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Abstract

Experimental research over the last two decades has shown that the anatomical connec-
tivity among neurons is largely non-random across brain areas. This complex organisation
shapes the flow of information, giving rise to specific pathways and motifs, which are ulti-
mately responsible for processes like emotions, cognitive functions and behaviour, just to
mention few. Due to the spectacular progress of technology, the study of the brain wiring
diagram, known as connectomics, has received considerable attention in recent years, result-
ing in the proliferation of large data sets. From one side, this adds a significant contribution
towards a better understanding of the complex processes that take place in the brain. On
the other side, however, analysing such large connectivities is a hard task that has not yet
found a satisfactory solution. Particular evidence has been found for bidirectional motifs,
occurring when two neurons project onto each other via connections of equal strength, and
unidirectional motifs, when one of the two connections is dominant. These specific motifs
were found to correlate with short-term synaptic plasticity properties, which are related to
resources availability for signal transmission. The aim of this thesis is to add a contribution
to the ongoing efforts spent on answering the two main questions related to motif evidence:
How can we satisfactory detect and measure motifs in large networks and why do they
have the characteristics that we observe? Following existing literature, we hypothesise that
bidirectional and unidirectional motifs appear as a consequence of learning processes, which
move the distribution of the synaptic connections away from randomness through activity
dependent synaptic plasticity. Based on this, we introduce a symmetry measure for global
connectivity and a statistics-based heuristic algorithm for directed and weighted graphs
that is able to detect overlapping bidirectional communities within large networks. On the
other side, to address the why question we introduce an error-driven learning framework for
short-term plasticity that acts jointly with Spike-Timing Dependent Plasticity, a well-known
learning mechanism for long-term plasticity: By allowing synapses to change their properties,
neurons are able to adapt their own activity depending on an error signal. This results in
more rich dynamics and also, provided that the learning mechanism is target-specific, leads
to specialised groups of synapses projecting onto functionally different targets, qualitatively

replicating the experimental results of Wang and collaborators in 2006.
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Chapter 1
Introduction and Motivation

Every moment during our life we are exposed to an enormous quantity of stimuli flowing
through the sensory apparatus to eventually reach the brain. Here, incoming signals can
trigger all sorts of processes: From learning an action to memorising a name, from solving
an equation to producing the feeling of joy. Despite the size, it is outstanding the level of
complexity and organization that the brain of an animal can achieve and its capability to fulfil
a great quantity of different tasks in a very short interval of time.

Certainly, the number of neurons plays an important role in determining the level of
complexity of brains and individuals: An adult human brain typically consists of ~ 10!!
neurons, many more than cats, rats and octopuses for instance. However, the fact that an
elephants’ brain has more than double the neurons of a human brain suggests that it is not
only about the quantity. What really determines brain’s properties it is the way neurons
are connected to each other: It is a recent dominant belief, indeed, that cognitive functions
are stored in the so-called connectome, the wiring diagram of the brain (Lichtman et al.
[2008]; Sporns et al. [2005]). "We are our connectome", says Sebastian Seung, one of the
pioneers of these theory (Seung [2009]). During the last decades, the investigation of the
brain wiring diagram, known as connectomics, has generated great excitement (Lichtman
and Sanes [2008]; Seung [2009]; Van Essen et al. [2012]) as the comprehension of this level
of organisation (Kandell et al. [2008]) is thought to be pivotal to understanding the richness
of high-level cognitive, computational and adaptive properties of the brain, as well as its
dysfunctions.

Such excitement has shaped the recent research history in Neuroscience. Novel dis-
coveries in molecular biology (Lichtman et al. [2008]; Wickersham et al. [2007]; Zhang
et al. [2007]), neuroanatomical methods (Chklovskii et al. [2010]; Denk and Horstmann
[2004]), electrophysiology (Hai et al. [2010]; Perin et al. [2011]; Song et al. [2005]) and
imaging (Friston [2011]; Minderer et al. [2012]; Wedeen et al. [2012]) have pushed forward
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the technological limits for ultimate access to neuronal connectivity. As a consequence, also
due to improvements in technology, experimental techniques and computational paradigms
(Luo et al. [2008]; Smith [2007]), connectomics has made significant progress (Bock et al.
[2011]; Briggman et al. [2011]; Varshney et al. [2011]; White et al. [1986]), resulting in a
rapid proliferation of neuroscience datasets (Briggman and Denk [2006]; Insel et al. [2003];
Koslow and Subramaniam [2005]; Kotter [2001]).

The most evident proof of the ferment generated by this new discipline and the possible
future impact of its results can be found in the fact that an unprecedented amount of funding
has been destined to two highly ambitious and recently launched projects, respectively
in Europe and United States: The Human Connectome Project! — mapping the human
connectome as accurately as possible in a large number of normal adults (Toga et al. [2012])
— and The Human Brain Project” — aiming to simulate the human brain with supercomputers
(Frackowiak and Markram [2015]). A complete map of the connections between neurons
could provide an unprecedented and extremely powerful knowledge, with great benefits, for
instance, in diseases treatment (Van Essen and Ugurbil [2012]; Wang et al. [2013]; Zhou
et al. [2012)).

Connectomics is a field that develops within the older Connectionism Theory (Rumelhart
et al. [1986]; Sejnowski and Rosenberg [1987]; Thorndike [1911]): Neurons involved in the
same functions are grouped together to form clusters working as an unique elementary unit.
The interaction of these clusters determines brain’s behaviour. In this picture, connections
between neurons cannot be randomly distributed, but rather they are expected to form highly
specialized patterns, reflecting the functionality of the clusters and their intrinsic features.
This view is now dominant and has received substantial validation from experiments: Several
works reported a significant excess of particular connectivity motifs in different areas of the
brain (Lefort et al. [2009]; Perin et al. [2011]; Silberberg and Markram [2007]; Song et al.
[2005]; Wang et al. [2006]), suggesting that indeed connectivity is generally not random
(Sporns [2011b]).

The process through which such a specialisation of connections takes place is called
learning, which, at a a neuronal level, allows the formation of patterns within the connectivity
(Bienenstock et al. [1982]; Hebb [1949]; Song and Abbott [2001]). This is possible thanks to
synaptic plasticity: The property of synapses to change their efficacy over time according
to local activity and available resources (Thomson [2000]), resulting in a modulation of
information flow (Abbott and Nelson [2000]; Abbott and Regehr [2004]; Fuhrmann et al.

[2002]). Synaptic plasticity processes are usually divided into short-term and long-term,

Uhttp://www.humanconnectomeproject.org
Zhttps://www.humanbrainproject.eu



which differ not just in the duration of the synaptic modification but also in the underlying
biological mechanism (Fioravante and Regehr [2011]; Kullmann and Lamsa [2007]; Regehr
[2012]) and functional role (Billings and van Rossum [2009]; Giitig and Sompolinsky [2006];
Natschlédger et al. [2001]). Both forms of plasticity can lead to a strengthening or a weakening
of the synapse.

The occurrence of stereotypical connectivity motifs as mentioned above has been ac-
companied in some works by physiological information on activity-dependent short-term
and long-term plasticity (Buonomano and Merzenich [1998]) and rewiring (Chklovskii et al.
[2004]; Le Be’ and Markram [2006]). Moreover, different motifs seem to correlate with
different synaptic properties (Pignatelli [2009]; Wang et al. [2006]), which in turn are related
to signal transmission, underlying learning mechanisms and eventually cognitive functions
and behaviour (Bressler and Menon [2010]; Bullmore and Sporns [2009]; Lichtman et al.
[2008]): Neurons connected by synapses exhibiting short-term facilitation seem to form
mostly reciprocal (bidirectional) motifs, whereas neurons connected by synapses exhibiting

short-term depression seem to form unidirectional motifs.

This great amount of data that has been collected during past years has certainly con-
tributed to shed light on many aspects about connectivity in brain-like circuits, but the two
big questions still remain unanswered: How and when can we confidently reveal and measure
regions of networks that show non random properties in the connectivity? And why do such
motifs form and correlate with specific synaptic properties? The research I present here
addresses both aspects, and similarly to Clopath et al. [2010] and Vasilaki and Giugliano
[2012, 2014] we hypothesise that motifs are regions that have been shaped via activity
dependent synaptic plasticity processes, and therefore that learning moves the distribution of
the synaptic connections away from the initial random condition that would correspond to

unspecialised synapses.

The first step towards a correct interpretation of the huge amount of data coming from
brain networks is revealing their structural and functional properties. To achieve this, prin-
ciples and tools from Graph and Network Theory have been applied to brain networks (He
and Evans [2010]; Sporns [2011a, 2013]) with promising results (Bassett and Bullmore
[2009]; Guye et al. [2010]). In general, several studies have demonstrated that many real
world processes can be modelled in terms of complex networks (Albert and Barabasi [2002];
Barabasi and Oltvai [2004]; Green and Sadedin [2005]; Newman [2010]), making the study
of networks’ topology and properties a topic of major interest within the entire scientific
community. Of particular relevance for brain networks is the problem of structures’ detection
as it is directly related to motifs formation. Typical Graph Theory problems dealing with

structure searching, for instance sub-graph isomorphism and clique identification (Bondy and
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Murty [2008]; Diestel [2010]), are proven to be either NP-complete or NP-hard (Bomze et al.
[1999]; Cook [1971]; Garey and Johnson [1990]; Papadimitriou [1977]; Wegener [2005]).
Extensive search is therefore impracticable and feasible approaches are based on heuristic
search or on algorithms looking for sub-optimal solutions. Even with these approaches, the
computational complexity grows very quickly and explodes for just few thousands of nodes
(Fortunato [2010]), hence making impossible to perform an effective and accurate search on
large networks within a relatively small time scale.

This thesis is built around the three journal papers that I produced as first author during
my PhD 3:

I Esposito U, Giugliano M, van Rossum M, Vasilaki E (2014) Measuring Symmetry,
Asymmetry and Randomness in Neural Network Connectivity. PLoS ONE 9(7): e100805.

IT Esposito U, Giugliano M and Vasilaki E (2015) Adaptation of short-term plasticity
parameters via error-driven learning may explain the correlation between activity-

dependent synaptic properties, connectivity motifs and target specificity. Front. Comput.
Neurosci. 8:175.

IIT Esposito U and Vasilaki E (submitted) Detection of multiple and overlapping bidirec-
tional communities within large, directed and weighted networks of neurons. Nature Sci.

Rep..

After a brief literature review in Chapter 2, each of the three following chapters is devoted
to one article, with Chapter 3 and Chapter 4 addressing the problem of motifs detection
within networks of neurons and Chapter S focussed on the experimental correspondence
between motifs and synaptic properties. Specifically, in Chapter 3 a statistical measure
is introduced, which responds to the problem of determining the symmetry of the global
connectivity of a network of neurons. Following this, in Chapter 4 a heuristic algorithm is
presented, designed to identify a particular class of local structures within such networks.
In Chapter 5 a learning scheme for short-term plasticity is defined, which, combined with a
traditional learning method for long-term plasticity, is able to reproduce the correspondence
between motifs and short-term synaptic properties. Finally, Chapter 6 is devoted to a
discussion about limitations of the present work and future improvements. Note that almost
the entire content of the papers has been reported in Chapters 3,4,5, with minor paragraphs
that have been moved to Introduction and Chapter 6 to obtain overall a better flow for the
benefit of the reader.

3 At the moment of writing, two published and one submitted



Chapter 2
Literature Review

The most complex part of the human body is certainly the brain, not only for its anatom-
ical complexity but also for its puzzling functioning. It is therefore not surprising that
understanding brain’s functions has attracted the curiosity of generations of people since
the dawn of human civilisation: First evidence of neuroscience practices dates back to an-
cient Egyptians, Greeks and Romans, for example the mummification procedure. Available
equipments at those times were very primitive, resulting in a vague, lacking and sometimes
even erroneous knowledge. For instance, it was a common belief that the heart is the seat of
intelligence, reason why the brain was regularly removed in preparation for mummification
whereas the heart was the only organ left. Residual of this ancient belief is for instance the
expression "knowing by heart".

Since then, outstanding progresses have been made, starting from these ancient civilisa-
tions themselves. Notably, the Greek Hippocrates of Kos (460 - 370 BC) made exceptional
contributions to Medicine and he is still considered the father of Western Medicine. The
Egyptian Herophilius of Chalcedon (335/330 - 280/250 BC) researched the anatomy and
physiology of the nervous system and was able to distinguish between cerebrum and cerebel-
lum. The Greek physician and surgeon Galen (129 - 200 AD), who lived under the Roman
Empire, dissected brains of several non-human mammals and recognised the function of
the cerebellum as controlling muscles, separated from the cerebrum, thought to regulate the
senses. Furthermore, he noted that specific spinal nerves control specific muscles, which
remained the most advanced understanding of spinal functions until the 18 and 19" century.

Indeed, we had to wait until three centuries ago to find significant advances in brain’s
studies, when microscope started to be widespread. Major contributions came from two
Italians: Luigi Galvani (1737 - 1798), who first observed the role of electricity in nerves,
and Camilo Golgi (1843 - 1926), who developed a staining procedure to reveal structures of
neurons. By using and improving this technique, the Spanish Santiago Ramon 'y Cajal (1852 -



6 Literature Review

1934) provided descriptions of neurons in the central nervous system and produced excellent
depictions of structures and their connectivity which are still in use. "In recognition of their
work on the structure of the nervous system", in 1906 Golgi and Ramoén y Cajal were awarded
with the Nobel Prize in Physiology or Medicine. Ramén y Cajal is considered the father
of modern Neuroscience for his original pioneering investigation and for experimentally
demonstrating that relationships between nerves are not continuous but contiguous. This
finding provided a strong evidence in favour of the neuron doctrine, of which Ramon y Cajal
was a promoter, in opposition to the reticular theory supported by Golgi (Lépez-Muiioz et al.
[2006]). The neuron theory originated in 1891 with the introduction of the term neuron by
the German neuroanatomist Heinrich von Waldeyer-Hartz (1836 - 1921) (Ramo6n y Cajal
[1954]) and found the definite success only in the 1950s with the development of electron
microscopy (Markram et al. [2011]). Thanks to these studies in the first part of the 20"
century, Neuroscience started to be recognised as a distinct discipline rather than being part
of Medicine. From the second half of the 20" century, due to the phenomenal advances in
technology that have been continuously improving the experimental techniques, the study of
the nervous system has been receiving a formidable boost, allowing scientists to study the
brain in all its aspects.

The most important function that a brain can perform is probably Leaning: It allows
to speak, to survive, to not fall from the bicycle. Everyday we learn from new stimuli,
sometimes without even being conscious of it: Our brain works for us, continuously acquiring
and processing information, in a way that is not just largely out of our control but it is also
way beyond our current understanding. What we observe in daily life is the macroscopic
manifestation of learning, at a behavioural level, as a result of the interaction of many
processes within the brain. Indeed, on a microscopic scale, learning is the interaction
between neurons whose activity triggers complex chains of proteins, resulting in activation of
different brain areas. Most of the structures involved are part of the cerebral cortex: From the
visual cortex, and in general sensory cortex, to the hippocampus - required for the formation
of long-term memories and implicated in the maintenance of cognitive maps for navigation -
and amygdala - involved in signaling the cortex of motivationally significant stimuli such as
those related to reward.

The cerebral cortex is a sheet of neural tissue, 2 — 4mm thick in humans, that covers
cerebrum and cerebellum in the mammalian brain. Besides various types of neurons, it
contains also a large number of ’supporter’ cells, so-called glia cells, that are required for
energy supply and structural stabilization of brain tissue. Since glia cells are not directly
involved in information processing, they will not be discussed any further. Furthermore,

throughout this thesis only spiking neurons of the cortex will be used, hence neglecting other
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few rare types, such as for instance analog neurons in the mammalian retina (Gerstner and
Kistler [2002b]).

2.1 Biological neuron

Neurons are electrically excitable cells that are at the basis of the nervous system.
Similarly to other cells, they are equipped with a membrane, that consists of a thin bilayer
of lipids separating and protecting the interior of the neuron from the outside. The cell
membrane, however, is not a perfect electrical insulator: Specific proteins are embedded in it
acting as ion gates, through which ions can move from one side to the other. Ions gates can
be of two types: Ions channels, which transport ions passively, i.e. through diffusion, and
ions pumps, doing it actively to maintain a voltage difference across the membrane itself.
Also, each ions gate can be specialised for only one type of ion. The most common ions are
Na*, K~ and Ca*™ (Gerstner and Kistler [2002b]).

Action potential From a functional point of view, a typical neuron can be divided into
three parts: Dendrites, axon and soma, respectively input, output and central processing units.
Incoming signals travel along the dendrites towards the soma, which performs the non-linear
processing at the basis of the spiking mechanism: If the total input exceeds a certain threshold
then the output signal is generated and delivered to other neurons by travelling through the
axon. The signal is an electrical pulse, called action potential or spike. Neurons that are
repeatedly stimulated can elicit sequences of spikes one shortly after another, which are
called spike trains, but single action potentials are still usually well separated from each
other: No matter the strength of the input, it is normally impossible to excite a second spike
during or immediately after a first one. This short time interval is called refractory period
(Gerstner and Kistler [2002b]).

2.1.1 Dynamic properties

The state of a neuron can be described by its membrane potential u(z), defined as the
voltage difference between the interior of the cell and its surroundings. The different states
during the action potential generation process are briefly described below and are depicted in

Fig. 2.1 for an excitatory neuron by means of a schematic drawing.

Resting potential Without any input there is no activity in the postsynaptic neuron and its

membrane potential is at its (constant) resting value, u() = u,e5. In this situation the cell
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Figure 2.1 Schematic behaviour of the membrane potential of an excitatory neuron before,
after and during an action potential. Five phases can be distinguished: /. The neuron is not
receiving any input and the membrane potential is at its resting level. 2. Incoming signals starts to
excite the neuron, each of them generating an excitatory postsynaptic potential (EPSP) which sum
up in a way that is approximately linear (Gerstner and Kistler [2002b]). 3. Once the threshold is
reached, the membrane potential suddenly jumps and goes back towards the resting level, describing
the characteristic shape of the action potential. 4. Once it reaches the resting value, the membrane
potential continues to decrease giving rise to the refractory period. 5. Finally, the potential goes back
to the resting value, ready for a new cycle [figure produced with Adobe Illustrator®].

membrane has already a strong negative polarization of about —65mV, so as the equilibrium
is actually a dynamical equilibrium in which ion pumps compensate the natural diffusion
of the ions from one side to the other of the neuron membrane through the ion channels
(Gerstner and Kistler [2002b]).

Activation Whenever a presynaptic neuron releases a spike, this is transmitted to the
postsynaptic neuron i and generates a postsynaptic potential (PSP) whose amplitude is
usually of about 1mV that alters the membrane potential of the postsynaptic neuron u;, in two
possible ways. If the change is positive, i.e. u;(t) — u; ress > 0, then the postsynaptic potential
is excitatory (EPSP), the change in the membrane potential is called depolarisation and the

synapse connecting the emitting neuron and neuron i is said to be excitatory. Otherwise,
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if u;(t) — ui resr < 0, then the postsynaptic potential is inhibitory (IPSP), the change in the
membrane potential is called hyperpolarization and the synapse is said to be inhibitory
(Gerstner and Kistler [2002b]). In excitatory neurons, an incoming signal from a presynaptic
neuron leads to the opening of Sodium channels and the subsequent influx of Na™ into the
cell is what causes the EPSP. Excitatory synapses are largely the most studied type of synapse,
but now is becoming clear that inhibitory synapses play a crucial and indispensable role
in stabilizing the activity of networks of neurons (Brunel [2000]; Silberberg and Markram
[2007]; Vogels and Abbott [2009]; Vogels et al. [2011]).

Spike generation As long as there are only few input signals, the total change in the
membrane potential is approximately the sum of the individual PSPs. If too many input
spikes arrive during a short interval then the membrane potential reaches a critical threshold,
which generally is ~ 20 —30mV above the resting potential, causing the opening of even
more Sodium channels. This results in a consistent influx of Na™ ions which gives rise to a
sudden depolarisation up to ~ +30mV (see Fig. 2.1). At this value of the potential, Sodium
channels starts to close and Potassium channels start to open. Differently from Sodium, K
ions diffuse from the interior of the cell to the extracellular medium, bringing the potential
back towards its resting value. A typical pulse has a total amplitude of about 100mV and a
duration of 1 — 2ms (Gerstner and Kistler [2002b]).

Refractoriness After the pulse, the membrane potential passes through a phase of hyper-
polarization below the resting value, which identifies the absolute and relative refractory
periods, and slowly reaches the resting value. Neurons can elicit sequences of spikes one
shortly after another, which are called spike trains, but single action potentials are still
usually well separated from each other: No matter the strength of the input, it is normally
impossible to excite a second spike during or immediately after a first one. The minimal
time interval between two spikes is normally ~ 1 ms (Gerstner and Kistler [2002b]). After
hyperpolarisation, Sodium and Potassium pumps eventually bring the membrane bacl to the
resting vlaue (Gerstner and Kistler [2002b]).

2.1.2 Synaptic transmission

The site where the action potential is transmitted from the sending neuron, called presy-
naptic neuron, to the receiving cell, the postsynaptic neuron, is called synapse. The most
common type of synapse in the vertebrate brain is the chemical synapse. Here, the terminal
part of the presynaptic axon comes very close to the dendrites of the postsynaptic cell, leaving

only a tiny gap between them, called synaptic cleft. The signal transmission at a chemical
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synapse can be simplified as a two-step process: The electrical signal from the presynaptic
neuron is translated into a chemical one that travels through the synaptic cleft and eventually
is re-translated into an electrical stimulus propagating within the postsynaptic cell (Dayan
and Abbott [2001]).

This mechanism is possible because of the structural properties of a neuron: The axon
terminal, also called bouton, contains synaptic vesicles which in turn accommodate a variety
of chemical substances called neurotransmitters. These endogenous chemicals are the entities
travelling across the synapse, hence permitting the transmission of the signal. The entire
mechanism is triggered by the arrival of an action potential in the presynaptic bouton,
which causes a depolarisation that opens the voltage-dependent calcium channels on the
presynaptic neuron. Due to diffusion, Ca™™ ions enter the presynaptic cell and drive the
vesicles towards the membrane. Here, vesicles merge with the membrane causing the release
of the neurotransmitters into the synaptic cleft (exocytosis). Neurotransmitters then diffuse
towards the postsynaptic site and here they bind with the receptors located on the membrane.
This leads to the opening of the ion channels on the postsynaptic neuron, so that ions from the
extracellular fluid flow into the cell. The ion influx, in turn, leads to a change of the membrane
potential at the postsynaptic site, completing the transmission of the signal. The voltage
response of the postsynaptic neuron to a presynaptic action potential is called postsynaptic
potential (PSP) which can be excitatory (EPSP) or inhibitory (IPSP), depending on the nature
of the neuron. (Dayan and Abbott [2001]).

Receptors and neurotransmitters Receptors on the postsynaptic site can be of two types,
ionotropic or metabotropic. The first class directly activates the ion channel, whereas the
second class does it indirectly by means of an intracellular messenger. Hence, ionotropic
processes are faster than metabotropic, and, in addition, metabotropic receptors can induce
long-lasting changes inside a neuron. Dopamine and serotonin are instances of neuromodu-
lators that act through metabotropic receptors. At the level of neurotransmitters, the most
common ones in the brain are glutamate and GABA (y-aminobutyric acid), respectively
excitatory and inhibitory, which can act both ionotropically and metabotropically. The
principal ionotropic receptors for glutamate are AMPA (o-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor) and NMDA (N-Methyl-D-aspartic acid). Activation and
deactivation of AMPA receptors is faster if compared to NMDA (Dayan and Abbott [2001]).

NMDA and synaptic strength NMDA receptors are particularly important because they
show a dependence on the postsynaptic potential that is not normally displayed by other

receptors. This voltage dependence is due to the fact that when the postsynaptic neuron is
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close to its resting state, Mg™* " ions block the NMDA receptors themselves. To remove
the blockage, and therefore to activate the ion channel, the postsynaptic neuron must be
depolarised. Although the channels controlled by NMDA are permeable to sodium and
potassium, their permeability to calcium is much greater. Interestingly, Ca™™ ions are
of crucial importance for long-term modification of synaptic strength (Dayan and Abbott
[2001]).

2.2 Models of neuron

2.2.1 Hodgkin-Huxley biological model

According with the pioneering work of Hodgkin and Huxley (Hodgkin and Huxley
[1952]) on the giant axon of the squid, the neuron dynamics can be described in terms
of an RC-circuit, with the membrane being the capacitor and the ions channels being the
resistances. Therefore, if there is an external current /() — it can be either an injected current
or a PSP or both — it may add further charge to C or leak through the ion channels. Therefore
we can write the typical equation describing the RC-circuit (Gerstner and Kistler [2002b]):

du
CE = —;Ik(t) +1(t) 2.1)

Where the sum runs over all the ionic currents passing through the cell membrane. In
the standard Hodgkin-Huxley model there are only three types of channels: Sodium and
potassium channels, modelled through time and voltage-dependent conductances gy, and
gk, and an unspecific leakage channel with fixed conductance g; = 1/R. If all channels are
open, they transmit currents with a maximum conductance gy, or gk, respectively. Normally,
however, some of the channels are blocked. The probability that a channel is open is described
by additional variables m, n, and 4. The combined action of m and % controls the Na channels,
whereas the K gates are controlled by 7 .

The equations of Hodgkin and Huxley provide a good description of the electrophysi-
ological properties of the giant axon of the squid. These equations capture the essence of
spike generation by sodium and potassium ion channels and this mechanism is essentially

preserved in higher organisms.
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2.2.2 Formal spiking neuron models

Hodgkin-Huxley model is the basis for many other more complicated and realistic models.
However, detailed conductance-based neuron models like these can reproduce electrophysio-
logical measurements to a high degree of accuracy, but because of their intrinsic complexity
they are difficult to analyse. For this reason, simple phenomenological spiking neuron models

are highly popular for studies of neural coding, memory, and network dynamics.

Leaky integrate-and-fire One of the most popular neuron models is the leaky integrate-
and-fire model (LIF) (Gerstner and Kistler [2002b]). The neuron is still described by the RC
equation, however the way the action potentials are modelled - as delta of Dirac - is much
more simple. If we multiply by R and introduce the time constant 7,, = RC for the leaky

integrator in Eq. (2.1), we obtain the standard form:

du(t)

Ty~ = —u(t) + RI(1) 2.2)

The combination of this leaky integration and the firing and reset condition

du(t
lim u(t)=u, for t|uEP)=v and u(t)
l—>t<f)+ dt l:l(f>

>0 (2.3)

defines the leaky integrate-and-fire model. A more complex model is the Spike Response
Models (SRM), where one can take into account the time evolution of the action potential, of
the PSPs and also of the refractory period (Gerstner and Kistler [2002b]).

Modelling synapses The above equations specify the neuron but not the synapse. Indeed,
the current in the equation can be an external injected current /,,; or a stimulus from other
neurons, which before arriving in the soma, passes through the synapse. In the simplest case

we can model these currents as delta pulses multiplied by the strength of the synapse:
Iyn=Y wi; ¥ 8(t—1]) (2.4)
J f

In a more complex case we can consider an exponential time dependence instead of the delta.
Even more complex is the case of conductance-based synapses, as used in the Hodgkin-
Huxley model (Gerstner and Kistler [2002b]).



2.3 Synaptic plasticity 13

2.3 Synaptic plasticity

It is widely believed that learning processes are related to modifications of synaptic
connections between neurons in the brain. The ability of a synapse to strengthen or weaken
over time is called synaptic plasticity and it has been theoretically postulated and subsequently
experimentally confirmed.

Well before the discovery of the existence of synapses, the Scottish philosopher Alexander
Bain (1818 — 1903) was probably the first one to introduce the concept of junctions between
neurons (Markram et al. [2011]), postulating that changes of these junctions are at the basis
of learning and memories (Bain [1873]). Few years later, the American philosopher and
psychologist William James (1842 — 1910) speculated on the cause that would strengthen
the junctions, introducing the idea of learning through correlation and linking plasticity
with behavioural habits (James [1980]). The very first hypothesis that associative memories
and practice-dependent motor skills may depend on a localized facilitation of synaptic
transmission (Berlucchi and Buchtel [2009]) was put forward by the Italian neuropsychiatrist
Eugenio Tanzi (1856 — 1934) in 1893 (Tanzi [1893]), 4 years before the coming into existence
of the term synapse (Tansey [1997]), due to the English neurophysiologist Sir Charles Scott
Sherrington (1857 - 1952) (Sherrington [1897]) '. Few years later, the Italian psychiatrist
Ernesto Lugaro (1870 - 1940) expanded on Tanzi’s work by explicitly connecting for the
first time the concepts of plasticity and plastic activity, already in use at that time, with his
teacher’s hypothesis of functional modifiability of synapses (Lugaro [1913]), a denotation
that persists to this day (Berlucchi and Buchtel [2009]; Markram et al. [2011]). Both Tanzi
and Lugaro were fervent admirers of Cajal’s neuron theory and Cajal himself complemented
Tanzi’s hypothesis with his own view of plasticity as the result of the formation of new
connections between cortical neurons (Berlucchi and Buchtel [2009]).

With Cajal, in the first two decades of the 20" century, it was generally accepted that
learning is based on a reduced resistance at exercised synapses, and that neural processes
become associated by coactivation. Subsequently, due to the appearance of other conjectures
evidently more appealing, this point of view lost recognition and it was only in the late
1940s that the synaptic plasticity theory of learning was rehabilitated when the Polish
neurophysiologist Jerzy Konorski (1903 - 1973) and particularly the Canadian psychologist
Donald Olding Hebb (1904 - 1985) argued successfully that there was no better alternative
way to think about the modifiability of the brain by experience and practice (Berlucchi and
Buchtel [2009]; Hebb [1949]; Konorski [1948]).

I Sherrington received the Nobel Prize in Physiology or Medicine with Edgar Adrian, 1st Baron Adrian,
in 1932. They showed that reflexes require integrated activation and demonstrated reciprocal innervation of
muscles (Sherrington’s law).
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Hebbian rule Hebb has the credit of having rephrased the idea that the efficacy of a synapse
can change due to correlated neuronal activity: When an axon of cell j is near enough to
excite cell i or repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that j’s efficiency, as one of the
cells firing i, is increased (Hebb [1949]). Despite Hebb himself claimed that he was "not
proposing anything new" (Berlucchi and Buchtel [2009]), his formulation directly inspired
thousands of studies and strengthening of connections between co-active cells has become
known as Hebbian plasticity or Hebbian learning rule.

The first experimental evidence confirming Hebb’s postulate was published two decades
after: Tetanic stimulation (high-frequency stimulation) on the dentate gyrus of rabbit hip-
pocampus was shown to be responsible for a persistent growth of the postsynaptic response
(Bliss and Lgmo [1970, 1973]; Lgmo [1964, 2003]). This phenomenon, initially called
long-lasting potentiation (Bliss and Lgmo [1973]), is now known as long-term potentiation
(LTP) (Douglas and Goddard [1975]) and it was the first form of synaptic plasticity to be
studied. Since then, different mechanisms of synaptic plasticity have been discovered, and
nowadays two main types can be distinguished: Long-term and short-term plasticity.

Long-term plasticity and in particular Hebbian learning and Spike-Timing-Dependent-
Plasticity (see below) are forms of unsupervised learning, which captures correlations in
the neuronal input. Hence, their involvement in, for instance, the development of receptive
fields (Clopath et al. [2010]; Song et al. [2000]) or memory and associations is long-standing
knowledge. However, the variety of different long-term plasticity rules (Markram et al.
[2011]), indicates that the precise synaptic prescriptions of long-term plasticity mechanisms
remain unclear. On the contrary, short-term plasticity (STP) is well described in terms of
models (Costa et al. [2013]; Hennig [2013]; Le Be’ and Markram [2006]; Markram et al.
[1998b]; Rinaldi et al. [2008]; Romani et al. [2013]; Rotman and Klyachko [2013]; Testa-
Silva et al. [2012]; Tsodyks and Markram [1997]; Varela et al. [1997]) and its role in neuronal
computation seems to be related to temporal processing (Carvalho and Buonomano [2011];
Natschliger et al. [2001].

2.3.1 Long-term plasticity

This type of plasticity induces changes in synapses that can last for hours (Gerstner
and Kistler [2002b]), which is one of the reasons why it is widely believed that long-term
plasticity is at the basis of learning and memory formation (Bliss and Collingridge [1993];
Del Giudice et al. [2003]; Tetzlaff et al. [2012]). Another reason is that this type of plasticity is
associated with NMDA receptors that are responsible for calcium influx into the postsynaptic

neuron. As mentioned above, Ca™ ™ ions are thought to play an important role in long-term
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modifications of synaptic strengths (Dayan and Abbott [2001]). Involvement of NMDA
receptors, that requires coincidence between presynaptic and postsynaptic activity to be

activated, suggests that long-term plasticity is not only a presynaptic or postsynaptic process.

Hebb’s original proposal only refers to modifications of synapses leading to strengthening,
but already few years after his postulate the idea that connections can also experience
depression was starting becoming popular. Similarly to Hebb’s formulation, the German
biologist Gunter Stent (1924-2008) proposed in 1973 that depression takes place when two
neurons are not sufficiently coactive: When the presynaptic axon of cell A repeatedly and
persistently fails to excite the postsynaptic cell B while cell B is firing under the influence
of other presynaptic axons, metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is decreased (Stent [1973]). In the same decade, long-
term depression (LTD) was finally observed in the hippocampus for both inactive pathways
and activated pathways provided that the activation frequency is low (Dunwiddie and Lynch
[1978]; Lynch et al. [1977]).

The basic original Hebb’s formulation formulation has been lately turned into a mathe-
matical relation, called Hebbian rule (Gerstner and Kistler [2002a]):

d
—Wij =YViV; 2.5

2= YViv; (2.5)
where the constant ¥ is called learning rate, w;; is the strength of the connection from neuron

J to neuron i and V;, V; are the firing rates.

From this basic rule, many others have been developed, accounting for different features,
not only synaptic depression but also for example competition and saturation (Bienenstock
et al. [1982]; Gerstner and Kistler [2002a]). Fundamental properties of such a kind of rules
are locality and cooperativity: The strength of the connection between i and j depends only
on i and j, and not for example on some global signal, and to have potentiation both neurons
need to be active.

Strictly related to learning is the coding problem. Since all spikes of a given neuron
look alike, it is generally believed that the form of the action potential does not carry any
information. The problem of how information is coded and transmitted from neuron to neuron
is one of the most challenging in neuroscience. Two main mechanisms have been identified
so far, with evidence for both: On one side, information can be transferred through a rate
code, which is based on the number of spikes per time unit; the second mechanism, instead
is based on the exact timing of the spike (Gerstner and Kistler [2002b]), and it is called
temporal or spike code. The Hebbian rule as stated originally by Hebb and as formualated

above in Eq. (2.5) is based on a rate code, as it uses firing rates. Hebbian learning can be
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written also in terms of the spike code (Abbott and Gerstner [2004]; Gerstner and Kistler
[2002a]).

Spike-Timing Dependent Plasticity The most well-know learning mechanism based on
the timing of the spikes is called Spike-Timing Dependent Plasticity (STDP). STDP was
postulated by the German physicist and neuroscientist Wulfram Gerstner (1963 - ) in 1996
(Gerstner et al. [1996]) and the first evidence supporting it was found already the year after
(Markram et al. [1997]). Experiments showed that to obtain both potentiation and depression
of synaptic strength two different protocols were needed: Long-term potentiation occurs
whenever the postsynaptic neuron fires after the presynaptic one, vice versa for the long-term
depression. These modifications are long-term because they can last even for minutes or
more and then it is widely believed that this mechanism is involved in learning and memory
formation (Billings and van Rossum [2009]; Song and Abbott [2001]; Vogels et al. [2011]).

Few years later, also the time dependence of this phenomenon has been accurately
measured by (Bi and Poo [1998]). Given a presynaptic neuron j and a postsynaptic neuron i,
then the STDP rule can be written as:

A exp(—(tpost —tpre) /T4) i (tpost —tpre) >0

Awij = :
Af exp(tpgs[ _tpre/’rf) lf (tPOSt - tpre) < O

(2.6)

where Ay >0, A_ <0 and 7, 7_ describes the exponential time decay. This rule gives
rise to a so called learning window, showed in Fig. (2.2)A with solid line. Note that STDP
belongs to the family of Hebbian rules, because it satisfies both locality and cooperativity.
The original STDP learning as described by Eq. (2.6) is based on a pair protocol, i.e. the
learning rule involves only pairs of spikes - one pre and one post. It has been show that it is
possible to extend this mechanism to triplets of spikes, pre-post-pre or post-pre-post, and
in general to multiplets of spikes (Pfister and Gerstner [2006]). It is remarkable that STDP
equipped with the triplet rule can capture both rate and temporal codes by changing the firing
frequencies of the neurons. At low firing rates the pair-based asymmetric window can be
reproduced, obtaining potentiation whenever the pre-post-pre sequence of spikes occurs and
depression with the post-pre-post sequence (Fig. 2.2B Dashed line). However, as the firing
frequency becomes high, we obtain only the pure Hebbian potentiation (Fig. 2.2B Solid line).
Despite being very popular and confirmed by experiments, STDP suffers of a stability
problem: Without any constraint, strengths of synapses can grow to infinity, which is both
not biologically plausible and not optimal from a computational point of view. To avoid it,
different techniques have been developed, some more biologically realistic and some others
less (Babadi and Abbott [2010]; van Rossum et al. [2000]). The most simple solution is to
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Figure 2.2 Spike-Timing Dependent Plasticity learning rules. A Learning window with a pair
rule. Solid line: Reproduction of standard pair-based rule. Dashed line: Reproduction of the shifted
rule (Babadi and Abbott [2010]) with d = 2ms. B Frequency effect with the triplet rule from Pfister
and Gerstner [2006]. Solid line: Post-pre-post firing protocol, giving potentiation. Dashed line:
Pre-post-pre firing protocol, giving depression at low rates (pure STDP) and potentiation at high rates
(pure Hebbian) [figure produced with MATLAB®].

define an upper and lower bound for the weights (Gerstner and Kistler [2002b]). Because
of the competition hidden in the rule, at the end of the evolution some of the connections
collapse to the maximum value and the others to the minimum value, giving the characteristic
bimodal distribution (Song et al. [2000]).

A more interesting technique consists in shifting the learning window in such a way when
the postsynaptic neuron fires a spike right after the presynaptic neuron there is depression
rather than potentiation (Fig. 2.2A dashed line). The reason of why the shift stabilizes the
evolution is very well explained and also this procedure is well justified from a biological
point of view, being related to the slow activation of NMDA receptors on the postsynaptic
neuron (Babadi and Abbott [2010]).

2.3.2 Short-term plasticity

Based solely on STDP, when a postsynaptic neuron is repeatedly stimulated with a train
of presynaptic spikes, an increase in the amplitude of the EPSP should appear. However,
this is not always the case, as another mechanism is indeed present at synaptic level, called
short-term plasticity as it acts on time scales shorter than the ones involved in long-term
plasticity. Suggested biological mechanisms underlying STP are changes in the vesicles

release probability and accumulation of calcium in the synaptic tterminal. Both of them
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affect the amount of neurotransmitters released by the presynaptic neuron, suggesting that

STP is a pure presynaptic mechanism, contrarily to long-term plasticity.

Depression it has been observed in neocortical pyramidal neurons that synaptic responses
to presynaptic stimulation strongly depend on the synaptic activity, i.e. on the history of the
synapse (Gupta et al. [2000]; Markram et al. [1998b]). In particular, connections between
pyramidal neurons typically display pronounced synaptic depression, characterized by fast
decrease of synaptic response during the presynaptic stimulation (Markram et al. [1998b]).
This behaviour can be associated with the availability of resources when the presynaptic
signal arrives at the synapse: to evoke an EPSP a neuron has to use some resources which
afterwards become temporarily unavailable to the cell; if another presynaptic spike arrives
before these resources are fully restored, the response of the neuron will be less efficient,
displaying fatigue.

This formulation can be translated into a system of kinetic equations. According with one
well-established phenomenological model (Tsodyks and Markram [1997]), resources can be
found in three states: Recovered, active and inactive. Let x, y, z be the fractions of resources
in each of these states. If all the resources are activated by a presynaptic action potential, then
the maximal possible response would be observed, defined as the absolute synaptic efficacy
A. In reality, each presynaptic action potential utilizes only a fraction u of resources currently
available in the recovered state, which therefore instantly move from recovered to active state.
Following this, these resoures quickly inactivate with a time constant 7;, of few milliseconds
and finally recover with a larger time constant T, of ~ 1s. If we denote with #, the time of

spike arrival then we can write the dynamical equations (Chow et al. [2005]) as:

% = 2 —ux0 (t —typ)
dy _ _

dz _ Yy  z

dt - Tin Trec

Every time the presynaptic spike arrives, it triggers a postsynaptic current PSC with am-
plitude E = Aux, proportional to the amount of resources in the recovered state immediately
before the spike arrival time, and with time decay 7;,. At every time, the postsynaptic current
is proportional to the fraction of resources in the active state, Ay(r). Note that the higher
the u the faster synaptic resources are utilized, which leads to more rapid depression. This
formulation ignores the stochastic nature of synaptic release and reproduces the average
postsynaptic responses generated by any presynaptic spike train for inter-pyramidal synapses
(Tsodyks and Markram [1997]).
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The above set of equations can often be reduced to a simpler one, due to a very short
time constant for the inactive state. Indeed, when 7;, > 7., the variable z can be neglected,
meaning that x = 1 —y. The 3-variable model can therefore be reduced to a single-variable
model (Chow et al. [2005]):

dx_ 1—x
dt B Trec

—uxd (t —tgp) (2.8)

Facilitation Short-term synaptic depression is not the only form of activity dependence
of synaptic response. Connections in neocortex involving pyramidal neurons and interneu-
rons — small, locally projecting (in contrast to larger projection neurons with long-distance
connections) and typically inhibitory — usually exhibit various degree of synaptic facilita-
tion, characterized by fast increase of synaptic response during the pre-synaptic stimulation
(Gupta et al. [2000]). In this case, the interpretation is given in term of time required by
the synapse to "charge" itself to its full capacity: It responds weakly to the first spike and
then progressively stronger to the following ones, depending on the recovery time of the
resources.

Eq. (2.8) describes only short-term synaptic depression. Facilitation can be easily taken
into account by assuming that the value of u is no longer fixed, but rather increases with
each presynaptic spike and returns to baseline with a time constant Tr,.;;. Such an increase is
determined by a parameter U (Chow et al. [2005]; Morrison et al. [2008]):

du_ u_

= _Tfaciz +U(1—u_) 8 (t—typ) (2.9)

In the above equation, the notation #_ means that the value of u has to be taken right
before the arrival of the spike, as in u(r — €) with € very small. The value of u used in
Eq. (2.8) (as well as in Eq. (2.7)) is instead the value of u right after the spike. These two
quantities are related by the update rule following a spike arrival:

u=u_(1-U)4+U (2.10)

In this description, u represents the amount of resources effectively used by a spike:
when the first spike arrives at the presynaptic terminal, u_ = 0 (stationary state of Eq. (2.9))
and all the resources are available to the cell (stationary state of Eq. (2.8)); hence u = U
is the fraction of resources that will be used in the transmission of the signal (Eq. (2.10)),
which will cause a decrease in the fraction of resources in the recovered state from x = 1 to
x=1-U (Eq. (2.8)). Following this, in the absence of other spikes, x increases back to 1

whereas u_ decreases to zero and consequently u decreases to U. From this description it
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emerges how u_ can be interpreted as the amount of used resources, whereas u represents the
amount of resources that are going to be used if a spike arrives in that moment; in other words,
u represents the same quantity as u_ but before the effective usage of resources. To avoid
this unnecessary double variable notation within the model, Eq. (2.10) can be substituted
into Eq. (2.9), resulting in the following:
du  u-U

dt Tfacil

+U(1—u)d(t—t5p) (2.11)

Interplay Facilitation and depression are strictly interconnected since stronger facilitation
leads to higher values of u#, which in turn leads to stronger depression. The solutions of
the above equations (Chow et al. [2005]) show that, when the presynaptic neuron emits
regular spike trains with a frequency f, the EPSP reaches a frequancy-dependent steady-
state, both when the synapse is only depressing and when there is also facilitation: when
the synapse shows only depression then the stationary amplitude of an EPSP is in inverse
proportion with f, whereas when facilitation is added then the plateau amplitude exhibit a
non-monotonic dependency. This is intuitive: When facilitation is too high, the amount of
resources consumed grows and if the frequency of stimulation is above a certain threshold
the cell does not have the time to restore resources, hence synaptic depression is activated.
Therefore, what determines the response of the synapse is the value of U: When it is
small then facilitation is marked, whereas for higher values it is not observed. This model
well captures the main features of synaptic transmission between pyramidal neurons and
interneurons when U ~ 0.01 — 0.05.

Biological interpretation According with the above derivation, the variables x and u
correspond to precise biological quantities, respectively: occupancy of the release pool and
probability of neurotransmitter release, both related to the presynaptic cell (Hennig [2013]).

The presynaptic terminal contains a specialised area where vesicles filled with the neuro-
transmitters required for the signal transmission are clustered. These vesicles are organised
into anatomically distinguishable populations, called vesiscles pools: the release pool, con-
taining vesicles ready to release, and the reserve pool, where the remaining vesicles are on
hold and ready to repleace empty vesicles in the release pool following a neurotransmitter
rerelease event. Calcium ions are the agents causing vesicles to migrate from the release pool
towards the presynaptic membrane, where they merge with it releasing the neurotransmitters
into the synaptic cleft. The release of a single vecicle constitutes the smallest signal, or the
quantum, that can be transmitted to the postsynaptic cell. This single process is characterised

by a release probability p(z). If N(¢) is the number of vesicles available for release (i.e.
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present in the release pool), then the amount of neurotransmitters released into the synaptic
cleft is:
T(t)=p()N(t) . (2.12)

The arrival of a presynaptic action potential at the axon terminal triggers the opening of
voltage gated calcium channels with subsequent influx of extracellular Ca™ by diffusion.
This leads to an increase in the number of vesicles driven towards the cell membrane, and

therefore in the number of released neurotransmitters.

According with this description, the time constant for synaptic depression 7. describes
how fast the release pool is replenished with vesicles from the reserve pool. Becuase the re-
lease probability is ultimately regulated by excess in calcium concentration, the time constant
for facilitaiton 7,.. can be associated with the speed at which calcium ions concentration
decays back to its resting level. Finally, the interpretation of U is rather straightforward: as
it describes the fraction of resources used by the firts action potential, it corresponds to the
initial (resting) value of release probability, before that incresed calcium concentration due
precisely to that spike brings it to higher values.

The amount of neurotransmitters realeased 7'(¢) is responsible for the transmisison of the
signal from the presynaptic terminal to the postsynaptic neuron, where they binds to receptors
to generate the postsynaptic response. Specifically, an increase in the rate of binding events
determines an increase in the conductance g of the postsynaptic neuron, which corresponds
to a depolarisation. Therefore the simplest way of modelling of this process is with the
following linear relationship:

g(t)e<T(t) (2.13)

which clearly shows that the postsynaptic responce is related to the amount of neurotrans-
mitters release by the presynaptic neuron. Therefore, facilitation and depression acts on
T (t). The most accepted mechanism for facilitation involves accumulation of calcium ions
after a presynaptic spike, with subsequent increase in the release probability p(z). Synaptic
depression, instead, is due to a depletion of vesicles in the release pool, hence to a decrease
of the number of available vescicles N(z) (or, equivalently, of the occupancy of the release
pool) (Hennig [2013]).



22 Literature Review

Summary In this Chapter some basic elements from the literature were given, such as how
the activity of a neuron is modelled and, most important, how it affects the transmission
itself and the connections between neurons. Both mechanisms of synaptic modification were
introduce, which will be largely used in the rest of the thesis. In the next three chapters
the three papers I produced will be presented, starting with the two papers addressing the

question how we can detect motifs.



Chapter 3

Measuring Symmetry, Asymmetry and
Randomness in Neural Network
Connectivity'

Studies on the brain wiring diagram have shown that connectivity is non-random, high-
lighting the existence of specific connectivity motifs at the microcircuit level, see for instance
Perin et al. [2011]; Silberberg and Markram [2007]; Song et al. [2005]; Wang et al. [2006].
Of particular interest are the motifs that exhibit bidirectional (reciprocal) and unidirectional
(non-reciprocal) connections between pairs of neurons. More specifically, theoretical work
(Clopath et al. [2010]) studied the development of unidirectional connectivity due to long-
term plasticity in an artificial network of spiking neurons under a temporal coding scheme,
where it is assumed that the time at which neurons fire carries out important information.
This finding is correlated to unidirectional connectivity observed in somatosensory cortex,
see Lefort et al. [2009]. In Clopath et al. [2010] the development of bidirectional connectivity
in the same network under a frequency coding scheme, where information is transmitted in
the firing rate of the neurons, was also studied and correlated to bidirectional connectivity
found in the visual cortex (Song et al. [2005]). Complementary to this work, in Vasilaki
and Giugliano [2012, 2014] the authors explored the experimentally identified correlation
of bidirectional and unidirectional connectivity to short-term synaptic dynamics, see Pig-
natelli [2009], by studying the development of connectivity in networks with facilitating
and depressing synapses due to the interaction of short-term and long-term plasticities. The
role of synaptic long-term plasticity in structures formation within networks has been also
investigated in Babadi and Abbott [2013]; Bourjaily and Miller [2011a,b].

IThis chapter is almost entirely taken from Esposito et al. [2014]
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Similar to Clopath et al. [2010] and Vasilaki and Giugliano [2012, 2014], we hypothesise
that the above mentioned motifs have been shaped via activity dependent synaptic plasticity
processes, and that learning moves the distribution of the synaptic connections away from
randomness. Our aim is to provide a global, macroscopic, single parameter characterisation

of the statistical occurrence of bidirectional and unidirectional motifs. To this end:

1. We define a symmetry measure that does not require any a priori thresholding of
the weights or knowledge of their maximal value, and hence is applicable to both

simulations and experimental data.

2. We calculate the mean and variance of this symmetry measure for random uniform
or Gaussian distributions, which allows us to introduce a confidence measure of how
significantly symmetric or asymmetric is a specific configuration, i.e. how likely it is
that the configuration is the result of chance.

3. We demonstrate the discriminatory power of our symmetry measure by inspecting the
eigenvalues of different types of connectivity matrices, given that symmetric matrices

are known to have real eigenvalues.

4. We show that a Gaussian distribution biases the connectivity motifs to more symmetric
configurations than a uniform distribution and that introducing a random synaptic
pruning, mimicking developmental regulation in synaptogenesis, biases the connec-
tivity motifs to more asymmetric configurations, regardless of the distribution. Our
statistics of the symmetry measure allows us to correctly evaluate the significance of a

symmetric or asymmetric network configuration in both these cases.

5. Our symmetry measure allows us to observe the evolution of a specific network

configuration, as we exemplify in our results.

We expect that our work will benefit the computational modelling community, by providing
a systematic way to characterise symmetry and asymmetry in network structures. Further,
our symmetry measure will be of use to electrophysiologists that may investigate symmetric

or asymmetric network connectivity.

3.1 Methods

In what follows, we first define a novel measure that quantifies the degree of symmetry in
a neuronal network with excitatory synaptic connections. More specifically, we describe the

strength of the synaptic efficacies between the neurons by the elements of a square matrix,
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i.e. the connectivity matrix, to which we associate a number that quantifies the similarity of
the elements above the matrix diagonal to those below the diagonal. We further study this
measure from a statistical point of view, by means of both analytical tools and numerical
simulations. Aiming to associate a significance value to the measure, i.e. the probability
that a certain symmetric or non-symmetric configuration is the result of chance, we consider
random synaptic efficacies drawn from uniform and Gaussian distributions. We also study
how our symmetry measure is affected by the anatomical disconnection of neurons in a
random manner, i.e. zeroing some entries in the connectivity matrix. Finally, we anticipate
that connectivity distributions are modified by activity-dependent processes and we describe

the structure of the network we use as a demonstrative example in the Results section.

3.1.1 Definitions

Let us consider the adjacency (or connectivity) matrix W of a weighted directed network
(Newman [2010]), composed of N vertices and without self-edges. The N vertices represent
the neurons, with N (N — 1) possible synaptic connections among them. The synaptic efficacy
between two neurons is expressed as a positive element w j; in the adjacency matrix. W is thus
composed by positive elements off-diagonal, taking values in the bounded range [0, Wyqx],

and by zero diagonal entries. We define s as a measure of the symmetry of W:

|Wl] le

(3.1)

SZI_N( ZZ

1 1 j=i+1 WU+W1’

where M is the number of instances where both w;; and w j; are zero, i.e. there is no connection

between two neurons. The term g = M

is a normalisation factor that represents the
total number of synaptic connection pairs that have at least one non-zero connection. A value
of s near O indicates that there are virtually no reciprocal connections in the network, while a
value of s near 1 indicates that virtually all connections are reciprocal. We exclude (0,0) pairs
from our definition of the symmetry measure. Mathematically such pairs would introduce
undefined terms to Eq. (3.1). In addition, conceptually, we expect that small weights will not
be experimentally measurable. It is then reasonable to exclude them, expecting to effectively
increase the signal to noise ratio.

Pruning and Plasticity. We assume that a connection w;; is permanently disconnected
and set to O with probability ,.ming = a € [0, 1). Consequently, the probability that two
neurons i and j are mutually disconnected, i.e. w;j =wj; =0, is a*. When a connection
is permanently pruned in such a way, its efficacy remains 0 all the time, whereas the off-

diagonal non-pruned values of the adjacency matrix W change slowly in time, as a result
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of activity-dependent synaptic plasticity. We consider that this procedure correlates with

developmental mechanisms associated with or following synaptogenesis.

Unidirectional and Bidirectional connection pairs. We associate the quantity Z;; =
[wij—wji|
wij+wji
term maps the strength of the connections between two neurons to a single variable. Each

, 1.e. the term of the summation in the Eq. (3.1) to the neuronal pair #,j. This

connection pair can therefore be bidirectional if w;; >~ w;, unidirectional if w;; < wj; or
w;j > wj;, or none of the two. As a consequence, a network can be dominated by bidirectional

connectivity, by unidirectional connectivity, or it may exhibit random features.

Weight Bounds. In what follows we consider the case of wy,,, = 1. Due to the term
[wij—wji|
wi ]—i—w

, this can be done without loss of generality.

Inhibitory Networks. The symmetry measure defined in Eq. (3.1) is based on the assump-
tion that synaptic weights are positive, hence that the network is formed only by excitatory
neurons. It is easy to extend the valdity of the measure to networks with only inhibitory

neurons, for which w;; € [—1,0] Vi, j:

Jwij—wil

Sinh = 1 — (3.2)

N(N 2MZ Z

i=1 j=it1 ‘Wl]‘"{"wﬂ}

In the case of an excitatory network, Eq. (3.2) reduces to Eq. (3.1). In the case of an
inhibitory network, everything works symmetrically: a pair of neurons having reciprocal
connections of significative different strength will still form a unidirectional pair, whereas if
their connections have a similar weight they will still form a bidirectional pair. Therefore, all
the following results holds true for inhibitory networks as well, provided a mirroring around

zero in the weights domain.

3.1.2 Statistics of s

Let us consider a large number of n instances of a network whose connection weights are
randomly distributed. Each adjacency matrix can be evaluated via our symmetry measure.
We rewrite Eq. (3.1) as:

N
Z ,]_1——sz, (3.3)

Jj=it1

”MZ

»QI>—‘
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where k is a linear index running over all the ¢ non-zero “connection pairs” within the

network. We can then estimate the mean (i and variance 62 of s over all n networks as:

U =E,[s] = 1—E,[Z] (3.4)

62 = Var,(s) = }]Varn(Z) (3.5)

where the notation [E, [-] and Var,(-) implies that the expected value and variance are com-
puted along the n different representations of the network.

Eq. (3.4), (3.5) allow us to transfer the statistical analysis from s to Z. To derive theoretical
formulas for mean value and variance of Z we use the fact that its probability density function
(PDF), f(Z), can be written as a joint distribution, f(Z;,Z,) where we have introduced the

notation Z; = |wj;j — wjil, Zo = wji+wji:

1
Bz = [ dz212)- [ [ aziaz 3 £z 2 (3.6)

within the range D defined by 0 < Z; <1 and Z; < Z, <2 —Z;. Similarly, we can calculate
the variance as follows:

2
Var(Z) = /0 7 (Z—E[Z]) f(Z) = / /D 4z, dz, (%—E[Z]) FZ1,2). BT

We note that mean value and variance of Z can be numerically estimated either by using
a large set of small networks or on a single very large network: What matters is that the total
number of connection pairs, given by the product n - g, is sufficiently large to guarantee good
statistics and that connection pairs are independent of each other. In the calculations below,

we assume a very large adjacency matrix.

3.1.3 Adjacency matrix with uniform random values

We first consider a network with randomly distributed connections without pruning,

followed by the more general case where pruning is taken into account.

Fully connected network For the uniform distribution f“(w) =1 for w € [0, 1], see
Fig. 3.1A. The probability of having w;; = w; = 0 for at least one pair (i, j) is negligible,
hence M = 0. It is straightforward to derive the distributions f}'(Z,) and f}'(Z;), depicted in
Fig. 3.1B,C correspondingly:
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Figure 3.1 Probability density functions for the case of uniformly distributed connections. A
Distribution of the uniform variable w. B Distribution of the sum Z, of two uniform variables. C
Distribution of the absolute difference Z; of two uniform variables. D Joint distribution of Z, and Z;.
E - G The same as A, B and C but with pruning a = 0.1. H The same as D but with pruning a = 0.01.
In all figures, Grey shaded area: Histograms from simulations, Black lines and surfaces: Theoretical
results (see Eq. (3.8)-(3.14)).
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—271+2 for Z; €]0,1]

fi(Z) = _ (3.8)
0 otherwise
Zn for Z, €10, 1]

(Z) =4 -Z,+2 for Z,e[l,2]. (3.9)
0 otherwise

We can therefore obtain the joint PDF (Fig. 3.1D):

" 1 for [Zl , Zz] eD
f15(Z1,2,) = _ . (3.10)
0 otherwise

Pruning Introducing pruning to the elements of the adjacency matrix, with probability a,
corresponds to a discontinuous probability distribution function of w, that can be written as a

sum of a continuous function and of a Dirac’s Delta centred in w = 0 (see also Fig. 3.1E):
Jaw)=(1—a)f"(w)+ad(0). (3.11)

Now the (0, 0) pairs have to be explicitly excluded from the distributions of Z; and
Z,. Also, the number of pairs of the type (w, 0) increases, resulting in the appearance of
a uniform contribution in the region [0, 1] in both the PDF of Z; and Z,. Their final exact
profile can be obtained by considering the possible combinations of drawing w;; and w j; from
the above pruned distribution and their corresponding probability of occurrence. There are
four contributions: f*“(w) x f“(w), f*(w) x 6(0), 8(0) x f“(w), 6(0) x 6(0). The last term,
which describes the (0, 0) pairs, has to be subtracted and the remaining expression has to be
renormalised. The results are graphically shown in Fig. 3.1F, 3.1G and are mathematically

described by the following expressions:

1—a 2
27 i for Z€l0,1
Tt for 20€l01]

fia(Z1) = (3.12)

0 otherwise
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(1—a 2a
Z f Z 0,1
1+a 2—i—l—I—a or Z€(0,1]
u . 1—a 1—a
faZ) = ——=27,+2 for Zell,2] (3.13)
1+a 1+a
0 otherwise

\

The joint PDF is a mixture of two uniform distributions: The unpruned distribution
fi5(Z1, Z») and the contribution from the pruning, e «(Z1,Z2), which is a delta peak along
the line Z; = Z,, see Fig. 3.1H. To obtain f!(w), the two unitary distributions are mixed
with some coefficients ¢, and c, satisfying the normalisation condition c¢; 4+ ¢, = 1. With
the same arguments used for f}',(Z1) and f¥ (Z>), we can derive the relation between ¢y, c»

and a, so that we can finally write:

1—a 2a
_|_
1+a 1+a

2421, 22) = 1 fi5(Z21, Z2) + 2 frear(Z1,22) = 6(Z1—2o) for [Z),25] €D.

(3.14)

Expected value and variance of Z

We can calculate mean value and variance of Z by plugging Eq. (3.14) into Eq. (3.6) and
(3.7):

" l—a 2a
(7] = 1+a<21n2—1)—|—1+a (3.15)
In2(1— - 2(1—a)(1-1n2)\?
Vari(z) = 1 - Sz za)+7a=5  (2(1—a){1=In2))" (3.16)
14+a 14+a

Expected value and variance of s

By combining the above results with Eq. (3.4) and (3.5), we can derive the final formulas

for the expected value and variance of s:

1—

P=F"[s]=1—
nu'S [S] 1+

a 2a
21 2—1)— 3.17
a( n 14+a ( )
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w1 8Im2(1—a)+7a—5 (2(1—-a)(1-1n2)\°
(o)s:Var(s)_51 T ( 5a )] (3.18)

3.1.4 Adjacency matrix with Gaussian-distributed random values

The procedure described above to derive the joint PDF of Z; and Z, is applicable to any
distribution. In what follows, we consider a network with initial connections drawn by a
truncated Gaussian distribution.

Distribution of connections. Whereas the uniform distribution is well defined in any
finite interval, the Gaussian distribution requires some considerations. Strictly speaking, any
Gaussian distribution is defined over the entire real axes. For practical reasons, however, for
any finite network N < oo, the maximum and the minimum values of the weights, w4, and
Wmin, are always well defined, and therefore the actual distribution is a truncated Gaussian.
To be able to consider the truncated Gaussian distribution as Gaussian with satisfactory
accuracy, we require that the portion of the Gaussian enclosed in the region [Wyin, Winax]
is as close as possible to 1. This means that the distribution has to be narrow enough with
respect to the interval of definition [Wyin, Winay]. Also, by definition, the distribution has to
be symmetric in [Wpn, Wimax|- Because we are considering only excitatory connections then
Wnin = 0, so as the mean value has to be u,, = % Additionally, the narrowness imposes
a condition on the standard deviation of the distribution: G,, < Aw = wy,,,x. Since we can
set wpuay = 1 without loss of generalization, the entire study on all the possible Gaussian
distributions can be limited to a special class, ¢ (/.L = %, oK 1).

The choice of 6. To guarantee a good approximation of a Gaussian distribution, we
define the truncated Gaussian distribution such that points within 5o fall in [0,1] leading to
Oy = 1—10 and a truncation error &, = 1 — fol N (w) dw~ 1074,

Fully connected network For the truncated Gaussian distribution defined above, the

distribution of connections without pruning is (see also Fig. 3.2A):

W=\ = =10 ) T aroz P\ T 2x0.12 e
(3.19)

where .4~ denotes the normal distribution. Since combinations of Gaussian distributions are
also Gaussian distributions, we can immediately derive the PDF of Z; and Z] = w;; — w;.
Then, f{(Z;) is simply the positive half of f;*(Z}), but scaled by a factor of two because of
the normalization. We obtain (Fig. 3.2B,C):
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Figure 3.2 Probability density functions for the case of Gaussian-distributed connections. A
Distribution of the Gaussian variable w. B Distribution of the sum Z, of two Gaussian-distributed
variables. C Distribution of the absolute difference Z; of two Gaussian-distributed variables. D Joint
distribution of Z, and Z;. E - H The same as A - D but with pruning a = 0.1. In all the figures,
Grey shaded area: Histograms from simulations, Black lines and surfaces: Theoretical results (see
Eq. (3.20)-(3.26)).
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F(2Z1) = M) (zl; 1 =0,01= fzcrw> for Z; € [0, 1] (3.20)

BZ) =N <Zz; o = 24y, G = \chyw> for Z, € [0, 2] 3.21)

where .41, identifies the normalised (positive) half of a normal distribution. Similarly, the
joint distribution ffz (Z1,Z,) can be easily derived from the bivariate Gaussian of Z} and Z,
(Fig. 3.2D):

F5(Z0,22) = M5, (21,705 1 5, 212) (3.22)

with Ji/ll/gz being the normalised half (where Z; > 0) of a bivariate normal distribution.

Pruning When taking pruning into account, each PDF can be considered as a mixture of
the unpruned distribution and the contribution coming from the pruning. We can therefore

write:
fE(w)=(1—a) N (w; Uy, ow)+ad(0), (3.23)
fi.2Z) = 1_a:/V (Z1; 01)+2—a:/’/(w'ﬂ o) forZ; €[0,1] (3.24)
l,u 1+a 1/2 ’ ? 1+Cl s MWy Yw ) .
£ (2) = (s pin, ) 4 2 N (i iy G) forZp€[0,2]  (3.25)
2.a\42) = ta 2; M2, O2 ta > Hw, Ow 2 ) .

The above distributions are plotted in Fig. 3.2E, 3.2F, 3.2G.

Finally, the joint PDF is again a mixture model, with a univariate Gaussian peak profile
on the line Z; = Z, (Fig. 3.2H). Note that this peak can be described by the intersection of
the plane Z; = Z, with the full unpruned bivariate normal distribution .#® transformed to
2) —1/2

have its mean in (l,,, W,,). This operation implies a re-normalisation by 2 = (477:62

of the resulting univariate Gaussian. Then, we can write:
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—a
l+a

2a
112 EJVB (Z1,Z2s By, E12) 8(Z1 —2Z2) for [Z,Z5] €D

fhaZ1,22) = /’/1172 (Z1,Z2: 1y 5,Z12)

(3.26)

Correlation in the bivariate Gaussian The correlation p between Z; and Z,, appearing
in the off-diagonal terms of X;,, can be computed by running a numerical simulation.
We estimated p as a mean value over 10° representations of a 10-neuron network with
random connections distributed according to .4 (w; U, G,,) and with no pruning, i.e. a = 0.
The result is p ~ 7 X 104, which allows to treat Z; and Z, as independent variables and
then to factorise the bivariate normal distribution Eq. (3.22) in the product of the two
single distributions. Indeed, by introducing the Heaviside step function ®(x) and the re-

normalisation parameter R = 2, we can write:

M (21,205 1y 2, Z12) = RAP (21,205 1 5,81 2) ©(Z1 — )
~ RN (Z1; 1, 01) N (Z2; 2, 02) O (Zy — 1y) (3.27)
1/2(Z1s W, 01) A (Za; o, 02) -

We note that the pruning case does not require a different calculation and can be treated
as the a = 0 case. This is because we are describing the effect of the pruning with a separate
(univariate) function, i.e. the halved bivariate normal distribution describes only the unpruned
part of the network, see Eq. (3.26).

The suitability of this approximation is also certified by Fig. 3.2D,H, where the agreement

between simulation results and theoretical fit with Eq. (3.27) is excellent.

Expected value and variance of Z

Now we can insert the expression of the joint distribution, Eq. (3.26), into Eq. (3.4) and
Eq. (3.5):

1—a 1 2a
dzZ,Z dZ, — N8B (21.Z>; ) —_ 3.28
1+a/ 1 1/ A 1/2( 1,225 My 2, 1’2)+1+a (3.28)
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2
Varg le de ( —E8 [Z]) 1/2 (Z] Zs; Hq 2,21 2)
(3.29)
dz,(1-E8(Z))° /B (2,,2; T
+1+ag/ V(= EF(2])2 A (21,205 By, E1)
To calculate the above expression we use symbolic integration.
Expected value and variance of s
By plugging the above results into Eq. (3.4), (3.5), we obtain:
l—a [! 2-Z; 1 2a
§=FE8[s]=1— /dZZ/ dZ, — NE (Z1,2Z»; ,X12) ——— (3.30
Mg [s] alo 141 Z 222 1/2( 1,42 By 1,2) 1+a ( )

1 — 2-7; 2
(62)F = Vart(s) = {1+Z/ le/ a7, <__Eg[z]) N (21,203 1 2. B12)

2 .
1+a§/0 le(l—Eg[Z]) ,/}/B(ZI,Z],MWW,EI,I)}

(3.31)

The four formulas Eq. (3.17), (3.18), (3.30), (3.31) are the final result of the statistical
analysis and they will be discussed in the Results section.

3.1.5 Model network with plastic weights

Below we describe the model neural network on which we will apply our symmetry

measure.

Single-neuron dynamics We simulated N = 30 leaky integrate-and-fire neurons (Dayan
and Abbott [2001]) with a firing threshold of V;, = —50mV . The sub-threshold dynamics of

the electrical potential V; is given by:

dv;

" dt

where 7, is the membrane time constant, V,, is the resting potential, R is the membrane
resistance and /;(¢) is the input signal. We chose 7, = 10ms, Ve = —70mV, R = 1 KQ. To

introduce noise in the firing process of neurons, we implemented the escape noise model

= - (Vz(t) - Vrest) +R1i(t) ) (3.32)
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Symbol ‘ Description Value
N Number of neurons 30
T Membrane time constant 10 ms
R Membrane resistance 1 KQ
Viyest Resting and after-spike reset potential -70 mV
Vinr Threshold potential for spike emission -50 mV
Olsyn Voltage increase due to a presynaptic event I mV
Oloyt Voltage increase due to an external event 30 mV
Wnin Lower bound for synaptic weights 0
Winax Higher bound for synaptic weights 1
Wy Mean value of Gaussian-distributed initial weights 0.5
Oy Variance of Gaussian-distributed initial weights 0.01
A2+ Amplitude of weights change - pair term in LTP 4.6x1073
A; Amplitude of weights change - triplet term in LTP ~ 9.1x 1073
Ay Amplitude of weights change - pair term in LTD 3.0x1073
Az Amplitude of weights change - triplet term in LTD ~ 7.5x107°
Tr, Decay constant of presynaptic indicator rq 16.8 ms
Tr, Decay constant of presynaptic indicator r 575 ms
To, Decay constant of postsynaptic indicator o 33.7 ms
To, Decay constant of postsynaptic indicator o, 47 ms
Y Learning rate for STDP {1,7}
dt Discretisation time step 1 ms
Niter | Number of independent repetitions of the experiment 50

Table 3.1 List of parameters used for the case study. STDP parameters are as in the nearest-spike
triplet-model, described in Pfister and Gerstner [2006].

(Gerstner and Kistler [2002b]). At each time-step At the probability that the neuron i fires is

given by:
Vi—V,
@ (Vi) = 1 —exp (—Atpo exp (’A—V”")) (3.33)

where pg = 0.1 ms— ! and AV = 5mV. Once a neuron fires, its membrane potential is reset to
the resting value.

Synaptic and external inputs The input /;(¢) to each neuron has two components: A
synaptic part, coming from the action potentials of the other neurons, and an external part,
which is defined by the applied protocol:

L(t) = 1" () + 177 (1) = o™ ) w6 (t —tjf - 8) + a8 (1—15") . (3.34)
J#i
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In the synaptic term, w;; are the synaptic weights, t{ is the firing time of the presynaptic

neuron j and € is a small positive number accounting for the delivering time of the electrical
signal from the presynaptic to the postsynaptic neuron. The term £ is the time course of the
injected input, which is different from neuron to neuron and depends on the protocol we use
(see Results section). Finally, the amplitudes o™ and or®* are fixed to the same value for all
neurons. We chose a®" = 1 uA x s and oe*" = 30 A X s, so that each external input forces
the neurons to fire.

Plasticity The efficacy of the synaptic connections is activity-dependent. Therefore, the
unpruned elements of the adjacency matrix w;; in Eq. (3.34) change in time by Spike-
Timing Dependent Plasticity (STDP) mechanisms, i.e. passively driven by the input protocol
and emerging internal dynamics, without the presence of a supervisory or reinforcement
learning signal (Richmond et al. [2011]; Vasilaki et al. [2009a,b]). More specifically, we
implemented the triplet STDP rule (Clopath et al. [2010, 2008]; Pfister and Gerstner [2006])
with parameters from Pfister and Gerstner [2006] (Visual cortex, nearest neighbour dataset),
see Tab. 3.1, and we constrain the connections in [0, 1]. In this model, each neuron has two

1

presynaptic variables !, 7> and two postsynaptic variables o', 0. In the absence of any

activity, these variables exponentially decay towards zero with different time constants:

dr} 1 dr? ) do! | do? 2
Trl d—; = —r; Trzd—; =—r; T()l d_l'l = —0; T()zd—tl = —0; (335)
whereas when the neuron elicits a spike they increase by 1:
rr=sribl =Pl ool —sol 41 0 =041, (3.36)

Then, assuming that neuron i fires a spike, the STDP implementation of the triplet rule can
be written as follows:
. . 1 = — 42
wji = wji—7v0; (1) [A; +ASrf (1—¢)]

; , (3.37)
wij = wij —yr (1) [A7 +AJ o7 (t —¢€))]

where 7 is the learning rate and € is an infinitesimal time constant to ensure that the values of
7’1'2 and 01'2 used are the ones right before the update due to the spike of neuron i. The learning

rate used is 1 for the frequency protocol, 7 for the sequential protocol (see Results).
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Reproducibility of results All simulations were performed in MATLAB (The Mathworks,
Natick, USA). Code is available from ModelDB (Hines et al. [2004]), accession number:
151692.

3.2 Results

We recall the definition of the symmetry measure s (Eq. 3.1):

s=1— Z y iy =wil (3.38)

N( z 1j=i+1 wl]+wﬂ

where w;; is the positive synaptic connection from neuron j to neuron i, N is the total number
of neurons and M is the number of instances where both w;; and w;; are zero, i.e. there

w is a normalisation factor

is no connection between two neurons. The term g =
that represents the total number of synaptic connection pairs that have at least one non-zero
connection.

By using this definition, we were able to estimate the expected value and the variance of s
on random matrices (uniform and truncated Gaussian), see Eq. (3.17)-(3.18) and (3.30)-(3.31)
correspondingly. This provides us a tool to estimate the significance of the “symmetry” or
“asymmetry” of the adjacency matrix of a given network, shaped by learning, given the initial
distribution of the synaptic connections prior to the learning process. The statistical analysis
is particularly useful in cases where the developed configuration is not “clear-cut”, i.e. all
connections have been turned to either bidirectional or unidirectional resulting in a symmetry
measure almost 1 or 0, which is probably an artificial scenario, but rather in the intermediate
cases, where we need a measure of how far away the value of the symmetry measure of
a specific configuration is from that of a random configuration. Though here we focused
on two specific random distributions, our methodology is applicable to other distribution

choices.

3.2.1 Hypothesis test

Having calculated the mean and variance of the symmetry measure s over random
networks of a specific connectivity distribution, we are now able to directly evaluate the
symmetry measure s of a specific connectivity structure and conclude whether the symmetric
or asymmetric structure observed is due to chance or it is indeed significant. A simple test is,

for instance, to calculate how many standard deviations sy is away from ;. Equivalently, we
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can form the hypothesis that the configuration s, is non-random and calculate the p-value by:

“+oco
p-value = £2 N (Us, 05)ds, (3.39)

Ss

where we implicitly assume that the distribution of the symmetry measure s over all random
networks is Gaussian. We can compare this result with the significance level we fixed,
typically py = 0.05, and we can then conclude the nature of the symmetry of the network
with a confidence level equal to py or reject the hypothesis.

Uniform distribution Gaussian distribution
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Figure 3.3 Final statistics of the symmetry measure. A Expected value and standard deviation of
the symmetry measure as a function of the pruning for different types of networks with uniform
weights distribution. The total length of each bar is two times the standard deviation. Dashed
light grey line: Simulations for symmetric networks, Dash dotted light grey line: Simulations for
asymmetric networks, Solid dark grey line: Simulations for random networks, Dashed black line:
Theoretical results for random networks. B The same as A but with Gaussian-distributed random
weights. C Example of an adjacency matrix in a particular random network with uniform weights
distribution and pruning parameter a = 0.4. For this example s ~ 0.260. D The same as C but with
Gaussian-distributed random weights. For this example s ~ 0.322.
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a | pltol us +of
0.0 | 0.614+0.042 0.885+0.013
0.1 | 0.502+0.052 0.7244+0.053
0.2 | 0.409+£0.056 0.59040.064
0.3 | 0.331£0.058 0.476+0.070
0.4 | 0.263+£0.058 0.3794+0.072
0.5 | 0.205+£0.057 0.2954+0.072
0.6 | 0.153+£0.056 0.2214+0.072
0.7 | 0.108 £0.055 0.156+0.071
0.8 | 0.068 £0.053 0.098+0.070
0.9 | 0.032£0.052 0.047+0.068

Table 3.2 Mean value and standard deviation of the symmetry measure as obtained from the theoretical
analysis. Column 1: Value of the pruning parameter a. Column 2: Uniform distribution. Column 3:
Gaussian distribution. These values are obtained with n = 10° random networks of N = 10 neurons
and are plotted in Fig. 3.3.

3.2.2 Pruning biases the network towards asymmetry

To demonstrate the validity of our analytical results, we compare them to simulation
results. We generated a sample of n = 10° networks with N = 10 neurons with random
connections with synaptic efficacies varying from O to 1. We evaluated the symmetry measure
on each network by applying directly the definition of Eq. (3.38), and then we computed the
mean value and variance of that sample. This process was repeated ten times, each one for a
different value of the pruning parameter, a = {0,0.1,0.2,...0.9}. The final results are shown
in Fig. 3.3A,B, together with the analytical results, see Eq. (3.17) and (3.30). Since numerical
and analytical results overlap, we used a thicker (black) line for the latter. The agreement
between theoretical findings, listed in Tab. 3.2, and numerical evaluations is excellent.

We also considered two extreme cases, symmetric and asymmetric random networks,
which respectively represent the upper and lower bound for the symmetry measure defined in
Eq. (3.38). Symmetric random networks have been generated as follows: We filled the upper
triangular part of the N x N weights matrix with random values from the uniform/Gaussian
distribution. We then mirrored the elements around the diagonal so as to have w;; = wj;. In
the asymmetric case, instead, we generated a random adjacency matrix with values in [0.1, 1]
for the upper triangular part and in 1073 x [0.1, 1] for the lower triangular part, so as to have
w;j < wj;. Then, we shuffled the adjacency matrix.

In Fig. 3.3A,B we contrast our results on random networks with numerical simulations of
symmetric and asymmetric random networks: The dashed, light grey line (top line) shows

the upper extreme case of a symmetric random network w;; = wj; Vi, j = 1...N, whereas
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the dash-dotted, light grey line (bottom line) shows the lower extreme case of a asymmetric
random network w;; < wj; for i > j.
When we introduce pruning, the lower bound of s remains unchanged, whereas the more

we prune the more a symmetric network appears as asymmetric.
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Figure 3.4 Symmetry and asymmetry depends on the distribution of the initial connectivity. A
Example of an adjacency matrix in a random network with pruning parameter a = 0 and symmetry
measure s ~ 0.900. According with the p-value test with the null hypothesis of random connectivity
and with a level of confidence of 0.05, the symmetry of this network is significant if the distribution
of the initial connections is uniform but is non-significant if the initial distribution of the connections
is Gaussian. Therefore, in the first case it should be regarded as a non-random network whereas in the
second case as a random network. B The same as A but with pruning parameter a = 0.2 and symmetry
measure s ~ 0.334. In this case, with the same hypothesis test, the situation is reversed: The network
should be considered random for initial uniform distribution of connections, but non-random for
initial Gaussian-distributed connections (see the discussion in the text).

3.2.3 Gaussian-distributed synaptic efficacies bias the network towards

symmetry

In Fig. 3.3C,D, we show the adjacency matrix W for a random pruned network with
pruning parameter a = 0.4. A network with uniformly distributed initial connectivity is
shown in Fig. 3.3C and a network with Gaussian-distributed initial connectivity is shown in
Fig. 3.3D. Black areas represent zero connection, w;; = 0. The “Gaussian” network has most
of the connections close to the mean value L, resulting in higher values for the symmetry
measure than in the case of a uniform distribution, compare Fig. 3.3B with Fig. 3.3A.

This difference in the mean values of s depending on the shape of the distribution implies
that for example a weight configuration that would be classified as non-random under the
hypothesis that the initial connectivity, before learning, is uniform, is classified as random

under the hypothesis that the initial distribution of the connections is Gaussian. To more
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emphasise this point, we show in Fig. 3.4 the adjacency matrix of two different networks
of 30 neurons. The first network, Fig. 3.4A, is a non-pruned network with s >~ 0.900.
According with the values obtained from the statistical analysis (Tab. 3.2), if we assume
that the connections of this network are randomly drawn from a uniform distribution, the
p-value test (Eq. (3.39)) gives us p-value ~ 6.50 x 10~'2. With the usual confidence level of
ps = 0.05, this is a significant result, implying that the network configuration is unlikely to
be random. Conversely, if we assume that the initial connectivity is drawn from a Gaussian
distribution, we obtain p-value ~ 0.25, meaning that the network configuration should be
considered random.

In Fig. 3.4B, we show a pruned network with a = 0.2 and s ~ 0.334. In this case
the opposite is true: Under the hypothesis of uniform random initial connectivity, the
network should be considered random, as p-value ~ 0.18. Under the hypothesis of Gaussian-
distributed random initial connectivity, the network should be considered asymmetric, as
p-value ~ 7.20 x 1072,

3.2.4 Relation between symmetry measure and motifs

In what follows, we demonstrate the relation between our symmetry measure and unidi-
rectional and bidirectional motifs. From the definition s, Eq. (3.38), we can deduct that in
the extreme case of a network with unidirectional motifs, i.e. pairs of the form (0,x), x > 0,
the symmetry measure will result in s = 0, while in the case of bidirectional motifs i.e. pairs
of the form (x,x), the symmetry measure will result in s = 1. By inverting Eq. (3.4), we
can derive the mean value for connection pairs yz = E, [Z;] = 1 — t;. We can use now this
value to define connection pairs in a network as unidirectional or bidirectional: If Z; > uz
than Z; is a unidirectional motif, otherwise it is a bidirectional motif. In this way we relate
unidirectional and bidirectional motifs to what is traditionally called single edge motif and
second-order reciprocal motif, respectively. It is then expected that when s increases, the
fraction of bidirectional motifs increases towards 1, whereas the percentage of unidirectional
motifs decreases towards O.

We show this relation in simulations by generating 10> networks of 15 neurons each, with
uniformly distributed random connections in [0, 1] and no pruning. In this case the mean
value of the symmetry measure is u) ~ 0.614. Using Eq. (3.4), we have u” ~ 0.386, which
is the value used to decide whether a connection pair is unidirectional or bidirectional. For
each of these networks, we calculated the value of the symmetry measure and the fraction of
unidirectional and bidirectional motifs and we plotted the results in Fig. 3.5A as a scatter plot

(black circles - bidirectional motifs, grey circles - unidirectional motifs). Also, un Fig. 3.5B
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Figure 3.5 Symmetry measure reflects motifs formation. A Scatter plot of fraction of unidirec-
tional and bidirectional motifs as a function of the symmetry measure for 10> networks with uniform
random connections and a = 0. Black dots: Bidirectional motifs, Grey dots: Unidirectional motifs.
For this typology u{ ~ 0.614. B The same as A but with pruning parameter a = 0.4. In this case
u¥ ~0.263. C Mean value and standard deviation (each bar is twice the standard deviation) of fraction
of unidirectional and bidirectional motifs as a function of the symmetry measure for 10 networks
with half of the connections uniformly distributed and a = 0. The second half of the connections were
derived from the values of connection pairs Z, drawn from a Gaussian distribution with mean 1 —s
and standard deviation 0.1. Black line: Bidirectional motifs, Grey line: Unidirectional motifs. D The
same as C but with pruning parameter a = 0.4.

we show the analogous results obtained when we prune the connections with a = 0.4. In

both cases, a linear relation between s and motifs is evident.

Note that in both figures the restricted domain on the s-axis: This is determined by the
range of s values that correspond to random networks. If we want to extend this range,
we need to consider networks that are not random any more. We achieve this by fixing a
distribution for connection pairs Z. Once we decide on the desirable value of s, in our case the
whole zero to one spectrum, we can use a distribution (e.g. Gaussian) with mean ty = 1 — L
and a chosen variance to draw the values of all the connection pairs in the network. Following

this procedure, we fill the upper triangular part of the 15 x 15 weights matrix with random
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values from the uniform/Gaussian distribution, and derive the other half of the weights by
inverting the definition of Z. As a PDF(Z) we chose a Gaussian distribution around Lz
with o = 0.1, except for the extreme cases (near s =0, s = 1) where o = 0. With this
technique of creating networks, we sampled the entire domain of s in steps of 0.01. For each
value, we again generated 10° networks of 15 neurons with (half of the) weights uniformly
distributed, and then we computed the mean value and standard deviation. Results are shown
in Fig. 3.5C,D respectively for unpruned and pruned (with a = 0.4) networks (black line -
bidirectional motifs, grey line - unidirectional motifs). We can see that Fig. 3.5C,D correctly
reproduce the linear regime observed in Fig. 3.5A,B for values of s close enough to u}.
Due to the method by which we generated networks, the shape of the distribution of half
of the weights does not affect the shape of the dependence in Fig. 3.5C,D. Indeed, if we
choose half of the connections to be Gaussian-distributed, we will observe only a shift in

both curves as they have to cross at t; = 0.885 (results not shown).
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Figure 3.6 Eigenvalues and network structure. A Expected value and standard deviation of the
fraction of complex eigenvalues as a function of the pruning for different types of networks of
N = 10 neurons with uniform weight distribution. The total length of each bar is two times the
standard deviation. Dotted, dark grey line: Simulations for asymmetric networks, Dashed, black line:
Simulations for random networks, Dash-dotted, light grey line: Simulations for symmetric networks.
B Fraction of complex eigenvalues as a function of network size for random networks with uniform
weights distribution. Pruning parameter a = 0.

3.2.5 Symmetry measure and eigenvalues

In the definition of our symmetry measure we have deliberately excluded (0,0) connection
pairs. This was a conscious decision for mathematical and practical reasons, see Methods. As

a consequence, pairs of the form (0,0) do not contribute to the evaluation of the symmetry of
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the network. Instead, pairs of the form (0, €), with € very small, contribute to the asymmetry
of the network according to our specific choice of symmetry measure (leading to Z =1,
see Methods). Here we further motivate this choice via a comparison of our measure to
the evaluation of the symmetry via the matrix eigenvalues, for three types of networks:
(1) Symmetric, where each connection pair consists of synapses of the same value, (i1)
asymmetric, where every connection pair has one connection set to a small value €, and (ii1)
random, where connections are uniformly distributed. We demonstrate that our measure has
a clear advantage over the eigenvalues method, in particular when pruning is introduced.
This difference in performance lays in the different ways that (0,0) and (0, €) are treated by

our measure.

A crucial property of the real symmetric matrices is that all their eigenvalues are real.
Fig. 3.6A depicts the fraction of complex eigenvalues vs the pruning parameter a for a
symmetric (dash-dotted, light grey line) asymmetric (dotted, dark grey line) and random
(dashed, black line) matrix with uniformly distributed values, similar to Fig. 3.3A, with
the same statistics (10° networks of 10 neurons). As expected, if no pruning takes place
(a = 0), symmetric matrices have no complex eigenvalues and are clearly distinguishable
from random and asymmetric matrices. On the contrary, both random and asymmetric
matrices have a non-zero number of complex eigenvalues, which increases with a higher
degree of asymmetry, leading to a considerable overlap between these two cases, differently

from what happens with our measure in Fig. 3.3A.

As we introduce pruning, the mean of the complex eigenvalues of the three distinctive
types of network moves towards the same value, an increase for the symmetric network
and decrease for the random and non-symmetric networks. This is expected as pruning
specific elements will make the symmetric network more asymmetric while it will increase
the symmetry of the asymmetric network by introducing pairs of the form (0, ¢€) or (0,0).
The (0, €) pairs are due to the construction of the asymmetric network, where half of the
connections are stochastically set to very low values. This continues till a = 0.5, after which
further pruning reduces the number of complex eigenvalues of all networks: A high level of
pruning implies the formation of more (0, €) or (0,0) pairs for the asymmetric network and
more (0,0) pairs for the symmetric network. In Fig. 3.6B we show the dependence of the

fraction of complex eigenvalues for uniform random matrices on their size.

Comparing Fig. 3.6A to Fig. 3.3A, we observe that our symmetry measure offers excellent
discrimination between the symmetric, asymmetric and random matrices for e.g. a = 0.4.
This is despite the fact that the structure of the asymmetric matrix per se has become less
asymmetric and the structure of the symmetric matrix has become more asymmetric due to the

pruning, as it is confirmed by the overlapping fraction of complex eigenvalues for asymmetric
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and random matrices (Fig. 3.6A). In our measure (0, €) pairs are treated as asymmetric, (0,0)
pairs are ignored, and the bias that pruning introduces is taken into account allowing for good

discrimination for all types of matrices, even beyond a = 0.4.
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Figure 3.7 Evolution of networks with STDP and initially uniform weights distribution. A Time
evolution of the symmetry measure when a frequency protocol is applied on a network, shown as
average over 50 representations. The shaded light grey areas represent the standard deviation (the
total length of height of each band is twice the standard deviation). Solid black line: No pruning,
Dashed grey line: With pruning a = 0.4. B Example of an adjacency matrix at the end of the learning
process for a network with the frequency protocol and no pruning. For this example s >~ 0.921. C The
same as B but with pruning a = 0.4. For this example s ~ 0.427. D - F The same as A - C but with
the sequential protocol applied. The connectivity matrix in panel E has s ~ 0.393. The connectivity
matrix in panel F has s ~ 0.141.
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Figure 3.8 Evolution of networks with STDP and initially Gaussian-distributed weights. A
Time evolution of the symmetry measure when a frequency protocol is applied on a network, shown
as average over 50 representations. The shaded light grey areas represent the standard deviation (the
total length of height of each band is twice the standard deviation). Solid black line: No pruning,
Dashed grey line: With pruning a = 0.4. B Example of an adjacency matrix at the end of the evolution
for a network with frequency protocol and no pruning. For this example s >~ 0.963. C The same as B
but with pruning a = 0.4. For this example s ~ 0.456. D - F The same as A - C but with the sequential
protocol applied. The connectivity matrix in panel E has s ~ 0.426. The connectivity matrix in panel
F has s ~ 0.153.
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3.2.6 Case study: Monitoring the connectivity evolution in neural net-

works

We demonstrate the application of the symmetry measure to a network of neurons
evolving in time according to a Spike-Timing Dependent Plasticity (STDP) “triplet rule”
(Pfister and Gerstner [2006]) by adopting the protocols of Clopath et al. [2010]. These
protocols are designed to evolve a network with connections modified according to the
“triplet rule”, to either a unidirectional configuration or bidirectional configuration, with the
weights being stable under the presence of hard bounds. We have deliberately chosen a small
size network as a “toy-model” that will allow for visual inspection and characterisation at the
mesoscopic scale.

We simulated N = 30 integrate-and-fire neurons (see Methods section for simulation
details) initially connected with random weights w;; € [0, 1] drawn from either a uniform
(Fig. 3.7) or a Gaussian (Fig. 3.8) distribution (see Tab. 3.1 for parameters). Where a pruning
parameter is mentioned, the pruning took place prior to the learning procedure: With a fixed
probability some connections were set to zero and were not allowed to grow during the
simulation.

Our choice allows us to produce an asymmetric or a symmetric network depending on
the external stimulation protocol applied to the network. Since the amplitude of the external
stimulation we chose (a®" = 30mV) is large enough to make a neuron fire every time it
is presented with an input, the firing pattern of neurons reflects the input pattern and we
can indifferently refer to one or another. The asymmetric network has been obtained by
using a “sequential protocol”, in which neurons fire with the same frequency in a precise
order one after the other, with Sms delay, see also Clopath et al. [2010]. The symmetric
network is produced by applying a “frequency protocol”, in which each neuron fires with a
different frequency from the values {15, 16, 17,..., 44 Hz}. In both cases, the input signals
were jittered in time randomly with zero mean and standard deviation equal to 2 % of the
period of the input itself for the frequency protocol, to 25 % of the delay for the sequential
protocol. Depending on the protocol, we expect the neurons to form mostly unidirectional or
bidirectional connections during the evolution.

The time evolution for both protocols and initial distributions is shown in Fig. 3.7A,D
(uniform) and 3.8A,D (Gaussian). Each panel represents the evolution of the symmetry
measure averaged over 50 different representations for both fully connected networks (a = 0,
solid black line) and pruned networks (e.g. a = 0.4 , dashed grey line). The shaded area
represents the standard deviation. The time course of the symmetry measure can be better
understood with the help of the Fig. 3.3. At the beginning, the values of s reflect what we

expect from a random network. Afterwards, as the time passes, the learning process leads to
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the evolution of the connectivity. As expected, the frequency protocol induces the formation
of mostly bidirectional connections, leading to the saturation of s towards its maximum value,
depending on the degree of pruning. Conversely, when we apply the sequential protocol,
connection pairs develop a high degree of asymmetry, the values of s decreasing towards its

minimum. Connections were constrained to remain inside the interval [0, 1].

Type s prand 4 grand p-value Uy /a4 o /a
UFqp | 0.921 0.614+0.042 1.82x10713 1.000 4 0.000
UFag4 | 0427 0.263+0.058 4.50x 1073 0.429+0.081
USap | 0.393 0.614+0.042 1.21x10~7 0.003+0.387 x 1073
USags | 0.141 0.2634+0.058 3.46x 1072 0.001+£0.352x 1073
GFap | 0.963 0.885+0.013 3.30x107° 1.000 4 0.000
GFap4 | 0.456 0.37940.072 2.85x 107! 0.429+0.081
GSao | 0.426 0.885+0.013 0 0.002+0.256 x 1073
GSap4 | 0.153 0.37940.072 1.70x 1073 0.001 £0.260 x 1073

Table 3.3 Symmetry measure and p-value for different types of network. Column 1: Network type. U
= Uniform distribution, G = Gaussian distribution, ' = Frequency protocol, S = sequential protocol,
ao = No prune, ag4 = pruning of 0.4. Column 2: Value of the symmetry measure for one instance of
each type. Column 3: Results from the previous statistical analysis on random networks. Column 4.
Corresponding p-value from Eq. (3.39). Column 5: Results from the previous statistical analysis for
the corresponding closest extreme case — symmetric network for frequency protocol and asymmetric
network for sequential protocol. s means symmetric and a asymmetric.

The final connectivity pattern can be inspected by plotting the adjacency matrix W. In
Fig. 3.7B,C and 3.8B,C we give an example of W at the end of the evolution for one particular
instance of the 50 networks when the frequency protocol is applied. Similarly, in Fig. 3.7E,F
and 3.8E,F we show the results for the sequential protocol. The corresponding values of s
for each of the examples in the figures are listed in Tab. 3.3. In the case that a = 0, a careful
inspection of Fig. 3.7B and 3.8B indicates that connectivity is bidirectional: All-to-all strong
connections have been formed. Instead, in Fig. 3.7E and 3.8E, trying to determine if there is
a particular connectivity emerging in the network starts to be considerably tough. However,
by using our symmetry measure (see values in Tab. 3.3) we can infer that the connectivity
is unidirectional. In the pruned networks, however, see Fig. 3.7C, 3.8C and Fig. 3.7F, 3.8F,
the formation of bidirectional and unidirectional connection pairs is not as obvious as for
a = 0. We therefore refer again to the Tab. 3.3 and compare the values of s with u/*"¢ and

asym

with ug™" or u>™, depending on the case. We can then verify that the learning process has

significantly changed the network and its inner connections from the initial random state.
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We can rigorously verify the above conclusions via a statistical hypothesis test such as the
p-value test, which in essence quantifies how far away the value of our symmetry measure s
of our final configuration is from the initial, random configuration (see also Methods). In
Tab. 3.3 we show the p-values corresponding to the null hypothesis of random connectivity for
the examples in the Fig. 3.7, 3.8. Once we set the significance level at p; = 0.05, we can verify
that, except for the case of pruned network with initially Gaussian-distributed connections
where a frequency protocol has been applied (i.e. GFag4), the p-values are significant,
implying the rejection of the null hypothesis. This is also justified by Fig. 3.3A,B: When
we increase the pruning, the mean value of the symmetry measure of the fully symmetric
network approaches that of the pruned random network and in particular for the case where

the weight are randomly Gaussian-distributed.

3.3 Conclusion

The study of the human brain reveals that neurons sharing the same cognitive functions
or coding tend to form clusters, which appear to be characterised by the formation of
specific connectivity patterns, called motifs. We, therefore, introduced a mathematical tool, a
symmetry measure s, which computes the mean value of the connection pairs in a network,
and allows us to monitor the evolution of the network structure due to the synaptic dynamics.
In this context, we applied it to a number of evolving networks with plastic connections that
are modified according to a learning rule. After the network connectivity reaches a steady
state as a consequence of the learning process, connectivity patterns develop. The use of the
symmetry measure together with the statistical analysis and the p-value test allow us both to
quantify the connectivity structure of the network, which has changed due to the learning
process, and to observe its development. It also allows for some interesting observations. (i)
Introducing a fixed amount of pruning in the network prior to the learning process biases the
adjacency matrix towards an asymmetric configuration. (ii) A network configuration that
appears to be symmetric under the assumption of a uniform initial distribution is random
under the assumption of a Gaussian initial distribution.

Statements on non-random connectivity in motifs experimental work, e.g. Song et al.
[2005]; Vasilaki and Giugliano [2014], are supported by calculating the probability of con-
nectivity in a random network and then distributing it uniformly: This becomes the null
hypothesis. This was a most suitable approach given the paucity of data. If, however, the
null hypothesis consisted of a Gaussian-distributed connectivity, then a higher number of

bidirectional connections would be expected, as suggested by our analysis.



3.3 Conclusion 51

Summary The measure introduced here applies to the adjacency matrix of an entire
network and as such is a global estimator of the symmetry of the connectivity of a network.
However, it is possible that in large networks learning processes are only modifying a subset
of the connections, forming motifs that might be unobserved if the symmetry measure is
applied to the whole matrix. Clearly, it can also be applied to a limited sub-region within the
network, but without a clear a priori knowledge or indication on where to look for symmetric
or asymmetric areas, this is not a meaningful procedure. In such cases, algorithms are needed
to detect potential symmetric or asymmetric regions. The symmetry measure presented here
could be therefore applied to such areas only to reveal the evolution of the structure and its
significance. Next chapter addresses this question by defining a heuristic algorithm for a
particular class of structures.






Chapter 4

Detection of Multiple and Overlapping
Bidirectional Communities within Large,

Directed and Weighted Networks of

Neurons'

When studying motifs formation in networks of neurons, it is most likely that learning
affects not the entire network but only subsets of neurons, which are not known in advance
and are very difficult to detect. A global estimator like the one defined in the previous chapter
is therefore no longer meaningful in these cases.

Graph and Network Theory represent the natural ground to tackle problems related to
structures’ detection, and indeed they have been recently applied to brain networks (He
and Evans [2010]; Sporns [2011a, 2013]), producing good results (Bassett and Bullmore
[2009]; Guye et al. [2010]). However, typical Network Theory problems related to structure
searching are proven to be either NP-complete or NP-hard (Bomze et al. [1999]; Cook [1971];
Garey and Johnson [1990]; Papadimitriou [1977]; Wegener [2005]). It is therefore common
procedure to employ heuristic algorithms. The purpose of the work presented here is to add a
contribution to structures’ detection in networks of neurons direction by means of a heuristic
algorithm designed to identify a particular class of such structures.

Besides the computational limitations, networks of neurons are arguably the most chal-
lenging type of graph to deal with, as they are instances of directed and weighted graphs
with continuous weights. Most studied problems in Network Theory are based on undirected

networks (Fortunato [2010]), with some of them focussing on directed un-weighted (or

I'This chapter is almost entirely taken from Esposito and Vasilaki [2015]
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binary) graphs (Malliaros and Vazirgiannis [2013]). In most of the cases generalisation to
directed and weighted graphs is not always trivial. Moreover, in general, there is no limitation
on the number of structures that can be formed within a network of neurons, nor on their
shapes and overlaps. This leads to a very generic problem that needs to be narrowed to design

an effective searching algorithm.

On the other side, we show that having a network of neurons and structures that arise
from learning allows us to make considerations and hypotheses that greatly simplify the
searching task, ultimately framing it within the domain of community detection in Network
Theory (Girvan and Newman [2002]; Newman [2004]). This field has received constantly
increasing attention due to the fact that community structures are often present in many types
of networks and through their study the understanding of the network itself can be greatly
improved (Porter et al. [2009]). However, despite huge efforts of a large interdisciplinary

community of scientists, the problem is not yet satisfactorily solved.

Most of the existing algorithms for community structure use techniques like hierarchical
clustering (Girvan and Newman [2002]; Newman and Girvan [2004]), modularity optimisa-
tion (Danon et al. [2005]; Newman [2006]; Ovelgonne and Geyer-schulz [2012]), which is
also a NP-complete problem (Brandes et al. [2006]), spectral searching (Newman [2013])
and statistical inference (Ball et al. [2011]; Rosvall and Bergstrom [2007]). These methods
are usually not designed for directed and weighted networks and also they do not consider
overlapping communities. Furthermore, each class has its own limitations. For instance,
modularity optimisation, which is the most widely used method, is known to have resolution
problems (Fortunato and Barthélemy [2007]), and spectral analysis is much more complex
for directed graphs as it is characterized by asymmetrical matrices. Developing methods of
community detection for directed graphs is a hard task. The most important class of algo-
rithms for the complete problem, i.e. detection of overlapping communities in directed and
weighted graphs, is the clique percolation method (Karrer et al. [2014]; Palla et al. [2005]).
However, since it does not look for actual communities but just for regions containing many
cliques, it fails in several scenarios and its success also depends on the quantity of cliques
that are present in the network (Fortunato [2010]). Community detection also suffers from
the lack of a unique definition: How to identify a community generally varies depending on
the problem and on the algorithm, and often a community is just the final outcome of the

algorithm itself (a posteriori approach) (Fortunato [2010]).

Here we start by giving a general definition of community (a priori approach) and we
show how this represents a great advantage as such a definition can be used as a guidance
for building the algorithm. Our method, which aims at detecting multiple and overlapping

bidirectional communities in directed and weighted networks of neurons, is based on a
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statistical analysis of connections and it is a mixture of different techniques. At the basis of
the algorithm there is the notion of symmetry measure introduced by Esposito et al. [2014] as
an indicator of the global symmetry of a network’s connectivity. Below, we introduce a local
version of this measure, which, together with the community definition, allows us to develop
a peculiar searching technique, a mixture between top-down and bottom-up approaches,
that does not require to look at single connections to identify communities. This first part
already provides very good results and in a very short time, but is able to detect only the
non-overlapping parts of communities . Following this, we implement a neuron by neuron
evaluation, that we call friendship algorithm, where we restore the detailed information
about which pairs of neuron are connected to each other. This greatly increases the total
computational time but it also improves the accuracy on the final outcome and allows to

detect overlapping regions as part of more than one community.

4.1 Methods

Consider a directed and weighted network of N nodes that are all-to-all connected, with
connectivity matrix W. Without losing generality, we allow single connections w;; to vary in
[0, 1], where w;; represents the strength of the connection from node j to node i. We do not

consider self-interactions, i.e. w; =0Vi=1...N.

4.1.1 Preliminary assumptions

We assume that the network described by W is the result of some learning process that
affects only (unknown) parts of the network, significantly shaping these connections away
from their initial configuration. Hence:

* Prior to learning, there is no way to differentiate the neurons that are going to be
affected by the process from the rest of the network. We therefore assume that
before learning all the connections in the network are randomly drawn from the same
distribution.

» Connections between any pair of neurons are subject to the same learning process and
therefore evolve in a similar way, which constraints structures to have the particular
shape of a blob, rather than, for example, of a filament or a ring.

As aresult, structures appear as regular bumps that stand out of the global randomness of
the network’s connectivity. In addition, we take into account that learning can occur with

an efficacy ¢ < 100% (some connections may be faulty and not evolve) and that it can be
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slower for some neurons and faster for others. This makes the final blobs’ connectivity far
from being a perfect and regular structure: Locally, some connections may not display any
feature of the learning process, but the majority of the connections in the structure does,
which preserves the global property of forming a bump in the network’s connectivity.

In what follows, we adopt and generalise the terminology from Network Theory and refer

to these structures as communities.

4.1.2 Definition of community and bidirectional community

For unweighted graphs, a community is generally a region where the edge concentration
inside is higher than outside (Fortunato [2010]). In this case, the community detection
problem for a complete network has the network itself as the only, trivial solution. When
searching for communities in continuous weighted networks, it is essential to specify with
respect to which property of the connectivity we are investigating the community structure:
By changing the feature of the connectivity we look at, a different community structure can
emerge. We can therefore phrase the concept of community in terms of an over-expression,
in this case, of some property related to the connectivity. Thus, a complete weighted graph,
differently from an unweighted one, can present solutions different from the trivial ones and
in principle it can offer the same variety in the community structure as a sparse unweighted
network.

In our case, the feature we investigate is bidirectionality. Two neurons i, j form a
bidirectional pair when both connections have a similar strength, w;; ~ wj;, resulting in
information flowing nearly equally in both directions. Guided by experimental results
showing excess of bidirectional connections in some regions of the brain (Song et al. [2005];
Wang et al. [2006]), we assume that learning strengthens all the connections involved, thus
acting as a Hebbian-like process (Clopath et al. [2010]; Esposito et al. [2015]; Richmond
et al. [2011]; Vasilaki et al. [2009a]; Vasilaki and Giugliano [2012, 2014]). This leads to the
formation of what we call bidirectional communities within the network: Subsets of neurons
that show an over-expression of bidirectional connections among them, when compared with
the rest of the network. Since connections are continuous variables, there is no clear way to
discriminate a pair that is bidirectional from a pair that is not without using the threshold
concept. In the following, we will describe how to fix a bidirectionality threshold, essential

for the algorithm implementation.

Local estimator of bidirectionality Esposito et al. (Esposito et al. [2014]) introduced a

measure of network’s connectivity, ranging from 0 to 1, that for fully connected networks
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reduces to the following:
2 ¥ & wij—wiil

s—l——
N(N-1) i;j_iﬂ Wij T Wji

4.1)

The extreme values s = 1 and s = 0 respectively correspond to completely symmetric
networks, for which w;; = wj; Vi,j=1...N, and to completely asymmetric networks,
for which w;; =0, w;; #0Vi,j=1...N with i > j. In between these extremes, there is a
continuum of values with smooth transitions between bidirectional, random and unidirectional
networks. Through a statistical analysis of this symmetry measure on random networks, it
is possible to identify a bidirectionality threshold sg, which depends on the distribution of
connections, separating bidirectional networks from non bidirectional ones (Esposito et al.
[2014]).

This is, however, a global indicator that cannot capture a deeper organisation at a sub-
networks level, nor it can be directly used to find communities, as it would require an
extensive search. However, it can be used i) to validate community candidates after a
successful searching and ii) to construct a local estimator encoding for the bidirectionality
feature. Indeed, the symmetry measure is a global average of a local pairwise quantity, the
relative strength of a pair of connections, defined as:

|Wij — wijil
=7y T

Zii = 4.2
/ Wij +Wwji (4.2)

Z is a continuous variable ranging from 0 to 1 that covers all the possible states in which a
connection pair can be found. In particular, bidirectionality is expressed by Z — 0. Similirarly
to s, we can map this continuum into a discrete two-state space, corresponding to randomness
and bidirectionality, by fixing a local bidirectionality threshold Zg on the connection pair.
This can be done by simply translating sp into the corresponding value of Z by using the
definition of s itself:

Zp=1—sp 4.3)

This follows from the consideration that a network with all equal values of Z;; = 7, for which
§ = 1 —Z, must show the same property, for instance bidirectionality, both locally in each
pair and globally.

Thus, a bidirectional community of neurons is a set of neurons within which the majority

of all possible connection pairs satisfy the relation Z > Zp, i.e. they are bidirectional.
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Over-density indicator The loose concept of majority reflects the over-density property
and it can be mathematically formalised by setting a community threshold ¥4 < 100%: A
set of neurons is a bidirectional community when, for each neuron within it, at least ¥4 of
the available connections with other the neurons in the set is bidirectional. This threshold is
clearly related to the learning efficacy ¢. For all-to-all connected networks, like the ones we
are considering here, we can give the following formal definition:

Definition of Community Be %’ a set of neurons, i € % a neuron and
Fh={j€C: Zij>Zp} (4.4)

the set in % of all and only the neurons that form a bidirectional pair with neuron i. Then %
is a community with respect to the property of bidirectionality if and only if each neuron in
¢ forms within % itself at least a number of bidirectional connections equal to a fraction
¥ of the total available connections in %. In formal terms, this can be expressed with the

following set of equations:
| S| > 0% (] —1) Vie?, (4.5)

where |- | represents the cardinality of a set. Hence, |.#..| is the number of connections
between neuron i and the other neurons in ¢ that are bidirectional, and |¢’| — 1 represents
the number of neurons in the community available for forming a bidirectional pair. The
maximum value %, = 100% corresponds to the specific case of a clique, the final result of a
perfectly efficient learning ¢ = 100%. Eq. (4.5) clearly captures the main difficulty of the
community detection problem: We want to find a set of neurons ¢ whose definition relies on
the sets {.#}, which in turn are defined in terms of ¢ itself and are unknown, with the set
{|-7%]} also being unknown.

4.1.3 Algorithm description

The algorithm we describe below aims at identifying multiple and overlapping bidi-
rectional communities, as defined in Eq. (4.5), within large networks of neurons. This is
achieved by a popularity ranking (Step I below) followed by two different techniques that are
applied in sequence (Step 2 and Step 3). If implemented alone, each of them already offers
good results, but the combination refines the search and in some cases it also makes it faster.

In Fig. 4.1 - 4.3 we show the algorithm implementation on a toy network of N = 11
neurons, all-to-all connected and labelled as N1,N,,... Ny (Fig. 4.1A, left). For simplicity,

instead of using N; when referring to the neurons of the example, we assume that indices like
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Symbol Description
N Size of the network
wij Strength of the single connection from neuron j to neuron i
Z;j Relative strength of the connection pair between neurons i and j
Zp Bidirectionality threshold for connection pairs
n' Number of bidirectional pairs formed by neuron i in the entire network
P Bidirectional pool
N Size of the bidirectional pool
n’”gj”," Minimum number of bidirectional pairs to be part of the pool
n'y Number of bidirectional pairs formed by neuron i within the pool
¢ Bidirectional community
n% Number of bidirectional pairs formed by neuron i within the community
(0 Threshold for belonging to a community
e Largest possible community that neuron i can form in the pool
B Bidirectional candidate blob
Ny Size of the bidirectional candidate blob
N %“x Size of the largest community the bidirectional candidate blob can be part of
nb Number of bidirectional pairs formed by neuron i within the candidate blob
min Minimum number of bidirectional pairs that each neuron in the candidate blob
% needs to form within it
B Bidirectional blob
nf@ Number of bidirectional pairs formed by neuron i within the blob
(2 Bidirectional candidate community
Ny Size of the bidirectional candidate community
min Minimum number of bidirectional pairs that a candidate neuron needs to form
4 with the candidate community
i Number of bidirectional pairs formed by neuron i with the members of the
4 current candidate community
Doise Threshold for noisy communities
Vo Threshold for communities merger

Table 4.1 List of the symbols used for the algorithm description and their meaning.

i vary directly in the set N1, Na,...Nj;. Moreover, for a better understanding, in Tab. 4.1 we

report a list of the symbols used and their description.

Step 1. Neurons popularity ranking From the full network’s connectivity W (Fig. 4.1B,

left), we derived the relative strength Z;; of each pair of neurons (Fig. 4.1B, middle), given

by Eq. (4.2),

and we assess their bidirectionality using the threshold Zp defined in Eq. (4.3).

This allows to assign to each neuron i a number n' representing how many bidirectional pairs

that neuron forms in the entire network (Fig. 4.1B, right).
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All-to-all connected
network

Pool of bidirectional
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Popularity Ranking
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Single connections wy;, wy; Connection pairs Z;; Bidirectional connection pairs Z;; > Z,

Figure 4.1 Algorithm Step 1: Neurons popularity ranking. A All-to-all toy network of N = 11
neurons labelled from N; to Ny; (left). Each neuron i is associated with an integer representing the
number of bidirectional connections made by i in the entire network, n’. Neurons meeting the threshold
n"J},’;” = 1 are entered in a bidirectional pool & (middle), and here they are sorted in a popularity
ranking according to the number of bidirectional connections made within the pool, n'y, (right). In this
example, network and pool coincide. B Zoom on a portion of the network highlighting the procedure
to obtain {n'}: The initial directed network {w;;,w;;} (leff) is mapped into an undirected network of
single connection pairs {Z; j} (middle). n' counts how many of these pairs fall in the bidirectional
domain (right). This quantity is used as initial criterion to enter the neurons in the pool & (see text).

Based on this information, neurons are initially entered in a bidirectional pool & depend-

ing on a minimum required number of bidirectional pairs n'7;", that can be arbitrarily chosen

(Fig. 4.1A, middle). Neurons that do not meet the pool entering condition n' > n"" are
excluded from 2, as they do not have the basic requirement for being part of a community.
As a consequence, the bidirectional pairs that these excluded neurons form in the network
also cannot be part of any community, hence they should be subtracted from the {nl} of
the involved neurons. Therefore, after & is formed, neurons are subject to the pool staying
condition n';, > n"4", where n'y, is the number of bidirectional pairs formed only within 2.
Nodes violating this inequality are excluded from & and so are their bidirectional pairs.

The pool is therefore reduced and {nf@} need to be updated. This iterative process stops
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when n’gp > n"a}” Vi € & or when the number of neurons left in the pool is below the noise
threshold (meaning that an eventual community can be considered as a random happening,
see below). In the first case, the final & is the working material for the next steps, whereas

in the second case the entire algorithm ends with no communities found.

Differently from the following steps, nodes that are left out of &2 are definitely lost, as
they will not be reconsidered again. Hence, the value assigned to nf’;;"” has to be carefully
evaluated: Limiting the number of neurons in the pool will greatly reduce the computational
cost of the rest of the algorithm, however, the risk of not including neurons that are actually
part of a community increases. Throughout this paper we adopt the "safe" choice n’g;’,” =1,
for which & coincides with the whole network when N and Zp are sufficiently large like the
ones we use. This is also the case of the toy network we are considering in this section (all

neurons of the network are admitted to the pool, see Fig. 4.1A).

Neurons in & can be sorted in a popularity ranking based solely on n’@7 (Fig.4.1A,
right). In doing so, nodes with the same value of nf@ are treated as identical because we are
(temporarily) losing all the detailed information of which pairs of neurons are effectively
connected with each other. Step 2 below is built only upon the popularity ranking, therefore
without the need to access this detailed information. This allows to save a considerable
amount of computational resources and to speed up the research, while still obtaining great

results in terms of community detection.

Popularity ranking is a preliminary step, deterministic and with no approximations (i.e.
there is no loss of information) as long as the threshold n”g}” is kept to a low value. From

now on we will be working only with the neurons in &.

Step 2. Blob search Our heuristic approach consists in using the popularity ranking to
narrow the research to the regions in &7 where it is more likely to find a community. The
key observation is that once we give a formal definition of community like Eq. (4.5), we
can use it a basis for a reliable heuristic search. On the left hand side of Eq. (4.5) we have
the number of bidirectional pairs formed by neuron i within the community %', which, by
using the notation introduced in this section, can be rewritten as n% As pointed out earlier,
these quantities are unknown; however, they are upper bounded by nf'@, which corresponds
to the case where all the bidirectional pairs that a neurons forms are part of the same, unique
community. We can revert this argument and derive from Eq. (4.5) the size of the largest
community that each neuron can potentially form within the pool:

i

6| = ';—3” +1  Vie. (4.6)
k4
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Figure 4.2 Algorithm Step 2: Blob search. A Part I: Detecting a candidate blob %. The research
starts with the highest ranked neuron as the only one in Z (top leff). The other neurons left in the
ranking are divided into waves depending on n‘y and are progressively added to the candidate blob
until the condition N%“x > N is violated (middle), see explanation in the text. If N’%‘”‘ <N, as in
this example, then 4 is the set of neurons found before adding the current wave (top right). B Part 2:
Candidate blob validation. The full community definition is restored within %, giving the minimum
number of bidirectional pairs that each neuron of the blob needs to form within the blob itself, 74"
(left). In this example all the neurons in the candidate blob meet this requirement (middle), as they are
all-to-all bidirectionally connected except for the pair N4, N1g. The candidate blob satisfies then the

complete community definition and gets the status of blob % (right).

|€7"**| does not take into account which are the neurons connected with neuron i through
the nf@ bidirectional connections. As a consequence, all the N = || relations of Eq. (4.6)
are uncoupled, differently from what happens in the community definition. Starting from
Eq. (4.6), this second step aims at filling the gap with Eq. (4.5) by progressively incorporating
these element that have been discarded, hence producing as a result sets of neurons in &

that satisfy the full community definition. The goal of this step is indeed to find the largest
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possible communities in the network. This is done through a recursive two-step procedure,
depicted in (Fig. 4.2):

e Part 1. Starting form Eq. (4.6), we find the largest set of neurons in the pool that
could potentially form a community based only on the information contained in the
popularity ranking. We call this a bidirectional candidate blob 8. Formally, 2 is a
set of neurons such that:

nf@ > V¢ (L@?] — 1) Vie B with A as large as possible. 4.7)

Respect to Eq. (4.6), with Eq. (4.7) we are restoring the coupling between the equations,
that is an essential feature of the community definition. The approximation that we
are making respect to Eq. (4.5) is clear when we compare the two relations: Neurons
are included in % not because of the number of bidirectional connections that they
form within %, as the community definition would require, but depending on the total
number of bidirectional connections that they form in the entire pool, nf@

Note that % does not coincide with the potential community that the most popular
neuron can form (max;c 2 |6"*"]), but it is highly likely that such a neuron is part
of %. In other words, the most popular neuron i* = argmax;c 5 |¢7"*| is the node
that has the highest probability in the entire network to belong to 4, hence it is the
first one to be recruited. In the example, i* = N,, with 9 bidirectional pairs formed in
the pool (see Fig. 4.2A, top left). The other neurons are organised in waves, formed
by identically ranked nodes, that are evaluated one at a time in a descending order
(Fig. 4.2A, middle). At every iteration, the candidate blob is fully characterised by two
quantities: The actual size N and the size N%“x of the largest possible community the
entire set Z4 can be part of, based on the popularity ranking. Since for each neuron this
is given by Eq. (4.6), then, for the candidate blob as a whole, Ngf‘x is determined by

the last wave of neurons included:

ic#
At the beginning, % = {i*}, hence N = 1 and NZ* = || As we progressively
recruit~waves of neurons, N5 increases whereas ]\{’%“x decreases. Aslongas Nz < ]\{’%“x
then Z can potentially be a community and we can keep on recruiting the next wave
of neurons to investigate whether a larger candidate blob (which could lead to a larger
community) is possible. When the inequality is no longer satisfied then the process

of recruiting neurons stops. We can have two scenarios: N > Ng,“x means that some
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neurons in 4, the most recently added ones, do not have enough bidirectional pairs:
Even in the most optimistic case where all these pairs are within %, these neurons
do not meet the community threshold, given the actual size of 4. Thus, the largest
possible candidate blob is the one found at the previous iteration. This is the case of the
toy network we are considering, as shown in Fig. 4.2A, top right. The second scenario
is when N = N ’%"x , and the largest possible candidate blob is the set of neurons found

at the current iteration.

* Part 2. At this stage we have a set of neurons, a candidate blob 2 (Fig. 4.2B, left), that
satisfies Eq. (4.7): According to the number of bidirectional connections that each of
them forms in the pool, . is suitable to form a community. We can therefore move
on and restore the full community definition, Eq. (4.5), by computing the number of
bidirectional connections nl@ that each neuron in % forms within 4 itself (Fig. 4.2B,
middle). In other words, we are substituting n'y, with n;? in Eq. (4.7), obtaining exacly
the community definition. Thus, if each neuron in 4 satisfies the condition, then there
is a community structure and we call it a bidirectional blob 9 (Fig. 4.2B, right): A set

of neurons that certainly contains at least one bidirectional community.

If the community definition is not satisfied, then we withdraw those neurons that violate
it to obtain a new % and to apply Part 2 again. This refinement process continues until
the algorithm finds a blob . or until % contains only one neuron, meaning that there
is no blob.

Whenever this step gives a non empty blob as a result, then we proceed with Step 3 below
to finally find the communities that are present in %. After this, we temporarily eliminate
from the pool all the neurons that have been detected as being part of a community so far,
and to this modified pool we apply Step 2 from the beginning. Therefore, if a neuron is found
to be part of a community, it does not get the chance to be evaluated again for being included
in other blobs, meaning that blobs are all disjointed sets. This is one of the reasons why we
introduce Step 3 below, which is built to detect overlapping communities.

The procedure continues until there is no blob found. In this case the entire algorithm
goes to an end and its final outcome are all the bidirectional communities found so far within
the previously detected blobs. Thus, the result of this step is a set of non-overlapping blobs,

each of them containing for sure at least one bidirectional community.

Step 3. Looking into a blob: The friendship algorithm The set # that we obtain at
the end of Step 2 certainly forms a community, as it satisfies the definition. However: i)

Two different communities, or at least parts of them, may be detected within the same blob
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Figure 4.3 Algorithm Step 3: Friendship algorithm. A Detecting the candidate community core:
The highest ranked neurons in the blob that are also all-to-all bidirectionally connected. B Building
a candidate community: Starting from the core (/eft), one of the neurons that are left in the blob is
randomly selected at a time and, based on the community definition, its inclusion in the candidate
community is evaluated (middle). Here we show only the first iteration with the neuron N4: Because

it forms a bidirectional connection with all the 3 neurons in € (nfﬁ = 3), it can be accepted, resulting

in a bigger candidate community for the next iteration (right).

(resolution problem). ii) The method does not correctly identifies overlapping communities.
If there is an overlap between any of them, the above procedure assigns the intersection
region to only one community (overlapping problem). iii) Mistakes may occur during the
identification process: Some neurons that are originally part of a community may have been
left out of the blob that contains that community, we call them good friends, whereas some
other neurons may have been erroneously included in %, we call them false friends (accuracy

problem).

In order to address these issues, at this stage we define a procedure that builds up a
community neuron by neuron through direct verification of the definition. This approach is
much more feasible and robust at this stage rather than at the very beginning, for two reasons:
i) We apply it to a very limited set of neurons, i.e. the blob 4. ii) We already know that these
neurons are relevant in terms of community structure.
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Step 3 starts by selecting the three neurons of the blob that are the most popular ones and
at the same time form only bidirectional pairs among them. We call this candidate community
core, and its purpose is to give a likely basis where to start building the candidate community
€ (Fig. 4.3A). The reason why we choose three neurons is to minimise mistakes: There is
no guaranty that these three nodes really belong to the same community, but the probability
of this event to happen is high, and it monotonically decreases with the size of the candidate
community core. Also, among all the possible triplets of neurons, these three nodes maximise
the probability of having three neurons being part of the same community, since they are the
highest in the ranking. On the other side, the choice of having a core of only two neurons
does not seem very reliable because, due to the random generation process of connections in
the network (see below), the event that two neurons are connected with a bidirectional pair is
very common, even among neurons that are not part of any community. Once we identify
the candidate community core, at each iteration we randomly select a neuron in the blob
and we ask if it satisfies the community definition (Fig. 4.3B): Given the current size of the
candidate community N, by using the definition Eq. (4.5) and rounding up the result, we

min

have the minimum number of bidirectional connections ne that the candidate neuron needs

to form with the current members of € in order to join it.

In Fig. 4.3B we show the procedure for the first iteration only, where € = {N> N3 No},
hence N = 3, n’féi" = 3, and N, is the randomly selected node. This neuron forms 7
bidirectional connections in the entire network, but at this stage this is not relevant anymore.
What matters is that it forms a bidirectional pair with each of the neurons in the current
candidate community (nf'g = 3), meaning that it is "friend" with all of them and thus it
can clearly be accepted in €. In the next iteration, the candidate community is then ¢ =
{Ny N4y Ng Ny}, which results in N, =4 and n”i;l” = 3 again. Thus, the neuron that will be
selected, either Njg or Njj, needs to form at least 3 bidirectional connections with the 4
candidate community’s members in order to join it. This is exactly what happens in this
example, and, since in the last iteration also the last neuron turns out to have enough friends
in € (for which it will be Ny =5 and nZZ}” =4), the final candidate community will coincide

with the blob: € = {Ny Ny Ng No N1g N1 }.

Note that in early iterations, when the candidate community is not well formed yet,
false friends still get a chance to pass the test and be recruited in %. Conversely, strongly
connected neurons within the original community have much higher chances to pass the test,
no matter at which iteration they are selected. Thus, once the recruitment within the blob has
finished and € is formed, we check again that each neuron is entitled to stay in € through

the verification of the community definition (false friends expulsion). In the example we are
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using, no neuron in % fails to meet the requirement so they all definitely earn the right of

being in the candidate community.

Most likely, the above procedure returns a set that is a single, well consistent candidate
community, hence solving the resolution problem. However, it might not be the original
complete community: Good friends may be left out, most likely in the blob Z but also in
the pool &. Therefore, we start recruiting for a second time with the condition of satisfying
the community definition, first among the neurons left in the blob and then within the pool
(good friends inclusion). This procedure, together with the false friends expulsion, address
the accuracy problem. Moreover, recruitment among neurons in the pool allows to consider
for the current candidate community also neurons that have been previously included in other
blobs or communities, hence solving the overlapping problem. In our example, there are no
neurons left in the blob so we check the ones in the pool: Ny, N3 and N7 are recruited whereas
Ns and N are left out, giving finally a community candidate of 9 neurons that coincides with

the original true community.

Step 4. Candidate community global control As pointed out earlier, based on Esposito
et al. [2014], for a set of neurons to be a bidirectional community %, its symmetry measure
Eq. (4.1) must exceed a threshold value sp, which depends on the distribution of connections
considered. Now that we isolated a candidate community from the rest of the network, we are
in the position of applying this criterion. Candidate communities that do not pass this test are
sets that cannot be qualified as communities. Note, however, that they are still bidirectional
communities in the sense of our topological definition Eq. (4.5). Since this definition is
threshold-based, it introduces a binary criterion with subsequent loss of information. The
definition is a guidance for community detection that reduces the weighted network to an
un-weighted one. Thus, once the research has been successful, the complete information
stored in the weights needs to be recovered and the actual identity as bidirectional community

can be finally evaluated by means of the symmetry measure.

Sets that cannot be qualified as communities present an excess of bidirectional pairs
due to the random generating process, which made these sets to be detected as possible
communities, but failure in the symmetry measure test means that the rest of the pairs are far
from being bidirectional, hence pulling the value of the symmetry measure down within the
randomness boundaries. This is no evidence that learning took place in the specific set as a
whole. Statistically, this situation is likely to happen for small sets of neurons, and indeed
this is when we observe failure of the symmetry measure test. These sets of neurons are

therefore safely withdrawn.
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Step 5. Noisy candidate communities identification Besides the real communities that
are present in the network as a result of learning, communities can be also formed out of
chance, due to the randomness in the network’s connectivity: It is highly likely that small
sets of 4 — 5 neurons show community properties and thus will be detected as such. Since
the probability of randomly forming a community dramatically drops with the size, we can
define a noise threshold ¥, and discard all sets below such a threshold. This clearly fixes
a lower limit to the resolution of the algorithm. However, the maximum size of a random
community, which ideally corresponds to such a threshold, grows with the size of the network
in a way that is sub-linear, allowing to set a unique, relatively small threshold for all the

networks with a large size that does not affect the overall performance.

Step 6. Single community reduction At this stage we have single communities %, but
we might have a final redundancy problem, especially for networks of small size: It can
happen that the same original community has been detected more than once, every time with
different false friends included and good friends left out. It can also happen that the original
community is broken into two overlapping parts detected as different communities. The final
step is therefore trying to resolve these issues calculating the overlap degrees between each
pair of communities. Pairs with an overlap exceeding the overlap threshold ¥, are merged
together and the symmetry measure is used as an evaluating criterion: If the value on the
merged community is higher than the values of the single communities, then the merged

community definitely replaces the two single ones, otherwise they are kept separate.

4.1.4 Network and communities generation: Benchmark procedure

To test the above algorithm, we generated in silico data representing several different
scenarios, which will be discussed in the Results section alongside the algorithm performance.
Below, we describe the general procedure used to produce a connectivity matrix for a network
containing bidirectional communities.

The first step for creating a bidirectional community is to decide the value of its symmetry
measure, which has to be in the range [sg, 1] (Esposito et al. [2014]). By definition, this
gives the mean value of the strength of the connection pairs in the community, (Z) = 1 —s.
Because the learning process shapes the connections of a community in the same direction,
it is reasonable to assume that at the end of learning the pairs form a Gaussian distribution.
Therefore, for each community in the network, we generated the set of {Z,- j} according to a
Gaussian distribution with mean (Z) and standard deviation o, that is a free parameter. We
recall that Z is a variable ranging from 0 to 1 and that the bidirectionality region is [0,Zp].

Based on this, two issues may arise when we generate the pairs, related to the two boundaries
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and to the choice of 0: i) Some of the Z;; could be negative. If this is the case, the tails of the
distribution are symmetrically folded towards the inside so as to guarantee the non-negativity
of the { Z; j} and to preserve the mean value of the distribution. ii) A considerable part of the
distribution could fall in the randomness domain (Z > Zp), meaning that many pairs will not
be classified as bidirectional. As a consequence, some neurons may not form the minimum
number of bidirectional pairs required by the community definition, resulting in the whole
set not being a community anymore. To avoid this issue, we make sure that the integral of the
Gaussian in the bidirectional region, which gives the probability of forming a bidirectional
pair g, exceeds the community threshold 9.

Once we have the set of {Z,- j} for each community, we can generate the single connections
wjj. A first half of them is directly drawn from the uniform distribution in [0, 1], be the upper
(or the lower) triangular part of the community’s connectivity matrix. This first half, together
with the {Zi j}, is used to compute the second half of the single connections by means of
Eq. (4.2). The rest of the connections in the network are drawn from the uniform distribution
in [0, 1].

Overlaps between communities are governed by the set of parameters {w/l P } representing

the fraction of the community p that is in common with the community A:
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We allow overlaps only between subsequent pairs of communities. In other words, we can
progressively enumerate the communities in the network in such a way each of them overlaps
at most with only the previous and following one. Formally: @, = 0if [A —p| > 2, leading
to a tridiagonal matrix of overlaps. In cases of overlap between two communities, after
having generated the first community, the mean of the pairs in the intersection is computed
and it is used to offset the mean of the Gaussian distribution for the rest of the pairs in the
second community, so as to preserve the value of the symmetry measure that we chose.

The set of parameters {s3}, {03}, {@;,} we introduced here for the connections
generation, together with the size of communities {N; } and network N, entirely define the
structure of a network, but they do not uniquely determine its connectivity because all the
connections are generated through the above mentioned random process. Due to the presence
of random elements in both data generation and detection procedure, for each combination
of parameters we consider, we repeat the experiment n;,., = 100 times. Each experiment,
or run, consists in generating the network connectivity as described above and applying
our detection algorithm. Cumulative and averaged results are displayed in the appropriate
section.
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4.1.5 Analysis of the results: Measuring successful detection

At the end of each run, on one side we have the communities that we generated at the
beginning, i.e. the real communities, and on the other side those detected by the algorithm.
One way of measuring the quality of the results is to count how many good neurons have
been detected. However, since this is going to be displayed as an average over the runs, we
may lose too much information about the single run. Also, as pointed out earlier, failure
in detecting single neurons may still happen despite the bulk of the community has been
correctly identified.

Therefore, we introduce a criterion to determine successful community detection: When-
ever the number of neurons in a detected community equals at least a fraction ¥,e.0g Of the
neurons in a real community, we count that real community as successfully identified. If
there is more than one detected community for which this happens relatively to the same real
community, then the one with the highest percentage is considered to be one matching the
real community and the others are counted as false communities, unless they result to match
some other real community in the network. We choose Byecog = 75% as in our opinion three
quarters is a fraction that already carries the distinctive features of the community to which it
belongs.

At the end of the results’ evaluation, the analysis of the algorithm performance can be
done by using he following information on each real community: /) How many times it has
been successfully detected in all runs. ii) How many good neurons have been identified as
average across the runs. Alongside, we also display information about false communities
that have been detected and false neurons included in good communities. Results about
communities detection provide a quantitative tool to evaluate the goodness of the algorithm,
whereas neurons detection provide a qualitatively information on its accuracy. Finally, we

show the time needed to run the algorithm.

4.1.6 Thresholds

The algorithm described above makes use of 5 customisable thresholds, see Tab. 4.1.
Throughout this paper we keep them fixed at their respective values. Since we assume a
uniform distribution of connections prior to learning, we can directly rely on the results of
Esposito et al. [2014] for uniform distributions: By fixing a level of confidence at p = 0.05,
the bidirectionality threshold we use is sp = 0.6954, which in turn gives Zg = 0.3046. The
threshold ¥4 for community existence is rather arbitrary and it can be fixed according to
how dense we require the communities to be. In the present study we choose ¥4 = 75%.

Concerning the noise effect, after observing the size of the noisy communities detected by
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the algorithm, we fix ¥,,i5c = 30. For the other thresholds, also arbitrary, we use n";?f” =1as
a safe choice (as previously stated) and ¥, = 25% as a limit case before two communities

can be considered as part of a single bigger one (after evaluation of symmetry measure, see
Step 6).

4.2 Results

In this section we present the results obtained by applying the community detection
algorithm to networks of neurons with different community structures. In all the cases, we
assume that the given network is the final product of a learning process that shaped the
connections of some sub-regions away from the initial uniform distribution, to form what we
called bidirectional communities, Eq. (4.5). The rest of the connections remain unchanged
and therefore they are uniformly distributed. Network connectivity is generated according to
the procedure outlined in Methods section.

Since the learning process is not explicitly simulated here, we have total control on the
final structure of the network, through the tuning of 6 sets of parameters: The size of the
network N, the number of communities v, the size of communities {N; } and the overlap
between communities {a),l p} define the architecture of a network. The symmetry measure of
the communities {s; } and the standard deviation of the connection pairs in the communities
{0, } define how much a community has been shaped towards bidirectionality.

The way the algorithm is constructed, we expect that strong bidirectional communities, i.e.
with s — 1 and small o, are the easiest to detect, compared with bidirectional communities
with s — sp and large standard deviation. The degree of difficulty in the detection of a
community can be derived from the way we generate the community itself. Indeed, as
pointed out in the Methods section, s and o determine the number of bidirectional pairs that
each neuron forms in the community, through a random process. Thus, necessary condition
for a set of neurons to be a community (and therefore to be detected) is that this number
exceeds the threshold for community existence. Also, the closer this number to the threshold
(from above), the more difficult the detection of the community.

Each simulation consists of 7., = 100 runs, each of them starts with communities and
network generation, continues with the communities detection algorithm and finally ends
with the evaluation of the results, where we compare detected and generated communities.
To evaluate the algorithm performance, we use two indicators for each community generated
in the network. The first quantity counts how many times a community has been successfully
detected during the nj., iterations (see Methods). Once a community has been correctly

identified, the second indicator measures how many nodes of the generated community have
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been detected, and displays this information as an average percentage across nj., iterations
and relative to the total number of nodes in the generated community. Additional indicators
for the number of false communities detected and for the percentage of false neurons in a
correctly detected community complete the evaluation.

4.2.1 Networks with a single community

Alongside the size of the community, we introduce the community to network ratio
Fe/n =Ny /N, which is a more significant indicator to assess the algorithm performance. A
complete evaluation (at least in the single community case) requires, therefore, carrying out
3 different analyses, corresponding to fixing one of the three quantities Ny, N, ./, while
varying the other two.

Single, size-varying community in a network of fixed size

We begin the analysis of the algorithm performance with the most common and typical
problem: Given a network, we want to know if there is a community and of which size.
Therefore, we fix the size of the network at N = 5000 neurons and we systematically vary
the size of the community in the set {75, 100,250, 500,750, 1000,2500}. The community is
generated with s = 0.75 and o = 0.05, resulting in a probability of forming a bidirectional
pair gop = 0.863. Correctly, 2 > U« (see Network and community generation subsection
in Methods).

In Fig. 4.4A we report the results concerning community detection: Blue bars show
the cumulative number of successful detection of the generated community, whereas the
upside down red bars count the number of false communities. Similarly, Fig. 4.4B shows the
average percentage of good neurons (blue bars) and false neurons (upside down red bars)
in the detected community. Blue bars carry what we can call a positive information as we
want to maximise them, whereas red bars is what we want to minimise to zero, hence they
carry a negative information. The horizontal black dashed line marks the optimality level
for positive information: When for the same value of r/, both bars of Fig. 4.4A,B hit this
level means that the algorithm has detected all the neurons forming that community all the
time. For the values considered here, this is almost always the case, except for the smallest
community case where detection of the community is successful only 20% of the times.
Note that whenever this community is identified, the algorithm correctly recruits all the good
neurons (the blue leftmost bars of Fig. 4.4A,B have the same height). As expected, these
results suggest that the bigger the size of the community the easier to detect it, with a critical

value of ~ 100 neurons.
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Figure 4.4 Algorithm Performance for the case of single community of s, = 0.75 and 64 =
0.05 embedded in a network. A - C Network’ size fixed at N = 5000 neurons while varying
community” size. D - F Ratio community to network fixed at r./, = 0.05 while varying both network’
and community’ size. G - I Community’ size fixed at N = 200 neurons while varying network’
size. All results in each panel are relative to n;,., = 100 repetitions. A, D, G Cumulative community
detection. Blue bars: Successful detection, Red upside down bars: False detection. The dashed line
represents the best possible performance of correctly detecting the community all the time. B, E,
H Average percentage of neurons detection, relative to the size of the generated community. Blue
bars: Good neurons, Red upside down bars: False neurons. C, F, I Simulation time per neuron in the
network. Error bars represent standard error. Note that the scale of all x-axes is logarithmic.

Fig. 4.4C shows a very interesting result, direct consequence of the algorithm architecture:
The computational time per neuron in the network is smaller for small communities. In
other words, when we increase the difficulty of the task, the time needed for the detection
is reduced, provided that the size is above the critical value for the search to be successful.
It is also interesting to note that if we increase the bidirectionality of the community (by

increasing the value of its symmetry measure), the algorithm time is the same (result not



74 Detection of Bidirectional Communities in Neural Networks

shown here). This means that detection time is not affected by the internal structure of the

community but only by its size.

Single, size-varying community in a size-varying network with fixed ratio

The above scenario gives only partial information on the goodness of the algorithm, as
the size of the network is fixed to a single value: Fig. 4.4A-C show results when we vary only
the size of the community to account for different ratios community to network. However,
the task of finding a community of 100 neurons in a network of 1000 of nodes might be
different from searching for a community of 1000 in a network of 10000 nodes.

Therefore, we investigate a second scenario: A single, size-varying community within
a network whose size also varies, in such a way to keep the ratio community to network
fixed. We choose a relatively small value ., = 0.05, while the size of the community varies
between the values {50,75,100,150,250,350,500,750}. The size of the network varies
accordingly from 1000 to 15000. As above, s¢ = 0.75 and o4 = 0.05.

Results are shown in Fig. 4.4D-F, with the same meaning of quantities and colours as in
Fig. 4.4A-C. Detection is perfect almost all the time, with very few mistakes mostly in the
sense of detecting false communities. At first, the performance is fairly independent of the
absolute sizes, as expected. A more careful inspection shows that slightly better performances
are obtained for larger sizes. The reason could be that for larger networks the fluctuations on
the bidirectional pairs formed out of chance become smaller and for the neurons being part
of the generated community is easier to stand out of the crowd of nodes, hence the precision

of the algorithm increases.

Single, fixed size community in a size-varying network

Finally, to complete the analysis of the single community case, we study the algorithm
performance when we increase the size of the network while keeping fixed the number of
nodes in the community. We choose a small community of N = 200 neurons and we vary
the size of the network in the set {200,400, 800,2000,4000,8000}. The ratio community to
network varies accordingly from 1 to 0.025. Again, s = 0.75 and o = 0.05.

Results are shown in Fig. 4.4G-I. Once again, the performance of the algorithm is
excellent in the range of values considered, in terms of both positive and negative information.
In particular, Fig. 4.4H shows that the algorithm finds exactly the 200 neurons forming the
community all the time, with no false neurons. As expected, increasing the size of the
network also increases the time needed for the detection, with a dependence from the time

per neuron of the network that looks quadratic.
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Community ‘ Nye s¢ O Opyr B

1 200 0.75 0.05 - 0.86
200 0.75 005 02 0.86
500 0.74 0.05 0.1 0.81
150 0.74 0.05 0.2 0.81
150 0.79 0.1 0 0.81

N W

Table 4.2 List of parameter’s values used to generate the community structure in the case of v =15
communities. Column I: Community progressive number. Column 2: Size of the community. Column
3: Symmetry measure. Column 4: Standard deviation of the connection pairs Z. Column 5: Overlap
with the previous community, expressed as number of common neurons divided by the number of
total neurons in the community. Column 6: Probability that a neuron of the community forms a
bidirectional pair, as a result of a Gaussian distribution with parameters based on Columns 3 and 4.

4.2.2 A multiple communities case

Finally, we wish to study the behaviour of our detection algorithm when more than one
community is present in the same network. As an example, we choose a challenging task:
A network with 5 communities generated with different parameters’ values so as to have a
certain complexity in the overall structure, see Tab. 4.2. The size of network is varied in
the set {1500,2143,3000,5000,7500}. Note that values of the symmetry measure are all
very close to the limit between bidirectionality and randomness, making the detection more

difficult, as can be inferred from the last column of the table.

Fig. 4.5A shows the global performance of the algorithm, in the form of stacked bars
for each value of the network’s size considered. The dark grey part at the bottom of the
bars counts how many times the 5 communities have been correctly detected as 5 different
communities, as an average over nj,., = 100 runs. The central part in grey shows the average
number of times that a community has been detected as an unresolved community, i.e. two
overlapping communities detected as a single big one (never more than two). The upper part
in light grey shows the average number of false communities. Clearly, as the size of network
increases, the number of false communities also increases, but the performance on the 5 true
communities remains stable and optimal. Indeed, all the communities are detected almost all
the time, either resolved (more than 95% of the time) or unresolved. From a more detailed
analysis of the results, it can be seen that when there is an unresolved community this is
always the union of the communities 2 and 3 in Tab. 4.2. This is reasonable as %3 is by far
the largest in the network and the overlap of 0.1 with community %, means that they have 50
neurons in common. From the perspective of community 2 this is a considerable overlap of

25%, which indeed equals the value we chose for the overlap threshold ¥. It is therefore a
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Figure 4.5 Algorithm Performance for a network with complex structure. Five communities
with different sets of parameters, see Tab. 4.2, are embedded in the network. Communities’ size are
kept fixed while varying network’ size. All results in each panel are relative to n;., = 100 repetitions.
A Global performance. Dark grey bars: Successful detection with all communities resolved, grey
bars: Successful detection with two communities unresolved (see text for details), light grey bars:
False communities. The dashed line represents the best possible performance of correctly detecting
all the five communities all the time. B - F Single community detection statistics. Dark grey bars:
Cumulative community detection over the 100 repetitions, grey bars: Good neurons, light grey bars:
False neurons. Note that the (expected) discrete amount of false neurons detected in communities 2
and 3 is due to the unresolved cases between these two communities (see text for a discussion). G
Simulation time per neuron in the network. Error bars represent standard error. Note that the scale of
all x-axes is logarithmic. The ratio community to network below panel g is relative to the smallest
community in the network.

matter of few neurons whether these two communities are merged or not during the last step
of the algorithm (see Methods).

Fig. 4.5B-F shows the algorithm performance community by community, with bars
showing the cumulative community detection (dark grey), percentage of good neurons (grey)
and percentage of false neurons (light grey). Detection of communities 1 and 5 is perfect, both
in terms of good neurons and false neurons. Communities 2 and 3 present a visible amount
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of false neurons, most of which, however, are due to the unresolved cases between these two
communities. In this sense they are not completely false neurons. Finally, community 4 is
the only one showing a decrease in the performance as the size of the network increases,
with percentages still above 85% for N = 7500. The reason is that %4 is the most difficult to

detect because is the one with the lowest values of N, s¢» and G.

The last panel, Fig. 4.5G shows the simulation time per neuron in the network. Note
that, compared to the case of a single community, the time needed is nearly five times larger,

suggesting that it grows linearly with the number of communities.

4.3 Discussion

In this paper we address the problem of structure detection in networks of neurons, which
is of crucial importance in the study of connectome in Neuroscience, framing it within the
well-known, in Network Theory, community detection problems. By nature, networks of
neurons are weighted and directed graphs, which makes the problem of structures searching
in these networks one of the most difficult ones to approach. In the general, for most of the
problems related to structures detection in Graph and Networks Theory it is not possible to

give an exact solution, hence heuristic algorithms are often adopted.

Here we present an algorithm for the detection of a particular class of communities in
large scale simulated networks. Thus, this is intended mainly as a tool to help in silico
research aiming at understanding the connectome. In the future, the opportunity of having
direct access to synaptic weights, and therefore to connectivity matrices, may also allow a
direct application of the algorithm to experimental data. Moreover, the algorithm could be of
more general interest for pure studies in Networks and Graph Theory and it can be adapted

to similar problems in other disciplines where nodes are not neurons.

Differently from cliques, that are very well defined objects, the concept of community
is vague and we cannot find a unique definition in the literature. Traditional methods for
community searching are either based on cliques or define a community a posteriori, i.e.
as the outcome given by the algorithm. Here we propose a different approach by giving a
formal definition for communities a priori. We show how having such a definition is an
advantage as the algorithm can use it directly for a more efficient and direct research. Also,
the method is based on a definition of symmetry measure, which allows manipulating the
original connectivity and deal with quantities carrying much reduced information. This
implies a loss of information, but we show that results are excellent and there is a great

benefit in terms of time and computational resources.
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The algorithm we present is based on statistics and it requires that the distribution of the
connections is known and is somehow regular: We assumed a uniform distribution, but in
principle the method works for any kind of distribution for which it makes sense to define
mean and variance. As such, differently from traditional approaches, our method works better
for large number of neurons: We show that increasing both the size of the network and the
community gives better results. Also, we chose to focus on bidirectional communities, but
the procedure can be extended to other kind of communities, for instance unidirectional ones.
Indeed, similarly to bidirectional structures, experimental results show also an excess of
unidirectional connections in some parts of the brain (Lefort et al. [2009]; Pignatelli [2009];

Wang et al. [2006]). Generalisation to sparse networks should be also possible.

The results we present here are relative to worst case scenarios, because the communities
are generated with symmetry measure very close to the random domain. For communities that
are more markedly bidirectional the performance would be even better. Besides measuring
the success on community detection, the performance of the algorithm is also evaluated on
the false detections: False communities and false neurons within good communities. Based
on initial results, to minimise false communities we naively fixed a threshold for a minimum
community size at 30 neurons, considering everything smaller as an outcome of the random
process used to generate the connections in the network. This limits the resolution of the
algorithm: If there are real communities whose size is smaller than the threshold, they will
not be detected. Since the average size of communities formed out of random depends on
the size of the network, this part of the algorithm can be improved by using a threshold that
is a function of N. Such a function can be derived by carrying out a systematic analysis on

completely random networks, both theoretically and through simulations.

It is worth noting that there is nothing that makes a false community different from a true
community, except for the fact that the latter has gone through a learning process. A possible
approach to solve this problem could be therefore to track the evolution of the connectivity
whenever possible. After having detected the communities, looking back at the history of
their connections could give important insights about which sets really experienced a learning

process.

The algorithm we presented requires setting a number of thresholds, which makes the
research highly customisable and it also allows different degrees of searching: For instance
we can be interested in finding only highly significant bidirectional communities, if any.
We can tune the thresholds as we like for a stricter search, which would require also less
computational time. Once we have the outcome, we can then gradually relax the values of

the thresholds for a broader search, if we need.
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The full algorithm is the combination of two sub-algorithms executed one after the other.
The first sub-algorithm alone already gives excellent results, especially for single community
detection, with a massive reduction of the running time. Indeed, the second sub-algorithm
is essential for dealing with overlaps and for resolving two communities that have been
detected as a big one. Also, due to the statistical approach of the algorithm, it is possible
to evaluate the level of noise (bidirectional pairs formed out of chance) and take it into
account from the beginning of the procedure. This would allow to withdraw a consistent
fraction of neurons before executing the two sub-algorithms and therefore to greatly reduce
the number of neurons for the search. These aspects need to be further investigated, together
with the possibility of introducing parallel computing, to improve on the computational time

requirements.

Summary The algorithm introduced here aims at identifying bidirectional communities
within networks of neurons. This study complements the work presented in the previous
chapter, and altogether these two papers furnish a standalone piece of research that, despite
far from being exhaustive, addresses one aspect of the how problem formulated in the
introduction of the thesis. In the last chapter, improvements and possible adaptations of the
algorithm to different scenarios are discussed. Before this, in the next chapter, the attention is
turned to the why question: What lays behind the observed correspondences between motifs

and synaptic properties?






Chapter 5

Adaptation of Short-Term Plasticity
Parameters via Error-Driven Learning
May Explain the Correlation between
Activity-Dependent Synaptic Properties,
Connectivity Motifs and Target
Specificity'

It is the current belief that experiences and memories are registered in long-term stable
synaptic changes. Long-term plasticity, and in particular Hebbian learning or Spike-Timing-
Dependent-Plasticity (STDP), is a form of unsupervised learning that captures correlations
in the neuronal input. Hence, their involvement in, for instance, the development of receptive
fields (Clopath et al. [2010]; Song et al. [2000]) or memory and associations is long-standing
knowledge. However, the variety of different long-term plasticity rules (Markram et al.
[2011]), indicates that the precise synaptic prescriptions of long-term plasticity mechanisms
remain unclear.

On the contrary, short-term plasticity (STP) is well described (Costa et al. [2013]; Le Be’
and Markram [2006]; Markram et al. [1998b]; Rinaldi et al. [2008]; Romani et al. [2013];
Testa-Silva et al. [2012]; Varela et al. [1997]) in the context of specific models (Hennig
[2013]; Rotman and Klyachko [2013]; Tsodyks and Markram [1997]). Its role in neuronal
computation is assumed to be related to temporal processing, see for instance Natschliger

IThis chapter is almost entirely taken from Esposito et al. [2015]
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et al. [2001] or the work by Carvalho and Buonomano [2011], where STP is demonstrated
to enhance the discrimination ability of a single neuron (i.e. a tempotron, see Giitig and
Sompolinsky [2006]), when presented with forward and reverse patterns. Synapses with
short-term plasticity are also optimal estimators of presynaptic membrane potentials (Pfister
et al. [2010]).

At the microcircuit level (Binzegger and Douglas [2004]; Douglas and Martin [2007a,b];
Grillner et al. [2005]; Silberberg et al. [2005]), the non-random features of cortical con-
nectivity have recently raised a lot of interest (Perin et al. [2011]; Song et al. [2005]) and
experimental evidence seems to reveal a correlation between specific motifs and synaptic
properties (Buonomano and Merzenich [1998]; Perin et al. [2011]; Silberberg and Markram
[2007]; Song et al. [2005]; Wang et al. [2006]). Specifically, observations of young ferret
cortices (Wang et al. [2006]) indicate that neurons connected by synapses exhibiting short-
term facilitation form predominantly bidirectional motifs; conversely, neurons connected
by synapses exhibiting short-term depression form unidirectional motifs. Interestingly, the
same overexpression of connectivity motifs has been observed in another brain area, i.e. the

excitatory microcircuitry of the olfactory bulb (Pignatelli [2009]).
Earlier work by Vasilaki and Giugliano [2012, 2014] attempted to shed light on this

correlation between short-term plasticity and the observed wiring diagram configuration.
They demonstrate that all facilitating or all depressing networks, upon receiving the same
wave-like stimulation, give rise to the experimentally observed motifs: Bidirectional for
facilitating synapses and unidirectional for depressing synapses. This was explained both in
the context of mean field analysis and microscopic simulations as a frequency-dependent
effect. This is a simple consequence of the type of input (wave like) and the choice of
the STDP triplet rule (Pfister and Gerstner [2006]). Differently from the classical pair
rule, the triplet rule displays a frequency-dependent behaviour, which can explain some
experimental results (Sjostrom et al. [2001]): At low frequencies the rule reveals the classic
STDP and, given a wave-like input, it results in unidirectional connectivity (Clopath et al.
[2010]; Vasilaki and Giugliano [2014]). At high frequencies, however, it reveals “classic
Hebb” behaviour: Neurons that fire together, wire together. Hence, the low firing network
develops unidirectional connectivity, while the high firing network develops bidirectional
connectivity; for details see Vasilaki and Giugliano [2014]. However, the observed synaptic
development was not associated to any particular type of learning, but was explored as the
emerging structure upon receiving a wave like input: What the network learned per se in that

context was not clear.

With the present work we aim to complement and extend on Vasilaki and Giugliano

[2012, 2014]. We define a learning model for STP through which a population of neurons
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can modify its synapses in order to adapt its own activity and then fulfil a given time-varying
task. The key idea comes from an optimisation perspective: Neurons that are able to modify
their synapses, for instance making depressing synapses more and more depressing or even
turning them into facilitating ones, would allow for much more flexibility and efficacy in
signal transmission. A similar argument can be found in Markram et al. [1998a], whereas for
earlier but different mechanisms of STP optimisation or learning we redirect to Carvalho and
Buonomano [2011]; Natschléger et al. [2001].

Moreover, supporting our hypothesis, recordings form rats show that sensory experience
can modify short-term dynamics of excitatory synapses in somatosensory cortex (Cheetham
et al. [2007]; Finnerty et al. [1999]) and that a developmental switch from depression
to facilitation occurs in neocortical circuits (Reyes and Sakmann [1999]). Even more
significative, experimental results revealed that recovery from short-term depression is
activity dependent (Fuhrmann et al. [2004]): a decrease in short-term depression following
high rate stimulation has been observed in Purkinje cells (Dittman and Regehr [1998]) as
well as in excitatory neurons (Stevens and Wesseling [1998]; Wang and Kaczmarek [1998]).
The most accepted explanation for this effect resides in an elevated concentration of calcium
ions in the presynaptic terminal (Fuhrmann et al. [2004]; Hosoi et al. [2007]; Wang and
Kaczmarek [1998]). This, in turn, is thought to either enhance vesicles replenishment in
the release pool (modelled with an increase in the occupancy of the release pool (Wang and
Kaczmarek [1998])) or decrease the time constant of recovery from depression (Fuhrmann
et al. [2004]). This latter mechanism is included in our model and provides evidence for
modification of STP parameters. We stress, however, that the model we present here is highly
speculative as, to the best of our knowledge, the available experimental evidence is very little.
Therefore, rather than developing a detailed and biologically plausible mechanism, we want
to provide a model that, inspired by biology, could be applied to Articificial Intelligence and
Neural Networks.

We construct a typical inverted associative learning problem (Asaad et al. [1998]; Fusi
et al. [2007]; Vasilaki et al. [2009b]) where neurons have to learn to respond with high or
low frequencies, when presented with the same wave-like input signal. We use this paradigm
to show the potential of our model. In particular, not only do we provide an explanation
for the correspondence motifs-synaptic properties within the context of learning both STP
and STDP (triplet rule) but we also qualitatively capture, for instance, the heterogeneity in
synaptic properties observed by Wang et al. [2006].

Moreover, having defined the learning model as a target-specific mechanism, we are able
to obtain variability in the short-term profile of synapses innervating functionally different

targets. Finally, we show that the learning model can be reduced to a minimal model
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where only the time constant of recovery from depression 7, needs to be learnt in order
to obtain neurons firing at high or low frequency. Comparing this finding with the results
from Carvalho and Buonomano [2011], we suggest that different parameters of the model
describing STP might be related to different types of coding.

5.1 Methods

5.1.1 Single neuron model

Each neuron is modelled as in Carvalho and Buonomano [2011]: The sub-threshold

dynamics of the electrical potential V; of the generic neuron i are described by the equation:

dv; 3
o —gVi+ Y, 8ij(Ere Vi), CRY
J=1,#i

where E,., = 30mV is the reversal potential and g; = 0.1 S is the leak conductance - both

quantities are equal and fixed for all neurons. { gi j}i i1 is the matrix of conductances

and the generic element g;; represents the conductance of .t.]l\lle synapse going from neuron j
to neuron i. Upon arrival of a presynaptic action potential elicited by neuron j, each of the
conductances g;; with i = 1,...N, i # j increases by a quantity w;;, called effective synaptic
efficacy, and decays exponentially back to zero with a fixed time constant 7, = 10ms, equal

for all synapses:

dgi; gij f
_ _8i i-5<t—t~>, 5.2
dt T, +§'WJ J (5.2)

where t}t is the f-th spike emitted by neuron j. The effective synaptic efficacy depends on

both presynaptic and postsynaptic factors:
Wij = r,-juiinj, (53)

where r;; and u;; are the presynaptic variables representing depression and facilitation in
the STP model (see Subsection 5.1.2 below) and A;; is the postsynaptic variable for the
maximum synaptic strength (or absolute efficacy), which represents the maximum synaptic
response (see Subsection 5.1.7). If V;(¢) > 1 mV a spike is elicited by neuron i and V;(z + dt)

is set to O for the next 7., = 10ms (refractory period).
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5.1.2 STP model

Short-term synaptic plasticity is described at each synapse through the evolution of two
variables, r;; and u;;, representing the degree of depression and facilitation of the synapse
connecting neuron j to neuron i. The time course of r;; and u;; is given by the following
kinetic equations (Maass and Markram [2002]; Markram et al. [1998b]):

drij _1- o

@y Bt (1) G4

- Ui, 5<t—t->. 55
dt Tfaczz +Z i (1= / ©-3)

Uijs Trec;; and Tgqcil;; are the parameters of the model and they represent, respectively: Fraction
of resources used by the first action potential, time constant of recovery from depression and
time constant of synaptic facilitation. According with the derivation given in Subsection 2.3.2,
the variables r;; and u;; correspond to precise biological quantities, respectively: occupancy
of the release pool and probability of neurotransmitter release, both related to the presynaptic
cell. Indeed, the presynaptic terminal contains a specilised area where vescicles filled with
the neurotransmitters required for the signnal transmission are clustered. Calcium ions are
the agents causing vescicles to migrate towards the presynaptic membrane, where they merge
with the cell membrane releasing the neurotransmitters into the synaptic cleft. The arrival
of a presynaptic action potential at the axon terminal triggers the opening of voltage gated
calcium channels with subsequent influx of extracellular Ca™ ™ by diffusion. This leads to an
increase in the number of vescicles driven towards the cell membrane, and therefore in the

number of released neurotransmitters.

A learning rule for STP has to allow changes to (at least one of) these parameters. At

each synapse, the product of r;; and u;; determines the presynaptic efficacy.

5.1.3 STDP model

We use the triplet learning rule defined by Pfister and Gerstner [2006] with hard bounds:
Maximum weights can only vary in the interval [A,, Amax). In this model, each neuron has
two presynaptic variables m!, m? and two postsynaptic variables o', 0%. In the absence of
any activity, these variables exponentially decay towards zero with different time constants:

dml 1 dm2 2 dO 1 d02 2

de_tl: m; Tmzd_tl: m; T — - dt =—0; 7o, dtl = —0; (5.6)
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whereas when the neuron elicits a spike they increase by 1:
m}—>ml-l—|—1 ml-2—>ml-2—|—1 0}—)0,-14—1 01-2—>01-2+1. (5.7)

Then, assuming that neuron i fires a spike, the STDP implementation of the triplet rule can

be written as follows:

AASTPP = —yo (1) [Ay +ATm; (1 —€)] 5.9

AASTPP = tymi (1) [AT + AT 0} (t — )] '
where 7 is the learning rate, € is an infinitesimal time constant to ensure that the values of ml2
and ol-2 used are the ones right before the update due to the spike of neuron i, and A;; is the
maximum strength of the connection from j to i. Values of STDP amplitudes are taken from
Pfister and Gerstner [2006] and are listed in Tab. 5.1.

In order to set A,,;, we note that if the maximum weights connecting the input neurons
to a specific output neuron all collapse to zero in the low firing rate regime, then, in the
subsequent high firing rate regime, inputs were not able to "wake up" this neuron: It remained
almost silent all the time. To avoid this, we set A,,;;; = 10~3. With such a small value we
can still apply the symmetry measure (Esposito et al. [2014]), which assumes A,,;;, = 0, see

Subsection 5.1.9, to evaluate the symmetry of the network.

5.1.4 Learning task

Neurons are divided into different populations, each of them is required to fire at one
of the two target firing rates: 30 Hz (high) or 5 Hz (low). To allow the populations to reach
their target rate, both short- and long-term plasticity parameters are adapted via error-driven
learning (see Subsection 5.1.6) and, in addition, the maximum synaptic strength is shaped by
the STDP triplet rule (see Subsection 5.1.3).

5.1.5 Input signal and input neurons

In all simulations, the input signal is delivered only to a subset of neurons in the net-
work, which we call input neurons N;,,. Each of these neurons receives a pulse-like stimulus
with a fixed frequency v;, = 10 Hz, whose amplitude (2mV) is chosen to always elicit an
action potential in the corresponding input neuron. The stimulus delivery, however, is
not synchronous across the input neurons, but it follows a sequential protocol: Neurons

are stimulated one after another with a fixed time delay 744, and in a fixed order. We
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choose 4e1ay = (Vin N,-n)f1 so that neurons that belong to input cyclically receive a stimulus.
To further explain this, one may imagine labelling the neurons depending on the order
they receive the stimulus, and therefore on the firing order, then have the firing pattern
Ni,N>,N3,...,Ny.

in?

Ni1,N2,N3,...,Ny, ,Ni,..., with each pair of adjacent spikes being sepa-
rated by a time interval of 74¢;4y. We can think of the N, neurons as if they are organised in a
ring and the stimulus as a cyclically travelling wave across this ring. To include the effect of
noise, a random Gaussian variable with zero mean and standard deviation equal to 0.174¢/4y
is added to the firing times. The magnitude of the standard deviation is such that there is no
inversion in the firing order. With this construction, the stimulus delivered to input neurons
can be thought as generated by an external (not explicitly simulated) population of neurons

where each external neuron projects only onto one corresponding input neuron.

Note that, by construction, in the absence of any other signal, the firing pattern of the
input neurons reflects that of the stimulus. This means that the external signal implicitly fixes
a level of minimum activation for the N;, neurons: Their firing rate cannot be smaller than
Vin. Due to this constraint, the input neurons, despite being free to change their parameters
according to STP learning rules (see Subsection 5.1.6), are not totally free to regulate their
firing activity, which may prevent them from effectively fulfilling the task. The rest of the
neurons, instead, are totally free to adapt their activity and are called output neurons. For
these reasons, we read out the interesting quantities only from output neurons (we refer to

Results and to Fig. 5.1A, 5.4A for more details on the architecture).

5.1.6 Error-driven learning rule for STP

The task can be formulated as an optimisation problem where neurons regulate their own

activity in order to minimise the objective function defined as:

E — (Vf"’g—_<v>>2 , (5.9)

Viim

where Vy;, is the maximum allowed frequency due to the refractory period (Vi = 1/tyef),
Viarg 1s the target firing rate and (Vv) is the mean firing rate across a single population. To
calculate firing rates of single neurons v; we use an exponential moving average with time
constant T, = 1s:

d Vi

TVE = —V,~+V,~ (510)
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where V; is the current firing rate, which basically reflects if neuron i has fired (V; = 1 Hz) or

not (V; = 0Hz). The population mean firing rate is therefore:

N, pop

Z Vi (5.11)

POP i=

with Ny, being the size of the population.

By following a standard procedure, learning rules can be derived from Eq. (5.9) by
applying the gradient descent method (Hertz et al. [1991]). Since the task is not based on
single neurons but it involves an entire population, we use a mean-field approach for the
derivation of the learning rules. Therefore, from now on in this section, we switch from
the above single neuron notation to mean-field variables, by dropping the ij indices. It is
worth noting that in our formulation the target is achieved not by directly acting on the firing
rates, but by tuning the STP parameters, which in turn affects the firing itself. Therefore,
(v) =(v) (U s Trec Tfacil) and by using the chain rule we can formally write the following
update rule for each parameter p:

JE JE d(v) ) Viarg — (V) 9 (V)

Py STy oy Y g, o P T G

where 1, is the learning rate, which in principle could be different for each parameter. The
form of the function (V) (U s Trecs Tfacil) can be derived with a semi-heuristic procedure based
on mean field equations for a population with short-term plastic synapses, which in turn
can be obtained by averaging the STP single neuron equations, Eq. (5.4),(5.5). In doing so,
to resolve terms like <r,- Ui o (t — tjf) >, we make the following two assumptions (Barak
and Tsodyks [2007]; Tsodyks et al. [1998]): i) each neuron fires a Poisson train; ii) there
is no statistical dependence between the variables r(¢) and u(¢) and the probability of spike
emission at time ¢. The first assumption guarantees that the probability that a neuron fires
at time ¢ depends only on the instantaneous firing rate and not on the timing of previous
spikes, and that r(¢) and u(t), conversely, are a function only of the spike arrival times prior
to the current time and do not dependent on the probability of a spike at time ¢. Strictly
speaking, having refractoriness breaks down the Poisson assumption; however, since the
maximum firing rate is 30 Hz, the refractory period (10ms) is always much shorter than the
minimum inter-spike interval (~ 33ms). Hence, we can consider the Poisson assumption
as a good approximation, and therefore write: <r,- juij o ( >> (rijuij) < (t -t ) >
Concerning the second assumption, it is always valid if there is no facilitaiton, as u(r) = U is a
constant. If facilitation is included, instead, r(z) and u(r) are statistically dependent. However,

it can be shown that the relative error | <rl-j u,-j> - <r,~j> <u,-j> |/ <r,~j> <u,-j> can exceed 10%
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only at very short values of 7z, and high values of U at which the model does not exhibit
facilitating behavior anymore (Tsodyks et al. [1998]). Hence, our second assumption can be

considered a valid approximation.

Following Vasilaki and Giugliano [2014] (and using the same notation whenever possible),
we thus introduce the mean-field variables u, x, U and A, respectively describing facilitation,
depression, synaptic utilisation and maximum strength, and we assume a threshold-linear
gain function between input mean current / and output mean firing rate (v) = a[(h— )],
for some constants a, . We can then finally write the dynamic mean-field equations for a
population of neurons recurrently connected by short-term synapses as follows (Chow et al.

[2005]):
(Th=—h+ Aux (V) + Loyt

x= 1= _ux(v) (5.13)

TVGC

i=Y=" LU (1—u)(v)

\ Tracil
where I, 1s the mean external current and 7 is a decaying constant. By imposing equilibrium

conditions, 7 = % = & = 0, and combining the resulting equations, we can finally write:

AU <<v>‘1 + Tfacil)
(V)72 )7 Uit + (V)™ Uyee +U Tt Tee

h=F((v),) = + Loyt (5.14)

Now we observe that by taking the limit # — oo in F ((Vv),) we obtain an upper bound for the
maximum allowed firing rate (v) < % + I,y (for more details see Vasilaki and Giugliano

[2014]). We can heuristically turn the above inequality into an equality:

vy =2

rec

+ Loy (5.15)

so as by plugging Eq. (5.15) into Eq. (5.12) we can finally obtain an explicit form for the
learning rule. In particular, since only one of the three parameters appears in Eq. (5.15), we
have a single rule for 7., only:

A

AT"@C = _znfrec (Vtarg - <V>) W
lim “rec

(5.16)

Then, according to the above derivation, the only parameter that needs to be learnt is T,c.
Here we adopt the view (Chow et al. [2005]; Markram et al. [1998b]; Thomson [2000];
Tsodyks and Markram [1997]) that facilitation/depression corresponds to small/large values
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of 7. and U as well. Therefore, assuming that they apparently play a similar role, we can
heuristically take a similar dependence of (V) upon U: (v) = % + Ly, which leads us to a

similar learning rule:
A

—_ 5.17)
v2 U?

AU = —2ny (Vtarg - <V>)

With the same heuristic argument we can also write down a relation involving Ty,;. Indeed,
it is well know that facilitation/depression corresponds to large/small values of Tr,;1, SO we
can hypothesise a linear relation, also including the dependence on the maximum strength
for similarity with the other parameters. Thus, (V) o< AT¢4cii + Lex, Which gives the following

learning rule:
A

= (5.18)
Viem

ATtacit = 2Mzpey (Viarg — (V)

Finally, based on the fact that A turns out to appear in Eq. (5.15), and supported by experimen-
tal results showing an interaction between STP and STDP (Markram et al. [1997]; Sjostrom
et al. [2003]), we can also introduce a STP-dependent learning rule for the maximum synaptic

strength:

0E JE d (v
AASTP _ _”Aﬂ — _HAW% =2N4 (Vtarg - <V>)

5 . (5.19)
Viim Trec

This synaptic modification clearly does not substitute the traditional STDP, since the two
rules come from different mechanisms. Rather, we assume they both contribute to maximum

weights changes, as we show below.

5.1.7 Single neuron learning framework: Combining STDP and STP

learning models

Eq. (5.16)-(5.19) are mean field learning rules for the four parameters Trec, U, Tracir, A. It
is straightforward to turn them into single neuron online learning rules. From now on, we
return to a single neuron notation. Similarly to STDP, we hypothesise that modifications of
STP are triggered by postsynaptic events: Every time neuron i elicits a spike, its current firing

rate is updated as well as the mean population firing rate. Neuron i can therefore backwards
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regulate its incoming synapses, through the following set of equations:

ATreci- = _anrec- (Vtar' - <V>) 5 5 (5.20)
J ij 8 szimfrzec,;,-
A..
AU;; = =200, (Viarg = (V) 57 (5.21)
ViimUij
A
Affacilij = an.f‘“‘ilij (Vlarg - <V>> VZZ] (522)
lim
1
AASTP = 21 (Viarg — (V) ——— . (5.23)
Viim Trecij

The firing event of the neuron i also triggers STDP, according with Eq. (5.8). This contribution
sums up with the above STP-dependent change, so as the total modification of the maximum
synaptic strength is:

Aij —)Aij—FAAtp-t

f s A s2

Note that when we converted mean field population equations into single neuron equations
we kept the population mean firing rate (v), instead of turning it into the single rate v;. This
is because the task is defined at a population level. Learning rates of the three STP parameters

are chosen to be equal and error-dependent:

2

Mpy =N <1 + vmrg—_<v>> ; P =U, Trec, Tracil (5.25)
lim

with 1 = 0.1. The learning rate for maximum synaptic strength, instead, is fixed in time and

it is the same as the one used for STDP, 1y, = 7.

Now we have four single neuron rules for the STP learning model, plus an equation for
STDP and an equation for combining the different rules for the maximum synaptic strength.
All these six rules together, Eq. (5.8),(5.20),(5.21),(5.22),(5.23),(5.24) form a complete
learning scheme for each neuron, which is implemented in our simulations. These rules are
now local, since their computation takes place separately in each neuron, but receive a global

signal encoding for the task performance error.

5.1.8 Investigation of different rule combinations

In the Results section we consider different learning mechanisms: In addition to STDP,
that is crucial for the formation of motifs (Vasilaki and Giugliano [2012, 2014]), different
combinations of the four STP rules are taken into account while the remaining parameters
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are kept fixed. At first we allow only two parameters to change: i) 7,.., because Eq. (5.15)
implies that for high frequencies this is the only critical parameter for adapting the firing rate
of the population, and ii) U, since it was a key parameter adopted in the work in Carvalho and
Buonomano [2011]. Then, we introduce the STP-dependent rule on the maximum synaptic
strength, Eq. (5.23), with the view to observe a more stable learning process. Following
this, we also include Tr,; in the learning scheme for a full parameter adaptation (full
model) and finally we investigate the minimal number of parameters that needs to be adapted
(minimal model), based on Eq. (5.15). Looking for other parameter combinations might not
be meaningful, as Eq. (5.15) indicates the key parameters that are involved in changing the

mean firing of the population.

5.1.9 Connectivity analysis

To reveal the type of connectivity in the output population, we use a symmetry index

defined as a measure of the symmetry of the connectivity matrix W (Esposito et al. [2014]):

2 NN A —Aji

s=1— LAl
N(N—l)—ZMl._Z{j_iH Ajj+Aj

(5.26)

Here M is the number of instances where both A;; and A j; are zero, i.e. there is no connection
between two neurons. Since in our case connections are bounded in the interval [10_3, 1] ,
M =0 all the time. Eq. (5.26) is able to capture the presence of global non-random structures
in a network, returning a value included in [0, 1] . Values of s close to 1 reflect the presence of
a global bidirectional motif, whereas when s approaches 0, a unidirectional motif is emerging.
Note that, in order to apply the measure Eq. (5.26), we assume that the lower bound for
connections is 0. However, the choice of a small value such as 10~3 does not affect the

measure.

Data Sharing We provide the scripts that were used to construct the main figures of the

paper in the ModelDB database, accession number: 169242.



5.2 Results 93
Symbol ‘ Description Value
N Number of total neurons {40,80}
N; Number of input neurons {30,60}
Nout Number of output neurons 10
E,.. Reversal potential 30 mV
gL Decay constant of neuron potential 0.1uS
Tg Decay constant of synaptic conductances 10 ms
Vinr Threshold potential for spike emission 1 mV
tref Refractory period 10 ms
Vin Input firing rate 10 Hz
Viarg Output target firing rate {2,20} Hz
r}’;’?ﬂ Facilitation time constant - minimum value 1 ms
T el Facilitation time constant - maximum value 900 ms
Tnin Depression time constant - minimum value 100 ms
T Depression time constant - maximum value 900 ms
ymin Synaptic utilisation - minimum value 0.05
umex Synaptic utilisation - maximum value 0.95
n Fixed learning rate for U, Trec, Tracil 0.1
AEL Amplitude of maximum weights change - pair term in LTP ~ 4.6x1073
AgL Amplitude of maximum weights change - triplet term in LTP ~ 9.1x 1073
Ay Amplitude of maximum weights change - pair term in LTD ~ 3.0x 1073
Az Amplitude of maximum weights change - triplet term in LTD ~ 7.5x107°
Ty Decay constant of presynaptic indicator m 16.8 ms
Ty Decay constant of presynaptic indicator m, 575 ms
To, Decay constant of postsynaptic indicator o 33.7 ms
To, Decay constant of postsynaptic indicator 0, 47 ms
Apin Lower bound for maximum synaptic weights 0.001
Apmax Higher bound for maximum synaptic weights 1
Y Learning rate for STDP and for STP-dependent Aw {1,2}
dt Discretisation time step 1 ms

Table 5.1 Parameters used in simulations. STDP parameters are as in the nearest-spike triplet-model,
described in Pfister and Gerstner [2006].

5.2 Results

5.2.1 Single population with a time-varying task: A continuum be-

tween facilitation and depression

First, we apply our learning model to a specific task demonstrating how synapses can

change their behaviour driven by an external feedback signal. The problem we study is
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simple: A population of neurons is presented with a stimulus and is required to produce
a certain output as a response to that stimulus. Once the learning has been successful, for
the same input signal the desirable output changes. In other words, neurons are trained to
respond to a change in the associative paradigm (inverted associative learning problem), that
can be due to, for instance, changes in the environmental conditions.

Let us give a concrete example of an inverted associative learning problem, taken from
Asaad et al. [1998]. In their work, the authors trained monkeys to associate visual stimuli
(pictures) with delayed saccadic movements, left or right, with associations being reversed
from time to time. Monkeys had to go beyond learning a single cue-response association:
They are required to learn to associate, on alternate blocks, two cue objects with two
different saccades. In other words, after having learned the relation {object A, go right},
and {object B, go left}, the associations were reversed such that now they needed to learn
{object A, go left} and {object B, go right}.

Similar to the Asaad et al. [1998] experiment, we assume a binary problem, i.e. envi-
ronmental conditions can change only between two states, and we measure the neurons’
activity in terms of firing rate. This means that neurons are initially asked to fire at some rate
and, after learning this task, they are asked to fire at a different rate, while keeping the same
input signal all the time. Thus, the problem we defined is a simpler version of the monkey
experiment, with only a single input. In order to train the neurons on the current associative
paradigm, an external global signal is required, that can be considered as an error signal (see
Methods 2.6 and 2.7).

Problem description and network architecture

We created a learning network of N = 40 conductance-based integrate-and-fire neurons
(see Methods 2.1) all to all connected. Synaptic connections are modified by the STDP
triplet rule (Pfister and Gerstner [2006]) and short-term plasticity is implemented by using
the Tsodyks and Markram model (TM model) described in Maass and Markram [2002];
Markram et al. [1998b].

Fig. 5.1A shows the network architecture, composed by two non-overlapping regions:
A blue one with N;, = 30 neurons receiving the input signal and a red one with N,,; = 10
neurons from which we read out the quantities of interest. Note that for clarity, only a few
neurons (black circles) and connections (black arrows) are drawn. The network is therefore
formed by two functionally distinct populations, with the input population delivering the
stimulus to the output one. Recursive connections are present within each population and
across populations, and they are all plastic, in the sense of both long-term and short-term

plasticity. We refer to this architecture as a first or single population scenario.
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Figure 5.1 Single population scenario: Network architecture and activity, connectivity and
STP parameters adaptation in the output population with (U, 7,..) learning scheme (Part 1). A
Architecture. The learning network (green) is divided into an input region (blue) and an output region
(red). Connections (black arrows) are all-to-all and obey both Spike-Timing Dependent Plasticity
and rate-dependent short-term plasticity. Input neurons receive an external wave-like stimulus (blue
dashed arrows). B Mean firing rate of the output population. Shaded area represents standard
deviation, horizontal dotted grey lines show the two target firing rates (high = 30Hz, low =5H?)
and vertical black arrows mark the onset of the four dynamic phases alternating the target according
to the sequence low-high-low-high. C Symmetry measure applied on the connectivity of the output
population. In accordance to the target, connectivity switches between unidirectionality (low values)
and bidirecitonality (high values). D, E Mean values of the recovery time constant 7,.. and synaptic
utilisation U for the synapses projecting onto the output neurons. We observe depression (high values)
at low firing rates and facilitation (low values) at high firing rates.
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The input neurons are stimulated one after the other, following a sequential protocol,
and approximately with the same rate, v;, = 10 Hz. The amplitude of the stimulus is such
that input neurons release a spike every time they receive an input (see Methods 2.5). This
external source can be thought as an additional population of neurons, which we are not
simulating here, where each “external” neuron is connected only with a corresponding neuron
in the input population by means of a fixed feedforward connection (blue dashed arrows).

We hypothesise that the whole learning network (green region in Fig. 5.1A) is presented
with a sequence of two tasks while the stimulus pattern is kept fixed. The tasks are firing low
(5Hz) and firing high (30 Hz) and the sequence is low-high-low-high. Therefore, neurons
have to repeatedly learn a new association and forget the previous one in a dynamic context
divided in four phases of 7,;, = 100s. We refer to them as: Low 1, high I, low 2, high 2.
As discussed at the beginning of this section, this picture is inspired by a typical inverted
associative learning problem: Considering the monkey experiment from Asaad et al. [1998]
as a metaphor, our scenario provides a simplified version, where instead of having two
different inputs, object A and object B, we have a single input. Indeed, we can think we
are presenting the network with only object A and while doing this we switch the target
association between the two states go right and go left, which correspond to our low and high
firing rate targets. We call the desirable context-dependent target rate, Viqo. As described in
Methods, the difference between vy, and the current firing rate of each population (v) is
the error signal that, according which our rate-dependent STP causes synapses to adapt their
activity.

In all simulations, single neuron parameters {U s Trees Ttacil w}ij are initially drawn from
uniform distributions (for i # j), respectively in [0.05, 0.95], [100, 900] ms, [1, 900] ms,
[10_3, 1}. Synaptic variables are initialised at their equilibrium values, i.e. r;; = 1 and
u;j = Ujj. All the simulations in this subsection use y = 1 for the high rate regime and y = 2

for the low rate regime. Values of the parameters are listed in Tab. 5.1.

Learning U and 7,,,

We initially studied the problem with a learning scheme involving U and 7, only,
Eq. (5.20), (5.21), so there is no additional change in maximum synaptic strengths due to
STP. Indeed, due to Eq. (5.15) and Carvalho and Buonomano [2011], we wanted to test the
hypothesis that U and 7, are the only crucial parameters that need to be learnt for adapting
the firing rate of a population. The results are displayed in Fig. 5.1B-E, with vertical black
arrows marking the beginning of each of the four phases, and in Fig. 5.2.

Fig. 5.1B shows the average firing rate of the N,,; neurons, with shaded area being the

standard deviation. Target firing rates are show with grey dotted lines. The adaptation to
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the new target is fast, except during the low 2 phase, when we switch from high to low rate,
where an initial fast decrease of the firing rate is followed by a much slower adaptation.
Despite the fact that neurons do not reach the target rate during this phase, we observe
a monotonically decreasing activity which would eventually stabilise at 5 Hz if we were
allowing the simulation to run for longer. The reason for this double slope adaptation will be

further discussed now.

Fig. 5.1C shows the evolution of the symmetry index (see Methods 2.9). At the beginning,
the value reflects the randomness in the connections (the mean value of s for a network
with uniform random connections is indeed ~ 0.614, see Esposito et al. [2014]), whereas,
as learning takes place, we observe the development of unidirectional (low values of s)
and bidirectional (high values of s) motifs, depending on the set target. This can also be
formalised by applying the p-value hypothesis test obtained by using mean and variance of s
on a completely random network with uniform distribution of connections (Esposito et al.
[2014]). P-values are shown in Tab. 5.2. We, again, observe rather slow dynamics during
the low 2 phase that, within the fixed simulation time, prevent the system from reaching a
clear connectivity configuration. However, the trend of s clearly shows that the connectivity

within the output population is approaching unidirectionality.

Fig. 5.1D,E depicts the time course of the recovery time constant 7,,. and synaptic
utilisation U averaged across the output neurons, with shaded area representing standard
deviation. Both parameters oscillate between high values, which correspond to depressing
behaviour, and low values, that indicate facilitation. Note that the dynamics of 7., and U
is fast in all phases, the third included. This is not surprising since STP is a fast process
and leads to fast adaptation of its parameters. As a result, neurons’ response to a change
in the target rate takes place in a short time. However, during the low 2 phase, synaptic
parameters saturate before the neurons could fulfil the task, with STDP being the only
remaining mechanism through which the output population can regulate its own activity. This
results in a much slower decrease towards the target rate for two reasons: i) STDP by itself
acts on much longer time scales, ii) switching from high to low rate is the most challenging
part of the entire sequence of tasks due to the saturation of the maximum weights in the

previous high I phase, which slows down the process even further.

Fig. 5.2 provides additional evidence of the alternation between the two different synaptic
behaviours. Plots are organised in five rows, with each row displaying information from a
different phase of the simulation. Panel A shows the initial uniform condition, panel B the
end of low I phase, etc. For each stage, we draw the histograms of recovery time constant
(Column 1) and synaptic utilisation (Column 2). According to the narrow standard deviation

observed in Fig. 5.1D,E, distributions peak around extreme values, reflecting two different,
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Figure 5.2 Single population scenario: STP parameters distribution during adaptation with
(U, Trec) learning scheme (Part 2). Different phases of the dynamics are represented. A Initial
(uniformly random) condition. B End of low I phase (target rate is 5Hz). C End of high I phase
(30Hz). D End of low 2 phase (5Hz). E End of high 2 phase (30Hz). Columns 1, 2 Histograms of
recovery time constant and synaptic utilisation of the synapses projecting onto the output neurons.
Low values indicates facilitation whereas high values suggest depression. Column 3 Single synapse
traces obtained with the TM model by applying a 5 Hz stimulus. Synaptic parameters used are mean
values obtained from the distributions drawn in panels A and B. Synapses display a clear alternation
between depressing and facilitating behaviour.
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synaptic behaviours. Column 3 in Fig. 5.2, displaying the single synapse traces obtained
with a TM model, demonstrates the corresponding behaviours: At the end of the phases
where neurons are required to fire low we observe a typical depressing response, whereas
at the end of the high rate regimes synapses show a typical facilitating trace. To generate
the traces, we used a 5 Hz signal to stimulate a synapse with a parameters given by the mean
values obtained from the corresponding histograms. Note that the synaptic trace for the
initial condition, i.e. before learning shapes the parameters, already shows depression, which
explains why the distributions of 7,,. and U at the end of the low I phase are much broader

than in the following phases.

Altogether, the four panels B-E in Fig. 5.1 and the five panels A-E in Fig. 5.2 show that
the properties and activity of the output population oscillate between two states and that
the desirable structure is formed depending on the target rate. In particular, we observe
that neurons that fire at low frequency turn their synaptic properties into depressing and the
connections formed are mostly unidirectional. Conversely, when the target rate is set at a
high frequency, neurons develop facilitating synapses and bidirectional connections.

STP-dependent modification of A enhances performance

Given the speed convergence issue in the low [ phase, we introduced an additional
learning mechanism, i.e. the STP-dependent rule for A, Eq. (5.23), (5.24). Indeed, this
mechanism provides an additional way, besides the STDP, for regulating the long-term

plastic synapses. In all the other aspects, the model remains as above.

Fig. 5.3 shows simulation results, with panels A-D depicting the same quantities as
panels B-E in Fig. 5.1 (symbols as before). A direct panel-by-panel comparison shows that
the results are very similar, meaning that with this new learning configuration the output
population also learns to adapt its synaptic properties in order to fulfil the current task, with
subsequent motifs formation. As expected, due to the additional learning rule for A, the
dynamics are faster: In particular, during the low I phase, neurons reach the target rate within
the simulation time, and the value of the symmetry measure is much lower than before,
confirming the formation of a unidirectional motif; compare with Fig. 5.1C, 5.3B and see
Tab. 5.2. Note that the adaptation of the STP parameters is also faster, as they depend on the
current value of the maximum synaptic strength. Thus, the STP-dependent modification of A

improves the overall performance and introduces an interesting link between STP and STDP.
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Figure 5.3 Single population scenario: Activity, connectivity and STP parameter adaptation
in the output population with (U, 7., A) learning scheme. A Mean firing rate of the output
population. Shaded area represents standard deviation, horizontal dotted grey lines show the two
target firing rates (high = 30Hz, low = 5 Hz) and vertical black arrows mark the onset of the four
dynamic phases alternating the targets in the sequence low-high-low-high. B Symmetry measure
applied on the connectivity of the output population. In accordance with the target rate, connectivity
switches between unidirectionality (low values) and bidirecitonality (high values). C, D Mean values
of recovery time constant T,.. and synaptic utilisation U for the synapses projecting onto the output
neurons. We observe depression (high values) at low firing rates and facilitation (low values) at high
firing rates. Compared to Fig. 5.1, we observe an improvement in the overall performance due to the
inclusion of the STP-dependent modification of A.

5.2.2 Two populations with a different task: Synaptic differentiation

Now we consider a different scenario, which we refer to as the second or double popula-
tion scenario. The two tasks associated with low and high targets are now simultaneously
active and must be learnt by different populations, interacting via lateral connections and
receiving the same stimulus source. Reasons are multiple: We want to investigate if our
model allows to contemporary encode both associative paradigms, without the need of for-

getting one of the two. In addition, we want to study the possibility that target-specific STP
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Phase (Trec, U) scheme (Trec, U, A) scheme
s p-value s p-value

Low 1 (0-500 s) 036 1.82x107? 0.28 1.13x10°15
High 1 (500-1000s) | 0.98 547x107'2 099 8.73x 1020
Low 2 (1000-1500 5) | 0.59 6.47 x 10! 0.41 2.19x10°°
High 2 (1500-2000 5) | 0.88 1.50x 1071  0.82 3.63x 107’

Table 5.2 Symmetry measure and p-value for the single population scenario with {7, U} and
{Trec, U, A} learning schemes. Column 1: The four phases of dynamics with the corresponding
simulation time. Columns 2,3: Symmetry measure and p-value for the adaptation of {7,.., U}. Values
are computed at end of each phase and by considering output neurons only. Columns 4,5: Same as
columns 2 and 3 except for the adaptation of {T,.., U, A}.

emerges as a consequence of the target-dependent learning rules we chose for our model. In
particular, we want to test whether our model is able to reproduce existing experimental data,
specifically that appearing in Table 1, from the paper by Wang and his collaborators (Wang
et al. [2006]).

Trec/Tfacil »
Synaptic groups Trec(MS)  Tracit(ms) U Trec/ Tfacil s in Wang's
subtypes
Wang
U — " | 310211 733+17  0.27+£0.01  0.42 0.38 El
o — " | 260+£5 833+13 0.25+0.01 0.31 0.34 Ela
A — " | 35619 643+£27 0.29+£0.01  0.55 0.43 Elb
A — B | 550+£14 440+£19 0.55+£0.02 1.25 39.47 E2
A — B | 595+16 436+26 0.61+£0.02 1.36 76.88 E2a
o — K" | 51023 443+28 0.50+0.03  1.15 25.55 E2b

Table 5.3 Types and subtypes of excitatory synapses between the two output populations in the full
model {Tyec, U, Tfacit, A}. Column 1: Synaptic groups. For instance @£ |J 8" — @f* includes
all synapses from both output populations, £{*' and @™, to the output population firing high, &£
Columns 2,3,4: Mean values of STP parameters Tyec, Tracit,U. As in Wang et al. [2006], we provide
the results in the form mean 4 s.m.e.. Column 5: Ratio between the two time constants, T,/ Ttacil» N
our simulation. Column 6: For a direct comparison, we provide the values of T,/ Tracil s in Wang
et al. [2006]. Column 7: Mapping of our subtypes onto Wang’s subtypes.
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Figure 5.4 Double population scenario: Network architecture, activity and connectivity of the
output populations with full (U, Ty, Traci» A) learning scheme (Part I). A Architecture. The
previous network is doubled so that there are now four populations: Two input regions (blue) and two
output regions ¢4, A" (red). The four populations are organised in two branches, one required to
fire at high rates (30 Hz) and the second at low rates (5 Hz). Within each branch connections are all
to all (black arrows) whereas initially weak connections (grey arrows) are present between the two
output populations and between the two input populations. Input neurons receive a wave-like stimulus
from outside (blue dashed arrows). All synapses obey both Spike-Timing Dependent Plasticity and
rate-dependent short-term plasticity. B Mean firing rate of the output populations, black line for @
and grey line for 5. Shaded area represents standard deviation and horizontal dotted grey lines
show the two target firing rates (30 Hz for ", 5 Hz for ¢%). C Symmetry measure applied on the
connectivity of the output population. Colour legend as in panel B. Connectivity evolves differently
in the two populations, leading to a bidirectional motif in &{* and to a unidirectional motif in @

Network architecture

The new configuration is depicted in Fig. 5.4A and it is obtained by mirroring the structure
of the first scenario and by adding recursive connections between functionally homologous

populations. This led to a network of N = 80 conductance-based integrate-and-fire neurons,
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organised in two distinct branches of 40 neurons each, with the first branch required to fire at
a high rate (v = 30 Hz) and the second branch at a low rate (v = 5 Hz). Both targets remain
fixed throughout the entire simulation. Each branch is a replication of the architecture we
used previously, i.e. it is formed by an input and an output population recursively connected.
Thus, the network is formed by four functionally different populations: p’l” p&” Jof”’, pg’”,
with obvious meaning of symbols. Input populations in both branches receive the stimulus
from the same source: A single wave-like signal is delivered to the Nj,p,; = 60 neurons with
v = 10 Hz, stimulating one neuron per time (see Methods 2.5), first the neurons in ﬁ{‘ and
then the neurons in p’z" All connections are plastic following the STDP triplet rule and TM
model for STP.

Lateral connections are present between the inputs p‘l” p’zn and between the outputs
M, A" . To stress that they are functionally different, we drew their initial values from
a uniform distribution in [1072, 10~'], but, during the evolution, synapses are allowed to
grow up to A, = 1 as any other synapse. Furthermore, cross connections between different
output and input populations, i.e. between ((di", A" and between ", ,@’2" are absent. The
rest of the connections - within each population and across populations belonging to the
same branch - are drawn from a uniform distribution in [10*3 , 1} and they are not allowed
to exceed this interval during the simulation. STP variables are initialised as in the single
population scenario and in all the simulations presented in this subsection we used Yy =2 as

the learning rate.

Full model: Adaptation of U, Ty, Tr4; and A

We begin by studying the behaviour of the full model: All four parameters are modified
by our rate-dependent STP, Eq. (5.20)-(5.24). Taking into account the modifications of all
three STP parameters allows us to make a direct comparison with Wang et al. [2006]. Results
are displayed in Fig. 5.4B-C and in Fig. 5.5.

Fig. 5.4B,C shows the time course of the mean firing rate and symmetry index in both
output populations, black lines for ¢ and light grey lines for 5" . Shaded areas and
dark grey dotted lines represent standard deviation and target firing rates. Both populations
M, ¢K" approach the target rate while developing specific connectivity: As expected, a
bidirectional motif emerges in the population firing at the high rate whereas the population
firing at the low rate develops mostly unidirectional connections.

Fig. 5.5A-C shows the time evolution of the three parameters of the TM model: Black
lines and grey lines represent the mean value of the synapses projecting from the two
output populations & | J 4" respectively onto ¢£* and 5. Shaded area is the standard

deviation. As expected from the previous simulation, we observe that the two populations
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develop different synaptic types: High values of 77, and low values of 7. and U, as
observed in the population firing at the high rate, suggest a facilitating behaviour, whereas
values as the one observed in g4, characterise depressing synapses. Mean values at the
end of the simulation are reported in Tab. 5.3 rows 1,4. These results show that our model
develops target-specific STP and results in good agreement with the data in Wang et al.
[2006]. Indeed, although single values are not identical, the qualitative synaptic behaviour is
represented: Recalling the notation used in Wang et al. [2006], two main types of synapses
are present. The group projecting from &{* | J g5 onto @4 can be mapped onto the type
E1 and the group projecting from &{* | J 5" onto 45" that can be mapped onto the type
E2.

Following Wang et al. [2006], we can also refine our classification, introducing a further
distinction within each class. With this purpose, we show in Fig. 5.5D-F the distributions of
Trec> Tracit and U at the end of the simulation within the entire output population M B
For each histogram, data have been divided into four groups, representing the four different
subtypes: 5" to g5 with light grey, X" to K" with medium grey, X" to X" with dark
grey, ¢K" to @ with black. While the distinction between the two synaptic types mapping
onto E'1 and E2 is evident, the difference between two subtypes in the same type cannot be
easily seen. However, by looking at the mean values of synaptic parameters in Tab. 5.3 rows
2, 3, 5, 6 and in particular the ratio T,/ Tracit in Tab. 5.3 column 5, the distinction into four
subtypes becomes more clear. As reported in column 7 of Tab. 5.3, we can map the synaptic
subtypes as follows: Ela corresponds to the group ¢#* — @#", E1b to A" — A", E2a

to B4 — A" and E2b to @A — @AM,

Finally, similarly to Fig. 5.2, in Fig. 5.5G-J we show single synapse traces for each
subtype. We observe that, except for the last trace, different groups effectively show a
distinctive response to the same stimulus (12 Hz) and the traces reproduce the ones of the

corresponding subtypes in Wang et al. [2006].

Although in Fig. 5.5D-F we present four different histograms for each parameter, we
can reason on the overall distribution within the entire output population &£ [ J g5* as the
sample size is the same in all histograms. We can therefore observe that the distribution of
Trec closely matches that in Wang et al. [2006], whereas the distribution of U reproduces the
peak at around 0.25 but is less broad. The distribution of 7, instead, is rather different,
being totally shifted towards facilitating values in our case. This may be due to the fact that U
is much more peaked around low values. We decided then to discard 7z, from the learning
scheme and run a simulation where only U, 7,.. and A are learnt, as we did for the single
population scenario. We observed that the behaviour of the output populations and all the

results remain unchanged. We provide an explanation for this in the Discussion.
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Figure 5.5 Double population scenario: STP parameters adaptation and final distribution for
the output populations with full (U, T.c, Tfcii, A) learning scheme (Part 1). A - C Mean values
of recovery time constant T, facilitation time constant Ty,.; and synaptic utilisation U. Black
lines represent mean values across the synapses projecting onto output population 1 from both
output populations, & |J £ — X", whereas grey lines describe the synapses projecting onto
output population 2 from both output populations, &5 | 5" — %" Shaded areas show standard
deviation. We observe that the two populations develop different synaptic types, facilitating for &f*
and depressing for g%". D - F Corresponding histograms of the three synaptic parameters at the end
of the simulation. For each of them we show four different groups of values, mapping qualitatively
to the four subtypes identified by Wang et al. [2006], see Tab. 5.3. Light grey: 8" — 5" (E2a).
Medium grey: X" — A" (E2b). Dark grey: X" — 4" (Ela). Black: ¢5" — @' (E1b). G -J
Single synapse traces obtained with the TM model by using a 12 Hz stimulus. Each panel represents
a different subtype of synapses. G A" — @£". H " — B 1 @ — . J A" — .
Synaptic parameters used are the mean values obtained from the distributions drawn in panels D -
F. A comparison with Wang et al. [2006] on the basis of the traces only shows that we are able to
identify three of the four subtypes.
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Synaptic groups ‘ Trec (M)

(plout U%ut N [0(1”” 300+9

o = | 267+6
A — | 327415
A — B | 524416
o — B | 486423

gt — B | 567+22

Table 5.4 Types and subtypes of excitatory synapses between the two output populations in the
minimal model (7., A). Symbols are as in Tab. 5.3. Similar to Wang et al. [2006], we provide the
results in the form mean + s.m.e..

A minimal model for rate-dependent STP: Adaptation of 7., and A

Finally, we study the minimal model: A model that suffices to obtain the desired be-
haviours by adapting as few parameters as possible. The choice of the parameters to be
learnt is naturally suggested by the form of the objective function Eq. (5.9): 7. and A.
Interestingly, this minimal model preserves two key features: i) Both a presynaptic parameter,
Trec, and a postsynaptic parameter, A, participate in learning. ii) STP and STDP are linked to
each other through the STP-dependent modification of A.

In Fig. 5.6 we show the results of the minimal model: From A to D respectively: Mean
output firing rates, symmetry index, T, evolution and 7. distribution in the four groups
of synapses. By comparing these panels with the ones from the full model simulation, we
observe that output populations still efficiently fulfil the task while developing the expected
connectivity motifs. Also, in Tab. 5.4 we report the mean values of 7, for the four groups of
synapses that we identified with the full model: There is still a clear distinction between them.
We can therefore conclude that this minimal model is sufficient for qualitatively reproducing

the main two types and also the subtypes of Wang et al. [2006].

5.3 Discussion

It is well known that synapses are activity-dependent connections through which neurons
propagate information. STP is a mechanism that describes these phenomena in short time
scales and introduces two typical synaptic behaviours: Depression and facilitation. Contrary
to long-lasting modifications of maximum synaptic strengths, for example STDP, existing
models of STP do not rely on any learning mechanisms, apart from very few exceptions;

see for instance Carvalho and Buonomano [2011]. Motivated by their work, it is our belief
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Figure 5.6 Double population scenario: Learning in the output populations with minimal (7.,
A) model. A Mean firing rate of the output populations, black line for 4" and grey line for 5.
Shaded area represents standard deviation and horizontal dotted grey lines show the two target firing
rates (30 Hz for g4, 5 Hz for g%"). B Symmetry measure applied on the connectivity of the output
population. Colour legend as in panel B. Connectivity evolves differently in the two populations,
leading to a bidirectional motif in @4 and to a unidirectional motif in @4". C Mean value of recovery
time constant Ty... Black line: " |J 5" — " Grey line: " |J 5" — ¢%". We observe that
the two populations develop different type of synapses, facilitating for &{* and depressing for &£".
D Corresponding histograms of the recovery time constant at the end of the simulation. Light grey:
A — B, medium grey: X" — K, dark grey: " — @R, black: K" — ¢X". The panels
show that the achievement of the tasks and the differentiation of the synapses is still possible with this
minimal model.

that more efficient dynamics would be possible if synapses were allowed to change their
short-term behaviour by tuning their own parameters, depending on one or more external
controlling factors, for example, their current task. Typically, one asks which is the firing
regime for which a certain type of synapse performs better (Barak and Tsodyks [2007]),
whereas we are looking at the picture from a reverse perspective: We want to obtain some

frequency regime, which is the most efficient way to do it from a synaptic point of view?
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A similar concept can be found in Natschlédger et al. [2001], where the authors trained a

network with a temporal structured target signal, using optimisation techniques.

In our work, we developed a learning scheme for STP, and we obtained, with a semi-
rigorous argument, a learning rule for only one of the three parameters of the TM model, 7.
Based on specific experimental results (Markram et al. [1998b]; Thomson [2000]; Tsodyks
and Markram [1997]) and data fitting (Chow et al. [2005]), we used the conjecture that STP
behaviour of synapses has the same functional dependence on U and 7,,., which allowed us
to write a similar rule for the synaptic utilisation U. Interestingly, such learning rules depend
on the maximum synaptic strength, and they therefore: i) Provided a natural link between
STP and STDP and ii) allowed us to derive an STP-dependent rule for the maximum synaptic
strength, to be added to the STDP contribution. It is important to highlight that, despite the
heuristic derivation of the learning rules does not guarantee that they follow the gradient, our
results show that the objective function Eq.(5.9) monotonically decreases with the adaptation
of the parameters, eventually reaching its global minimum. This is a direct consequence of
the fact that in each dynamical phase the average firing rate approaches the target firing rate,

driving the value of objective function towards zero.

The interaction between short- and long-term plasticity is largely supported by experimen-
tal evidence (Markram et al. [1997]), although the exact mechanisms are still unknown. Some
results (Markram and Tsodyks [1996]; Sjostrom et al. [2003, 2007]) suggest that synapses
become more/less depressing after long-term potentiation/depression. Our rules incorporate
this behaviour: Long-term potentiation/depression always produces larger/smaller changes in
STP parameters. However, whether these modifications bring more facilitation or depression
critically depends on whether the population firing rate (V) is approaching the target rate
Viarg from above or below. Consider, for example, Eq. (5.16): If v;4 — (V) < 0, then long-
term potentiation will produce a stronger depression, thus reproducing the experimentally
observed behaviour. In our simulations, this happens to the neurons that are firing at low
frequencies. If V;4pg — (v) > 0, then an increase in A will make 7, even smaller, resulting
in a less depressing synapse. In our simulations, this happens to the neurons that are firing
at high frequencies. A similar argument can be formulated for the induction of long-term
depression. We note that several mechanisms have been identified to compete during synaptic
transmission, resulting in a more complex and less clear relationship between STP and STDP
(Sjostrom et al. [2007]).

In Sjostrom et al. [2003, 2007] the authors link the interaction between short- and
long-term plasticity with the frequency of firing: At high rates, synapses tend to become
stronger and more depressing, while at lower frequencies they tend to become weaker

and less depressing. Our derivation, instead, suggests the opposite: If we rely on the
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hypothesis that large values of 7,.. lead to depression and small values to facilitation (Chow
et al. [2005]), according to Eq. (5.15), facilitating synapses allow neurons to reach higher
frequencies. These findings, together with the STDP triplet rule, form the basis of our work:
They provide the theoretical basis for the experimentally observed correspondence between
facilitation and bidirectionality, and between depression and unidirectionality. The behaviour
expressed by Eq. (5.15) is experimentally and computationally based on previous work that
relates facilitation with high frequency and rate code, and depression with low frequency and
temporal code (Blackman et al. [2013]; Fuhrmann et al. [2002]). This is because, for example,
a facilitating synapse may require several spikes to elicit an action potential, meaning that
only high frequency stimulation can generate postsynaptic spikes (Klyachko and Stevens
[2006]; Matveev and Wang [2000]).

We derived our rules by minimising an error function that is equal to zero when the target
and actual firing rates are equal. Alternatively, we could have defined a reward function
opposite to the error function in the sense that for zero error the reward function has its
maximum value, and it is equal to zero for large error. We could have then taken the
gradient of the reward function instead, bringing the derived rules into the framework of
policy gradient learning methods and reinterpreting the feedback signal as a reward signal
(Richmond et al. [2011]; Urbanczik and Senn [2009]; Vasilaki et al. [2009a]). In biological
systems, dopamine is thought to act as reward signal (Fiorillo et al. [2003]; Schultz et al.
[1997]), and its role in the context of learning associated with STDP, and more generally
with Hebbian learning, has been extensively studied (Izhikevich [2007]; Legenstein et al.
[2008]; Tobler et al. [2005]).

As highlighted in the introduction of this chapter, adaptation of STP parameters is a
topic that has received very little attention, hence there is a lack of experimental results
that could validate our hypothesis or provide some biological basis. The only available
results in this direction, to the best of our knowledge, concern multiple evidence of activity-
dependent vesicle replenishment, providing experimental basis for our adaptation of Ty
(Hennig [2013]). Moreover, few models have been developed to describe this phenomenon,
bringing with them possible biological interpretations. The most accepted one involves
calcium concentration at the presynaptic terminal (Fuhrmann et al. [2004]). Given this
evidence and the predominant role of calcium in both facilitation and depression, adaptation
of STP parameters could be linked to a retrograde signal triggered by the postsynaptic neuron
which would regulate the level of Ca™™ in the presynaptic cell. The existence of a retrograde
comunication between post and presynaptic neurons has been validated by experimental
observations (Bender et al. [2006]; Sjostrom et al. [2003, 2007]) and its specific role in

interacting with calcium concentration to enhance facilitation or depression has been also
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suggested by Carvalho and Buonomano [2011]) to support their model of STP adaptation.
Due to the form of our rules, also the presence of two global feedback signals is required: one
encoding the population activity, which is processed outside the population and broadcasted
to all neurons; and an external signal bringing information about the current paradigm, i.e. the
target firing rate. Similar to Urbanczik and Senn [2009], we can assume that synapses receive
both signals via ambient neurotransmitter concentrations, leading to an on-line plasticity

rule.

Finally, our derivation of the learning framework leads to a rather unsual STP-dependent
contribution to the modification of the synaptic weight A. Its structure is similar to the learning
rules for STP parameters and it has to be interpreted as a contribution that sums up with the
traditional long-term plasticity (STDP in our case). This term is of difficult interpretation
and there is no other mechanism such this in the literature. Therefore, possible biolgical
interpretations have to remain within the domain of pure speculation. Receptor desensitisation
(Hennig [2013]), for instance, is a property that has been shown to contribute to synaptic
depression through a decrease in the number of available receptors on the postsynaptic site,
due to presynaptic activity. As such, it represents an instance of modification of a postsynaptic
quantity due to presynaptic activity, that is similar to what happens in our learning rule for
A" Eq. (5.23).

We initially tested our learning scheme by implementing the rules for 7, and U on a
classical paradigm of inverting associations: Keeping the stimulus fixed and varying the
associations, the network had to learn to first make choice A and then unlearn it in favour of
choice B. This led to a network able to periodically switch its behaviour from depressing to
facilitating and vice versa, closely following the change in the association paradigm. Through-
out the simulation, the network formed motifs similar to those experimentally observed in
Pignatelli [2009]; Wang et al. [2006], with facilitating synapses developing bidirectional
motifs and depressing synapses developing unidirectional motifs. The desirable motifs were
formed due to two factors: (i) The triplet rule that governed long-term potentiation and (i)
the wave-like input stimulus of the network. The form of the plasticity rule guarantees that
when neurons fire at high frequency, the synaptic efficacy increases. Hence, synapses will
grow up to their bounds, leading to bidirectional connections. On the contrary, when neurons
fire at low frequencies, the synaptic efficacy decreases, yet the wave-like input imposes

unidirectional connectivity.

We further extended this learning model by adding an STP-motivated rule for the max-
imum synaptic strength, and we tested it on the same invert association scenario. Results
showed the same behaviour as before but with faster dynamics due to the joint action of STP
and STDP on the absolute efficacy.
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In the second part of the paper, we extended our study. First, we considered two
populations that have to fire at different frequencies (low, high). Then, we introduced a
learning rule for the facilitating time constant, in order to have a full learning model involving

all four parameters. The aim was twofold:

(i) Comparison of our results with experimental data in Wang et al. [2006]. Although
the accuracy is not excellent, we were able to qualitatively reproduce the basic differentiation
in the ranges of values of the STP parameters, reflecting the existence of four different
synaptic subtypes. We believe that by further adapting the model, in particular learning rates
and target frequencies or by considering other rule combinations, it is possible to obtain
different parameter values (in principle an infinite combination of them), and thus possibly
reproduce the results of Wang and collaborators even better. However, we think this may not
be critical because, as a recent study (Costa et al. [2013]) has pointed out, fitting techniques
generally used for deriving STP parameters from experimental data may give unreliable
results. Given this limitation, we think it is important that our model accounts for a large
variety of parameter values in principle, and that in this specific case of Wang et al. [2006] it

is able to replicate the basic distinction in the synaptic response.

(ii) Differentiation of synaptic types innervating two functionally different populations.
The reason for this lies in the way we constructed the learning model: What triggers the
synaptic modification is the spike of the postsynaptic neuron. The firing rate of the population
to which this postsynaptic neuron belongs is the information used to tune the values of STP
parameters. In other words, we implement a target-specific learning mechanism. This
choice is based on an optimisation argument: The more direct and efficient way for a neuron
to influence its own activity through synaptic changes is to modify incoming synapses
rather than outgoing synapses. A second scheme, a source-specific learning mechanism
modifying the outgoing synapses, would have probably led to the same results within closed

microcircuits, but on a much longer time scale.

Our target-specific learning mechanism is also supported by experimental evidence (see
Blackman et al. [2013] for a review). Despite the fact that STP seems to be mainly a
presynaptic mechanism, it has been shown that the target cells can also determine the STP
dynamics. All the studies we are aware of have established such a target specificity only in the
context of excitatory cells innervating other excitatory cells on one side and inhibitory cells
on the other side, specially interneurons (Buchanan et al. [2012]; Markram et al. [1998b];
Reyes et al. [1998]). It would therefore be interesting to appropriately modify the double
population scenario by incorporating a population of inhibitory neurons and comparing the
results with existing data. In addition, some authors (Blackman et al. [2013]; Costa et al.

[2013]) suggested that a similar differentiation might exist within excitatory only populations.
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Having target-specific STP for excitatory-excitatory connections is still an open possibility
that needs to be further explored. Here we show from a theoretical point of view that such
a differentiation is possible between fundamentally similar (all excitatory) but functionally
different (encoding for different paradigms) targets.

The well-established existence of STP-target specificity provides us with a possible
biological explanation for the learning rules we derived. Indeed, this scenario requires that
the postsynaptic neuron can regulate specifically its own presynaptic compartment only,
by a retrograde signal that does not affect neighbouring cells. Thus, diffusive retrograde
messengers, for example endocannabinoids and nitric oxide, do not appear to be the most
suited agents, whereas synaptic adhesion molecules, for example cadherins (Bozdagi et al.
[2004]) and neuroligins (Dean and Dresbach [2006]), seem to be better candidates for playing
this role. These molecules are responsible for governing the presynaptic transmitter release
through many different presynaptic mechanisms (Blackman et al. [2013]; Blatow et al. [2003];
Deng et al. [2011]; Zucker and Regehr [2002]).

We underline that the way we obtained the learning rules is based in part on heuristic
evaluation. According to Eq. (5.15), derived from a semi-rigorous argument, the key pa-
rameters seems to be 7,,. and A. By also including U following Carvalho and Buonomano
[2011], we obtain a learning scheme involving 7., U and A only, which we used to study the
double population problem and evaluate the importance of Tr,.;. Results remain essentially
unchanged from the full model, suggesting that 7r,.; does not play a critical role in the task
we defined. This is not surprising and the reason is that our rules link facilitation with a high
firing rate, and depression with a low firing rate. Indeed, even with a small facilitation time
constant (small Tr,;), synapses are still able to fire at a high rate, as long as the stimulating
frequency is high enough and recovery from depression is fast enough (low 7). Therefore,
the time constant of recovery from depression seems to be the only parameter regulating
the firing frequency of the neuron for high firing rates, exactly as it comes out from the
objective function (we recall that Eq. (5.15) comes from an inequality obtained in the limit of
high frequency). With our novel view of allowing synapses to modify their properties from
facilitating to depressing and vice versa, we therefore suggest that 7., is the parameter that

is mostly related to rate coding, whereas U to temporal coding.

This conclusion is also supported by Carvalho and Buonomano [2011]. In this paper
the authors described a simple problem based on temporal synchrony between two inputs
that cannot be solved unless STP is learnt, together with STDP. Besides the long-lasting
change in A, they introduce a temporal synaptic plasticity for U only and they showed that
this indeed solves the problem. Also, they reported that changing U only was the most
efficient way to solve the problem. Our work supports the hypothesis that, when dealing with
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rate coding tasks, the only necessary parameter that has to be learnt is 7,.., whereas, based
on Carvalho and Buonomano [2011], when dealing with temporal coding tasks, the only
necessary parameter is U.

Another result pointing to a similar direction can be found in Natschlédger et al. [2001],
where the authors use optimisation techniques, rather than explicit learning rules, to train a
network of neurons in order to transform a time-varying input into a desired time-varying
output. They show that to achieve good performance, one needs to change at least two
parameters, either A and 7, or A and U. This confirms that learning must involve at least
one presynaptic and one postsynaptic parameter, and that Tr,.; seems not to be relevant in
these types of tasks.

We finally presented results from what we call the minimal model, where only 7., and A
were allowed to change, since both their corresponding update rules come directly from the
gradient of the objective function we defined. Results confirmed our belief, as we were still
able to learn the tasks while obtaining results similar to those from Wang and collaborators.
It is in agreement with our conjecture that when we tried to apply learning on U and A only
(results now shown here), the network failed to perform its task because the population that
was supposed to fire high stabilised at a much lower frequency, i.e. ~ 15Hz. Therefore,
an alternative minimal model adapting U and A would be able to successfully learn only
targets of a lower firing regime. We believe that specialisation of parameters in the STP
model depending on tasks and signal encoding may be a key ingredient towards a better

understanding of synaptic and neuron functionality.

Summary The mechanism described here suggests a possible answer to the question why
we observe a correspondence between certain kinds of motifs and short term properties of
synapses. It is innovative not just for the form of the rule, but also for the rule itself: STP is
usually thought as a phenomenon that depends on long-term plasticity, without a separate
and independent learning mechanisms. The model presented is a simplistic one that wants to
show how learning STP is possible and it reproduces experimental results, based on the idea
that it is "convenient" for both synapses and neurons, and therefore for the computation in
general. In the next Chapter possible improvements for this study will be discussed, as well
as for the rest of the work presented in Chapters 3 and 4.






Chapter 6
Future Developments

The way neurons are connected within the brain is not random, but follows specific
patterns. Even though brain connectivity follows a general scheme that is recurrent among
humans, each individual develops his own wiring diagram that is different from anyone else,
as it is shaped by genes and experience, and therefore also by possible disorders. The map
of brain connections is thought to be the key to access knowledge that can shed new light
on a variety of brain mechanisms, in terms of single processes and brain functioning as a
whole. Revealing connectivity patterns is therefore essential. Being able to interpret these
patterns, or motifs, and to identify the causes that made them develop and have the observed
features is just as important. Considerable work has been done in this direction and more is

still ongoing.

In this thesis, these two big challenges in Neuroscience were formulated in terms of
how and why questions: How can we reveal motifs in large brain-like networks? And,
can we give an explanation of why such motifs seem to appear correlated with specific
synaptic properties? The work presented here attempts to address both questions. First, we
formulated the problem of finding and evaluating structures in networks of neurons in terms
of a community detection problem. We therefore introduced a symmetry measure definition
and we constructed a statistics-based heuristic algorithm for directed and weighted networks
aiming at identifying overlapping bidirectional communities in large networks. On a separate,
but strictly related line of research, we also introduced an error-driven learning mechanism
for short-term plasticity that may explain how such motifs, or communities, develop and
correlate with synaptic properties, starting from random initial conditions. In particular, we
were able to qualitatively reproduce the experimental results of Wang et al. [2006]. The work
presented in this thesis is mainly taken from the papers I produced: Esposito et al. [2014,
2015]; Esposito and Vasilaki [2015].



116 Future Developments

The results showed in this thesis have, however, their own limitations and also they cannot
account for all the aspects of the connectivity problem. As such, they do not represent an
end point, rather they should be regarded as a source of inspiration and as a staring point for
improvements and further studies. Some of the possible ideas have been already mentioned

at end of each chapter and will be further discussed below.

Motifs detection

It is important to stress that the symmetry measure and the algorithm for motifs detection
have been tested on in silico data, and indeed they are mainly intended to be a tool for the
computational neuroscience community. This is mostly due to the fact that experimental
recordings do not provide connectivity matrices but sequences of spikes. However, ongoing
efforts of inferring synaptic weights and reconstructing the effective connectivity from spikes
suggest that in a near future the tools provided here could be applied also to experimental
data (Friston [2011]; Pernice and Rotter [2013]; Van Bussel et al. [2011]).

Connectivity prior to learning A major limitation in our procedure for communities
detection is that it requires the knowledge of the distribution of synaptic weights prior to
learning. When simulating the behaviour of a network of neurons, in most cases such a
distribution is imposed at the beginning, and it is therefore known. Thus, the relevant question
becomes how to choose such a distribution. Here, as a case study, we considered uniform
and Gaussian distributions, but in principle all the results can be reproduced for a different
distribution. The only requirement is that the distribution needs to be regular, i.e. one for
which it is meaningful to apply measures from statistics, like mean value and variance.

In terms of experimental data, the appropriate question would be rephrased as: How
can we know which is the real distribution of connections in a brain circuit before learning
takes place? A possible answer is certainly related to neural development, the study of
the brain during early stages of development. This topic has been studied for years, with
different methods suggested to analyse cortical development and its implications (Kolb and
Gibb [2011]; Mariani et al. [2012]; Mills and Tamnes [2014]; Muzio and Consalez [2013]).
Recently, due to the increasing interest towards the connectome, there has been a wealth of
research looking at how the connectome itself changes over time (Ingalhalikar et al. [2015];
Mills and Tamnes [2014]). Remarkably, a recently launched program, called Developing
Human Connectome Project!, aims to create the first connectome of early life. Of course,

even during development, there is no clear distinction between a hypothetical pre-learning

Uhttp://www.developingconnectome.org/
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phase and what happens afterwards. It is probably not possible to obtain such an entire
map without including effects due to learning processes: As soon as connections form,
they are extremely plastic and therefore they are already subject to modifications. Despite
such complications, having access to the history of connectivity, from the very beginning
of development to later stages, would certainly be helpful in clarifying how connections
between neurons could be distributed. Also numerical simulations would benefit from this as

they could rely on a more realistic basis.

Sparseness A second key aspect is that connectivity within brain circuits is sparse, whereas
the networks we considered to test our algorithm are all-to-all connected, and the algorithm
itself is built for this types of graphs. The algorithm presented in Chapter 5 is our first attempt
to address the structure detection problem, and as such we chose a configuration as simple as
possible, i.e. with neurons all-to-all connected. The good results obtained encourage us to
develop it further for more realistic and complicated cases, such as including sparseness.
We recall that the algorithm relies on two elements: The symmetry measure, which
already takes sparseness into account through the pruning parameter a, and the bidirectional
community definition, that was conceived for all-to-all connected networks. The way we built
such a definition allows a very immediate generalisation to sparse bidirectional communities:
Similar to what we did for the symmetry measure, we can introduce a pruning parameter a
and rescale the minimum number of bidirectional connections required within the community.
Thus, similar to Eq. (4.5) and with the same meaning of symbols, we can define sparse

bidirectional communities as a set of neurons % such that:
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A further development would be to better characterise sparseness, for example by using
second or higher order statistics. Indeed, brain networks show a variety in the sparseness of
the connectivity that is richer than what we can obtain with a single parameter, that results
in a uniformly pruned network, hence globally regular. For instance, this would allow to
take into account that, even though the global connectivity is sparse, locally there might be a
higher probability of connection just because of anatomical reasons, leading to the formation
of small local clusters. Indeed, significant presence of higher order motifs has been confirmed
by experimental data (Song et al. [2005]; Sporns et al. [2005]) and simulations (Bourjaily
and Miller [2011a]).

Small-world and scale-free topologies Recently, it has been proposed that brain networks
may exhibit small-world (Bassett and Bullmore [2009]; Sporns et al. [2004]; Yu et al.
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[2008]) and scale-free properties (Beggs and Plenz [2003]; El Boustani et al. [2009]; He
[2014]; Levina et al. [2009]). These results are extremely attractive because these types of
organisation seem to better respond to optimality criteria in terms of information transmission.
Also, what makes these graphs highly interesting is that they have been found in many
different systems in nature and they are related to the concept of local cluster. A natural
development of the work presented here would therefore be the adaptation of our algorithm

in order to apply it to networks with small-world and scale-free properties.

For example, in the Watts-Strogatz model (Watts and Strogatz [1998]) the community
structure intuitively depends on the rewiring probability p: The extreme value p = 1 generates
a random graph, which has no community structure, while p = 0 generates a regular lattice.
The community detection algorithm could therefore be used, for instance, to establish the

transition value of the parameter p.

In scale-free networks, by definition, nodes with fewer connections are the candidates
to form communities, resembling a small-world structure. Most of the scale-free networks,
indeed, show the property of small-worldness. However, this is not always the case: The
Barabasi-Albert model (Albert and Barabasi [2002]), for instance, is a scale-free network
that does seem to have a community structure (Fortunato [2010]), because the connection
between each pair of nodes is random due to the preferential attachment procedure. An
existing tool to evaluate the clustering properties of a network is the clustering coefficient
(Watts and Strogatz [1998]): Given 3 neurons i, j,k, if both j and k are connected to i
then the probability that there is also a connection between j and k is high (higher than
in random graphs). Intuitively, the clustering coefficient appears to be a necessary but not
sufficient condition for community structure, as the definition relies on motifs of 3 neurons
and therefore it does not allow to infer much about larger motifs. Indeed, even though not all
scale-free networks exhibit a community structure, both small-world and scale-free networks
are characterised by a high value of the clustering coefficient. Our algorithm could therefore
be used to better distinguish these two classes of graphs and also to separate within each
class networks having a community structure from those that do not, giving further insights

on their topology.

In order to apply our algorithm to small-world and scale-free networks some adaptations
are required, as when dealing within small-world and scale-free networks, it is implicit to
refer to binary connections: Small-world and scale-free, and therefore community structure,
are features that are measured based on the presence/absence of a connection. Hence there is
no involvement of connection weights and therefore no notion of bidirectionality or similar.

This means that our algorithm cannot be directly applied to such networks, but modifications



119

are needed to adapt it to the context. Here we lay the basis for future study by speculating on

two possible procedures:

* Prior to learning, a binary connectivity can be generated by following the desired
small-world or scale-free network model; links that have been generated can be turned
into continuous connections according with some distribution of weights; finally, a
learning process can be applied. In this sense, the small-worldness would be just a
different way of applying sparseness.

* Another possible way would be to generate the all-to-all network with continuous

weights, as we did in our study, and afterwards, but prior to learning, binarise it.

We aim at investigating these possibilities so as to adapt and generalise our algorithm to
different scenarios.

Benchmarks As mentioned above, the Barabasi-Albert network is an instance of scale-free
network with no community structure in it. This network can therefore be used as a first test
for every algorithm aiming at detecting communitites. Considering the issues outlined above,
we adapted our algorithm to be able to perform a community search in an Albert-Barabasi
network and, correctly, no community structure was detected. To further test the quality
of the performance of the algorithm we aim at testing it on a class of benchmark graphs
that have been proposed as a measure to compare different algorithms (Lancichinetti and
Fortunato [2009]).

Learning mechanisms

The mechanism we introduced in Chapter 5 is defined within a simple scenario, where,
given a periodic input signal that is always the same, the desired output changes, forcing
synapses to change as well. It should be stressed that this model is not intended to provide a
realistic biological mechanism, but rather to introduce the concept of learning STP, to show
how this can be done and how it has the potential of reproducing some experimental results.
This can be used both as a baseline for more complex and interesting scenarios that can be
defined to test the behaviour of the learning framework and for adjustments of the rule itself
and alternative formulations.

Reinforcement Learning and segregation of synapses To make our rule more biologi-
cally plausible, it is our aim to rephrase it within the context of Reinforcement Learning. The

idea is that different synapses can learn to selectively respond to different input patterns so



120 Future Developments

that the entire network is able to respond differently to different signals. In other words, the
aim is to reproduce associative learning paradigms, that can be already obtained for instance
with a perceptron, but with the novelty of a short-term learning rule and with a biologically
plausible global signal that delivers reward or punishment to all the neurons in the network.

This different formulation reflects an alternative optimality criterion at the basis of the
learning rule: With the mechanism introduced in Chapter 5, all neurons can change their
synapses in order to reach the desired goal. With the new reinforcement learning framework,
instead, only some neurons will be recruited, according to the needs: After a training phase,
where changes in short-term properties of synapses are modulated by reward, when presenting
the network with a specific input, only those synapses that are best suited for achieving the

corresponding desired output will be activated for the transmission of the signal itself.

Is STDP top-down? The learning framework we defined, comprising both STP and STDP,
results from a mixture of two different approaches. The learning rule for STP, which turns out
to influence also the long-term plasticity (see Chapter 5), is the result of a gradient descent
procedure: We defined an objective function and we assume that the system learns in order
to minimise this global function. In other words, all the components of the system — the
synapses in this case — have a global knowledge of it. This is called top-down approach
(Crespi et al. [2008]). STDP, instead, is thought to be a bottom-up technique, as there is no
global function to optimise: The learning rule comes directly from observation and the global
behaviour emerges naturally as a consequence of the single local processes at synaptic level.
Although using both approaches might seem contrasting, analysis of experimental data and
results from modelling brain circuits show that bottom-up and top-down mechanisms can
work together on the same process (Grossberg and Versace [2008]; Mechelli et al. [2004];
Szatmary et al. [2013]). In particular, evidence has been found for bottom-up and top-down
plasticity in orientation networks of the adult primary visual cortex V1 (Schummers et al.
[2005]). These results open up the possibility that STDP also responds to a global optimi-
sation criterion. Hence, we aim at investigating such a possibility through a mathematical

analysis of the equations governing it.

Umberto Esposito
Sheffield, October 2015
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