongest for leaf size, and there was no consistent pattern of size 

reduction between the length and width traits, for example size reduction by leaf narrowing 

was as common as by leaf shortening (McDonald et al., 2003). A more dissected leaf shape 

has been shown to be associated with faster carbon gain and water loss in eight 

Pelargonium species, though this trait did not show any climatic trends with species site of 

origin (Nicotra et al., 2008). Although the shape of four Helichrysum species leaves collected 

from wild grown plants did not vary significantly with climate, a trend between smaller 

narrower leaves in cooler, drier conditions was described by the authors (Glennon and Cron, 

2015). A relatively striking association of leaf shape variation and latitude has been 

identified in Ivy-leaf morning glory, Ipomoea hederacea. The leaf shape of I. hederacea is 

polymorphic between lobed and heart shaped leaves and shows a latitudinal pattern of 

variation, with heart shaped leaves restricted to southern populations (Campitelli and 

Stinchcombe, 2013). Work on Acer rubrum has identified changes in leaf margin serration in 

response to environmental variation. The leaves of A. rubrum plants grown in growth 

cabinets at cooler temperatures have more margin serrations and more dissected leaves 

than those at higher temperatures (Royer, 2012). Similar trends have been found for wild A. 

rubrum trees across collection sites in the eastern U.S.A. and in common gardens 

experiments where in both cases serration was increased for trees grown in colder locations 

(Royer et al., 2008, 2009).  

Correlations of leaf morphology to climate have also been investigated for Arabidopsis. 

Differences in leaf shape, measured as leaf and petiole length and width, were measured 

across 21 accessions grown in a common garden experiment, and leaf length was found to 

decrease with latitude of origin for the accessions (Hopkins et al., 2008). In plants grown 

from seed collected from natural populations of Arabidopsis in the Swiss Alps and grown in a 

common garden experiment, ratio of leaf dry weight to leaf area was found to decrease with 

increasing altitude of seed collection site  (Luo et al., 2015). This trend was only observed in 

plants  that underwent a vernalisation treatment (Luo et al., 2015), highlighting the potential 

need to grow plants in conditions similar to what plants would experience in nature to 

observe possible  associations of traits and conditions at origin. 

As well as such leaf shape variations between accessions and related species, which will 

have both a genetic and environmental component when not grown in a common garden, 

differences in leaf shape have been identified within individual plants. Trees make a useful 
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system for identifying such differences, as they produce a large number of leaves that 

occupy different areas of the canopy, and so are exposed to often quite different conditions. 

Leaves from the upper canopy of Quercus rubra trees have been found to be smaller and 

more lobed than leaves lower in the canopy (Zwieniecki et al., 2004). These differences in 

size and shape were not present in the first week of leaf emergence, suggesting the 

differences may be a response to the local conditions at respective canopy positions 

(Zwieniecki et al., 2004). A trend for increased leaf area in lower parts of the canopy has also 

been reported for other tree species, such as Tilia japonica and Ulmus davidiana (Koike et 

al., 2001), and in six arboretum grown deciduous species, including Acer, Ginkgo and Oak 

species (Sack et al., 2006). This suggests that leaf shape within individuals may vary in part 

through response to specific growth conditions.  

1.1.3 Leaf shape variation can be the result of genetic differences 

There can be considerable variation in leaf shape even between closely related species. The 

genera Pelargonium and Mimulus contain species with a variety of different leaf shapes, 

species within these genera show simple, lobed or compound leaves (Ferris et al., 2015; 

Nicotra et al., 2008). In three mapping populations created using three different Mimulus 

species, Quantitative Trait Loci (QTL) for leaf shape were found to coincide in position on the 

genome, suggesting common loci may control shape differences between the species (Ferris 

et al., 2015). A polymorphism for lobed or heart shaped leaves of Ivy-leaf morning glory, 

Ipomoea hederacea, segregates in a three to one ratio, suggesting a single locus is 

responsible for this difference in leaf shape (Elmore, 1986). Leaf shape variation has also 

been mapped to genetic loci in crop species, such as Brassica rapa  and maize (Baker et al., 

2015; Ku et al., 2012), and in trees, in Populus and Oak species (Drost et al., 2015; Gailing, 

2008; Wu et al., 1997). A close relative of A. thaliana, Cardamina hirusta, has compound 

leaves of leaflets along a central rachis. Differences in regulation of KNOX genes and the 

gene SIL3 are thought to have a function in leaf dissection and leaflet formation in this 

species, potentially indicating some of the genetic differences that result in some of the 

differences between leaves of this species and the simple ovate leaves of A. thaliana (Hay 

and Tsiantis, 2006; Kougioumoutzi et al., 2012). 

When comparing leaf shape differences between species or different genetic lines, it is 

important to consider that leaf shape within individual plants is likely to vary with 

developmental or growth phases. Changes in plant morphology associated with growth 

stages are often described as heteroblasty, and though this term was originally used to 
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describe abrupt differences in form it is often now used more generally to describe more 

gradual differences plant morphology through developmental phases (Zotz et al., 2011). 

Differences in the heteroblastic morphology changes within individual plants between 

genetic lines can be quantified and has been investigated, and in some cases mapped to 

genetic loci, in tomato, Antirrhinum, Cardamina hirusta and Arabidopsis thaliana (Cartolano 

et al., 2015; Chitwood et al., 2014; Costa et al., 2012; Telfer et al., 1997).  

Heteroblastic changes in shape can be quantified by comparing shape across multiple leaves 

of the leaf series of a plant at once. Through this approach it is possible to compare changes 

in shape and size common across the leaf series, but also for relative differences in shape 

and size between leaves in the leaf series to be compared between plants. Such 

heteroblastic changes in shape and size may be genetically controlled separately from 

changes in shape and size common across the leaf series. In tomato, morphology changes 

common across the leaf series map to different genetic loci than do heteroblastic changes 

shape and size across the leaf series (Chitwood et al., 2014). Heteroblastic differences in leaf 

shape and size contribute to the differences in leaf morphology between Antirrhinum 

species. Antirrhinum majus and Antirrhinum charidemi were crossed to create an F2 

population, in which heteroblastic differences in leaf shape and size could be mapped to 

genetic loci (Costa et al., 2012). In Cardimina Hirusta, natural variation in the FLC gene is 

associated with variation in flowering time but also differences in changes in leaf shape size 

and number (Cartolano et al., 2015). This highlights the importance of not considering leaves 

in isolation from the rest of the plant, as leaf morphology and number are likely to differ 

with developmental timing. Such heteroblastic differences in shape and size also suggest 

that multiple leaves per plant should be sampled to accurately describe the leaf shape 

variation of a plant, and that studies using a single leaf to represent the shape of an 

individual will be unable to describe the full shape variation within an individual plant. 

1.1.4 Accurately quantifying differences in leaf shape 

Leaf shape has often been measured using dimensions across the leaf as proxies, such as 

length, width or length to width ratio. Although these methods can be accurate in describing 

one aspect of a leaf, they are limited in the shape information they can record. For example 

variation in the acuteness of a leaf tip or curvature of the leaf would not be recorded by 

taking length and width measurements, and would require an additional measurement. 

Applying a number of individually recorded measurements across a large dataset can also 

become time consuming. Many studies of leaf shape are limited to measuring one or two of 
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the total leaves grown per plant (Hopkins et al., 2008; Jiménez-Gómez et al., 2010; Juenger 

et al., 2005), and so may be unable to identify differences in within plant leaf shape variation 

between lines. 

Geometric morphometrics is an alternative approach to capturing and analysing shape 

differences that uses co-ordinates to record the shapes of samples (Adams et al., 2004; 

Rohlf, 1986). Co-ordinates may be placed over a shape to record the position of landmarks, 

common features across sampled shapes, or using semi landmarks, equally spaced co-

ordinates around the entire margin or a set region of a shape. Geometric morphometrics 

has been used to study shape variation in a wide variety of organisms for different 

experimental applications. For example, developmental instability in fly wing shape has been 

studied using co-ordinate landmark analysis (Klingenberg and McIntyre, 1998), differences in 

mouse jawbones have been identified and mapped to genetic loci using co-ordinate 

landmarks (Klingenberg et al., 2001), and shape analysis has been used to corroborate 

molecular evidence on the evolution of great apes (Lockwood et al., 2004). 

The typical form of a leaf lends itself toward analysis as a two dimensional shape, as most 

species leaves are relatively flat and can be pressed. Pressed leaves can then be 

conveniently imaged on a flatbed scanner. When analysing leaf shape in two dimensions, 

semi-landmarks spaced over the leaf margin can accurately capture the shape of a leaf. As 

the shape of a leaf is accurately recorded through this approach, further measurements can 

often by applied to the leaf co-ordinate shape model and so avoiding the need to rescore 

samples themselves for any measurements that may be more latterly required that were 

not part of an initial design. Once a dataset of these shape models has been recorded, the 

major shape variations between these co-ordinate shape models can be analysed and 

scored with Principal Component Analysis (PCA). PCA of shape co-ordinates identifies 

correlated variations in the co-ordinates as Principal Components (PCs), which correspond to 

the major shape changes within the shape models, and can be used to score the shape 

changes within the shape model dataset. 

We chose to use this approach to measure leaf shape, harvesting each leaf from the plant 

and creating a two dimensional image of the leaf with a scanner, after pressing leaves flat. 

To record the shape of each leaf, semi-landmarks would be placed around the leaf margin 

automatically, using LeafAnalyser, software designed previously for this purpose (Weight et 

al., 2008). Recording leaf shape from a digital image in this way takes seconds, and makes 

experiments requiring shape measurements of thousands of leaves feasible.  
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Once a dataset of co-ordinate shape models is created, the major shape variations can be 

identified with PCA. To understand PCA on a dataset of shape models, it can be helpful to 

consider each shape model as a point in a multidimensional space. As each shape model has 

the same number of semi-landmarks, in this example 48, and is two dimensional, each shape 

model can be considered a point in a 96 dimensional space, where each axis of this space 

describes variation in either the x or y co-ordinate of one of the 48 semi landmarks. A 

dataset of many shape models would form a cloud of points in this space.  

PCA captures the major shape variations in such datasets by defining new axes through this 

point cloud. These axes are the PCs produced by a PCA. Whilst each original axis of this 

multidimensional space describes a single aspect of variation in the x or y co-ordinate of 

each of the 48 semi-landmarks, PCs run through the major axes of the point cloud itself, and 

so describe the major variations in the positions of the shape model points within the cloud. 

See Figure 1-1 for a two dimensional example. The first PC crosses the widest dimension of 

the cloud, and so describes the largest portion of variation in the position of the shape 

models in the multi dimensional space, the following PCs are orthogonal to all previous PCs 

and describe the next greatest axis of variation across the point cloud. As each of the points 

in the cloud is a shape model, the PCs therefore describe the major correlated variations 

amongst the semi landmark co-ordinates making up these shape models. In this way PCA 

can be used to identify the major leaf shape variations, capturing them as PCs.  

Shape variation in these co-ordinate shape models can be scored using PCs created from a 

PCA on that particular dataset, or using PCs created from a separate dataset, allowing the 

same PCs to be applied to measure shape in different experiments. Previous work in the 

group created a reference set of Arabidopsis leaves harvested from ten early flowering 

accessions, referred to as the leaf library, and used a PCA on these leaves to produce a set of 

PCs describing the major leaf shape variations (Matser, 2014). These leaf library PCs have 

been used to describe shape variation in the characterisation of TCP and MAX1 genes in 

Arabidopsis (Challis et al., 2013; Danisman et al., 2012; Kieffer et al., 2011).  
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Figure 1-1 Principal Components 
capture major trends in variation 

Figure shows a set of co-ordinates in a 

two dimensional space. Each point 

represents a co-ordinate pair, with an x 

and y value. Each axis describes variation 

in the x or y co-ordinate. The major 

variation in the point cloud can be 

described with principal components, 

shown as red lines through the point 

cloud.  

 

1.1.5 Mapping trait variation to natural genetic differences in 

plants 

To investigate naturally occurring leaf shape variation, we would use Arabidopsis thaliana as 

a model, aiming to understand more about the genetic basis of the differences in leaf shape 

occurring within this species. Arabidopsis has been extensively studied as a model plant for 

biology, resulting in a large body of literature and community resources (Huala et al., 2001). 

Much study of the genetics of Arabidopsis has used mutant analysis, but natural genetic 

variation in this species also provides a powerful resource for understanding gene function 

relating to naturally occurring trait variation (Alonso-Blanco and Koornneef, 2000). 

Arabidopsis is predominantly self fertilising and so the many natural accessions collected 

from the wild are largely homozygous (Bakker et al., 2006; Bergelson et al., 1998) and can be 

maintained easily as inbred lines, making them a useful subject and tool for analysis of 

natural genetic variation. Genetic mapping can be used to identify genetic variation 

responsible for natural trait variation in Arabidopsis. This approach uses populations of 

plants varying in genotype and for a trait of interest. Trait variation can be mapped to 

genetic loci across the genome by testing for association of variation in allele at a locus with 

variation in trait in such populations, see Figure 1-2.  

Approaches to genetic mapping can be defined by the populations used, and there are two 

broad categories of experiment. Quantitative Trait Loci (QTL) mapping uses populations 

created by crossing natural accessions, producing a set of lines in which the alleles of the 

parent alleles segregate. A more recently developed approach, Genome Wide Association 
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(GWA), uses collections of hundreds of natural accessions as a mapping population. In both 

instances, lines are genotyped and scored for the trait of interest. This then allows for 

testing of possible associations between genetic and trait variation at markers across the 

genome.  

Populations used for QTL mapping, segregating for the alleles of two or more parent 

accessions, are created by crossing two or more natural accessions to produce a 

heterozygous F1 plant. The F1 is then self-fertilised to produce F2 offspring, amongst which 

the different alleles of the parent accessions segregate. By genotyping such a population, 

and scoring it for a heritable trait, associations between genotype and trait variation can be 

identified.  However, rather than genotyping and scoring a population at the F2 generation, 

further self fertilisations are often carried out for each plant in the F2, to create a population 

of F6 lines, known as Recombinant Inbred Lines, or RILs, which are largely homozygous. The 

advantages of working with homozygous RILs generally outweigh the time required for the 

further generations of self fertilisation. Plants from F6 RILs can be repeatedly grown and 

scored for traits with almost no change in genotype in contrast to F2 populations, where 

each F2 plant can be grown only once. Working with RILs allows multiple plants to be grown 

per line so that a genotypic average for the trait scored across these plants can be 

calculated, and also facilitates growing mapping populations in multiple conditions, allowing 

QTL to be tested for environmental specificity by growing the same genetic line in differing 

environments. 

Although many RIL populations have been created using two natural accessions as parents, 

populations with greater allelic diversity can be generated by inter-crossing a larger number 

of parent accessions. The MAGIC and AMPRIL populations were created using crosses 

between nineteen and eight natural accessions respectively to create RIL populations with a 

greater number of natural alleles at each locus than in a typical two parent RIL population 

(Huang et al., 2011; Kover et al., 2009). As well as the increase in the genetic diversity at 

each locus, the increased number of crosses used to generate multi-parent populations 

increases the mapping resolution, allowing QTLs to be mapped to narrower regions than 

typical two parent populations due to greater levels of recombination (Huang et al., 2011; 

Kover et al., 2009). It is also possible to use combinations of two parent RIL populations 

which share a common parent accession in complex multi population mapping designs, 

where scoring such populations for the same trait allows comparisons of QTL between 

populations (Bentsink et al., 2010; Chardon et al., 2014). Coincidence of QTL can then be 

examined across multiple related populations, allowing the identification of regions 
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commonly associated with trait variation in multiple accessions (Chardon et al., 2014), and 

can lead to identification of new QTL, or narrow the region of identified QTL (Bentsink et al., 

2010). 

An alternative approach to QTL mapping in F2 and RIL populations is Genome Wide 

Association mapping (GWA). A Genome Wide Association Study (GWAS) uses natural genetic 

variation across hundreds of natural accessions to map trait variation (Korte and Farlow, 

2013). As natural accessions are largely homozygous, they can be treated similarly to inbred 

lines such as RILs. Hundreds of these natural accessions have been genotyped as part of the 

1001 genomes project, providing marker datasets for genetic mapping (Cao et al., 2011; 

Long et al., 2013; Ossowski et al., 2008; Schmitz et al., 2013).  

The genetic diversity within a collection of natural accessions used for a GWAS is greater 

than the most diverse multi-parent RIL populations in Arabidopsis. The greater genetic 

differences, built up over generations between natural accessions can allow for greater 

mapping resolution in GWAS relative to RIL populations (Korte and Farlow, 2013). Also, 

associated loci identified within a GWAS are more likely to be common variants across 

Arabidopsis as a species, as rare variants are unlikely to be significantly associated with a 

trait due to low allele frequency (Korte and Farlow, 2013). In contrast RIL populations 

created from two homozygous parent accessions will have allele frequencies of roughly 50% 

at loci polymorphic between the parents, as each allele would be expected to segregate 

evenly. This can lead to the identification of rare variants, QTL mapping in a RIL population 

has identified an allele found to be unique amongst over 300 accessions (Loudet et al., 

2008). 

The appropriate steps to further investigate any associated loci identified in a genetic 

mapping experiment vary with the mapping population used. Once a genetic locus is 

identified as associated with a trait in a RIL population, the region can be further 

investigated using remnant heterozygousity within a RIL (Tuinstra et al., 1997). This region of 

remnant heterozygousity is fixed for either parent allele by self fertilising the RIL, and the 

resulting near isogenic lines (NILs) can be used to compare the effect of genetic variation at 

the locus on the trait of interest, as they are genetically identical outside this region. This 

allows the effect of the associated QTL to be potentially confirmed and physical borders to 

be established for the locus, by scoring each NIL for the trait of interest. Such lines can also 

be used as a starting point for fine mapping experiments, to further narrow the variant 

region between these NILs. In a collection of natural accessions used for a GWAS, many 
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possible alleles exist at each locus, and so the same approach as in a RIL population for 

further investigation of an associated locus is not directly applicable. To further investigate 

the effect of genetic variation at a locus identified in a GWAS, often workers will create 

separate F2 mapping populations by crossing accessions from the GWAS population with 

alternate alleles at the locus, and with trait scores matching the estimated direction of effect 

of that locus (Chao et al., 2012). The effect of each allele on the trait of interest can then be 

investigated within these mapping populations.  

Once a candidate gene responsible for an associated locus in a genetic mapping experiment 

is identified, natural genetic variation underlying trait variation is sometimes investigated 

through complementation analysis. In complementation analysis, the effect of variant alleles 

is examined by comparing trait scores of hybrids of natural accessions and either a mutant 

line for a candidate gene or the mutant line background. If the natural alleles differ in their 

ability to complement the candidate gene mutant, this implicates the gene as containing the 

causative polymorphism responsible for trait variation. This has been used effectively to 

implicate  candidate genes for sodium and copper tolerance in Arabidopsis as part of genetic 

mapping studies in both RIL and natural accession populations (Baxter et al., 2010; 

Kobayashi et al., 2008).  

The genetic architecture of a trait, whether variation is controlled by one or two loci of large 

effect, or multiple loci of smaller effect, is a factor in the experimental design of further 

work in genetic mapping (Alonso-Blanco and Koornneef, 2000). Single loci of large effect for 

example are likely to be easier to identify and study further through independent mapping 

populations or fine mapping, whereas multiple loci of smaller effect may become difficult to 

identify in different genetic backgrounds, and so the genetic architecture of traits should 

inform the approaches taken in follow up work after an initial genetic mapping experiment.  

Both QTL mapping in RIL populations, and GWASs with collections of natural accessions have 

been used to identify loci associated with natural variation in a variety of traits in 

Arabidopsis. In the literature, GWAS have been reported for traits such as hypocotyl length, 

flowering time, tolerance to salinity and cadmium levels and genome size (Atwell et al., 

2010; Baxter et al., 2010; Chao et al., 2012; Filiault and Maloof, 2012; Long et al., 2013). 

GWASs have been used as a start point to identify and experimentally validate genes 

responsible for natural trait variation amongst accessions (Baxter et al., 2010; Chao et al., 

2012), or to corroborate existing evidence on the  effects of allelic variation in genes and to 

identify candidates for separate experimental investigation (Atwell et al., 2010; Filiault and 
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Maloof, 2012). QTL mapping has also been used to study the genetic basis of natural trait 

variation in Arabidopsis, and candidate genes have been identified for morphology, disease 

resistance, metal tolerance and flowering time related traits through QTL analysis (Clarke 

and Dean, 1994; Hinsch and Staskawicz, 1996; Jiménez-Gómez et al., 2010; Johanson et al., 

2000; Kobayashi et al., 2008; Loudet et al., 2008). Although not all QTL studies are continued 

through to the identification and validation of candidate genes, much has also been learnt 

about the position and effect size of loci controlling a variety of traits in Arabidopsis.   
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Figure 1-2 Linking genetic 
variation to trait variation 

Figure shows four example 

plants, each made up of a rosette 

of varying morphology and two 

genetic loci. The ‘A’ locus varies 

between AA and aa alleles. The 

‘B’ locus varies between BB and 

bb alleles. Where the B locus has 

a bb genotype, the rosette is 

smaller in diameter with more 

stunted leaves. Where the B locus 

has a BB genotype, the rosette is 

wider in diameter, with more 

elongated leaves. Unlike the ‘B’ 

locus, variation in the ‘A’ locus is 

not associated with variation in 

rosette morphology. 

 

Figure 1-3 Natural Arabidopsis accessions 

Photo shows natural accessions of Arabidopsis thaliana. © Janne Lempe and Detlef Weigel, 

Max Planck Institute for Developmental Biology 
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1.1.6 Naturally occurring leaf shape variation between Arabidopsis 

accessions 

We chose to use Arabidopsis to study the natural genetic variation responsible for leaf shape 

variation. Arabidopsis is a small self fertilising plant that grows a rosette of simple ovate 

leaves before developing an inflorescence. Naturally occurring accessions of this species 

show considerable variation in leaf shape, see Figure 1-3. Accessions of this species grow 

across a broad geographic range in a variety of environmental conditions (Alonso-Blanco and 

Koornneef, 2000). Reciprocal transplant experiments and correlations of trait values with 

accessions latitude of origin suggest some of the differences between the natural accessions 

are the result of local adaptation (Agren and Schemske, 2012; Hopkins et al., 2008; 

Stinchcombe et al., 2004).  As Arabidopsis typically reproduces by self fertilisation, the 

accessions are largely homozygous (Bakker et al., 2006; Bergelson et al., 1998) and so can be 

conveniently maintained as inbred lines for genetic analysis. A small diploid genome, a 

generation time under two months in some accessions and amenability to controlled cross 

pollination also contribute to the suitability of Arabidopsis as a model species for study of 

natural variation.  

The community resources available for analysis of natural genetic variation in this species 

are particularly useful. A number of RIL populations have been produced using natural 

accessions and are publicly available (Weigel, 2012). These populations are generally 

available with marker genotype data for each line, and so can be used for QTL mapping 

experiments without requiring workers to conduct genotyping of a RIL population 

themselves. A large number of natural accessions now also have been genotyped to produce 

publicly available marker datasets as part of the 1001 genomes project (Cao et al., 2011; 

Long et al., 2013; Ossowski et al., 2008; Schmitz et al., 2013). This allows groups to carry out 

GWASs without a large genotyping effort, and so more resources can be dedicated to 

scoring collections of accessions obtained from stock centres, allowing small groups to carry 

out relatively large scale genetic mapping experiments using the publicly available genotype 

data. 

Many genes have been implicated with a function in determining leaf shape in Arabidopsis 

through mutant analysis. A variety of genes have been implicated in leaf development in 

Arabidopsis, through mutant phenotypes such as polarity defects, differences in cell 

expansion and proliferation and changes in leaf margin serrations (Dkhar and Pareek, 2014). 
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A reverse genetic screen of T-DNA lines has also found over two hundred T-DNA insertions 

to be associated with differences in leaf shape (Wilson-Sánchez et al., 2014).  

A key process in leaf development is determination of polarity, a major outcome of which is 

the forming of the adaxial and abaxial layers of the leaf. The boundary between these layers 

is thought to drive the lateral outgrowth of the leaf, and where it is disrupted, narrow, 

needle like leaves are formed instead  (Waites and Hudson, 1995; Wu et al., 2008; 

Yamaguchi et al., 2012). In Arabidopsis the KANADI1 and ASYMMETRIC LEAVES2 genes are 

involved in this process (Huang et al., 2014; Wu et al., 2008). Another process key to the 

development and shape of leaves is cell proliferation and expansion. Cells proliferate early in 

the development of the leaf, with the majority of cell expansion occurring later in 

development (Hisanaga et al., 2015). Interestingly, disruption to this process typically leads 

to compensation, and multiple distinct modes of compensation have been identified 

(Hisanaga et al., 2015). Mutations in ANGUSTIFOLIA3 for example, can illicit compensation 

mechanisms in Arabidopsis, where cell size increases in similar proportion to a decrease in 

cell number, minimising disruption to final leaf size (Horiguchi et al., 2006; Kawade et al., 

2010). The establishment of polarity and balance between cell proliferation and expansion 

likely occur similarly for each rosette leaf produced by an Arabidopsis plant. However, there 

is a clear difference in shape over the leaf series. This difference is in part controlled by 

microRNAs, which have been found to regulate maturity and developmental timing in 

Arabidopsis (Poethig, 2009). Variation in genes responsible for these processes key to leaf 

development could potentially result in natural differences in leaf shape. 

We do not necessarily expect natural leaf shape variation in Arabidopsis to be solely 

explained by polymorphisms in leaf development genes however. For example, variation in a 

gene characterised with a function in Aluminium tolerance in Arabidopsis does not explain a 

major nearby QTL for this trait in a Landsberg erecta x Columbia-0 RIL population (Hoekenga 

et al., 2003, 2006), and leaf shape QTL in a mapping population of C. hirsuta do not map to 

regions containing known leaf developmental candidate genes (Cartolano et al., 2015). 

Although leaf development genes have a clear function in leaf shape and striking mutant 

phenotypes, natural genetic variation may occur in genes with a variety of functions and 

result leaf shape variation. For example it seems reasonable to expect that any gene that 

may play a role in vegetative growth, for example growth rate, development, cell 

proliferation and expansion, metabolism or light response could affect leaf shape, given that 

leaves are such a large and complex organ crucial to the growth of the plant. As such we do 

not begin our work on the genetic basis of leaf shape in Arabidopsis with a predefined list of 
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candidates or gene family that we expect to be associated with variation in leaf shape traits, 

but will evaluate potential candidates occurring within any associated loci. 

1.1.7 Investigating the genetic basis of leaf shape variation in 

Arabidopsis 

We aimed to use genetic mapping to identify the genetic basis of natural leaf shape 

variation amongst accessions of Arabidopsis. Natural accessions of Arabidopsis vary 

considerably in leaf shape, and we were interested to learn more about the genetic basis of 

this variation. We would primarily approach this aim using genetic mapping of leaf shape 

traits, scored using LeafAnalyser, in a RIL population and collections of Arabidopsis 

accessions, using QTL mapping and GWAS approaches. This would allow us to make use of 

the advantages of both approaches in the project. Our method of leaf shape analysis would 

allow for a large number of leaves to be harvested relatively quickly, and so we would 

harvest and analyse the shape of every rosette leaf grown. Although some previous work 

has mapped shape differences between Arabidopsis accessions in RIL populations, 

measurements were restricted to traits such as length and width of one to two leaves per 

plant (Jiménez-Gómez et al., 2010; Juenger et al., 2005). We would use a more 

comprehensive analysis of leaf shape to compare shape across each leaf of the leaf series of 

each plant’s rosette, calculating averages per plant, differences between individual leaves, 

and heteroblastic differences using shape models made up of multiple leaves. Our efficient 

approach to accurately record and quantify leaf shape differences would also allow the 

possibility of growing mapping populations in multiple conditions, to examine how different 

loci may be associated with leaf shape between different environments. 

We were largely successful in mapping the natural genetic basis of leaf shape variation in 

Arabidopsis. We were able to accurately quantify natural leaf shape variation in a two 

parent RIL mapping population and a collection of hundreds of natural accessions, mapping 

leaf shape variation to genetic loci in both populations. Interestingly, the major leaf shape 

variations in these two mapping populations were similar, both to each other and also the 

leaf library data collected prior to this project. Although loci associated with flowering time 

appeared to coincide between the two mapping populations used, loci associated with leaf 

shape variation were specific to each population. There were multiple loci of small effect 

identified in each population, suggesting leaf shape is a polygenic trait. As well as identifying 

loci associated with our morphometric leaf shape traits, we identified a striking QTL 

associated with margin morphology and leaf size in one of the populations. We further 
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characterised the effect of this locus on silique number and epidermal cell size. Several of 

the leaf shape associated loci we identified within the collection of hundreds of natural 

accessions contained NBLRR genes. As such, we took these genes to be possible candidates 

for natural leaf shape variation, and characterised T-DNA insertion lines for these genes for 

possible leaf shape differences. We found several lines had leaf shape differences to the Col-

0 control line, and found that these differences may be specific to certain light and 

temperature conditions. Further work based on the results within this project may involve 

fine mapping specific loci identified, further characterisation of these NBLRR mutant lines, or 

investigating the effect of natural genetic variation in NBLRR genes in plant growth and 

morphology. 
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Chapter 2.   Materials and methods 

2.1.1 Plant growth 

Plants grown for leaf shape analysis or tissue for DNA or RNA extraction were grown in the 

University of York greenhouses, unless otherwise stated. Plants grown for crossing were 

grown in the University of York greenhouses, and transferred to University of York growth 

room after crossing. Once seeds were sown onto soil or agar plates, they were left in a dark 

4°C room for three nights for stratification before transfer to specific growth conditions. 

All plants grown for leaf shape analysis were grown in individual wells of P24 plastic inserts 

(H. Smith Plastics, Ltd). Plants grown for crossing were grown in P24, P40 or P60 inserts (H. 

Smith Plastics, Ltd). Levington F2 soil was used for all soil grown plants. A pesticide 

treatment, Levington intercept, was applied to the soil to minimise growth of insect larvae. 

Greenhouse conditions were long days of 16 hours light and 8 hours dark. Temperature was 

held between 20°C and 27°C during the day. Temperature during the day was increased by 

heating if at 20°C, and decreased by partially open vents at 22°C, fully open vents and fans at 

24°C and chilling elements if temperature reached 27°C. During times of the year where 

natural light was not present for 16 hours a day, supplemental lighting was used from 

overhead 400 watt sodium lamps. Supplemental lighting was activated when a light meter in 

the greenhouse less than 55 watts/m2, and switched off during the 8 hour night, or once this 

light meter reaches 88 watts/m2. 

Growth room conditions were also set to long days, of 16 hours light and 8 hours dark. 

Temperature was kept between 23°C and 24°C during the day, and 20°C and 21°C during the 

night. No natural light was present and electric lighting was set at an intensity of 80-

100µmol/m-2s-1. 

A Sanyo MLR 350 growth cabinet was used for temperature controlled experiments, and 

was set for long days of 16 hours light and 8 hours dark. Temperature was set to either 24°C 

or 16°C for the entire growth experiment. Relative humidity was set at 65% and light 

intensity was 150µmol/m-2s-1. 

For different light treatments, plants were grown in a darkened box in a 20°C temperature 

controlled lab. Light was provided by four LED panels that could emit red or blue light at 

varying intensity. In these conditions, plants were grown as seedlings on sealed agar plates 

and subjected to a red, blue or no light treatment in the box for four nights. Light intensity at 
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the level of the agar plates in the red light treatment was 1.1µmol/m-2s-1 and 0.33µmol/m-2s-

1 in the blue light treatment. Different light intensities were used between treatments so 

that Col-0 control lines would have roughly similar hypocotyl lengths between blue and red 

treatments to avoid large differences in the effect of measurement accuracy between 

treatments. 

2.1.2 Seed sterilisation and growth on agar plates 

Agar for plant growth on plates was produced by autoclaving; 

 400ml dH2O 

 3.2g Oxoid Agar Technical (Thermo Fisher Scientific) 

Once autoclaved, 25ml of this 0.8% agar solution was then poured into Sterilin™ petri dishes 

(Thermo Fisher Scientific) and left to set, before placing in a dark, 4°C room for storage. For 

plants to be grown on agar plates, seeds were sterilised before sowing. Sterilisation of seed 

was carried out in a laminar flow hood. Sterilisation first used a bleach solution; 

 85% autoclaved dH2O 

 10% bleach (Haychlor Industrial Sodium Hypoclorite) 

 5% Tween 20 (Sigma-Aldrich) 

Seeds were left in this solution for 15 minutes, then sterilised with 70% ethanol for less than 

30 seconds, after which five washes of autoclaved dH2O were applied. Seeds were first 

suspended in an agar solution, made as described above, but at a concentration of 0.05%. 

Seeds were sown onto circular plates filled with set agar.  

2.1.3 Crossing Arabidopsis 

Plants were selected for crossing, where possible choosing plants that had begun flowering 

recently and had five to ten open flowers. Crossing was carried out using fine point 

tweezers, and flowers were observed for emasculation and pollination through a dissection 

microscope (Nikon Stereoscopic Zoom Microscope 10A). Tweezers were cleaned between 

touching stamen using ethanol. 

To prepare flowers to receive pollen on the plant serving as a female parent for a cross, 

flower buds were identified that had not yet opened, but were large and with a hint of white 

at the meeting point of the sepals. For each stem on which possible recipient buds were 

identified, all other flowers or buds not at this stage were removed. The bud was then 
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carefully opened by pulling sepals and petals backwards, and then removing anthers 

separately, leaving the pistil remaining. Stamen were expected to be short and unripe at this 

stage, with little risk of self pollination of the flower having already occurred. However, if 

anthers appeared ripe, suggesting possibility of self pollination, the bud in question was 

abandoned. Stamen were selected from male plants serving as pollen donors by removing 

anthers from recently opened flowers, using tweezers to separate them from the flower. 

The anther from the male parent was then rubbed against a stigma of the female parent, 

and presence of transferred pollen was checked under a dissection microscope.  

Plants were left for a day to see if the pistil had grown or withered, indicating pollination or 

damage to pistil respectively. Mature siliques were collected by removal with tweezers. In 

the event a silique may dehisce before removal, siliques were cased in a small paper 

envelope to collect seed. 

2.1.4 Epidermal cell size and shape analysis 

To measure epidermal cell number and size between lines in HIF118 and HIF102, a rosette 

leaf was harvested from each plant, the median node leaf from HIF118 plants, and the 

fourth leaf from HIF102 plants. This leaf was then stuck to a stripe of tape, adaxial side 

down, as flat as possible. To make a mould of the leaf, clear nail varnish was applied to the 

abaxial side of the leaf. This was left to dry for 20 minutes. After the varnish had dried, this 

was removed from the leaf surface with tweezers and placed over a droplet of water on a 

microscope slide. The imprint of epidermal cells can then be seen and imaged with a 

microscope (Nikon Optiphot-2) and attached camera (Carl Ziess Axiocam MRc5). 

Size of epidermal cells was then measured by tracing the outline of the cell with the 

magnetic lasso tool in Photoshop CS4 (Adobe). Cells were measured from the top left, top 

right, bottom left and bottom right positions on the leaf and on average 43 epidermal cells 

were measured in total. Epidermal cells were chosen for measurement by picking a point in 

the centre of the image and measuring the selected cell and those adjacent. As well as 

measurement of area, highlighted and measured epidermal cells were also saved in a 

separate image file, and measured for the shape traits circularity and compactness with 

ImageJ (Schneider et al., 2012). 
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2.1.5 PCR with genomic DNA and cDNA 

PCR from genomic samples of DNA used a standard protocol across the project. The volume 

of each reaction was 10µl, made up of the following; 

1 µl genomic DNA 

1 µl 1x ThermoPol® buffer (New England Biolabs) 

0.2 µl for each primer (10mM) 

0.2 µl 10mM dNTPs (Fermentas, Thermo Fisher Scientific) 

0.05 µl Taq DNA polymerase  5000 Units/ml (New England Biolabs) 

Made up to 10 µl with dH2O 

Reactions were then placed in a MJ research DYAD dual block PCR machine for amplification 

of DNA. The PCR programme used in each experiment followed a standard template; 

1. 95°C for 2 minutes 

2. 95°C for 30 seconds 

3. Tm for 30 seconds 

4. 72°C for 5 minutes 

5. Go to step 2 (x30) 

6. 72°C for 5 minutes 

For RTPCR analysis a similar approach was taken. The standard 10 µl reaction used between 

RTPCR experiments was made up of 

1 µl cDNA preparation 

1 µl 1x ThermoPol® buffer (New England Biolabs) 

0.2 µl for each primer (10mM) 

0.2 µl 10mM dNTPs (Fermentas, Thermo Fisher Scientific) 

0.05 µl Taq DNA polymerase 5000 Units/ml (New England Biolabs) 

Made up to 10 µl with dH2O 

After preliminary RTPCR experiments with different cycle numbers, the following PCR 

programme was used for cDNA samples in our RTPCR work. 

1. 95°C for 1 minutes 



36 
 

2. 95°C for 30 seconds 

3. Tm for 30 seconds 

4. 72°C for 5 minutes 

5. Go to step 2 (x40) 

6. 72°C for 5 minutes 

2.1.6 Preparation of DNA 

Throughout the project, a standard approach was taken to DNA preparation, following a 

published protocol (Edwards et al., 1991). First plant tissue was placed into a 2ml centrifuge 

tube with a 5mm diameter ball bearing (Simply Bearings Ltd, UK) and macerated using a 

TissueLyser (Qiagen). After the ball bearing was removed, 400µl of DNA extraction buffer 

was added, and each tube was vortexed. Tubes were then centrifuged (International 

Equipment Company micromax centrifuge) at 10,000 rpm for 5 minutes. The supernatant 

was removed, and added to a 1.5ml centrifuge tube containing 300µl isopropanol. This 

solution was mixed by pipetting and then left for 2 to 30 minutes. After this time, the 

solution was centrifuged at 10,000 rpm for 5 minutes, the supernatant was discarded, and 

tubes left to dry. Once dry, 100µl dH2O was added and the tubes were vortexed before 

storage in a -20°C freezer. 

DNA extraction buffer was made up in 200ml volumes of; 

 10ml 10% SDS 

 50ml 1M NaCl 

 10ml 0.5 EDTA 

 26.7ml 1.5M TRIS pH 7.5 

 103.3ml dH2O 

2.1.7 Preparation of RNA 

To extract RNA from plants, tissue was collected from leaves at the middle of the leaf series 

from bolting plants. Tissue was flash frozen with liquid nitrogen and ground with a ceramic 

mortar and pestle. The RNA was extracted using RNeasy kit (Qiagen), following the plant 

tissue protocol provided with the kit, using the RLT buffer and including the optional DNAase 

step. The concentration of RNA samples prepared was checked using a NanoDrop® ND-1000 

spectrophotometer. RNA samples used in the project had concentrations of over 350 ug/ul, 
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A260/A280 absorption ratios between 2.15-2.16 and A260/A230 absorption ratios of 2.16-

2.44. 

2.1.8 Preparation of cDNA 

To synthesise cDNA from prepared RNA, SuperScript® II Reverse Transcriptase (Invitrogen) 

was used. cDNA was synthesised with the following protocol; 

First a 12µl reaction was prepared of; 

 1µl Oligo(dT)12-18 (Invitrogen) 

 1µl 10mM dNTPs (Fermentas, Thermo Fisher Scientific) 

 1.5µg prepared RNA 

 dH2O upto 12µl 

This reaction was then incubated for 65°C for 5 minutes and then placed on ice. Next, 4µl of 

5x First-Strand buffer and 2µl of 0.1M DTT were added. The solution was mixed, and 

incubated at 42°C for 2 minutes. After this, 1µl of SuperScript II Reverse Transcriptase was 

added, the solution was mixed, and then incubated at 42°C for 50 minutes, then 70°C for a 

15 minutes. Prepared cDNA was then stored at -20°C. 

2.1.9 Restriction digest for genotyping of PhyB-9 mutation 

To identify the mutation in PhyB-9 line, a region of the PhyB gene was amplified and then 

subjected to a restriction digest, using the following 20µl reaction; 

2µl CutSmart® Buffer (New England Biolabs) 

0.2µl BSA (Promega) 

5µl PCR product 

0.5µl MnlI (New England Biolabs, 5000U/ml) 

12.3 dH2O 

Each sample was then incubated at 37°C for one hour. 

2.1.10 Gel electrophoresis 

PCR samples were run on agarose gels with DNA stain to visualise amplified fragment sizes. 

Gels were made with 0.8% electrophoresis grade ultra pure agarose (Invitrogen) in TBE 

buffer. TBE was kept as a 5x stock and made up from adding the following to 900ml of dH2O; 
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 54g Tris 

 27.5g Boric acid 

 2ml 0.5M EDTA pH 8 

 dH2O upto 1L total solution 

Gels were run in a gel tank filled with 1% TBE at 80-100 volts. To compare the size of sample 

bands in reactions run on agarose gels, 2-log ladder (New England Biolabs) was used. See 

below for a diagram showing band sizes of this ladder. 

 

Diagram showing band sizes of 2-log NEB 

ladder. Image was obtained from 

https://www.neb.com/products/n3200-2-log-

dna-ladder-01-100-kb and produced with 

ethidium bromide staining on a 1.0% TBE 

agarose gel. Mass values are for 1 µg/lane.  

 

2.1.11 LeafAnalyser leaf shape analysis 

For leaf shape analysis the rosette leaf of each plant was harvested at bolting, unless 

otherwise stated, and placed between two acetate sheets and pressed overnight between 

magazines. To record an image of the leaves, these acetate sheets were placed on a Hewlitt 

Packard Scanjet 4370 scanner and scanned at 300 dpi, then saved as high quality jpegs. 

Shape was recorded using LeafAnalyser (Weight et al., 2008) to record the leaf margin with 

semi-landmarks. The positions of these semi-landmarks were then exported as co-ordinates 

in text files for analysis. Text files were complied to a single file using the command line.  

To align and scale leaf shape models, the Procrustes fit in MorphoJ (Klingenberg, 2011) was 

used and shapes were aligned by principal axes and scaled to unit size. Size scaling works by 

calculating the mean co-ordinate for each shape model, known as the centroid. The absolute 
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distance of each co-ordinate point along the margin from the centroid is then calculated and 

the total of these distances describes the size of the shape model, referred to as centroid 

size. By dividing the co-ordinates of each shape model by that shape models centroid size, 

all variation in size is removed from the shape models, which are now all scaled to unit size. 

The procrustes fitted co-ordinates, and centroid size values for each leaf shape model were 

then exported from MorphoJ. 

Shape variation was scored amongst the shape models using the eigensystem created from 

a PCA on a dataset of leaves in LeafAnalyser, typically either the leaf library reference 

dataset, or the dataset the leaves to be analysed belonged to.  

For the heteroblasty three leaf shape models an alternative approach was required due to 

the differences in arrangement of shape model data, having been compiled from three 

mean leaves per plant in R. We ran a PCA on the heteroblasty shape models using the 

prcomp function in R, and used this function to score the heteroblastic shape differences, 

exporting the PC scores for each shape model from R. 

2.1.12 Genetic mapping 

In this project both QTL mapping and GWA were used to identify loci associated with plant 

traits. QTL mapping was carried out using the R/qtl package (Arends et al., 2010) in R (R core 

team, 2015). Trait data for the 165 Bay x Shahdara RILs was compiled with genotype data for 

the population, obtained from http://publiclines.versailles.inra.fr/page/33, and loaded into 

R. QTLs were then detected using the Multiple QTL Mapping (MQM) function, mqmscan. 

Loci were identified using graphical outputs from this package and the lodint function to 

estimate an interval for the QTL region. For GWA work, trait data was also compiled into 

text files, and then uploaded to GWAPP (http://gwapp.gmi.oeaw.ac.at/ ) (Seren et al., 2012). 

Both the KW and AMM approaches to mapping available on GWAPP were used. The KW 

approach is a Wilcox test of association for each SNP. The AMM approach is based on the 

EMMA method used in Kang et al., (2008) and decreases the chance of identifying false 

positive associations due to relatedness between accessions using a kinship matrix to reduce 

the effect of population structure in the association tests. To identify and further investigate 

loci associated with these approaches, the results files for mapping were downloaded from 

GWAPP and used to produce graphs in R using base graphics commands.  
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2.1.13 Hypocotyl measurement 

Hypocotyl length was measured from plants grown on agar plates by removing each 

seedling with tweezers and placing them on an acetate sheet. This was then scanned at 300 

dpi on a Hewlitt Packard Scanjet 4370 scanner and images were saved as jpegs. Hypocotyl 

length of seedlings was measured using the freehand draw tool of ImageJ to trace hypocotyl 

length and measurements were exported to text files for further analysis. 

2.1.14 Error bars 

The vast majority of graphs in this thesis use 95% confidence intervals for error bars, and are 

labelled as such. Much of the data in this thesis concerns quantified differences in leaf shape 

between different Arabidopsis lines. Rather than statistically test each leaf of the leaf series 

and mark those showing a significant difference between lines, 95% error bars are shown 

along with the mean score at that node for interpretation of the extent of the difference in 

leaf shape across the leaf series. These error bars, when not overlapping, typically represent 

a strongly significant difference, and also increase in size in response to low sample size. As 

such they provide a useful visual guide to the extent of leaf shape differences over the leaf 

series, as clear differences can be noted where error bars do not overlap, and small sample 

size, typical at the end of the leaf series, is indicated by large error bars. See Krzywinski & 

Altman (2013) for more detail. A figure from this publication, showing error bars from 

example datasets, is reproduced below. 

 

(a,b) Example graphs are based on sample means of 0 and 1 (n = 10). (a) When bars are 

scaled to the same size and abut, P values span a wide range. When s.e.m. bars touch, P is 

large (P = 0.17). (b) Bar size and relative position vary greatly at the conventional P value 

significance cutoff of 0.05, at which bars may overlap or have a gap. 

 



41 
 

2.1.15 Primer design 

Primers were designed using primer3 (Untergasser et al., 2012); http://primer3.ut.ee/. Gene 

sequence was obtained using the Sequence Bulk Download and Analysis tool from TAIR 

(Berardini et al., 2015); https://www.arabidopsis.org/tools/bulk/sequences/index.jsp. 

Primers for Actin 2 were designed by Dr. Michael Schultze. Primers for confirmation of SALK 

T-DNA insertions were designed using the SALK T-DNA express primer design tool 

(http://signal.salk.edu/tdnaprimers.2.html). Primers for markers BSAT2.010, MSAT2.18, 

MSAT2.26 and UPSC25794 were obtained from http://www7.inra.fr/vast/msat.php. 

See Table 2-2 for a list of all primers used during the project. Primers were ordered from 

Integrated DNA Technologies. Primers were kept as 100mM stock solutions and 10mM 

working stock solutions, by mixing the delivered desalted primers with amounts of dH2O to 

reach the required concentrations.  
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2.1.16 Plant material 

The Col-0 line used throughout this project was donated from Dr. Martin Kieffer. The 

Bergelson collection of 96 Joy Bergelson accessions and the Detlef Weigel collection of 80 

accessions (Cao et al., 2011; Nordborg et al., 2005) were donated by the Ottoline Leyser 

group. The PhyB-9 mutant line, and Bay-0 and Shahdara accessions were donated by the 

Seth Davis group. The HapMap collection of natural accessions and SALK T-DNA insertion 

lines (Alonso et al., 2003) were obtained from NASC (http://arabidopsis.info), for NASC IDs 

see Table 2-1. All Bay-0 x Shahdara HIFs used in the project were obtained from INRA 

(http://publiclines.versailles.inra.fr/). The rHIF47-2 and rHIF47-5 fine mapped lines were 

donated by Oliver Loudet.  

Name NASC ID 

HapMap/Borevitz collection N76309 

Bay-0 x Shahdara 165 core RIL population N57921 

At5g45240-1 SALK T-DNA line N672671 

At5g45240-2 SALK T-DNA line N655431 

At5g45240-3 SALK T-DNA line N670435 

At5g45240-4 SALK T-DNA line N680733 

At1g72840-1 SALK T-DNA line N658536 

At1g72840-2 SALK T-DNA line N671145 

At1g72850-1 SALK T-DNA line N682142 

At4g09420-1 SALK T-DNA line N678533  

At2g17050-1 SALK T-DNA line N669130 

 

Table 2-1 Arabidopsis lines  

Table shows Arabidopsis lines 

and collections used in the 

project that were ordered 

from NASC with the NASC ID 

for each line. 
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Name Pairing Sequence Experiment 

act2 FP ACGAGCAGGAGATGGAAACC RTPCR ACT1 control 

act2 RP ACCCCAGCTTTTTAAGCCTTTG RTPCR ACT1 control 

le12 FP GCTGTGACGACAAGAAGAGC At5g45240 RTPCR 

le12 RP ACACAAGAAATGAGCAGGCA At5g45240 RTPCR 

le23 FP AGAAGTGCCATCTCAACGAG At5g45240 RTPCR 

le23 RP ATAGACTCAGCGACGTGGTT At5g45240 RTPCR 

le34 FP GAGCACCCGGATTTGGATC At5g45240 RTPCR 

le34 RP TCCCACTGCAATTAGAGAGATCA At5g45240 RTPCR 

le45 FP TCTTGGGCACTGTGAGAAAC At5g45240 RTPCR 

le45 RP CTCCATCCCACAGCTTCTCA At5g45240 RTPCR 

le56 FP TGAGAAGCTGTGGGATGGAG At5g45240 RTPCR 

le56 RP CCAATAGAGGGAGGAAGCAAC At5g45240 RTPCR 

le67 FP TGATGTTGCTTCCTCCCTCT At5g45240 RTPCR 

le67 RP TCGAAAGGTCAGATAGCCCA At5g45240 RTPCR 

le78 FP GGCTATCTGACCTTTCGATGAG At5g45240 RTPCR 

le78 RP AGAGAGCGTTGCAGGGAG At5g45240 RTPCR 

le89 FP AGACTTCCAGACACATGGACT At5g45240 RTPCR 

le89 RP AGGCCCAGGTCTTGATTCAA At5g45240 RTPCR 

le910 FP TCTAACCGTCTCTTTACCTCGT At5g45240 RTPCR 

le910 RP ACTCTTCGTCGTTCTCTGCA At5g45240 RTPCR 

PhyB-9 FP CAATGTAGCTAGTGGAAGAAGCTCGATGTGG PhyB-9 mutant genotyping 

PhyB-9 RP ACATAACAGTGTCTGCGTTCTCAAAACGC PhyB-9 mutant genotyping 

At5g45240-1 FP GAGTCAGCCGTGGTATCTCAG   Genotyping T-DNA insertion 

At5g45240-1 RP GAACCACCCTGAGGAGATCTC Genotyping T-DNA insertion 

At5g45240-2 FP TTTAGTGTCACCCAATCGTCC   Genotyping T-DNA insertion 

At5g45240-2 RP TCTCCCATGAATTAACCAAACAG Genotyping T-DNA insertion 

At5g45240-3 FP TGGAAGAGATCGTGGAAGATG   Genotyping T-DNA insertion 

At5g45240-3 RP TTCCCATACCTTATATCCTTCCC Genotyping T-DNA insertion 

At5g45240-4 FP AAATCAATCTTGGGCACTGTG   Genotyping T-DNA insertion 

At5g45240-4 RP GGATCTGGGATTTCTCTCAGG Genotyping T-DNA insertion 

At1g72850-1 FP GAAGCCACGCTGAAATGATAC Genotyping T-DNA insertion 

At1g72850-1 RP AATCCCCACATCTAAACCCTG Genotyping T-DNA insertion 

At1g72840-1 FP CGACCGCAGTAAATCTTGAAG Genotyping T-DNA insertion 

At1g72840-1 RP TGGCTAAAGTCCAAGTGGTTG Genotyping T-DNA insertion 

LBl1.3 RP ATTTTGCCGATTTCGGAAC Genotyping T-DNA insertion 

BSAT2.010 FP CAGGATGACGATATGCTTCG HIF102 and HIF118 markers 

BSAT2.010 RP CAGGAATTACGAATAAACTTGACG HIF102 and HIF118 markers 

MSAT2.18 FP TAGTCTCTTTTGGTGCGCATA HIF102 and HIF118 markers 

MSAT2.18 RP AGCCTCTCCAAGCTTAGGTCT HIF102 and HIF118 markers 

MSAT2.26 FP TCTCCGATTGAGCCCCAAAG HIF102 and HIF118 markers 

MSAT2.26 RP CGGGGAAAGATGGGTTTTGA HIF102 and HIF118 markers 

UPSC25794 FP TCATGCGGAAGTGAGTGTTC HIF102 and HIF118 markers 

UPSC25794 RP TGCTTGAGTTTGGTTTTTGC HIF102 and HIF118 markers 

Table 2-2 Primer sequences 

FP/RP column describes whether primer was forward (FP) or reverse (RP) in each pairing.  



44 
 

Chapter 3.  Quantitative Trait Loci mapping in the 

Bay-0 x Shahdara population 

3.1 Introduction 

3.1.1 Quantitative Trait Loci mapping in the Bay-0 x Shahdara 

recombinant inbred line population to identify loci associated 

with natural leaf shape variation 

Quantitative Trait Loci (QTL) mapping can be used to identify the naturally occurring genetic 

variation underlying phenotypic differences in accessions of Arabidopsis (Alonso-Blanco et 

al., 2009; Koornneef et al., 2004). In Arabidopsis, a self compatible species, QTL mapping is 

typically carried out using Recombinant Inbred Line (RIL) populations. Accessions of 

Arabidopsis are largely homozygous (Bakker et al., 2006; Bergelson et al., 1998). To create a 

RIL population accessions are crossed, producing a heterozygous F1 which is then self 

fertilised to create an F2 population of plants with a variety of combinations of the parent’s 

alleles. Although an F2 population can be used for genetic mapping, self fertilising F2 plants 

for 4 to 5 generations will fix the majority of the genotype of each line to homozygosity. This 

creates an F6 - F7 population that need only be genotyped once, but can be repeatedly 

regrown with minimal genetic variation, as each line is now almost entirely homozygous. 

Many RIL populations have been created, genotyped and made available for use by the 

Arabidopsis community  (Alonso-Blanco et al., 1998; Clarke et al., 1995; Loudet et al., 2002; 

Magliano et al., 2005; Wilson et al., 2001). 

We chose to use the Bay-0 x Shahdara RIL population to for QTL mapping leaf shape traits. 

This population is a set of F7 RILs created from two natural accessions, Bay-0 and Shahdara, 

Bay-0 was the female parent, and Shahdara was the male parent (Loudet et al., 2002). Bay-0 

was collected from an area of fallow land near Bayreuth, Germany and Shahdara was 

collected from the Pamiro-Alay mountains in Tadjikistan (Loudet et al., 2002). The 

population has been genotyped using 69 markers across the genome and has been used to 

successfully map QTLs for a variety of traits (Botto and Coluccio, 2007; Jiménez-Gómez et al., 

2010; Loudet et al., 2008; Wingler et al., 2010). The difference in origin between Bay-0 and 

Shahdara suggests these accessions are likely to be adapted to considerably different 

environments, and vary for a variety of traits. Though they differ in leaf shape, the 

difference in leaf shape between these two accessions is not striking, see Figure 3-1. We 
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expect this will allow us to map quantitative variation in shape, rather than a single unigenic 

shape difference. For example, the Arabidopsis line Ler has a distinct leaf shape phenotype 

due to a mutation in the ERECTA gene (Tisné et al., 2011) and has been used to generate RIL 

populations, scoring leaf shape in such populations will identify a large QTL over the ERECTA 

gene (personal observation). Although it is reasonable to assume the association at this 

locus due to variation in the ERECTA gene and factor this into the analysis, the large ERECTA 

QTL may obscure the effect of other nearby polymorphisms. The Bay-0 x Shahdara RILs are a 

population without a striking difference in leaf shape between the parents of the 

population. As alleles from either parent will be present in RILs in new combinations, the 

RILs within this population will likely have a greater range of trait variation than between the 

parents, and potentially allow us to identify these alleles through association with leaf shape 

traits.  

We would grow the Bay-0 Shahdara RIL core population and measure leaf shape and size 

across these lines. By creating a leaf shape dataset for this population, we would be able to 

link variation in leaf shape traits to the natural genetic variation in the population. This 

would allow us to identify loci associated with natural leaf shape variation in Arabidopsis. 

Both accessions are early flowering and do not require vernalisation before bolting. As such 

we could use the bolting date of each plant as a point at which to harvest each rosette leaf.   

 

Figure 3-1 Rosettes of Bay-0 and Shahdara accessions 

Photo shows the rosettes at bolting of Bay-0 and Shahdara accessions. 
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3.1.2 Choosing growth conditions for the Bay-0 x Shahdara RILs 

We first grew the Bay-0 x Shahdara population in summer 2012. These plants flowered 

much earlier than we expected given earlier observations of the parent accessions. We 

suspected this was due to unseasonably warm weather shortly after the plants had 

germinated. Though we harvested these plants for preliminary data regardless, we felt that 

the low leaf number of many of the RILs would inhibit our ability to explore the genetic basis 

of shape changes over the leaf series and decided to regrow the plants. Work done recently 

within the lab documented the difference in leaf shape amongst a set of accessions grown in 

light and shade treatments, using white muslin cloth to block and diffuse the light. When 

regrowing the Bay-0 x Shahdara lines we took the opportunity to include another treatment 

alongside our standard greenhouse conditions, and also grew the plants in a shade 

treatment. Previous work suggested plants would vary in leaf shape between the light and 

shade treatments, but we wondered if the extent of this difference would vary between the 

RILs, and whether we could map the extent of difference, or plasticity, to QTL in this 

population. By regrowing the RILs we aimed to increase the number of rosette leaves grown 

per plant, and potentially map QTL for the plasticity of our leaf shape and size traits between 

the light and shade treatments, as well QTL for leaf shape and size traits in either treatment 

respectively. 

3.1.3 Software for QTL analysis 

Although specific QTL mapping software, such as mapQTL (Wang et al., 2011) and 

QTLcartographer (Van Ooijen, 2004) exists, we opted to use R/qtl (Arends et al., 2010), a 

free and open source package for the R statistical environment (R core team, 2015). We 

opted to work within R for the QTL analysis so that the input and output of data was 

straightforward to integrate with other work within this project. As we collect a large 

amount of leaf shape data per population, and analyse this in many ways, it was likely that 

we would want to test for QTLs with a variety of trait data. For this reason it was important 

to use an approach to QTL mapping that would facilitate scripting of data input and QTL 

analysis, allowing large amounts of trait data to be analysed quickly. R/qtl was ideal for this 

purpose. 
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3.1.4 A comprehensive approach to leaf shape phenotyping 

After harvesting each plant at bolting, we would record the shape of every rosette leaf 

grown per plant by co-ordinate shape models, using LeafAnalyser (Weight et al., 2008). 

Principal Component analysis (PCA) can then be used to capture the major variations in 

shape amongst co-ordinate models with Principal Components (PCs). The shape of individual 

leaf co-ordinate models can be scored with PCs, and in this way we would create a dataset 

of leaf shape traits for the Bay-0 x Shahdara RIL population. 

There are many possible approaches to quantifying leaf shape variation in Arabidopsis, as 

each plant grows a series of rosette of leaves that vary in shape and total leaf number. By 

analysing every rosette leaf of each plant we grew, we would be able to investigate changes 

in leaf shape between lines in depth. Creating a complete dataset of leaf shape at each leaf 

grown for these lines would allow us to investigate the genetic basis of leaf shape 

differences across the leaf series, rather than being restricted to differences at a single node 

of the leaf series. As leaf shape varies over the leaf series, we were interested to see how 

these changes were controlled genetically. Our expectation was that changes in leaf shape 

common to each leaf of a rosette would be associated with coinciding QTL when comparing 

each leaf individually, and the shape of individual leaves would also be modulated by their 

position in the leaf series. We thought this more likely than separate QTL responsible for 

specifying the shape of each leaf within the rosette of a plant. If there was a modulating 

effect of leaf series position on leaf shape, it may be that this also varies in within the 

population, and so perhaps could also be mapped to QTL.  

Changes in shape over the leaf series of plants associated with developmental age are often 

referred to as heteroblasty (Zotz et al., 2011), and have been mapped to genetic loci in 

Antirrhinum and tomato species (Cartolano et al., 2015; Costa et al., 2012). Arabidopsis is a 

useful system for studying leaf series changes (Poethig, 2010; Telfer et al., 1997; Yang et al., 

2011), as each plant grows a defined number of rosette leaves, then bolts and transitions to 

flowering. By measuring each rosette leaf per plant, we can investigate changes in shape 

across the leaf series as well as the overall leaf shape differences between plants. 

We would also score the plants for bolting date and leaf number.  These traits are highly 

correlated with flowering time in Arabidopsis, which is a widely studied trait. As such as well 

as allowing us to compare leaf shape and size relative to the transition from vegetative to 

reproductive growth in Arabidopsis, these traits would also serve as a point of comparison 

to work in the literature.  
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3.2 Results 

3.2.1 Growth conditions for the Bay-0 x Shahdara population 

We grew the Bay-0 x Shahdara core population of 165 F7 Recombinant Inbred Lines (RILs) 

(Loudet et al., 2008) in the  greenhouses at the University of York. In this experiment we 

grew two batches of the 165 RILs in different conditions. The first batch was grown in 

standard greenhouse conditions, see Materials and methods, referred to as the light 

treatment. The second batch was grown under the shade from a muslin cloth, referred to as 

the shade treatment, see Materials and methods. In each treatment, three plants were 

grown for each of the 165 RILs. Once each plant bolted to produce an inflorescence shoot 

we harvested the rosette leaves of each plant. The shape of each leaf was recorded with 

LeafAnalyser following standard laboratory protocols, see Materials and methods and 

(Weight et al., 2008). We also recorded the date each plant bolted and the number of 

rosette leaves each plant grew.  

We had two major aims for this experiment. Firstly, we aimed to map QTLs for the natural 

leaf shape variation in this population. Secondly we aimed to map loci that may determine 

variation in the extent of leaf shape differences between RILs when grown in light and shade 

treatments. 

3.2.2 Scoring leaf shape variation within the Bay-0 x Shahdara RIL 

population 

Once the shape of each leaf was recorded with Leaf Analyser we scored differences in leaf 

shape using the leaf library Principal Components (llpPCs). These PCs represent a standard 

reference set of leaf shape traits identified with LeafAnalyser that have been used previously 

to score leaf shape in Arabidopsis (Challis et al., 2013; Danisman et al., 2012; Kieffer et al., 

2011). Before scoring the leaves with the leaf library PCs, we scaled each leaf co-ordinate 

model to unit size through Procrustes fitting. This allowed us to separately record the size 

and shape of each individual rosette leaf. By harvesting and scoring every rosette leaf per 

plant, we were able to create a comprehensive dataset of differences in shape and size 

across the leaf series of every plant in the Bay-0 x Shahdara RIL population. This would allow 

us to compare the leaf shape at each leaf of the leaf series, and to calculate an average leaf 

shape score for each RIL in the light and shade treatments. 
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 In Arabidopsis leaf shape and size varies across the leaf series, see Figure 3-2, Figure 3-3 

Difference in llpPC3 between Bay-0 and Shahdara  and Figure 3-4. This is described as 

heteroblasty. To record and analyse changes in shape across the leaf series, we developed a 

method to compare the shape of leaves at selected points in the leaf series. From the co-

ordinate model dataset we created, which contained a model for each rosette leaf per plant 

harvested, we selected the co-ordinates for three rosette leaves per plant. We used the co-

ordinate shape model of the third leaf, median node leaf and last leaf across the leaf series 

of each plant harvested to create a new, three leaf co-ordinate model for each plant, see 

Figure 3-5 and Materials and methods. The median node leaf was the leaf at the halfway 

point of the leaf series of each plant. We did not Procrustes fit these shape models so that 

size differences within the leaf series could be compared between lines. We used PCA to 

identify the major shape variations in these three leaf shape models, creating a set of 

heteroblasty PCs capturing the major shape variations in the dataset, see Figure 3-5. 

Heteroblasty PC3 and PC4 describe similar changes in leaf shape at each of the three leaves. 

Heteroblasty PC1 and PC2 show changes in shape and size that vary between the three 

leaves. For example, in PC1 the median node leaf appears to vary in size relative to the other 

two leaves, and PC2 shows a change in which of the three leaves is the largest, varying 

between the last leaf or the median node leaf.  

3.2.3 Summary and Aims 

For the population of 165 recombinant inbred lines we built a dataset of 6336 rosette leaves 

from a total of 938 plants grown in either light or shade conditions. Leaf shape was recorded 

using LeafAnalyser software and analysed by PCA. 

Our aim was to compare leaf shape variation within the Bay-0 x Shahdara RIL population, 

using our dataset of leaf shape scores to compare shape at individual nodes, for whole plant 

averages, and differences in heteroblasty between lines. We would compare shape between 

RILs in both the light and shade treatments, and also examine possible variation in the 

plasticity of these leaf shape traits between treatments by calculating the extent of the 

difference in leaf shape between the light and shade conditions for each RIL. 
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Figure 3-2 Difference in llpPC2 
between Bay-0 and Shahdara 

Mean scores per node of the leaf 

series are shown as black squares for 

Bay-0 plants and red triangles for 

Shahdara plants. Error bars show 

95% confidence intervals. For Bay-0 

and Shahdara, 13 and 14 plants were 

harvested respectively. 

 

 

 

Figure 3-3 Difference in llpPC3 
between Bay-0 and Shahdara  

Mean scores per node of the leaf 

series are shown as black squares for 

Bay-0 plants and red triangles for 

Shahdara plants. Error bars show 

95% confidence intervals. For Bay-0 

and Shahdara, 13 and 14 plants were 

harvested respectively. 

 



51 
 

 

Figure 3-4 Difference in size 
between Bay-0 and Shahdara  

Difference in centroid size across the 

leaf series between the parents of 

the Bay-0 x Shahdara RILs. Mean 

scores per node are shown as black 

squares for Bay-0 plants and red 

triangles for Shahdara plants. Error 

bars show 95% confidence intervals. 

For Bay-0 and Shahdara, 13 and 14 

plants were harvested respectively. 

Trait Treatment Heritability 

days to bolt light 0.91 

days to bolt shade 0.92 

llpPC1 light 0.49 

llpPC1 shade 0.59 

llpPC2 light 0.8 

llpPC2 shade 0.89 

llpPC3 light 0.67 

llpPC3 shade 0.83 

llpPC4 light 0.59 

llpPC4 shade 0.588 

leaf number light 0.936 

leaf number shade 0.91 

phyllotaxy light 0.51 

phyllotaxy shade 0.55 
 

Table 3-1 Estimated heriability 

This table shows the estimated 

heritability of each trait in light 

and shade treatments for the 

Bay-0 x Shahdara RIL 

population. Heritability above 

0.5 indicates a higher 

proportion of trait variation is 

due to between line variation 

than within line variation, 

suggesting a genetic basis for 

the trait. 
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Figure 3-5 Heteroblasty PCA on Bay-0 x Shahdara population 

Heteroblasty PCs created using a PCA on three leaf shape models for the Bay-0 x Shahdara 

population. Each line was represented using three leaves per plant, the third leaf, median 

node leaf and last leaf. The shape changes captured by these PCs show differences across 

these three leaves. The mean three leaf shape models are shown in the centre of the figure 

with a grey background. The shape changes captured by each PC are shown as +/- 1 

standard deviation for each PC shown either side of the mean shape models. Some of the 

changes in shape are common amongst all three leaves, for example PC3 shows a similar 

change in shape across all three leaves. Others show changes affecting specific leaves, PC2 

shows a change in the relative sizes of each leaf, a lower PC2 score meaning that the last leaf 

is the largest, and a higher PC2 score meaning the median leaf is the largest. The first four 

PCs of the heteroblasty PCA account for 92.73% of the total variation within the dataset.  
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3.2.4 High heritability of leaf shape suggests a genetic basis for this 

trait 

We estimated the heritability of our leaf library PCs within the Bay-0 x Shahdara population 

by comparing between and within line variation. A heritability ratio above 0.5 indicates 

more variation between than within lines. Heritability was not estimated for the 

heteroblasty PCs as these were based on shape models using three mean leaves from each 

line, and so it was not possible to calculate within line variation. However we would expect 

scores for the heteroblasty PCs to be relatively heritable, given that shape changes scored 

for individual leaves appear highly heritable.  

Traits such as days to bolt and leaf number have a high estimated heritability value of above 

0.9, see Table 3-1.This was expected, as much natural genetic variation in flowering time has 

been identified in Arabidopsis, suggesting this trait has a strong genetic basis. We were 

encouraged to find our llpPC2 trait had a heritability value above 0.8 in both treatments. The 

score for our llpPC3 trait was lower, 0.67 in the light treatment and 0.83 in the shade, 

though this still suggested greater variation between than within lines for this trait. 

Heritability was close to 0.5 in scores for traits llpPC1 and llpPC4, indicating as much 

variation for these traits existed within lines as between. This suggests there is no strong 

genetic basis for variation in these traits within the Bay-0 x Shahdara lines. It is likely 

variation in scores for llpPC1 and llpPC4 is the result of stochastic effects on plant growth. 

This is somewhat expected, given the shape variations these PCs describe. llpPC1 and llpPC4 

describe changes in the curvature of the leaf or petiole angle, see Figure 3-6. It is likely 

variation in these traits is due to the position and of individual leaves within the physical 

environment. 

Whilst it is possible that larger between line variation could be the result of methodological 

differences in the storage or generation of seed for each RIL, it is more likely that high 

heritability scores indicate variation for some of our leaf shape traits has a genetic basis in 

this population. 
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Figure 3-6 Leaf library PCs 

The major leaf shape variations 

identified in the leaf library dataset 

with a PCA. Each PC is shown as -1 and 

+1 standard deviation alongside the 

mean leaf for the dataset.  The first 4 

PCs account for 85.44% of the variation 

in the dataset. 

3.2.5 Identifying loci significantly associated to variation in leaf 

shape 

Once leaf shape data was collected, R/qtl and Multiple QTL Mapping (MQM) packages 

(Arends et al., 2010) were used to detect QTLs. A threshold for QTL significance was 

estimated using the mqmpermutation function. This uses the random redistribution of trait 

scores amongst RILs to estimate the likelihood of identifying a QTL by chance. An LOD 

threshold, above which a QTL is considered significant, can be calculated by choosing an 

acceptable probability at which a QTL may occur through chance. We opted to use an LOD 

threshold based on a 1% probability that a QTL would be identified through chance. This 

gave us a LOD score of 2.79, above which any QTLs would be considered significant 

associations of genotype and phenotype.  
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Figure 3-7 QTLs for leaf shape and number traits in the Bay-0 x Shahdara RILs 

The QTL plots are shown for llpPC2; A, for llpPC3; B, and for leaf number; C. Green, blue and 

grey lines indicate the likelihood of a QTL existing across the chromosome, for the light, 

shade and plasticity phenotypes respectively. The red line indicates a LOD score above which 

QTL are considered significant. Vertical dotted lines show the marker intervals estimated to 

contain QTL. The major QTL associated with variation in llpPC2 and llpPC3 and referred to in 

the text are labelled as 1a, 1b, 5a, 5b and 4a.  

 

QTL Peak marker Estimated effect trait 

1a NGA248 0.28 llpPC2 

1b F5I14 0.28 llpPC2 

5a NGA151 0.34 llpPC2 

5b MSAT520037 0.26 llpPC2 

4a MSAT4.39 4 leaves 

  

Table 3-2 QTLs identified 

This table contains information on 

the five QTLs shown in Figure 3-7.  

The marker closest to the QTL peak 

is shown. The estimated effect on 

each trait associated with the QTL is 

shown, calculated as the difference 

in means between RILs grouped by 

genotype at the peak marker for the 

QTL. 
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Figure 3-8 Average llpPC2 score in light and 
shade treatment RILs 

Boxplot shows the difference in llpPC2 score 

between the light and shade treatments for 

the Bay-0 x Shahdara RILs. 

3.2.6 Several QTLs are associated with the average leaf shape score 

for each RIL  

We harvested each rosette leaf from plants grown from each RIL line in the light and shade 

treatments, creating a set of leaf models for the Bay-0 x Shahdara population. We scored 

the shape variation in these leaf models with our leaf library PCs and recorded the size of 

leaves as centroid size. We calculated plasticity between our light and shade treatments for 

each trait using the difference in trait score for each RIL between treatments.  

Using the average score for each RIL, we identified several QTLs for variation in llpPC2 and 

llpPC3 score between the RILs. These can be seen in Figure 3-7 and Table 3-2. Shade 

treatment plants had a higher llpPC2 score than the same RILs grown in the light treatment 

(paired t-test, df=156, p<0.001), see Figure 3-8. In both light and shade treatments we 

identified four QTLs for llpPC2, two on both chromosome 1 and 5. No QTLs were identified 

for plasticity between light and shade treatments. A single large QTL was identified at the 

beginning of chromosome 4 in both light and shade treatments for average llpPC3 score in 

the RILs.  No QTL for plasticity were identified for llpPC3.  

We also mapped QTL for variation in leaf number, identifying a strongly associated QTL at 

the beginning of chromosome 4 in both light and shade treatments, in a similar position to 

the QTL associated with llpPC3 score. A second QTL was identified for leaf number in a 

similar position to one of the llpPC2 score QTL on the first half of chromosome 5. 
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The llpPC3 score of each rosette leaf varies over the leaf series in the Bay-0 and Shahdara 

accessions; leaves at later nodes of the leaf series have a higher llpPC3 score see Figure 3-3 

Difference in llpPC3 between Bay-0 and Shahdara . As a result, although average leaf shape 

score for a RIL describes differences in shape common to each leaf in the leaf series of a 

plant, average score may also be partly determined by the number of leaves grown. We 

thought this observation may explain why a QTL associated with variation in llpPC3 

coincided with the chromosome 4 QTL identified for leaf number variation. 

To examine this we grouped the RILs by genotype at the peak marker for this QTL on 

chromosome 4, and plotted the mean llpPC3 scores for each node of the leaf series, see 

Figure 3-9. In both light and shade treatments, there was no difference in llpPC3 score at 

nodes over the leaf series between the two groups of RILs. This indicated that the difference 

in average llpPC3 score associated with this region was likely to be the result of later 

flowering plants producing more leaves with a higher llpPC3 score.  

 
Figure 3-9 Difference in llpPC3 score between RILs  

The mean llpPC3 score of light treatment grown RILs grouped by genotype at marker 

MSAT4.39 is shown in the left figure and for shade grown RILs in the right figure. There is 

little difference in llpPC3 score across the nodes of the leaf series in both treatments. Black 

circles show Bay-0 genotype, red circles show Shahdara genotype. Error bars show 95% 

confidence intervals. 

3.2.7 Identifying QTLs for heteroblasty variation 

We scored heteroblasty changes between lines by first combining the mean shapes of three 

leaves from set nodes across the leaf series for each RIL. Shape changes between each three 
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leaves shape models were identified with a PCA which captured the major changes in leaf 

shape as heteroblasty PCs (hetPCs), see Figure 3-5. We scored heteroblasty variation for 

each RIL using these hetPCs, and mapped QTL for variation in the Bay-0 x Shahdara RIL 

population for these traits see Figure 3-10. 

Using each of our four heteroblasty PCs, we identified QTL in similar positions to those 

identified for the llpPC2 and leaf number traits we described previously. The regions on 

chromosome 1 and 5 associated with variation in average llpPC2 per RIL were also 

associated with the hetPC3 trait, and other combinations of these QTLs and the 

chromosome 4 QTL for leaf number variation were also associated with the other 

heteroblasty PCs, see Figure 3-10.  

Interestingly we also found a QTL in a region not previously associated with variation in any 

of our leaf shape traits. This region was associated with variation in two of the hetPCs; 

hetPC1 and hetPC3, though LOD score of association was greater for hetPC1. That this 

region was associated for hetPC1 and hetPC3 indicated this QTL may affect leaf size and the 

relative size of the median leaf, and also shape across the leaf series in the Bay-0 x Shahdara 

RILs. 
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Figure 3-10 QTL plots for 
the first four heteroblasty 
PCs 

Figure A shows 

association for hetPC1, 

figure B shows association 

for hetPC2, figure C shows 

association for hetPC3 

and figure D shows 

association for hetPC4. 

LOD score describes the 

strength of association 

and is shown on the Y 

axis. The higher each 

peak, the more strongly 

associated variation in 

that trait is associated to 

the region of the genome. 

A horizontal black line 

indicates LOD score of 

2.79. 
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Figure 3-11 Margin 
morphology variation 

Photo shows some of 

the Bay-0 x Shahdara 

RILs. In the centre is a 

plant with the wavy 

margin trait. The 

leaves of surrounding 

plants have a flat 

margin. 

 

 

Figure 3-12 QTL  for margin 
morphology 

Using the wavy margin phenotype a 

single QTL was identified. QTL plot 

shows the position of this QTL on 

chromosome 2. LOD score is shown on 

the Y axis, and a horizontal black line 

shows a significance threshold of 2.79. 
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3.2.8 Margin morphology varies within the Bay-0 x Shahdara RILs 

When growing the Bay-0 x Shahdara RILs we noticed differences in margin morphology that 

might be segregating within this population. The leaves of some plants had an uneven 

margin, giving the leaf a crumpled aspect. Other plants had contrastingly flat leaves that 

were quite distinct in comparison to those with an uneven margin, see Figure 3-11. To test 

whether this margin morphology variation mapped to QTL, we categorised each RIL for 

these two traits. 130 of the RIL population were categorised as having leaves with either an 

uneven margin, a particularly flat margin, or neither. We treated the presence of an uneven 

margin or a flat margin as separate traits, but found both were associated with a single QTL 

in almost exactly the same position on chromosome 2, with the peak of each QTL around 

17cM, see Figure 3-12 QTL . This suggested variation in both these traits might be controlled 

by the same loci and that the presence of an uneven or flat margin is determined by alleles 

of the same polymorphism. Though the same region was identified as a QTL with variation 

of both uneven and flat margins, the QTL was much more strongly associated using the 

uneven margin trait, with an LOD score of 10, compared to 5.4 for the flat margin trait. This 

suggested the uneven margin trait better described the phenotype of this locus, and so we 

use the uneven margin description in further work on this locus. 

It is worthwhile to note this QTL coincides with the chromosome 2 QTL associated with 

variation in hetPC1 and hetPC3. It may be that these variations in leaf size, shape, and 

margin morphology are the result of the same underlying polymorphism, though this cannot 

be confirmed without identification of the underlying polymorphism. 
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Figure 3-13 QTLs for llpPC2 variation at individual nodes 

The heatplot shows the QTLs detected for the llpPC2 trait when comparing leaves at 

individual nodes. Columns show the QTL LOD scores for llpPC2 trait of leaves 1-9 in either 

shade or light treatments. The vertical position along the column indicates the position on 

each of the five chromosomes which are separated by black horizontal lines. A high LOD 

score, indicating a QTL appears in red. A low LOD score, showing absence of any QTLs 

appears green. 
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3.2.9 Comparing leaf shape at individual nodes of the leaf series 

We had harvested all rosette leaves from each plant to create a leaf shape dataset for the 

Bay-0 x Shahdara RIL population. We were interested to determine whether leaf shape 

differences at individual nodes across the leaf series were controlled by the same loci, or 

whether different loci determined leaf shape at different nodes in the leaf series. We 

compared leaf shape within the Bay-0 x Shahdara population across the first nine rosette 

leaves of each plant in our light and shade treatments, and mapped QTLs for shape 

differences at each node. As this resulted in many individual QTL scans, we presented data 

as a heat plot, see Figure 3-13. A red region on the heatplot corresponds to a high LOD 

score, and indicates presence of a QTL. We found regions associated with shape variation at 

nodes across the leaf series on chromosome 1 and 5. These associations were in similar 

positions to the four QTLs across chromosome 1 and 5 that were associated with variation in 

the hetPCs and average llpPC2 score per RIL. Interestingly, there is a difference in node 

specific QTLs between light and shade treatment plants. For variation in llpPC2 for leaves at 

nodes four to nine in the light treatment, there is a strongly associated QTL on chromosome 

4, in a similar position to the QTL on chromosome 4 associated with leaf number previously. 

Although a similar region is also associated in shade treatment plants, the strength of 

association is much weaker, see Figure 3-13.  

To investigate further we plotted the llpPC2 score across the leaf series for the Bay-0 x 

Shahdara RILs, grouping the plants by genotype at the peak marker of this chromosome 4 

QTL for light and shade treatments, see Figure 3-14. There was a considerable difference in 

llpPC2 score between the genotypes in the light treatment. Plants of a genotype associated 

with growing fewer leaves also had a lower llpPC2 score when comparing shape at nodes 

three and later. In the shade treatment plants, there appeared to be a similar, but reduced 

effect. 
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Figure 3-14 llpPC2 score between RILs grouped by genotype at a QTL  

This figure shows the llpPC2 score across the leaf series for RILs grouped by genotype at 

marker MSAT4.39. The Shahdara genotype plants are shown as red circles, and Bay-0 

genotype plants as black circles. This marker is at the peak of a leaf number QTL on 

chromosome 4. A clear difference in llpPC2 can be seen across the leaf series in the light 

grown plants, shown in the left graph. In shade grown plants, shown in right graph, there is 

no difference in leaf shape between plants grouped by MSAT4.39 genotype. Error bars show 

95% confidence intervals. 

3.2.10 Differences in leaf shape and number between light and 

shade conditions 

We had grown the Bay-0 x Shahdara RIL population in light and shade treatments. A QTL on 

chromosome 4, associated with variation in llpPC2 score across the leaf series, had a 

stronger effect on llpPC2 in the light treatment compared to the shade treatment. 

 To investigate the effect of our treatments on plant growth, we compared trait values for 

RILs between treatments using paired t tests. Interestingly despite a significant difference in 

the number of days until bolting between light and shade treatments, see Figure 3-16, there 

was no difference in leaf number between RILs in the light and shade treatments. This 

meant plants grown in the light treatment typically bolted earlier, but grew the same 

number of leaves as those in the shade treatment, see Figure 3-15. We found a significant 

difference in llpPC2 score between RILs grown in light and shade conditions. When grown in 

shade, RILs  had a significantly higher llpPC2 score than when grown in light, with a mean 

difference of roughly 0.7 llpPC2.  
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Figure 3-15 Relationship between 
leaf number and days to bolt 

 Figure shows the leaf number of each 

plant in the shade and light 

treatments, against the number of 

days until each plant bolted. The lines 

show a linear line of best fit for each 

treatment, with an r2 value of 0.90 

and 0.84 for the light and shade 

treatments respectively. In both 

cases, each treatment grows more 

leaves the longer the time till a plant 

bolts. However for shade grown 

plants, fewer leaves are grown per 

day before bolting. 

 

 

Figure 3-16 Days to bolt in Bay-0 Shahdara RILs 
between growth experiments 

Difference in days to bolt for the Bay-0 x 

Shahdara population between the preliminary 

growth experiment, and the light and shade 

conditions of the main growth experiment 

discussed in this chapter. Paired t-tests identified 

significant differences (p<0.001) when 

comparing RILs grown in light and shade 

conditions. The mean difference between RILs 

grown in these two conditions was 1.67 days to 

bolt less in light conditions. 

3.2.11 Leaf shape analysis of the Bay-0 x Shahdara RIL 

population identifies several QTL 

We had scored the Bay-0 x Shahdara RILs for our leaf library and heteroblasty PCs, and 

identified several QTL for these traits. We found six QTL controlling leaf shape, size and 

number across chromosomes 1, 2, 4 and 5. There was little difference between QTL 
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associated with these traits between the light and shade treatments, and we did not identify 

any QTL for plasticity of these traits between treatments. However, a region at the start of 

chromosome 4 contained QTL for both leaf number and node by node llpPC2 score, and the 

effect of genotype at this region on node by node llpPC2 score was considerably stronger in 

light grown plants than for those grown in shade. We also found that similar QTL were 

associated with shape variation across the leaf series. We next aimed to investigate further 

and confirm the effects of the QTL we identified on leaf shape traits.  

3.2.12 Epistatic interactions between leaf shape QTL 

We tested for the presence of epistatic interactions between the QTL we had identified. 

Epistasis occurs where the effect of a QTL is dependent on the genotype at a region outside 

the QTL. As well as suggesting a mechanism linking the causative polymorphisms of the two 

QTLs, it is also useful to know whether there is an epistatic effect between markers before 

investigating a QTL further with  near isogenic lines (NILs). If a NIL is created to examine the 

effect of a small region of the genome, and other regions in epistasis are not fixed to a 

facilitating allele, the QTL effect cannot be detected within the NILs. 

We tested for interaction between the four QTLs on chromosome 1 and 5 associated with 

variation in average llpPC2 score, see Figure 3-7 and Table 3-2. RILs were grouped by 

genotype at the peak markers for two QTL in turn and examined for an interaction between 

the markers, using the effectplot function in R/qtl.  

After testing for epistasis across all combinations of our llpPC2 QTL, we found a mild 

epistatic effect of QTL5a, around 5Mb on chromosome 5, on QTL1a, around 10Mb on 

chromosome 1, see Figure 3-17. Genotype at QTL1a only has an effect on llpPC2 score when 

the peak marker for QTL5a, NGA151, has a Bay-0 genotype. We found this epistatic effect 

was only present in light grown plants, see Figure 3-17. 
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Figure 3-17 Epistatic relationship between QTL 1a and QTL 5a 

Plots showing epistatic effect between QTL 1a and 5a. This effect is only present in the light 

treatment, shown in the left graph. Genotype at peak markers for QTL1a and 5a, NGA248 

and NGA151 respectively, are used to group the plants. In the light treatment, shown left, a 

difference in genotype at marker NGA248 only affects the llpPC2 score of the plants when 

marker NGA151 is the Shahdara genotype. This does not appear to be the case in the shade 

treatment RILs, shown right. Error bars show standard error.  
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3.2.13 Confirming effect of QTLs and defining causative region 

with HIFs 

We used a Heterozygous Inbred Family (HIF) approach to test for the effect of QTL regions 

associated with variation in leaf shape traits between Near Isogenic Lines (NILs). HIFs are 

created from a RIL with a region of remnant heterozygousity (Tuinstra et al., 1997). This 

region is then fixed for either parent allele by self fertilisation to create lines that are 

genetically identical outside of this region. A set of these NILs, differing in genotype at one 

region, is referred to as a HIF, and can be used to examine the trait effect of genotypic 

variation at a specific region. Identifying a predicted QTL effect within a HIF for a region 

allows defined limits to be established for the QTL, using the known variant region between 

the NILs in a HIF. Multiple HIFs can be used to narrow the causative region for a QTL, for 

example if a QTL effect found within two HIFs for which the variant region overlaps, the 

polymorphism must lie within the overlap, and so the causative region for the QTL effect can 

be narrowed to the region of overlap. 

We obtained HIFs from The French National Institute for Agricultural Research, (INRA), 

which covered the regions of the five QTLs we identified across chromosome 1, 2 and 5, see 

Figure 3-19. We grew these HIFs in our standard greenhouse conditions, referred to as the 

light treatment when growing the 165 Bay-0 x Shahdara RILs. The leaves of each plant grown 

per HIF were harvested once the plant had bolted and leaf shape was scored with our leaf 

library PCs. At least ten plants per HIF genotype were analysed for leaf shape. To increase 

the likelihood we were identifying the same variant regions for the initial QTL, any leaf shape 

effect identified within a HIF was compared to the direction of effect of each parent allele in 

the initial QTL.  
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Figure 3-18 Differences in llpPC2 within HIFs 

HIFs covering each llpPC2 QTL were analysed for differences in leaf shape. Each plot shows 

the mean llpPC2 score for plants grouped by their genotype at the variant region within the 

HIF. The mean score at each node for plants with a Bay-0 allele is shown as black squares 

and the mean for those with a Shahdara allele are shown by red triangles. Error bars show 

95% confidence intervals.  
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Figure 3-19 Genetically varying regions within HIFs 

This figure shows the variant regions within HIFs used for validating each QTL. The white 

regions of the chromosome represent the area in which each does not differ within a HIF. 

The shaded regions show the region which varying in genotype within each HIF.  The 

estimated position of each QTL is indicated against the relevant HIF genotypes by a vertical 

black line. Leaf shape effects were identified within HIF074, HIF107 and HIF350. 
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3.2.13.1 A similar leaf shape effect for QTL1a is identified within HIF074 

QTL1a is a region of chromosome 1 centred around 10Mb associated with variation in 

average llpPC2 score across the RILs. The effect of this QTL is dependent on the genotype of 

an epistatic QTL, QTL5a at marker NGA151. Of the two HIFs obtained to confirm the effect of 

QTL1a, HIF074 and HIF071, HIF074 had the Shahdara genotype at NGA151 and HIF071 had 

the Bay genotype. There was an llpPC2 effect found within HIF074; lines with a Bay-0 allele 

had a higher llpPC2 score as predicted for this region in the Bay-0 x Shahdara RIL population, 

see Figure 3-18 and Figure 3-20. This confirmed the QTL1a effect, and defined the loci as 

within roughly 8 to 16Mb on chromosome 1. HIF074 also had an effect on leaf number, lines 

with the Bay genotype at this region had significantly more leaves (Wilcox test, W = 164, p < 

0.025). HIF071 has a Bay-0 genotype at NGA151. As such, although no effect similar to 

QTL1a was found within this HIF, we could not use HIF071 to inform us further about the 

location of QTL1a without also phenotyping this HIF in shade conditions, as a Bay-0 allele for 

the epistatic QTL at marker NGA151 is predicted to negate the effect of this QTL in light 

treatment conditions.  
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Figure 3-20 llpPC2 effect of QTLs across RILs 

This figure shows the effect of each of the QTLs associated with variation in mean llpPC2 

score per line. The Bay-0 x Shahdara population was grouped by genotype at the peak 

marker for each QTL to create the plots, using plants grown in both light and shade 

treatments. The mean llpPC2 score across the leaf series is plotted. The mean for plants with 

a Bay-0 genotype at the peak marker of the QTL are shown as black squares, and the mean 

for plants with a Shahdara genotype are shown as red triangles. Error bars show 95% 

confidence intervals. 
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3.2.13.2 The variant region in HIF107 has a leaf shape effect similar to QTL1b  

For QTL1b, a QTL associated with variation in average llpPC2 score in the RILs on 

chromosome 1 centred at 24Mb, We obtained three HIFs; HIF068, HIF107 and HIF280. We 

measured the leaf shape within thesis HIFs and found that llpPC2 score varied between 

plants with different alleles at the variant region within HIF107, suggesting the causative 

region for QTL1b lies within the variant region of HIF107, but not HIF068 or HIF280. HIF107 

also had an effect on leaf number; lines with the Shahdara genotype at this region had 

significantly more leaves (Wilcox test, W = 10.5, p < 0.001). 

3.2.13.3 The effect of QTL5a is not observed within HIF213, HIF214 or HIF216 

We measured leaf shape in HIF213, HIF216 and HIF214, however, there was no effect on 

llpPC2 score similar to that for QTL5a, a QTL on chromosome 5 centred at 5Mb, and 

associated with average llpPC2 score variation in the RILs. 

3.2.13.4 The effect of QTL5a is identified within HIF350 

We obtained HIF350, which contained a variant region over QTL5b, a QTL on chromosome 5 

centred at 17Mb. We found that genotype at the variant region within HIF350 was 

associated with a difference in leaf shape similar to the QTL5b effect. HIF350 also varied in 

leaf number, lines with the Bay genotype at this region had significantly more leaves (Wilcox 

test, W = 92.5, p < 0.03).  

3.2.14 HIF102 and HIF118 vary for leaf size and margin 

morphology 

Two HIFs, HIF102 and HIF118 were used to investigate the margin morphology QTL we 

identified on chromosome 2, centred at 5Mb. The region of this QTL was also associated 

with variation in leaf size identified with the hetPCs, see Figure 3-10. 

Leaf size and margin morphology clearly differed with each allele at the variant region of 

both HIFs, see figures Figure 3-21, Figure 3-22, Figure 3-23 and Figure 3-24. As such the 

causative region is likely to be within the overlapping region between these HIFs, between 

MSAT200897 and IND628, see Figure 3-25. 

 The markers used to genotype the variant regions in each HIF at INRA are quite broadly 

spaced along the chromosome, see Figure 3-25. We hoped to narrow the potential causative 
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region for this QTL by genotyping this region with more markers, to identify the limits of 

each variant region in HIF118 and HIF102, see Figure 3-25. 

We were unable the narrow the variant region of HIF102 further, as each additional marker 

we used within the annotated variant region for this HIF confirmed the region to vary 

between the NILs of the HIF. We found that NILs within HIF118 did not vary at the MSAT2.26 

additional marker however, and so were able to identify a new border for the known variant 

region in this HIF, see Figure 3-25. The overlap of the newly defined variant region in HIF118, 

and that in HIF102 allowed us to identify a 4.33Mb region likely causative for the margin 

morphology and leaf size effects shared between these HIFs, between markers MSAT2.26 

and IND628 on chromosome 2. 
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Figure 3-21 HIF118 plants 

Line 118-12 has the Bay-0 allele at the variant region for this HIF, and smaller leaves with a 

wavy margin. Line 118-13 has the Shahdara allele at the variant region within this HIF, and 

has larger leaves with a flatter margin. 

 

Figure 3-22 HIF102 plants 

Line 102-10 has the Bay-0 allele at the variant region for this HIF, and smaller leaves with a 

wavy margin. Line 102-14 has the Shahdara allele at the variant region within this HIF, and 

has larger leaves with a flatter margin. 
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Figure 3-23 Difference in leaf size 
between HIF118 plants 

The mean centroid size for HIF118-12 

and HIF118-13 is plotted. HIF118-12 

has a Bay-0 allele at the variant region 

in this HIF, and values for this line are 

plotted as black squares. HIF118-13 

has a Shahdara allele at the variant 

region, and values are plotted as red 

triangles. For each line, 10 plants were 

harvested. 

 

 

Figure 3-24 Difference between 
HIF102 plants 

The mean centroid size for HIF102-10 

and HIF102-14 is plotted. HIF102-10 

has a Bay-0 allele at the variant region 

in this HIF, and values for this line are 

plotted as black squares. HIF102-14 

has a Shahdara allele at the variant 

region, and values are plotted as red 

triangles. For each line, 10 plants were 

harvested. 
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Figure 3-25 Genotype of HIF102 and 
HIF118 at margin morphology QTL 

This figure shows the genotype of HIF102 

and HIF118. The markers used in the 

creation of these HIFs at INRA are shown 

in black. The markers used to further 

define the varying regions of these HIFs 

in our work are shown in green.  The 

white areas of the chromosome 

represent regions which do not vary in 

genotype amongst either HIF. The 

hatched areas show the regions initially 

known to be varying within the HIFs. The 

densely hatched regions are the variant 

regions defined after using more markers 

at the region. The lightly hatched region 

was determined not to vary within 

HIF118 after we had increased marker 

density over this region. 

3.2.15 Variation in life history and silique number in HIF102 

and HIF118 

We used HIF118 and HIF102, containing the causative region for a margin morphology and 

leaf size QTL to further investigate potentially pleiotropic effects on other aspects of plant 

growth. As the segregating phenotype within HIF118 and HIF102 has a considerable effect 

on leaf size, see Figure 3-23 and Figure 3-24, we wondered if this impacted the growth or life 

history of the plant. To explore this possibility we recorded days to bolt, silique number and 

length, and leaf number between the HIFs. There was no significant difference in days until 

bolting, within either HIF102 or HIF118, see Figure 3-27. Leaf number did not vary 

significantly within HIF102 or HIF118 either. Silique length did not vary significantly within 

HIF118, however, in HIF102, plants of NILs with the Shahdara allele produced more siliques 

per plant than those with the Bay-0 allele (Kruskal-Wallis, df=1, chi^2=5.2851, p<0.025), see 

Figure 3-26. There was no significant difference in silique number within HIF118, see Figure 

3-26 .  
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Figure 3-26 Difference in silique number 
within HIF102 and HIF118 

Y axis shows the number of siliques whilst 

the X axis shows the HIF and genotype. 

Between genotypes of HIF102 there is a 

difference in silique number. Silique 

number does not differ between 

genotypes in HIF118. 

 

Figure 3-27 Difference in days to bolt 
within HIF102 and HIF118 

Y axis shows the number of days before 

bolting whilst the x axis shows the HIF and 

genotype. There was no difference within 

HIF102 or HIF118 in number of days before 

bolting. 
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Figure 3-28 Epidermal cell area between 
HIFs 

Graph shows the epidermal cell area in 

µm2 per HIF line. There is no significant 

difference in cell area within either HIF, 

although within both HIFs, the Shahdara 

allele appears to confer a higher upper 

range and median of cell areas. 

3.2.16 Variation in epidermal cell size and shape in HIF118 

and HIF102 

We tested whether the difference in leaf shape identified within HIF118 and HIF102 

coincided with a difference in abaxial epidermal cell size and shape. For HIF118 we 

measured the size of epidermal cells of the median node leaf from 9 to 10 plants of 11812 

and 11813. For HIF102 we measured epidermal cells from the fourth leaf of 8 plants of lines 

10210 and 10214. Cells were measured from four positions on the abaxial side of the leaf 

and on average 43 cells were measured from each leaf. There was a similar trend for larger 

cell size in plants with a Shahdara allele at the variant region in both HIF102 and HIF118 

plants, however the difference in cell size was not significant in either HIF, see Figure 3-28. 

This suggests that epidermal cell number, rather than cell size is largely responsible for the 

difference in leaf area observed within HIF102 and HIF118. 

As a measure of cell shape, we tested perimeter, solidity, circularity and aspect ratio of the 

cells within the HIFs, see Figure 3-29 and Figure 3-30. Solidity, the amount of area of the 

convex hull of a shape the shape itself occupies, differed between the HIFs (HIF102; Kruskal 

Wallis-Χ2=6.6, df=1, p<0.015, HIF118; Kruskal-Wallis-Χ2=4.3, df=1, p<0.04). Circularity, a 

measure of shape similarity to a circle, also differed between the parent alleles in both HIFs 

(HIF102; Kruskal-Wallis X2=6.1, df=1, p<0.015, HIF118; Kruskal-Wallis X2=11.8, df=1, 

p<0.001). This suggests there is a difference in the shape of the abaxial epidermal cells 

between Bay-0 and Shahdara alleles of the variant regions in HIF102 and HIF118.  
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Figure 3-29 Shape differences between 
HIF abaxial cells 

This graph shows the values for the 

solidity of abaxial epidermal cells 

between the HIFs. Within each HIF, the 

line with the Bay-0 allele, 10210 or 

11812, has a significantly higher solidity 

value than the line with the Shahdara 

allele. Solidity is the proportion of a 

convex hull for a shape that shape takes 

up. 

 

 

Figure 3-30 Shape differences between 
HIF abaxial cells 

This figure shows the circularity values for 

each HIF. Within each HIF, the line with a 

Bay-0 allele in the HIF variant region, 118-

12 or 10210, is associated with a higher 

circularity value. Circularity is calculated as 

4π*area/perimeter2. The higher the 

circularity value, the closer the shape is to 

a circle. 

3.2.17 Network analysis to narrow list of candidate genes in 

the variant region between HIF102 and HIF118 

The causative region for the margin morphology QTL was narrowed to 4.33Mb using the 

overlap of HIF102 and HIF118 and additional markers. This region contains 1069 gene 

models in TAIR9. A network analysis has been previously used in work on the Bay-0 x 

Shahdara population to identify a candidate gene for the shade avoidance response 

(Jiménez-Gómez et al., 2010). These authors identified and then experimentally validated a 
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candidate gene, ELF3, from a list of 363 genes within their causative region. As the number 

of genes within our 4.33Mb region was too large to work through using solely the published 

research on gene function in the literature to choose candidate genes, we opted to apply a 

network analysis to narrow our list of candidates. 

Following the methods of (Jiménez-Gómez et al., 2010), the network analysis filters gene 

lists and links candidates in networks based on gene expression and regulation. Each gene 

within the 4.33Mb region was first connected to coexpressed genes, identified with the 

ATTED-JP dataset (Obayashi et al., 2009). Then these coexpressed genes were filtered so 

that only coexpressed genes with an expression QTL (eQTL) in the region of the networked 

candidate gene were left. This was done using gene expression data for the Bay-0 x 

Shahdara population (West et al., 2006, 2007). As well as the size of networks, Gene 

Ontology (GO) terms (Berardini et al., 2004) were used to identify networks made up of 

similarly functioning genes, more likely to be meaningful associations. 

When collating coexpressed genes from the ATTEDJP dataset, we found coexpression data 

was available for only 292 of the 1069 candidate genes within the 4.33Mb region. This may 

be due to the position on chromosome 2 of this causative region, which contains part of the 

centromere. Centromeric regions often contain a high proportion of transposons and genes 

are typically repressed in expression (Copenhaver et al., 1999; Fransz et al., 2000). We were 

unsure as to whether the missing data was a result of biological reasons relating to the 

nearby centromere or due to genes in this region being excluded from microarray design. 

We proceeded with the network analysis and identified 10 genes with 8 or more direct 

network connections. These can be seen in Figure 3-31 and Table 3-3. 

To test for possible effects on margin morphology and leaf size in these candidate genes, we 

obtained SALK T-DNA lines annotated with a T-DNA insertion in these genes.  We grew 

plants for these lines in our standard greenhouse conditions, alongside the Col-0 

background, and the HIF102 and HIF118 lines. We compared plants of the T-DNA lines to the 

Col-0 background, looking for an effect on margin morphology and leaf size similar to that 

observed within the HIF102 and HIF118 lines. However, no similar effect was observed 

within the 6 plants grown for each of the T-DNA lines during the plants development or at 

bolting, by which point the difference in leaf morphology and size was clear between HIF102 

and HIF118 lines grown alongside these plants.  
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Figure 3-31 Example of network analysis results 

An example of networks created in order to narrow the list of candidate genes from the 

wrinkled leaf causative region. Each candidate gene is connected to coexpressed genes that 

have an eQTL within the region of the candidate gene. A red connecting edge indicates at 

least one shared gene ontology term, a blue edge indicates none.  

 

Gene  Edges  Shared GO terms  T-DNA lines scored  

At2g10940 34 yes 1 

At2g10950 25 yes 1 

At2g10740 24 no 0 

At2g11520 20 yes 2 

At2g12550 13 no 2 

At2g11910 12 yes 1 

At2g10340 9 yes 1 

At2g12400 9 yes 3 

At2g11810 8 yes 2 

At2g07690 8 yes 1 

Table 3-3 Candidate genes identified with network analysis 

This table shows a list of all candidate genes directly connected to 8 or more other genes in 

the network analysis, and the number of T-DNA lines scored for these genes  
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3.2.18 A polymorphism in At5g43630 may be responsible for 

llpPC2 variation in the Bay-0 x Shahdara RILs 

QTL5b, centred around 18Mb on chromosome 5 and associated with variation in average 

llpPC2 amongst the RILs, lies within a similar region to a QTL detected for hypocotyl length 

variation in the literature (Loudet et al., 2008). These authors measured hypocotyl variation 

in the Bay-0 x Shahdara RIL population across light and temperature treatments  (Loudet et 

al., 2008). Using HIF and fine mapping approaches, they mapped a QTL associated with 

hypocotyl variation on chromosome 5 to a 17.545–17.552Mb interval, containing one 

complete gene and portions of two others. The authors used transgenic lines to investigate 

the effects of the Bay-0 and Shahdara alleles of these three genes and noted that lines 

overexpressing the Shahdara allele of At5g43630 in a background with the Bay-0 allele had 

longer hypocotyls than in the untransformed background (Loudet et al., 2008). They also 

noted that ‘All linearly elongating organs were more extended, including petioles, 

internodes, and pedoncules and the main floral stem’ (Loudet et al., 2008). They did not find 

any effect on hypocotyl length in transgenic lines expressing the other two candidate genes 

from the interval, indicating At5g43630 as the likely candidate gene for their chromosome 5 

hypocotyl length QTL. 

We wondered if the variant region identified by Loudet et al., (2008) was also responsible 

for llpPC2 associated QTL we identified in the same region. To test this, we obtained seeds 

for the fine mapped rHIF lines created by Loudet et al., (2008), rHIF47, containing either a 

Bay-0 or Shahdara allele at the 17.545Mb – 17.552Mb interval, but identical across the rest 

of the genome. 

We grew plants for this rHIF line alongside plants of HIF350. This HIF had a variant genotype 

at the chromosome 5 llpPC2 QTL centred at 18Mb and showed a similar difference in llpPC2 

to the initial QTL, and so we wondered if there would be a similar difference in leaf shape 

between plants of the rHIF as in HIF350.  We measured the shape of each rosette leaf of 

these plants after harvesting at bolting and found the rHIF47 plants varied in leaf shape in a 

very similar way to HIF350, see Figure 3-33. In both HIF350 and rHIF74, the Shahdara allele 

results have a higher llpPC2 score compared to the line with a Bay-0 allele. This suggested 

the 17.545Mb - 17.552Mb interval contained the causative polymorphism for the QTL we 

found associated with llpPC2 variation at this region. Given the work of (Loudet et al., 2008) 

on the At5g43630 gene, we thought it very likely that a polymorphism in this gene was also 

responsible for association of variation in llpPC2 to this region in our work. 
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We further explored the relationship of hypocotyl length and leaf shape in the Bay-0 x 

Shahdara population by obtaining the hypocotyl phenotype data from the supplementary 

materials of (Loudet et al., 2008), and testing for correlations with llpPC2. We found there 

was a significant correlation between hypocotyl length published by these authors and the 

llpPC2 trait, see Figure 3-32. 

We wondered if other QTLs we had found associated with variation in leaf shape traits were 

also associated with hypocotyl variation, and so tested for QTLs using the hypocotyl data of 

Loudet et al., (2008). We also created a new trait, using the residuals from the correlation of 

llpPC2 and hypocotyl length. This trait corresponds to variation in llpPC2 score not explained 

by a linear model with hypocotyl length. Comparing the QTLs from these two traits, see 

Figure 3-34, showed that QTL1a, centred at 9Mb on chromosome 1 also appeared to be 

associated with hypocotyl length variation. Using the residual llpPC2 to map QTLs identified 

associations with similar regions to QTL1b and QTL5a, on chromosome 1 and 5, centred at 

24Mb and 5Mb respectively. This indicated QTL1b and QTL5a in our work were probably not 

also associated with hypocotyl length variation as phenotyped by Loudet et al., (2008).  

 

Figure 3-32 Corrrelation of llpPC2 and 
hypocotyl data 

This figure shows the relationship 

between the leaf shape trait llpPC2, and 

the Loudet et al., (2008) hypocotyl data. 

There is a positive correlation between 

the traits. A line of best fit has been 

plotted, showing a linear model of the 

relationship between these traits, with 

an r2 value of 0.29. Residual llpPC2 scores 

were calculated using this model.  
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Figure 3-33 Difference in llpPC2 score between HIF350 and rHIF47 

This figure shows the mean llpPC2 across the leaf series scores for rHIF47 and HIF350 lines 

shown on the left and right graphs respectively. In both HIFs the Shahdara allele lines, 

shown in red, have a higher llpPC2 score than the Bay-0 allele lines, shown in black. Error 

bars show 95% confidence intervals. 

 

 

Figure 3-34 Coincidence of QTLs for llpPC2 and hypocotyl traits 

QTL plot showing QTLs for the Loudet et al., (2008) hypocotyl data in black, alongside the 

QTLs for our llpPC2 phenotype in light conditions, shown in green. The blue dashed line 

shows the residuals from the correlation of light treatment llpPC2 and hypocotyl length. 
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3.3 Conclusions 

3.3.1 Multiple QTLs detected for leaf shape traits within the Bay-0 x 

Shahdara RIL population 

We detected five QTL for variation in average llpPC2 score amongst the Bay-0 x Shahdara 

RILs. QTLs were on chromosome 1, 4 and 5. That we detected several QTL of small to 

medium effect is consistent with leaf shape variation as a quantitative trait. As expected by 

the relatively similar leaf shape of the Bay-0 and Shahdara parent accessions, the direction 

of effect on llpPC2 score amongst these five QTLs varied for each parent allele. A Bay-0 

genotype at two of the five QTLs increased llpPC2 score, as did a Shahdara genotype for the 

other three QTL. The chromosome 4 QTL for llpPC2 variation coincided with another for leaf 

number variation. We also detected a chromosome 2 QTL affecting leaf size and margin 

morphology. Variation for the margin morphology trait appeared to be controlled by a single 

locus in the Bay-0 x Shahdara population, as only one QTL of large effect was identified.  

3.3.2 Some QTL effects are confirmed with a HIF approach 

We used a HIF approach to try to confirm the effect of the QTLs associated with leaf shape 

traits, and identified similar effects within HIFs for four of the five QTLs. However, for QTL5a, 

a chromosome 5 QTL centred around 5Mb associated with variation in average llpPC2 score, 

no similar effect could be identified within a HIF. There are several possible explanations for 

this. One is that this QTL was sensitive to small differences in greenhouse conditions 

between experiments, and so was not detectable during the HIF growth experiments. The 

specific genetic background of the HIFs used to try and confirm this QTL might also have 

obscured the effect of the QTL. There is also a small QTL at this region associated with the 

leaf number and days to bolt traits amongst the light condition grown RILs. We detected a 

leaf number difference within one of the HIFs at this region; HIF214. There was also a small 

difference in leaf shape identified for HIF214, however, the effect on llpPC2 in this HIF was 

dissimilar to that for the QTL5a in the Bay-0 x Shahdara RILs. It may be we were unable to 

detect a similar leaf shape effect to QTL5a within HIFs for this region due to a confounding 

effect on leaf number within this region. 
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3.3.3 No QTLs were identified for leaf shape response to shade 

conditions 

We grew the Bay-0 x Shahdara RILs in a light treatment and a shade treatment. By doing this 

we intended to identify QTL involved in trait plasticity between the two treatments. 

Although we identified an effect of this treatment on the leaf shape of the plants, there did 

not appear to be genetic variation in the extent of this effect on leaf shape between the 

RILS, and so we were unable to map QTLs for plasticity.  

This was somewhat surprising as studies of the shade response in hypocotyls and petioles 

had identified QTLs within the Bay-0 x Shahdara RILs (Jiménez-Gómez et al., 2010). A key 

difference in methodology may explain why we did not find the similar plasticity QTLs to 

these authors. In their work, Jiménez-Gómez et al., (2010) used white light supplemented 

with far red light as a shade treatment. They kept photosynthetically active radiation (PAR) 

constant across simulated shade and sun treatments, altering red to far red ratio using 

supplementary far red light. A decrease in the red to far red ratio, even under non shade 

levels of PAR can activate a specific type of shade response phenotype in plants (Morgan 

and Smith, 1976). The shade treatment in our work on the Bay-0 x Shahdara RILs was 

created by growing plants underneath white muslin cloth. The effect of this treatment on 

light would be most likely a decrease in PAR, with relatively little alteration of wavelength 

ratios. Response to changes in levels of PAR can be separate from the response to change in 

red to far red ratio, which is monitored by phytochrome states within the plant (Smith and 

Whitelam, 1997). This potentially explains why we did not detect a QTL for plasticity 

between treatments in a similar region to (Jiménez-Gómez et al., 2010). 

Changes in red to far red ratio are associated with the presence of overshadowing 

neighbouring plants (Schmitt, 1997). It is interesting that the Bay-0 x Shahdara population 

varies in response to red to far red ratio, but not to a general reduction in PAR. It could be 

that these two Arabidopsis accessions are differently adapted in tolerance of plant 

neighbour shading, resulting in variation in response to red:far red ratios. PAR may not vary 

consistently between the native environments of the Bay-0 and Shahdara accessions. The 

absence of QTLs for this trait suggests that not only do the Bay-0 and Shahdara accessions 

respond similarly to a decrease in PAR, but that there is no variation between the parents at 

the individual loci controlling this response. There is some evidence supporting this lack of 

variation in response to changes in PAR in this population. (Loudet et al., 2008) found when 

measuring hypocotyl length at 10 µmol/m-2s-1 and 17 µmol/m-2s-1, that although hypocotyl 
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length amongst the Bay-0 x Shahdara RILs changed between treatments, the extent of this 

difference did not vary significantly amongst the RILs (Loudet et al., 2008). 

3.3.4 Light condition may affect the effect size and interaction 

between leaf shape QTL 

Although we did not identify any QTL for plasticity in our leaf shape traits between our light 

and shade treatments, we found that in some cases light treatment altered the effect size or 

interaction of our QTLs. The chromosome 4 QTL associated with leaf number and llpPC2 had 

a much stronger effect on llpPC2 score in light treatment than in shade, and an epistatic 

interaction between QTL1a and QTL5a was only present in light grown plants. 

One possible explanation for the larger effect of the chromosome 4 QTL on llpPC2 score in 

light conditions is that the difference in llpPC2 score associated with this region is a result of 

leaf number variation also linked to this locus. Plants with a Shahdara allele at this locus 

have more leaves and, in the light treatment, a higher llpPC2 score at each node than plants 

with a Bay-0 allele. As plants responding to shade conditions typically have a higher llpPC2 

score, we wondered if the increased number of leaves within the rosette for Shahdara allele 

plants led to greater shading within the rosette, causing a higher llpPC2 score. This effect is 

then perhaps much reduced in shade conditions, where plants are already responding to a 

high level of shade regardless of leaf density within the rosette. It is possible the light 

treatment specific epistatic interaction between QTL1a and QTL5a is the result of a similar 

effect, as the region containing the llpPC2 associate QTL5a is also associated with a small 

leaf number QTL. Work in the literature has identified leaf morphology effects of a gene 

associated with differences in leaf number in Cardamine Hirsuta (Cartolano et al., 2015) and 

a tomato species (Shalit et al., 2009), however as these studies did not examine these 

effects across light and shade conditions it is unclear how similar such effects may be to the 

coinciding llpPC2 and leaf number QTLs we identified in the Bay-0 x Shahdara population. 

3.3.5 Major trends in leaf size variation involve relative changes 

across the leaf series 

To identify changes in shape across the leaf series, we used the mean third, median node 

and last leaf of each line to build a three leaf shape model for each RIL. The median node 

and last leaf were chosen as these are set positions in the leaf series common to every plant 

grown. The third leaf was chosen rather than the first or second to represent shape early in 

the leaf series as the first two leaves of Arabidopsis typically appear somewhat distinct in 



89 
 

shape and size from the rest of the leaf series. The first two leaves also grow 180 degrees 

from one another, indicating a different pattern of phyllotaxy more similar to cotyledons 

than the majority of rosette leaves. The third leaf in Arabidopsis grows at an angle closer to 

the average 137.5 degrees of Arabidopsis spiral phyllotaxy, and also appears more similar in 

shape and size to the other leaves within the leaf series. Using this approach we created a 

set of hetPCs to score heteroblastic variation in the Bay-0 x Shahdara RILs. We found QTLs in 

regions previously associated with variation in llpPC2 score were also associated with 

heteroblasty PCs. We also found a QTL region on chromosome 2 associated with hetPC1 and 

hetPC3 traits, which describe variation in size and shape. 

There is previous work on genetic mapping of heteroblastic leaf shape changes (Costa et al., 

2012). These authors mapped differences in heteroblasty in Antirrhinum. In contrast to 

Arabidopsis, Antirrhinum grows the majority of its leaves along a central stem which later 

becomes the inflorescence. Although this is a distinct system to the rosette leaves of 

Arabidopsis, their work provides an interesting comparison. Costa et al., (2012) show in their 

PCA on Antirrhinum heteroblasty shape changes that the PC explaining the largest amount 

of co-ordinate variation is one controlling size, similar to our results. Interestingly, the 

changes in size across their leaf series captured in their PC1 vary, so that some leaves 

change in size more than others. This is very similar to our hetPC1, perhaps suggesting that 

increases in leaf size are generally coupled with relative differences in size in the leaf series, 

or that after a point, a minimum size constraint is reached for leaves, and so relative 

differences in size are lost in lines within plants with small leaves. 

3.3.6 Identification and characterisation of a margin morphology 

QTL 

We identified a leaf margin morphology phenotype segregating within the Bay-0 x Shahdara 

RILs and were able to identify a single large QTL responsible for variation in this phenotype. 

The QTL associated with margin morphology provided an interesting comparison to those 

associated with variation in the llpPC2 trait. In comparison to quantitative traits such as 

llpPC2, which was associated with multiple loci of small to medium effect, the leaf margin 

morphology trait was associated with one large distinct peak, suggesting a single 

polymorphism was responsible for variation in this trait. 

We used HIFs to confirm the effect of this margin morphology QTL. Although both HIFs 

showed a similar difference in leaf size and margin morphology to the QTL in the Bay-0 x 

Shahdara RILs, the difference in leaf size was clearer within HIF118 than HIF102, likely due to 
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the different genetic background of either HIF.  Given that this QTL has a considerable effect 

on the size and morphology of the leaves, the lines with a Bay-0 allele have a much smaller 

rosette than Shahdara allele, we wondered whether this trait would affect other aspects of 

plant growth, and measured days to bolt, leaf number and silique number and length within 

HIF102 and HIF118. There were no significant differences in these traits across both HIFs, 

suggesting the difference in leaf size did not alter wider aspects of plant growth, although 

silique number did differ within HIF102. 

Similar results have been reported elsewhere, such as in (Costa et al., 2012), where QTLs 

controlling the size and shape of leaves did not coincide with a difference in flowering time. 

It was unclear why silique number would only vary within HIF102. It may be that because 

HIF102 lines flower considerably earlier than the HIF118 plants the change in leaf size has a 

more severe effect on the plants growth and ability to produce seeds. One way to test 

whether this region affects silique number in different genetic backgrounds would be to 

measure silique number in the Bay-0 x Shahdara RILs. If the QTL for leaf size and margin 

morphology affects silique number, the same chromosome 2 QTL should be identified for 

variation in silique number, and if the effect on siliques is background dependent, epistatic 

loci may be identified too. Given the possibility that the later flowering of HIF118 could 

obscure a difference in silique number, we may expect such epistatic loci to have life history 

related phenotypes. 

To determine whether the difference in leaf size within HIF118 and HIF102 coincided with 

differences in epidermal cell size or number, we measured the size of epidermal cells in 

leaves from the HIF102 and HIF118 lines. There was no difference in cell size between the 

NILs within HIF102 and HIF118, suggesting the difference in leaf area coincided with a 

difference in cell number rather than cell size. Analysis of cell shape showed there was a 

difference in solidity, the area of the shape’s convex hull that is taken up by the shape, and 

circularity, the similarity of the shape to a circle between NILs in each HIF. The Bay-0 and 

Shahdara alleles were associated with the same direction of effect in HIF102 and HIF118, 

suggesting there may be a difference in cell shape associated with this leaf size and margin 

morphology trait. Although slight, these differences suggest this QTL has some effect on the 

formation of the epidermal cells in these HIFs.  
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3.3.7 Loci controlling leaf shape in the Bay-0 x Shahdara RILs may 

have wider effects on plant morphology 

Two of the QTLs we identified for llpPC2 in the Bay-0 x Shahdara RILs coincide with two QTL 

identified for hypocotyl length in this population (Loudet et al., 2008). We found our llpPC2 

QTL resided in the same 7kb interval on chromosome 5 as these authors hypocotyl QTL 

using a fine mapped rHIF. Loudet et al., (2008) overexpressed the Shahdara allele of each of 

the three genes within this 7kb region in a line containing the Bay-0 allele and found only 

the expression of At5g43630 caused an increase in hypocotyl length (Loudet et al., 2008). 

These authors found overexpression of this gene led to an extension of all linearly 

elongating organs, such as petioles, internodes and the main floral stem (Loudet et al., 

2008). There were 14 amino acid changes, three deletions and an 8 bp insertion varying 

between the Bay-0 and Shahdara allele of this 7 kb region, but Loudet et al., 2008 identify 

the 8bp insertion in At5g43630 as causative of the phenotype through comparison of an 

alternate Bay-0 line without the insertion. It is possible that any one of these polymorphisms 

or others in the two other genes partly within the fine mapped 7 kb interval could cause the 

llpPC2 effect observed in the fine mapped rHIF we scored for leaf shape, however, given the 

phenotype described for lines overexpressing At5g43630, it seems likely to be a 

polymorphism within this gene that is responsible for the llpPC2 effect we found when 

growing the rHIF. The llpPC2 effect we identified at this region is probably the result of the 

same 8 bp insertion that is causing the hypocotyl phenotype, but without comparing the leaf 

shape of the alternate Bay-0 line lacking the insertion to the Bay-0 parent of the Bay-0 x 

Shahdara RILs, we are unable to differentiate between any of the polymorphisms within 

At5g43630 as the probable cause of the association of llpPC2 variation to this region. 

Other work on the genetic mapping of leaf shape traits has also identified loci that control 

multiple aspects of plant morphology. Costa et al., (2012) identify QTLs controlling the leaf 

shape of Antirrhinum, and some of these QTL also have an effect on the height of plants 

when first flowering, and the internode length of the plants. QTL controlling leaf size in 

Antirrhinum have also been found to control petal size too (Feng et al., 2009). Our results 

have shown that it is very likely at least one of the QTLs we identified for leaf shape has a 

hypocotyl phenotype. We also found a locus associated with llpPC2 coincided with a leaf 

number QTL. It seems reasonable to conclude that the major variations in leaf shape within 

a plant may be genetically controlled by loci with that also affect other aspects of plant 

morphology.  
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3.3.8 Using a network analysis to identify candidate genes 

To create a list of candidate genes from the 1069 genes in the 4.33Mb causative region we 

identified for the margin morphology QTL, we used a network analysis approach. This 

strategy had been used previously to identify ELF3 as a candidate for controlling the shade 

response in the Bay-0 x Shahdara RIL population (Jimenez-Gomez et al., 2011). The method 

uses coexpressed gene databases and eQTL data to filter a list of candidate genes within the 

QTL region (Obayashi et al., 2009; West et al., 2006).  

We repeated the analysis in (Jiménez-Gómez et al., 2010) using the same datasets, 

successfully identifying the candidates identified in these authors work. We then used our 

set of 1069 genes from the causative region of the QTL as the input, to create a shortlist of 

highly networked candidates for further investigation. Since the publication of (Jiménez-

Gómez et al., 2010) there had been an update to the ATTEDJP database. The ELF3 paper 

used a gene coexpression dataset of 1388 gene chips (v4.1) (Obayashi et al., 2009). We had 

the option to use a later dataset, c5.0, a set of 11171 gene chips. As the v4.1 dataset was 

successful in identifying the causative gene for those Jiménez-Gómez et al., (2010), we 

decided to use both coexpression datasets in our analysis, and take the top genes with 8 or 

more direct network links for candidates. This left us with a shortlist of 10 candidate genes. 

Unfortunately there was an issue of data availability when carrying out the data analysis for 

our chromosome 2 QTL. Of the 1069 candidate genes within the causative region, 

coexpression data was only available for 292 genes. The centromere of chromosome 2 

begins around 6Mb (The Arabidopsis Genome Initiative, 2000), this is within the causative 

region we identified for this QTL, which spans from 1.95Mb to 6.28Mb. It is possible that the 

lack of available coexpression data for this region reflects the presence of the centromeric 

region as such regions are associated with a high density of transposons and  low expression 

in Arabidopsis (Copenhaver et al., 1999; Schmid et al., 2005; Yamada et al., 2003). If this was 

the case, then the impact on the results of the network analysis may be limited, as these 

genes would be less likely to be responsible for the QTL. We proceeded with the network 

analysis, reasoning that if we were to find a likely candidate gene for this QTL, we would be 

able to validate this independently of the network analysis, and so it was worth continuing 

with this approach despite the problem of missing data. 

We used SALK T-DNA insertion lines annotated with insertions in these candidate genes to 

test for phenotypes similar to that of the margin morphology QTL. However, none of the 

lines showed a morphological difference similar to that observed for the uneven margin QTL 
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within HIF102 or HIF118. There are a number of possible explanations for this result. The 

first is that the network analysis did not pick out the candidate gene amongst the highest 

connected genes. The next is that for this list of candidates, the T-DNA lines were not 

obtained for the causative gene, as was the case for 1 of the 10 candidates shortlisted. The 

gene with no T-DNA insertion lines available was At2g10950, and had 25 direct network 

connections. This gene is identified on TAIR as a gypsy-like retrotransposon, expressed 

during two and six leaf visible stage, and petal differentiation and expansion stage. It is 

possible that this gene contains the causative polymorphism for the leaf margin QTL, 

although given that it is not expressed during more stages of plant growth this seem unlikely 

given the clear difference in leaf size and margin morphology at this QTL. A third possibility 

is that we did identify the gene in which a polymorphism resulted in the QTL, but the 

mutations caused by the T-DNA insertions in these lines were not equivalent to this 

polymorphism, and so we did not see a similar effect on leaf size and margin morphology. 

SALK T-DNA insertion lines typically produce null mutations (Wang, 2008), and it is not 

necessarily the case that the polymorphism between Bay-0 and Shahdara is the result of a 

null mutation or similar polymorphism. For a lowly expressed gene, the overexpression of a 

truncated gene can have a much more dramatic effect than a null mutation  (Faigón-Soverna 

et al., 2006). Given the number of genes within the causative interval for QTL2a, it seems 

most likely that the network analysis simply did not identify the gene containing the 

causative polymorphism.  
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Chapter 4.  Genome Wide Association mapping for 

leaf shape traits 

4.1 Introduction 

In our previous work to map the genetic basis of leaf shape traits we measured leaf shape 

across the Bay-0 x Shahdara Recombinant Inbred Line (RIL) population and mapped 5 QTLs 

for leaf morphology. We were able to identify a likely candidate gene for one of our QTL. 

After our work with the Bay-0 and Shahdara accessions, we were interested to understand 

how leaf shape was controlled more widely across a greater number of Arabidopsis 

accessions.  

An alternative approach to QTL mapping in a RIL population is Genome Wide Association 

(GWA). In a Genome Wide Association Study (GWAS), a population is genotyped and scored 

for a trait of interest, and variation in traits can be linked to regions of the genome. GWA 

mapping differs from a QTL approach in the population used. The RIL or F2 populations used 

in QTL mapping are created from the self fertilised offspring of a cross between two or more 

Arabidopsis accessions. This results in a population segregating for alleles of the parents. 

Although RIL populations can be created using multiple parents to increase the number of 

alleles segregating, at most 19 accessions have been used to create these multi-parent 

populations in Arabidopsis (Huang et al., 2011; Kover et al., 2009). In a GWAS, hundreds of 

natural Arabidopsis accessions are used as the mapping population. Arabidopsis is 

predominantly self fertilising and so natural accessions of the species are highly homozygous 

(Bakker et al., 2006; Bergelson et al., 1998). As such these lines need only be genotyped 

once, but can be regrown and phenotyped repeatedly, similarly to a RIL population. 

In contrast to a RIL population, where alleles segregate due to recombination during the 

crosses that create the population, GWA relies on genetic differences built up over 

generations between accessions. Although this can result in a high level of genetic variation 

between lines useful for mapping, the balanced segregation of alleles typical in RIL 

populations cannot be assumed. For example, accessions collected from the same 

geographic area are more likely to be genetically similar, and allele frequencies amongst 

natural accessions will be much more variable than in a RIL population (Nordborg et al., 

2005). These effects can cause spurious associations when testing for linked loci; regions 

may be linked to a trait simply because an allele correlates with presence of another, 

physically distant, allele with a causative polymorphism (Korte and Farlow, 2013; Zhao et al., 
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2007). This has led to development of complex association analysis to facilitate mapping in 

GWAS (Kang et al., 2008; Segura et al., 2012). 

Hundreds of Arabidopsis accessions have been genotyped as part of the 1001 genomes 

project (Cao et al., 2011; Long et al., 2013; Ossowski et al., 2008; Schmitz et al., 2013). This 

data has been used to provide markers for GWAS; single nucleotide polymorphisms (SNPs) 

are used in GWA mapping to compare genotype across the accessions.  The marker density 

is often several orders of magnitude greater than used in RIL populations. One tool for 

testing for associations in a GWAS, GWAPP, currently uses a dataset of over 200,000 SNPs 

(Seren et al., 2012). In combination with the increased mixture of alleles typical amongst 

accessions used in GWASs, this increase in genetic markers can  allow traits to be mapped to 

loci much narrower than equivalent work in RIL populations (Chao et al., 2012). 

We were interested in the possibilities of a GWAS for leaf shape. The potentially greater 

resolution for mapping relative to our Bay-0 x Shahdara work was exciting, and we hoped it 

could allow us to relatively quickly identify a list of candidate genes. We also expected that 

any loci identified using a large panel of natural accessions would therefore be relatively 

common in the species, and so likely represent widespread loci controlling leaf shape in 

Arabidopsis. We obtained a collection of natural accessions to grow and phenotype for our 

GWAS. We chose to use the HapMap core population of 360 accessions, as used in (Baxter 

et al., 2010) and (Chao et al., 2012) and genotyped at 213,497 SNPs. We opted for this 

collection as we knew it had been used successfully to map traits by other groups, had 

readily available genotype data and contained accessions over a broad geographic range.  

We used the online association analysis tool GWAPP (Seren et al., 2012) for our analysis. 

This was a convenient tool for testing for associations in our GWAS, as the calculations 

would be carried out remotely on hardware more powerful than the available desktop PCs. 

As such testing large amounts of trait data was relatively quick, particularly useful for our 

work given the number of combinations of data subsets and traits we were interested in. 

Within GWAPP there are two main approaches to the association analysis, the non 

parametric Wilcoxon rank sum test (KW) and the Accelerated Mixed Model (AMM) method. 

AMM is based on a variation  of the Efficient Mixed-Model Association (EMMA) method 

(Kang et al., 2008, 2010) which uses a kinship matrix to control for relatedness between the 

accessions. The differences between each method are important to interpreting the results 

from a GWAS. The KW approach includes no correction for population structure and so p 

values for the association of each SNP are inflated, and falsely associated loci may occur 
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through linkage with true positives. The AMM method may overcorrect true associations, 

particularly if phenotypes vary geographically similarly to genetic relatedness across the 

accession used. For these reasons we considered associations detected by both methods as 

most credible, but also reported loci exclusive to either method, given the advantages of 

each, as in (Filiault and Maloof, 2012). We used a cut off of 5.5 –log(p) for classifying loci as 

significant, based on the Benjamini-Hochberg-Yekutieli  correction for multiple testing used 

within GWAPP (Benjamini and Yekutieli, 2001; Seren et al., 2012). Although it is possible that 

variation at a single isolated SNP could be associated with a trait, it seems much more likely 

that a region of associated SNPs would be identified, due to linkage between physically 

nearby SNPs (Atwell et al., 2010). As such we used criteria of loci made up of a tower of 

associated SNPs that met our significance threshold to identify associations of interest. 

We created datasets of leaf shape variation for the accessions used in our GWAS by 

harvesting each rosette leaf per plant, and scoring these leaves with our leaf shape traits. 

With these datasets we would be able to examine differences in the shape of individual 

leaves as well as calculate an average leaf shape score for each accession. By harvesting 

each leaf of the rosette, we would also be able to capture changes in shape across the leaf 

series of an individual plant, and compare these leaf series shape changes between lines. 

We would record the leaf number of each plant, a trait closely related to life history in 

Arabidopsis. Life history is commonly studied as flowering time in Arabidopsis, and so by 

scoring a related trait we would also be able use our leaf number trait as a point of 

comparison with others work. 

To score the leaf shape differences in these datasets we would apply the llpPCs, created 

with the 10 accession leaf library. As we would be scoring shape variation in leaves from 

more than 300 accessions with considerable variation in leaf shape, we would also use 

dataset specific PCs, created from a PCA on the leaves in these GWAS datasets. Although the 

llpPCs had been effective in mapping genetic variation in leaf shape in the Bay-0 x Shahdara 

RILs, due to the potentially greater variation in leaf shape and leaf number in the HapMap 

population, it would be worthwhile to investigate leaf shape variation in this collection of 

accessions with a new PCA also. This way, if the major variations in leaf shape across the 

HapMap collection of accessions differed to those in the 10 accessions used to create the 

leaf library PCs, we would still be able to effectively quantify variation in leaf shape in the 

HapMap collection of accessions. 
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4.2 Results 

4.2.1 Leaf shape varies considerably between natural accessions of 

Arabidopsis  

Genome wide association can be a powerful approach to genetic mapping and we were 

interested in the possibility of a GWAS for leaf shape. To further explore the idea and see 

whether this was something we could incorporate into the project, we obtained small sets 

of Arabidopsis accessions; the Joy Bergelson set of 96 and the Detlef Weigel set of 80 (Cao et 

al., 2011; Nordborg et al., 2005). We grew these in the University of York greenhouses and 

saw there were large differences in leaf shape between the lines. That there were visually 

clear between line differences in leaf shape amongst the natural accessions suggested a 

strong genetic basis to these differences in leaf shape, and encouraged us towards a GWAS. 

Relative to the Bay-0 x Shahdara RILs, these accessions also varied more in flowering time 

and leaf number. Many accessions of Arabidopsis are winter annuals and can require a 

period of vernalisation before transitioning to flowering  (Michaels and Amasino, 1999; 

Shindo et al., 2005). As such when grown in greenhouse conditions many of these accessions 

grew a large number of leaves before bolting, and some did not bolt even after two months 

growth. Although we had previously used bolting date as a harvest point in our work so far, 

we would require new harvest points in our GWAS work, so that these late flowering plants 

could be harvested and analysed for leaf shape. We decided to carry out a GWAS for leaf 

shape, and obtained a larger mapping population of accessions, the core collection of 360 

accessions from the HapMap project (http://www.naturalvariation.org/hapmap).  

4.2.2 Creating leaf shape datasets at new harvest points for GWA 

mapping 

Our work using GWA to map loci for leaf shape is made up of three separate growth 

experiments. For each growth experiment we grew the HapMap accessions in the University 

of York greenhouses and harvested every rosette leaf from each plant. We used different 

growth experiments so that we could record leaf shape at different harvest points. Our first 

GWAS was GWAS60, where plants were harvested at bolting, or after 60 days, whichever 

came first. By harvesting the majority of plants at bolting we were able to create a dataset 

using a similar approach to our other work in the project, and collect leaf shape data for 

each leaf grown by late flowering plants. The second GWAS was GWAS10, where plants 

were harvested after growing more than 11 leaves longer than 5mm in length. This allowed 
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us to compare leaf shape between plants with relatively little variation in leaf number. The 

third is GWAS09, harvested at a similar point to GWAS10, for which we also collected 

hypocotyl and cotyledon data, to investigate whether changes in rosette leaf shape were 

correlated with other aspects of plant morphology. Our separate GWA growth experiments 

would allow us to create datasets at both late and early harvest points and make use of the 

advantages of each. We harvested every rosette leaf of each plant. This allowed us to 

compare leaf shape between the accessions across a variety of subsets of the data. We used 

comparisons of leaf shape at individual leaves and whole plant averages. We were also 

interested in the shape changes across the leaf series, and so used median node leaf 

comparisons and measures of heteroblasty to identify changes in shape at the across the 

leaf series too. The results of each growth experiment will be reported in turn. 

4.2.3 Mapping leaf shape differences between accessions at bolting 

to create the GWAS60 dataset 

In the first of our three growth experiments we harvested the HapMap accessions once they 

had bolted or after 60 days, whichever came first. Two plants were grown for each accession 

in May 2013. In total we harvested 468 plants for 306 lines, recording the shape of 8309 

leaves. Any leaves that were severely damaged during plant growth were not harvested. All 

plants that did not flower were harvested after 60 days of growth. The early leaves of such 

long lived plants were often wilted and decayed, and so unsuitable for harvesting. The 

number of leaves collected for each node across the leaf series can be seen in Figure 4-1. 

Some of the 360 HapMap accessions were never received from the stock centre and during 

the growth experiment some plants were lost due to greenhouse pests or poor growth and 

germination. Though we were unable to phenotype each line of the HapMap collection, we 

were confident this would not limit our GWAS, given that the lines grown showed much 

variation in leaf shape, and successful GWASs have been carried out using less than 200 

accessions (Atwell et al., 2010; Filiault and Maloof, 2012). We used LeafAnalyser to capture 

the shape and size of each rosette leaf to produce the leaf shape dataset GWAS60.  
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Figure 4-1 Leaves collected 
for GWAS60 dataset 

Histogram showing the 

number of leaves collected 

for each node of the leaf 

series to create the GWAS60 

dataset. The most common 

leaf in the dataset is the 9th 

leaf, with 375 leaves 

harvested and analysed.  

Relatively few leaves were 

harvested for the first four 

nodes, indicating many early 

leaves were lost from the 

plants harvested. 
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Figure 4-2 Leaf shape changes in GWAS60 leaf shape dataset  

Figure shows the major leaf shape changes captured in a PCA on the GWAS60 leaves. The 

change in shape captured by each G60_PC is shown by as -1 and +1 Standard Deviation (SD) 

alongside the mean leaf.  The first 6 PCs account for 90.51% of the variation in the dataset.  
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Figure 4-3 Leaf library 
PCs 

The major leaf shape 

variations identified with 

a PCA on the leaf library 

dataset. Each PC is 

shown as -1 and +1 

Standard Deviation 

alongside the mean leaf.  

The first 4 PCs account 

for 85.44% of the 

variation in the dataset. 
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Figure 4-4 Correlations between leaf shape traits in the GWAS60 dataset  

Scatterplots showing the correlations between the most heritable llpPC traits, llpPC2 and 

llpPC3, and the G60_pPCs within the GWAS60 dataset. Though there are some correlations 

between G60_pPCs and llpPCs, none of the G60_pPCs appear directly equivalent for the 

llpPCs.  

4.2.4 Scoring shape variation in late flowering accessions 

Once we had recorded the shape of each leaf harvested during the GWAS60 growth 

experiment, we scored each of these leaves for leaf shape. We used our llpPCs and GWAS60 

dataset pPCs from a PCA on the procrustes fitted GWAS60 leaves. The shape changes 

captured in the GWAS60 pPCs (G60_pPCs) can be seen in Figure 4-2 Leaf shape changes in 

GWAS60 leaf shape dataset . By taking this approach we could score leaf shape with the 

same traits we used in the Bay-0 x Shahdara lines and throughout the project, but also 

account for the potentially different variations in leaf shape variation in the GWAS60 

dataset. 

To evaluate whether the major trends in leaf shape captured by the dataset specific 

G60_pPCs were distinct from those captured with the llpPCs, we looked at correlations 

within the leaves harvested for the GWAS60 dataset between the two sets of PCs. We were 

most interested in correlations with llpPC2 and llpPC3, shown in Figure 4-3 . These llpPCs 

describe changes in leaf shape such as ratio of leaf blade area to petiole length and 

represent heritable differences in leaf shape between genetically different lines. Although 
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there were correlations between the llpPC2 and llpPC3 and some of the G60_pPCs, see 

Figure 4-4 Correlations between leaf shape traits in the GWAS60 dataset , the trends did not 

show any of the PCs between the datasets to be directly equivalent, suggesting some 

differences in the major trends in leaf shape variation within the GWAS60 dataset captured 

by the G60_pPCs, and those described by the leaf library pPCs. 

We were most interested in scores for the G60_pPCs defining differences in overall leaf 

shape such as G60_pPC2 and G60_pPC3, rather than those scoring curvature or petiole 

angle. The changes in leaf shape such as those described by G60_pPC2 and G60_pPC3 are 

typically highly heritable and we expected variation in these G60_pPCs were likely to have a 

genetic basis. Although we were unable to estimate heritability for these G60_pPCs in the 

absence of a large number of repeats per line, that these G60_pPCs showed most 

correlation with llpPC2 and llpPC3, the most heritable of the llpPCs in the Bay-0 x Shahdara 

population, supports this assumption. 

4.2.5 Leaf number variation is associated with a commonly 

identified flowering time locus 

There is typically strong correlation between leaf number and flowering time in Arabidopsis 

(Koornneef et al., 1991) and so we used our leaf number trait as a point of comparison with 

studies on natural variation of flowering time. After carrying out a GWAS with the traits we 

scored during the GWAS60 growth experiment, we identified a locus at the start of 

chromosome 4, between the start of the chromosome and 0.5Mb, associated with variation 

in our leaf number trait, see Figure 4-5. We had also found this region to be associated to 

our leaf number trait in the Bay-0 x Shahdara population, and it is commonly associated with 

flowering time traits in QTL populations and GWASs grown across different greenhouses and 

growth chambers (Atwell et al., 2010; Clarke et al., 1995). Polymorphisms within the gene 

FRIGIDA have been identified as responsible for this leaf number and flowering time 

variation associated with locus in work in the literature (Johanson et al., 2000; Shindo et al., 

2005), making this gene the likely candidate for this locus in our GWAS. We also found a 

region of associated SNPs for variation in leaf number over the gene Delay Of Germination 1 

(DOG1), see Figure 4-6. Although characterised for its role in the natural variation of seed 

germination (Alonso-Blanco et al., 2003; Chiang et al., 2011), this gene has also been found 

associated with flowering time phenotypes in Arabidopsis GWAS (Atwell et al., 2010). That 

we identified these commonly reported flowering time loci for our leaf number trait 
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confirms that our growth conditions are within a similar range as others work, and that data 

reproduces some commonly reported loci.  
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 Figure 4-5 Locus associated with leaf number variation on chromosome 4 

Locus at the beginning of chromosome 4 associated with leaf number variation in the 

GWAS60 dataset. Associated SNPs with the KW and AMM methods are shown as orange or 

blue dots respectively. Each dot represents a SNP marker, and the higher on the Y axis a SNP 

is, the more strongly associated the SNP is to variation in the trait. The position of each SNP 

on chromosome 4 is show along the X axis. The gene FRIGIDA begins at 269025bp on 

chromosome 4.  

 

Figure 4-6 Locus associated with leaf number variation on chromosome 5 

A locus associated with variation in leaf number in the middle of chromosome 5. Associated 

SNPs with the KW and AMM methods are shown as orange or blue dots respectively. Each 

dot represents a SNP marker, and the higher on the Y axis a SNP is, the more strongly 

associated the SNP is to variation in the trait. The position of each SNP on chromosome 5 is 

shown along the X axis. The gene DOG1 is at 18,589,482bp and marked with a green circle.  

 

  

Chromosome 4 (bp) 

Chromosome 5 (bp) 
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Figure 4-7 Locus associated with G60_pPC2 on chromosome 4 

A locus associated with variation in trait G60_pPC2 at the start of chromosome 4. Associated 

SNPs with the KW and AMM methods are shown as orange or blue dots respectively. Each 

dot represents a SNP marker, and the higher on the Y axis a SNP is, the more strongly 

associated the SNP is to variation in the trait. The position of each SNP on chromosome 4 is 

shown along the X axis. 

4.2.6 A locus associated with leaf number variation is also 

associated with differences in leaf shape 

We scored our GWAS60 dataset with the llpPCs and G60_pPCs then calculated the average 

leaf shape score per line for each of these traits. Using these average trait scores for GWA 

mapping identified associated loci. The most strongly associated of these was within 0Mb to 

0.5Mb on chromosome 4, associated with variation in llpPC2 and G60_pPC2, see Figure 4-7. 

We had previously found this region associated with variation in leaf number see Figure 4-5.  

As leaf shape changes over the leaf series of a plant, and leaf number varies greatly in the 

GWAS60 dataset, we wondered if the association of this locus with some of our leaf shape 

traits was the result of some lines having more leaves at later nodes of the leaf series. 

To examine the effect of this locus on leaf shape more closely, we grouped the accessions by 

their genotype at highly associated SNPs in this locus. We then plotted the leaf shape scores 

for G60_pPC2 across the leaf series for accessions in either group, see Figure 4-8 Difference 

in G60_pPC2 across the leaf series. The accessions with an allele associated with increased 

leaf number had a higher G60_pPC2 score at all leaves of the leaf series. This confirmed that 

this locus had an effect on G60_pPC2 as well as leaf number.   

Chromosome 4 (bp) 



107 
 

 

 Figure 4-8 Difference in G60_pPC2 across the leaf series  

This figure shows the difference in G60_pPC2 score across the leaf series between the 

accessions when grouped by genotype at a SNP on chromosome 4 at 340503bp within a 

locus associated with leaf number variation. Values for accessions with an allele at this SNP 

associated with greater leaf number are shown in red, those with an allele associated with 

lower leaf number are shown in black. 

 

Figure 4-9 Locus associated with llpPC2 variation on chromosome 1 

A locus associated with variation in the trait llpPC2 amongst median node GWAS60 leaves 

on chromosome 1. Associated SNPs with the KW and AMM methods are shown as orange or 

blue dots respectively. Each dot represents a SNP marker, and the higher on the Y axis a SNP 

is, the more strongly associated the SNP is to variation in the trait. The position of each SNP 

on chromosome 1 is shown along the X axis. 

Chromosome 1 (bp) 
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4.2.7 Variation in shape between accessions at individual nodes of 

the leaf series 

As we had harvested every rosette leaf per plant in the GWAS60 growth experiment, we 

were able to make subsets of the leaf shape dataset we created to compare shape 

differences at individual nodes of the leaf series. 

We used subsets of our GWAS60 leaf shape data of the third, sixth and ninth node leaves 

from each plant, and tested for loci associated with shape differences at each of these 

nodes. No loci were associated with shape variation in these subsets. It may be that low 

sample size restricted the effectiveness of these subsets, although whilst node three had 

relatively few leaves sampled, over 300 leaves were harvested at the sixth and ninth nodes. 

We next created a new subset of the GWAS60 dataset collecting the median node leaf from 

each plant in the total dataset, and compared leaf shape at this point in the leaf series 

between the accessions. 

When comparing shape between median node leaves of accessions in the GWAS60 dataset, 

we found a locus on chromosome 1 associated with variation in the traits llpPC2 and 

G60_pPC2, see Figure 4-9, and a locus on chromosome 5 associated with variation in llpPC3, 

see Figure 4-10. These loci were identified in both KW and AMM methods, see Table 4-1. A 

whole genome plot for the llpPC2 median leaf trait can be seen in the appendices. 
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Figure 4-10 Locus associated with llpPC3 variation on chromosome 5 

A locus associated with variation in the trait llpPC3 amongst median node GWAS60 leaves 

on chromosome 5. Associated SNPs with the KW and AMM methods are shown as orange or 

blue dots respectively. Each dot represents a SNP marker, and the higher on the Y axis a SNP 

is, the more strongly associated the SNP is to variation in the trait. The position of each SNP 

on chromosome 5 is shown along the X axis. 

Trait GrowthExperiment Position KW Peak -log(p) AMM Peak -log(p) 

N6PCA_PC2 GWAS10 Chr1:26Mb 7.35 5.5 

N6PCA_PC5 GWAS10 Chr4:5Mb 7.08 6.21 

hetPC4 GWAS10 Chr1:26Mb 5.8 5.6 

hetPC8 GWAS10 Chr2:4Mb 6.02 5.6 

hetPC8 GWAS10 Chr1:12Mb 8.6 5.12 

mn_llpPC2 GWAS60 Chr1:5.24Mb 5.56 4.76 

mn_llpPC3 GWAS60 Chr5:5.17Mb 7.24 5.15 

avg_llpPC2 GWAS60 Chr4:3.31Mb 7 4.81 

Table 4-1 Loci identified in leaf shape GWAS 

Table shows the loci identified in both KW and AMM association tests across our leaf shape 

GWASs. ‘mn’ indicates traits in a median leaf subset and ‘Avg’ indicates a trait calculated by 

average across all leaves for a plant. For lists of the genes within each of these loci see 

appendices. 

Chromosome 5 (bp) 
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4.2.8 Mapping leaf shape variation in leaves harvested at bolting 

with the GWAS60 dataset 

Using our GWAS60 trait data we had found a commonly reported locus for flowering time 

linked to our leaf number trait, suggesting we had identified similar variation for this trait as 

had other groups. We found this locus was also associated with a difference in leaf shape 

traits llpPC2 and G60_pPC2. We also mapped loci responsible for shape variation at the 

median node leaf. We were unable to apply a heteroblasty measure to the GWAS60 leaf 

shape dataset to measure shape variation at multiple points of the leaf series, as data for 

the early leaves was missing for a number of lines due to the wilting of early leaves in late 

flowering plants. We were encouraged by our GWAS60 results, having identified several loci 

linked to changes leaf shape.  We planned to grow the HapMap accessions again and harvest 

at an earlier time point to reduce the extent of leaf number variation in the plants 

harvested, and potentially map more loci associated with leaf shape variation. 

4.2.9 A leaf shape GWAS with a new harvest point 

In our second growth experiment, GWAS10, we used an earlier harvest point than for the 

GWAS60 dataset. Rather than using a harvest point after the majority of plants per 

accession had bolted, we harvested the lines for our GWAS10 dataset once plants had 

grown 11 leaves longer than 5mm in length, or had bolted, whichever came first. This 

minimised the loss of early leaf series leaves due to wilting and so resulted in a more 

complete dataset.  We also expected that lower variation in leaf number would make the 

dataset more appropriate to use for comparisons of leaf shape across the leaf series. 

We grew the core HapMap accessions in mid June 2013, sowing two plants for each line, 

though some of these were lost through low germination or during the growth of the plants. 

652 plants were harvested for 345 lines and the shape of 6142 leaves was recorded. The 

total number of leaves harvested is lower than in GWAS60 as in this growth experiment the 

majority of plants were harvested before growing more than 12 leaves because of the 

chosen harvest point. In comparison to the GWAS60 dataset, leaf shape data was collected 

for a greater number of accessions, with a higher number of repeats and fewer leaves lost to 

wilting. This resulted in a more complete dataset, as can be seen in the distribution of leaves 

harvested across the leaf series, shown in Figure 4-11. At least 600 leaves were analysed for 

the first six nodes of the leaf series. 
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We scored the GWAS10 leaves with our llpPCs. We also performed a PCA on the leaves to 

create PCs specific to the major shape variations in the GWAS10 dataset. We were 

interested in capturing the major trends in shape within the GWAS10 dataset, as we had not 

previously scored leaf shape in plants using this harvest point. Creating a new set of PCs 

specific to the changes in leaf shape in GWAS10 dataset would allow us to score potentially 

different variations in leaf shape that may not be captured by the llpPCs. 

We were interested as to whether the GWAS10 pPCs (G10_pPCs) captured leaf shape 

changes distinct from those captured by the llpPCs. To evaluate this we looked at 

correlations between values for the G10_pPCs and the llpPCs in the GWAS10 dataset. We 

found that two of the G10_pPCs, G10_pPC1 and G10_pPC3 were strongly correlated with 

llpPC2 and llpPC3 respectively. This suggested that although the leaf library and GWAS10 

leaf shape datasets used for each PCA differed in harvest point and accessions harvested, 

the major shape changes captured by both PCAs were similar. When testing for association 

of loci to variation in both sets of PCs, we found no loci were unique to either set of PC 

traits. As such for convenience we report the associated loci using the llpPCs, as these are 

used more widely throughout the project. 

 

 

Figure 4-11 Number of leaves 
collected for GWAS10 dataset 

Histogram showing the number of 

leaves collected per node of the 

leaf series in the GWAS10 dataset. 

There are over 600 leaves in the 

dataset for nodes one to six. 
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4.2.10 Capturing leaf shape variation early in the leaf series 

with the GWAS10 dataset 

The earlier harvest point chosen for the GWAS10 growth experiment meant that a larger 

number of leaves were sampled early in the leaf series relative to the GWAS60 work, see 

Figure 4-1 and Figure 4-11. We were interested in whether shape variation at the first two 

leaves of the leaf series could be mapped. We tested for associations with our llpPCs, 

however we found no associated loci. As the first two leaves are relatively small and 

distinctly shaped in comparison to the majority of the leaf series, we also used a new PCA on 

a subset of the first two leaves in the GWAS10 dataset, reasoning that dataset specific PCs 

may more accurately capture the variation at these nodes. However, variation in these PCs 

specific to this subset of the data were not associated with any loci either. 

4.2.11 NBLRR genes underlie some loci associated with node 

specific leaf shape changes 

We next compared leaf shape in leaves across the leaf series. We tested for loci associated 

with shape differences between leaves at the 4th, 5th, 6th, and 7th nodes of the leaf series in 

turn using llpPC scores for these leaves. There were between 542 and 639 leaves harvested 

and scored at each of these nodes. 

For node six leaves we identified several loci associated with variation in llpPC2. Using the 

KW test of association, there was a locus on chromosome 1 at 27.4Mb with a tower of SNPs 

above a group of genes within the Nucleotide Binding Leucine Rich Repeat (NBLRR) family. 

This was one of the most strongly associated loci we found within our GWAS work with a –

log(p) score of 7.9 using the KW method, see Figure 4-12. A whole genome plot for this trait 

can be seen in the appendices. A region at the start of chromosome 4, very similar to that 

for leaf number and shape in GWAS60, was also associated with this trait. Interestingly two 

other clusters of NBLRR genes, on chromosome 1 at 21.7Mb and chromosome 5 at 14.5Mb, 

were within loci associated for llpPC2 variation in node six leaves, see Table 4-2.  These loci 

were associated with this trait with only the KW method.  

Combinations of these loci were also identified when testing for associations with llpPC2 

variation for leaves four, five and seven. The NBLRR loci on chromosome 1 at 27.4Mb and 

21.7Mb were associated with our llpPC2 trait in subsets for the 4th and 7th leaves, and llpPC2 

score for the 5th leaf was associated with the 14.5Mb locus on chromosome 5, see Table 4-2. 
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Figure 4-12 Locus associated with llpPC2 variation on chromosome 1 

A locus associated with variation in the trait llpPC2 amongst node 6 GWAS10 leaves on 

chromosome 1. Associated SNPs with the KW and AMM methods are shown as orange or 

blue dots respectively. Each dot represents a SNP marker, and the higher on the Y axis a SNP 

is, the more strongly associated the SNP is to variation in the trait. The position of each SNP 

on chromosome 1 is shown along the X axis. Beneath the SNPs the gene models present in 

the TAIR10 genome annotation are shown as black boxes. NBLRR genes are marked with a 

white asterisk. 

 

Figure 4-13 Node 6 specific leaf shape 
variation 

Figure showing the node 6 specific PCs 

(N6PCA_PCs). These were created using a PCA 

on node 6 leaves of the GWAS10 dataset. 

Using these subset specific PCs identified loci 

associated with variation in these traits that 

were not associated with the leaf shape 

changes described by the llpPCs. 
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Trait GrowthExperiment Position -log(p) (KW) 

N6_llpPC2 GWAS10 Chr1:21Mb 6.04 

N4_llpPC2 GWAS10 Chr1:21Mb 5.76 

N7_llpPC2 GWAS10 Chr1:21Mb 6.96 

hetPC1 GWAS10 Chr1:21Mb 7.31 

N6_llpPC2 GWAS10 Chr1:27Mb 7.93 

N4_llpPC2 GWAS10 Chr1:27Mb 6.15 

N6_llpPC3 GWAS09 Chr1:27Mb 6.21 

hetPC8 GWAS09 Chr1:27Mb 6.47 

G09_L2_pPC4 GWAS09 Chr1:27Mb 5.51 

N7_llpPC2 GWAS10 Chr1:27Mb 6.15 

hetPC1 GWAS10 Chr1:27Mb 6.23 

N6_llpPC2 GWAS10 Chr5:14Mb 5.42 

N5_llpPC2 GWAS10 Chr5:14Mb 5.86 

hetPC8 GWAS09 Chr5:14Mb 5.59 

hetPC1 GWAS10 Chr5:14Mb 6.1 

hetPC1 GWAS10 Chr5:18Mb 6.24 

hetPC8 GWAS09 Chr5:18Mb 6.58 

hetPC7 GWAS09 Chr1:27Mb 5.69 

hetPC7 GWAS09 Chr5:18Mb 6.84 
 

Table 4-2 Loci associated 
with leaf shape traits in 
GWAS10 and GWAS09 

Table showing the loci 

associated with leaf shape 

traits in GWAS10 and 

GWAS09 growth 

experiments that contain 

NBLRR genes. Traits 

scored within subsets of 

nodes are indicated by 

prefix ‘N4’ for node 4, ‘N5’ 

for node 5, ‘N6’ for node 6 

and ‘N7’ for node 7. Traits 

scored within a subset of 

the firs two leaves are 

indicated with prefix ‘L2’. 

–log(p) KW shows the 

association score of the 

most associated SNPs 

within each locus. For a list 

of the genes within each 

of this loci see appendices. 
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Figure 4-14 Locus associated with variation in node 6 shape variation on chromosome 4 

A locus associated with variation in the trait N6PCA_PC5 amongst node 6 GWAS10 leaves on 

chromosome 4. Associated SNPs with the KW and AMM methods are shown as orange or 

blue dots respectively. Each dot represents a SNP marker, and the higher on the Y axis a SNP 

is, the more strongly associated the SNP is to variation in the trait. The position of each SNP 

on chromosome 4 is shown along the X axis. 

 

 

Figure 4-15 Locus associated with node 6 shape variation on chromosome 1 

A locus associated with variation in the trait N6PCA_PC2 amongst node 6 GWAS10 leaves on 

chromosome 1. Associated SNPs with the KW and AMM methods are shown as orange or 

blue dots respectively. Each dot represents a SNP marker, and the higher on the Y axis a SNP 

is, the more strongly associated the SNP is to variation in the trait. The position of each SNP 

on chromosome 1 is shown along the X axis. 

  

Chromosome 4 (bp) 

Chromosome 1 (bp) 



116 
 

4.2.12 Further investigation of shape variation at node six 

leaves  

We had identified several loci associated with the llpPC2 variation in node six leaves. As the 

llpPCs were created with a PCA on a dataset of leaves across the leaf series, we wondered if 

a PCA on node 6 leaves would capture more accurately variations in shape at this node, 

potentially enabling us to map more loci for shape variation at this node. We ran a PCA on 

the node six subset of the GWAS10 leaves and captured shape variation with a set of node 

six specific PCs (N6PCA_PCs). 

Using these N6PCA_PCs we identified the two NBLRR gene containing chromosome 1 loci 

and the locus at the start of chromosome 4 that we had found associated with the llpPC2 

trait for node six leaves previously. Interestingly we found new loci associated with traits 

N6PCA_PC2 and N6PCA_PC5. Variation in N6PCA_PC2 was associated with a locus at 26.8Mb 

on chromosome 1, with a –log(p) score above 5.5 in both KW and AMM approaches, see 

Figure 4-15. The N6PCA_PC5 trait was linked to a locus on chromosome 4 at 5.5Mb with a –

log(p) score above 6.1 for both KW and AMM, see Figure 4-14. 

4.2.13 Investigating changes in shape across the leaf series 

with a heteroblasty PCA 

An alternative approach to comparing shape between accessions at individual leaves, or 

using the average score for all leaves grown per accession, is to use several points across the 

leaf series at once for a measurement of shape. This can be done through a heteroblasty 

PCA, where each plant is represented by three leaves from set points in the leaf series. The 

shape of rosette leaves change across the leaf series of individual plants. Using a 

heteroblasty approach allows us to capture changes in shape common across the leaf series, 

but also to identify the differences in the leaf series shape changes between plants. 

We used the third leaf, median node leaf, and leaf three quarters through the leaf series to 

represent each plant. As these three leaves are at set points in the leaf series, they provide 

an indication of shape across the leaf series for each plant.  We captured the major 

variations in shape and size across these three leaf shape models with a PCA. The changes in 

shape and size captured by these heteroblasty PCs (hetPCs) can be seen in Figure 4-16. As 

we were interested to see how size varied over the leaf series we did not Procrustes fit the 

leaves we used for our heteroblasty PCA. Some PCs captured changes common to each of 

the three leaves, for example hetPC4 captures changes in petiole length and leaf blade size 
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ratio that affect the three leaves in a similar way. Other hetPCs capture relative differences 

in size and shape between the three leaves in the shape model, for example in hetPC2 

captures variation in relative size amongst the leaves, a high hetPC2 score corresponds to a 

larger last leaf, and a lower HetPC2 score is associated with a larger median leaf, see Figure 

4-16. 

 

Figure 4-16 Heteroblasty PCs 

Figure shows the major leaf shape changes from the GWAS10 heteroblasty PCA. The change 

in shape captured by each PC is shown as -2 and +2 standard deviation alongside the mean 

leaves.  The first 8 PCs account for 95.49% of the variation in the three leaf heteroblasty 

dataset.  

 

Though our method to create the three leaf shape models in our GWAS10 work differed 

slightly from our approach in the Bay-0 x Shahdara population, similar changes in leaf shape 

and size were captured with both approaches. Rather than use the last leaf of each plant for 

the third leaf of the shape model, as we did when working with the Bay-0 x Shahdara 

population, we used the leaf three quarters of the way through the leaf series. This was a 

result of the different harvest point between the Bay-0 x Shahdara population and the 

GWAS10 growth experiment. It was not possible to harvest each of the 652 GWAS10 plants 

at the exact point the 11th leaf was longer than 5mm, and so variability was increased in the 

size of the last leaf of each plant. This extra non genetic variability deterred us from using 

the last leaf and so instead we opted to use the leaf three quarters of the way through the 

leaf series. This would likely minimize the effect of variation in harvest point whilst allowing 

us to still record the leaf shape of plants near the end of the leaf series. 
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We found several loci associated for variation in these hetPCs. Although when using the KW 

method with trait hetPC1 we found a large number of isolated SNPs with a high –log(p) 

values suggestive of false positives, there were also towers of associated SNPs. Several of 

these loci associated with variation in HetPC1 were above NBLRR genes, including loci 

previously identified on chromosome 1 at 27.4Mb and 21.7Mb, and on chromosome 5 at 

14.5Mb. There was a new NBLRR cluster picked out on chromosome 5 at 18.3Mb with a –

log(p) value of 6.2, identified using KW, see Figure 4-17. For variation in Het_PC4 we 

identified a locus on chromosome 1 at around 26.8Mb, this had a -log(p) score of 5.8 using 

the KW method and 5.6 with the AMM method. This region was identified previously, 

associated with variation in the N6PCA_PC2 trait, see Table 4-1. 

 

Figure 4-17 A chromosome 5 locus associated with HetPC1 variation 
A locus associated with variation in the trait HetPC1 in GWAS10 leaves on chromosome 5. 

Associated SNPs with the KW and AMM methods are shown as orange or blue dots 

respectively. Each dot represents a SNP marker, and the higher on the Y axis a SNP is, the 

more strongly associated the SNP is to variation in the trait. The position of each SNP on 

chromosome 1 is shown along the X axis. Beneath the SNPs the gene models present in the 

TAIR10 genome annotation are shown as black boxes. NBLRR genes are marked with a white 

asterisk. 

 

For variation in the het_PC8 trait, a locus on chromosome 2 around 4.1Mb was identified 

using both KW and AMM methods with a score of roughly –log(p) 7, see Table 4-1. There 

was also another locus associated with this trait, at 12Mb on chromosome 1 with a KW –

log(p) value of 8.6, and 5.1 for the AMM method. This locus had a NBLRR gene, Activated 

Disease Resistance 1 (ADR1) within 30Kb from the peak SNP. We did not include this locus 

within our list of associated NBLRR loci throughout our GWA work because of the distance 

between ADR1 and the nearest significantly associated SNP. Although within seven genes of 

the most associated SNP, ADR1 may be outside linkage with the nearby associated SNPs, as 
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linkage disequilibrium is estimated to reduce to 50% within 5Kb in Arabidopsis (Gan et al., 

2011). We still felt it worthwhile to acknowledge the proximity of ADR1 however. FRIGIDA is 

often named as a likely candidate gene for the 0 – 0.5Mb chromosome 4 locus associated 

with flowering time traits in the literature (Atwell et al., 2010), though the landscape of 

associated SNPs over this region can be complex, without a clear peak centred on FRIGIDA 

itself (Atwell et al., 2010; Johanson et al., 2000; Shindo et al., 2005). In the chromosome 4 

locus at this region associated with leaf number variation in the GWAS60 dataset, FRIGIDA is 

further than 5kb from any of the most associated SNPs. As such we mention the proximity of 

ADR1 in the event this is a similarly complex association. We also tested for loci associated 

with variation in hetPC2, hetPC3, hetPC5, hetPC6 and hetPC7, however these had no 

significantly associated loci.  

4.2.14 NBLRR loci are associated with several phenotypes in 

GWAS10  

Using an earlier harvest point in our second growth experiment, GWAS10, allowed us to 

create a dataset of leaf shape with less variability in leaf number and less missing data at 

early nodes than in the GWAS60 dataset. This allowed us to compare leaf shape at individual 

nodes across the leaf series and also to conduct a heteroblasty PCA. Although we did not 

find any loci associated with shape variation at the first two leaves of the leaf series, or using 

average leaf shape per accession, we did identify multiple loci associated with changes in 

our llpPC traits across the 4th to 7th leaves, and also for our heteroblasty PCs. We found four 

of the loci associated with leaf shape variation in the GWAS10 dataset contained NBLRR 

genes, suggesting this family may be associated with shape differences between natural 

accessions of Arabidopsis.  

4.2.15 A third growth experiment to further explore early leaf 

series shape variation 

We had found two of five leaf shape QTLs detected in our work on the Bay-0 x Shahdara 

population coincided with QTLs in the literature for hypocotyl length. We were curious as to 

whether a similar correlation of hypocotyl length and leaf shape may exist amongst the 

accessions within the HapMap population, and whether some of the loci we had found 

associated with leaf shape traits in our GWA work so far were also associated with variation 

in hypocotyl length. In the GWAS10 work we had observed variation in cotyledon shape, and 

wondered if variation in cotyledon shape could be mapped to genetic loci, or if this 

correlated with the leaf shape of the plants. As both cotyledon shape and hypocotyl length 
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can be recorded early in a plants growth, finding correlations between these traits and leaf 

shape may allow us to use these traits as useful proxies or indicators of rosette leaf shape in 

other areas of the project. 

We grew the HapMap accessions in late September 2013 to measure hypocotyl length and 

cotyledon shape in this population. We harvested the plants at the point the first two true 

leaves were a similar size as the cotyledons and measured hypocotyl length. After collecting 

our hypocotyl data we allowed some of the remaining seedlings to continue growing so that 

we could record the leaf shape in these lines at a similar stage to our GWAS10 work. This 

would allow us to test for correlations of hypocotyl length and cotyledon shape to leaf shape 

in the rosette leaves within a group of plants grown in the same growth experiment. It also 

provided an opportunity to repeat our GWAS10 work. We had identified a variety of loci 

associated with leaf shape variation within GWAS10, but we were limited in the number of 

replicates we could harvest concurrently. Although this third growth experiment would not 

be an exact replicate, it gave us the chance to test whether loci identified in the GWAS10 

work would be associated with shape variation in a separate growth experiment. 

We aimed to use the same harvest point as the GWAS10 work; harvesting plants once they 

had grown 11 leaves longer than 5mm or bolted. Unfortunately, due to ongoing work in 

other areas of the project we were unable to harvest at exactly this point. Instead we 

allowed the unbolted plants to grow as much as possible up to the GWAS10 harvest point 

and then harvested all unbolted plants within a week. We harvested 646 plants for 368 lines, 

collecting a total of 5031 leaves for analysis for in third growth experiment, GWAS09. 

Due to the difference in harvest point between this dataset and the GWAS10 work, there is 

some difference in distribution of leaves harvested over the leaf series, though in both 

datasets around 600 leaves were harvested for each of the first six leaves of the leaf series, 

see Figure 4-18.  

We recorded the leaf shape of every rosette leaf harvested per plant, and scored these 

leaves with the llpPCs. We also conducted a PCA on the GWAS09 leaves themselves, to 

identify the major shape variations within the GWAS09 dataset, creating the G09_pPCs. 

Similarly to our work with the GWAS10 dataset, we found that within the GWAS09 leaves 

scored for both sets of PCs, scores for the G09_pPCs were correlated with scores for llpPC2 

and llpPC3. When testing for loci associated with variation in the G09_pPCs we found any 

loci identified were also associated with the leaf library pPCs, and so for convenience we 

report the loci using the leaf library llpPCs. 
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Figure 4-18 Leaves harvested 
for GWAS09 dataset 

Histogram showing the number 

of leaves harvest at each node 

of the leaf series in the 

GWAS09 growth experiment. 

There are over 600 leaves 

sampled for the first 6 leaves of 

the leaf series in this dataset. 

 

 

 

Figure 4-19 Correlation of shape traits between leaves and cotyledons 

Correlation of average llpPC2 and llpPC3 score between the cotyledons and rosette leaves of 

each plant in the GWAS09 dataset. Linear models for the correlations between llpPC2 and 

llpPC3 score in leaves and cotyledons both an r2 value of 0.15. 
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4.2.16 Variation in cotyledon shape and hypocotyl length in 

the natural accessions 

We harvested the cotyledons of each plant and scored them for our llpPCs. As the 

cotyledons are distinct in size and shape from the rosette leaves, we also created a set of 

cotyledon specific PCs, using a PCA on the harvest cotyledons. When using either cotyledon 

dataset specific PCs, or the llpPCs to score shape in cotyledons in a GWAS, no loci were 

associated to either set of traits. We were interested in whether variation in cotyledon 

shape was correlated with variation in rosette leaf shape, and looked for trends between the 

llpPC2 and llpPC3 score of cotyledons and rosette leaves in the GWAS09 dataset, see Figure 

4-19 . There was a positive correlation for both llpPC2 and llpPC3 between cotyledon and 

rosette leaves, with a Spearman’s Rho of 0.36 for llpPC2, and 0.33 for llpPC3. That there was 

a significant correlation between cotyledon and rosette leaf shape is interesting, suggesting 

that although cotyledons are relatively distinct in size and shape from the rosette leaves, 

there are similarities between the shapes of these lateral organs. We tested for loci 

associated with variation in hypocotyl length, but found no significantly associated loci. We 

next looked at correlations between hypocotyl length and our llpPC shape traits within the 

GWAS09 dataset, however we found no trends between the traits in the GWAS09 leaves. 

This was in contrast to our work in the Bay-0 x Shahdara population, where we found the 

llpPC2 trait to be positively correlated with hypocotyl length.  

That we did not map any loci for our cotyledon and hypocotyl phenotypes does not suggest 

there is no genetic basis for these traits. Given the successful work on mapping loci for 

hypocotyl length in Arabidopsis (Coluccio et al., 2010; Filiault and Maloof, 2012; Jiménez-

Gómez et al., 2010) it is more likely that our methods resulted in too much non genetic 

variance in the data collected. It is not possible to estimate heritability of variation in 

cotyledon shape in our dataset due to the low number of replicates, however that cotyledon 

and rosette leaf shape are correlated suggests there may be a genetic component to this 

trait, given we had found previously that a large proportion of variation in rosette leaf shape 

is heritable. 

As hypocotyls and cotyledons develop and grow when the plant is relatively small, it may be 

that finescale variation in environmental conditions can have a larger effect on variation in 

these traits, resulting in a lower proportion of genetic variation for these traits in the 

GWAS09 dataset. The heterogeneous nature of the soil, or variation in watering and 

temperature, are factors that may be averaged out over a plants life or once a root system 
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becomes more developed, minimising the effect on rosette leaf traits due to these factors. 

For hypocotyl and cotyledon traits, these factors may have resulted in higher non genetic 

variability in our scores for these traits. 

 

Figure 4-20 Locus associated with llpPC3 variation in node 6 leaves 

A locus associated with variation in the trait llpPC3 amongst node 6 GWAS09 leaves on 

chromosome 1. Associated SNPs with the KW and AMM methods are shown as orange or 

blue dots respectively. Each dot represents a SNP marker, and the higher on the Y axis a SNP 

is, the more strongly associated the SNP is to variation in the trait. The position of each SNP 

on chromosome 1 is shown along the X axis. 

4.2.17 NBLRR loci are associated with leaf shape traits in a 

separate growth experiment 

In GWAS10 we found NBLRR clusters within loci associated with variation in the llpPC2 trait 

when comparing leaf shape between the accessions in the 4th to 7th leaves of the leaf series. 

To investigate whether similar loci would also be associated to shape variation in our third 

growth experiment, we tested for associations with the llpPCs using the same node subsets 

of data with the GWAS09 leaves. 

When comparing shape across at nodes of the leaf series in the GWAS09 dataset, we 

identified a chromosome 1 locus at 27.4Mb associated with variation in llpPC3 for node six 

leaves, using the KW method, see Figure 4-20. This locus contained a cluster of NBLRR genes 

and was associated with variation in llpPC2 for node six leaves within the GWAS10 growth 

experiment, see Table 4-2. 

We compared leaf shape across the first two leaves of the leaf series using a subset of the 

GWAS09 leaves. We used the llpPCs to score shape variation for these leaves and also 

Chromosome 1 (bp) 
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created new PCs for shape variation in this subset using a PCA on the first two leaves of the 

GWAS09 data, see Figure 4-21, as the first two leaves of the leaf series are distinct in shape 

and size from the majority of the leaf series. We found that variation in one of these 

L2_pPCs was associated with a locus at 27.4Mb on chromosome 1, containing a cluster of 

NBLRR genes, see Table 4-2. 

   

Figure 4-21 Major shape 
variations in leaves at nodes 1 
and 2 

The major PCs created with a 

PCA on the first two leaves of 

GWAS09 dataset, describing 

shape variation specific to the 

first two leaves of the leaf 

series. These capture 87.85% of 

the variation in shape amongst 

the first two leaves. 

4.2.18 Loci associated with variation in heteroblasty traits in 

GWAS09 contain NBLRR clusters 

We scored the leaves in the GWAS09 dataset using the heteroblasty PCs we had created 

previously to score variation with the GWAS10 leaves, see Figure 4-16. We tested for 

associations using these hetPCs and identified two loci associated with variation in the 

het_PC7 trait which contained clusters of NBLRR genes, one on chromosome 1 at 27.4Mb, 

and the other at 18.3Mb on chromosome 5, both associated using the KW method, see 

Table 4-2. We had previously found these loci associated with variation in the hetPCs with 
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the GWAS10 dataset, although interestingly these loci were associated with variation in 

hetPC1 in the GWAS10 dataset, as rather than het_PC7 as in the GWAS09 dataset. 

4.2.19 Multiple loci associated with variation in leaf shape 

across two separate growth experiments contain clusters of 

NBLRR genes 

Shape variation in the GWAS09 dataset was associated with several loci containing NBLRR 

genes that were also associated with leaf shape variation in the GWAS10 dataset. For a 

diagram of all NBLRR clusters in the Arabidopsis thaliana genome, with those within our leaf 

loci marked, see the appendices. Of the four loci containing NBLRR genes we identified 

associated with shape variation in the GWAS09 and GWAS10 experiments, only the locus on 

chromosome 1 at 21.4Mb, found in GWAS10, was exclusive to data from one growth 

experiment.  

Interestingly the loci were not always associated with the same shape traits between 

GWAS09 and GWAS10. Only in GWAS09 was shape variation at the first two leaves 

associated with a locus at chromosome 1 at 27.4Mb containing an NBLRR gene cluster, and 

although shape variation at node six leaves in both growth experiments was associated with 

this chromosome 1 locus at 27.4Mb, in GWAS09 leaves this was for trait llpPC3, whereas in 

GWAS10 the association was for differences in llpPC2. We also found that although some of 

the same loci were associated with shape variation in hetPCs in both GWAS09 and GWAS10, 

the same loci were not necessarily associated with the same hetPC between growth 

experiments. 

The differences in the shape traits these NBLRR containing loci were associated with may be 

the result of the difference in harvest point and growth conditions between the GWAS10 

and GWAS09 datasets. We had limited time to harvest the GWAS09 plants before continuing 

with ongoing work in another area of the project. This resulted in a harvest point based on 

time, rather than the growth stage harvest point used in the GWAS10 growth experiment.  

We suspect this resulted in more non genetic variation in the GWAS09 dataset, as variation 

in growth due to environmental variability was perhaps able to impact the morphology of 

plants at harvest point more so than in the GWAS10 dataset. For example, plants with 

identical growth rates that germinated on different days would be harvested at different 

times in the GWAS10 dataset, once they had grown 11 leaves longer than 5mm. In the 

GWAS09 growth experiment, these plants would be harvested at the same time due to the 

time based harvest point.  
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It is interesting that variation in leaf shape of the first two leaves was associated with loci 

only in the GWAS09 dataset. One explanation for this is that the level of variation in growing 

conditions itself varied at different times between the GWAS09 and GWAS10 growth 

experiments. For example, greater variability of growth conditions early in the growth of 

GWAS10 plants could result in a greater proportion of non genetic variability in the leaf 

shape of early leaves in the GWAS10 dataset relative to the GWAS09 dataset. 

4.2.20 GWAS for leaf shape in Arabidopsis identifies loci for a 

variety of traits 

We had conducted three separate GWASs, using leaf shape data from three independent 

growth experiments. We were able to map loci associated with variation in a variety of 

traits, scoring leaf shape for accessions at the level of individual leaves, whole plant 

averages, and for heteroblastic changes in shape, and found loci associated with variation in 

traits at each of these levels. We had found the effect size of our loci to be small, and for 

multiple loci to be associated with many of the traits. This suggests a polygenic genetic 

architecture for leaf shape variation amongst the HapMap accessions, with many loci of 

small effect contributing to the natural leaf shape variation in this collection of accessions. 
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4.3 Conclusions 

4.3.1 Practical considerations for the scale of phenotyping 

experiments 

We had run several GWASs to map loci responsible for natural leaf shape variation in 

Arabidopsis, creating leaf shape datasets for three separate growth experiments and 

identifying multiple loci associated with our leaf shape traits. An alternative approach would 

have been to consolidate the effort in carrying out each growth experiment to one larger 

experiment with an increased number of repeats. In each of our three growth experiments 

we aimed to harvest two plants per accession. As such an alternative approach, using similar 

effort over one single growth experiment, would allow us to harvest six plants per accession. 

The advantage of this approach would be decreased non genetic variability for our leaf 

shape traits, and the ability to calculate within line variation to make an estimate of the 

heritability of our traits. 

 Although worthwhile to consider, the disadvantages of growing many plants in one large 

experiment meant this approach was less suitable to our project. Practically speaking, the 

effort of one worker over a period of time cannot be condensed to a shorter period without 

more personnel, and so our resources determined our approach to an extent. We were also 

unsure of how successful our GWA work would be. Though we had shown in work to 

identify QTLs in the Bay-0 x Shahdara RIL population that variation in our leaf shape traits 

could be mapped to genetic loci, it was possible that mapping leaf shape traits within a 

panel of natural accessions would not be as successful if leaf shape is determined by many 

loci of small effect. GWA mapping works best with traits with a strong genetic basis across 

few loci (Korte and Farlow, 2013), and so variation in such traits can be mapped to a small 

number of strongly associated loci (Baxter et al., 2010; Chao et al., 2012). In contrast, a trait 

controlled by many loci of small effect, or rare polymorphisms, may be much trickier to map 

(Korte and Farlow, 2013), as such we were wary of immediately committing a large number 

of resources to a single GWAS.  

We did not wish to compromise on the number of accessions we used as a decrease in the 

number of unique genetic lines used would reduce our mapping resolution, and this was one 

of the key benefits to carrying out the GWAS during the project. We were also wary of 

growing batches of the accessions at different times, then collating the data obtained from 

each into a single dataset. Although we could include control lines between growth 
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experiments in an attempt to normalise data across seasonal differences, this would rely on 

an assumption that each line responded in the same way to environmental variables such as 

temperature and day length. It is also likely that batches grown at different times of the year 

would vary in leaf number and flowering time. Differences in leaf number between batches 

due to variation in greenhouse conditions would greatly hinder our investigation of 

heteroblastic changes in shape across the leaf series. As such we ruled out growing the 

accession collection in smaller batches throughout the year. 

Our approach using multiple growth experiments for separate GWASs meant each 

experiment could be informed by the previous analysis. We were able to choose a new 

harvest point in response to our results from first GWAS growth experiment; GWAS60. With 

the GWAS60 dataset we examined leaf shape at two different time points and mapped loci 

for leaf shape unique to each dataset. We were encouraged to find variation in leaf number 

in this dataset was associated with two loci, containing the genes FRIGIDA and DOG1, that 

had been reported as associated with flowering time in a GWAS in the literature (Atwell et 

al., 2010). This suggested our approach was capable of reproducing association of candidate 

genes in commonly studied traits, despite the relatively low number of repeats per 

accession we had used. It is also worthwhile noting that although a low number of plants 

were harvested for each accession, as each rosette leaf per plant was harvested, we 

recorded multiple data points for each plant harvested. On average for the GWAS60, 

GWAS10 and GWAS09 growth experiment datasets, 17.8, 9.4 and 7.8 leaves respectively 

were harvested from every plant. This made a variety of leaf shape comparisons possible 

within the datasets we created.  

We used a similar harvest point for the GWAS09 and GWAS10 growth experiments, and it 

was promising that for leaf shape traits in both these experiments, some of the associated 

loci were common to data from both growth experiments.  

4.3.2 Scoring leaf shape variation effectively in large datasets 

We scored leaf shape differences within the shape datasets of the GWAS growth 

experiments using PCA to identify major variations in leaf shape, capturing these variations 

in a set of PCs, and scoring the shape of individual leaves with these PCs. Leaves can be 

scored using PCs created from the dataset to which they belong, or for PCs created with a 

PCA on an external dataset, such as the ten accession leaf library used to create the leaf 

library PCs (llpPCs) (Matser, 2014). For each of the leaf shape datasets created with our 

three GWAS growth experiments, we scored leaf shape variation using PCs created from 
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each individual dataset respectively, and also the llpPCs. This allowed us to capture the 

major shape trends in this new collection of accessions, which may differ from those within 

the 10 accession dataset used to create the leaf library PCs. 

Within each of our three GWAS growth experiments, we compared values for the dataset 

specific PCs and the llpPCs. Within the GWAS10 and GWAS09 datasets, scores for dataset 

specific PCs correlated strongly with the leaf library PCs. PCs from a PCA on the GWAS60 

growth experiment dataset were less strongly correlated with the llpPCs. However, across 

our three GWASs, any loci associated with changes in dataset specific PCs were also 

associated with variation in the llpPCs. This suggested that the major shape variations in the 

leaves harvested for our GWAS growth experiments were similar to those captured by the 

leaf library PCs, despite the difference in the number of accessions used to create each set 

of PCs. 

Throughout our GWAS work we investigated shape changes between accessions at 

individual nodes of the plant, or across set points of the leaf series. As the major shape 

variations in these subsets may differ from those in the total dataset, we used PCA on these 

subsets of leaves to create subset specific PCs. In some instances variation in these subset 

specific PCs was associated with loci not identified when using the llpPCs, for example for a 

subset of the first two leaves in the GWAS09 dataset, or the 6th leaf in the GWAS10 dataset. 

On the whole however, using subset specific PCs did not identify any new loci not also 

associated with the llpPCs, for example for the median node leaf subset of the GWAS60 

dataset, or the node 4 to 7 subsets of the GWAS10 and GWAS09 datasets.  

Our series of GWAS analyses is perhaps the first detailed assessment of natural leaf shape 

variation across a collection of over 300 Arabidopsis accessions. We analysed this dataset in 

different ways in order to best identify loci associated with the natural differences in leaf 

shape between the accessions. Using a combination of our leaf library PCs, and new PCs 

capturing variation in subsets of the growth experiment datasets, we mapped a variety of 

loci linked to natural leaf shape variation in this collection of accessions. 

4.3.3 A locus associated with variation in leaf shape and number 

A locus associated with leaf number variation in GWAS60 plants was also associated with 

variation in average llpPC2 score in this growth experiment. Leaf number is a trait closely 

related to bolting and flowering time in Arabidopsis. During the transition from vegetative to 

reproductive growth, plants cease growing rosette leaves, bolt, and produce an 
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inflorescence. Mutants in flowering time are also known to have a variety of other 

phenotypes, including leaf morphology (Pouteau et al., 2004). It is known that the FRIGIDA 

gene has an effect on photosynthetic rate and water use efficiency (Lovell et al., 2013). 

Variation in genes with flowering time phenotypes also affect leaf morphology in Cardamine 

Hirsuta and a tomato species (Cartolano et al., 2015; Shalit et al., 2009). It seemed possible 

to us therefore that the polymorphism underlying a locus controlling leaf number was also 

affecting leaf shape in these lines. The later flowering lines grew more leaves, which had a 

higher llpPC2 score compared to the earlier flowering lines with fewer leaves. We noted 

whilst carrying out QTL mapping in the Bay-0 x Shahdara RIL population that llpPC2 score 

increases in plants under shade conditions. It is possible the increase in llpPC2 in later 

flowering plants is due to greater self shading within rosettes due to the presence of more 

leaves that overlap existing ones. Growing groups of late and early flowering plants 

alongside one another, harvesting them at a stage where both had similar leaf number, and 

again once both had bolted, would reveal if the later flowering plants had a higher llpPC2 

score at leaves throughout the plants growth or if this developed later, perhaps as a 

response to a denser rosette in later flowering plants. 

4.3.4 Incorporating our GWAS results into the wider project 

Further experimental work is required to identify a causative gene within a locus associated 

with trait variation in a genetic mapping experiment. Alternatively, genes with functions or 

structures likely to be related to the trait within the locus can be identified as candidate 

genes and subjects for further investigation. Within this work, several of the loci associated 

with changes in leaf shape contained clusters of genes in the NBLRR family. This suggested 

that genes from this family might be responsible for some of the differences in leaf shape 

amongst these accessions. In the wider context of the project, this was interesting because it 

may implicate this gene family in contributing to the natural differences of leaf shape in 

Arabidopsis. We chose to focus on the genes within this family at these loci in our further 

work. The alternative strategy of attempting to identify the causative polymorphism 

responsible for each association appeared less likely to be successful within the time 

available. 

We considered the option of using a statistical measure to test whether there was an 

enrichment of NBLRR family members across all loci associated with our leaf shape traits. 

This would be relatively simple to implement using a variation of previous scripts we had 

created for a network analysis carried out in the Bay-0 x Shahdara RIL population. Each SNP 
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above a threshold of significance would be listed, and from this, a list of genes within 5kb 

either side of each SNP could be collected. This would provide a list of all genes within 

estimated linkage disequilibrium with every significantly associated SNP. This list could be 

tested for enrichment of NBLRR family members relative to the genome. A problem with this 

approach however is that the NBLRR genes often reside within clusters in the genome 

(Meyers et al., 2003). There are upto nine NBLRR genes within clusters underneath some of 

our GWAS loci, and so even if only one gene amongst the cluster contained associated SNPs 

and harboured the causative polymorphism, the other genes within the cluster would 

greatly enrich the results of the analysis, as they lie within linkage. If we attempted to 

counter this by considering each cluster or isolated gene as an equal ‘instance’ of NBLRR 

genes, then we would likely find a lack of NBLRR genes amongst all our peaks, because 

potentially causative NBLRR genes would be combined into one instance. As the NBLRR 

family has evidence of undergoing extensive duplication (Meyers et al., 2003), it is quite 

possible NBLRR genes within the same cluster have a similar function and so multiple 

polymorphisms within different NBLRR genes in a cluster could potentially be associated 

with variation in leaf shape. To identify a significant enrichment, an enrichment analysis of 

loci associated to a trait in a genetic mapping experiment has to overcome a low ratio of 

causative to non causative genes in loci (Filiault and Maloof, 2012). Assuming only one gene 

is responsible for each associated loci, the ratio of causative to non causative genes in the 

enrichment analysis depends on the size of the linkage disequilibrium window chosen and 

number of loci associated for the trait. We decided the outcome of an enrichment analysis 

would be too dependent on how we designed the analysis; the size of linkage window we 

chose and assumptions we made on whether a single NBLRR gene or several within a locus 

were causative, and so decided not to apply an enrichment analysis. 

We also identified other loci associated to our leaf shape traits that did not contain NBLRR 

genes. For these non NBLRR loci we reported the loci associated in both KW and AMM 

methods, aiming to identify the strongest associations for potential further experimental 

work.  

In contrast to some studies which identify a single clear peak for their phenotypes (Baxter et 

al., 2010; Chao et al., 2012), we had identified multiple peaks, making it difficult to choose 

any as a focal point for further investigation. If our GWAS had presented a small number of 

highly significant loci associated with a large phenotypic effect, we would have been able to 

focus the project on one or two of these major loci, creating F2 populations to find the gene 

responsible for the difference in phenotype. This requires a considerable amount of work, 
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scoring the shape of and genotyping hundreds to thousands of plants to narrow the 

causative region to the width of a single gene (Loudet et al., 2008). We were concerned the 

small to medium effect sizes of our loci would make this approach difficult, as identifying the 

effect of such a polymorphism in an F2 population may be trickier to resolve against the 

genetic background of the chosen parents. Small regions of the genome can have complex 

effects on a trait (Kroymann and Mitchell-Olds, 2005), and so even after fine mapping, 

identifying the responsible polymorphism within a region can be difficult. We were wary of 

committing such a large effort to one of our loci, given the relatively small effect of each. 

One option for further investigating peaks of association is to use a candidate gene 

approach. When QTL mapping in RIL populations, a large number of genes generally fall 

within the confidence intervals of the QTL, and so compiling a list of candidate genes with 

known functions similar to the trait the QTL is associated with can be relatively ineffective 

due to the number of possible candidate genes.  Within a GWAS however, associated loci 

are much narrower, in part due to the decay of linkage disequilibrium amongst natural 

accessions, estimated to be to 50% within 5kb (Gan et al., 2011). This allows for considerably 

smaller windows in which to collect candidate genes. We did not think this would be an 

appropriate approach for our results however. Although there are a number of genes 

implicated in leaf development in Arabidopsis that represent candidate genes (Berná et al., 

1999; Dkhar and Pareek, 2014; Gonzalez and Inzé, 2015; Hepworth and Lenhard, 2014), it is 

very possible that genes not involved in leaf development were responsible for the natural 

variation in leaf shape we observed. The causative polymorphism for one of our leaf shape 

QTL identified in the Bay-0 x Shahdara RIL population was likely within such a gene, TZP, 

characterised for a role in morning specific growth (Loudet et al., 2008). Given the number 

of genes in which a polymorphism could potentially result in a difference in leaf shape, we 

felt creating a list of candidates for each loci would be unlikely to produce a particularly 

short list, and would be at risk of overlooking a potentially causative gene.  

It is worthwhile to note that the loci associated to our leaf shape traits containing NBLRR 

genes in the GWASs were only identified using the KW approach. This left open the 

possibility of these loci being false positives potentially the result of population structure 

within Arabidopsis. There is evidence that leaf shape varies geographically in Arabidopsis 

accessions (Hopkins et al., 2008) and this has been suggested to result in overcorrection of 

loci for known natural variation in candidate genes in GWAS (Filiault and Maloof, 2012). 

Although we identified several loci with the both the KW and AMM methods, and so less at 

risk of being false positive loci, none of these had a large effect size. Though we could 
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perhaps have more confidence in these loci as they were significantly associated in both 

association tests, we were wary of committing to the resource intensive route of confirming 

these loci experimentally without a strong allelic effect. It was possible that pursuing these 

associations further would not result in the identification of the causative polymorphism, or 

likely candidate gene, within the time available. Although we created numerous F2 

populations based around all the associated loci we identified as a starting point for further 

investigation, we decided to take the opportunity the NBLRR loci presented, and to focus on 

the possible role of members of this gene family identified in our GWAS results in leaf shape 

variation for the next stage of the project. This would allow us to answer specific questions 

about the role of NBLRR genes in leaf shape in Arabidopsis. 
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Chapter 5.  Analysis of T-DNA insertion lines for 

NBLRR genes associated with natural leaf shape 

variation 

5.1 Introduction 

We identified potential associations between variation in our leaf shape traits and natural 

genetic variation at loci using natural accessions of Arabidopsis in our GWAS work. We found 

clusters of Nucleotide Binding Leucine Rich Repeat (NBLRR) genes within four loci associated 

with leaf shape traits in our GWAS work. We decided to investigate these genes further, and 

identify whether they might have a role in leaf shape variation in Arabidopsis. Estimates of 

the number of NBLRR genes in Arabidopsis range from 149 to 159 (Guo et al., 2011; Meyers 

et al., 2003). NBLRR family genes can be divided by the type of N terminus domain. TIR-

NBLRR genes are defined by a N terminal  TIR domain resembling Drosophila Toll and 

mammalian IL-1 receptors, and CC-NBLRR genes feature a coiled-coil (CC) domain (Guo et 

al., 2011). Of the 14 NBLRR genes within loci associated to leaf shape traits in our GWAS 

work, only one was a CC type NBLRR. The remaining 13 genes associated to leaf shape traits 

were not restricted to a distinct subgroup in the TIR-NBLRR clade, see appendices for a 

phylogenetic tree for this family.  

We focused on NBLRR genes within loci associated to leaf shape traits in our GWAS and their 

possible role in determining leaf shape variation. These 14 NBLRR genes were located across 

four loci associated to leaf shape traits identified on chromosome 1 at 27Mb and 21Mb, and 

chromosome 5 at 14Mb and 18Mb. We would characterise mutant lines for these 14 genes 

to investigate possible gene function. We opted to use T-DNA insertion lines to test whether 

mutations in any of these genes resulted in changes in leaf shape. SALK T-DNA insertion lines 

are a convenient tool for investigating gene function and are available for a large number of 

genes in Arabidopsis (Alonso et al., 2003).  

NBLRR gene phenotypes have been characterised in the literature using both natural genetic 

variation and mutant lines. Natural variation in disease resistance between the accessions 

Ws-0 and RLD was used to map the RPS4 NBLRR gene (Gassmann et al., 1999; Hinsch and 

Staskawicz, 1996) and naturally occurring NBLRR loci have been found to create 

incompatible F1 plants between different Arabidopsis accessions (Alcázar et al., 2008; 

Bomblies et al., 2007). Mutations in NBLRR genes have also been studied for their disease 
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resistance phenotypes (Shirano et al., 2002; Sohn et al., 2014). Although we had first 

identified these NBLRR genes through work on natural genetic variation in a GWAS, we were 

confident we could continue to investigate a potential leaf shape function of these genes 

using mutant analysis. 

Mutant analysis can be used in combination with studies of natural genetic variation 

through complementation. Kobayashi et al., (2008) use complementation to investigate the 

HMA5 gene as a candidate for a root length QTL in a RIL mapping population created from 

Cvi and Ler Arabidopsis accessions. These authors find that in F1 plants hybrid between a T-

DNA insertion line for gene HMA5 with a recessive short root phenotype, and two RIL lines 

with variant alleles at a root length QTL, the RIL with a Ler QTL allele is able to rescue the 

short root phenotype of the HMA5 T-DNA line, whereas the RIL with a Cvi allele cannot. 

Crossing the Cvi QTL allele RIL to Col-0, the T-DNA line background, rescued the short root 

phenotype, indicating HMA5 as the gene responsible for this QTL (Kobayashi et al., 2008). It 

is possible we could use a similar approach to compare any leaf shape difference we identify 

within the T-DNA lines against those of natural alleles amongst the Arabidopsis accessions. 

The phenotypes of NBLRR genes studied in the literature are often specific to environmental 

conditions. NBLRR genes are known to have phenotypes that vary with temperature, often 

becoming severe at lower temperatures. RPP4 for example has a stronger phenotype at 4°C 

than at 22°C (Huang et al., 2010). The SNC1 NBLRR gene has a dramatic effect on plant 

morphology at 24°C but not 28°C (Zhu et al., 2010). Naturally occurring NBLRR loci causing 

hybrid defects between Arabidopsis accessions have also been found to be temperature 

sensitive, with severe defects occurring at lower temperatures (Alcázar et al., 2008; 

Bomblies et al., 2007). The phenotypes of caused by mutations in NBLRR genes have also 

been known to be sensitive to humidity (Noutoshi et al., 2005). Interestingly there is work 

reporting a NBLRR mutation with a light specific phenotype. A mutation in the NBLRR gene 

Constitutive Shade Avoidance1 (CSA1) causes a dramatic leaf shape phenotype similar to 

that observed as a result of the shade response in Arabidopsis, and shows a hypocotyl 

elongation phenotype in only red light (Faigón-Soverna et al., 2006).  

We obtained T-DNA insertion lines for the NBLRR genes within our leaf shape associated 

GWAS loci to test for leaf shape differences between these lines and the Col-0 background. 

We would harvest each rosette leaf of the T-DNA lines at bolting and score shape variation 

in these leaves using the leaf library PCs. The SALK T-DNA lines are created in a Col-0 

background (Alonso et al., 2003), which is early flowering. Harvesting these plants at bolting 
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will allow us to identify any variation in the number of leaves grown in the T-DNA lines. For 

our GWAS work, we had used the greenhouses at the University of York to grow the natural 

accessions and so would use this same environment to test for leaf shape differences 

amongst the NBLRR T-DNA lines. Given the effects of light and temperature on NBLRR gene 

phenotypes in the literature, we were also interested to examine the response of any NBLRR 

T-DNA lines with differences in leaf shape to variation in temperature and light conditions. 
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5.2 Results 

5.2.1 Leaf shape varies amongst T-DNA insertion lines for 

candidate genes within GWAS loci 

We used SALK T-DNA insertion lines to further investigate NBLRR genes within loci 

associated to leaf shape traits in our GWAS work. We obtained 18 SALK T-DNA insertion 

lines annotated for insertions in 14 genes, see Table 5-1. As we would be unable to carry out 

a detailed characterisation of each mutation due to time constraints, we instead screened 

the set of T-DNA insertion lines for differences in leaf shape. This allowed us to identify T-

DNA insertion lines that varied in leaf shape, potentially implicating candidate NBLRR genes 

with a leaf shape function, which we could focus on in further work. In February 2014 we 

grew six plants for each of these T-DNA lines and harvested the leaves once plants had 

bolted. We scored leaf shape and size variation using the leaf library PCs and centroid size. 

The leaf shape of each T-DNA insertion line was compared to the background line, Col-0, 

grown alongside these lines. In this growth experiment we identified two T-DNA lines, 

At5g45240-1 and At1g72840-1, as having a lower llpPC2 score than Col-0, see Figure 5-1.  

NASC ID  Gene Insert location 

N655775 At1g72890 Exon 2 

N655912 At5g36930 Exon 7 

N658536 At1g72840  Exon 4 

N658563 At1g72860 Exon 3 

N658582 At1g72860 Intron 2 

N659957 At5g45230 Exon 4 

N660465 At5g45230 Exon 3 

N662567 At5g45250 Exon 2 

N670661 At1g58602 1000-Promotor 

N672671 At5g45240 Exon 9  

N673326 At1g72910 300-UTR3 

N676125 At1g59218 300-UTR5 

N676263 At5g45200  Intron 2 

N681211 At5g45250  300-UTR5 

N682142 At1g72850  Exon 1 

N683557 At5g45260  Exon 5 

N685562 At1g72940  Intron 1 

N686636 At1g72940  Exon 2 
 

Table 5-1 T-DNA insertion lines 
annotated for NBLRR genes 
Table listing the 18 T-DNA insertion lines 

for 14 GWAS associated NBLRRs that we 

analysed for leaf shape. Where possible 

we obtained lines annotated as having a 

T-DNA insertion within an exon 
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Figure 5-1 Difference in llpPC2 between Col-0 and T-DNA lines At5g45240-1 and 
At1g72840-1 
Left figure shows the difference in mean llpPC2 score across the leaf series between Col-0, 

shown in black, and At5g45240-1, shown in blue. Right figure shows difference in mean 

llpPC2 score across the leaf series between Col-0, shown in black and At1g72840-1, shown in 

green. Error bars show 95% confidence intervals.  

5.2.2 The T-DNA insertion line At1g72850-1 may have a condition 

specific phenotype 

In repeated growth experiments with the NBLRR T-DNA insertion lines we found a third T-

DNA insertion line, At1g72850-1, had a difference in llpPC2 score relative to Col-0. An image 

of rosettes of Col-0 and At1g72850-1 plants can be seen in Figure 5-4. However, the 

difference in shape observed for this line was not present in all growth experiments with 

these lines. Variability in the phenotype of this line may be the result of differences in 

greenhouse conditions. Figure 5-2 shows the difference in llpPC2 score between the 

At1g72850-1 line and Col-0 in a growth experiment in January. Growth conditions in the 

greenhouse may vary throughout the year. Comparison of llpPC2 score of the Col-0 control 

lines between January and February growth experiments showed the control line had a 

small difference in leaf shape between the January and February growth experiments. 

Interestingly, for line At1g72850-1, the difference in llpPC2 score between January and 

February growth experiments was much greater, see Figure 5-3. This suggested the leaf 

shape of At1g72850-1 may vary more than Col-0 in response to differences in growth 

conditions.  

We aimed to examine how the leaf shape of the T-DNA lines varied in response to 

differences in growth conditions. Our work growing the Bay-0 x Shahdara RILs in light and 

shade treatments suggested that shade grown lines will have a higher llpPC2 score. We grew 
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the T-DNA lines At1g72840-1, At5g45240-1 and At1g72850-1 in light and shade conditions to 

see how the leaf shape of these lines would respond to the difference in conditions. The 

average llpPC2 score for each line can be seen in Figure 5-5. Each line had a higher llpPC2 

score in the shade, and the difference in llpPC2 score between each T-DNA line and Col-0 

was also greater in shade conditions. This result suggested that the extent of the llpPC2 

difference between line At1g72580-1 and Col-0 may vary with environmental conditions, 

and is perhaps greater in environments resulting in higher llpPC2 score. 

 

Figure 5-2 Difference in llpPC2 score between 
Col-0 and At1g72850-1 
This figure shows the difference in mean 

llpPC2 score across the leaf series between 

Col-0, shown in black, and At1g72850-1, 

shown in red. Error bars show 95% confidence 

intervals. 

 

 

Figure 5-3 llpPC2 score of Col-0 and 
At1g72850-1 in two growth experiments 
Figure shows the whole plant llpPC2 scores 

of Col-0 and At1g72850-1 plants grown in 

two growth experiments during January 

and February. Error bars show 95% 

confidence intervals. 
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Figure 5-4 Rosettes of Col-0 and T-DNA line At1g72850-1 
Image shows a representative plant from the T-DNA line At1g72850-1 and Col-0. 

 

 

 

  

Figure 5-5 llpPC2 score 
for three T-DNA lines 
and Col-0 in two light 
conditions 
Figure shows the whole 

plant llpPC2 scores for 

three T-DNA lines, 

At1g72840-1, 

At5g45240-1 and 

At1g72850-1, grown in 

either light conditions, 

shown by grey triangles, 

or shade conditions, 

shown by black circles. 

Eight plants were grown 

for each line. Error bars 

show 95% confidence 

intervals. 
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5.2.3 Characterisation of further T-DNA insertion lines for genes 

At5g45240 and At1g72840 

We identified leaf shape differences in three SALK T-DNA insertion lines annotated as having 

insertions in the genes At1g72840, At1g72850 and At5g45240 after measuring leaf shape 

across 18 T-DNA insertion lines for 14 NBLRR genes. We wondered if the leaf shape 

differences in these lines would also be found in other available T-DNA insertion lines for 

these genes. We were able to obtain one other T-DNA insertion line for At1g72840, 

At1g72840-2, and three more for At5g45240, At5g45240-2, At5g45240-3 and At5g45240-4. 

We grew these lines in the University of York greenhouses, harvesting each rosette leaf per 

plant at bolting and scoring leaf shape with our leaf library PCs. 

The second T-DNA insertion line we obtained for At1g72840, At1g72840-2, had a similar leaf 

shape to At1g72840-1. Both At1g72840-1 and At1g72840-2 had a lower llpPC2 score than 

Col-0 across leaves at nodes six to ten of the leaf series, see Figure 5-6. That the two T-DNA 

lines we obtained for At1g72840 had a similar leaf shape suggests mutant alleles of this gene 

may have similar effects on leaf shape. The At1g72840-2 line also differed in leaf size 

compared to Col-0, although no difference in leaf size was found between leaves of Col-0 

and the line At1g72840-1, see Figure 5-6. Although both lines have similar llpPC2 scores over 

the leaf series, the size difference between leaves of the At1g72840-2 and At1g72840-1 lines 

suggests the effect of each T-DNA insertion per line on leaf shape and size may not be 

entirely identical. An image of the plants from these lines and a Col-0 plant grown alongside 

them can be seen in Figure 5-7. 

Of the four T-DNA lines annotated with insertions in At5g45240 that we characterised, two 

of these, At5g45240-3 and At5g45240-4, showed no difference in leaf shape and size 

compared to Col-0. The At5g45240-2 line had a similar llpPC2 score to the At5g45240-1 line; 

both lines had a lower llpPC2 score than Col-0 across the leaf series, see Figure 5-9. Both 

At5g45240-1 and At5g45240-2 had a smaller leaves than Col-0, but the leaves of At5g45240-

2 plants were smaller still than At5g45240-1, see Figure 5-10. Images of representative 

plants of the A5t45240-1 and At5g45240-2 lines can be seen in Figure 5-11. At5g45240-1 

and At5g45240-2 are described as having insertions within the 9th and 1st exons of the gene 

respectively, whereas At5g45240-3 and At5g45240-4, are as described as having insertions 

in the introns of the gene, see Figure 5-8. We wondered if the variation in leaf shape and 

size amongst these four T-DNA lines for At5g45240 related to the individual insertion 

described for each line.  
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Figure 5-6 llpPC2 score and size differences between Col-0 and T-DNA lines annotated for 
At1g72840 
Of the two upper figures; left figure shows the mean llpPC2 values across the leaf series for 

Col-0, shown in black, and At1g72840-1, in green. Right shows the mean llpPC2 values for 

At1g72840-2, shown in green, and Col-0 shown again in black. For the two lower figures; left 

figure shows the mean centroid size values across the leaf series for Col-0, shown in black, 

and At1g72840-1 , in green. Right shows the centroid size for At1g72840-2, shown in green, 

and Col-0 shown in black. Error bars show 95% confidence intervals. 
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Figure 5-7 Rosettes of Col-0 and T-DNA lines At1g72840-1 and At1g72840-2 
Photograph shows a representative plant from the lines Col-0, At1g72840-1 and At1g72840-

2.  

 

 

 

Figure 5-8 At5g45240 gene model 
Diagram of At5g45240 gene model, using TAIR10 annotation, from 5’ to 3’. Exons of the 

gene are indicated by black squares and introns by a thin black line. The position of T-DNA 

insertions are indicated by triangles. PCR was used to confirm the presence of these 

insertions, and for At5g45240-1, -2 and -3, a band was produced supporting the annotated 

insertion site. For At5g45240-3 PCR results suggested a second nearby insertion in the 

opposite orientation. A grey triangle marks the annotated insertion site for At5g45240-4, as 

although PCR results confirm the presence of at least one T-DNA insertion within this region, 

further work is required to understand the likely integration of this insertion. 
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Figure 5-9 Difference in llpPC2 score between Col-0 and T-DNA lines for At5g45240 
Figures show the mean llpPC2 score for the four T-DNA lines of At5g45240 and Col-0. Values 

for Col-0 are shown in black and values for each T-DNA insertion line are shown in blue. The 

T-DNA lines are shown compared to Col-0 as follows; top left; At5g45240-1, top right; 

At5g45240-2, bottom left; At5g45240-3, and bottom right; At5g45240-4. 12 plants were 

harvested for each line.  
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Figure 5-10 Difference in size between Col-0 and T-DNA lines for At5g45240 
Figures show the mean centroid size for four T-DNA insertion lines for At5g45240 and Col-0. 

The values for Col-0 are shown in black and values for each T-DNA line are shown in blue. 

The T-DNA lines are shown compared to Col-0 as follows; top left; At5g45240-1, top right; 

At5g45240-2, bottom left; At5g45240-3, and bottom right; At5g45240-4. To calculate mean 

trait scores for each line, 12 plants were harvested.  
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Figure 5-11 Image of Col-0 and T-DNA lines At5g45240-1 and At5g45240-2 
Image shows a representative plant from the lines Col-0, At5g45240-1 and At5g45240-2.  

5.2.4 PCR genotyping to confirm presence of T-DNA insertion in 

lines  

We aimed to verify the annotated location of the T-DNA insertions in the SALK T-DNA lines 

we had obtained from the Nottingham Arabidopsis Stock Centre (NASC).To do this we used 

PCR, using primers created with the online SALK T-DNA primer tool to genotype each line 

(http://signal.salk.edu/tdnaprimers.2.html).  

Three primers are used to verify the presence of the T-DNA insertion; a pair that will amplify 

a region of the host genome, and a third primer complementary to the left border of the T-

DNA insertion. The pair annealing to the host genome are designed to amplify the region 

otherwise containing the T-DNA insertion and so will only produce a band for a wild type 

allele. When using all three primers at once, the presence of a large T-DNA insertion 

between this primer pair will prevent amplification across the region between host genome 

primers, and if a T-DNA insertion is present a smaller band than for the two host genome 

primers will be produced, typically between the T-DNA left border primer and the right host 

genome primer, though T-DNA insertions may insert in a reverse orientation. As each 

outcome produces a different size band, plants heterozygous for an insertion can be 

expected to have two bands of different sizes, a larger host genome band, and a smaller 

band from between the T-DNA border and a host genome primer. 

 Using the SALK primer design tool to design primers, we verified the presence of T-DNA 

insertions in the expected regions for the insertion lines At1g72840-1, At1g72850-1, 

At5g45240-1 and At5g45240-2. Each set of primers produced a wild type and single mutant 
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band of the expected size for DNA of Col-0 and the corresponding T-DNA line, see Figure 

5-12, Figure 5-13, and Figure 5-14. 

When genotyping for the insertions in At5g45240-3 and At5g45240-4 with the respective set 

of three primers we found that two bands were produced for each of these lines. Col-0 DNA 

with the respective primers for each of these lines produced a wild type band of the 

expected size, but for DNA of either of these two T-DNA lines, there was one band within 

the size range expected for the insertion, and another larger band, a different size to that 

found with each primer set and Col-0 DNA, see Figure 5-15. This suggested a more complex 

arrangement than a single T-DNA insertion. Given the variation in leaf shape across the four 

T-DNA insertion lines annotated for the At5g45240 line and the unexpected second bands 

when genotyping lines At5g45240-3 and At5g45240-4, we decided to further investigate the 

arrangement of the T-DNA insertions in these lines. 

So far we had used both host genome primers in combination along with the T-DNA left 

border primer, assuming that if the band produced with T-DNA line DNA was within the 

expected size range, that this was produced with the T-DNA left border primer, LBl1.3, and 

the right host genome primer. As At5g45240-3 and At5g45240-4 produced two bands for 

the three primer combination, we wanted to test this assumption, and used the left and 

right host genome primers individually with LBl1.3. 

Using the right host genome primer and LBl1.3 with DNA for lines At5g45240-1 and 

At5g45240-2 produced the same band identified when using the three primer combination 

for these lines, see Figure 5-17 and no bands were identified when using the left host 

genome primer and LBl1.3 with these two lines, see Figure 5-16. This suggested the bands 

produced for At5g45240-1 and At5g45240-2 were the result of amplification of the region 

between the left T-DNA border primer and the host genome right primer, as assumed 

previously.  

For At5g45240-3, we found that using the right host genome primer and LBl1.3 produced 

the band of the expected size for this line we had seen previously, see Figure 5-15 and 

Figure 5-17. Using the left host genome primer and LBl1.3 also produced a band for 

At5g45240-3, see Figure 5-16. This band was a similar size to the larger band produced when 

using both host genome primers with LBl1.3 for this line earlier, see Figure 5-15. This 

suggested there may be two T-DNA insertions in opposite orientations in the At5g45240-3 

line; one which produces a band between LBl1.3 and the host genome right primer, and 
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another insertion in the reverse orientation producing a band between the host genome left 

primer and LBl1.3.  

For At5g45240-4, only the left host genome primer in combination with LBl1.3 produced a 

band, and this matched the size of the larger of the two bands identified with the left and 

right host genome primers initially for this line. This suggested the presence of a T-DNA 

insertion in the reverse orientation near the left host genome primer. Given that the second 

band produced with DNA from this line using both host genome primers and LBl1.3 earlier 

was of the expected size for the right host genome and LBl1.3, it was surprising we did not 

find such a band with At5g45240-4 DNA using solely the right host primer and LBl1.3, 

however repeating the experiment with this combination also did not show a band. 

That the smaller band for produced with At5g45240-4 DNA requires all three primers is 

curious. A worthwhile follow up experiment would be to use just the two host genome 

primers with DNA from this line to verify that no band is produced, as one possible 

explanation for the results observed is that the host genome has been rearranged, resulting 

in a amplifiable region between the two host genome primers, but that is shorter than found 

in wild type. 

  
  

Figure 5-12 Testing At1g72850-1 and At5g45240-1 insertion 
position 
In the first lane is a 2-log ladder. The second and third lanes 

use left (LP) and right primers (RP) for the host genome across 

the region of the At1g72850-1 insertion and an LBl1.3 primer 

complementary for the left border of the T-DNA insertion. The 

fourth and fifth lanes contain LP and RP for the host genome 

across the region containing the At5g45240-1 insertion, and 

the LBl1.3 primer. The DNA sample used for the reaction run 

in each lane is listed above each lane respectively. DNA for 

both insertion lines produces a single band different to Col-0, 

suggesting each has a homozygous insertion at this point. 

Expected size for wild type band with At1g72850-1  LP and RP 

primers is 1219bp. If there is a T-DNA insertion in this interval, 

expect a band of 580-880bp. For At5g45240-1 LP and RP in a 

wild type background, a band of 991bp is expected. If there is 

an insertion in this interval, a band between 464-764bp is 

expected. 



149 
 

 

 

Figure 5-13 Testing At1g72840-1 insertion position 
In the first lane is a 2-log ladder. The second and third lanes 

use left (LP) and right primers (RP) for the host genome 

across the region of the At1g72840-1 insertion and an 

LBl1.3 primer complementary for the left border of the T-

DNA insertion. The DNA sample used for the reaction run in 

each lane is listed above each lane respectively. 

Expected size for wild type band with At1g72840-1  LP and 

RP primers is 1105bp. If there is a T-DNA insertion in this 

interval, expect a band of 585-885bp.  

 

 

 

 

Figure 5-14 Testing At5g45240-2 insertion position 
In the first lane is a 2-log ladder. The second and third lanes 

use left (LP) and right primers (RP) for the host genome 

across the region of the At5g45240-2 insertion and an 

LBl1.3 primer complementary for the left border of the T-

DNA insertion. The DNA sample used for the reaction run in 

each lane is listed above each lane respectively. 

Expected size for wild type band with At5g45240-2 LP and 

RP primers is 990bp. If there is a T-DNA insertion in this 

interval, expect a band of 438-738bp.  
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Figure 5-15 Testing insertion position in T-DNA lines At5g45240-2, At5g45240-3 and 
At5g45240-4 
In the first lane is a 2-log ladder. Lanes 2 to 4 use left (LP) and right primers (RP) for the host 

genome over a region of the At5g45240-2 insertion and an LBl1.3 primer complementary for 

the left border of the T-DNA insertion. The expected band for the presence of the 

At5g45240-2 insertion is 438-738bp, the wild type expected band is 990bp. Lanes 2 to 4 use 

left (LP) and right primers (RP) for the host genome over a region of the At5g45240-3 

insertion and a LBl1.3 primer complementary for the left border of the T-DNA insertion. The 

expected band for the presence of the At5g45240-3 insertion is 450-750bp, the wild type 

expected band is 1111bp. Lanes 2 to 4 use left (LP) and right primers (RP) for the host 

genome over a region of the At5g45240-4 insertion and a LBl1.3 primer complementary for 

the left border of the T-DNA insertion. The expected band for the presence of the 

At5g45240-4 insertion is 598-898bp, the wild type expected band is 1222bp. 
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Figure 5-16 Testing insertion position in T-DNA lines annotated for 
At5g45240 
For PCR reactions with each of the T-DNA lines annotated for At5g45240, 

we used the left primer for each T-DNA insertion and LBl1.3.  Along with 

DNA from each T-DNA insertion line of At5g45240, we used Col-0 and a 

negative control with the reactions. T-DNA insertions in the expected 

orientation would not produce a band with the left primer and LBL1.3 

alone. Bands for At5g45240-3 and At5g45240-4 may indicate the 

presence of T-DNA insertions in reverse orientation. 
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Figure 5-17 Testing insertion position in T-DNA lines annotated for At5g45240 
For PCR reactions with each of the T-DNA lines annotated for At5g45240, we used 

the right primer for each line and LBl1.3.  Along with DNA from each T-DNA 

insertion line of At5g45240, we used Col-0 and a negative control for the reaction. 

T-DNA insertions in the expected orientation will produce a band with the right 

primer and LBL1.3. Bands for At5g45240-1, At5g45240-2 and At5g45240-3 indicate 

the potential presence of T-DNA insertions in expected orientation. 
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T-DNA line At5g45240-1 At5g45240-2 At5g45240-3 At5g45240-4 

Size with LP (bp) - - 900 900 

Size with RP (bp) 600 700 500 - 

Size with LP + RP (bp) 600 700 900, 500 900, 700 

Expected size (bp) 464-764 438-738 450-750 598-898 

Wild type size (bp) 991 990 1111 1222 

Table 5-2 Confirming presence of insertions in At5g45240 T-DNA lines 

Table shows the band sizes produced when using the LBl1.3 primer with the left, right or 

both left and right host genome primers across the annotated insertion site for T-DNA lines 

for At5g45240. Dashes mark combinations where no band was produced. The expected 

insertion and wild type band sizes for each T-DNA line are also shown. Both At5g45240-1 

and At5g45240-2 show a band of the expected size using the right host genome primer and 

LBl1.3, suggesting a T-DNA insertion in the expected annotated orientation and position. For 

At5g45240-3, a band of the expected size is produced when using the right host genome 

primer and LBl1.3, but another band, larger than the expected size, is produced when using 

the left host genome primer, suggesting there may be two T-DNA insertions of opposite 

orientation at this position. A band of the expected size is produced for At5g45240-4 only 

when using both the left and right host genome primers with LBl1.3, as well as a larger band 

which is also produced using the left host genome primer, suggesting a more complex 

pattern of insertion the annotated insertion for this T-DNA line. 
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5.2.5 Association of T-DNA line leaf shape differences to T-DNA 

insertions in F2 populations 

The SALK T-DNA insertion lines we obtained from NASC were annotated as having a single 

homozygous insertion in one of the 14 NBLRR candidate genes. However, as these lines are 

produced and analysed on large scale as one of many thousand, it is useful to verify that the 

phenotype observed for a line is not the result of another unidentified insertion or other 

mutation elsewhere in the genome. 

To confirm that each T-DNA insertion segregated with the difference in leaf shape we had 

identified for that line, we created F2 populations by crossing each T-DNA line to Col-0 and 

self fertilising the offspring. This produced an F2 population segregating for the presence of 

the T-DNA insertion. We would be able to test whether the differences in leaf shape we 

observed for the T-DNA lines were observed in F2 plants with the T-DNA insertion. We 

would also be able to analyse the leaf shape of plants heterozygous for these insertions. We 

created F2 populations for the T-DNA lines with differences in leaf shape; At1g72850-1, 

At1g72840-1, At5g45240-1 and At5g45240-2. 

For At5g45240-1 we genotyped 76 F2 plants and compared leaf shape between the three 

genotypes, Col-0/Col-0, At5g45240-1/At5g45240-1 and At5g45240-1/Col-0. The frequency of 

these alleles did not differ significantly from expected values using a Chi2 test. We found that 

lines homozygous for the At5g45240-1 insertion had leaf shape very similar to the 

At5g45240-1 control line plants, see Figure 5-18 and Figure 5-19. This suggested the 

At5g45240-1 insertion was responsible for the leaf shape difference we observed for the 

At5g45240-1 line. The effect of the At5g45240-1 insertion is recessive, as heterozygous F2 

plants did not differ in leaf shape from F2 plants without an insertion, see Figure 5-19. 

We carried out a similar experiment for the At5g45240-2 insertion. Between the At5g45240-

2 and Col-0 lines grown as controls alongside the F2 population there was a difference in leaf 

size across the 3rd to 9th leaves and the llpPC3 score over the 5th to 9th leaves of these plants, 

though no difference in llpPC2 score, see Figure 5-20 and Figure 5-21. The At5g45240-2 line 

had previously been identified with a different in leaf size and llpPC2 score when compared 

to Col-0. This suggested that leaf size was the most consistent phenotype for this line 

between experiments, and that although there was also a difference in leaf shape, the 

precise difference in shape may vary between growth experiments.  
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 We genotyped 46 F2 plants and compared the effect of the At5g45240-2 insertion on leaf 

size and llpPC3, as these differed between the Col-0 and At5g45240-2 control lines grown 

alongside the F2 plants. Allele frequencies were not significantly different from expected 

values, tested by Chi2 test. There was a difference in llpPC3 score across the 5th to 9th leaves 

and a difference leaf size across the leaf series between lines homozygous for the 

At5g45240-2 insertion and lines without, see Figure 5-23 and Figure 5-22. We found that F2 

plants heterozygous for the At5g45240-2 insertion had a wild type phenotype, suggesting 

the effect of this insertion on leaf shape and size is recessive. 

We next looked to confirm the segregation of the At1g72840-1 insertion with a difference in 

leaf shape. There was a difference in llpPC2 score between the Col-0 and At1g72840-1 lines 

grown as controls for the F2 population, the At1g72840-1 line had a lower llpPC2 score 

across the 4th to 10th leaves. We genotyped 81 plants for this F2 population and allele 

frequencies were not significantly different from expected values. However, when 

comparing the leaf shape of plants within the F2, there was no effect of the At1g72840-1 

insertion on llpPC2. This suggested that the leaf shape difference between Col-0 and 

At1g72840-1 we observed was not the result of the T-DNA insertion in the At1g72840 gene.  

We were surprised that the At1g72840-1 insertion did not segregate with a difference in 

llpPC2, as another T-DNA line for this gene, At1g72840-2, had a very similar leaf shape to the 

At1g72840-1 line. This had made us more confident that the similar leaf shape differences of 

these two T-DNA lines relative to Col-0 were the result of T-DNA insertions in the At1g72840 

gene. However, our segregation analysis showed this was not the case for the At1g72840-1 

line. We chose to discard the At1g72840-2 line from further analysis, as we suspected the 

leaf shape difference of the At1g72840-2 line might not segregate with the At1g72840-2 

insertion due to the similarity in leaf shape effect between the At1g72840-2 and At1g72840-

1 lines. This decision allowed us to focus remaining time on further work with the 

At5g45240-1 and At5g45240-2 lines, further work would be required to establish whether 

the leaf shape difference observed for the At1g72840-2 line would segregate with the 

At1g72840-2 insertion. 

We attempted to carry out the test of association between T-DNA insertion and leaf shape 

effect for the At1g72850-1 line. However, we could not find a difference in leaf shape 

between the At1g72850-1 and Col-0 control lines we grew alongside the F2 plants. We tried 

using both our standard greenhouse conditions, and a shade treatment, but no difference in 

llpPC2 score was identified between the At1g72850-1 and Col-0 lines. This prevented us 
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from testing for an effect on leaf shape of the At1g72850-1 insertion in the segregating F2 

population. Despite this we decided to continue using this line in our further experiments, as 

we were curious if we could identify environmental conditions in which this line showed a 

consistent difference in leaf shape to Col-0. If we were able to identify these conditions, 

further work could be carried out to test for the segregation of the At1g72850-1 insertion 

with a leaf shape effect using such conditions. 

 

 

 

Figure 5-18 Difference in llpPC2 score 
between Col-0 and At5g45240-1 control 
lines 
Mean llpPC2 score for At5g45240-1 and 

Col-0 control lines across the leaf series. 

Values for Col-0 are shown by black squares 

and for At5g45240-1 values are shown as 

blue triangles. Error bars show 95% 

confidence intervals. 12 plants were 

harvested for each line. 

 

 

Figure 5-19 llpPC2 score in F2 plants with or 
without At5g45240-1 insertion 
Figure shows the mean llpPC2 score across 

the leaf series for the F2 population 

segregating for the At5g45240-1 insertion. 

The mean score for plants without the 

insertion are shown in black, plants 

homozygous for the insertion are shown in 

blue, and plants heterozygous for the 

insertion are shown in green. Error bars show 

95% confidence intervals. 
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Figure 5-20 Difference in size between Col-0 
and At5g45240-2 control lines 
Mean centroid size score for At5g45240-2 

and Col-0 control lines grown alongside the 

F2 population segregating for the 

At5g45240-2 insertion. Values for Col-0 are 

shown as black circles, values for At5g45240-

2 are shown as blue circles. 12 plants were 

harvested for each line. Error bars show 95% 

confidence intervals. 

 

Figure 5-21 Difference in llpPC3 score 
between Col-0 and At5g45240-2 control 
lines 
Mean llpPC3 score for At5g45240-2 and Col-

0 control lines grown alongside the F2 

population segregating for the At5g45240-2 

insertion. Values for Col-0 are shown as 

black circles, values for At5g45240-2 are 

shown as blue circles. 12 plants were 

harvested for each line. Error bars show 95% 

confidence intervals. 
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Figure 5-22 Size in F2 plants with or without 
At5g45240-2 insertion 
Figure shows the mean centroid size across the 

leaf series for the F2 population segregating 

for the At5g45240-2 insertion. The mean score 

for plants without the insertion are shown in 

black, plants homozygous for the insertion are 

shown in blue, and plants heterozygous for the 

insertion are shown in green. Error bars show 

95% confidence intervals. 

 

Figure 5-23 llpPC3 score in F2 plants with or 
without At5g45240-2 insertion 
Figure shows the mean llpPC3 score across 

the leaf series for the F2 population 

segregating for the At5g45240-2 insertion. 

The mean score for plants without the 

insertion are shown in black, plants 

homozygous for the insertion are shown in 

blue, and plants heterozygous for the 

insertion are shown in green. Error bars 

show 95% confidence intervals. 

 

5.2.6 T-DNA insertion lines for homologues of At1g72850 and 

At5g45240 vary in leaf shape and size 

We were curious as to whether T-DNA insertion lines for genes closely related to At1g72850 

and At5g45240 would also show leaf shape phenotypes. We used the BLAST webpage at 

TAIR (Berardini et al., 2015) to identify genes similar to At1g72850 and At5g45240, using the 

nucleotide sequence of each gene including introns and untranslated regions. For each 

similar gene with an E value below 0.002 we obtained SALK T-DNA mutants where possible 

and scored these lines for leaf shape differences.  

We obtained four T-DNA lines for three genes similar to At1g72850, and five lines for four 

genes similar to At5g454240. We grew 12 plants for each line and harvested the rosette 

leaves of each plant at bolting, scoring the shape of the leaves with the leaf library PCs. We 
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identified one line, At4g09420-1, with a difference in leaf shape compared to Col-0, see 

Figure 5-24. This line was annotated for a T-DNA insertion in At4g09420, a gene related to 

At1g72850. We also identified a T-DNA line with a lower number of leaves than Col-0, 

At2g17050-1. This line had significantly fewer leaves than Col-0, (Kruskal-Wallis, chi=8.12, 

df=1, p<0.005). The leaves of this line were also smaller than those of Col-0 near the end of 

the leaf series. This line was annotated for a T-DNA insertion in At2g17050, a gene similar to 

At5g45240. That the majority of the T-DNA lines for which we scored shape, that were 

annotated for seven genes most similar to At1g72850 and At5g45240 did not vary in leaf 

shape may indicate that these genes closely related to At1g72850 and At5g45240 do not 

also have an effect on leaf shape. 

 

  

Figure 5-24 Difference in llpPC2 
score between Col-0 and 
At4g09420-1 
Figure shows the mean llpPC2 for 

Col-0 and the At4g09420-1 T-DNA 

line. Values for Col-0 are shown in 

black and those for At4g09420-1 are 

shown in purple. 12 plants were 

harvested for each line. Error bars 

show 95% confidence intervals. 

 

5.2.7 T-DNA insertions in some NBLRR genes are associated with 

differences in leaf shape  

We had found differences in leaf shape and size between multiple T-DNA insertion lines for 

NBLRR genes and Col-0. NBLRR genes are often characterised with phenotypes specific to 

environmental conditions and we were interested to test the response of T-DNA lines we 

identified with differences in leaf shape to a range of conditions. The At1g72850-1 line had 

shown a difference in leaf shape in some growth experiments but not others. Our work so 

far suggested that environments resulting in a high llpPC2 score for Col-0 leaves, such as 

shade conditions, would also result in a greater increase in llpPC2 score for leaves of the T-

DNA line At1g72850-1. 

We were curious as to whether we could identify an environmental change resulting in a 

difference in llpPC2 score between the At1g72850-1 line and Col-0. We were also interested 
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to test whether differences in light and temperature conditions might affect the leaf shape 

and size of the four T-DNA lines annotated for At5g45240, given that so far only two of these 

lines, At5g45240-1 and At5g45240-2, showed differences in leaf shape compared to Col-0. 

We wondered as to how T-DNA insertions in different NBLRR genes might interact, and so 

created an At1g72850-1 At5g45240-1 double mutant to include in further analysis. For 

further information on the creation of this double mutant, see appendices. We had also 

created an At5g45240-1 At1g72840-1 double mutant, however this was discarded after a 

segregation analysis for the At1g72840-1 insertion showed the insertion did not segregate 

with the leaf shape difference identified in this line. Previously work on a NBLRR gene with a 

leaf morphology phenotype had found an interaction with phytochrome B (PhyB) (Faigón-

Soverna et al., 2006), and so we also opted to create a PhyB-9 At5g45240-1 double mutant 

using a mutant line for PhyB (PhyB-9) (Reed et al., 1998). 

We would continue our investigation of the possible leaf shape functions of NBLRR genes 

now focused on T-DNA insertions lines for genes that had leaf shape differences relative to 

Col-0 in our earlier work. We would investigate the leaf shape and size of these lines in 

varying environmental conditions, test the expression levels of At5g45240 transcripts in the 

T-DNA lines for this gene, examine complementation of T-DNA lines with natural accessions 

and explore interactions of T-DNA insertions in these NBLRR genes in double mutants. 

5.2.8 The At5g45240-1 insertion does not decrease llpPC2 score in 

a Phytochrome B mutant background 

A mutation in the CONSTITUTIVE SHADE AVOIDANCE1 (CSA1) NBLRR gene has been 

suggested to interfere with phytochrome signalling (Faigón-Soverna et al., 2006). A 

dominant mutation in CSA1 causes a shade avoidance response in Arabidopsis similar to that 

observed for Phytochrome B (PhyB) mutants, but does not have an effect in a PhyB 

background, suggesting this mutation interferes with phytochrome B signalling (Faigón-

Soverna et al., 2006). We created a At5g45240-1 PhytochromeB-9 (referred to as At5g45240-

1 PhyB-9) double mutant to examine the effect on leaf shape of the At5g45240-1 insertion in 

a PhyB-9 background (Reed et al., 1998). For further information on the creation of this 

double mutant, see the appendices. We grew Col-0, At5g45240-1, PhyB-9 and the 

At5g45240-1 PhyB-9 double mutant in the University of York greenhouses in June 2015. 

The At5g45240-1 line has a lower llpPC2 score than Col-0, and PhyB-9 plants have a higher 

llpPC2 score than Col-0, see Figure 5-25. Despite lower llpPC2 score in the At5g42540-1 line, 
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we found that the double mutant did not have a lower llpPC2 score than the PhyB-9 single 

mutant. Indeed, for some leaves, the At5g45240-1 PhyB-9 double mutant had a higher 

llpPC2 score than the PhyB-9 single mutant, see figure Figure 5-25. There was no indication 

that the At5g45240-1 insertion had any effect on llpPC3 or centroid size in a PhyB-9 

background, despite causing a decrease in both traits as a single mutant, see Figure 5-26 and 

Figure 5-27. This result shows the effects of the At5g45240-1 insertion on leaf shape and size 

are negated in a PhyB-9 background.  
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Figure 5-25 llpPC2 score in At5g45240-1 
PhyB-9 double mutant 
Figure shows the mean llpPC2 score for 

Col-0, shown in black, At5g45240-1, shown 

by blue triangles, PhyB-9, shown by red 

triangles, and the At5g45240-1 PhyB-9 

double mutant, shown as purple squares. 

Error bars show 95% confidence intervals. 

Around twenty plants were harvested for 

each line. 

 

Figure 5-26 llpPC3 score in At5g45240-1 PhyB-
9 double mutant 
Figure shows the mean llpPC3 score for Col-0, 

shown in black, At5g45240-1, shown by blue 

triangles, PhyB-9, shown by red triangles, and 

the At5g45240-1 PhyB-9 double mutant, 

shown as purple squares. Error bars show 95% 

confidence intervals. Around twenty plants 

were harvested for each line. 

 

 

Figure 5-27 Leaf size in 
At5g45240-1 PhyB-9 double 
mutant 
Figure shows the mean centroid 

size for Col-0, shown in black, 

At5g45240-1, shown by blue 

triangles, PhyB-9, shown by red 

triangles, and the At5g45240-1 

PhyB-9 double mutant, shown as 

purple squares. Error bars show 

95% confidence intervals. Around 

twenty plants were harvested for 

each line. 
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5.2.9 Hypocotyl length of T-DNA lines for some NBLRR genes may 

vary in response to different wavelengths of light 

Mutations in the NBLRR gene CSA1 have been found to show red light specific hypocotyl 

phenotypes (Faigón-Soverna et al., 2006). We tested whether any of the T-DNA lines 

annotated for NBLRR genes with leaf shape differences had a light specific effect on 

hypocotyl growth by growing them in red and blue light and a dark treatment. We grew the 

four T-DNA lines annotated for At5g45240, and the T-DNA line for At1g72850 and the 

double mutants we had created, At5g45240-1 PhyB-9 and At1g72850-1 At5g45240-1 in 

these conditions. As controls we used Col-0 and PhyB-9. For each line we harvested between 

19 and 35 plants in each experiment. Seeds were sown onto agar plates and stored at 4°C 

for three nights before being transferred to a light treatment for four nights before harvest. 

In both red and blue light treatments, hypocotyls of At5g45240-1 line plants were 

significantly shorter than for Col-0 plants, see Figure 5-28, Figure 5-29, Figure 5-30 and 

Figure 5-31. In dark conditions, only one of three experimental repeats showed At5g45240-1 

plants to have a significantly shorter hypocotyl than Col-0, see Figure 5-32, Figure 5-33 and 

Figure 5-34. These results suggest that the hypocotyl length of At5g45240-1 line plants may 

differ from Col-0 in the presence of light. 

Hypocotyls of At5g45240-2 plants were not significantly different from Col-0 in blue light or 

dark conditions, but were significantly shorter in red light, see Figure 5-30 and Figure 5-31, 

suggesting the At5g45240-2 line has a shorter hypocotyl than Col-0 in red light conditions. 

The At5g45240-3 plants did not differ in hypocotyl length from Col-0 when grown in red 

light, blue light or dark conditions. The At5g45240-4 line had a significantly shorter 

hypocotyl than Col-0 in red light and one of two blue light experiments. In the dark 

treatment, this At5g45240-4 line had a significantly shorter hypocotyl in one of three 

experimental repeats. This suggested that this line may have a shorter hypocotyl than Col-0 

in red light, however further repeats would be necessary to confirm this, given the variation 

in hypocotyl length for this line in blue and dark treatments. Nonetheless, these results 

suggested that despite so far not identifying a leaf shape effect for the At5g45240-4 line, this 

T-DNA line appears to have a difference in hypocotyl length from Col-0. 

We found the PhyB-9 mutant line had an elongated hypocotyl in only red light, consistent 

with the phenotypes described for PhyB mutants in the literature (Faigón-Soverna et al., 

2006), see Figure 5-30 and Figure 5-31. The At5g45240-1 PhyB-9 double mutant also showed 
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an elongated hypocotyl in red light, and hypocotyl length of this line was not significantly 

different from PhyB-9. This showed that in red light, where PhyB-9 has a significantly longer 

hypocotyl than Col-0, the presence of an At5g45240-1 insertion does not significantly 

decrease hypocotyl length in a PhyB-9 background, despite a significant decrease in the 

At5g45240-1 single mutant. In one of two blue light experiments, and one of three dark 

experiments, the At5g45240-1 PhyB-9 double mutant had a significantly shorter hypocotyl 

than Col-0, though the PhyB-9 single mutant did not, see Figure 5-29 and Figure 5-32. This 

suggests there may be an effect of the At5g45240-1 insertion in the At5g45240-1 PhyB-9 

double mutant in the light treatments other than red. 

Hypocotyl length of At1g72850-1 plants was significantly shorter than Col-0 in one 

experimental repeat for each of the red, blue and dark treatments. This lack of consistency 

between experimental repeats prevents us concluding and describing hypocotyl difference 

for this line across light conditions.   

Interestingly, hypocotyl length for the At5g45240-1 At1g72850-1 double mutant was not 

significantly different from wild type plants across all treatments in all bar one experiment; a 

single dark treatment experiment, in which this double mutant had a significantly higher 

hypocotyl length than Col-0, At5g45240-1 and At1g72850-1, see Figure 5-34. This was 

unexpected, as the At5g45240-1 line had a consistently shorter hypocotyl length than Col-0 

across blue and red light treatments, and although the hypocotyl length of the At1g72850-1 

line was inconsistent across treatments, plants of this line were only either significantly 

shorter than Col-0, or a similar length. This result suggested that the red and blue treatment 

short hypocotyl of the At5g45240-1 insertion was negated in the At5g45240-1 At1g72850-1 

double mutant. 
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Figure 5-28 Hypocotyl 
growth in blue light 
Figure shows hypocotyl 

lengths of seedlings grown in 

blue light. A significant 

difference was identified 

between the lines with an 

ANOVA, and lines 

significantly different from 

Col-0 in a Tukey post doc test 

are marked with an asterisk.  

Both of these lines had a 

lower hypocotyl length than 

Col-0. Error bars show 95% 

confidence intervals. 

 

 

Figure 5-29 Hypocotyl 
growth in blue light 
Figure shows hypocotyl 

lengths of seedlings grown in 

blue light. A significant 

difference was identified 

between the lines with an 

ANOVA, and lines 

significantly different from 

Col-0 in a Tukey post doc test 

are marked with an asterisk.  

Each of the latter three lines 

had a lower hypocotyl length 

than Col-0. Error bars show 

95% confidence intervals. 

 

* * 

*                               *                      * 
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Figure 5-30 Hypocotyl 
growth in red light 
Figure shows hypocotyl 

lengths of seedlings grown in 

red light. A significant 

difference was identified 

between the lines with an 

ANOVA, and lines 

significantly different from 

Col-0 in a Tukey post doc test 

are marked with an asterisk.  

Error bars show 95% 

confidence intervals. 

 

 

Figure 5-31 Hypocotyl 
growth in red light 
Figure shows hypocotyl 

lengths of seedlings grown in 

red light. A significant 

difference was identified 

between the lines with an 

ANOVA, and lines 

significantly different from 

Col-0 in a Tukey post doc test 

are marked with an asterisk.  

Error bars show 95% 

confidence intervals. 

 

*     *                *      *              *   

*      *               *      *              *       * 
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Figure 5-32 Hypocotyl length 
in dark grown seedlings 
Figure shows hypocotyl 

lengths of seedlings grown in 

dark conditions. A significant 

difference was identified 

between the lines with an 

ANOVA, and lines 

significantly different from 

Col-0 in a Tukey post doc test 

are marked with an asterisk. 

Asterisks indicate lines 

significantly different from 

Col-0. Error bars show 95% 

confidence intervals.  

 

                           *       * 
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Figure 5-33 Hypocotyl length 
in dark grown seedlings 
Figure shows hypocotyl 

lengths of seedlings grown in 

dark conditions. A significant 

difference was identified 

between the lines with an 

ANOVA, and lines 

significantly different from 

Col-0 in a Tukey post doc test 

are marked with an asterisk. 

Error bars show 95% 

confidence intervals. 

 

 

  

Figure 5-34 Hypocotyl length 
in dark grown seedlings 
Figure shows hypocotyl 

lengths of seedlings grown in 

dark conditions. A significant 

difference was identified 

between the lines with an 

ANOVA, and lines 

significantly different from 

Col-0 in a Tukey post doc test 

are marked with an asterisk. 

Error bars show 95% 

confidence intervals. 

 

5.2.10 Leaf shape of some T-DNA lines for NBLRR genes vary 

between temperatures  

We were interested to see whether the leaf shape differences we had identified amongst T-

DNA lines for some NBLRR genes varied in response to temperature. We also wondered if 

some of the other 18 T-DNA lines for NBLRR candidate genes, shown in Table 5-1, that had 

not shown a difference in leaf shape in greenhouse conditions, would differ in shape when 

grown in cooler or warmer temperatures. 

   *                                                      * 

                                                      * 
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 We grew plants in a growth cabinet over July and August 2015 at two temperatures; 16°C 

and 24°C. In both treatments we grew six plants for each of the 18 T-DNA insertion lines we 

had previously scored for leaf shape, to see if in any of these lines showed differences in leaf 

shape when grown in colder conditions. For the lines we had already identified with 

differences in leaf shape, and the Col-0 background, we grew twelve plants per line. We 

were interested to see how the leaf shape of these lines might vary between temperature 

conditions. 

We also included the At5g45240-3, At5g45240-4 and the At5g45240-1 At1g72850 double 

mutant. We were interested as to whether the lines At5g45240-3 and At5g45240-4, despite 

not showing a difference in leaf shape when grown in greenhouse conditions, would show 

differences in shape in cooler or warmer temperatures. We had not yet measured leaf shape 

of the At5g45240-1 At1g72850-1 double mutant, and were curious as to whether this line 

would respond similarly to differences in temperature as the At5g45240-1 and At1g72850-1 

single mutants. 

As time was limited at this point in the project, we recorded an image of the rosette of each 

plant and used visual inspection to compare leaf shape amongst the 18 T-DNA lines we grew 

for the NBLRR candidate genes that had not previously shown differences in leaf shape. No 

new differences in leaf shape to Col-0 in either 16°C or 24°C were observed. This suggested 

these lines did not differ in leaf shape in our standard greenhouse conditions or in these 

temperature conditions.  

For the four T-DNA lines annotated for At5g45240, the T-DNA lines At1g72850-1, the 

A5g45240-1 At1g72850-1 double mutant, and the T-DNA lines At4g09420-1 and At2g17050-

1 lines annotated for homologues of At1g72850 and At5g45420, and Col-0, we harvested 

each rosette leaf per plant grown at bolting in both 16°C and 24°C treatments. We recorded 

the shape of each rosette leaf using LeafAnalyser (Weight et al., 2008)and scored differences 

in shape with the leaf library pPCs. 

Of T-DNA lines for the At5g45240 gene, the At5g45240-3 and At5g45240-4 lines did not 

differ from Col-0 in leaf shape or size when grown in either temperature treatment. 

Interestingly, although At5g45240-1 and At5g45240-2 showed difference in leaf shape 

similar to those we had identified previously for these lines in greenhouse conditions, the 

extent of leaf shape and size differences varied between the temperature treatments.  
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At5g45240-1 line plants had smaller leaves with a lower llpPC2 and llpPC3 score compared 

to the Col-0 background in only the 24°C temperature treatment, see figures Figure 5-35, 

Figure 5-36 and Figure 5-37. At 16°C, At5g45240-1 plants did not show any differences in 

leaf shape and size from Col-0. At5g45240-2 had smaller leaves than Col-0 in both 16°C and 

24°C, though the difference was greater in 16°C, see Figure 5-38. The llpPC3 score for this 

line was also higher than Col-0 in 16°C but not 24°C. Interestingly, for this line, it appeared 

that differences in leaf shape and size to Col-0 were stronger in the cooler temperature, 

whereas the leaf shape differences of the At5g45240-1 line were only present in the warmer 

temperature treatment. 

We were curious as to whether the leaf shape of the At1g72850-1 line would differ from 

Col-0 in either of the temperature treatments. In some of our growth experiments, this line 

had a higher llpPC2 score than Col-0, though this was not the case in all growth experiments. 

When comparing the leaf shape of this line to Col-0 in our two temperature conditions, we 

found plants of the A1g72850-1 line had a higher llpPC2 score than the Col-0 background in 

only the 24°C treatment, see Figure 5-42. As such it may be that the leaf shape difference for 

the At1g72850-1 line is specific to higher temperatures. 

Plants of the At4g09420-1 line had smaller leaves with a lower llpPC2 and llpPC3 score than 

Col-0 plants when grown at 16°C, see Figure 5-39, Figure 5-40 and Figure 5-41. There were 

no differences between this line and Col-0 in 24°C, suggesting the leaf shape differences of 

the At4g09420-1 line are specific to the colder temperature treatment. 

Leaf shape and size differences between the T-DNA insertions lines for At5g45240, 

At1g72850 and At4g09420 did not show a common response to the temperature 

treatments. For example, lines At5g45240-1 and At1g72850-1 were distinct in leaf shape 

from Col-0 in the 24°C treatment, but not at 16°C. In contrast, the leaf shape differences 

observed for the At4g09420-1 line appeared only in the 16°C treatment. The shape and size 

differences of leaves from At5g45240-2 line plants was more distinct than those of Col-0 in 

the 16°C treatment also, though there was a difference in size and shape for this line relative 

to Col-0 at 24°C.  

We analysed the leaf shape and size of the At5g45240 At1g72840 double mutant in both 

16°C and 24°C temperatures, however we saw no effect on leaf shape in either treatment. 

This was somewhat surprising given that the lines At5g45240-1 and At1g72850-1 used to 

create this line had differences in leaf shape and size relative to Col-0 in 24°C conditions; 

relative to Col-0 the lines At5g45240-1 and At1g72850-1 had a decrease and increase in 
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llpPC2 respectively. It is possible that as both lines individually had an opposing effect on 

llpPC2 score the llpPC2 differences of each line were masked in the double mutant. 

 

Figure 5-35 Difference in llpPC2 between Col-0 and At5g45240-1 at two temperatures 
Figures showing the mean llpPC2 score for Col-0 and At5g45240-1 across the leaf series in 

two temperature treatments. Values for Col-0 are shown as black circles, values for 

At5g45240-1 are shown as blue circles. For the left figure, plants were grown at 16°C. For 

the right figure, plants were grown at 24°C. 12 plants were harvested for each line. Error 

bars show 95% confidence intervals. 

 

Figure 5-36 Difference in llpPC3 between Col-0 and At5g45240-1 at two temperatures  
Figures showing the mean llpPC3 score for Col-0 and At5g45240-1 across the leaf series in 

two temperature treatments. Values for Col-0 are shown as black circles, values for 

At5g45240-1 are shown as blue circles. For the left figure, plants were grown at 16°C. For 

the right figure, plants were grown at 24°C. 12 plants were harvested for each line. Error 

bars show 95% confidence intervals. 
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Figure 5-37 Centroid size difference between Col-0 and At5g45240-1 at two temperatures 
Figures showing the mean centroid size for Col-0 and At5g45240-1 across the leaf series in 

two temperature treatments. Values for Col-0 are shown as black circles, values for 

At5g45240-1 are shown as blue circles. For the left figure, plants were grown at 16°C. For 

the right figure, plants were grown at 24°C. 12 plants were harvested for each line. Error 

bars show 95% confidence intervals. 

 

Figure 5-38 Centroid size difference between Col-0 and At5g45240-2 at two temperatures 
Figures showing the mean centroid size for Col-0 and At5g45240-2 across the leaf series in 

two temperature treatments. Values for Col-0 are shown as black circles, values for 

At5g45240-2 are shown as blue circles. For the left figure, plants were grown at 16°C. For 

the right figure, plants were grown at 24°C. 12 plants were harvested for each line. Error 

bars show 95% confidence intervals. 
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Figure 5-39 Difference in llpPC2 between Col-0 and At4g09420-1 at two temperatures 
Figures showing the mean llpPC2 score for Col-0 and At4g09420-1 across the leaf series in 

two temperature treatments. Values for Col-0 are shown as black circles, values for 

At4g09420-1 are shown as red circles. For the left figure, plants were grown at 16°C. For the 

right figure, plants were grown at 24°C. 12 plants were harvested for each line. Error bars 

show 95% confidence intervals. 

 

Figure 5-40 Difference in llpPC3 between Col-0 and At4g09420-1 at two temperatures 
Figures showing the mean llpPC3 score for Col-0 and At4g09420-1 across the leaf series in 

two temperature treatments. Values for Col-0 are shown as black circles, values for 

At4g09420-1 are shown as red circles. For the left figure, plants were grown at 16°C. For the 

right figure, plants were grown at 24°C. 12 plants were harvested for each line. Error bars 

show 95% confidence intervals. 
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Figure 5-41 Size difference between Col-0 and At4g09420-1 at two temperatures 
Figures showing the mean centroid size for Col-0 and At4g09420-1 across the leaf series in 

two temperature treatments. Values for Col-0 are shown as black circles, values for 

At4g09420-1 are shown as red circles. For the left figure, plants were grown at 16°C. For the 

right figure, plants were grown at 24°C. 12 plants were harvested for each line. Error bars 

show 95% confidence intervals. 

 

Figure 5-42 Difference in llpPC2 between Col-0 and At1g72850-1 
Figures showing the mean llpPC2 score for Col-0 and At1g72850-1 across the leaf series in 

two temperature treatments. Values for Col-0 are shown as black circles, values for 

At1g72850-1 are shown as red circles. For the left figure, plants were grown at 16°C. For the 

right figure, plants were grown at 24°C. 12 plants were harvested for each line. Error bars 

show 95% confidence intervals. 
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5.2.11 Expression of At5g45240 in Col-0 and four T-DNA 

insertion lines 

We wondered if the leaf shape differences between the four At5g45240 T-DNA lines related 

to variation in At5g45240 gene expression between the lines and used Reverse Transcriptase 

PCR (RTPCR) to investigate transcript level across this gene. We grew Col-0 and the four T-

DNA insertion lines of At5g45240 in the University of York greenhouses and harvested the 

rosette leaves of bolting plants to prepare cDNA. We visually inspected the leaves of these 

plants and confirmed the leaf shape and size differences we had characterised the lines for 

were present in this growth experiment.  

We chose to prepare cDNA from bolting plants as the differences in leaf shape and size 

between lines are most apparent at this stage. However, it is possible that harvesting tissue 

at an earlier stage in the growth and development of the leaves of these plants would be 

more informative in relating gene expression to leaf shape differences between lines. 

Certainly, further work using cDNA prepared from tissue taken at different stages of plant 

growth and development is required before any relationship between gene expression of 

At5g45240 and the leaf shape differences between the four T-DNA lines for this gene can be 

concluded on. 

In preliminary work we amplified a region from the 5th to 8th exon, see Figure 5-43. A shorter 

band was produced using Col-0 cDNA than with genomic DNA, though the cDNA band was 

larger than predicted from the TAIR10 At5g45240 gene annotation, see Figure 5-43 and 

Table 5-3. Another band of similar size to that produced for genomic DNA, was also 

produced with cDNA, despite no indication of genomic contamination in Actin 2 controls. 

This preliminary result suggested there may be differences in transcript length and splicing 

pattern to the TAIR10 annotation for this gene. 

We were interested as to whether band sizes of other amplified regions of At5g45240 would 

match predictions with the TAIR10 gene annotation, and whether expression of At5g45240 

varied between the T-DNA lines for this gene. We designed consecutive exon spanning 

primers across At5g45240 to test this, see Figure 5-43. Many of the exon spanning primers 

produced bands of different sizes to those predicted with the At5g45240 TAIR10 annotation. 

Only three of the nine exon spanning primer pairs produced a band matching the expected 

transcript size, see Table 5-3. In seven of these nine primer pairs, a band the same size as 

the genomic band was identified, despite no indication of genomic contamination in the 

Actin 2 control for any of the cDNA preparations. 
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Primers spanning the 1st and 2nd exons just downstream of At5g45240-2 T-DNA insertion 

annotation, see Figure 5-43, did not produce a transcript of the predicted size with cDNA for 

At5g45240-2, but did with cDNA of the other three T-DNA lines and Col-0, see Figure 5-44. 

The At5g45240-3 line is annotated for an insertion beginning in the 2nd intron of the gene, 

see Figure 5-43. Primers for this region, spanning from the 2nd to 3rd exons were used with 

cDNA from each line, however only a band for Col-0 was detected, see Figure 5-45. The T-

DNA insertion annotation for the At5g45240-4 line begins within the 4th intron of 

At5g45240. We used two different pairs of primers to try to amplify this region, however 

neither pair produced bands using cDNA from Col-0 or any of the T-DNA lines. A primer pair 

amplifying a region from the 5th to 6th exon did produce a band for At5g45240-4, see Figure 

5-47. The T-DNA insertion annotation for At5g45240-1 begins in the 9th exon. Primers 

spanning the 8th to 9th and 9th to 10th exons produce a band for all lines bar At5g45240-1, see 

Figure 5-48 and Figure 5-49. Of the four T-DNA insertion lines only the At5g45240-1 line 

showed absence of expression downstream of the annotated T-DNA insertion site.  

Our results suggest there may be an effect of the T-DNA insertions in these four lines on the 

expression of regions of At5g45240, however further work is required to fully understand 

the exon intron structure of this gene before the effect of these T-DNA insertions can be 

more fully explained, as this may differ from the TAIR annotation for this gene. 

 

Figure 5-43 At5g45240 gene model 
Diagram of At5g45240 gene model, using TAIR10 annotation, from 5’ to 3’. Exons of the 

gene are indicated by black squares and introns by a thin black line. The regions amplified by 

exon spanning primers are shown by black and grey horizontal lines. The left and right 

primer positions are shown as blue and red dots respectively. The position of the T-DNA 

insertion start points as listed on SALK website for the T-DNA lines for At5g45240 are shown 

as green arrows. The order of insertions for each line, from left to right are At5g45240-2 

starting in the 1st exon, At5g45240-3 in the 2nd intron, At5g45240-4 in the 4th intron, and in 

the 9th exon, At5g45240-1. 
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Primers 

Expected 
transcript 

length (bp) 

Expected 
genomic 

length (bp) cCol-0 cAt5g45240-1 cAt5g45240-2 cAt5g45240-3 cAt5g45240-4 gCol-0 

Exons1-2 497 1703 500 500, 200 200 500, 200 500 1750 

Exons2-3 394 503 500 blank blank blank blank 500 

Exons3-4 364 622 625 625 625 625, 600, 375 625 625 

Exons5-6 129 370 350, 150 blank 150 150 350, 150 350 

Exons6-7 159 263 300 300 300 300 300 300 

Exons7-8 200 295 300 300 300 300 300 300 

Exons8-9 243 374 400 blank 400 400 400 400 

Exons9-10 266 384 400 blank 400 400 400 400 

Actin 2 494 580 500 500 500 500 500 600 

Exons5-8 297 725 
500, 650, 

700 500, 650, 700 500 500 blank 700 

Exons5-8 297 725 blank 500, 650, 700 500, 650, 700 500, 650 500, 650, 700 700 

 

Table 5-3 Summary of RT-PCR results using exon spanning primers over at5g45240 
Table lists the exon spanning primers used in RTPCR analysis. The expected band size, estimated 

using TAIR10 sequence is listed along with the sizes of all observed bands for each set of 

primers. Columns for samples of cDNA are indicated by a c, for example cCol-0, and for samples 

of genomic DNA columns are indicated by a g, for example gCol-0. 

 

 

 

Figure 5-44 Transcript 
levels between exons 1-2 
Figure shows RTPCR 

results for cDNA samples 

from T-DNA insertion lines 

in At5g45240. Presence of 

transcript was tested with 

primers covering Actin 2 

and exons 1 to 2 of 

At5g45240. cDNA from 

Col-0 was used as 

comparison, and genomic 

Col-0 DNA and a reaction 

with no DNA were used as 

control. 
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Figure 5-45 Transcript 
levels between exons 2-3 
Figure shows RTPCR 

results for cDNA samples 

from T-DNA insertion lines 

in At5g45240. Presence of 

transcript was tested with 

both  primers covering 

Actin 2 and exons 2 to 3 of 

At5g45240. cDNA from 

Col-0 was used as 

comparison, and genomic 

Col-0 DNA and a reaction 

with no DNA were used as 

control. 
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Figure 5-46 Transcript 
levels between exons 3-4 
Figure shows RTPCR 

results for cDNA samples 

from T-DNA insertion lines 

in At5g45240. Presence of 

transcript was tested with 

both  primers covering 

Actin 2 and exons 3 to 4 of 

At5g45240. cDNA from 

Col-0 was used as 

comparison, and genomic 

Col-0 DNA and a reaction 

with no DNA were used as 

control. 

 

Figure 5-47 Transcript 
levels between exons 5-6 
Figure shows RTPCR 

results for cDNA samples 

from T-DNA insertion lines 

in At5g45240. Presence of 

transcript was tested with 

both  primers covering 

Actin 2 and exons 5 to 6 of 

At5g45240. cDNA from 

Col-0 was used as 

comparison, and genomic 

Col-0 DNA and a reaction 

with no DNA were used as 

control. 



180 
 

 

 

Figure 5-48 Transcript 
levels between exons 8-9 
Figure shows RTPCR 

results for cDNA samples 

from T-DNA insertion lines 

in At5g45240. Presence of 

transcript was tested with 

both  primers covering 

Actin 2 and exons 8 to 9 

of At5g45240. cDNA from 

Col-0 was used as 

comparison, and genomic 

Col-0 DNA and a reaction 

with no DNA were used as 

control. 

 

 

 

Figure 5-49 Transcript 
levels between exons 9-
10 
Figure shows RTPCR 

results for cDNA samples 

from T-DNA insertion lines 

in At5g45240. Presence of 

transcript was tested with 

both  primers covering 

Actin 2 and exons 9 to 10 

of At5g45240. cDNA from 

Col-0 was used as 

comparison, and genomic 

Col-0 DNA and a reaction 

with no DNA were used as 

control. 
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5.3 Conclusions 

5.3.1 Analysis of T-DNA insertion lines for NBLRR genes associated 

with leaf shape traits in a GWAS 

We measured the leaf shape of a set of T-DNA lines annotated with insertions for the 14 

NBLRR genes within four GWAS loci associated to our leaf shape traits. Although the 14 

NBLRR genes we obtained T-DNA lines for were within loci associated with leaf shape traits 

in our GWAS work, we did not necessarily expect each of these genes to have a leaf shape 

function. As these 14 NBLRR genes lie within four clusters, it may be that some of these 

genes are associated with leaf shape variation in the natural accessions through linkage to 

polymorphisms in nearby NBLRR genes within the same cluster. Identifying mutant lines for 

NBLRR genes with differences in leaf shape would support the hypothesis that some NBLRR 

genes in these loci are associated with natural leaf shape variation. T-DNA insertion lines for 

NBLRR genes within two of four clusters associated with our leaf shape traits had differences 

in leaf shape compared to Col-0, these loci were on chromosome 1, at 27Mb and 

chromosome 5, at 18Mb. For NBLRR genes in the GWAS associated loci at 21Mb on 

chromosome 1 and 14Mb on chromosome 5, no T-DNA insertion lines had a leaf shape or 

size different to Col-0. In total we found leaf shape differences for T-DNA lines for three 

NBLRR genes when compared to Col-0. 

SALK T-DNA insertions in genes often cause a decrease or absence of protein expression for 

a gene (Wang, 2008). Whilst a low proportion of the 18 T-DNA lines we examined had a 

difference in leaf shape or size, an alternative approach might reveal more evidence for the 

function of these genes. Other types of mutation, such as those generating overexpression 

phenotypes may provide better evidence of gene function. For example, a mutation causing 

overexpression of a truncated transcript of the CSA1 NBLRR gene has a considerably 

stronger morphology phenotype compared to a mutation causing almost complete absence 

of expression (Faigón-Soverna et al., 2006). Given that NBLRR genes are typically expressed 

at low levels (Tan et al., 2007) and recessive mutations in NBLRR genes are considered rare 

(Sohn et al., 2014), it may be worthwhile to assess leaf shape amongst overexpression lines 

for these genes. 

It is also possible that leaf shape differences amongst these T-DNA lines were but were not 

detectable in our growth conditions. Several studies have reported NBLRR gene phenotypes 

to be more severe, or present only in cooler temperatures (Alcázar et al., 2008; Bomblies et 
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al., 2007; Huang et al., 2010; Zhu et al., 2010). Although we initially scored the T-DNA lines 

for the 14 NBLRR genes in standard greenhouse conditions, visual inspection of these lines 

when grown at 16°C did not identify any previously undetected differences in leaf shape, 

suggesting these lines did not have an effect on leaf shape in cooler conditions either. 

NBLRR genes often have tissue specific expression (Tan et al., 2007), and may have 

phenotypes we would not have detected in our leaf shape analysis, such as root growth (Kim 

et al., 2012). It is possible therefore that T-DNA insertions in NBLRR genes have an effect on 

the plants growth in traits we did not measure. Indeed the majority of work in the literature 

has characterised NBLRR genes with disease resistance phenotypes, something we did not 

measure. As such we do not conclude that T-DNA insertion lines for some of these genes 

have no difference in plant growth, but that they have no effect on leaf morphology when 

grown in our greenhouse conditions or in growth cabinets at 16°C and 24°C. 

5.3.2 Leaf shape and size vary between different T-DNA insertion 

lines for At5g45240 

We characterised the leaf shape of four T-DNA insertion lines for the gene At5g45240. T-

DNA insertions At5g45240-1 and At5g45240-2 were associated with differences in leaf shape 

and size, however no difference in leaf shape was found for lines At5g45240-3 and 

At5g45240-4. Variable phenotypes across T-DNA insertion lines for a single gene have been 

previously reported in the literature (Valentine et al., 2012). Valentine et al., (2012) scored 

differences in growth between seven and six T-DNA insertion lines for two different genes, 

finding considerable variability in traits such as fruit number and biomass between the lines, 

and some evidence of intron or exon specific effects on leaf number and germination rate. 

We aimed to investigate the T-DNA insertion configuration and effect on gene expression 

across the four T-DNA insertion lines of At5g45240 to provide a possible link between the 

specific properties of each mutation and the leaf shape variation between the T-DNA lines. 

The annotated positions for the T-DNA insertions in the At5g45240-3 and At5g45240-4 lines 

are the 2nd and 4th introns respectively and for the At5g45240-1 and At5g45240-2 line 

insertions the annotated positions are 9th and 1st exons respectively. PCR genotyping of 

these insertions suggested At5g45240-1 and At5g45240-2 had single insertions in the 

expected orientation, for At5g45240-3 results suggested two insertions may be in a back to 

back configuration with one T-DNA in a reverse orientation. For At5g45240-4, results 

suggested a more complex configuration of insertions. As both lines with differences in leaf 

shape appeared to have single insertions beginning in exons of the gene, and both lines 
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without effects on leaf shape had more complex configurations of insertions beginning in 

introns, it is possible that site and configuration of insertion is causing the presence or 

absence of effects on leaf shape between the four lines. However more work is required to 

explore this fully, such as sequencing the bands produced when genotyping these insertions 

to confirm the exact position of each insertion in these lines. The position of a SALK T-DNA 

insertion has been found to differ from the annotated position in work in the literature 

(Rodríguez et al., 2014), and so until the position of the At5g45240 T-DNA insertions is 

verified, we cannot be sure that each insertion in the T-DNA lines of At5g45240 is within 

either an exon or intron, though our PCR genotyping of the insertions suggests they are not 

more than 100bp from the described position.  

We used RTPCR to examine transcript level across At5g45240 in each of the four T-DNA lines 

and the Col-0 background. We found that large amounts of prepared cDNA, 1 µl – 1.5 µl and 

35 PCR cycles were required to identify a clear band for cDNA of Col-0, suggesting transcript 

for At5g45240 was present at low levels. Transcript was amplified for each of the four T-DNA 

lines across most exons of the gene, suggesting that none of the insertions prevented 

expression completely. Band size and presence varied differently for each of the T-DNA lines 

for At5g45240, and so we were unable to draw any clear link between presence of leaf 

shape difference and transcript. It is possible that the absence of a 500bp band with the 

At5g45240-2 line for primers spanning the 1st and 2nd exons, and the absence of a band for 

the At5g45240-1 line with primers spanning the 8th to 9th and 9th to 10th exons relates to the 

leaf shape of each line, as these transcript profiles are unique to these lines and are likely 

the result of the position of the T-DNA insertions. However, further work testing the effect 

of varying levels of transcript at these regions would be required before the leaf shape of 

these lines can be attributed to absence of transcript between these exons. As such, whilst 

our analysis of insertion configuration and transcript expression level for the T-DNA alleles of 

At5g45240 is informative, we are unable to conclude as to how differences in expression 

between the four T-DNA lines correspond to the differences in leaf shape between these 

lines. Further work could use transgenic approaches to introduce regions of transcript 

absent in At5g45240-1 and At5g45240-2 to see if this alleviates the leaf shape differences 

observed for these lines. 

Band sizes produced for many of the primers we used to amplify regions of At5g45240 were 

different from those predicted using the TAIR10 annotation of At5g45240. This is not 

unexpected given that alternative splicing has been reported for a number of NBLRR genes 

(Tan et al., 2007). Indeed, alternative splice variants have been shown to be induced by, and 
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are necessary for, disease response through the RPS4 NBLRR gene (Zhang and Gassmann, 

2003, 2007). Given the prevalence of bands produced at the same size as the genomic 

control, and the absence of any genomic contamination identified with the Actin 2 primers, 

it may be that many of the predicted introns of At5g45240 are not spliced out in the cDNA 

samples we used. Although quantitative analysis of band strength could be used to inform 

suggestions as to effect of the T-DNA insertions on transcript abundance, the deviation from 

predicted band sizes, high number of PCR cycles used and absence of visually clear variation 

in transcript abundance discouraged us from taking this approach. Instead we focused on 

the size of and presence or absence of bands detected. Further work is required to identify 

the alternative transcripts produced for this gene before the effect of the T-DNA insertions 

in transcript level can be fully understood. In particular the structure and number of exons 

and introns may be different from the reference genome annotation for At5g45240. Further 

knowledge of gene structure could provide greater understanding as to the effect of the T-

DNA insertions in the four T-DNA lines for At5g45240. 

One possibility we did not investigate is that the leaf shape differences observed for the T-

DNA lines were caused by an effect of the T-DNA insertion on neighbouring genes, instead of 

or as well as an effect on the gene insertions were within. Although possible, we thought 

this relatively unlikely as we had analysed leaf shape of T-DNA insertion lines for 

neighbouring NBLRR genes within each cluster and not observed differences. This reduces 

the likelihood that the leaf shape differences observed are the result of effects on 

neighbouring NBLRR genes, although we did not examine T-DNA lines for any neighbouring 

non NBLRR genes. Analysis of expression levels of neighbouring genes of At5g45240 across 

the four T-DNA insertion lines for this gene would be worthwhile to carry out to further 

establish perturbation of the At5t45240 gene as responsible for the observed leaf shape 

differences in the At5g45240-1 and At5g45240-2 T-DNA lines. 

5.3.3 Effect of the At5g45240-1 T-DNA insertion in a At1g72850-1 

and PhyB-9 background 

Using the At5g45240-1 insertion we created two double mutants; At5g45240-1 At1g72850-1 

and At5g45240-1 PhyB-9. We were interested in the possible interaction between the 

At5g45240-1 insertion and another mutation in a separate NBLRR gene, and also to see 

whether the At5g45240-1 insertion would alter leaf shape in a PhyB-9 background. A 

mutation in the NBLRR gene CSA1 has no effect in a PhyB mutant background, despite a 
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strong morphology phenotype as a single mutant, suggesting this  mutation interferes with 

PhyB signalling (Faigón-Soverna et al., 2006).  

We measured the leaf shape of the At5g45240-1 PhyB-9 double mutant in greenhouse 

conditions and found the At5g45240-1 insertion did not decrease llpPC2 score in a PhyB-9 

background, despite decreasing llpPC2 score relative to the Col-0 background as a single 

mutant. Surprisingly, the At5g45240-1 insertion actually increased llpPC2 score of leaves at 

two nodes in the double mutant. The At5g45240-1 insertion did not decrease hypocotyl 

length in the At5g45240-1 PhyB-9 double mutant when plants were grown in red light, 

despite a decrease in hypocotyl length in the At5g45240-1 T-DNA line. Although these 

results could be interpreted as the At5g45240-1 insertion having no effect in a PhyB-9 

background in conditions where PhyB-9 is significantly different from wild type, it is also 

worth considering the hypocotyl length of A5g45240-1 lines in the dark treatment. In these 

conditions, A5t45240-1 lines only had a hypocotyl length shorter than Col-0 in one of three 

experimental repeats. This suggests that the effect of the At5g45240-1 insertion may be 

negated in strongly etiolating plants, as caused by the PhyB-9 mutation or the dark 

treatment, rather than the PhyB-9 background specifically. It would be interesting to explore 

this in further work, to see if the At5g45240-1 insertion had a leaf shape effect in dark grown 

plants for example. 

In an At1g72850-1 background, the At5g45240-1 insertion did not decrease hypocotyl length 

relative to Col-0 in red or blue light, despite the short hypocotyl of the At5g45240-1 line in 

these conditions. Interestingly, in some repeats of these experiments, the At1g72850-1 line 

had a shorter hypocotyl than Col-0 also, and so despite the lines At5g45240-1 and 

At1g72850-1 having shorter hypocotyls in some experimental repeats, the double mutant 

had a wild type hypocotyl length. When measuring leaf shape for lines grown at 24°C, we 

found the At1g72850-1 line had an increased llpPC2 score compared to Col-0, and the 

At5g45240-1 line had a lower llpPC2 score. The double mutant with both insertions from 

these lines did not differ from Col-0 at 24°C or 16°C for any of our leaf shape and size traits.  

The morphology of the At5g45240-1 At1g72850-1 double mutant cannot be entirely 

explained by the opposing direction of effects on llpPC2 score found in the At5g45240-1 and 

At1g72850-1 lines cancelling each other out. Although this fits with results for leaf shape 

traits in 24°C it does not seem appropriate when considering the hypocotyl data, where the 

At1g72850-1 line either did not differ in hypocotyl length to Col-0, or had an effect in the 

same direction as At5g45240-1, as the double mutant had a wild type phenotype. Instead it 
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appears that regardless of the morphology of the At1g72850-1 line, in combination, the 

At5g45240-1 and At1g72850-1 insertions produce a wild type morphology as a double 

mutant. 

Epigenetic suppression of a T-DNA insertion mutant by another T-DNA insertion has been 

documented in Arabidopsis (Gao and Zhao, 2013). Although there are other explanations for 

the phenotypes we observed in our At5g45240-1 At1g72850-1 and At5g45240-1 PhyB-9 

double mutants, we note that as we did not test the phenotype of each insertion after going 

through an F2 population to create the double mutant, this remains a possibility. As T-DNA 

insertions remained silenced over subsequent generations (Gao and Zhao, 2013), it may be 

worthwhile to outcross each double mutant insertion and verify the effect of each mutation 

individually to rule out epigenetic suppression of single mutant phenotypes.  

5.3.4 Further characterisation of NBLRR genes with possible leaf 

shape function 

Through analysis of T-DNA lines we had identified several NBLRR genes that may have a role 

in leaf shape. Within the time available to the project, we identified temperature and light 

specific morphologies for these lines, and created double mutants to further explore the leaf 

shape effects of these lines. However, several aspects of characterisation for these mutants 

were unable to be completed in the remaining time and are outlined here. 

We tested the association of T-DNA insertion and leaf shape effect in a segregating F2 

population for At4g45240-1, At4g45240-2 and At1g72840-1. At1g72840-1 was discarded 

from the project after the At1g72840-1 T-DNA insertion was not associated with the 

expected leaf shape difference in an F2 population segregating for the insertion. The 

insertions for At4g45240-1 and At4g45240-2 were associated with leaf shape and size 

differences in F2 populations. Although we identified differences for leaf shape in the 

At1g72850-1 and At4g09420-1 lines we did not have time to test for association of the 

insertions in these lines and leaf shape effect in segregating F2 populations. We found 

At1g72850-1 line leaves had an increased llpPC2 score when grown at a temperature of 

24°C, and so rather than using standard greenhouse conditions, the growth cabinet 

environment at this temperature should provide suitable conditions for testing the effect of 

the At1g72850-1 insertion in a segregating F2 population. A difference in leaf shape was 

identified for the At4g09420-1 line in our standard greenhouse conditions as well as in a 

16°C growth cabinet, and so either of these conditions would be suitable for testing 

association of the leaf shape effect we identified for this line and the At4g09420-1 insertion 
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in a segregating F2 population. Although the line At5g45240-4 did not show a difference in 

leaf shape in any of the conditions we tested, it appeared to have a shorter hypocotyl than 

Col-0 in the red light treatment. To verify this effect it would be important to show the short 

hypocotyl effect associated with the At5g45240-4 T-DNA insertion in a segregating F2 

population grown in red light conditions. 

We chose to measure hypocotyl length when investigating the effect of different light 

conditions on the morphology of T-DNA lines for NBLRR genes rather than leaf shape traits 

in part so that we could conduct repeated experiments quickly to determine an appropriate 

light intensity at which to grow the plants, and then conduct repeated experiments. Work in 

the literature on a NBLRR gene with a leaf shape phenotype also used hypocotyl 

measurements to identify a light specific phenotype (Faigón-Soverna et al., 2006), and so we 

reasoned this would be an appropriate start point for our work testing for light specific 

effects in T-DNA lines for NBLRR genes. Although in Faigón-Soverna et al., (2006), there is a 

correlation between hypocotyl length and leaves with a shade avoidance shape amongst the 

lines studied, and in our earlier work on the Bay-0 Shahdara RILs our leaf shape trait llpPC2 

was positively correlated with hypocotyl length, we cannot assume a link between hypocotyl 

length and leaf shape in the T-DNA lines for NBLRR genes we characterise here. As such, an 

interesting follow up experiment would be to test whether light conditions affecting 

hypocotyl length in these lines also had an effect on leaf shape. Work in the literature has 

identified a NBLRR gene phenotype specific to low humidity (Noutoshi et al., 2005). As such 

it may also be worthwhile to verify that the light specific effects on hypocotyl length we 

observed with seedlings grown on agar plates, and so at high humidity, persist when plants 

are grown in soil before measuring leaf shape for these lines in varying light conditions. 

A further consideration for planning an analysis of leaf shape in different light conditions is 

the effect of temperature on the morphology of these T-DNA lines. Given that some of the 

lines had leaf shape differences specific to 24°C; such as At1g72850-1, and At5g45240-1, and 

some had shape effects specific to or stronger in 16°C; such as At5g45240-2 and At4g09420-

1, it may be worthwhile conducting separate light condition experiments at temperatures 

permissive to leaf shape differences for each T-DNA line of interest. 

During the project we also used complementation analysis to compare leaf shape in F1 

plants created from natural accessions and either the At5g45240-1 line or the Col-0 

background. Complementation analysis can be used to evaluate natural genetic variation 

with mutant analysis. Kobayashi et al., (2008) use complementation to investigate the HMA5 
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gene as a candidate for a root length QTL in a Cvi x Ler mapping population. These authors 

find that in F1 plants hybrid between a T-DNA insertion line for gene HMA5 with a recessive 

short root trait, and two RIL lines with variant alleles at a root length QTL, the RIL with a Ler 

QTL allele is able to rescue the short root of the HMA5 T-DNA line, whereas the RIL with a 

Cvi allele cannot, implicating HMA5 as the gene responsible for this QTL (Kobayashi et al., 

2008). We crossed Col-0 and the At5g45240-1 line to two groups of accessions with different 

alleles at the At5g45240 gene and leaf shape scores matching the estimated direction of 

effect of each allele in our GWAS10 work. Although results were inconclusive, and so not 

included in the results section of this chapter, we observed that the llpPC2 score of F1 plants 

between an accession and the At5g45240-1 line was not always lower than for F1 plants 

created by crossing same accession to Col-0. In one instance, F1 plants created with the 

At5g45240-1 line and a natural accession had a higher llpPC2 score than F1 plants created 

with that  accession and Col-0. This suggested the effect of the At5g45240-1 insertion may 

vary in backgrounds of different natural accessions. 

Our work characterising T-DNA lines for NBLRR genes has identified several differences in 

leaf shape and size and hypocotyl length specific to different light and temperature 

conditions. This suggests that some of the NBLRR genes associated with leaf shape traits in 

our GWA work may have a role in plant morphology in certain environmental conditions. 

Further work is required to fully characterise these lines and understand how each T-DNA 

insertion results in a leaf shape difference, but our work provides a solid foundation and 

strong starting point to understanding the roles of these NBLRR genes in plant morphology. 
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Chapter 6.  Discussion 

6.1.1 Natural leaf shape variation 

There is great variation in shape amongst the leaves of flowering plants and leaves can vary 

dramatically between species. There are several major categories of different leaf shape and 

form amongst flowering plants. Species may have simple leaves such as birch trees or privet 

shrubs, lobed leaves such as oak leaves, compound leaves made up of multiple distinct 

laminas such as horse chestnut trees or tomato plants, or intricate and complex leaves, such 

as carrot leaves. This variety in leaf shape invites many questions as to the determination 

and role of natural leaf shape variation. Study of leaf shape can be approached from many 

aspects; such as to how leaves are formed developmentally, whether and to what conditions 

shape differences may be adaptive, and how the evolutionary lineage or more recent 

genetic variations relate to differences in leaf shape between species and accessions.  

We were able to quantify leaf shape variation using a geomorphic morphometrics approach 

using LeafAnalyser (Weight et al., 2008). We could record leaf shape accurately using co-

ordinates, and then identify the major shape variations with datasets of these co-ordinates, 

and score individual leaves for these shape variations, allowing us to make detailed and 

accurate measurements of leaf shape. In contrast to other work in the literature that uses 

absolute dimensions of leaves, such as width and length, as a proxy for leaf shape, using co-

ordinate shape models allows the entire margin of a leaf to be captured and analysed for 

variation. This approach is well suited to analysis of quantitative natural variation, as it is 

able to distinguish differences in leaf shape between lines that are otherwise difficult to 

describe and quantify (Kieffer et al., 2011). Leaf shape has often been studied using mutant 

analysis in Arabidopsis (Bensmihen et al., 2008; Berná et al., 1999; Dkhar and Pareek, 2014; 

Wilson-Sánchez et al., 2014), and studies that have used natural variation to investigate leaf 

shape in Arabidopsis have used length and width measurements that do not describe the full 

leaf shape variation of this species (Hopkins et al., 2008; Jiménez-Gómez et al., 2010; 

Juenger et al., 2005). We were interested to investigate the genetic basis of natural leaf 

shape variation in Arabidopsis using a comprehensive and accurate approach to leaf shape 

analysis. 

We chose to investigate the genetic basis of naturally occurring leaf shape differences with 

genetic mapping using accessions of the model plant Arabidopsis thaliana. There were 

however, a number of alternative approaches possible. Differences in leaf shape have been 
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genetically mapped between species (Costa et al., 2012; Ferris et al., 2015), and so one 

option was to choose a genus of plant capable of self fertilisation and outcrossing, and 

investigate the genetic basis of shape differences within the genus by creating mapping 

populations between species with differences in leaf shape. However, we were wary of 

working in a non model organism due to potential difficulties in finding suitable genetic 

markers. This would be a significant investment of time, and could potentially limit what we 

could achieve in the time available for the project. Although hybrids between species of 

Arabidopsis are possible (Nasrallah et al., 2000), we thought that mapping such between 

species leaf shape differences may identify loci that had morphological effects conflated 

with other between species differences, such as developmental timing, physiology or 

ecological niche, that were specific to the differences between the two species chosen. 

Natural accessions of Arabidopsis  are found over a broad geographic range, including 

Europe, Asia and North America (Alonso-Blanco and Koornneef, 2000), and there is  

considerable genetic variation between these accessions (Gan et al., 2011). We aimed to 

identify leaf shape loci unrelated to specific differences between species by studying the 

within species differences in leaf shape across accessions of Arabidopsis thaliana, hoping to 

understand more as to how leaf shape varied across a broad geographic range within a 

single species. 

Arabidopsis grows a rosette made up of a number of simple, ovate leaves before developing 

an inflorescence and flowering, at which point the production and growth of these leaves 

has ceased. We reasoned that by working in Arabidopsis, we would be able to achieve a 

great deal more than by working in another species. In part, this is due to the size and 

generation time of Arabidopsis. This allowed us to conduct multiple genetic mapping 

experiments, cross plants to produce double mutants, and as we were able to complete a 

number of mapping and growth experiments in the time available, utilise the results of 

completed experiments to inform our next experiments. The relatively low and determinate 

number of leaves grown by each plant allowed us to measure shape across every leaf the 

plant grew to conduct a comprehensive analysis of leaf shape in each plant. We also 

considered the wealth of wider work completed in the study of Arabidopsis to be extremely 

beneficial to our project, valuing the presence of a large body of literature and numerous 

publicly available resources and datasets, and this was a deciding factor in using Arabidopsis 

to study natural leaf shape variation. Without the publicly available RIL populations, natural 

accessions, and marker datasets we would have needed to create these resources during 

the project, and so much of the time and effort that went into the project would have been 
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spent achieving this. We felt that for our circumstances it was best to choose a strategy that 

would allow as much as possible to be achieved by a small group, and so choose to work 

within a species that had considerable resources already available, allowing us to work 

efficiently and making the most of our available time and effort. 

6.1.2 Strategies for mapping leaf shape variation in Arabidopsis 

We mapped variation in leaf shape traits to regions of the Arabidopsis genome in two 

separate mapping populations. We used QTL mapping to identify loci associated with shape 

variation in the Bay-0 x Shahdara RIL population, and GWA mapping to identify loci 

associated with shape variation across a set of over 300 natural accessions. Both approaches 

were successful in that we found loci associated with our leaf shape traits. Each population 

had specific advantages that we made use of during the project.  

A major advantage for our project in working with the Bay-0 x Shahdara population was the 

relative ease of continuing further work on the regions associated with our leaf shape traits 

using Heterozygous Inbred Families (HIFs). Obtaining HIFs, collections of Near Isogenic Lines 

(NILs) variant at specific regions of the genome, allowed us to independently confirm the 

effect of regions of the genome identified in QTL analysis as having an effect on leaf shape. 

They could also be used for further experiments to explore the effect of variation at a 

specific locus. We made use of this when investigating a QTL we found associated with 

variation in margin morphology and leaf size. We were able to confirm the effect of this QTL 

in two HIFs for this locus, and so were able to explore the effect of natural variation at this 

locus within two different genetic backgrounds. We could test for pleiotropic effects of 

allelic variation at this region on other traits, such as epidermal cell size and siliques 

produced per plant using HIFs for this region. To investigate an effect of variation at this 

locus on other traits in the absence of HIFs would require measuring these traits across the 

Bay-0 x Shahdara RIL population to see if QTLs for these traits coincided with the margin 

morphology QTL, and so using a HIF approach saved considerable time and facilitated more 

detailed study of QTL we had identified. 

There is no equivalent approach we could use in our GWA work, as the allelic variation we 

mapped traits to was present across over 300 different accessions, rather than between two 

parents as in the Bay-0 x Shahdara population. To independently confirm the association of 

genotypic variation at a locus to trait variation identified in a GWAS, an F2 population can be 

created from parent accessions varying in genotype at the locus. This has been used 

successfully to identify candidate genes from GWASs in the literature (Chao et al., 2012). For 
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loci we identified associated with leaf shape traits in our GWASs, we created F2 populations, 

and in two of these began genotyping individuals to compare possible association of leaf 

shape and variation at each region. Due to developments in other areas of the project we 

did not follow up work in this area further, however it is worth noting for one of the F2 

populations, we found an association of leaf shape variation with genotype at a marker 

nearby the locus initially associated in the GWAS. 

A major advantage of GWA is that the great genetic variation within a population of 

hundreds of natural accessions allows trait variation to be mapped to much narrower loci 

than is typical for QTL analysis in RIL populations such as the Bay-0 x Shahdara RILs.  This 

allows candidate genes to be identified more easily, as the number of genes within a 

window of association with the trait is less. We found that several loci associated with leaf 

shape traits in our GWASs contained clusters of NBLRR genes. This was particularly 

beneficial for the project, as the reoccurrence of these NBLRR genes suggested them as 

possible candidate genes for each of the loci, and so targets for further investigation in our 

work. An alternative course of the project, without the GWA work, would have been to 

identify candidate genes for further investigation within leaf shape QTLs in the Bay-0 x 

Shahdara population. Although we applied a network analysis to identify candidate genes 

for the margin morphology and leaf size QTL in the Bay-0 x Shahdara RILs, T-DNA insertion 

lines for these candidate genes did not show any effect of leaf size or margin morphology. 

Fine mapping could be used to narrow regions containing QTL, and we considered this 

approach. However, the work required to map a QTL interval to a size containing a 

manageable number of candidate genes for further investigation is considerable. We 

reasoned that as this work would not necessarily bring us to a candidate gene for a QTL 

within the time available, a better approach would be to investigate the NBLRR candidate 

genes associated within the GWAS associated loci. Although this meant taking a step away 

from natural genetic variation to investigate these genes using T-DNA mutant analysis, it 

allowed us to ask discrete questions on the leaf shape of T-DNA lines for these genes. 

These two approaches to genetic mapping therefore worked complementarily for our 

project, GWASs led us to a set of candidate genes for further investigation, and within the 

Bay-0 x Shahdara RILs we were able to explore the effects of natural variation at a locus on a 

variety of traits beyond that for which the region was initially associated with.  
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6.1.3 Leaf shape and variations in wider plant morphology 

We had found that some of the loci associated with variation in leaf shape traits were also 

associated with variation in leaf number and hypocotyl length. Two regions associated with 

variation in llpPC2 score in the Bay-0 x Shahdara population were also associated with 

variation in published data on hypocotyl length (Loudet et al., 2008). The leaf shape trait 

llpPC2 defines a change in shape between a more stunted or elongated leaf and longer 

hypocotyl length was found to be positively correlated with a more elongated leaf at both of 

these loci. Overexpression of the gene identified  as responsible for the association of 

hypocotyl length variation at one of these loci caused an extension of all linearly elongating 

lateral organs of the plant (Loudet et al., 2008), suggesting a role for this gene in the wider 

morphology of the plant. Given that two of four of the llpPC2 associated loci within the Bay-

0 x Shahdara RILs are also associated with correlated changes in hypocotyl length, it may be 

relatively common that genetic loci responsible for variation in leaf shape are also 

associated with changes in overall plant morphology. That leaf shape variation can occur as 

part of overall changes in plant morphology is not unexpected. It seems reasonable to 

assume that factors controlling cell division and expansion or growth rate may have an 

effect across multiple plant organs. Members of the ERECTA family Leucine Rich Repeat 

Receptor Like Kinases show reduced and altered lateral organ growth, likely as a result of 

decreases in cell number (Bundy et al., 2012; Shpak et al., 2004; Torii et al., 1996). The genes 

TCP14 and TCP15 have also been found to have a function in leaf shape, internode length 

and pedicel length (Kieffer et al., 2011).  

6.1.4 NBLRR genes associated with differences in leaf shape 

Four loci associated with leaf shape variation in our GWAS contained clusters of NBLRR 

genes. We were intrigued by this, and investigated possible effects of these NBLRR genes on 

plant leaf shape through mutant analysis of T-DNA insertion lines. Through this approach we 

characterised several T-DNA insertion lines with light and temperature specific effects on 

plant morphology. 

NBLRR genes are typically thought to have a role in disease response in Arabidopsis (McHale 

et al., 2006). It is possible the leaf shape differences we observed in T-DNA lines for the 

NBLRR candidate genes are related to disease resistance effects. Disease resistance 

phenotypes in the NBLRR gene Chilling Sensitive 3 (CHS3) are associated with  decreased 

growth resulting in smaller more compact rosettes (Yang et al., 2010).  A stunted rosette 
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phenotype is also associated with enhanced disease resistance in the suppressor of npr1-1, 

constitutive 1(SNC1) NBLRR gene (Li et al., 2001; Zhang et al., 2003). Similar effects on 

morphology and disease resistance have been described for with the NBLRR genes RRS1 and 

RPS4 (Heidrich et al., 2013), and for combinations of natural polymorphic NBLRR gene 

clusters within natural accessions (Alcázar et al., 2014; Bomblies et al., 2007). Analogues of 

salicylic acid (SA) have been known to decrease biomass in Arabidopsis (Canet et al., 2010), 

and the stunted morphology common to NBLRR mutations with altered disease resistance 

phenotypes may be the result of changes in SA levels in these plants (Naseem et al., 2015; 

Sašek et al., 2014; Vicente and Plasencia, 2011). We did not test SA levels in the T-DNA lines 

we studied, so it is unclear as to whether the differences in leaf morphology we observed 

were the result of differences in SA levels between the plants, and this may be an area for 

further work on from this project. 

Although the majority of leaf shape differences we identified in T-DNA lines for NBLRR genes 

were a decrease llpPC2 score, consistent with the stunted leaf morphology of activated 

disease responses phenotypes of NBLRR mutations in the literature, a T-DNA line for 

At1g72850, had an increased llpPC2 score, similar to a more elongated leaf. Interestingly, an 

NBLRR mutation resulting in elongated rather than stunted leaves, is also more susceptible 

to disease (Faigón-Soverna et al., 2006). It would be interesting to test whether SA levels 

and disease resistance correlate with llpPC2 score across the T-DNA lines we studied. 

6.1.5 Effects of environmental variation on leaf shape in T-DNA 

lines for NBLRR genes 

We found that several of the differences in leaf shape observed in the T-DNA lines for NBLRR 

genes were temperature sensitive, and varied in presence or effect size between 16°C and 

24°C. Phenotypes of NBLRR genes in the literature have been found to be sensitive to 

temperature. However, in all cases we are aware of where the phenotypic effect of a 

mutation or natural variant of an NBLRR gene responds to temperature, the result is a more 

severe phenotype in colder temperatures (Alcázar et al., 2008; Bomblies et al., 2007; Huang 

et al., 2010; Zhu et al., 2010). The effect of varying temperature conditions on our leaf shape 

traits in the T-DNA insertion lines was not so consistent. We found that the leaf shape 

difference to Col-0 for two of the T-DNA lines, At5g45240-1 and At1g72850-1 was only 

present in 24°C conditions. The leaf shape effect of the At4g09420-1 line was only present in 

16°C conditions. Interestingly, another T-DNA line for the At5g45240 gene, At5g45240-2 had 
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a stronger effect on leaf shape in 16°C conditions, despite the other T-DNA line for this gene, 

At5g45240-1 having an effect on leaf shape specific to 24°C conditions. 

Although we did not test for a link between SA levels and the leaf shape of the T-DNA lines 

we studied, it is interesting to note that the response of Arabidopsis plants to temperature 

has been shown to vary with SA level. Differences in growth rate between Col-0 and a 

mutant lines with variable levels of SA suggest an increase of rosette size at lower 

temperatures for plants with lower SA levels (Scott et al., 2004).  This may explain the 

temperature specific responses observed for some NBLRR mutant disease phenotypes, and 

it is possible a similar explanation may exist for temperature specific leaf shape differences 

we observed across the T-DNA insertion lines. 

As work in the literature implicated an NBLRR gene with an effect on phytochrome B 

signalling (Faigón-Soverna et al., 2006), we explored possible interactions between the 

At5g45240-1 T-DNA insertion and a phytochrome B (PhyB) mutant, PhyB-9. Our results 

across hypocotyl growth experiments in different light conditions, and leaf shape analysis of 

plants grown in standard greenhouse conditions, did not require an interaction of PhyB-9 

mutation and At5g45240-1 insertion for explanation. Instead our results suggest that within 

etiolating plants, due to either dark growth conditions or the presence of a PhyB-9 mutation, 

the decrease in llpPC2 or hypocotyl length otherwise associated with the At5g45240-1 

insertion was alleviated. 

Variation in red to far red ratio, or the presence of a PhyB mutation, which both result in a 

shade response in Arabidopsis, have been found to increase susceptibility of plants to 

pathogens  (Cargnel et al., 2014; Cerrudo et al., 2012; de Wit et al., 2013). Interestingly the 

increase in disease susceptibility does not appear to be the result of morphological changes 

associated with a shade response, as mutations in other photoreceptors, causing similar 

shade morphologies, do not increase susceptibility (Cerrudo et al., 2012). If there is a link 

between the leaf shape effects we observed for the At5g45240-1 line and an as yet 

uncharacterised disease response for this T-DNA line, this interaction between shade 

response and disease resistance in the literature may explain our observations on the 

absence of morphology effects of the At5g45240-1 insertion in etiolating plants. 
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6.1.6 Natural genetic variation in NBLRR genes across Arabidopsis 

accessions 

The NBLRR genes are one of the most variable gene families in Arabidopsis, varying greatly 

between different natural accessions in amino acid sequence, expression level and copy 

number (Gan et al., 2011). There is also great variation in presence absence polymorphisms 

in this gene family (Guo et al., 2011). In a set of 80 resequenced accessions, two of the 

NBLRR genes, At1g72850 and At5g45240, associated with leaf shape variation in our GWA 

work and for which T-DNA insertion lines had shown differences in leaf shape, were present 

in only twenty and nine of the accessions respectively (Guo et al., 2011) 

(http://www.1001genomes.org). At4g09420, a homologue of At1g72850 for which a T-DNA 

insertion line had a leaf shape phenotype, was present across 60 of these accessions (Guo et 

al., 2011) (http://www.1001genomes.org). GWASs typically use biallelic SNPs as genetic 

markers, and so more complex patterns of genetic variation are often flattened to facilitate 

a straightforward approach to genetic mapping. GWAPP uses imputed genotypes to fill 

missing alleles, and discards triallelic SNPs (Seren et al., 2012). The SNPs used in GWAPP 

cover the TAIR10 Col-0 reference genome, and so it is important to remember that only 

genetic variation for genes within this reference genome can be mapped to through GWAPP. 

This therefore excludes variation in genes not present in Col-0. Instances of additional  

NBLRR genes within clusters relative to the Col-0 reference genome have been linked to 

effects on disease resistance and morphology, (Alcázar et al., 2008; Staal et al., 2006), 

suggesting that there are NBLRR genes not present in Col-0 in which polymorphisms may be 

responsible for trait variation between the natural accessions.  Evaluating specific genetic 

loci is perhaps still best done within RIL populations, where the effect of a finite number of 

parent alleles can be tested for associations with traits, and examined further through fine 

mapping experiments. Further work to test the effects of natural variation at the loci we 

found associated with leaf shape traits, or the genes for which we identified T-DNA lines 

with leaf shape effects, may use this approach to isolate and examine the role of natural 

genetic variation in these NBLRR genes on leaf shape. 
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Appendices 

 

 

GWA plot for whole genome for llpPC2 in node 6 leaves 

Association of SNPs to trait llpPC2 for node 6 leaves in the GWAS10 dataset. Results for two 

tests of association are shown, orange circles mark SNPs when tested with the KW 

approach, blue circles show SNPs tested with the AMM approach. The probability a SNP is 

associated with the trait is indicated by position on the Y axis. 
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GWA plot for trait llpPC2 for median node leaves 
Association of SNPs to trait llpPC2 for median node leaves in the GWAS60 dataset. Results 

for two tests of association are shown, orange circles mark SNPs when tested with the KW 

approach, blue circles show SNPs tested with the AMM approach. The probability a SNP is 

associated with the trait is indicated by position on the Y axis. 
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Gene lists for loci identified in GWA 

The following table includes a list of the genes within 20kb of the most highly associated 

SNPs for NBLRR containing loci identified during the GWA work. 

Gene Loci Description 

AT1G58370 Chr1:21.7 Encodes a protein with xylanase activity 

AT1G58380 Chr1:21.7 XW6 

AT1G58390 Chr1:21.7 
Disease resistance protein (CC-NBS-LRR 
class) family 

AT1G58400 Chr1:21.7 
Disease resistance protein (CC-NBS-LRR 
class) family 

AT1G58410 Chr1:21.7 
Disease resistance protein (CC-NBS-LRR 
class) family 

AT1G58420 Chr1:21.7 
Uncharacterised conserved protein 
UCP031279 

AT1G58430 Chr1:21.7 
Encodes an anther-specific proline-rich 
protein 

AT1G58440 Chr1:21.7 

Encodes a putative protein that has been 
speculated, based on sequence 
similarities, to have squalene 
monooxygenase activity 

AT1G58450 Chr1:21.7 

Encodes one of the 36 carboxylate clamp 
(CC)-tetratricopeptide repeat (TPR) 
proteins (Prasad 2010, Pubmed ID: 
20856808) with potential to interact with 
Hsp90/Hsp70 as co-chaperones 

AT1G58460 Chr1:21.7 unknown protein 

AT1G58470 Chr1:21.7 

encodes an RNA-binding protein  
protein_coding  RNA-BINDING PROTEIN 1 
(RBP1)    RNA-BINDING PROTEIN 1 (RBP1) 

AT1G58520 Chr1:21.7 RXW8 

Gene Loci Description 

AT1G72770 Chr1:27.4 
mutant has ABA hypersensitive inhibition 
of seed germination 

AT1G72780 Chr1:27.4 pre-tRNA 

AT1G72790 Chr1:27.4 
hydroxyproline-rich glycoprotein family 
protein 

AT1G72800 Chr1:27.4 
RNA-binding (RRM/RBD/RNP motifs) 
family protein 

AT1G72810 Chr1:27.4 
Pyridoxal-5'-phosphate-dependent 
enzyme family protein 

AT1G72820 Chr1:27.4 
Mitochondrial substrate carrier family 
protein 

AT1G72830 Chr1:27.4 

Encodes a subunit of CCAAT-binding 
complex, binds to CCAAT box motif 
present in some plant promoter 
sequences 

AT1G72840 Chr1:27.4 
Disease resistance protein (TIR-NBS-LRR 
class) 

AT1G72850 Chr1:27.4 Disease resistance protein (TIR-NBS class) 

AT1G72852 Chr1:27.4 
Potential natural antisense gene, locus 
overlaps with AT1G72850 other_rna 
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AT1G72860 Chr1:27.4 
Disease resistance protein (TIR-NBS-LRR 
class) family 

AT1G72855 Chr1:27.4 
Potential natural antisense gene, locus 
overlaps with AT1G72860 other_rna 

AT1G72870 Chr1:27.4 Disease resistance protein (TIR-NBS class) 

AT1G72880 Chr1:27.4 
Survival protein SurE-like 
phosphatase/nucleotidase 

AT1G72890 Chr1:27.4 Disease resistance protein (TIR-NBS class) 

AT1G72900 Chr1:27.4 
Toll-Interleukin-Resistance (TIR) domain-
containing protein 

AT1G72910 Chr1:27.4 
Toll-Interleukin-Resistance (TIR) domain-
containing protein 

AT1G72920 Chr1:27.4 
Toll-Interleukin-Resistance (TIR) domain 
family protein 

AT1G72930 Chr1:27.4 

Toll/interleukin-1 receptor-like protein 
(TIR) mRNA,    protein_coding  
TOLL/INTERLEUKIN-1 RECEPTOR-LIKE (TIR)  
TOLL/INTERLEUKIN-1 RECEPTOR-LIKE (TIR) 

Gene Loci Description 

AT5G36890 Chr5:14.57 beta glucosidase 42 (BGLU42) 

AT5G36900 Chr5:14.57 unknown protein 

AT5G36903 Chr5:14.57 
pseudogene of protein related to self-
incompatibility   pseudogene 

AT5G36904 Chr5:14.57 
pseudogene of protein related to self-
incompatibility   pseudogene 

AT5G36905 Chr5:14.57 transposable element gene 

AT5G36910 Chr5:14.57 

Encodes a thionin that is expressed at a 
low basal level in seedlings and shows 
circadian variation 

AT5G36920 Chr5:14.57 unknown protein 

AT5G36925 Chr5:14.57 unknown protein 

AT5G36930 Chr5:14.57 
Disease resistance protein (TIR-NBS-LRR 
class) family 

AT5G36935 Chr5:14.57 transposable element gene 

AT5G36937 Chr5:14.57 transposable element gene 

AT5G36940 Chr5:14.57 

Encodes a member of the cationic amino 
acid transporter (CAT) subfamily of amino 
acid polyamine choline transporters 

AT5G36950 Chr5:14.57 Encodes a putative DegP protease 

AT5G36960 Chr5:14.57 unknown protein 

Gene Loci Description 

AT5G45085 Chr5:18.3 transposable element gene 

AT5G45090 Chr5:18.3 phloem protein 2-A7 (PP2-A7) 

AT5G45095 Chr5:18.3 unknown protein 

AT5G45100 Chr5:18.3 

Encodes one of the BRGs (BOI-related 
gene) involved in resistance to Botrytis 
cinerea 

AT5G45105 Chr5:18.3 zinc transporter 8 precursor (ZIP8) 

AT5G45110 Chr5:18.3 Encodes a paralog of NPR1 

AT5G45113 Chr5:18.3 
mitochondrial transcription termination 
factor-related / mTERF-related 
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AT5G45116 Chr5:18.3 transposable element gene 

AT5G45120 Chr5:18.3 
Eukaryotic aspartyl protease family 
protein 

AT5G45130 Chr5:18.3 

small GTP binding protein       
protein_coding  RAB HOMOLOG 1 (RHA1)    
ROOT HANDEDNESS 1 (RHA1) 

AT5G45140 Chr5:18.3 
Encodes a subunit of RNA polymerase III 
(aka RNA polymerase C) 

AT5G45150 Chr5:18.3 RNAse THREE-like protein 3 (RTL3) 

AT5G45160 Chr5:18.3 
Root hair defective 3 GTP-binding protein 
(RHD3) 

AT5G45170 Chr5:18.3 
Haloacid dehalogenase-like hydrolase 
(HAD) superfamily protein 

AT5G45180 Chr5:18.3 
Flavin-binding monooxygenase family 
protein 

AT5G45190 Chr5:18.3 Encodes a cyclin T partner CYCT1 

AT5G45200 Chr5:18.3 
Disease resistance protein (TIR-NBS-LRR 
class) family 

AT5G45210 Chr5:18.3 
Disease resistance protein (TIR-NBS-LRR 
class) family 

AT5G45220 Chr5:18.3 
Disease resistance protein (TIR-NBS-LRR 
class) family 

AT5G45230 Chr5:18.3 
Disease resistance protein (TIR-NBS-LRR 
class) family 

AT5G45240 Chr5:18.3 
Disease resistance protein (TIR-NBS-LRR 
class) 

AT5G45250 Chr5:18.3 

RPS4 belongs to the Toll/interleukin-1 
receptor (TIR)-nucleotide binding site 
(NBS)-Leu-rich repeat (LRR) class of 
disease resistance (R ) genes 

AT5G45260 Chr5:18.3 
Confers resistance to Ralstonia 
solanacearum 

AT5G45275 Chr5:18.3 Major facilitator superfamily protein 
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The following table includes a list of the genes within 20kb of the most highly associated 

SNPs for non NBLRR containing loci identified during the GWA work. 

Gene Loci Description 

AT1G14520 Chr1:4 Encodes MIOX1 

AT1G14530 Chr1:4 TOM THREE HOMOLOG 1 (THH1) 

AT1G14540 Chr1:4 Peroxidase superfamily protein 

AT1G14549 Chr1:4 unknown protein 

AT1G14550 Chr1:4 Peroxidase superfamily protein 

AT1G14560 Chr1:4 
Mitochondrial substrate carrier family 
protein 

AT1G14570 Chr1:4 UBX domain-containing protein 

AT1G14580 Chr1:4 C2H2-like zinc finger protein 

AT1G14590 Chr1:4 
Nucleotide-diphospho-sugar 
transferase family protein 

AT1G14600 Chr1:4 
Homeodomain-like superfamily 
protein 

AT1G14610 Chr1:4 
Required for proper proliferation of 
basal cells 

AT1G14620 Chr1:4 DECOY (DECOY) 

AT1G14630 Chr1:4 unknown protein 

AT1G14640 Chr1:4 

SWAP (Suppressor-of-White-
APricot)/surp domain-containing 
protein 

AT1G14642 Chr1:4 unknown protein 

AT1G14650 Chr1:4 

SWAP (Suppressor-of-White-
APricot)/surp domain-containing 
protein / ubiquitin family protein 

Gene Loci Description 

AT1G33060 Chr1:12 NAC 014 (NAC014) 

AT1G33070 Chr1:12 MADS-box family protein 

AT1G33080 Chr1:12 MATE efflux family protein 

AT1G33090 Chr1:12 MATE efflux family protein 

AT1G33100 Chr1:12 MATE efflux family protein 

AT1G33102 Chr1:12 unknown protein 

AT1G33110 Chr1:12 MATE efflux family protein 

AT1G33120 Chr1:12 Ribosomal protein L6 family 

AT1G33130 Chr1:12 transposable element gene 

AT1G33135 Chr1:12 transposable element gene 

AT1G33140 Chr1:12 Encodes ribosomal protein L9 

AT1G33160 Chr1:12 
pseudogene, similar to actin, blastp 
match of 74% identity and 8 

AT1G33170 Chr1:12 

S-adenosyl-L-methionine-dependent 
methyltransferases superfamily 
protein 

Gene Loci Description 

AT1G71050 Chr1:26 
Heavy metal transport/detoxification 
superfamily protein  
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AT1G71060 Chr1:26 
Tetratricopeptide repeat (TPR)-like 
superfamily protein 

AT1G71070 Chr1:26 

Core-2/I-branching beta-1,6-N-
acetylglucosaminyltransferase family 
protein 

AT1G71080 Chr1:26 
RNA polymerase II transcription 
elongation factor 

AT1G71090 Chr1:26 Auxin efflux carrier family protein 

AT1G71100 Chr1:26 

Encodes a ribose 5-phosphate 
isomerase involved in the formation 
of uridine used for the synthesis of 
UDP-sugars 

AT1G71110 Chr1:26 unknown protein 

AT1G71120 Chr1:26 
Contains lipase signature motif and 
GDSL domain 

AT1G71130 Chr1:26 

encodes a member of the ERF 
(ethylene response factor) subfamily 
B-5 of ERF/AP2 transcription factor 
family 

AT1G71140 Chr1:26 MATE efflux family protein 

AT1G71150 Chr1:26 unknown protein 

Gene Loci Description 

AT2G10330 Chr2:4 transposable element gene 

AT2G10340 Chr2:4 unknown protein 

AT2G10350 Chr2:4 transposable element gene 

AT2G10360 Chr2:4 transposable element gene 

AT2G10370 Chr2:4 transposable element gene 

AT2G10380 Chr2:4 transposable element gene 

AT2G10390 Chr2:4 transposable element gene 

AT2G10400 Chr2:4 transposable element gene 

AT2G10405 Chr2:4 transposable element gene 

AT2G10410 Chr2:4 

Member of Sadhu non-coding 
retrotransposon family       
transposable_element_gene       
SADHU NON-CODING 
RETROTRANSPOSON 1-1 (SADHU1-1) 
SADHU NON-CODING 
RETROTRANSPOSON 1-1 (SADHU1-1) 

AT2G10420 Chr2:4 transposable element gene 

AT2G10430 Chr2:4 

pseudogene, similar to putative 
reverse transcriptase,  blastp match of 
34% identity and 1 

AT2G10440 Chr2:4 unknown protein 

AT2G10450 Chr2:4 14-3-3 family protein 

AT2G10460 Chr2:4 transposable element gene 

Gene Loci Description 

AT4G05616 Chr4:3 transposable element gene 

AT4G05620 Chr4:3 
Galactose oxidase/kelch repeat 
superfamily protein 

AT4G05630 Chr4:3 unknown protein 
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AT4G05631 Chr4:3 unknown protein 

AT4G05635 Chr4:3 transposable element gene 

AT4G05632 Chr4:3 unknown protein 

AT4G05633 Chr4:3 transposable element gene 

AT4G05634 Chr4:3 transposable element gene 

AT4G05636 Chr4:3 transposable element gene 

AT4G05638 Chr4:3 transposable element gene 

AT4G05640 Chr4:3 transposable element gene 

Gene Loci Description 

AT4G08657 Chr4:5 transposable element gene 

AT4G08660 Chr4:5 transposable element gene 

AT4G08670 Chr4:5 

Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin 
superfamily protein 

AT4G08680 Chr4:5 transposable element gene 

AT4G08685 Chr4:5 

Encodes a protein, expressed in 
leaves, with similarity to pollen 
allergens 

AT4G08690 Chr4:5 
Sec14p-like phosphatidylinositol 
transfer family protein 

AT4G08691 Chr4:5 unknown protein 

AT4G08692 Chr4:5 transposable element gene 

AT4G08695 Chr4:5 

pseudogene, similar to ribosomal 
protein L2, blastp match of 66% 
identity and 2 

AT4G08700 Chr4:5 
Member of a family of proteins 
related to PUP1, a purine transporter 

AT4G08710 Chr4:5 transposable element gene 

AT4G08720 Chr4:5 transposable element gene 

AT4G08730 Chr4:5 RNA-binding protein 

AT4G08740 Chr4:5 unknown protein 

Gene Loci Description 

AT5G15330 Chr5:5 SPX domain gene 4 (SPX4) 

AT5G15340 Chr5:5 
Pentatricopeptide repeat (PPR) 
superfamily protein 

AT5G15350 Chr5:5 
early nodulin-like protein 17 
(ENODL17) 

AT5G15360 Chr5:5 unknown protein 

AT5G15380 Chr5:5 

Encodes methyltransferase involved in 
the de novo DNA methylation and 
maintenance of asymmetric 
methylation of DNA sequences 

AT5G15390 Chr5:5 
tRNA/rRNA methyltransferase (SpoU) 
family protein 

AT5G15400 Chr5:5 U-box domain-containing protein 

AT5G15410 Chr5:5 

'defense, no death' gene (DND1) 
encodes a mutated cyclic nucleotide-
gated cation channel 

AT5G15420 Chr5:5 unknown protein 
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AT5G15430 Chr5:5 
Plant calmodulin-binding protein-
related 

AT5G15440 Chr5:5 EID1-like 1 (EDL1) 

AT5G15450 Chr5:5 
Encodes a chloroplast-targeted 
Hsp101 homologue 

AT5G15460 Chr5:5 
membrane-anchored ubiquitin-fold 
protein 2 (MUB2) 

AT5G15470 Chr5:5 
Encodes a protein with  putative 
galacturonosyltransferase activity 

AT5G15480 Chr5:5 C2H2-type zinc finger family protein 
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NBLRR clusters across the Arabidopsis thaliana genome 
Figure shows the five chromosomes of Arabidopsis represented as black bars. The y axis 

indicates the position in megabases on each chromosome. The green and red circles each 

show a cluster of NBLRR genes, using data from Guo et al., (2011). Green circles show 

clusters that were within towers of associated SNPs in our GWASs for leaf shape. 
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Part one of Arabidopsis NBLRR phylogenetic tree 
Part one of Arabidopsis NBLRR phylogenetic tree, containing predominantly Coiled Coiled 

domain NBLRRs. The tree was produced using PhyML (http://atgc.lirmm.fr/phyml/) with 

Arabidopsis genes identified as containing a nucleotide binding domain. The sequence used 

to gather NB domain Arabidopsis genes was taken from Guo et al., (2011). The tree was 

drawn using the ape package in R (Paradis et al., 2004).  
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Part two of Arabidopsis NBLRR phylogenetic tree 

Part two of NBLRR phylogenetic tree, containing predominantly TIR domain NBLRRs. The 

majority of NBLRR genes associated with leaf shape traits in our GWA work were TIR-

NBLRRs, however, within the TIR-NBLRRs, leaf shape associated NBLRR genes showed no 

restriction to a particular region of the tree. 
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Creation of At5g45240-1 PhyB-9 double mutant 

To produce the At5g45240-1 PhyB-9 double mutant a F2 population was produced using the 

two individual mutant lines as parents. This F2 was then genotyped for the At5g45240-1 

insertion using the same primers and methods used to confirm the annotated At5g45240-1 

insertion in the parent T-DNA line. Lines with a band size matching the insertion at 600bp, 

but no wild type band at 1000bp were considered homozygous for the At5g45240-1 

insertion and selected for further genotyping. To test for the PhyB-9 insertion, the method 

described in Ward et al., (2005) was used. First primers were used to amplify the region 

containing the PhyB-9 mutation, and the product was cut with the MnlI restriction enzyme. 

DNA with the PhyB-9 mutation contains a restriction site for this enzyme and is cut, 

producing two products, one roughly 25bp smaller than the wild type product.  

 

  

F2 lines genotyped for At5g45240-1 
insertion 
A band around 1000bp indicates wild type 

sequence, a band around 600bp indicates 

the presence of the At5g45240-1 T-DNA 

insertion. Lines 69, 55, 62 and 84 are 

homozygous for the At5g45240-1 insertion. 

 

  

F2 lines genotyped for the PhyB-9 mutation 
A band around 200bp indicates wild type 

sequence, and a band around 180bp 

indicates the presence of the PhyB-9 

mutation, as the mutant sequence will be 

cut by the enzyme MnlI. Line 62 is 

homozygous for the PhyB-9 mutation. 
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Creation of the At5g45240-1 At1g72850-1 double mutant 

An At5g45240-1 At1g72850-1 double mutant was produced by creating a F2 population 

using the two individual mutant lines as parents. The F2 was then genotyped for the 

At5g45240-1 insertion. Lines with a band size matching the insertion at 600bp were selected 

for further genotyping for the At1g72850-1 insertion, using the same primers used to 

confirm the annotated insertion in the original parent line.  

 

  

F2 lines genotyped for the At5g45240-1 
insertion 
Primers used are those used to confirm 

presence of annotated insertion for the 

original T-DNA line previously in the thesis. A 

band around 1000bp indicates wild type 

sequence, a band around 600bp indicates 

the presence of the At5g45240-1 insertion. 

Lines 5, 8 and 108 are homozygous for the 

At5g45240-1 insertion. 

 

  

F2 lines genotype for the At1g72850-1 
insertion 
A band around 1000bp indicates wild type 

sequence, a band around 600bp indicates 

the presence of the At1g72850-1 T-DNA 

insertion. Line 8 is homozygous for the 

At1g72850-1 insertion. 
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Abbreviations 

Abbreviation Definition 

ADR1 Advanced Disease Resistance 1 (gene) 

AMM Accelerated Mixed Model 

AMPRIL Arabidopsis multiparent RIL 

ATTEDJP http://atted.jp, collection of microarray datasets 

avg average 

BLAST Basic Local Alignment Search Tool 

bp base pairs 

CC Coiled-Coiled 

cDNA complementary DNA 

Chr Chromosome 

CHS3 Chilling Sensitive 3 

Col-0 Columbia-0, commonly used Arabidopsis accession 

CSA1 Constitutive Shade Avoidance 1 (gene) 

Cvi Cape Verde Islands, Arabidopsis accession 

DNA Deoxyribonucleic acid 

DOG1 Delay Of Germination 1 (gene) 

ELF3 Early Flowering 3 

EMMA Efficient Mixed-Model Association  

eQTL expression QTL 

G09_pPC Procrustes fitted PC created using GWAS09 leaf dataset 

G10_pPC Procrustes fitted PC created using GWAS10 leaf dataset 

G60_pPC Procrustes fitted PC created using GWAS60 leaf dataset 

GO Gene Ontology 

GWAPP 
A Web Application for Genome-Wide Association Mapping in 
Arabidopsis 

GWAS Genome Wide Association Study 

hetPC A heteroblasty PC 

HIF Heterozygous Inbred Family 

HMA5 Heavy Metal ATPase 5 (gene) 

INRA French National Institute for Agricultural Research 

kb kilobase 

KNOX Knotted1-like Homeobox (gene family) 

KW Wilcoxon rank sum test 

L2_PC PC created using PCA on first two leaves of a dataset 

LBl1.3 Primer for left border of SALK T-DNA insertion 

Ler Landsberg erecta, commonly used Arabidopsis accession 

llpPC A procrustes fitted PC created from a PCA on the leaf library leaves 

LOD Logarithm Of Odds 

LP Left Primer 

MAGIC Multiparent Advanced Generation Inter-Cross 

MAX1 More Axillary Branches 1 (gene) 

mn median node 

MQM Multiple QTL Mapping 

N6PCA_PC A PC created from node 6 leaves 

NASC Nottingham Arabidopsis Stock Centre 
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NBLRR Nucleotide Binding Leucine Rich Repeat 

NIL Near Isogenic Line 

PAR Photosynthetically Active Radiation 

PC Principal Component 

PCA Principal Component Analysis 

PCR Polymerase Chain Reaction 

PhyB Phytochrome B (gene) 

QTL Quantitative Trait Loci 

R/qtl QTL package for R 

RIL Recombinant Inbred Line 

RNA Ribonucleic acid 

RP Right Primer 

RPP4 Recognition of Peronospora Parasitica 4 

RPS4 Resistant to Psuedonomas Syringae 4 

RRS1 Resistant to Ralstonia Solanacearum1 (gene) 

RTPCR Reverse Transcriptase PCR 

SA Salicylic acid 

SALK Salk Institute for biological studies 

SD Standard Deviation 

SIL3 Simple Leaf 3 (gene) 

SNC1 Suppressor of NPR1-1, Constitutive 1 

SNP Single Nucleotide Polymorphism 

TAIR The Arabidopsis Information Resource 

TCP Teosinte Branched, Cycloidea and PCF (gene family) 

T-DNA Transfer DNA 

TIR domain resembling Drosophila Toll and mammalian IL-1 receptors 

TZP At5g43630 
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