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ABSTRACT 

This thesis investigates the electromagnetic performance of novel stator permanent magnet 

(PM) and DC field excited synchronous machines which are evolved from the variable flux 

reluctance machines (VFRMs). All theoretical analyses are carried out by the finite element 

method and validated by experiments. 

The influence of stator and rotor pole arcs on electromagnetic torque of VFRMs having 

different stator and rotor pole combinations is firstly investigated. It is found that the optimal 

rotor pole arc to rotor pole pitch ratio is ~1/3, while the optimal stator pole arc is equal to or 

slightly smaller than the optimum rotor pole arc. Then, by introducing the multi-tooth 

structure, novel multi-tooth VFRM is proposed and investigated, which exhibits more 

sinusoidal phase back-EMF, lower torque ripple and higher torque density at relatively low 

copper loss when compared with the optimized single-tooth VFRM.  

A novel biased flux PM machine (BFPMM) is also proposed and investigated. The 

influence of PM locations in the stator, i.e. in stator yoke, in the stator pole, and on stator pole 

surface, is analysed and the result shows that maximum torque density is achieved when the 

PMs located in the stator yoke. Furthermore, various flux focusing configurations are 

employed in BFPMM to further enhance the torque density and PM utilization efficiency.  

Similar to other stator PM synchronous machines, the confliction among the slot area, PMs 

and stator irons also exists in BFPMM and limits the possibility of further enhancing the 

torque density. As an effective solution, the partitioned stator configuration, which fully 

utilizes the inner space, is introduced in BFPMM as novel partitioned stator BFPMM (PS-

BFPMM). It shows that the torque density is enhanced significantly without scarifying the 

PM utilization efficiency. Meanwhile, two PM stator configurations, i.e. SPM stator and 

Spoke-IPM stator, are proposed and investigated. It is found that PS-BFPMM with Spoke-

IPM stator exhibits larger torque density while PS-BFPMM with SPM stator has higher PM 

utilization efficiency. For partitioned stator PM synchronous machines, since the PMs and 

armature windings are separately located in the inner and outer stators, the ratio of inner/outer 

stator poles (Nis/Nos) and the relative position of inner/outer stators are free and their 

influences on electromagnetic performance are investigated and compared based on Spoke-

IPM stator configuration and minimum 6-pole inner and outer stators. The conditions to 

obtain the bipolar symmetrical phase flux-linkage and phase back-EMFs as well as maximum 

torque are derived for different Nis/Nos.   
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NOMENCLATURE 

F Magnetic motive force (A) 

GCD Greatest common divisor 

Ia Armature current (A) 

Iarms Phase current in RMS (A) 

Id D-axis current (A) 

If DC field current (A) 

Iq Q-axis current (A) 

Kd Distribution factor 

Kdp Winding factor 

Kp Pitch factor 

Laa Active axial length (mm) 

Lag Length of air-gap (mm) 

m Number of phases 

n Number of small teeth per stator pole 

n' Ratio of inner stator pole number to outer stator pole number 

Na Number of turns per phase for armature winding 

Nc Number of cogging torque cycles over one electric period 

Nis Number of inner stator poles 

Nf Number of turns per phase for DC field winding 

Nos Number of outer stator poles 

Np Number of turns per phase 

Npp Spatial span number of stator pole pitch between the two coils 

Nr Number of rotor poles 

Nrb Order of rotor poles 

Ns Number of stator poles 

Nsa Order of stator poles 

Nsscs Number of stator structure cyclic symmetry 

pa Armature copper loss (W) 

pc Copper loss (W) 

pf Excitation copper loss (W) 
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P0 Average air-gap permeance (Wb/A) 

PNsa Permeance between a stator pole Nsa and the complete rotor (Wb/A) 

Psp Permeance between a single stator tooth and the complete rotor (Wb/A) 

Pv Permeance of v
th

 harmonic (Wb/A) 

Risi Inner radius of inner stator (mm) 

Riso Outer radius of inner stator (mm) 

Rosi Inner radius of outer stator (mm) 

Roso Outer radius of outer stator (mm) 

T Electromagnetic torque (Nm) 

Tbri Thickness of lamination bridge 

Tostto Thickness of outer stator tooth tip (slot opening) (mm) 

Tosttb Thickness of outer stator tooth tip (tooth body) (mm) 

Tosy Thickness of outer stator yoke (mm) 

TPM Minimum thickness of PM (mm) 

Trr Radial thickness of rotor (mm) 

Wrp Rotor pole width (mm) 
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Wsp Stator pole width (mm) 

α0 Initial angles of the phase current (°) 

αe Electrical degree between two adjacent coil-EMF vectors (°) 

αm Mechanical degree between two adjacent coil-EMF vectors (°) 

θ Rotor position (°) 

θ0 Initial rotor position (°) 

θd Angular phase difference between two coils belong to the same phase (°) 

θosr Relative position difference between the middle of one stator pole and one 

rotor pole referred to the aligned position (°) 

θostb Pole arc of outer stator tooth body (°) 

θostt Pole arc of outer stator tooth tip (°) 

θPM PM inner pole arc (°) 

θrop Rotor outer pole arc (°) 

θrip Rotor inner pole arc (°) 

θsr Position difference between the middle of the single stator tooth and rotor 
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pole referred to the aligned position (°) 

θsrki Position difference between the middle of i
th

 small stator tooth and the rotor 

pole referred to the aligned position (°) 

ω Rotor angular speed (rad/s) 

σ Leakage flux factor 

Ф Flux per phase(Wb) 

ψ
a

arm Armature reaction flux-linkage(Wb) 

ψDC DC field flux-linkage (Wb) 

ψ
a

PM PM flux-linkage (Wb) 

  

BFPMMs Biased flux permanent magnet machines 

DSDSMs Doubly fed doubly salient machines 

DSPMMs Doubly salient permanent magnet machines 

FRPMMs Flux reversal permanent magnet machines 

MT-VFRMs Multi-tooth variable flux reluctance machines 

PS-BFPMMs Partitioned stator biased flux permanent magnet machines 

PS-SFPMMs Partitioned stator switched flux permanent magnet machines 

SFPMMs Switched flux permanent magnet machines 

VFRMs Variable flux reluctance machines 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Introduction 

With the development of high energy permanent magnet (PM) materials, improvement of 

power electronics and modern control theories, PM machines have been investigated 

extensively over the last four decades [JAH86] [BIA06a] [ZHU07] [ELR10]. Due to the 

inherent merits of high torque and power densities, as well as high efficiency, PM machines 

have been popular for various applications, such as automotive, renewable energy, industrial 

and domestic appliance [ZHU07] [LI08] [ELR11] [CAO12]. However, the rare earth PM 

materials are monopolized by few countries and the price have been increasing significantly 

in the last decade due to the tighter global supplies which are caused by the reducing export 

quotas of these resources [KOM12] [HUR10] [LEV10]. Therefore, it becomes increasingly 

attraction to consider less or no rare earth PM machines, although their torque/power density 

and efficiency are lower than PM machines. Conventional machines, including induction 

machine (IMs), switched reluctance machines (SRMs) and wound field synchronous 

machines (WFSMs) are currently being re-examined for various applications, particularly for 

wind power generation, domestic appliance, and so on [ZHU15]. Overall, the trade-off 

between electrical machine performance and cost is one of the key factors which should be 

considered in the design for applications with different performance indexes. Hence, 

investigation and development of novel machine topologies are important and can provide 

more options for different application requirements.  

This thesis investigates the electromagnetic performance of both novel stator PM and DC 

field excited synchronous machines which are evolved from the variable flux reluctance 

machines (VFRMs).  

1.2 Synchronous Machines with Alternate Excitation Sources 

Synchronous machines with alternate excitation sources can be classified into four 

categories according to the locations and types of excitation sources, i.e. rotor DC field 

excited synchronous machines, rotor PM synchronous machines, stator DC field excited 

synchronous machines and stator PM synchronous machines, as shown in Fig. 1.1. The 

development of synchronous machines with alternate excitation sources will be reviewed in 

the following sub-sections, particularly for stator DC field excited synchronous machines and 
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stator PM synchronous machines.  

 

 

Fig. 1.1. Synchronous machines with alternate excitation sources. 

1.2.1 Rotor DC Field Excited Synchronous Machines 

Rotor DC field excited synchronous machines are widely used as generators in power 

generation system, such as steam turbine generators, hydroelectric generators and wind 

turbine generators [KOM12] [POL06a] [LI08]. The electrical energy generated by rotor DC 

field excited synchronous machines occupies the majority of electricity market [KOM12] 

[BOL06]. Meanwhile, rotor DC field synchronous machines can also be used for driving 

applications, such as steel mills, pumps, ship propulsion and electric vehicles [KOM12] 

[LIU12a] [ROS06]. Moreover, with the development of high-temperature superconducting 

(HTS) materials, rotor DC field excited synchronous machines also become the major 

research objects in HTS applications since they will offer several prominent advantages such 

as machine size reduction and life-cycle cost reduction [SCH08] [QU13].  

Conventional distributed overlapping armature windings are usually employed in rotor DC 

field excited synchronous machines, as shown in Fig. 1.2. For the rotor structure, there are 

two types: non-salient pole rotor and salient pole rotor. Generally, non-salient pole rotor is 

used for high speed and large power applications with a small number of poles (2p < 4), such 

as steam turbine generators, while salient pole rotor is made for low speed and small to mid-

size power applications with a large number of poles (2p > 4), such as hydroelectric 

generators [KOM12].  

There are three independent control variables in rotor DC field excited synchronous 

machines, i.e. d-axis armature current, q-axis armature current and DC excitation current. By 

appropriately coordinating these three independent control variables, a near unity power 
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factor can be achieved. Meanwhile, the flux weakening performance is also excellent since 

the excitation field is adjustable. However, the efficiency will be limited by the existing 

excitation loss, and the reliability is also influenced by the lifetime of brushes/slip rings. 

 

  

(a) Non-salient pole (b) Salient pole 

Fig. 1.2. Topologies of rotor DC field synchronous machines.  

1.2.2 Rotor PM Synchronous Machines 

Due to the merits of high torque/power densities and high efficiency, rotor PM 

synchronous machines have been extensively used for various applications, such as aerospace, 

automotive and domestic appliance [ZHU07] [LI08] [ELR11]. Different from rotor DC field 

excited synchronous machines, the magnetic fields in rotor PM synchronous machines are 

established by PMs without energy consumption. 

According to the number of slots per pole per phase q, rotor PM synchronous machines can 

be classified into integer slot machines (q equals an integer, i.e. q = 2) and fractional slot 

machines (q equals a fraction, i.e. q = 1/2), as shown in Fig. 1.3 (a) and (b). To maximize the 

flux linkage (torque performance), the coil-pitch is desirable to close the pole-pitch as much 

as possible [ZHU11a]. Therefore, the slot and pole numbers differed by one (Ns = 2p ± 1) 

should be the optimal selection, as shown in Fig. 1.3(c). However, unbalanced magnetic 

forces (UMF) exist in fractional slot machines with Ns = 2p ± 1. Hence, the most appropriate 

slot and pole numbers for fractional slot machine are related by Ns = 2p ± 2 [BIA06a] 

[ZHU11a], as shown in Fig. 1.3(d). Compared with conventional integer slot machines, 

fractional slot machines with Ns = 2p ± 1 and Ns = 2p ± 2 exhibits lower copper loss, higher 
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torque density and efficiency due to short end windings. Meanwhile, due to the larger 

smallest common multiple of slot and pole numbers, they also have lower cogging torque and 

torque ripple [ZHU00].  

 

 

 

(a) q=2 (b) q=1/2 

  

(c) Ns=2p±1 (d) Ns=2p±2 

Fig. 1.3. Typical slot/pole number combinations of rotor PM synchronous machines. 

According to the placement of PMs in the rotor, the rotor topologies could be classified 

into four basic configurations: surface-mounted rotor, interior-radial rotor, surface-inset rotor 

and interior-circumferential rotor, as shown in Fig. 1.4. For the surface-mounted PM (SPM) 

machines, due to the large equivalent air-gap (including PMs), the armature reaction field is 

relatively small while the d-axis and q-axis inductances are also comparatively low. Due to 
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the similar flux paths for d-axis and q-axis armature fluxes, the inductances of d-axis and q-

axis are almost the same. Consequently, the reluctance torque is negligible. Meanwhile, since 

the PMs are directly exposed to the armature reaction field, the capability of demagnetization 

withstanding is also relatively low. For the interior PM (IPM) machines with radially 

magnetized direction, the q-axis inductance is larger than the d-axis inductance since the iron 

parts which are close to the air-gap offer extra q-axis flux paths for armature reaction. 

Therefore, the saliency ratio will increase the reluctance torque and improve the flux-

weakening performance. Since the PMs are buried inside the rotor iron, the leakage flux in 

IPM machines is significantly larger than that in SPM machines. However, the capability of 

demagnetization withstanding is improved since the PMs are effectively shielded from 

demagnetization armature reaction field [ZHU07]. Moreover, the rotor mechanical structure 

of IPM machines is more robust than that of SPM machines. As a compromise between SPM 

machines and IPM machines, the surface-inset PM machines are proposed. As shown in Fig. 

1.4(c), the surface-inset rotor removes the iron region above the PMs but retains the iron 

region between adjacent PMs. Similar to IPM machines, the reluctance torque also exists in 

surface-inset PM machines since the q-axis inductance is larger than the d-axis inductance. 

Furthermore, protected sleeves are also required in surface-inset machines for high speed 

application, which is similar to SPM machines. The interior PM machines with 

circumferential magnetized direction (Spoke-IPM machines) can be considered as one special 

type of IPM machines. The air-gap flux density can be increased by flux focusing (airgap 

field may become higher than the magnet remanence), and thus high torque density is 

achieved. Due to flux focusing and large inner space for PMs in the Spoke-IPM machines, 

low energy PMs with low cost, such as ferrite magnets, can be employed [ZHU07]. 

 

  

(a) Surface-mounted (SPM) (b) Interior-radial (IPM) 
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(c) Surface-inset (d) Interior-circumferential (Spoke-IPM) 

Fig. 1.4. Typical rotor topologies of rotor PM synchronous machines. 

1.2.3 Stator DC Field Excited Synchronous Machines 

Stator DC field excited synchronous machines are one type of special synchronous 

machines, where the DC field winding and AC armature windings are both located in the 

stator [LI93] [POL99] [CHE10a] [ZHU10] [LIU12a] [FUK12] [ZHO13a]. Meanwhile, 

simple and robust salient pole rotor without any coils or PMs is employed. Therefore, the 

slip-rings/brushes, which are usually required in the conventional rotor DC field excited 

synchronous machine, are eliminated in stator DC field excited synchronous machines. 

Consequently, potential high reliability and low maintenance cost can be expected. Moreover, 

since all excitation sources are located in the stator, the heat can be easily dissipated from the 

stator iron and housing. Thus, better thermal management can be achieved in stator DC field 

excited synchronous machine when compared with rotor DC field excited synchronous 

machine. Moreover, the flux weakening capability of stator DC field excited synchronous 

machines is similar to that of rotor DC field excited synchronous machine since the air-gap 

flux density can also be adjusted.  

With long-term development and in-depth research, various machine topologies have been 

proposed, which have been reviewed in [ZHU15]. Reference [ZHU15] also presents one 

concept that all three-phase stator DC field excited synchronous machine topologies can be 

summarized by a 3 × 3 matrix according to the coil-pitches of DC field and armature 

windings. In the following sub-sections, doubly fed doubly salient machines (DFDSMs), 

wound field switched flux machines (WFSFMs) and variable flux reluctance machines 

(VFRMs) will be reviewed as three special representatives of stator DC field synchronous 
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machines which have the unipolar/unipolar, bipolar/bipolar and unipolar/bipolar coil/phase 

flux-linkage waveforms. 

1.2.3.1 Doubly Fed Doubly Salient Machines 

Doubly fed doubly salient machines (DFDSMs) were firstly introduced in [LI93], in which 

full coil-pitched DC field windings and concentrated armature windings are located in the 

stator, as shown in Fig. 1.5. The coil/phase flux-linkage waveforms are unipolar while the 

coil/phase back-EMF waveforms are close to trapezoidal [LI95] [FAN08]. Therefore, 

DFDSM is more suitable for brushless DC (BLDC) operation. Since the flux paths for each 

phase in the stator are not identical, unbalance exists between different phases of DFDSMs, 

particularly under heavy magnetic saturation [LIU13]. It also leads to the large cogging 

torque and high torque ripple. Moreover, due to the unipolar coil/phase flux-linkages, the 

torque density of DFDSMs is relatively poor compared to that of the wound field switched 

flux machines (WFSFMs) which have bipolar coil/phase flux-linkages [ZHU07]. In order to 

enhance the torque density, unequal-slot stator structure can be employed in DFDSMs since 

some slots contain both DC field winding and armature winding while some slots contain 

armature windings only (a trade-off is required between DC field current and armature 

current under the same total copper loss) [KON05]. Reference [KON05] also points out that 

rotor skewing can effectively improve the back-EMF waveforms to be sinusoidal, which 

means DFSDMs are also suitable for brushless AC (BLAC) operation.  

 

 

Fig. 1.5. Machine topology of DFDSMs, field coil-pitch=3 slot-pitches, armature coil-pitch=1 

slot-pitches. 
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1.2.3.2 Wound Field Switched Flux Machines 

Wound field switched flux machines (WFSFMs) were firstly introduced in [POL99] as a 

single phase machines in which fully pitched DC field windings and armature windings are 

both located in the stator. However, the single-phase WFSFMs have the problems of low 

starting torque, large torque ripple and fixed rotating direction [POL99] [POL03] [POL06a]. 

To solve these problems, three-phase WFSFMs were proposed and investigated in [CHE10a] 

based on the same operation principle. Since the field coil-pitch and the armature coil-pitch 

are both equal to 2 slot-pitches as shown in Fig. 1.6(a), this type WFSFMs can be designated 

as F2A2 WFSFMs. The stator and rotor pole combinations of F2A2 WFSFMs are more 

flexible than those of DFDSMs, in which the rotor pole number can be any integers except 

the phase number and its multiples. Different from the DFDSMs with unipolar coil flux-

linkage, the coil flux-linkage of F2A2 WFSFMs is bipolar, which means higher torque 

density can be expected in F2A2 WFSFPMs. Moreover, due to the existing even harmonics, 

the coil flux-linkage and coil back-EMFs waveforms of F2A2 WFSFMs are asymmetric. To 

obtain the symmetrical bipolar phase flux-linkage and sinusoidal phase back-EMF 

waveforms, two conditions should be satisfied [CHE08]. Firstly, the coil number per phase 

must be even. Secondly, the pair of coils belong to same phase must have 180 electrical 

degrees phase shifting (opposite induced polarities). In other word, the ratio of stator pole 

number to the greatest common divisor (GCD) of stator- and rotor-pole numbers should be 

even integers.  

Fig. 1.6(b) shows a WFSFM with the field coil-pitch and the armature coil-pitch equal to 1 

and 3 slot-pitches respectively, which can be designated as F1A3 WFSFM [ZHO13a]. 

Similar to F2A2 WFSFMs, F1A3 WFSFMs also have the flexible stator/rotor pole 

combinations and bipolar coil flux-linkage as well as the same conditions for symmetrical 

bipolar phase flux-linkage and sinusoidal phase back-EMF waveforms. According to the 

analyses shown in [CHE10a] and [ZHO13a], for both 24-solt/10-pole F2A2 WFSFM and 18-

slot/10-pole F1A3 WFSFM as shown in Fig. 1.6 (a) and (b) respectively, the torque densities 

are limited by the high flux leakage between adjacent stator teeth and severe magnetic 

saturation in the stator tooth. Therefore, higher torque density can be expected by halving the 

numbers of stator slots and rotor poles. The results show that the torque densities are 

increased by 30.9% and 20.7% respectively in the 12-slot/5-pole FA2A WFSFM and the 9-

slot/5-pole F1A3 WFSFM when compared with the original 24-slot/10-pole FA2A WFSFM 

and 18-slot/10-pole F1A3 WFSFM under the same machine size and the same current density 
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of 20 A/mm
2 

[ZHO13a]. Further, compared with the optimal 12-slot/7-pole F2A2 WFSFM 

under same copper loss, the 9-slot/5-pole F1A3 WFSFM has similar average torque but large 

torque ripple [ZHO13a].  

 

  

(a) F2A2 WFSFM, field coil-pitch=2 slot-

pitches, armature coil-pitch=2 slot-pitches 

(b) F1A3 WFSFPM, field coil-pitch=1 slot-

pitches, armature coil-pitch=3 slot-pitches 

 

(c) F1A1 WFSFM with segment rotor, field coil-pitch=1 slot-pitches,  

armature coil-pitch=1 slot-pitches 

Fig. 1.6. Machine topologies of WFSFMs. 

A segment rotor WFSFM with concentrated DC field and armature windings was proposed 

in [ZUL10], as shown in Fig. 1.6(c). The DC field coils and armature coils are wound around 

the stator pole alternately. Therefore, this type machine can be designated as F1A1 WFSFM. 

According to the analyses shown in [ZUL10] [ZUL12a], the optimal rotor pole number for 
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12-slots F1A1 WFSFMs is 8 since the maximum average torque is achieved. However, 

asymmetric phase back-EMF and consequently high torque ripple are observed in the 12-

slot/8-pole F1A1 WFSFM. Moreover, the torque density of F1A1 WFSFMs is relatively 

lower when compared with the F2A2 WFSFMs and the F1A3 WFSFMs [ZOU13a] 

1.2.3.3 Variable Flux Reluctance Machines 

Variable flux reluctance machines (VFRMs) were firstly introduced in [LIU12b] [FUK12] 

and have been systematically investigated in [LIU12c] [LIU12d] [LIU113] [LIU14] [AZA14]. 

As shown in Fig. 1.7, doubly salient stator and rotor structure with concentrated stator AC 

armature and DC field windings are adopted in VFRMs. Similar to the WFSFMs, the stator 

and rotor pole combinations of VFRMs remarkably exceed those in switched reluctance 

machines (SRMs) and DFDSMs, and the rotor pole number can be any integers except the 

phase number and its multiples [LIU12c]. Although the coil flux-linkage is unipolar and the 

coil back-EMF is asymmetric, symmetrical bipolar phase flux-linkage and sinusoidal phase 

back-EMF can be obtained in VFRMs by using specific stator/rotor pole combinations (such 

as 6/5, 6/7, 12/10, 12/11, 12/13 and 12/14 etc) since all the even order harmonics in a single 

coil are cancelled completely in the phase winding (the same conditions as required in 

WFSFMs as mentioned in section 1.2.3.2) [LIU12c] [LIU12d]. It means that VFRMs are 

suitable for BLAC operation. Moreover, reference [LIU13] also indicates that VFRMs 

exhibit larger torque density and lower torque ripple than DFDSMs under the same machine 

size and same coper loss. 

 

  

(a) 6S/5R VFRM (b) 6S/7R VFRM 

Fig. 1.7. Machine topologies of VFRMs, field coil-pitch=1 slot-pitches, armature coil-pitch=1 

slot-pitches. 
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1.2.4 Stator PM Synchronous Machines 

PM synchronous machines having PMs located on the stator, nominated as stator PM 

synchronous machines, have been developed in the last decades [LIA95] [HOA97] [DEO97] 

[ZHU05] [ZHU07] [ZHU10] [CHE11c]. When the PMs are located in the stator, the rotor of 

stator PM synchronous machines usually have salient rotor pole geometry, similar to that of 

an SRM, which is simple and robust as well as suitable for high-speed operation [ZHU07]. 

The position of PM in the stator is flexible, which can be mounded in the stator yoke, placed 

on the inner surface of the stator teeth, or sandwiched in the stator teeth. However, 

irrespective of the PM locations, the armature windings in the stator are always non-

overlapping and concentrated. Although the torque production mechanism for all stator PM 

synchronous machines is relied on the rotor saliency, the reluctance torque is negligible, 

which means that the torque of stator PM synchronous machines is predominantly generated 

by PM flux [ZHU07] [ZHU11b]. Moreover, since the heat can be easily dissipated from the 

stator iron and housing, effective management of magnet temperature rise can be achieved in 

stator PM synchronous machines. Consequently, the risk of demagnetization is reduced 

significantly [ZHU07] [ZHU10].  

Basically, there are three types of stator PM synchronous machines, namely, doubly salient 

PM machines (DSPMMs) [LIA95], flux-reversal PM machines (FRPMMs) [DEO97] 

[WAN99] and switched flux PM machines (SFPMMs) [RAU55] [HOA97]. In the following 

sub-sections, these three machines will be reviewed separately.  

1.2.4.1 Doubly Salient PM Machines 

Doubly salient PM machines (DSPMMs) were firstly introduced in [LIA92], in which the 

PMs are located in the stator yoke at an interval of pole number equal to phase number and 

the concentrated windings are employed, as shown in Fig. 1.8. As the rotor rotates, the 

variation of the flux-linkage with each coil is unipolar, while the back-EMF waveform trends 

to be trapezoidal [LIA95] [ZHU07]. Thus, DSPMMs are more suitable for BLDC operation 

mode. However, the rotor-skewing method [LUO96] [CHE03] can be used to obtain a more 

sinusoidal back-EMF waveform. Consequently, DSPMMs can also be operated in BLAC 

mode. Due to the asymmetric flux paths in the stator, the flux-linkage and back-EMF 

waveforms for each phase are unbalanced, particularly under heavy magnetic saturation. 

Moreover, due to the unipolar flux-linkage, the torque density of DSPMMs is relatively poor 

compared to that of other PM synchronous machines [HUA05] [ZHU07]. In order to enhance 
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the toque density, various flux-focusing techniques are proposed and employed in DSPMMs 

[LIA95][LUO96] [CHE03].  

 

  

(a)  (b)  

Fig. 1.8. Machine topologies of DSPMMs.  

1.2.4.2 Flux Reversal PM Machines 

Flux reversal PM machines (FRPMMs) were firstly introduced in [DEO96], in which one 

or more pairs of PMs with alternate polarities are mounted on the surface of each stator tooth 

and the concentrated windings are employed, as shown in Fig. 1.9. When a coil is excited, the 

air-gap field under one PM is increased while that under the other PM (belong to the same 

stator pole) is reduced, and the salient rotor pole will rotate towards to the stronger magnetic 

field [ZHU07]. The coil and phase flux-linkage waveforms are both bipolar, while the coil 

and phase back-EMF waveforms are essentially trapezoidal. Therefore, the rotor-skewing 

method can also be used to improve the phase back-EMF to be more sinusoidal. Moreover, 

good fault-tolerance capability can be obtained in FRPMMs due to its natural isolation 

between the phases in a multi-phase configuration [DEO96]. Since the fluxes produced by 

PMs and the coils are in series, the PMs are more vulnerable to partial irreversible 

demagnetization. Meanwhile, significant eddy-current loss and large radial magnetic force 

will be observed in the PMs since they are directly exposed to the reluctance variation of the 

salient rotor poles [DOR03] [ZHU11b]. Compared with DSPMMs, FRPMMs exhibit higher 

torque density due to the bipolar phase flux-linkage [ZHA09].  
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Fig. 1.9. Machine topology of FRPMM.  

1.2.4.3 Switched Flux PM Machines 

Switched flux PM machines [SFPMMs] were firstly introduced in [RAU55] as one of high 

frequency inductor generators which employs the switched flux principle. Then, extensive 

investigations were carried out in the field of polyphase SFPMMs, particularly for three 

phase SFPMMs [HOA97] [ZHU05] [FEI06] [ZHU08a] [CHE08] [CHE11a] [CHE11b] 

[ZUL12b]. Fig. 1.10(a) shows the typical three-phase SFPMMs with PMs sandwiched in the 

stator teeth. The stator consists of modular U-shaped laminated segments between which are 

placed circumferentially magnetized PMs alternatively with opposite polarity. The 

concentrated coils is wound around the stator pole comprises two adjacent laminated 

segments and a PM. Since the fluxes produced by PMs and the coils are in parallel, the 

influence of the armature reaction field on the working point of the PMs is minimal [ZHU07]. 

Consequently, the electric loading of SFPMMs can be every high. The polarity of the flux-

linkage in the coil reverses when the rotor pole rotates from one stator tooth to another stator 

tooth belong to the same stator pole. Thus, bipolar phase flux-linkage is obtained in SFPMMs. 

Moreover, the back-EMF waveform of SFPMMs is essentially sinusoidal, which makes them 

suitable for BLAC operation. In addition, due to the utilisation of flux focusing and bipolar 

phase flux-linkage as well as sinusoidal phase back-EMF, SFPMMs exhibit significantly 

higher torque density and lower torque ripple when compared with DSPMMs and FRPMMs 

[ZHA09].  
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(a) Conventional SFPMM (b) Sandwiched SFPMM 

  

(c) E-core SFPMM (d) C-core SFPMM 

  

(e) Multi-tooth SFPMM (f) Segment rotor SFPMM 

Fig. 1.10. Machine topologies of SFPMMs. 
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Compared with the conventional PM brushless machines, the reluctance torque of 

SFPMMs is negligible [ZHU07] [ZHU08a]. Hence, the electromagnetic torque of SFPMMs 

mainly depends on the PM flux-linkage, armature current (q-axis) and rotor pole number. In 

other words, a trade-off among the PM volume (shape) and armature winding space (slot area) 

and rotor pole number under the same machine size and the same copper loss is the key factor 

on maximizing the torque of SFPMMs. Based on this guideline, various topologies of 

SFPMMs are proposed and investigated in [FEI06] [ZHU08a] [CHE08] [CHE11a] [CHE11b] 

[ZHO13b].  

Sandwiched SFPMMs, as shown in Fig. 1.10(b), were firstly proposed in [FEI06]. This 

machine can be considered as developed from the conventional SFPMM as shown in Fig. 

1.10(a) by combining two adjacent stator poles into one stator pole. Due to the reduced stator 

teeth, the slot area of Sandwiched SFPMMs is increased. Consequently, larger armature 

current can be achieved under the same copper loss. Meanwhile, the magnitude of PM flux-

linkage is also increased in Sandwiched SFPMMs. Therefore, compared with conventional 

SFPMMs, sandwiched SFPMMs exhibit larger torque density and higher PM utilization 

efficiency [FEI06]. Moreover, by using the V-shape PM structure, the torque density and PM 

utilization efficiency of Sandwiched SFPMMs can be further enhanced [ZHO13b]. 

E-core SFPMMs, as shown in Fig. 1.10(c), were firstly proposed in [CHE11a]. This 

machine can be considered as developed from alternate poles wound SFPMM by removing 

the PMs which sandwiched in the stator poles without coils and changing the magnetization 

directions of the remaining PMs as alternate polarity. Due to the increased slot area together 

with the similar magnitude of PM flux-linkage, larger torque density is achieved in E-core 

SFPMMs when compared with conventional SFPMMs. Further, since half volume of PMs is 

removed, E-core SFPMMs also exhibit high PM utilization efficiency. Then, reference 

[CHE11b] shows that the stator teeth (stator pole without PMs) in the E-core can be removed 

as shown in Fig. 1.10(d), which can be designated as C-core SFPMMs. Due to further 

increased slot area together without sacrificing the PM flux-linkage, C-core SFPMMs have 

larger torque density than E-core SFPMMs and consequently larger than conventional 

SFPMMs [CHE11b]. 

Multi-tooth SFPMMs, as shown in Fig. 1.10(e), were firstly proposed in [ZHU08a]. This 

machine was developed from the conventional SFPMM by employing the multi-tooth stator 

structure. Obviously, the PM usage in multi-tooth SFPMM is reduced significantly, which is 

only half of that in conventional SFPMM. However, the slot area of multi-tooth SFPMM is 

almost the same as that of the conventional SFPMM due to the multi-tooth structure offsets 
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the increased slot area caused by reduced PM volume [ZHU08a] [CHE08]. Moreover, the 

increased stator tooth number will generally require more rotor tooth number. Due to the 

balance between reduced PM flux-linkage and increased rotor pole number, multi-tooth 

SFPMMs exhibit larger torque density and higher PM utilization efficiency than those of 

conventional SFPMMs when the electric loading is relative low.  

Fig. 1.10(e) shows a segment rotor PM synchronous machine which also employs the 

switched flux principle [ZUL12b]. Hence, this machine can be designated as Segment rotor 

SFPMM. In this machine, alternate polarities PMs are mounted on the inner surface of stator 

poles together with concentrated coils wound around the adjacent stator poles. The results 

show that the torque density of Segment rotor SFPMM is about 62% that of IPM machine (or 

SPM machine) [ZUL12b]. Further, in [PAN97], the results show that the torque density of 

conventional SFPMM is similar to, or even larger than, that of the IPM machine. Therefore, 

the torque density of Segment rotor SFPMMs should be lower than that of conventional 

SFPMMs.  

1.3 Scope of Research and Contributions of Thesis 

1.3.1 Aims and Objectives 

In this thesis, the investigation is focused on the electromagnetic performance of novel 

stator DC field excited and PM synchronous machines which are evolved from the VFRMs.  

To further enhance the torque capability of VFRMs, the concepts of unequal stator pole arc 

and slot opening structure, multi-tooth stator structure, PMs replacing the DC field windings, 

flux focusing topologies, partitioned stator configuration together with unequal inner/outer 

stator pole ratio and relative position of inner and outer stator pole are introduced and 

investigated.  

1.3.2 Outline of Thesis 

Based on the research scope and methodology as illustrated in Fig. 1.11 together with the 

major investigated machine topologies as shown in Fig. 1.12, the thesis is organized as 

follows. 

Chapter 1:  

The major topologies of synchronous machines with alternate excitation source are 

reviewed, and the main objectives and contributions of this thesis are presented.  
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Chapter 2:  

In this chapter, the influence of stator and rotor pole arcs on the flux-linkage, back-EMF, 

cogging torque and average torque in VFRMs with different stator/rotor pole combinations is 

comprehensively investigated. Then, the optimal rotor pole arc to rotor pole pitch ratio and 

the optimal stator pole arc are analyzed and summarized. Finally, prototype machines with 

optimal stator and rotor pole arcs are manufactured and measured to validate the analysis. 

 

 

Fig. 1.11. Research scope and arrangement of chapters. 
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(a) Original VFRM (b) Optimized VFRM (c) Multi-tooth VFRM 

   

(d) BFPMM-I (SM) (e) BFPMM-II (SYM) (f) IT-BFPMM-II (SYM) 

   

(g) PS-BFPMM-I (h) PS-BFPMM-II (j) PS-SFPMM (n=1) 

 
  

(j) PS-SFPMM (n=1/2) (k) PS-SFPMM (n=2) (l) PS-SFPMM (n=3) 

Fig. 1.12. Examples of investigated machine topologies in this thesis. 
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Chapter 3:  

In this chapter, novel multi-tooth VFRM is proposed and investigated. The operation 

principle and conditions for symmetrical back-EMF waveforms as well as average torque 

equations are firstly illustrated. Then, the optimal copper loss ratio between armature and DC 

field excitations to obtain the maximum average torque under the fixed copper loss is also 

analysed. Further, the influences of stator and rotor pole combinations together with number 

of smaller teeth per stator pole on electromagnetic performance are investigated. Moreover, 

based on the optimal stator/rotor pole combination, the electromagnetic performance of the 

multi-tooth VFRM is compared with that of the single-tooth VFRM. Finally, two prototype 

machines are manufactured and measured to validate the analyses. 

Chapter 4:  

Novel biased flux PM machine (BFPMM), which is developed from VFRM by replacing 

DC field windings with PMs, is proposed and investigated in this chapter. The operation 

principle, stator/rotor pole combinations, winding connections, winding factors and 

conditions for bipolar phase flux-linkage and symmetrical phase back-EMF waveforms are 

firstly analysed and summarized. Then, the influence of PM locations in the stator is 

investigated. Moreover, based on the optimal stator/rotor pole combination, the 

electromagnetic performances of BFPMMs with three typical PM locations are compared 

with that of the optimized VFRM. Finally, two prototype machines are manufactured and 

measured to validate the analyses. 

Chapter 5:  

In this chapter, the influence of flux focusing on the electromagnetic performance of 

BFPMM with PMs located in the stator yoke is investigated. Then, based on the inner type 

flux focusing structure, the electromagnetic performance of optimized BFPMM is compared 

with optimized DSPMM under the same rated copper loss and the same machine size as well 

as optimal current angles. Finally, the analyses are experimentally validated by the prototype 

machine. 

Chapter 6:  

By introducing the partitioned stator structure, novel partitioned stator BFPMMs (PS-

BFPMMs) with two PM stator configurations, i.e. SPM stator and Spoke-IPM stator, are 

proposed and investigated in this chapter. The machine topologies and operation principle are 

firstly illustrated. Then, the electromagnetic performance in terms of phase flux-linkage and 
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back-EMF, dq-axis inductances and torque capability of PS-BFPMMs are investigated and 

compared with single stator BFPMMs (SS-BFPMMs) under the same (inner/outer) 

stator/rotor pole combination and the same machine size. Moreover, the main stator/rotor 

pole combinations of PS-BFPMMs are further analysed. Finally, two prototype machines 

having SPM and Spoke-IPM stators are manufactured and measured respectively to validate 

the analysis.  

Chapter 7:  

In this chapter, the influences of the ratio of inner/outer stator poles and the relative 

position of inner and outer stators on electromagnetic performance of partitioned stator PM 

synchronous machines will be analysed and compared based on spoke-IPM stator 

configuration and minimum 6-pole inner and outer stators. Firstly, the machine topologies 

and conditions for symmetrical bipolar phase flux-linkage and phase back-EMF under 

different inner/outer stator pole ratios are analysed. Then, based on the optimal rotor pole 

number, the electromagnetic performance of PS-BFPMM is compared with PS-SFPMMs 

with different inner/outer stator pole ratios (equal to 1, 1/2 and 2) under the same rated 

copper loss and machine size. Further, the influence of all pole wound windings and alternate 

pole wound windings on electromagnetic performance of PS-SFPMM with inner/outer stator 

pole ratios equal to 1/2 is analysed and compared. Finally, several prototype machines are 

manufactured and measured to validate the analysis. 

Chapter 8:  

In this chapter, the influences of inner stator and rotor pole combinations on 

electromagnetic performance of PS-SFPMMs with 6-pole outer stator are investigated. Firstly, 

the machine topologies and operational principle are illustrated. Then, the optimal inner stator 

and rotor pole combinations having different inner/outer stator pole ratios are investigated 

under the rated copper loss. Meanwhile, the guideline to search the optimal rotor pole number 

for PS-SFPMMs with different inner/outer stator pole ratios are derived and summarized. 

Further, based on the individual optimal inner stator and rotor pole combinations, the 

electromagnetic performance of PS-SFPMMs with inner/outer stator pole ratio equal to 1, 2, 

3 and 4 are analyzed and compared. Finally, a prototype machine is manufactured and 

measured to validate the analyses.  

Chapter 9: 

It is the general conclusion which summarizes the research findings in this thesis and 
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outlines the future work. 

Appendix A:  

The methods for cogging torque and static torque measurement in this thesis are introduced.  

Appendix B:  

Novel consequent pole synchronous machines with concentrated windings and PM on 

stator pole surface is proposed and investigated. Meanwhile, the influence of unequal stator 

pole arc on electromagnetic torque is also analyzed. 

Appendix C:  

The influence of PMs and armature windings positions together with consequent pole PM 

stator configuration on electromagnetic performance of PS-BFPMMs with SPM stator is 

investigated. 

Appendix D:  

Drawings and parameters of laminations for all prototypes. 

Appendix E: 

Publications resulted from this Ph. D study. 

1.3.3 Major Contributions of Thesis 

 

Major Contributions of Thesis:  

(1) For VFRMs, it reveals that the optimal rotor pole arc to rotor pole pitch ratio for the 

maximum average torque is ~1/3 and the optimal stator pole arc is always equal to or 

slightly smaller than the optimum rotor pole arc. 

(2) Development of novel multi-tooth VFRM topologies. 

(3) Development of novel BFPMM topologies. 

(4) Development of novel PS-BFPMM topologies. 

(5) Development of novel PS-SFPMM topologies.  
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(6) Systematical investigation of the influences of the ratio of inner/outer stator poles and 

the relative position of inner and outer stators on electromagnetic performance of 

partitioned stator PM synchronous machines. Meanwhile, the conditions for 

symmetrical bipolar phase flux-linkage and phase back-EMF under different 

inner/outer stator pole ratios are developed. 
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CHAPTER 2 

INFLUENCE OF STATOR AND ROTOR POLE ARCS ON 

ELECTROMAGNETIC TORQUE OF VARIABLE FLUX 

RELUCTANCE MACHINES 

Variable flux reluctance machines (VFRMs) are developed from switched reluctance 

machines (SRMs) by neglecting the current harmonics of orders higher than 2 and splitting 

the original winding into AC armature and DC field windings [LIU12b]. In previous 

investigation, the equal stator pole arc and stator slot opening, which is usually adopted in 

conventional 6/4 stator/rotor pole SRMs, is employed in VFRMs. However, since VFRMs 

can be considered as one type of stator DC excitation synchronous machines, equal stator 

pole arc and stator slot opening may not be the optimal design for VFRMs. Therefore, in this 

chapter, the influence of stator and rotor pole arcs on electromagnetic torque of VFRMs 

having different stator and rotor pole combinations is investigated.  

2.1 Introduction 

Due to high price of rare earth permanent magnet (PM), non-PM machines are being 

extensively researched. Among various electrical machines, switched reluctance machines 

(SRMs) are one of the candidates, which have been applied to many applications due to their 

simple and robust structure. However, SRMs suffer from high acoustic noise, vibration and 

torque ripple due to unipolar non-sinusoidal excitation [LIU12c].  

Based on the conventional 6/4 stator/rotor-pole SRM, novel variable flux reluctance 

machines (VFRMs) have been proposed with both AC armature and DC field windings 

wound on the same stator pole [LIU12b] [LIU12c] [KAS11] [FUK12]. Meanwhile, the 

choice of rotor pole number in VFRMs is more flexible and can be any integer except the 

phase number and its multiples [LIU12b]. Since the DC field windings are identically wound 

on each stator pole, the flux path for each phase in the stator is the same. According to the 

test results shown in [LIU12c], the acoustic noise and vibration of 6/4 stator/rotor pole 

VFRM are reduced significantly due to the elimination of abrupt slope change of phase 

current. Moreover, by using specific stator/rotor pole combinations, such as 6/5 and 6/7, 

sinusoidal phase flux-linkages and back-EMFs can be obtained in VFRMs since the even 

order harmonics in a single coil are cancelled completely in the phase winding [LIU12c]. 
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Further, lower torque ripple and better torque performance are obtained in VFRMs.  

Since the VFRM was firstly developed from the conventional 6/4 stator/rotor pole SRM, 

previous investigations on VFRMs adopt the equal stator pole arc and stator slot opening 

[LIU12b] [LIU12c] [KAS11] [FUK12]. However, VFRMs can be considered as a type of 

stator DC excitation synchronous machines and are suitable for brushless AC (BLAC) 

operation, which is significantly different from SRMs. It hence suggests that the equal stator 

pole arc and stator slot opening may not be the optimal design for VFRMs. Therefore, in this 

chapter, the influence of stator and rotor pole arcs on the back-EMF, flux-linkage, cogging 

torque and average torque in VFRMs with different stator/rotor pole combinations is 

comprehensively investigated by 2D finite element analyses (FEA) and validated by 

experiments of the prototype machines. 

2.2 Prototype Machines and Optimal Designs 

VFRMs adopt doubly salient stator and rotor structure with non-overlapping stator AC 

armature and DC field windings and either odd or even rotor pole numbers with 6 stator poles 

as shown in Fig. 2.1. As one type of synchronous machines having negligible reluctance 

torque, the average torque is maximum under the Id = 0 control and can be expressed by (2.1). 

Since the DC field and AC armature windings have identical contributions to the average 

torque, the average torque of VFRMs is the maximum when the DC excitation and armature 

copper losses are equal, i.e. pf = pa (which can also be further explained as Na = Nf and Iarms = 

If) [LIU12d]. 

𝑇 =
3

2
𝑁𝑟𝜓𝐷𝐶𝐼𝑞 (2.1) 

where Nr is the number of rotor poles, Iq is the q-axis current,  ψDC is the DC field flux-

linkage, Na and Nf are the turns number per phase of armature winding and DC field winding 

respectively, Iarms is the root means square of armature current, and If is the DC field current.  

In order to check whether the equal stator pole arc and stator slot opening, i.e. Wsp = Wso, is 

optimal for VFRMs, two sets of optimized designs are proposed individually and compared 

when they have the same outer diameter, axial length and total copper loss. The first set of 

designs, represented by ORI, is obtained when Wsp = Wso. Hence, there are four independent 

variables, e.g. split ratio, rotor pole arc, stator back iron thickness and rotor back iron 

thickness. The second set of designs, represented by OPT, is obtained without the constraint 

of Wsp = Wso. Hence, there are five independent variables, e.g. split ratio, stator pole arc, rotor 

pole arc, stator back iron thickness and rotor back iron thickness. Considering the thermal 
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condition under the machine size (45mm outer stator radium and 25 axial stack length) 

together with employing the force air cooling, the rated copper loss is chosen as 30W since 

the corresponding current density will be around 7-10 A/mm
2
. In addition, due to the low 

rated electric frequency (corresponding to the rated speed 400rpm), the rated iron loss is 

relative small when compared with the rated copper loss. Therefore, in order to simplify the 

globe optimization, the iron loss is ignored. Then, two sets of machines are globally 

optimized with the purpose of maximum average torque under the same rated copper loss and 

the same machine size by genetic algorithm (ANSYS Maxwell, all of the variables are 

considered), and their main optimized geometric parameters and electromagnetic 

performance are listed in Table 2.1. It can be seen from Table 2.1 that OPT-VFRMs exhibit 

higher average torques than ORI-VFRMs for all the stator/rotor pole combinations. In other 

words, unequal stator pole arc and slot opening can boost the torque density of VFRMs. 

 

  

(a) 6S/4R (b) 6S/5R 

  

(c) 6S/7R (d) 6S/8R 

Fig. 2.1. Topologies of VFRMs with optimum stator and rotor pole arcs. 
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Table 2.1 Main parameters of VFRMs 

Parameters VFRM 

Number of phases 3 

Turns per coil (AC/DC) 36/36 

Rated speed (rpm) 400 

Packing factor 0.5 

Rated copper loss (W) 30 

Airgap length (mm) 0.5 

Active axial length (mm) 25 

Stator outer radius (mm) 45 

Number of stator poles Ns 6 

Number of rotor poles Nr 4 5 7 8 

ORI/OPT designs ORI/OPT ORI/OPT ORI/OPT ORI/OPT 

Split ratio 0.49/0.5 0.5/0.52 0.53/0.56 0.53/0.58 

Stator pole arc (mech. deg) 30/27 30/24 30/18.6 30/16 

Rotor pole arc (mech. deg) 32.4/34.6 26.8/26.0 19.8/18.8 16/16 

Stator back iron (mm) 5.8/5.6 5.5/5.0 5.3/4.4 5.9/4.6 

Slot area (mm
2
) 353/369 352/389 330/405 313/394 

Rated AC/DC current (Arms) 9.67/9.89 9.67/10.2 9.36/10.4 9.11/10.2 

Rated AC/DC current density 

(Arms/mm
2
) 

7.89/7.72 7.91/7.55 8.17/7.40 8.38/7.46 

Rated electric frequency (Hz) 26.7/26.7 33.3/33.3 46.7/46.7 53.3/53.3 

Rated core loss (W) 0.69/0.69 0.87/0.84 1.01/0.97 1.29/1.15 

Fund. flux-linkage (Wb) 8.35/8.36 7.50/7.51 4.98/5.91 3.40/5.10 

Fund. back-EMF (V) 1.40/1.41 1.57/1.58 1.46/1.73 1.14/1.71 

Average torque (Nm) 0.62/0.63 0.71/0.74 0.63/0.82 0.46/0.79 

Incremental rate (%) 1 4 30.7 72.9 

Cogging torque (mNm) 35.3/53.9 46.4/17.0 44.5/40.0 32.8/72.2 

 

2.3 Influence of Stator and Rotor Pole Arcs on Electromagnetic Torque 

In order to quantify the influence of the stator and rotor pole arcs and hence further guide 

VFRMs designs, the variation of average torque with the stator and rotor pole arcs for 

different stator and rotor pole combinations is shown in Fig. 2.2. For each combination of 
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stator and rotor pole arcs, all the other variables are optimized for the maximum torque when 

the total copper loss is 30W (pc = 30W). It can be seen that the influence of stator and rotor 

pole arcs on the average torque of VFRM is significant, especially when the rotor pole 

number Nr is larger than the stator pole number Ns. The average torques of 6/4, 6/5, 6/7 and 

6/8 stator/rotor-pole VFRMs are maximized when the stator and rotor pole arcs are 27/34.6, 

24/26, 18.6/18.8 and 16/16 mechanical degrees, respectively. The VFRMs with optimum 

stator pole arc have higher average torque than VFRMs having Wsp = Wso. The optimum rotor 

pole arc reduces as the number of rotor pole increases. Fig. 2.3 shows the variation of average 

torque with the rotor pole arc to rotor pole pitch ratio with all the other parameters being 

optimized. It can be seen that for all the stator/rotor pole combinations, the average torque 

always peaks when the rotor pole arc to rotor pole pitch ratio is ~1/3. Hence, the optimum 

rotor pole arc Wrp for maximum average torque in VFRM can be estimated by (2.2). 

𝑊𝑟𝑝 = 2𝜋/(3𝑁𝑟) (2.2) 

  

(a) 6S/4R (b) 6S/5R 

  

(b) 6S/7R (d) 6S/8R 

Fig. 2.2. Variation of average torque with stator and rotor pole arcs, pf = pa = 1/2 pc = 15W. 
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Furthermore, it can also be seen from Table 2.1 that the optimum stator pole arc is always 

equal to or slightly smaller than the optimum rotor pole arc. Based on these conclusions, the 

schematics of ORI- and OPT-VFRMs are illustrated in Fig. 2.4. 

 

 

Fig. 2.3. Variation of average torque with rotor pole arc to rotor pole pitch ratio. 

  

(a) ORI-VFRMs with equal stator pole 

arc and slot opening 

(b) OPT-VFRMs with optimum stator 

and rotor pole arcs 

Fig. 2.4. Schematics of ORI- and OPT-VFPMMs 
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loss is 15W. It can be seen that OPT-VFRMs have less flux leakage than ORI-VFRMs due to 

the increased slot openings, especially when Nr ˃ Ns.  

 

    

(a) 4R_ORI (b) 5R_ORI (c) 7R_ORI (d) 8R_ORI 

    

(e) 4R_OPT (f) 5R_OPT (g) 7R_OPT (h) 8R_OPT 

Fig. 2.5. Open-circuit flux equipotential Schematics of ORI- and OPT-VFPMMs 
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the main flux-linkage. 

 

 

(a) Waveform 

 

(b) Spectrum 

Fig. 2.6. Open-circuit flux-linkages of phase A at rated DC field currents as given in 

 Table 2.1, pf = 15W. 

Due to the increased effective flux linkages, for the same Ns/Nr combination, the 

fundamental back-EMF of OPT-VFRM is larger than ORI-VFRM, especially when Nr˃Ns, 

which is confirmed by Fig. 2.7 and Table 2.1. In order to explain the back-EMF variations 

between different Ns/Nr combinations, it is necessary to consider the fundamental electrical 

frequency which depends on the rotor pole number. For example, the 6/7 stator/rotor-pole 
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electrical frequency of 7-rotor pole VFRM is 1.4 times of the one for 5-rotor pole VFRMs 

under the same speed. 

 

 

(a) Waveform 

 

(b) Spectrum 

Fig. 2.7. Open-circuit back-EMFs of phase A at rated DC field currents as given in Table 2.1, 

pf = 15W. 
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Fig. 2.8. Open-circuit cogging torques at rated DC field currents as given in Table 2.1, 

pf=15W. 

2.4.4 Electromagnetic Torque Characteristics 

The torques of ORI- and OPT-VFRMs when the total copper loss is 30W and Id = 0 are 

compared in Fig. 2.9 and Table 2.1. The variations of the average torque with the copper loss 
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(a) Waveform 

 

(b) Spectrum 

Fig. 2.9. Electromagnetic torques at rated DC/AC currents as given in Table 2.1, pf =pa=15W. 

 

Fig. 2.10. Variation of average torques with copper loss, pf = pa. 
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Compared different stator/rotor pole number combinations, the 6/5 stator/rotor pole VFRM 

has the highest average torque when Wsp = Wso. However, when the constraint of Wsp = Wso is 

removed, the 6/7 stator/rotor pole OPT-VFRM exhibits the highest average torque. Further, 

for VFRMs with 6/4, 6/5, 6/7 and 6/8 stator/rotor pole number combinations, the distribution 

factors (Kd) are all equal to 1 while the pitch factors (Kp) are 0.5, 0.87, 0.87 and 0.87 

respectively. Then, the corresponding winding factors (Kdp) for VFRMs with 6/4, 6/5, 6/7 and 

6/8 stator/rotor pole number combinations are 0.5, 0.87, 0.87 and 0.5 respectively. Therefore, 

considering the winding factors and rated currents (corresponding to pc=30W), 6/7 

stator/rotor pole VFRM exhibits higher torque capability than the 6/8 stator/rotor pole VFRM 

in both designs with or without the constraint of Wsp = Wso. 

2.5 Experimental Verification 

In order to validate the foregoing analyses, two prototype machines, 6/7 and 6/5, are made 

and shown in Fig. 2.11. For the 6/7 stator/rotor pole machine, it is the optimal design without 

the constraint of Wsp = Wso and shown in Fig. 2.1(c) and Table 2.1. For the 6/5 stator/rotor 

pole machine, the stator is the same as the one of 6/7 stator/rotor pole prototype machine 

while the rotor is re-optimized according to the stator. The rotor pole arc is adjusted to 28.8° 

mechanical. 

 

 

(a) 6-pole Stator 
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(b) 5- and 7-pole Rotors 

Fig. 2.11. Prototypes of VFRMMs. 

Fig. 2.12 shows the measured and predicted phase back-EMFs at two different field 

currents (5.2A and 10.4A corresponding to half and full rated DC currents) when the speed is 

400rpm. The measured and predicted open-circuit cogging torque waveforms are shown in 

Fig. 2.13. It can be seen that the measured peak to peak values are slightly larger than the FE 

predictions in both two machines. It is acceptable when considering the measurement error 

and assembling tolerance, as well as the 3-dimensional end effect. Fig. 2.14 shows the 

variations of the static torque with rotor position at different field and armature currents (If = 

Iarms and Ia = IA= -2IB = -2IC). Based on Fig. 2.14, the variations of the static torque at 270° 

rotor position with the total copper loss are shown in Fig. 2.15. Overall the measured and FE 

predicted results match well. The minor difference under higher current is due to the 

increased influence of end-effect. 
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Fig. 2.12. Measured and FE predicted phase back-EMFs at 400rpm. 

 

Fig. 2.13. Measured and FE predicted cogging torques at rated DC field currents, If = 10.4A. 
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(b) 5-pole rotor 

Fig. 2.14. Measured and FE predicted static torques when If = Iarms and Ia = IA = -2IB = -2IC. 

 

Fig. 2.15. Measured and FE predicted torque-copper loss characteristics at 270° rotor 

position. 

2.6 Summary 

The influence of stator and rotor pole arcs on electromagnetic torque of VFRMs having 

different stator and rotor pole combinations is investigated. It can be concluded that: (1) by 

employing unequal stator pole arc and slot opening, the average torque can be enhanced 

compared with the machines having equal stator pole arc and slot opening; (2) the optimal 

rotor pole arc to rotor pole pitch ratio for the maximum average torque is ~1/3 and the 

optimal stator pole arc is always equal to or slightly smaller than the optimum rotor pole arc; 

(3) without the constraint of equal stator pole arc and slot opening, the 6/7 stator/rotor-pole 

VFRM exhibits the highest average torque. All the analyses have been validated by both the 

FEA and measurements.  
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CHAPTER 3 

ANALYSIS OF MULTI-TOOTH VARIABLE FLUX 

RELUCTANCE MACHINES WITH DIFFERENT STATOR 

AND ROTOR POLE COMBINATIONS 

The multi-tooth stator pole structure is widely employed to further improve the torque 

capability, such as in hybrid stepper machines, switched reluctance machines and switched 

flux machines. Therefore, this concept can also be introduced in variable flux reluctance 

machines (VFRMMs). In this chapter, novel multi-tooth variable flux reluctance machines 

which adopt doubly salient stator and rotor structure with non-overlapping stator AC 

armature and DC field windings are investigated. 

3.1 Introduction 

Switched reluctance machines (SRMs) have been widely applied to applications from 

aerospace to domestic appliances over the past decades due to simple and robust structure 

[MIL93] [VIJ08]. However, due to unipolar non-sinusoidal excitation, SRM suffers from 

high torque ripple, acoustic noise and vibration [ZHU07]. Further, in order to improve the 

torque performance, an idea which splits the original armature windings in SRM into AC 

armature and DC field windings is presented in [PUL88]. Doubly fed doubly salient machine 

(DFDSM) [LI95] is one of the proposed machine topologies, in which full-pitched DC field 

windings and concentrated armature windings are located in the stator. However, since the 

flux path in the stator is asymmetric, DFDSM has the non-sinusoidal and asymmetric back-

EMF as well as large torque ripple, particularly under heavy magnetic saturation. 

Similarly, variable flux reluctance machine (VFRM) which adopts doubly salient stator and 

rotor structure with non-overlapping stator AC armature and DC field windings is proposed 

in [LIU12b] [LIU12c] [LIU13] [KAS12] [FUK12]. In reference [FUK12], VFRM is evolved 

from dual-winding reluctance machine by using non-overlapping stator armature and field 

windings. Meanwhile, VFRM can also be considered as developed from SRM by neglecting 

the current harmonics of orders higher than 2 and splitting the original winding into AC 

armature and DC field windings [LIU12b] [LIU12c] [LIU13]. The choice of rotor pole 

number is much more flexible than those in conventional SRM and DFDSM and can be any 

integers except the phase number and its multiples. Different from DFDSM, the flux paths for 
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each phase in the stator of VFRM are the same since the DC field windings are identically 

wound on each stator pole. Moreover, sinusoidal phase flux-linkage and back-EMF 

waveforms are obtained in VFRMs by using specific stator/rotor pole combinations (such as 

6/5, 6/7, 12/10, 12/11, 12/13 and 12/14 etc) since all the even order harmonics in a single coil 

are cancelled completely in the phase winding [LIU12b]. Hence, VFRM exhibits lower 

torque ripple and higher torque capability than DFDSM [LIU13].  

The multi-tooth stator pole structure is widely adopted to further improve the torque 

capability, such as in hybrid stepper machines, SRMs and switched flux machines (SFMs) 

[KUO75] [FAI95] [FIN84] [LEE13] [ZHU08a] [CHE08]. Therefore, this concept can also be 

introduced in VFRMs. In this chapter, novel three phase multi-tooth VFRMs are proposed 

and investigated. Firstly, the operation principle and conditions for symmetrical back-EMF 

waveforms as well as average torque equations are illustrated. Then, the optimal number of 

small teeth per stator pole n is investigated under the rated copper loss and 6-pole stator when 

the number of total small stator teeth and rotor pole differs by one (Nr=nNs±1). Meanwhile, 

the electromagnetic performance of a 4-tooth VFRM with 6/25 stator/rotor pole is 

investigated and compared with a single-tooth VFRM with 6/7 stator/rotor pole. The main 

stator and rotor pole combinations of 4-tooth VFRM with 6-pole stator are analyzed and 

compared under the same rated copper loss as well. Finally, several prototype machines are 

manufactured and measured to validate the analyses. 

3.2 Operation Principle of Single- and Multi-tooth VFRMs 

3.2.1 Operation Principle 

Doubly salient stator and rotor structure with non-overlapping stator AC armature and DC 

field windings are adopted in single-tooth VFRMs as shown in Fig. 3.1(a). Meanwhile, multi-

tooth structure, which has been widely used in [KUO75] [FAI95] [FIN84] [LEE13] [ZHU08a] 

[CHE08], can also be introduced in VFRMs. With n representing the number of small teeth 

on each stator pole, several configurations of multi-tooth VFRMs are shown in Fig. 3.1 (b), (c) 

and (d) as examples. 
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(a) n=1 (b) n=2 

  

(c) n=3 (d) n=4 

Fig. 3.1. Schematics of single- and multi-tooth VFRMs. 

Being the same as single-tooth VFRM, the choice of stator and rotor pole numbers (Ns and 

Nr) in multi-tooth VFRM is also flexible. Nr can be any integers except the phase number and 

its multiples. Hence, the selections of Ns and Nr can be normally summarized as 

𝑁𝑠 = 𝑘𝑚 (k = 1, 2…) (3.1) 

𝑁𝑟 = 𝑛𝑁𝑠 ± 𝑗 (Nr ≠ kim, j=1, 2…, ki=1. 2…) (3.2) 

where m is the phase number, k, j and ki are integers. 

For all the stator and rotor pole combinations, their coil connections of the armature 

winding are determined by the conventional coil-EMF vector method, in which electrical 

degree αe between two adjacent coil-EMF vectors [ZHU10] can be calculated from the 

mechanical degree αm and Nr as, 

𝛼𝑒 = 𝑁𝑟𝛼𝑚 (3.3) 

3.2.2 Conditions for Symmetrical Bipolar Phase Back-EMF 

Among all the combinations for single-tooth VFRMs, symmetrical bipolar phase flux-
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linkage and back-EMF waveforms can be obtained when Nr = Ns ± 1 with 6-pole stator 

[LIU08a]. It is due to that individual coils in the same phase are connected in series with 180 

electrical degrees shifting (opposite polarities) as shown in Fig. 3.2. Thus, all the even order 

harmonics in a single coil which cause the back-EMF waveform asymmetric and slant to 

right or left in half electrical cycle are cancelled completely in the phase winding, Fig. 3.3 

and Fig. 3.4.  

 

  

(a) 1×6S/5R (b) 1×6S/7R 

Fig. 3.2. Topologies of single-tooth VFRMs with Nr = Ns ± 1. 

 

Fig. 3.3. Per-unit open-circuit flux-linkages of phase A, coil A1 and coil A2  

when Nr = Ns ± 1. 
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(a) Waveform 

 

(b) Spectrum 

Fig. 3.4. Per-unit open-circuit back-EMF of phase A, coil A1 and coil A2 when Nr = Ns ± 1 

For multi-tooth VFRMs, the flux linkage and back-EMF waveforms of a single coil may 

also be asymmetric in half electrical cycle. In order to obtain symmetrical bipolar phase flux-

linkage and back-EMF waveforms by 180 electrical degrees phase shifting between the coils, 

two conditions should be satisfied. First, the number of coils per phase must be even. Second, 

the angular phase difference θd between two coils belong to the same phase must satisfy: 

𝜃𝑑 = 2π𝑁𝑟𝑁𝑝𝑝 𝑁𝑠 = (2𝑘𝑗 − 1)𝜋⁄  (3.4) 

where kj is an integer, and Npp is the spatial span number of stator pole pitch between the two 

coils. Alternately, (Fig. 3.4) can be rewritten as 

𝑁𝑟
𝑁𝑠
=
(2𝑘𝑗 − 1)

2𝑁𝑝𝑝
 (3.5) 
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(2kj-1) and 2Npp are odd and even integers respectively. As a conclusion, in order to obtain 

symmetrical phase back-EMF waveforms, the stator and rotor pole combinations should be 

satisfied by [CHE08] 

𝑁𝑠

𝐺𝐶𝐷(𝑁𝑠,𝑁𝑟)
= even number (3.6) 

where GCD means the greatest common divisor. By way of example, for the VFRM under 

investigation, 1×6/5, 1×6/7, 2×6/13, 4×6/23, and 4×6/25 n×stator/rotor pole combinations 

have symmetrical phase back-EMFs [LIU12b]. 

3.3 Analysis of Multi-Tooth VFRMs 

In this section, in order to analyse the influence of Ns, Nr, n on the average torque of VFRM, 

the average output torque equation based on a simplified permeance and magnetic circuit 

model developed. 

3.3.1 Torque Equation 

Since VFRM is a special stator DC field excited synchronous machine having negligible 

reluctance torque [WU14], the average torque is maximum under zero d-axis current (Id=0) 

control and can be expressed by: 

𝑇 =
3

2
𝑁𝑟𝜓𝐷𝐶𝐼𝑞 (3.7) 

where Iq is the q-axis current,  ψDC is the DC field flux-linkage. 

3.3.2 Permeance Model 

Fig. 3.5 shows an ideal schematic of multi-tooth VFRM when Ns=6 and n=4. Nsa and Nrb 

are the integers representing all the stator and rotor poles respectively. The dashed line means 

the aligned position that the first stator pole Ns1 is aligned with the middle of first rotor pole 

Nr1. 

 

 

Fig. 3.5. Ideal schematic of multi-tooth VFRMs when n=4. 
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Fig. 3.6. Ideal permeance variation with rotor position. 

As shown in Fig. 3.5, Fig. 3.6 and [CHE08], when n=1 (single-tooth VFRM), the 

permeance Psp between a single stator tooth and the complete rotor can be expressed as 

𝑃𝑠𝑝(𝜃𝑠𝑟) = 𝑃0 + ∑ 𝑃𝑣 𝑐𝑜𝑠(𝑁𝑟𝑣𝜃𝑠𝑟)

𝑣=1,3,5…

 
(3.8) 

where P0 is the average air-gap permeance, Pv is the magnitude of the v
th

 permeance 

harmonic, and θsr is the position difference between the middle of the single stator tooth and 

rotor pole referred to the aligned position. Then the permeance between a stator pole having n 

small teeth and the complete rotor is  

𝑃𝑠𝑝 =∑𝑃𝑠𝑝

𝑛

𝑖=1

(𝜃𝑠𝑟𝑘𝑖) (3.9) 

where θsrki is the position difference between the middle of i
th

 small stator tooth and the rotor 

pole referred to the aligned position.  

In this section, the influence of Ns, Nr, n will be focused on the average torque. Hence, high 

order permeance harmonics can be ignored. The permeance between one stator pole and 

complete rotor pole consisting the DC and fundamental components can be expressed as 

(3.10) according to the results shown in the section 3.8.1 of Appendix. 

𝑃𝑠𝑝 = 𝑛𝑃0 + 𝑃1 ∙∑cos

𝑛

𝑖=1

(𝑁𝑟 ∙ 𝜃0𝑠𝑟 +
𝑛 − (2𝑖 − 1)

2𝑛
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + (𝑛 + 1) ∙ 𝜋) (3.10) 

where θosr is the relative position difference between the middle of one stator pole and one 

rotor pole referred to the aligned position. The parameter of (n+1) π in (3.10) is employed to 

ensure the permeance is maximum at aligned position when θosr = 0 (at the aligned position, 

when n is even, the permeance of stator pole is minimum since the rotor pole is aligned with 

middle of the small slot in the stator pole, which is opposite with n is odd, as shown in Fig. 

3.1(b) and (d)). 

Based on (3.10), when considering the permeance of different stator pole PNsa to the 

complete rotor pole, the position difference between two stator poles should be considered. 

According to the results shown in the section 3.8.2 of Appendix, the permeance PNsa between 

Psr

P0

P1

θosr

Average
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the stator pole Nsa and the complete rotor can be expressed as  

𝑃𝑁𝑠𝑎 = 𝑛𝑃0 + 𝑃1 ∙ ∑ cos𝑛
𝑖=1 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 +

𝑛−(2𝑖−1)

2𝑛
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + (𝑛 + 1) ∙ 𝜋 +

2𝜋

𝑁𝑠
∙

(𝑁𝑠𝑎 − 1) ∙ 𝑁𝑟)  
(3.11) 

3.3.3 Influence of Parameters on Average Torque 

Since the single- and multi-tooth VFRMs satisfying (3.6) exhibits better EMFs than other 

combinations, the influence of parameters on the average torque is analyzed in this type of 

VFRM having 6-pole stator as an example. However, the following analysis methods are also 

applicable to the other stator/rotor pole combinations. 

 

  

(a) With only one DC coil excited (b) With all DC coils excited 

Fig. 3.7. Magnetic circuit model of 3 phase 6 stator pole VFRMs. 

For VFRMs having 6-pole stator, the magnetic circuit models having only one or all DC 

coil excited are illustrated in Fig. 3.7(a) and (b) respectively. Based on (3.3), the winding 

configurations of 6-pole stator single- and multi-tooth VFRMs which stator and rotor pole 

combinations satisfying (3.6) are the same as the example shown in Fig. 3.2. Then, according 

to the Fig. 3.5 and Fig. 3.7(a), when only DC1 (DC coil wound around the stator pole NS1) is 

excited, the direction and magnitude of induced MMFs in coils A1 and A2 are obtained and 

shown in section 3.8.3 of Appendix. “+” and “-” as shown in Table 3.3 refer to the same and 

opposite directions between MMF of DC coil and corresponding induced MMFs of coils A1 

and A2 respectively. Based on the same means, the MMFs of coils A1 and A2 which are 

separately induced by DC2-DC6 can also be obtained. Further, according to Fig. 3.7(b), when 

all DC coils are excited, the induced MMFs of coils A1 and A2 can be obtained by adopting 

the superposition method as shown in section 3.8.3 of Appendix and expressed as (3.12) and 
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(3.13) respectively. 

𝐹(𝐶𝐴1,𝐷𝐶1~𝐷𝐶6)  = 𝑁𝑓𝐼𝑓 ∙
𝑃𝑁𝑠2 + 𝑃𝑁𝑠4 + 𝑃𝑁𝑠6

∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 (3.12) 

𝐹(𝐶𝐴2,𝐷𝐶1~𝐷𝐶6)  = −𝑁𝑓𝐼𝑓 ∙
𝑃𝑁𝑠1 + 𝑃𝑁𝑠3 + 𝑃𝑁𝑠5

∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 (3.13) 

Meanwhile, based on the waveforms of phase- and coil-flux linkages shown in Fig. 3.3, the 

peak value of open-circuit phase flux ФPA (or phase flux linkage, ΨPA) can be obtained by the 

sum of the coil fluxes ФCA1 and ФCA2 (or coil flux linkages, ΨCA1, ΨCA2) at aligned position 

(θosr=0) as  

Ф𝑃𝐴 = Ф𝐶𝐴1 +Ф𝐶𝐴2 (3.14) 

Ф = 𝐹𝑃 (3.15) 

where Ф is flux, F is MMF and P is permeance.  

Combined with equations (3.14), (3.15) and Fig. 3.7, the peak value of open-circuit phase 

flux ФPA can be given by 

Ф𝑃𝐴 = 𝑁𝑓𝐼𝑓 ∙ (
𝑃𝑁𝑠2 + 𝑃𝑁𝑠6
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

∙ 𝑃𝑁𝑠1 −
𝑃𝑁𝑠3 + 𝑃𝑁𝑠5
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

∙ 𝑃𝑁𝑠4) (3.16) 

The peak value of open-circuit phase flux linkage ΨPA can then be obtained as  

𝛹𝑃𝐴 =
1

2
𝑁𝑎 ∙ Ф𝑃𝐴 (3.17) 

where Na is the number of turns per phase of armature windings, Nf is the number of turns per 

phase of DC field windings (two DC field coils, the total numbers of turns of DC field 

windings is 3 Nf), If is DC field current.  

Hence, based on (3.7), (3.11), (3.16) and (3.17), the average torque can be given as 

𝑇 =
3

4𝜎
𝑁𝑟𝑁𝑎𝐼𝑎𝑁𝑓𝐼𝑓 (

𝑃𝑁𝑠2 + 𝑃𝑁𝑠6
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

∙ 𝑃𝑁𝑠1 −
𝑃𝑁𝑠3 + 𝑃𝑁𝑠5
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

∙ 𝑃𝑁𝑠4) (3.18) 

where σ is a leakage flux factor. The leakage flux of VFRMs will be increased with the 

increase of small tooth number per stator pole n due to the reduced width of slot opening 

accordingly, as shown in Fig. 3.9. The leakage flux factor can be estimated by the ratio of the 

flux pass through one big stator tooth (stator pole) to the flux pass through the air-gap under 

one stator pole pitch. 

Assume the ratio of AC peak value Ia to DC value If is √2 as (3.19) and the total number of 

turns per phase is Np. Thus, the ratio of pa/pf (copper loss of armature winding to DC field 
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winding) under fixed copper loss can only be adjusted by changing the ratio of Na/Nf since 

the total number of turns per phase is fixed as shown in (3.20). Then, combined with (3.20), 

equation (3.18) can be rewritten as  (3.21). To obtain the maximum average torque under 

fixed copper loss, equation (3.22) should be zero. Equation (3.23) shows that Nf = Na is the 

optimal condition for maximum average torque under fixed copper loss when Ia / If = √2. 

Correspondingly, the optimal copper loss ratio of pa to pf is equal to 1 as shown in (3.24). 

𝐼𝑎 𝐼𝑓 = √2⁄  (3.19) 

𝑁𝑝 = 𝑁𝑎 + 𝑁𝑓 (3.20) 

𝑇 =
3

4𝜎
𝑁𝑟𝑁𝑎𝐼𝑎(𝑁𝑃 − 𝑁𝑎)𝐼𝑓 (

𝑃𝑁𝑠2 + 𝑃𝑁𝑠6
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

∙ 𝑃𝑁𝑠1 −
𝑃𝑁𝑠3 + 𝑃𝑁𝑠5
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

∙ 𝑃𝑁𝑠4)  (3.21) 

𝜕T

𝜕N𝑎
=
3

4𝜎
𝑁𝑟(𝑁𝑃 − 2𝑁𝑎)𝐼𝑎𝐼𝑓 (

𝑃𝑁𝑠2 + 𝑃𝑁𝑠6
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

∙ 𝑃𝑁𝑠1 −
𝑃𝑁𝑠3 + 𝑃𝑁𝑠5
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

∙ 𝑃𝑁𝑠4) 
(3.22) 

𝑁𝑓 = 𝑁𝑎 = 𝑁𝑝 2⁄  (3.23) 

𝑝𝑓 = 𝑝𝑎 = 𝑝𝐶 2⁄  (3.24) 

With constraint of fixed total copper loss and optimal condition for maximizing the average 

torque, the relationship between armature/excitation MMFs and slot area S can be given as 

𝑁𝑎𝐼𝑎𝑁𝑓𝐼𝑓 ∝ S (3.25) 

According to (3.18), the average torque of single- and multi-tooth VFRMs can be obtained 

and is mainly dependent on the number of stator poles Ns, the number of rotor poles Nr, the 

number of small teeth per stator pole n, slot area S (proportional to NaIaNfIf as shown in (3.25) 

under fixed copper loss) and leakage flux factor σ. Equation (3.18) can be used to explain the 

torque variation with Ns, Nr and n in the following sections. Equations (3.19), (3.22), (3.23) 

and (3.24) shows that the average torque of VFRM will be maximum under the fixed total 

copper loss when the excitation and armature copper losses are equal, i.e. pf = pa (Na = Nf, 

Iarms = If) [LIU12d] [ZHU00]. 

3.4 Main Stator and Rotor Pole Combinations of Multi-tooth VFRMs 

In this section, the torque of VFRMs with different n while Nr=nNs±1 will be compared 

first. Then, as an example, the performance of 6/7 stator/rotor pole single-tooth VFRM and 

6/25 stator/rotor pole 4-tooth VFRM will be compared. 
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3.4.1 Torque Performance of VFRMs with n when Nr=nNs±1 

Since single-tooth VFRMs normally exhibit optimal torque capability when the number of 

rotor pole and stator pole differed by one, the torque variation of VFRMs with n in 6-pole 

stator is investigated when Nr=nNs±1 in this section, as shown in Fig. 3.8. Obviously, 4-tooth 

VFRMs with Nr=nNs±1 exhibits the largest average torque due to the combined influence of 

parameters listed in (3.18) and (3.25) at rated 30W total copper loss and same stator outer 

radius. Moreover, it should be noted that the average torque of VFRMs with Nr=nNs+1 are 

larger than that of Nr=nNs-1 when n ≤ 3 but smaller when n ≥ 5 due to the influence of 

leakage flux. 

 

 

Fig. 3.8. Variation of average torque with number of small teeth per stator pole n when 

Nr=nNs±1, Ns=6 and pf = pa = 15W. 

In the following subsections, in order to further analyse the influence of Ns, Nr and n, the 

electromagnetic performance of single- and 4-tooth VFRMs with Nr=nNs+1 are selected for 

comparison since the 6/7 stator/rotor pole VFRM exhibits the highest average torque among 

the 6-stator pole single-tooth VFRMs as shown in Fig. 3.8 [SHI14a]. All the machines are 

globally optimized with maximum average torque under the same rated copper loss and stator 

outer radius. Their main parameters are detailed in Table 3.1. For all the combinations, the 

winding configurations can be obtained based on the method mentioned in section 3.2. (The 

winding configuration of 6/25 stator/rotor pole 4-tooth VFRM is same as that of 6/7 

stator/rotor pole single-tooth VFRM which shown in Fig. 3.2(b)) 
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Table 3.1 Main parameters of single- and multi-tooth VFRMs 

Parameter n=1 n=4 

Number of phases 3 

Turns per coil (AC/DC) 36/36 

Rated speed (rpm) 400 

Rated copper loss (W) 30 

Packing factor 0.5 

Airgap length (mm) 0.5 

Active axial length (mm) 25 

Stator outer radius (mm) 45 

Stator pole number, Ns 6 

Rotor pole number, Nr 7 22 23 25 26 

Split ratio 0.56 0.53 0.55 0.55 0.54 

Rotor outer radius (mm) 24.7 23.35 24.25 24.25 23.8 

Stator back iron (mm) 4.4 7.2 6.4 6.2 6.8 

Stator small slot depth (mm) - 1.6 1.5 1.5 1.4 

Slot area (mm
2
) 405 201 205 221 223 

Rated AC/DC current (Arms) 10.40 7.31 7.39 7.67 7.71 

Rated current density (Arms/mm
2
) 7.40 10.48 10.38 9.99 9.94 

Stator big tooth width (mm) 8.1 12.4 12.8 12.2 11.6 

Stator small tooth pole arc (mech.deg) - 8.0 7.7 7.1 6.8 

Rotor pole arc (mech.deg) 18.8 
U:4.6 

D:9.0 

U:4.8 

D:8.0 

U:4.4 

D:8.2 

U:4.0 

D:8.8 

Rated electric frequency (Hz) 46.7 146.7 153.3 166.7 173.3 

Power factor 0.44 0.16 0.14 0.13 0.12 

 

3.4.2 Open-Circuit Field Distribution 

Fig. 3.9 shows the open circuit equipotential and flux density distributions of single- and 4-

tooth VFRMs at the aligned position under the rated DC field currents (pf = 15W for both 

machines). It can be seen that when stator and rotor pole combination is determined by 

Nr=nNs+1, both machines have short flux path and the coils belong to the same phase have 

completely independent flux loop.  

The open-circuit air-gap flux density waveforms of two VFRMs at the aligned position are 
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shown in Fig. 3.10. It can be seen that the peak number of air-gap flux density under each 

coil depends on the number of small teeth per stator pole n, such as 4 peaks in multi-tooth 

VFRM with n=4.  

 

  

 

(a) 1×6S/7R (b) 4×6S/25R 

Fig. 3.9. Open-circuit equipotential and flux density distributions of single- and multi-tooth 

VFRMs, pf=15W. 

 

Fig. 3.10. Open-circuit air-gap flux density of single- and multi-tooth VFRMs at aligned 

position, pf=15W. 

3.4.3 Flux-Linkage and Back-EMF Waveforms 

The flux-linkages and back-EMFs of 1×6/7 and 4×6/25 stator/rotor pole VFRMs are 
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linkages of coils A1 and A2 in two machines are both unipolar and with 180 electric degree 

shifting as well as opposite polarity. However, the resultant phase flux-linkage (phase A) is 

bipolar and symmetric. Correspondently, the phase back-EMFs are symmetrical and 

essentially sinusoidal due to the cancellation of all even harmonics which cause the 

asymmetry in each coil. Hence, these two examples can be used to validate the (3.6). 

Moreover, due to the influence of rated electric frequency (46.7Hz in 1×6/7 stator/rotor pole 

VFRM and 166.7Hz in 4×6/25 stator/rotor pole VFRM), the 4×6/25 stator/rotor-pole VFRM 

exhibits 78% higher fundamental back-EMF than that of 1×6/7 stator/rotor pole VFRM while 

pf=15W despite of a lower fundamental flux linkage as shown in Table 3.2 and Fig. 3.12. 

 

 

Fig. 3.11 .Open-circuit phase and coil flux-linkage of single- and multi-tooth VFRMs, 

pf=15W. 

 

Fig. 3.12. Open-circuit phase and coil back-EMF of single-and multi-tooth VFRMs, pf=15W, 

400rpm. 
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3.4.4 Self- and Mutual-Inductances 

The self- and mutual-inductances between armature windings of single- and 4-tooth 

VFRMs are shown in Fig. 3.13. pa = 5W is corresponding to the copper loss produced by the 

positive DC current which is injected into the phase A winding. The 4×6/25 stator/rotor pole 

VFRM exhibits higher self- and mutual inductances, which is about 2.4 and 2.5 times of 

those for 1×6/7 stator/rotor pole VFRM, respectively.  

 

 

Fig. 3.13 .Self- and mutual inductances between armature windings of single- and multi-tooth 

VFRMs, pf=15W, pa=5W. 

3.4.5 Torque Characteristics 

In VFRMs, the cogging torque is defined as the static torque when DC field windings are 

excited with the DC currents while the AC armature coils are not excited [LIU12b]. Fig. 3.14 

shows the cogging torque waveforms over one electric period for single-and 4-tooth VFRMs 

with rated DC current when pf =15W. Compared with the single-tooth VFRM with 1×6/7 

stator/rotor pole, the cogging torque of 4-tooth VFRM with 4×6/25 stator/rotor pole is much 

smaller and negligible.  

Fig. 3.15 shows the waveforms of average torque against current angle at rated copper loss 

for single- and 4-tooth VFRMs. It can be seen that the optimal current angles of two 

machines are both close to 0°, which means the reluctance torques are negligible.  
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Fig. 3.14 .Open-circuit cogging torque of single- and multi-tooth VFRMs, pf=15W. 

 

Fig. 3.15 .Variation of average torque with current angle in single-and multi-VFRMs, pf = pa 

= 15W. 

The torques of single- and 4-tooth VFRMs when the total copper loss is 30W and Id = 0 

control are compared in Fig. 3.16 and Table 3.2. It can be seen that the average torque of 4-

tooth VFRM with 4×6/25 stator/rotor pole is about 24% higher than that of single-tooth 

VFRM with 1×6/7 stator/rotor pole. Meanwhile, the torque waveforms of both machines 

have six pulsations over one electric period. Further, the torque ripple of 4-tooth VFRMs is 

smaller than that of single-tooth VFRM, which are 4.6% and 10.4% respectively, as shown in 

Table 3.2. 
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(a) Waveform 

 

(b) Spectrum 

Fig. 3.16 .Variation of electromagnetic torque with rotor position in single- and  

multi-VFRMs, pf = pa = 15W, Id = 0 control. 

The variations of the average torque with the copper loss for two VFRMs are further shown 

in Fig. 3.17. The vertical dashed and dotted line indicates the rated copper loss, which is used 

during the optimization. According to (3.18) and (3.25), the phase armature- and DC field-

current will be increased with the increase of copper loss, thus results in higher average 

torque as shown in Fig. 3.17. However, the increasing rate will gradually diminish for both 

machines due to magnetic saturation. Compared with single-tooth VFRM, the average torque 

of 4-tooth VFRM is larger at relatively low copper loss (electric loading) but smaller at high 

copper loss since the saturation of magnetic circuit is quicker due to bigger inductance and 

higher armature reaction. 
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Fig. 3.17 .Variation of average torque with copper loss in single- and multi-VFRMs, pf = pa, 

Id = 0 control. 

3.4.6 Iron Loss and Efficiency 

Fig. 3.18 shows the waveforms of iron loss against speed at rated copper loss for single- 

and 4-tooth VFRMs. It can be seen that the 4×6/25 stator/rotor pole VFRM exhibits larger 

iron loss than that of 1×6/7 stator/rotor pole VFRM at the same speed since the 4-tooth 

VFRM has higher frequency than the single-tooth VFRM. Moreover, as shown in Fig. 3.19, 

for both single-tooth and multi-tooth VFRMs, the saturation level and total saturation area in 

the stator are much heavier and larger than those in the rotor. Consequently, the iron loss in 

the stator will be higher than that in the rotor. It can be evidenced by the results shown in Fig. 

3.18. 

 

 

Fig. 3.18. Variation of iron loss with speed in single- and multi-VFRMs, pf = pa 15W, 

 Id = 0 control. 

 

0.0

0.5

1.0

1.5

2.0

0 15 30 45 60 75 90

A
v
er

a
g

e 
to

ru
q

e 
(N

m
)

Copper loss (W)

1×6S/7R

4×6S/25R

0

10

20

30

40

0 400 800 1200 1600

Ir
o

n
 l

o
ss

 (
W

)

Speed (rpm)

1×6S/7R_Total
1×6S/7R_Stator
1×6S/7R_Rotor
4×6S/25R_Total
4×6S/25R_Stator
4×6S/25R_Rotor



67 
 

Fig. 3.19. On-load flux density distributions of single- and multi-VFRMs, pf = pa 15W, Id = 0 

control. 

 

Fig. 3.20. Variation of efficiency with speed in single- and multi-VFRMs, pf = pa 15W, 

 Id = 0 control. 

The curves of efficiency against speed for single- and 4-tooth VFRMs at rated copper loss 

are compared in Fig. 3.20. Compared with 1×6/7 stator/rotor pole VFRM, the efficiency of 

4×6/25 stator/rotor pole VFRM is higher at relatively low speed (< 670 rpm) but lower at 

high speed (> 670 rpm) since the increasing rate of iron loss in 4-tooth VFRM is larger than 
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pole VFRMs under the rated copper loss (30W) and rated speed (400rpm) are 52.5% and 55.1% 

respectively, as shown in Table 3.2. 

 

Table 3.2 Main electromagnetic performance (Pf = Pa =15W) 

Parameter n=1 n=4 

Rotor pole number, Nr 7 22 23 25 26 

Rated electric frequency (Hz) 46.7 146.7 153.3 166.7 173.3 

Fund. flux-linkage (Wb) 5.91 3.26 3.37 2.95 2.58 

Fund. back-EMF (V) 1.73 3.0 3.24 3.08 2.81 

Rated iron loss (W) 1.03 5.03 4.46 4.88 6.40 

Rated efficiency (%) 52.5 51.8 55.4 55.1 50.6 

Average torque (Nm) 0.82 0.90 1.02 1.02 0.89 

Torque ripple (%) 10.4 74.4 4.4 4.6 79.5 

 

3.5 Performance Comparison of 4-Tooth VFRMs  

Among the 6-stator pole VFRM and different n, 4-tooth VFRMs exhibits the largest 

average torque at the conditions of rated 30W total copper loss and same stator outer radius 

according to Nr=nNs±1 as shown in Fig. 3.8. Hence, the main stator and rotor pole 

combinations of 4-tooth VFRM with 6-stator pole will be compared in this section. 

3.5.1 Main Stator and Rotor Pole Combinations while n=4 

The main stator and rotor pole combinations of 4-tooth VFRM with 6-stator pole as 

Nr=nNs±1 and Nr=nNs±2 are shown in Fig. 3.21. Meanwhile, the main parameters of all the 

machines which are optimized for maximum average torque under rated copper loss are also 

listed in Table 3.1. 

As shown in Fig. 3.21, the coil connections of 4-tooth VFRMs with Nr=nNs±1 or Nr=nNs±2 

are satisfied with (3.3), by which the coils A1 and A2 belong to the same phase are connected 

in series with 180 electric degree shifting (opposite polarity) when Nr=nNs±1 but with same 

polarity when Nr=nNs±2. 
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(a) 4×6S/22R (b) 4×6S/23R 

  

(c) 4×6S/25R (d) 4×6S/26R 

Fig. 3.21. Topologies of multi-tooth VFRMs, n=4, Nr = nNs ± 1 or Nr = nNs ± 2. 

3.5.2 Flux-Linkage and Back-EMF Waveforms 

The open-circuit phase flux-linkages of four machines are compared in Fig. 3.22 and Table 

3.2. It can be seen that the phase flux-linkages of 4×6/23 and 4×6/25 stator/rotor pole (Nr = 

nNs ± 1) VFRMs are bipolar while those of 4×6/22 and 4×6/26 stator/rotor pole (Nr = nNs ± 2) 

VFRMs are unipolar, which are consistent with the conclusion of single tooth VFRMs. 

Moreover, the effective flux linkage component, which is the peak to peak value of the flux 

linkage variation, of 4×6/23 stator/rotor pole VFRM is the largest among the four machines, 

as show in Table 3.2. It caca be reflected by magnitudes of fundamental waveforms as shown 

in Fig. 3.22. 
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(a) Waveform 

 

(b) Spectrum 

Fig. 3.22. Open-circuit phase flux-linkages of multi-tooth VFRMs, n=4, pf=15W. 

Fig. 3.23 shows the open-circuit phase back-EMFs of four machines. The back-EMF 

waveforms of 4-tooth VFRMs with Nr = nNs ± 1 are more sinusoidal since the even 

harmonics in that of Nr = nNs ± 2 are cancelled. It is also confirmed by harmonic analysis and 

total harmonic distortion (THD) results shown in Fig. 3.23(b). Further, considering the 

influence of electric frequency under rated rotation speed (400 rpm), 4×6/23 stator/rotor pole 

VFRM still exhibits the largest magnitude of fundamental wave among the four machines. 

 

-10

0

10

20

30

0 60 120 180 240 300 360

F
lu

x
 l

in
k

a
g

e 
(m

W
b

)

Rotor position (elec.deg)

4×6S/22R
4×6S/23R
4×6S/25R
4×6S/26R

0

1

2

3

4

5

1 2 3 4 5 6 7

F
lu

x
-l

in
k

a
g

e 
(m

W
b

)

Harmonic order

4×6S/22R

4×6S/23R

4×6S/25R

4×6S/26R

THD                                 

4 6S/22R_A: 4.2%     

4 6S/23R_A: 0.3% 
4 6S/25R_A: 0.3% 

4 6S/26R_A: 4.3%



71 
 

 

(a) Waveform 

 

(b) Spectrum 

Fig. 3.23. Open-circuit phase back-EMFs of multi-tooth VFRMs, n=4, 400rpm, pf=15W. 

3.5.3 Cogging Torque and Rated Torque 

The cogging torque waveforms over one electric period for all machines are shown in Fig. 

3.24. It can be seen that 4-tooth VFRMs with Nr = nNs ± 1 have very small cogging torque 

while that of Nr = nNs ± 2 have relatively large ones.  
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Fig. 3.24. Open-circuit cogging torque of multi-tooth VFRMs, n=4, pf=15W. 

As mentioned above, VFRMs are one type of synchronous machines in which DC field 

windings located in the stator slot. Hence, the number of cogging torque periods in 

conventional PM synchronous machines [ZHU00] can be extended to VFRMs. Thus, for both 

single- and multi-tooth VFRMs, the number of cogging torque cycles over one rotor pitch 

(one electric period) can be defined as  

𝑁𝑐 =
𝑁𝑠𝑠𝑐𝑠

𝐺𝐶𝐷(𝑁𝑠𝑠𝑐𝑠, 𝑁𝑟)
 (3.26) 

where Nc is the number of cogging torque cycles over one electric period, Nsscs is the number 

of stator structure cyclic symmetry. By way of example, for 4×6/25 stator/rotor pole VFRM 

under investigation, Nr=25, Nsscs=6, Nc=6. 
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(b) Spectrum 

Fig. 3.25. Electromagnetic torque of multi-tooth VFRMs, n=4, pf = pa = 15W, Id = 0 control. 

 

Fig. 3.26. Variation of average torque with copper loss in multi-VFRMs, n=4, pf = pa, Id = 0 

control. 

The electromagnetic torques of 4-tooth VFRMs when the total copper loss is 30W and Id=0 

control are compared in Fig. 3.25 and Table 3.2. It can be seen that 4-tooth VFRMs with Nr = 

nNs ± 1 exhibit about 13.3% higher average torque than that of Nr = nNs ± 2. Further, as 

shown in Fig. 3.26, 4-tooth VFRMs with Nr = nNs ± 1 always have larger average torque than 

that of Nr = nNs ± 2. Meanwhile, the torque waveforms of 4-tooth VFRMs with Nr = nNs ± 1 

have six pulsations over one electric period while that of Nr = nNs ± 2 are three pulsations, as 

shown in Fig. 3.25. This is caused by the combined influence of the harmonics of back-EMF 

and cogging torque. Further, the torque ripples of Nr = nNs ± 1 are much smaller than those of 

Nr = nNs ± 2 as shown in Fig. 3.25and Table 3.2. In addition, as shown in Table 3.2, 4-tooth 

0.0

0.4

0.8

1.2

1.6

0 1 2 3 4 5 6 7

T
o

rq
u

e 
(N

m
)

Harmonic order

4×6S/22R

4×6S/23R

4×6S/25R

4×6S/26R

THD                                 

4 6S/22R_A: 37.1%     

4 6S/23R_A: 2.1% 
4 6S/25R_A: 2.1% 

4 6S/26R_A: 39.3%

0.0

0.5

1.0

1.5

2.0

0 15 30 45 60 75 90

A
v
e
r
a

g
e
 t

o
r
u

q
e
 (

N
m

)

Copper loss (W)

4*6S/22R
4*6S/23R
4*6S/25R
4*6S/26R



74 
 

VFRMs with Nr = nNs ± 1 exhibit higher efficiency than that of Nr = nNs ± 2 since they have 

larger average torque and lower iron loss under the same rated copper loss and the same rated 

speed.  

3.6 Experimental Verification  

In order to validate the foregoing analyses, two prototype machines, 1×6/7 stator/rotor pole 

single-tooth VFRM and 4×6/25 stator/rotor pole 4-tooth VFRM are made and shown in Fig. 

3.27, in which the parameters are same as shown in Table 3.1.  

 

  

(a) Stator of single-tooth VFRM (b) Stator of 4-tooth VFRM 

 

                         (c) 7-rotor pole                 (d) 25-rotor pole 

Fig. 3.27. Prototypes of single- and 4-tooth VFRMs. 

Fig. 3.28 shows the measured and predicted phase back-EMFs at two different field 

currents (half and full rated DC currents as shown in Table 3.1) when the speed is 400rpm. 
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Fig. 3.29 shows the variation of static torque with the rotor position at four different field and 

armature currents combinations, i.e. 25%, 50%, 75% and 100% of rated DC current with pf = 

pa (If = 0.707Ia). Based on Fig. 3.29, the variation of the static torque at 270° rotor position 

with the total copper loss is obtained and shown in Fig. 3.30. Overall, the measured and FE 

predicted results match well, especially for phase back-EMF waveforms. The differences 

between the measured and FE predicted results of static torque under higher current (copper 

loss) are due to the increased influence of end-effect. 

 

 

(a) Single-tooth VFRM, 1×6/7 stator/rotor pole. 

 

(b) 4-tooth VFRM, 4×6/25 stator/rotor pole. 

Fig. 3.28. Measured and FE predicted phase back-EMFs at 400rpm. 
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(a) Single-tooth VFRM, 1×6/7 stator/rotor pole. 

 

(b) 4-tooth VFRM, 4×6/25 stator/rotor pole. 

Fig. 3.29. Measured and FE predicted phase static torques when pf=pa, If=0.707Ia,  

-1/2IA=IB=IC. 
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Fig. 3.30. Measured and FE predicted torque-copper loss characteristics when pf = pa and 

rotor position is 270°. 

3.7  Summary 

In this chapter, novel multi-tooth VFRMs which adopt doubly salient stator and rotor 

structure with non-overlapping stator AC armature and DC field windings are investigated.  

The choice of rotor pole number is flexible and can be any integers except the phase 

number and its multiples. Meanwhile, the symmetrical bipolar phase flux-linkage and back-

EMF waveforms can be obtained when the ratio of stator pole number to GCD of stator- and 

rotor-pole numbers is even. Further, under the same rated copper loss and stator outer radius 

as well as 6-pole stator, 4-tooth per stator pole VFRMs exhibit the highest average torque if 

stator and rotor pole numbers satisfy Nr=nNs±1. Furthermore, the 4×6/25 stator/rotor pole 4-

tooth VFRM is compared with the 1×6/7 stator/rotor pole single-tooth VFRM when both are 

optimized. It can be concluded that: in 4×6/25 stator/rotor pole 4-tooth VFRM (1) the phase 

back-EMF is more sinusoidal and ~78% larger in magnitude of fundamental components than 

that of single-tooth VFRM, (2) the cogging torque and torque ripple is much lower than that 

of single-tooth VFRM, (3) it exhibits larger average torque at relatively low copper loss but 

smaller at high copper loss than that of single-tooth VFRM. Finally, among the main stator 

and rotor pole combinations in 4-tooth VFRMs, Nr= nNs ± 1 exhibit more sinusoidal and 

higher back-EMF, lower torque ripple and larger average torque than that of Nr = nNs ± 2. 

The analyses have been validated by both the FEA and measurements. 
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3.8 Appendix  

3.8.1 Permeance between One Stator Pole and Complete Rotor 

The permeance between one stator pole and complete rotor pole in different number of 

small tooth per stator pole n which correspond with Fig. 3.1 and Fig. 3.6 can be simplified as 

n=1 
𝑃𝑠𝑝 = 𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠(𝑁𝑟 ∙ 𝜃0𝑠𝑟 + 0 ∙

2𝜋

𝑁𝑠
∙ 𝑁𝑟) 

 

n=2 

𝑃𝑠𝑝 = 𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 +
1

4
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + 𝜋) 

+𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 −
1

4
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + 𝜋) 

 

n=3 

𝑃𝑠𝑝 = 𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 +
2

6
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟) 

+𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 + 0 ∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟) 

+𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 −
2

6
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟) 

 

n=4 

𝑃𝑠𝑝 = 𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 +
3

8
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + 𝜋) 

+𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 +
1

8
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + 𝜋) 

+𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 −
1

8
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + 𝜋) 

+𝑃0 + 𝑃1 ∙ 𝑐𝑜𝑠 (𝑁𝑟 ∙ 𝜃0𝑠𝑟 −
3

8
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + 𝜋) 

  

where θosr is the relative position between the middle of one stator pole and one rotor-pole.  

As a conclusion, the permeance between one stator pole and complete rotor pole whenever 

the number of small tooth n is selected can be expressed as  

𝑃𝑠𝑝 = 𝑛𝑃0 + 𝑃1 ∙∑cos

𝑛

𝑖=1

(𝑁𝑟 ∙ 𝜃0𝑠𝑟 +
𝑛 − (2𝑖 − 1)

2𝑛
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + (𝑛 + 1) ∙ 𝜋) 
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3.8.2 Permeance between Different Stator Pole and Complete Rotor 

If assume the permeance PNs1 as a base, the permeance PNsa between stator pole Nsa and the 

complete rotor can be expressed as following. 

 

Nsa=Ns1=1 

 
𝑃𝑁𝑠1 = 𝑛𝑃0 + 𝑃1 ∙∑cos

𝑛

𝑖=1

(

 
 
𝑁𝑟 ∙ 𝜃0𝑠𝑟 +

𝑛 − (2𝑖 − 1)

2𝑛
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟   + (𝑛 + 1) ∙ 𝜋

+
2𝜋

𝑁𝑠
∙ (1 − 1) ∙ 𝑁𝑟

)

 
 

 

 

Nsa=Ns2=2 

 
𝑃𝑁𝑠2 = 𝑛𝑃0 + 𝑃1 ∙∑cos

𝑛

𝑖=1

(

 
 
𝑁𝑟 ∙ 𝜃0𝑠𝑟 +

𝑛 − (2𝑖 − 1)

2𝑛
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + (𝑛 + 1) ∙ 𝜋

+
2𝜋

𝑁𝑠
∙ (2 − 1) ∙ 𝑁𝑟

)

 
 

 

 

Nsa=Ns3=3 

 
𝑃𝑁𝑠3 = 𝑛𝑃0 + 𝑃1 ∙∑cos

𝑛

𝑖=1

(

 
 
𝑁𝑟 ∙ 𝜃0𝑠𝑟 +

𝑛 − (2𝑖 − 1)

2𝑛
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + (𝑛 + 1) ∙ 𝜋

+
2𝜋

𝑁𝑠
∙ (3 − 1) ∙ 𝑁𝑟

)

 
 

 

 

******  

Nsa=Nsa 

 
𝑃𝑁𝑠𝑎 = 𝑛𝑃0 + 𝑃1 ∙∑cos

𝑛

𝑖=1

(

 
 
𝑁𝑟 ∙ 𝜃0𝑠𝑟 +

𝑛 − (2𝑖 − 1)

2𝑛
∙
2𝜋

𝑁𝑠
∙ 𝑁𝑟 + (𝑛 + 1) ∙ 𝜋

+
2𝜋

𝑁𝑠
∙ (𝑁𝑠𝑎 − 1) ∙ 𝑁𝑟

)
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3.8.3 Model of MMF 

The MMFs of coils A1 and A2 which induced by each excited DC coil under the 

conditions of 6-pole stator and the stator and rotor pole combinations satisfied with (3.6) are 

summarized in Table 3.3. Meanwhile, when all DC coils are excited, the corresponding 

induced MMFs of coils A1 and A2 are also obtained by adopting the superposition method.  

Table 3.3 Open-circuit MMF of Coil A1 and A2 

DC 

source 
Direction MMF in coil A1 Direction MMF in coil A2 

DC1 + 
1

2
𝑁𝑓𝐼𝑓 ∙ (1 −

𝑃𝑁𝑠1
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

) - 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠1
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 

DC2 + 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠2
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 + 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠2
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 

DC3 - 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠3
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 - 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠3
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 

DC4 + 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠4
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 - 
1

2
𝑁𝑓𝐼𝑓 ∙ (1 −

𝑃𝑁𝑠4
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

) 

DC5 - 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠5
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 - 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠5
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 

DC6 + 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠6
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 + 
1

2
𝑁𝑓𝐼𝑓 ∙

𝑃𝑁𝑠6
∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 

 Sum 𝑁𝑓𝐼𝑓
𝑃𝑁𝑆2 + 𝑃𝑁𝑆4 + 𝑃𝑁𝑆6

∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 Sum −𝑁𝑓𝐼𝑓
𝑃𝑁𝑆1 + 𝑃𝑁𝑆3 + 𝑃𝑁𝑆5

∑ 𝑃𝑁𝑠𝑎
6
𝑎=1

 

 

  



81 
 

CHAPTER 4 

COMPARATIVE STUDY OF NOVEL SYNCHRONOUS 

MACHINES HAVING PERMANENT MAGNETS IN STATOR 

Similar to other DC field excitation machines, variable flux reluctance machines (VFRMs) 

also exhibit lower torque density compared with conventional permanent magnet (PM) 

machines [LIU12b]. Theoretically, by replacing DC field windings with PMs, higher torque 

density can be expected [GIN53]. Therefore, in this chapter, novel biased flux PM machines 

(BFPMMs) which are developed from VFRMs by replacing all DC field windings with PMs 

are proposed and investigated.  

4.1 Introduction 

Switched reluctance machines (SRMs) have been extensively investigated over the past 

decades due to the simple and robust structure as well as low cost [MIL93] [VIJ08]. However, 

due to the influence of unipolar non-sinusoidal excitation, SRMs suffer from high torque 

ripple, acoustic noise and vibration. In order to overcome these drawbacks, the idea which 

splits the original coils into two halves was proposed in [PUL88], in which half of phase 

windings is injected with DC current while the other half is connected to a bipolar drive 

circuit.  

Based on this idea, doubly-fed doubly salient machines (DFDSMs), wound field switched 

flux machines (WFSFMs) and variable flux reluctance machines (VFRMs) were proposed 

[LI95] [POL06b] [CHE10a] [LIU12b] [KAS11]. For DFDSMs, the flux paths in the stator 

are asymmetric due to the full pitched DC field winding. Therefore, phase unbalance exists in 

DFDSMs, particularly under heavy magnetic saturation. Moreover, DFDSMs have the 

unipolar phase flux-linkages and asymmetric back-EMFs as well as large torque ripples 

[LI95]. Different from DFDSMs, bipolar phase flux-linkage and symmetrical back-EMF can 

be obtained in both WFSFMs and VFRMs by using typical stator and rotor pole 

combinations [POL06b] [CHE10a] [LIU12b] [KAS11]. Meanwhile, both WFSFMs and 

VFRMs exhibit lower cogging torques and torque ripples than those of DFDSMs [LIU13].  

Nevertheless, the torque densities of these machines are relatively low when compared with 

the conventional permanent magnet (PM) machines. As a potential solution, PMs can be used 

to replace the DC field windings in the stator to further enhance the torque performance since 

the copper loss produced by the DC field windings can be eliminated. As a reverse proof, 
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when the PMs in the stator are replaced by the DC field windings, the torque performances of 

doubly salient PM machines (DSPMMs) and switched flux PM machines (SFPMMs) are 

weakened in the corresponding DFDSMs and WFSFMs respectively [LIA95] [HUA05] 

[RAU55] [HOA97] [CHE10a]. However, during the evolution process, the corresponding 

electromagnetic performance features are inherited.  

Being the same as those in DSPMMs/DFDSMs and SFPMMs/WFSFMs, a type of PM 

machine is developed in this chapter by replacing the DC field windings with PMs in the 

VFRMs. Therefore, doubly salient structure and non-overlapping armature winding are still 

employed in this new machine while the PMs are mounted on the surfaces of adjacent stator 

poles with alternate polarities. Since all stator coils have biased PM flux-linkages with 

alternate polarities, this new machine can be designated as biased flux PM machine 

(BFPMM). Meanwhile, BFPMMs can also be considered as developed from flux-reversal 

PM machines (FRPMMs) [DEO97] by replacing the one or more pairs of alternate polarities 

PMs on the surface of single stator pole with one piece of PM. Further, the PM positions in 

BFPMMs can be located from the surface to the bottom of stator pole and even in the stator 

yoke since the main magnetic circuits are the same.  

In this chapter, the operation principle and the stator and rotor pole combinations are 

illustrated first. Then, the influence of PM positions on electromagnetic performance of 

BFPMMs will be analysed and compared under the three representative positions with 6/7 

(Ns/Nr) stator/rotor pole combination together with VFRMs. Finally, several prototype 

machines are manufactured and measured to validate the analysis.  

4.2 Machine Operation Principle and Stator/Rotor Pole Combinations 

4.2.1 Operation Principle 

VFRM which adopts doubly salient stator and rotor structure with non-overlapping stator 

AC armature and DC field windings is shown in Fig. 4.1. The configuration of DC field 

winding shown in Fig. 4.1 is identical to that shown in Fig. 4.2(a). Therefore, they can be 

replaced by PMs in the adjacent stator poles with alternate polarities, as shown in Fig. 4.2(b).  
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Fig. 4.1. Topology of 6/7 stator/rotor pole VFRM. 

 

(a) Structure schematics of 6/7 stator/rotor pole VFRM. 

 

(b) Structure schematics of 6/7 stator/rotor pole BFPMM. 

Fig. 4.2. Structures evolution from VFRM to BFPMM in 6/7 stator/rotor pole combination. 

  

(a) Moving form unaligned to aligned 

position 

(b) Moving from aligned to unaligned 

position 

Fig. 4.3. Operation principle schematics of BFPMM. 
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Similar to VFRM, if one rotor pole aligned with one stator pole, the corresponding rotor 

position can be designated as aligned position. For a single stator pole as shown in Fig. 4.3(a), 

when one rotor pole rotates from unaligned position to aligned position, the armature coil 

injected with positive current (its flux with same direction of PM flux) helps to enhance the 

airgap field and generate positive torque. On the contrary, when rotor rotates from aligned 

positon to unaligned position as shown in Fig. 4.3(b), negative current is injected into 

armature coil (its flux with opposite direction of PM flux) to weaken the airgap field to help 

moving the rotor smoothly. Therefore, a positive average torque is generated over one 

electric period. Further, as a combined result of three phase operation, more smooth output 

torque will be generated.  

4.2.2 Topologies and Stator/Rotor Pole Combinations 

Fig. 4.4 shows the topologies of 6-stator pole BFPMMs with different rotor pole numbers. 

It can be seen that doubly salient structure and non-overlapping armature windings are 

adopted in BFPMMs while the PMs are mounted on the surface of adjacent stator poles with 

alternate polarities. The rotor of BFPMMs is similar to SRM, which is simple and robust.  

Being the same as VFRM, the choice of stator and rotor pole combinations in BFPMMs is 

flexible, in which the rotor pole number can be any integers except the phase number and its 

multiples. Hence, the selections of stator pole number Ns and rotor pole number Nr can be 

summarised as 

𝑁𝑠 = 𝑘𝑚 (k = 1, 2…) (4.1) 

𝑁𝑟 = 𝑁𝑠 ± 𝑗 (Nr ≠ kim, j=1, 2…, ki=1. 2…) (4.2) 

where m is the phase number, k, j and ki are integers. 

Since PMs have to be in pairs, a three phase BFPMM has at least 6 poles stator, which can 

be considered as a unit machine. 

The coil connections of the armature winding can be determined by the conventional coil-

EMF vector method. The electric degrees αe between two adjacent coil-EMF vectors [ZHU10] 

can be derived from the mechanical degrees αm and rotor pole number Nr according to 

equation following. 

𝛼𝑒 = 𝑁𝑟𝛼𝑚 (4.3) 
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(a) 6S/4R (b) 6S/5R 

  

(c) 6S/7R (d) 6S/8R 

Fig. 4.4. Machine topologies for different number of rotor poles with 6-stator pole BFPMM. 

For a 6-pole stator unit machine, the most feasible rotor pole numbers could be 4, 5, 7 and 

8, as shown in Fig. 4.4. According to (4.3) with consideration of the alternate magnetization 

directions in adjacent stator pole, the coil EMF vectors of BFPMMs having different rotor 

pole numbers are shown in Fig. 4.5. Since all the coil-EMF vectors belong to the same phase 

are aligned as shown in Fig. 4.5, the distribution factors (Kd) for the stator/rotor pole 

combinations are all equal to one. Similar to the fractional slot PM machines [ISH06], the 

pitch factor (Kp) can be calculated by  

𝐾𝑝 = cos (𝜋 (
𝑁𝑟
𝑁𝑠
− 1)) (4.4) 

Based on (4.4), Kd, Kp and winding factor (Kdp) of BFPMM with different stator/rotor pole 
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combinations can be calculated. Table 4.1 shows the corresponding winding factors for the 

main stator/rotor pole combinations of BFPMMs with 6-pole stator. Obviously, when Nr is 

more close to Ns, the winding factor will be higher.  

 

  

(a) 6S/4R (b) 6S/5R 

  

(c) 6S/7R (d) 6S/8R 

Fig. 4.5. Coil-EMF vectors for different rotor pole number with 6-pole stator (electric 

degree). 

 

Table 4.1 Winding factors for different rotor pole numbers with 6-pole stator 

Nr 4 5 6 7 8 

Kd 1 1 1 1 1 

Kp 0.5 0.87 1 0.87 0.5  

Kdp 0.5 0.87 1 0.87 0.5  
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4.2.3 Coil and Phase Flux-Linkages and back-EMFs 

Fig. 4.6 shows the typical coil and phase flux-linkages of BFPMMs with four stator/rotor 

pole combinations with per-unit value. It can be seen that coils A1 and A2 have the same 

biased flux-linkages for 4- and 8- pole rotors (Nr=Ns±2), while 5- and 7-pole rotors (Nr=Ns±1) 

have coil flux-linkages with opposite polarities (180 electric degrees shifting). This difference 

results in two different characteristics of phase flux-linkages for the different stator/rotor pole 

combinations. Obviously, the phase flux-linkage is unipolar when Nr=4 or 8 but bipolar when 

Nr=5 or 7, as shown in Fig. 4.6.  

 

 

(a) Nr=5 or 7 (Nr=Ns±1). 

 

(b) Nr=4 or 8 (Nr=Ns±2). 

Fig. 4.6. Per unit open-circuit phase and coil flux-linkages of 6-stator pole BFPMMs. 
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Further, the coil and phase back-EMFs of BFPMMs are shown in Fig. 4.7. It can be seen 

that the single coil back-EMF waveform is asymmetric (slant to right or left in half electric 

cycle) in all stator/rotor pole combinations due to the existing even harmonics. Similar to the 

conclusion of flux-linkage, symmetrical phase back-EMF is obtained when Nr=5 or 7 since 

all the even harmonics which cause the back-EMF waveform asymmetric in a single coil are 

cancelled completely in the phase winding by connecting the coils with opposite polarity.  

 

 

(a) Nr=5 or 7 (Nr=Ns±1). 

 

(b) Nr=4 or 8 (Nr=Ns±2). 
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(c) Spectrum. 

Fig. 4.7. Per unit open-circuit phase and coil back-EMFs of 6-stator pole BFPMMs. 

Since BFPMMs are developed from VFRMs by replacing the DC field windings with PMs, 

the conditions for bipolar phase flux-linkage or symmetrical phase back-EMF in BFPMMs 

are also kept consistent. Thus, two conditions should be satisfied [SHI15]. First, the coil 

number per phase must be even. Second, the pair of coils belong to same phase must have 

180 electrical degrees phase shifting (opposite induced polarities). In other word, the stator 

and rotor pole combinations should be satisfied with (4.5) [CHE08] [SHI15]. 

𝑁𝑠

𝐺𝐶𝐷(𝑁𝑠,𝑁𝑟)
= Even (4.5) 

where GCD means the greatest common divisor. By way of example, for the BFPMM under 

investigation, 6/5 and 6/7 stator/rotor pole combinations are satisfied with (4.5).  

4.2.4 Electromagnetic Torque Equation 

According to energy conversion principle, if neglecting the magnetic saturation in the 

machine lamination and the energy variation in PM, the electromagnetic torque of one phase 

in BFPMM can be expressed as 

𝑇𝑎 =
𝜕𝑊𝑎(𝜃)

𝜕𝜃
=
𝜕 ∫ (𝛹𝑎𝑟𝑚

𝑎 +𝛹𝑃𝑀
𝑎 )𝑑𝑖

𝑖𝑎
0

𝜕𝜃
 

     =
1

2
𝑖𝑎
2
𝑑𝐿𝑎
𝑑𝜃

+ 𝑖𝑎
𝑑𝛹𝑃𝑀

𝑎

𝑑𝜃
 

(4.6) 

where ia, Ψ
a
arm, Ψ

a
PM and La stand for phase current, armature reaction flux-linkage, PM flux-

linkage and self-inductance of phase A, and θ stands for rotor position. Assuming the 

armature winding is driven by sinusoidal current and only considering the fundamental wave 
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of phase flux linkage, that is  

𝑖𝑎 = 𝐼𝑎 sin(𝑁𝑟𝜔𝑡 + 𝛼0)  (4.7) 

𝛹𝑃𝑀
𝑎 = 𝛹𝑃𝑀 cos(𝜃 + 𝜃0)  (4.8) 

where Ia and ΨPM stand for peak value of the phase current and amplitude of fundamental 

wave of PM flux-linkage, ω is rotor speed, α0 and θ0 are the initial angles of the phase current 

and the initial rotor position respectively.  

To achieve the maximum average electromagnetic torque, the phase current should be 

aligned with phase back-EMF. Hence, current initial angle α0 should be equal to initial rotor 

position θ0. Then, the average electromagnetic torque of BFPMM can be expressed as  

𝑇𝑎𝑣𝑒 = 
𝑁𝑟
2𝜋
 ∫ (𝑇𝑎 + 𝑇𝑏 + 𝑇𝑐)

2𝜋
𝑁𝑟

0

𝑑𝜃   

         =  
3

2
𝑁𝑟𝛹𝑃𝑀𝐼𝑎 

(4.9) 

Equation (4.9) indicates that the average electromagnetic torque of BFPMM is proportional 

to rotor pole number and phase current as well as PM flux-linkage. Since the definition of the 

pole pair number in BFPMMs is equal to Nr, this equation is the same as that in conventional 

PM synchronous machine, which means BFPMM is essentially a type of stator PM 

synchronous machine.  

4.3 Torque Performance for Main Stator/Rotor Pole Combinations 

Fig. 4.8 shows the waveforms of average torque against with current angle at rated 30W 

copper loss (pc=30W) for BFPMMs for four main stator/rotor pole combinations. Being the 

same as VFRMs, the reluctance torque can be negligible in BFPMMs since the optimal 

current angles for all stator/rotor pole combinations are all close to 0°. 
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Fig. 4.8. Variation of average torque with current angle in BFPMM.  

 

(a) Waveforms 

 

(b) Spectra 

Fig. 4.9. Variation of torque with rotor position in BFPMM, pc=30W, Id =0 control. 
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Fig. 4.10. Variation of average torque with copper loss in BFPMM.  

Based on the rated copper loss and Id =0 control, the waveforms of torque against with 

rotor position for four main stator/rotor pole combinations of BFPMMs are shown in Fig. 4.9. 

The torque ripples of BFPMMs with 6/4, 6/5, 6/7 and 6/8 stator/rotor pole combinations are 

39.8%, 17.5%, 16.2% and 23.3% respectively. Obviously, BFPMMs with Nr=Ns±1 have 

lower torque ripple than those with Nr=Ns±2. Meanwhile, compared with BFPMMs with 

Nr=Ns±2 under rate copper loss, higher average torques are obtained in BFPMMs with 

Nr=Ns±1, as shown in Fig. 4.9. The torque performance also can be further reflected on the 

characteristic of average torque against with copper loss, as shown in Fig. 4.10. Among the 

four main stator/rotor pole combinations, the 6/7 stator/rotor pole BFPMM exhibits the 

highest average torque under the same copper loss during the whole copper loss range.  

4.4 Comparison between VFRM and BFPMM Considering PM Locations  

4.4.1 Alternate PM Locations 

As shown in Fig. 4.11, the PMs in BFPMMs can be moved from surface to bottom of stator 

pole and even to stator yoke since the main magnetic circuits are consistent. In order to 

analyze the influence of PM locations on electromagnetic performance of BFPMMs, three 

typical PM locations are chosen as shown in Fig. 4.11. To simplify the comparison, the 

machine topologies corresponding to three typical PM locations as shown in Fig. 4.12 can be 

designated as surface mounted BFPMM (SM-BFPMM), middle tooth mounted (MTM-

BFPMM) and stator yoke mounted BFPMM (SYM-BFPMM) respectively.  
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(a) Surface mounted 

BFPMM 

(b) Middle tooth mounted 

BFPMM 

(c) Stator yoke mounted 

BFPMM 

Fig. 4.11. Structure schematics of BFPMMs with different PM locations.  

 

   

(a) SM-BFPMM (b) MTM-BFPMM (c) SYM-BFPMM 

Fig. 4.12. Machine topologies of BFPMMs with different PM locations.  

 

In the following sections, three types of BFPMMs will be analyzed and compared with 

VFRM (topology shown in Fig. 4.1) under the same rated total copper loss (30W) and 

machine size as the 6/7 stator/rotor pole combination (6/7 stator/rotor pole combination 

exhibits the highest torque capability among the main stator/rotor pole combinations in both 

VFRMs and SM-BFPMMs at the same copper loss). All the machines are globally optimized 

with the objective of maximum average torque under the 30W rated copper loss without the 

restriction on PM usage amount, and their main geometric parameters are listed in Table 4.2. 

According to the analysis in section 4.7 of Appendix, the minimum thickness of PM in SM-

BFPMMs is chosen as 2mm to avoid irreversible demagnetization on load. 

4.4.2 Open-circuit Field Distribution 

The open-circuit flux equipotential for VFRM and three types of BFPMMs at the aligned 

position are shown in Fig. 4.13. Being the same as VFRM, short flux paths which could result 

in lower MMF drop in the stator are also achieved in BFPMMs. Meanwhile, the flux-loops of 
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the coils belong to the same phase are completely independent for all machines. Different 

from SM-BFPMM and MTM-BFPMM, the leakage flux exists outside of stator in SYM-

BFPMM but is quite small when compared with the main flux. As shown in Fig. 4.14, the 

waveforms of open-circuit air-gap flux densities in VFRM and BFPMMs are consistent, and 

all three BFPMMs exhibit higher peak value of air-gap flux density than the VFRM.  

 

  

(a) VFRM (b) SM-BFPMM 

 
 

(a) MTM-BFPMM (b) SYM-BFPMM 

Fig. 4.13. Open-circuit flux equipotential at aligned position, pf=15W for VFRM.  
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Fig. 4.14. Open-circuit air-gap flux density at aligned positon, pf=15W for VFRM. 

 

Table 4.2 Main parameters of VFRM and BFPMMs 

Parameter VFRM BFPMM 

PM locations  SM MTM SYM 

Stator pole number 6 

Rotor pole number 7 

Number of phases 3 

Turns per coil (AC/DC) 72 

Packing factor 0.5 

Rated copper loss (W) 30 

Airgap length (mm) 0.5 

Active axial length (mm) 25 

Rated speed (rpm) 400 

Outer radius of stator (mm) 45 

Split ratio 0.56 0.62 0.72 0.59 

Stator pole arc (°) 18.6 23.2 22.2 17 

Rotor pole arc (°) 18.8 18.2 13.4 18.2 

Stator yoke thickness (mm) 4.4 4.6 4.3 10 

Minimum PM thickness (mm)  2 2 5.2 

Rated AC current (Arms) 5.2 9.0 7.5 7.4 

Magnetic remanence (T)  1.2T 1.2T 1.2T 

Relative PM permeability  1.05 1.05 1.05 
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4.4.3 Flux-Linkage and Back-EMF Waveforms 

The open-circuit phase flux-linkage waveforms of the VFRM and three BFPMMs are 

compared in Fig. 4.15. Obviously, the polarities of phase flux-linkage for four machines with 

6/7 stator/rotor pole combinations are all bipolar. Among the four machines, SYM-BFPMM 

has the highest fundamental phase flux-linkage while SM-BFPMM exhibit the lowest value, 

as shown in Fig. 4.15(b) and Table 4.3.  

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 4.15. Open-circuit phase flux-linkages, pf=15W for VFRM. 

Further, due to the same electric frequency (46.7Hz), SYM-BFPMM should also have the 

highest fundamental phase back-EMF, which is evidenced by the waveforms and FFT results 

shown in Fig. 4.16. Moreover, the phase back-EMF waveforms of four machines are all 
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cancelled completely. Compared with SYM- and MTM-BFPMMs, SM-BFPMM exhibits the 

most sinusoidal waveforms since the 3rd, 5th and 7th harmonics are lowest or negligible. 

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 4.16. Open-circuit phase back-EMFs at rated 400rpm, pf=15W for VFRM. 

4.4.4 Dq-Axis Inductances 

According to torque equation shown in (4.9), BFPMM can be seen as one type of normal 

PM synchronous machines, which means it is suitable for vector control. Hence, dq-axis 

inductances are important parameters. Fig. 4.17 shows the dq-axis inductances with different 

current angles for all machines at rated currents as given in Table 4.2. Obviously, VFRM has 
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three BFPMMs are all close to 1 since the d-axis inductance is quite close to q-axis 

inductance, as shown in Fig. 4.17. This phenomenon implies that the potential reluctance 

torque of BFPMMs can be negligible as same as VFRM. 

 

 

Fig. 4.17. Dq-axis inductances with current angle at rated currents of all machines. 

4.4.5 Cogging Torque 

Fig. 4.18 shows the cogging torque waveforms for VFRM and three types of BFPMMs. 

Obviously, SM-BFPMM exhibits the largest amplitudes of cogging torque while SYM-

BFPMM has the smallest one.  

According to the analysis mentioned above, BFPMM is one type of stator PM synchronous 

machines. Therefore, the formula which used to calculate the cycle number of the cogging 

torque waveform over one electric period in conventional PM synchronous machines can be 

extend to BFPMM as (4.10) [ZHU00]. 

𝑁𝑐 =
𝑁 𝑆

𝐺𝐶𝐷(𝑁𝑆, 𝑁𝑟)
 (4.10) 

where Nc is the number of cogging torque cycles over one electrical period, GCD means the 

greatest common divisor. By way of example, for SM-BFPMMs under investigation, Nr=7, 

Ns=6, Nc=6. The result can be evidenced by Fig. 4.18(a). As shown in Fig. 4.18(b), the main 

harmonics of cogging torque in all machines are all 6n times, which indicate that the 

combined cogging torques will exhibit 6 cycles over one electric period.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 4.18. Open-Circuit cogging torque, pf=15W for VFRM. 

4.4.6 Electromagnetic Torque Characteristics 

Fig. 4.19 shows the waveforms of average torque against with current angle at rated 

currents (corresponding to pc=30W) as given in Table 4.2. Similar to VFRM, the optimal 

current angles for three types of BFPMMs are all close to 0°. Hence, the reluctance torque 

can be negligible in both VFRMs and BFPMMs, which is consistent with the conclusion 

shown in section 4.4.4. 
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Fig. 4.19. Variation of average torque with current angle, pc=30W. 

Fig. 4.20 shows the waveform of torque against with rotor positon at rated currents 

(corresponding to pc=30W) with Id=0 control. Obviously, the cycle numbers of torque ripple 

over one electric period are six for all machines. It is mainly due to the combined influence of 

the 5th and 7th harmonics of back-EMF and the cogging torque. The torque ripples of VFRM, 

SM-BFPMM, MTM-BFPMM and SYM-BFPMM are 10.7%, 18.8%, 26.2% and 11.9% 

respectively. Obviously, BFPMM exhibits larger torque ripple than VFRM. Meanwhile, 

among three types of BFPMMs, MTM-BFPMM has the largest torque ripple while SYM-

BFPMM exhibits the smallest one. Moreover, under the rated copper loss, the average 

torques of VFRM, SM-BFPMM, MTM-BFPMM and SYM-BFPMM are 0.82, 1.36, 1.25, 

1.42 Nm respectively. Compared with VFRM, the average torques are enhanced by about 

64.5%, 51.0% and 72.1% respectively in SM-BFPMM, MTM-BFPMM and SYM-BFPMM. 

Further, among the three types of BFPMMs, SYM-BFPMM has the highest torque capability 

while MTM-BFPMM has the lowest one. For the ratio of torque to PM volume as shown in 

Fig. 4.21, SM-BFPMM has the highest value among the three types of BFPMMs, which 

means that SM-BFPMM has the highest PM utilization efficiency.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 4.20. Variation of torque with rotor position, pc=30W, Id=0 control. 

 

Fig. 4.21. Average torque and torque to volume of PM in BFPMMs, pc=30W, Id=0 control. 
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Fig. 4.22. Variation of average torque with copper loss. 

Fig. 4.22 shows the waveforms of average torque against with copper loss for all machines. 

The dashed and dotted line indicates the rated copper loss which adopted in globe 

optimization. Obviously, the average torque is gradually saturated with the increase of copper 

loss (current) due to the saturation effect of magnetic circuit. Further, BFPMMs exhibit 

higher average torque than VFRM under the same copper loss during the whole copper loss 

range, especially in SYM-BFPMM.  

 

Table 4.3 Main electromagnetic performances of VFRM and BFPMMs 

Parameter VFRM BFPMMs 

PM locations  SM MTM SYM 

Fund. flux-linkage (Wb) 11.9 10.2 11.6 13.6 

Fund. back-EMF (V) 3.5 3.0 3.4 4.0 

Cogging torque (Nm) 0.04 0.13 0.1 0.03 

Average torque (Nm) 0.82 1.36 1.25 1.42 

Torque ripple (%) 10.7 18.8 26.2 11.9 

Torque/PM volume (kN/m2)  367 332 181 

 

4.5 Experimental Verification 

Two prototype machines are made to validate the foregoing analyses, which are 6/7 

stator/rotor pole SM-BFPMM and SYM-BFPMM as shown in Fig. 4.23. The parameters of 

two prototype machines are the same as shown in Table 4.2.  
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Fig. 4.24 shows the measured and predicted open-circuit phase back-EMF of two machines 

at rated speed (400rpm). Fig. 4.25 shows the measured and predicted open-circuit cogging 

torque. Compared with SM-BFPMM, SYM-BFPMM exhibits higher phase back-EMF and 

lower cogging torque. The results are consistent with the previous analyses. Fig. 4.26 shows 

the variation of static torque with rotor position at four different armature current 

combinations, i.e. 25%, 50%, 75% and 100% of rated armature current. Based on Fig. 4.26, 

the variation of static torque at 90° rotor position with the copper loss is obtained and shown 

in Fig. 4.27. Overall, the measured and FE predicted results match well. The difference 

between the measured and FE predicted results of static torque under high current or copper 

loss are due to the increased influence of end-effect.  

 

  

(a) Stator of SM-BFPMM (b) Stator of SYM-BFPMM 

 

                      (c) 7-pole rotor SM-BFPMM (d) 7-pole rotor of SYM-BFPMM 

Fig. 4.23. Prototypes of SM-BFPMM and SYM-BFPMM. 
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Fig. 4.24. Measured and FE predicted open-circuit phase back-EMFs at rated 400rpm.  

 

Fig. 4.25. Measured and FE predicted open-circuit cogging torque.  
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(b) SYM-BFPMM with 7-pole rotor. 

Fig. 4.26. Measured and FE predicted phase static torques when -1/2IA=IB=IC. 

 

Fig. 4.27. Measured and FE predicted torque-copper loss characteristics  

when rotor positon is 90° 
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to compare and analyze the influence of PM locations on electromagnetic performances 

under 6/7 Ns/Nr combination. The results show that SM-BFPMM has the highest PM 

utilization efficiency and the most sinusoidal phase back-EMF but the largest cogging torque. 

The SYM-BFPMM exhibits the largest average torque as well as the lowest torque ripple and 

cogging torque but the lowest PM utilization efficiency. Compared with VFRM, the average 

torques are enhanced by about 64.5%, 51.0% and 72.1% respectively in SM-BFPMM, MTM-

BFPMM and SYM-BFPMM. Further, the reluctance torque is negligible in BFPMMs 

regardless of PM locations. Finally, the analyses have been validated by both FEA and 

measurements. 

4.7 Appendix 

In order to avoid the demagnetization under on-load condition, the thickness of PMs should 

be selected carefully. Corresponding to the maximum operating temperature which is 

assumed as 80℃, the magnetic remanence of PM with grade as N35SH is 1.08T. Then, the 

variation of minimum PM flux density with the thickness of PM under the rated 30W copper 

loss and 80℃ maximum operating temperature is indicated in Fig. 4.28, which is 

corresponding to the 6/7 stator/rotor pole SM-BFPMM. By the trade-off between the average 

torque (maximum at PM thickness is 1.4mm) and the minimum PM flux density at 80℃ 

maximum operating temperature, the minimum thickness of PM for SM-BFPMM is chosen 

to be 2mm. Similarly, the minimum thickness of PM in MTM-BFPMM can also be increased 

to 2mm to avoid the demagnetization.  

 

 

Fig. 4.28. Variation of minimum PM flux density with PM thickness under the rated 30W 

copper loss and 80℃ operating temperature for SM-BFPMM machines. 
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CHAPTER 5 

COMPARATIVE STUDY OF NOVEL BIASED FLUX PM 

MACHINES WITH DOUBLY SALIENT PM MACHINES 

CONSIDERING INFLUENCE OF FLUX FOCSUING 

In the previous chapter, the electromagnetic performances of biased flux permanent magnet 

(PMs) machines (BFPMMs) are analysed. The results show that the highest torque capability 

is obtained in BFPMM when the PMs are located in the stator yoke. Nevertheless, the flux 

densities in some part of the stator yoke are far below the saturation knee-point of steel B-H 

curve, which means that the material has not been fully utilized. Therefore, the part of stator 

yoke with low flux density can be reduced to enlarge the slot area, while has the feature of 

flux focusing. In this way, the increased slot area will result in larger rated current under 

same rated copper loss and enhance the torque performance.  

In this chapter, the influences of flux focusing on the electromagnetic performance of 

BFPMM with PMs located in stator yoke will be analysed. Then, based on the inner type flux 

focusing structure, the electromagnetic performances of optimized BFPMM will be compared 

with optimized doubly salient PM machine (DSPMM) under the same rated copper loss and 

machine size since two types of machines have similar topology except the different interval 

number of stator poles between alternate polarity PMs in the stator yoke. 

5.1 Introduction 

Stator permanent magnet (PM) machines have been investigated extensively over the last 

decades due to the robust rotor structure, easy heat dissipation and low risk of 

demagnetization. Doubly salient PM machine (DSPMM) [LIA95] is one type of the stator 

PM machines, in which PMs are located in the stator back iron at an interval of pole number 

equal to phase number and the concentrated windings are employed. However, it has unipolar 

flux linkage, relative low torque density and large torque ripple.  

References [CHE00] [CHE01a] analyse the principle of the electromagnetic torque 

generation and the influence of different geometry parameters of DSPMM in detail. The 

phase back-EMF waveform of DSPMM is trapezoidal [CHE00] [CHE01a] [CHE11c], which 

is suitable for brushless DC (BLDC) operation [LI07]. On the other hand, the rotor-skewing 

method [HUA08] can be used to make back-EMF waveform more sinusoidal. Consequently, 
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DSPMM can also be operated in the brushless AC (BLAC) mode [HUA08] [ZHA10]. 

Nevertheless, since the asymmetric flux path in the stator of DSPMM, the flux-linkages and 

back-EMFs of each phase are unbalanced, particularly under heavy magnetic saturation.  

In this chapter, a novel biased flux PM machine (BFPMM) with doubly salient structure 

and alternate polarities of PMs circumferentially located in the stator back iron between 

adjacent stator poles is investigated, which can eliminate the asymmetric flux path in the 

stator of DSPMM. Firstly, the topologies and stator/rotor pole combinations are illustrated. 

Secondly, three types of flux focusing structure are proposed to enhance the torque 

performance. Then, based on the inner type flux focusing structure, the electromagnetic 

performances of BFPMM are compared with DSPMM. Finally, a prototype machine with 6/7 

stator/rotor pole inner type flux focusing BFPMM is manufactured and measured to validate 

the analyses. 

5.2 Machine Topologies and Stator/Rotor Pole Combinations  

5.2.1 Machine Topologies  

As shown in Fig. 5.1, the stator of biased flux permanent magnet (PM) machine (BFPMM) 

consists of T-shape laminated segments between which are placed by circumferentially 

magnetized PMs with alternate polarities. Non-overlapping windings are wound around each 

stator pole. The rotor pole of BFPMM is similar to SRM, which has excellent mechanical 

integrity and robustness. The main difference between BFPMM and doubly salient PM 

machine (DSPMM) is the interval number of stator pole between the alternate polarities PMs 

in the stator yoke, which is equal to one in BFPMM while that is equal to phase number in 

DSPMM.  

 

 

(a) Structure schematic of DSPMM 
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(b) Structure schematics of BFPMM 

Fig. 5.1. Structure evolution from DSPMM to BFPMM.  

5.2.2 Stator and Rotor Pole Combinations 

Different from DSPMM in which the stator and rotor pole (Ns/Nr) combinations are 

restricted to equations (5.1) and (5.2) [FAN08], the stator and rotor pole combinations in 

BFPMM are more flexible. The rotor pole number can be any integers except the phase 

number and its multiples. Hence, the choices of stator and rotor pole combinations of 

BFPMM can be summarized as equations (5.1) and (5.3).  

𝑁𝑠 = 2𝑚𝑘 (5.1) 

𝑁𝑟 = 𝑁𝑠 ± 2𝑘 (5.2) 

𝑁𝑟 = 𝑁𝑠 ± 𝑗 (Nr ≠ kim, j=1, 2…, ki=1. 2…) (5.3) 

where m is phase number, k, j and ki are integers. 

Being same as the analysis in previous chapter, the conventional coil-EMF vector method 

can be used in BFPMM to determine the armature windings [ZHU10]. The electric degrees αe 

between two adjacent coil-EMF vectors can be derived from the mechanical degrees αm and 

the rotor pole number Nr according to (5.4). 

𝛼𝑒 = 𝑁𝑟𝛼𝑚  (5.4) 

For BFPMM with 6-pole stator, the most feasible rotor pole numbers could be 4, 5, 7 and 8, 

as shown in Fig. 5.2. All machines are optimized with maximum average torque under the 

rated 30W copper loss. According to (5.4), the coils belong to the same phase are connected 

in series with opposite polarity (180 electric degree shifting) in 5- and 7-rotor pole BFPMMs 

but with same polarity in 4- and 8-rotor pole BFPMMs, as shown in Fig. 5.2. This difference 

results in two different characteristics of phase flux-linkages and back-EMFs for the different 

stator/rotor pole combinations. Obviously, 5- and 7-rotor pole BFPMMs have bipolar phase 

flux-linkages and symmetic phase back-EMFs whilst 4- and 8-rotor pole BFPMMs exhibit 

AC AC AC ACACACAC

Stator

Rotor
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unipolar phase flux-linkages and asymmetric phase back-EMFs, as shown in Fig. 5.3 and Fig. 

5.4. Further, among the four main stator/rotor pole combinations, the 6/7 stator/rotor pole 

BFPMM exhibits the highest average torque under the same copper loss during the whole 

copper loss range, as shown in Fig. 5.5.  

 

  

(a) 6S/4R (b) 6S/5R 

  

(a) 6S/7R (b) 6S/8R 

Fig. 5.2. Topologies of 6-stator pole BFPMMs with different rotor pole number.  
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Fig. 5.3. Open-circuit phase flux-linkage of 6-stato pole BFPMMs. 

 

Fig. 5.4. Open-circuit phase-EMFs of 6-stator pole BFPMMs.  

 

Fig. 5.5. Variation of average torque with copper loss in 6-sator pole BFPMM. 
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5.3 Comparison for BFPMMs with Different Flux Focusing Types 

In this section, the influence of flux focusing on electromagnetic performance of BFPMMs 

will be analysed.  

5.3.1 Alternate Flux Focusing Types  

In the original design of BFPMM, the thickness of stator yoke is restricted by the thickness 

of PM as shown Fig. 5.2. Nevertheless, the flux densities in some part of the stator back iron 

of the original BFPMMs are far below the saturation knee-point of steel B-H curve, as shown 

in Fig. 5.6(a). It means that the material has not been fully utilized. Hence, the part of stator 

back-iron with low flux density can be reduced to enlarge the slot area as shown in Fig. 5.6(b) 

which has the feature of flux focusing. Under the fixed copper loss, the increased slot area 

will result in larger rated current and improve the torque performance. Meanwhile, the flux 

focusing types which are adopted in [LIA95] [CHE00] [CHE01a] can also be adopted in 

BFPMMs as shown in Fig. 5.6 (c). Further, this outer type flux focusing can be combined 

with Fig. 5.6(b) and form up a new topology as shown in Fig. 5.6(d). In order to simplify the 

comparison, these three flux focusing topologies can be designated as inner type (IT), outer 

type (OT) and combined type (CT). Since the 6/7 stator/rotor pole combination BFPMM 

exhibits the optimal average torque at the rated copper loss, the influence of flux focuisng on 

electromagnetic torque performance of BFPMM will be focused on this stator/rotor pole 

combination. The main geometric parameters of the origianal BFPMM and three flux 

focusing types of BFPMMs are listed in Table 5.1. All mahcines are optimized for maximum 

average toruqe unde the rated copper loss. Moreover, for OT-BFPMM and CT-BFPMM with 

feature of outer flux focusing, the radius of maximum inscribed circle of hexagonal stator 

structure is 45mm, which is same as the radius of outer stator of ORI-BFPMM and IT-

BFPMM. 
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(a) ORI-BFPMM (b) IT-BFPMM 

 

  
(c) OT-BFPMM (d) CT-BFPMM 

Fig. 5.6. Open-circuit equipotential and flux distribution of BFPMM with the original design 

and different types of flux focusing.  
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Table 5.1 Main parameters of BFPMMs and DSPMMs 

Parameters BFPMMs DSPMMs 

Type of flux focusing ORI IT OT CT IT 

Number of phases 3 

Turns per coil 72 

Packing factor 0.5 

Rated copper loss (W) 30 

Airgap length (mm) 0.5 

Active axial length (mm) 25 

Rated speed (rpm) 400 

Outer radius of stator (mm) 45 

Stator pole number 6 6 6 6 6 

Rotor pole number 7 7 7 7 4 

Volume (10
-6

 m3) 159 159 175 175 159 

Split ratio 0.59 0.64 0.64 0.66. 0.52 

Stator pole arc (°) 17 16.6 18 18 30 

Rotor pole arc (°) 18.2 18 18.8 18.4 30.8 

Thickness of stator yoke (mm) 10 5.1 5.9 4.2 7.8 

PM thickness (mm) 10 10 11.7 18.1 11.9 

PM width (mm) 5.2 5.2 4.2 3.6 9.0 

Total PM volume (mm
3
) 7816.8 7816.8 7374.5 9807.5 5346.4 

Rated AC current at 30W (Arms) 7.4 8.4 8.5 8.2 7.6 

Rated current density (Arms/mm
2
) 10.34 9.13 8.97 9.32 10.01 

Magnetic remanence (T) 1.2T 

Relative PM permeability 1.05 

 

5.3.2 Open-Circuit Field Distribution 

Fig. 5.6 shows the open-circuit flux equiptotential and flux density field distributions for all 

machines at aligned position (one rotor pole alinged with the stator pole wound with coil A1). 

Obviously, short flux path, which could result in lower MMF drop in the stator, is observed 

in BFPMMs with 6/7 stator /rotor pole combination. Due to the reduced thickness of stator 

yoke, the saturation of the stator yoke in IT-BFPMM, OT-BFPMM and CT-BFPMM are 

hearvier than that in ORI-BFPMM.  
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5.3.3 Flux-Linkage and Back-EMF Waveforms 

Fig. 5.7 shows the open-circuit bipolar phase flux-linkages of four machines. Obviously, 

CT-BFPMM has higher peak value of phase flux-linkage than other three machines since it 

employs largest magnet usage and thickness of PM. Due to the same electric frequency 

(46.7Hz), CT-BFPMM should also exhibits largest peak value of back-EMF among four 

machines according to the magnitude of flux-linkages as shown in Fig. 5.7. It is evidenced by 

the waveforms and FFT results shown in Fig. 5.8, in which CT-BFPMM has largest peak 

value and magnitude of fundamental wave. Overall, all three types of flux focusing can 

enhance the phase flux-linkage and back-EMF of BFPMMs when compared with original 

design, as show in Table 5.2. Moreover, the waveforms of phase back-EMF in ORI-BFPMM 

and BFPMMs with flux focusing are all close to sinusoidal due to the low odd harmonics and 

cancelled even harmonics as shown in Fig. 5.8(b). 

 

 

Fig. 5.7. Open-circuit phase flux-linkages of BFPMMs. 
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(a) Waveforms 

 

(b) Spectra 

Fig. 5.8. Open-circuit phase back-EMFs of BFPMMs at rated 400rpm. 

5.3.4 Dq-axis Inductances  

The waveforms of dq-inductances with different current angles at rated currents of four 

machines are shown in Fig. 5.9. Compared with ORI-BFPMM, the dq-inductances are 

increased in BFPMMs with flux focusing structure, especially in OT-BFPMM and CT-

BFPMM. It is mainly due to the reduced width of PM. Moreover, since the q-axis inductance 

is quite close to the d-axis inductance, the saliency ratios of four machines are all close to 1. 

Therefore, the potential reluctance torque of four machines can be negligible.  
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Fig. 5.9. Variation of dq-axis inductances with current angles at the rated currents 

 as given in Table 5.1. 

5.3.5 Cogging Torque 

Fig. 5.10 shows the cogging torque waveforms over one electric period for four machines. 

Obviously, the magnitudes of cogging torque are enlarged in BFPMMs with flux focusing 

structure when compared with ORI-BFPMM, especially in BFPMM has the feature of outer 

flux focusing, e.g. CT-BFPMM and OT-BFPMMs. Moreover, the cycle numbers of torque 

ripple over one electric period for four machines are all equal to six. These results are further 

evidenced the (4.10). 

 

 

Fig. 5.10. Open-circuit cogging torques of BFPMMs. 
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5.3.6 Electromagnetic Torque Characteristics 

Fig. 5.11 shows the waveforms of average torque against with current angle at rated 

currents of four machines. Obviously, the optimal current angles for four machines are all 

close to 0°, which can be used to evidence the conclusion about the negligible reluctance 

torque for BFPMMs as mentioned in section 5.3.4.  

 

 

Fig. 5.11. Variation of average torque with current angle in BFPMMs, pc=30W. 

The waveforms of torque against with rotor position at rated currents and Id=0 control for 

all machines are show in Fig. 5.12. The torque ripples of ORI-BFPMM, IT-BFPMM, OT-

BFPMM and CT-BFPMM are 11.9%, 11.8%, 16.9% and 16.1% respectively, as shown in 

Table 5.2. Obviously, among the four machines, OT-BFPPMM and CT-BFPMM which have 

the feature of outer flux focusing structure exhibit higher torque ripple since they also have 

the larger magnitudes of cogging torque as shown in Fig. 5.10. Meanwhile, due to the 

increased PM volume and the enlarged slot area (result in increased current under the fixed 

copper loss), the average torques under the rated copper loss are enhanced about 19%, 30.3% 

and 54.2% respectively by using IT, OT and CT types of flux focusing structure in the 

original BFPMM. The torque performance can be further reflected on the characteristic of 

average torque against with copper loss, as show in Fig. 5.13. The results show that all three 

types of flux focusing can enhance the torque capability over the whole copper loss range. 
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(a) Waveforms 

 

(b) Spectra 

Fig. 5.12. Variation of torque with rotor positon in BFPMMs, pc=30W, Id=0 control. 

 

Fig. 5.13. Variation of average torque with copper loss in BFPMMs, Id=0 control. 
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Based on the rated copper loss, the values of torque to PM volume and torque density of 

four machines are compared in Fig. 5.14. Obviously, all three types of flux focusing can 

improve the PM utilization efficiency and torque density of BFPMM. Among the four 

machines, OT-BFPMM exhibits the optimal PM utilization efficiency whist CT-BFPMM has 

the largest torque density. 

 

 

Fig. 5.14. Torque to volume of PM and torque density, pc=30W, Id=0 control. 

5.3.7 Mechanical Integrity, Iron Loss and PM Loss 

As mentioned in section 5.2.1, the rotor of BFPMMs is simple and robust. However, the 

stator of BFPMMs is composed by the laminated segments. This stator configuration 

increases the level of difficulty in the installation, especially in the precise positioning of each 

segment stator. 

Fig. 5.15 shows the variation of iron losses against speed at rated copper loss for four 

BFPMMs. Iron loss is composed by hysteresis loss and eddy current loss, in which the 

hysteresis loss is proportional to the electric frequency while the eddy current loss is 

proportional to the square of electric frequency [ZHU04] [ISH05]. Consequently, as shown in 

Fig. 5.15, the iron loss will be increased as the speed increased. Further, as shown in Fig. 5.16, 

among the four BFPMMs, the CT-BFPMM has the heaviest saturation level (highest 

amplitude change of flux density) and largest total saturation area, and then followed by the 

OT-BFPMM and IT-BFPMM. Meanwhile, four BFPMMs have the same electric frequency 

under the same speed since they have the same 6/7 stator/rotor pole combination. Therefore, 

CT-BFPMM exhibits the largest iron loss among the four BFPMMs in the whole speed range 

while ORI-BFPMM has the smallest value. As shown in Table 5.2, the iron losses of ORI-

BFPMM, IT-BFPMM, OT-BFPMM and CT-BFPMM under the rated copper loss (30W) and 
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the rated speed (400rpm) are 0.41, 0.55, 0.58 and 0.73W respectively.  

 

 

Fig. 5.15. Variation of iron loss with speed in BFPMMs, pc =30W, Id = 0 control. 

Fig. 5.16. On-load flux density distributions of BFPMMs, pc =30W, Id = 0 control. 
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Fig. 5.17 shows the variation of PM losses against speed at rated copper loss for four 

BFPMMs. Obviously, the PM loss is increased as the speed increased since the PM loss is 

almost proportional to the square of the electric frequency [ZHU08b]. Further, as shown in 

Table 5.1, CT-BFPMM has the largest PM usage (total PM volume) among the four 

BFPMMs. Consequently, CT-BFPMM should also exhibit the highest PM loss in the whole 

speed range under the rated copper loss, as evidenced by the Fig. 5.17. As shown in Table 5.2, 

the PM losses of ORI-BFPMM, IT-BFPMM, OT-BFPMM and CT-BFPMM under the rated 

copper loss (30W) and the rated speed (400rpm) are 0.06, 0.07, 0.11 and 0.22W respectively.  

 

 

Fig. 5.17. Variation of PM loss with speed in BFPMMs, pc =30W, Id = 0 control. 

 

Table 5.2 Main electromagnetic performance of BFPMMs and DSPMMs 

Parameters BFPMMs DSPMMs 

Type of flux focusing ORI IT OT CT IT 

Fund. flux-linkage (mWb) 13.6 14.6 15.8 19.6 23.48 

Fund. back-EMF (V) 3.98 4.26 4.61 5.74 3.93 

Cogging torque (Nm) 0.03 0.05 0.12 0.16 0.09 

Average torque (Nm) 1.42 1.69 1.85 2.19 1.43 

Torque ripple (%) 11.9 11.8 16.9 16.1 93.1 

Torque/PM volume (kN/m
2
) 180.9 216.2 250.8 222.97 267.9 

Torque density (kN/m
2
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5.4 Performance Comparison between BFPMM and DSPMM 

In this section, the electromagnetic performance of 6/7 stator/rotor pole BFPMM will be 

compared with conventional 6/4 stator/rotor pole DSPMM under the same machine size with 

inner type of flux focusing (IT). 

5.4.1 Open-Circuit Field Distribution 

Fig. 5.18 shows the open-circuit flux equipotential of IT-DSPMM and IT-BFPMM. It can 

be seen that the flux paths in two machines are different. Long flux path is exhibited in the 

6/4 stator /rotor pole IT-DSPMM while short flux path is observed in the 6/7 stator/rotor pole 

IT-BFPMM. Therefore, IT-BFPMM has relative low MMF drop in the stator. Moreover, in 

both IT-DSPMM and IT-BFPMM, leakage fluxes exist outside the stators, but are quite small 

compared with the main flux. 

The open-circuit air-gap flux density distributions of two machines are shown in Fig. 5.19. 

Obviously, the positive flux densities are observed in regions around the stator pole wound 

with coil A1 in both machines. However, in the regions around the stator pole wound with 

coil A2, the flux density is negative minimum in the 6/7 stator/rotor pole IT-BFPMM but 

negative maximum in the 6/4 stator/rotor pole IT-DSPMM. 

 

 

 

(a) IT-DSPMM (b) IT-BFPMM 

Fig. 5.18. Topologies and open-circuit flux equipotential of IT-DSPMM and IT-BFPMM.  
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Fig. 5.19. Open-circuit air-gap flux densities of IT-DSPMM and IT-BFPMM  

at aligned position.  

5.4.2 Open-Circuit Phase Flux-Linkage 

Fig. 5.20 compares the open-circuit phase flux-linkages of two machines. It can be seen 

that the phase flux-linkage is unipolar in the 6/4 stator/rotor pole IT-DSPMM but bipolar in 

the 6/7 stator/rotor pole BFPMM. As shown in Table 5.2, IT-DSPMM exhibits the higher 

fundamental phase flux-linkage than that of IT-BFPMMs, which are 23.48 and 14.60mWb 

respectively.  

 

 

Fig. 5.20. Open-circuit phase flux-linkages of IT-DSPMM and IT-BFPMM. 
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Fig. 5.21 shows the open-circuit phase back-EMF waveforms of two machines at rated 
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symmetrical since the even harmonics which cause the asymmetric waveform in single coil 

are completely cancelled in the phase winding by connecting the coils with opposite polarity. 

However, the even harmonics still exist in the phase back-EMF of the 6/4 stator/rotor pole 

IT-DSPMM, as shown in Fig. 5.21(b). Further, due to the influence of rated electric 

frequency, the 6/7 stator/rotor pole IT-BFPMM (46.7Hz) exhibits higher fundamental phase 

back-EMF than 6/4 stator/rotor pole IT-DSPMM (26.7Hz), which are 4.26 and 3.93V 

respectively, as shown in Fig. 5.21 and Table 5.2.  

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 5.21. Open-circuit phase back-EMFs of IT-DSPMM and IT-BFPMM at rated 400rpm. 
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(a) Waveforms 

 

(b) Spectra 

Fig. 5.22. On-load terminal voltages of IT-DSPMM and IT-BFPMM at rated current as given 

in Fig. 5.1, 400rpm, horizontal axis is per unit value.  

The on-load terminal voltages of two machines are compared in Fig. 5.22 at rated currents 

as given in Table 5.1. The terminal voltages are expressed as per unit value, in which those 

base values are the maximum phase fundamental terminal voltage of two type machines 

respectively. As shown in Fig. 5.22, since the flux path of each phase is asymmetric in the 

stator, the terminal voltage waveforms of different phases in DSPMM are not identical. 

Further, the amplitude of each harmonic (including fundamental component) in the three 

phases are also different, Fig. 5.22. It means that unbalance exists between three phases of 

IT-DSPMM, particularly under heavy magnetic saturation. However, this drawback is 

overcome in BFPMM since the flux path of each phase in the stator is identical, in which can 

also be evidenced by the magnitude of each harmonic in Fig. 5.22. Moreover, compared with 
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DSPMM which has unequal positive and negative peak values of terminal voltage, the 

terminal voltage of BFPMM is almost sinusoidal and has a lower peak. Therefore, the usage 

efficiency of dc-link voltage in BFPMMs is much higher than that of DSPMMs since the 

requirement for the dc-link voltage is determined by the maximum peak value of terminal 

voltage. 

5.4.4 Dq-Axis Inductances 

The waveforms of dq-inductances with different current angles at rated currents of two 

machines are shown in Fig. 5.23. It can be seen that the dq-axis inductances of IT-DSPMM 

are both larger than those of IT-BFPMM. Moreover, the q-axis inductance is slightly larger 

than d-axis inductance in IT-DSPMM while those are nearly equal in IT-BFPMM. It means 

that the reluctance torque of IT-BFPMM is negligible since the saliency ratio is quite close to 

1. 

 

Fig. 5.23. Variation of dq-axis inductances with current angel at the rated currents  

as given in Table 5.1.  

5.4.5 Cogging Torque 

The waveforms of open-circuit cogging torque over one electric period are shown in Fig. 
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BFPMM will exhibit one and six cycles during one electric period separately, as shown in Fig. 

5.24(b). 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 5.24. Open-circuit cogging torques of IT-DSPMM and IT-BFPMM.  

5.4.6 Electromagnetic Torque Characteristics 

Fig. 5.25 shows the waveforms of average torque against current angle at rated currents as 

given in Table 5.1 (corresponding to pc=30W) for two machines. Obviously, the optimal 

current angles for IT-DSPMM and IT-BFPMM are almost 15° and 0° respectively. It means 

that small reluctance torque exists in IT-DSPMM but negligible in IT-BFPMM, which are 

consistent with the previous analysis in section 5.4.4. 
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Fig. 5.25. Variation of average torque with current angle in IT-DSPMM  

and IT-BFPMM, pc=30W.  

The torque waveforms of two machines under the rated currents (pc=30W) and optimal 

current angles are compared in Fig. 5.26. Obviously, due to the combined influence of the 

cogging torque and the harmonics of back-EMF (2
th

 and 4
th

 harmonics for IT-DSPMMs, 5
th

 

and 7
th

 for IT-BFPMMs), the cycle numbers of torque ripple over one electric period are 

three in IT-DSPMM but six in IT-BFPMM. Moreover, the torque ripples of IT-DSPMM and 

IT-BFPMM are 93.1% and 11.8% respectively. It can be seen that the torque ripple is 

reduced significantly in IT-BFPMM when compared with IT-DSPMM. According to Fig. 

5.26 and Table 5.2, IT-BFPMM exhibits ~18% higher average torque than IT-DSPMM under 

the same rated 30W copper loss, which is 1.69 and 1.43 Nm respectively.  
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(b) Spectra 

Fig. 5.26. Variation of electromagnetic torque with rotor position under the rated currents  

and optimal current angles in IT-DSPMM and IT-BFPMM, pc=30W. 

 

Fig. 5.27. Torque to volume of PM and torque density, pc=30W and optimal current angles.  

Fig. 5.27 compares the ratio of torque to PM volume and torque density of two machines at 

rated currents (pc=30W) and optimal current angles. Compared with IT-DSPMM, IT-

BFPMM exhibits higher torque density but lower ratio of torque to PM volume (lower PM 

utilization efficiency).  

The variations of the average torque with the copper loss for two machines are further 
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the whole copper loss range as shown in Fig. 5.28, IT-BFPMM exhibits larger average torque 

than IT-DSPMM under the same copper loss. 

 

 

Fig. 5.28. Variation of average torques with copper loss at the optimal current angles. 

5.5 Experimental Verification 

Prototype machine of IT-BFPMM with 6/7 stator/rotor pole combination is made to 

validate the foregoing analysis, as shown in Fig. 5.29. The geometric parameters are the same 

as shown in Table 5.1.  

 

  

(a) 6-pole stator of IT-BFPMM (b) 7-pole rotor of IT-BFPMM. 

Fig. 5.29. Prototype of IT-BFPMM with 6/7 stator/rotor pole combination. 
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prediction due to the end-effect in 25 mm stack length machines. Fig. 5.31 shows the 

measured and predicted open-circuit cogging torques. The measured peak to peak value is 

slight larger than the FE prediction. This difference is acceptable when considering the 

measurement error and assembling tolerance. Fig. 5.32 shows the variation of static torques 

with the rotor position at four different armature currents combinations, i.e. 25%, 50%, 75% 

and 100% of the rated armature current. Further, based on Fig. 5.32, the variation of the static 

torque at 90° rotor position with the copper loss is obtained and shown in Fig. 5.33. Overall, 

the measured and FE predicted results match well. The difference between the measured and 

FE predicted results of static torque under high current (or copper loss) are due to the 

increased influence of end effect caused by aggravated saturation. 

 

 

Fig. 5.30. Measured and FE predicted open-circuit phase back-EMFs at 400rpm.  

 

Fig. 5.31. Measured and FE predicted open-circuit cogging torques.  
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Fig. 5.32. Measured and FE predicted phase static torques when -1/2IA=IB=IC. 

 

Fig. 5.33. Measured and FE predicted torque-copper loss characteristic  

when rotor position is 90°. 

5.6 Summary 

In this chapter, BFPMMs with doubly salient structure and non-overlapping armature 

windings are investigated. The PMs with alternate polarities are circumferentially located in 
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stator pole BFPMMs exhibits bipolar phase flux-linkage and symmetrical phase back-EMF. 
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utilization efficiency and torque density are also enhanced (by 19.5%, 38.6% and 23.3% for 

PM utilization efficiency while 19.3%, 18.8% and 40.3% for torque density). Moreover, 

optimized 6/4 stator/rotor pole IT-DSPMM is compared with optimized 6/7 stator/rotor pole 

BFPMM under the same rated copper loss and machine size as well as optimal current angle. 

The results show that IT-BFPMM exhibits about 18% higher average torque and 80% lower 

torque ripple than IT-DSPMM. Further, the unbalance between phases which is observed in 

DSPMMs is overcome in the BFPMMs. The analyses are experimentally validated by the 

prototype machine. 
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CHAPTER 6 

NOVEL BIASED FLUX PERMANENT MAGNET MACHINES 

WITH PARTITIIONED STATOR 

Similar to other stator permanent magnet (PM) machines, the torque performance of biased 

flux PM machines (BFPMMs) are also limited by the confliction among the PMs, coppers 

and stator irons due to the limited space. To solve this confliction and improve the potential 

torque performance under the same machine size, inner type flux focusing technique is 

employed in BFPMMs in the previous chapter by reducing the thickness of stator yoke which 

is not utilized effectively to increase the slot area. Nevertheless, the utilization ratio of whole 

machine space is still relatively low, especially for the inner space. As a more effective 

solution, the partitioned stator configuration is proposed in [EVA15], in which the PMs and 

armature windings in the original single stator are separated into inner and outer stators 

respectively. By introducing this configuration into BFPMM, high torque capability can be 

expected due to the reduced confliction by fully utilizing the inner space. In this chapter, 

novel partitioned stator BFPMMs (PS-BFPMMs) with different PM stator configurations are 

proposed and investigated. 

6.1 Introduction 

Theoretically, higher torque capability can be expected by replacing DC field windings 

with permanent magnets (PMs). Based on this concept, biased flux PM machines (BFPMMs) 

are evolved from VFRMs in [SHI14b]. The PMs are located in the adjacent stator poles with 

alternate polarities while concentrated armature windings are remained. Meanwhile, 

reference [SHI14b] indicates that the location of PMs can be moved from the surface to the 

bottom of stator pole due to the same main magnetic circuits. However, considering the 

influence of flux leakage in the stator slot, the optimal torque capability is obtained when 

PMs are mounted on the surface of stator pole [SHI14b]. Further, references [SHI14c] 

[WU14] also propose one type of BFPMM with PMs located in the stator yoke, which can 

overcome the drawback of unbalance between the phases in doubly salient PM machines 

(DSPMMs) and exhibits ~70% higher torque density than VFRMs.  

Similar to other stator PM machines, the confliction among the slot area (coppers), PMs 

and stator irons also exists in BFPMMs and limits the possibility of further enhancing the 

torque performance. To solve this confliction and improve the potential torque performance, 
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inner type flux focusing technique is employed in BFPMM with PM located in stator yoke by 

reducing the thickness of stator yoke which is not utilized effectively [SHI14c]. Since the slot 

area is increased, the torque density under the same copper loss is also enhanced. 

Nevertheless, the utilization ratio of whole machine space is still relatively low, especially for 

the inner space. As a more effective solution, the partitioned stator configuration is proposed 

in [EVA15], in which the PMs and armature windings in the original single stator are 

separated into inner and outer stators respectively. Since the confliction is further reduced by 

fully utilizing of inner space, high torque capability is achieved [EVA15].  

By introducing this configuration, novel partitioned stator BFPMMs (PS-BFPMMs) with 

two different PM configurations are proposed and investigated in this chapter. Firstly, the 

machine topologies and operation principle are illustrated. Secondly, based on the 2-D finite 

element analysis (FEA), the electromagnetic performance in terms of phase flux-linkage and 

back-EMF, dq-axis inductances and torque capability of PS-BFPMMs are investigated and 

compared with single stator BFPMMs (SS-BFPMMs) for the same (inner/outer) stator/rotor 

pole combination and the same machine size. Thirdly, the main stator/rotor pole 

combinations of PS-BFPMMs are further analysed. Finally, two prototype machines having 

PM configurations with surface mounted type and spoke type are manufactured and measured 

respectively to validate the analysis.  

6.2 Machine Topologies and Operation Principle of PS-BFPMMs 

6.2.1 Concepts of PS-BFPMMs 

Fig. 6.1(a) and (b) show the basic models of original single stator BFPMMs (SS-BFPMMs) 

with PMs mounted on the surface of stator pole and located in the stator yoke respectively. 

Non-overlapping armature windings and salient pole rotors are employed. Partitioned stator 

configuration, which is proposed in [EVA15], can also be introduced in SS-BFPMM. 

Considering the different PM configurations as shown in Fig. 6.1(a) and (b), two 

corresponding basic models of partitioned stator BFPMMs (PS-BFPMMs) are shown in Fig. 

6.1(c) and (d) respectively. It can be seen that the PMs and armature windings of PS-

BFPMMs are located in two separate inner and outer stators while a modular rotor is adopted. 

Moreover, the second air-gap is introduced in PS-BFPMMs between the rotor and the PM 

stator to allow the rotor rotating. Overall, according to Fig. 6.1, the flux paths shown in two 

PS-BFPMMs are both consistent with those in two original SS-BFPMMs, which imply that 

the operation principle of PS-BFPMMs is similar to that of SS-BFPMMs. 
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(a) SS-BFPMM-I (b) SS-BFPMM-II 

  

(c) PS-BFPMM-I (d) PS-BFPMM-II 

Fig. 6.1. Schematics of original SS-BFPMMs and PS-BFPMMs.  

To simplify the comparison in the following sections, the machines corresponding to the 

basic models shown in Fig. 6.1(a), (b), (c) and (d) can be designated as SS-BFPMM-I, SS-

BFPMM-II, PS-BFPMM-I and PS-BFPMMM-II respectively. Fig. 6.2 shows the topologies 

of 12/10 (inner/outer) stator/rotor pole SS-BFPMMs (12S/10R) and PS-BFPMMs 

(12I/12O/10R) with two PM configurations. All machines are globally optimized with 

maximum average torque under the same machine size and the same copper loss. The main 

geometric parameters are detailed in Table 6.1.  
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(c) PS-BFPMM-I (d) PS-BFPMM-II 

Fig. 6.2. Topologies of SS-BFPMMs and PS-BFPMMs with 12/10 (inner/outer) stator/rotor 

pole combination. 

 

Table 6.1 Main parameters of SS-BFPMMs and PS-BFPMMs. 

Parameters BFPMMs 

Topology SS-I SS-II PS-I PS-II 

Number of phases 3 

Turns per phase 72 

Rated speed (rpm) 400 

Rated copper loss (W) 30 

Packing factor 0.5 

Air-gap length Lag (mm) 0.5 

Active axial length Laa (mm) 25 

Outer stator outer radius Roso (mm) 45 

Radius of shaft (mm) 10.4 10.4   

Inner stator inner radius Risi (mm)   10.4 10.4 

Outer stator (OS) pole number, Nos 
12 12 

12 12 

Inner stator (IS) pole number, Nis 12 12 

Rotor pole number, Nr 10 10 10 10 

OS inner radius Rosi (mm) 29.70 

 

30.15 

 

31.05 30.60 

IS outer radius Riso (mm) 25.45 24.30 

OS tooth body pole arc θostb (°) 10.4 11.6 10.2 12.8 
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OS tooth tip pole arc θostt (°) 3.51  6.9 5.2 

OS tooth tip thickness (Opening) 

Tostto (mm) 
1  1 1 

OS tooth tip thickness (Body)  

Tosttb (mm) 
1.6  2 2.4 

Rotor outer pole arc θrop (°) 9.4 12.6 22 26 

Rotor inner pole arc θrip (°)   27.2 19.6 

Rotor radial thickness Trr (mm) 11 10.8 4.6 5.3 

OS yoke thickness Tosy (mm) 3.1 3.6 2.8 3.5 

Rated AC current (Arms) 16.33 13.92 17.10 15.83 

Rated current density (Arms/mm
2
) 9.35 10.99 8.92 9.64 

PM inner pole arc θPM (°) 18.6 (3mm) 30 30 

Minimum PM thickness TPM (mm) 2 11.5 3.5 13.9 

Magnetic remanence (T) 1.2 

Relative PM permeability 1.05 

 

6.2.2 Winding Configurations of PS-BFPMMs 

Similar to SS-BFPMMs, the conventional coil EMF vector method [ZHU10] can also be 

used to determine the armature winding configuration of PS-BFPMMs, in which the 

electrical degree αe between two adjacent coil-EMF vectors can be calculated from the 

mechanical degree αm and the rotor pole number Nr according to (6.1) [CHE08].  

𝛼𝑒 = 𝑁𝑟𝛼𝑚 (6.1) 
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(b) Coil-EMF vectors (elec.deg.) and sectors 

for determining phase winding (dash lines) 
(c) Phase windings 

Fig. 6.3. Coil EMF vectors for SS-BFPMMs and PS-BFPMMs with 12/10 (inner/outer) 

stator/rotor pole combination. 

By way of example, for the 12I/12O/10R PS-BFPMM under investigation, the coil-EMF 

vectors are shown in Fig. 6.3. Coil n and coil n' refer to the coils with opposite polarities, 

accounting for the alternate magnetization directions in adjacent stator poles, such as coils 1 

and 2 as shown in Fig. 6.2 and Fig. 6.3(b). 

6.2.3 Operation Principle of PS-BFPMMs 

Fig. 6.4 shows the open-circuit flux equipotential of 12I/12O/10R PS-BFPMM-I at four 

different rotor positions. Fig. 6.5 shows the open-circuit coil flux-linkages for PS-BFPMM-I 

in per-unit value. Based on Fig. 6.4 and Fig. 6.5, the operation principle of PS-BFPMM-I can 

be explained in detail as follows. When one rotor pole aligns with the outer stator pole wound 

with coil A1 (defined as aligned position) as shown in Fig. 6.4(a), the fluxes flow from inner 

stator to outer stator and maximum negative coil flux-linkages are both achieved in coils A1 

and A2 but with different peaks as shown in Fig. 6.5 at 0° rotor position. Correspondingly, 

the combined flux-linkage of coils A1+A2 also reaches the negative peak. When the rotor 

rotates through 1/4 rotor pole pitch from the aligned positon as shown in Fig. 6.4(b), the flux-

linkages of coil A1 and coil A2 have the same peak values but opposite polarities due to the 

inverse flux directions. Thus, the combined flux-linkage of coils A1+A2 is zero, as shown in 

Fig. 6.5 with 90° rotor position. When the rotor rotates through 1/2 rotor pole pitch from the 

aligned positon as shown in Fig. 6.4(c), the directions of fluxes are both reversed (from outer 
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stator to inner stator) and maximum positive coil flux-linkages are achieved in coils A1 and 

A2 as well as the combined coils A1+A2, as shown in Fig. 6.5 at 180° rotor position. When 

the rotor rotates through 3/4 rotor pole pitch from the aligned positon as shown in Fig. 6.4(d), 

the flux-linkages of coil A1 and coil A2 have the same peak value but opposite polarities 

again, and the combined flux-linkage of coils A1+A2 is zero as shown in Fig. 6.5 at 270° 

rotor position. Therefore, due to the periodical variation of coil flux-linkages, back-EMF will 

be induced in the coils.  

Furthermore, the operation principle of PS-BFPMM-II is consistent with PS-BFPMM-I 

since the only difference between two machines is the PM configuration in inner stator 

(surface mounted PM stator in PS-BFPMM-I while spoke type PM stator in PS-BFPMM-II), 

as shown in Fig. 6.2(c) and (d).  

 

  

(a) PS-BFPMM-I_0° (b) PS-BFPMM-I_90° 

  

(c) PS-BFPMM-I_180° (d) PS-BFPMM-I_270° 

Fig. 6.4. Open-Circuit flux equipotential distributions at different rotor positions (elec.deg). 
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Fig. 6.5. Variation of open-circuit coil flux-linkages with rotor position in per-unit value. 

6.2.4 Conditions for Bipolar Phase Flux-Linkage and Symmetrical Phase Back-EMF 

Since PS-BFPMMs are evolved from SS-BFPMMs by introducing the partitioned stator 

configuration and two types of machines have the same operational principle, the conditions 

for bipolar phase flux-linkage and symmetrical phase back-EMF in SS-BFPMMs are also 

suitable for PS-BFPMMs. Hence, to obtain bipolar phase flux-linkage and symmetrical phase 

back-EMF in PS-BFPMMs, two conditions should be satisfied [SHI15]. First, the coil 

number per phase must be even. Second, the pair of coils belong to same phase must have 

180 electrical degrees phase shifting (opposite induced polarities). In other word, the stator 

(stator wound with armature windings) and rotor pole combinations should be satisfied with 

(6.2) [CHE08] [SHI15]. 

𝑁𝑜𝑠

𝐺𝐶𝐷(𝑁𝑜𝑠,𝑁𝑟)
= Even (6.2) 

where Nos is the pole number of outer stator, GCD means the greatest common divisor.  

6.3 Performance Comparison between SS-BFPMMs and PS-BFPMMs 

In this section, the electromagnetic performance of the proposed PS-BFPMM-I and PS-

BFPMM-II will be analysed and compared with the original SS-BFPMM-I and SS-BFPMM-

II under the same 12/10 (inner/outer) stator/rotor pole combination and the same machine 

size as well as the same rated copper loss.  
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6.3.1 Open-Circuit Field Distribution 

The open-circuit equipotential and flux density field distributions for all machines at 

aligned position are shown in Fig. 6.6. Obviously, the flux loop of each coil belong to the 

same phase is completely independent in PS-BFPMMs, which is consistent with SS-BFPMM. 

Meanwhile, short flux paths, which could result in lower MMF drop in the stator and thinner 

thickness of stator yoke, are also observed in both PS-BFPMMs and SS-BFPMMs. Moreover, 

due to the larger PM usage and spoke-IPM stator configuration (flux-focusing effect), the 

saturation in PS-BFPMM-II is much heavier than other three machines, especially in the 

regions of rotor which nearly aligns with PMs of inner stator. 
 

 

 

 

(a) SS-BFPMM-I (b) SS-BFPMM-II 

  

(c) PS-BFPMM-I (d) PS-BFPMM-II 

Fig. 6.6. Open-circuit equipotential and flux density field distributions at aligned position. 
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Fig. 6.7 shows the open-circuit air-gap flux density waveforms for all machines at aligned 

position. Since the PS-BFPMMs have two layers of air-gap, the corresponding waveforms 

shown in Fig. 6.7(b) are based on the layer which is close to the stator wound with armature 

windings (outer stator under investigation). It can be seen that the waveforms of two PS-

BFPMMs are similar with those of two SS-BFPMMs. Meanwhile, due to the larger PM usage 

(especially for the larger PM cross section area), both SS-BFPMM-II and PS-BFPMM-II 

exhibits larger air-gap flux densities than SS-BFPMM-I and PS-BFPMM-I respectively.  

 

 

(a) SS-BFPMM-I and SS-BFPMM-II 

 

(b) PS-BFPMM-I and PS-BFPMM-II 

Fig. 6.7. Open-circuit air-gap flux densities at aligned position. 

6.3.2 Flux-Linkage and Back-EMF Waveforms 

Fig. 6.8 shows the open-circuit phase flux-linkages of four machines. Obviously, 
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are the same as 12S/10R SS-BFPMMs. This result can be used as the evidence of equation 

(6.2) in section 6.2.4. According to Table 6.2, the magnitudes of fundamental phase flux-

linkages for SS-BFPMM-I, SS-BFPMM-II, PS-BFPMM-I and PS-BFPMM-II are 3.84, 5.86, 

8.46 and 12.88mWb respectively. By introducing the partitioned stator configuration into SS-

BFPMM-I and SS-BFPMM-II, the fundamental phase flux-linkages are increased by ~120.3% 

and 119.8% respectively. Meanwhile, PS-BFPMM-II exhibits ~52.2% larger fundamental 

phase flux-linkage than PS-BFPMM-I. The increased phase flux-linkage is mainly due to the 

enlarged cross section and thickness of PMs as well as the benefit from the unequal top and 

bottom segment rotor pole arcs.  
 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 6.8. Open-circuit phase flux-linkages of SS- and PS-BFPMMs.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 6.9. Open-circuit phase back-EMFs of SS- and PS-BFPMMs at rated 400rpm.  

The open-circuit phase back-EMF waveforms of four machines at rated speed (400rpm) are 

shown in Fig. 6.9. It can be seen that symmetrical phase back-EMFs are obtained in both PS-

BFPMMs and SS-BFPMMs. The rated electric frequencies of four machines are the same and 

equal to 66.7Hz since they have the same stator/rotor pole combination. Hence, the increase 

rates of fundamental phase back-EMF in PS-BFPMM-I and PS-BFPMM-II are consistent 

with those in fundamental phase flux-linkage, which are ~120.3% and 119.8% higher than 

SS-BFPMM-I and SS-BFPMM-II respectively. Meanwhile, PS-BFPMM-II should also 

exhibit ~52.2% larger fundamental phase flux-linkage than PS-BFPMM-I. These conclusions 

can be evidenced by the fundamental phase back-EMFs shown in Table 6.2, which are 1.61, 
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2.45, 3.54 and 5.39V respectively for SS-BFPMM-I, SS-BFPMM-II, PS-BFPMM-I and PS-

BFPMM-II.  

6.3.3 Dq-Axis Inductances 

Fig. 6.10 shows the dq-axis inductances at different current angles for all machines with 

rated currents as given in Table 6.1. Similar to SS-BFPMM, the d-axis inductance is quite 

close to q-axis inductance in PS-BFPMM and the saliency ratio is close to 1. Hence, the 

potential reluctance torque in PS-BFPMM can be negligible. Moreover, both PS-BFPMM-I 

and PS-BFPMM-II exhibit higher dq-axis inductances than SS-BFPMM-I and SS-BFPMM-II, 

as shown in Fig. 6.10. It is mainly due to the shorter equivalent air-gap length in main 

magnetic flux path of PS-BFPMM when compared with SS-BFPMM.  

 

 

Fig. 6.10. Variation of dq-axis inductances with current angle under the rated currents, 

pc=30W. 

6.3.4  Cogging Torque 

The cogging torque waveforms of all machines are shown in Fig. 6.11. Obviously, both PS-

BFPMM-I and PS-BFPMM-II exhibit larger magnitudes of cogging torque than SS-BFPMM-

I and SS-BFPMM-II, as shown in Fig. 6.11(a) and Table 6.2. Further, the main harmonics for 

all machines are 6n times as shown in Fig. 6.11(b), which means that the cogging torques will 

all exhibit 6 cycles over one electric period.  

Since the operational principles of PS-BFPMMs are consistent with SS-BFPMMs, the 

equation (6.3) which is used to calculate the cycle number of cogging torque over one electric 

period in SS-BFPMMs can be extended to PS-BFPMMs.  
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𝑁𝐶 =
 𝑁𝑜𝑠

𝐺𝐶𝐷( 𝑁𝑜𝑠 ,  𝑁𝑟)
 (6.3) 

where Nc is the cycle number of cogging torque over one electrical period. 

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 6.11. Open-circuit cogging torques of SS-BFPMMs and PS-BFPMMs. 

6.3.5 Electromagnetic Torque Characteristics 

Fig. 6.12 shows the waveforms of average torque against current angle at rated currents 

(corresponding to pc=30W) for all machines. Obviously, the optimal current angles of PS-

BFPMMs are close to 0°, which are the same as those of SS-BFPMMs. The results indicate 

that the reluctance torque is negligible in PS-BFPMMs, which is consistent with the 

conclusion mentioned in section 6.3.3.  
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Fig. 6.12. Variation of average torque with current angle under the rated currents, pc=30W. 

Fig. 6.13 shows the waveforms of torque against rotor position at rated currents (pc=30W) 

and Id=0 control. Due to the combined influences of cogging torque and back-EMF 

harmonics (mainly in 5
th

 and 7
th

), all machines have 6 torque ripples over one electric period. 

As shown in Table 6.2, the torque ripples of SS-BFPMM-I, SS-BFPMM-II, PS-BFPMM-I 

and PS-BFPMM-II are 10.0%, 9.4%, 14.0% and 9.0% respectively. It can be seen that the 

torque ripple is increased in BFPMM-I but decreased in BFPMM-II when partitioned stator 

configuration is employed. Meanwhile, PS-BFPMM-II has lower torque ripple when 

compared with PS-BFPMM-I. 
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(b) Spectra 

Fig. 6.13. Variation of electromagnetic torque with rotor position at rated currents, 

 Id=0 control, pc=30W. 

The average torque is enhanced significantly by using the partitioned stator configuration, 

as shown in Fig. 6.13. According to Table 6.2, the average torques for SS-BFPMM-I, SS-

BFPMM-II, PS-BFPMM-I and PS-BFPMM-II under rated copper loss are 1.29, 1.66, 2.84 

and 4.06Nm respectively. By employing the partitioned stator configuration in SS-BFPMM-I 

and SS-BFPMM-II, the average torques are enhanced by ~ 120% and 145% respectively due 

to the benefits from the enlarged PM cross section and unequal top and bottom rotor pole arcs. 

Moreover, PS-BFPMM-II exhibits ~43% larger average torque than PS-BFPMM-I. 

Fig. 6.14 compares the torque density and torque to PM volume of four machines at the 

rated currents (pc=30W) and Id=0 control. Since four machines have the same machine size, 

the increase rates of torque density, which are caused by employing partitioned stator 

configuration, are consistent with the increase rates of average torque. As shown in Table 6.2, 

the torque densities for SS-BFPMM-I, SS-BFPMM-II, PS-BFPMM-I and PS-BFPMM-II 

under rated copper loss are 8.11, 10.47, 17.85 and 25.52 kN/m
2
 respectively. Moreover, for 

the ratio of torque to PM volume (PM utilization efficiency), it is slightly decreased in PS-

BFPMM-I but increased in PS-BFPMM-II when compared with SS-BFPMM-I and SS-

BFPMM-II respectively. It also should be noted that the ratio of torque to PM volume (PM 

utilization efficiency) in PS-BFPMMM-II is ~ 17.4% lower than that in PS-BFPMM-I. 
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Fig. 6.14. Torque density and torque per PM volume, pc=30W, Id=0 control. 

Fig. 6.15 compares the torque performance of four machines under different copper loss. 

The vertical dashed and dotted line shows the rated copper loss which is used for global 

optimization. Similar to SS-BFPMMs, the increase rate of average torque in PS-BFPMMs 

will be declined with the rising of copper loss (current) due to the aggravated magnetic 

saturation. As shown in Fig. 6.15, PS-BFPMMs exhibit larger average torque than SS-

BFPMMs under the same copper loss over the whole copper loss range. Further, compared 

with PS-BFPMM-I under both low and high copper losses, PS-BFPMM-II always has higher 

torque capability since its higher PM usage and the additional flux focusing effect. 

 

 

Fig. 6.15. Variation of average torque with copper loss, Id=0 control. 
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Table 6.2 Main electromagnetic performances of SS-BFPMMs and PS-BFPMMs 

Parameter SS-I SS-II  PS-I  PS-II 

Fund. flux-linkage (mWb) 3.84 5.86 8.46 12.88 

Fund. back-EMF (V) 1.61 2.45 3.54 5.39 

Rated electric frequency (Hz) 66.7 66.7 66.7 66.7 

Cogging torque (Nm) 0.062 0.033 0.070 0.107 

Average torque (Nm) 1.29 1.66 2.84 4.06 

Increment of torque (%) 
0 - 120 - 

- 0 - 145 

Torque ripple (%) 11.0 9.4 14.0 9.0 

Torque density (kN/m
2
) 8.11 10.47 17.85 25.52 

Total PM volume (mm
3
) 5783.1 10352.0 13029.8 22558.0 

Torque/PM volume (kN/m
2
) 223 161 218 180 

Rated iron loss (W) 0.64 0.90 1.72 2.26 

Rated PM loss (W) 0.23 0.14 0.07 0.06 

 

6.3.6 Mechanical Integrity, Iron Loss and PM Loss 

As shown in Fig. 6.2, for the original single stator BFPMMs, the mechanical integrity of 

SS-BFPMM-II is relatively poor than that of SS-BFPMM-I since the segmented stator 

configuration is employed. Then, when the partitioned stator configuration is introduced, the 

corresponding PS-BFPMMs are composed by three components, such as segment rotor, 

stator with armature windings and stator with PMs. Consequently, the assembling for PS-

BFPMMs is more difficult than that for SS-BFPMMs due to the increased components. 

Compared with original SS-BFPMMs, the fabrication process of two stators of PS-BFPMMs 

is relative simple and convenience since the armature windings and PMs are separated into 

two stators. Further, the assembling and positioning of segmented rotor is more difficult 

although the fabrication is still easy. Therefore, as will be shown in later, to solve these 

problems and make the positioning easily as well as enhance the mechanical integrity, the 

segmented rotor is mechanically connected by 0.5mm lamination bridges at the side close to 

the stator with PMs, although it will reduce the electromagnetic torque performance. 

Similarly, for PS-BFPMM with spoke-IPM stator, 0.5mm lamination bridges are also added 

at both top and bottom edges of PMs to help fixing the PMs in the PM stator. 
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Fig. 6.16. Variation of iron loss with speed in SS- and PS-BFPMMs, pc =30W, Id = 0 control. 

Fig. 6.17. On-load flux density distributions of SS- and PS-BFPMMs,  

pc =30W, Id = 0 control. 

Fig. 6.16 shows the variation of total iron losses against speed at rated copper loss for four 

machines. According to the analyses shown in section 3.4.6 and section 5.3.7, the iron loss is 
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increased as the speed increased. Obviously, by introducing the partitioned stator 

configuration, the total iron loss is increased under the same speed when the copper loss is 

rated 30W. It is mainly due to that PS-BFPMMs have heavier saturation level and higher 

amplitude change of flux density over one electric period as well as larger total saturation 

area when compared with original SS-BFPMMs, as shown in Fig. 6.17. As shown in Table 

6.2, the iron loss of SS-BFPMM-I, SS-BFPMM-II, PS-BFPMM-I and PS-BFPMM-II under 

the rated copper loss (30W) and the rated speed (400rpm) are 0.64, 0.90, 1.72 and 2.26W 

respectively.  

The stator iron losses of SS-BFPMMs and PS-BFPMMs are compared in Fig. 6.18. 

Moreover, since PS-BFPMMs have two independent stators, the iron loss of each stator is 

further separated and also shown in Fig. 6.17. Obviously, due to much lower amplitude 

change of flux density over one electric period and much smaller total saturation area as 

shown in Fig. 6.17 (c) and (d), the iron loss produced in the inner stator (stator with PMs) is 

almost negligible when compared with that produced in the outer stator (stator with armature 

windings), as shown in Fig. 6.18. 

 

 

Fig. 6.18. Variation of stator iron loss with speed in SS- and PS-BFPMMs, 

 pc =30W, Id = 0 control. 

Fig. 6.19 shows the waveforms of PM losses against speed at rated copper loss for four 

machines. According to the analyses in section 5.3.7, the PM loss is increased as the speed 

increased. Compared with the SS-BFPMMs, the influence of armature reaction on the PM 

working point is much smaller in the PS-BFPMMs since the PMs and armature windings are 

separated into two stators and the second air-gap is introduced. In other word, the amplitude 

change of PM flux density over one electric period in PS-BFPMMs is much smaller than that 
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in SS-BFPMMs, as shown in Fig. 6.17. Consequently, PS-BFPMMs exhibit lower PM loss 

than SS-BFPMMs although PS-BFPMMs have larger total PM volume. As shown in Table 

6.2, the PM loss of SS-BFPMM-I, SS-BFPMM-II, PS-BFPMM-I and PS-BFPMM-II under 

the rated copper loss (30W) and the rated speed (400rpm) are 0.23, 0.14, 0.07 and 0.06W 

respectively.  

 

 

Fig. 6.19. Variation of PM loss with speed in SS- and PS-BFPMMs, pc =30W, Id = 0 control. 

6.4 Influence of Stator/Rotor Pole Combinations on PS-BFPMM-I 

In this section, the influence of stator/rotor pole combinations on electromagnetic 

performance of PS-BFPMM-I will be analysed and compared.  

6.4.1 Main Stator/Rotor Pole Combinations 

For the PS-BFPMM-Is with 12-pole inner/outer stator under investigation, the most 

feasible rotor pole numbers could be 10, 11, 13 and 14. According to (6.1) considering the 

alternate magnetization direction in adjacent stator pole, the coil EMF vectors of 12 

inner/outer stator pole PS-BFPMM-Is having different rotor pole numbers are shown in Fig. 

6.20. Meanwhile, the corresponding all topologies are shown in Fig. 6.21. All machines are 

globally optimized with maximum average torque under the same machine size and rated 

copper loss. The main geometric parameters are detailed in Table 6.3.  
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(a) 12I/12O/10R (b) 12I/12O/11R 

  

(c) 12I/12O/13R (d) 12I/12O/14R 

Fig. 6.20. Coil-EMF vectors for PS-BFPMM-I with different stator/rotor pole combinations. 
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(c) 12I/12O/13R (d) 12I/12O/14R 

Fig. 6.21. Topologies of PS-BFPMM-I with different stator/rotor pole combinations. 

 

Table 6.3 Main parameters of PS-BFPMM-Is 

Parameter 12O/12I/10R 12O/12I/11R 12O/12I/13R 12O/12I/14R 

ROSI (mm) 31.05 30.60 30.6 31.05 

RISO (mm) 25.45 25.40 25.9 26.75 

θOSTB (°) 10.2 10.6. 10.8 10.2 

θOSTT (°) 6.9 6.0 5.7 5.1 

TOSTTO (mm) 1 1 1 1 

TOSTTB (mm) 2.0 1.8 1.8 1.8 

θROP (°) 22 19.2 17.4 15.6 

θRIP (°) 27.2 25.2 21.2 20.8 

TRR (mm) 4.6 4.2 3.7 3.3 

TOSY (mm) 2.8 2.9 2.9 3.0 

Iarms(Arms) 17.10 17.29 17.22 16.98 

θPM (°) 30 30 30 30 

TPM (mm) 3.5 3.5 3.5 3.5 

 

According to the coil-EMF vectors shown in Fig. 6.20, the distribution factors (Kd) for 

12I/12O/10R and 12I/12O/14 are equal to 1 while 12I/12O/11R and 12I/12O/13R are equal 

to 0.97. Similar to the SS-BFPMMs, the pitch factor (Kp) of PS-BFPMMs can be calculated 

by  
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𝐾𝑝 = cos (𝜋 (
𝑁𝑟
𝑁𝑠
− 1)) (6.4) 

Based on (6.4), Kp and winding factor (Kdp) of PS-BFPMMs with different stator/rotor pole 

combinations can be calculated. Table 6.4 shows the corresponding factors for the main 

stator/rotor pole combinations of 12 inner/outer stator pole PS-BFPMM-I. Obviously, when 

Nr is more close to Ns, the winding factor will be higher.  

 

Table 6.4 Winding factors for 12 inner/outer stator pole PS-BFPMM-Is 

Nr 10 11 12 13 14 

Kd 1 0.97 1 0.97 1 

Kp 0.87 0.97 1 0.97 0.87 

Kdp 0.87 0.94 1 0.94 0.87 
 

6.4.2 Flux-Linkage and Back-EMF Waveforms 

Fig. 6.22 shows the open-circuit phase flux-linkages of PS-BFPMM-Is with four 

stator/rotor pole combinations. Obviously, the polarities of phase flux-linkages for four PS-

BFPMM-Is are all bipolar since the (inner/outer) stator/rotor pole combinations all satisfy 

(6.2). Moreover, 12I/12O/10R PS-BFPMM-I has the largest fundamental phase flux-linkage 

among the four PS-BFPMM-Is, as shown in Fig. 6.22(b). According to Table 6.5, the 

magnitudes of fundamental phase flux-linkages for 12I/12O/10R-, 12I/12O/11R-, 

12I/12O/13R- and 12I/12O/14R-PS-BFPMM-Is are 8.46, 7.72, 6.27 and 5.45mWb 

respectively.  
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(b) Spectra 

Fig. 6.22. Open-circuit phase flux-linkages of PS-BFPMM-Is.  

Fig. 6.23 shows the open-circuit phase back-EMF waveforms of four machines at rated 

speed. It can be seen that all machines have the symmetrical phase back-EMFs since the even 

harmonics exist in single coils are completely cancelled. Due to the influence of rated electric 

frequency, 12I/12O/11R PS-BFPMM-I has the largest fundamental phase back-EMF among 

the four machines. As shown in Table 6.5, the magnitudes of fundamental phase back-EMFs 

for 12I/12O/10R-, 12I/12O/11R-, 12I/12O/13R- and 12I/12O/14R-PS-BFPMM-Is are 3.54, 

3.55, 3.41 and 3.19V respectively.  
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(b) Spectra 

Fig. 6.23. Open-circuit phase back-EMFs of PS-BFPMM-I at rated 400rpm. 

6.4.3 Cogging Torque 

Fig. 6.24 shows the cogging torque waveforms of four machines. Obviously, 12I/12O/10R- 

and 12I/12O/14R-PS-BFPMM-Is exhibit larger magnitudes of cogging torque than 

12I/12O/11R- and 12I/12O/13R-PS-BFPMM-Is. According to (6.3), the cycle numbers of 

cogging torque over one electric period are 6, 12, 12 and 6 respectively for 12I/12O/10R-, 

12I/12O/11R-, 12I/12O/13R- and 12I/12O/11R-PS-BFPMM-Is. The results are evidenced by 

Fig. 6.24.  
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(b) Spectra 

Fig. 6.24. Open-circuit cogging torques of PS-BFPMM-Is.  

6.4.4 Electromagnetic Torque Characteristics 

Fig. 6.25 shows the waveforms of static torque against with current angle at rated currents 

(pc=30W) for four machines. It can be seen that the optimal current angles of four machines 

are all close to 0°, which means the reluctance torques are negligible in all stator/rotor pole 

combinations.  

 

 

Fig. 6.25. Variation of average torque with current angle under the rated currents, pc=30W. 

Fig. 6.26 shows the torque against rotor position at rated currents (pc=30W) and Id=0 

control for four machines. It can be seen that all machines have 6 torque ripples over one 

electric period, which is mainly due to the influence of back-EMF harmonics (mainly in 5
th

 

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
o

g
g

in
g

 t
o

rq
u

e 
(N

m
)

Harmonic order

12I/12O/10R
12I/12O/11R
12I/12O/13R
12I/12O/14R

0

1

2

3

4

-90 -60 -30 0 30 60 90

A
v
er

a
g

e 
to

rq
u

e 
(N

m
)

Current angle (elec.deg)

12I/12O/10R
12I/12O/11R
12I/12O/13R
12I/12O/14R



162 
 

and 7
th

). As shown in Table 6.5, the torque ripples of 12I/12O/10R-, 12I/12O/11R-, 

12I/12O/13R- and 12I/12O/14R-PS-BFPMM-Is are 14.0%, 2.1%, 0.9% and 7.3% 

respectively. Obviously, among the four machines, 12I/12O/13R PS-BFPMM-I has the 

lowest torque ripple while 12/12O/10R exhibits the highest one.  

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 6.26. Variation of torque with rotor position in PS-BFPMM-Is  

at rated currents, pc=30W, Id=0 control.  

As shown in Fig. 6.27, among the four machines, 12I/12O/11R PS-BFPMM-I exhibits the 

largest average torque under the same copper loss over the whole copper loss range. 

According to Table 6.5, the average torques of 12I/12O/10R-, 12I/12O/11R-, 12I/12O/13R- 

and 12I/12O/14R-PS-BFPMM-Is under the rated copper loss are 2.84, 2.92, 2.78 and 2.58Nm 

respectively.  
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Fig. 6.27. Variation of average torque with copper loss in PS-BFPMM-Is, Id=0 control. 

Fig. 6.28 compares the torque density and torque to PM volume of four machines at the 

rated currents (pc=30W) and Id=0 control. Obviously, 12I/12O/11R PS-BFPMM-I has both 

the largest torque density and the highest ratio of torque to PM volume while 12I/12O/14R 

PS-BFPMM-I exhibits the both lowest values.  

 

 

Fig. 6.28. Torque density and torque to PM volume, pc=30W, Id=0 control. 
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Table 6.5 Main electromagnetic performances of PS-BFPMM-Is 

Parameter 12I/12O/10R 12I/12O/11R 12I/12O/13R 12I/12O/14R 

Fund. flux-linkage (mWb) 8.46 7.72 6.27 5.45 

Fund. back-EMF (V) 3.54 3.55 3.41 3.19 

Rated electric frequency 

(Hz) 
66.7 73.3 86.7 93.3 

Cogging torque (Nm) 0.070 0.014 0.003 0.136 

Average torque (Nm) 2.84 2.92 2.78 2.58 

Torque ripple (%) 14.0 2.1 0.9 7.3 

Torque density (kN/m
2
) 17.85 18.34 17.50 16.24 

Torque/PM volume (kN/m
2
) 218 224 210 188 

 

6.5 Influence of Stator/Rotor Pole Combinations on PS-BFPMM-II 

In this section, the influence of stator/rotor pole combinations on electromagnetic 

performance of PS-BFPMM-II will be analysed and compared.  

6.5.1 Main Stator/Rotor Pole Combinations 

Similar to PS-BFPMM-I, the most feasible rotor pole numbers for PS-BFPMM-II with 12-

pole inner/outer stator are 10, 11, 13 and 14. The topologies of PS-BFPMM-II with 

corresponding (inner/outer) stator/rotor pole combinations are shown in Fig. 6.29. All 

machines are globally optimized with maximum average torque under the same machine size 

and rated copper loss. The main geometric parameters are detailed in Table 6.6.  
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(c) 12I/12O/13R (d) 12I/12O/14R 

Fig. 6.29. Topologies of PS-BFPMM-II with different stator/rotor pole combinations 

 

Table 6.6 Main parameters of PS-BFPMM-IIs 

Parameter 12I/12O/10R 12I/12O/11R 12I/12O/13R 12I/12O/14R 

ROSI (mm) 30.60 30.6 30.6 30.6 

RISO (mm) 24.30 24.7 25.2 25.4 

θOSTB (°) 12.8 13.2 13.6 13.6 

θOSTT (°) 5.2 5.1 4.3 4.5 

TOSTTO (mm) 1 1 1 1 

TOSTTB (mm) 2.4 2.2 1.8 1.8 

θROP (°) 26 22.2 17.8 16.8 

θRIP (°) 19.6 20.4 19.2 19 

TRR (mm) 5.3 4.9 4.4 4.2 

TOSY (mm) 3.5 3.6 3.6 3.8 

Iarms (A) 15.83 15.63 15.58 15.38 

θPM (°) 30 30 30 30 

TPM (mm) 13.9 14.3 14.8 15.0 

 

6.5.2 Flux-Linkage and Back-EMF Waveforms 

The phase flux-linkages and back-EMFs of PS-BFPMM-IIs with four main stator/rotor 

pole combinations are compared in Fig. 6.30 and Fig. 6.31 respectively. Similar to PS-
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BFPMM-Is, bipolar phase flux-linkages and symmetrical phase back-EMFs are observed in 

PS-BFPMM-IIs with the four main stator/rotor pole combinations. Meanwhile, 12I/12O/10R 

PS-BFPMM-II exhibits the largest fundamental phase flux-linkage among the four main 

stator/rotor pole combinations. However, due to the influence of rated electric frequency, 

12I/12O/11R PS-BFPMM-IIs have the same fundamental phase back-EMFs as 12I/12O/10R 

PS-BFPMM-II despite of a lower fundamental phase flux-linkage, as shown in Fig. 6.31(b) 

and Table 6.7.  

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 6.30. Open-circuit phase flux-linkages of PS-BFPMM-IIs. 
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(a) Waveforms 

 

(b) Spectra 

Fig. 6.31. Open-circuit phase back-EMFs of PS-BFPMM-II at rated 400rpm. 

6.5.3 Cogging Torque 

Fig. 6.32 compares the cogging torque of PS-BFPMM-IIs with four main stator/rotor pole 

combinations. It can be seen that 12I/12O/10R and 12I/12O/14R PS-BFPMM-IIs have larger 

magnitudes of cogging torque than 12I/12O/11R and 12I/12O/13R PS-BFPMM-IIs. Further, 

the cycle numbers of cogging torque over one electric period are 6 for 12I/12O/10R and 

12I/12O/14R PS-BFPMM-IIs while 12 for 12I/12O/11R and 12I/12O/13R PS-BFPMM-IIs, 

which are same as the results calculated by (6.3).  
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(a) Waveforms 

 

(b) Spectra 

Fig. 6.32. Open-circuit cogging torques of PS-BFPMM-IIs. 

6.5.4 Electromagnetic Torque Characteristics 

The waveforms of torque against with current angle at rated currents (pc=30W) for PS-

BFPMM-IIs with four main stator/rotor pole combinations are shown in Fig. 6.33. Obviously, 

the optimal current angles for four machines are all close to 0°. Therefore, the reluctance 

torque is also negligible in PS-BFPMM-IIs with different inner/outer stator/rotor pole 

combinations.  
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Fig. 6.33. Variation of average torque with current angle under the rated currents, pc=30W. 

Fig. 6.34 shows the waveforms of torque against with rotor position at rated currents 

(pc=30W) and Id=0 control for PS-BFPMM-IIs with four main stator/rotor pole combinations. 

Similar to the PS-BFPMM-Is, the four PS-BFPMM-IIs also have 6 torque ripples over one 

electric period. Meanwhile, 12I/12O/11R and 12I/12O/13R PS-BFPMM-II should exhibit 

lower torque ripples than 12I/12O/10R and 12I/12O/14R PS-BFPMM-II. It is evidenced by 

the data shown in Table 6.7, in which the torque ripples of 12I/12O/10R, 12I/12O/11R, 

12I/12O/13R and 12I/12O/14R PS-BFPMM-IIs are 9.0%, 1.3%, 1.2% and 8.3% respectively.  
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(b) Spectra 

Fig. 6.34. Variation of torque with rotor position in PS-BFPMM-Is at rated currents, 

pc=30W, Id=0 control. 

 

Fig. 6.35. Variation of average torque with copper loss in PS-BFPMM-Is, Id=0 control. 
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PS-BFPMM-II. Meanwhile, as the rotor pole number increased, the torque density and PM 

utilization efficiency are decreased.  

 

 

Fig. 6.36. Torque density and torque to PM volume, pc=30W, Id=0 control. 

 

Table 6.7 Main electromagnetic performances of PS-BFPMM-IIs 

Parameter 12O/12I/10R 12O/12I/11R 12O/12I/13R 12O/12I/14R 

Fund. flux-linkage (mWb) 12.88 11.69 8.61 7.27 

Fund. back-EMF (V) 5.39 5.38 4.68 4.26 

Rated electric frequency 

(Hz) 
66.7 73.3 86.7 93.3 

Cogging torque (Nm) 0.107 0.010 0.008 0.130 

Average torque (Nm) 4.06 4.00 3.52 3.15 

Torque ripple (%) 9.0 1.3 1.2 8.3 

Torque density (kN/m
2
) 25.52 25.14 22.15 19.83 

Torque/PM volume (kN/m
2
) 180 172 147 130 

 

6.6 Experimental Verification 

Prototype machines of 12I/12O/10R PS-BFPMM-I and PS-BFPMM-II are made to validate 

the previous analyses, as shown in Fig. 6.37. To reduce the cost, two prototype machines are 

assembled by existing module rotor (10-pole), outer stator (12-pole) and two inner stators (12 

PMs, surface mounted PM stator for PS-BFPMM-I and spoke type PM stator for PS-
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different from the previous globally optimized parameters as shown in Table 6.1. Moreover, 

for easing the fabrication, 10-pole modular rotor is mechanically connected by the lamination 

bridges (Tbri=0.5mm) in the inner side, as shown in Fig. 6.37(b). Meanwhile, to help fixing 

the PMs in the inner stator of PS-BFPMM-II (spoke type PM stator), lamination bridges 

(0.5mm) are also added in both top and bottom edges of PMs, as shown in Fig. 6.37(d). 

 

  

(a) 12-pole outer stator  (b) 10-pole rotor 

  

(c) 12-pole inner stator of PS-BFPMM-I (d) 12-pole inner stator of PS-BFPMM-II 
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(e) Assembled stators of PS-BFPMM-I  (f) Assembled stators of PS-BFPMM-II 

Fig. 6.37. Prototypes of 12I/12O/10R PS-BFPMM-I and PS-BFPMM-II.  

 

Table 6.8 Parameters of prototype machines 

Parameter PS-I PS-II Parameter PS-I PS-II 

Lag (mm) 0.5 Tostto (mm) 1 

Laa (mm) 25 Tosy (mm) 3 

Roso (mm) 45 θrop (°) 18 

Rost (mm) 31.75 θrip (°) 25.2 

Riso (mm) 25.75 Trr (mm) 5 

Rist (mm) 10.4 θPM (°) 30 25.84 (5mm) 

θostb (°) 8.12 TPM (mm) 4 14.35 

θostt (°) 4.94 Tbri (mm) 0.5 

Tosttb(mm) 3.0   

 

Fig. 6.38 shows the measured and predicted phase back-EMFs at rated speed (400rpm). It 

can be seen that the measured fundamental values are ~ 4% and 8% less than the predictions 

in PS-BFPMM-I and PS-BFPMM-II respectively due to the end-effect in 25mm stack length 

machines. Fig. 6.39 shows the measured and predicted open-circuit cogging torques of two 

machines. The measured peak to peak values are slightly larger than the FE predictions in 

both machines. This difference is acceptable when considering the measurement error and 

assembling tolerance. Fig. 6.40 shows the waveforms of static torque against with rotor 

positon at five different armature currents, i.e. 5A, 10A, 15A, 20A and 25A (IDC=IA=-2IB=-
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2IC). Based on Fig. 6.40, the variation of the static torque at 90° rotor position with different 

currents is obtained and shown in Fig. 6.41. With injecting the DC current into the armature 

windings, more severe end effect will be caused by the armature reaction (higher saturation 

level) in 25mm stack length machines. The measured static torques are ~10% and 15% less 

than the predictions in PS-BFPMM-I and PS-BFPMM-II respectively and the difference will 

be gradually enlarged with the increased current. Furthermore, for PS-BFPMM-II with 

spoke-IPM stator, the large difference may also be caused by the manufacturing errors, such 

the thickness of lamination bridges at the top and bottom edges of PMs, residual gap between 

the PMs and lamination stator. Overall, the measured results match reasonably well with the 

FE predictions.  

 

 

(a) Waveforms 

 

 (b) Spectra 

Fig. 6.38. Measured and FE predicted open-circuit phase back-EMFs at 400rpm.  

 

-5.0

-2.5

0.0

2.5

5.0

0 60 120 180 240 300 360

B
a

ck
-E

M
F

 (
V

)

Rotor position (elec.deg)

PS-BFPMM-I_FEA
PS-BFPMM-I_measured
PS-BFPMM-II_FEA
PS-BFPMM-II_measured

0

1

2

3

4

5

1 2 3 4 5 6 7

P
h

a
se

 b
a

c
k

-E
M

F
 (

V
)

Harmonic order

PS-BFPMM-I_FEA

PS-BFPMM-I_measured

PS-BFPMM-II_FEA

PS-BFPMM-II_measured

THD                                 

1.3%

1.9%

2.3%

2.4%



175 
 

 

Fig. 6.39. Measured and FE predicted open-circuit cogging torques. 

 

(a) 12I/12O/10R PS-BFPMM-I 

 

(b) 12I/12O/10R PS-BFPMM-II 

Fig. 6.40. Measured and predicted static torque, IDC=IA=-2IB=-2IC. 
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Fig. 6.41. Measured and predicted torque-current characteristics when rotor positon is 90°. 

 

6.7 Summary 

In this chapter, novel partitioned stator BFPMMs (PS-BFPMMs) with two PM stator 

configurations are proposed and compared with the original single stator BFPMMs (SS-

BFPMMs). Similar to the original SS-BFPMMs, PS-BFPMMs also have bipolar phase flux-

linkages and symmetrical phase back-EMFs due to the similar operational principle. The 

results show that PS-BFPMM-I and PS-BFPMM-II exhibit 120.3% and 119.8% higher phase 

back-EMFs as well as 120% and 145% larger average torque than SS-BFPMM-I and SS-

BFPM-II respectively. Moreover, compared with PS-BFPMM-I, PS-BFPMM-II has 52.2% 

higher phase back-EMFs and 43% larger average torque but 17.4% lower PM utilization 

efficiency. Further, the reluctance torque is also negligible in PS-BFPMMs since the saliency 

ratio is quite close to 1, which is also consistent with the original SS-BFPMMs. In addition, 

for 12I/12O stator pole PS-BFPMMs, the optimal rotor pole numbers are 11 and 10 

respectively in PS-BFPMM-I and PS-BFPMM-II since the highest torque densities and PM 

utilization efficiencies are achieved. Finally, the analyses have been validated by both FEA 

and measurement.  
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CHAPTER 7 

COMPARATIVE STUDY OF PARTITIONED STATOR  

PM SYNCHRONOUS MACHINES WITH DIFFERERNT 

INNER/OUTER STATOR AND ROTOR POLE NUMBER 

COMBINATIONS 

In the previous chapter, biased flux permanent magnet (PM) machines (BFPMMs) with 

partitioned stator (PS) configuration are proposed and investigated. Since PMs and armature 

windings are located in two separate (inner/outer) stators, the combinations of inner/outer 

stator pole numbers and the relative position of inner/outer stators are free to choose 

theoretically. Therefore, in this chapter, the influences of the combinations of inner/outer 

stator pole numbers and the relative position of inner/outer stators on electromagnetic 

performance of partitioned stator PM synchronous machines will be analysed and compared.  

7.1 Introduction 

Permanent magnet (PM) machines are popular in many applications due to high torque 

density and efficiency. Normally, PM machines can be classified into rotor PM machines and 

stator PM machines according to PM locations [ZHU07]. Compared with rotor PM machines, 

stator PM machines have many merits such as robust rotor structure, easy heat dissipation 

and low risk of demagnetization [ZHU05] [ZHU07] [HUA05] [CHE11c]. Hence, increasing 

attentions are paid to this type of machines in recent years.  

However, compared with rotor PM machines, the stator space conflicts between PMs, 

armature windings and stator iron are more severe in the stator PM machines since the PMs 

are located in the stator [ZHU07] [ZHU08a]. Correspondingly, the limited stator space 

restricts the possibility of further enhancing the torque performance of stator PM machines. 

Reference [EVA15] proposes one concept of partitioned stator configuration to solve this 

conflict by fully utilising the inner space, in which the PMs and armature windings are 

separated into inner and outer stators respectively. Partitioned stator biased flux PM machines 

(PS-BFPMMs) [WU15] and partitioned stator switched flux PM machines (PS-SFPMMs) 

[EVA15] are two typical topologies of partitioned stator PM machines, which are evolved 

from the original single stator BFPMMs [WU15] and SFPMMs [HONG97] respectively by 

employing the partitioned stator configuration. Compared with two machine topologies, non-
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overlapping armature windings and separate spoke type interior PM (spoke-IPM) stator are 

the common features while relative position between inner stator and outer stator is the only 

difference. The iron ribs are aligned with outer stator poles in PS-BFPMMs while the PMs 

are aligned with the outer stator pole in PS-SFPMMs. This difference causes the different 

polarities of coil flux-linkage in PS-BFPMMs (unipolar) and PS-SFPMMs (bipolar) [WU15] 

[EVA15]. However, symmetrical bipolar phase flux-linkage and phase back-EMF still can be 

obtained in both machines when the ratio of stator pole number (wound with armature 

windings) to the greatest common divisor of stator pole and rotor pole number is even. 

Since the PMs and armature windings are separately located in the inner and outer stators, 

the ratio of inner/outer stator poles and the relative position of inner and outer stators will be 

free in the partitioned stator PM synchronous machines. However, the previous investigations 

only cover the inner/outer stator pole ratio equal to 1. Hence, in this chapter, the influences of 

the ratio of inner/outer stator poles and the relative position of inner and outer stators on 

electromagnetic performance of partitioned stator PM synchronous machines will be analysed 

and compared based on spoke-IPM stator configuration. Firstly, the machine topologies and 

conditions for symmetrical bipolar phase flux-linkage and phase back-EMF under different 

inner/outer stator pole ratios will be analysed. Secondly, based on the optimal rotor pole 

number, the electromagnetic performance of PS-BFPMMs will be compared with PS-

SFPMMs with different inner/outer stator pole ratios (equal to 1, 1/2 and 2) under the same 

rated copper loss and the same machine size. Then, the influence of all pole wound windings 

and alternate pole wound windings on the electromagnetic performance of 6-inner/12-outer 

stator/11 rotor pole PS-SFPMM will be analysed and compared. Finally, several prototype 

machines are manufactured and measured to validate the analysis. 

7.2 Machine Topologies and Conditions for Symmetrical Bipolar Phase 

Flux-Linkage 

Based on the minimum 6-pole inner and outer stators, the machine topologies and 

conditions of symmetrical bipolar phase flux-linkage for partitioned stator PM synchronous 

machines with different inner/outer stator pole ratios (Nis/Nos) are illustrated and analysed in 

this section. 

7.2.1 Inner/Outer Stator Pole Ratio Nis/Nos = 1 

Partitioned stator biased flux PM machines (PS-BFPMMs) with Nis/Nos=1 is shown in Fig. 

7.1(a). Obviously, the PMs and armature windings are located in two separated stators while 
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the rotor is modular. As mentioned in section 6.2.2, the conventional coil EMF vector method 

[ZHU10] can be used to determine the armature winding configuration of PS-BFPMMs. 

Hence, according to (6.1), the winding connection of 12-inner/12-outer stator/10 rotor pole 

(12I/12O/10R) PS-BFPMM is shown in Fig. 7.2.  

 

  

(a) 12I/12O/10R_PS-BFPMM (b) 12I/12O/10R_PS-SFPMM 

Fig. 7.1. Topologies of 12I/12O/10R PS-BFPMM and PS-SFPMM. 

 

 

Fig. 7.2. Coil-EMF vectors for 12I/12O/10R PS-BFPMM and 12I/12O/10R PS-SFPMM. 
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.3. Per unit open-circuit coil and phase flux-linkages of 12I/12O/10R PS-BFPMM. 

Fig. 7.3 shows the open-circuit coil and phase flux-linkages of 12I/12O/10R PS-BFPMM 

in per unit value. It can be seen that the coil flux-linkage is nearly unipolar. However, the 

phase flux-linkage is bipolar and symmetrical since the even harmonics which cause the dc 

biased and asymmetry in each coil are completely cancelled in phase winding. As mentioned 

in section 6.2.4, to obtain symmetrical bipolar phase flux-linkage in PS-BFPMMs, two 

conditions should be satisfied. Firstly, the number of coils per phase must be even. Secondly, 

the pairs of coils belong to the same phase must have 180 electrical degrees phase shifting 

(opposite polarities). To achieve the two conditions, the stator and rotor pole combinations of 

PS-BFPMMs should be satisfied with (6.2) [CHE08] [SHI15]. Further, when considering the 

different inner/outer stator pole ratio Nis/Nos, equation (6.2) can be changed as (7.1). 
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𝑀𝐼𝑁(𝑁𝑖𝑠, 𝑁𝑜𝑠)

𝐺𝐶𝐷( 𝑀𝐼𝑁(𝑁𝑖𝑠, 𝑁𝑜𝑠) , 𝑁𝑟)
= Even (7.1) 

where Nr is pole number of rotor, GCD means the greatest common divisor.  

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 7.4. Per unit open-circuit flux-linkage of coil A1 against with different rotation degree  

between inner and outer stators.  

Since the PMs and armature windings of PS-BFPMM are located in separate inner and 

outer stators, the inner and outer stators are independent and the relative position of two 

stators is free and can be changed. Fig. 7.4 shows the waveforms of per unit open-circuit 

flux-linkage of coil A1 against with different relative position between inner and outer stators. 

The direction of rotation is clockwise which is shown as “–” in Fig. 7.4. Meanwhile, 0°, -7.5°, 
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1 inner stator pole pitch respectively. It can be seen that the dc biased value of coil flux-

linkage will be reduced to 0 and then increased again when the inner stator rotates from the 

original position to one inner stator pole pitch. In other word, bipolar coil flux-linkage will be 

obtained while the inner stator rotates half inner stator pole pitch. The corresponding machine 

topologies are shown in Fig. 7.1(b). Actually, this machine is named as partitioned stator 

switched flux PM machine (PS-SFPMM), which is proposed in [EVA15]. Further, PS-

SFPMMs (Nis/Nos=1) exhibits higher fundamental coil flux-linkage than PS-BFPMMs 

(Nis/Nos=1) when the machine topologies are the same except the relative positons of inner 

and outer stator are different, as shown in Fig. 7.4. 

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 7.5. Per unit open-circuit coil and phase flux-linkages of 12I/12O/10R PS-SFPMM. 
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Similar to PS-BFPMMs, the conventional coil EMF vector method and (6.1) can also be 

used to determine the armature winding configuration of PS-SFPMMs with Nis/Nos=1 

[ZHU10]. Fig. 7.5 shows the open-circuit coil and phase flux-linkages of 12I/12O/10R PS-

SFPMM in per unit value. The base value is selected as the magnitude of fundamental phase 

flux-linkage of 12I/12O/10R PS-BFPMM. Obviously, the coil flux-linkage of PS-SFPMM 

with Nis/Nos=1 is bipolar but slightly asymmetric in half cycle due to the even harmonics. To 

obtain the symmetrical bipolar phase flux-linkage, the conditions for PS-SFPMMs with 

Nis/Nos=1 are consistent with those for PS-BFPMMs, in which the (inner/outer) stator and 

rotor pole combinations should satisfy (7.1). By way of example, symmetrical bipolar phase 

flux-linkage is obtained in 12I/12O/10R PS-SFPMM as shown in Fig. 7.5 since the even 

harmonics are completely cancelled. 

As a conclusion, for partitioned stator PM synchronous machines with Nis/Nos=1, 

symmetrical bipolar phase flux-linkage will be obtained when the (inner/outer) stator and 

rotor pole combinations satisfies (7.1). In addition, it should be noted that changing the 

relative position of inner and outer stators will mainly influence the even harmonics 

(including dc biased value) of coil flux-linkage and magnitude of fundamental coil flux-

linkage. 

7.2.2 Inner/Outer Stator Pole Ratio Nis/Nos = 1/2 

The conventional coil-EMF vector method which is used to determine the winding 

configuration is also applicable to PS-SFPMMs with Nis/Nos=1/2. Fig. 7.6 shows the machine 

topology and coil-EMF vectors of 6I/12O/11R PS-SFPMM with Nis/Nos=1/2. As shown in 

Fig. 7.6(a), half of outer stator poles are aligned with PMs while the rest half of outer stator 

poles are aligned with iron ribs. According to the analysis in section 7.2.1, for 6I/12O PS-

SFPMMs with Nis/Nos=1/2 shown in Fig. 7.6(a), bipolar coil flux-linkage could be observed 

when the coil-wound outer stator pole is aligned with PMs (such as coils A1 and A3), whilst 

unipolar coil flux-linkage would be found when the coil-wound outer stator pole is aligned 

with iron ribs (such as coils A2 and A4). This conjecture is evidenced by the waveforms of 

coil flux-linkage shown in Fig. 7.7, in which the flux linkages of coils A1 and A3 are bipolar 

while those of coils A2 and A4 are unipolar.  
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(a) Machine topology (b) Coil-EMF vectors 

Fig. 7.6. Machine topology and coil-EMF vector of 6I/12O/11R PS-SFPMM.  

 

(a) Waveforms 

 

(b) Spectra 

Fig. 7.7. Per unit open-circuit coil and phase flux-linkages of 6I/12O/11R PS-SFPMM. 
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According to the analysis shown in section 7.2.1, symmetrical bipolar phase flux-linkage 

can be obtained in both PS-BFPMMs (unipolar coil flux-linkage) and PS-SFPMMs (bipolar 

coil flux-linkage) with Nis/Nos=1 when the inner/outer stator and rotor pole combinations 

satisfy (7.1). Therefore, to obtain symmetrical bipolar phase flux-linkage in 6I/12O PS-

SFPMM with Nis/Nos=1/2, three conditions should be satisfied. Firstly, for the coils belong to 

the same phase, the number of coils which have unipolar flux-linkages must be even (such as 

coils A2 and A4, one pair of coils with unipolar flux-linkage), while the number of coils 

which have bipolar flux-linkages also must be even (such as coils A1 and A3, one pair of 

coils with unipolar flux-linkage). Secondly, the pairs of coils belong to the same phase must 

have 180 electrical degree phase shifting (opposite polarities). Thirdly, the phase angles 

should be same for the resultant flux-linkages from unipolar ones and bipolar ones. To 

achieve three conditions, the inner/outer stator and rotor pole combinations should be 

satisfied with (7.1), which are same as those in PS-BFPMMs and PS-SFPMMs with Nis/Nos=1. 

By way of example, for 6I/12O/11R PS-SFPMM under investigation, symmetrical bipolar 

phase flux-linkage is obtained as shown in Fig. 7.7, in which the resultant flux-linkages from 

unipolar ones and bipolar ones are both symmetrical and bipolar as well as having same 

phase angles. 

Moreover, as shown in Fig. 7.7, since the bipolar coil flux-linkage (coils A1 and A3) 

exhibits higher magnitude of fundamental wave than unipolar coil flux-linkage (coils A2 and 

A4), alternate pole wound winding configuration can be employed to enhance the torque 

performance of 6I/12O PS-SFPMMs. For example, the winding configuration of 6I/12O/11R 

PS-SFPMM shown in Fig. 7.6(b) can be divided into two sets as shown in Fig. 7.8 and the 

corresponding machine topologies are shown in Fig. 7.9. Meanwhile, the conditions for 

bipolar symmetrical phase flux-linkage of 6I/12O alternate pole wound PS-SFPMMs are 

consistent with 6I/12O all pole wound PS-SFPMMs. 
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(a) 6I/12O/11R_PS-SFPMM-APW-I (b) 6I/12O/11R_PS-SFPMM-APW-II 

Fig. 7.8. Coil-EMF vectors of two alternate pole wound 6I/12O/11R PS-SFPMMs. 

 
 

(a) 6I/12O/11R_PS-SFPMM-APW-I (b) 6I/12O/11R_PS-SFPMM-APW-II 

Fig. 7.9. Machine topologies of two alternate pole wound 6I/12O/11R PS-SFPMM. 

Similar to PS-BFPMMs and PS-SFPMMs with Nis/Nos=1, the relative position of two 

stators in 6I/12O PS-SFPMMs with Nis/Nos=1/2 are also free and can be changed. When the 

inner stator of 6I/12O PS-SFPMM with Nis/Nos=1/2 rotates half outer stator pole pitch in 

clockwise direction, one typical machine topology is proposed and shown in Fig. 7.10(a). The 

coil-EMF vectors of new 6I/12O/11R PS-SFPMMs are shown in Fig. 7.10(b), which is 

consistent with the original 6I/12O/11R PS-SFPMMs. Since all coil-wound outer stator poles 

are aligned with iron ribs, the coil flux-linkages in this new machine are unipolar, as shown in 

Fig. 7.11. According to the analysis shown in section 7.2.1, the conditions for symmetrical 

bipolar phase flux-linkage is kept consistent when changing the relative position of inner and 

outer stator. Therefore, when the inner/outer stator and rotor pole combinations satisfy (7.1), 
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symmetrical bipolar phase flux-linkage can be obtained in new 6I/12O PS-SFPMMs with 

Nis/Nos=1/2. By way of example, for new 6I/12O/11R PS-SFPMM under investigation, the 

phase flux-linkage is symmetrical and bipolar as shown in Fig. 7.11. In addition, since the 

base value corresponding to Fig. 7.11 is selected as the magnitude of fundamental phase flux-

linkage of the original 6I/12O/11R PS-SFPMM, new 6I/12O/11R PS-SFPMM exhibits lower 

fundamental phase flux-linkage than the original 6I/12O/11R PS-SFPMM.  

 

 
 

(a) Machine topology (b) Coil-EMF vectors 

Fig. 7.10. Machine topology and coil-EMF vector of new 6I/12O/11R PS-SFPMM.  

 

(a) Waveforms 
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(b) Spectra 

Fig. 7.11. Per unit open circuit coil and phase flux-linkage of 6I/12O/11R PS-SFPMM. 

Overall, for partitioned stator PM synchronous machines with Nis/Nos=1/2, symmetrical 

bipolar phase flux-linkage will be obtained when the (inner/outer) stator and rotor pole 

combinations satisfy (7.1). Moreover, the relative position of inner and outer stators mainly 

influence on the even harmonics (including dc biased value) of coil flux-linkage and 

magnitude of fundamental coil flux-linkage.  

7.2.3 Inner/Outer Stator Pole Ratio Nis/Nos = 2 

Fig. 7.12 shows the machine topology and coil-EMF vectors of 12I/6O/11R PS-SFPMM 

with Nis/Nos=2. Similar to PS-BFPMMs and PS-SFPMMs with Nis/Nos=1, the conventional 

coil EMF vector method is also applicable to PS-SFPMM with Nis/Nos=2. Fig. 7.13 shows the 

open-circuit coil and phase flux-linkages of 12I/6O/11R PS-SFPMM in per unit value. It can 

be seen that the coil flux-linkage is nearly bipolar but slightly asymmetric in half cycle due to 

the even harmonics. However, by connecting the coils belong to same phase with 180 

electrical degrees phase shifting, the phase flux-linkage is symmetrical and bipolar since the 

even harmonics in single coil are completely cancelled in phase winding, as shown in Fig. 

7.12 and Fig. 7.13. Hence, the conditions for symmetrical bipolar phase flux-linkage of PS-

SFPMMs with Nis/Nos=2 are consistent with those of PS-BFPMMs and PS-SFPMMs with 

Nis/Nos=1, in which the number of coils per phase must be even and the pairs of coils belong 

to the same phase must have 180 electrical degree phase shifting (opposite polarities). 

Therefore, when the inner/outer stator and rotor pole combinations satisfy (7.1), symmetrical 

bipolar phase flux-linkage can be obtained in PS-SFPMMs with Nis/Nos=2.  
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(a) Machine topology (b) Coil-EMF vectors 

Fig. 7.12. Machine topology and coil-EMF vector of 12I/6O/11R PS-SFPMM. 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 7.13. Per unit open circuit coil and phase flux-linkage of 12I/6O/11R PS-SFPMM. 
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Similar to PS-BFPMMs and PS-SFPMMs with Nis/Nos=1, the relative position of two 

stators in PS-SFPMMs with Nis/Nos=2 are also free and can be changed. When the inner stator 

of 12I/6O PS-SFPMM with Nis/Nos=2 rotates half inner stator pole pitch in clockwise 

direction, one typical machine topology is proposed and shown in Fig. 7.14(a). The coil-EMF 

vectors of new 12I/6O/11R PS-SFPMM are shown in Fig. 7.14(b), which is consistent with 

the original 12I/6O/11R PS-SFPMM. According to the analysis shown in section 7.2.1, the 

conditions for symmetrical bipolar phase flux-linkage are kept consistent when changing the 

relative position of inner and outer stator. Therefore, when the inner/outer stator and rotor 

pole combinations satisfy (7.1), symmetrical bipolar phase flux-linkage can be obtained in 

new PS-SFPMMs with Nis/Nos=2. By way of example, for new 12I/6O/11R PS-SFPMM 

under investigation, the phase flux-linkage is symmetrical and bipolar as shown in Fig. 7.15. 

Moreover, since the base value corresponding to Fig. 7.15 is selected as the magnitude of 

fundamental phase flux-linkage of the original 12I/6O/11R PS-SFPMM, new 12I/6O/11R 

PS-SFPMM exhibits lower fundamental phase flux-linkage than the original 12I/6O/11R PS-

SFPMM.  

 

  

(a) Machine topology (b) Coil-EMF vectors 

Fig. 7.14. Machine topology and coil-EMF vector of new 12I/6O/11R PS-SFPMM.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.15. Per unit open circuit coil and phase flux-linkage of new 12I/6O/11R PS-SFPMM. 

As a conclusion, for partitioned stator PM synchronous machines with Nis/Nos=2, 

symmetrical bipolar phase flux-linkage will be obtained when the inner/outer stator and rotor 

pole combinations satisfy (7.1). In addition, it also should be noted that the relative position 

of inner and outer stators mainly influence the even harmonics (including dc biased value) of 

coil flux-linkage and magnitude of fundamental coil flux-linkage.  

7.2.4 Conclusions for Symmetrical Bipolar Phase Flux-Linkage of Partitioned Stator 

PM Synchronous Machines 

For partitioned stator PM synchronous machines in which the inner- and outer-stator poles 

are multiples of 6, the conditions for symmetrical bipolar phase flux-linkage under different 
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consistent according to the analyses shown in above and section 7.8 of Appendix. The coils 

per phase must be even and the pair of coils belong to the same phase should have 180 

electrical degrees phase shifting (opposite polarities). In other word, to obtain the 

symmetrical bipolar phase flux-linkage, the inner/outer stator and rotor pole combinations 

must satisfy (7.1). 

𝑀𝐼𝑁(𝑁𝑖𝑠, 𝑁𝑜𝑠)

𝐺𝐶𝐷( 𝑀𝐼𝑁(𝑁𝑖𝑠, 𝑁𝑜𝑠) , 𝑁𝑟)
= Even (7.1) 

7.3 Performance Comparison between PS-BFPMMs and PS-SFPMMs 

In this section, the electromagnetic performances of PS-BFPMMs and PS-SFPMMs with 

different inner/outer stator pole ratios (Nis/Nos equal to 1, 1/2 and 2) will be compared based 

on the optimal rotor pole numbers and all pole wound winding configuration.  

7.3.1 Feasible Inner/Outer Stator and Rotor Pole Combinations for Different Nis/Nos 

Similar to conventional BFPMMs and SFPMMs, the choice of rotor pole number is also 

flexible in PS-BFPMMs and PS-SFPMMs, which can be any integers except the phase 

number and its multiples. Further, for PS-BFPMMs and PS-SFPMMs with 12-pole (inner or 

outer) stator under investigation, the most feasible rotor pole numbers could be 10, 11, 13 and 

14.  

 

Fig. 7.16. Variation of average torque with rotor pole number in PS-BFPMMs and  

PS-SFPMMs with different inner/outer stator pole ratios, pc = 30W. 

Fig. 7.16 shows the torque variations of PS-BFPMMs and PS-SFPMMs with main rotor 

pole numbers under the rated 30W copper loss. It can be found that the optimal rotor pole 

numbers for 12I/12O PS-BFPMM, 12I/12O PS-SFPMM, 6I/12O PS-SFPMM and 12I/6O 
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PS-SFPMM are 10, 11, 11, and 10 respectively since the maximum average torques are 

achieved for each machine. Based on the respective optimal rotor pole numbers, the 

electromagnetic performance of PS-BFPMMs will be compared with PS-SFPMMs with 

different Nis/Nos (1/2 and 2) in the following sections. 

 

  

(a) 12I/12O/10R PS-BFPMM (b) 12I/12O/11R PS-SFPMM 

 
 

(c) 6I/12O/11R PS-SFPMM (d) 12I/6O/10R PS-SFPMM 

Fig. 7.17. Machine topologies of PS-BFPMMs and PS-SFPMMs with different Nis/Nos. 

Fig. 7.17 shows the topologies of 12I/12O/10R PS-BFPMM, 12I/12O/11R PS-SFPMM, 

6I/12O/11R PS-SFPMM and 12I/6O/10R PS-SFPMM. All machines are globally optimized 

with maximum average torque under the rated 30W copper loss and the same machine size. 

The main geometric parameters are detailed in Table 7.1. (According to the analyses shown 

in sections of 7.2.1 and 7.2.2, the relative positons of inner and outer stators for 6I/12O and 

12I/6O PS-SFPMMs as shown in Fig. 7.17 are both optimal.) 
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Table 7.1 Main parameters of PS-BFPMMs and PS-SFPMMs with different Nis/Nos 

Parameter PS-BFPMM PS-SFPMM 

Inner/outer stator pole ratio (Nis/Nos) 1 1 1/2 2 

Number of phases 3 

Turns per phase (Nph) 72 

Rated speed (rpm) 400 

Rated copper loss (W) 30 

Packing factor 0.5 

Air-gap length Lag (mm) 0.5 

Active axial length Laa (mm) 25 

Outer stator outer radius Roso (mm) 45 

Inner stator inner radius Rist (mm) 10.4 

Outer stator (OS) pole number, Nos 12 12 12 6 

Inner stator (IS) pole number, Nis 12 12 6 12 

Rotor pole number, Nr 10 11 11 10 

OS inner radius Rost (mm) 30.60 31.50 30.60 31.05 

IS outer radius Riso (mm) 24.30 25.90 25.10 24.95 

OS tooth body pole arc θostb (°) 12.8 9.0 12.4 13.3 

OS tooth tip pole arc θostt (°) 5.2 3.0 0.6 11.0 

OS tooth tip thickness (Opening) 

Tostto (mm) 
1 1 1 1 

OS tooth tip thickness (Body)  

Tosttb (mm) 
2.4 2.8 1.8 5.2 

Rotor outer pole arc θrop (°) 26 22.2 15.8 26 

Rotor inner pole arc θrip (°) 19.6 17.4 23.6 19.2 

Rotor radial thickness Trr (mm) 5.3 4.6 4.5 5.1 

OS yoke thickness Tosy (mm) 3.5 2.6 4.4 3.6 

Rated AC current (Arms) 15.83 17.37 15.30 16.91 

PM inner pole arc θPM (°) 30 30 46 30 

Total PM volume (mm
3
) 22558.0 25147.0 18116.7 23609.9 

Magnetic remanence (T) 1.2 

Relative PM permeability 1.05 
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7.3.2 Open-Circuit Field Distribution 

Fig. 7.18 shows the open-circuit flux equipotential of PS-BFPMMs and PS-SFPMMs at 

aligned positions (negative d-axis). It can be seen that all machines have short flux path 

which could result in lower MMF drop in the stator. Meanwhile, the flux loop of the coils 

belong to same phase are completely independent. Moreover, leakage flux exists inside of the 

inner stator but is quite small compared with main flux. Fig. 7.19 shows the open-circuit air-

gap flux density waveforms for all machines at aligned position. Since the partitioned stator 

PM synchronous machines have two layers of air-gap, the corresponding waveforms shown 

in Fig. 7.19 as based on the layers which is close to the stator wound with armature windings.  

 

  

(a) 12I/12O/10R PS-BFPMM (b) 12I/12O/11R PS-SFPMM 

  

(c) 6I/12O/11R PS-SFPMM (d) 12I/6O/10R PS-SFPMM 

Fig. 7.18. Open-circuit flux equipotential distributions of PS-BFPMMs and PS-SFPMMs at 

aligned position  
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Fig. 7.19. Open-circuit air-gap flux densities of PS-BFPMMs and PS-SFPMMs  

at aligned position.  

7.3.3 Flux-Linkage and Back-EMF Waveforms 

The open-circuit phase flux-linkages of PS-BFPMMs and PS-SFPMMs are compared in 

Fig. 7.20. According to (7.1), symmetrical bipolar phase flux-linkages should be obtained in 

12I/12O/10R PS-BFPMM, 12I/12O11R PS-SFPMM and 6I/12O/11R PS-SFPMM since the 

even harmonics which cause the dc biased and asymmetric in single coil are completely 

cancelled in the phase winding. It is evidenced by the waveforms and FFT results shown in 

Fig. 7.20. According to Table 7.2, the fundamental phase flux-linkages of 12I/12O/10R PS-

BFPMM, 12I/12O/11R PS-SFPMM, 6I/12O/11R PS-SFPMM and 12I/6O/10R PS-SFPMM 

are 12.87, 13.33, 7.61 and 15.53mWb respectively. When Nis/Nos=1, 12I/12O/11R PS- 

SFPMM exhibit 3.3% higher fundamental phase flux-linage than 12I/12O/10R PS-BFPMM, 

as shown in Fig. 7.20 and Table 7.2. Further, compared with PS-SFPMMs with different 

Nis/Nos, 12I/6O/10R PS-SFPMM exhibits the highest fundamental phase flux-linkage while 

6I/12O/11R has the lowest one due to the smallest PM usage. 
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.20. Open-circuit phase flux-linkages of PS-BFPMMs and PS-SFPMMs. 

Due to the same reason as phase flux-linkage, symmetrical phase back-EMFs are also 

obtained in 12I/12O/10R PS-BFPMM, 12I/12O11R PS-SFPMM and 6I/12O/11R PS-

SFPMM, as shown in Fig. 7.21. According to Table 7.2, the fundamental phase back-EMFs 

of 12I/12O/10R PS-BFPMM, 12I/12O/11R PS-SFPMM, 6I/12O/11R PS-SFPMM and 

12I/6O/10R PS-SFPMM are 5.38, 6.13, 3.50 and 6.50V respectively. Due to the influence of 

rated electric frequency, 12I/12O/11R PS-SFPMM exhibit 13.9% higher fundamental phase 

back-EMF than 12I/12O/10R PS-BFPMM when Nis/Nos=1. Meanwhile, among the PS-

SFPMMs with different Nis/Nos, 12I/6O/10R PS-SFPMM still exhibits the highest 

fundamental phase back-EMF while 6I/12O/11R has the lowest one. 
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.21. Open-circuit phase back-EMFs of PS-BFPMMs and PS-SFPMMs. 

7.3.4 Dq-Axis Inductances 

Fig. 7.22 shows the dq-axis inductances at different current angles for all machines with 

rated currents as given in Table 7.1. It can be seen that the d-axis inductance is quite close to 

q-axis inductance in both PS-BFPMMs and PS-SFPMMs with different Nis/Nos. Since the 

saliency ratio is quite close to 1, the reluctance torque can be negligible in both PS-BFPMMs 

and PS-SFPMMs with different Nis/Nos. 
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Fig. 7.22. Variation of dq-axis inductances with current angle under the rated currents as 

given in Table 7.1, pc=30W. 

7.3.5 Cogging Torque 

Fig. 7.23 shows the open-circuit cogging torque waveforms of all machines. Obviously, for 

machines with Nis/Nos=1, 12I/12O/11R PS-SFPMM exhibit lower magnitude of cogging 

torque than 12I/120/10R PS-BFPMMs. In addition, among the PS-SFPMMs with different 

Nis/Nos, 12I/6O/10R PS-SFPMM has the largest magnitude of cogging torque, and then 

followed by 6I/12O/11R PS-SFPMM.  

According to the analyses shown in section 7.2.1, the operational principles of PS-

SFPMMs are similar to those of PS-BFPMMs. Therefore, equation (6.3) which is used to 

calculate the cycle number of cogging torque over one electric period in PS-BFPMMs can be 

extended to PS-SFPMMs. Considering the influence of inner/outer stator pole ratio Nis/Nos, 

equation (6.3) can be changed as  

𝑁𝐶 =
𝑀𝐼𝑁(𝑁𝑖𝑠,  𝑁𝑜𝑠)

𝐺𝐶𝐷( 𝑀𝐼𝑁(𝑁𝑖𝑠,  𝑁𝑜𝑠) ,  𝑁𝑟)
 (7.2) 

where Nc is the cycle number of cogging torque over one electrical period. 

According to (7.2), the cycle numbers of cogging torque for 12I/12O/10R PS-BFPMM, 

12I/12O11R PS-SFPMM, 6I/12O/11R PS-SFPMM and 12I/6O/10R PS-SFPMM are 6, 12, 6 

and 3 respectively. It is evidenced by the waveforms and FFT results in Fig. 7.23.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.23. Open-circuit cogging torques of PS-BFPMMs and PS-SFPMMs. 

7.3.6 Electromagnetic Torque Characteristics 

Fig. 7.24 shows the waveforms of average torque against with current angle at rated 

currents (corresponding to pc=30W) for all machines. Obviously, the optimal current angles 

for PS-SFPMMs with different Nis/Nos are all close to 0°, which are similar to PS-BFPMMs. 

The results further indicate that the reluctance torque is negligible in PS-SFPMMs whatever 

the ratio of Nis/Nos is selected, which is consistent with the conclusion in section 7.3.4. 
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Fig. 7.24. Variation of average torque with current angle under the rated currents, pc=30W. 

Fig. 7.25 shows the waveforms of torque against with rotor position at rated currents 

(pc=30W) and Id=0 control. Due to the combined influences of cogging torque and back-EMF 

harmonics (mainly in 5
th

 and 7
th

), 12I/12O/10R PS-BFPMM, 12I/12O/11R PS-SFPMM and 

6I/12O/11R PS-SFPMM have 6 torque ripples over one electric period while 12I/6O/10R PS-

SFPMM has 3 torque ripples. As shown in Table 7.2, the torque ripples of 12I/12O/10R PS-

BFPMM, 12I/12O/11R PS-SFPMM, 6I/12O/11R PS-SFPMM and 12I/6O/10R PS-SFPMM 

are 7.3%, 2.3%, 9.8% and 26.9% respectively. Obviously, 12I/12O/11R PS-SFPMM exhibits 

the smallest torque ripple while 12I/6O/10R PS-SFPMM has the largest one.  
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(b) Spectra 

Fig. 7.25. Variation of electromagnetic torque with rotor position at rated currents, Id=0 

control, pc=30W. 

According to Table 7.2, the average torque for 12I/12O/10R PS-BFPMM, 12I/12O/11R 

PS-SFPMM, 6I/12O/11R PS-SFPMM and 12I/6O/10R PS-SFPMM are 4.06, 5.20, 2.67 and 

5.29Nm respectively. According to the analyses shown in section 7.2.1 together with the 

larger PM usage and higher rated current under the same rated copper loss as well as the 

larger winding factor as shown in Table 7.1 and Table 6.4 respectively, 12I/12O/11R PS-

SFPMM exhibits ~28% higher average torque than 12I/12O/10R PS-BFPMM. In addition, 

compared with 12I/12O/11R PS-SFPMM (Nis/Nos=1), ~2% higher average torque is obtained 

in 12I/6O/10R PS-SFPMM (Nis/Nos=2) while 49% lower average torque is found in 

6I/12O/11R PS-SFPMM (Nis/Nos=1/2). 

 

 

Fig. 7.26. Torque density and torque to PM volume, pc=30W, Id=0 control. 
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Fig. 7.26 compares the torque density and torque to PM volume of four machines at the 

rated currents (pc=30W) and Id=0 control. Compared with 12I/12O/10R PS-BFPMM, 

12I/12O/11R PS-SFPMM exhibits ~28% larger torque density and ~15% higher PM 

utilization efficiency (ratio of torque to PM volume), as shown in Table 7.2. Among the three 

PS-SFPMMs with different Nis/Nos, 12I/6O/10R PS-SFPMM (Nis/Nos=2) exhibits the largest 

torque density and highest PM utilization efficiency while 6I/12O/11R PS-SFPMM 

(Nis/Nos=1/2) has the smallest torque density and lowest PM utilization efficiency. 

The variations of average torque with copper loss are further shown in Fig. 7.27. The 

vertical dashed and dotted line shows the rated copper loss which is used to global 

optimization. As shown in Fig. 7.27, the increase rate of average torque in both PS-BFPMMs 

and PS-SFPMMs will be declined with the rising of copper loss (current) due to the 

aggravated magnetic saturation. In addition, for machines with Nis/Nos=1, 12I/12O/11R PS-

SFPMM exhibits larger average torque than 12I/12O/10R PS-BFPMM under the same 

copper loss over the whole copper loss range, as shown in Fig. 7.27. Further, compared with 

12I/12O/11R PS-SFPMM (Nis/Nos=1), the average torque of 12I/6O/10R PS-SFPMM 

(Nis/Nos=2) is slightly larger at relatively low copper loss (electric loading) but smaller at high 

copper loss since the saturation of magnetic circuit is quicker due to bigger inductance and 

higher armature reaction. Fig. 7.27 also indicates that 6I/12O/11R PS-SFPMM (Nis/Nos=1/2) 

has the smallest average torque over the whole copper loss range. 

 

 

Fig. 7.27. Variation of average torque with copper loss, Id=0 control. 
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Table 7.2 Main electromagnetic performances of PS-BFPMM and PS-SFPMMs 

Parameter PS-BFPMM PS-SFPMMs 

Nis/Nos/Nr 12I/12O/10R 12I/12O/11R 6I/12O/11R 12I/6O/10R 

Fund. flux-linkage (mWb) 12.87 13.33 7.61 15.53 

Fund. back-EMF (V) 5.38 6.13 3.50 6.50 

Rated electric frequency (Hz) 66.7 73.3 73.3 66.7 

Cogging torque (Nm) 0.10 0.04 0.11 0.65 

Average torque (Nm) 4.06 5.20 2.67 5.29 

Torque ripple (%) 7.3 2.3 9.2 26.9 

Torque density (kN/m
2
) 25.5 32.7 16.8 33.3 

Total PM volume (mm
3
) 22558.0 25147.0 18116.7 23609.9 

Torque/PM volume (kN/m
2
) 180 207 147 224.0 

Rated iron loss (W) 2.26 2.46 1.10 2.43 

Rated PM loss (W) 0.064 0.041 0.044 0.236 

 

7.3.7 Iron Loss and PM Loss 

Fig. 7.28 shows the variation of total iron losses against speed at rated copper loss for four 

machines. According to the analyses shown in section 5.3.7, the iron loss is increased as the 

speed increased. Among these four machines, the 12I/12O/11R PS-SFPMM and 12I/6O/11R 

PS-SFPMM exhibit the similar highest total iron losses while the 6I/12O/11R PS-SFPMM 

has the lowest total iron loss in the whole speed range. As shown in Table 7.2, the iron loss of 

12I/12O/10R PS-BFPMM, 12I/12O/11R PS-SFPMM, 6I/12O/11R PS-SFPMM and 

12I/6O/10R PS-SFPMM under the rated copper loss (30W) and the rated speed (400rpm) are 

2.26, 2.46, 1.10 and 2.43W respectively. 
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Fig. 7.28. Variation of iron loss with speed in PS-BFPMMs and PS-SFPMMs, 

 pc =30W, Id = 0 control. 

Fig. 7.29 shows the variation of PM losses against with speed at rated copper loss for four 

machines. According to the analyses in section 5.3.7, the PM loss is also increased as the 

speed increased. In addition, 12I/6O/10R PS-BFPMM exhibits the largest PM loss in the 

whole speed range among the four machines since it has the highest amplitude change of PM 

flux density during one electric period although its PM volume is lower than that of 

12I/12O/11R PS-SFPMM. As shown in Table 7.2, the PM loss of 12I/12O/10R PS-BFPMM, 

12I/12O/11R PS-SFPMM, 6I/12O/11R PS-SFPMM and 12I/6O/10R PS-SFPMM under the 

rated copper loss (30W) and the rated speed (400rpm) are 0.064, 0.041, 0.044 and 0.236W 

respectively. 

 

 

Fig. 7.29. Variation of PM loss with speed in PS-BFPMMs and PS-SFPMMs, 

 pc =30W, Id = 0 control. 
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Fig. 7.30. On-load flux density distributions of PS-BFPMMs and PS-SFPMMs, 

 pc =30W, Id = 0 control. 

7.4 Winding Configurations of 6I/12O PS-SFPMMs with Nis/Nos=1/2 

7.4.1 Machine Topologies and Windings Configurations 

According to the analyses shown in section 7.2.2, symmetrical bipolar phase flux-linkage 

will be obtained in 6I/12O PS-SFPMMs (Nis/Nos=1/2) when the (inner/outer) stator and rotor 

pole combinations satisfy (7.1). Meanwhile, as shown in Fig. 7.7, the bipolar coil flux-

linkage (coil-wound outer stator pole aligns with PMs) exhibits larger magnitude of 

fundamental wave than the unipolar coil flux-linkage (coil-wound outer stator pole aligns 

with iron ribs). Therefore, alternate pole wound winding configuration can be employed to 

enhance the torque performance of 6I/12O PS-SFPMM. Furthermore, the optimal rotor pole 

number which chosen to achieve maximum average torque for 6I/12O PS-SFPMM is 11, as 

shown in Fig. 7.16. Based on the optimal rotor pole number, the influence of winding 
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configurations on electromagnetic performance of 6I/12O PS-SFPMM (Nis/Nos=1/2) will be 

analysed and compared in the following sections. 

Fig. 7.31 shows the machine topologies of 6I/12O/11R PS-SFPMMs with all pole wound 

and alternate pole wound winding configurations. To simplify the comparison in the 

following sections, the machine topologies corresponding to Fig. 7.31(a), (b) and (c) can be 

designated as 6I/12O/11R PS-SFPMM-ORI, 6I/12O/11R PS-SFPMM-APW-I and 

6I/12O/11R PS-SFPMM-APW-II respectively. All machines are globally optimized with 

maximum average torque under the same rated 30W copper loss and the same machine size. 

The main geometric parameters are detailed in Table 7.3. 

 

 

(a) 6I/12O/11R PS-BFPMM-ORI 

 
 

(b) 6I/12O/11R PS-SFPMM-APW-I (c) 12I/6O/11R PS-SFPMM-APW-II 

Fig. 7.31. Machine topologies of 6I/12O/11R PS-SFPMMs with all pole wound and alternate 

pole wound winding configurations.  
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Table 7.3 Main parameters of 6I/12O/11R alternate pole wound PS-SFPMMs 

Parameter 6I/12O/11R PS-SFPMMs 

Winding Configuration APW-I APW-II 

Nph 72 72 

Rost (mm) 30.6 28.8 

Riso (mm) 25.5 23.2 

θostb (°) 8 14.6 

θostt (°) 2 0.2 

Tostto (mm) 1 1 

Tosttb (mm) 2.2 1.2 

θrop (°) 22 12.4 

θrip (°) 20.7 17.6 

Trr (mm) 4.1 4.6 

Tosy (mm) 4.7 3.8 

Iarms (A) 16.30 16.50 

θPM (°) 39 46 

 

7.4.2 Flux-Linkage and Back-EMF Waveforms 

According to the analyses in section 7.2.2, symmetrical bipolar phase flux-linkage can be 

obtained in both all pole wound and alternate pole wound 6I/12O PS-SFPMMs (Nis/Nos=1/2) 

when the (inner/outer) stator/rotor pole combinations are satisfied with (7.1). Therefore, for 

6I/12O/11R PS-SFPMMs under investigation, symmetrical bipolar phase flux-linkages are 

obtained in both all pole wound and alternate pole wound winding configurations since the 

even harmonics are completely cancelled in phase windings, as shown in Fig. 7.32. 

Compared with 6I/12O/11R PS-SFPMM-ORI, the fundamental phase flux-linkages for 

6I/12O/11R PS-SFPMM-APW-I and 6I/12O/11R PS-SFPMM-APW-II are enhanced by ~37% 

and reduced by ~33% respectively.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.32. Open-circuit phase flux-linkages of 6I/12O/11R PS-SFPMMs with all pole wound 

and alternate pole wound windings. 

Similar to phase flux-linkage, symmetrical phase back-EMFs are also obtained in all three 

6I/12O/11R PS-SFPMMs, as shown in Fig. 7.33. Due to the same rated electric frequency, 

the increase rate and decrease rate of fundamental phase back-EMFs in 6I/12O/11R PS-

SFPMM-APW-I and 6I/12O/11R PS-SFPMM-APW-II are consistent with those in 

fundamental phase flux-linkages, which are ~37% higher and ~33% lower than 6I/12O/11R 

PS-SFPMM-ORI respectively.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.33. Open-circuit phase back-EMFs of 6I/12O/11R PS-SFPMMs with all pole wound 

and alternate pole wound windings.  

7.4.3 Cogging Torque 

Due to the similar machine topologies, three machines should have the same cycle number 

of cogging torque over one electric period whatever the winding configurations are selected. 

According to (7.2), the cycle numbers of three machines are all equal to 6, which are 

consistent with the waveforms shown in Fig. 7.34. In addition, the magnitudes of cogging 

torque of 6I/12O/11R PS-SFPMM-APW-I and 6I/12O/11R PS-SFPMM-APW-II are both 

slightly smaller than that of 6I/12O/11R PS-SFPMM-ORI.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.34. Open-circuit cogging torque of 6I/12O/11R PS-SFPMMs with all pole wound and 

alternate pole wound windings. 

7.4.4 Electromagnetic Torque Characteristics 

Fig. 7.35 shows the waveforms of average torque against with current angle at rated 

currents (corresponding to pc=30W) for three machines. Obviously, regardless of the 

selections of armature winding configurations, the reluctance torques are negligible in all 

three machines since the optimal current angles are all close to 0°. 
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Fig. 7.35. Variation of average torque with current angle under the rated currents, pc=30W. 

Fig. 7.36 shows the waveforms of torque against rotor position at rated currents (pc=30W) 

and Id=0 control. Due to the combined influences of cogging torque and back-EMF 

harmonics (mainly the 5
th

 and 7
th

 harmonics), three machines all have 6 torque ripples over 

one electric period. As shown in Table 7.4, the torque ripples of 6I/12O/11R PS-SFPMM-

ORI, 6I/12O/11R PS-SFPMM-APW-I and 6I/12O/11R PS-SFPMM-APW-II are 9.2%, 3.7% 

and 12.3% respectively. Compared with 6I/12O/11R PS-SFPMM-ORI, the torque ripple is 

reduced in 6I/12O/11R PS-SFPMM-APW-I but increased in 6I/12O/11R PS-SFPMM-APW-

II. 
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(b) Spectra 

Fig. 7.36. Variation of electromagnetic torque with rotor position at rated currents, 

 Id=0 control, pc=30W. 

According to Table 7.4, the average torque for 6I/12O/11R PS-SFPMM-ORI, 6I/12O/11R 

PS-SFPMM-APW-I and 6I/12O/11R PS-SFPMM-APW-II are 2.67, 3.62 and 1.84Nm 

respectively. Compared with 6I/12O/11R PS-SFPMM-ORI, the average torque is enhanced 

by ~36% in 6I/12O/11R PS-SFPMM-APW-I but reduced by ~31% in 6I/12O/11R PS-

SFPMM-APW-II. 

 

 

Fig. 7.37. Torque density and torque to PM volume, pc=30W, Id=0 control. 

Fig. 7.37 compares the torque density and torque to PM volume of three machines at rated 

currents (pc=30W) and Id=0 control. Compared with 6I/12O/11R PS-SFPMM-ORI, 
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utilization efficiency (ratio of torque to PM volume) while 6I/12O/11R PS-SFPMM-APW-II 

has ~31% smaller torque density and ~21% lower PM utilization efficiency. 

The torque performances of three machines under different copper loss are compared in Fig. 

7.38. The vertical dashed and dotted line shows the rated copper loss which is used for global 

optimization. Obviously, among the three machines, 6I/12O/11R PS-SFPMM-APW-I 

exhibits the largest average torque under the same copper loss over the whole copper range 

while 6I/12O/11R PS-SFPMM-APW-II always has the smallest average torque. These results 

further evidence that alternate pole wound winding configuration coordinated with coils 

wound around the outer stator pole aligned with PMs of inner stator can both enhance the 

torque performance and PM utilization efficiency of 6I/12O PS-SFPMMs (Nis/Nos=1/2). 

 

 

Fig. 7.38. Variation of average torque with copper loss, Id=0 control. 
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Rated electric frequency (Hz) 73.3 73.3 73.3 
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2
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7.5 Influence of Alternate Pole Wound Winding on Torque Performance of 

PS-BFPMM and PS-SFPMMs  

Based on the optimal rotor pole numbers as mentioned in section 7.3, the influence of 

alternate pole wound winding on torque performance of PS-BFPMMs and PS-SFPMM with 

Nis/No equal to 1, 1/2 and 2 is compared in Fig. 7.39. Obviously, by employing the alternate 

pole wound winding, higher torque capabilities are obtained in 12I/12O/11R PS-SFPMM 

(distribution factor increased from 0.965 to 1) and 6I/12O/11R PS-SFPMM (APW-I) while 

lower torque capabilities are observed in 12I/12O/10R PS-BFPMM and 12I/6O/10R PS-

SFPMM. In addition, among all machines with both all pole wound and alternate pole wound 

windings, 12I/12O/11R PS-SFPMM-APW exhibits the optimal torque capability under the 

copper loss over the whole copper loss range.  

 

 

Fig. 7.39. Variation of average torque with copper loss for all machine with all pole and 

alternate pole wound windings, Id=0 control. 

Fig. 7.40 shows the variation of torque/PM volume against with copper loss for all 
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pole wound winding, higher PM utilization efficiencies are obtained in 12I/12O/11R PS-
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PM utilization efficiencies among all the machines, then followed by 12I/6O/10R PS-

SFPMM.  

 

 

Fig. 7.40. Variation of torque/PM volume against with copper loss for all machines with all 

pole and alternate pole wound windings, Id=0 control.  

7.6 Experimental Verification 

Prototype machines of 12I/12O/1OR PS-BFPMM and 12I/6O/10R PS-SFPMM are made 

to validate the foregoing analyses, and shown in Fig. 7.41. To reduce the cost, those existing 
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the FE results of 12I/12O/10R PS-BFPMM. For 12I/6O/10R PS-SFPMM, new 6-pole outer 
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and rotor as 12I/12O/10R PS-BFPMM. The parameters of two prototype machines are shown 

in Table 7.5, which are different from the previous globally optimized parameters as given in 

Table 7.1. Moreover, for easing the fabrication, 10-pole modular rotor is mechanically 

connected by lamination bridges with 0.5mm thickness (TBRI) in the inner side of rotor, as 

shown in Fig. 7.41(d). Meanwhile, lamination bridges (0.5mm) are also added to both top and 

bottom edges of PMs to help fixing, as shown in Fig. 7.41(c). 
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(a) 12-pole outer stator  (b) 6-pole outer stator 

  

(c) Inner stator with 12 PMs (d) 10-pole rotor 

  

(e) Assembled stators of 12I/12O  

PS-BFPMM  

(f) Assembled stators of 12I/6O  

PS-SFPMM 

Fig. 7.41. Prototypes of 12I/12O/10R PS-BFPMM and 12I/6O/10R PS-SFPMM. 
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Table 7.5 Parameters of prototype machines for PS-BFPMM and PS-SFPMM 

Parameter 
12I/12O/10R 

PS-BFPMM 

12I/6O/10R 

PS-SFPMM 
Parameter 

12I/12O/10R 

PS-BFPMM 

12I/6O/10R 

PS-SFPMM 

Lag (mm) 0.5 Tostto (mm) 1 1 

Laa (mm) 25 Tosy (mm) 3 3.4 

Roso (mm) 45 θrop (°) 18 

Rosi (mm) 31.75 θrip (°) 25.2 

Riso (mm) 25.75 Trr (mm) 5 

Rist (mm) 10.4 TPM (mm) 5 

θostb (°) 8.12 13.20 LPM (mm) 14.35 

θostt (°) 4.94 14.30 Tbri (mm) 0.5 

Tosttb (mm) 3.0 5.8   

 

Fig. 7.42 shows the measured and predicted open-circuit phase back-EMFs at rated speed 

(400rpm). It can be seen that the measured fundamental values are ~8% less than the 

predictions in both prototype machines due to the end-effect in 25mm stack length machines. 

Meanwhile, different from 12I/12O/10R PS-BFPMM, the measured 2
rd

 harmonic amplitude 

of 12I/6O/10R PS-SFPMM is higher than that of FE prediction but lower in 5
th

 harmonic, 

which is caused by the imperfect manufacturing of 6-pole outer stator and end plates. Fig. 

7.43 shows the measured and predicted open-circuit cogging torques of two machines. The 

maximum amplitudes of measured values match well with the FE predictions in both 

machines when considering measurement error and end-effect. Meanwhile, compared with 

12I/12O/10R PS-BFPMM, the measured waveform of 12I/6O/10R PS-SFPMM is more close 

to the FE prediction since it has bigger cogging torque. Fig. 7.44 shows the variation of static 

torque with rotor position at three different armature currents, i.e. 15A, 20A and 25A 

(IDC=IA=-2IB=-2IC). Fig. 7.45 compares the measured and FE predicted peak torques at 

different current values. It can be observed that the differences between the measured and FE 

predicted results rise with the increased current since the influences of saturation and end-

effect are enlarged together. Overall, the experimental results match well with the FE 

predictions.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 7.42. Measured and FE predicted open-circuit phase back-EMFs at 400rpm. 

 

Fig. 7.43. Measured and FE predicted open-circuit cogging torques.  
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(a) 12I/12O/10R PS-BFPMM 

 

(b) 12I/6O/10R PS-SFPMM 

Fig. 7.44. Measured and FE predicted static torques, IDC=IA=-2IB=-2IC. 

 

Fig. 7.45. Measured and predicted torque-current characteristics.  
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7.7 Summary 

Based on spoke-IPM stator configuration and minimum 6-pole inner and outer stators, the 

influences of the ratio of inner/outer stator pole and the relative position of inner and outer 

stators on electromagnetic performance of partitioned stator PM synchronous machines are 

analysed and compared in this chapter.  

For both PS-BFPMMs and PS-SFPMMs with different inner/outer stator pole ratios, the 

conditions for symmetrical bipolar phase flux-linkage (phase back-EMF) are consistent, in 

which the ratio of Min(Nos, Nis) to the greatest common divisor of Min(Nos, Nis) and rotor pole 

numbers Nr must be even.  

The analysis results indicate that the optimal rotor pole number for 12I/12O PS-BFPMM, 

12I/12O PS-SFPMM, 6I/12O PS-SFPMM and 12I/6O PS-SFPMM are 10, 11, 11, and 10 

respectively. Compared with 12I/12O/10R PS-BFPMM (Nis/Nos=1), 12I/12O/11R PS-

SFPMM exhibits ~13.9% higher fundamental phase back-EMF, ~28% larger average torque 

and ~15% higher PM utilization efficiency under the rated copper loss. Further, compared 

with 12I/12O/11R PS-SFPMM (Nis/Nos=1) under the rated copper loss, 12I/6O/10R PS-

SFPMM (Nis/Nos=2) exhibits ~2% larger average torque and 8% higher PM utilization 

efficiency while 6I/12O/11R PS-SFPMM has 49% smaller average torque and 29% lower 

PM utilization efficiency. 

By employing the alternate pole wound winding, the average torques are enhanced by 

about 2.5% and 36% in 12I/12O/11R PS-SFPMM and 6I/12O/11R PS-SFPMM while 

reduced by about 6.9% and 9.1% in 12I/12O/10R PS-BFPMM and 12I/6O/10R PS-SFPMM. 

Meanwhile, the PM utilization efficiencies are enhanced by about 2.5% and 55% in 

12I/12O/11R PS-SFPMM and 6I/12O/11R PS-SFPMM while reduced by about 6.9% and 9.0% 

in 12I/12O/10R PS-BFPMM and 12I/6O/10R PS-SFPMM. 

Finally, the analyses have been validated by both the FEA and measurements.  

7.8 Appendix  

The conventional coil EMF vector method can also be used to determine the winding 

configuration of PS-SFPMM with Nis/Nos=1/3. Fig. 7.46 shows the machine topology and 

coil-EMF vectors of 6I/18O/11R PS-SFPMM with Nis/Nos=1/3. As shown in Fig. 7.47, 

bipolar coil flux-linkage is observed when the coil-wound outer stator pole aligns with PMs 

(such as coils A1) whilst unipolar coil flux-linkage would be found when the coil-wound 

outer stator pole aligned with iron ribs (such as coils A2), which are similar to PS-SFPMM 
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with Nis/Nos=1/2 (such as 6I/12O PS-SFPMM shown in Fig. 7.6). Based on the analysis of 

PS-SFPMM with Nis/Nos=1/2, to obtain the symmetrical bipolar phase flux-linkage in PS-

SFPMM with Nis/Nos=1/3, three conditions also should be satisfied. Firstly, the coils per 

phase must even. Secondly, the pairs of coils belong to the same phase must have 180 

electrical degree phase shifting (opposite polarities). Thirdly, the phase angles should be 

same for the resultant flux-linkages for unipolar ones and for bipolar ones. Therefore, to 

achieve these conditions, the (inner/outer) stator/rotor pole combinations of PS-SFPMM with 

Nis/Nos=1/3 should be satisfied with (7.1). By way of example, for 6I/18O/11R PS-SFPMM 

under investigation, symmetrical bipolar phase flux-linkage is obtained as shown in Fig. 7.47.  

 

 
 

(a) Machine topology (b) Coil-EMF vectors 

Fig. 7.46. Machine topology and coil-EMF vectors of 6I/18O/11R PS-SFPMM. 
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(b) Spectra 

Fig. 7.47. Per unit open-circuit coil and phase flux-linkages of 6I/18O/11R PS-SFPMM. 

 
 

(a) Machine topology (b) Coil-EMF vectors 

Fig. 7.48. Machine topology and coil-EMF vector of 6I/18O/11R PS-SFPMM SFPMM with 

relative position of inner and outer stator have half inner stator pole pitch shifting. 
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for new 6I/18O PS-SFPMM are the same as those of original 6I/18O PS-SFPMM, in which 

the (inner/outer) stator/rotor pole combinations of PS-SFPMM with Nis/Nos=1/3 should be 

satisfied with (7.1). By way of example, for new 6I/18O/11R PS-SFPMM shown in Fig. 

7.49(a), the phase flux-linkage is symmetrical and bipolar as shown in Fig. 7.49. In addition, 

since the base value of Fig. 7.49 is selected as the magnitude of fundamental phase flux-

linkage of original 6I/18O/11R PS-SFPMM, new 6I/18O/11R PS-SFPMM exhibits lower 

fundamental phase flux-linkage than original 6I/18O/11R PS-SFPMM.  

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 7.49. Per unit open-circuit coil and phase flux-linkages of 6I/18O/11R PS-SFPMM with 

relative position of inner and outer stator have half outer stator pole pitch shifting. 
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CHAPTER 8 

INFLUENCE OF INNER STATOR AND ROTOR POLE 

NUMBER COMBINATIONS ON ELECTROMANGETIC 

PERFORMANCE OF PARTITIONED STATOR  

SWITCHED FLUX PM MACHINES 

Based on the spoke type interior permanent magnet (spoke-IPM) stator configuration and 

minimum 6-pole inner and outer stators, the influences of the ratio of inner/outer stator pole 

(Nis/Nos) and the relative position of inner and outer stators on electromagnetic performance 

of partitioned stator PM synchronous machines are analysed and compared in the previous 

chapter. Meanwhile, the results show that higher torque performance can be observed when 

Nis/Nos>1. Therefore, in this chapter, the influences of inner stator and rotor pole 

combinations on electromagnetic performance of partitioned stator switched flux PM 

machines (PS-SFPMMs) with 6-pole outer stator are investigated in detail.  

8.1 Introduction 

Switched flux permanent magnet (PM) machines (SFPMMs) have been investigated 

extensively over last decades due to high torque performance and efficiency as well as simple 

and robust rotor [RAU55] [HOA97] [ZHU05]. Since the PMs are located in the stator, easy 

heat dissipation and low risk of demagnetization also are the merits of SFPMMs [ZHU05]. 

Compared with the conventional PM brushless machines, the reluctance torque of SFPMMs 

is negligible [ZHO13b]. Hence, the electromagnetic torque of SFPMMs is mainly depending 

on the PM flux-linkage, armature current (q-axis) and rotor pole number. In other words, 

superior trade-off among the PM volume (shape) and armature winding space (slot area) and 

rotor pole number is the key factor on maximizing the torque of SFPMMs. Based on this 

guideline, different topologies of SFPMMs are proposed in [ZHO13b] [CHE11a] [CHE11b] 

[CHE08]. Compared with conventional SFPMM, C-core [CHE11b] and E-core [CHE11a] 

SFPMMs adopt the strategy of reducing the PM and stator tooth volume to increase the slot 

area whilst sandwiched SFPMM (SSFPMM) [4] combines two adjacent stator poles to 

achieve the same goal. In addition, splitting the original stator teeth into more small teeth per 

stator pole (reduce the slot area) and increasing the number of rotor poles are the designs 

which are used in multi-tooth SFPMM (MTSFPMM). Overall, the torque capabilities of 
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SFPMMs are enhanced by these means under the same machine size and rated copper loss 

[ZHU10].  

However, the pursuit on higher torque capability is continuing forever. In order to further 

enhance the torque capability of SFPMMs, one effective solution is to increase the whole 

volume of stator within the same machine scale. The concept of partitioned stator 

configuration has been introduced, which is applied to the SFPMMs as partitioned stator 

SFPMMs (PS-SFPMMs) [EVA15]. In this way, the conflicts between PMs, armature 

windings and stator iron in conventional SFPMM which limit the torque capability are solved 

since the inner space is fully utilized. Thus, the torque capability is improved significantly in 

PS-SFPMMs when compared with conventional SFPMMs [EVA15].  

Nevertheless, the previous investigation on PS-SFPMMs only considers the inner/outer 

stator pole ratio n' (n'=Nis/Nos) equal to 1. Actually, the inner/outer stator pole ratio n' can be 

any integers. Furthermore, by using the partitioned stator configuration, it is much easier to 

implement the designs when n' is bigger than 1, since the PMs are located in separated inner 

stator.  

In this chapter, the influence of inner stator and rotor pole combinations on electromagnetic 

performance of PS-SFPMMs will be investigated. Firstly, the machine topologies and 

operational principle are illustrated. Then, the optimal inner stator and rotor pole 

combinations having different n' are investigated under the rated copper loss with the 6-pole 

outer stator. Further, based on the individual optimal inner stator and rotor pole combinations, 

the electromagnetic performance of PS-SFPMMs with n' equal to 1, 2, 3 and 4 are analyzed 

and compared. Finally, a prototype machine with 12-inner/6-outer stator/10 rotor pole 

(12I/6O/10R) PS-SFPMM is manufactured and measured to validate the analyses.  

8.2 Operation Principle and Stator/Rotor Pole Number Combinations of  

PS-SFPMMS 

8.2.1 Machine Topologies and Operation Principle 

Partitioned stator switched flux permanent magnet machines (PS-SFPMMs) with 

inner/outer stator pole ratio n' (n'=Nis/Nos) equal to one is shown in Fig. 8.1(a). However, n 

can be any integers since the PMs are located in separated inner stator. Based on this 

conclusion, several configurations of PS-BFPMMs with n' > 1 are shown in Fig. 8.1(b), (c) 

and (d) as examples, which corresponds to n' equal to 2, 3 and 4 respectively. Further, 

according to the analyses in section of 7.2, to maximize the fundamental phase flux-linkage 
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(torque performance), the PM of inner stator pole should be aligned with outer stator pole 

when n' is odd while the iron rib of inner stator pole should be aligned with outer stator pole 

when n' is even, as shown in Fig. 8.1. 

 

  

(a) n'=1 (b) n'=2 

  

(c) n'=3 (d) n'=4 

Fig. 8.1. Schematic diagrams of PS-SFPMMs with different n' at negative d-axis 

 (negative maximum phase flux-linkage) 

  

(a) n'=1 (b) n'=2 

  

(c) n'=3 (d) n'=4 

Fig. 8.2. Schematic diagrams of PS-SFPMMs with different n' at positive d-axis 

 (positive maximum phase flux-linkage). 

Based on the optimal relative positions of inner and outer stators, the main PM flux paths 

of PS-SFPMMs with different n' corresponding to the negative d-axis and positive d-axis are 

also illustrated in Fig. 8.1 and Fig. 8.2 respectively. It can be seen that the main flux passing 
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through one single coil are consisted with two separate flux loops in all PS-SFPMMs with 

different n'. Meanwhile, for one complete single flux loop of PS-SFPMMs with n' > 2, the 

flux has to pass through more than one PM, as shown in Fig. 8.1(c) and (d) as well as Fig. 

8.2(c) and (d).  

The basic operational principles of PS-SFPMMs with different n' are consistent. For PS-

SFPMMs with n' being odd, it can be seen from Fig. 8.1(a) and (c) when the right edge of 

rotor is aligned with outer stator pole, the flux flows from inner stator side to outer stator side 

through the modular rotor, while in Fig. 8.2(a) and (c), when the left edge of rotor is aligned 

with outer stator pole, the direction of flux is reversed. Then, for PS-SFPMMs with n' being 

even, it can be seen from Fig. 8.1(b) and (d) when the rotor slot is aligned with outer stator 

pole, the flux flows from inner stator side to outer stator side through the modular rotor, while 

in Fig. 8.2(b) and (d), when the modular rotor is aligned with outer stator pole, the direction 

of flux is reversed. Therefore, for PS-SFPMMs with different n', back-EMF will be induced 

in the coils by periodical variation of flux-linkage (flux) with rotor position.  

8.2.2 Inner Stator and Rotor Pole Number Combinations 

Similar to the conventional SFPMMs, the choice of rotor pole number Nr is also flexible in 

PS-SFPMMs. No matter what n' is selected, Nr can be any integers except the phase number 

and its multiples. Meanwhile, considering the investigation in this chapter, the selections of 

Nos, Nis, and Nr can be normally summarized as  

𝑁𝑜𝑠 = 𝑘𝑚 (k = 1, 2…) (8.1) 

𝑁𝑖𝑠 = 𝑛
′𝑁𝑜𝑠  (n = 1, 2…) (8.2) 

𝑁𝑟 = 𝜇𝑁𝑜𝑠 ± 𝑗 (Nr ≠ kim, j=1, 2…, ki=1. 2…) (8.3) 

where m is the phase number, k, n', µ, j and ki are integers. 

Based on the 6-pole outer stator (Nos=6, the minimum stator pole number in unit 

conventional SFPMM is normally defined as 6) and the optimal relative position of inner and 

outer stators, the torque variations of PS-SFPMMs with different n' and rotor pole number 

under the rated 30W copper loss are shown in Fig. 8.3. Obviously, for PS-SFPMMs with 

different n', the maximum average torque is improved with the increased n'. Meanwhile, PS-

SFPMMs with n' equal to 3 and 4 have similar maximum average torque, which means the 

aggravated saturation and leakage flux caused by increased n' will also limit the enhancement 

of torque performance. Then, according to the maximum average torque as shown in Fig. 8.3 

http://graphemica.com/%C2%B5
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with black marks, the optimal inner stator/rotor pole combinations (Nis/Nr) for 6-pole outer 

stator PS-SFPMMs with n' equal to 1, 2, 3 and 4 are 6I/11R (6-inner stator/11-rotor pole), 

12I/10R, 18I/11R and 24I/14R respectively. Further, based on the results mentioned above 

and shown in Fig. 8.3, the guideline to search for the optimal Nr in PS-SFPMMs with 

different n' can be roughly derived and summarized. Firstly, the optimal Nr is closed to 

(Nos+Nis)/2. Secondly, optimal Nr is odd when n' is odd while it is even when n' is even.  

 

k 

Fig. 8.3. Variation of average torque with rotor pole number under different n' and 6-pole 

outer stator, pc=30W. 

The topologies of 6-pole outer stator PS-SFPMMs with the optimal 6I/11R, 12I/10R, 

18I/11R and 24I/14R inner stator/rotor pole combinations for n' equal to 1, 2, 3 and 4 are 

shown in Fig. 8.4. As mentioned in section 8.2.1 above, the PMs of inner stator poles are 

aligned with outer stator poles when n' is odd while the iron ribs of inner stator poles are 

aligned with outer stator poles when n' is even, as shown in Fig. 8.4. All the machines are 

globally optimized by generic algorithm with the objective of maximum average torque under 

the 30W rated copper loss and same machine size. The main geometric parameters are 

detailed in Table 8.1. 
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(a) 6I/11R, n'=1 (b) 12I/10R, n'=2 

  

(c) 18I/11R, n'=3 (d) 24I/14R, n'=4 

Fig. 8.4. Topologies of 6-pole outer stator PS-SFPMMs with different optimal inner 

stator/rotor pole combinations.  

8.2.3 Winding Configurations 

As mentioned in section 6.2 and section 7.2, the conventional coil-EMF vector method 

[ZHU10] can be used to determine the armature winding configuration of PS-SFPMMs with 

different Nis/Nos, in which the electrical degree αe between two adjacent coil-EMF vectors can 

be calculated from the mechanical degree αm and Nr. According to (6.1), the winding 

configurations of 6-pole outer stator PS-SFPMMs with 6I/11R, 12I/10R, 18I/11R and 

24I/14R inner stator/rotor pole combinations are shown in Fig. 8.5, Fig. 8.6 and Fig. 8.7 as 

mechanical and electric degrees respectively. Coil k and coil k' refer to the coils with opposite 

polarities, accounting for the alternate magnetization directions in adjacent stator poles. 
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Fig. 8.5. Coil-EMF vectors of 6-pole outer stator PS-SFPMMs in mechanical degree.  

  

(a) 6I/11R, n'=1 (b) 12I/10R, n'=2 

  

(c) 18I/11R, n'=3 (d) 24I/14R, n'=4 

Fig. 8.6. Coil-EMF vectors of 6-pole outer stator PS-SFPMMs in electric degree and sectors 

for determining phase winding. 
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(a) 6I/11R, n'=1 (b) 12I/10R, n'=2 

  

(c) 18I/11R, n'=3 (d) 24I/14R, n'=4 

Fig. 8.7. Phase winding configurations of 6-pole outer stator PS-SFPMMs. 

8.2.4 Conditions for Symmetrical Bipolar Phase Flux-Linkage and Phase Back-EMF 

According to the analyses in section 7.2, symmetrical bipolar phase flux-linkage (phase 

back-EMF) can be obtained in PS-SFPMM with different Nis/Nos when the ratio of Min(Nos, 

Nis) to the greatest common divisor of Min(Nos, Nis) and rotor pole numbers Nr are even. In 

other word, the inner/outer stator/rotor pole combinations should be satisfied with (7.1). 

Therefore, among the four machines, symmetrical bipolar phase flux-linkage (phase back-

EMF) will be obtained in 6-pole outer stator PS-SFPMMs with 6I/11R and 18I/11R inner 

stator/rotor pole combinations since the even harmonics which cause the dc biased value and 

asymmetric in single coils can be completely cancelled in phase winding by connecting the 
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coils belong the same phase with 180 electrical degree phase shifting (opposite polarities) as 

shown in Fig. 8.6 and Fig. 8.7. 
 

Table 8.1 Main parameters of 6-pole outer stator PS-SFPMMs with optimal Nis/ Nr 

Parameter 6-pole outer stator PS-SFPMMs 

Inner stator/rotor pole combinations  6I/11R 12I/10R 18I/11R 24I/14R 

Number of phases 3 

Turns per phase (Nph) 72 

Rated speed (rpm) 400 

Rated copper loss (W) 30 

Packing factor 0.5 

Air-gap length Lag (mm) 0.5 

Active axial length Laa (mm) 25 

Outer stator outer radius Roso (mm) 45 

Inner stator inner radius Rist (mm) 10.4 

Outer stator (OS) pole number, Nos 6 6 6 6 

Inner stator (IS) pole number, Nis 6 12 18 24 

Rotor pole number, Nr 11 10 11 14 

OS inner radius Rost (mm) 31.95 31.05 31.50 31.50 

IS outer radius Riso (mm) 26.35 24.95 26.1 26.8 

OS tooth body pole arc θostb (°) 9.7 13.3 12.9 13.5 

OS tooth tip pole arc θostt (°) 2.3 11.0 12.3 13.6 

OS tooth tip thickness (Opening) 

Tostto (mm) 
1 1 1 1 

OS tooth tip thickness (Body)     

Tosttb (mm) 
2.7 5.2 2.8 3.1 

Rotor outer pole arc θrop (°) 21.2 26.0 22.9 18.6 

Rotor inner pole arc θrip (°) 20.6 19.2 17.9 14.6 

Rotor radial thickness Trr (mm) 4.6 5.1 4.4 3.7 

OS yoke thickness Tosy (mm) 3.1 3.6 3.7 3.6 

Rated AC current (Arms) 17.84 16.91 16.87 16.81 

Rated current density (Arms/mm
2
) 8.55 9.02 9.05 9.08 

PM inner pole arc θPM (°) 35 30 20 15 

Magnetic remanence (T) 1.2 

Relative PM permeability 1.05 
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8.3 Performance Comparison between 6-Pole Outer Stator PS-SFPMMs 

with Optimal Nis/Nr 

In this section, the electromagnetic performance of 6-pole outer stator PS-SFPMMs with 

6I/11R, 12I/10R, 18I/11R and 24I/14R inner stator/rotor pole combinations will be analyzed 

and compared in detail since they represent the optimal inner stator/rotor pole combinations 

with n' equal to 1, 2, 3 and 4.  

8.3.1 Open-Circuit Field Distribution 

The open-circuit flux equipotential and flux density distributions for four PS-SFPMMs at 

the negative d-axis are shown in Fig. 8.8. It can be seen that all machines have short flux path 

which could result in lower MMF drop in the stator and thinner thickness of stator yoke. 

Meanwhile, the flux loop of the coils belong to same phase are completely independent. 

Since the PMs are located in the inner stator, leakage flux exists inside of the inner stator but 

is quite small compared with main flux. In addition, the heavy saturations for all machines 

are occurred on the positions when the rotor nearly aligns with PMs of inner stator and has 

contact surface with outer stator simultaneously. It also can be reflected by the waveforms of 

open-circuit air-gap flux density distributions at negative d-axis as shown in Fig. 8.9. Since 

the PS-SFPMMs have two layers of air-gap, the waveforms are focused on the layer which 

close to the stator wound with AC armature winding.  

 

  

(a) 6I/11R, n'=1 (b) 12I/10R, n'=2 

 

0T1.25T2.5T
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(c) 18I/11R, n'=3 (d) 24I/14R, n'=4 

Fig. 8.8. Open-circuit equipotential and flux distributions at negative d-axis for all PS-

SFPMMs. 

  

Fig. 8.9. Open-circuit air-gap flux density at negative d-axis for all PS-SFPMMs. 

8.3.2 Flux-Linkage and Back-EMF Waveforms 

As shown in Fig. 8.10 and Fig. 8.11, the coil and phase flux-linkages are bipolar in PS-

SFPMMs whatever the selections of n' and rotor pole number. Meanwhile, it can be seen that 

the coil flux-linkage waveforms for all PS-SFPMMs are asymmetric (slant to right or left in 

half cycle when n' is odd while different positive and negative peak values in half cycle when 

n' is even) due to the even harmonics. However, with the influence of outer stator and rotor 

pole combinations, symmetrical bipolar phase flux-linkages are obtained in 6I/11R and 

18I/11R PS-SFPMMs since the even harmonics are completely cancelled in phase winding 

by connecting the coils belong the same phase with 180 electrical degrees phase shifting 

(opposite polarities), as shown in Fig. 8.6 and Fig. 8.11. Therefore, these two examples can 
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be used to validate (7.1) and the conclusions mentioned in section 8.2.4. Further, among four 

machines, 12I/10R and 18I/11R PS-SFPMMs exhibit similar highest fundamental flux-

linkages, and then followed by 24I/14R PS-SFPMM, as shown in Fig. 8.11(b) and Table 8.2. 

 

 

Fig. 8.10. Open-circuit coil flux-linkages of all PS-SFPMMs. 
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(b) Spectra 

Fig. 8.11. Open-circuit phase flux-linkage of PS-SFPMMs for all PS-SFPMMs. 

Based on the similar influence caused by even harmonics in coil flux-linkage, the coil 

back-EMF waveforms in four machines are also asymmetric, in which positive and negative 

peak values in half cycle are different when n' is odd while slant to right or left in half cycle 

when n' is even, as shown in Fig. 8.12. Similar to the phase flux-linkages, symmetrical phase 

back-EMFs are also obtained in 6I/11R and 18I/11R PS-SFPMMs since the even harmonics 

are completely cancelled in the phase windings, as shown in Fig. 8.13. Meanwhile, due to the 

influence of rated electrical frequency, 24I/14R and 18I/11R PS-SFPMMs exhibit similar 

highest fundamental back-EMF, and then followed by 12I/10R PS-SFPMM, as shown in Fig. 

8.13(b) and Table 8.2. 

 

 

Fig. 8.12. Open-circuit coil back-EMFs for all PS-SFPMMs, 400rpm.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 8.13. Open-circuit phase back-EMFs for all PS-SFPMMs, 400rpm.  

8.3.3 Dq-Axis Inductances 

The dq-axis inductances against current angles for four PS-SFPMMs at rated currents 

(corresponding to 30W copper loss) are compared in Fig. 8.14. It can be seen that the dq-axis 

inductances of PS-SFPMMs are raised with the increase of n'. Meanwhile, the q-axis 

inductances are slightly larger than d-axis inductances when current angle close to 0° but 

reversed when current angle close to 90°. Further, the saliency ratios are close to 1 for all 

machines since difference between dq-axis inductances is quite small. Hence, the potential 

reluctance torque can be negligible in all PS-SFPMMs with different n'. 
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Fig. 8.14. Variation of dq-axis inductances with current angle under the rated currents  

as given in Table 8.1, pc=30W. 

8.3.4 Cogging Torque 

Fig. 8.15 compares the cogging torque for four PS-SFPMMs over one electric period. It can 

be seen that 12I/10R PS-SFPMM exhibits the largest magnitude of cogging torque while 

18I/11R PS-SFPMM has the smallest value.  

According to the analyses shown in section 7.3.5, equation (7.2) can be used to calculate 

the cycle number of cogging torque over one electric period for PS-SFPMMs with different n'. 

Therefore, the cycle numbers of cogging torque for 6I/11R, 12I/10R, 18I/11R and 24I/14R 

PS-SFPMMs with 6-pole outer stator should be 6, 3, 6 and 3 respectively, and these results 

are evidenced by the waveforms of cogging torque shown in Fig. 8.15.  
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(b) Spectra 

Fig. 8.15. Open-circuit cogging torque for all PS-SFPMMs. 

8.3.5 Electromagnetic Torque Characteristics 

Fig. 8.16 shows the waveforms of average torque against current angle at rated currents 

(corresponding to pc=30W) for all machines. Obviously, the reluctance torque can be 

negligible in PS-SFPMMs whatever n' is selected since the optimal current angles are all 

close to 0°. This result is consistent with the conclusion mentioned in section 8.3.3. 

 

 

Fig. 8.16. Variation of average torque with current angle under the rated currents 

 as given in Table 8.1, pc=30W.  

Fig. 8.17 shows the waveforms of torque against rotor position at rated currents 

(corresponding to pc=30W) and Id=0 control. Due to the combined influences of cogging 

torque and back-EMF harmonics, the cycle numbers of torque ripple over one electric period 
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are six for 6I/11R and 18I/11R PS-SFPMMs while those are three for 12I/10R and 24I/14R 

PS-SFPMMs. Further, as shown in Table 8.2, the torque ripple of 6I/11R, 12I/10R, 18I/11R 

and 24I/14R PS-SFPMMs are 2.1%, 26.9%, 3.6% and 20.4% respectively. Obviously, among 

those four machines, 6I/11R PS-SFPMM exhibits the smallest torque ripple while 12I/10R PS-

SFPM has the largest one. 

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. 8.17. Variation of electromagnetic torque with rotor position in PS-SFPMMs  

at rated current as given in Table 8.2, Id=0 control, pc=30W. 
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n' equal to 2, 3, and 4 due to the increased PM usage and enlarged slot area (corresponding to 

the increased rated current under the fixed rated copper loss). 

Fig. 8.18 compares the torque density and torque to PM volume of four machines at the 

rated currents (pc=30W) and Id=0 control. Obviously, as n' increases, the torque density is 

enhanced whilst the PM utilization efficiency (torque to PM volume) is decreased. As shown 

in Table 8.2, the torque densities for 6I/11R, 12I/10R, 18I/11R and 24I/14R PS-SFPMMs are 

28.1, 33.3, 35.1 and 35.4 kN/m
2
 respectively. Since four machines have the same machine 

size, the increase rates of torque density for optimal 6-ople outer stator PS-SFPMMs with n' 

equal to 2, 3, and 4 are consistent with the increase rates of average torque, which are 18.4%, 

25.1% and 25.7% respectively. Moreover, the torque to PM volume (PM utilization 

efficiency) for 6I/11R, 12I/10R, 18I/11R and 24I/14R PS-SFPMMs are 297, 224, 219 and 

211kN/m
2
 respectively. Compared with the optimal 6-pole outer stator PS-SFPMMs with n' 

equal to 1, the PM utilization efficiency is declined by about 24.5%, 26.3% and 29.0% 

respectively in 6-pole outer stator PS-SFPMMs with n' equal to 2, 3, and 4. 

 

 

Fig. 8.18. Torque density and torque to PM volume, Id=0 control, pc=30W.  

The variations of average torque with copper loss are further shown in Fig. 8.19. The 

vertical dashed and dotted line indicates the rated copper loss which is used during the 

optimization of PS-SFPMMs. Obviously, due to the effect of magnetic saturation, the 

increase rate of average torque will be decreased gradually with the rising of copper loss in 

all PS-SFPMMs. Compared with 6I/11R PS-SFPMM, 12I/10R, 18I/11R and 24I/14R PS-

SFPMMs exhibit higher average torque under the same cooper loss over the whole copper 

loss range. The result indicates that PS-SFPMMs with n' > 1 can enhance the torque 
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performance not only in low electric loading but also in high electric loading. Further, 

compared with 18I/11R PS-SFPMM, the average torque of 24I/14R PS-SFPMMs is slightly 

larger at relatively low copper loss (lower than 40W) but smaller at high copper loss (higher 

than 40W) due to the more severe saturation (larger inductance) and leakage flux caused by 

the increased n'.  

 

 

Fig. 8.19. Variation of average torque with copper loss in PS-SFPMMs, Id=0 control. 

 

Table 8.2 Main electromagnetic performance of 6-pole outer stator PS-SFPMMs 

 with optimal Nis/Nr 

Parameter n=1 n=2 n=3 n=4 

Nis/Nr 6I/11R 12I/10R 18I/11R 24I/14R 

Fund. flux-linkage (mWb) 11.60 15.53 15.43 12.30 

Fund. back-EMF (V) 5.36 6.50 7.10 7.20 

Rated electric frequency (Hz) 73.3 66.7 73.3 93.3 

Cogging torque (Nm) 0.08 0.65 0.03 0.18 

Average torque (Nm) 4.47 5.29 5.59 5.62 

Increment of torque (%) 0 18.4 25.1 25.7 

Torque ripple (%) 2.1 26.9 3.6 20.4 

Torque density (kN/m
2
) 28.1 33.3 35.1 35.4 

Total PM volume (mm
3
) 15055.3 23609.7 25569.4 26744.6 

Torque/PM volume (kN/m
2
) 297 224 219 211 

Rated iron loss (W) 1.78 2.43 2.78 3.45 

Rated PM loss (W) 0.12 0.24 0.46 0.88 
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8.3.6 Electromagnetic Torque Characteristics 

Fig. 8.20 shows the variation of total iron losses against with speed at rated copper loss for 

four machines. Obviously, based on the respective optimal rotor pole numbers (different 

electric frequency under the same speed), the saturation level and total saturation area are 

increased when n is increased, as shown in Fig. 8.21. Consequently, together with 

considering the influence of electric frequency, the iron loss of PS-BFPMM is also increased 

simultaneously with the increased n, as shown in Fig. 8.20. According to Table 8.2, the iron 

loss of 6I/11R, 12I/10R, 18I/11R and 24I/14R PS-SFPMMs under the rated copper loss (30W) 

and the rated speed (400rpm) are 1.78, 2.43, 2.78 and 3.45W respectively. 

 

 

Fig. 8.20. Variation of iron loss with speed in PS-SFPMMs, pc =30W, Id = 0 control. 

0

5

10

15

20

25

0 400 800 1200 1600

Ir
o

n
 l

o
ss

 (
W

)

Speed (rpm)

6I/11R
12I/10R
18I/11R
24I/14R

 
 

 
(a) 6I/11R (b) 12I/10R 

0
T

1
.2

5
T

2
.5

T



245 
 

Fig. 8.21. On-load flux density distributions of PS-SFPMMs, pc =30W, Id = 0 control. 

 

Fig. 8.22. Variation of PM loss with speed in PS-SFPMMs, pc =30W, Id = 0 control. 

Fig. 8.22 shows the variation of PM losses against speed at rated copper loss for four 

machines. Obviously, the PM loss of PS-BFPMMs is increased as n increased, which is 

mainly due to the increased total PM volume simultaneously. As shown in Table 8.2, the PM 

loss of 6I/11R, 12I/10R, 18I/11R and 24I/14R PS-SFPMMs under the rated copper loss (30W) 

and the rated speed (400rpm) are 0.12, 0.24, 0.46 and 0.88W respectively. 

8.4 Experimental Verification 

Prototype machine of 12I/10R PS-SFPMM with 6-pole outer stator is made to validate the 

foregoing analyses, as shown in Fig. 8.23. To reduce the cost, existing inner stator with 12 

PMs and 10-pole rotor are used for experiment, and new 6-pole outer is made according to 
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the re-optimized results. Therefore, the parameters of prototype machine as shown in Table 

8.3 are different from the previous globally optimized parameters as given in Table 8.1. In 

addition, for easing the fabrication, lamination bridges with 0.5mm thickness (TBRI) are added 

to both top and bottom edges of PMs to help fixing, as shown in Fig. 8.23(b). Meanwhile, 10-

pole modular rotor is mechanically connected by lamination bridges in the inner side of rotor, 

as shown in Fig. 8.23(d).  

 

  

(a) 6-pole outer stator  (b) Inner stator with 12 PMs 

  

(c) Assembled stator (d) 10-pole rotor 

Fig. 8.23. Prototype of 12I/10R PS-SFPMM with 6-pole outer stator.  
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Table 8.3 Parameters of prototype machine for 12I/10R PS-SFPMM with 6-pole outer stator 

Parameter 12I/10R PS-SFPMM Parameter 12I/10R PS-SFPMM 

Lag (mm) 0.5 TSostto (mm) 1 

Laa (mm) 25 Tosy (mm) 3.4 

Roso (mm) 45 θrop (°) 18 

Rost (mm) 31.75 θrip (°) 25.2 

Riso (mm) 25.75 Trr (mm) 5 

Rist (mm) 10.4 TPM (mm) 5 

θostb (°) 13.20 LPM (mm) 14.35 

θostt (°) 14.30 Tbri (mm) 0.5 

Tosttb (mm) 5.8   

 

Fig. 8.24 shows the measured and predicted phase back-EMF at rated speed (400rpm). Due 

to the end-effect in 25mm stack length machines, the measured fundamental value is ~8% 

less than the prediction. Meanwhile, the measured amplitude of the 5
th

 harmonic is lower than 

that of FE prediction but higher for the 2
rd

 harmonic, which is caused by the imperfect 

manufacture. The measured and predicted open-circuit cogging torque waveforms are 

compared in Fig. 8.25. Considering the measurement error and end-effect, the measured peak 

to peak value agrees well with the FE perdition and the waveforms are relatively consistent. 

Fig. 8.26 shows the waveforms of static torque with rotor position at three different armature 

currents, i.e. 15A, 20A and 25A (IDC=IA=-2IB=-2IC). Furthermore, the measured and 

predicted peak torques corresponding to different currents are compared in Fig. 8.27. It can 

be seen that the differences between the measured and FE predicted results enlarge with 

increased current due to the more severe end effect caused by saturation. In general, the 

measured results agree well with the FE predictions.  
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(a) Waveforms 

 

(b) Spectra 

Fig. 8.24. Measured and FE predicted phase back-EMFs at 400rpm.  

 

Fig. 8.25. Measured and FE predicted open-circuit cogging torques. 
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Fig. 8.26. Measured and FE predicted static torques, IDC=IA=-2IB=-2IC. 

 

Fig. 8.27. Measured and FE predicted peak torque-current characteristics.  

8.5 Summary 

In this chapter, the influences of inner stator and rotor pole combinations on 

electromagnetic performance of PS-SFPMMs with 6-pole outer stator are investigated.  

To maximize the torque performance, the PMs of inner stator pole should be aligned with 

outer stator pole when inner/outer stator pole ratio n' (n'=Nis/Nos) is odd while the iron rib of 
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integers except the phase number and its multiples. The analysis results indicate that the 

optimal Nr is closed to (Nos+Nis)/2 and it is odd when n' is odd while it is even when n' is even. 
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obtained when the ratio of Min(Nos, Nis) to the greatest common divisor of Min(Nos, Nis) and 

rotor pole numbers Nr is even. Further, based on the condition of maximum average torque 

under rated copper loss, 6I/11R, 12I/10R, 18I/11R and 24I/14R are the optimal inner 

stator/rotor combinations of 6-pole outer stator PS-SFPMMs with n' equal to 1, 2, 3 and 4 

respectively. Compared with 6I/11R (n'=1) PS-SFPMM at rated copper loss and same 

machine size, the average torque is improved by about 18.4%, 25.1% and 25.7% respectively 

for 12I/10R (n'=2), 18I/11R (n'=3) and 24I/14R (n'=4) PS-SFPMMs. Among these four 

machines, 6I/11R and 18I/11R PS-SFPMMs exhibit more symmetrical phase back-EMF, 

smaller cogging torque and lower torque ripple. The analyses have been validated by both the 

FEA and measurements.  
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CHAPTER 9 

General Conclusions and Future Works 

9.1  General Conclusions 

In this thesis, the investigation is focused on the electromagnetic performance of novel 

stator permanent magnet (PM) and DC field excited synchronous machines which are 

evolved from the variable flux reluctance machines (VFRMs). All theoretical analyses are 

carried out by the finite element method and validated by experiments. The details of each 

research topic are summarized in the following sub-sections. 

9.1.1 Variable Flux Reluctance Machines 

A. Influence of Stator and Rotor Pole Arcs on Electromagnetic Torque 

Since the VFRM was firstly developed from the conventional 6/4 stator/rotor pole SRM by 

neglecting the current harmonics of orders higher than 2 and splitting the original winding 

into AC armature and DC field windings, previous investigations on VFRMs adopt the equal 

stator pole arc and stator slot opening. However, VFRMs can be considered as one type of 

stator DC field excited synchronous machines. Therefore, equal stator pole arc and stator slot 

opening may not be the optimal for VFRMs.  

In Chapter 2, the influence of stator and rotor pole arcs on electromagnetic torque of 

VFRMs having different stator and rotor pole combinations is investigated. It is found that: 

(1) The optimal rotor pole arc to rotor pole pitch ratio is ~1/3; 

(2) The optimal stator pole arc is equal to or slightly smaller than the optimum rotor pole 

arc; 

(3) Compared with 6-pole stator VFRMs having equal stator pole arc and stator slot 

opening under the rated 30W copper loss, the average torque of 4-, 5-, 7- and 8-pole 

rotor VFRMs with the optimal stator and rotor pole arcs are enhanced by 1%, 4%, 30.7% 

and 72.9% respectively; 

(4) The 6/7 stator/rotor pole VFRM exhibits the largest torque density when the constraint 

of equal stator pole arc and stator slot opening is removed, which is different from the 

previous conclusion. 
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B. Novel Multi-tooth VFRMs 

The multi-tooth stator pole structure is widely employed to further improve the torque 

capability, such as in hybrid stepper machines, switched reluctance machines and switched 

flux machines. By introducing the multi-tooth structure into VFRM, novel multi-tooth VFRM 

is proposed and investigated in Chapter 3. It is found that: 

(1) Similar to the single-tooth VFRM, the choice of rotor pole number in multi-tooth 

VFRM is also flexible and can be any integers except the phase number and its 

multiples; 

(2) Symmetrical bipolar phase flux-linkage and phase back-EMF waveforms can be 

obtained when the ratio of stator pole number to greatest common divisor (GCD) of 

stator- and rotor-pole numbers is even; 

(3) Under the same rated copper loss and the same stator outer radius as well as 6-pole 

stator, 4-tooth per stator pole VFRMs exhibit the highest average torque when the 

stator and rotor pole numbers satisfy with Nr=nNs±1 (n is the number of small teeth 

per stator pole); 

(4) Compared with the optimal 6/7 stator/rotor pole single-tooth VFRM, the 6/25 

stator/rotor pole 4-tooth VFRM has more sinusoidal and larger back-EMF, negligible 

cogging torque, lower torque ripple and higher torque capability at relatively low 

copper loss (24% higher under the rated 30W copper loss); 

(5) Similar to single-tooth VFRMs, 4-tooth VFRMs with Nr=nNs±1 exhibit more 

sinusoidal back-EMF, lower torque ripple and larger torque than those of VFRMs with 

Nr=nNs ±2.  

9.1.2 Novel Biased Flux PM Machines  

A. Machine Topologies and Influence of PM Location on Electromagnetic Performance 

Generally, by replacing DC field windings with PMs, higher torque density can be 

expected. Therefore, novel biased flux PM machines (BFPMMs) which are developed from 

VFRMs by replacing all DC field windings with PMs are proposed and investigated in 

Chapter 4. Consequently, the features of VFRMs are inherited in the BFPMMs, and can be 

summarised as:  

(1) Doubly salient structure; 

(2) Concentrated non-overlapping armature windings;  
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(3) Flexible choice of rotor pole number, which can be any integers except phase number 

and its multiples; 

(4) Symmetric bipolar phase flux-linkage and phase back-EMF waveforms can be 

obtained when the stator and rotor pole combinations satisfy with the ratio of stator 

pole number to greatest common divisor (GCD) of stator- and rotor-pole numbers 

equal to even. 

The PM locations in the stator of BFPMMs are flexible and can be moved from surface to 

bottom of stator pole and even to stator yoke since the main magnetic circuits are consistent. 

Therefore, the influence of PM location on electromagnetic performance of BFPMMs is 

investigated. Then, BFPMMs with three typical PM locations are compared with VFRMs 

under the same rated copper loss and the same machine size. It is found that: 

(1) The 6/7 stator/rotor pole is the optimal combination for both SM-BFPMM (PMs 

mounted on the surface of stator pole) and SYM-BFPMM (PMs located in the stator 

yoke), which are consistent with that of VFRM; 

(2) Among the three BFPMMs, SYM-BFPMM has largest torque density while SM-

BFPMM has the highest PM utilization efficiency; 

(3) Compared with VFRM under 6/7 stator/rotor pole combination, the average torques 

are enhanced by 64.5%, 51.0% and 72.1% respectively in SM-BFPMM, MTM-

BFPMM and SYM-BFPMM. 

B. Influence of Flux Focusing on Electromagnetic Performance 

In Chapter 5, various flux focusing configurations are employed in SYM-BFPMM to 

further enhance the torque density and PM utilization efficiency. The results show that: 

(1) The average torque of SYM-BFPMM is enhanced by ~19%, 30.3% and 54.2% 

respectively by adopting flux focusing configurations with inner type (IT), outer type 

(OT) and combined type (CT); 

(2) The PM utilization efficiency is enhanced by 19.5%, 38.6% and 23.3% respectively; 

(3) The torque density is enhanced by 19.3%, 18.8% and 40.3% respectively. 

C. Performance Comparison between BFPMM and DSPMM 

Based on the inner type flux focusing configuration, the optimized 6/4 stator/rotor pole IT-

DSPMM is compared with optimized 6/7 stator/rotor pole IT-BFPMM under the same rated 

copper loss and machine size as well as optimal current angle. The results show that: 

(1) The selection of rotor pole number in BFPMM is more flexible than that in DSPMM; 
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(2) The phase flux-linkage waveform is bipolar in BFPMM while it is unipolar in 

DSPMM; 

(3) The phase back-EMF waveforms is close to sinusoidal (symmetrical) in BFPMM 

while it is close to trapezoidal (asymmetric) in DSPMM; 

(4) IT-BFPMM exhibits ~ 18% higher average torque and 80% lower torque ripple than 

IT-DSPMM; 

(5) The unbalance between phases which is observed DSPMMs is overcome in the 

BFPMMs. 

9.1.3 Novel Partitioned Stator PM Synchronous Machines  

A. Novel Partitioned Stator Biased Flux PM Machine 

The partitioned stator configuration, which fully utilized the inner space, is an effective 

solution to solve the confliction among the slot area, PMs and stator irons of BFPMM which 

limits the possibility of further enhancing the torque density. By introducing the partitioned 

stator configuration into BFPMM, novel partitioned stator BFPMM (PS-BFPMM) is 

proposed and investigated in Chapter 6. Two PM stator configurations, i.e. SPM stator and 

Spoke-IPM stator, which are evolved from BFPMMs with PM mounted on the surface of 

stator pole and located in the stator yoke, are proposed and investigated. The results show 

that: 

(1) PS-BFPMM with SPM stator and PS-BFPMM with Spoke-IPM stator exhibit 120% 

and 145% larger average torque than SM-BFPMM and SYM-BFPMM respectively 

under the same machine size and the same rated copper loss as well as 12/10 

(inner/outer) stator/rotor pole combination; 

(2) Compared with PS-BFPMM with SPM stator, PS-BFPMM with Spoke-IPM stator has 

52.2% higher phase back-EMFs and 43% larger average torque but 17.4% lower PM 

utilization efficiency; 

(3) For 12I/12O stator pole PS-BFPMMs, the optimal rotor pole numbers are 11 and 10 

respectively in PS-BFPMM with SPM stator and PS-BFPMM with Spoke-IPM stator 

since the highest torque densities and PM utilization efficiencies are achieved. 

B. Influences of the Ratio of Inner/Outer Stator Pole and the Relative Position of Inner  

     and Outer Stators on Electromagnetic Performance 

Based on Spoke-IPM stator configuration and minimum 6-pole inner and outer stators, the 

influences of the ratio of inner/outer stator pole and the relative position of inner and outer 
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stators on electromagnetic performance of partitioned stator PM synchronous machines are 

analysed and compared in Chapter 7 and Chapter 8. The results show that: 

(1) To obtain the bipolar symmetrical phase flux-linkage and phase back-EMFs, the ratio 

of Min(Nis, Nos) to the greatest common divisor of Min(Nis, Nos) and rotor pole 

numbers Nr should be even (Nis and Nos are the numbers of inner and outer stator pole); 

(2) The optimal rotor pole number for 12I/12O PS-BFPMM (Nis/Nos=1), 12I/12O PS-

SFPMM (Nis/Nos=1), 6I/12O PS-SFPMM (Nis/Nos=1/2) and 12I/6O PS-SFPMM 

(Nis/Nos=2) are 10, 11, 11, and 10 respectively; 

(3) Compared with 12I/12O/10R PS-BFPMM (Nis/Nos=1), 12I/12O/11R PS-SFPMM 

(Nis/Nos=1) exhibits 28% larger average torque and 15% higher PM utilization 

efficiency under the rated copper loss; 

(4) Compared with 12I/12O/11R PS-SFPMM (Nis/Nos=1) under the rated copper loss, 

12I/6O/10R PS-SFPMM (Nis/Nos=2) exhibits ~2% larger average torque and 8% 

higher PM utilization efficiency while 6I/12O/11R PS-SFPMM has 49% smaller 

average torque and 29% lower PM utilization efficiency; 

(5) When employing the alternate pole wound winding in 6I/12O/11R PS-SFPMM, the 

average torque and the PM utilization efficiency are enhanced by 36% and 55% 

respectively. 

C. Influence of Inner Stator and Rotor Pole Combinations on Electromagnetic  

     Performance of PS-SFPMMs 

Since higher torque density can be observed in PS-SFPMMs when Nis/Nos>1, the influences 

of inner stator and rotor pole combinations on electromagnetic performance of PS-SFPMMs 

with 6-pole outer stator are also investigated in Chapter 8. It is found that: 

(1) To maximize the torque performance, the PMs of inner stator pole should be aligned 

with outer stator pole when Nis/Nos is odd while the iron rib of inner stator pole should 

be aligned with outer stator pole when Nis/Nos is even; 

(2) The optimal Nr is closed to (Nos+Nis)/2 and it is odd when n is odd while it is even 

when n is even; 

(3) Based on the condition of maximum average torque under rated copper loss, 6I/11R, 

12I/10R, 18I/11R and 24I/14R are the optimal inner stator/rotor combinations of 6-

pole outer stator PS-SFPMMs with Nis/Nos equal to 1, 2, 3 and 4 respectively; 

(4) Compared with 6I/11R (Nis/Nos=1) PS-SFPMM at the rated copper loss and the same 

machine size, the average torque is improved by about 18.4%, 25.1% and 25.7% 
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respectively for 12I/10R (Nis/Nos=2), 18I/11R (Nis/Nos=3) and 24I/14R (Nis/Nos=4) PS-

SFPMMs. 

9.2  Comparison between Proposed Machines and Conventional Surface-

Mounted PM machines 

In this section, the main electromagnetic performance and material cost of selected 

proposed machines are compared with the conventional 12-slot 10-pole surface-mounted PM 

machine (SPMM). 

9.2.1 Machine Topologies and Main Parameters of Conventional SPMM 

Fig. 9.1 shows the topologies of selected proposed machines and conventional SPMM. All 

of the machines are globally optimized with the objective of maximum average torque under 

the same rated 30W copper loss and the same machine size by genetic algorithm (ANSYS 

Maxwell). To simplify the drawing in this section, the selected proposed machine and 

conventional SPMM are defined as M1 to M10 respectively, as shown in Fig. 9.1. Moreover, 

the main parameters of conventional SPMM are listed in Table 9.1. 

 

   

(a) 6S/7R VFRM (M1) (b) 6S/25R MT-VFRM (M2) (c) 6S/7R BFPMM-I (M3) 
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(g) 12I/12O/11R PS-SFPMM 

(M7) 

(h) 6I/12O/11R PS-SFPMM 

(M8) 

(j) 12I/6O/10R PS-SFPMM 

(M9) 

 

 

 

 (k) 12S/10P SPMM (M10)  

Fig. 9.1. Topologies of proposed machines and conventional SPMM. 

 

Table 9.1 Main parameters of conventional 12S/10P SPMM (M10) 

Conventional SPM machine (M10) 

Number of stator poles 12 Stator yoke thickness (mm) 3.4 

Number of rotor poles 10 Stator tooth body pole arc (°) 13.6 

Number of phases 3 Stator tooth tip pole arc (°) 4.1 

Turns per phase 72 Stator tooth tip thickness (Opening) (mm) 1 

Rated speed (rpm) 400 Stator tooth tip thickness (Body) (mm) 2.2 

Rated copper loss (W) 30 Rated AC current (Arms) 17.7 

Packing factor 0.5 Rated current density (Arms/mm
2
) 8.61 

Air-gap length (mm) 0.5 PM pole arc (°) 36 

Active axial length (mm) 25 PM thickness (mm) 3.5 

Radius of shaft (mm) 10.4 Total PM volume (mm
3
) 14101.8 

Stator outer radius (mm) 45 Magnetic remanence (T) 1.2 

Stator inner radius (mm) 27.9 Relative PM permeability 1.05 
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9.2.2 Electromagnetic Performance 

A. Electromagnetic Torque  

Fig. 9.2 shows the torque waveforms of selected proposed machines and conventional 

SPMM under the rated copper loss and Id=0 control. Then, the average torque and torque 

ripple of all machines under the rated copper loss are further shown in Fig. 9.3. Obviously, 

among the selected proposed machines, 12I/12O/11R PS-SFPMM (M7) and 12I/6O/10R PS-

SFPMM (M9) have the similar largest average torque. Then, compared with the conventional 

12S/10P SPMM (M10), only the 12I/12O/10R PS-BFPMM-II (M6), 12I/12O/11R PS-

SFPMM (M7) and 12I/6O/10R PS-SFPMM (M9) exhibit the relatively larger average torques.  

 

 

Fig. 9.2. Comparison of torque waveforms, Id=0 control, pc=30W. 

          

Fig. 9.3. Comparison of average torque and torque ripple, Id=0 control, pc=30W. 
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Moreover, as shown in Fig. 9.3, 12I/12O/11R PS-BFPMM-I (M5) and 12I/12O/11R PS-

SFPMM (M7) have the lowest torque ripple among the selected proposed machines. Further, 

compared with conventional 12S/10P SPMM, 6S/7R VFRM (M1), 6S/7R BFPMM-I (M3), 

6S/7R BFPMM-II (M4) and 12I/6O/10R PS-SFPMM (M9) exhibit larger torque ripples 

while the other selected proposed machines have lower torque ripples. 

Fig. 9.4 compares the PM volume and the torque per PM volume (PM utilization efficiency) 

under the rated copper loss with Id=0 control. It can be seen that 12I/12O/11R PS-SFPMM 

(M7) consumes the largest PM material among the selected proposed PM machines. In 

addition, compared with the selected proposed PM machines, conventional 12S/10P SPMM 

(M10) exhibits higher PM utilization efficiency except the 6S/7R BFPMM-I (M3). 

 

 

Fig. 9.4. Comparison of PM volume and torque per PM volume, Id=0 control, pc=30W. 

The average torques of all machines under the different copper loss are further compared in 

Fig. 9.5. Obviously, among the selected proposed machines, 12I/6O/10R PS-SFPMM (M9) 

exhibit the largest torque capability during the relative low copper loss range while 

12I/12O/11R PS-SFPMM (M7) exhibit the largest torque capability during the relative high 

copper loss range. In addition, compared with conventional 12S/10P SPMM, 12I/12O/11R 

PS-SFPMM (M7) and 12I/6O/10R PS-SFPMM (M9) exhibit the larger torque capability 

during the whole copper loss range while 12I/12O/10R PS-BFPMM-II (M6) has the similar 

torque capability. 
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Fig. 9.5. Characteristic comparison of average torque against copper loss, Id=0 control. 

B. Iron Loss, PM Loss and Efficiency 

The iron losses of selected proposed machines and conventional 12S/10P SPMM under 

different rotor speed are compared in Fig. 9.6. Obviously, in the whole speed range, 6S/25R 

MT-VFRM (M2) has the largest iron loss while 6S/7R BFPMM-I (M3) and 6S/7R BFPMM-

II (M4) exhibit similar smallest values. Meanwhile, among all the selected proposed 

machines, only 6S/7R VFRM (M1), 6S/7R BFPMM-I (M3) and 6S/7R BFPMM-II (M4) 

have lower iron losses than that of conventional 12S/10P SPMM (M10).  

 

 

Fig. 9.6. Characteristic comparison of iron loss against speed, Id=0 control, pc=30W. 

Fig. 9.7 compares the PM losses of selected proposed machines and conventional 12S/10P 
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6S/25R MT-VFRM (M2) have no PM losses since these two machine are DC field excited 

machines. Further, for the PM excited machines, 12I/12O/11R PS-SFPMM (M7) exhibits the 

lowest PM loss in the whole speed range while 6S/7R BFPMM-I (M3) and 12I/6O/10R PS-

SFPMM (M9) have the similar highest values. Moreover, when compared with conventional 

12S/10P SPMM (M10), only 6S/7R BFPMM-I (M3) and 12I/6O/10R PS-SFPMM (M9) 

exhibit larger PM losses. 

 

 

Fig. 9.7. Characteristic comparison of PM loss against speed, Id=0 control, pc=30W. 

Based on the rated copper loss and the average torque, iron loss, PM loss as shown in Fig. 

9.3, Fig. 9.6, and Fig. 9.7 respectively, the efficiency of selected proposed machines and 

conventional 12S/10P SPMM under different speed are shown in Fig. 9.8. Obviously, PM 

excited machines (M3-M10) have higher efficiency than those of DC field excited machines 

(M1-M2) since the copper loss produced by DC field windings are eliminated in the PM 

excited machines. Further, among the selected proposed PM machines, 12I/12O/11R PS-

SFPMM (M7) and 12I/6O/10R PS-SFPMM (M9) have the highest efficiency in the whole 

speed range. Meanwhile, only these two machines exhibit higher efficiencies than the 

conventional 12S/10P SPMM (M10). Moreover, 12I/12O/10R PS-BFPMM-II (M6) has 

similar efficiency of 12S/10P SPMM (M10) in the whole speed range. 
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Fig. 9.8. Characteristic comparison of efficiency against speed, Id=0 control, pc=30W. 

9.2.3 Material Weight and Cost Evaluation 

According to [CHU14], the costs of lamination, copper and PM are £1/kg, £7/kg and 

£15/kg respectively (maybe different from the current costs). Therefore, together with 

considering the mass of materials as shown in Table 9.2, the cost evaluation of the selected 

proposed machines and conventional SPMM are obtained and shown in Fig. 9.9. Obviously, 

among the selected proposed machines, the 6S/25R MT-VFRM (M2) has the lowest total 

material cost while the 12I/6O/10R PS-SFPMM (M9) has the highest total material cost. 

Moreover, 12I/12O/10R PS-BFPMM-II (M6), 12I/12O/11R PS-SFPMM (M7), 6I/12O/11R 

PS-SFPMM (M8) and 12I/6O/10R PS-SFPMM (M9) all have higher total material costs than 

that of conventional 12S/10P SPMM.  

 

Table 9.2 Mass of materials for proposed machines and SPMM 

Mass of materials M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Lamination (kg) 0.587 0.776 0.649 0.641 0.639 0.603 0.517 0.639 0.550 0.678 

Copper (kg) 0.505 0.290 0.398 0.328 0.283 0.241 0.284 0.291 0.346 0.298 

PM (kg) 0 0 0.027 0.058 00096 0.170 0.186 0.117 0.175 0.104 
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Fig. 9.9. Comparison of material costs. 

9.3  Discussion on Potential Application Fields and Limitation 

9.3.1 Scalability of the Designs and Findings 

In this thesis, the investigations of proposed machines are based on the 45mm outer stator 

radius and 25mm stack length. Therefore, it should be noted that part of the findings may be 

subject to the limitation of machine size and inapplicable to the large or small scale machines 

since the rated operating conditions will be changed accordingly. The scalability of the 

findings in this thesis is briefly summarized as follows.  

A. Potential Inapplicable Findings 

(1) The optimal small tooth number per stator pole n in MT-VFRPMs. 

(2) The optimal (inner/outer) stator/rotor pole number combinations for the proposed 

machines. 

B. Applicable Findings 

(1) The methods to enhance the torque performance: a) employing the unequal stator pole 

arc and slot opening stator structure in VFRMs; b) PM replacing the DC field coils in 

VFRMs; c) changing the PM locations in BFPMMs; d) employing the flux focusing 

stator structure in BFPMMs; 5) introducing the partitioned stator configuration in PS-

BFPMM. 

(2) The general conclusions about the influence of the relative position and ratio between 

the inner and outer stators on the electromagnetic performance of partitioned stator PM 

synchronous machines. 
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9.3.2 Potential Application Fields 

A. VFRMs 

The stator and rotor structures of VFRMs are simple and robust. Meanwhile, both the DC 

field and AC armature windings are located in the stator. Consequently, the slip-rings and 

brushes are eliminated in VFRMs. Therefore, VFRMs are suitable for the application fields 

which require high reliability under harsh operating environmental conditions. Moreover, 

VFRMs can also be considered as an alternative option of conventional rotor DC field excited 

synchronous machines. 

B. BFPMMs 

According to the analyses in Chapter 5, BFPMMs exhibit higher torque density and lower 

torque ripple than DSPMMs. Meanwhile, the drawback of phase unbalance in DSPMMs is 

also eliminated in BFPMMs. Further, the usage efficiency of dc-link voltage in BFPMMs is 

much higher than that of DSPMMs. Therefore, BFPMMs can be considered as an alternative 

option of DSPMMs.  

C. PS-BFPMMs and PS-SFPMMs 

According to the analyses shown in section 9.2, PS-BFPMMs (M6) and PS-SFPMMs (M7, 

M9) exhibit larger torque density and higher efficiency than conventional SPMM (M10). 

Therefore, PS-BFPMMs and PS-SFPMMs can be considered as an alternative option of 

conventional SPMMs. Moreover, PS-BFPMMs and PS-SFPMMs are also suitable for the 

application fields which require high torque capability within small machine size (high torque 

density). 

9.3.3 Limitation and Challenge for Mechanical Integrity 

A. VFRMs 

As shown in Fig. 9.1, VFRMs (M1, M2) have the simple and robust mechanical structure. 

Therefore, the mechanical strength of VFRMs is desirable. 

B. BFPMMs 

As shown in Fig. 9.1, the mechanical integrity of BFPMM-I (M3) is relatively good since 

the stator and rotor structures are integrated and the PMs are mounted on the surface of stator 

pole. However, for BFPMM-II (M4) with PMs located in the stator yoke, the stator is 
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consisted by the segment pieces. Hence, the mechanical integrity of BFPMM-II (M4) is 

undesirable and poor than that of BFPMM-I (M3). Meanwhile, the segmented stator structure 

also causes the difficulty in the assembling and precise positioning. To solve this problem, 

0.5mm lamination bridges can be added in the outer edge of stator to improve the mechanical 

integrity of stator. However, the electromagnetic performance will be reduced simultaneously.  

C. PS-BFPMMs and PS-SFPMMs 

As shown in Fig. 9.1, the partitioned stator (PS) machines are composed by three 

components, i.e. segment rotor, stator with armature windings and stator with PMs (or DC 

field coils). Due to increased components, the precise assembling for PS machines is more 

difficult than that for SS machines, especially for the segment rotor. Therefore, to enhance 

the mechanical integrity and convenient for the assembling, the segmented rotor is 

mechanically connected by the 0.5mm lamination bridges at the side close to the stator with 

PMs, although it will reduce the electromagnetic torque. Moreover, for PS machine with 

spoke-IPM stator (such as M6, M7), 0.5mm lamination bridges can also be added at the both 

top and bottom edges of PMs to help fixing the PMs and enhance the mechanical integrity.  

9.4  Future Works 

Based on the aforementioned investigation in this thesis, the future research can be listed as 

follows.  

A. Comparative study of BFPMMs with single stator, partitioned stator and dual stator  

     configurations. 

The BFPMMs with single- and partitioned-stator configurations are investigated and 

compared in Chapter 4, Chapter 5 and Chapter 6 respectively. Correspondingly, for a 

systematic research, the investigation on BFPMMs with dual stator configuration is necessary. 

Therefore, comparative study of BFPMMs with single stator, partitioned stator and dual 

stator configuration is one topic of future research.  

B. Investigation on novel topologies of hybrid excited BFPMMs, including both single  

     stator and portioned stator configurations. 

Generally, hybrid excited machines can be evolved from the original PM machines. 

Meanwhile, the PM utilization efficiency can be enhanced (or PM usage can be reduced) 

while the torque performance can be maintained similar to the original PM machines. 

Moreover, due to the introduced DC field windings, the flux weakening performance can be 
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enhanced since the excitation field is adjustable. Therefore, the investigation on the 

topologies and electromagnetic performance of hybrid excited BFPMMs considering the 

single- and partitioned-stator configurations is desirable and can be one topic of further 

research. Furthermore, the topologies of hybrid excited SFPMMs can be considered as the 

references of hybrid excited BFPMMs with single- and partitioned-stator configurations. It 

should be noted that the topologies of hybrid excited PS-BFPMMs will be more flexible than 

those of SS-BFPMMs since the PMs and armature windings are located in two separated 

inner and outer stators. 

C. Dynamic simulation and control of BFPMMs 

In this thesis, the investigation is focused on the electromagnetic performance of novel 

stator DC field excited and PM synchronous machines. Meanwhile, the experiments are also 

focused on the static performance. However, to be a systematic research, the investigation on 

the control strategy, dynamic simulation and experiment are necessary and can be considered 

as one topic of future research. 

D. Measurement and comparison of efficiency in BFPMMs 

Efficiency map is one of the key specifications for electric vehicle (EV) application. 

Therefore, when considering the application field of BFPMMs, the investigation of efficiency 

map of BFPMMs with single- and partitioned-stator configuration is desirable and can be one 

topic of further research. 

E. Multi-PMs Combinations in BFPMMs 

According to the analyses in Chapter 4 and Chapter 5, the PM location of BFPMMs can be 

moved from the surface to the bottom of stator pole and even to the stator yoke since the 

main magnetic circuit is similar. Moreover, according to the [AFI16], the PM also can be 

located in the stator slot. Since the machine topology proposed in [AFI16] is same as the 

BFPMMs except the PM location, the multi-PM combinations can be employed in BFPMMs, 

such as the PMs can be located in the stator yoke (stator pole) and stator slot simultaneously. 

Meanwhile, the flux focusing structure (such as used in M4 as shown in Fig. 9.1) can also be 

adopted in BFPMMs with multi-PM combinations (for both PM located in stator yoke and 

stator slot). Moreover, the Multi-PM combination also can be extended to PS-BFPMMs.  
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APPENDIX A 

COGGING TORQUE AND STATIC TORQUE  

TEST METHOD 

The test method described in [ZHU09] is employed in this thesis to measure the cogging 

torque and also to measure the static torque, as shown in Fig. A.1. The stator of measured 

machine is clamped in the jaws of a lathe, while the rotor shaft is attached with a balanced 

beam. One side of the balanced beam is resting on the tray of a digital weight gauge, and a 

screw is used to adjust the level of balanced beam with the aid of gradienter. A pre-load 

weight is added on the measurement end of balanced beam to ensure that the balanced beam 

is always in contact with the digital weight gauge during the testing process. The degree 

calibration on the faceplate of the lathe is used to turn the stator in the precise steps and also 

indicate the corresponding rotor position. 

 

 

Fig. A.1. Typical test rig set-up for cogging torque and static torque measurements. 
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Fig. A.2. DC current supply connection for static torque waveform test. 

To measure the cogging torque waveform, the stator is manually rotated within a cogging 

torque period, and the data displaying on the digital weight gauge (Fw) will be recorded 

together with corresponding rotor position. Then, according to (A.1), the data can be 

transferred to cogging torque against with rotor position as cogging torque waveform 

[ZHU09].  

𝑇𝑐 = (𝐹𝑤 −𝑀𝑝𝑟𝑒−𝑙𝑜𝑎𝑑)𝑔𝐿 (A.1) 

where F is the reading from the digital weight gauge, Mpre-load is the pre-load weight, g is 

gravity acceleration and L is arm length of the balanced beam from the center of rotor shaft to 

the acting point on the digital weight gauge.  

Similar to cogging torque waveform, the static torque waveform can be measured in the 

same method by supplying three-phase armature windings with DC current as IDC=IA=-2IB=-

2IC, as shown in Fig. A.2. Furthermore, the thermometer and forced air cooling fan are used 

to ensure the temperature of armature winding within the safety limitation.  
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APPENDIX B 

NOVEL CONSEQUENT POLE SYNCHRONOUS MACHINES 

WITH CONCENTRATED WINDINGS AND PERMANENT 

MAGNETS ON STATOR POLE SURFACE 

In Chapter 4, the electromagnetic performance of biased flux PM machines (BFPMMs) 

considering the influence of PM locations have been investigated. Based on the surface 

mounted BFPMM (SM-BFPMM), when half of PMs (either all S pole PMs or N pole PMs) 

are removed and replaced by laminations, novel consequent pole SM-BFPMM (CP-SM-

BFPMM) is proposed and investigated in this chapter. 

B.1 Introduction 

Variable flux reluctance machine (VFRM) which adopts doubly salient stator and rotor 

structure with concentrated windings is proposed and investigated in [LIU12b] [LIU12c] 

[LIU13] [LIU14] [KAS11] [FUK12]. Similar to doubly fed doubly salient machine 

(DFDSM), VFRM is also developed from switched reluctance machine (SRM) by 

introducing stator DC field winding. However, the main difference between these two 

machines is that the DC field winding is wound around each stator pole in VFRM but full-

pitched in DFDSM [LIU13] [LI95]. Hence, the flux paths for each phase in the stator of 

VFRM are identical. Meanwhile, the choice of rotor pole number in VFRM also significantly 

exceeds that in SRM and DFDSM, as it can be any integers except the phase number and its 

multiples. Further, since all the even emf harmonics which cause the emf asymmetry in each 

coil can be completely cancelled in phase winding when using special stator/rotor pole 

combinations, such as 6/5, 6/7, 12/10, 12/11, 12/13 and 12/14 etc, more sinusoidal phase 

flux-linkage and back-EMF waveforms will be obtained in VFRM [LIU12b] [LIU14]. 

However, similar to other DC excitation machines, the torque density of VFRM is 

relatively low when compared with permanent magnet (PM) machines. Therefore, the 

method which replaces DC field windings with PMs to improve the torque performance is 

adopted in VFRM. Alternate polarity PMs can be equivalently located in the stator back iron 

at an interval of pole number equal to one or housed in the adjacent stator poles. 

Correspondingly, these two machines are designated as stator yoke mounted biased flux PM 

machine (BFPMM) (SYM-BFPMM) and surface mounted BFPMM (SM-BFPMM) in 
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[WU14] and [SHI14b] respectively. Similar to VFRM, both SYM-BFPMM and SM-BFPMM 

have flexible stator and rotor pole combination as well as sinusoidal phase flux-linkage and 

back-EMF. Meanwhile, the copper loss of DC field winding in VFRM is eliminated in both 

SYM-BFPMM and SM-BFPMM. In addition, the PM positions of SM-BFPMM can be 

moved from the surface to the bottom of stator pole since the main magnetic circuit is similar 

(even can be moved to stator yoke as SYM-BFPMM) [SHI14b]. However, the optimal torque 

performance for BFPMMs with PMs located in the stator pole is obtained when the PMs are 

mounted on the surface of stator pole due to the lowest flux leakage.  

Based on SM-BFPMM, when half of PMs (either all S pole PMs or N poles PMs) are 

removed and replaced by laminations, novel consequent pole SM-BFPMM (CP-SM-BFPMM) 

is proposed and investigated in this Appendix. Firstly, the operation principle and stator/rotor 

pole combinations are illustrated. Then, unequal stator pole arc technique (UT) is used to 

enhance the torque performance of CP-SM-BFPMMs. The electromagnetic performances of 

CP-SM-BFPMMs with UT will be compared with the CP-SM-BFPMMs with equal stator 

pole arc technique (ET) under both 6/5 and 6/7 stator/rotor pole combinations. All of the 

machines are optimized for maximum average torque at the rated 30W copper loss.  

B.2 Operation Principle and Stator/Rotor Pole Combinations 

B.2.1 Machine Topologies and Operation Principle 

As shown in Fig. B.1(a), doubly salient stator and rotor structure with concentrated 

armature winding are adopted in SM-BFPMM. Meanwhile, alternate polarity PMs are housed 

on the surface of adjacent stator poles. Further, when half of PMs (either all S Pole PMs or N 

pole PMs) are removed and replaced by laminations, novel consequent pole SM-BFPMM 

(CP-SM-BFPMM) is developed as shown in Fig. B.1(b). Compared with SM-BFPMM, the 

main difference is that the PM flux produced by PM in one stator pole is flowed into adjacent 

stator poles without PMs to form complete flux loops with rotor poles together in CP-SM-

BFPMM, as shown in Fig. B.1. In other words, the PM flux, which circulated from two 

adjacent stator poles with PM housed, formed a virtual PM with opposite polarity in the stator 

pole without PM housed. Hence, similar phase flux-linkage can be obtained in CP-SM-

BFPMM. 
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(a) SM-BFPMM. 

 

(b) CP-SM-BFPMM. 

Fig. B.1. Structure evolution from SM-BFPMM to CP-SM-BFPMM. 

In order to produce the positive average torque over one electric period in CP-SM-BFPMM, 

positive current should be injected into armature coil to enhance the air-gap field around the 

stator pole by producing the same polarity flux with PM flux when the rotor pole moves from 

unaligned position to aligned position as well as negative current is injected into armature 

coil to weaken the air-gap field to help the rotor pole moving smoothly from aligned position 

to unaligned position, Fig. B.2(a) and (b). (Aligned position is defined as the position of one 

rotor pole aligned with one stator pole with PM housed.) Further, as a combined result of 

three phase operation, continuous output torque will be generated. 

 

  

(a) Moving form unaligned to aligned 

position 

(b) Moving from aligned to unaligned 

position 

Fig. B.2. Operation principle schematics of CP-SM-BFPMM. 

Similar to SM-BFPMM, CP-SM-BFPMM is also one kind of stator PM synchronous 

machines due to similar operation principle. Hence, the expression of electromagnetic torque 

in PM synchronous machines [ZHU05] can be extended to CP-SM-BFPMM, e.g. 
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𝑇 =
3

2
𝑁𝑟𝜓𝑃𝑀𝐼𝑞 (B.1) 

where Nr is the number of rotor poles, ψPM is the PM flux-linkage, Iq is the q-axis current.  

B.2.2 Stator and Rotor Pole Combinations 

For CP-SM-BFPMM, the choice of stator and rotor pole combinations is flexible. The 

stator pole number Ns should be the multiples of phase number while the rotor pole number 

Nr can be any integers except phase number and its multiples. Hence, the selection of Ns and 

Nr can be summarized as 

𝑁𝑠 = 𝑘𝑚 (k = 1, 2…) (B.2) 

𝑁𝑟 = 𝑁𝑠 ± 𝑗 (Nr ≠ kim, j=1, 2…, ki=1. 2…) (B.3) 

where m is the phase number, k, j and ki are integers. 

By using the conventional coil-EMF vector method, the coil connection of armature 

windings for CP-SM-BFPMM can be determined [ZHU10]. According to the equation (B.4), 

when the mechanical degree αm and rotor pole number Nr is determined, the electrical degree 

αe between two adjacent coil-EMF vectors can be calculated.  

𝛼𝑒 = 𝑁𝑟𝛼𝑚 (B.4) 

Fig. B.3 shows the topologies of 6-stator pole CP-SM-BFPMMs with suitable rotor pole 

numbers. The main geometric parameters of four machines are listed in Table B.1, which are 

optimized under the constraint of rated 30W copper loss. According to (B.4) and Fig. B.3, the 

coils belong to same phase are connected in series with same polarity in 4- and 8-rotor pole 

CP-SM-BFPMMs but with opposite polarity in 5- and 7-rotor pole CP-SM-BFPMMs. 

Meanwhile, as shown in Fig. B.4, the open-circuit phase flux-linkage is unipolar for 4- and 8-

rotor pole CP-SM-BFPMMs but bipolar for 5- and 7-pole CP-SM-BFPMMs. Fig. B.5 shows 

the open-circuit phase back-EMF waveforms of four machines at rated speed of 400rpm. As 

shown in Table B.2, it can be seen that 5-rotor pole CP-SM-BFPMM exhibits the highest 

fundamental back-EMF among the four stator/rotor pole combinations. Fig. B.6 shows the 

waveform of torque with rotor position over one electrical period. The average torques of 4-, 

5-, 7- and 8-rotor pole CP-SM-BFPMMs are 1.28, 1.36, 1.32 and 1.23Nm respectively at the 

rated copper loss, as shown in Table B.2. Obviously, CP-SM-BFPMMs with 6 stator pole 

exhibit the highest torque capability when the number of stator and rotor poles differed by 

one. 
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(a) 6S/4R (b) 6S/5R 

  

(c) 6S/7R (d) 6S/8R 

Fig. B.3. Topologies of 6-stator pole CP-SM-BFPMMs with different rotor pole number. 

 

Fig. B.4. Open-circuit phase flux-linkages of CP-SM-BFPMMs. 
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Fig. B.5. Open-circuit phase back-EMFs of CP-SM-BFPMMs, 400rpm. 

 

Fig. B.6. Electromagnetic torque of CP-SM-BFPMMs at rated current, pc=30W. 
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Table B.1 Parameters of prototype machines for PS-BFPMM and PS-SFPMM 

Parameter CP-SM-BFPMMs with 6-pole stator 

Number of phases 3 

Turns per coil  72 

Rated speed (rpm) 400 

Outer radius of stator (mm) 45 

Active axial length (mm) 25 

Airgap length (mm) 0.5 

Packing factor 0.5 

Rated copper loss (W) 30 

Number of stator poles Ns 6 

Number of rotor poles Nr 4 5 7 8 

Equal/Unequal stator pole ET ET/UT ET/UT ET 

Split ratio 0.56 0.61/0.62 0.63/0.62 0.66 

Stator pole arc (°) 34.8 
28.4/39.6 

       19.6 

22.8/32.0 

       17.6 
20.4 

Rotor pole arc (°) 26.8 21.6/21.5 17.6/17.0 15.4 

Stator back iron (mm) 7.0 6.2/5.7 5.5/5.1 5.6 

Slot area (mm
2
) 229 240/240 271/282 249 

Rated AC current (Arms) 7.8 8.0/8.0 8.5/8.7 8.1 

Minimum PM thickness (mm) 5.0 5.2/4.5 4.2/5.0 4.0 

Magnetic remanence (T) 1.2T 

Relative PM permeability 1.05 

 

Table B.2 Main parameters of electromagnetic performance 

Parameter CP-SM-BFPMMs with 6-pole stator 

Number of rotor poles Nr 4 5 7 8 

Equal/Unequal stator pole ET ET/UT ET/UT ET 

1
st
 flux-linkage (mWb) 21.1 17.6/19.6 11.6/13.8 10.1 

1
st
 back-EMF (V) 3.52 3.68/4.09 3.41/4.03 3.37 

Average torque (Nm) 1.28 1.36/1.54/ 1.32/1.54 1.23 

Incremental rate (%)  13.2 16.7  
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B.3 Unequal Stator Pole Arc Technique 

According to the analyses and globe optimizing results in [WU14] and [SHI14a], for the 

doubly salient stator and rotor pole structure machines which have no PMs in the stator pole, 

the optimum torque capability are obtained when the rotor pole arc to rotor pole pitch ratio is 

~1/3 and the optimal stator pole arc is close to the optimal rotor pole arc. Further, for CP-SM-

BFPMMs, since unipolar PMs are housed on the surfaces of alternate stator poles, the widths 

of half stator poles are restricted by the widths of PMs, as shown in Fig. B.3. 

According to (B.1), PM flux-linkage ψPM and q-axis current Iq are two main parameters 

should be considered to improve the torque capability. Firstly, according to (B.5), the PM 

flux φPM can be enhanced by increasing the width of stator pole with PMs housed since the 

PM remanence Br is same but the cross sectional area SPM is increased. Correspondingly, the 

PM flux-linkage ψPM is also increased. Secondly, in order to compensate the loss of slot area 

which is caused by increased width of stator pole with PM housed, the width of stator pole 

without PM housed can be reduced to around the width of rotor pole to increase the slot area. 

As shown in Table B.1, for 5- and 7-rotor pole CP-SM-BFPMMs, the slot area of using 

unequal stator pole arc technique are almost the same as (or even larger than) that of using 

equal stator pole arc technique. Equation (B.6) shows the number of turns Na and armature 

current Ia vary with the slot area Sa under the fixed copper loss. Obviously, when Na is kept 

constant, Ia will be increased as the enlarged Sa. Hence, combined with the variation of two 

main parameters, the unequal stator pole arc technique can be used to improve the torque 

capability of CP-BFPMM. 

𝜑𝑃𝑀 = 𝐵𝑟𝑆𝑃𝑀 (B.5) 

𝑁𝑎𝐼𝑎 ∝ √𝑆𝑎 (B.6) 

In the following section, the influence of unequal stator pole arc technique on CP-SM-

BFPMM will be analysed and compared with the original equal stator pole arc technique 

under the stator and rotor pole combinations determined by Nr = Ns ± 1 since they exhibit 

larger average torque than that of Nr = Ns ± 2 at rated copper loss, as shown in Table B.2. In 

order to simplify the comparison, the original equal stator pole arc technique and unequal 

stator pole arc technique can be designated as ET and UT respectively. The main geometric 

parameters of 6/5 and 6/7 stator/rotor pole CP-SM-BFPMMs with ET and UT are listed in 

Table B.1, which are optimized for maximum average torque under rated 30W copper loss. 
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B.4 Performance Comparison between Equal and Unequal Stator Pole Arc 

Techniques 

B.4.1 Open-Circuit Field Distribution 

The open-circuit flux equipotential and flux density field distribution for four machines at 

aligned position are shown in Fig. B.7. It can be seen that all machines have short flux path 

which can result in lower MMF drop in the stator. Meanwhile, the coils belong to the same 

phase have independently complete flux loops. Moreover, for both 5- and 7- pole CP-SM-

BFPMMs, the saturation levels of machines with UT are heavier than those with ET due to 

the enhanced PM flux which is caused by the increased width of PM. 

 

  

(a) ET_5R (b) ET_7R 

 

  

(c) UT_5R (d) UT-7R 

Fig. B.7. Open-circuit equipotential and flux density field distribution of 6-pole  

CP-SM-BFPMMs with equal and unequal stator pole arc techniques. 
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Fig. B.8 shows the open-circuit air-gap flux density distributions at aligned position, which 

is the same as Fig. B.7. Obviously, for the same rotor pole, machines with UT exhibit higher 

peak value of flux density, especially in the regions around the adjacent stator poles close to 

the stator pole which is wound with coil A1. Meanwhile, it also implies that larger back-EMF 

and torque capability may be obtained in machines with UT. 

 

 

Fig. B.8. Open-circuit air-gap flux density of ET- and UT-CP-SM-BFPMMs  

at aligned position, d-axis.  

B.4.2 Open-Circuit Flux-Linkage and Back-EMF Waveforms 

Fig. B.9 shows the open-circuit bipolar phase flux-linkages of four machines. Obviously, 

machines with UT have higher peak to peak value of phase flux-linkage than that with ET 

when the rotor pole number is same. It means that UT can boost the flux-linkage of CP-SM-

BFPMM which agrees with the analysis mentioned above. In addition, since the electric 

frequency is the same when the rotor pole number is same, the machine with UT should also 

exhibit larger peak to peak value of back-EMF or fundamental back-EMF than that with ET. 

It can be evidenced by the waveforms and FFT results of phase back-EMF (rated 400rpm) as 

shown in Fig. B.10 and Table B.2. Overall, the static performance of CP-SM-BFPMM can be 

improved by UT. Meanwhile, 5-rotor pole CP-SM-BFPMM with UT has the largest 

fundamental back-EMF although it also includes the highest even harmonics among four 

machines. 
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Fig. B.9. Open-circuit phase flux-linkage. 

 

(a) Waveforms 

 

(b) Spectra 

Fig. B.10. Open-circuit phase back-EMF, 400rpm. 
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B.4.3 DQ-Axis Inductances 

Fig. B.11 shows the dq-axis inductances with different current angles for four machines at 

rated current (corresponding to rated 30W copper loss). Obviously, the dq-axis inductances of 

machines with UT are both smaller than those of machines with ET during the whole current 

angle range. Meanwhile, for both types of machines (ET and UT), 7-rotor pole CP-SM-

BFPMM has larger dq-axis inductances than 5-rotor pole CP-SM-BFPMM. Moreover, since 

the d-axis inductance is close to q-axis inductance, the saliency ratio is low and the reluctance 

torque is negligible in both types of machines. Hence, CP-SM-BFPMMs with ET or UT are 

both suitable for vector control when Id=0.  

 

 

Fig. B.11. Variation of dq-axis inductances with current angle under the rated currents as 

given in Table B.1. 

B.4.4 Cogging Torque 

Fig. B.12 shows the cogging torque waveforms over one electric period for four machines. 

Obviously, machines with UT exhibit larger magnitude of cogging torque than those with ET. 

Meanwhile, for both types of machines, the numbers of cogging torque cycles over one 

electric period are the same whether the rotor pole number is 5 or 7.  

Due to the similar operational principle, the equation (B.7) which is used to calculate the 

cycles of cogging torque over one electric period in SM-BFPMMs can also be extended to 

CP-SM-BFPMMs [SHI14b] [ZHU00]. 

𝑁𝑐 =
𝑁𝑠𝑠𝑐𝑠

𝐺𝐶𝐷(𝑁𝑠𝑠𝑐𝑠, 𝑁𝑟)
 (B.7) 
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where Nc is the number of cogging torque cycles over one electric period, GCD means the 

greatest common divisor, Nsscs is the number of stator structure cyclic symmetry. By way of 

example, for the CP-SM-BFPMM under investigation, Nr=5, Nsscs=3, Nc=3. It can be 

evidenced by the FFT results shown in Fig. B.12(b) since the main harmonics of cogging 

torque are multiples of 3 which means that the combined cogging torque will exhibit 3 cycles 

over one electric period. 

 

 

(a) Waveforms 

 

(b) Spectra 

Fig. B.12. Open-circuit cogging torque. 

B.4.5 Electromagnetic Torque Characteristics 

Fig. B.13 shows the waveforms of average torque against current angle at rated current 

(corresponding to copper loss pc=30W) for four machines. Obviously, the reluctance torques 

-0.8

-0.4

0.0

0.4

0.8

0 60 120 180 240 300 360

C
o

g
g

in
g

 t
o

rq
u

e(
N

m
)

Rotor position (elec.deg)

ET_5R ET_7R

UT_5R UT_7R

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12

C
o

g
g

in
g

 t
o

rq
u

e 
(N

m
)

Harmonic order

ET_5R

ET_7R

UT_5R

UT_7R



289 
 

can be negligible in four CP-SM-BFPMMs since the optimal current angles are all close to 0°. 

The results are consistent with the conclusion mentioned in section B.4.3. 

 

 

Fig. B.13. Variation of average torque with current angle under the rated currents as given in 

Table B.1 for all machines, pc=30W. 

The electromagnetic torques of CP-SM-BFPMMs with ET and UT are compared in Fig. 

B.14 under the rated current as given in Table B.1 (corresponding to pc=30W) and Id=0 

control. Obviously, the cycle numbers of torque ripple over one electric period for four 

machines are all equal to three as shown in Fig. B.14(a). It can be explained as the combined 

influence of the cogging torque and the 2
th

 and 4
th

 harmonics of phase back-EFM. Meanwhile, 

CP-SM-BFPMMs with UT exhibit larger torque ripple than those with ET when the rotor 

pole numbers are same. 
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(b) Spectra 

Fig. B.14. Variation of electromagnetic torque with rotor position under the rated currents as 

given in Table B.1 for all machines, pc=30W. 

As shown in Fig. B.14(b), the average torque of CP-SM-BFPMMs is enhanced by 

employing UT since the PM flux-linkage ψPM and q-axis current Iq (Iq=Ia under Id=0 control) 

which have influence on average torque are both increased as analysed above. Compared 

with CP-SM-BFPMMs with ET under the rated 30W copper loss, the average torques of CP-

SM-BFPMMs with UT are enhanced ~13.2% and 16.7% for 6/5 and 6/7 stator/rotor pole 

combinations respectively, as shown in Table B.2. Meanwhile, the 6/5 and 6/7 stator/rotor 

poles CP-SM-BFPMMs with UT have equal average torque as 1.54 Nm at rated 30W copper 

loss. 

Further, the torque capability can also be reflected in the variation of average torque with 

copper loss as shown in Fig B.15. The vertical dashed and dotted line indicates the rated 

copper loss which is used to optimize the maximum average torque of four machines. 

According to (B.1), the average torque will be increased with the increase of copper loss 

since the corresponding phase current is increased together. However, the increasing rate will 

gradually decline for all machines due to the magnetic saturation. Overall, for the whole 

copper loss range as shown in Fig. B.15, CP-SM-BFPMMs with UT exhibit higher average 

torque than CP-SM-BFPMMs with ET for both 6/5 and 6/7 stator/rotor pole combinations. 

Meanwhile, for CP-SM-BFPMMs with UT, the average torque of 6/7 stator/rotor pole 

combination is larger at lower copper loss but lower at higher copper loss when compared 

with 6/5 stator/rotor pole combination. 
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Fig. B.15. Variation of average torque with copper loss (Id=0 control). 

B.5 Summary 

In this Appendix, novel CP-SM-BFPMMs which adopt doubly salient stator and rotor 

structure and concentrated windings are investigated. Unipolar PMs are housed on the surface 

of stator pole at interval pole number equal to one. The choice of rotor pole number is 

flexible and can be any integer except the phase number and its multiples.  

For 6-stator pole CP-SM-BFPMMs, the phase flux-linkages of Nr = Ns ± 1 are bipolar 

whilst those of Nr = Ns ± 2 are unipolar. Meanwhile, CP-SM-BFPMMs with Nr = Ns ± 1 

exhibit larger torque capability than those of Nr = Ns ± 2. By using unequal stator pole arc 

technique, the torque capability can be improved since the PM flux-linkage is enhanced and 

the slot area is enlarged. The results show that the average torque is increased by 13.2% and 

16.7% for 6/5 and 6/7 stator/rotor pole combinations respectively at the rated 30W copper 

loss. Further, 6/5 and 6/7 stator/rotor poles CP-SM-BFPMMs with UT have approximately 

the same average torque, i.e. 1.54Nm at rated 30W copper loss. Moreover, the reluctance 

torque of CP-SM-BFPMM is also negligible since the saliency ratio is low. 
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APPENDIX C 

NOVEL PARTITIONED STATOR BIASED FLUX PM 

MACHINES CONSIDERING CONSEQUENT POLE  

PM STATOR CONFIGURATION 

In chapter 6, partitioned stator biased flux permanent magnet (PM) machines (BFPMMs) 

(PS-BFPMMs) considering both SPM and Spoke-IPM stator configurations are proposed and 

investigated. Since the PMs and armature windings are located in two separate inner and 

outer stators, the positions of two excitation sources are free and can be exchanged. 

Meanwhile, based on SPM stator, when half of PMs (either all S pole PMs or N pole PMs) 

are removed and replaced by laminations, novel consequent pole PM stator is proposed. 

Therefore, in this Appendix, the influence of the PMs and armature windings positions 

together with consequent pole PM stator configuration on electromagnetic performance of 

PS-BFPMMs with SPM stator will be analysed and compared.  

C.1 Introduction 

Biased flux permanent magnet (PM) machines (BFPMMs) were proposed in [WU14] by 

replacing the DC field windings with PMs in variable flux reluctance machines (VFRMs) 

[KAS11] [LIU12b] [LIU13] [FUK12]. Correspondingly, the features of VFRMs are inherited 

in the BFPMMs, and can be concluded as: (1) doubly salient structure, (2) non-overlapping 

armature windings, (3) flexible choice of rotor pole number (any integers except phase 

number and its multiples), (4) symmetrical bipolar phase flux-linkage and back-EMF under 

special stator and rotor pole combinations. Reference [WU14] also shows that the torque 

density of BFPMM is enhanced by ~ 70% under the same copper loss and the same machine 

size when compared with VFRMs.  

However, similar to other machines with PMs and armature windings are both located in 

the stator, the possibility of further enhancing the torque performance of BFPMMs are still 

limited by the conflictions among the PMs, coppers and stator irons due to the limited stator 

space. Then, partitioned stator configuration proposed in [EVA15] provides one more 

efficient solution to solve this confliction since the inner space is fully utilized. By 

introducing this configuration, novel partitioned stator BFPMMs (PS-BFPMMs) which 

separate the PMs and armature windings into inner and outer stators respectively are 
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proposed in [WU15]. Reference [WU15] shows that PS-BFPMMs exhibit ~207% higher 

torque density than the original single stator BFPMMs under the same rated copper loss due 

to the enlarged slot area (for copper) and volume of PM under the same machine size. 

Furthermore, since the PMs are located in the separate stator, various PM stator 

configurations can be employed in PS-BFPMMs, such as Spoke-IPM stator and SPM stator.  

Since the PMs and armature windings are located in two separate inner and outer stators, 

the positions of two excitation sources are free and can be exchanged. Meanwhile, based on 

SPM stator, when half of PMs (either all S pole PMs or N pole PMs) are removed and 

replaced by laminations, novel consequent pole PM stator is proposed. Therefore, in this 

Appendix, the influence of the PMs and armature windings positions together with 

consequent pole PM stator configuration on electromagnetic performance of PS-BFPMMs 

with SPM stator will be analysed and compared. Firstly, the machine topologies and 

operational principle are illustrated. Then, the electromagnetic performance in terms of phase 

flux-linkages and back-EMFs, cogging torque and torque capability will be analysed and 

compared under the same machine size and the same rated copper loss.  

C.2 Machine Topologies 

The basic model of original PS-BFPMM with SPM stator is shown in Fig. C.1(a). It can be 

seen that the PMs and armature windings of PS-BFPMM are located in separated inner and 

outer stators respectively. Therefore, the positions of two excitation sources are free and can 

be exchanged as shown in Fig. C.1(b), which PMs and armature windings are located in outer 

and inner stator respectively. Further, when half of PMs (either all S Pole PMs or N pole PMs) 

in the original SPM stator are removed and replaced by laminations, novel consequent pole 

PM (CPM) stator is proposed, as shown in Fig. C.1(c) and (d). It should be noted that the PM 

fluxes which circulated from two adjacent PMs with same polarity formed a virtual PM with 

opposite polarity in the sandwiched iron pole. Therefore, the equivalent pair number of PMs 

in the consequent pole PM stator can be considered as the same as the original SPM stator. 

Overall, according to Fig. C.1, the flux paths shown in the PS-BFPMMs with consequent 

pole PM stator are consistent with those in the original PS-BFPMMs whenever PMs located 

in the inner stator or outer stator, which imply that the operation principle of PS-BFPMMs 

with consequent pole PM stator is similar to that of PS-BFPMMs with the original SPM 

stator. 

 



294 
 

  

(a) PS-BFPMM-I (b) PS-BFPMM-II 

  

(c) PS-CP-BFPMM-I (d) PS-CP-BFPMM-II 

Fig. C.1. Schematics of PS-BFPMMs and PS-CP-BFPMMs. 

 
 

(a) PS-BFPMM-I (b) PS-BFPMM-II 

 
 

(c) PS-CP-BFPMM-I (d) PS-CP-BFPMM-II 

Fig. C.2. Machine topologies of PS-BFPMMs with original SPM stator and CPM stator. 
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Table C.1 Parameters of prototype machines for PS-BFPMMs 

Parameters PS-BFPMMs 

Topology PS-SPM-I PS-SPM-II PS-CPM-I PS-CPM-II 

Number of phases 3 

Turns per phase 72 

Rated speed (rpm) 400 

Rated copper loss (W) 30 

Packing factor 0.5 

Air-gap length Lag (mm) 0.5 

Active axial length Laa (mm) 25 

Outer stator outer radius Roso (mm) 45 

Inner stator inner radius Risi (mm) 10.4 

Outer stator (OS) pole number, Nos 12 12 12 12 

Inner stator (IS) pole number, Nis 12 12 6 6 

Rotor pole number, Nr 10 10 10 10 

OS inner radius Rosi (mm) 31.05 39.65 31.05 37.75 

IS outer radius Riso (mm) 25.45 33.75 25.75 31.95 

OS tooth body pole arc θostb (°) 10.2 (IST) 9.6 9.8 (IST) 9.2 

OS tooth tip pole arc θostt (°) 6.9 (IST) 6.6 6.2 (IST) 6.7 

OS tooth tip thickness (Opening) 

Tostto (mm) 
1 (IST) 1 1 (IST) 1 

OS tooth tip thickness (Body)  

Tosttb (mm) 
2 (IST) 2 2.3 (IST) 2 

Rotor outer pole arc θrop (°) 22.0 24.6 26.4 20.2 

Rotor inner pole arc θrip (°) 27.2 24.6 20.0 25.8 

Rotor radial thickness Trr (mm) 4.6 4.9 4.3 4.8 

OS yoke thickness Tosy (mm) 2.8 (ISY) 3.2 2.7 (ISY)3.0 

Rated AC current (Arms) 17.10 15.94 17.30 15.25 

PM inner pole arc θPM (°) 30 25 40 39 

Minimum PM thickness TPM (mm) 3.5 2.5 4 3.4 

Magnetic remanence (T) 1.2 

Relative PM permeability 1.05 
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Fig. C.2 shows the topologies of 12-inner/12-outer stator/10 rotor pole (12I/12O/10R) PS-

BFPMMs with the original SPM stator and consequent pole PM stator considering two 

different PM positions. All machines are globally optimized with maximum average torque 

under the same machine size and the same copper loss. The main geometric parameters are 

listed in Table C.1. In addition, to simplify the comparison in the following sections, the 

machines corresponding to the Fig. C.2(a), (b), (c) and (d) can be designated as PS-SPM-I, 

PS-SPM-II, PS-CPM-I and PS-CPM-II respectively. 

C.3 Performance Comparison of PS-BFPMMs with SPM and CPM Stators 

C.3.1 Open-Circuit Field Distribution 

The open-circuit equipotential and flux density field distributions of PS-BFPMMs with 

SPM and CPM stators at aligned position are shown in Fig. C.3. Obviously, the flux loop of 

each coil belong to the same phase is completely independent in PS-BFPMMs with CPM 

stator (PS-CPM-I and PS-CPM-II), which is consistent with the PS-BFPMMs with SPM 

stator (PS-SPM-I and PS-SPM-II). Meanwhile, short flux path, which could result in lower 

MMF drop in the stator and thinner thickness of stator yoke, is also observed in both types of 

PS-BFPMMs. Moreover, for both PS-BFPMMs with SPM and CPM stators, heavier 

saturation will be observed when PMs located in the outer stator rather than in the inner stator, 

especially in the regions of stator yoke which close to the gaps between the adjacent PMs 

(contact surface between PM and iron pole for CPM stator). It also can be reflected by the 

waveforms of open-circuit air-gap flux density distributions at aligned position as shown in 

Fig. C.4. Since the PS-BFPMMs have two layers of air-gap, the corresponding waveforms 

shown in Fig. C.4 are based on the layers which close to the stator wound with armature 

windings. It can be seen that PS-BFPMMs with SPM and CPM stators have similar 

waveform of air-gap flux density. Furthermore, when PMs located in the outer stator, higher 

peaks of air-gap flux densities are observed in both PS-BFPMMs with SPM and CPM stators.  
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(a) PS-SPM-I (b) PS-SPM-II 

  

(c) PS-CPM-I (d) PS-CPM-II 

Fig. C.3. Open-circuit equipotential and flux density field distributions at aligned position. 

 

Fig. C.4. Open-circuit air-gap flux density at aligned position. 
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C.3.2 Flux-Linkage and Back-EMF Waveforms 

The open-circuit phase flux-linkages of PS-BFPMMs with SPM and CPM stators are 

shown in Fig. C.5. Obviously, bipolar phase flux-linkages waveforms are observed in all 

machines. Further, they are symmetrical in PS-BFPMMs with SPM stator while asymmetric 

in PS-BFPMMs with CPM stator. It is due to fact that the even harmonics which cause the 

biased value and asymmetric waveform in each coil are incompletely cancelled in the phase 

winding of PS-BFPMMs with CPM stator since the magnitude of each order harmonic in coil 

A1 (A3) and coil A2 (A3) are unequal, which can be evidenced by the FFT results shown in 

Fig. C.5(b). As shown in Table C.2, the magnitudes of fundamental phase flux-linkage for 

PS-SPM-I, PS-SPM-II, PS-CPM-I and PS-CPM-II are 8.46, 9.96, 8.60 and 9.36mWb 

respectively. For both PS-BFPMMs with SPM and CPM stators, higher fundamental phase 

flux-linkage can be obtained when PMs located in the outer stator rather than PMs located in 

the inner stator, which are enhanced by 17.7% and 8.8% respectively. Compared with 

BFPMMs with SPM stator, the fundamental phase flux-linkage of PS-BFPMMs with CPM 

stators is enhanced by 1.7% when PMs located in the inner stator but declined by 6.0% when 

PMs located in the outer stator. 

Due to the same reason for phase flux-linkage, the phase back-EMF waveform is 

symmetrical in PS-BFPMMs with SPM stator but asymmetric in PS-BFPMMs with CPM 

stator, as shown in Fig. C. 6. According to Table C.2, the magnitudes of fundamental phase 

back-EMF for PS-SPM-I, PS-SPM-II, PS-CPM-I and PS-CPM-II at rated speed (400rpm) are 

3.54, 4.17, 3.60 and 3.92V respectively. Since four machines have the same rotor pole 

number, the rated electrical frequencies are the same and equal to 66.7 Hz. Therefore, the 

increase rate (or decrease rate) of fundamental phase back-EMFs caused by employing CPM 

stator and changing the PM position are consistent with those in fundamental phase flux-

linkages. 
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(a) Waveforms 

 

(b) Spectra 

Fig. C.5. Open-circuit phase flux-linkages. 
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(b) Spectra 

Fig. C.6. Open-circuit phase back-EMF, 400rpm. 

C.3.3 Cogging Torque 

The cogging torque waveforms of PS-BFPMMs with SPM and CPM stators are shown in 

Fig. C.7. Obviously, whenever PMs located in the inner or outer stators, PS-BFPMMs with 

CPM stator exhibit larger magnitudes of cogging torque than PS-BFPMMs with SPM stator. 

Meanwhile, for both BFPMMs with SPM and CPM stators, larger magnitudes of cogging 

torque is observed in machines with PMs located in outer stator when compared with those 

with PMs located in the inner stator. Overall, among these four machines, PS-CPM-II has the 

largest cogging torque. 

Since the operational principle of PS-BFPMM with CPM stator is similar to that of PS-

BFPMM with SPM stator, equation (6.3) which is used to calculate the cycle number of 

cogging torque over one electric period in PS-BFPMMs can be extended to PS-SFPMMs 

with CPM stator. Considering the influence of stator structure cyclic symmetry, equation (6.3) 

can be changed as (C.1). 

𝑁𝐶 =
𝑀𝐼𝑁(𝑁𝑖𝑠,  𝑁𝑜𝑠)

𝐺𝐶𝐷( 𝑀𝐼𝑁(𝑁𝑖𝑠,  𝑁𝑜𝑠) ,  𝑁𝑟)
 (C.1) 

where, Nc is the cycle number of cogging torque over one electrical period, Nis and Nos are the 

number of inner and outer stator pole, Nr is number of rotor pole.  

According to (C.1), the cycle numbers of cogging torque for PS-SPM-I, PS-SPM-II, PS-

CPM-I and PS-CPM-II are 6, 6, 3 and 3 respectively. They are evidenced by the waveforms 

and FFT results shown in Fig. C.7.  
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(a) Waveforms 

 

(b) Spectra 

Fig. C.7. Open-circuit cogging torque. 

C.3.3 Electromagnetic Torque Characteristics 

Fig. C.8 shows the waveforms of average torque against current angle at rated currents 

(corresponding to pc=30W) for all machines. Obviously, whenever PM located in inner or 

outer stators, the optimal current angles for both PS-BFPMMs with SPM and CPM stators are 

close to 0°, which means that the reluctance torque is negligible in all machines.  
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Fig. C.8. Variation of average torque with current angle under the rated currents as given in 

Table C.1 for all machines, pc=30W. 

Fig. C.9 shows the waveforms of torque against with rotor position at rated currents 

(pc=30W) and Id=0 control. Due to the combined influences of cogging torque and back-EMF 

harmonics (5
th

 and 7
th

 for SPM stator, 2
th

 and 4
th

 for CPM stator), PS-BFPMMs with SPM 

stator have 6 torque ripples over one electric period while PS-BFPMMs with CPM have 3 

torque ripples. Moreover, the torque ripples of PS-SPM-I, PS-SPM-II, PS-CPM-I and PS-

CPM-II are 14.0%, 17.9%, 35.3% and 75.9% respectively. Obviously, whenever PMs located 

in the inner or outer stator, PS-BFPMM with CPM stator exhibits larger torque ripple than 

PS-BFPMM with SPM stator. Further, for both SPM and CPM stators, FS-BFPMMs with 

PMs located in the outer stator have the larger torque ripple than those with PM located in the 

inner stators. Overall, PS-CPM-II exhibits the largest torque ripple among these four 

machines. 
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(b) Spectra 

Fig. C.9. Variation of electromagnetic torque with rotor position under the rated currents as 

given in Table C.1 for all machines, pc=30W. 

According to the Table C. 2, the average torque for PS-SPM-I, PS-SPM-II, PS-CPM-I and 

PS-CPM-II are 2.84, 3.08, 2.86 and 2.79Nm respectively. It can be seen that PS-BFPMM 

with CPM stator exhibits similar average torque to PS-BFPMM with SPM stator when PMs 

located in the inner stator while 9.4% lower when PMs located in the outer stator. Further, for 

PS-BFPMM with SPM stator, the average torque is enhanced by 8.5% when PMs located in 

the outer stator rather than PMs located in the inner stator. However, the average torque is 

reduced by 2.5% in PS-BFPMM with CPM stator. Overall, among these four machines, PS-

SPM-II has the largest average torque.  

The torque density and torque to PM volume of all machine at rated currents (pc=30W) and 

Id=0 control are compared in Fig. C.10. According to Table C.2, the torque densities for PS-

SPM-I, PS-SPM-II, PS-CPM-I and PS-CPM-II are 17.85, 19.38, 17.97 and 17.56 kN/m
2
 

respectively. Since four machines have the same machine size, the increase rate (or decrease 

rate) of torque density caused by employing CPM stator and changing the PM position are 

consistent with those in average torque. Moreover, for the ratio of torque to PM volume (PM 

utilization efficiency), it is increased by ~5.8% when PMs located in the outer stator for PS-

BFPMMs with SPM stator but decreased 29.0% for PS-BFPMMs with CPM stator. Overall, 

among these four machines, PS-CPM-I exhibits the highest PM utilization efficiency.  
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Fig. C.10. Torque density and torque to PM volume ratio, pc=30W, Id=0 control. 

Fig. C. 11 compares the torque performance of four machines under different copper loss. 

The vertical dashed and dotted line shows the rated copper loss used for global optimization. 

Similar to the original PS-SPM-I, the increase rate of average torque for PS-SPM-I, PS-CPM-

I and PS-CPM-II will be declined with the rising of copper loss (current) due to the 

aggravated magnetic saturation. As shown in Fig. C.11, PS-SPM-II exhibits the largest 

average torque among those four machines under the same copper loss over the whole copper 

range. Further, the torque capabilities of PS-CPM-I and PS-CPM-II are similar to that of PS-

SPM-I over the whole copper loss range.  

 

 

Fig. C.11. Variation of average torque with copper loss, Id=0 control. 
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Table C.2 Main electromagnetic performance 

Parameter PS-SPM-I PS-SPM-II PS-CPM-I PS-CPM-II 

Fund. flux-linkage (mWb) 8.46 9.96 8.60 9.36 

Fund. back-EMF (V) 3.54 4.17 3.60 3.92 

Rated electric frequency (Hz) 66.7 66.7 66.7 66.7 

Cogging torque (Nm) 0.070 0.072 0.365 0.847 

Average torque (Nm) 2.84 3.08 2.86 2.79 

Torque ripple (%) 14.0 17.9 35.3 75.9 

Torque density (kN/m
2
) 17.85 19.38 17.97 17.56 

Torque/PM volume (kN/m
2
) 217.8 230.4 287.3 203.9 

 

C.4 Summary 

In this Appendix, the influence of the PMs and armature windings positions together with 

consequent pole PM stator configuration on electromagnetic performance of 12-stator/10-

rotor pole PS-BFPMMs with SPM stator is investigated.  

When PMs located in the inner stator, PS-BFPMM with CPM stator has similar torque 

density and higher PM utilization efficiency but larger cogging torque and torque ripple when 

compared with PS-BFPMM with SPM stator. By changing the PM position from inner stator 

to outer stator, the torque density and PM utilization efficiency can be enhanced by 8.5% and 

5.8% respectively in PS-BFPMM with SPM stator but reduced by 2.5% and 29% in PS-

BFPMM with CPM stator. Overall, among these four machines, PS-SPM-II has the largest 

torque density while PS-CPM-I has the highest PM utilization efficiency. 
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APPENDIX D 

DRAWINGS AND PARAMETERS OF LAMINATIONS FOR 

ALL PROTOTYES 

The drawings and parameter of laminations for the prototype machines investigated in this 

thesis are given as follows. It should be noted that the axial lengths for all of prototype 

machines are 25mm. Further, the Lamination steel grade is M330-35A and the PM grade is 

N35SH.  

D.1 Optimized Variable Flux Reluctance Machines 

 

 

(a) 6-pole stator 

  

(b) 5-pole rotor (c) 7-pole rotor 

Fig. D.1. Optimized VFRMs with 6-pole stator. 
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D.2 Multi-Tooth Variable Flux Reluctance Machines 

 

 

(a) 6-pole stator of 4-tooth VFRM 

  

(b) 23-pole rotor (c) 25-pole rotor 

Fig. D.2. 4-tooth VFRMs with 6-pole stator. 
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D.3 Surface Mounted-Biased Flux PM Machines  

 

 
 

(a) 6-pole stator (b) Shape of PM 

  

(c) 5-pole rotor (d) 7-pole rotor 

Fig. D.3. SM-BFPMMs with 6-pole stator. 
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D.4 Stator Yoke Mounted-Biased Flux PM Machines  

 

 

 

(a) 6-pole stator (b) Shape of PM 

  

(c) 5-pole rotor (d) 7-pole rotor 

Fig. D.4. SYM-BFPMMs with 6-pole stator. 
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D.5 Stator Yoke Mounted-Biased Flux PM Machines with Inner Type Flux 

Focusing Configuration 

 

 

 

(a) 6-pole stator (b) Shape of PM 

 

(b) 7-pole Rotor 

Fig. D.5. SYM-BFPMMs with 6-pole stator. 
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D.6 Partitioned Stator PM Synchronous Machines 

  

(a) 12-pole outer stator (b) 6-pole outer stator 

  

(c) 12-pole outer stator (Spoke-IPM) (d) 12-pole outer stator (SPM) 

 

(e) 10-pole rotor 

Fig. D.6. Partitioned stator PM synchronous machines, including PS-BFPMMs and PS-

SFPMMs. 
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D.7 Lamination Steel and Permanent Magnet 

For laminations, the data and curve of B-H are shown in Table D. 1 and Fig. D.7 

respectively, and the parameters for iron loss calculation are given in Table D. 2. Further, the 

property of permanent magnet is given in Table D. 3. 

 

Table D.1 Data for B-H curve of lamination steel [CHE09] 

H(A/m) B(T) H(A/m) B(T) H(A/m) B(T) 

0 0 508.9904 1.357687 6006.141 1.691965 

40 0.432 600 1.385 6963.257 1.716482 

60 0.613 723.5518 1.411185 8000 1.74 

77.831543 0.728297 883.5636 1.435731 9997.106 1.777656 

100 0.83 1037.345 1.454386 12130.73 1.811553 

127.2625 0.921704 1290.866 1.47881 14255.09 1.84208 

153.7043 0.995235 1569.527 1.50213 17061.12 1.878364 

200 1.095 1991.086 1.53152 20000 1.912 

244.33569 1.164175 2425.496 1.556268 24660.76 1.955666 

300 1.23 2914.226 1.580957 30974.31 2.00358 

347.10001 1.273279 3492.226 1.607179 36703.28 2.03723 

400 1.31 4000 1.628 40000 2.053 

448.56351 1.333929 4882.181 1.658935 133445 2.5 

 

 

 

Fig. D.7. B-H curve of lamination steel. 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20

B
 (

T
)

H (kA/m)



313 
 

Table D.2 Parameters for iron loss calculation [CHE09] 

kh 0.0179 Diron 0.35 mm 

ah 0.841 mv 7650 kg/m
3
 

bh 1.023 ρiron 4.5×10
-7

 Ωm 

kc 2.61 ke 0.002 

 

Table D.3 Property of permanent magnet [CHE09] 

Grade Remanence Coercive force 

(kA/m) 

Working 

Temp 

Density 

(G/cm
3
) 

Electrical conductivity 

(Ωm
-1

) 

N35SH 1.17-1.25 ≥860 ≤150 ≥7.54 6.67×10
5
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