
Feedback Admission Control
for Workflow Management

Systems

Hashem Ali Ghazzawi, class one honours MEng

EngD

University of York

Computer Science

October 2015

2

Abstract

We propose a novel feedback admission control (FAC) algorithm based on
control theory as a unified framework to improve the real-time scheduling
(RTS) performance in industrial workflow management systems (WMSs). Our
FAC algorithm is based on four main principles. First, it does not require
the knowledge of RTS parameters of jobs prior to their arrival to the system
for scheduling and processing. Second, it does not require a change of the
scheduling architecture/policy in the industrial WMS which is a requirement in
some industries including the one under consideration in this thesis. Third, we
derive dynamic models for computing systems for the purpose of performance
control. Finally, we apply established control laws to manage the trade-offs in
meeting deadlines and increasing platform utilisation (classical RTS objectives).

The generality and efficiency of our proposed FAC algorithm are demonstrated
by its application in three typical scheduling scenarios in industry. First, we
tested our algorithm with simple tasks that are periodic and independent. For
this application, we developed two FAC versions based on basic and advanced
control laws to compare their performance with respect to the RTS objectives.
Second, we added task dependencies as a scheduling constraint because they
are witnessed in some industrial workloads. We evaluated our FAC algorithm
against other baseline algorithms like the completion-ratio admission controller
with respect to the RTS objectives. Third, we extended our FAC algorithm
to support enterprise resource planning decisions in acquiring additional com-
puting processors in real-time to further achieve the RTS objectives while
constrained by industrial projects’ financial budgets.

3

4

Contents

Abstract 3

Table of Contents 5

Acknowledgements 15

Declaration 17

1 Introduction 19

2 Literature Survey 25
2.1 The Case for Intelligent Admission Control

Scheduling . 26
2.2 Intelligent Admission Control Scheduling:

Modelling . 28
2.3 Intelligent Admission Control Scheduling:

Decision-Making . 30
2.4 Intelligent Admission Control Scheduling:

Control-Theoretic . 32
2.4.1 Fuzzy-Logic Control . 34
2.4.2 Feedback Control . 35

2.5 Task Dependencies as a Real-Time Scheduling Constraint . . . 37
2.6 Value-based Scheduling and Enterprise Resource Planning . . . 39
2.7 Summary . 41

3 Problem Formulation 43
3.1 Basic Definitions . 43

3.1.1 Open-Loop Admission Control 43
3.1.2 Feedback Admission Control 43
3.1.3 HPC Cluster Processor Utilisation 43
3.1.4 Slack Values . 43
3.1.5 RTS Objectives . 44

3.2 Research Hypothesis and Questions 44
3.3 Thesis Structure . 45

5

CONTENTS

4 A Novel Feedback Admission Control Scheduling Algorithm 47
4.1 Design Steps . 48

4.1.1 Task Model . 48
4.1.2 Scheduling Policy . 50
4.1.3 Performance Metrics . 51
4.1.4 System Model and Identification 51
4.1.5 Closed-Loop Scheduling Control 56

4.2 Design and Implementation of PID-based Feedback Admission
Control . 58

4.3 Design and Implementation of MPC-based Feedback Admission
Control . 61

4.4 Evaluations . 66
4.4.1 Task Normalised Slack Values 67
4.4.2 Processor Utilisation . 71

4.5 Summary . 73

5 Handling Dependencies in Admission Control Scheduling 75
5.1 Task Model . 76
5.2 Scheduling Policy . 78
5.3 Performance Metrics . 78
5.4 System Model and Identification 79
5.5 Closed-Loop Scheduling Control 79

5.5.1 A Novel MPC-based FAC Algorithm for Dependent Tasks 79
5.5.2 Baseline Admission Control Algorithms 81

5.6 Evaluations . 82
5.6.1 Job Normalised Slack Values 83
5.6.2 Processor Utilisation . 86
5.6.3 Job Killing Ratio and Wasted Processor Utilisation . . . 89
5.6.4 Profiling Killed Jobs . 92
5.6.5 Enhancing ACRandom . 94

5.7 Summary . 95

6 A Preliminary Investigation of Feedback Admission Control
for Cloud and ERP Applications 97
6.1 Task Model . 98
6.2 Scheduling Policy . 98
6.3 Performance Metrics . 99
6.4 System Model and Identification 99
6.5 Closed-Loop Scheduling Control 99

6.5.1 A Novel MPC-based VAC Algorithm for Cloud and ERP
Applications . 100

6.6 Evaluations . 102

6

CONTENTS

6.6.1 Job Normalised Slack Values 103
6.6.2 Processor Utilisation . 106
6.6.3 Project Budget . 108
6.6.4 Jobs Killing Ratio and Wasted Processor Utilisation . . 110
6.6.5 System Credit . 113
6.6.6 Trade-off Analysis . 116

6.7 Summary . 117

7 Conclusions and Further Work 119
7.1 Further Work . 121

A Appendix A - Periodic and independent task-sets 123

B Appendix B - Aperiodic and dependent task-sets 125

C Appendix C - Aperiodic and dependent task-sets with ERP 127

References 131

7

8

List of Tables

4.1 Task model of generated tasks [42, 43]. For Data tasks, a
Round-Robin selection criteria is implemented inside each range,
and random switching criteria is implemented between the two
ranges. This can be noticed in Figure 4.4 (top). For Design
tasks, they have only one range and values are selected via a
random selection criteria. 50

4.2 PID parameters tuning as depicted from Lu et al. in [75]. . . . 60
4.3 One-way ANOVA test for the RTS (FCFS vs. EDF) experimental

data of ntSDesign. 71
4.4 One-way ANOVA test for the admission control experimental

data of ntSDesign. 71
4.5 One-way ANOVA test for the RTS (FCFS vs. EDF) experimental

data of PU . 73
4.6 One-way ANOVA test for the admission control experimental

data of PU . 73

5.1 Task-set’s RTS specifications [41]. 76
5.2 One-way ANOVA test for the RTS (FCFS vs. EDF) experimental

data of njS. 86
5.3 One-way ANOVA test for the admission control experimental

data of njS. 86
5.4 One-way ANOVA test for the RTS (FCFS vs. EDF) experimental

data of PU . 88
5.5 One-way ANOVA test for the admission control experimental

data of PU . Mark (*) indicates that the difference between the
data-sets is almost insignificant. 88

5.6 Simulation time (SimTime) of all algorithms. SimTime indi-
cates how long each algorithm spent in scheduling and processing
all arriving jobs. 89

5.7 One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of jKR and WPU . 91

5.8 One-way ANOVA test for the admission control experimental
data of jKR and WPU . 91

9

LIST OF TABLES

6.1 One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of njS. 105

6.2 One-way ANOVA test for the admission control experimental
data of njS. Mark (*) indicates that the difference between the
data-sets is almost insignificant. 105

6.3 One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of PU . Mark (*) indicates that the difference between the
data-sets is almost insignificant. 107

6.4 One-way ANOVA test for the admission control experimental
data of PU . 107

6.5 One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of jKR and WPU . Mark (**) indicates that the data-sets
are equal; when we ran the ANOVA tests in both Matlab and R
programming environments, we obtained p-value = NaN. 112

6.6 One-way ANOVA test for the admission control experimental
data of jKR and WPU . Mark (**) indicates that the data-sets
are equal; when we ran the ANOVA tests in both Matlab and R
programming environments, we obtained p-value = NaN. 112

A.1 Average values for OL, P-, PI-, PID- and MPC-based FAC
algorithms with FCFS and EDF policies in a 10-processor HPC
cluster with respect to Data & Design tasks ntS values and PU

QoS levels. For more details on the algorithms, please refer to
chapter 4. 123

B.1 Results summary of admission control algorithms performance
comparison in dependent soft real-time tasks. Each algorithm
is tested with FCFS and EDF in a 50-processor HPC cluster.
Each performance metric is experimented with low (80%), full
(100%) and high (120%) workloads. For more details on the
algorithms, please refer to chapter 5. 126

C.1 Results summary of admission control algorithms performance
in dependent soft real-time tasks with financial incentives and
constraints. Each algorithm is tested with FCFS and EDF
in a 50-processor HPC cluster. Each performance metric is
experimented with low (80%), full (100%) and high (120%)
workloads. For more details on the algorithms, please refer to
chapter 6. 128

10

List of Figures

1.1 A block diagram of typical industrial workflow management
systems. 19

1.2 A simplistic illustration of admission control. Percentages repre-
sent the HPC utilisation value per job. 21

4.1 A block diagram of a typical feedback control system. 47
4.2 (a) Design steps for feedback control real-time scheduling systems.

(b) A block diagram of our feedback admission control algorithm. 49
4.3 A block diagram of the open-loop (OL) version of our industrial

system with emphasis on the System Model components. The
System Model block represents the system identification model of
the scheduling and processing dynamics of our industrial system
which the FAC block uses in its admission control decision-
making process in Figure 4.2-(b). 51

4.4 Simulated system inputs for system identification modelling.
We can notice for the Data tasks (top plot) the Round-Robin
selection criteria within each range, and the random switching
mechanism between the two ranges. 53

4.5 Simulated system outputs for system identification modelling. . 53
4.6 Our system identification model accuracy: measured minus

simulated data. The reason the x-axis is not the full 200 hours
is because in system identification we allocate one part of the
measured data for the model estimation and another for model’s
accuracy validation [46]. 56

4.7 (a) A schematic representation of PID control. (b) Our novel
PID-based feedback admission control algorithm where the
System Model block is the System Identification model obtained
from subsection 4.1.4. 58

4.8 (a) A schematic representation of MPC. (b) Our novel MPC-
based feedback admission control algorithm where the System
Model block is the System Identification model obtained from
subsection 4.1.4.. 62

4.9 Design tasks normalised slack values. 68

11

LIST OF FIGURES

4.10 MPC-based FAC algorithms with FCFS in a 10-processor HPC
cluster. The values for DatantS and DesignntS in the top plots
are for the MPC-based FAC algorithms. 69

4.11 MPC-based FAC algorithms with EDF in a 10-processor HPC
cluster. The values for DatantS and DesignntS in the top plots
are for the MPC-based FAC algorithms. 69

4.12 Processor utilisation. 72

5.1 Tasks’ dependency patterns [15]. 76
5.2 An example for calculating deadline values for critical and non-

critical tasks. The task path with thick arrows represent the
critical tasks forming the job’s critical path. 77

5.3 Tasks and jobs system identification model error: measured
minus simulated data. The reason the x-axis is not the full 200
hours is because in system identification we allocate a small part
of the measured data for the model estimation and the rest for
model validation [46]. 80

5.4 A block diagram of our new, novel MPC-based FAC algorithm
proposed for handling dependent real-time tasks referred to as
ACjACt due to the double Admission Control blocks. 81

5.5 A block representation of our baseline algorithms. 81
5.6 An illustration for admission decision-making of ACRandom .

The jobs highlighted in italic are the ones which ACRandom can
consider for killing because they have not started processing
in the cluster. The other jobs i.e. j1 and j2 are outside the
decision-making range for ACRand because they are partially i.e.
some of their tasks are being processed in the cluster and hence
removing those jobs can decrease PU and also cause WPU as
both consequences are undesired. 82

5.7 Jobs normalised slack values box-plots of high workloads, 120%. 85
5.8 Processor utilisation time-plots of high workloads, 120%. 87
5.9 Jobs killing ratio time-plots of high workloads, 120%. Please

note that we zoomed the time-plots to include the first 50 hours
of the simulations because it is during this period the cluster
was found to be fully utilised. 90

5.10 Wasted processor utilisation box-plots of high workloads, 120%. 90
5.11 Profiling jobs killing by the admission control algorithms with

FCFS with respect to killed jobs’ jC values and the time of
rejection. 93

5.12 Profiling jobs killing by the admission control algorithms with
EDF with respect to killed jobs’ jC values and the time of
rejection. 93

12

LIST OF FIGURES

5.13 Enhanced ACRandom algorithm with FCFS & EDF and high
workloads, 120%. 94

6.1 System identification model error: measured minus simulated
data. The reason the x-axis is not the full 200 hours is because
in system identification we allocate a small part of the measured
data for the model estimation and the rest for model validation
[46].. 100

6.2 A block diagram of our novel value-based admission control
(VAC) algorithm. 101

6.3 Jobs normalised slack values box-plots in high workloads, 120%. 104
6.4 Processor utilisation time-plots in high workloads, 120%. 106
6.5 Project budget plots in high workloads, 120%. We zoomed-in to

show the RTS dynamics during the cluster overload period. . . 109
6.6 Jobs killing ratio time-plots in high workloads, 120%. We

zoomed-in to show the RTS dynamics during the cluster overload
period. 111

6.7 Wasted processor utilisation box-plots in high workloads, 120%. 111
6.8 System credit plots in high workloads, 120%. We zoomed-in to

show the RTS dynamics during the cluster overload period. . . 114
6.9 Trade-off analysis between multiple RoD rent prices and PoD in

high workloads, 120%. 116

13

14

Acknowledgements

First and for most, to God, I thank for the strength and faith that keep us
standing and for the hope that keeps us believing and succeeding in our life.

To my family:
I start with the chief, the late Ali Ghazzawi, all I can utter is I wish you were
around, and I am proud belonging to you, dad. To the passion of this family,
the centre of its warmth and its shelter, Sabah. Thank you for being around
me when I need you, and thank you for all your prayers and blessings upon me,
mum. To my brothers and sisters: Housam, Manal, Hadeel (and Mahmoud),
Ahmad and Amr. Thank you for your exceptional friendship, I am the youngest
of you all and I am ever proud belonging to you.

To University of York’s Real-Time Systems Research Group:
I start with my amazing supervisors, Iain Bate and Leandro Soares Indrusiak,
who by now know me more than anyone else in the world. You have shown
me, many times, my strengths and weaknesses, and have always guided me
to fruitful decisions. Your help will always stay with me because your help,
not only being professionally great, but also personally resonating. Thank you
both so much. To my internal assessor, Jon Timmis, thank you a great deal
for your professional help and continuous support. To the rest of the research
group, a great gratitude goes to the chiefs, Alan Burns and Andy Wellings,
and a big thank you goes to the rest of this friendliest team ever.

To my seniors and colleagues in the industrial partner of this work.
Thank you all for your support.

A big thank you to all my friends out there.

Yours sincerely,
Hashem (aka #em)

15

16

Declaration

This thesis has not previously been submitted in substance for any degree, and
it is not concurrently submitted in candidature for any degree other than degree
of Doctor of Engineering of the University of York. This thesis is the result
of my own investigations, except where otherwise stated. Other sources are
acknowledged by explicit references. Certain parts of this thesis have appeared
in previously published papers specifically the following references (marked *
for principal author):

• H. A. Ghazzawi. Scheduling Approaches for Large-Scale Complex Task
Management. The Proceedings of the 2nd Large Scale Complex IT
Systems (LSCITS) Postgraduate Workshop, pp. 60-66, 2010.
Parts of this paper were used in chapter 1 and chapter 2 for motivating
our research.

• H. A. Ghazzawi*, I. Bate and L. S. Indrusiak. A Control Theoretic
Approach to Workflow Management. In Proceedings of 17th IEEE
International Conference on Engineering of Complex Computer Systems,
pp. 280-289, 2012.
This paper forms one part of chapter 4 in introducing our novel feedback
admission control algorithm.

• H. A. Ghazzawi*, I. Bate and L. S. Indrusiak. MPC vs. PID Controllers
in Multi-processor Multi-Objective Real-Time Scheduling Systems. In
Proceedings of the 2012 UK Electronics Forum, pp. 77-83, 2012.
This paper forms another part of chapter 4 in comparing our basic and
advanced feedback admission control algorithms.

• H. A. Ghazzawi. A Control-Theoretic Approach for Scheduling Soft
Real-Time Tasks with Dependencies. Technical Report YCS-2014-495,
University of York, Department of Computer Science, 2014.
This paper forms chapter 5 in introducing how our novel feedback ad-
mission control framework addresses task dependencies as a scheduling
constraint.

17

18

Chapter 1

Introduction

In this work, we are concerned with industrial workflow management systems
(WMSs). The term workflow management refers to a business automation
software to facilitate technology for decision-making and handling of IT projects
with respect to organisational objectives such as high customer service rate
[107]. Workflows can be computational fluid dynamics (CFD) simulation jobs
that are admitted into the WMS for scheduling and processing. The workflows
are processed in high performance computing (HPC) clusters due to their high
performance and ability to process numerous jobs in parallel [90].

It is a common situation for industrial WMSs to be overloaded when processing
CFD jobs due to their finite computational resources. Overload situations can
incur longer queueing time for jobs which can lead to missing deadlines for
some of those CFD jobs, which is undesired. Workload regulation is one answer
to avoid deadline misses via admission control practices. Admission control is a
mechanism for admitting or rejecting certain jobs which have arrived into the
system for scheduling and processing. Admission decisions are practised with
respect to classical real-time scheduling (RTS) objectives including minimising
deadline misses and maximising platform (HPC processor) utilisation. Refer to
Figure 1.1 for a general block diagram of industrial WMSs.

Figure 1.1: A block diagram of typical industrial workflow management systems.

Some industrial organisations practice admission control through a human
system administrator. This can cause issues in two strands. Before we address
them, we need to define what we mean by workflows, jobs and tasks. We define
a workflow to be a bundle of N number of CFD jobs which can be parallel.
Each job can, in turn, contain a number of dependent tasks. Dependency

19

refers to the particular processing pattern of tasks whereby a task cannot
start processing until it receives data from a predecessor task which have com-
pleted processing. Individual tasks are not parallel, each task can occupy one
processor at a time and it is an indivisible unit requiring certain processing time.

First, administrators can and do mistakes in managing the trade-offs be-
tween the RTS objectives. In other words, system administrators may reject
(kill) the wrong job or kill a job but at the wrong time. Managing the trade-offs
between the RTS objectives can be challenging: “if we admit most arriving
jobs, we might increase processor utilisation (desired) at the expense of missing
deadlines at cluster overload periods (undesired). Alternatively, if we kill most
arriving jobs, we might avoid or minimise deadline misses (desired) at the
expense of poorly utilising the HPC cluster (undesired)”.

We desire an automatic and intelligent admission control mechanism that
regulates workloads with respect to managing the aforementioned trade-offs
between the RTS objectives. For instance, an intelligent admission controller
may kill certain newly arrived jobs due to its prediction that such jobs will
miss their deadlines because the cluster is overloaded or near overload (due
to queueing jobs). If such jobs are admitted, they will increase the number
of system’s deadline misses because of their own misses (undesired). They
will also unnecessarily load the cluster and potentially have other jobs being
delayed, hence potential increase of deadline misses (undesired).

Second, system administrators do not necessarily compute their admission
decisions based on past, current and futuristic (predicted) states of the system.
What they usually do is estimate if newly arrived jobs will meet/miss their
deadlines based on real-time snapshots of system states representing current
processing capacity and performance. This practice is not effective because
we want to evaluate the current effects and predict the future effects of the
admitted jobs on the RTS objectives. Snapshots cannot produce such predic-
tions and system administrators usually use such snapshots for instantaneous
admission control decisions regardless of past performance and future effects.

Assume we have Job0 and Job1 that are composed of independent tasks
and utilise 50% and 75% of the cluster, respectively. Also, assume Job0 is
currently inside the cluster being processed. From an admission control point
of view, if Job1 arrives, then system snapshots can reveal to us that half of
the cluster is free and Job1 will occupy 75% if it is admitted now causing
cluster overload at 125% (Job0(50%) + Job1(75%)). The system administrator
can then decide to, for instance, admit 50% of Job1 (i.e. a number of tasks

20

CHAPTER 1. INTRODUCTION

belonging to Job1) to (1) fully utilise the cluster, (2) start processing Job1 to
achieve its deadline, and (3) avoid overload, see Figure 1.2.

Figure 1.2: A simplistic illustration of admission control. Percentages represent
the HPC utilisation value per job.

For this particular example, this admission decision is desired with respect
to increasing the cluster processor utilisation. However, this can be challeng-
ing when dealing with tasks dependencies within jobs. In the presence of
dependencies, a system administrator cannot admit 50% of Job1 due to the
particular processing pattern within the job being enforced by its internal
(task) dependencies. The system administrator then needs to predict Job1’s
utilisation of the cluster over time. So, at least a high-level prediction of the
cluster’s processing capacity is obtained with respect to the admission of future
jobs. The system administrator may not know future jobs’ RTS parameters
including arrival and computation time nor deadline values.

We can review the issues of admission control scheduling which this the-
sis addresses in three strands. Our research issues are not only seen in general
WMSs, but also form part of a specific industrial WMS which this thesis uses
as a case-study [40]. Our review here will briefly include the general trends of
admission control scheduling approaches in the literature. However, a detailed
review can be found in chapter 2.

• On-line admission of jobs.

This refers to the on-line admission of jobs into HPC clusters with respect
to managing the trade-offs between the RTS objectives. There are two issues
here. First, the lack of knowledge of jobs’ RTS parameters (e.g. release rate,
deadline and computation time values) apriori i.e. prior to their arrival to
the system for scheduling and processing. Most available admission control
scheduling approaches in the literature assume some, if not exact, knowledge
of jobs’ RTS parameters apriori as part of their on-line admission control
scheduling algorithms. In this thesis, we assume such information is unknown
apriori.

Second, the admission controller should be independent, in its decision-
making logic, from the scheduling policy being adopted in the WMS. There are

21

related works in the literature that have integrated the design of the admission
controller with the scheduling policy. However, a requirement in an increasing
number of industrial WMSs is to separate the two in the design phase. This
requirement stems from the need, in some industries, to have their admission
controller flexible enough to continue practising its admission decision-making
logic despite changing the scheduling policy in the WMS.

Due to the two aforementioned issues, we derive the first research objec-
tive for this thesis: “to propose an intelligent admission controller that predicts
the effects of arriving jobs on the RTS objectives via a model-predictive algorithm
without prior knowledge of jobs’ RTS parameters”. Our main contribution
in this thesis is introducing a novel admission control algorithm based on
comparing arriving jobs’ computation time values against the predicted value
of the system’s processing capacity (in computation time units).

With this novel approach, we do not require prior knowledge of jobs’ RTS
parameters because we can know jobs’ computation time values the instant
they arrive to the system. Model-predictive admission control can manage the
trade-offs between RTS objectives by using past and current system perfor-
mance (states). This enables the admission controller to predict how far can
the system continue processing jobs without, for instance, missing deadlines.
This is addressed, reviewed and evaluated in chapter 4.

• Deal with task dependencies as a scheduling constraint.

Task dependencies force a scheduling issue for jobs. An admission controller can
admit and process one part of a job (a number of dependent tasks) and then,
later, reject another part of the same job. In this thesis, we assume the time the
cluster spent processing the first part of the job will go to waste. This is because
end-users require jobs to be completely processed. Most related works in the
literature have addressed the dependencies issue assuming jobs RTS parameters
(including dependency patterns) can be known apriori. However, the literature
lacks approaches for dealing with dependencies via on-line admission control
scheduling without prior knowledge of jobs’ RTS parameters.

From this issue, we derive a second research objective for this thesis: “to
propose an admission controller that computes an admission decision for
arriving jobs (unknown apriori) while respecting their task dependencies in
minimising such wasted processor utilisation while managing the trade-offs
between the RTS objectives”. This is addressed, reviewed and evaluated in
chapter 5.

22

CHAPTER 1. INTRODUCTION

• Deal with jobs’ financial values as incentives and constraints.

Some jobs might not be financially plausible for admission into the system
because the value earned from processing such a job can be less than the cost
of processing it locally or in, for instance, the cloud. The trade-off here is
we want to process as many jobs as possible to earn more financial rewards
but we are limited with the project budget which allows us renting or buying
additional computing processors. Acquiring additional processors can help the
local cluster, which is usually finitely resourced, for processing more jobs in
order to earn extra rewards.

Most related works in the literature have dealt with jobs’ values as incentives
for meeting deadlines in order to acquire those rewards. However, the literature
lacks approaches for dealing with both jobs’ values and project budget as real-
time incentives and constraints, respectively, to acquire additional computing
processors. We refer to this mechanism as enterprise resource planning (ERP).
From this issue, we derive our third research objective for this thesis: “to
propose an admission controller that can evaluate, in real-time, whether it is
financially plausible to acquire additional computing processors to support the
local cluster in processing more jobs while handling task dependencies and man-
aging the trade-offs between the RTS objectives”. This is addressed, reviewed
and evaluated in chapter 6.

23

24

Chapter 2

Literature Survey

The concept of real-time systems adopted in this work is “a system that is
required to react to stimuli from the environment (including the passage of
physical time) within time intervals dictated by the environment” [62]. “The
correct behaviour of such systems depends not only on computational results,
but also on the time at which the results are produced” [109]. In real-time
systems, jobs can be admitted or killed on-line based on predictions whether
they will meet their deadline or not. The algorithm responsible for testing the
schedulability of a new job in a system is normally referred to as admission
control [84]. Admission control-based algorithms form a major paradigm in
RTS and a rich body of results are found in the literature where their central
approach is based on on-line admission control and planning and thus applicable
in resource-constrained environments [77].

In this chapter, we review related work that motivated the case for intelligent
admission control scheduling in section 2.1. We then review the modelling and
decision-making aspects of admission control scheduling in relevant works in
the literature where we motivate, in a high-level, the case for control-theoretic
approaches, in section 2.2 and section 2.3, respectively. As for modelling-related
admission control scheduling, we will review how some related works have
integrated the design of admission control with the adopted scheduling policy,
which is undesired in our work here.

We will also see how some works have assumed certain RTS task-model
assumptions that set their work apart form ours such as the assumptions for
periodic jobs and the ability to control jobs’ release rates (periods)
which are undesired and infeasible in the WMSs we are concerned
with in this work. This is because end-users’ submission rate varies de-
pending on the industrial projects they are actually involved with. We review
the control-theoretic solutions in large and we motivate the case for feedback
control for our research work in this thesis in section 2.4. Finally, we review

25

2.1. THE CASE FOR INTELLIGENT ADMISSION CONTROL
SCHEDULING

related work on task dependencies and value-based scheduling constraints in
section 2.5 and section 2.6, respectively.

2.1 The Case for Intelligent Admission Control
Scheduling

For real-time systems, there are static and dynamic scheduling algorithms [40].
On the one hand, the static ones assume full and exact knowledge of task-sets
and their associated RTS parameters such as deadline and computation time
values apriori. Rate-monotonic (RM) is one exemplar in RTS systems which
prioritises jobs of the highest period values i.e. their release rate, this can aid
the system developer to categorise the RTS system apriori [59, 60]. Lauzac
et al. mention in [64] that implementing RM in admission control scheduling
with respect to processor utilisation was first proposed by Liu and Layland
in [69]. There are two issues with RM. First, it is difficult in some industrial
systems to predict the RTS parameters of the incoming jobs for scheduling
and processing. Second, RM’s schedulability bound is less than 100%, in fact
it is 69% [69], and one of our RTS objectives is to maximise HPC processor
utilisation.

On the other hand, dynamic algorithms have been developed for resource
(in)sufficient systems for guaranteeing jobs to be schedulable despite their
dynamic arrivals to the system. One of the popular dynamic RTS policies
is earliest-deadline-first (EDF) [18, 105]. EDF uses jobs’ deadline values as
the priority level; the earlier the deadline the higher the priority. EDF’s
schedulability bound is 100% which is, indeed, always desired. Yet, one major
downfall of EDF is the lack of certainty in determining which jobs will miss
their deadlines in the case of cluster overload situations [60]. Lu argues in [73]
that EDF lacks performance in resource-constrained systems and Maggio et
al. in [79] mention that EDF decreases in performance when the processor is
overloaded. This is because EDF correlates priority levels with deadlines where
there can be situations when a new job arrives all queueing (previous) jobs
miss their deadlines [72].

EDF has also been implemented in admission control scheduling algorithms for
real-time systems [110]. However, such admission control scheduling algorithms
in the literature are developed for real-time communication and networking
systems to support continuous traffic characterised by peak and average rates
[36, 68]. Such systems assume periodic jobs in their workload models where
they can control the release rate (periodicity) of jobs on-line in order to achieve
schedulable solutions for incoming/trafficking jobs. Our research scope in

26

CHAPTER 2. LITERATURE SURVEY

this thesis sets-apart from such an assumption in which we assume jobs are
aperiodic and their periods are unknown prior to their arrival and therefore
cannot be considered as an admission control variable.
As for resource insufficient systems, the Spring algorithm “can dynamically
guarantee incoming jobs via on-line admission control and planning and thus it
is applicable in resource insufficient environments” [11]. “The Spring scheduling
algorithm is a dynamic, on-line solution that constructs guaranteed schedules
based on deadlines, resources, precedence constraints, values, etc. The scheduler
can be utilized off-line or on-line” [91].

However, the issue with all of the aforementioned scheduling algorithms is that
they are open-loop (OL) which can be criticised in three strands [73]. First,
once the scheduling algorithm is designed, implemented and launched into the
system, it cannot adapt towards varying system states that were unforeseen
during the design phase of the scheduler [105].

This issue is manifested in industrial WMSs where cluster overload situa-
tions might occur due to sudden or urgent business requirements that forced
CFD engineers to flood the organisation’s HPC clusters with CFD jobs. Sec-
ond, OL algorithms perform well in RTS systems which their workload can
be modelled accurately, but consequently perform poorly in systems where
we cannot obtain accurate workload models [73]. Finally, OL algorithms are
usually built with worst-case workload models if accurate models are unavail-
able. In such cases, cluster under-utilisation is inevitable due to the pessimistic
estimation of workloads.

Traditional real-time scheduling approaches were concerned with avoidance of
undesirable effects such as overload and deadline misses. Adaptive real-time
systems including on-line admission control scheduling are designed to adapt
towards such effects dynamically with respect to the RTS objectives [73]. We
desire intelligent admission control scheduling that can adapt in case of unde-
sired situations like cluster overload in order to avoid undesired consequences
such as deadline misses. Malrait et al. argued the need for adaptive algorithms
replacing system administrators for automatically and intelligently regulating
workloads in dynamic RTS systems instead of physical, manual tuning of
systems’ RTS parameters [81]. We can see this trend of arguments in, for
example, [6, 80, 82].

Although the literature supports adopting intelligent admission control schedul-
ing for dynamic RTS systems, there are two main issues with related works
that set them apart form our research scope. First, we see some works in the

27

2.2. INTELLIGENT ADMISSION CONTROL SCHEDULING:
MODELLING

literature that have integrated the design of both of the admission controller and
scheduling policy together. For instance, Peha in [98] claim that “... because
scheduling is entirely independent of the admission control algorithm... This
paper presents an approach in which admission control and scheduling are
integrated”. This goes against our desire in developing an intelligent admission
control algorithm that supports the system in managing the trade-offs between
its RTS objectives regardless the adopted scheduling policy.

Second, the assumption of a pre-emptive task-set model such as Quan and
Chung’s admission control work for real-time services under EDF in [99]. We
refer to pre-emption in its classical RTS meaning where a task being processed
inside a processor is pre-empted by another queueing task. Quan and Chung’s
work also includes the first issue we addressed earlier where they have inter-
linked the design of admission control and scheduling together.

After surveying the literature and in addition to traditional RTS approaches,
there exists two major aspects in the field of intelligent admission control
scheduling: modelling (and assumptions on task-sets and processors etc.) and
decision-making. These two aspects will be reviewed in the following two
sections.

2.2 Intelligent Admission Control Scheduling:
Modelling

One realm of intelligent admission control scheduling is artificial intelligence, in
particular neural networks (NN) and genetic algorithms (GA). Using NN and
GA was explored in the literature, but the common theme of such approaches
are infeasible in the WMSs this thesis is concerned with. The reason for this is
due to their modelling assumptions on:

• Independent task-sets and a single-processor real-time system [45].

• Knowing certain jobs’ RTS parameters apriori such as the number of
jobs per workflow [25, 26, 114].

• Pre-emptive RTS environments and enabling jobs migration across the
cluster [23, 52, 83, 102, 112].

In addition to artificial intelligence, Ferrari in [35] advocates for admission
control scheduling with the use of realistic and advanced system state models
because simplistic models make the scheduling task more difficult in meeting
deadlines given sudden and varying workload situations (models). However,
Ferrari’s work was concerned with real-time communication systems with

28

CHAPTER 2. LITERATURE SURVEY

the assumption of periodic jobs. Although it is ideal to work with realistic
workload/system models, it is rather a challenging task to obtain such models.
We desire a modelling technique that can dynamically generate system models
with respect to varying workloads and processing capacity so the admission
controller can use for its prediction and decision-making tasks.

The three aforementioned bullet-points concerning related works with in-
dependent task-sets, prior knowledge of jobs RTS parameters and pre-emptive
task-sets have been addressed in this work by adopting a synthetic workload
generator. The generator is the work of Burkmisher et al. in [16] and is
validated with respect to our assumptions. It includes typical industrial task
dependency patters and does not provide knowledge of jobs parameters to the
system (admission controller) prior to their arrival to the system for scheduling
and processing.

Cappanera et al. in [20] are in favour for obtaining system models that
help the on-line admission controller in its feedback decision-making process.
However, they assume knowledge of the arrival curve of incoming jobs. Also,
Vacca et al. in [117] propose a feedback admission control algorithm for dy-
namic systems with jobs of varying arrival and computation time values. They
use EDF scheduling as long as resources are sufficient. However, their work
sets-apart from ours through their feedback mechanism because they adjust
jobs’ periods to be optimised with respect to meeting their deadlines.

Hyman et al. in [53, 54] also assume, for a broadband switching real-time
system, the knowledge of calls’ (jobs) arrival rates which they expect jobs to
follow a certain arrival pattern. Jamin et al. in [56] propose a model-predictive
admission control algorithm in which they do not use workload models per
se. Instead, they utilise a number of equations each time a new job arrives to
the system. These equations can, in real-time, predict whether the new job
will meet its deadline or not. However, their admission control variable is jobs’
periods. A similar trend of model-predictive admission control scheduling is
also seen in Yang and Lu’s work in [118] where they assume periodic jobs too.

As far as modelling of computing systems is concerned, we have queueing
theory which has been used in RTS systems [100]. On the one hand, “in
computing systems, queuing theory will not be enough when investigating
admission control mechanisms. The queuing theoretic methods usually assume
stable systems working in the non-overloaded region. Further, there are no
mathematical tools in queuing theory for developing optimal admission control
mechanisms. Instead, control theory may be used when investigating control

29

2.3. INTELLIGENT ADMISSION CONTROL SCHEDULING:
DECISION-MAKING

mechanisms for queuing systems. However, queuing systems are both stochastic
and non-linear, which introduces a number of modelling problems. These
problems may be solved by finding mathematical approximations that mimics
the behaviour of the system” [100]. Statistical modelling approaches such
as Bayesian-based models require prior distribution of any unknown parameters.

We desire a model-predictive admission controller that copes with unknown
events e.g. sudden cluster overload and arrival of unknown jobs without any
prior knowledge of their RTS parameters. Control theory includes a modelling
technique known as system identification which is initially done off-line and
apriori using either (1) OL simulation of the system input(s) to record corre-
lations (system dynamics) with system output(s), (2) back-logs of historical
and recorded system dynamics (if available), or (3) system experts’ opinion
for simulating system dynamics. The admission controller uses the system
identification model for:

• Constructing mathematical models approximating the real-time dynamics
between system parameters (inputs and outputs) [92, 46].

• Capturing any sudden events in the system e.g. jobs arrivals and cluster
overload etc. so it can prevent quality-of-service (QoS) violations via
admission decisions.

2.3 Intelligent Admission Control Scheduling:
Decision-Making

For industries that produce large-scale simulation jobs requiring heavy com-
putations, there exists commercial products that are advertised to regulate
these simulations into the HPC cluster. For example, LSF practices on-line
admission control decision-making based on advanced reservation protocol of
which it is designed to predict the performance (behaviour) of HPC clusters.
LSF is a queueing system that implements reservation. However, there are
limitations associated with this product such as under-utilisation [108]. This
stems from the FCFS scheduling policy LSF implements.

Another example of commercially available HPC scheduling products is Synfini-
Way, which is advertised to be platform-independent allowing its users to utilise
their diverse and heterogeneous HPC platforms to its virtualised IT algorithm.
It offers admission control and data handling via meta-scheduling decision-
making capability. It is not the scope of this work to discuss SynfiniWay
elements in details, analysis can be found in [113]. However, the limitations
of SynfiniWay in industrial systems stem from the fact that it uses multiple

30

CHAPTER 2. LITERATURE SURVEY

servers to decide on workflow admissions. This can be time consuming because
each SynfiniWay “neighbourhood” has its dedicated server monitoring the IT
algorithm.

Another industrial example of HPC workflow scheduling is Oracle Grid engines
[93] which (is run by Univa Corporations via its commercial WMS grid software
[116]) practices admission control decision-making on-the-run by introducing
a time-out for each session. Univa software is based on a pre-emptive RTS
environment where jobs migration across the grid (cluster) is practised. Ses-
sions here include a request made by the end-user to submit a job into the
system domain. If it exceeds more than, for instance, a day, then the session is
timed-out (killed) and the end-user will then need to re-submit the job again.
This will avoid end-users submitting excessive jobs.

Handling rejected (killed) jobs is not present in this thesis. Currently in
our industrial WMS, when a particular task causes the scheduling performance
to degrade, the system administrator manually kills the whole job that contains
this task. This is a serious flaw in the industrial system. Yet, some works in
the literature have also assumed this admission decision-making mechanism.
For instance, Bestavros and Nagy in [13] practice the killing of jobs where such
jobs go to a sink with no re-admission mechanism. Their admission control
decision-making process is based on feedback mechanism of current demand on
system resources with respect to the RTS objectives which are high hit ratio
(successful admission of jobs that have met their deadlines) and low killing
ratio. However, their jobs are generated off-line and known apriori where the
varying/dynamic part is jobs arrival time.

Univa’s admission control and others in the literature can be considered
a real-time admission control algorithm which prevents cluster overload situa-
tions by rejecting a certain number of jobs (sessions). Whereas there is another
approach known as fair-share which is concerned with regulating the workloads
as they arrive across the HPC cluster in a particular “fair” manner. The prime
objective of fair-share decision-making mechanism, known as FairShare, is to
achieve fair scheduling in regards to processor utilisation [61]. The issue is
“it is concerned with the relationship between processes and users” [27]. It
encourages users to spread their load on the machine [61]. In other words,
it achieves its “fair” admission control decisions with respect to end-users
by “fairly” regulating the workload across the cluster. However, design and
production industrial IT systems “do not require interactive performance and
spread-out their submissions of work” [17], and our industrial system is such a
WMS type.

31

2.4. INTELLIGENT ADMISSION CONTROL SCHEDULING:
CONTROL-THEORETIC

The assumption of pre-emption is pivotal in FairShare decision-making [61].
Implementing FairShare scheduling in a non-pre-emptive RTS system can lead
to undesirable consequences such as end-users attaining higher share of their
allocated segment of the cluster [17]. There is also multi-level feedback queues
as an RTS heuristics for balancing jobs’ response times in order to achieve
FairShare scheduling [7]. However, it is also based on the pre-emption RTS
assumption in its jobs execution model.

2.4 Intelligent Admission Control Scheduling:
Control-Theoretic

Using control theory for improving RTS performance appeared only in the last
decade [81], “while the concept of automated operations has existed for longer”
[87]. As we have seen in the previous sections thus far that some if not all RTS
and admission control approaches assume knowledge of system workload and
service capacity apriori [73]. This can potentially cause poor:

• Prediction of scheduling performance in computing systems.

• Handling of dependencies.

• Management of trade-offs in multi-objective RTS optimisation.

This has been the motivation in the RTS community for alternative approaches
that analyse and describe the aggregate behaviour of real-time systems [105].

One potential answer is the recent control-theoretic admission control which
uses feedback mechanism to monitor the capacity of the cluster with respect
to the QoS levels [30, 44]. The admission controller forces certain actions to
regulate the workload for efficient RTS performance with respect to agreed-on
objectives. This approach enables us handling the coupling between RTS
systems components dynamically via feedback control [29]. This is achieved
by defining performance metrics e.g. utilisation for transient response which
can be mapped to dynamic response specifications of control systems (theory)
[76]. Traditional approaches are concerned with statically assured avoidance of
undesirable effects such as deadline misses and utilisation overload [78].

Adopting control theory provides optimised data/decisions that need to be
translated into physical actions. This is necessary in order for the system
to meet its timing constraints and QoS requirements. In physical systems,
an actuator is known to be the responsible component that performs this
task. In software systems, we have the notion of admission control, which
limits the number of jobs being admitted into the system requiring computing

32

CHAPTER 2. LITERATURE SURVEY

processor utilisation [3]. Control theory helps overcoming the issues with OL
RTS approaches in unpredictable environments where their system models
cannot be modelled/obtained accurately. We can briefly list the roles of control
theory in improving the performance of OL scheduling schemes from [74].

• First, it contributes to derive dynamic models of computing systems
for applying performance control which is a pre-requisite for admission
controller design [46, 92]. This can be achieved in the realm of controller
design theory by a black-box modelling technique, system identification
[71]. This is important when we desire to add more service qualities, in
other words dealing with a multi-objective optimisation problem. This is
more complex than having one optimisation goal because the admission
controller needs to map each of its admission decisions with respect to the
objectives simultaneously, chapter 4 further explains this. This relates to
the modelling aspect of intelligent admission control scheduling.

• Second, it provides performance control for novel scheduling architectures
via feedback on QoS levels, which is important for systems to meet
qualities with precision and speed. In a dynamic and unpredictable
real-time system, it is beneficial for the admission controller to be aware
of the varying system states [105]. The reason this is beneficial is because
in order to achieve optimised performance, we need to assure that the
system reacts appropriately to different scenarios. If, for instance, the
system is overloaded with queueing jobs and the admission controller
predicts the deadline miss ratio is going beyond the QoS level. Then this
will result in an admission decision like rejecting certain jobs arrived into
the system to avoid violating a specific QoS level. This relates to the
decision-making aspect of intelligent admission control scheduling.

A number of related works in the literature applied control theory for having
the admission controller aware of the current state of the system. The reason
for this is to optimise the decisions the admission controller makes to suit the
changes occurred in the system behaviour. In Buttazzo and Abeni’s work [19],
they called their approach to be elastic. In other words, referring to adaptivity
and resilience to sudden changes in system behaviour and/or QoS requirements.
Buttazzo and Abeni utilised feedback control laws to monitor the states of the
system so the scheduler can consider admission decisions excluding the busy
components.

If every newly arrived job is sent to the cluster straight away, then an is-
sue can arise here. The new job might occupy a fast HPC processor that
potentially could serve a larger queueing job (with respect to processor cycles).
This can further impose unnecessary queueing time for the larger job to wait

33

2.4. INTELLIGENT ADMISSION CONTROL SCHEDULING:
CONTROL-THEORETIC

for the fast HPC processor to become free. Their work and others such as [70]
show the lack of adaptivity to variance in classical (traditional) RTS approaches.
Such approaches are designed to the specific characteristics of digital control
systems instead of general adaptive real-time computing systems. Other related
works proposed adaptive processor scheduling algorithms or QoS management
architectures for computing systems such as multimedia and communication
systems [4, 65, 101, 111].

We can generalise that some approaches can improve the RTS performance by
controlling i.e. real-time assignments of optimal deadline and release time/rate
values via feedback monitoring and control e.g. [76, 96]. A clear motivation
for feedback-based admission control scheduling can be found in numerous
researches e.g. [9, 74, 105].

Feedback control is one branch of control-theoretic RTS, whereas fuzzy-logic
control forms another branch of it. The next sub-sections review related
fuzzy-logic and feedback control works in the literature.

2.4.1 Fuzzy-Logic Control

The literature offers some research works that can be relevant to the RTS scope
of industrial WMSs. Fahmy’s work in [33] offers a fuzzy-based GA algorithm
for scheduling non-periodic jobs. However, his work supports single-processor
systems only. Hongjun et al.’s work in [50] supports non-periodic jobs for RTS
operating systems lacking jobs’ parameters apriori such as AMD and Intel.
However, their work is based on pre-emptive RTS environments. A similar
trend of related fuzzy-logic admission control scheduling works assume periodic
jobs, jobs migration across the cluster, pre-emptive RTS environment and
knowledge of jobs’ RTS parameters apriori are found in the literature.

The main reason this control-theoretic approach is not suitable for the type
of industrial WMSs this thesis is concerned with is because fuzzy logic-based
control systems assume full knowledge of the system dynamics apriori. For
instance, a fuzzy logic-based washing machine can dynamically decide how
clean/dirty the clothes load is based on pre-knowledge of what clean is and
what dirty is based on prior models being fed to the fuzzy logic controller.
Once the controller decides the level of dirtiness, it can then choose a suitable
washing-level for that particular load of clothes. This is infeasible in the
WMSs we are concerned with because we lack accurate models of workloads. If
workloads can be accurately modelled, then the literature offers a rich body of
approaches of traditional admission control scheduling algorithms.

34

CHAPTER 2. LITERATURE SURVEY

Feedback control theory, however, can work satisfactorily with simplistic
system models derived analytically. In the case of difficulty in deriving such
models analytically, which is the case with most real-time computing systems
[46, 73], there are system identification techniques that supports the feedback
controller with dynamic models of the system states. The next sub-section
reviews feedback control-based admission control scheduling approaches and
motivates it for our work carried-out in this thesis.

2.4.2 Feedback Control

A classical control algorithm known as proportional-integral-derivative (PID)
has been used in uni-processor real-time systems to reduce deadline miss ratio
[75]. PID is a basic feedback control to achieve admission control scheduling ob-
jectives in real-time systems [92]. However, when common characteristics arise
such as large time delays, non-linearity, high-order dynamics or multi-processor
cases, PID lacks performance improvement as it is linear and in particular
symmetric [37].

In [76], two PID controllers were implemented by Lu et al. to meet two
RTS objectives; maximising processor utilisation and minimising deadline miss
ratio. Lu et al.’s attempt in addressing RTS multi-objective optimisation has
lead to significant results in their single-processor case-study. In the literature,
we can see how PID is argued, in theory, to be used for multi-objective opti-
misation [38], where a mechanical industrial experimentation is illustrated in
[97]. However, later on when multi-processor scenarios were examined by Lu
et al., model-predictive-control (MPC) has offered promising results for the
same RTS multi-objective optimisation problem [78]. This very work of Lu et
al. has inspired us adopting MPC supporting admission control decisions for
RTS [42] as MPC-based admission control was suggested in [78].

MPC is an advanced feedback control algorithm for controlling real-time
dynamic systems. It is popular in industries that heavily rely on process control
- a survey of MPC applications in industry is provided by Nicolaou in [88]. In
the literature, MPC has been advocated for controlling systems that exhibit
non-linear behaviour and contain multi-input-multi-output (MIMO) structure.
A survey of feedback control in software services is compiled by Abdelzaher et
al. in [1]. Most, if not all, computing systems exhibit non-linear behaviour
[46], and our industrial WMS has a MIMO structure since both the number of
system inputs and outputs exceed one, more details on this point can be found
in chapter 4.

Lu et al. chose MPC for their work in minimising the difference between

35

2.4. INTELLIGENT ADMISSION CONTROL SCHEDULING:
CONTROL-THEORETIC

the desired processor utilisation values of m processors (set-points) and the
actual values monitored with time [78]. The control variable was periodic-
ity, which controls the release rate of jobs. For control jobs, there are two
approaches for controlling processor utilisation, either by manipulating jobs
release rates [78] or computation time values [48]. Our approach is based on
the latter for jobs admission because controlling jobs release rate values is
undesired in our industrial system as the distribution of submitting workflows
into the HPC cluster is and will not be controlled.

Another advanced feedback control approach is linear quadratic regulator
(LQR) control algorithm for multi-objective RTS optimisation. Similarly to
MPC, LQR captures the dynamics of a system by a set of linear differential
equations that can be derived via system identification [71] e.g. the work of
Diao et al. in [28]. MPC differs from LQR by allowing explicit optimisation
constraints on both the system outputs and control signals (variables) [10].
Both MPC and LQR handle optimisation via their quadratic optimisation
approach [104]. A quadratic programming (QP) problem has an objective
which is a quadratic function of the control signal(s), and constraints which
are all linear functions of the control signal.

Diao et al. chose LQR feedback admission control algorithm in optimis-
ing processor and memory utilisations of an Apache server via controlling the
maximum number of requests made to the server, and the duration of keeping
a request alive or queueing to be served [28]. However, it is not desired, in
industrial WMSs we are concerned with in this thesis, to force a “cap” on
admitting jobs in the case of receiving one with a high priority but exceeds the
maximum number of jobs specified by the admission controller. Cherkasova
and Phaal have also used “cap” feedback admission control logic in [24].

In Lu et al.’s feedback admission control approaches in [76, 78], jobs killing
(removal from the system) is not practised, but rather, assigning a futuristic,
optimal release time value for jobs. We assume the assignment of future/opti-
mal release time values to be infeasible in the industrial WMSs this thesis is
concerned with. Similarly to Lu et al.’s feedback admission control approach,
there is Park and Humphrey’s notion of Scheduling Credits which are assigned
for the admission of prioritised jobs [96]. However, Park and Humphrey used
control laws to optimise the values of jobs’ periods with respect to high proces-
sor utilisation and minimum deadline misses which requires knowledge of jobs’
periods apriori.

Similarly to Lu’s feedback admission control work, Heo et al. developed

36

CHAPTER 2. LITERATURE SURVEY

a distributed performance optimisation service in a 3-tier Web server farm [49].
The RTS objective was to minimise the energy cost function of 18 machines, a
HPC test-bed. The admission control logic consisted of regulating the rate for
the incoming back-up requests which is infeasible in our industrial system. On
the other hand, Robertsson et al.’s work does not control the arrival rate of
jobs, but instead they assume prior knowledge of the arrivals where “the mean
arrival rate will, in practice, vary with time and has to be estimated, but it is
in this paper assumed to be constant and known” [100].

Finally, feedback admission control scheduling can be a promising candi-
date for our industrial WMS via its capabilities in on-line (1) system modelling
(model-predictive) of the effects of newly arrived jobs’ computation time values
on the system’s processing capacity and (2) decision-making process in compar-
ing newly arrived jobs’ computation time values with the system’s processing
capacity. Despite this, there are two industrial scheduling constraints that have
been addressed in the literature for dynamical real-time computing systems.
They are tasks’ dependencies and job’s financial values for admission. The next
two sections will review these constraints, respectively.

2.5 Task Dependencies as a Real-Time Scheduling
Constraint

There are traditional RTS approaches that have been studied for addressing
the dependency constraint or issue between real-time task-sets. Saksena and
Hong applied Critical Scaling Factor [66] for RM scheduling of periodic jobs in
[103], and Abdelzaher and Shin investigated the Branch and Bound algorithm
for, also, periodic task-sets [2].

The cited algorithms find a schedule using jobs periodicity as a parame-
ter or condition. They can lack performance in dealing with jobs only upon
their arrival which do not, necessarily, follow a particular periodicity (release
pattern). This motivated our work in overcoming this issue by dealing with jobs
upon arrival to compute an admission decision based on the jobs computation
time values regardless of periodicity.

The work of Saksena utilised deadline assignments for satisfying end-to-end job
constraints off-line i.e. before launching the scheduler into the system. This
approach requires knowledge of system’s workload parameters and computing
capacity apriori. The practice of designing optimal deadlines for meeting RTS
constraints based on workload models [103] and jobs arrival times [2] is a
common trend. Overall, the cited works in the literature take metrics like

37

2.5. TASK DEPENDENCIES AS A REAL-TIME SCHEDULING
CONSTRAINT

computation & release times and precedent constraints (task dependencies) etc.
as part of their scheduling algorithms.

In the literature, there are also dynamic scheduling algorithms addressing
the issue of dependencies. However, some approaches assume a different RTS
problem from our industrial system’s. For instance, in the work of Simon et al.
in [106], they take task dependencies to be in regards to delays i.e. real-time
response time, but not to dependencies between the real-time tasks themselves
i.e. their processing patterns. Also, in the work of Feitelson et al. in [34], they
deal with the jitter of dependent real-time tasks. However, task dependencies
have not been dealt with as a scheduling constraint per se, but network delay
and jitter was the constraint, instead.

Cervin addressed data dependencies between real-time tasks to being a schedul-
ing constraint that can degrade the controller performance in meeting the
desired RTS objectives, hence scheduling performance degrades too [21]. Ac-
cording to his feedback control analysis, the computation time of tasks “may
vary randomly due to data dependencies...”. In Cervin’s feedback control
algorithm, “the timing description is somewhat limited in that it cannot handle
dependencies between periods”.

The literature also offers feedback control-related works that have addressed
the issue of task dependencies in RTS systems. Yuan et al.’s research was
concerned with the scheduling of control systems. Their problem statement
is “the problem we consider here is to find the execution order of n periodic
tasks with task dependencies” [119]. We notice there are two RTS assumptions
that make their work sets-apart from ours. The first assumption is they deal
with a particular number of tasks known apriori. The second is they deal with
periodic task-sets.

However, Yuan has furthered the work to include handling aperiodic tasks in
[120] where his research problem is concerned with scheduling the control tasks
of a multi-robot system. We can consider the robots’ arms to be our HPC
processors in order to bring Yuan’s work and ours closer. His work is based
on adjusting the frequency of tasks so deadlines can be met. Otherwise, an
admission controller is then utilised for rejecting least priority oncoming tasks
and terminating the processing of such tasks too. Changing tasks (or jobs)
frequency in the cluster is not desired in our industrial system, the system
administrator does not have the option for compromising the quality of the
CFD jobs computational results by reducing their frequency rate values for the
sake of meeting deadlines. Additionally, Yuan’s admission controller assumes a

38

CHAPTER 2. LITERATURE SURVEY

pre-emptive RTS environment as well.

If we compare Yuan’s and other RTS systems in the literature with the
WMSs we are concerned with, we find that in our industrial system, if a job is
admitted, then it is expected to run for its complete duration. Therefore, we
require a feedback admission control algorithm to meet our RTS objectives
while respecting task dependencies and without compromising any of the release
and computation time values.

One part of our research will be focussed on designing an algorithm that
deals with task dependencies as a scheduling constraint, refer to chapter 5 for
more details on this topic.

2.6 Value-based Scheduling and Enterprise Resource
Planning

Value-based scheduling is concerned with the rewards (financial values) earned
after scheduling and processing jobs on time. Lai in [63] showed that adopting
value-based scheduling will result in a different scheduling architecture such as
market-based. This can be undesired in industries not wishing for changing
their current existing scheduling architecture including our industrial system.

As for job value assignment, literature shows that having a dynamic value
(rewards) is better than a fixed one for improved market efficiency [63]. There
are different dynamic models, e.g. [22, 67], for designing (job) values that,
indeed, affect the scheduling performance with respect to earning maximum
values [17]. When the value is modelled, then the admission controller is
expected to earn the maximum value return for the whole workload [55, 58].

Our scheduling problem differs from mainstream literature in which we cannot
afford, in the industrial system, to change the scheduling structure and policy
in order to accommodate value-based scheduling architecture. The reason
behind this is because changing the scheduling policy would lead to changing
the scheduling system architecture [14]. This is undesired in our industrial
system and many other industrial organisations would prefer adding a software
layer that would regulate the workload into the processing cluster which was an
earlier motivation for our feedback admission control algorithm. Therefore, it
is the responsibility of our proposed admission controller to earn this maximum
value (reward) by carefully admitting jobs into the cluster and potentially make
automatic decisions for acquiring additional resources if found necessary via
purchasing new processors and renting from the cloud.

39

2.6. VALUE-BASED SCHEDULING AND ENTERPRISE RESOURCE
PLANNING

Within the European EU/IST FP6 Network of Excellence Artist2 on Embedded
System Design, a roadmap on Control of Real-Time Computing Systems has
been published in the last decade. It specifically addresses the value-based
scheduling within, of course, the control-theoretic perspective. The road map
states that “an interesting but still largely unexplored approach is to instead
use value-based or direct feedback scheduling. Here, the idea is to base the
decision of which task to execute on an instantaneous cost function. This cost
function should grow the longer the control loop executes in open loop and
decrease when a control action is issued. The instantaneous cost could then be
used as a dynamic task priority similar to the deadline in EDF” [9].

In that regard, Henriksson et al. have designed a value-based dynamic schedul-
ing of multiple MPCs where they used the “optimisation cost function as
the value function” [47]. This work resembles the admission control work
carried-out by Lu et al.’s in [77] in the sense of enforcing virtualised reward
values for jobs to improve jobs admission and processing on time. However, it
lacks featuring decision-making algorithms for acquiring additional computing
processors if the local cluster is predicted to lack performance with respect
to the RTS objectives. Besides, Henriksson et al.’s work was concerned with
periodic and pre-defined jobs.

In the field of ERP, we can refer to Oracle’s data sheet “Planning the scheduler”
as a “non-stop process, driven by the arrival of new orders [jobs], unforeseen
events, ... and changes in resource availability” [94]. The changes in the
above quote can be related to the local cluster’s over-utilisation, or to be
precise, the prediction of our cluster’s incapability to meet jobs deadlines given
past and current jobs arrival and completion rate with respect to our RTS
objectives. Oracle’s data sheet in [94] also suggests that the planning process
can be “proactive and reactive”. Our prediction and optimisation algorithms
are considered the proactive part of proposed algorithm, and the feedback loop,
including the admission control decision, is the reactive part.

In chapter 6, we propose novel rent and purchase value-based admission
control algorithms. The algorithms complement our proposed approach to
address our industrial ERP requirement in acquiring additional computing
processors while complying with financial constraints and incentives. Since our
value-based algorithms include task dependencies within its scheduling, this
can relate to actual industrial cases when dealing with “multi-step / complex
orders that allows order time and sequence dependencies to be honoured in
the schedule” [95]. Aiming for high completion ratio and minimum missed

40

CHAPTER 2. LITERATURE SURVEY

appointments are also advocated for in [95] which are reflected by our RTS
objectives.

2.7 Summary

Traditional RTS approaches require complete knowledge of the scheduling
parameters of the workload (task-sets) apriori in order to generate system
schedules before jobs arrive [73]. Some work on earlier RTS policies included
on-line admission control heuristic in order to enable an efficient scheduling
performance such as the work in [96]. Although some works do not necessarily
require the arrival times of jobs, but they still demand some RTS parameters
e.g. resource requirements and task dependencies etc. apriori. Alternatively,
we saw that some related works assume only periodic jobs and/or a pre-emptive
RTS environment.

Traditional algorithms are considered OL [105, 73] because there is no automatic
mechanism in updating the scheduler with new events in the system e.g. arrival
of jobs with unknown computation time values and task dependencies. Such
RTS policies can depend on the manual intervention of system administrators
when QoS levels are violated or in the event of system overload which can lead
to violating QoS levels. Hence, the motivation for our proposed algorithm has
emerged in enabling the automation of admission control throughout unex-
pected events. According to our literature survey and to the author’s best
knowledge, there were no RTS solutions that have directly addressed handling
task dependencies and real-time ERP applications with respect to our RTS
objectives.

41

2.7. SUMMARY

42

Chapter 3

Problem Formulation

3.1 Basic Definitions

In order to better introduce our thesis hypothesis and research questions in the
coming sections, it is beneficial to introduce our basic definitions which will be
used later on in this chapter and the rest of the thesis.

3.1.1 Open-Loop Admission Control

An algorithm that practises admission control without knowledge of the system’s
performance with respect to RTS objectives.

3.1.2 Feedback Admission Control

An algorithm that practises admission control with some knowledge of the
system’s performance with respect to RTS objectives.

3.1.3 HPC Cluster Processor Utilisation

The ratio of the number of busy processors to the total number of processors
per time unit, see Equation 3.1.

PU = #BusyProcessors

ClusterSize
(3.1)

3.1.4 Slack Values

We have already defined in chapter 1 that a job can contain a number of
dependent tasks. Slack values measure how early or late a job/task is since its
arrival to the system until it completes processing from the cluster.

For task slack values, tS, see Equation 3.2:

tS = tD − Time − tC
′ (3.2)

43

3.2. RESEARCH HYPOTHESIS AND QUESTIONS

tD is the task’s deadline value, Time is the real time clock (cycle start) and
tC

′ is the task’s remaining computation time.

For job slack values, jS, see Equation 3.3:

jS = jD − Time − jC
′ (3.3)

jD is the job’s deadline value where jC
′ is its remaining computation time.

3.1.5 RTS Objectives

• Manage the trade-offs, in real-time, between the maximisation of HPC
cluster processor utilisation and slack values.

• Further objectives will be included in chapter 5 and chapter 6 once we
address the issues of task dependencies and extending the HPC cluster
via renting and buying additional processors, respectively.

3.2 Research Hypothesis and Questions

The thesis hypothesis is:
Given an open-loop admission control baseline, can a feedback admission control
algorithm improve the real-time performance in increasing the HPC cluster
processor utilisation and slack values of jobs with task dependencies with abilities
in extending the HPC cluster via rent and buy algorithms.
We can outline the four research questions this thesis will address in the
prescribed order leading towards answering the aforementioned hypothesis.

1. Can we construct a dynamic mathematical model which captures the
(non-linear) behaviour between task-sets computation time values (system
input) and their slack values & processor utilisation (system outputs). If
so, how can we validate its accuracy in order for it to be implemented as
part of the proposed algorithm?

2. Once we validate our system model, can we design an intelligent admission
control algorithm for managing the trade-offs between the two RTS
objectives without prior knowledge of jobs RTS parameters?

3. Can the proposed algorithm deal with task dependencies (inside jobs) as
a scheduling constraint and the emerging RTS objectives such as reducing
wasted processor utilisation (WPU)1? Can the proposed algorithm
manage the trade-offs between the RTS objectives without prior knowledge
to any RTS parameters? If so, can the proposed algorithm outperform

1We designed W P U as an RTS metric when addressing the issue of task dependencies
where chapter 5 looks into it in more details.

44

CHAPTER 3. PROBLEM FORMULATION

baseline admission control algorithms such as random-based and jobs-
completion-ratio-based etc.?

4. Can the algorithm support real-time rent and buy decisions for acquiring
additional computing processors to support the local cluster in manag-
ing the trade-offs between the RTS objectives and increase the overall
SystemCredit1?

3.3 Thesis Structure

We have introduced our research scope in chapter 1. In chapter 2, we reviewed
the literature with respect to related works on intelligent admission control
scheduling. This chapter includes the research hypothesis, questions and struc-
ture. We shall start with our first research question in chapter 4 because it
represents the modelling foundation for the rest of our work carried-out in this
thesis. We will also address the second research question in chapter 4 where
we review and discuss our proposed algorithm’s design and implementation as
a general method for RTS systems resembling our industrial WMS.

In chapter 5, we will address task dependencies as a scheduling constraint. We
will evaluate how our proposed algorithm can offer some answers to the RTS
issues raised in this realm. We will also show how we extended our proposed
algorithm in chapter 4 to adapt towards task dependencies as a scheduling
constraint and handle jobs QoS levels as well. This covers our third research
question.

In chapter 6, we will show how we extended our novel admission control
algorithm, in chapter 5, to include ERP applications. This is to support our
industrial organisation in making rent and buy decisions for acquiring additional
computing processors when the local HPC cluster lacks, or is predicted to lack,
performance in managing the trade-offs between the RTS objectives. We will
evaluate our proposed algorithm and we will compare renting against buying
admission algorithms with respect to the RTS objectives and the financial
consequences as well. This covers our fourth and final research question leading
to address the thesis hypothesis.

Conclusions & further works for our work in this thesis are found in chapter 7.

1We designed SystemCredit as an RTS metric when addressing ERP optimisation problems
where chapter 6 looks into it in more details.

45

3.3. THESIS STRUCTURE

46

Chapter 4

A Novel Feedback Admission
Control Scheduling Algorithm

The purpose of this chapter is to discuss the feedback admission control (FAC)
algorithm which is our adopted approach in this thesis. This algorithm is not
only tailored for our industrial system, but is considered a general approach
for all WMSs that have similar RTS objectives and requirements as outlined
in chapter 1 and chapter 2. Our algorithm is based on feedback control, see
Figure 4.1, which was motivated for in our literature survey in chapter 2 as a
promising approach for our industrial system and other similar RTS systems.

Figure 4.1: A block diagram of a typical feedback control system.

As any typical feedback control system, our admission control approach is
based on two main components as depicted from Figure 4.1 which are the
controller and the system. These two components will be briefly outlined here
to provide a general picture of our approach to the reader. Afterwards, in-depth
analysis and review of our FAC algorithm’s components and design steps will
be provided in the next sections.

The controller component is the admission controller of our FAC algorithm.
It computes a control signal after comparing the monitored system outputs e.g.
slack values and processor utilisation with their associated QoS levels, refer
to section 4.2 for more details. The control signal represents the predicted
processing capacity the HPC cluster can afford to provide without violating the
QoS levels. The processing capacity is considered as the “optimal” computation
time value which the admission controller uses for admission decision-making

47

4.1. DESIGN STEPS

for the arriving jobs.

As we do not know jobs’ RTS parameters apriori we cannot afford to control
job release rates. We designed our control signal to be concerned with the
computation time values as they can be known once jobs arrive so the admission
controller can compute an instant admission control decision. If the arriving job
has a computation time value larger than the optimal one then it is rejected. It
is rejected because the admission controller predicted the arriving job will not
meet its deadline and will cause other jobs to be delayed potentially causing
deadline misses (undesired).

As for the other component, to control any system, any controller requires a
linear mathematical model of the system under consideration [92]. We will refer
to such a model as the system model for the rest of this thesis. For modelling
computing systems, we have queueing theory which has been reviewed in chap-
ter 2 as an impractical solution in admission control [100]. System identification
constructs linear mathematical models approximating the behaviour between
the system parameters [92, 46]. The admission controller uses such a model to
capture any sudden events in the system e.g. jobs arrivals and cluster overload
etc. so it can prevent QoS violations via admission decisions.

4.1 Design Steps

Figure 4.2-(a) summarises the design steps adopted in our FAC algorithm and
they also make the design foundation for all feedback control RTS approaches.
Each one of the design steps will be reviewed in details with respect to our
algorithm which can be represented by Figure 4.2-(b). The FAC block, in
Figure 4.2-(b), is a software layer which can be added to the WMS software
algorithm. In fact, if we remove the FAC software layer, we will end-up with
the OL representation of our industrial system, see Figure 4.3. OL here refers
to the absence of feedback control mechanism which closes the loop as noticed
in Figure 4.2-(b). We developed our own simulator for this work in Simulink
environment in Matlab [86].

4.1.1 Task Model

We start with exploring the performance of our FAC algorithm with a simple
task-set. This task-set assumes independent tasks, therefore the notion of
jobs does not yet exist in our workload. Once we introduce task dependencies,
in the next chapter, the notion of jobs emerges. Although we are primarily
concerned with aperiodic task-sets, we are enforcing the assumption of periodic
tasks at this early stage of the thesis. The reason for this is to evaluate the

48

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

Figure 4.2: (a) Design steps for feedback control real-time scheduling systems.
(b) A block diagram of our feedback admission control algorithm.

efficiency of our algorithm when using basic and advanced control laws at this
stage before adding further constraints to our RTS problem.

A workflow task from our industrial system can be represented in a tuple like
[tCi, tDi, tTi] [8]. Where tCi is the ith task’s computation time value, tDi

is the deadline and tTi is the release rate. We borrowed two types of tasks
from our industrial system which are Data and Design. Such types are similar
in RTS parameters and are represented by Table 4.1. Please note that our
algorithm is not only concerned with such task-sets, however it is an early
exploration phase of it and we will see in the next chapter how it performs with
different task-sets which can be more related to other industrial RTS task-sets.

The tD for all tasks is set to be the tC value multiplied by an arbitrary value
of 1.2 chosen for this work. In other words, the tD of individual tasks is equal
to their individual tC value plus 20%. We use the notion of task slack values,
tS, as defined in chapter 3, see Equation 3.2. If a task finishes earlier than its
deadline then a task has a positive tS value. A task will have a zero tS value if
it finishes on time and if it is late then it will suffer from negative tS which is

49

4.1. DESIGN STEPS

Workflow Task Type tC (hours) tD (hours) tT (hours)
Data [4-6], [12-15] tC + 20% 4.0
Design [4-6] tC + 20% 0.8

Table 4.1: Task model of generated tasks [42, 43]. For Data tasks, a Round-
Robin selection criteria is implemented inside each range, and random switching
criteria is implemented between the two ranges. This can be noticed in Figure 4.4
(top). For Design tasks, they have only one range and values are selected via a
random selection criteria.

undesired. We take the normalised value of tS values, ntS, for our results, see
Equation 4.1.

ntSi = tDi − Time − tC
′

i

tDi
(4.1)

tC
′

i is the ith task’s remaining computation time. The reasons for normalising
tS are to show (1) what task has missed its deadline and (2) how far is it from
its deadline; this can be positive, zero or negative values. Given Equation 4.1,
ntSi ranges between −∞ and 1, where we want to maximise ntSi to achieve
lesser deadline misses.

If we apply the RTS schedulability bound equation of Liu and Layland in [69],
see Equation 4.2, for our task-sets in Table 4.1, the processor utilisation, U ,
required is greater than 1, where Ci is task computation time values, and Ti

is task release rates. This will inevitably cause processor over-utilisation and
deadline misses.

U =
i

∑
n

Ci

Ti
≤ 1 (4.2)

In other words, the scheduling of our workflow task-sets i.e. meeting all
individual tasks deadlines is infeasible according to the schedulability equation
test because in our case tCi is always larger than tTi. Although this test is for
single-processor RTS systems only, we will see in later sections in this chapter
how our industrial tasks will still miss their deadlines and suffer negative
ntS values with many-processor clusters. We will notice in our forthcoming
evaluations that our industrial system experiences cluster overload situations
which is considered an indication that sometimes the number of HPC processors
are not sufficient to process all incoming workloads leading to reduced ntS

values which potentially causes deadline misses in the system.

4.1.2 Scheduling Policy

We have experimented with FCFS and EDF separately to observe the perfor-
mance and benefits each policy brings with respect to our RTS objectives.

50

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

4.1.3 Performance Metrics

• Processor utilisation, (PU), see Equation 3.1.

• Normalised task slack values, (ntS), see Equation 4.1.

4.1.4 System Model and Identification

Classical control systems such as mechanical and electrical systems may have
readily available differential equations as system models, unlike real-time com-
puting systems [73]. A system model represents the OL relationship between
system parameters (inputs and outputs). System parameters are chosen to,
for instance, measure how tasks tC values (system inputs) affect the PU and
ntS values (system outputs) of tasks that have completed processing. In
typical mechanical and electrical systems, the relationships between the system
parameters are usually governed by physical laws e.g. Newton’s law. However,
this is not the case with computing systems parameters [39].

If we look at Figure 4.3 which is the OL version of our industrial system,
the system inputs stem from the Workflow Generator block and the system
outputs are monitored via the Monitor block. We can derive linear mathe-
matical models using system identification regression equations [71] that can
capture the (non-linear) relationship between the system parameters. Such
models are considered as the foundation for controller design [92], and will
replace the scheduling and processing block as shown in Figure 4.2-(b) and
later on in this thesis with a System Model block.

Figure 4.3: A block diagram of the open-loop (OL) version of our industrial
system with emphasis on the System Model components. The System Model
block represents the system identification model of the scheduling and processing
dynamics of our industrial system which the FAC block uses in its admission
control decision-making process in Figure 4.2-(b).

In general system identification theory [85], we consider a non-linear sys-

51

4.1. DESIGN STEPS

tem like our industrial WMS with an output, y(t), that follows a prescribed
trajectory in response to a known input, u(t). The output can be a vector of
the monitored ntS values and PU and the input can be the incoming tasks tC

values. The system dynamics, then, can be represented by Equation 4.3:

dx(t)
dt

= f(x,u);y = g(x,u); (4.3)

Both x and y represent the system’s input and output states respectively. Both
functions f and g, which can be non-linear, are mathematical representations
of the system dynamics via measurements. If the system is at an equilibrium
condition, then a small perturbation to the input, ∆u, which is the control
signal, leads to a small perturbation in the output, ∆y, see Equation 4.4 [85]:

∆ẋ = df

dx
∆x + df

du
∆u; ∆y = dg

dx
∆x + dg

du
∆u; (4.4)

In other words, this small perturbation to the input can be a correcting signal in
order to steer the system’s dynamics towards meeting the QoS levels. We have
implemented a widely known system identification technique called non-linear
autoregressive exogenous (NARX) [71] for capturing the impact of arrived tasks
tC values on scheduling and processing. We implemented NARX correlation
functions in our simulated system inputs and outputs because, as any other
computing system, such relationship is non-linear and NARX is able to capture
such non-linearity in its modelling technique, more details can be found in [71].

The system parameters (inputs and outputs) were simulated for 200 hours for
the modelling purposes to represent around two weeks worth of our industrial
WMS’s RTS dynamics. We selected the system inputs to be the tC values,
depicted from Table 4.1, for both types of tasks (Data and Design), see Fig-
ure 4.4, in order to study their effects on our RTS objectives by monitoring
system outputs in Figure 4.5. We simulated tC in the OL simulation model,
see Figure 4.3, in order to capture correlations (system dynamics) between tC

(inputs) and PU & ntS (outputs).

For general RTS systems, any parameters can be selected and simulated
for a particular period in order to model as much RTS dynamics as possible so
the admission controller can capture such dynamics via the obtained system
model. The simulated inputs and outputs are represented in Figure 4.4 and
Figure 4.5, respectively. Using the OL simulation model for capturing the
system dynamics is one of the three system identification approaches outlined
in section 2.2.

The inputs were simulated on a 10-processor cluster to capture the clus-

52

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

Figure 4.4: Simulated system inputs for system identification modelling. We
can notice for the Data tasks (top plot) the Round-Robin selection criteria
within each range, and the random switching mechanism between the two
ranges.

Figure 4.5: Simulated system outputs for system identification modelling.

53

4.1. DESIGN STEPS

ter overload situations. Thus, the model obtained will be restricted to the
dynamics captured in the used cluster size. We notice from Figure 4.5 that
Design tasks suffer worse ntS values than their Design peers, and this is
witnessed in our industrial system actually. An argument can be raised here
regarding the identification model we did for high workloads when we simulated
the system inputs and outputs on a small cluster size. We did not simulate
data of higher cluster sizes to capture the cluster under-utilisation situations.
Modelling different workloads can be marked as a future work for this chapter.

System identification has allowed us identifying the RTS dynamics in the
form of a set of transfer (system) functions in terms of complex frequency-
domain representation, z-domain, of linear time-invariant systems. In control
theory, it is preferred to use transfer functions in the z-domain representation,
not the time-domain, because a controller is concerned with the varying dynam-
ics of the system’s parameters regardless of the notion of time. We added the
transfer functions as the System Model block in Figure 4.2-(b). The transfer
function from Data tasks tC values (input 1) to PU (output 1) is:

−1.78e−15z6 − 1.24e−3z5 + .01z4 − 0.03z3 + 0.02z2 − 1.33e−3z − 1.70e−3

z7 − 4.14z6 + 7.00z5 − 6.17z4 + 2.99z3 − 0.75z2 + 0.08z
(4.5)

The transfer function from Data tasks tC values (input 1) to ntSData values
(output 2) is:

1.77e−15z6 + 3e−5z5 − 6.00e−5z4 + 4.63e−5z3 − 1.98e−5z2 + 6.25e−6z − 1.18e6

z7 − 4.14z6 + 7.00z5 − 6.17z4 + 2.99z3 − 0.75z2 + 0.076z
(4.6)

The transfer function from Data tasks tC values (input 1) to ntSDesign values
(output 3) is:

2.66e−15z6 − 9.38e−4z5 + 4.01e−4z4 − 6.74e−3z3 + 5.58e−3z2 − 2.27e−3z + 3.68e−4

z7 − 4.14z6 + 7.00z5 − 6.17z4 + 2.99z3 − 0.75z2 + 0.08z
(4.7)

The transfer function from Design tasks tC values (input 2) to PU (output 1)
is:

−8.88e−16z6 + 0.38z5 − 1.14z4 + 1.30z3 − 0.71z2 + 0.20z − 0.03
z7 − 4.14z6 + 7.00z5 − 6.17z4 + 2.90z3 − 0.75z2 + 0.08z

(4.8)

The transfer function from Design tasks tC values (input 2) to ntSData values
(output 2) is:

5.13e−4z5 − 1.66e−3z4 + 2.12e−3z3 − 1.33e−3z2 + 4.09e−4z − 5.01e−5

z7 − 4.14z6 + 7.00z5 − 6.17z4 + 2.99z3 − 0.75z2 + 0.077z
(4.9)

54

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

The transfer function from Design tasks tC values (input 2) to ntSDesign values
(output 3) is:

−0.01z5 + 0.03z4 − 0.04z3 + 0.03z2 − 0.01z + 1.89e−3

z7 − 4.14z6 + 7.00z5 − 6.17z4 + 2.99z3 − 0.75z2 + 0.08z
(4.10)

It is worthy to mention that lower order models were investigated in this work.
However, the current model order has resulted in a closer match to the industrial
system’s simulated parameters of 2 inputs and 3 outputs where most systems in
the literature varied from single to double input/output. Also, the performance
of a higher-order identification model advances as the number of parameters in
the identification problem can yield to infinity [31]. An argument can be made
here regarding the time-variant nature of our industrial WMS, literature of
control theory supports linear time-invariant difference equations [46, 71]. We
used Matlab’s System Identification toolbox [86] to convert the simulated data
into a linear mathematical representation (preferably frequency-domain) that
is compatible with control theory. More information can be found in [46].

In order to start using the obtained transfer functions as the system model in
our FAC algorithm, it needs to be validated [92]. Such validation is achieved
if the system model passes an accuracy test [46]. This accuracy reflects how
accurate the system model is in representing the system’s RTS dynamics. If
we simulate the system dynamics for 200 hours, then in system identification
we take one part of this data for constructing the system model itself. The
other part is used for validating the accuracy of the constructed model. The
accuracy, refer to Equation 4.11, of our system model has been tested via a
process called Model Validation [46, 92].

R2 = 1 − var(y − ŷ)
var(y) (4.11)

The variance of system outputs, y(k), is var(y), and ŷ is the estimated value
of the system outputs. R2 ranges from 0 to 1; zero means the model does
not work, any better, than just taking the mean value of y to estimate y(k).
In general identification theory, we look for system models with R2 ≥ 0.8
[46]. The reason it is not 100% because it is difficult to fully capture the
non-linear behaviour of computing systems and 80% model accuracy is, in
general, considered an acceptable threshold [46]. Our identified model has an
accuracy of 82.71% which passes the accuracy threshold for it to be adopted in
our FAC algorithm. We can argue at this stage that the more accurate the
system model is i.e. nearer to 100% accuracy, the better the admission control
performance. However, studying the non-linearities in system identification
models is a research field by itself and our residual analysis indicates the system
model fits within the 90-95% confidence interval, see Figure 4.6.

55

4.1. DESIGN STEPS

Figure 4.6: Our system identification model accuracy: measured minus sim-
ulated data. The reason the x-axis is not the full 200 hours is because in
system identification we allocate one part of the measured data for the model
estimation and another for model’s accuracy validation [46].

Once we obtain a model and validate its accuracy, we can start with our
controller design and decide upon the control actions (signals) [57]. The next
subsection will look into this in more details. At this stage we can address our
first research question which is:
“Can we construct a dynamic mathematical model which captures the (non-
linear) behaviour between task-sets computation time values (system input) and
their slack values & processor utilisation (system outputs). If so, how can we
validate its accuracy in order for it to be implemented as part of the proposed
algorithm?”
We can answer it with yes.

4.1.5 Closed-Loop Scheduling Control

This step starts from the identification model of the OL system. Controller
design i.e. the design of the control signal varies between two popular areas as
far as FAC applications are concerned with:

• Basic controller design such as PID and its combinations e.g. P and PI
etc. [43, 74, 75].

• Advanced controller design such as MPC and LQR [28, 42, 78].

We can notice from chapter 2 that both PID- and MPC-based FAC algorithms
are two popular approaches in the literature. For instance, Lu et al. have
started their PID-based FAC work with a single processor and a single-objective
optimisation (minimise deadline miss ratio) in [75]. They adopted a multiple

56

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

PID approach once they shifted to multi-objective optimisation in [76] where
they implemented two PID controllers one for each RTS objective (maximise
processor utilisation and minimise deadline miss ratio). However, later on
when multi-processor scenarios were examined by Lu et al., MPC has offered
promising results for the same RTS multi-objective optimisation problem [78].

This very work of Lu et al. has inspired us adopting MPC supporting admission
control decisions for RTS [42] as MPC-based admission control was suggested
in [78] where they suggested using MPC for FAC purposes. We developed our
own novel MPC-based FAC algorithm for admission control decision-making
where our scientific contributions in this chapter are:

• Implementing a classical modelling approach known as system identifica-
tion for modelling the RTS dynamics of our industrial WMS which is a
pre-requisite for our admission controller design.

• Introducing the novel idea of using optimal task computation time values,
tCControl, as the control signal for admission control. Other related works
used metrics such as tasks release rate and assumed knowledge of task-sets
apriori, see chapter 2 for more details. The benefit of using tCCotnrol is
to allow the admission controller to compute admission decisions without
requiring any information about tasks RTS parameters apriori. Instead,
the admission controller can compare the tC value of the newly arrived
tasks with tCControl where the latter is mapped in real-time with respect
to system QoS levels.

• Designing our MPC-based FAC algorithm, [42], is a novel improvement on
Lu et al.’s work on multi-objective RTS optimisation. Lu et al. addressed
a similar RTS problem (multi-processor and multi-objective) to ours but
the difference of their approach is that they assume some knowledge of
RTS parameters apriori and they also control task release rates. We have
also implemented our own version of PID-based FAC algorithm using
our novel notion of tCControl as a control signal and have evaluated the
algorithm against its MPC peer. The motivation for these evaluations is
to test basic (PID) and advanced (MPC) FAC algorithms for meeting
our RTS objectives.

The next two sections will review the controller design aspect of both of our
novel PID- and MPC-based FAC algorithms with respect to our RTS objectives
and then will be followed by the evaluations in section 4.4.

57

4.2. DESIGN AND IMPLEMENTATION OF PID-BASED FEEDBACK
ADMISSION CONTROL

4.2 Design and Implementation of PID-based Feed-
back Admission Control

A PID controller is composed of Proportional, Integral and Derivative parts,
see Figure 4.7-(a). The main objective of such a controller is to minimise the

Figure 4.7: (a) A schematic representation of PID control. (b) Our novel
PID-based feedback admission control algorithm where the System Model block
is the System Identification model obtained from subsection 4.1.4.

system error in order to achieve the desired QoS levels expressed as a function
of time. In other words, it takes into consideration the current system error
(the proportional part) along with the past error (the derivative part) and the
rate of change (the integral part) [92]. The desired QoS levels in our industrial
system, and in general industrial RTS systems as well, are:

• PU = 100%.

• ntSData = -1. The reason for the small, negative QoS level is because if
we have a zero or positive QoS level, the controller will become aggressive.
Aggressive admission control actions include rejecting a high number of
tasks in order to strictly avoid any deadline misses (negative slack values).
As we are dealing with soft real-time tasks in a system which is expected
to experience overload situations. We allocate a small, negative QoS level
to avoid aggressive admission control actions which can potentially lead
to processor under-utilisation (undesired) [76].

58

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

• ntSDesign = -1.

Our novelty in the implementation of PID control is in utilising tCControl as part
of the controller design. In this case, the PID controller uses its three correcting
parts where their sums constitute the tCControl correction as a function of time.
See Equation 4.12.

u(t) = Kpe(t) +Ki ∫ t
0 e(t).dt +Kd

d
dte(t) (4.12)

We can analyse the PID control equation in terms of our industrial system:

• u(t): is the control signal e.g. the new, optimal tCControl value which
is used in order to reach the desired QoS levels via admission control.
In Figure 4.7-(b), the third PID controller (which receives Signal 3 and
computes Signal 6) can, for instance, compute a control signal with a
value of 60. This value means that the system can currently admit Design
task(s) with up to the value of 60 tC units without violating its QoS
level.

• Kp: is the proportional gain, its value can be tuned.

• e(t): is the system error, which is the difference between the current
system output value and the desired one i.e. QoS level. Each PID
controller computes the system error for the output it is associated with.
For instance, a system error of -10 computed by the third PID controller
means that the system’s ntS error for Design tasks is 10. This error
refers to the fact that such tasks are 10 times later in average than they
should be in comparison to the QoS level of their type.

• Ki: is the integral gain, its value can be tuned.

• ∫ t
0 e(t).dt: is the sum of the system errors over a certain period of time,
this is to feed the controller the rate of change i.e. how the system error
evolves over time.

• Kd: is the derivative gain, its value can be tuned.

• d
dte(t): is the derivative of the system error over time, in other words the
slope of error over time.

Different systems require certain features that eliminate the need of incorpo-
rating the full PID design. This is to reduce measurements overhead. The
time granularity of our industrial system is in minutes and it follows that
implementing the full PID control will not cause any issues in having the
admission decision being delayed by micro-seconds computed by the admission
controller. More analysis of PID controls can be found in [5]. That is why we
will notice very similar performance across the P, PI and PID controllers in the

59

4.2. DESIGN AND IMPLEMENTATION OF PID-BASED FEEDBACK
ADMISSION CONTROL

evaluations, section 4.4.

Since our PID-based FAC algorithm is inspired by Lu et al.’s approach in
[75] which addresses a similar RTS problem as ours, we adopted their PID
controller configurations, see Table 4.2. We can argue here that exploring the
science of controller tuning [89, 92] can yield to improved controller perfor-
mance. However, we decided to use Lu et al.’s PID parameter values because
of the similarity in RTS problem-solving. We have also implemented P- and
PI-based FAC algorithms to evaluate against the full PID-based algorithm.
In the P-based algorithm, we made the I and D control parts equal to zero.
Consequently in the PI-based algorithm, we made the D control part equal to
zero. Making any part to zero implies switching it off. In control theory, as

PID Parameter Parameter Tuning Value
Kp 0.5
Ki 0.05
Kd 0.1

Table 4.2: PID parameters tuning as depicted from Lu et al. in [75].

far as PID controller stability is concerned, we explore the controlled system’s
transfer function’s poles. The transfer function provides a basis for determining
important system response characteristics [115]. Our controller has followed
Lu et al.’s PID stability criterion which are described in details in [76].

The Admission Controller block receives Signals 4, 5 and 6 from the PID
blocks as depicted from Figure 4.7-(b). Signal 4 is computed to maximise PU .
At the case of receiving a Data type task, the Admission Control block maps
Signals 4 and 5 to an admission decision. When a Design task arrives, the
Admission Control block maps Signals 4 and 6 for admission. The reason for
having Signal 4 part of the mapping for both types of tasks is to address the
first component of our QoS levels, PU . Since each control signal computed by
the PID blocks is independent from one other, it was necessary to map them,
accordingly, in every admission decision.

The novel PID-based FAC logic is:

if arrived task is Data
if (task computation time value <= control signal 5) &&

((task computation time value * control signal 4) <= 1)
admit task;

else
kill task;

end
elseif arrived task is Design

if (task computation time value <= control signal 6) &&
((task computation time value * control signal 4) <= 1)
admit task;

60

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

else
kill task;

end
end

We can see there are two admission criterion for each task to be admitted into
the system for scheduling and processing. First criteria detects whether tC of
newly arrived task(s) exceeds the mapped signal, tCControl, of the appropriate
task type (Data or Design). If so, then it is believed that the newly arrived
task will decrease the system’s overall ntS value of that particular type beyond
their QoS level. Thus, the task is rejected at this stage before going through
the second admission criteria. This admission criteria is motivated for our
industrial system because it does not require the knowledge of any of the tasks
RTS parameters apriori.

Second, the PU control signal (Signal 4) increases the likelihood of accepting
a task simply in order to reach the desired QoS level of 100%. However, in
the case of processor over-utilisation, a task can be rejected due to Signal 4’s
over-utilisation being mapped to the Admission Control block. The PID block
for PU computes the available processing capacity of the cluster via real-time
monitoring. Then, it maps its control signal for tasks admission by multiplying
it with the total processing time units currently being processed in the cluster.
This way, the newly arrived task’s tC value is compared to control signal 4
where if they produce > 100% PU then the task is rejected. It is rejected on
the basis that this task will cause over-utilisation which is an undesired RTS
result causing deadline misses (decreased ntS values).

This way, enforcing these two criterion in parallel assures that a task is
accepted without compromising our QoS levels [43]. Handling rejected tasks is
not present in this work. Currently in the industrial WMS and as mentioned
earlier in chapter 2, when a particular task causes the scheduling performance
to degrade, the system administrator manually kills the whole job that contains
this task. This is a serious flaw in the industrial system. However, it is part of
our research in the future to design a mechanism that allows re-admission of
rejected tasks in an optimised manner with respect to the RTS objectives.

4.3 Design and Implementation of MPC-based Feed-
back Admission Control

In control-theoretic terms, our industrial system is a non-linear MIMO sys-
tem with a multi-objective RTS optimisation problem. We require a control
approach that generalises directly to such system structures. MPC resembles

61

4.3. DESIGN AND IMPLEMENTATION OF MPC-BASED FEEDBACK
ADMISSION CONTROL

the PID algorithm in Figure 4.7-(a) but replacing all of the PID blocks with a
single MPC block, see Figure 4.8-(a).

An advantage for MPC type of control is its ability to adhere to hard constraints
on the control signal, tCControl. For instance, we designed a constraint where
tCControl ≤ 0 because it is meaningless to use a negative computation time value.
This flexibility in MPC design makes it a better candidate for our admission
control work than other advanced control algorithms such as LQR. LQR lacks
enforcing such explicit constraints.

MPC has two main parts: prediction and optimisation. Our novelty in the
implementation of MPC control is in utilising tCControl as part of the controller
design. After conducting prediction and optimisation, the MPC block computes
its tCControl and feeds it to the Admission Control block in order for the latter
to apply it for admission purposes.

Figure 4.8: (a) A schematic representation of MPC. (b) Our novel MPC-based
feedback admission control algorithm where the System Model block is the
System Identification model obtained from subsection 4.1.4..

Each MPC control action, tCControl, is computed at every sampling instant/-
cycle. This is done by solving a finite horizon OL control problem using the
current system state as the initial state. The controller predicts how much
each system output, yj , deviates from its QoS level, rj , within the prediction
horizon (sampling cycles), P . MPC multiplies each deviation by each system
output’s weight, wy

j , and computes the weighted sum of squared deviations,

62

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

Sy(k), refer to Equation 4.13.

Sy(k) =
P

∑
i=1

ny

∑
j=1

[wy
j [rj(k + i) − yj(k + i)]]2

(4.13)

P Prediction horizon. It refers to the number of sampling cycles over which the
controller computes its control signal with respect to the RTS objectives.
The default value is 10 in MPC toolbox in [86]. In other words, the MPC
predicts the system performance with respect to its RTS objectives for
the next 10 time units and compute its control signal based on such a
prediction.

ny Number of system outputs = 3 [PU , ntSData and ntSDesign], see Figure 4.8-
(b).

wy
j Weight for system outputs yj . This is to steer the controller’s direction

on favouring the QoS level of one parameter over another. Our Weights
for the system outputs = [1, 0.5, 1] respectively; Data tasks have lesser
weight than their Design peer. This is because according to our simulated
outputs of the industrial system, Data tasks suffered lesser severity in
ntS values than their Design peer, see Figure 4.5, which is actually the
case currently in the industrial system.

rj QoS levels for each system output. They are represented in a vector =
[1, -1, -1] for PU , Data and Design ntS values, respectively. We have
already explained and motivated the negative QoS levels for ntS values
in section 4.2.

rj(k + 1) − yj(k + 1) is the predicted deviation, system error, at future instant
k+1 ; QoS level (minus) system output. The MPC computes our industrial
system’s system error by comparing the QoS levels vector with the three
monitored outputs in real-time represented in a vector as well. For
instance, a system error (deviation) vector of [20, 5, 10] means the system
is 20% under-utilised and the ntS value difference for Data and Design
tasks are 5 and 10, respectively. The ntS value errors refer to the fact
that such tasks are X times later in average than they should be in
comparison to their associated QoS levels.

k Current sample interval.

MPC applies its QP solver, [104], to each system output simultaneously. The
sum iterations are equal to the number of system outputs, ny. Each system
output and its associated QoS level, rj , and weight, wy

j , are used in their
particular iteration. More details on MPC controller design are found in the
MPC toolbox documentation of [86]. The most commonly used MPC is linear

63

4.3. DESIGN AND IMPLEMENTATION OF MPC-BASED FEEDBACK
ADMISSION CONTROL

MPC where the dynamics are linear (or rather linearised) and a quadratic
objective is used. A QP solver deals with the optimisation problem including
a quadratic objective. A QP problem has an objective which is a quadratic
function of (1) the control variable and (2) constraints which are all linear
(linearised) functions of the control signal. This optimal control approach deals
with the optimisation problem by minimising the quadratic cost function.

As far as the MPC stability is concerned, the controller went through a
number of stability tests which are part of the MPC toolbox in Matlab. The
MPC tests have three criterion: pass, warning (a pass with a suggestion) and
error. The performed MPC tests were the following (an extensive description
of each test can be found in the MPC toolbox documentation [86]):

• MPC Object Creation: it involves simple validity and consistency
checks, such as signal dimensions and non-negativity of weights, wy

j .
Additional diagnostic checks occur during creation of the MPC controller,
such as verification that the controller states are observable.

• QP Hessian Matrix Validity: it is concerned with the QP numerical
accuracy. In order for the outputs to be controlled, they, individually,
must respond to at least one manipulated variable (the control variable
i.e. tCControl) within P, the prediction horizon.

• Controller Internal Stability: the controller is internally stable if all
its modes (predictive states) are exponentially stable or pure integrators
(easily observable). The MPC can be fine-tuned to be internally stable
via changing the P, wy

j and sampling cycles, k. A controller may appear
nominally stable but will perform poorly in practice if the System Model
and tCControl create exponentially unstable modes.

• Closed-Loop Nominal Stability: the feedback communication be-
tween the plant (i.e. System Model) and controller should be stable for
the nominal case i.e. when the controller’s prediction model represents
the plant perfectly and no constraints are active.

• Closed-Loop Steady-State Gains: this test is to determine if the
controller forces all controlled outputs to their QoS levels at steady state,
in the absence of constraints.

• Hard Manipulated Variable Constraints: the controller should al-
ways satisfy hard bounds on the manipulated variable (tCControl) or its
rate of change. We designed a hard bound for tCControl not to include
negative values. Also, we chose not to specify any desired rate of change.
For instance, there might be instances where the MPC predicts and
computes tCControl to be 150 computation time units and then after

64

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

some time and due to, say, sudden arrival of jobs the MPC may compute
another values which is smaller e.g. 35 computation time units.

In that case, if we specified a rate of change = 50, then the second
tCControl value (i.e. 35) would not have been possible to be computed by
the MPC. This is because the difference (rate of change) from 150 to 35
is larger than 50 exceeding the allowed rate change for the controller. In
fact, the most allowed reduction from 150 would have been 100 (i.e. 150
- 50 = 100). This tCContorl value can lead to admitting more jobs into
the system or admitting jobs with large computation time value causing
cluster overload (undesired) and potential ntS reduction (undesired).

• Other Hard Constraints: sometimes it can be impossible for the
controller to satisfy all its hard constraints under all conditions. In such
a case, the controller declares the optimal control QP problem to be
infeasible i.e. an error condition.

• Soft Constraints: this test evaluates the constraint parameters to
help achieve the proper balance of using hard and soft constraints. If a
constraint is too soft, an unacceptable violation may occur. If it is too
hard, the controller might pay it too much attention. Making a constraint
harder cannot prevent a violation if the constraint is fundamentally
infeasible.

Our MPC design passed all tests but with a warning for our MPC’s closed-loop
steady-state gains. The warning we received from the MPC toolbox was
concerned with raising an awareness that one of the metrics weights are not
maximised like its peers which could lead to controller under-performance for
that metric. We opted for full weight values for the QoS levels of PU and
ntSDesign. We chose a lower weight for ntSData QoS level because it suffers
less ntS reduction than its Design type of peers hence we wanted to steer the
MPC towards ntSDesign.

The Admission Control block deals with the two workflow tasks simulta-
neously. It compares tCData & tCDesign (tC values of newly arrived Data and
Design tasks) with tCControlData & tCControlDesign (MPC’s control signals for
Data and Design tasks) respectively in real-time. The admission control logic
here is to admit newly arrived tasks that do not exceed the control signal. If
any task satisfies the admission logic (of its workflow type) then it is admitted
for scheduling and processing. If not, then that particular task is believed to
degrade the scheduling performance with respect to meeting the QoS levels
and therefore is rejected.

The novel MPC-based FAC logic is:

if arrived task is Data

65

4.4. EVALUATIONS

if task computation time value <= control signal 4
admit task;

else
kill task;

end
elseif arrived task is Design

if task computation time value <= control signal 5
admit task;

else
kill task;

end
end

In general control theory, MPC can deal with multi-objective optimisation
problems [73]. We can notice in Figure 4.8-(b) that our MPC block sends two
control signals addressing the two different task types (Data and Design). The
interesting point here is that there is no dedicated control signal for achieving
the PU QoS level as in the PID case, see Figure 4.7-(b). The reason is because
our MPC maps multiple QoS levels in one control signal which gives it the
advantage over the PID-based FAC algorithm. We will see how this can benefit
our industrial WMS in meeting its RTS objectives in our evaluations in the
next section.

4.4 Evaluations

We have tested the workloads depicted from Table 4.1 in a 10-processor HPC
cluster using one of our industrial system’s HPC test-beds size. Each case-study
had 30 different trials, the plots shown in this section represent the average
of those trials per case-study. One-way analysis of variance (ANOVA) tests
were carried-out to statistically demonstrate the difference between the results
obtained from experimental case-studies. Please note that our ANOVA tests
relied on data normal distribution for the rest of evaluations in this thesis. It is
worth mentioning that during all of our time-plots of our results in this thesis,
we did not include the error marks (margins) because after taking the average
of the experimental trials, we noticed the variance is trivial. Thus, we did not
include them in our plots.

The reasons for the evaluations are to:

• Address the second research question in section 3.2 which is:
“Once we validate our system model, can we design an intelligent admis-
sion control algorithm for managing the trade-offs between the two RTS
objectives without prior knowledge of jobs RTS parameters?”.

66

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

• Since PID control lacks performance in multi-objective optimisation
problems, we want to evaluate its performance with simplistic task-sets
of independent periodic tasks. Comparing our basic (PID) and advanced
(MPC) novel FAC algorithms will help us decide at this stage which
algorithm is better for our multi-objective RTS optimisation. So, we can
choose the better algorithm as a basis for our further milestones in this
thesis like handling aperiodic task-sets with dependencies, testing with a
larger cluster size and different workload models; low, full and high.

For the experiments conducted in this section, the admission algorithms we
tested are:

• Open-loop (OL), see Figure 4.3. It represents our industrial system
without the FAC block.

• P, PI and PID-based FAC, see Figure 4.7-(b). It represents our industrial
system supported with a basic control-theoretic admission controller.

• MPC-based FAC, see Figure 4.8-(b). It represents our industrial system
supported with an advanced control-theoretic admission controller.

We will refer to each case-study by the admission algorithm (OL, P, PI, PID
or MPC) concatenated with the scheduling policy experimented with. For
instance, MPC-EDF refers to our MPC-based FAC algorithm with EDF.

For each RTS metric, we will review:

• RTS analysis: the performance of EDF against FCFS per algorithm.

• Admission Control analysis: the performance of all admission algorithms
against each other. When we started evaluating the difference between
the P, PI and PID-based FAC algorithms, we noticed that the first two
were exactly the same in all case-studies whereas the full PID was less
than 5% better in performance for each metric. Therefore, in order to
avoid duplications in plots and analysis, we will include the analysis of
the PID-based FAC algorithm and the rest of the P and PI results are
tabulated in the Appendix in Table A.1.

4.4.1 Task Normalised Slack Values

For this metric, we expect:

• PID-based FAC to outperform the OL algorithm because PID is designed
to meet the QoS levels or an acceptable balance between the two metrics
altogether.

67

4.4. EVALUATIONS

• MPC-based FAC to outperform the PID peer because MPC can address
the multi-objective optimisation problem in one control signal per task
type where PID cannot, refer to section 4.3 for more details.

For RTS analysis, we expect EDF to outperform FCFS, refer to Figure 4.9 for
more insights and Table 4.3 for statistical findings:

• In the OL algorithm, EDF scored 3.71% higher ntSDesign values than
FCFS. This is a small increase which can be explained by the high release
rate of tasks into the system for scheduling and processing which made
the scheduling policy less effective.

• In the PID-based FAC algorithm, EDF scored 12.7% higher ntSDesign

values than FCFS.

• In the MPC-based FAC algorithm, EDF was 53.84% less than FCFS in
ntSDesign values, which is counter-intuitive. However, the EDF-based
algorithm did not violate the QoS levels i.e. it never scored less than -1.
Additionally, this can be an example where we notice EDF’s performance
degradation in resource-constrained and cluster overload cases as argued
by [73, 79]. This counter-intuitive result will be reviewed in more details
in this section.

Figure 4.9: Design tasks normalised slack values.

If we want to compare the performance between FCFS and EDF in the MPC-
based algorithm, we can review the time-plots for these two different algorithms
with respect to (1) ntSDesign, (2) PU , (3) average queueing time for tasks and
(4) the instances of killings conducted by the admission controller throughout
the simulations (experiments), refer to Figure 4.10 and Figure 4.11 for more

68

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

Figure 4.10: MPC-based FAC algorithms with FCFS in a 10-processor HPC
cluster. The values for DatantS and DesignntS in the top plots are for the
MPC-based FAC algorithms.

Figure 4.11: MPC-based FAC algorithms with EDF in a 10-processor HPC
cluster. The values for DatantS and DesignntS in the top plots are for the
MPC-based FAC algorithms.

69

4.4. EVALUATIONS

insights.

We notice from Figure 4.10 and Figure 4.11 that PU is similar between
FCFS and EDF as statistical tests in Table 4.5 confirm so, yet the average
queueing time is higher with EDF by 18.65%. Tasks killing instances (#Re-
jected Tasks) are overall similar in counts and periods except between the 80th

and 100th-hour period as noticed in the graph, totalling to 1.32% higher killing
rate with FCFS than EDF.

The higher the killing instances is due to FCFS’s poor performance in meeting
deadlines, hence the admission controller decides to remove more tasks in
order not to violate the ntS QoS levels. Despite the small difference in killing
instances, this can yield to a difference in ntS values as Table 4.3 confirms
the significant difference between ntS values between FCFS and EDF. The
higher the killing instances reduces the number of tasks to be processed in
the cluster which leads to improved ntS values because there will be more
processing capacity offered by the cluster.

As for the Data tasks, we expected Design tasks ntS values to be worse
than their Data peers in the OL case as it was indicated for in our earlier
system identification modelling, refer to subsection 4.1.4 for more details. As for
the tabulated results for Data tasks, please refer to Table A.1 in the Appendix,
where both types followed the same trend in which the OL algorithms scored
the worst (least) ntS values. Then comes the PID-based FAC algorithm, and
then the MPC peer scored the highest values for this metric.

From Table 4.3 we notice that two case-studies did not have significant differ-
ence between their means; OL (FCFS vs. EDF) and PID (FCFS vs. EDF) as
their p-values were > 0.05. This reflects on the fact that when we experimented
with the OL and the PID-based FAC algorithms, there was no significant
difference between FCFS and EDF with respect to ntSDesign.

For admission control analysis, refer to Figure 4.9 for more insights and
Table 4.4 for statistical findings:

• The OL algorithms scored the lowest ntSDesign values as expected. The
PID-based FAC algorithm increased the metric by 42.85% and 49.5%
more than the OL peers with FCFS and EDF, respectively. Yet, it
suffered from violating the QoS level according to Figure 4.9.

• The MPC-based FAC algorithm scored 174.71% and 139.5% more than
the PID peers with FCFS and EDF, respectively.

In conclusion to this metric, we notice that:

70

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

Case-Study (FCFS vs. EDF) p-value
OL 0.24
PID 0.44
MPC 1.86e−38

Table 4.3: One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of ntSDesign.

Case-Study p-value
OL-FCFS vs. PID-FCFS 1.54e−43

OL-EDF vs. PID-EDF 2.49e−67

OL-FCFS vs. MPC-FCFS 4.40e−201

OL-EDF vs. MPC-EDF 1.27e−210

PID-FCFS vs. MPC-FCFS 1.07e−242

PID-EDF vs. MPC-EDF 4.95e−63

Table 4.4: One-way ANOVA test for the admission control experimental data
of ntSDesign.

• The OL algorithms suffered the lowest ntS values.

• The PID-based FAC algorithm improved the system’s performance in
increasing ntS values, but it still suffered form negative values beyond
the QoS level which is -1.

• The MPC-based FAC algorithm scored the highest ntS values and did
not violate the QoS level for this metric.

4.4.2 Processor Utilisation

For this metric, we expect:

• The OL algorithms to outperform both of our FAC algorithms. This is
because in OL there is no admission control which will naturally leave
the cluster more utilised regardless of missing/meeting deadlines.

• We expect the MPC-based FAC algorithm to score higher PU , overall,
than the PID peer. This is because MPC handled both metrics simul-
taneously whereas PID did not, refer to section 4.2 and section 4.3 for
more details.

For RTS analysis, refer to Figure 4.12 for more insights and Table 4.5 for
statistical findings. We notice that across all algorithms the difference in
performance between FCFS and EDF is less than 5% in average. This can be
explained by the high release rate of tasks which made the scheduling policy less
effective. From Table 4.5, two case-studies did not have significant difference
between their means; OL (FCFS vs. EDF) and MPC (FCFS vs. EDF) as their

71

4.4. EVALUATIONS

p-values were > 0.05. This reflects on the fact that when we experimented with
the OL and MPC-based FAC algorithms, there was no significant difference
between FCFS and EDF with respect to PU .

For admission control analysis, refer to Figure 4.12 for more insights and
Table 4.6 for statistical findings:

• The PID-based FAC algorithm scored less PU than the OL system by
15.83% and 18.49% with FCFS and EDF, respectively.

• The averaged PU value scored by the MPC-based FAC was less than the
PID peer by 4.26% and 1.56% with FCFS and EDF, respectively.

Figure 4.12: Processor utilisation.

In conclusion:

• Although the OL algorithms scored the highest PU , they experienced
the lowest ntS values. This is not accepted because they lack managing
the trade-offs between the two metrics with respect to their QoS levels.

• The PID-based FAC algorithm improved the system’s performance but it
still scored negative ntS values beyond the QoS level.

• The MPC-based FAC algorithm scored the highest ntS values and it did
not violate the QoS level but with the expense of some PU loss which is
expected due to the killing nature of the admission control.

72

CHAPTER 4. A NOVEL FEEDBACK ADMISSION CONTROL
SCHEDULING ALGORITHM

Case-Study (FCFS vs. EDF) p-value
OL 0.73
PID 2.78e−36

MPC 0.80

Table 4.5: One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of PU .

Case-Study p-value
OL-FCFS vs. PID-FCFS 0.00
OL-EDF vs. PID-EDF 0.00
OL-FCFS vs. MPC-FCFS 1.19e−129

OL-EDF vs. MPC-EDF 2.57e−137

PID-FCFS vs. MPC-FCFS 5.54e−13

PID-EDF vs. MPC-EDF 4.82e−31

Table 4.6: One-way ANOVA test for the admission control experimental data
of PU .

4.5 Summary

In summary, due to MPC’s balanced approach in managing the trade-offs
between the RTS objectives, we propose the MPC-based FAC algorithm from
this chapter as the answer to our second research question in chapter 3 which
is: “Once we validate our system model, can we design an intelligent admission
control algorithm for managing the trade-offs between the two RTS objectives
without prior knowledge of jobs RTS parameters?”. We propose MPC-based
FAC for the next technical milestones to address aperiodic and dependent
task-sets with a larger HPC cluster size of different workload models.

73

4.5. SUMMARY

74

Chapter 5

Handling Dependencies in
Admission Control Scheduling

The motivation for this chapter is to address our third research question which
is concerned with managing the trade-offs between our RTS objectives when
dealing with dependent task-sets. Dependencies can add a scheduling constraint
to the admission decisions because dependencies enforce a particular execution
order for dependent tasks. This can negatively affect any admission decision
because we assume removing one task of a job will lead to discarding the whole
job. This RTS challenge can be seen in industries where (1) their workloads
include dependencies between tasks and (2) incomplete jobs are automatically
discarded.

We will follow the design steps adopted in chapter 4. The reason for this
is twofold. First, feedback control RTS algorithms follow these design steps.
Second, our work in this chapter differs from our previous one in introducing
dependencies between tasks. Because of that, the system dynamics will change
at respecting task dependencies and further performance metrics have emerged
as well. Therefore, it is meaningful to introduce the design steps followed in
this chapter where, however, there will be similarities in some of the steps
which will be highlighted accordingly.

Our contributions in this chapter are:

• Developing an enhanced version of our novel MPC-based FAC algorithm
to address task dependencies as a scheduling constraint.

• Constructing a system model for capturing the RTS dynamics between
jobs computation time values (input) and jobs normalised slack values &
processor utilisation (outputs).

• Managing the trade-offs between our RTS objectives and other RTS

75

5.1. TASK MODEL

metrics that have emerged due to the notion of jobs, see section 5.3 for
more details on the emerging RTS properties.

5.1 Task Model

Our previous chapter dealt with simple, independent task-sets. For this chapter,
we used a validated synthetic workload generator resembling the workloads of
our industrial system which is the work of Burkimsher in [16]. For each work-
load, the generator produces dependency patterns as exhibited in the industrial
system which are a combination of the types in Figure 5.1. Typical indus-
trial task dependency patterns resemble the ones obtained from Burkimsher’s
workload generator. Using this generator will eliminate the assumption most
related works have implemented which is concerned with periodic jobs. This
generator does not provide knowledge of jobs arrival times and rates apriori to
the admission controller which is key to our work as mentioned in chapter 2.

Figure 5.1: Tasks’ dependency patterns [15].

Each workflow consists of around 200 aperiodic jobs and 1000 dependent tasks.
It represents 300-500 hours (2-3 weeks) worth of our industrial system’s RTS
dynamics. We have three types of workloads with respect to target cluster PU :
low, 80%; full, 100%; and high, 120%. We can summarise our RTS notations
in Table 5.1. For each job, we take the longest-path, computation time-wise,

RTS Specification RTS Notion
ith Job ID jIDi where 1 ≤ i ≤ 200
ith Job Critical Path jCPi

ith Job Normalised Slack njSi

ith Task ID tIDi where 1 ≤ i ≤ 1000
ith Task Computation Time tCi where 1 hours ≤ tCi ≤ 150 hours
ith Task Deadline tDi

ith Task Normalised Slack ntSi

Table 5.1: Task-set’s RTS specifications [41].

76

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

as its critical path jCPi and deadline value; jCi = jDi. In the general context,
the notion of a critical path is unitless as it refers to the sequence of tasks
within a job that forms the longest path for the individual job. However,
in this thesis, we use the term jCPi as the job’s longest path computation
time value which will be used in calculating slack values in the coming equations.

Tasks can be categorised into critical and non-critical i.e. whether belonging to
the job’s critical path or not. For critical tasks, a task’s tD is computed as the
summation of all other critical tasks’ tC values from the start of the job until
the task we are evaluating, see Equation 5.1.

tDi = ∑ tC1∶i (5.1)

For non-critical tasks, we select the task’s shortest path (tSP), computation
time-wise, that it falls on. The tD is then computed with respect to the (1)
summation of tasks’ tC values from the start of tSP including the one we are
evaluating, ∑ tC1∶i, (2) tSP value and (3) the job’s jCP value, see Equation 5.2
and Figure 5.2.

tDi = ∑ tC1∶i
tSPi

∗ jCPi (5.2)

Figure 5.2: An example for calculating deadline values for critical and non-
critical tasks. The task path with thick arrows represent the critical tasks
forming the job’s critical path.

We can consider the job in Figure 5.2 represented by its tasks. For ease of
reference and calculations in this example only, we take Task IDs to be equal
to their computation time values i.e. tID3 = tC3 = 3 and so on. We can notice
that tasks [t1, t3, t4 and t5] are the critical tasks (because they compose the
longest path computation time-wise) while t2 is non-critical. For the critical
tasks, we apply Equation 5.1:

• tD1 = 1;

• tD3 = 1 + 3 = 4;

• tD4 = 1 + 3 + 4 = 8;

77

5.2. SCHEDULING POLICY

• tD5 = 1 + 3 + 4 + 8 = 13; This is the critical path value for the job (jCP).

For the the non-critical tasks, we apply Equation 5.2:

• tD2 = (1+2)
(1+2+4+5) ∗ 13 = 13

4 = 3.25;

Similarly to chapter 4, we use the notion of tS as defined in chapter 3, see
Equation 3.2. We normalise tS with respect to the task’s tD, see Equation 4.1.
Similarly to tasks, jobs jS values include monitoring how far a job is from
its completion, i.e. its last task’s completion, once released as a whole by the
end-user until its last task leaves the cluster, see Equation 3.3. We normalise
jS values with respect to the job’s jCP value, see Equation 5.3.

njSi = jCPi − Time − jCP
′

i

jCPi
(5.3)

jCP
′

i is the ith job’s remaining computation time of the critical path.

5.2 Scheduling Policy

This remains the same as in chapter 4.

5.3 Performance Metrics

• PU , see Equation 3.1.

• njS, see Equation 5.3.

Regulating the workloads into the cluster may lead to admission decisions
such as killing one or more tasks (and jobs). For instance, if a decision has
been made to kill a task which belongs to a job that has had half of its tasks
already processed in the cluster, the job will, in theory, be killed, and all
future tasks belonging to this very job will not be admitted. They will not
be admitted because they belong to an incomplete job, and this may lead to
wasted processor utilisation (WPU). We call it “wasted” because the time
the cluster spent processing half of that job, has not been positively utilised
for completing the whole job. This example can also lead us to another RTS
metric regarding the admission decisions, jobs killing ratio (jKR). This can be
analysed as a ground for justifying the admission decisions in order to meet
our RTS objectives. Our additional RTS performance metrics are:

• WPU , we compute the time the cluster spent processing jobs that
are killed against the time the cluster spent processing all jobs, see
Equation 5.4.

WPU = ∑TimeKilled

∑TimeAll
(5.4)

78

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

• jKR, we take the ratio between killed and total released number of jobs,
see Equation 5.5.

jKR = #JobsKilled

#JobsAll
(5.5)

We desire managing the trade-offs, in real-time, between maximising both njS

and PU . Additional RTS objectives for this chapter include scoring minimal
WPU and jKR.

5.4 System Model and Identification

Due to task dependencies, we are now dealing with the notion of jobs. Our
MPC-based FAC algorithm, proposed in chapter 4, is blind to the notion of
jobs. So, we had to create a system model to capture correlations (system
dynamics) between jCP (input) and PU & njS (outputs). We followed the
same identification steps in chapter 4 for obtaining system models for tasks and
jobs. However, we took the system inputs (tC and jCP) from Burkimsher’s
generator, refer to Table 5.1, then were simulated in the OL simulation model1.
We simulated the inputs for approximately 200 hours in order to capture
correlations (system dynamics) between inputs and outputs for tasks ((tC and
PU & ntS) and for jobs (jCP and PU & njS).

As for the tasks and jobs system models’ accuracy, they scored 85.29% and
80.08%, respectively, where their error plots are in Figure 5.3. The models we
obtained are placed in the System Model block in Figure 5.4 and each MPC
block refers to its relevant system model accordingly.

5.5 Closed-Loop Scheduling Control

In this section, we will review our enhanced MPC-based FAC algorithm and
the other admission control baselines used for evaluation purposes.

5.5.1 A Novel MPC-based FAC Algorithm for Dependent Tasks

Our proposed algorithm here resembles the previous one in chapter 4 but with
extra Admission Control and MPC blocks for handling jobs. The Jobs MPC
block resembles Tasks MPC in design, but it takes njS values, instead of ntS,
as part of its computations. The Jobs AC block compares newly arrived jobs jC

values against the control signal, jCControl, which is the admission threshold,
received from the Jobs MPC block. The reason for adding the two components
for jobs is to enable our proposed algorithm to perform admission decisions on

1The OL simulation model is in principle the closed-loop system but without the AC and
MPC blocks present, see Figure 5.4.

79

5.5. CLOSED-LOOP SCHEDULING CONTROL

Figure 5.3: Tasks and jobs system identification model error: measured minus
simulated data. The reason the x-axis is not the full 200 hours is because in
system identification we allocate a small part of the measured data for the
model estimation and the rest for model validation [46].

the jobs-level to reduce WPU and jKR. The motivation here is for the Jobs
MPC block to predict early enough if a job will miss its deadline given the HPC
capacity. If so, then the Admission Control block will remove this job as soon as
one of this job’s tasks arrives after passing through the Dependency Check block.

The challenge here is removing the job early enough without causing WPU

and of course making sure we are removing the right job judging on its jC

value with respect to jCControl. We will refer to this algorithm as ACjACt for
the rest of this thesis, see Figure 5.4. As for the previous algorithm, it will be
referred to as ACt signifying its tasks-level admission control. We removed the
term MPC in the algorithm’s name in order to save repeating it in our FAC
algorithms.

As for the controllers’ stability, we tested our Tasks and Jobs MPC con-
trollers inside MPC toolbox in Matlab environment, similarly to chapter 4.
They passed all tests with a warning in regards to each controller’s steady-state
gains suggesting sacrificing one output’s weight values to zero in order to reduce
possible errors in other outputs. However, we opted for full weight values for all
system outputs because they are all equally important to our RTS optimisation
problem.

80

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

Figure 5.4: A block diagram of our new, novel MPC-based FAC algorithm
proposed for handling dependent real-time tasks referred to as ACjACt due to
the double Admission Control blocks.

5.5.2 Baseline Admission Control Algorithms

The purpose of presenting baseline admission control algorithms is to have
baselines for comparative analysis for our proposed, novel ACjACt algorithm.
As our previous algorithm, ACt, was concerned with tasks admission only,
our new algorithm does admission on the jobs-level as well. Thus, we find it
necessary to compare baseline algorithms that, also, practise admissions on the
job’s level, see Figure 5.5.

Figure 5.5: A block representation of our baseline algorithms.

The algorithms are triggered when njS is < 0, i.e. system is running late in
jobs processing. They only deal with live jobs. “Liveness” here refers to jobs
that are released to the system for scheduling and processing, but have not
completely left the cluster yet i.e. some of its tasks are still in the system for
scheduling and/or processing.

Random Admission Control, ACRandom

The idea here is to implement admission decisions based on killing a random
number, N, out of live jobs only when the system experiences negative njS

values. For instance, if we have five live jobs and the system experiences
negative njS values, the ACRandom looks at the five jobs by large and computes
N out of the total number of live jobs. N can be an integer between one and
five. N is defined so that it increases njS values, desirably ≥ 0, while not
leading to reduction in PU i.e. killing N jobs that preferably have not yet
started processing so not to directly affect PU , refer to Figure 5.6. However,
we will notice with higher workloads that ACRandom decided to kill further
jobs for the sake of increasing njS.

81

5.6. EVALUATIONS

Figure 5.6: An illustration for admission decision-making of ACRandom . The
jobs highlighted in italic are the ones which ACRandom can consider for killing
because they have not started processing in the cluster. The other jobs i.e.
j1 and j2 are outside the decision-making range for ACRand because they
are partially i.e. some of their tasks are being processed in the cluster and
hence removing those jobs can decrease PU and also cause WPU as both
consequences are undesired.

Job Slack Admission Control, ACjSlack

This algorithm practises jobs admission by monitoring live jobs’ njS values. It
decides to kill the job(s) that are running late the most i.e. those with the
least njS values. Using the example mentioned in the previous baseline, this
algorithm removes the late jobs out of the five live ones.

Job Completion Ratio Admission Control, ACjCR

This one is concerned with removing live jobs that have the least completion
ratio. The idea here is when the system experiences negative njS values, we
can remove jobs with the least completion ratio because the system is already
late and a lot of processing (computation time) remains ahead of those jobs.
Using the example used in the previous baselines, out of the five live jobs, this
algorithm removes late jobs that have been processed by the cluster the least.

5.6 Evaluations

The workflows depicted from Table 5.1 using Burkimsher’s generator were
tested in a 50-processor HPC cluster. Each workflow contains jobs being
generated at least three times, we ran each case-study 10 times and we averaged
the simulation results in the metrics plots. One-way analysis of variance
(ANOVA) tests were carried-out to statistically demonstrate the difference
between the results obtained from experimental case-studies. We will refer to
each case-study by the admission algorithm (OL, ACt, ACjACt, ACRandom,
ACjSlack and ACjCR) concatenated with the scheduling policy experimented
with. For instance, ACjACt-EDF refers to our proposed algorithm with EDF.

82

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

For each RTS metric, we will review:

• RTS analysis: the performance of EDF against FCFS per algorithm.

• Admission Control analysis: the performance of all systems against each
other. When we started evaluating the difference between the baseline
algorithms performances, we noticed that ACjSlack scored the same values
as ACjCR. We observed that when the system experiences negative njS

values, all late jobs (with least slack values) were those ones that have
been processed the least. Therefore, in order to avoid duplications in
plots and analysis, we will refer to both admission control baselines as
ACjSlack/CR.

Please note that full numeric results for all workload types (low, full and high)
are tabulated in the Appendix in Table B.1. The high workload cases are
reviewed in this section due to their high RTS dynamics that will reflect more
on the different performances of the algorithms. We will also include the notion
of simulation time (SimTime) in our evaluations. SimTime represents the
length of the simulation in time units (hours) each algorithm has scored i.e.
the time period each algorithm spent in scheduling and processing all arriving
jobs.

The reason for including SimTime is because it provides us with different
insights than PU ’s. For instance, an algorithm with 500 hours SimTime and
60% average PU is different from another algorithm that scored 150 hours
SimTime with the same PU . This can be an indication that the former algo-
rithm with a larger SimTime has processed a higher number of jobs and/or
larger jobs computation time-wise. This is reflected on the longer simulation
time (SimTime) which is desired. We will see how this varies for our RTS
metrics.

5.6.1 Job Normalised Slack Values

For this metric, we expect:

• The OL algorithms to score the lowest njS values because they do not
manage the trade-offs between the RTS objectives in addition to their
poor scheduling performance during cluster overload situations.

• ACt to improve the performance in comparison to the OL but will still
violate the QoS levels because it is blind to the notion of jobs, as seen in
chapter 4.

83

5.6. EVALUATIONS

• Our novel ACjACt to score the highest njS values due to its approach
in balancing both RTS objectives in real-time as opposed to the other
baseline algorithms.

For RTS analysis, we expect EDF to outperform FCFS with respect to max-
imising njS values, refer to Figure 5.7 for more insights and Table 5.2 for
statistical findings:

• In the OL algorithm, EDF increased njS by 163.06% more than FCFS.
Both policies scored negative njS values beyond the QoS level.

• In ACt, EDF increased njS by 14.93% more than FCFS. Although ACt

is blind to the notion of jobs, when experimented with EDF, it scored
≥ 0 njS values, which is a good result. However, we will see this good
result was achieved at the expense of the other RTS metrics which will
be reviewed in the next sections.

• In ACjACt, EDF increased njS by 4.37% more than FCFS. This small
difference can be explained by the high workload the admission controller
was receiving which made the scheduling policy less effective. Both
policies scored ≥ 0 njS values, which is a good result and expected due
to ACjACt jobs admission level.

• In ACRandom, EDF decreased njS by 8.73% than FCFS. This counter-
intuitive result can be explained by the randomised admission logic of
ACRandom which can lead to scenarios where a random killing decision can
remove a not-so-late job resulting in further decreasing njS (i.e. increasing
lateness) of already late jobs regardless of the adopted scheduling policy.
We will see this effect in other RTS metrics in the next sections as well.
Both policies scored negative njS values beyond the QoS level.

• In ACjSlack/CR, EDF increased njS by 4.17% more than FCFS. Both
policies scored negative njS values beyond the QoS level.

We notice that EDF is better than FCFS across all of the admission control
algorithms, except for ACRandom, which confirms our expectations in the benefit
of introducing EDF with respect to maximising njS. This good performance
is expected due to EDF advancing jobs with shorter deadlines ahead in the
queue resulting in overall higher njS values.

For admission control analysis, refer to Figure 5.7 for more insights and
Table 5.3 for statistical findings:

• ACt-FCFS increased njS by 288.22% more than OL-FCFS.

84

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

Figure 5.7: Jobs normalised slack values box-plots of high workloads, 120%.

• ACt-EDF increased njS by 69.61% more than OL-EDF. The percentages
of improvement in the FCFS case is larger than the ones associated with
EDF. This is because EDF is already better than FCFS in the OL system.

• ACjACt-FCFS increased njS by 12.55% more than ACt-FCFS.

• ACjACt-FCFS increased njS by 4.97% more than ACRandom-FCFS.

• ACjACt-FCFS decreased njS by 1.44% less than ACjSlack/CR-FCFS.
This counter-intuitive result can be explained by ACjSlack/CR’s higher
jKR than our ACjACt, see subsection 5.6.3 for more details. The higher
the jKR the higher the njS, but we desire ≥ 0 njS with minimum jKR.
We also notice that ACjSlack/CR violated the QoS levels for this metric by
scoring beyond -1 njS. They were close in performance to our proposed
algorithm due to their admission logic in removing the latest and least
completed jobs, respectively, when the system experiences negative njS

values. However, ACjSlack and ACjCR suffered the lowest SimTime,
which is undesired, refer to Table 5.6 for more details.

• ACjACt-EDF increased njS by 2.21% more than ACt-EDF.

• ACjACt-EDF increased njS by 19.23% more than ACRandom-EDF.

• ACjACt-EDF decreased njS by 7.35% more than ACjSlack/CR-EDF. How-
ever, ACjSlack/CR violated the QoS level in addition to their SimTime

being lower than ACjACt-EDF by 226.2 hours reflecting on ACjSlack/CR’s
high jKR values, refer to Table 5.6 and subsection 5.6.3 for more details.

Due to the logic which each admission control baseline follows, the more late
the system becomes, the higher the probability each baseline algorithm will

85

5.6. EVALUATIONS

Case-Study (FCFS vs. EDF) p-value
OL 9.26e−143

ACt 3.16e−34

ACjACt 0.05e−2

ACRandom 4.83e−212

ACjSlack/CR 5.16e−89

Table 5.2: One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of njS.

Case-Study p-value
OL-FCFS vs. ACt-FCFS 4.66e−81

OL-EDF vs. ACt-EDF 0.00
ACt-FCFS vs. ACjACt-FCFS 3.72e−18

ACt-EDF vs. ACjACt-EDF 6.26e−112

ACjACt-FCFS vs. ACRandom-FCFS 2.73e−5

ACjACt-EDF vs. ACRandom-EDF 8.66e−283

ACjACt-FCFS vs. ACjSlack/CR-FCFS 0.17
ACjACt-EDF vs. ACjSlack/CR-EDF 2.15e−78

Table 5.3: One-way ANOVA test for the admission control experimental data
of njS.

decide in removing further jobs from the system according to its logic for
the sake of increasing njS values. Thus, the more the killing, the higher the
opportunity for more jobs to meet their deadlines and hence having increased
njS values.

In conclusion to this metric we notice:

• EDF is better than FCFS in maximising njS.

• Adding an admission controller decreases the difference between the two
scheduling policies with respect to maximising njS. This is due to the
benefits of killing jobs with respect to maximising njS values regardless
of the adopted scheduling policy.

• ACjACt is the only algorithm that scored ≥ 0 njS with both FCFS and
EDF.

5.6.2 Processor Utilisation

For this metric, we expect:

• The OL algorithm to score the highest PU because it does not prac-
tice any admission control leaving the cluster the busiest regardless
missing/meeting deadlines.

86

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

• ACt and ACRandom to score the least PU since both can unnecessarily
kill jobs as the former is blind to the notion of jobs and the latter due to
its random admission process.

• ACjACt to score the closest to the OL algorithm because it manages
both RTS objectives dynamically in real-time.

For RTS analysis, we expect EDF to outperform FCFS with respect to max-
imising PU , refer to Figure 5.8 for more insights and Table 5.4 for statistical
findings:

• In the OL algorithms, EDF increased PU by 16.93% more than FCFS.

• In ACt, EDF increased PU by 16.1% more than FCFS.

• In ACjACt, EDF increased PU by 20.43% more than FCFS.

• In ACRandom, EDF decreased PU by 19.87% than FCFS. The counter-
intuitive result stems from the random admission mechanism this baseline
follows in potentially killing larger jobs (jC-wise) unnecessarily resulting
in PU loss.

• In ACjSlack/CR, EDF increased PU by 10.13% more than FCFS.

Figure 5.8: Processor utilisation time-plots of high workloads, 120%.

ACjSlack/CR had the smallest SimTime which means they have processed a
lesser number of jobs and/or smaller jobs (jC-wise) that have utilised the
cluster for around 190 hours only. Thus, taking the average PU value during
that period may result to a high value, but in comparison to other algo-
rithms’ SimTime, we can notice ACjSlack/CR were the poorest. In contrast,
ACjACt-EDF kept the cluster the busies the most amongst all admission

87

5.6. EVALUATIONS

Case-Study (FCFS vs. EDF) p-value
OL 0.00
ACt 5.56e−233

ACjACt 0.00
ACRandom 0.00
ACjSlack/CR 0.00

Table 5.4: One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of PU .

Case-Study p-value
OL-FCFS vs. ACt-FCFS 9.12e−5

OL-EDF vs. ACt-EDF 3.91e−17

ACt-FCFS vs. ACjACt-FCFS 8.74e−15

ACt-EDF vs. ACjACt-EDF 0.06
ACjACt-FCFS vs. ACRandom-FCFS 0.02e−2

ACjACt-EDF vs. ACRandom-EDF 2.3e−14

ACjACt-FCFS vs. ACjSlack/CR-FCFS 0.76
ACjACt-EDF vs. ACjSlack/CR-EDF 0.01*

Table 5.5: One-way ANOVA test for the admission control experimental data
of PU . Mark (*) indicates that the difference between the data-sets is almost
insignificant.

control algorithms, see Table 5.6 for more details.

For admission control analysis, refer to Figure 5.8 for more insights and
Table 5.5 for statistical findings:

• ACt-FCFS scored lower PU by 0.22% than OL-FCFS.

• ACt-EDF scored lower PU by 0.61% than OL-EDF. The small difference
between the two algorithms can reflect on the good performance ACt has
achieved in increasing njS with minimal PU loss. However, we can notice
in Table 5.6 that ACt scored a lesser SimTime than the OL algorithm
due to the former’s tasks killing decisions resulting in removing jobs that
contain those killed tasks leading to a much lesser SimTime overall.

• ACjACt-FCFS scored lower PU by 3.23% than ACt-FCFS. Although
the average PU of our enhanced algorithm is lesser than the previous
one, a closer look into the SimTime performance in Table 5.6 will reveal
to us that our enhanced algorithm has managed to keep the cluster busy
with <8% difference in averages.

• ACjACt-FCFS scored higher PU by 2.13% than ACRandom-FCFS.

• ACjACt-FCFS scored higher PU by 1.34% than ACjSlack/CR-FCFS.

88

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

• ACjACt-EDF scored higher PU by 1.1% than ACt-EDF.

• ACjACt-EDF scored higher PU by 2.69% than ACRandom-EDF.

• ACjACt-EDF scored higher PU by 11.64% than ACjSlack/CR-EDF.

All admission control algorithms share similar performances with respect to
their PU average values due to the shared principle of killing jobs from the
system in order to improve the performance with respect to our RTS objective.
However, ACjACt-EDF was the second longest SimTime after the OL system
and it outperformed the other baseline admission algorithms in both PU and
SimTime.

Case-Study SimTime (hours)
OL-FCFS 393.00
OL-EDF 476.00
ACt-FCFS 267.60
ACt-EDF 205.90
ACjACt-FCFS 247.00
ACjACt-EDF 371.20
ACRandom-FCFS 246.50
ACRandom-EDF 238.80
ACjSlack/CR-FCFS 191.00
ACjSlack/CR-EDF 145.00

Table 5.6: Simulation time (SimTime) of all algorithms. SimTime indicates
how long each algorithm spent in scheduling and processing all arriving jobs.

In conclusion to this metric we notice:

• EDF is better than FCFS in maximising PU .

• OL-EDF is a better algorithm for maximising PU . ACjACt-EDF is
better for PU and njS altogether i.e. positive njS values with a small
difference in PU in comparison to the other admission control algorithms.

• ACjACt-EDF scored the second highest SimTime after the OL peer.

5.6.3 Job Killing Ratio and Wasted Processor Utilisation

For these metrics, we expect:

• A correlation between the metrics where the higher the jKR the higher
the WPU . This is because the more we kill jobs the higher the opportunity
of killing one that have already started processing in the cluster resulting
in some WPU .

89

5.6. EVALUATIONS

• ACt and ACRandom to score the highest jKR because they both may kill
jobs unnecessarily.

• ACjACt to score the least jKR because it will only kill a job if it
exceeds the admission threshold, jCControl, which is mapped to both
RTS objectives in real-time.

Figure 5.9: Jobs killing ratio time-plots of high workloads, 120%. Please note
that we zoomed the time-plots to include the first 50 hours of the simulations
because it is during this period the cluster was found to be fully utilised.

Figure 5.10: Wasted processor utilisation box-plots of high workloads, 120%.

For RTS analysis, refer to Figure 5.9 and Figure 5.10 for more insights and
refer to Table 5.7 for statistical findings:

• In ACt, EDF increased jKR by 112.12% while decreased WPU by
20.77%. The EDF-based algorithm increased jKR due to the fact ACt

90

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

Case-Study (FCFS vs. EDF) jKR p-value WPU p-value
ACt (FCFS vs. EDF) 4.98e−32 1.81e−35

ACjACt (FCFS vs. EDF) 3.03e−31 0.00
ACRandom (FCFS vs. EDF) 0.00 0.00
ACjSlack/CR (FCFS vs. EDF) 2.62e−37 0.00

Table 5.7: One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of jKR and WPU .
Case-Study jKR p-value WPU p-value
ACt-FCFS vs. ACjACt-FCFS 0.11 5.92e−8

ACt-EDF vs. ACjACt-EDF 1.42e−74 0.00
ACjACt-FCFS vs. ACRandom-FCFS 0.03e−1 2.07e−5

ACjACt-EDF vs. ACRandom-EDF 0.00 0.00
ACjACt-FCFS vs. ACjSlack/CR-FCFS 4.3e−49 5.47e−41

ACjACt-EDF vs. ACjSlack/CR-EDF 1.5e−14 0.00

Table 5.8: One-way ANOVA test for the admission control experimental data
of jKR and WPU .

does admission decisions on the tasks-level. Therefore every time a task
is removed by this algorithm, the whole job is consequently removed.
Although EDF doubled jKR but it reduced WPU from the FCFS-based
algorithm.

• In ACjACt, EDF increased jKR by 13.13% while decreased WPU by
100%. The EDF-based algorithm incurred an increase in its jKR but
scored 0 WPU in comparison to the FCFS-based peer.

• In ACRandom, EDF increased jKR by 82.24% and increased WPU by
81.7%. Due to the random logic of this admission controller, we do not
expect a causal correlation between its FCFS- and EDF-based versions.

• In ACjSlack/CR, EDF increased jKR by 88.37% while decreased WPU

by 44.95%.

In conclusion to the RTS analysis, EDF scored higher jKR than FCFS in all
admission control algorithms. The reasons vary depending on the admission
controller’s mechanism/logic. Despite the increase in jKR, EDF-based admis-
sion control reduced WPU in all algorithms. This can be explained by the lack
of performance of EDF in cluster-overload situations as pointed out by Maggio
et al. in [79] resulting in higher jKR. Yet, it has managed removing jobs from
the system early enough so it did not cause as much WPU as FCFS.

For admission control analysis, refer to Figure 5.9 and Figure 5.10 for more
insights and refer to Table 5.8 for statistical findings:

91

5.6. EVALUATIONS

• ACjACt-FCFS outperformed ACt-FCFS in decreasing jKR by 72.72%
and WPU by nearly 100%. According to our statistical tests in Table 5.8,
the difference between the jKR data-sets was insignificant. This can be
explained by the fact we compared the end values of jKR and WPU for
all algorithms here, and the difference between such end-values was large,
refer to subsection 5.6.4 for more details on the killing instances. However,
the time-plots show close performance between the two algorithms here
in Figure 5.9 where due to ACt’s tasks-level admission, it killed tasks at
later periods of the simulation leading to larger differences at the end.

• ACjACt-EDF outperformed ACt-EDF in decreasing jKR by 85.2% and
WPU by 100%.

• ACjACt-FCFS outperformed ACRandom-FCFS in decreasing jKR by
47.06% and WPU by nearly 100%.

• ACjACt-EDF outperformed ACRandom-EDF in decreasing jKR by 67.63%
and WPU by 100%.

• ACjACt-FCFS outperformed ACjSlack/CR-FCFS in decreasing jKR by
88.89% and WPU by nearly 100%.

• ACjACt-EDF outperformed ACjSlack/CR-EDF in decreasing jKR by
82.21% and WPU by 100%.

In conclusion, our ACjACt algorithm outperformed our previous FAC algorithm
and the baselines admission controllers in reducing both jKR and WPU with
both FCFS and EDF.

5.6.4 Profiling Killed Jobs

In this section, we are going to profile jobs that were killed by all admission
control algorithms with respect to their jC values and the time (instances) at
which they were decided to be removed, refer to Figure 5.11 and Figure 5.12for
more insights. From Figure 5.11 and Figure 5.12, we notice:

• All algorithms followed a similar trend when the cluster becomes over-
loaded from the start of the simulation until around the 50th hour. They
start with removing smaller jobs (jC-wise) first before killing larger jobs
as time progresses. This reflects on the nature of the early CFD jobs being
generated and submitted into the system for scheduling and processing.
Whereas later on during the simulation, larger jobs representing meshing
CFD jobs are generated and submitted by end-users which are naturally
larger in jC values.

92

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

Figure 5.11: Profiling jobs killing by the admission control algorithms with
FCFS with respect to killed jobs’ jC values and the time of rejection.

Figure 5.12: Profiling jobs killing by the admission control algorithms with
EDF with respect to killed jobs’ jC values and the time of rejection.

93

5.6. EVALUATIONS

• ACt scored one of the latest killing decisions because of its tasks-level
admission mechanism. If a non-critical task becomes late, it does not
necessarily imply that the whole job which contains this late task is
actually late. Because of that, we see ACt practised some late killing
decisions, simulation time-wise.

• ACjACt-EDF was the only algorithm that killed small jobs in comparison
to its FCFS-based peer and other admission control algorithms. We
already know form the previous section that ACjACt-EDF scored 13.13%
higher jKR than its FCFS-based peer. However, the EDF-based algo-
rithm managed not to compromise the larger jobs in its killing decisions
as the FCFS-based peer and other algorithms did.

5.6.5 Enhancing ACRandom

ACRandom shared similar performance in comparison to both of our previously
and newly proposed algorithms. This can be manifested through the metrics;
njS see Figure 5.7 and PU see Figure 5.8. So, we decided to increase the
killing ratio of the random admission controller, named as “ACRandom+”, and
observe any improvements with respect to our RTS metrics as well as jKR and
WPU . Figure 5.13 reviews ACRandom+’s performance with high workloads,
120%.

Figure 5.13: Enhanced ACRandom algorithm with FCFS & EDF and high
workloads, 120%.

As expected, we notice an increase in njS values, in fact ACRandom+ scored
positive njS values, similar to our ACjACt. However, the longest SimTime

for ACRandom+ was 129.56 hours in comparison to its peer, ACRandom, which

94

CHAPTER 5. HANDLING DEPENDENCIES IN ADMISSION CONTROL
SCHEDULING

scored 246.45 hours of SimTime. This means that the higher the killing
ratio the better the RTS performance with respect to njS, but the lesser the
processing i.e. cluster PU due to the increase in killing decisions. We can notice
the clear increase at both WPU & jKR, in Figure 5.13, as a consequence of
killing more jobs from the system.

If we compare ACRandom+-FCFS with its EDF peer, we can see a decrease in
WPU & jKR and higher njS as expected EDF would bring such advantages
via its dynamic scheduling. However, neither the FCFS version of ACRandom+
nor the EDF could outperform our proposed algorithm in managing the trade-
offs between our RTS objectives (maximum njS & PU) with minimal WPU

& jKR altogether.

5.7 Summary

In this chapter we addressed task dependencies as an RTS constraint, and
because of it the notion of jobs has emerged. Due to the notion of jobs, further
RTS metrics were introduced in this chapter including jKR and WPU . We
proposed a new, novel MPC-based FAC algorithm, ACjACt, that follows the
same admission control structure as our previous algorithm in chapter 4 where
we added jobs-specific MPC and Admission Control blocks.

From the evaluations section we can see the efficiency of both of our MPC-based
FAC algorithms where ACjACt had the clear advantage in improving the RTS
performance with respect to all of the metrics we reviewed. Whereas the
other algorithms can perform good in some metrics and degrade in others.
This is because the algorithm we propose in this chapter does admissions
on the jobs-level. We propose ACjACt as the answer to our third research
question in chapter 3 which is: “Can the proposed algorithm deal with task
dependencies (inside jobs) as a scheduling constraint and the emerging RTS
objectives such as reducing wasted processor utilisation (WPU)1? Can the
proposed algorithm manage the trade-offs between the RTS objectives without
prior knowledge to any RTS parameters? If so, can the proposed algorithm
outperform baseline admission control algorithms such as random-based and
jobs-completion-ratio-based etc.?”.

We also compared our newly proposed algorithm with other admission control
baselines. Our proposed algorithm outperformed the baselines in all of the
case-studies except in scoring the highest PU . This can be justified due to
our algorithm’s management of the trade-offs between the RTS objectives.

1We designed W P U as an RTS metric when addressing the issue of task dependencies
where chapter 5 looks into it in more details.

95

5.7. SUMMARY

However, it did score the longest SimTime.

On another note, the system administrator usually acquires additional comput-
ing processors to further improve the local HPC cluster’s RTS performance
with respect to the RTS objectives. In our industrial system, they acquire
processors statically via annual purchases of a fixed amount of processors. We
claim that our control-theoretic approach can replace the manual admission
control practised by the system administrator. Thus, we shall explore how can
we extend our approach into handling real-time ERP i.e. renting and buying
processors during industrial projects life-time. This issue is reviewed in the
next chapter.

96

Chapter 6

A Preliminary Investigation
of Feedback Admission
Control for Cloud and ERP
Applications

The motivation for this chapter is to address our fourth and final research
question which is concerned with supporting ERP applications while managing
the trade-offs between our RTS objectives. Some industries opt for acquiring
additional computing processors in order to assist their “local” cluster in
meeting jobs deadlines [12]. This option is often constrained by the project’s
allocated budget which allows project managers to rent or buy additional
computing processors when the local cluster degrades in RTS performance.

We present in this chapter novel MPC-based FAC algorithms that eliminate the
need for the manual decision-making process for both admitting/rejecting jobs
into the cluster and when (and how much) to rent/buy additional processors.
We aim in this chapter to show that control theory is not only promising for
handling the aforementioned classical real-time objectives. Additionally, it can
be a productive part of the algorithm design for ERP as a Task Allocation
problem was addressed in [32] using a simple feedback admission controller but
without including financial constraints and incentives.

Our contributions in this chapter are:

• Embedding rent and buy algorithms in our MPC-based FAC algorithm
in order to facilitate ERP applications.

• Constructing a system model for capturing the RTS dynamics between
job computation time and financial values (inputs) and job normalised

97

6.1. TASK MODEL

slack values, processor utilisation and overall project financial credit
(outputs).

• Managing the trade-offs between our RTS objectives in addition to the
financial incentives and constraints.

6.1 Task Model

We used the same task model in chapter 5. We added two new notions as part
of the RTS problem: ProjectBudget and SystemCredit. The idea of adding
ProjectBudget is to allow for the automatic decision-making on rent/buy
computing processors on demand in order to meet jobs deadlines and minimise
the jobs killing. ProjectBudget is a fixed value allocated before projects start
processing. We used two ProjectBudget values: £1000 & £500.

We have chosen these two values representing sub-budgets. We chose small
amounts because the simulations we carried out in this thesis represent a sub-
part of the industrial system in regards to the workload and the cluster HPC
test-beds. We can consider real-life projects to be a collection of sub-projects
where each project has its own allocated budget. Any left-overs from the allo-
cated budget is considered a bonus which can be added to the SystemCredit

towards the end of the project (simulation). The idea of adding SystemCredit

is to reflect on jobs’ individual values (jV) representing their financial incentive
towards the industrial project they belong to, see Equation 6.1.

SystemCredit = ∑ jiV + ProjectBudgetBonus;

∀i ∈ [JobsMetDeadlines]
(6.1)

We designed jV to have a constant value throughout the job’s life-cycle i.e.
form generation until completion. We randomised jV as a function of the job’s
jC value, so we can have jobs with large jC values but a smaller jV , and
vice-versa, see Equation 6.2.

jV = jC ∗ Factor;

Factor = random(0.5 ∶ 1.5);
(6.2)

This way we can represent the financial values of jobs in our industrial system.
Some jobs can have low financial values and others can have a larger incentive
to process.

6.2 Scheduling Policy

This remains the same as in chapter 5.

98

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

6.3 Performance Metrics

• PU , see Equation 3.1.

• njS, see Equation 5.3.

• jKR, see Equation 5.5.

• WPU , see Equation 5.4.

• ProjectBudget and SystemCredit, see Equation 6.1.

Our RTS objectives in this chapter are:

1. Manage the trade-offs, in real-time, between maximising njS and PU .

2. Reduce jKR and WPU with the aid of rent and buy FAC algorithms.

3. Optimal use of ProjectBudget. Optimality here refers to minimal use
of this allocated budget that would only improve meeting deadlines but
without prematurely using it. Although it is intuitive to pinpoint that
buying processors through ProjectBudget has the advantage of keeping
the processors beyond the project, unlike renting. This chapter looks at
the financial advantages for project managers, who are under pressure to
deliver solely for the project they are currently involved with without
conducting post-project and long-terms analysis on the newly acquired
processors.

4. Meet a specific SystemCredit value which would be assigned before the
beginning of the industrial project. The objective is to reach this value
or near it.

6.4 System Model and Identification

We followed the same identification steps in chapter 5 for obtaining a system
model to capture the correlations (system dynamics) between jC & jV (inputs
as depicted from Table 5.1) and njS, PU & SystemCredit (outputs). The
reason we included jV and SystemCredit into our modelling is to find out how
the financial incentive is affected by the admission control decisions throughout
the project life-cycle. As for the system model’s accuracy, it scored 96.54%
where the error plot is in Figure 6.1. The model we obtained is placed in the
System Model block in Figure 6.2.

6.5 Closed-Loop Scheduling Control

We noticed in our proposed algorithm in chapter 5 that ACjACt performed
well due to its jobs admission controller where the tasks admission controller

99

6.5. CLOSED-LOOP SCHEDULING CONTROL

Figure 6.1: System identification model error: measured minus simulated data.
The reason the x-axis is not the full 200 hours is because in system identification
we allocate a small part of the measured data for the model estimation and the
rest for model validation [46]..

was obsolete. Therefore, when we started adopting ERP algorithms in our
ACjACt algorithm, we removed the ACt component leaving one MPC block for
the jobs-level admission. Our ERP algorithms are embedded in the Admission
Control block, we refer to it as VAC due to its value-based admission control
logic depending on jV and ProjectBudget in real-time, see Figure 6.2. In
fact, if we run our current VAC algorithm without any ProjectBudget, it will
perform the same as ACjACt.

6.5.1 A Novel MPC-based VAC Algorithm for Cloud and ERP
Applications

The MPC block, in Figure 6.2, receives particular system outputs (PU , njS

and SystemCredit) which uses them for computing its control signal, jCControl.
The control signal represents the optimal jC value the local cluster can pro-
cess without violating its QoS levels. We adopted two different value-based
algorithms: rent-on-demand (RoD) and purchase-on-demand (PoD). Each
one of them follows a different admission control logic which we used in our
evaluations in order to explore the (dis-)advantages each algorithm can bring
towards our real-time objectives. Both algorithms have the same structure as
depicted in Figure 6.2. We will collectively refer to both algorithms as the
Value-based Admission Control block (VAC).

As for controllers’ stability, we tested our VAC controller design inside MPC
toolbox in Matlab environment where, similarly, to our previous controllers

100

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

Figure 6.2: A block diagram of our novel value-based admission control (VAC)
algorithm.

in chapter 5, it passed all tests with a warning in regards to the controller’s
steady-state gains. The warning suggests sacrificing one output’s weight values
to zero in order to reduce possible errors in other outputs. However, we
opted for full weight values for all system outputs because they are all equally
important to our RTS optimisation problem.

Before we address each algorithm, it is important to define two metrics:

• RoD Cloud Price = £0.05 per core per hour on the cloud [51]. We do
not include the time overheads for jobs to be sent to cloud and queue
there. We assume once an admission decision is made to transfer a job
to the cloud, it will receive instant processing capability.

• PoD HPC Rack Price = £250 per a 15-processor HPC rack [51]. We
do not include the delivery time overheads of HPC racks as part of our
optimisation control at this stage of our research. We assume once an
admission decision is made to acquire HPC racks, the local cluster will
receive it instantly.

Rent-on-Demand Admission Control Logic

if Job Computation Time <= MPC signal
send job to the local cluster;

else
(if Job Value >= RoD Price) &&
(ProjectBudget >= RoD Price)

rent on the cloud;
else

kill job;
end

end

As long as newly arrived job’s jC values are within the control signal value,
jCControl, the controller predicts for continuing meeting the real-time objectives
using the local cluster. Otherwise, it is believed this job will not meet its

101

6.6. EVALUATIONS

deadline and the admission logic here rejects processing the job locally. At
this stage, the logic weighs the financial incentive against the price for renting
additional computing processors on the cloud. There can be a rejection at the
cloud stage in two scenarios:

• jV isn’t enough to pay-back the cloud price, regardless whether we have
enough budget now or not.

• We do not have enough ProjectBudget now for running the job on the
cloud, regardless whether the job is financially valuable or not.

Purchase-on-Demand Admission Control Logic

if Job Computation Time <= MPC signal
send job to the local cluster;

else
if ProjectBudget >= PoD Price

purchase new rack;
else

kill job;
end

end

Similarly to RoD, as long as the newly arrived job’s jC value is less than
or equal to jCControl, the job runs on the local cluster. Otherwise, the PoD
logic looks into buying additional computing processors. The purchase will
occur for a 15-processor rack, instead of renting individual processors on the
cloud as in RoD. Once the transaction occurs after checking whether our
ProjectBudget allows to authenticate the purchase transaction, the newly
acquired rack becomes a physical part of the local cluster. This way, the
opportunity for processing more jobs locally increases which potentially reduces
the need for acquiring additional resources.

6.6 Evaluations

The workflows depicted from Table 5.1 using Burkimsher’s generator were
tested in a 50-processor HPC cluster. Each workflow contains jobs being
generated at least three times, we ran each case-study 10 times and we averaged
the simulation results in the metrics plots. The allocated ProjectBudget values
are £1000 and £500 representing high and average budgets for sub-projects
in our industrial organisation. One-way analysis of variance (ANOVA) tests
were carried-out to statistically demonstrate the difference between the results
obtained from experimental case-studies. We will refer to each case-study by
the admission algorithm (OL, ACjACt, RoD and PoD) concatenated with the
scheduling policy experimented with. For instance, RoD-EDF refers to our

102

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

rent-on-demand algorithm with EDF.

For each RTS metric, we will review:

• RTS analysis: the performance of EDF against FCFS per algorithm.

• Admission Control analysis: the performance of all systems against each
other.

Please note that full numeric results for all workload types (low, full and high)
are tabulated in the Appendix in Table C.1. The high workload cases are
reviewed in this section due to their high RTS dynamics that will reflect more on
the different performances of the algorithms. We will not include the notion of
simulation time (SimTime) as we did in the previous chapter. This is because
our VAC algorithms can opt for acquiring additional computing processors
to achieve the RTS objectives. Thus, a smaller SimTime for RoD does not
necessarily reflect performance degradation in keeping the local cluster busy
throughout the simulation. Instead, it reflects on the local cluster’s incapability
to continue achieving the RTS objectives, hence cloud decisions were made.

6.6.1 Job Normalised Slack Values

For this metric, we expect:

• Similarly in the previous chapter, the OL algorithms to score the lowest
and negative njS values.

• The closed-loop algorithms (ACjACt, RoD and PoD) to score ≥ 0 njS

values.

• Higher-budgeted VAC algorithms to score higher njS values than their
lower peers because of the capability of acquiring more additional com-
puting processors.

For RTS analysis, we expect EDF to outperform FCFS in scoring higher njS

values, refer to Figure 6.3 for more insights and Table 6.1 for statistical findings:

• In the OL algorithm, EDF scored 163.06% more than FCFS. This is a
good result for EDF but it still scored negative njS values beyond the
QoS level, -1.

• In ACjACt, EDF scored 4.37% more than FCFS.

• In RoD£1000, EDF scored 82.40% more than FCFS.

• In RoD£500, EDF scored 300.25% more than FCFS.

• In PoD£1000, EDF scored 223.45% more than FCFS.

103

6.6. EVALUATIONS

Figure 6.3: Jobs normalised slack values box-plots in high workloads, 120%.

• In PoD£500, EDF scored 281.57% more than FCFS.

Overall, we notice that EDF in the VAC algorithms were more effective in
comparison to EDF in ACjACt in increasing njS values. This can be explained
by the fact that with VAC we can outsource jobs to additional computing
processors (cloud or new HPC racks) supporting the local cluster in meeting
deadlines. However with ACjACt, there is only the local cluster to process all
arriving jobs which made the cluster busier than with the VAC algorithms.
With overloaded cluster the scheduling policy becomes less effective. Yet, all
closed-loop algorithms scored ≥ 0 njS values as expected.

For admission control analysis, refer to Figure 6.3 for more insights and
Table 6.2 for statistical findings:

• ACjACt-FCFS scored 336.94% more than OL-FCFS.

• ACjACt-EDF scored 73.37% more than OL-EDF.

• RoD£500-FCFS scored 70.48% less than ACjACt-FCFS. This counter-
intuitive result can be explained by the high jKR incurred by ACjACt

than RoD, see subsection 6.6.4 for more details. The higher the jKR the
higher the njS values which is why ACjACt scored, in average, higher
njS values. Yet, RoD also scored ≥ 0 njS values.

• RoD£500-EDF scored 13.20% more than ACjACt-EDF.

• RoD£1000-FCFS scored 50.12% more than RoD£500-FCFS.

• RoD£1000-EDF scored 5.92% more than RoD£500-EDF.

104

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

Case-Study (FCFS vs. EDF) p-value
OL 9.26e−143

ACjACt 0.05e−2

RoD£1000 0.00
RoD£500 0.00
PoD£1000 0.00
PoD£500 0.00

Table 6.1: One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of njS.

Case-Study p-value
OL-FCFS vs. ACjACt-FCFS 5.1e−170

OL-EDF vs. ACjACt-EDF 0.00
ACjACt-FCFS vs. RoD£500-FCFS 0.00
ACjACt-EDF vs. RoD£500-EDF 0.00
RoD£500-FCFS vs. RoD£1000-FCFS 1.81e−107

RoD£500-EDF vs. RoD£1000-EDF 0.01*
PoD£500-FCFS vs. PoD£1000-FCFS 2.12e−23

PoD£500-EDF vs. PoD£1000-EDF 0.47
RoD£500-FCFS vs. PoD£500-FCFS 4.05e−7

RoD£500-EDF vs. PoD£500-EDF 0.03e−2

RoD£1000-FCFS vs. PoD£1000-FCFS 9.33e−13

RoD£1000-EDF vs. PoD£1000-EDF 5.26e−12

Table 6.2: One-way ANOVA test for the admission control experimental data
of njS. Mark (*) indicates that the difference between the data-sets is almost
insignificant.

• PoD£1000-FCFS scored 18.89% more than PoD£500-FCFS.

• PoD£1000-EDF scored 0.79% more than PoD£500-EDF.

• RoD£500-FCFS scored 6.91% less than PoD£500-FCFS.

• RoD£500-EDF scored 2.14% less than PoD£500-EDF.

• RoD£1000-FCFS scored 17.83% less than PoD£1000-FCFS.

• RoD£1000-EDF scored 2.88% more than PoD£1000-EDF.

In most cases, the larger the ProjectBudget the larger the njS values because
with a higher budget the organisation can afford a larger computing capacity
which can increase the opportunity for processing more jobs on time if not
early. We also notice that both RoD and PoD show similar values. The reason
they are different and not exactly the same is because PoD adds the newly
purchased HPC racks into the local cluster. So, the local cluster size increases
which makes the MPC’s prediction and optimisation decisions differ from RoD’s
MPC because now we are dealing with two different local cluster sizes

105

6.6. EVALUATIONS

With RoD, the transferred job to the cloud is assumed to get instant ac-
cess to the required number of processors which will enable the job to meet its
deadline quicker. As for the PoD case, when it decides to purchase a new HPC
rack, jobs still need to queue to access those processors and hence they might
take longer to start processing than in the RoD case. However, both algo-
rithms acquire their additional computing processors knowing in advance that
jobs will meet their deadlines via MPC’s prediction and optimisation algorithms.

In conclusion to this metric:

• The VAC algorithms and in particular with EDF outperformed both OL
and ACjACt in increasing njS values.

• The higher the ProjectBudget the higher the njS values in all VAC
case-studies.

6.6.2 Processor Utilisation

For this metric, we expect:

• The OL algorithms to score the highest PU values because they do not
practice in jobs killing or outsourcing.

• RoD to score higher PU than PoD, because PoD can increase the local
HPC’s cluster size when purchasing new racks resulting in needing some
time for the cluster to be fully utilised.

Figure 6.4: Processor utilisation time-plots in high workloads, 120%.

For RTS analysis, we expect EDF to outperform FCFS in scoring higher PU

values, refer to Figure 6.4 for more insights and Table 6.3 for statistical findings:

106

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

Case-Study (FCFS vs. EDF) p-value
OL 0.00
ACjACt 0.00
RoD£1000 5.11e−16

RoD£500 0.01*
PoD£1000 1.27e−14

PoD£500 0.09

Table 6.3: One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of PU . Mark (*) indicates that the difference between the data-sets is
almost insignificant.

Case-Study p-value
OL-FCFS vs. ACjACt-FCFS 3.1e−29

OL-EDF vs. ACjACt-EDF 2.03e−11

ACjACt-FCFS vs. RoD£500-FCFS 1.9e−279

ACjACt-EDF vs. RoD£500-EDF 3.46e50−

RoD£500-FCFS vs. RoD£1000-FCFS 6.18e−12

RoD£500-EDF vs. RoD£1000-EDF 0.94
PoD£500-FCFS vs. PoD£1000-FCFS 1.76e−32

PoD£500-EDF vs. PoD£1000-EDF 0.27
RoD£500-FCFS vs. PoD£500-FCFS 0.09
RoD£500-EDF vs. PoD£500-EDF 0.31
RoD£1000-FCFS vs. PoD£1000-FCFS 0.14e−2

RoD£1000-EDF vs. PoD£1000-EDF 1.00

Table 6.4: One-way ANOVA test for the admission control experimental data
of PU .

• In the OL algorithm, EDF scored 16.93% more than FCFS.

• In ACjACt, EDF scored 20.43% more than FCFS.

• In RoD£1000, EDF scored 1.57% more than FCFS.

• In RoD£500, EDF scored 1.52% less than FCFS.

• In PoD£1000, EDF scored 4.21% more than FCFS.

• In PoD£500, EDF scored 0.57% less than FCFS.

For the OL and ACjACt algorithms, we notice that EDF was better than FCFS
in increasing PU because both algorithms do not have access to additional com-
puting processors. Once we enabled acquiring additional resources we noticed a
decrease in the local cluster’s PU due to renting from the cloud in the RoD case.

For admission control analysis, refer to Figure 6.4 for more insights and
Table 6.4 for statistical findings:

• ACjACt-FCFS scored 3.01% less than OL-FCFS.

107

6.6. EVALUATIONS

• ACjACt-EDF scored 0.49% more than OL-EDF.

• RoD£500-FCFS scored 15.06% more than ACjACt-FCFS.

• RoD£500-EDF scored 6.89% less than ACjACt-EDF.

• RoD£1000-FCFS scored 5.77% less than RoD£500-FCFS.

• RoD£1000-EDF scored 0.05% less than RoD£500-EDF.

• RoD£1000-FCFS scored 0.01% more than PoD£1000-FCFS.

• RoD£1000-EDF scored 0% than PoD£1000-EDF.

• PoD£1000-FCFS scored 6.37% less than PoD£500-FCFS.

• PoD£1000-EDF scored 1.59% less than PoD£500-EDF.

A reduction in PU from RoD to PoD does not necessarily refer to performance
degradation. Instead, it means the algorithm did utilise additional computing
processors, from the cloud, which led to lesser utilisation of the local cluster.

In conclusion to this metric:

• RoD experienced low PU values due to outsourcing jobs to the cloud.

• PoD experienced low PU values due to increasing the local HPC cluster’s
size.

6.6.3 Project Budget

For this metric, we expect:

• Lower-budgeted VAC algorithms to use their full ProjectBudget value
in comparison to the higher peers leading to another expectation of
higher-budgeted VAC algorithm to accumulate some ProjectBudget

bonuses.

• A higher ProjectBudget bonus with EDF-based VAC algorithms in
comparison to their FCFS peers, because EDF’s better performance in
meeting deadlines will reduce the need for acquiring additional computing
processors. Hence, the higher ProjectBudget bonus towards the end of
the simulation (industrial project life-time).

• Amongst the VAC algorithms, we expect RoD to use less of its allocated
ProejctBudget in comparison to PoD because RoD does cloud transac-
tions for a specific number of processors per job whereas PoD does HPC
transactions for HPC racks (not processors).

108

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

Figure 6.5: Project budget plots in high workloads, 120%. We zoomed-in to
show the RTS dynamics during the cluster overload period.

We notice from Figure 6.5 that the savings from the RoD-EDF algorithm were
£456.46 while PoD-EDF scored £250 i.e. £206.46 less. Using parts or all of
the ProjectBudget reflects the fact that the VAC algorithms have utilised it
for improving the njS values which will lead to lesser jKR if not eliminate it
which is desired.

The difference between RoD and PoD’s savings can be explained by the
fact that PoD does individual purchases of HPC racks, each is worth £250.
The PoD-EDF algorithm in our experiments made three purchases for racks:
first, £1000 - £250 = £750; second, £750 - £250 = £500; and third, £500 -
£250 = £250. PoD-FCFS made an additional fourth purchase due to FCFS
poor scheduling performance in meeting deadlines resulting in needing more ad-

109

6.6. EVALUATIONS

ditional processors which has emptied the allocated ProjectBudget. Whereas
RoD rents a specific number of processors per job on the cloud and the price
varies based on the number and duration of the rented processors.

In conclusion to this metric:

• The higher the ProjectBudget the higher the savings for the same
algorithm.

• In this sense, we find that RoD is more dynamic than PoD. This is
because the latter does purchases of racks whereas RoD rents exactly
what is needed for particular jobs at a time.

6.6.4 Jobs Killing Ratio and Wasted Processor Utilisation

For these metrics, we expect:

• The VAC algorithms to reduce jKR & WPU more than ACjACt. This
is because of their ability in acquiring additional processors which reduces
the need for killing jobs and hence reduced WPU as well.

• Higher-budgeted VAC algorithms to score the least jKR & WPU if not
eliminate them.

From Figure 6.6 and Figure 6.7, we can generally notice that our VAC algo-
rithms showed lesser jKR than ACjACt. All VAC and FAC algorithms scored
relatively small WPU values <1%. This reflects the good performance in killing
jobs early enough without causing WPU . All VAC algorithms with £1000
ProjectBudget have shown 0 jKR indicating the benefit in having a financial
aid for acquiring additional computing processors where it eliminated the
killing of jobs from the system. Whereas with £500 ProjectBudget, our VAC
algorithms have killed a number of jobs. This is because the small budget was
not enough to process all of the arrived jobs locally and have them outsourced
to the cloud or extra HPC racks.

Our VAC algorithms with £1000 ProjectBudget have caused 0% WPU ,
which is a 100% improvement from ACjACt. The VAC algorithms with £500
incurred WPU due to their jKR because of the lower ProjectBudget.

For RTS analysis, refer to Figure 6.6 and Figure 6.7 for more insights and to
Table 6.5 for statistical findings:

• In ACjACt, EDF increased jKR by 13.13% while decreased WPU by
100%. The EDF-based algorithm incurred an increase in its jKR but
scored 0 WPU in comparison to the FCFS-based peer.

110

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

Figure 6.6: Jobs killing ratio time-plots in high workloads, 120%. We zoomed-in
to show the RTS dynamics during the cluster overload period.

Figure 6.7: Wasted processor utilisation box-plots in high workloads, 120%.

111

6.6. EVALUATIONS

Case-Study jKR p-value WPU p-value
ACjACt 3.03e−3 0.00
RoD£1000 NaN** NaN**
RoD£500 1.07e−29 1.09e−29

PoD£1000 NaN** NaN**
PoD£500 4.19e−32 2.34e−32

Table 6.5: One-way ANOVA test for the RTS (FCFS vs. EDF) experimental
data of jKR and WPU . Mark (**) indicates that the data-sets are equal; when
we ran the ANOVA tests in both Matlab and R programming environments,
we obtained p-value = NaN.
Case-Study jKR p-value WPU p-value
ACjACt-FCFS vs. RoD£500-FCFS 0.00 1.31e−311

ACjACt-EDF vs. RoD£500-EDF 3.4e−287 2.59e−19

RoD£500-FCFS vs. RoD£1000-FCFS 2e−67 1.03e−67

RoD£500-EDF vs. RoD£1000-EDF 4.94e−21 2.95−21

PoD£500-FCFS vs. PoD£1000-FCFS 1.22e−100 1.75e−101

PoD£500-EDF vs. PoD£1000-EDF 1.44e−39 8.05e−40

RoD£500-FCFS vs. PoD£500-FCFS 6.49e−9 2.42e−8

RoD£500-EDF vs. PoD£500-EDF 1.02e−7 1.44e−7

RoD£1000-FCFS vs. PoD£1000-FCFS NaN** NaN**
RoD£1000-EDF vs. PoD£1000-EDF NaN** NaN**

Table 6.6: One-way ANOVA test for the admission control experimental data
of jKR and WPU . Mark (**) indicates that the data-sets are equal; when we
ran the ANOVA tests in both Matlab and R programming environments, we
obtained p-value = NaN.

• In RoD£500, EDF scored 81.81% less jKR and 85.71% less WPU than
FCFS.

• In PoD£500, EDF scored 50% less jKR and 50% less WPU than FCFS.

For admission control analysis, refer to Figure 6.6 and Figure 6.7 for more
insights and to Table 6.6 for statistical findings:

• RoD£500-FCFS scored 69.44% less jKR and 165.85% less WPU than
ACjACt-FCFS.

• RoD£500-FCFS scored 45% less jKR and 12.5% less WPU than PoD£500-
FCFS.

• RoD£500-EDF scored 95.17% less jKR and 100% more WPU than
ACjACt-EDF. Despite the large difference in WPU , both algorithms
scored 0.01% and 0%, respectively, refer to Table C.1 for more details.

• RoD£500-EDF scored 80% less jKR and 75% less WPU than PoD£500-
EDF.

112

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

In conclusion to this metric:

• Higher-budgeted VAC algorithms eliminated jKR (and hence WPU).

• Lower-budgeted peers incurred some jKR and WPU but significantly
less than ACjACt.

6.6.5 System Credit

For this metric, we expect:

• The OL algorithms to score the lowest SystemCredit due to their poor
performance in meeting jobs deadlines. Although OL algorithms do not
kill any jobs, but if a job misses its deadline, the value of that job will
not be added to the SystemCredit basket.

• ACjACt to score the second lowest SystemCredit. Although ACjACt

scored ≥ 0 njS values, but because of its higher jKR in comparison to
the VAC algorithms, ACjACt did not score as high SystemCredit as
the VAC peers.

• Amongst the VAC algorithms, we expect RoD to score a higher System−
Credit due to its higher savings in using ProjectBudget, refer to subsec-
tion 6.6.3 for more details.

We can notice from Figure 6.8 that the OL algorithms have scored the lowest
SystemCredit due to their deadline misses. ACjACt comes at second in scor-
ing higher SystemCredit. Meanwhile, OL-EDF and ACjACt-EDF have scored
higher SystemCredit than their FCFS-based peers due to EDF’s dynamic
scheduling policy enabling more jobs to meet their deadlines, hence the higher
credits earned. From here we can see that jKR and SystemCredit are inversely
proportional, the higher the jKR the lesser jobs to process hence lesser jV

earned reflected on the SystemCredit metric.

As for the VAC algorithms, we can notice that RoD have scored higher
SystemCredit than its PoD peer, especially when experimenting with the
£1000 ProjectBudget which has managed to earn savings from not using-up
all of the allocated budget. Besides, being able to acquire additional computing
processors and due to EDF’s good performance in meeting deadlines, there was
no need found to kill any jobs as reflected by the jKR metric in the previous
sub-section.

For RTS analysis, refer to Figure 6.8 for more insights:

• In the OL algorithm, EDF scored £924.73 more than FCFS.

113

6.6. EVALUATIONS

Figure 6.8: System credit plots in high workloads, 120%. We zoomed-in to
show the RTS dynamics during the cluster overload period.

114

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

• In ACjACt, EDF scored £904.07 more than FCFS.

• In RoD£1000, EDF scored £456.46 more than FCFS.

• In RoD£500, EDF scored £231.27 more than FCFS.

• In PoD£1000, EDF scored £250 more than FCFS.

• In PoD£500, EDF scored £529.54 more than FCFS.

There is a consistent pattern for EDF in increasing the SystemCredit more
than the FCFS peers across all algorithms. This can motivate implementing
EDF in any given algorithm as we saw its performance in the previously
reviewed RTS metrics. As for the VAC algorithms, the reason the EDF-based
algorithms scored higher SystemCredit than their FCFS peer in some cases
is due to the lesser jKR EDF incurred, which is desired and also expected.
Therefore, we can confirm our inversely proportional relationship between jKR

and SystemCredit.

For admission control analysis, refer to Figure 6.8 for more insights:

• ACjACt-FCFS scored £985.04 more than OL-FCFS.

• ACjACt-EDF scored £964.38 more than OL-EDF.

• RoD£500-FCFS scored £2625.29 more than ACjACt-FCFS.

• RoD£500-EDF scored £1952.49 more than ACjACt-EDF.

• RoD£1000-FCFS scored £314.4 more than RoD£500-FCFS.

• RoD£1000-EDF scored £539.59 more than RoD£500-EDF.

• RoD£1000-FCFS and PoD£1000-FCFS both scored the same value of
£5000 which is the maximum SystemCredit and this is due to 0 jKR

they both incurred across all the workloads.

• RoD£1000-EDF scored £206.46 more than PoD£1000-EDF.

• PoD£1000-FCFS scored £826.06 more than PoD£500-FCFS.

• PoD£1000-EDF scored £546.52 more than PoD£500-EDF.

In conclusion to this metric, we propose RoD-EDF for scoring higher SystemCredit

where, of course, the higher the ProjectBudget the higher the SystemCredit.

115

6.6. EVALUATIONS

6.6.6 Trade-off Analysis

In this section, we explore the trade-off when we increase and decrease the
RoD cloud price from the original value we experimented with, £0.05 per core
per hour. We chose £0.1 and £0.01 for testing if RoD and PoD break even or
have close amount of ProjectBudget savings. The motivation for this section
is to review from the project manager’s point of view what algorithm to opt
for given the RoD and PoD price lists from typical cloud and HPC service
providers. The intention here is not to provide exact values per se. Instead, to
steer the project manager’s attention into what potential trade-offs they can
deal with if they opt for one VAC algorithm to another, subject to varying
financial incentives (jV) and constraints (ProjectBudget).

Figure 6.9: Trade-off analysis between multiple RoD rent prices and PoD in
high workloads, 120%.

From Figure 6.9 we can notice that with a more expensive RoD cloud price
of £0.1 per core per hour, the admission controller ends up using the entire
allocated budget with both FCFS and EDF policies. This means, with a higher
cloud price, savings are reduced which in our particular case here resulted
to zero savings. When we tested with a lesser cloud price we were able to
measure how much varying it can affect the savings, overall. We noticed a
great difference in savings for both FCFS and EDF with £848.43 and £461.91,
respectively. Figure 6.9 provides a general trend for savings order presented in
Equation 6.3.

RoD£0.1 < PoD£250 < RoD£0.05 < RoD£0.01 (6.3)

116

CHAPTER 6. A PRELIMINARY INVESTIGATION OF FEEDBACK
ADMISSION CONTROL FOR CLOUD AND ERP APPLICATIONS

Given the industrial system’s workload and processing characteristics, our
Equation 6.3 can provide an intuition towards the most economic algorithm to
adopt if the project manager is given various cloud offers from various service
providers. RoD £0.10 is the lowest economic option and RoD £0.01 is as
expected to be the best option.

6.7 Summary

Our previous chapter addressed the dependencies between soft real-time tasks
where the notion of jobs, as a result, emerged. Our proposed algorithm in
chapter 5 showed promising performance. However, we wanted to extend the
RTS problem to address the issue of acquiring additional computing processors
during projects life-times. In this chapter, we considered one of the realistic
constraints in industrial systems, ProjectBudget, where scheduling of jobs can
be done with respect to individual jobs’ jV values. We have proposed two novel
VAC algorithms: RoD and PoD. As a result, we have added two scheduling
metrics to our RTS objectives: ProjectBudget and SystemCredit, where any
left-overs from ProjectBudget was added to the SystemCredit basket as a
bonus towards the end of the simulation (project life-time).

In summary, for the njS metric, all our control-theoretic algorithms (FAC and
VAC) have scored positive values unlike the OL peers. For the PU metric,
we noticed that the EDF-based algorithms scored higher PU values than
their FCFS-based peers, which is expected for EDF to contribute to higher
utilisation. We can also notice that PoD-FCFS has shown lower PU values
than RoD-FCFS. This is because PoD joins the newly purchased racks to its
local cluster where it would take some time for it to be fully utilised. However,
RoD only rents from the cloud hence its cluster size remains fixed.

We can conclude that our RoD-based algorithms have performed better than
PoD in saving more on the ProjectBudget and further reduce jKR. RoD with
EDF is our proposed algorithm for handling task dependencies influenced by
job’s financial incentives and we propose it as the answer to our fourth and
final research question in chapter 3 which is:
“Can the algorithm support real-time rent and buy decisions for acquiring
additional computing processors to support the local cluster in managing the
trade-offs between the RTS objectives and increase the overall SystemCredit?”.

As for the trade-off analysis, we were able to generate a general trend, see
Equation 6.3, relating the performance of our VAC algorithms where we varied
the RoD cloud price in comparison to the original price we experimented with
and in comparison to PoD. The cheaper the RoD cloud price the higher the

117

6.7. SUMMARY

savings at the end of the project life-cycle. Additionally, the PoD algorithm
scored higher savings than RoD £0.10 but lower than £0.05 and £0.01.

118

Chapter 7

Conclusions and Further
Work

Throughout this thesis we have developed novel admission control algorithms
in addressing our three research objectives which are:

• To propose an intelligent admission controller that predicts the effects
of arriving jobs on the RTS objectives via a model-predictive algorithm
without prior knowledge of jobs’ RTS parameters.

• To propose an admission controller that computes an admission decision
for arriving jobs (unknown apriori) while respecting their task dependen-
cies in minimising such wasted processor utilisation while managing the
trade-offs between the RTS objectives.

• To propose an admission controller that can evaluate, in real-time, whether
it is financially plausible to acquire additional computing processors to
support the local cluster in processing more jobs while handling task
dependencies and managing the trade-offs between the RTS objectives.

Our control-theoretic algorithm is best described as an MPC-based feedback
admission controller for supporting the RTS system in managing the trade-offs
between the RTS objectives. Our first contribution addressed the first and
second research questions in chapter 3 which are:

• Can we construct a dynamic mathematical model which captures the
(non-linear) behaviour between task-sets computation time values (system
input) and their slack values & processor utilisation (system outputs). If
so, how can we validate its accuracy in order for it to be implemented as
part of the proposed algorithm?

• Once we validate our system model, can we design an intelligent admission
control algorithm for managing the trade-offs between the two RTS
objectives without prior knowledge of jobs RTS parameters?

119

We claim this thesis has addressed those question by:

• Modelling our industrial WMS using system identification techniques in
order to comply with our admission controller design.

• Designing a novel MPC-based admission control for a multi-objective
optimisation problem. Our novelty is in our controller design which
goes beyond the general trends in admission control scheduling at
dealing with unknown task-sets apriori and using task computation time
values instead of their periods as the admission control variable.

• Justifying MPC over PID for our RTS objectives.

In conclusion to our first contribution, we affirm our thesis hypothesis for
the first and second research questions. Our proposed algorithm is always
better than OL admission control in managing the trade-offs between the
maximisation of processor utilisation and slack values. Additionally, MPC is,
indeed, better than PID with respect to managing the trade-offs between the
two RTS objectives.

Our second contribution addressed the third research question in chapter 3
which is:

• Can the proposed algorithm deal with task dependencies (inside jobs) as
a scheduling constraint and the emerging RTS objectives such as reducing
wasted processor utilisation (WPU)? Can the proposed algorithm manage
the trade-offs between the RTS objectives without prior knowledge to any
RTS parameters? If so, can the proposed algorithm outperform baseline
admission control algorithms such as random-based and jobs-completion-
ratio-based etc.?

To the author’s best knowledge, the work carried-out in chapter 5 is considered
a first work in exploring an adaptive admission control algorithm for addressing
task dependencies as a scheduling constraint. We have extended our initial
MPC-based feedback admission control approach, proposed in chapter 4, in
order to handle task dependencies and meet further RTS objectives such as
the reduction of wasted processor utilisation and jobs killing ratio. We have
compared our algorithm against our initial one and a number of baseline
admission control algorithms. In conclusion to our second contribution, we
affirm our thesis hypothesis for the third research question that our proposed
feedback admission control algorithm always outperforms OL admission control
baselines in managing the trade-offs between our RTS objectives.

Our third and final contribution addressed the fourth and final research
question in chapter 3 which is:

120

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

• Can the algorithm support real-time rent and buy decisions for acquiring
additional computing processors to support the local cluster in manag-
ing the trade-offs between the RTS objectives and increase the overall
SystemCredit?

This question was addressed by proposing novel ERP solutions for supporting
project managers in making rent and buy decisions. Such decisions are used
for acquiring additional computing processors in real-time while respecting
the financial constraints and incentives in its prediction and optimisation
algorithms. We took advantage of control theory’s ability in dealing with
dynamical systems such as our industrial WMS and have extended our MPC-
based feedback admission control algorithm to include two novel value-based
feedback admission control algorithms. To the author’s best knowledge, our
work in this field is a first work towards control-theoretic ERP within the RTS
context of course.

In conclusion to our third contribution, we have shown that our algorithms
have shown promising results in renting and buying additional computing
processors in situations where the local cluster is predicted to lack performance
in meeting deadlines. We have also carried-out further experiments to show
financial trade-offs between different cloud and HPC price models. Our results
can give directions for project managers given certain RTS objectives and
constraints that are set by them for financially justifying when to rent form
the cloud or buy from HPC suppliers.

Finally, we propose our novel rent-on-demand MPC-based feedback admission
control algorithm for addressing our thesis hypothesis which is:
“Given an OL admission control baseline, can a feedback admission control
algorithm improve the real-time performance in increasing the HPC cluster pro-
cessor utilisation and slack values of jobs with task dependencies with abilities in
extending the HPC cluster via rent and buy algorithms?”. Regardless whether
an organisation uses a static or dynamic RTS policy, our proposed admission
controller can regulate the workload with respect to the RTS objectives it was
designed to meet via its prediction and optimisation components. Our results
recommend using EDF instead of FCFS, yet our admission control algorithm
can produce promising results regardless the chosen RTS policy.

7.1 Further Work

This thesis is concerned with high-level models of industrial WMSs to achieve
high-level RTS objectives. One direction for further research is including
input/output jitter delays and network bandwidth bottlenecks as RTS low-level

121

7.1. FURTHER WORK

constraints. However, since the work of Burkimsher in [17] has addressed such
low-level RTS constraints, we propose another further work in incorporating
Burkimsher’s RTS policies as part of our feedback admission control work.
Doing so will enable us experimenting with sophisticated RTS policies instead
of traditional FCFS and EDF.

Throughout the course of this thesis the author has addressed a number
of RTS issues using the proposed control-theoretic algorithm rather than fo-
cussing on one sole issue and address all the consequent issues accompanied
with it. In other words, the author has addressed RTS issues in width rather
than depth.

Throughout the work in chapter 4, a potential further work is to conduct
system identification modelling for various workload models (low, full and
high). Additionally, we can amend the FAC algorithm to include one further
controller for the rejected tasks. The purpose of this extra controller is to
analyse the possibilities fir re-admitting rejected tasks at a later time if the
controller predicts it is feasible to so with respect to the RTS objectives.

Throughout the work in chapter 5, although we have tested our control-
theoretic algorithm using typical workload models being generated from a
validated workload generator depicted from Burkimsher’s work in [17]. We can
suggest another further work in experimenting with other industrial workload
benchmarks available in the literature. Different benchmarks can include differ-
ent task dependency patterns, other than the ones depicted from our industrial
WMS. So, we can observe how our proposed admission controller would perform.

Throughout the work in chapter 6, we can implement dynamic assignments
of job values that change over time during project’s life-cycle. So, we can
observe how our proposed admission controller performs with dynamic job
values instead of fixed ones adopted in this thesis.

Finally, we aim to deploy our proposed feedback admission control algorithm
inside our industrial WMS’s HPC test-beds and observe the performance.

122

Appendix A

Appendix A - Periodic and
independent task-sets

System ntSDesign ntSData Processor Utilisation (%)
OL-FCFS -13.6117 -4.3104 84.4049

-EDF -13.1062 -2.1222 84.1808

P-FCFS -7.7095 0.0355 68.7612
-EDF -6.9290 0.0516 65.6101

PI-FCFS -7.7095 0.0355 68.7612
-EDF -6.9290 0.0516 65.6101

PID-FCFS -7.7487 0.0281 68.5727
-EDF -6.7647 0.0516 65.6887

MPC-FCFS 5.7896 3.6332 64.3128
-EDF 2.6723 3.4441 64.1379

Table A.1: Average values for OL, P-, PI-, PID- and MPC-based FAC algorithms
with FCFS and EDF policies in a 10-processor HPC cluster with respect to
Data & Design tasks ntS values and PU QoS levels. For more details on the
algorithms, please refer to chapter 4.

123

124

Appendix B

Appendix B - Aperiodic and
dependent task-sets

125

O
L

A
C

t
A

C
j A

C
t

A
C

R
a

n
d
o
m

A
C

jS
la

ck

&
A

C
jC

R

W
orkload

FC
F
S

E
D
F

FC
F
S

E
D
F

FC
F
S

E
D
F

FC
F
S

E
D
F

FC
F
S

E
D
F

n
jS

Low
6.95

12.21
10.66

15.01
12.90

15.51
10.88

12.18
12.97

16.02
Full

5.07
10.48

10.13
17.12

12.27
17.97

11.01
14.48

13.02
16.52

H
igh

3.14
8.26

12.19
14.01

13.72
14.32

13.07
12.01

13.92
13.34

P
U
%

Low
76.53

92.76
76.88

91.12
79.32

93.73
77.07

94.73
74.77

91.88
Full

77.24
94.60

76.38
93.29

77.90
94.25

74.29
95.01

78.83
92.26

H
igh

78.41
95.34

78.63
94.73

75.40
95.83

73.27
93.14

74.06
84.19

W
P

U
%

Low
N
A

N
A

10.06
6.08

8e −3
0.00

10.06
4.49

88.10
42.19

Full
N
A

N
A

25.03
16.02

0.19
0.00

19.12
6.49

95.16
49.19

H
igh

N
A

N
A

77.23
93.27

0.75
0.00

14.88
81.29

96.40
53.07

jK
R
%

Low
N
A

N
A

12.00
9.01

9.00
1.38

12.00
5.15

13.00
8.02

Full
N
A

N
A

30.00
34.18

8.00
4.64

34.00
17.80

47.00
32.14

H
igh

N
A

N
A

33.00
70.00

9.00
10.36

17.00
32.00

43.00
81.00

Table
B.1:

R
esults

sum
m
ary

ofadm
ission

controlalgorithm
s
perform

ance
com

parison
in

dependent
soft

real-tim
e
tasks.

Each
algorithm

is
tested

w
ith

FC
FS

and
ED

F
in

a
50-processor

H
PC

cluster.
Each

perform
ance

m
etric

is
experim

ented
w
ith

low
(80%

),full(100%
)
and

high
(120%

)
workloads.

For
m
ore

details
on

the
algorithm

s,please
refer

to
chapter

5.

126

Appendix C

Appendix C - Aperiodic and
dependent task-sets with ERP

127

O
L

A
C

j A
C

t
R

oD
£

1000
R

oD
£

500
P

oD
£

1000
P

oD
£

500
W

orkload
F

C
F

S
E

D
F

F
C

F
S

E
D

F
F

C
F

S
E

D
F

F
C

F
S

E
D

F
F

C
F

S
E

D
F

F
C

F
S

E
D

F
n

jS
Low

6.95
12.21

12.90
15.51

7.05
17.17

4.34
14.88

7.27
17.17

4.46
14.94

Full
5.07

10.48
12.27

17.97
6.06

17.17
5.16

18.82
6.06

17.17
7.07

19.01
H

igh
3.14

8.26
13.72

14.32
6.08

17.17
4.05

16.21
5.16

16.69
4.34

16.56

P
U

%
Low

76.53
92.76

79.32
93.73

87.12
87.50

88.32
89.63

90.34
87.49

89.59
89.91

Full
77.24

94.60
77.90

94.25
85.83

87.28
85.66

84.53
85.83

87.28
88.42

85.32
H

igh
78.41

95.34
75.40

95.83
84.69

88.89
90.46

88.94
84.68

88.89
91.05

90.48

Total
Savings

(£
)

Low
N

A
N

A
N

A
N

A
0.00

414.83
0.00

0.00
0.00

250
0.00

0.00

Full
N

A
N

A
N

A
N

A
0.00

367.27
0.00

0.00
0.00

250.00
0.00

0.00
H

igh
N

A
N

A
N

A
N

A
0.00

456.46
0.00

0.00
0.00

250.00
0.00

0.00

W
P

U
%

Low
N

A
N

A
8
e
−

3
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

Full
N

A
N

A
0.19

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
H

igh
N

A
N

A
0.75

0.00
0.00

0.00
0.07

0.01
0.00

0.00
0.08

0.04

jK
R

%
Low

N
A

N
A

9.00
1.38

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

Full
N

A
N

A
8.00

4.64
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
H

igh
N

A
N

A
9.00

10.36
0.00

0.00
2.75

0.50
0.00

0.00
5.00

2.50

TotalSystem
C

redit
(£

)
Low

2001.32
3031.62

2500.32
3875.58

5000.00
5414.83

5000.00
5000.00

5000.00
5250.00

5000.00
5000.00

Full
1755.20

2893.00
2636.77

3663.60
5000.00

5367.27
5000.00

5000.00
5000.00

5250.00
5000.00

5000.00
H

igh
1075.27

2000.00
2060.31

2964.38
5000.00

5456.46
4685.60

4916.87
5000.00

5250.00
4173.94

4703.48

Table
C.1:R

esultssum
m
ary

ofadm
ission

controlalgorithm
sperform

ance
in

dependentsoftreal-tim
e
taskswith

financialincentivesand
constraints.

Each
algorithm

is
tested

w
ith

FC
FS

and
ED

F
in

a
50-processor

H
PC

cluster.
Each

perform
ance

m
etric

is
experim

ented
w
ith

low
(80%

),full
(100%

)
and

high
(120%

)
workloads.

For
m
ore

details
on

the
algorithm

s,please
refer

to
chapter

6.

128

Abbreviations

AC Admission Control

ANOVA ANalysis Of VaAriance

CFD Computation Fluid Dynamics

CR Completion Ratio

EDF Earliest Deadline First

ERP Enterprise Resource Planning

FAC Feedback Admission Control

FCFS First In First Out

GA Genetic Algorithms

HPC High Performance Computing

LQR Linear Quadratic Regulator

MIMO Multiple Input Multiple Output

MPC Model Predictive Control

NN Neural Networks

OL Open Loop

PID Proportional Integral Derivative

PoD Purchase on Demand

QoS Quality of Service

QP Quadratic Programming

RM Rate Monotonic

RoD Rent on Demand

RTS Real Time Systems

129

VAC Value-based Admission Control

WMS Workflow Management Systems

130

References

[1] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
performance control in software services,” Control Systems, IEEE, vol. 23,
no. 3, pp. 74–90, June 2003.

[2] T. F. Abdelzaher and K. G. Shin, “Combined task and message
scheduling in distributed real-time systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 10, no. 11, pp. 1179–1191, 1999. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/71.809575

[3] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guarantees
for web server end-systems: A control-theoretical approach,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 1, pp. 80–96, Jan. 2002.
[Online]. Available: http://dx.doi.org/10.1109/71.980028

[4] T. Abdelzaher and C. Lu, “Modeling and performance control of internet
servers,” in Decision and Control, 2000. Proceedings of the 39th IEEE
Conference on, vol. 3, 2000, pp. 2234–2239 vol.3.

[5] K. Ang, G. Chong, and Y. Li, “Pid control system analysis,
design, and technology,” IEEE Transactions on Control Systems
Technology,, vol. 13, no. 4, pp. 559–576, July 2005. [Online]. Available:
http://eprints.gla.ac.uk/3817/

[6] J. Arnaud and S. Bouchenak, “Adaptive internet services through
performance and availability control,” in Proceedings of the 2010
ACM Symposium on Applied Computing, ser. SAC ’10. New
York, NY, USA: ACM, 2010, pp. 444–451. [Online]. Available:
http://doi.acm.org/10.1145/1774088.1774182

[7] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems:
Three Easy Pieces. Arpaci-Dusseau Books, 2014.

[8] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha, “An introduction to control
and scheduling co-design,” in Proceedings of the 39th IEEE Conference
on Decision and Control, 2000., vol. 5. IEEE, 2000, pp. 4865–4870.
[Online]. Available: http://dx.doi.org/10.1109/CDC.2001.914701

131

http://doi.ieeecomputersociety.org/10.1109/71.809575
http://dx.doi.org/10.1109/71.980028
http://eprints.gla.ac.uk/3817/
http://doi.acm.org/10.1145/1774088.1774182
http://dx.doi.org/10.1109/CDC.2001.914701

REFERENCES

[9] K.-E. Årzén, A. Robertsson, D. Henriksson, M. Johansson,
H. Hjalmarsson, and K. H. Johansson, “Conclusions of the
artist2 roadmap on control of computing systems,” SIGBED
Rev., vol. 3, no. 3, pp. 11–20, Jul. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1164050.1164053

[10] A. Bemporad, “Model predictive control design: New trends and tools,”
in Decision and Control, 2006 45th IEEE Conference on, Dec 2006, pp.
6678–6683.

[11] A. Bemporad, A. Bicchi, and G. C. Buttazzo, Eds., Hybrid Systems:
Computation and Control, 10th International Workshop, HSCC 2007,
Pisa, Italy, April 3-5, 2007, Proceedings, ser. Lecture Notes in Computer
Science, vol. 4416. Springer, 2007.

[12] J. Bernstein and K. McMahon, “Computing on demand - hpc as a
service,” in Penguin Computing, 2012, pp. 1–12. [Online]. Available: http:
//www.penguincomputing.com/files/whitepapers/PODWhitePaper.pdf

[13] A. Bestavros and S. Nagy, “An admission control paradigm for real-time
databases,” Tech. Rep., 1996.

[14] J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented grids and
utility computing: The state-of-the-art and future directions,” 2007.

[15] A. Burkimsher, “Dependency patterns and timing for grid workloads,”
Proceedings of the Fourth York Doctoral Symposium on Computer Science,
pp. 25–33, 2011.

[16] A. Burkimsher, I. Bate, and L. S. Indrusiak, “A survey of scheduling
metrics and an improved ordering policy for list schedulers operating on
workloads with dependencies and a wide variation in execution times,”
Future Generation Computer Systems, vol. 29, no. 8, pp. 2009–2025, 2012.

[17] A. M. Burkimsher, “Fair, responsive scheduling of engineering workflows
on computing grids,” Ph.D. dissertation, University of York, 2014.

[18] G. C. Buttazzo, “Rate monotonic vs. edf: Judgment day,” Real-Time
Syst., vol. 29, no. 1, pp. 5–26, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9

[19] G. C. Buttazzo and L. Abeni, “Adaptive workload management through
elastic scheduling.” Real-Time Systems, vol. 23, no. 1-2, pp. 7–24,
2002. [Online]. Available: http://dblp.uni-trier.de/db/journals/rts/rts23.
html#ButtazzoA02

132

http://doi.acm.org/10.1145/1164050.1164053
http://www.penguincomputing.com/files/whitepapers/PODWhitePaper.pdf
http://www.penguincomputing.com/files/whitepapers/PODWhitePaper.pdf
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://dblp.uni-trier.de/db/journals/rts/rts23.html#ButtazzoA02
http://dblp.uni-trier.de/db/journals/rts/rts23.html#ButtazzoA02

REFERENCES

[20] P. Cappanera, L. Lenzini, A. Lori, G. Stea, and G. Vaglini, “Efficient
link scheduling for online admission control of real-time traffic in wireless
mesh networks,” Computer Communications, vol. 34, no. 8, pp. 922–934,
2011.

[21] A. Cervin, “Integrated control and real-time scheduling,” Ph.D. disserta-
tion, Lund University, 2003.

[22] K. Chen and P. Muhlethaler, “A scheduling algorithm for tasks described
by time value function,” Real-Time Syst., vol. 10, no. 3, pp. 293–312,
May 1996. [Online]. Available: http://dx.doi.org/10.1007/BF00383389

[23] R.-M. Chen and Y.-M. Huang, “Competitive neural network to solve
scheduling problems,” Neurocomputing, vol. 37, no. 1–4, pp. 177 – 196,
2001. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0925231200003441

[24] L. Cherkasova and P. Phaal, “Session-based admission control: a mecha-
nism for peak load management of commercial web sites,” Computers,
IEEE Transactions on, vol. 51, no. 6, pp. 669–685, Jun 2002.

[25] D. Chillet, A. Eiche, S. Pillement, and O. Sentieys, “Real-time scheduling
on heterogeneous system-on-chip architectures using an optimised
artificial neural network,” Journal of Systems Architecture - Embedded
Systems Design, vol. 57, no. 4, pp. 340–353, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.sysarc.2011.01.004

[26] D. Chillet, S. Pillement, and O. Sentieys, “A neural network model for
real-time scheduling on heterogeneous soc architectures,” in Proceedings
of the International Joint Conference on Neural Networks, IJCNN
2007, Celebrating 20 years of neural networks, Orlando, Florida,
USA, August 12-17, 2007, 2007, pp. 102–107. [Online]. Available:
http://dx.doi.org/10.1109/IJCNN.2007.4370938

[27] D. C. Dhamdhere, Operating Systems: A Concept-based Approach, 2nd ed.
Tata McGraw-Hill Education, 2006.

[28] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M.
Tilbury, “Using mimo feedback control to enforce policies for
interrelated metrics with application to the apache web server,”
in Network Operations and Management Symposium, 2002. NOMS
2002. 2002 IEEE/IFIP, 2002, pp. 219–234. [Online]. Available:
http://dx.doi.org/10.1109/NOMS.2002.1015566

[29] Y. Diao, J. L. Hellerstein, and S. Parekh, “Self-managing systems: A
control theory foundation,” in In Proc of IEEE International Conference

133

http://dx.doi.org/10.1007/BF00383389
http://www.sciencedirect.com/science/article/pii/S0925231200003441
http://www.sciencedirect.com/science/article/pii/S0925231200003441
http://dx.doi.org/10.1016/j.sysarc.2011.01.004
http://dx.doi.org/10.1109/IJCNN.2007.4370938
http://dx.doi.org/10.1109/NOMS.2002.1015566

REFERENCES

and Workshop on the Engineering of Computer Based Systems ECBS
2005, 2005, pp. 441–448.

[30] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. E. Kaiser, and
D. Phung, “A control theory foundation for self-managing computing
systems,” IEEE journal, vol. 23, pp. 2213–2222, 2005.

[31] R. Doraiswami, M. Stevenson, and C. Diduch, Identification of Physical
Systems: Applications to Condition Monitoring, Fault Diagnosis, Soft
Sensor and Controller Design, 1st ed. Wiley Publishing, 2014.

[32] P. Dziurzanski, H. A. Ghazzawi, and L. S. Indrusiak, “Feedback-based ad-
mission control for task allocation,” in Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC), 2014 9th International Symposium
on, May 2014, pp. 1–5.

[33] M. Fahmy, “A fuzzy algorithm for scheduling non-periodic jobs
on soft real-time single processor system,” Ain Shams Engineering
Journal, vol. 1, no. 1, pp. 31 – 38, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2090447910000055

[34] D. G. Feitelson, “Metrics for parallel job scheduling and their
convergence,” in Revised Papers from the 7th International Workshop
on Job Scheduling Strategies for Parallel Processing, ser. JSSPP ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 188–206. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646382.689681

[35] D. Ferrari, “Advances in real-time systems,” S. H. Son, Ed. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1995, ch. A New Admission Control
Method for Real-time Communication in an Internetwork, pp. 105–116.
[Online]. Available: http://dl.acm.org/citation.cfm?id=207721.207726

[36] V. Firoiu, J. Kurose, and D. Towsley, “Efficient admission control for edf
schedulers,” in INFOCOM ’97. Sixteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Driving the Information
Revolution., Proceedings IEEE, vol. 1, Apr 1997, pp. 310–317 vol.1.

[37] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems, 6th ed. Pearson Higher Education, Inc., 2010.

[38] A. Gambier, “Mpc and pid control based on multi-objective optimization,”
in American Control Conference, 2008, June 2008, pp. 4727–4732.

[39] N. Gandhi, D. M. Tilbury, Y. Diao, J. Hellerstein, and S. Parekh,
“MIMO control of an Apache Web server: Modeling and controller
design,” in Proceedings of the 2002 American Control Conference, vol. 6,

134

http://www.sciencedirect.com/science/article/pii/S2090447910000055
http://dl.acm.org/citation.cfm?id=646382.689681
http://dl.acm.org/citation.cfm?id=207721.207726

REFERENCES

2002, pp. 4922–4927. [Online]. Available: http://dx.doi.org/10.1109/
ACC.2002.1025440

[40] H. A. Ghazzawi, “Scheduling approaches for large-scale complex task
management,” The Proceedings of the 2nd Large Scale Complex IT
Systems (LSCITS) Postgraduate Workshop, pp. 60–66, 2010.

[41] ——, “A control-theoretic approach for scheduling soft real-time tasks
with dependencies.” The University of York, Tech. Rep., YCS-2014-495,
2014. [Online]. Available: https://www.cs.york.ac.uk/ftpdir/reports/
2014/YCS/495/YCS-2014-495.pdf

[42] H. A. Ghazzawi, I. Bate, and L. S. Indrusiak, “A control theoretic ap-
proach for workflow management,” in Engineering of Complex Computer
Systems (ICECCS), 2012 17th International Conference on. IEEE, 2012,
pp. 280–289.

[43] ——, “Mpc vs. pid controllers in multi-cpu multi-objective real-time
scheduling systems,” In Proceedings of the 2012 UK Electronics Forum
(UKEF’12), pp. 77–83, 2012.

[44] T. He, J. A. Stankovic, M. Marley, C. Lu, Y. Lu, T. F.
Abdelzaher, S. Son, and G. Tao, “Feedback control-based dynamic
resource management in distributed real-time systems,” J. Syst.
Softw., vol. 80, no. 7, pp. 997–1004, Jul. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2006.09.029

[45] M. T. Helgason, “Using artificial neural networks for admission
control in firm real-time systems,” Institutionen för datavetenskap,
2000. [Online]. Available: http://www.diva-portal.org/smash/get/diva2:
2784/FULLTEXT01.ps

[46] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control
of Computing Systems. John Wiley & Sons, 2004.

[47] D. Henriksson, Y. Lu, and T. Abdelzaher, “Improved prediction for
web server delay control,” in Real-Time Systems, 2004. ECRTS 2004.
Proceedings. 16th Euromicro Conference on, June 2004, pp. 61–68.

[48] D. Henriksson, A. Cervin, J. Åkesson, and K.-E. Årzén, “Feedback
scheduling of model predictive controllers,” in Proceedings of the 8th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS
2002), 24-27 September 2002, San Jose, CA, USA, 2002, pp. 207–216.
[Online]. Available: http://dx.doi.org/10.1109/RTTAS.2002.1137395

[49] J. Heo, P. Jayachandran, I. Shin, D. Wang, T. F. Abdelzaher,
and X. Liu, “Optituner: On performance composition and server

135

http://dx.doi.org/10.1109/ACC.2002.1025440
http://dx.doi.org/10.1109/ACC.2002.1025440
https://www.cs.york.ac.uk/ftpdir/reports/2014/YCS/495/YCS-2014-495.pdf
https://www.cs.york.ac.uk/ftpdir/reports/2014/YCS/495/YCS-2014-495.pdf
http://dx.doi.org/10.1016/j.jss.2006.09.029
http://www.diva-portal.org/smash/get/diva2:2784/FULLTEXT01.ps
http://www.diva-portal.org/smash/get/diva2:2784/FULLTEXT01.ps
http://dx.doi.org/10.1109/RTTAS.2002.1137395

REFERENCES

farm energy minimization application.” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 11, pp. 1871–1878, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tpds/tpds22.html#HeoJSWAL11

[50] D. Hongjun, X. XinShun, and J. Zhiping, “A fuzzy algorithm for paral-
lelizability evaluation and load balance on the multi-core processor,” in
Granular Computing, 2008. GrC 2008. IEEE International Conference
on, Aug 2008, pp. 168–171.

[51] HP, “Cloud pricing.” [Online]. Available: http://www.hpcloud.com/
pricing

[52] Y.-M. Huang and R.-M. Chen, “Scheduling multiprocessor job
with resource and timing constraints using neural networks.”
IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 29, no. 4, pp. 490–502, 1999. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/tsmc/tsmcb29.html#HuangC99

[53] J. M. Hyman, A. A. Lazar, and G. Pacifici, “MARS: the magnet II
real-time scheduling algorithm,” in SIGCOMM, 1991, pp. 285–293.
[Online]. Available: http://doi.acm.org/10.1145/115992.116018

[54] ——, “A separation principle between scheduling and admission
control for broadband switching.” IEEE Journal on Selected Areas in
Communications, vol. 11, no. 4, pp. 605–616, 1993. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jsac/jsac11.html#HymanLP93

[55] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing risk and reward in a
market-based task service,” in High performance Distributed Computing,
2004. Proceedings. 13th IEEE International Symposium on, June 2004,
pp. 160–169.

[56] S. Jamin, L. Zhang, D. Clark, and S. Shenker, “An admission control
algorithm for predictive real-time service,” in Proceedings of the Third
International Workshop on Networking and Operating System Support
for Digital Audio and Video. Springer-Verlag, New York, 1993.

[57] P. K. Janert, Feedback Control for Computer Systems. O’Reilly Media,
Inc., 2013.

[58] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven
scheduling model for real-time operating systems.” in RTSS.
IEEE Computer Society, 1985, pp. 112–122. [Online]. Available:
http://dblp.uni-trier.de/db/conf/rtss/rtss1985.html#JensenLT85

[59] R. P. Kar and K. Porter, “Rhealstone–a real time benchmarking proposal,”
Dr. Dobbs’ Journal, vol. 14, no. 2, 1989.

136

http://dblp.uni-trier.de/db/journals/tpds/tpds22.html#HeoJSWAL11
http://www.hpcloud.com/pricing
http://www.hpcloud.com/pricing
http://dblp.uni-trier.de/db/journals/tsmc/tsmcb29.html#HuangC99
http://dblp.uni-trier.de/db/journals/tsmc/tsmcb29.html#HuangC99
http://doi.acm.org/10.1145/115992.116018
http://dblp.uni-trier.de/db/journals/jsac/jsac11.html#HymanLP93
http://dblp.uni-trier.de/db/conf/rtss/rtss1985.html#JensenLT85

REFERENCES

[60] A. S. Karuppan, B. T. Mathew, and K. Shanthakumari, “A new ro-
bust distributed real time scheduling services for rt-corba applications,”
in Computing, Communication and Networking, 2008. ICCCn 2008.
International Conference on, Dec 2008, pp. 1–7.

[61] J. Kay and P. Lauder, “A fair share scheduler.” Commun.
ACM, vol. 31, no. 1, pp. 44–55, 1988. [Online]. Available:
http://dblp.uni-trier.de/db/journals/cacm/cacm31.html#KayL88

[62] H. Kopetz, J. C. Laprie, B. Randell, and B. Littlewood, Eds., Predictably
Dependable Computing Systems. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 1995.

[63] K. Lai, “Markets are dead, long live markets,” SIGecom Exch.,
vol. 5, no. 4, pp. 1–10, Jul. 2005. [Online]. Available: http:
//doi.acm.org/10.1145/1120717.1120719

[64] S. Lauzac, R. Melhem, D. Mossé, and I. C. Society, “An improved rate-
monotonic admission control and its applications,” IEEE Transactions
on Computers, vol. 52, pp. 337–350, 2003.

[65] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen, “A
scalable solution to the multi-resource qos problem,” in Real-Time Systems
Symposium, 1999. Proceedings. The 20th IEEE, 1999, pp. 315–326.

[66] J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior.” in
RTSS. IEEE Computer Society, 1989, pp. 166–171. [Online]. Available:
http://dblp.uni-trier.de/db/conf/rtss/rtss1989.html#LehoczkySD89

[67] P. Li and B. Ravindran, “Fast, best-effort real-time scheduling algorithms,”
Computers, IEEE Transactions on, vol. 53, no. 9, pp. 1159–1175, Sept
2004.

[68] J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission control
for networks with a bounded delay service,” IEEE/ACM Trans.
Netw., vol. 4, no. 6, pp. 885–901, Dec. 1996. [Online]. Available:
http://dx.doi.org/10.1109/90.556345

[69] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, Jan. 1973. [Online]. Available: http:
//doi.acm.org/10.1145/321738.321743

[70] J. W. S. W. Liu, Real-Time Systems, 1st ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2000.

137

http://dblp.uni-trier.de/db/journals/cacm/cacm31.html#KayL88
http://doi.acm.org/10.1145/1120717.1120719
http://doi.acm.org/10.1145/1120717.1120719
http://dblp.uni-trier.de/db/conf/rtss/rtss1989.html#LehoczkySD89
http://dx.doi.org/10.1109/90.556345
http://doi.acm.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743

REFERENCES

[71] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[72] C. D. Locke, “Best-effort decision making for real-time scheduling,” Ph.D.
dissertation, Carnegie Mellon University, 1986.

[73] C. Lu, “Feedback control real-time scheduling,” Ph.D. dissertation, Uni-
versity of Virginia, 2001.

[74] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son,
“Feedback control architecture and design methodology for service
delay guarantees in web servers.” IEEE Trans. Parallel Distrib.
Syst., vol. 17, no. 9, pp. 1014–1027, 2006. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tpds/tpds17.html#LuLASS06

[75] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Design and evaluation
of a feedback control edf scheduling algorithm,” in Real-Time Systems
Symposium, 1999. Proceedings. The 20th IEEE, 1999, pp. 56–67.

[76] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son,
and M. Marley, “Performance specifications and metrics for adaptive
real-time systems,” in Proceedings of the 21st IEEE Conference
on Real-time Systems Symposium, ser. RTSS’10. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 13–23. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1890629.1890632

[77] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control real-time
scheduling: Framework, modeling, and algorithms,” Journal of Real-Time
Systems, Special Issue on Control-Theoretical Approaches to Real-Time
Computing, vol. 23, pp. 85–126, 2002.

[78] C. Lu, X. Wang, and X. Koutsoukos, “Feedback utilization control
in distributed real-time systems with end-to-end tasks,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 6, pp. 550–561, Jun. 2005. [Online].
Available: http://dx.doi.org/10.1109/TPDS.2005.73

[79] M. Maggio, F. Terraneo, and A. Leva, “Task scheduling: A
control-theoretical viewpoint for a general and flexible solution,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 4, pp. 76:1–76:22, Mar. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2560015

[80] L. Malrait, S. Bouchenak, and N. Marchand, “Fluid modeling and control
for server system performance and availability,” in Proceedings of the
39th annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2009, [acceptance rate 20.9

138

http://dblp.uni-trier.de/db/journals/tpds/tpds17.html#LuLASS06
http://dl.acm.org/citation.cfm?id=1890629.1890632
http://dx.doi.org/10.1109/TPDS.2005.73
http://doi.acm.org/10.1145/2560015

REFERENCES

[81] L. Malrait, N. Marchand, and S. Bouchenak, “Average delay guarantee
in server systems using admission control,” in Proceedings of the IFAC
Workshop on Time Delay Systems (TDS), 2009, hal-00404404. [Online].
Available: http://hal.archives-ouvertes.fr/hal-00404404

[82] ——, “Modeling and control of server systems: Application to database
systems,” in Proceedings of the European Control Conference (ECC),
2009, hal-00368537.

[83] U. ManChon, C. Ho, S. Funk, and K. Rasheed, “Gart: A genetic algorithm
based real-time system scheduler,” in Evolutionary Computation (CEC),
2011 IEEE Congress on, June 2011, pp. 886–893.

[84] A. Masrur and S. Chakraborty, “Near-optimal constant-time admission
control for dm tasks via non-uniform approximations,” in Proceedings of
the 17th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), Chicago, USA, 2011.

[85] Matlab, “System identification of plant models,” http://uk.mathworks.
com/help/slcontrol/ug/system-identification-of-plant-models.html#
bubhascl.

[86] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The Math-
Works Inc., 2010.

[87] K. R. Milliken, A. V. Cruise, R. L. Ennis, A. J. Finkel, J. L. Hellerstein,
D. J. Loeb, D. A. Klein, M. J. Masullo, H. M. Van Woerkom, and W. N.
B, “Yes/mvs and the autonomation of operations for large computer
complexes.” in IBM Systems Journal, vol. 25, no. 2, 1986.

[88] M. Nicolaou, “Model predictive controllers: A critical synthesis of theory
and industrial needs,” in Advances in Chemical Engineering, Academic
Press, vol. 26, 2001, pp. 131–204.

[89] N. S. Nise, Control Systems Engineering, 4th ed. New York, NY, USA:
John Wiley & Sons, Inc., 2003.

[90] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K. Sullivan, and
K. Wallnau, “Ultra-Large-Scale Systems - The Software Challenge of the
Future,” Software Engineering Institute, Carnegie Mellon, Tech. Rep.,
June 2006. [Online]. Available: http://www.sei.cmu.edu/uls/downloads.
html

[91] U. of Massachusetts at Amherst, “Real-time systems: Scheduling,” http:
//www-ccs.cs.umass.edu/spring/sched.html.

139

http://hal.archives-ouvertes.fr/hal-00404404
http://uk.mathworks.com/help/slcontrol/ug/system-identification-of-plant-models.html#bubhascl
http://uk.mathworks.com/help/slcontrol/ug/system-identification-of-plant-models.html#bubhascl
http://uk.mathworks.com/help/slcontrol/ug/system-identification-of-plant-models.html#bubhascl
http://www.sei.cmu.edu/uls/downloads.html
http://www.sei.cmu.edu/uls/downloads.html
http://www-ccs.cs.umass.edu/spring/sched.html
http://www-ccs.cs.umass.edu/spring/sched.html

REFERENCES

[92] K. Ogata, Modern Control Engineering, 4th ed. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2001.

[93] Oracle, “Oracle grid engines,” http://www.oracle.com/us/products/tools/
oracle-grid-engine-075549.html.

[94] ——, “Oracle data sheet: Oracle real-time scheduler for service
organizations - resource planning and scheduling (rps),” Data Sheet,
2013. [Online]. Available: http://www.oracle.com/us/solutions/scm/
orts-resource-planning-scheduling-1901243.pdf

[95] ——, “Oracle data sheet: Oracle real-time scheduler (ors) for
service organizations„” Data Sheet, 2013. [Online]. Available:
http://www.oracle.com/us/solutions/scm/ors-overview-1951196.pdf

[96] S.-M. Park and M. A. Humphrey, “Predictable high-performance
computing using feedback control and admission control.” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 3, pp. 396–411, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tpds/tpds22.html#ParkH11

[97] G. K. M. Pedersen and Z. Yang, “Multi-objective pid-controller tuning
for a magnetic levitation system using nsga-ii,” in Proceedings of the
8th Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO ’06. New York, NY, USA: ACM, 2006, pp. 1737–1744. [Online].
Available: http://doi.acm.org/10.1145/1143997.1144280

[98] J. M. Peha, “Scheduling and admission control for integrated-
services networks: the priority token bank.” Computer Networks,
vol. 31, no. 23-24, pp. 2559–2576, 1999. [Online]. Available:
http://dblp.uni-trier.de/db/journals/cn/cn31.html#Peha99

[99] Z. Quan and J.-M. Chung, “Statistical admission control for
real-time services under earliest deadline first scheduling.” Computer
Networks, vol. 48, no. 2, pp. 137–154, 2005. [Online]. Available:
http://dblp.uni-trier.de/db/journals/cn/cn48.html#QuanC05

[100] A. Robertsson, B. Wittenmark, and M. Kihl, “Analysis and design
of admission control in web-server systems,” in In American Control
Conference (ACC, 2003.

[101] D. Rosu, K. Schwan, and S. Yalamanchili, “FARA - A framework for
adaptive resource allocation in complex real-time systems,” in Proceedings
of the Fourth IEEE Real-Time Technology and Applications Symposium,
RTAS’98, Denver, Colorado, USA, June 3-5, 1998, 1998, pp. 79–84.
[Online]. Available: http://dx.doi.org/10.1109/RTTAS.1998.683190

140

http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.oracle.com/us/solutions/scm/orts-resource-planning-scheduling-1901243.pdf
http://www.oracle.com/us/solutions/scm/orts-resource-planning-scheduling-1901243.pdf
http://www.oracle.com/us/solutions/scm/ors-overview-1951196.pdf
http://dblp.uni-trier.de/db/journals/tpds/tpds22.html#ParkH11
http://doi.acm.org/10.1145/1143997.1144280
http://dblp.uni-trier.de/db/journals/cn/cn31.html#Peha99
http://dblp.uni-trier.de/db/journals/cn/cn48.html#QuanC05
http://dx.doi.org/10.1109/RTTAS.1998.683190

REFERENCES

[102] S. R. Sakhare and D. M. S. Ali, “Genetic algorithm based adaptive
scheduling algorithm for real time operating systems,” International
Journal of Embedded Systems and Applications (IJESA), vol. 2, no. 3,
2012.

[103] M. Saksena and S. Hong, “An engineering approach to decomposing end-
to-end delays on a distributed real-time system,” in Proc. IEEE Workshop
on Parallel and Distributed Real-Time Systems, 1996, pp. 244–251.

[104] C. Schmid and L. T. Biegler, “Quadratic programming methods
for reduced hessian {SQP},” Computers and Chemical Engineering,
vol. 18, no. 9, pp. 817 – 832, 1994, an International Journal of
Computer Applications in Chemical Engineering. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0098135494E00014

[105] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real
time scheduling theory: A historical perspective,” Real-Time Syst.,
vol. 28, no. 2-3, pp. 101–155, Nov. 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e

[106] D. Simon, O. Sename, D. Robert, and O. Testa, “Real-time and
delay-dependent control co-design through feedback scheduling,” CERTS
Co-design in Embedded Real-time Systems, 2003. [Online]. Available:
http://necs.inrialpes.fr/people/simon/certs03.pdf

[107] J. C. Simon, Understanding and Using Information Technology. West
Publishing Company, 1996.

[108] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced reserva-
tions,” in Parallel and Distributed Processing Symposium, 2000. IPDPS
2000. Proceedings. 14th International, 2000, pp. 127–132.

[109] J. A. Stankovic and K. Ramamritham, Eds., Tutorial: Hard Real-time
Systems. Los Alamitos, CA, USA: IEEE Computer Society Press, 1989.

[110] J. A. Stankovic, K. Ramamritham, and M. Spuri, Deadline Scheduling
for Real-Time Systems: Edf and Related Algorithms. Norwell, MA, USA:
Kluwer Academic Publishers, 1998.

[111] D. C. Steere, A. Goel, J. Gruenberg, D. Mcnamee, C. Pu, and J. Walpole,
“A Feedback-driven Proportion Allocator for Real-Rate Scheduling,”
in Operating Systems Design and Implementation, 1999, pp. 145–158.
[Online]. Available: http://citeseer.ist.psu.edu/steere99feedbackdriven.
html

141

http://www.sciencedirect.com/science/article/pii/0098135494E00014
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
http://necs.inrialpes.fr/people/simon/certs03.pdf
http://citeseer.ist.psu.edu/steere99feedbackdriven.html
http://citeseer.ist.psu.edu/steere99feedbackdriven.html

REFERENCES

[112] W. Sun, “A novel genetic admission control for real-time multiprocessor
systems,” in The International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT ’09), 2009, pp. 130–
137.

[113] K. Suzuki, N. Uchida, H. Kuraishi, and J. Wagner, “Hpc solutions
for the manufacturing industry,” FUJITSU Scientific and Technical
Journal, vol. 44, no. 4, pp. 458–566, 2008. [Online]. Available:
http://www.fujitsu.com/downloads/MAG/vol44-4/paper15.pdf

[114] G. A. Tagliarini, J. F. Christ, and E. W. Page, “Optimization using
neural networks,” Computers, IEEE Transactions on, vol. 40, no. 12, pp.
1347–1358, Dec 1991.

[115] D. Trumper, “Analysis and design of feedback control systems. mit course
number 2.14 / 2.140.” http://web.mit.edu/2.14/www/Handouts/PoleZero.
pdf, 2014.

[116] UNIVA, “Univa corporation grid engine software,” http://www.univa.
com/products/grid-engine, 2011.

[117] V. Vacca, F. Vasca, and L. Iannelli, “Rate admission control for
hard real-time task scheduling,” in Hybrid Systems: Computation
and Control, 10th International Conference, ser. Lecture Notes on
Computer Science, A. Bemporad, A. Bicchi, and G. Buttazzo, Eds.
Springer-Verlag Berlin, 4 2007, vol. 4416, pp. 573–586. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-71493-4

[118] O. Yang and J. Lu, “Call admission control and scheduling schemes with
qos support for real-time video applications in ieee 802.16 networks.”
Journal of Multimedia, vol. 1, no. 2, pp. 21–29, 2006. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jmm2/jmm1.html#YangL06

[119] P. Yuan, M. Moallem, and R. Patel, “A feedback scheduling algorithm
for real time control systems,” in Control Applications, 2005. CCA 2005.
Proceedings of 2005 IEEE Conference on, Aug 2005, pp. 873–878.

[120] P. Yuan, “An adaptive feedback scheduling algorithm for robot assembly
and real-time control systems,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, Oct 2006, pp. 2226–2231.

142

http://www.fujitsu.com/downloads/MAG/vol44-4/paper15.pdf
http://web.mit.edu/2.14/www/Handouts/PoleZero.pdf
http://web.mit.edu/2.14/www/Handouts/PoleZero.pdf
http://www.univa.com/products/grid-engine
http://www.univa.com/products/grid-engine
http://dx.doi.org/10.1007/978-3-540-71493-4
http://dblp.uni-trier.de/db/journals/jmm2/jmm1.html#YangL06

	Abstract
	Table of Contents
	Acknowledgements
	Declaration
	Introduction
	Literature Survey
	The Case for Intelligent Admission Control Scheduling
	Intelligent Admission Control Scheduling: Modelling
	Intelligent Admission Control Scheduling: Decision-Making
	Intelligent Admission Control Scheduling: Control-Theoretic
	Fuzzy-Logic Control
	Feedback Control

	Task Dependencies as a Real-Time Scheduling Constraint
	Value-based Scheduling and Enterprise Resource Planning
	Summary

	Problem Formulation
	Basic Definitions
	Open-Loop Admission Control
	Feedback Admission Control
	HPC Cluster Processor Utilisation
	Slack Values
	RTS Objectives

	Research Hypothesis and Questions
	Thesis Structure

	A Novel Feedback Admission Control Scheduling Algorithm
	Design Steps
	Task Model
	Scheduling Policy
	Performance Metrics
	System Model and Identification
	Closed-Loop Scheduling Control

	Design and Implementation of PID-based Feedback Admission Control
	Design and Implementation of MPC-based Feedback Admission Control
	Evaluations
	Task Normalised Slack Values
	Processor Utilisation

	Summary

	Handling Dependencies in Admission Control Scheduling
	Task Model
	Scheduling Policy
	Performance Metrics
	System Model and Identification
	Closed-Loop Scheduling Control
	A Novel MPC-based FAC Algorithm for Dependent Tasks
	Baseline Admission Control Algorithms

	Evaluations
	Job Normalised Slack Values
	Processor Utilisation
	Job Killing Ratio and Wasted Processor Utilisation
	Profiling Killed Jobs
	Enhancing ACRandom

	Summary

	A Preliminary Investigation of Feedback Admission Control for Cloud and ERP Applications
	Task Model
	Scheduling Policy
	Performance Metrics
	System Model and Identification
	Closed-Loop Scheduling Control
	A Novel MPC-based VAC Algorithm for Cloud and ERP Applications

	Evaluations
	Job Normalised Slack Values
	Processor Utilisation
	Project Budget
	Jobs Killing Ratio and Wasted Processor Utilisation
	System Credit
	Trade-off Analysis

	Summary

	Conclusions and Further Work
	Further Work

	Appendix A - Periodic and independent task-sets
	Appendix B - Aperiodic and dependent task-sets
	Appendix C - Aperiodic and dependent task-sets with ERP
	References

