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Abstract

The aim of this thesis is to find the numerical solution for various coefficient

identification problems in heat transfer and extend the possibility of simultane-

ous determination of several physical properties. In particular, the problems of

coefficient identification in a fixed or moving domain for one and multiple un-

knowns are investigated. These inverse problems are solved subject to various

types of overdetermination conditions such as non-local, heat flux, Cauchy data,

mass/energy specification, general integral type overdetermination, time-average

condition, time-average of heat flux, Stefan condition and heat momentum of

the first and second order. The difficulty associated with these problems is that

they are ill-posed, as their solutions are unstable to inclusion of random noise in

input data, therefore traditional techniques fail to provide accurate and stable

solutions.

Throughout this thesis, the Crank-Nicolson finite-difference method (FDM)

is mainly used as a direct solver except in Chapter 7 where a three-level scheme

is employed in order to deal with the nonlinear heat equation. An explicit FDM

scheme is also employed in Chapter 10 for the two-dimensional case.

The inverse problems investigated are discretised using the FDM and recast

as nonlinear least-squares minimization problems with simple bounds on the un-

known coefficients. The resulting problem is efficiently solved using the fmincon

or lsqnonlin routines from MATLAB optimization toolbox. The Tikhonov regu-

larization method is included where necessary. The choice of the regularization

parameter(s) is thoroughly discussed. The stability of the numerical solution is

investigated by introducing Gaussian random noise into the input data. The

numerical solutions are compared with their known analytical solution, where

available, and with the corresponding direct problem numerical solution where

no analytical solution is available.
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Nomenclature
The following is a list of notation. Some of these symbols are used more than

once to represent different quantities from chapter to chapter due to the enormous

amount of notation present in this thesis. In some cases the use of a symbol not

listed below is local to a short portion of the text and in such circumstances it is

defined where it is introduced.

Latin symbols

a time-dependent function (eq.(9.31) in Chapter 9), time-

dependent thermal diffusivity in (Chapters 4 and 8), time-

dependent thermal conductivity in (Chapters 3 and 6), and

space, time-dependent function in eq. (9.1) in Chapter 9, and

Chapter 10)

ã the maximum value of a(y, t) (Chapter 10)

Aj, Ai,j vector components of difference equation (in all chapters)

b the coefficient function of space (Chapters 3 and 6), function

of time (Chapters 4 and 9) and space, time-dependent func-

tion (Chapter 10)

b̃ the maximum value of b(x, t) (Chapter 10)

b̃ vector for Neumann problem (Chapter 5)

Bj, Bi,j vector components of difference equation (in all chapters)

c the space-dependent heat capacity function (Chapter 3), time-

dependent absorbtion (Chapter 6) and time-dependent reac-

tion function (Chapter 9)

C the time-dependent coefficient function (Chapter 4)

C constant in expressions (3.7) and (3.10) (Chapter 3)

Cj, Ci,j the vector components of difference equation (in all chapters)

C[a, b] the space of continuous functions in [a, b]

C3[a, b] the space of functions three times continuously differentiable

in [a, b]

C2,1(Ω) the space of functions twice continuously differentiable in first

variable and once continuously differentiable in the second

variable in Ω



Nomenclature vii

C2+γ,1 the space of twice continuous functions with the second-

order derivative being Hölder continuous with exponent

γ ∈ (0, 1) for the first variable and once continuously dif-

ferentiable in the second variable

d reaction rate (Chapter 4)

D matrix given by expression (2.15) (Chapter 2)

D the solution domain (0, h)× (0, ℓ) (Chapter 10)

D the closure of D (Chapter 10)

D(F) the domain of F (Chapter 1)

D̃, Ẽ matrices for Neumann problem (Chapter 5)

D+, D−, D0 the forward, backward and central difference operators, re-

spectively (Chapter 7)

E matrix given by expression (2.15) (Chapter 2)

Eϵ the perturbed function of E given by expression (2.23)

(Chapter 2)

f , F heat sources (Chapters 5 and 4)

F nonlinear objective least-squares function (Chapters 2 and

7–10)

F1, F2, F3 nonlinear objective least-squares functions (Chapter 4, 6

and 9)

F̃ , F̃1 nonlinear objective least-squares functions (Chapter 9)

FI ,FII nonlinear objective least-squares functions (Chapters 5 and

6)

F operator (Chapter 1)

fmincon MATLAB optimization routine

G the right hand side of equations (2.8) and (4.10)

h length for y-axis (Chapter 10) and the time-dependent free

boundary (Chapters 7–9)

H2+γ the space of twice continuously differentiable functions with

the second-order derivative being Hölder continuous with

exponent γ

H1+γ/2 the space of once continuously differentiable functions with

the first derivative being Hölder continuous with exponent

γ/2

i, j, k indices



Nomenclature viii

k time-dependent coefficient function (Chapter 2)

K time-dependent coefficient function (Chapter 4)

L matrix (Chapters 4 and 7) and length of the conductor

(Chapter 4)

L2[a, b] the space of square integrable functions in [a, b]

lsqnonlin MATLAB optimization routine

M number of finite differences in x coordinate (all chapters

except Chapter 10)

Mx number of finite differences in x coordinate (Chapter 10)

My number of finite differences in y coordinate (Chapter 10)

N number of finite differences in t coordinate

normrnd MATLAB function generating Gaussian random numbers

p percentage of noise (Chapters 3–10)

Q coefficient function of time (Chapter 4)

Q fixed domain (0, 1)× (0, T ) (Chapters 7 and 8)

QT fixed domain [−ℓ, ℓ]× [0, T ] (Chapter 5) and (0, L)× (0, T )

(Chapter 6)

RII residual least-squares function without penalty term

(Chapter 5)

t time variable

tj time node

T final time

u solution / temperature / concentration

uq solution of the state equation (Chapter 1)

ui,j values of u at the node (i, j)

uki,j values of u at the node (i, j, k) (Chapter 10)

v coefficient function of time for velocity of fluid (Chapter 4)

v the transformed solution (Chapters 7–9)

vi,j components of transformed solution v (Chapters 7–9)

v̂i,j average of transformed solution vi,j (Chapter 7)

x space variable

xi space nodes

X ,Y Hilbert spaces (Chapter 1)

y space variable (Chapter 10)

yϵ perturbed data (Chapter 1)
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Greek symbols

α segregation parameter (Chapter 2)

β segregation parameter (Chapter 2) and regularization pa-

rameter (Chapters 4 and 8)

βi regularization parameter

γ segregation parameter (Chapter 2)

γ number in (0, 1)

∆t, ∆x, ∆y sizes of time and space steps

ϵ total amount of noise

ϵk Gaussian random variables

Λad set of admissible functions (Chapter 7)

ρ percentage of noise (Chapter 2)

σk standard deviation

φ initial condition function (Chapter 2)

integral overdetermination condition (Chapter 5)

ψ integral overdetermination condition (Chapter 5)

the time-average condition (Chapter 6)

ω weight function (Chapter 5)

Ω fixed solution domain (Chapter 4)

moving solution domain (Chapters 7–9)

Abbreviations

BEM boundary element method

BFGS Broyden, Fletcher, Goldfarb and Shannon

FDM finite difference method

FEM finite element method

FVM finite volume method

ICIP inverse coefficient identification problem

IP inverse problem

LB lower bound

O order of

PDEs partial differential equations
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PCG preconditioning conjugate gradients

rmse root mean square error

rrmse relative root mean square error

TTF trace type functional

TTR trust-region-reflective

UB upper bound
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Chapter 1

General introduction

1.1 Introduction

Many physical situations can be modeled by partial differential equations (PDE’s)

and if all the necessary input data for a certain problem are known, then the

solution can be evaluated and used to predict how the system will be behave

under various conditions, [29]. The necessary inputs include such information as

initial or boundary conditions, forcing terms, coefficients and even the shape of

the domain. On the other hand, if any of this information is missing or unknown,

then it is not possible to use the model for studying the physical system. However,

it may be possible to measure certain outputs experimentally from the system and

use this information together with the inputs that are known in order to retrieve

the missing input data. The last situation is known as an inverse problem.

Most inverse problems are ill-posed (unstable) problems. This usually means

that in such problems a slight change in the input data may cause an huge change

in the output solution. It was long believed that these problems have no practical

value and, hence, their study cannot lead to significant mathematical results. This

opinion was so strong that it outlasted 1943, the year of issue of the pioneering

paper by Tikhonov [117], where the practical importance of ill-posed problems

was emphasized and a method for stable solution was pointed out.

The scope of inverse problems has existed in various branches of physics, en-

gineering and mathematics for a long time. The theory of inverse problems has

been extensively developed within the past decade due partly to its importance

in applications; on the other hand, the numerical solutions to such problems need

huge computations and also reliable numerical methods. For instance, deconvo-

lution in seismic exploration, image reconstruction and parameter identification

all require high performance computers and reliable solution methods to carry

out the computation [123].
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The coefficient entries a PDE model are generally related to the physical

properties of the system that is modeled. In simple cases, these physical properties

can be identified directly from some kind of experiment and the results used to

reduce the model to a specific physical system. In complicated situations it

may be hard or impossible to measure the physical properties associated with a

coefficient in a model equation. In such cases it may be necessary to proceed

indirectly due to lack of information, i.e. to formulate and solve the inverse

problem for the missing data.

Parameter identification problems consist in using the input of actual obser-

vation or indirect measurement contaminated with noise, to infer the values of

the parameters characterizing the system under investigation. Often, these in-

verse problems are ill-posed according to the Hadamard postulate [43], which is:

if the solution does not exist or, is not unique or, if it violates the continuous

dependence upon input data. Most identification problems satisfy the first two

conditions and violate the third one which is the stability.

Inverse coefficient identification problems have been the point of interest to

many significant researchers in recent years. In the past few decades a great deal

of interest has been directed towards the determination of unknown coefficients in

PDE’s. The main motivation behind this research is to determine the unknown

properties of a region by measuring only data on its boundary, and particular

attention has been paid on coefficients that represent physical quantities, for

example, the conductivity of a medium. The techniques used depend mainly on

the type of equation (linear, semilinear and nonlinear) and the variables on which

the unknown coefficient is assumed a priori to depend. An important, but hard

case, is when the unknown conductivity, for instance, depends on the dependent

variable, [19]. However, if the material or medium is uniform, we do not expect

the unknown coefficient(s) to depend on the spatial variable. If, in addition, the

characteristic properties do not change with time when the dependent variables

are held fixed, then we may expect also that the coefficients do not depend on

time, [103].

Determination of leading coefficient or, the coefficient of the high-order deriva-

tive in the parabolic heat equation has been investigated widely and in many prac-

tical applications. For example, in [47] the problem of space-dependent diffusivity

identification has been studied, while the time-dependent case has been investi-

gated in [90]. Also, for the temperature-dependent case we refer to [13, 122].
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1.2 Inverse problems

From the mathematical point of view, problems are inverse when the correspond-

ing mathematical models contain some unknown parameters and therefore the

process of solving them reduces to restoring these parameters proceeding from

some additional information about the process (the so-called overdetermination

conditions).

From the physical point of view, the direct problem is more fundamental and

is related to a cause-effect sequence based on well-established physical laws, such

as heat conduction. The inverse problem is to find the unknown causes from the

known consequences (effects).

The application of inverse problems is of special importance in the case when

the immediate measurement of suitable parameters is impossible, for instance,

because of inaccessibility of either material or environment and also the rapidity

of the process, [70].

Inverse problems can be classified, as follows:

• coefficient identification problems, i.e. problems in which the coeffi-

cient(s) of equation is(are) unknown(s), see Chapters 2–10.

• retrospective, i.e. problems with reverse direction of time, like backward

heat conduction problem.

• boundary, i.e. problems related to the determination of unknown param-

eters in the boundary conditions.

• geometrical, i.e. problems concerning the determination of unknown do-

main or boundary, see Chapters 7–9.

All the above categories of inverse problems are ill-posed in the Hadamard con-

cept. Therefore, they are unstable and hence a sort of regularization must be

employed in order to retrieve the loss of stability.

1.3 Stefan problems

In 1890, the physicist J. Stefan modelled the melting of arctic ice in the summer

by a simple one-dimensional model, [84]. Consider a homogeneous block of ice

filling the region x ≥ ℓ = h(0) at the time t = 0. The ice starts to melt by

heating the block at the left end. Thus, at t ≥ 0 the region between x = 0 and

x = h(t) > 0 is filled with water and the region x ≥ h(t) is filled with ice. If
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u(x, t) represents the temperature over 0 < x < h(t) at time t, then the system

of equations that model this problem is

ut(x, t) = uxx(x, t), (x, t) ∈ (0, h(t))× [0,∞), (1.1)

u(x, 0) = u0(x), x ∈ (0, h(0)), (1.2)

ux(0, t) = f(t), t ∈ [0, T ], (1.3)

u(h(t), t) = 0, t ∈ [0, T ]. (1.4)

Moreover, the speed at which the interface between water and ice moves is pro-

portional to the heat flux. This is described by the following Stefan interface

condition:

h′(t) = −ux(h(t), t), t ∈ [0, T ]. (1.5)

Stefan problems model many real world and engineering situations in which

there is freezing or melting causing a boundary to vary in time. Stefan problems

(direct statement) are boundary value problems for parabolic equations in regions

with unknown and moving boundaries, which require determining the tempera-

ture u(x, t) and the moving boundary h(t). Conversely, inverse Stefan problems

require determining the initial and/or boundary conditions, and/or thermal prop-

erties from additional inputs which may involve the temperature, heat moment

(first, second) order, and/or measurement of the free boundary position, [41].

We mention that in Chapters 7–9 we focus on the one-phase coefficient inverse

Stefan problem which is the task of finding the unknown boundary function in

addition to the unknown coefficient(s).

1.4 Stability analysis

Coefficient identification problems and inverse geometric problems are nonlin-

ear problems in nature. These nonlinear problems can be cast into an abstract

framework as a nonlinear operator equation

F(x) = y, (1.6)

where F acts between two Hilbert spaces X and Y . For example, in parameter

identification problems, the parameter-to-output map F maps the parameter q

(for example) onto the solution uq of the state equation or the heat flux q ∂uq

∂n
.
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1.4.1 Tikhonov regularization method

In practice, the right-hand side data in (1.6) is perturbed as yϵ with ||y− yϵ|| ≈ ϵ

(ϵ is called noise level). Then instead of (1.6) one has to solve F(x) = yϵ. But of

course this equation may have no solution if yϵ /∈ R(F), whereR(F) ⊂ Y denotes

the range of the operator F . In this situation one has to define a quasi-solution

given by the minimization of the least-squares gap ∥F(x)− yϵ∥. Moreover, since

the inverse problems under investigation are ill-posed we employ the Tikhonov

regularization method based on minimizing

∥F(x)− yϵ∥2 + β∥x∥2 → min, x ∈ D(F), (1.7)

where D(F) represents the domain of F . For a positive regularization parameter

β, a minimizer to (1.7) always exists under certain conditions but may not be

unique, [31].

1.4.2 The choice of regularization parameter

With any regularization method, the choice of regularization parameter β > 0

plays a crucial rule. Its choice always represents a compromise between accuracy

and stability: if β is too small, (i.e. β ↘ 0) the solution exhibits oscillatory

behavior and becomes unstable. On the other hand, with large values of β, the

solution is damped and deviates from the exact result, [116].

Throughout the years a variety of regularization parameter choice strategies

have been proposed. These methods can roughly be divided into two classes

depending on their assumption about ∥F(x) − yϵ∥, the norm of perturbation of

the right-hand side of (1.6). The two classes can be characterized as follows:

Class A. Methods based on knowledge or good estimate of ∥F(x)− yϵ∥,

Class B. Methods that do not require knowledge of ∥F(x) − yϵ∥, but seek to

extract this information from the data and nature of the problem.

A method belonging to Class A is the discrepancy principle of Morozov [96],

which amounts to choosing the regularization parameter such that the residual

norm of regularized solution becomes approximately equal to the amount of noise

ϵ.

A method belonging to Class B is the L-curve method which is a log-log

plot for many positive regularization parameters of the norm of the regularized

solution versus the corresponding residual norm. In this way, the L-curve displays

the compromise between minimising theses two quantities, [44].
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1.5 Optimization technique

Throughout the thesis we employ the nonlinear Tikhonov regularization method

which minimizes the residual functional by adding the penalty term to stabilise

the solution, see (1.7). Therefore, we recast the nonlinear inverse problems into

nonlinear constrained minimization problems subject to simple bounds on the

variables. In this thesis, we mainly employ two optimization toolbox routines,

namely, fmincon and lsqnonlin, [95].

1.5.1 fmincon routine

fmincon is a MATLAB routine used to find the minimum of a problem specified

by

min
x
f(x) such that



C(x) ≤ 0,

Ceq(x) = 0,

Ax ≤ b,

Aeqx = beq,

LB ≤ x ≤ UB.

(1.8)

where b, beq, LB and UB are vectors, A and Aeq are matrices, C(x) and Ceq(x)

are vectorial functions, and f(x) is scaler function. The inequalities between

vectors are understood component-wise.

MATLAB syntax: the syntax used in our computational work is

>> x=fmincon(fun,x0,A,b,Aeq,beq,LB,UB,nonlcon,options)

where x0 is the initial guess for x. The quantities A, b, Aeq, beq, nonlcon can

be passed as empty by setting them as A=[ ], b=[ ], Aeq=[ ], beq=[ ] and

nonlcon=[ ]. The options are passed to routine as follows:

% Start with the default options

options = optimset;

% Modify options setting

options = optimset(options,’Display’, ’iter’);

options = optimset(options,’MaxFunEvals’, MaxFunEvals_Data);

options = optimset(options,’MaxIter’, MaxIter_Data);

options = optimset(options,’TolFun’, TolFun_Data);

options = optimset(options,’Algorithm’, ’interior-point’);

Input arguments:



Chapter 1. General introduction 7

fun: the function to be minimized which accepts a vector x and returns a scalar

value f .

x0: initial guess to start the minimization process.

A, b, Aeq, beq: linear constraint matrices A, Aeq and their corresponding vectors

b and beq.

nonlcon: the functions that compute the nonlinear inequality C(x) ≤ 0 and the

nonlinear equality Ceq(x) = 0.

fmincon allows us to choose among several algorithms which are ’interior-

point’ (the default choice), ’trust-region-reflective’, ’sqp’ (sequential quadratic

programming) and ’active-set’. In our computational work in Chapters 4 and 6

we choose the ’interior-point’ algorithm, for more details about the mathematical

setting we refer to [9, 10, 121].

1.5.2 lsqnonlin routine

lsqnonlin solves nonlinear least-squares problems including nonlinear data-fitting

problems of the form

min
x

∥F (x)∥22 = min
x

(
n∑

i=1

F 2
i (x)

)
,

with optional lower and upper bounds on the components of x. Rather than

computing the norm ∥F (x)∥22 (the sum of squares), lsqnonlin requires user-defined

functions to compute the vector-valued function in the form of

F (x) =


F1(x)

F2(x)
...

Fn(x)

 .

MATLAB syntax: we call lsqnonlin in command window of MATLAB as

follows:

>> x=lsqnonlin(fun,x0,LB,UB,options)

This routine allows us to choose the ’trust-region-reflective’ algorithm (default

choice) which is a subspace trust-region method based on the interior-reflective

Newton method described in [21, 22]. In each iteration it involves the solution of

a large linear system of equations using the method of preconditioned conjugate
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gradients (PCG) or ’Levenberg-Marquardt’, where the options quantity is the

same as before but the last line is replaced with

options = optimset(options,’Algorithm’, ’trust-region-reflective’);

1.5.3 Limitations of fmincon and lsqnonlin

• fmincon is a gradient-based method that is designed to work on problems

where the objective and constraints functions are both continuous and have

continuous first derivatives.

• does not allow for equal LB and UB bounds for x.

• the ’trust-region-reflective’ algorithm for lsqnonlin cannot accept underde-

termined nonlinear systems of equations, i.e. the number of elements of F

must be at least as the length of x.

• Levenberg-Marquardt algorithm does not handle bound constraints.

1.6 Numerical methods

There are various numerical methods to solve PDEs, for example, finite difference,

finite element, finite volume, boundary element, spectral and meshless methods,

[93].

Finite Difference Method (FDM) seems to be the easiest technique to

solve a differential equation. The main idea is to replace the differentials in

the PDE by finite differences. Because of its clarity and simplicity, the FDM is

usually the first choice for those who are aim to solve PDEs, [51]. One drawback of

this method is that it becomes quite complicated when solving PDEs in irregular

domains and the other is that it is difficult to carry out the mathematical analysis

such as stability and convergence for nonlinear PDEs.

Finite Element Method (FEM) is a popular method for solving various

PDEs, [105]. It works by rewriting the governing equation into an equivalent

variational form. Meshing the domain into small finite elements and looking for

appropriate solutions at the mesh nodes using appropriate basis functions over

each elements.

Finite Volume Method (FVM) is popular in computational fluid dynamics

(CFD). The main idea of FVM is to integrate the differential equation over a finite

size control volume surrounding each node point on a mesh, and then changing

the volume integrals to surface integrals, for more details we refer to [91, 120].
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Boundary Elements Method (BEM) is used to solve those PDEs which

possess a fundamental solution available explicitly. Then the use of Green’s for-

mula recasts the PDE as a boundary integral equation. The BEM attempts to

utilize the given boundary conditions to fit the boundary values into the integral

equation. Therefore, BEM reduces the dimensionality of the problem by one. The

BEM typically produces a fully populated matrix (different from FDM which is

tridiagonal).

Spectral Methods can be applied efficiently if the physical domain is simple

and the solution is smooth. The main idea is to write the solution of the differen-

tial equation as a sum of certain basis function and then to choose the coefficients

in the sum in order to satisfy the differential equation. Interested readers can

consult [42].

Meshless Methods. Mesh-based methods such as FEM, BEM and FVM

share the disadvantage of tedious meshing and re-meshing in crack propagation

problem, melting of a solid or freezing process, etc. The aim of a meshless method

is to overcome these drawbacks by getting rid of meshing or re-meshing the entire

domain and only adding or deleting nodes, instead. The early idea goes back to

the smooth particle hydrodynamic method developed in [39]. There are various

meshless methods, for example, element free Galerkin method; reproducing kernel

particle method; radial basis function method, method of fundamental solutions,

etc.

1.7 Procedures for solving inverse problems

In this section, we present numerical procedures for solving inverse and ill-posed

problems. One of them is the so-called adjoint problem approach, based on

integral relationships between the input and output data. An alternative to this is

the output least-squares method which seeks to minimize an objective functional

comparing the computed output to the measured value in an appropriate norm.

In this thesis, we adopt the second approach which mainly recasts the nonlinear

inverse problem as a constrained nonlinear optimization problem. Our procedure

can be expressed by the flowchart which explains the main logical steps, see Figure

1.1. From this figure, one can notice that our procedure starts with initializing

the model, say x0. Then this information is passed to the direct solver in order

to obtain the first value for the objective function, say f0. After that, we invoke

the MATLAB optimization routine fmincon or lsqnonlin and the process of

minimization starts to search for a better value for x, but with a lower objective

function value f . This process is repeated until the tolerance allowance is satisfied



Chapter 1. General introduction 10

or the prescribed number of iterations is reached.

1.8 Purpose and structure of the thesis

Nevertheless, coefficient identification problems have been investigated theoreti-

cally and numerically by many authors. Several studies concern determining a sin-

gle coefficient in the parabolic heat equation assuming that is constant [12], time-

dependent [75, 76], space-dependent [2], or temperature-dependent [85, 100, 101].

In these papers, the authors investigated the existence and uniqueness of solution

of inverse problems, but no numerical method/solution was presented. However,

some numerical technique was proposed in [108], based on space decomposition in

a reproducing kernel space. Also, in [36], the author considered retrieving lower-

order time-dependent coefficients using the Trace-Type Functional approach, [15].

The problem of retrieving two time-dependent coefficients simultaneously has

been investigated theoretically in the monographs [70, 104]. While, the case of

multiple time-dependent coefficients identification has been investigated in [111,

112, 113, 114], but no numerical solution/method has been attempted to solve

such inverse problems.

Based on the above literature research, this thesis aims to fill in the gaps on the

numerical solution for multiple (mainly time-dependent) coefficient identification

problems in one and two-dimensions. Our technique is based on the minimization

of the objective functional which naturally represents the gap between the mea-

sured and computed data. This optimization problem has been solved effectively

using MATLAB optimization toolbox routines. This gives accurate and stable

solutions if combined with Tkhonov’s regularization method for noisy input data.

The main purpose of this thesis is to find the numerical solution for vari-

ous coefficient identification problems and extend the possibility of simultaneous

determination of physical properties of interest. Most of the problems investi-

gated in this thesis model real phenomena such as heat conduction, melting and

freezing food or water, solidification, etc. Initially, we investigate numerically the

identification of one parameter (thermal diffusivity) in Chapter 2 and develop the

numerical procedure to handle the case of multi-parameters i.e. two parameter

or more, in the subsequent chapters.

This thesis is structured upon the type of domain (fixed or moving) and

then with this classification we arrange the chapters according to the number of

unknown coefficients. Chapters 2–6 are fixed domain problems with one and two

coefficients to be determined, whilst Chapters 7–9 are moving domains with one,

two, three, and four coefficients to be determined. Finally, Chapter 10 presents
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an extension to two-dimensions.

Throughout this thesis, FDM with Crank-Nicolson scheme is used as direct

solver except in Chapter 7 where the scheme of [88] is employed in order to deal

with the nonlinearity. An explicit FDM scheme is also used in Chapter 10 for the

two-dimensional case. The optimization routine lsqnonlin or fmincon are used in

order to find the numerical solution of inverse problems.

In Chapter 2, we investigate the numerical reconstruction of the time-dependent

diffusion coefficient from a nonlinear integral condition. Three test examples are

considered according to the nature of unknown coefficient such as linear or non-

linear and even in the case where the analytical solution is not available.

The problem of identifying the time-dependent thermal conductivity when the

space-dependent heat capacity is known is considered in Chapter 3. Cauchy data

are used in both Dirichlet and Neumann inverse problem formulations and their

existence, uniqueness and continuous dependence upon the data are carefully

investigated.

Chapters 4 and 5 extend the purpose of the thesis to the simultaneous deter-

mination of several time-dependent coefficients from Cauchy boundary data or

average temperature measurements.

In Chapter 6, we consider the numerical solution of a couple of inverse time

and space-dependent coefficient identification problems in the heat equation from

time-averaging temperature measurements and overspecified Cauchy boundary

data. The next three Chapters 7–9 present extensions to inverse free boundary

problems.

In Chapter 7, we consider a novel inverse problem where a free boundary is

determined from the mass/energy specification in a one-dimensional nonlinear

diffusion problem. Moreover, in Chapter 8, the problem of simultaneous determi-

nation of the free boundary and time-dependent thermal diffusivity is considered.

Unlike the problem in Chapter 7 this problem is ill-posed and needs to be sta-

bilised through the Tikhonov regularization method. Chapter 9 can be viewed

as the natural extension of Chapter 8 to the problem of multiple time-dependent

coefficient identification.

The problem of identification of a heterogeneous orthotropic conductivity in a

fixed rectangular domain is investigated in Chapter 10. An explicit FDM scheme

is used to discretise the governing equation and the unknown coefficients are

computed via the solution to a nonlinear least-squares minimization problem.

Finally, in Chapter 11, general conclusions and suggestions for possible future

work are highlighted.
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Figure 1.1: Flowchart of the procedure for solving an inverse problem.



Chapter 2

Determining the time-dependent

diffusion coefficient from an

integral condition

2.1 Introduction

Parameter identification from over-specified data plays an important role in ap-

plied mathematics, physics and engineering. The problem of identifying the diffu-

sivity was investigated by many researchers under various boundary and overde-

termination conditions, [62, 64, 90, 125].

In this chapter, a nonlocal over-specified data is used together with periodic

boundary conditions for the determination of the time-dependent diffusivity. The

mathematical formulation of the inverse problem is given in Section 2.2. In Sec-

tion 2.3, the unique solvability of a classical solution to the inverse problem is

recalled. The numerical methods for solving the direct and inverse problems are

described in Sections 2.4 and 2.5, respectively. Numerical results are presented

in Section 2.6. Finally, conclusions are highlighted in Section 2.7.

2.2 Mathematical formulation

In the rectangle QT = {(x, t)| 0 < x < 1, 0 < t ≤ T} = (0, 1)× (0, T ], we consider

the inverse problem given by the heat equation

ut(x, t) = k(t)uxx(x, t), (x, t) ∈ QT , (2.1)
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with unknown concentration/temperature u(x, t) and unknown time-dependent

diffusivity k(t) > 0, subject to the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ 1, (2.2)

where φ is a given function, the periodic and homogeneous heat flux boundary

conditions

u(0, t) = u(1, t), t ∈ (0, T ], (2.3)

ux(1, t) = 0, t ∈ (0, T ], (2.4)

and the over-determination condition, [98, 99],

p(t)u(0, t) +

∫ 1

0

u(x, t)dx = E(t), t ∈ [0, T ], (2.5)

where E is a given function and p(t) = α + βk−γ(t), where α, β, γ > 0 are

segregation coefficients. This problem arises in the mathematical modelling of

the technological process of external guttering applied, for example, in cleaning

admixtures from silicon chips, [98]. In this case, φ(x) is the distribution of ad-

mixture in the chip for x ∈ (0, 1) at the initial time t = 0, while u(x, t) is its

distribution at time t. Condition (2.3) means that the admixtures in the left and

right boundaries of the chip are the same. The adiabatic condition (2.4) means

that the right boundary x = 1 of the chip is perfectly insulated. Condition (2.5)

means that part of the substance is concentrated (segregated) on the left side

x = 0 of the chip, [98, 99].

When α = β = 0 then, the resulting inverse problem has been previously

investigated in [62], and it is the purpose of this chapter to investigate the non-

trivial case when α and β are non-zero.

2.3 Mathematical analysis

The pair (k(t), u(x, t)) from the class C [0, T ]×
(
C2,1 (QT ) ∩ C1,0

(
QT

))
for which

conditions (2.2)-(2.5) are satisfied and k(t) > 0 on the interval [0, T ] , is called

the classical solution of the inverse problem (2.1)-(2.5). Its unique solvability has

been established in [56], as given by the following theorem.

Theorem 2.1. Let the functions φ(x) ∈ C3 [0, 1] , E(t) ∈ C [0, T ] satisfy the
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conditions

φ(0) = φ(1), φ′(1) = 0, φ′′(0) = φ′′(1), (2.6a)

φ2k ≥ 0, φ2k−1 ≤ 0, k = 1, 2, ..., φ0 + 2φ1 < 0, E(t) < 2φ0,∀t ∈ [0, T ], (2.6b)

where φn =
1∫
0

φ(x)Yn(x)dx for n = 0, 1, 2, · · · ,

Y0(x) = x, Y2n−1(x) = x cos(2πnx), Y2n(x) = sin(2πnx), n = 1, 2, ... (2.7)

Then, there exist positive numbers α0 and γ0 such that the inverse problem (2.1)-

(2.5) with the parameters α < α0 , γ > γ0 has a unique solution.

2.4 Numerical solution of direct problem

In this section, we consider the direct initial boundary value problem given by

equations (2.1)–(2.4) when k(t) is given and the dependent variable u(x, t) is the

solution to be determined. We use the finite-difference method (FDM) with a

Crank-Nicolson scheme, [110], which is unconditionally stable and second-order

accurate in space and time.

The discrete form of the direct problem is as follows. Take two positive integer

M and N and let ∆x = 1/M and ∆t = T/N be step lengths in space and

time directions, respectively. We subdivided the domain QT = (0, 1) × (0, T )

into M × N subintervals of equally step length. At the node (i, j) we denote

ui,j = u(xi, tj), k(tj) = kj, where xi = i∆x, tj = j∆t, for i = 0,M , j = 0, N .

Considering the general partial differential equation

ut = G(x, t, uxx), (2.8)

equation (2.8) subject to (2.2)–(2.4) can approximated as:

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1) , i = 1,M, j = 0, (N − 1), (2.9)

ui,0 = φ(xi), i = 0,M, (2.10)

u0,j = uM,j, j = 0, N, (2.11)

uM+1,j = uM−1,j, j = 0, N, (2.12)

where

Gi,j = G

(
xi, tj,

ui+1,j − 2ui,j + ui−1,j

(∆x)2

)
, i = 1,M, j = 0, (N − 1). (2.13)



Chapter 2. Determining the time-dependent diffusion coefficient from
an integral condition 16

In (2.12) and (2.13), uM+1,j = u(xM+1, tj) for j = 0, N , where xM+1 = (M+1)∆x

is a fictitious point located outside the boundary x = 1.

For our problem, equation (2.1) can be discretised in the form of (2.9) as

− Aj+1ui−1,j+1 + (1 +Bj+1)ui,j+1 − Aj+1ui+1,j+1 =

Ajui−1,j + (1−Bj)ui,j + Ajui+1,j, (2.14)

for i = 1,M , j = 0, (N − 1), where

Aj =
(∆t)kj
2(∆x)2

, Bj =
(∆t)kj
(∆x)2

.

At each time step tj+1, for j = 0, (N − 1), using the periodic boundary conditions

(2.11), the above difference equation can be reformulated as a M ×M system of

linear equations of the form,

Duj+1 = Euj, (2.15)

where

uj+1 = (u1,j+1, u2,j+1, ..., uM,j+1)
T,

D =



1 +Bj+1 −Aj+1 0 · · · 0 0 −Aj+1

−Aj+1 1 +Bj+1 −Aj+1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −Aj+1 1 +Bj+1 −Aj+1

0 0 0 · · · 0 −2Aj+1 1 +Bj+1


M×M

,

and

E =



1−Bj Aj 0 · · · 0 0 Aj

Aj 1−Bj Aj · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · Aj 1−Bj Aj

0 0 0 · · · 0 2Aj 1−Bj


M×M

.

2.4.1 Example

As an example, consider the direct problem (2.1)–(2.4) with T = 1 and

k(t) =
1 + t

2π2
, u(x, 0) = φ(x) = − cos(2πx). (2.16)
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The exact solution is given by

u(x, t) = − cos(2πx)e−t2−2t. (2.17)

The required output (2.5) is

E(t) = p(t)u(0, t) +

∫ 1

0

u(x, t)dx = −

(
α+ β

(
1 + t

2π2

)−γ
)
e−t2−2t. (2.18)

The numerical and exact solutions for u(x, t) at interior points are shown in

Figure 2.1 and also the absolute error between them is included. One can notice

that an excellent agreement is obtained. Figure 2.2 shows the numerical solution

in comparison with the exact one for E(t) for α = β = γ = 1. The numerical

values for E have been calculated using equation (2.11) and the trapezoidal rule

approximation to the integral in (2.18) to result in the formula

E(tj) = p(tj)u0,j +
1

M

M−1∑
i=0

ui,j, j = 0, N. (2.19)
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Figure 2.1: Exact and numerical solutions for u(x, t) and the absolute error for the

direct problem obtained with M = N = 40.
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Figure 2.2: Exact and numerical solutions for E(t) with α = β = γ = 1 for the direct

problem obtained with M = N = 40.

2.5 Numerical solution of inverse problem

We wish to obtain stable and accurate reconstructions of the time-dependent

thermal conductivity k(t) and the temperature u(x, t) satisfying the equations

(2.1)–(2.5). We reduce the inverse problem to a nonlinear minimization of the

least-squares objective function

F (k) :=
∥∥u(0, t)(α + βk−γ(t)) +

∫ 1

0

u(x, t)dx− E(t)
∥∥2
L2[0,T ]

. (2.20)

The discretised form of (2.20) is

F (k) =
N∑
j=1

[
u(0, tj)(α+ βk−γ

j ) +
1

M

M−1∑
i=0

ui,j − E(tj)
]2
, (2.21)

where k = (kj)j=1,N , the values ui,j are computed from (2.15) and, for simplicity,

we have dropped the time-step multiplier T/N . It is worth mentioning that if

the compatibility condition u(0, 0) = φ(0) is satisfied then (2.5) applied at t = 0,

yields

k(0) =

(
βφ(0)

E(0)−
∫ 1

0
φ(x)dx− αφ(0)

)1/γ

. (2.22)

The minimization of the objective functional (2.21), subjected to the physical

simple bound constraints k > 0 is accomplished using the MATLAB optimization

toolbox routine lsqnonlin, which does not require supplying (by the user) the

gradient of the objective function, [95]. Furthermore, within lsqnonlin we use the

Trust-Region-Reflective (TRR) algorithm which is based on the interior-reflective
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Newton method, [25]. Each iteration involves a large linear system of equations

whose solution, based on a preconditioned conjugate gradient method, allows a

regular and sufficiently smooth decrease of the objective functional (2.21), [3].

In the numerical computation, we take the parameters of the routine lsqnonlin

as follows:

• Number of variables M = N = 40.

• Maximum number of iterations = 102 × (number of variables).

• Maximum number of objective function evaluations = 103×(number of vari-

ables).

• Solution and object function tolerances = 10−10.

The inverse problem (2.1)–(2.5) is solved subject to both exact and noisy

measurements (2.5). The noisy data is numerically simulated as

Eϵ(tj) = E(tj) + ϵj, j = 1, N, (2.23)

where ϵj are random variables generated from a Gaussian normal distribution

with mean zero and standard deviation σ given by

σ = ρ× max
t∈[0,T ]

|E(t)|, (2.24)

where ρ represents the percentage of noise. We use the MATLAB function norm-

rnd to generate the random variables ϵ = (ϵj)j=1,N as follows:

ϵ = normrnd(0, σ,N). (2.25)

The total amount of noise ϵ is given by

ϵ =
∣∣ϵ∣∣ =

√√√√ N∑
j=1

(Eϵ(tj)− E(tj))2. (2.26)

In the case of noisy data (2.23), we replace E(tj) by E
ϵ(tj) in (2.21).

2.6 Numerical results and discussion

In this section, we present and discuss a few test examples in order to illus-

trate the accuracy, stability and robustness of the numerical scheme based on the
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FDM combined with the minimization of the least-squares functional (2.21), as

described in Section 2.5.

2.6.1 Example 1

In this example, we consider the inverse problem (2.1)-(2.5) with T = 1 and the

input data

u(x, 0) = φ(x) = −cos(2πx)

e
, E(t) = −

(
1 + 8π2

√
1 + t

)
exp(−

√
1 + t), (2.27)

and α = β = γ = 1. One can easily check that E(t) ∈ C[0, 1] and that C3[0, 1] ∋
φ(x) satisfies the conditions in (2.6a). Moreover, using (2.7) we have

φ0 =

∫ 1

0

φ(x)Y0(x)dx = −1

e

∫ 1

0

x cos(2πx)dx = 0,

φ1 =

∫ 1

0

φ(x)Y1(x)dx = −1

e

∫ 1

0

x cos2(2πx)dx = − 1

4e
,

φ2k =

∫ 1

0

φ(x)Y2k(x)dx = −1

e

∫ 1

0

cos(2πx) sin(2πkx)dx = 0, k ≥ 1

φ2k−1 =

∫ 1

0

φ(x)Y2k−1(x)dx = −1

e

∫ 1

0

x cos(2πx) cos(2πkx)dx = 0, k ≥ 2

and hence, one can easily check that the conditions in (2.6b) are also satisfied.

According the Theorem 2.1 the solution of the inverse problem exits and is unique.

In fact, it can easily be checked by direct substitution that the analytical solution

is given by

k(t) =
1

8π2
√
1 + t

, u(x, t) = − cos(2πx) exp(−
√
1 + t). (2.28)

We take the initial guess for the unknown thermal diffusivity k(t) equal to the

constant k(0) = 1/(8π2) which is known from expression (2.22).

First, we attempt to retrieve the unknown diffusivity k(t) and the concen-

tration/ temperature u(x, t) for exact input data, i.e. ρ = 0, as well as for

ρ ∈ {2%, 20%} noisy data. The objective function (2.21) is plotted, as a function

of the number of iterations, in Figure 2.3. From this figure, it can be seen that

a very fast convergence is achieved in 4 to 8 iterations to reach a very low value

of O(10−25). The associated numerically obtained results for k(t) and u(x, t)

are presented in Figures 2.4 and 2.5, respectively. From these figures it can be

seen clearly that the agreement between the numerical results and the analyti-

cal solutions is excellent for exact data, i.e. ρ = 0, and is consistent with the
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errors in the input data for ρ > 0. The numerical solutions for k(t) and u(x, t)

converge to their corresponding exact solutions in (2.28), as the percentage of

noise ρ decreases from 20% to 2% and then to zero. The nonlinear least-squares

minimization (2.21) produces good and consistent reconstructions of the solution

even for a large amount of noise such as 20%, when the total amount of noise

computed by (2.26) is ϵ = 33.7.
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Figure 2.3: Objective function (2.21), for Example 1 with ρ ∈ {0, 2%, 20%} noise.
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Figure 2.5: Exact and numerical solutions for u(x, t), for Example 1 with (a) no noise,

(b) ρ = 2% noise, and (c) ρ = 20% noise. The absolute error between them is also

included.
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2.6.2 Example 2

Consider the inverse problem (2.1)-(2.5) with T = 1 and the input data

u(x, 0) = φ(x) = − cos(2πx), E(t) = −

(
1 +

(
1 + t

2π2

)−1
)
e−t2−2t, (2.29)

and α = β = γ = 1. As in Example 1, it is easy to check conditions (2.6a) and

(2.6b) of Theorem 2.1 are satisfied, but the condition 1 < α < α0 = 0.516 is not

satisfied, [56]. Hence, cannot conclude the uniqueness but, the solution at least

exists and is given by

k(t) =
1 + t

2π2
, u(x, t) = − cos(2πx) exp(−t2 − 2t). (2.30)

which can easily be verified by direct substitution.

The FDM numerical solution of the direct problem associated to this example

has already been presented and discussed in Subsection 2.4.1. The uniqueness

of solution (2.30) is not guaranteed from theory, but numerically we can at least

investigate the obtained results from various initial guesses for the unknown dif-

fusivity vector k which initiate the minimization of the objective function (2.21).

This will also test the robustness of the iterative method with respect to the

independence on the initial guess. This investigation is illustrated in Figures 2.6,

2.7 and Table 2.1 for exact data with various initial guesses

k0(t) ∈ {1/(2π2), 1, 2}, t ∈ [0, 1]. (2.31)

Note that from (2.30) the initial guess k0(t) = 1/(2π2) corresponds to the value

of k(0), which can be assumed to be known from (2.22). In Table 2.1, the root

mean square error rmse value of k is calculated as

rmse(k) =

√√√√ 1

N

N∑
j=1

(kj − kexact(tj))2. (2.32)
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Figure 2.6: Objective function (2.21) for Example 2 with no noise and various initial

guesses (2.31).
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Figure 2.7: Exact and numerical solutions for k(t), for Example 2 with no noise and

various initial guesses (2.31).

Table 2.1: Number of iterations, number of function evaluations, value of the objective

function (2.21) at final iteration, rmse value (2.32) and the computational time, for

Example 2 with no noise and various initial guesses (2.31).

ρ = 0 k0 = 1
2π2 k0 = 1 k0 = 2

No. of iterations 7 26 50

No. function evaluations 336 1134 2142

Value of objective function

(2.21) at final iteration

7.3E-28 1.7E-27 6.2E-28

rmse(k) 1.6E-4 4.4E-4 7.6E-4

Computational time 31 sec 105 sec 198 sec
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From Figure 2.6 and Table 2.1 it can be seen that, as expected, the farther the

initial guess is the more iterations and larger computational time are required to

achieve convergence. However, for all initial guesses (2.31) the objective function

(2.21) converges to the same minimum low value of O(10−28). This shows robust-

ness with respect to the independence on the initial guess. Furthermore, from

Figure 2.7 and Table 2.1 it can be seen that the agreement between the exact

and the numerically obtained solutions with various initial guesses is very good

being of O(10−4). There is also a slightly better accuracy for the closer initial

guess k0 = 1/(2π2) to the exact solution for k(t) from (2.30).

In what follows, we take the initial guess for the unknown diffusivity k(t)

equal to the constant k(0) = 1/(2π2) which is known from expression (2.22).

Figure 2.8 shows the objective function (2.21) for ρ ∈ {0, 1%} as a function

of the number of iterations. From this figure, it can be seen that the objective

functional (2.21) decreases rapidly to a very low level of O(10−28) in about 7

to 8 iterations. The corresponding exact and numerical solutions for k(t) and

u(x, t) are presented in Figures 2.9 and 2.10, respectively. First, from Figures

2.5 and 2.10 it can be observed that accurate and stable solutions for u(x, t) are

obtained for both Examples 1 and 2. Secondly, for exact data, i.e. ρ = 0, the

same conclusion regarding the excellent accuracy of the numerical solution for

k(t), as it was obtained for Example 1, can be drawn from Figure 2.4. However,

for ρ = 1% noisy data some instability starts to manifest in Figure 2.9, as it also

happened for Example 1 in Figure 2.4 for a much larger ρ = 20% amount of noise.

We also mention that for higher amounts of noise, such as ρ = 2%, the

lsqnonlin minimization routine did not make significant progress after a large

number of over 1000 iterations probably becoming trapped in a local minimum.

One possible reason could be that the expressions for k(t) given by equations

(2.28) and (2.30) yield a stronger nonlinearity in k−γ(t) in (2.20) for Example 2

than for Example 1.
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Figure 2.8: Objective function (2.21), for Example 2 with ρ ∈ {0, 1%} noise.
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Figure 2.9: Exact and numerical solutions for k(t), for Example 2 with ρ ∈ {0, 1%}
noise.

2.6.3 Example 3

The previous examples possessed analytical solutions available for the pair (k(t),

u(x, t)), as given by equations (2.28) and (2.30). In this subsection, we investigate

an example for which an explicit analytical solution for u(x, t) is not available.

We take the initial condition (2.2) given by

u(x, 0) = φ(x) =



0, 0 ≤ x < 1/4,

1
4
− x, 1/4 < x ≤ 1/2,

x− 3
4
, 1/2 < x < 3/4,

0, 3/4 < x ≤ 1.

(2.33)
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Figure 2.10: Exact and numerical solutions for u(x, t), for Example 2 with (a) no

noise, and (b) ρ = 1% noise. The absolute error between them is also included.

This is severe test example because the initial data (2.33) is non-smooth func-

tion. Clearly, the initial data (2.33) violates some of the conditions of Theorem

2.1 which is not applicable for this example. However, we can make the inverse

problem at least solvable by solving first the direct well-posed problem (2.1)–(2.4)

with φ(x) given by (2.33) and the diffusivity k(t) given by

k(t) =
1

1 + t
, t ∈ [0, 1], (2.34)

in order to provide the data (2.5). This is performed numerically using FDM

described in Section 2.4.

The numerical results for E(t) (with α = β = γ = 1) are shown in Figure

2.11, for various mesh sizes M = N ∈ {20, 40, 80}. From this figure it can be

seen that that numerical solution is convergent as the FDM mesh sizes decreases.

Also, there is only a small difference between the numerical results obtained
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with various mesh sizes showing that the independence on the mesh has been

achieved. Consequently, we take the results for E(t) simulated from solving the

direct problem with M = N = 80 as our exact input data (2.5) in the inverse

problem (2.1)–(2.5). In order to avoid committing an inverse crime, in the inverse

problem the number of space intervals is taken as M = 70 (different than 80),

whilst the number of time steps N is kept the same 80.
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E
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)

 

 

(M,N)=(20,20)
(M,N)=(40,40)
(M,N)=(80,80)

Figure 2.11: Numerical solution for E(t), for the direct problem of Example 3 with

various mesh sizes.

We take the initial guess k0 = 1, noting at the same time that since φ(0) = 0

and E(0) = −1/16 equation (2.22) cannot be directly applied as it yields the

non-determination 0/0 division.

Figure 2.12 shows the objective function evolution (2.21), as a function of the

number of iterations for no noise in the input data (2.5). From this figure it

can be seen that a fast convergence is achieved in 20 iterations to reach a very

low value of O(10−12). The associated numerically obtained results for k(t) are

presented in Figure 2.13. From this figure it can be seen that the agreement

between the numerical and the exact solutions is excellent, except for some slight

unexpected discrepancy near t = 0.
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Figure 2.12: Objective function (2.21), for Example 3 with no noise.
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Figure 2.13: Exact and numerical solutions for k(t), for Example 3 with no noise.

Next we add ρ = 1% noise in the input data (2.5) numerically simulated as

in (2.23). Figure 2.14(a) presents the objective function (2.21), as a function of

the number of iterations together with the horizontal noise threshold ϵ2=7.05E-

4 computed by (2.26). This threshold is useful when applying the discrepancy

principle in order to stop the iteration process before the instability of solutions

sets in. According to Figure 2.14(a) this criterion yields the iteration number

iterdiscr. = 2. Figure 2.14(a) also shows that the objective function (2.21) has

converged after iterconv. = 38 iterations. The rmse(k) values (2.32) for unknown

k(t) are plotted, versus the number of iterations in Figure 2.14(b). Form this

figure it can be remarked that the best retrieval occurs at iteropt. = 6. For

more clarity, the results of Figure 2.14 are summarised in Table 2.2 where the

computational time is also included.
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Figure 2.14: (a) Objective function (2.21) with horizontal noise threshold ϵ2=7.05E-4,

and (b) the rmse(k) values (2.32), for Example 3 with ρ = 1% noise.

Finally, Figure 2.15 shows the exact solution (2.34) for k(t) in comparison

with the numerical solutions obtained at the iterations given by stopping criteria

of Table 2.2. From this figure it can be seen that if the iterative process is not

stopped, after iterconv. = 38 iterations we obtain a numerical approximation with

rmse(k) = 0.2110 which moreover is not so accurate in the region t ∈ [0, 0.2].

However, if we stop the iterative process after iterdiscr. = 2 iterations given by

the discrepancy principle, which is graphically illustrated in Figure 2.14(a), then

an accurate and stable numerical solution is achieved. Moreover, it yields an

rmse(k) = 0.0587 which is close to the optimal one of rmse(k) = 0.0358.



Chapter 2. Determining the time-dependent diffusion coefficient from
an integral condition 31

Table 2.2: The number of iterations, the rmse(k) values (2.32) and the computational

time based on several stopping criteria, for Example 3 with p = 1% noise.

Criterion No. of iterations rmse(k) Computational time

to achieve convergence iterconv.= 38 0.2110 41 min

to achieve minimum

rmse(k)

iteropt.= 6 0.0358 8 min

discrepancy principle iterdiscr.= 2 0.0587 3 min
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Figure 2.15: Exact (—) and the numerical solutions for k(t) obtained after iterconv.=38

(- - -), iteropt.=6 (-�-), and iterdiscr.=2 (-△-), for Example 3 with ρ = 1% noise.

2.7 Conclusions

An inverse nonlinear problem which requires identifying the time-dependent dif-

fusivity with periodic boundary condition and non-local boundary measurement

has been investigated. Numerically, the resulting inverse problem has been re-

formulated as a nonlinear least-squares optimization problem which has been

solved using the MATLAB toolbox routine lsqnonlin. Numerical results show

that accurate, robust and reasonably stable solutions have been obtained. This

problem seems rather stable and hence, in general, no regularization was found

necessary to be employed. However, for more severe examples which violate the

sufficient conditions under which the well-posedness of the inverse problem hold,

as expected, some regularization needs to be applied. For example, in Subsection

2.6.3 for the minimization of the lsqnonlin routine used, the discrepancy princi-

ple has been applied in order to terminate the iterative process before instability

sets in and this, in turn, has produced a stable and accurate numerical solution.
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3.1 Introduction

In this chapter, we consider the reconstruction of the time-dependent multiplier

of the highest-order derivative in the parabolic heat equation. Physically, in

heat transfer this unknown thermal property coefficient corresponds to the ther-

mal conductivity of an inhomogeneous heat conductor which has a space-varying

known heat capacity. It is this later physically realistic feature that makes some of

the methods of previous studies [19, 62, 63, 125] of time-dependent thermal diffu-

sivity identification inapplicable. The same problem can be formulated in porous

media by replacing the thermal properties with the corresponding hydraulic ones.

With respect to what boundary conditions are specified and what additional

measurements are performed, the mathematical formulations of two inverse prob-

lems are given in Section 3.2. In that section, we also recall the previous well-

posedness results of [70, Section 4.3] and [54]. A numerical method based on the

Crank-Nicholson finite-difference scheme is employed as direct solver in a nonlin-

ear least-squares minimization, as described in Sections 3.3 and 3.4, respectively.

This combination yields accurate and stable numerical solutions, as it will be

discussed in Section 3.5. Finally, the conclusions of this chapter are highlighted

in Section 3.6.
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3.2 Mathematical formulation

Let L > 0 and T > 0 be fixed numbers and consider the inverse problem of finding

the time-dependent thermal conductivity C[0, T ] ∋ a(t) > 0 for t ∈ [0, T ], and

the temperature u(x, t) ∈ C2,1(QT ) ∩ C1,0(QT ), which satisfy the heat equation

c(x)ut(x, t) = a(t)uxx(x, t) + F (x, t), (x, t) ∈ QT := (0, L)× (0, T ), (3.1)

where c(x) > 0 is the heat capacity and F is a heat source, the initial condition

u(x, 0) = ϕ(x), x ∈ [0, L], (3.2)

the Dirichlet boundary conditions

u(0, t) = µ1(t), u(L, t) = µ2(t), t ∈ [0, T ], (3.3)

and the heat flux additional measurement

−a(t)ux(0, t) = µ3(t), t ∈ [0, T ]. (3.4)

Dividing equation (3.1) by c(x) and denoting

b(x) =
1

c(x)
, f(x, t) =

F (x, t)

c(x)
(3.5)

we obtain

ut(x, t) = a(t)b(x)uxx(x, t) + f(x, t), (x, t) ∈ QT . (3.6)

3.2.1 Inverse Problem I

The above inverse problem (termed Inverse Problem I) was previously investi-

gated theoretically in Section 4.3 of [70] where its unique solvability has been

established, as follows.

Theorem 3.1. (Existence of solution of Inverse Problem I)

Suppose that the following conditions hold:

1. (regularity conditions) b ∈ C1[0, L], ϕ ∈ C1[0, L], µi ∈ C1[0, T ] for i = 1, 2,

µ3 ∈ C[0, T ], f ∈ C1,0(QT );

2. (compatibility conditions) ϕ(0) = µ1(0), ϕ(L) = µ2(0).
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3. (non-vanishing and monotonicity conditions) ϕ′(x) > 0, b(x) > 0, b′(x) ≤ 0

for x ∈ [0, L], µ3(t) < 0, µ′
1(t)−f(0, t) ≤ 0, µ′

2(t)−f(L, t) ≥ 0 for t ∈ [0, T ],

fx(x, t) ≥ 0 for (x, t) ∈ QT ;

Then there exists a solution to the inverse problem (3.2)–(3.4) and (3.6).

Theorem 3.2. (Uniqueness of solution of Inverse Problem I)

If b ∈ C1[0, L], b(x) > 0 for x ∈ [0, L], µ3(t) ̸= 0 for t ∈ [0, T ], then the solution

of the inverse problem (3.2)–(3.4) and (3.6) is unique.

Next, we address the stability of solution, as given by the following theorem

proved in [54].

Theorem 3.3. (Local stability of solution of Inverse Problem I)

Suppose that the conditions of Theorem 3.1 are satisfied. Let µ3 and µ̃3 be two

data in (3.4) and let (a(t), u(x, t)) and (ã(t), ũ(x, t)) be the corresponding solutions

of the inverse problem (3.2)–(3.4) and (3.6). Then, for sufficiently small T , the

following local stability estimate holds:

∥a− ã∥C[0,T ] ≤ C∥µ3 − µ̃3∥C[0,T ], (3.7)

for some positive constant C.

Later on, in the numerical results of Section 3.5, the well-posedness of the

Inverse Problem I established in Theorems 3.1–3.3 will be highlighted through

the fact that no regularization is needed for obtaining a stable and accurate

numerical solution.

3.2.2 Inverse Problem II

For completeness, we also investigate another related inverse problem (termed

Inverse Problem II) which requires the determination of the thermal conductivity

C[0, T ] ∋ a(t) > 0 for t ∈ [0, T ] and the temperature u(x, t) ∈ C2,1(QT ), which

satisfy the heat equation (3.6), the initial condition (3.2), the Neumann boundary

conditions

−ux(0, t) = ν1(t), ux(L, t) = ν2(t), t ∈ [0, T ], (3.8)

and the boundary temperature additional measurement

u(0, t) = µ1(t), t ∈ [0, T ]. (3.9)
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This inverse problem was also previously investigated in Section 4.3 of [70], where

its unique solvability has been established, as follows.

Theorem 3.4. (Existence of solution of Inverse Problem II)

Suppose that the following conditions hold:

1. b ∈ C2[0, L], ϕ ∈ C2[0, L], νi ∈ C1[0, T ], i = 1, 2, µ1 ∈ C1[0, T ], f ∈
C1,0(QT );

2. b(x) > 0, ϕ′(x) ≥ 0, (ϕ′(x)
√
b(x))′ > 0, b′(x) ≤ 0, b′′(x) ≤ 0 for x ∈ [0, L];

ν1(t) ≤ 0, ν2(t) ≥ 0, µ′
1(t)−f(0, t) > 0, fx(0, t)+µ

′
1(t) ≥ 0, ν ′2(t)−fx(L, t) ≥

0 for t ∈ [0, T ]; fx(x, t) ≥ 0, (fx(x, t)
√
b(x))x ≥ 0 for (x, t) ∈ QT ;

3. ϕ′(0) = −ν1(0), ϕ′(L) = ν2(0), ϕ(0) = µ1(0).

Then there exists a solution to the inverse problem (3.2), (3.6), (3.8) and (3.9).

Theorem 3.5. (Uniqueness of solution of Inverse Problem II)

If b ∈ C1[0, L], b(x) > 0 for x ∈ [0, L], µ′
1(t)− f(0, t) ̸= 0 for t ∈ [0, T ], then the

solution of the inverse problem (3.2), (3.6), (3.8) and (3.9) is unique.

The next stability theorem was proved in [54].

Theorem 3.6. (Local stability of solution of Inverse Problem II)

Suppose that the conditions of Theorem 3.4 are satisfied. Let µ1 and µ̃1 be two

data in (3.9) and let (a(t), u(x, t)) and (ã(t), ũ(x, t)) be the corresponding solutions

of the inverse problem (3.2), (3.6), (3.8) and (3.9). Then for sufficiently small

T, the following local stability estimate holds:

∥a− ã∥C[0,T ] ≤ C∥µ1 − µ̃1∥C1[0,T ], (3.10)

for some positive constant C.

Note that unlike Inverse Problem I, in the Inverse Problem II, the estimate

(3.10) involves the derivatives of the noisy functions µ1 and µ̃1 which in itself is

an unstable procedure which needs to be regularized.

We finally mention that another related inverse formulation given by equations

(3.2), (3.3), (3.6) and the additional measurement

−ux(0, t) = ν1(t), t ∈ [0, T ] (3.11)

has been investigated in [65]. The choice of additional measurements (3.4), or

(3.9), or (3.11), is important for the inverse problem formulation, as it contains

the richness of the information supplied in order to retrieve more effectively the

unknown time-dependent conductivity.
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3.3 Solution of direct problems

3.3.1 The Dirichlet direct problem

In this section, we consider the direct (the inverse of the Inverse Problem I) initial

Dirichlet boundary value problem given by equations (3.2), (3.3) and (3.6), where

a(t), b(x), f(x, t), ϕ(x) and µi(t), i = 1, 2, are known and the temperature u(x, t)

is the solution to be determined. We use the FDM described in Section 2.4.

The discrete form of the direct problem (3.2), (3.3) and (3.6) is as follows. We

subdivide the domain QT = (0, L)× (0, T ) into M ×N subintervals of equal step

length ∆x = L/M and ∆t = T/N . At the node (i, j) we denote ui,j = u(xi, tj),

a(tj) = aj, b(xi) = bi and f(xi, tj) = fi,j, where xi = i∆x, tj = j∆t for i = 0,M ,

j = 0, N .

The Crank-Nicolson FDM for the general partial differential equation (2.8) is

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1) , i = 1, (M − 1), j = 0, (N − 1), (3.12)

where

Gi,j = G

(
xi, tj,

ui+1,j − 2ui,j + ui−1,j

(∆x)2

)
, i = 1, (M − 1), j = 0, (N − 1). (3.13)

Equation (3.12) has to be solved subject to the discretised form of equations (3.2)

and (3.3), namely,

ui,0 = ϕ(xi), i = 0,M, (3.14)

u0,j = µ1(tj), uM,j = µ2(tj), j = 0, N. (3.15)

For our problem, equation (3.6) can be discretised in the form of (3.12) as

− Ci,j+1ui−1,j+1 + (1 +Bi,j+1)ui,j+1 − Ci,j+1ui+1,j+1

= Ci,jui−1,j + (1−Bi,j)ui,j + Ci,jui+1,j +
∆t

2
(fi,j + fi,j+1) (3.16)

for i = 1, (M − 1), j = 0, (N − 1), where

Ci,j =
(∆t)ajbi
2(∆x)2

, Bi,j =
(∆t)ajbi
(∆x)2

.

At each time step tj+1 for j = 0, (N − 1), using the Dirichlet boundary conditions

(3.15), the difference equation (3.16) can be reformulated as a (M − 1)× (M − 1)
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system of linear equations of the form,

Duj+1 = Euj + b, (3.17)

where

uj+1 = (u1,j+1, u2,j+1, ..., uM−1,j+1)
T,

D =



1 +B1,j+1 −C1,j+1 0 · · · 0 0 0

−C2,j+1 1 +B2,j+1 −C2,j+1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −CM−2,j+1 1 +BM−2,j+1 −CM−2,j+1

0 0 0 · · · 0 −CM−1,j+1 1 +BM−1,j+1


,

E =



1−B1,j C1,j 0 · · · 0 0 0

C2,j 1−B2,j C2,j · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · CM−2,j 1−BM−2,j CM−2,j

0 0 0 · · · 0 CM−1,j 1−BM−1,j


,

and

b =



∆t
2
(f1,j + f1,j+1) + C1,j+1µ1(tj)

∆t
2
(f2,j + f2,j+1)

...
∆t
2
(fM−2,j + fM−2,j+1)

∆t
2
(fM−1,j + fM−1,j+1) + CM−1,j+1µ2(tj)


.

3.3.1.1 Example

As an example, consider the direct problem (3.2), (3.3) and (3.6) with T = L = 1

and

a(t) = 1 + t, b(x) = 2− x2, ϕ(x) = u(x, 0) = x+ sin(x),

µ1(t) = u(0, t) = 8t, µ2(t) = u(1, t) = 1 + sin(1) + 8t,

f(x, t) = 8 + (1 + t)(2− x2) sin(x).

The exact solution is given by

u(x, t) = x+ sin(x) + 8t (3.18)
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and the desired heat flux output (3.4) is

µ3(t) = −a(t)ux(0, t) = −2− 2t. (3.19)

The numerical and exact solutions for the temperature u(x, t) at interior points

are shown in Figure 3.1 and one can observe that an excellent agreement is

obtained. Figure 3.2 shows the numerical solution in comparison with the exact

one for µ3(t) and the curves look indistinguishable. The x-partial derivative of

u(x, t) at x = 0 has been evaluated using the following O(h2) finite-difference

approximation formula:

ux(0, tj) =
4u1,j − u2,j − 3u0,j

2(∆x)
, j = 0, N. (3.20)
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Figure 3.1: Exact and numerical solutions for the temperature u(x, t) and the absolute

error for the Dirichlet direct problem obtained with M = N = 40.
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Figure 3.2: Exact and numerical solutions for the heat flux µ3(t) of the Dirichlet direct

problem obtained with M = N = 40.
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3.3.2 The Neumann direct problem

The FDM analysis for the direct (the inverse of the Inverse Problem II) initial

Neumann boundary value problem given by equations (3.2), (3.6) and (3.8) is

similar to that of direct Dirichlet problem of previous subsection. In this case,

we discretise equations (2.8), (3.2) and (3.8) as:

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1) , i = 0,M, j = 0, (N − 1), (3.21)

ui,0 = ϕ(xi), i = 0,M, (3.22)

u−1,j − u1,j = −2(∆x)ν1(tj), uM+1,j − uM−1,j = 2(∆x)ν2(tj), j = 1, N, (3.23)

where Gi,j is given by (3.13), and u−1,j and uM+1,j for j = 1, N are fictitious

values at points located outside the computational domain. Equations (3.21) can

be rewritten in the form of the system (3.16) for i = 0,M , j = 0, (N − 1). At

each time step tj+1 for j = 0, (N − 1), using the Neumann boundary conditions

(3.23), we obtain a M ×M system of linear equations of the form,

D̃ũj+1 = Ẽũj + b̃, (3.24)

where

ũj+1 = (u0,j+1, u1,j+1, ..., uM,j+1)
T,

D̃ =



1 +B0,j+1 −2C0,j+1 0 · · · 0

−C1,j+1 0

0 D ...
... −CM−1,j+1

0 · · · 0 −2CM,j+1 1 +BM,j+1


,

Ẽ =



1−B0,j 2C0,j 0 · · · 0

C1,j 0

0 E ...
... CM−1,j

0 · · · 0 2CM,j 1−BM,j


,
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and

b̃ =



∆t
2
(f0,j + f0,j+1)− 2(∆x)(C0,jν1(tj) + C0,j+1ν1(tj+1))

∆t
2
(f1,j + f1,j+1)

...
∆t
2
(fM−1,j + fM−1,j+1)

∆t
2
(fM,j + fM,j+1) + 2(∆x)(CM,jν2(tj) + CM,j+1ν2(tj+1))


.

In the above expressions the matrices D̃ and Ẽ contain the matrices D and E of

the Dirichlet direct problem defined in subsection 3.3.1.

3.3.2.1 Example

As an example, consider the direct problem (3.2), (3.6) and (3.8) with T = L = 1

and

a(t) = 1 + t, b(x) = 2− x2, ϕ(x) = u(x, 0) = x+ sin(x),

ν1(t) = −ux(0, t) = −2, ν2(t) = ux(1, t) = 1 + cos(1),

f(x, t) = 8 + (1 + t)(2− x2) sin(x).

The exact solution is given by (3.18) and the desired boundary temperature

output (3.9) is

µ1(t) = u(0, t) = 8t. (3.25)

The numerical and exact solutions for the temperature u(x, t) at interior points

are shown in Figure 3.3 and one can observe that an excellent agreement is

obtained. Figure 3.4 shows excellent agreement between the numerical solution

and the exact one for µ1(t).
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Figure 3.3: Exact and numerical solutions for the temperature u(x, t) and the absolute

error for the Neumann direct problem obtained with M = N = 40.
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Figure 3.4: Exact and numerical solutions for µ1(t) of the direct Neumann problem

obtained with M = N = 40.

3.4 Solution of inverse problems

We wish to obtain stable and accurate reconstructions of the time-dependent

thermal conductivity a(t) and the temperature u(x, t) satisfying the equations

(3.2)–(3.4) and (3.6) for Inverse Problem I, and equations (3.2), (3.6), (3.8) and

(3.9) for Inverse Problem II.

The most common approach based on imposing the measurement (3.4) or

(3.9) in a least-squares sense, is minimizing

FI(a) :=
∥∥a(t)ux(0, t) + µ3(t)

∥∥2 + β
∥∥a(t)∥∥2, (3.26)
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for Inverse Problem I, and

FII(a) :=
∥∥u(0, t)− µ1(t)

∥∥2 + β
∥∥a(t)∥∥2, (3.27)

for Inverse Problem II, where β ≥ 0 is a regularization parameter to be prescribed

and the norm is usually the L2[0, T ]-norm. In (3.26) or (3.27) we have added the

penalty term β
∥∥a(t)∥∥2 in order to alleviate any instability that may arise from

the inverse coefficient problem being ill-posed.

The discretization of (3.26) and (3.27) yields

FI(a) =
N∑
j=0

[
ajux(0, tj) + µ3(tj)

]2
+ β

N∑
j=0

a2j , (3.28)

FII(a) =
N∑
j=1

[
u(0, tj)− µ1(tj)

]2
+ β

N∑
j=0

a2j , (3.29)

where a = (aj)j=0,N . It is worth mentioning that in (3.28) at the first time step,

i.e. j = 0, the derivative ux(0, 0) is obtained from the initial condition (3.2), via

(3.20), as

ux(0, 0) =
4ϕ1 − ϕ2 − 3ϕ0

2(∆x)
, (3.30)

where ϕi = ϕ(xi) for i = 0,M . Also, in (3.29), the value of a(0) can be obtained

by differentiating condition (3.9) with respect to t and using equation (3.1) at

x = 0, namely,

a(0) =
µ′
1(0)− f(0, 0)

b(0)ϕ′′(0)
. (3.31)

The minimization of the objective function (3.28), or (3.29), subjected to

the physical simple lower bound constraints a > 0 is accomplished using the

MATLAB toolbox routine lsqnonlin, as described in Section 2.5. The positive

components of the vector a are sought in the interval [10−10,103].

In the numerical implementation, we take the parameters of the routine

lsqnonlin as follows:

• Number of variables M = N = 40.

• Maximum number of iterations = 102 × (number of variables).

• Maximum number of objective function evaluations = 103×(number of vari-

ables).
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• Solution and object function Tolerances = 10−20 ÷ 10−15.

The inverse problems under investigation are solved subjected to both exact

and noisy heat flux measurement, (3.4) or (3.9) for Inverse Problems I and II,

respectively. The noisy data is numerically simulated as

µϵ
k(tj) = µk(tj) + ϵ

(k)
j , j = 0, N, k ∈ {1, 3}, (3.32)

where ϵj are random variables generated from a Gaussian normal distribution

with mean zero and standard deviation σk given by

σk = p× max
t∈[0,T ]

|µk(t)|, k ∈ {1, 3}, (3.33)

where p represents the percentage of noise. We use the MATLAB function norm-

rnd to generate the random variables ϵk =
(
ϵ
(k)
j

)
j=0,N

as follows:

ϵk = normrnd(0, σk, N + 1). (3.34)

The total amount of noise ϵk is given by

ϵk =
∣∣ϵk∣∣ =

√√√√ N∑
j=0

(µϵ
k(tj)− µk(tj))2, k ∈ {1, 3}. (3.35)

In the case of noisy data (3.32), we replace µ3(tj) by µ
ϵ
3(tj) for j = 0, N in (3.28),

and µ1(tj) by µ
ϵ
1(tj) for j = 1, N in (3.29).

3.5 Numerical results and discussion

In this section, we present a few test examples to illustrate the accuracy and

stability of the numerical scheme based on the FDM combined with the mini-

mization of the least-squares functional (3.28), or (3.29), as described in Section

3.4. In order to explain the accuracy of the numerical results we introduce the

root mean square error (rmse), defined as

rmse(a) =

√√√√ 1

N + 1

N∑
j=0

(anumerical(tj)− aexact(tj))
2. (3.36)

We take L = T = 1 and present the numerical results obtained withM = N = 40.

Unless otherwise specified, we take the initial guess as a(0) = 1.
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3.5.1 Numerical results for Inverse Problem I

We consider a couple of examples for the Inverse Problem I. Before we present the

numerical results, we mention that regularization has not been found necessary

and hence we consider β = 0 in the functional (3.28). This was to expected since,

according to Theorem 3.3, the Inverse Problem I is stable in the C[0, T ] maximum

norm with respect to small errors in the input data µϵ
3.

3.5.1.1 Example 1

In this example, we consider the inverse problem (3.2)-(3.4) and (3.6) with the

input data

ϕ(x) = u(x, 0) = x+ sin(x), b(x) = 2− x2,

µ1(t) = u(0, t) = 8t, µ2(t) = u(1, t) = 1 + sin(1) + 8t,

f(x, t) = 8 + (1 + t)(2− x2) sin(x), µ3(t) = −a(t)ux(0, t) = −2− 2t.

One can observe that the conditions of Theorems 3.1 and 3.2 are satisfied hence

the problem is uniquely solvable. The analytical solution is given by

a(t) = 1 + t, u(x, t) = x+ sin(x) + 8t. (3.37)

We start with the case of exact input data, i.e. there is no noise included

in (3.4). Figure 3.5 represents the objective functional (3.28), as a function of

the number of iterations. From this figure it can be seen that the decreasing

convergence is very fast and is achieved in 10 iterations to reach a stationary

value of O(10−24). In fact, the objective function reaches this plateau immediately

after only four iterations. The numerical results for the time-dependent thermal

conductivity a(t) are depicted in Figure 3.6. From this figure it can be seen that

the agreement between the numerical (final iteration 10) and exact solutions for

a(t) is excellent. Also, the rmse values versus the number of iterations are shown

in Figure 3.7. From this figure it can be easily remarked that the rmse(a) quickly

decreases in the first two iterations after which it becomes stationary at a very

low value of 0.0002.
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Figure 3.5: The objective function (3.28), for Example 1 with no noise.
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Figure 3.6: The thermal conductivity a(t), for Example 1 with no noise.
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Figure 3.7: The rmse values of a(t), versus the number of iterations, for Example 1

with no noise.

Next, we investigate the stability of the numerical solution with respect to

noise in the data (3.4), defined by equation (3.32). We include p ∈ {2%, 20%}
noise and then, the total amount of noise that is applied is ϵ3 ∈ {0.3540, 3.5392},
respectively, as defined by equation (3.35). Figure 3.8 represents the exact µ3(t)

and a typical noisy measurement input data µϵ
3(t).
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Figure 3.9 represents the objective functional (3.28), as a function of number

of iterations, when p ∈ {2%, 20%}. From this figure it can be seen that a very

fast decreasing convergence is achieved for p ∈ {2%, 20%} in 8 iterations each, to

reach a stationary value of O(10−24).

Figures 3.10–3.12 show the numerical solutions for the thermal conductivity

a(t), the heat flux a(t)ux(1, t) at x = 1, and the rmse(a) values, respectively, for

p ∈ {2%, 20%} noise. From these figures, as well as Figure 3.6, it can be seen that

the numerical solution for the thermal conductivity a(t) approximates better to

the exact solution a(t) = 1 + t, as the percentage of noise p decreases from 20%

to 2% and then to 0. The nonlinear least-squares minimization produces good

and consistent retrievals of the solution even for a large amount of noise such as

20%. In Figure 3.12, for p = 20% a slight ’semi-convergence’ phenomenon seems

to appear after a couple of iterations, but this is more likely to be attributed to

a non-monotonic decreasing convergence rather than to the former phenomenon

which is commonly encountered when solving ill-posed problems iteratively, [30].

That is to say, our inverse problem is rather stable and in fact, as mentioned before

at the beginning of Section 3.5.1, no regularization was needed to be included in

the least-squares functional (3.28).

Finally, Figure 3.13 shows the exact solution, the numerical solution for the

temperature u(x, t) and the relative error between them. From this figure it can

be seen that the numerical solution is stable and furthermore, its accuracy is

consistent with the amount of noise shown in Figure 3.8, which was included into

the input data (3.4).
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Figure 3.8: The noisy µϵ3(t) and exact µ3(t), for Example 1 with p ∈ {2%, 20%} noise.
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Figure 3.9: The objective function (3.28), for Example 1 with p ∈ {2%, 20%} noise.
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Figure 3.10: The thermal conductivity a(t), for Example 1 with (a) p = 2% and (b)

p = 20% noise.
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Figure 3.11: The exact and numerical heat flux a(t)ux(1, t), for Example 1 with p ∈
{2%, 20%} noise.
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Figure 3.12: The rmse values of a(t), versus the number of iterations, for Example 1

with p ∈ {2%, 20%} noise.
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Figure 3.13: The exact and numerical temperature u(x, t), for Example 1 with (a)

p = 2% and (b) p = 20% noise. The relative error between them is also included.

3.5.1.2 Example 2

In the previous example we have inverted the unknown thermal conductivity

a(t) = 1+t which is a smooth function. In this example, we consider a non-smooth

test function, see equation (3.38). We consider the inverse problem (3.2)–(3.4)

and (3.6) with the following input data

ϕ(x) =u(x, 0) = xex, b(x) = 2− x2, µ1(t) = u(0, t) = t2,

µ2(t) = u(1, t) = e+ t2, µ3(t) = −a(t)ux(0, t) = −1−
∣∣∣t− 1

2

∣∣∣,
f(x, t) = 2t−

(
1 +

∣∣∣t− 1

2

∣∣∣) (2− x2)(xex + 2ex).

One can notice that the conditions of Theorem 3.2 are satisfied hence the unique-

ness of the solution holds. With this data, the analytical solution of the Inverse

Problem I is given by

a(t) = 1 +
∣∣∣t− 1

2

∣∣∣, u(x, t) = xex + t2. (3.38)
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We study the case of exact and noisy input data (3.4). The objective function

(3.28), as a function of the number of iterations, is presented in Figure 3.14. Form

this figure it can be seen that the same fast decreasing convergence is achieved

as in Example 1.

The numerical results for the corresponding time-dependent thermal conduc-

tivity a(t), the heat flux a(t)ux(1, t), the rmse(a) values and the interior tempera-

ture u(x, t) are presented in Figures 3.15–3.18, respectively. The same conclusions

as those obtained for Example 1 can be drawn by observing these figures.
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Figure 3.14: The objective function (3.28), for Example 2 with p ∈ {0, 2%, 20%} noise.
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Figure 3.15: The thermal conductivity a(t), for Example 2 with (a) p = 0, (b) p = 2%

and (c) p = 20%.
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Figure 3.16: The exact and numerical heat flux a(t)ux(1, t), for Example 2 with p ∈
{0, 2%, 20%} noise.
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Figure 3.17: The rmse values of a(t), versus the number of iterations, for Example 2

with p ∈ {0, 2%, 20%} noise.

Numerical outputs such as the number of iterations and function evaluations,

as well as the final value of the convergent objective function are provided in

Table 3.1 for both Examples 1 and 2.

Table 3.1: Number of iterations, number of function evaluations, value of objective

function (3.28) at final iteration, for Examples 1 and 2 with p ∈ {0, 2%, 20%} noise.

Example Numerical outputs p = 0 p = 2% p = 20%

1

No. of iterations 10 8 8

No. of function evaluations 451 328 328

Function value 1.7E − 24 1.1E − 24 1.6E − 24

rmse(a) 1.7E − 4 0.0282 0.2809

2

No. of iterations 9 7 6

No. of function evaluations 369 287 246

Function value 5.8E − 27 7.4E − 27 2.8E − 26

rmse(a) 2.6E − 4 0.0197 0.2041
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Figure 3.18: The exact and numerical temperature u(x, t), for Example 2 with (a)

p = 2% and (b) p = 20% noise. The relative error between them is also included.

3.5.2 Numerical results for Inverse Problem II

We now consider a couple of examples for the Inverse Problem II. Unlike for the

Inverse Problem I which has been found stable with respect to noise in the input

data (3.4), for the Inverse Problem II regularization was found necessary to be

included in the functional (3.29) in order to obtain stable numerical solutions.

This is to be expected since in the stability estimate (3.10) of Theorem 3.6, the

right-hand side term contains the noisy data (µϵ
1−µ1) in the C1[0, T ]-norm which

where differentiated produces an unstable numerical solution.



Chapter 3. Identification of the time-dependent conductivity of an
inhomogeneous diffusive material 54

3.5.2.1 Example 3

In this example, we consider the inverse problem (3.2), (3.6), (3.8) and (3.9) with

the input data

ϕ(x) = u(x, 0) = 1 + xex, b(x) = 2− x2,

ν1(t) = −ux(0, t) = −1, ν2(t) = ux(1, t) = −2e,

f(x, t) = et − (1 + t)(2− x2)(xex + 2ex), µ1(t) = u(0, t) = et.

One can observe that the conditions of Theorem 3.5 are satisfied hence, a solution

is unique. The analytical solution is given by

a(t) = 1 + t, u(x, t) = xex + et. (3.39)

We start the investigation with exact input data (3.9), i.e. there is no noise

included. Figure 3.19 represents the evolution of objective functional (3.29), as a

function of the number of iterations, with no regularization, i.e. β = 0. From this

figure it can be seen that a fast decreasing convergence is achieved in 7 iterations

to reach a very low value of order O(10−26). The corresponding numerical results

of the time-dependent thermal conductivity a(t) are displayed in Figure 3.20.

From this figure it can be seen that there is an excellent agreement between the

exact and numerical solutions with an rmse(a)= 0.0086.
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Figure 3.19: The objective function (3.29), for Example 3 with no noise and no regu-

larization.
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Figure 3.20: The thermal conductivity a(t), for Example 3 with no noise and no

regularization.

In order to test the stability of the problem, we add p = 2% random Gaussian

additive noise as in (3.32) which, according to (3.35), yields the total amount of

noise ϵ1 = 0.2314. Let us denote by

RII(a) =
N∑
j=1

[u(0, tj)− µϵ
1(tj)]

2, (3.40)

the least-squares residual associated to the regularized Tikhonov functional (3.29).

Figure 3.21 shows the residual functional (3.40), as a function of the number of

iterations, for various regularization parameters β ∈ {0, 10−3, 10−2, 10−1}. From

this figure one can observe that convergence is rapidly achieved for each value

of β. The resulting thermal conductivity is plotted in Figure 3.22 for various

regularization parameters. As expected, when no regularization is employed, i.e.

β = 0, the estimated a(t) is highly unstable and inaccurate. This shows that the

Inverse Problem II is ill-posed. Consequently, a small perturbation in input data

(3.9) causes a drastic error in the output solution a(t). In order to overcome this

instability, we employ the Tikhonov regularization method with β > 0. From

Figure 3.22 and Table 3.2, it can be observed that the stability is indeed restored

and the value of β = O(10−2) produces the most accurate numerical results.
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Figure 3.21: The residual function (3.40), for Example 3 with p = 2% noise, and

various regularization parameters.
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Figure 3.22: The thermal conductivity a(t), for Example 3 with p = 2% noise and

various regularization parameters.

Finally, Figure 3.23 shows the exact solution, the numerical solution for the

temperature u(x, t) and the relative error between them. From this figure it can

be seen that the numerical solution for u(x, t) is stable for all values of β with

only very small instabilities manifesting for β = 0 or 10−3.
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Figure 3.23: The exact and numerical temperature u(x, t), for Example 3 with p = 2%

noise and (a) β = 0, (b) β = 10−3, (c) β = 10−2, and (d) β = 10−1. The relative error

between them is also included.
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3.5.2.2 Example 4

Consider the inverse problem (3.2), (3.6), (3.8) and (3.9) with the input data

ϕ(x) = u(x, 0) = ex, b(x) = 2− x2,

ν1(t) = −ux(0, t) = −et, ν2(t) = ux(1, t) = e1+t,

f(x, t) = ex+t − (1 + 2π cos2(2πt))(2− x2)ex+t, µ1(t) = u(0, t) = et.

The analytical solution is given by

a(t) = 1 + 2π cos2(2πt), u(x, t) = ex+t. (3.41)

For this thermal conductivity the initial guess was a0 = 1 + 2π. The objective

function (3.29), as a function of the number of iterations, is depicted in Figure

3.24 for no noise and no regularization. From this figure it can be seen that the

objective function (3.29) with β = 0, i.e the residual functional (3.40), is de-

creasing over several orders of magnitude, as the number of iterations increases,

reaching a very low value of O(10−15) after 400 iterations. The computational

time taken by the lsqnonlin to produce this convergence was about 10.6 min-

utes. The resulting thermal conductivity is shown in Figure 3.25 and very good

agreement between the exact and numerical solutions can be observed.
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Figure 3.24: The objective function (3.29), for Example 4 with no noise and no regu-

larization.
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Figure 3.25: The thermal conductivity a(t), for Example 4 with no noise and no

regularization.

Next, the input data (3.9) was perturbed by p = 2% noise. The residual

function (3.40), as a function of the number of iterations, and the numerical

results for a(t) are plotted in Figures 3.26 and 3.27, respectively, for various

regularization parameters β ∈ {0, 10−3, 10−2, 10−1}. As in Example 3, one can see

that the numerically obtained results for β = 0 in Figure 3.27 are unstable being

highly oscillatory and unbounded. However, the inclusion of some regularization

with β > 0 in the objective functional (3.29) restores the stability of the numerical

solution, as shown further in Figure 3.27. One can observe that the choice β =

10−1 is too large and it oversmooths the solution, whilst the choice β = 10−3

is too small and it undersmooths the solution. It seems that a regularization

parameter β of O(10−2) realizes the desired compromise of balancing the under-

and over-smooth regions. Finally, Figure 3.27, as well as Figure 3.22 for Example

3, give some insight about how one may choose the regularization parameters

β > 0. Based on practical experience, on can start with a rather large values for

β, and then decrease it until oscillations in the numerical solution start to appear

[28].
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Figure 3.26: The residual function (3.40), for Example 4 with p = 2% noise and various

regularization parameters.
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Figure 3.27: The thermal conductivity a(t), for Example 4, with p = 2% noise and

various regularization parameters.

For completeness, numerical outputs such as the number of iterations and

function evaluations, the final value of the convergent objective function, as well

as the rmse(a) are provided in Table 3.2 for Examples 3 and 4.

The numerical results for the temperature u(x, t) were found, as in Figure 3.23

for Example 3.5.2.1, accurate and stable and therefore they are not presented. Fi-

nally, although not illustrated, it is reported that an accurate and stable retrieval

also was obtained for a non-smooth thermal conductivity.

Table 3.2: Number of iterations, number of function evaluations, value of regularized

objective function (3.29) at final iteration, and the rmse(a) for Examples 3 and 4 with

β ∈ {0, 10−3, 10−2, 10−1} and p = 2% noise.

Example Numerical outputs β = 0 β = 10−3 β = 10−2 β = 10−1

3

No. of iterations 97 63 51 70

No. of function

evaluations

4116 2688 2184 2982

Objective function

(3.28) value at final

iteration

0.0455 0.1818 1.0574 8.7697

rmse(a) 1.2697 0.6829 0.3158 0.4836

4

No. of iterations 976 49 41 42

No. of function

evaluations

40016 2016 1764 1806

Objective function

(3.29) value at final

iteration

0.0286 1.029 8.917 73.817

rmse(a) 2.4973 0.7479 0.7135 1.7179
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3.6 Conclusions

A couple of inverse problems which require determining a time-dependent ther-

mal conductivity when the spacewise dependent heat capacity is given for the

heat parabolic equation under overspecified Cauchy boundary data have been

investigated. The Inverse Problem I given by equations (3.2)–(3.4) and (3.6) was

found to be well-posed, whilst the Inverse Problem II given by equations (3.2),

(3.6), (3.8) and (3.9) was found to be ill-posed and regularization was needed

in order to obtain a stable solution. A direct solver based on a Crank-Nicolson

finite difference scheme has been developed. For the inverse problems, the re-

sulting nonlinear least-squares minimizations have been solved numerically using

the MATLAB toolbox routine lsqnonlin. Numerical results illustrated for several

benchmarks test examples showed that an accurate and stable solution has been

obtained.



Chapter 4

Simultaneous determination of

time-dependent coefficients

4.1 Introduction

Simultaneous determination of several unknown coefficients in parabolic partial

differential equations has been investigated in some studies in the past, see e.g.

the monographs of Prilepko et al. [104] and Ivanchov [70]. In heat conduction

for example, attention was paid to the unique solvability of one-dimensional in-

verse problems for the heat equation in the case when the unknown thermal

coefficients are constant [12], time-dependent [75, 76], space-dependent [2], or

temperature-dependent [85, 100, 101]. In these papers, the authors investigated

the existence and uniqueness of the solution of the inverse problem, though no

numerical method/solution was presented.

When solving an inverse problem the choice of additional information about

the solution is crucial since this information enables us to determine the unknown

parameters of the process under consideration uniquely. Usually, this additional

information/observation is given by the boundary conditions or, the value of the

solution on a specific subdomain or, at a certain time [78]. In [108], the au-

thors proposed a new algorithm based on space decomposition in a reproducing

kernel space for solving the inverse problem of finding the time-dependent ther-

mal diffusivity. In [71, 74] the problem of finding the time-dependent leading

coefficient and temperature distribution with Dirichlet boundary conditions and

measured heat flux as the overdetermination condition was considered. In [36],

the author considered retrieving lower-order time-dependent coefficients using the

Trace-Type Functional approach [15], which assumes that the governing partial

differential equation is valid at the boundary. However, this approach does not

seem so stable [37], and it has never been applied to inverse coefficient identifica-
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tion problems in which the unknown coefficients appear at the leading order in

the heat operator.

In this chapter, we investigate the inverse problems of simultaneous deter-

mination of time-dependent leading and lower-order thermal coefficients. In the

next section, we give the mathematical formulations of three inverse problems for

which the unique solvability theorems of [58, 74, 75] are stated. The numerical

finite-difference discretization of the direct problem is described in Section 4.3,

whilst Section 4.4 introduces the regularized nonlinear minimization used for solv-

ing in a stable manner the inverse problems under investigation. In Section 4.5,

we provide numerical results and discussion. Finally, conclusions are presented

in Section 4.6.

4.2 Mathematical formulations of the inverse

problems

Consider the linear one-dimensional parabolic equation with time-dependent co-

efficients

C(t)ut(x, t) = K(t)uxx(x, t) +Q(t)ux(x, t), (x, t) ∈ (0, ℓ)× (0, T ) =: Ω (4.1)

where, in heat conduction, u represents the temperature in a finite slab of length

ℓ > 0 recorded over the time interval (0, T ) with T > 0, C and K represent

the heat capacity and thermal conductivity of the heat conductor, respectively,

Q(t) = c(t)v(t) with c and v representing the heat capacity and velocity of a

fluid flowing through the heat conducting body, [4, 33]. The first term in the

right-hand side of equation (4.1) represents the diffusion, whilst the second term,

if v(t) is positive, represents the convection. A similar situation occurs in porous

media, [26], where the properties are referred to as hydraulic rather than thermal

as in heat transfer. For example, in the contaminant transport in groundwater

the first term on the right-hand side of equation (4.1) represents the dispersion

of the contaminant as it moves through the porous medium, whilst the second

term with v(t) negative describes the advection of the contaminant which flows

along with the bulk movement of groundwater.

The initial condition is

u(x, 0) = ϕ(x), x ∈ [0, ℓ], (4.2)
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and the boundary and over-determination conditions are

u(0, t) = µ1(t), u(ℓ, t) = µ2(t), t ∈ [0, T ], (4.3)

−K(t)ux(0, t) = ν1(t), K(t)ux(ℓ, t) = ν2(t), t ∈ [0, T ]. (4.4)

Conditions (4.3) and (4.4) represent the specification of the boundary tempera-

ture and heat flux, respectively. Together they represent the Cauchy data for the

inverse coefficient identification problems (ICIPs) which are described next.

We distinguish three ICIPs covering the simultaneous determination of a cou-

ple of coefficients in (4.1). The case of identifying all three coefficients in (4.1) is

deferred to a future work.

4.2.1 Inverse Problem 1

Assuming that c(t)v(t) = 0, the inverse problem 1 (IP1) requires the simultaneous

determination of the time-dependent thermal conductivity K(t) > 0, the heat

capacity C(t) > 0 and the temperature u(x, t) satisfying the one-dimensional

heat equation

C(t)ut(x, t) = K(t)uxx(x, t), (x, t) ∈ Ω (4.5)

subject to the initial and boundary conditions (4.2)–(4.4).

For this IP1 we have the following existence and uniqueness of solution theo-

rems [75].

Theorem 4.1. (Existence)

Suppose that:

1. ϕ ∈ C2[0, ℓ] and µi, νi ∈ C1[0, T ] for i = 1, 2.

2. The consistency conditions are satisfied:

µ1(0) = ϕ(0), µ2(0) = ϕ(ℓ),

−ν1(0)ϕ′(ℓ) = ν2(0)ϕ
′(0), µ′

1(0)ϕ
′′(ℓ) = µ′

2(0)ϕ
′′(0).
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3. The following conditions are satisfied:

ϕ′(x) ≥ 0, x ∈ [0, ℓ], ϕ′′(x) + ϕ′′(ℓ− x) > 0, x ∈ [0, ℓ/2),

ν21(t) + ν22(t) > 0, µ′
2(t)− µ′

1(t) ≥ 0, (1 + χ(t))µ′
1(t) + (1− χ(t))µ′

2(t) > 0,

χ(t) > 0, χ′(t) ≥ 0, t ∈ [0, T ],

(1 + χ(t))ϕ′′(x) + (1− χ(t))ϕ′′(ℓ− x) > 0, x ∈ [0, ℓ/2], t ∈ [0, T ],

ϕ′′(x)− ϕ′′(ℓ− x) ≥ 0, or ϕ′′(x)− ϕ′′(ℓ− x) ≤ 0, x ∈ [0, ℓ/2],

where χ(t) = ν2(t)+ν1(t)
ν1(t)−ν2(t)

. Then, for a sufficiently small T > 0, the inverse problem

(4.2)–(4.5) has at least one solution {C(t), K(t), u(x, t)}, where the functions

C(t) and K(t) are continuous and positive on [0, T ] and u(x, t) belongs to the

class C2,1(Ω) ∩ C1,0(Ω).

Theorem 4.2. (Uniqueness)

Suppose that the following conditions are satisfied:

1. ϕ ∈ C2[0, ℓ], µi ∈ C1[0, T ] and νi ∈ C[0, T ] for i = 1, 2;

2. ϕ′′(x) ≥ 0 for x ∈ [0, ℓ], ϕ′′(0) > 0, µ′
1(t) > 0, µ′

2(t) > 0, ν1(t) < 0,

ν2(t) > 0 for t ∈ [0, T ].

If {Cj(t), Kj(t), uj(x, t)} for j = 1, 2, are two solutions to the problem (4.2)–

(4.5) such that aj(t) = Kj(t)/Cj(t) are piecewise analytic functions on (0, T ),

then these solutions must coincide.

4.2.2 Inverse Problem 2

Assuming that K(t) > 0 is known, we now wish to determine the time-dependent

heat capacity C(t) > 0, the convection/advection coefficient Q(t) and the tem-

perature u(x, t) satisfying equations (4.1)–(4.4). By dividing (4.1) with C(t) and

denoting with a(t) := K(t)/C(t) the thermal diffusivity and b(t) := Q(t)/C(t),

we obtain

ut(x, t) = a(t)uxx(x, t) + b(t)ux(x, t), (x, t) ∈ Ω. (4.6)

For simplicity, since K(t) > 0 is known we can divide with it in (4.4) and denote

the right hand sides by

−ux(0, t) = ν1(t)/K(t) =: ν1(t), ux(ℓ, t) = ν2(t)/K(t) =: ν2(t), t ∈ [0, T ]. (4.7)
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For this inverse problem 2 (IP2), we have the existence and uniqueness of solution

Theorems 4.3 and 4.4 below [76]. These are actually given for the more general

reaction-convection-diffusion equation with a source term, namely,

ut(x, t) = a(t)uxx(x, t) + b(t)ux(x, t) + d(x, t)u+ f(x, t), (x, t) ∈ Ω, (4.8)

where d and f are some given functions representing the reaction rate and source

term, respectively. The triplet (a(t), b(t), u(x, t)) is called a solution to the IP2

given by equations (4.2), (4.3), (4.7) and (4.8) if it satisfies these equations and it

belongs to the class (Hγ/2[0, T ])2×H2+γ,1+γ/2(Ω) for some γ ∈ (0, 1), and a(t) > 0

for all t ∈ [0, T ]. For the definition of the Hölder space, as well as other spaces of

functions involved, see [87].

Theorem 4.3. (Existence)

Suppose that the following conditions are satisfied:

1. ϕ ∈ H2+γ [0, ℓ], µi, νi ∈ H1+γ/2[0, T ] for i = 1, 2, and d, f , dx, fx ∈
Hγ,γ/2(Ω);

2. (µ′
1(t) − f(0, t) − d(0, t)µ1(t))ν2(t) + (µ′

2(t) − f(ℓ, t) − d(ℓ, t)µ2(t))ν1(t) >

0, ν1(t) ≥ 0, ν2(t) ≥ 0, ν2(t)+ν1(t) > 0, t ∈ [0, T ], and ϕ′′(x) > 0, x ∈ [0, ℓ];

3. µ1(0) = ϕ(0), µ2(0) = ϕ(ℓ), −ν1(0) = ϕ′(0), and ν2(0) = ϕ′(ℓ).

Then the problem (4.2), (4.3), (4.7) and (4.8) has a (local) solution for x ∈ [0, ℓ]

and t ∈ [0, t0], where the time t0 ∈ (0, T ], is determined by the input data of the

problem.

Theorem 4.4. (Uniqueness)

Suppose that the following condition is satisfied:

(µ′
1(t) − f(0, t) − d(0, t)µ1(t))ν2(t) + (µ′

2(t) − f(ℓ, t) − d(ℓ, t)µ2(t))ν1(t) ̸= 0, t ∈
[0, T ]. Then a solution to (4.2), (4.3), (4.7) and (4.8) is unique.

4.2.3 Inverse Problem 3

For completeness, we consider the inverse problem 3 (IP3) which consists of deter-

mining the thermal conductivity K(t) > 0, the convection/advection coefficient

Q(t) and the temperature u(x, t) satisfying equations (4.1)–(4.4), when the heat

capacity C(t) is known. By dividing (4.1) with C(t) we obtain equation (4.6).

Also, dividing (4.4) by the known C(t) > 0 we obtain

−a(t)ux(0, t) =
ν1(t)

C(t)
=: ν̃1(t), a(t)ux(ℓ, t) =

ν2(t)

C(t)
=: ν̃2(t), t ∈ [0, T ]. (4.9)
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The following theorems proved in [58] give the unique solvability of the solution

of the IP3 given by equations (4.2), (4.3), (4.8) and (4.9).

Theorem 4.5. (Existence)

Suppose that the following assumptions hold:

(A1) ϕ ∈ C2+γ[0, ℓ], µi ∈ C1[0, T ], ν̃i ∈ C[0, T ] for i = 1, 2, d, f ∈ Cγ,0(Ω), for

some γ ∈ (0, 1);

(A2) ϕ′′(x) > 0, x ∈ [0, ℓ], ν̃1(t) ≥ 0, ν̃2(t) ≥ 0, ν̃2(t) + ν̃1(t) > 0, µ′
1(t) −

f(0, t)− d(0, t)µ1(t) > 0, µ′
2(t)− f(ℓ, t)− d(ℓ, t)µ2(t) > 0, t ∈ [0, T ];

(A3) ϕ(0) = µ1(0), ϕ(ℓ) = µ2(0), −ν̃1(0)ϕ′(ℓ) = ν̃2(0)ϕ
′(0).

Then there exists t0 ∈ (0, T ] such that the problem (4.2), (4.3), (4.8) and (4.9)

has a (local) solution (a(t), b(t), u(x, t)) ∈ (C[0, t0])
2 × C2,1([0, ℓ] × [0, t0]) and

a(t) > 0, t ∈ [0, t0].

Theorem 4.6. (Uniqueness)

Suppose that the following assumptions hold:

(A4) d ∈ Cγ,0(Ω), for some γ ∈ (0, 1);

(A5) ν̃1(t) ≥ 0, ν̃2(t) ≥ 0, ν̃2(t) + ν̃1(t) > 0, µ′
1(t) − f(0, t) − d(0, t)µ1(t) > 0,

µ′
2(t)− f(ℓ, t)− d(ℓ, t)µ2(t) > 0, t ∈ [0, T ].

Then the problem (4.2), (4.3), (4.8) and (4.9) can have at most one solution

(a(t), b(t), u(x, t)) ∈ (C[0, T ])2 × C2+γ,1(Ω) such that a(t) > 0, t ∈ [0, T ].

4.3 Solution of direct problem

In this section, we consider the direct initial boundary value problem given by

equations (4.2), (4.3) and (4.8), where a(t), b(t), d(x, t), f(x, t), ϕ(x) and µi(t),

i = 1, 2, are known and the solution u(x, t) is to be determined. To achieve this,

we use the Crank-Nicolson finite-difference scheme, as described in Section 2.4.

The discrete form of our problem is as follows. We divide the domain Ω =

(0, ℓ)× (0, T ) into M and N subintervals of equal step length ∆x and ∆t, where

∆x = ℓ/M and ∆t = T/N , respectively. So, the solution at the node (i, j) is

ui,j := u(xi, tj), where xi = i∆x, tj = j∆t, for i = 0,M , j = 0, N .

Considering the general partial differential equation

ut = G(x, t, u, ux, uxx), (4.10)
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the Crank-Nicolson approximation, [110], is given by

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1) , i = 1, (M − 1), j = 0, (N − 1), (4.11)

where Gi,j = G
(
xi, tj,

ui+1,j−ui−1,j

2∆x
,
ui+1,j−2ui,j+ui−1,j

(∆x)2

)
. Equations (4.2) and (4.3)

can be collocated as:

ui,0 = ϕ(xi), i = 0,M, (4.12)

u0,j = µ1(tj), j = 0, N, (4.13)

uM,j = µ2(tj), j = 0, N. (4.14)

For our problem, equation (4.8) can be discretized in the form of (4.11) as

− Aj+1ui−1,j+1 + (1−Bi,j+1)ui,j+1 − Cj+1ui+1,j+1 =

− Ajui−1,j + (1 +Bi,j)ui,j − Cjui+1,j +
∆t

2
(fi,j+1 + fi,j) (4.15)

for i = 1, (M − 1), j = 0, N , where fi,j := f(xi, tj),

Aj =
∆t

2(∆x)2
a(tj)−

∆t

4∆x
b(tj), Bi,j = − ∆t

(∆x)2
a(tj) +

∆t

2
d(xi, tj),

Cj =
∆t

2(∆x)2
a(tj) +

∆t

4∆x
b(tj).

At each time step tj+1, for j = 0, (N − 1), using the Dirichlet boundary

conditions (4.3), the above difference equation can be reformulated as a (M −
1)× (M − 1) linear system of equations of the form,

Lu = b (4.16)

where

u = (u1,j+1, u2,j+1, ..., uM−1,j+1)
T, b = (b1, b2, ..., bM−1)

T.

and L is

1−B0,j+1 −(Aj+1 + Cj+1) 0 · · · 0 0 0

−Aj+1 1−B1,j+1 −Cj+1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −Aj+1 1−BM−2,j+1 −Cj+1

0 0 0 · · · 0 −(Aj+1 + Cj+1) 1−BM−1,j+1


,
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b1 = (1 + B0,j)u0,j + (Aj + Cj)u1,j − 2h(Cj+1µ1(tj+1) + Cjµ1(tj))

+
∆t

2
(f0,j+1 + f0,j),

bi = Ajui−1,j + (1 +Bi,j)ui,j + Cjui+1,j +
∆t

2
(fi,j+1 + fi,j), i = 2, (M − 2),

bM−1 = (Aj + Cj)uM−2,j + (1 +BM−1,j)u0,j + 2h(Aj+1µ2(tj+1) + Ajµ2(tj))

+
∆t

2
(fM−1,j+1 + fM−1,j).

As an example, consider the direct problem (4.2), (4.3) and (4.8) with T =

ℓ = 1 and

a(t) = 1 + t, b(t) = 1 + 2t, d(x, t) = x2 + t2, ϕ(x) = (1− 3x)2, µ1(t) = et,

µ2(t) = 4et, f(x, t) = (1− 3x)2et − 18(1 + t)et + (6 + 12t)(1− 3x)et

− (x2 + t2)(1− 3x)2et.

With this input data, the exact solution is given by u(x, t) = (1− 3x)2et, and the

desired heat fluxes (4.4), for K(t) = 1, are ν1(t) = 6et and ν2(t) = 12et.

The numerical and exact solutions for u(x, t) are shown in Figure 4.1 and a

very good agreement is obtained. Tables 4.1 and 4.2 give the numerical heat

fluxes in comparison with the exact ones. These have been calculated using the

following O(h2) finite-difference approximations:

ux(0, tj) =
4u1,j − u2,j − 3u0,j

2∆x
, ux(ℓ, tj) =

4uM−1,j − uM−2,j − 3uM,j

−2∆x
, j = 1, N.

(4.17)

From these tables it can be seen that the numerical results are in very good agree-

ment with the exact solution and that a rapid monotonic increasing convergence

is achieved.

Table 4.1: The exact and the numerical heat flux −ux(0, t) for M = N ∈
{10, 20, 40, 100}, for the direct problem.

t 0.1 0.2 ... 0.8 0.9 1

M = N = 10 -6.6309 -7.3282 ... -13.3529 -14.7573 -16.3093

M = N = 20 -6.6310 -7.3284 ... -13.3532 -14.7575 -16.3096

M = N = 40 -6.6310 -7.3284 ... -13.3532 -14.7576 -16.3097

M = N = 100 -6.6310 -7.3284 ... -13.3532 -14.7576 -16.3097

exact -6.6310 -7.3284 ... -13.3532 -14.7576 -16.3097
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Table 4.2: The exact and the numerical heat flux ux(1, t) for M = N ∈
{10, 20, 40, 100}, for the direct problem.

t 0.1 0.2 ... 0.8 0.9 1

M = N = 10 13.2614 14.6564 ... 26.7059 29.5145 23.6187

M = N = 20 13.2620 14.6567 ... 26.7063 29.5151 23.6192

M = N = 40 13.2620 14.6568 ... 26.7064 29.5152 23.6193

M = N = 100 13.2620 14.6568 ... 26.7065 29.5152 23.6194

exact 13.2620 14.6568 ... 26.7065 29.5152 23.6194
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Figure 4.1: Exact and numerical solutions for u(x, t) and the absolute error for the

direct problem (4.2), (4.3) and (4.8) obtained with M = N = 40.

4.4 Solution of inverse problems

In our inverse problems we wish to obtain simultaneously stable reconstructions

of two unknown coefficients in equation (4.1), satisfying the initial and boundary

conditions (4.2)–(4.4). The most common Tikhonov-type regularization approach

is to impose the measured input data (4.4) in a penalized least-squares sense. This

recasts into minimizing the following regularized (penalized) nonlinear objective

functions.

For the IP1 given by equations (4.2)–(4.5) we minimize the functional

F1(K,C) := ∥ −K(t)ux(0, t)− ν1(t)∥2 + ∥K(t)ux(ℓ, t)− ν2(t)∥2

+ β
(
∥K(t)∥2 + ∥C(t)∥2

)
, (4.18)

where β ≥ 0 is a regularization parameter and the norm ∥ · ∥ is usually taken

as the L2[0, T ] norm. We note that in the regularization term we could have

chosen different regularization parameters as β1∥K(t)∥2 + β2∥C(t)∥2, but this
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more general regularization is deferred, for the time being, to the subsequent

inverse problems investigated in the rest of the thesis.

Similarly, for the IP2 given by equations (4.2), (4.3), (4.7) and (4.8) we min-

imize the functional

F2(a, b) := ∥ − ux(0, t)− ν1(t)∥2 + ∥ux(ℓ, t)− ν2(t)∥2

+ β
(
∥a(t)∥2 + ∥b(t)∥2

)
, (4.19)

and for the IP3 given by equations (4.2)–(4.4) and (4.8) we minimize the func-

tional

F3(K, b) := ∥ −K(t)ux(0, t)− ν1(t)∥2 + ∥K(t)ux(ℓ, t)− ν2(t)∥2

+ β
(
∥K(t)∥2 + ∥b(t)∥2

)
. (4.20)

The case β = 0 yields the ordinary nonlinear least-squares method which is

usually unstable for noisy data. The physical constraints that the thermal con-

ductivity and diffusivity are positive recast as a simple lower bound on these

variables and is imposed as K ≥ 10−10 and a ≥ 10−10. The velocity v of the fluid

is allowed to be either positive (convection) or negative (advection).

The discretizations of (4.18)–(4.20) are:

F1(K,C) =
N∑
j=0

[−K(tj)ux(0, tj)− ν1(tj)]
2 +

N∑
j=0

[K(tj)ux(ℓ, tj)− ν2(tj)]
2

+ β

(
N∑
j=0

K2(tj) +
N∑
j=0

C2(tj)

)
, (4.21)

F2(a, b) =
N∑
j=0

[−ux(0, tj)− ν1(tj)]
2 +

N∑
j=0

[ux(ℓ, tj)− ν2(tj)]
2

+ β

(
N∑
j=0

a2(tj) +
N∑
j=0

b2(tj)

)
, (4.22)

F3(K, b) =
N∑
j=0

[−K(tj)ux(0, tj)− ν1(tj)]
2 +

N∑
j=0

[K(tj)ux(ℓ, tj)− ν2(tj)]
2

+ β

(
N∑
j=0

K2(tj) +
N∑
j=0

b2(tj)

)
, (4.23)

respectively.

It is worth mentioning that at the first time step, i.e. j = 0, the above equa-
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tions (4.21)–(4.23) need the derivatives ux(0, 0) and ux(ℓ, 0) which are obtained

from the initial condition (4.2), using (4.17) as:

ux(0, 0) =
4ϕ1 − ϕ2 − 3ϕ0

2∆x
, ux(ℓ, 0) =

4ϕM−1 − ϕM−2 − 3ϕM

−2∆x
, (4.24)

where ϕi = ϕ(xi) for i = 0,M .

If there is noise in the measured data (4.4), we replace ν1(tj) and ν2(tj) in

(4.21) and (4.23) by the noisy perturbations

νϵ11 (tj) = ν1(tj) + ϵ1j, νϵ22 (tj) = ν2(tj) + ϵ2j, j = 0, N, (4.25)

where ϵ1j and ϵ2j are random variables generated from a Gaussian normal dis-

tribution with mean zero and standard deviations σ1 and σ2, respectively, given

by

σ1 = p× max
t∈[0,T ]

|ν1(t)|, σ2 = p× max
t∈[0,T ]

|ν2(t)|, (4.26)

where p represents the percentage of noise. We use the MATLAB function norm-

rnd to generate the random variables ϵ1 and ϵ2 as follows:

ϵ1 = normrnd(0, σ1, N + 1), ϵ2 = normrnd(0, σ2, N + 1). (4.27)

Note that via (4.7) we replace ν1 and ν2 in (4.22) by the noisy perturbations

νϵ11 (tj) = νϵ11 (tj)/K(tj), νϵ22 (tj) = νϵ22 (tj)/K(tj), j = 0, N. (4.28)

4.4.1 Minimization Algorithms

Nevertheless, finding a global minimizer (even only approximately) to nonlinear

(least-squares) problems is not an easy task. Numerical experience shows that

the objective function which is, in general, non-convex has usually multiple local

minima in which a descent method tends to get stuck if the underlying problem

is ill-posed. Furthermore, the determination of an appropriate regularization

parameter β requires additional computational effort.

In this section, we give brief description of the routines fmincon and lsqnonlin

from the MATLAB Optimization Toolbox [95] that we have employed for the

constrained nonlinear minimization of the functionals defined by equations (4.18)–

(4.20). These routines are based on interior trust region methods for nonlinear

minimization [9, 22].

The above routines attempt to find a minimum of a scalar objective function
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of several variables, starting from an initial guess, subject to simple bounds on the

variables. In all examples of the next section, the initial guess wasK0 = 1, a0 = 1,

b0 = 1 and the lower and upper bounds were taken as LB(K) = LB(a) = 10−10,

LB(b) = −103, and UB(K) = UB(a) = UB(b) = 103.

Apart from the initial guess, and the upper and lower bounds the routines

also require the user to input some parameters such as:

• Number of variables M = N = 40.

• Maximum number of iterations = (102 ÷ 105)× (number of variables).

• Maximum number of objective function evaluations = (103÷107)×(number

of variables).

• Solution and objective function tolerances= 10−10.

It is also worth noting that the user does not need to supply the gradient of the

objective function which is minimized, as this is calculated internally within the

routines using finite differences. Further, the Broyden, Fletcher, Goldfarb and

Shanno (BFGS) technique is used to compute the Hessian matrix.

We finally mention that we have also used a combination between a generalized

pattern search algorithm for the poll method and a genetic algorithm for the

search method, both of them from the MATLAB Global Optimization Toolbox.

In comparison with the previously described interior-point algorithms the results

were not significantly improved, but instead the computational time increased

beyond purpose. For this reason, the numerical results obtained using this latter

combined method are omitted.

4.5 Numerical results and discussion

Numerical results are presented for several test examples for the inverse problems

IP1–IP3, and in each example we obtain the numerical solution of coefficient

identification problems for various noise levels p. In these examples we take, for

simplicity, ℓ = T = 1.

We employ fmincon for IP1 and lsqnonlin for IP2 and IP3, for the mini-

mization of the functionals (4.18)–(4.20). The other computational details have

already been given in Subsection 4.4.1. We have also calculated the relative root

mean square error (rrmse) to analyse the error between the exact and estimated
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coefficients, defined as,

rrmse(K(t)) =

√√√√ 1

N + 1

N∑
j=0

(
Knumerical(tj)−Kexact(tj)

Kexact(tj)

)2

, (4.29)

and similar expressions exist for a(t), b(t) and C(t).

One of the main difficulties when we solve inverse and ill-posed problems is

how to choose an appropriate regularization parameter β which must compromise

between accuracy and stability. Nevertheless, one can use techniques such as

the L-curve method [44] or, Morozov’s discrepancy principle [96] to find such a

parameter, but in our work we have used trial and error. As mentioned in [28],

the regularization parameter β is selected based on experience by first choosing

a small value and gradually increasing it until any numerical oscillations in the

unknown coefficient are removed.

4.5.1 Example 1 for IP1

We first consider the problem IP1 given by equations (4.2)–(4.5), with unknown

coefficients C(t) and K(t), and we solve this inverse problem with the following

input data:

ϕ(x) = (1 + x)2, µ1(t) = t2 + t+ 1, µ2(t) = t2 + t+ 4,

ν1(t) = −(1 + t)(1 + 2t), ν2(t) = 2(1 + t)(1 + 2t),

for x ∈ (0, ℓ = 1) and t ∈ (0, T = 1). The exact solution is given by

u(x, t) = (1 + x)2 + t2 + t, C(t) = 1 + t, K(t) = (1 + t)

(
t+

1

2

)
. (4.30)

We also have that a(t) = t + 1
2
, and one can easily check that the conditions of

Theorems 4.1 and 4.2 are satisfied such that we know beforehand for sure that

the solution to the IP1 exists and is unique.

Table 4.3 gives the numerical coefficients obtained usingM = N ∈ {10, 20, 40}
in comparison with the exact ones. From this table it can be seen that the numer-

ical results are converging to the exact values, as the FDM mesh size decreases.

In the remaining of this section, the FDM discretization with M = N = 40 is

fixed in order to keep the accuracy good with reasonable computational effort.

In Figure 4.2, we present the regularized objective function (4.18) for p = 0

(no noise) and p = 1% noise included in input data ν1(t) and ν2(t) for several

regularization parameters β ∈ {0, 10−3, 10−2, 10−1}. From this figure, it can be



Chapter 4. Simultaneous determination of time-dependent
coefficients 75

seen that convergence is achieved in a relatively small number of iterations. Also,

it takes a slightly larger number of iterations when p = 1% noise contaminates

the input data than when this data is errorless, i.e. p = 0.

Table 4.3: The exact and the numerical coefficients for M = N ∈ {10, 20, 40}, for the
IP1 of Example 1 and without noise.

t 0.1 0.2 ... 0.8 0.9 1

K(t)

0.6600 0.8400 ... 2.3400 2.6600 3.0000 M = N = 10

0.6600 0.8400 ... 2.3400 2.6600 3.0000 M = N = 20

0.6600 0.8400 ... 2.3400 2.6600 3.0000 M = N = 40

0.6600 0.8400 ... 2.3400 2.6600 3.0000 exact

a(t)

0.5769 0.7231 ... 1.3231 1.3769 1.5231 M = N = 10

0.6183 0.7183 ... 1.3183 1.4183 1.5183 M = N = 20

0.6119 0.7119 ... 1.3119 1.4119 1.5119 M = N = 40

0.6000 0.7000 ... 1.3000 1.4000 1.5000 exact

C(t)

1.1441 1.1616 ... 1.7686 1.9319 1.9696 M = N = 10

1.0674 1.1694 ... 1.7750 1.8755 1.9759 M = N = 20

1.0787 1.1800 ... 1.7837 1.8840 1.9843 M = N = 40

1.1000 1.2000 ... 1.8000 1.9000 2.0000 exact
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Figure 4.2: Regularized objective function (4.18), for Example 1 without noise (-×-)

and with p = 1% noise (—).

In Figure 4.3 and Table 4.4, we present the identified coefficients and their

rrmse values, respectively, for no noise, and with and without regularization.

From this figure and table it can be seen that for exact data, when β decreases to

zero, we obtain numerical results for the identified coefficients K(t), a(t) and C(t)

which are convergent to their exact values. In the case β = 10−1 we observe that



Chapter 4. Simultaneous determination of time-dependent
coefficients 76

the graphs of the identified coefficients slightly depart from the exact ones because

we have added too much unwanted regularization to the objective function (4.18).

In Figure 4.4 and Table 4.4 we present the retrieved coefficients and their rrmse

values, respectively, when p = 1% noise is included in the input data ν1(t) and

ν2(t). It can be seen that the numerical retrieval of the thermal conductivity

K(t) is accurate; however, unstable results are obtained for a(t) and C(t) if

no regularization, i.e. β = 0, is employed, or even if β is too small such as

10−3. Clearly, one can observe the effect of the regularization parameter β > 0 in

decreasing the oscillatory unstable behaviour of the retrieved coefficients. Overall,

the numerical results obtained with β = 10−1 seem the most stable and accurate.

Table 4.4: The rrmse values for estimated coefficients in Example 1.

β = 0 β = 10−3 β = 10−2 β = 10−1

p = 0

rrmse(K) = 8.5E − 9 8.5E − 5 8.3E − 4 0.0079

rrmse(a) = 0.0138 0.0284 0.0352 0.0781

rrmse(C) = 0.0138 0.0287 0.0385 0.1241

p = 1%

rrmse(K) = 0.0142 0.0143 0.0146 0.0172

rrmse(a) = 0.2937 0.2941 0.1654 0.0917

rrmse(C) = 0.4059 0.6279 0.2080 0.1194



Chapter 4. Simultaneous determination of time-dependent
coefficients 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

t

 K
(t)

 

exact

β=0

β=10−3

β=10−2

β=10−1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a(
t) 

 

exact

β=0

β=10−3

β=10−2

β=10−1

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

t

C
(t)

 

 exact
β=0

β=10−3

β=10−2

β=10−1

(c)

Figure 4.3: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffu-

sivity, and (c) Heat capacity, for Example 1 with no noise.
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Figure 4.4: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffu-

sivity, and (c) Heat capacity, for Example 1 with p = 1% noise.
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4.5.2 Example 2 for IP1

We next consider an example from [75] in which the input data satisfy the con-

ditions of the existence of the solution of Theorem 4.1,

ϕ(x) =
x4

12
+ 2x− 4, µ1(t) = t4 + 2t3 + t2 − 4, µ2(t) = t4 + 2t3 + 2t2 + t− 23

12
,

ν1(t) = −2t− 2, ν2(t) = (t+ 1)

(
2t2 + 2t+

7

3

)
,

for x ∈ (0, ℓ = 1) and t ∈ (0, T = 1). However, the conditions of the uniqueness of

the solution of Theorem 4.2 are all satisfied, but for the condition ϕ
′′
(0) > 0 which

is not satisfied. One can simply check by direct substitution that the solution

u(x, t) = t4 + 2t3 + t2(x2 + 1) + tx2 +
x4

12
+ 2x− 4,

C(t) =
1 + t

1 + 2t
, K(t) = 1 + t. (4.31)

satisfies the inverse problem (4.2)–(4.5). We also have that a(t) = 1 + 2t.

Figure 4.5 illustrates the objective function (4.18), as a function of the number

of iterations for p = 0 (no noise) and p = 1% noise included in the input data

ν1(t) and ν2(t). It is interesting to remark that for β small such as 0 to 10−3 the

convergence is non-monotonic with respect to the number of iterations. Also, the

unregularized (β = 0) objective function reduces rather non-smoothly to reach a

stationary value of O(10−7) for p = 0 and O(10−4) for p = 1%, whilst the curves

obtained for β > 0 reach rapidly a stationary plateau.
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Figure 4.5: Regularized objective function (4.18), for Example 2 without noise (-×-)

and with p = 1% noise (—).
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Table 4.5: The rrmse values for estimated coefficients in Example 2.

β = 0 β = 10−3 β = 10−2 β = 10−1

p = 0

rrmse(K) = 5.6E − 5 6.8E − 4 0.0039 0.0223

rrmse(a) = 0.0078 0.0449 0.1000 0.2239

rrmse(C) = 0.0078 0.0552 0.2095 0.7778

p = 1%

rrmse(K) = 0.0123 0.0125 0.0146 0.0276

rrmse(a) = 0.3066 0.2301 0.1441 0.2321

rrmse(C) = 0.4350 0.3677 0.2135 0.7993

Figures 4.6, 4.7 and Table 4.5 for Example 2 represent the same quantities as

Figures 4.3, 4.4 and Table 4.4 for Example 1, and the same conclusions can be

drawn. We also mention that the numerical results obtained with β = 10−2 seem

the most stable and accurate for p = 1% noisy data.

4.5.3 Example 3 for IP1

Finally, for IP1, we consider the case of a non-smooth coefficient and more com-

plicated input data given by

ϕ(x) =
x2 + x

2
− 1

4
,

µ1(t) =

3t−t2

2
− 1

4
if t ∈ [0, 1

2
]

t+t2

2
if t ∈ [1

2
, 1]

, µ2(t) =

3t−t2

2
+ 3

4
if t ∈ [0, 1

2
]

t+t2

2
+ 1 if t ∈ [1

2
, 1]

,

ν1(t) = −1

2

(
1 +

∣∣∣∣t− 1

2

∣∣∣∣) , ν2(t) =
3

2

(
1 +

∣∣∣∣t− 1

2

∣∣∣∣) ,
for x ∈ (0, ℓ = 1) and t ∈ (0, T = 1). One can remark that the conditions of

Theorem 4.2 which ensure the uniqueness of the solution are satisfied. The exact

solution is given by

u(x, t) =
x+ x2

2
+

3t−t2

2
− 1

4
if t ∈ [0, 1

2
]

t+t2

2
if t ∈ [1

2
, 1]

,

C(t) = 1, K(t) = 1 +

∣∣∣∣t− 1

2

∣∣∣∣ .

 (4.32)
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Figure 4.6: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffu-

sivity, and (c) Heat capacity, for Example 2 with no noise.
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Figure 4.7: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffu-

sivity, and (c) Heat capacity, for Example 2 with p = 1% noise.

We start first with the case of exact data, i.e. p = 0. Figure 4.8 shows the

objective function (4.18) without regularization, i.e. β = 0, as a function of
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the number of iterations. It can be seen that the objective function decreases

rapidly to a low level of O(10−14) in 166 iterations. The corresponding exact and

numerical coefficients K(t), a(t) and C(t) are presented in Figure 4.9. From this

figure, it can be seen that the recovered coefficients are in very good agreement

with their corresponding analytical solutions.
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Figure 4.8: Objective function (4.18), for Example 3 with no noise (-×-) and no

regularization.
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Figure 4.9: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffu-

sivity, and (c) Heat capacity, for Example 3 with no noise and no regularization.

We next include noise p ∈ {1%, 2%} in the input fluxes ν1(t) and ν2(t), as in

(4.25). In Figure 4.10, we can see that the regularized objective function becomes
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a smooth decreasing curve and the convergence is achieved in a relatively small

number of iterations, as β increases from 10−3 to 10−1. The numerical results for

K(t), a(t) and C(t) when p = 1% and p = 2% are presented in Figures 4.11 and

4.12, respectively. Further, numerical outputs such as the number of iterations

and function evaluations, as well as the final value of the converged objective

function and the rrmse values of the estimated coefficients are provided in Ta-

ble 4.6. From these figures and table it can be seen that stable and reasonable

accurate numerical results are obtained for β = 10−3 when p = 1%, and β = 10−2

when p = 2% noise. The results for β = 10−1 depart from the exact solution

as too much regularization has been imposed, whilst the results for β = 0 seem

only slightly unstable. In fact, from all examples presented in this section, see

Tables 4.4–4.6, it seems that the retrieval of the thermal conductivity coefficient

K(t) is stable even if we do not use regularization and we may as well penalize

only the thermal diffusivity β∥a(t)∥2 in the last term of (4.18). Another reason

for this stability of the solution in the K(t)-component might be that K(t) ap-

pears explicitly in the nonlinear objective function (4.18). On the other hand the

retrieval of the thermal diffusivity a(t) (and hence the heat capacity C(t)) does

require some regularization to be enforced in order to ensure stability.
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Figure 4.10: Regularized objective function (4.18), for Example 3 with p = 1% (—)

and p = 2% (- - -) noise.
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Table 4.6: Number of iterations, number of function evaluations, value of regularized

objective function (4.18) at final iteration and rrmse values for estimated coefficients,

for Example 3.

Noise level β = 0 β = 10−3 β = 10−2 β = 10−1

p = 1%

No. of iterations 181 205 190 93

No. of function

evaluations

15035 17120 16105 7889

Function value 6.9E − 7 0.1308 1.2778 11.03

rrmse(K) 0.0090 0.0094 0.0143 0.0842

rrmse(a) 0.0867 0.0619 0.0647 0.2232

rrmse(C) 0.0899 0.0668 0.0740 0.3045

p = 2%

No. of iterations 205 280 144 70

No. of function

evaluations

17047 23563 12210 5919

Function value 2.7E − 6 0.1316 1.2789 11.02

rrmse(K) 0.0181 0.0186 0.0221 0.0860

rrmse(a) 0.1710 0.1130 0.0794 0.2248

rrmse(C) 0.1861 0.1237 0.0952 0.3120
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Figure 4.11: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffu-

sivity, and (c) Heat capacity, for Example 3 with p = 1% noise.
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Figure 4.12: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffu-

sivity, and (c) Heat capacity, for Example 3 with p = 2% noise.
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4.5.4 Example 4 for IP2

Consider now the IP2 given by equations (4.2), (4.3), (4.7) and (4.8) with un-

known coefficients a(t) and b(t), and solve this inverse problem with the following

input data:

ϕ(x) = e−x + x2, µ1(t) = et, µ2(t) = (e−1 + 1)et, ν1(t) = et, d(x, t) = 0,

ν2(t) = (2− e−1)et, f(x, t) = et
(
(1 + t)e−x + x2 − 2(1 + t)− 2x(1 + 2t)

)
,

for x ∈ (0, ℓ = 1) and t ∈ (0, T = 1). One can easily check that the condition of

Theorem 4.4 which ensures the uniqueness of the solution is satisfied. The exact

solution to this inverse problem is given by

a(t) = 1 + t, b(t) = 1 + 2t, u(x, t) = (e−x + x2)et. (4.33)

Consider first the case where there is no noise in the input data (4.7). The

objective function (4.19), as a function of the number of iterations, is shown in

Figure 4.13. From this figure, it can be seen that the convergence is achieved

rapidly in a few iterations. The objective function (4.19) decreases rapidly and

takes a stationary value of O(10−8) in about 6 iterations. The numerical results

for the corresponding coefficients a(t) and b(t) are presented in Figure 4.14. From

this figure, it can be seen that the retrieved coefficients are in very good agreement

with the exact ones.

Next, we add p = 1% noise to the heat fluxes ν1 and ν2, as in equation (4.28)

via (4.25). The regularized objective function (4.19) is plotted, as a function

of the number of iterations, in Figure 4.15 and convergence is rapidly achieved.

Figure 4.16 presents the graphs of the recovered coefficients and further results

are reported in Table 4.7. From this figure one can observe, as expected, that

when β = 0 we obtain unstable and inaccurate solutions because the problem is

ill-posed and sensitive to noise. So, regularization is needed in order to stabilize

the solution. From all regularization parameters that were selected, we deduce

that β = 10−2 gives a stable and reasonable accurate approximation for the

coefficients a(t) and b(t).
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Figure 4.13: Objective function (4.19), for Example 4 with no noise and no regular-

ization.
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Figure 4.14: (a) Coefficient a(t), and (b) Coefficient b(t), for Example 4 with no noise

and no regularization.
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Figure 4.15: Regularized objective function (4.19), for Example 4 with p = 1% noise.
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Figure 4.16: (b) Coefficient a(t), and (b) Coefficient b(t), for Example 4 with p = 1%

noise and regularization.
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4.5.5 Example 5 for IP2

In this example, we consider a more severe test case where the coefficients are

non-smooth functions. Consider the IP2 with unknown coefficients a(t) and b(t),

and solve this inverse problem with the following input data:

ϕ(x) = e−x + x2, µ1(t) = et, µ2(t) = (e−1 + 1)et, ν1(t) = et, ν2(t) = (2− e−1)et,

f(x, t) = (e−x + x2)et −
(∣∣∣∣t− 1

2

∣∣∣∣+ 1

2

)
(e−x + 2)et −

∣∣∣∣t2 − 1

2

∣∣∣∣(−e−x + 2x)et,

d(x, t) = 0,

for x ∈ (0, ℓ = 1) and t ∈ (0, T = 1). One can remark that the condition of

Theorem 4.4 which ensure the uniqueness of the solution is satisfied. The exact

solution is given by

a(t) =

∣∣∣∣t− 1

2

∣∣∣∣+ 1

2
, b(t) =

∣∣∣∣t2 − 1

2

∣∣∣∣ , u(x, t) = (e−x + x2)et. (4.34)

The objective function (4.19), as a function of the number of iterations, with

no noise and no regularization is presented in Figure 4.17. From this figure, it can

be seen that the convergence is achieved in 11 iterations and it decreases rapidly

to stationary value of O(10−8). When no noise is included in the input data we

obtain stable and accurate solutions for a(t) and b(t) which are shown in Figure

4.18. In these plots, beginning with the initial guess (-◦-), one can observe that

after 6 iterations the results are overlapping until reaching the final iteration 11.
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Figure 4.17: Objective function (4.19), for Example 5 with no noise and no regular-

ization.
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Figure 4.18: (a) Coefficient a(t), and (b) Coefficient b(t), for Example 5 with no noise

and no regularization; (—) exact solution, (-◦-) initial guess, (- - -) iterations 1, 2, ...,
10, and (-�-) the final iteration 11.

When p = 1% noise is included, regularization is needed to achieve stability.

Figure 4.19 presents the regularized objective function (4.19), as a function of the

number of iterations. From this figure, it can be seen that for no regularization

the convergence is achieved in a relatively larger number of iterations than when

regularization is applied with β ∈ {10−3, 10−2, 10−1}.
Figure 4.20 shows the plots of the retrieved coefficients. From this figure and

Table 4.7 it can be observed that we obtain stable and reasonable accurate solu-

tions for a(t) and b(t) when we choose β = 10−1 which has minimum rrmse values

for a and absolute error values for b. Note that b(t) can vanish and therefore we

have considered the absolute error instead of the rrmse in Table 4.7 for Example

5.
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Figure 4.19: Regularized objective function (4.19), for Example 5 with p = 1% noise.
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Figure 4.20: (a) Coefficient a(t), and (b) Coefficient b(t), for Example 5 with p = 1%

noise and regularization.
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Table 4.7: The rrmse values for the estimated coefficients for Examples 4 and 5 with

p = 1% noise.

β = 0 β = 10−3 β = 10−2 β = 10−1

Example 4
rrmse(a) = 0.1267 0.0823 0.0713 0.0806

rrmse(b) = 0.3632 0.1435 0.1263 0.4500

Example 5
rrmse(a) = 0.7493 0.0886 0.0791 0.0670

abs(b) = 0.1917 0.1844 0.1003 0.1049

4.5.6 Example 6 for IP3

We finally consider the IP3 given by equations (4.2)–(4.4) and (4.8) with unknown

coefficients K(t) and b(t), and solve this inverse problem with the following input

data:

ϕ(x) = e−x + x2, µ1(t) = et, µ2(t) = (e−1 + 1)et,

ν1(t) = et
(∣∣∣∣t− 1

2

∣∣∣∣+ 1

2

)
, ν2(t) = (2− e−1)et

(∣∣∣∣t− 1

2

∣∣∣∣+ 1

2

)
,

d(x, t) = 0, C(t) = 1,

f(x, t) = (e−x + x2)et −
(∣∣∣∣t− 1

2

∣∣∣∣+ 1

2

)
(e−x + 2)et −

∣∣∣∣t2 − 1

2

∣∣∣∣(−e−x + 2x)et,

for x ∈ (0, ℓ = 1) and t ∈ (0, T = 1). One can easily check that the conditions of

Theorem 4.6 which ensure the uniqueness of the solution are satisfied. The exact

solution is given by

K(t) =

∣∣∣∣t− 1

2

∣∣∣∣+ 1

2
, b(t) =

∣∣∣∣t2 − 1

2

∣∣∣∣, u(x, t) = (e−x + x2)et. (4.35)
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Figure 4.21: Objective function (4.20), for Example 6 with no noise and no regular-

ization.
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The objective function (4.20), as a function of the number of iterations, is

shown in Figure 4.21. From this figure, it can be seen that the convergence is

achieved in 50 iterations. It can also be observed that the objective function

(4.20) decreases rapidly in the first 5 iterations, after which it takes a slow de-

crease until iteration 41, and finally it decreases rapidly to a stationary value

of O(10−8). When no noise is included in the input data we obtain stable and

accurate solutions for K(t) and b(t) which are shown in Figure 4.22. In these

plots, the numerically obtained coefficients show a very good agreement with the

exact ones.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

K(
t)

 

 
exact

final iteration 50 (p=0)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

t

b(
t)

 

 
exact

final iteration 50 (p=0)

(b)

Figure 4.22: (a) Coefficient K(t), and (b) Coefficient b(t), for Example 6 with no noise

and no regularization.

Next we include p = 1% noise to the heat fluxes ν1 and ν2, as in equation

(4.25), and regularization is needed to achieve stability. Figure 4.23 presents

the regularized objective function (4.20), as a function of the number of itera-

tions. From this figure, it can be seen that for β = 0, i.e. no regularization,

the convergence is achieved in a relatively larger number of iterations than when

regularization is applied with β ∈ {10−3, 10−2, 10−1}.
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Figure 4.24 shows the plots of the retrieved coefficients. From this figure and

it can be observed that in the case of non-smooth coefficients we still obtain stable

and reasonable accurate solutions for K(t) and b(t).
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Figure 4.23: Regularized objective function (4.20), for Example 6 with p = 1% noise.
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Figure 4.24: (a) Coefficient K(t), and (b) Coefficient b(t), for Example 6 with p = 1%

noise and regularization.
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4.6 Conclusions

This chapter has presented a numerical approach to identify simultaneously two

time-dependent coefficients in the one-dimensional parabolic heat equation. The

three resulting inverse problems have been reformulated as constrained regular-

ized minimization problems which were solved using MATLAB optimization tool-

box routines. The numerically obtained results are shown to be stable and accu-

rate.

Multi-dimensional problems can easily be analysed as our unknowns depend

on the temporal variable only.



Chapter 5

Simultaneous determination of

time-dependent coefficients and

heat source

5.1 Introduction

In the previous chapter and elsewhere in [8, 58, 72], the unknowns were mainly

time-dependent coefficients multiplying the temperature and its partial deriva-

tives, but more recent theoretical studies, [82, 83], allow for one of the time-

dependent unknown to be in the free term heat source as well. And it is the

purpose of this chapter to numerically solve a couple of such related multiple

coefficient identification problems.

The structure of the chapter is as follows. In Section 5.2 we formulate the

two inverse problems that we consider. In Section 5.3 we briefly describe the

FDM used to discretise the direct problem, whilst Section 5.4 introduces the

constrained regularized minimization problem that has to be solved using the

MATLAB routine lsqnonlin. In Section 5.5, numerical results are presented and

discussed and finally conclusions are given in Section 5.6.

5.2 Mathematical formulation

We study a couple of coefficient identification problems related to the second-

order parabolic partial differential equation

ut(x, t) = a(x, t)uxx(x, t)− b(x, t)ux(x, t)−d(x, t)u(x, t)+ f(t)g(x, t), (x, t) ∈ QT .

(5.1)
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where QT = [−ℓ, ℓ]×[0, T ], with ℓ > 0 and T > 0, represents the solution domain,

a(x, t) is a given positive function involving physical quantities of the medium

(−ℓ, ℓ) such as conductivity, capacity, storage, diffusivity, u(x, t) is the unknown

dependent variable, e.g. the temperature in heat conduction, the pressure in

porous media or the piezometric head in groundwater flow, f(t)g(x, t) with f(t)

unknown and g(x, t) given function represents a source (heat or hydraulic), and

either one of the coefficients b (representing an advection/convection coefficient)

or d (representing a reaction or perfusion coefficient in bio-heat conduction) are

unknown (though we shall further assume that, when unknown, the corresponding

quantity b or d depends on time only). To be more explicit, let us particularize

equation (5.1) to the following two cases, namely,

ut(x, t) = a(x, t)uxx(x, t)− b(t)ux(x, t)− d(x, t)u(x, t) + f(t)g(x, t), (x, t) ∈ QT

(5.2)

with unknown triplet (u(x, t), f(t), b(t)) and

ut(x, t) = a(x, t)uxx(x, t)− b(x, t)ux(x, t)− d(t)u(x, t) + f(t)g(x, t), (x, t) ∈ QT .

(5.3)

with unknown triplet (u(x, t), f(t), d(t)).

We emphasize that such particularizations are often necessary when seeking

to establish the uniqueness of the solution. Together with (5.2) or (5.3) we impose

the initial condition

u(x, 0) = ϕ(x), x ∈ [−ℓ, ℓ], (5.4)

and the homogenous Dirichlet boundary conditions

u(±ℓ, t) = 0, t ∈ [0, T ]. (5.5)

As over-determination conditions we consider, [82],∫ ℓ

−ℓ

ω(x)u(x, t)dx = φ(t), t ∈ [0, T ], (5.6)∫ ℓ

−ℓ

ω(x)ux(x, t)dx = ψ(t), t ∈ [0, T ], (5.7)

where ω is given weight function. Integral observation such as (5.6) have been

considered before in numerous studies, see e.g. [16, 18, 61] to mention only a few,

and physically it represents the mass/energy specification obtained by measuring
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the temperature u(x, t) with thermocouples/ sources and then averaging over

the space domain of the finite slab [−ℓ, ℓ]. This is because sometimes it might be

practically impossible to measure the state of an object (or a process) at individual

points and instead only the mean value of the state over the entire object can be

specified, [1]. Remark also that if ω is differentiable then integration by parts in

(5.7) and using (5.5) imply∫ ℓ

−ℓ

ω′(x)u(x, t)dx = −ψ(t), t ∈ [0, T ], (5.8)

so (5.7) may be thought to have the same physical meaning as (5.6) previously

described.

The unique solvabilites of the inverse problems (5.2), (5.4)–(5.7) and (5.3)–

(5.7) have been established in [82, 83].

5.3 Numerical solution of the direct problem

In this section, we consider the direct (forward) initial value problem given by

equations (5.1), (5.4) and (5.5) when the coefficients b(x, t), d(x, t) and f(t) are

given and the dependent variable u(x, t) is the solution to be determined. We use

the Crank-Nicolson FDM, as described in Section 2.4.

The discrete form of the direct problem is as follows. Taking the positive

integer numbers M and N , the solution domain QT = [−ℓ, ℓ] × [0, T ] is divided

by a M ×N mesh with spatial step size ∆x = 2ℓ/M in x-direction and the time

step size ∆t = T/N . The solution at the node (i, j) is denoted by ui,j := u(xi, tj),

where xi = −ℓ + i∆x, tj = j∆t, ai,j := a(xi, tj), bi,j := b(xi, tj), fj := f(tj),

di,j := d(xi, tj) and gi,j := g(xi, tj) for i = 0,M and j = 0, N .

Considering the general form of partial differential equation (4.10), equations

(5.1), (5.4) and (5.5) can be approximated as

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1) , i = 1,M, j = 0, (N − 1), (5.9)

ui,0 = ϕ(xi), i = 0,M, (5.10)

u0,j = 0, uM,j = 0, j = 0, N, (5.11)

where

Gi,j = G

(
xi, tj,

ui+1,j − ui−1,j

2(∆x)
,
ui+1,j − 2ui,j + ui−1,j

(∆x)2

)
, i = 1, (M − 1), j = 0, N.

(5.12)
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For our problem, equation (5.1) can be discretised in the form of (5.9) as

− Ai,j+1ui−1,j+1 + (1 +Bi,j+1)ui,j+1 − Ci,j+1ui+1,j+1 =

Ai,jui−1,j + (1−Bi,j)ui,j + Ci,jui+1,j +
∆t

2
(fjgi,j + fj+1gi,j+1) , (5.13)

for i = 1, (M − 1), j = 0, (N − 1), where

Ai,j =
(∆t)ai,j
2(∆x)2

+
bi,j(∆t)

4(∆x)
, Bi,j =

(∆t)ai,j
(∆x)2

+
∆t

2
di,j, Ci,j =

(∆t)ai,j
2(∆x)2

− bi,j(∆t)

4(∆x)
.

At each time step tj+1, for j = 0, (N − 1), using the homogenous Dirichlet bound-
ary conditions (5.11), the above difference equation can be reformulated as a
(M − 1)× (M − 1) system of linear equations of the form (3.17), where

D =



1 +B1,j+1 −C1,j+1 0 · · · 0 0 0

−A2,j+1 1 +B2,j+1 −C2,j+1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −AM−2,j+1 1 +BM−2,j+1 −CM−2,j+1

0 0 0 · · · 0 −AM−1,j+1 1 +BM−1,j+1


,

E =



1−B1,j C1,j 0 · · · 0 0 0

A2,j 1−B2,j C2,j · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · AM−2,j 1−BM−2,j CM−2,j

0 0 0 · · · 0 AM−1,j 1−BM−1,j


,

and

b =



∆t
2
(fjg1,j + fj+1g1,j+1)

∆t
2
(fjg2,j + fj+1g2,j+1)

...
∆t
2
(fjgM−2,j + fj+1gM−2,j+1)

∆t
2
(fjgM−1,j + fj+1gM−1,j+1)


.

The numerical solutions for φ(t) and ψ(t) are calculated using the trapezoidal
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rule for integrals in (5.6) and (5.7), namely,

φ(tj) =

∫ ℓ

−ℓ

ω(x)u(x, tj)dx = ∆x

(
M−1∑
i=1

ui,jωi

)
, j = 0, N, (5.14)

ψ(tj) =

∫ ℓ

−ℓ

ω(x)ux(x, tj)dx =
∆x

2

(
ux0,jω0 + uxM,jωM + 2

M−1∑
i=1

uxi,jωi

)
,

j = 0, N, (5.15)

where ωi := ω(xi) for i = 0,M , and

ux0,j =
4u1,j − u2,j − 3u0,j

2(∆x)
, uxM,j = −4uM−1,j − uM−2,j − 3uM,j

2(∆x)
,

uxi,j =
ui+1,j − ui−1,j

2(∆x)
, i = 1, (M − 1), j = 0, N.

5.4 Numerical solutions of the inverse problems

In this section, we aim to obtain accurate and stable simultaneous identifications

for the temperature u(x, t), source f(t) and the coefficients b(t) or d(t) for the

inverse problems (5.2), (5.4)–(5.7) or (5.3)–(5.7), respectively. In the former case

we minimize the nonlinear Tikhonov functional

F1(b, f) : =
∥∥∥ ∫ ℓ

−ℓ

ω(x)u(x, t)dx− φ(t)
∥∥∥2 + ∥∥∥∫ ℓ

−ℓ

ω(x)ux(x, t)dx− ψ(t)
∥∥∥2

+ β1
∥∥b(t)∥∥2 + β2

∥∥f(t)∥∥2, (5.16)

whilst in the latter case we minimize

F2(d, f) : =
∥∥∥∫ ℓ

−ℓ

ω(x)u(x, t)dx− φ(t)
∥∥∥2 + ∥∥∥ ∫ ℓ

−ℓ

ω(x)ux(x, t)dx− ψ(t)
∥∥∥2

+ β3
∥∥d(t)∥∥2 + β2

∥∥f(t)∥∥2, (5.17)

where βi ≥ 0, i = 1, 2, 3, are regularization parameters which are introduced in or-

der to stabilise the numerical solution and the norm is the L2[0, T ] norm. Remark

that we could have chosen a single regularization parameter β = β1 = β2 = β3,

as in Section 4.4. However, in the present case, we have found that the amount

of regularization to be imposed on the solutions b(t) and f(t), or d(t) and f(t),

has to be weighted in order to achieve stable reconstructions. However, allowing

for two (instead of one) regularization parameters whilst enlarging the stability

region it pays the penalty that their multiple choices can become cumbersome,
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e.g. one would have to employ the L-surface method [6] instead of the L-curve

method [44].

The discretizations of (5.16) and (5.17) are

F1(b, f) :=
N∑
j=1

[ ∫ ℓ

−ℓ

ω(x)u(x, tj)dx− φ(tj)
]2

+
N∑
j=1

[ ∫ ℓ

−ℓ

ω(x)ux(x, tj)dx− ψ(tj)
]2

+ β1

N∑
j=1

b2j + β2

N∑
j=1

f 2
j , (5.18)

F2(d, f) :=
N∑
j=1

[ ∫ ℓ

−ℓ

ω(x)u(x, tj)dx− φ(tj)
]2

+
N∑
j=1

[ ∫ ℓ

−ℓ

ω(x)ux(x, tj)dx− ψ(tj)
]2

+ β3

N∑
j=1

d2j + β2

N∑
j=1

f 2
j . (5.19)

respectively.

The unregularized case, i.e., βi = 0 for i = 1, 2, 3, yields the ordinary nonlinear

least-squares method which is usually producing unstable solutions when noisy

data are inverted.

The noisy data is numerically simulated as

φϵ1(tj) = φ(tj) + ϵ1j, ψϵ2(tj) = ψ(tj) + ϵ2j, j = 1, N, (5.20)

where ϵ1j and ϵ2j are random variables generated from a Gaussian normal dis-

tribution with mean zero and standard deviation σ1 and σ2, respectively, given

by

σ1 = p× max
t∈[0,T ]

|φ(t)|, σ2 = p× max
t∈[0,T ]

|ψ(t)|, (5.21)

where p represents the percentage of noise. We use the MATLAB function norm-

rnd to generate the random variables ϵ1 = (ϵ1j)j=1,N and ϵ2 = (ϵ2j)j=1,N as

follows:

ϵ1 = normrnd(0, σ1, N), ϵ2 = normrnd(0, σ2, N). (5.22)

In the case of noisy data (5.6) and (5.7), we replace φ(tj) and ψ(tj) by φϵ1(tj)

and ψϵ2(tj), respectively, in (5.18) and (5.19).

The minimization of F1 or F2 subject to simple bounds on the variables is

accomplished using the MATLAB optimization toolbox routine lsqnonlin, as

described in the previous chapters.



Chapter 5. Simultaneous determination of time-dependent
coefficients and heat source 105

We take bounds for the quantities b(t) and f(t) say, we seek them in the

interval [−103, 103], whilst the non-negative quantity d(t) is sought in the interval

[0, 103]. We also take the parameters of the routine as follows:

• Maximum number of iterations = 10× (number of variables).

• Maximum number of objective function evaluations=105× (number of vari-

ables).

• Solution and object function tolerances = 10−10.

5.5 Numerical results and discussion

In this section, we present numerical results for the recovery of the unknowns

f(t), b(t) or d(t), in the case of exact and noisy data (5.20). To measure the

accuracy of the numerical solution we employ the root mean square error (rmse)

defined by:

rmse(f) =

√√√√ 1

N

N∑
j=1

(fnumerical(tj)− fexact(tj))
2, (5.23)

and similar expressions exist for b(t) and d(t).

During the computation we need the values of f(0) and b(0) or d(0). One can

easily derive these values from the governing equations (5.2) or (5.3) with the

help of the initial and boundary conditions (5.4) and (5.5).

5.5.1 Example 1

Consider first the inverse problem (5.2), (5.4)–(5.7), with unknown coefficients

f(t) and b(t), and the following input data:

a(x, t) = 1, d(x, t) = 0, g(x, t) = −x3, (x, t) ∈ QT , (5.24)

ϕ(x) = x(ℓ2 − x2), ω(x) = (x2 − ℓ2)2, x ∈ [−ℓ, ℓ], (5.25)

φ(t) =

∫ ℓ

−ℓ

ω(x)u(x, t)dx = 0, t ∈ [0, T ], (5.26)

ψ(t) =

∫ ℓ

−ℓ

ω(x)ux(x, t)dx =
64ℓ7e−6t

105
, t ∈ [0, T ]. (5.27)

It can easily be checked by direct substitution that the analytical solution is
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given by

b(t) = 0, f(t) = −6e
−6t
ℓ2

ℓ2
, t ∈ [0, T ], (5.28)

u(x, t) = e
−6t
ℓ2 x(ℓ2 − x2), (x, t) ∈ QT . (5.29)

We take for simplicity, ℓ = T = 1 and employ the FDM described in Section

5.3 with M = N = 40 at each iteration of minimization procedure described in

Section 5.4. By simple calculation we conclude that b(0) = 0 and f(0) = −6 and

therefore, appropriate candidates for the initial guesses of b and f are b0 = 0 and

f 0 = −6. However, because the exact solution for b(t) is actually the trivial zero

function we also investigate another initial guess for b given by b0(t) = t.

For exact data, i.e., p = 0 in (5.21), numerical results of the inversion with

and without regularization in (5.18) and various initial guesses are presented in

Figures 5.1–5.3 and Table 5.1. From Figure 5.1 and Table 5.1 it can be seen that,

as expected, the farther the initial guess is, the more iterations and computational

time are required to achieve convergence. However, for both initial guesses con-

sidered, the objective function (5.18) converges to the same minimum value which

is of O(10−10). Furthermore, from Figure 5.1(a) and Table 5.1 it can be seen that,

in case of no regularization being employed, better results are obtained for the

closer initial guess for b(t). However, the results for b(t) obtained for the farther

initial guess in Figure 5.2(a) oscillate for the last 7-8 time steps near the final time

showing that instability starts to manifest. In order to alleviate these oscillations

some little regularization is recommended and these improvements over Figure

5.2 are clearly illustrated in Figure 5.3, see also the corresponding rows in Table

5.1 for further comparison. Observe in particular from Table 5.1 that including

regularization also reduces the number of iterations and computational time in

addition to achieving the stability of solution.
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Figure 5.1: The objective function (5.18), (a) without and (b) with regularization, and

various initial guesses, for Example 1 with exact data.
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Figure 5.2: The exact (—) and numerical solutions without regularization, and various

initial guesses b0 = 0 (- × -) and b0 = t (- � -) for: (a) b(t) and (b) f(t), for Example

1 with exact data.
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Figure 5.3: The exact (—) and numerical solutions with regularization and various

initial guesses b0 = 0, β1 = 0, β2 = 10−7 (- × -) and b0 = t, β1 = β2 = 10−7 (- � -) for:

(a) b(t) and (b) f(t), for Example 1 with exact data.

In the remaining of this subsection, for brevity, we only illustrate the results

obtained with the initial guess b0 = t and f 0 = −6.

Table 5.1: Number of iterations, number of function evaluations, value of the objective

function (5.18) at final iteration, the rmse values and the computational time with and

without regularization and various initial guesses for Example 1 with exact data.

β1 = β2 = 0 b0 = 0, f 0 = −6 b0 = t, f 0 = −6

No. of iterations 19 24

No. of function evaluations 1660 2075

Value of objective function

(5.18) at final iteration

1.7E-10 7.4E-10

rmse(b) 6.1E-6 0.1557

rmse(f) 0.4379 0.4536

Computational time 20 mins 24 mins

β2 = 10−7 b0 = 0, f 0 = −6,

β1 = 0

b0 = t, f 0 = −6,

β1 = 10−7

No. of iterations 8 9

No. of function evaluations 747 830

Value of objective function

(5.18) at final iteration

1.0E-5 1.0E-5

rmse(b) 3.5E-6 4.0E-4

rmse(f) 0.1514 0.1516

Computational time 9 mins 10 mins
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In order to investigate the stability of the solution we add p = 1% noise

to the input data (5.6) and (5.7), as in (5.20). The objective function (5.18),

as a function of the number of iterations, is plotted in Figure 5.4. From this

figure it can be seen that in the absence of regularization a slow and smooth

convergence is recorded and, in fact, the process of minimization of the routine

lsqnonlin is stopped when the prescribed tolerance of solution = 10−10 is reached.

The corresponding numerical results for the unknown coefficients are presented

in Figure 5.5. From this figure it can be seen that unstable results are obtained

for both coefficients b(t) and f(t) (compare with the results for exact data in

Figure 5.2). This is expected since the problem under investigation is ill-posed.

Consequently, regularization should be applied to restore the stability of the

solution in the components b(t) and f(t).
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Figure 5.4: The objective function (5.18) without regularization for Example 1 with

p = 1% noise data.
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Figure 5.5: The exact (—) and numerical (- × -) solutions without regularization for:

(a) b(t) and (b) f(t), for Example 1 with p = 1% noisy data.

Regularization parameters have been chosen by trial and error and numerical
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results obtained from some typical choices are given in Table 5.2 and Figures 5.6

and 5.7. Justifying more rigorously the choice of the regularization parameters

β1 and β2 possibly using the L-surface method, [6], is nevertheless very important

and will be the subject of future work. From Figure 5.6 it can be noticed that

convergence in less than 8 iterations is achieved for each selection of regulariza-

tion parameters. The corresponding numerical reconstructions for b(t) and f(t)

are presented in Figure 5.7. By comparing Figure 5.5 with Figure 5.7 one can

immediately notice the dramatic improvement in stability and accuracy which is

achieved through the inclusion of regularization in the objective function (5.18).
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Figure 5.6: The objective function (5.18) with regularization parameters β1 = β2 =

10−5 (-�-), β1 = β2 = 10−4 (-△-), β1 = β2 = 10−3 (-▽-) and β1 = 10−3, β2 = 10−4

(-◦-), for Example 1 with p = 1% noisy data.
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Figure 5.7: The exact (—) and numerical solutions with regularization parameters

β1 = β2 = 10−5 (-�-), β1 = β2 = 10−4 (-△-), β1 = β2 = 10−3 (-▽-) and β1 = 10−3,

β2 = 10−4 (-◦-) for: (a) b(t) and (b) f(t), for Example 1 with p = 1% noisy data.
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Table 5.2: Number of iterations, number of function evaluations, value of the objective

function (5.18) at final iteration, the rmse values and the computational time, with

regularization for Example 1 with p = 1% noisy data.

p = 1% β1=β2=10−5 β1=β2=10−4 β1=β2=10−3 β1=10−3,

β2=10−4

No. of iterations 6 7 8 6

No. of function

evaluations

581 664 747 581

Value of objec-

tive function

(5.18) at final

iteration

0.0015 0.0104 0.0526 0.0104

rmse(b) 9.5E-6 1.0E-5 4.6E-6 4.5E-7

rmse(f) 0.5698 0.2884 0.8412 0.2884

Computational

time

7 mins 8 mins 9 mins 7 mins

5.5.2 Example 2

In this example, we consider solving the second inverse problem given by equations

(5.3)–(5.7) with unknown coefficients f(t) and d(t) ≥ 0, and the following input

data:

b(x, t) = 1, g(x, t) =
(5− t)x3

ℓ2
− 3x2 + (1 + t)x+ ℓ2, (x, t) ∈ QT , (5.30)

and a, ϕ, ω, φ, and ψ given by equations (5.25)–(5.27).

It can easily be checked by direct substitution that the analytical solution is

given by

d(t) =
1 + t

ℓ2
, f(t) = e−

6t
ℓ2 , t ∈ [0, T ], (5.31)

and u(x, t) is given by (5.29).

As in Example 1, we take ℓ = T = 1 and employ the FDM withM = N = 40.

By simple calculation we conclude that f(0) = 1 and d(0) = 1. So, we take the

initial guesses d0 = f 0 = 1 in the minimization of the functional (5.19).
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p=0
p=1%

Figure 5.8: The objective function (5.19) without regularization, for Example 2 with

exact data and p = 1% noisy data.

Figures 5.8 and 5.9 illustrate the convergence of the unregularized objective

function (5.19) with β2 = β3 = 0 and the corresponding recovered coefficients

d(t) and f(t), respectively, for exact data p = 0 and for p = 1% noisy data. First,

from Figure 5.8 it can be seen that for exact data the unregularized objective

function decreases rapidly in about 26 iterations to a low threshold of O(10−8).

However, for p = 1% noisy data, the number of iterations necessary to achieve the

required degree of convergence with respect to the tolerance chosen increases to

191, see also the second column of Table 5.3 where, in particular, one can observe

the long computational time recorded to be in excess of 4 hours. In Figure 5.9,

reasonable good retrievals for the unknown coefficients can be observed for exact

data, but the instability clearly manifests for noisy data. In order to stabilise the

solution for noisy data, as in Example 5.5.1, regularization needs to be included

in the functional (5.19) which is minimized.
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Figure 5.9: The exact (—) and numerical solutions without regularization for: (a) d(t)

and (b) f(t), for Example 2 with exact data (-×-) and with p = 1% noisy data (-�-).
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Figure 5.10: The objective function (5.19) with regularization parameters β2 = β3 =

10−4 (-△-), β2 = β3 = 10−5 (-▽-) and β2 = β3 = 10−6 (-◦-), for Example 2 with

p = 1% noisy data.
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Figure 5.11: The exact (—) and numerical solutions with regularization parameters

β2 = β3 = 10−4 (-△-), β2 = β3 = 10−5 (-▽-) and β2 = β3 = 10−6 (-◦-) for: (a) d(t)

and (b) f(t), for Example 2 with p = 1% noisy data.

Figure 5.10 shows the objective function (5.19), as a function of the number of

the iterations, for various regularization parameters β2 = β3 ∈ {10−6, 10−5, 10−4},
when the input data (5.6) and (5.7) is contaminated with p = 1% noise. From this

figure it can be remarked that a rapid convergent is achieved for each selection

of regularization parameters. The corresponding exact and numerical solutions

for d(t) and f(t) are presented in Figure 5.11 and other numerical features of the

solutions are summarised in Table 5.3. First, by comparing Figures 5.9 and 5.11

clearly the stabilisation benefit of employing regularization can be appreciated.

It is also interesting to remark from Table 5.3 that retrieving accurately and

simultaneously both the coefficients d(t) and f(t) requires an appropriate choice of

the regularization parameters β2 and β3, e.g. for β2 = β3 = 0 the recovery of d(t)

is accurate in the detriment of that of f(t), whilst for β2 = β3 = 10−4 the accuracy
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of the simultaneous recovery is viceversa. This situation has also been observed

previously in cases where simultaneous identification of multiple coefficients has

been attempted, [46, 56]. Therefore, a compromising but balancing choice would

be to pick β2 = β3 in between, say between 10−5 and 10−4 as is common with

ill-posed problems in which acceptable candidate solutions are those in the region

where the accuracy and stability portions meet/ intersect.

Finally, for completeness, the exact and numerical reconstructions for the

temperature u(x, t) are presented in Figure 5.12 and the absolute error between

them is also included. From this figure it can be observed that a stable and

accurate reconstruction is obtained.
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Figure 5.12: The exact (5.29) and numerical reconstructions for the temperature u(x, t)

with regularization parameters β1 = β2 = 10−5, for Example 2 with p = 1% noisy data.

Table 5.3: Number of iterations, number of function evaluations, value of the objective

function (5.19) at final iteration, rmse values and the computational time, for various

regularization parameters, for Example 2 with p = 1% noisy data.

p = 1% β2=β3=0 β2=β3=10−6 β2=β3=10−5 β2=β3=10−4

No. of iterations 191 46 22 11

No. of function

evaluations

15936 3901 1909 996

Value of objective

function (5.19) at

final iteration

3E-5 0.0001 0.0004 0.0011

rmse(d) 0.6283 1.1731 1.3207 1.4409

rmse(f) 2.3165 1.0330 0.3127 0.1325

Computational

time

4 hours 57 mins 28 mins 15 mins
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5.6 Conclusions

A couple of inverse problems consisting of finding the time-dependent coefficients

and the time-dependent heat source term in the parabolic heat equation with

integral overdetermination conditions have been numerically investigated. The

MATLAB routine lsqnonlin has been employed effectively to solve the resulting

nonlinear constraint optimization problems subject to both exact or noisy input

data. Regularization has been imposed when the noisy data has been inverted.

Numerical results presented and discussed for a couple test examples show that

reasonably accurate and stable numerical solutions have been achieved.



Chapter 6

Simultaneous determination of

time and space-dependent

coefficients

6.1 Introduction

Choosing an appropriate additional information about what quantities to mea-

sure or supply is important since this data enables us to identify the unknown

coefficients uniquely. For instance, an upper-base final temperature condition

was chosen in [32] to identify a space-dependent heat source, and a similar ver-

sion can be found in [27] where a Cauchy problem for a second-order parabolic

equation was formulated for determining a space-dependent coefficient of a low-

order derivative. Cauchy data have also been used in [35] for reconstructing nu-

merically a temperature-dependent thermal conductivity or a heat source. The

determination of the space-dependent thermal conductivity was studied in [102]

using Kansa’s method based on radial basis function techniques, and in [34] using

a predictor-corrector iterative finite-difference method (FDM). While spacewise

dependent perfusion coefficient identification in the transient bio-heat equation

subjected to time-averaging temperature measurement was investigated in [118]

using the Crank-Nicolson FDM scheme combined with the first-order Tikhonov

regularization method. On the other hand, time-dependent coefficient identifica-

tion problems have been investigated recently, just to mention a few, the time-

dependent inverse source identification problem [45, 109, 119] and the thermal

conductivity/diffusivity identification problem [65, 90] subjected to various kinds

of overdetermination conditions.

In this chapter, we consider obtaining the numerical solution of a couple of

related inverse time and space-dependent coefficient identification problems in the
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parabolic heat equation subjected to nonlocal, time-averaging overdetermination

conditions.

The organisation of this chapter is as follows. In Section 6.2, the mathematical

formulations of the inverse problems are given. In Section 6.3, the Crank-Nicolson

FDM is developed for solving the direct problem. In Section 6.4, the inverse prob-

lems are reformulated as nonlinear least-squares minimization problems further

penalized with regularization terms in order to achive stable solutions with re-

spect to noise in the input data. Numerical results illustrate that accurate and

stable numerical solutions are obtained, as it is discussed in Section 6.5. Finally,

the conclusions of this chapter are drawn in Section 6.6.

6.2 Mathematical formulation

Let L > 0 and T > 0 be fixed numbers representing the length of a one-

dimensional finite slab and the time period, respectively, and denote by QT :=

(0, L) × (0, T ) the solution domain. Let also f represent a given heat source.

Then consider the inverse problem of finding the time-dependent thermal con-

ductivity a(t), the space-dependent component of the fluid velocity b(x) or, of

the absorbtion (perfusion) coefficient c(x), together with the temperature u(x, t),

which satisfy the parabolic heat equation

ut(x, t) = a(t) (uxx(x, t) + b(x)ux(x, t)− c(x)u(x, t)) + f(x, t), (x, t) ∈ QT , (6.1)

the initial condition

u(x, 0) = ϕ(x), 0 ≤ x ≤ L, (6.2)

the Dirichlet boundary conditions

u(0, t) = µ1(t), u(L, t) = µ2(t), 0 ≤ t ≤ T, (6.3)

the heat flux Neumann condition

−a(t)ux(0, t) = µ3(t), 0 ≤ t ≤ T. (6.4)

and the time-average condition∫ T0

0

a(t)u(x, t)dt = ψ(x), 0 ≤ x ≤ L, (6.5)
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where T0 ∈ (0, T ] is a given fixed number. We note that the single identifications

of the coefficient b(x) or c(x), when a(t) is known and taken to be unity, have

been investigated elsewhere in [80, 81].

Equation (6.5) is a new overdetermination condition that in the case of heat

conduction, can be regarded as the total potential heat function whose derivative,

if it exists, ∫ T0

0

a(t)ux(x, t)dt = ψ′(x), 0 ≤ x ≤ L, (6.6)

yields the time-average of the heat flux over the time period [0, T0]. We con-

sider therefore the following two inverse problems concerning the simultaneous

determination of the coefficients a(t) and b(x) when c = 0, termed the Inverse

Problem I, and of the coefficients a(t) and c(x) when b = 0, termed the Inverse

Problem II. These inverse problems have been previously investigated theoreti-

cally by Ivanchov [70, Chapter 5], who establish their existence and uniqueness,

as follows.

6.2.1 Inverse problem I

In this case c = 0 and equation (6.1) becomes

ut(x, t) = a(t) (uxx(x, t) + b(x)ux(x, t)) + f(x, t), (x, t) ∈ QT . (6.7)

Then the inverse problem I requires determining the triplet solution (a(t), b(x),

u(x, t)) ∈ C[0, T ] × Hγ[0, L] × H2+γ,1(QT ) for some γ ∈ (0, 1), a(t) > 0 for

t ∈ [0, T ], that satisfies equations (6.2)–(6.4), (6.6) and (6.7). For the definition

of the spaces involved, see [87]. In particular, Hγ[0, L] denotes the space of

Hölder continuous functions with exponent γ and H2+γ,1(QT ) denotes the space

of continuous functions u along with their partial derivatives ux, uxx, ut in QT

and with uxx being Hölder continuous with exponent γ in x ∈ [0, L] uniformly

with respect to t ∈ [0, T ].

Theorem 6.1 (Existence, see Theorem 5.2.1 of [70]). Suppose that the following

conditions hold:

1. ϕ ∈ H2+γ[0, L], ψ ∈ H2+γ[0, L], µi ∈ C1[0, T ] for i = 1, 2, µ3 ∈ C[0, T ],

f ∈ Hγ,0(QT );

2. ϕ′(x) > 0, ψ′(x) > 0 for x ∈ [0, L], µ3(t) < 0 for t ∈ [0, T ];
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3. ϕ(0) = µ1(0), ϕ(L) = µ2(0), ψ
′(0) = −

∫ T0

0
µ3(t)dt, µ

′
1(0) = a(0)(ϕ′′(0) +

b(0)ϕ′(0)) + f(0, 0), µ′
2(0) = a(0)(ϕ′′(L) + b(L)ϕ′(L)) + f(L, 0), where a(0),

b(0) and b(L) are determined by a(0) = −µ3(0)/ϕ
′(0),

b(0) =
1

ψ′(0)

(
µ1(T0)− ϕ(0)− ψ′′(0)−

∫ T0

0

f(0, t)dt

)
,

b(L) =
1

ψ′(L)

(
µ2(T0)− ϕ(L)− ψ′′(L)−

∫ T0

0

f(L, t)dt
)
.

Then, if T0 is sufficiently small, the inverse problem (6.2)–(6.4), (6.6) and (6.7)

has a solution determined for (x, t) ∈ QT0
:= [0, L]× [0, T0].

In the above, H2+γ[0, L] denotes the space of twice continuously differentiable

functions with the second-order derivative being Hölder continuous with exponent

γ in [0, L]. Note that according to Theorem 1 of [67], the existence result in the

above theorem also holds if f ∈ C1,0(QT ) and if condition 2 is replaced by:

2 ′. ϕ(x) ≤ 0, ϕ′(x) ≥ 0, ψ′(x) > 0 for x ∈ [0, L], ϕ′(0) > 0, µ3(t) < 0,

µ1(t) ≤ 0, µ2(t) ≤ 0, µ′
1(t) ≤ f(0, t), µ′

2(t) ≥ f(L, t) for t ∈ [0, T ],

f(x, t) ≤ 0, fx(x, t) ≥ 0 for (x, t) ∈ QT .

Theorem 6.2 (Uniqueness, see Theorem 5.2.2 of [70]). If the conditions

µ3(t) ̸= 0 for t ∈ [0, T ], ψ′(x) ̸= 0 for x ∈ [0, L]

hold, then, if T0 is sufficiently small, the solution of the inverse problem (6.2)–

(6.4), (6.6) and (6.7) is unique for (x, t) ∈ QT0
.

6.2.2 Inverse problem II

In this case b = 0 and equation (6.1) becomes

ut(x, t) = a(t) (uxx(x, t)− c(x)u(x, t)) + f(x, t), (x, t) ∈ QT . (6.8)

Then the inverse problem II requires determining the triplet solution (a(t), c(x),

u(x, t)) ∈ C[0, T ] × Hγ[0, L] × H2+γ,1(QT ), a(t) > 0 for t ∈ [0, T ], c(x) ≥ 0 for

x ∈ [0, L], that satisfies equations (6.2)–(6.5) and (6.8).

Theorem 6.3 (Existence, see [66], and Theorem 5.1.1 of [70]). Suppose that the

following conditions hold:
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1. ϕ ∈ H2+γ[0, L], ψ ∈ H2+γ[0, L], µi ∈ C1[0, T ] for i = 1, 2, µ3 ∈ C[0, T ],

f ∈ C2,0(QT );

2. ϕ(x) ≥ 0, ϕ′(x) > 0, ϕ′′(x) ≤ 0, ψ(x) > 0, ψ′′(x) ≥ 0 for x ∈ [0, L], µi(t) ≥
0 for i = 1, 2, µ3(t) < 0, µ1(t) − ϕ(0) −

∫ t

0
f(0, τ)dτ ≤ 0, µ2(t) − ϕ(L) −∫ t

0
f(L, τ)dτ ≤ 0 for t ∈ [0, T ], f(x, t) ≥ 0, fxx(x, t) ≤ 0 for (x, t) ∈ QT ;

3. ϕ(0) = µ1(0), ϕ(L) = µ2(0), ψ
′(0) = −

∫ T0

0
µ3(t)dt, µ

′
1(0) = a(0)(ϕ′′(0) −

c(0)ϕ(0)) + f(0, 0), µ′
2(0) = a(0)(ϕ′′(L) − c(L)ϕ(L)) + f(L, 0), where a(0),

c(0) and c(L) are determined by a(0) = −µ3(0)/ϕ
′(0),

c(0) = − 1

ψ(0)

(
µ1(T0)− ϕ(0)− ψ′′(0)−

∫ T0

0

f(0, t)dt

)
,

c(L) = − 1

ψ(L)

(
µ2(T0)− ϕ(L)− ψ′′(L)−

∫ T0

0

f(L, t)dt
)
.

Then, if T0 is sufficiently small, the inverse problem (6.2)–(6.5) and (6.8) has a

solution determined for (x, t) ∈ QT0
.

Theorem 6.4 (Uniqueness, see Theorem 5.1.2 of [70]). If the conditions

µ3(t) ̸= 0 for t ∈ [0, T ], ψ(x) ̸= 0 for x ∈ [0, L]

hold, then, if T0 is sufficiently small, the solution of the inverse problem (6.2)–

(6.5) and (6.8) is unique for (x, t) ∈ QT0
.

6.3 Solution of direct problem

In this section, we consider the direct (forward) initial boundary value problem

given by equations (6.1)–(6.3) in which the coefficients a(t), b(x) and c(x) are

known and f(x, t), ϕ(x) and µi(t), for i = 1, 2, are given, and the temperature

u(x, t) is the solution to be determined.

The discrete form of this direct problem is as follows. Take two positive

integers M and N and let ∆x = L/M and ∆t = T/N be the uniform step

lengths in space and time direction, respectively. We subdivide the solution

domain QT = (0, L) × (0, T ) into M × N subintervals of equal length. At the

node (i, j) we denote ui,j = u(xi, tj), aj = a(tj), bi = b(xi), ci = c(xi) and

fi,j = f(xi, tj), where xi = i∆x, tj = j∆t for i = 0,M , j = 0, N .

Considering the general form of partial differential equation (6.1) as (4.10),

the Crank-Nicolson FDM, [51, 110], discretises (4.10), (6.2) and (6.3) as (4.11)–

(4.14). For our problem, equation (6.1) can be discretised in the form of (4.11)
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as

− Ai,j+1ui−1,j+1 + (1 +Bi,j+1)ui,j+1 − Ci,j+1ui+1,j+1 =

Ai,jui−1,j + (1−Bi,j)ui,j + Ci,jui+1,j +
∆t

2
(fi,j + fi,j+1) (6.9)

for i = 1, (M − 1), j = 0, N , where

Ai,j =
(∆t)aj
2(∆x)2

− ajbi(∆t)

4(∆x)
, Bi,j =

(∆t)aj
(∆x)2

+
(∆t)ajci

2
, Ci,j =

(∆t)aj
2(∆x)2

+
ajbi(∆t)

4(∆x)
.

At each time step tj+1 for j = 0, (N − 1), using the Dirichlet boundary conditions
(4.13) and (4.14), the above difference equation can be reformulated as a (M −
1)× (M − 1) system of linear equations of the form (3.17), where

D =



1 +B1,j+1 −C1,j+1 0 · · · 0 0 0

−A2,j+1 1 +B2,j+1 −C2,j+1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −AM−2,j+1 1 +BM−2,j+1 −CM−2,j+1

0 0 0 · · · 0 −AM−1,j+1 1 +BM−1,j+1


,

E =



1−B1,j C1,j 0 · · · 0 0 0

A2,j 1−B2,j C2,j · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · AM−2,j 1−BM−2,j CM−2,j

0 0 0 · · · 0 AM−1,j 1−BM−1,j


,

and

b =



∆t
2
(f1,j + f1,j+1) + A1,j+1µ1(tj+1)

∆t
2
(f2,j + f2,j+1)

...
∆t
2
(fM−2,j + fM−2,j+1)

∆t
2
(fM−1,j + fM−1,j+1) + CM−1,j+1µ2(tj+1)


.
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6.3.1 Example

As an example, consider the direct problem (6.1)–(6.3) and with T = L = 1 and

a(t) = et, b(x) = 2− x, c(x) =
1

1 + x
, ϕ(x) = u(x, 0) = x2 + x,

µ1(t) = u(0, t) = 2t, µ2(t) = u(1, t) = 2 + 2t,

f(x, t) = 2− 2et
(
2 + x− x2 − t

1 + x

)
.

The exact solution is given by

u(x, t) = x2 + x+ 2t, (x, t) ∈ QT . (6.10)

Outputs of interest are the heat flux (6.4) and the total potential heat function

(6.5) on the time period [0, T0], say T0 = 1,

µ3(t) = −a(t)ux(0, t) = −et, t ∈ [0, 1], (6.11)

ψ(x) =

∫ 1

0

a(t)u(x, t)dt = (x2 + x)(e− 1) + 2, x ∈ [0, 1], (6.12)

and its derivative (6.6) given by

ψ′(x) =

∫ 1

0

a(t)ux(x, t)dt = (2x+ 1)(e− 1), x ∈ [0, 1]. (6.13)

The numerical and exact solutions for u(x, t) at interior points are shown in

Figure 6.1 and also the absolute error between them is included. One can notice

that an excellent agreement is obtained. Figures 6.2(a)–(c) show the numerical

solutions in comparison with the exact ones (6.11)–(6.13) for µ3(t), ψ(x) and

ψ′(x), respectively. These have been calculated using the following O((∆x)2)

finite-difference approximation formula and trapezoidal rule for integrals:

µ3(tj) = −a(tj)ux(0, tj) = −(4u1,j − u2,j − 3u0,j)aj
2(∆x)

, j = 0, N, (6.14)

ψ(xi) =

∫ 1

0

a(t)u(xi, t)dt =
1

2N

(
a0ui,0 + aNui,N + 2

N−1∑
j=1

ui,j

)
, i = 0,M,

(6.15)
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ψ′(xi) =

∫ 1

0

a(t)ux(xi, t)dt

=
1

2N


a0ϕ

′(0) + aNux(0, tN) + 2
∑N−1

j=1 ajux(0, tj), if i = 0;

a0ϕ
′(xi) + aNux(xi, tN) + 2

∑N−1
j=1 ajux(xi, tj), if i = 1,M − 1;

a0ϕ
′(1) + aNux(1, tN) + 2

∑N−1
j=1 ajux(1, j), if i =M,

(6.16)

where, for j = 0, N ,

ux(0, tj) =
4u1,j − u2,j − 3u0,j

2(∆x)
, (6.17)

ux(1, tj) = −4uM−1,j − uM−2,j − 3uM,j

2(∆x)
, (6.18)

ux(xi, tj) =
ui+1,j − ui−1,j

2(∆x)
i = 1, (M − 1). (6.19)
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Figure 6.1: Exact and numerical solutions for the temperature u(x, t), and the absolute

error for the direct problem obtained with M = N = 40.
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Figure 6.2: Exact (—) and numerical (���) solutions for: (a) the heat flux µ3(t),

(b) the total potential function ψ(x), and (c) the time-average heat flux ψ′(x), for the

direct problem obtained with M = N = 40.

6.4 Numerical approach to the inverse problems

The inverse problems under investigation are nonlinear and the most common

numerical approach is to impose the overdetermination conditions in a least-

squares sense, based on minimizing the objective function

FI(a, b) :=
∥∥a(t)ux(0, t) + µ3(t)

∥∥2 + ∥∥∥ ∫ T0

0

a(t)ux(x, t)dt− ψ′(x)
∥∥∥2

+ β1
∥∥a(t)∥∥2 + β2

∥∥b(x)∥∥2, (6.20)

for the inverse problem I, and

FII(a, c) :=
∥∥a(t)ux(0, t) + µ3(t)

∥∥2 + ∥∥∥∫ T0

0

a(t)u(x, t)dt− ψ(x)
∥∥∥2

+ β1
∥∥a(t)∥∥2 + β3

∥∥c(x)∥∥2, (6.21)
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for the inverse problem II, where βi ≥ 0 for i = 1, 2, 3 are regularization pa-

rameters to be prescribed and the norms are understood in the L2-sense. As in

Chapter 5, Section 5.4, we choose different regularization parameters for a(t),

b(x) and c(x) because scaling their stabilities is not uniform. Moreover, in the

case of this chapter, the coefficients a(t) and b(x) or c(x) depend on the variables

t and x, which are independent of each other, thus there is no reason beforehand

why one can choose β1, β2 or β3 equal.

Of course, finding a global minimizer to these nonlinear optimization problems

is in general not an easy task. Since the inverse problems under investigation are

nonlinear the functionals (6.20) and (6.21) are not convex and could have many

local minima in which, depending on the initial guess, a descent-based method

tends to get stuck if the underlying problems are ill-posed, [31, p.17]. A possible

way to deal with this difficulty could be to develop a ”global convergent method”,

[5, 106], whose convergence to a good approximation of the exact solution is

independent of the initial guess but this challenging task is deferred to a future

work.

Bearing in mind that the values of a(0), b(0), b(L), c(0) and c(L) are deter-

mined a priori directly form the compatibility conditions in Theorems 6.1 and

6.3, the discretizations of (6.20) and (6.21) simplify as

FI(a, b) =
N∑
j=1

[
ajux(0, tj) + µ3(tj)

]2
+

M−1∑
i=1

[ ∫ T0

0

a(t)ux(xi, t)dt− ψ′(xi)
]2

+ β1

N∑
j=1

a2j + β2

M−1∑
i=1

b2i , (6.22)

FII(a, c) =
N∑
j=1

[
ajux(0, tj) + µ3(tj)

]2
+

M−1∑
i=1

[ ∫ T0

0

a(t)u(xi, t)dt− ψ(xi)
]2

+ β1

N∑
j=1

a2j + β3

M−1∑
i=1

c2i . (6.23)

In the case when β1 = β2 = β3 = 0, the above functions become the or-

dinary least-squares functionals which normally produce unstable solutions for

noisy measurements (6.4)–(6.6). The minimization of the functions (6.22) and

(6.23) subject to the physical simple lower bounds for a(t) > 0 and c(x) ≥ 0

is accomplished via the MATLAB optimization toolbox lsqnonlin, [95], as de-

scribed in the previous chapters. This initial guess, say (a0(t), b0(x)) for inverse

problem I, could be included in (6.20) by replacing the last two terms in it by
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β1∥a(t)− a0(t)∥2+β2∥b(x)− b0(x)∥2, but this is not necessary, see [31, p.18]. Al-
ternatively, one could use a truncated Gauss-Newton method with simple bounds

on the variables, [79], for solving the constrained nonlinear optimization problem.

The positive components of the vector a and the non-negative components of the

vector c are sought in the intervals [10−10, 103] and [0, 103], respectively.

We also take the parameters of the routine as follows:

• Number of variables M = N = 20 for inverse problem I and M = N = 40

for inverse problem II.

• Maximum number of iterations = 20× (number of variables).

• Maximum number of objective function evaluations = 103× (number of

variables).

• Solution (xTol) and object function (FunTol) tolerances = 10−20.

The inverse problems under investigation are solved subject to both exact and

noisy data which are numerically simulated as

µϵ1
3 (tj) = µ3(tj) + ϵ1j, j = 1, N, (6.24)

ψ′ϵ2(xi) = ψ′(xi) + ϵ2i, i = 1, (M − 1), (6.25)

ψϵ3(xi) = ψ(xi) + ϵ3i, i = 1, (M − 1), (6.26)

where ϵ1j, ϵ2i and ϵ3i are random variables generated from Gaussian normal

distributions with mean zero and standard deviations σ1, σ2 and σ3 given by

σ1 = p× max
t∈[0,T ]

|µ3(t)|, σ2 = p× max
x∈[0,L]

|ψ′(x)|, σ3 = p× max
x∈[0,L]

|ψ(x)|, (6.27)

where p represents the percentage of noise. We use the MATLAB function norm-

rnd to generate the random variables ϵ1 = (ϵ1j)j=1,N , ϵ2 = (ϵ2i)i=1,M−1 and

ϵ3 = (ϵ2i)i=1,M−1, as follows:

ϵ1 = normrnd(0, σ1, N), ϵ2 = normrnd(0, σ2,M − 1),

ϵ3 = normrnd(0, σ3,M − 1).

}
(6.28)

6.5 Numerical results and discussion

In this section we present, discuss and assess the numerically obtained results by

employing the FDM combined with Tikhonov regularization method, as presented

in previous section, for a couple of benchmark test examples for each of the inverse
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problems I (Examples 1 and 2) and II (Examples 3 and 4). The root mean square

errors (rmse)

rmse(a) =

√√√√ 1

N

N∑
j=1

(anumerical(tj)− aexact(tj))
2, (6.29)

rmse(b) =

√√√√ 1

M − 1

M−1∑
i=1

(bnumerical(xi)− bexact(xi))
2, (6.30)

rmse(c) =

√√√√ 1

M − 1

M−1∑
i=1

(cnumerical(xi)− cexact(xi))
2, (6.31)

were calculated in order to estimate the accuracy of the identified coefficients. In

all examples we take L = T0 = T = 1.

6.5.1 Example 1 (for inverse problem I)

In the first example, we consider the inverse problem I given by equations (6.2)–

(6.4), (6.6) and (6.7) with the following input data:

ϕ(x) = u(x, 0) = x+ 1, µ1(t) = u(0, t) =
1

1 + t
, µ2(t) = u(1, t) =

2

1 + t
,

µ3(t) = −a(t)ux(0, t) = −1, ψ′(x) =

∫ 1

0

a(t)ux(x, t)dt = 1,

f(x, t) = − x+ 1

(1 + t)2
+ 2− x.

One can observe that the conditions of Theorems 6.1 and 6.2 are satisfied, hence

the problem is uniquely solvable. The analytical solution is given by

a(t) = 1 + t, b(x) = x− 2, u(x, t) =
x+ 1

1 + t
. (6.32)

The initial guess was a0 = 1 and b0 = −2.

We consider first the case where there is no noise (i.e., p = 0) included in the

input data µ3(t) and ψ
′(x). In order to investigate the convergence of the numer-

ical solutions for a(t) and b(x), the inverse problem was executed with various

FDM mesh parameters, namely, M = N ∈ {10, 20, 40} and the numerical results

are compared with the exact ones in Table 6.1 and Figure 6.3. No regularization

was included, i.e. β1 = β2 = 0 in (6.22). As illustrated in Figure 6.3 and more

clearly in Table 6.1 one can be notice that, as M = N increase, the numerical

outputs converge to the exact values. The errors estimated through the rmse(a)
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and rmse(b) given by equations (6.29) and (6.30), respectively, are also included

in Table 6.1. The decreasing behaviour of the errors with increasing the discreti-

sation parameters clearly demonstrates the convergence and excellent accuracy of

the numerically obtained solution. The number of iterations required to achieve

the convergence of the objective functional (6.22) below a very low threshold of

O(10−20) also increases, as M = N increase, as shown in Figure 6.4. From both

Figures 6.3, 6.4 and Table 6.1, it can be seen that the independence of mesh is

achieved with excellent accuracy and a rather coarse grid. Consequently, in what

follows we fix M = N = 20 as a sufficiently fine mesh which ensures that a fur-

ther refinement does not significantly affect the accuracy of the numerical results.

Moreover, the rather low values for the number of variables result in a reasonable

number of iterations and computational time to achieve the convergence of the

objective function (6.22) which is minimized using the MATLAB toolbox routine

lsqnonlin.

Table 6.1: The exact and the numerical coefficients a(t) and b(x), for Example 1 with

no noise and no regularization, for M = N ∈ {10, 20, 40}. The rmse(a) and rmse(b)

are also included.

t 0.1 0.2 ... 0.9 1 M=N rmse(a)

a(t)
1.1018 1.2016 ... 1.8976 1.9971 10 1.7E-3

1.1004 1.2004 ... 1.8994 1.9993 20 4.0E-4

1.1001 1.2001 ... 1.8998 1.9998 40 9.8E-5

1.1000 1.2000 ... 1.9000 2.0000 exact 0

x 0.1 0.2 ... 0.8 0.9 M=N rmse(b)

b(x)
−1.8983 −1.7981 ... −1.1972 -1.0971 10 2.4E-3

−1.8996 −1.7995 ... −1.1993 -1.0993 20 5.9E-4

−1.8999 −1.7999 ... −1.1998 -1.0998 40 1.4E-4

−1.9000 −1.8000 ... −1.2000 -1.1000 exact 0

Even though the Theorems 6.1 and 6.2 ensure the unique solvability of the

inverse problem I, the problem is still ill-posed since small errors in input mea-

surement can cause highly oscillating unbounded solutions. To overcome this

instability, regularization such as the Tikhonov regularization method can be ap-

plied. The main difficulty in regularization of nonlinear ill-posed problems is the

selection of regularization parameters. Many methods have been suggested to

select such parameters which can be fairly applied to linear problems, but the

selection in the nonlinear case is less reliable.
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Figure 6.3: The coefficients (a) a(t), and (b) b(x) for Example 1 with no noise and no

regularization, for M = N ∈ {10, 20, 40}.
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Figure 6.4: Objective function (6.22), for Example 1 with no noise and no regulariza-

tion, for M = N ∈ {10, 20, 40}.

In this chapter, we choose the regularization parameters β1 and β2 by trial
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and error. We start with small values for regularization parameters and gradually

increase them until numerical oscillations in the unknown coefficients disappear.

We fix M = N = 20 and we add p = 2% noise to the heat flux measurement

(6.4) and the integral average of heat flux (6.6), as in (6.24) and (6.25), respec-

tively, to test the stability. Figure 6.5 shows the convergence of the objective

function (6.22), as a function of the number of iterations, for β1 = 0 and various

β2 ∈ {0, 10−3, 10−2, 10−1}. The minimization process was stopped if the max-

imum number of iterations or, the permitted tolerance has been reached. The

associated numerical results for a(t) and b(x) are presented in Figure 6.6. From

this figure it can be seen that the unregularized, i.e. β1 = β2 = 0, numerical

results are much more stable for a(t) than for b(x). Therefore, in what follows in

order to simplify the investigation and discussion we can solely take β1 = 0 and

assess the stability of the solution with respect to the single regularization param-

eter β2 only. Overall, from Figure 6.6 (see also the numerical features summarized

in Table 6.4 for Example 1) it can be seen that accurate and stable solutions are

reconstructed when we choose the regularization parameter β2 between 10−3 and

10−2.
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Figure 6.5: Objective function (6.22), for Example 1 with p = 2% noise and regular-

ization.

The reconstructions of the temperature u(x, t) are presented in Figure 6.7.

From this figure one can observe that, in general, the temperature is not affected

significantly in terms of stability by the inclusion of noise.
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Figure 6.6: The coefficients (a) a(t), and (b) b(x) for Example 1 with p = 2% noise

and regularization.

Next, in Table 6.2 we estimate the rmse errors (6.29) and (6.30) for vari-

ous amounts of noise p ∈ {1, 2, 3}% and various regularization parameters β2 ∈
{0, 10−3, 10−2, 10−1}. From this table it can be seen that stable solutions are

achieved if regularization is included. Furthermore, the results become more

accurate as the amount of noise decreases.
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Figure 6.7: The exact and numerical temperatures u(x, t), for Example 1, with β1 = 0

and (a) β2 = 0, (b) β2 = 10−3, (c) β2 = 10−2, and (d) β2 = 10−1, with p = 2% noise.

The relative error between them is also included.
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Table 6.2: The rmse errors (6.29) and (6.30) for various amounts of noise p ∈ {1, 2, 3}%
and various regularization parameters β1 = 0 and β2 ∈ {0, 10−3, 10−2, 10−1} for Exam-

ple 1 .

rmse(a) rmse(b)

β1 = 0 p = 1% p = 2% p = 3% p = 1% p = 2% p = 3%

β2 = 0 0.0291 0.0595 0.0890 0.9507 1.0602 1.2718

β2 = 10−3 0.0322 0.0607 0.0907 0.1896 0.2668 0.3861

β2 = 10−2 0.0470 0.0691 0.0990 0.3105 0.2501 0.3539

β2 = 10−1 0.1775 0.1671 0.2082 0.6680 0.6043 0.6731

6.5.2 Example 2 (for inverse problem I)

In the previous example we have inverted linear and smooth coefficients given

by equation (6.32). In this example, we consider the recovery of a smooth and

nonlinear function for a(t) and a non-smooth and piecewise linear function for

b(x) for the inverse problem I given by equations (6.2)–(6.4), (6.6) and (6.7) with

the following input data:

ϕ(x) = u(x, 0) = x3 + x, µ1(t) = u(0, t) = t2, µ2(t) = u(1, t) = 2 + t+ t2,

µ3(t) = −a(t)ux(0, t) = −(1 + t)(1 + cos2(2πt)),

ψ′(x) =

∫ 1

0

a(t)ux(x, t)dt =
9

4
(1 + 2x2),

f(x, t) = x+ 2t− 6x(1 + cos2(2πt))− (1 + cos2(2πt))

(∣∣∣x− 1

2

∣∣∣− 2

)
(3x2 + t+ 1).

One can observe that the conditions of Theorem 6.2 are satisfied, hence the

solution is unique. The analytical solution is given by

a(t) = 1 + cos2(2πt), b(x) =
∣∣∣x− 1

2

∣∣∣− 2, u(x, t) = x3 + x+ xt+ t2. (6.33)

The initial guess was a0 = 2 and b0 = −1.5.

We consider first the case of exact data, i.e. p = 0. We solve this nonlinear

problem by minimizing the functional (6.22) which minimize the gap between

the measured and the modeled data in equations (6.4) and (6.6). The numerical

results for the unknown coefficients a(t), b(x) and the objective function plotted

against the number of iterations are displayed in Figures 6.8 and 6.9. From these

figures it can be seen that the numerical solutions for the coefficients a(t) and

b(x) are convergent and accurate, as the FDM mesh is increased.
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It is convenient to choose M = N = 20 for the rest of computations due

to the reasonable accuracy and acceptable number of iterations cost to achieve

convergence, see Table 6.3. From this table it can also be seen that the esti-

mated errors rmse(a) and rmse(b) decrease monotonically to zero, as the FDM

mesh size decreases to zero. For comparison purposes, we have also employed

the MATLAB toolbox routine fmincon based on the interior point algorithm,

[95], instead of the TRR algorithm on which the lsqnonlin routine is based, and

the numerically obtained results are also included in Table 6.3 in brackets. By

comparing in Table 6.3 the numerical results obtained using the two MATLAB

toolbox routines lsqnonlin and fmincon for minimizing the objective function

(6.22) one can observe that the rmse(a) and rmse(b) values are identical at least

up to 4 decimals after comma which is reassuring to conclude that possibly an

optimal accuracy has been achieved. The minimum values of (6.22) in both cases

are very small indicating that the global minimum has been obtained. Finally,

as expected, because fmincon is more general than lsqnonlin it performs more

function evaluations and iterations to achieve convergence.
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Figure 6.8: The coefficients (a) a(t), and (b) b(x) for Example 2 with no noise and no

regularization, for M = N ∈ {10, 20, 40}.
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Figure 6.9: Objective function (6.22), for Example 2 with no noise no regularization,

for M = N ∈ {10, 20, 40}.

Table 6.3: Number of iterations, number of function evaluations, value of objective

function (6.22) at final iteration and the rmse values (6.29) and (6.30), for Example 2

with no noise and no regularization, forM = N ∈ {10, 20, 40}, obtained using lsqnonlin

and fmincon (in brackets).

M = N 10 20 40

No. of iterations
22 41 85

(85) (167) (446)

No. of function evaluations
529 1806 7138

(1986) (7254) (37142)

Minimum value of (6.22)
6.1E-24 2.3E-21 4.2E-23

(3.1E-15) (6E-15) (1.4E-14)

rmse(a)
0.0169 0.0047 0.0012

(0.0169) (0.0047) (0.0012)

rmse(b)
0.1321 0.0685 0.0349

(0.1321) (0.0685) (0.0349)

Next, the case of noise contamination with p = 2% is considered by adding

Gaussian random noise into input data µ3(t) and ψ′(x) in (6.4) and (6.6), as

in (6.24) and (6.25), respectively. As expected, without regularization, i.e.,

β1 = β2 = 0, the classical least-squares minimization produces an unstable solu-

tion. Hence, we employ the Tikhonov regularization method by adding stabilizing

terms in (6.22) in order to restore the stability.

Figure 6.10 shows the objective function (6.22), as a function of the number

of iterations. Form this figure it can be seen that convergence is achieved for

each choice of regularization parameters. In case β1 = 0 and β2 = 10−1, the mini-

mization routine lsqnonlin was stopped when the maximum number of iterations
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(Maxiter=400) was reached. In the other cases the iterative process was stopped

when the objective function tolerance, or the solution tolerance has been reached.
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Figure 6.10: Objective function (6.22), for Example 2 with p = 2% noise and regular-

ization.

Figure 6.11 displays the associated numerical results for the coefficients a(t)

and b(x). From this figure and Table 6.4 it can be seen that accurate and stable

results are obtained for β1 = 0 and β2 between 10−2 and 10−1. As in Figure

6.6(a), one can notice once again that β1 = 0 can be chosen because the retrieval

of the thermal conductivity a(t) is rather stable and is less influenced by noise,

see Figures 6.8(a) and 6.11(a). Perhaps, this stability is due to the fact that this

coefficient appears explicitly in the objective function (6.22), whilst b(x) appears

only implicitly.
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Table 6.4: Number of iterations, number of function evaluations, value of regularized

objective function (6.22) at final iteration, for Examples 1 and 2 with β1 = 0 and

p = 2% noise.

Example β2 = 0 β2 = 10−3 β2 = 10−2 β2 = 10−1

1

No. of iterations 204 37 401 401

No. of function evalu-

ations

8815 1634 17286 17286

Minimum value of

(6.22)

0.0020 0.0491 0.4178 2.9329

rmse(a) 0.0602 0.0607 0.0691 0.1671

rmse(b) 1.0602 0.2668 0.2501 0.6043

2

No. of iterations 82 91 41 401

No. of function evalu-

ations

3569 3956 1806 17286

Minimum value of

(6.22)

0.0865 0.1827 0.8105 5.5954

rmse(a) 0.0501 0.0511 0.0483 0.0573

rmse(b) 1.4860 1.3327 0.5415 0.3854
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Figure 6.11: The coefficients (a) a(t), and (b) b(x) for Example 2 with p = 2% noise

and regularization.

The exact and numerical temperatures are presented in Figure 6.12. As it also

happened previously in Example 1 and illustrated in Figure 6.7, from Figure 6.12

it can be seen that the temperature reconstruction is not significantly affected by

noise.
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Figure 6.12: The exact and numerical temperatures u(x, t), for Example 2, with β1 = 0

and (a) β2 = 0, (b) β2 = 10−3, (c) β2 = 10−2, and (d) β2 = 10−1, with p = 2% noise.

The relative error between them is also included.
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6.5.3 Example 3 (for inverse problem II)

We consider now the inverse problem II given by equations (6.2)–(6.5) and (6.8)

with the following input data:

ϕ(x) = u(x, 0) = x+ 1, µ1(t) = u(0, t) =
1

1 + t
, µ2(t) = u(1, t) =

2

1 + t
,

µ3(t) = −a(t)ux(0, t) = −1, ψ(x) =

∫ 1

0

a(t)u(x, t)dt = x+ 1,

f(x, t) = (x+ 1)(2− x)− x+ 1

(1 + t)2
.

One can observe that the conditions of Theorems 6.3 and 6.4 are satisfied, hence

the problem is uniquely solvable. The analytical solution is given by

a(t) = 1 + t, c(x) = 2− x, u(x, t) =
x+ 1

1 + t
. (6.34)

The initial guess was a0 = 1 and c0 = 2.

The above example was mentioned in [70, p.176]. We start the investigation of

finding the unknown coefficients a(t), c(x) and the temperature u(x, t) without

noise in input data (6.4) and (6.5). Figure 6.13 shows the objective function

(6.23), as a function of the number of iterations. From this figure it can be seen

that a monotonic decreasing convergence is achieved in 193 iterations to reach a

very low prescribed tolerance of O(10−21).

0 20 40 60 80 100 120 140 160 180 200
10

−30

10
−20

10
−10

10
0

10
10

Number of Iterations 

O
bj

ec
tiv

e 
fu

nc
tio

n

Figure 6.13: Objective function (6.23), for Example 3 with no noise and no regular-

ization.

Figure 6.14 shows the numerical results for the associated time-dependent

coefficient a(t) and space-dependent coefficient c(x) with no noise and no regu-

larization. From this figure one can easily notice that there is an excellent agree-

ment between the numerical and the exact solutions with rmse(a) = 3.3E − 4

and rmse(c) = 1.1E − 4.
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Figure 6.14: The exact (—) and numerical (△△△) coefficients (a) a(t), and (b) c(x)

for Example 3 with no noise and no regularization, obtained with M = N = 40.

Next, we investigate the stability of the solution with respect to noise. We

include p = 2% additive Gaussian noise generated by equation (6.28). The input

noisy data is therefore simulated numerically, via equation (6.24) for µ3(t) and

(6.26) for ψ(x). Figure 6.15 shows the objective function (6.23), as a function of

the number of iterations for various values of the regularization parameters. From

this figure it can be seen that a monotonic decreasing convergence is achieved.

Figure 6.16 shows the reconstructions of the coefficients a(t) and c(x). From this

figure it can be seen that a very good estimation for a(t) is obtained and less

accurate for c(x). Furthermore, one can be noticed that the coefficient a(t) does

not need to be regularized, i.e. we can take β1 = 0 in (6.23). The rmse (6.29)

and (6.31), as well as other details, are included in Table 6.5.
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Figure 6.15: Objective function (6.23), for Example 3 with p = 2% noise and regular-

ization.
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Figure 6.16: The coefficients (a) a(t), and (b) c(x) for Example 3 with p = 2% noise

and regularization.

Figure 6.17 shows the exact and numerical solutions for the temperature

u(x, t) and the relative error between them. From this figure it can be seen

that the numerical solution is stable and furthermore, its accuracy is consistent

with the amount of noise included into the input data (6.4) and (6.5).
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Figure 6.17: The exact and numerical temperature u(x, t), for Example 3, with β1 = 0

and (a) β2 = 10−3, and (b) β2 = 10−2, with p = 2% noise. The relative error between

them is also included.

Table 6.5: Number of iterations, number of function evaluations, value of regularized

objective function (6.23) at final iteration and the rmse values (6.29) and (6.31), for

Example 3 with p = 2% noise.

β1 = 0 β2 = 0 β2 = 10−3 β2 = 10−2

No. of iterations 123 43 45

No. of function evaluations 10086 3526 3818

Minimum value of (6.23) 0.0463 0.1432 0.8684

rmse(a) 0.1705 0.0747 0.1761

rmse(c) 4.3624 0.3040 0.4554

6.5.4 Example 4 (for inverse problem II)

We now consider another test example for the inverse problem II given by equa-

tions (6.2)–(6.5) and (6.8), where the unknown coefficients a(t) and c(x) are not
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linear, with the following input data:

ϕ(x) = u(x, 0) = ex, µ1(t) = u(0, t) = et, µ2(t) = u(1, t) = e1+t,

µ3(t) = −a(t)ux(0, t) = −(1 + t2)et, ψ(x) =

∫ 1

0

a(t)u(x, t)dt = 2e1+x − 3ex,

f(x, t) = ex+t(1− (1 + t2)(1− x2)).

The condition of Theorem 6.4 are satisfied, hence the inverse problem has a unique

solution. The analytical solution is given by

a(t) = 1 + t2, c(x) = x2, u(x, t) = ex+t. (6.35)

The initial guess was a0 = 1 and c0 = 0.

First we study the case of exact input data (6.4) and (6.5). The objective

function (6.23) is plotted in Figure 6.18, as a function of the number of itera-

tions. From this figure it can be seen that a nonsmooth decreasing convergence

is obtained which levels to a stationary level of O(10−9) in 302 iterations. The

numerical results for the corresponding coefficients a(t) and c(x) are presented in

Figure 6.19, and one can observe that the identified coefficients are in very good

agreement with the exact ones in the absence of noise.

Next, we investigate the case of p = 2% noisy input data (6.4) and (6.5).

The residual function (6.23) is plotted, as a function of number of iterations, in

Figure 6.20 and a decreasing convergence can be observed. The corresponding

coefficients are displayed in Figure 6.21 and good approximations are obtained

for a(t), but for c(x) the numerical solution overshoots at various points and is

unstable because no regularization has been employed yet.
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Figure 6.18: Objective function (6.23), for Example 4 with no noise and no regular-

ization.
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Figure 6.19: The exact (—) and numerical (△△△) coefficients (a) a(t), and (b) c(x)

for Example 4 with no noise and no regularization.
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Figure 6.21: The coefficients (a) a(t), and (b) c(x) for Example 4 with p = 2% noise

and no regularization.

As shown in Figure 6.21 the coefficient a(t) seems rather stable. Therefore,

we fix the value of β1 to be zero and apply the regularization to the last term

of objective function (6.23) for various values of the regularization parameter

β2 ∈ {10−3, 10−2, 10−1}. Figure 6.22 shows the decreasing convergence of the

objective function (6.23), as a function of the number of iterations. Figure 6.23

shows the retrieved coefficients for various values of β2, and one can observe

that the most accurate solution is obtained for β2 = 10−2, see also Table 6.6.

In addition, as expected, the numerical solution for the temperature u(x, t) is

accurate, and stable, as illustrated in Figure 6.24.
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Figure 6.22: Objective function (6.23), for Example 4 with p = 2% noise and regular-

ization.
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Figure 6.23: The coefficients (a) a(t), and (b) c(x) for Example 4 with p = 2% noise

and regularization.
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Figure 6.24: The exact and numerical temperatures u(x, t), for Example 4, for β1 = 0

and β2 = 10−2, with p = 2% noise. The relative error between them is also included.

Table 6.6: Number of iterations, number of function evaluations, value of regularized

objective function (6.23) at final iteration and the rmse values (6.29) and (6.31), for

Example 4 with p = 2% noise.

β1 = 0 β2 = 10−3 β2 = 10−2 β2 = 10−1

No. of iterations 401 401 401

No. of function evaluations 33366 33366 33366

Minimum value of (6.23) 0.6023 0.6503 0.7501

rmse(a) 0.0181 0.0210 0.0313

rmse(c) 0.4498 0.2653 0.3848

6.6 Conclusions

This chapter has presented a numerical approach to identify simultaneously the

time and space-dependent coefficients together with the temperature in a parabolic

heat equation. The additional conditions which ensure a unique solution are given

by the heat flux measurement (6.4) and the total potential heat function specifica-

tion (6.5) or, the time-average heat flux (6.6). The direct solver based on a Crank-

Nicolson finite difference scheme was employed. The resulting inverse problems

have been reformulated as constrained regularized minimization problems which

were solved using the MATLAB optimization toolbox routine lsqnonlin. The

inverse problems have been found rather stable in the time-dependent thermal

conductivity coefficient a(t), but less stable in the space-dependent coefficient

b(x) or c(x). Numerical results obtained for a wide range of typical test examples

showed that accurate and stable numerical solutions have been achieved. Possible

future work may consist of extending the analysis to the reconstruction of higher

dimensional space-dependent coefficients.



Chapter 7

Free boundary determination in

nonlinear diffusion

7.1 Introduction

In this chapter, we consider a novel inverse problem of determining a free bound-

ary from the mass/energy specification in a one-dimensional nonlinear diffusion.

In [13, 14], the authors investigated the problem of determining unknown co-

efficients for a nonlinear heat conduction problem together with temperature.

While the problem of nonlinear diffusion with a free boundary was considered in

[7], where the Stefan solidification problem was modelled as such. In addition, in

[122] the authors developed a procedure to find an approximate stable solution to

an unknown coefficient from over specification data based on the FDM combined

with Tikhonov’s regularization approach. In this work, we consider the problem

of identifying the free boundary in a nonlinear diffusion problem.

This chapter is organized as follows. In the next section, we give the formu-

lation of the inverse problem under investigation. The numerical methods for

solving the direct and inverse problems are described in Sections 7.3 and 7.4, re-

spectively. Furthermore, the numerical results and discussion are given in Section

7.5 and finally, conclusions are presented in Section 7.6.

7.2 Mathematical formulation

In this section we consider the nonlinear one-dimensional diffusion equation given

by

ut(x, t) = (a(u)ux(x, t))x + f(x, t), (x, t) ∈ Ω, (7.1)



Chapter 7. Free boundary determination in nonlinear diffusion 150

where the domain Ω = {(x, t) : 0 < x < h(t), 0 < t < T <∞} with unknown free

smooth boundary x = h(t) > 0. The initial condition is

u(x, 0) = ϕ(x), 0 ≤ x ≤ h(0) =: h0, (7.2)

where h0 > 0 is given, and the Dirichlet boundary conditions are

u(0, t) = µ1(t), u(h(t), t) = µ2(t), 0 ≤ t ≤ T, (7.3)

In order to determine the unknown boundary h(t) for t ∈ (0, T ] we impose the

over-determination condition of integral type∫ h(t)

0

u(x, t)dx = µ3(t), 0 ≤ t ≤ T, (7.4)

which represents the specification of mass/energy of the diffusion system, [16].

In the above, the functions a > 0, ϕ, µi, i ∈ {1, 2, 3} and f are given. In (7.1),

u represents the concentration/ temperature, f represent a source/sink, and a

represents the diffusivity.

The pair of functions (h(t), u(x, t)) ∈ C1[0, T ]×C2,1(Ω) with h > 0 is said to

be a solution of problem if fulfills the equations (7.1)–(7.4).

The mathematical model (7.1)–(7.4) has been considered in [68] where the

following existence and uniqueness of solution theorems are proved.

Theorem 7.1. (Existence)

Assume that the following assumptions are fulfilled:

1. ϕ ∈ C2[0, h0], µi ∈ C1[0, T ], i ∈ {1, 2, 3}, f ∈ C1,0([0, H1] × [0, T ]), a ∈
C1[M0,M1];

2. ϕ(x) > 0 for x ∈ [0, h0], µi > 0 for t ∈ [0, T ], i ∈ {1, 2, 3}, f(x, t) ≥ 0 for

(x, t) ∈ [0, H1] × [0, T ], a(s) ≥ a0 > 0 for s ∈ [M0,M1], where a0 is some

given constant;

3. µ1(0) = ϕ(0), µ2(0) = ϕ(h0),
∫ h0

0
ϕ(x)dx = µ3(0),

µ′
1(0) = a(µ1(0))ϕ

′′(0) + a′(µ1(0))ϕ
′2(0) + f(0, 0),

µ′
2(0) = a(µ2(0))ϕ

′′(h0) + a′(µ2(0))ϕ
′2(h0) + ϕ′(h0)h

′(0) + f(h0, 0).

Then the inverse problem (7.1)–(7.4) is locally solvable (in time).

Theorem 7.2. (Uniqueness)

Suppose that condition 2. of Theorem 7.1 and the following condition

a(s) ∈ C1[M0,M1], f(x, t) ∈ C1,0([0, H1]× [0, T ])
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hold. Then a solution of the inverse problem (7.1)–(7.4) is unique.

In the above theorems, the constants H1, M0 and M1 have the following

meaning using the maximum principle [38] for the heat equation (7.1):

H1 =
1

M0

max
[0,T ]

µ3(t), M0 = min{min
[0,h0]

ϕ(x), min
[0,T ]

µ1(t), min
[0,T ]

µ2(t)},

M1 = max{max
[0,h0]

ϕ(x), max
[0,T ]

µ1(t), max
[0,T ]

µ2(t), max
[0,H1]×[0,T ]

f(x, t)}.

We can also derive a formula for h′(0) by differentiating equation (7.4) with time,

and using equations (7.1)–(7.3) to obtain

h′(0) =
µ′
3(0)− a(µ2(0))ϕ

′(h0) + a(µ1(0))ϕ
′(0)−

∫ h0

0
f(x, 0)dx

µ2(0)
. (7.5)

We perform the change of variable y = x/h(t) to reduce the problem (7.1)–

(7.4) to the following equivalent inverse problem in a rectangular domain for the

unknowns h(t) and v(y, t) := u(yh(t), t), [68]:

vt(y, t) =
1

h2(t)
(a(v)vy(y, t))y +

yh′(t)

h(t)
vy(y, t) + f(yh(t), t), (y, t) ∈ Q (7.6)

where Q = {(y, t) : 0 < y < 1, 0 < t < T}. The initial condition is

v(y, 0) = ϕ(h0y), 0 ≤ y ≤ 1, (7.7)

and the boundary and over-determination conditions are

v(0, t) = µ1(t), v(1, t) = µ2(t), 0 ≤ t ≤ T, (7.8)

h(t)

∫ 1

0

v(y, t)dy = µ3(t), 0 ≤ t ≤ T. (7.9)

At the end of this section we state the theorem of continuous dependence of the

free boundary h(t) on the input energy data (7.4) which was proved in [57].

Theorem 7.3. (Stability)

Suppose that the conditions of Theorem 7.1 are satisfied. Let µ3 and µ̃3 be two

data (7.4) and let (h(t),u(x, t)) and (h̃(t),ũ(x, t)) be the corresponding solutions

of the inverse problem (7.1)–(7.4). Then there is a positive constant C such that

the following stability estimate holds:

∥h− h̃∥C1[0,T ] + ∥v − ṽ∥C1,0(Ω) ≤ C∥µ3 − µ̃3∥C1[0,T ], (7.10)
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where

v(y, t) = u(yh(t), t), ṽ(y, t) = ũ(yh̃(t), t), (y, t) ∈ Q. (7.11)

7.3 Solution of direct problem

In this section, we consider the direct initial-boundary value problem (7.6)–(7.8),

where h(t), f(x, t), a(u) and µi(t), i ∈ {1, 2} are known and the solution u(x, t)

is to be determined together with µ3(t) defined by equation (7.4). To do so, we

use the three-time levels finite difference scheme suggested by Lees [88].

The discrete form of our problem is as follows. We uniformly divide the fixed

domain Q = (0, 1) × (0, T ) into M and N subintervals of equal step length ∆y

and ∆t, where ∆y = 1/M and ∆t = T/N , respectively. So, the solution at the

node (i, j) is vi,j := v(yi, tj), where yi = i∆y, tj = j∆t, h(tj) = hj, ϕ(xi) = ϕi,

and f(yi, tj) = fi,j for i = 0,M , j = 0, N .

We develop the procedure described in [88] in order to solve the direct problem

for the nonlinear parabolic equation (7.6), subject to the initial condition (7.7)

and the Dirichlet boundary conditions (7.8). We need to define the standard

difference operators D+, D−, and D0, as follows:

D+v(xi, tj) =
v(xi+1, tj)− v(xi, tj)

∆y
, D−v(xi, tj) =

v(xi, tj)− v(xi−1, tj)

∆y
,

D0v(xi, tj) =
v(xi+1, tj)− v(xi−1, tj)

2∆y
.

Finally, for any suitably defined function k(x, t), we put

ā(k(xi, t)) = a

(
k(xi, t) + k(xi−1, t)

2

)
.

For each j = 0, N we put v0,j = µ1(j∆t) and vM,j = µ2(j∆t). Then the three

time level scheme is given by

vi,0 = ϕi, i = 0,M, (7.12)

where we have that ϕ0 = µ1(0) and ϕM = µ2(0),

vi,1 = vi,0 +
∆t

h20
D+ (ā(ϕi)D−ϕ) +

(∆t)yih
′
0

h0
D−ϕ+ (∆t)fi,0, i = 1,M − 1, (7.13)
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where h′0 = h′(0) is given by (7.5),

vi,j+1 = vi,j−1 +
2∆t

h2j
D+ (ā(vi,j)D−v̂i,j) +

2(∆t)yih
′
j

hj
D−v̂i,j

+ 2(∆t)fi,j, i = 1,M − 1, j = 1, N − 1, (7.14)

where h′j = h′(tj), and

v̂i,j =
vi,j+1 + vi,j + vi,j−1

3
. (7.15)

It is clear that the three-level difference scheme determines vi,j+1 uniquely as the

solution of a linear, well-conditioned, tridiagonal system of equations which can

be solved using traditional linear algebra methods to advance the solution to the

next time step. The equations (7.12) and (7.13) provide the necessary starting

values for (7.14). In [88], the author proved that the above scheme is stable,

second-order accurate and convergent for sufficiently small values of ∆y and ∆t.

Although, equation (7.1) or (7.6) is nonlinear, the linearity is achieved in vi,j+1

by evaluating all coefficients at a time level of known solution values in previous

steps. The stability is preserved by averaging vi,j over three time levels as (7.15)

and the accuracy is maintained by using central-difference approximations, [110].

Equation (7.14) can be put in a simpler form as

vi,j+1 = v̂i,j−1 + Ai,j v̂i−1,j −Bi,j v̂i,j + Ci,j v̂i+1,j + 2(∆t)fi,j, (7.16)

where,

Ai,j =
2(∆t)a2i,j
h2j(∆y)

2
−

(∆t)yih
′
j

hj∆y
, Bi,j =

2(∆t)a3i,j
h2j∆y

, Ci,j =
2(∆t)a1i,j
h2j(∆y)

2
+

(∆t)yih
′
j

hj∆y
,

a1i,j = ā(v(xi+1, tj)), a2i,j = ā(v(xi, tj)), a3i,j = a1i,j + a2i,j.

As mentioned before, to ensure the stability we average the solution over three

levels as

v̂i−1,j =
1

3
(vi−1,j+1 + vi−1,j + vi−1,j−1) ,

v̂i,j =
1

3
(vi,j+1 + vi,j + vi,j−1) ,

v̂i+1,j =
1

3
(vi+1,j+1 + vi+1,j + vi+1,j−1) .
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Then the final version of (7.16) becomes

− A∗
i,jvi−1,j+1 + (1 +B∗

i,j)vi,j+1 − C∗
i,jvi+1,j+1 = A∗

i,jvi−1,j −B∗
i,jvi,j + C∗

i,jvi+1,j

+ A∗
i,jvi−1,j−1 + (1−B∗

i,j)vi,j−1 + C∗
i,jvi+1,j−1 + 2(∆t)fi,j,

j = 1, N, i = 2, (M − 1), (7.17)

where A∗ = A
3
, B∗ = B

3
and C∗ = C

3
. At each time step tj for j = 1, (N − 1),

using the Dirichlet boundary conditions (7.8), the above difference equation can

be reformulated as a (M − 2)× (M − 2) system of linear equations of the form,

Lv = b, (7.18)

where

v = (v2,j+1, v3,j+1, ..., vM−1,j+1)
T, b = (b2, b3, ..., bM−1)

T.

and

L =



1 +B∗
1,j −C∗

1,j 0 · · · 0 0 0

−A∗
2,j 1 +B∗

2,j −C∗
2,j · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · −A∗
M−2,j 1 +B∗

M−2,j −C∗
M−2,j

0 0 0 · · · 0 −A∗
M−1,j 1 +B∗

M−1,j


,

b2 = A∗
1,jv0,j −B∗

1,jv1,j + C∗
1,jv2,j + A∗

1,jv0,j−1 + (1−B∗
1,j)v1,j−1 + C∗

1,jv2,j−1

+ 2(∆t)f1,j + A∗
1,jv0,j+1,

bi = A∗
i−1,jvi,j −B∗

i,jvi,j + C∗
i,jvi+1,j + A∗

i,jvi−1,j−1 + (1−B∗
i,j)vi,j−1

+ C∗
i,jvi+1,j−1 + 2(∆t)fi,j, i = 3, (M − 2),

bM−1 = A∗
M−1,jvM−2,j −B∗

M−1,jvM−1,j + C∗
M−1,jvM,j + A∗

M−1,jvM−2,j−1

+ (1−B∗
M−1,j)vM−1,j−1 + C∗

M−1,jvM+1,j−1 + 2(∆t)fM−1,j + C∗
M−1,jvM,j+1.
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7.3.1 Example

As an example, consider the problem (7.6)–(7.8) with T = 1 and

a(v) = e−v, h(t) = 1 + t, h0 = h(0) = 1, ϕ(h0y) = 1 + (1 + y)2,

µ1(t) = 1 + et, µ2(t) = (2 + t)2 + et,

f(h(t)y, t) = et + e−(1+y+yt)2−et(4(1 + y + yt)2 − 2).

The exact solution of the direct problem (7.6)–(7.8) is given by

v(y, t) = (1 + y + yt)2 + et

and the desired output (7.4) is

µ3(t) =
(2 + t)3 − 1

3
+ (1 + t)et.

The numerical and the exact solution for the interior solution are shown in

Figure 7.1 and one can notice that a very good agreement is obtained because

the direct problem is well-posed. Figure 7.2 shows the numerical solution in

comparison with exact one for µ3. The trapezoidal rule is employed to compute

the integral in (7.4) based on the formula

∫ 1

0

v(y, tj)dy =
1

2M

(
µ1(tj) + µ2(tj) + 2

M−1∑
i=1

v(yi, tj)

)
, j = 0, N. (7.19)

From this figure it can be seen that the numerical solution is in excellent agree-

ment with the exact one.
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Figure 7.1: Exact and numerical solutions for v(y, t) and the absolute error for the

direct problem obtained with M = N = 40.
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Figure 7.2: Exact and numerical integration for µ3(t) for the direct problem obtained

with M = N = 40.

7.4 Numerical approach to the inverse problem

In the inverse problem, we assume that the free boundary h(t) is unknown. The

nonlinear inverse problem (7.6)–(7.9) can be reformulated as a nonlinear least-

squares minimization of

F (h) =

∥∥∥∥∥h(t)
∫ 1

0

v(y, t)dy − µ3(t)

∥∥∥∥∥
2

L2[0,T ]

, (7.20)

defined over the set of admissible functions

h ∈ Λad := {h ∈ C1[0, T ]
∣∣h(0) = h0, h(t) > 0 for t ∈ [0, T ]}. (7.21)

The discretization of (7.20) is

F (h) =
N∑
j=1

[
hj

∫ 1

0

v(y, tj)dy − µ3(tj)
]2
, (7.22)

where h = (hj)j=1,N . As it will be seen from the numerical results presented and

discussed in the next section, it seems that there is no need to regularize the

least-squares functional (7.20) by adding to it a Tikhonov penalty term of some

norm of h, the problem being rather stable with respect to noise added in the

input data µ3(t).

The minimization of F subject to the physical constraints h > 0 is accom-

plished using the MATLAB toolbox routine lsqnonlin.

We take bounds for the positive h(t) say, we seek the components of the vector

h in the interval [10−10,103]. We also take the parameters of the routine as follows:
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• Number of variables M = N = 40.

• Maximum number of iterations = 102× (number of variables).

• Maximum number of objective function evaluations = 103×(number of vari-

ables).

• Solution and objective function tolerances = 10−10.

In addition, when we solve the inverse problem we approximate

h′(tj) =
h(tj)− h(tj−1)

∆t
=
hj − hj−1

∆t
, j = 1, N, (7.23)

and we express h′0 := h′(0) as in (7.5). If there is noise in the measured data

(7.4), we replace µ3(tj) in (7.22) by µϵ
3(tj) given by

µϵ
3(tj) = µ3(tj) + ϵj, j = 1, N, (7.24)

where ϵj are random variables generated from a Gaussian normal distribution

with mean zero and standard deviation σ, given by

σ = p× max
t∈[0,T ]

|µ3(t)|, (7.25)

where p represents the percentage of noise. We use the MATLAB function norm-

rnd to generate the random variables ϵ = (ϵj)j=1,N as follows:

ϵ = normrnd(0, σ,N). (7.26)

7.5 Numerical results and discussion

In this section, we will describe the numerical results for our nonlinear inverse

problem for two different example according to the linear and nonlinear (rational)

variation of free boundary. Moreover, we add noise to the measured input data

(7.9) to mimic the reality situation by using (7.24) via (7.26). We also calculate

the root mean square error (rmse) to analyse the error between the exact and

numerically obtained coefficient, defined as,

rmse(h(t)) =

√√√√ 1

N

N∑
j=1

(hnumerical(tj)− hexact(tj))
2. (7.27)

For simplicity, we take T = 1 and the initial guess h(0) = 1 for all examples.
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7.5.1 Example 1

Consider the problem (7.1)–(7.4) with unknown coefficient h(t), and solve this

inverse problem with the following input data:

ϕ(x) = (1 + x)2 + 1, µ1(t) = 1 + et, µ2(t) = (2 + t)2 + et,

µ3(t) =
(2 + t)3

3
+ (1 + t)et − 1

3
, a(u) = e−u,

f(x, t) = et + e−(1+x)2−et(4x2 + 8x+ 2), h0 = 1,

One can remark that the conditions of Theorems 7.1 and 7.2 are satisfied

hence, the existence and uniqueness of solution hold. With this data the analytical

solution of inverse problem (7.1)–(7.4) is given by

h(t) = 1 + t, u(x, t) = (1 + x)2 + et. (7.28)

Then

h(t) = 1 + t, v(y, t) = u(yh(t), t) = (1 + y + yt)2 + et, (7.29)

is the analytical solution of the problem (7.6)–(7.9).

We consider the case where there is no noise, i.e. p = 0, and when there is

p = 2% noise in the input data (7.9).

The functional (7.22), as a function of the number of iterations, is represented

in Figure 7.3. From this figure it can be seen that the convergence is very fast in

five and seven iterations for p = 0 and p = 2%, respectively. The objective func-

tion (7.22) decreases rapidly and takes a stationary value of O(10−7) and 0.3411,

for p = 0 and p = 2%, respectively. The numerical results for the corresponding

unknown free boundary h(t) are presented in Figure 7.4. From this figure it can

be seen that the retrieved free boundary h(t) is in very good agreement with the

exact one in the case where no noise in the input data. While, when the input

data is contaminated by p = 2% noise then we can see that the retrieved solution

is stable and within the same range of errors as the input data is.
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Figure 7.3: Objective function (7.22) without noise (—), and for p = 2% noise (- - -)

for Example 1.
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Figure 7.4: Free boundary h(t), without noise (-△-), and for p = 2% noise (- - -) in

comparison with the exact solution (—), for Example 1.

The restored temperatures v(y, t) and u(x, t) for p = 2% noise are shown

in Figures 7.5 and 7.6, respectively. From these figures it can be seen that the

solutions are stable by being free of high oscillations and unbounded behaviour.

Overall form the numerical results presented for this example it can be seen

that the inverse problem seems to be well-posed and that the numerical solutions

are accurate and stable with respect to noise in the input data for both the free

boundary h(t) and the temperature/concentration v(y, t) or u(x, t).
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Figure 7.5: The analytical and numerical solutions, and the relative error for v(y, t)

for p = 2% noise for Example 1.
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Figure 7.6: The analytical and numerical solutions for u(x, t) for p = 2% noise for

Example 1.

7.5.2 Example 2

In this example, we consider a more severe test case where the unknown function

h(t) is nonlinear with the following data

ϕ(x) = (1 + x)2 + 1, µ1(t) = 1 + et, µ2(t) =

(
2 + t

1 + t

)2

+ et,

µ3(t) =
1

3

(
2 + t

1 + t

)3

+
et

1 + t
− 1

3
, a(u) = e−u,

f(x, t) = et + e−(1+x)2−et
(
4x2 + 8x+ 2

)
, h0 = 1.

One can notice that the conditions of Theorems 7.1 and 7.2 are satisfied hence,

the existence and uniqueness of solution holds. With this data, the analytical

solution of the inverse problem (7.1)–(7.4) is given by

h(t) =
1

1 + t
, u(x, t) = (1 + x)2 + et. (7.30)
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Then

h(t) =
1

1 + t
, v(y, t) = u(yh(t), t) =

(
1 +

y

1 + t

)2

+ et, (7.31)

is the analytical solution of the problem (7.6)–(7.9).

We study the case of exact and noisy input data (7.9). The objective function

(7.22), as a function of the number of iterations is presented in Figure 7.7. From

this figure it can be seen that the functional decreases very fast to stationary

value at O(10−7) and 0.0188 in about 7 and 12 iterations, for p = 0 and p = 2%

noise, respectively.
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Figure 7.7: Objective function (7.22) without noise (—), and for p = 2% noise (- - -)

for Example 2.

The numerical results for the corresponding free boundary h(t) are presented

in Figure 7.8. From this figure it can be seen that the identified free boundary

is in very good agreement with the exact one in the absence of noise and this

situation changes only a little when we perturb the input data by p = 2% noise.
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Figure 7.8: Free boundary h(t), without noise (-△-), and with p = 2% noise (- - -) in

comparison with the exact solution (—), for Example 2.

The numerical solutions for v(y, t) and u(x, t) are shown in Figure 7.9 and
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7.10, respectively, in comparison with the exact solutions for p = 2% noise. As

in Example 1, stable numerical solutions are obtained.

One can conclude that the inverse problem is well-posed since small errors in

the measurement in (7.4) cause only small errors in the retrieved pair solution

(h(t), u(x, t)). Consequently, we can say that the problem depends continuously

on the input data.

Finally, for completeness, other details about the number of iterations, number

of function evaluations, objective function value at final iteration and rmse(h)

for Examples 1 and 2 are given in Table 7.1. For this table it can be seen

that accurate and stable numerical solutions are rapidly achieved by the iterative

MATLAB toolbox routine lsqnonlin.

Table 7.1: Number of iterations, number of function evaluations, value of the objective

function (7.22) at final iteration and rmse values (7.27), for Examples 1 and 2.

p = 0 p = 2%

Example 1

No. of iterations 5 7

No. of function evaluations 252 336

Function value at final iteration 2E − 7 0.3411

rmse(h) 0.0035 0.0793

Example 2

No. of iterations 7 12

No. of function evaluations 336 546

Function value at final iteration 6E − 7 0.0188

rmse(h) 0.0023 0.0212
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Figure 7.9: The analytical and numerical solutions and the relative error for v(y, t) for

p = 2% noise for Example 2.
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Figure 7.10: The analytical and numerical solutions for u(x, t) for p = 2% noise for

Example 2.

7.6 Conclusions

The inverse problem concerning the identification of free boundary h(t) and the

temperature u(x, t) in the heat equation with nonlinear diffusivity a(u) has been

investigated. The additional condition which ensures a unique solution is given

by the energy/mass specification µ3(t) given by equation (7.4). As with other

free surface problems, it turns out that the problem is well-posed if the data µ3

is smooth. The direct solver based on a three-level finite difference scheme is

developed. The inverse solver is based on a nonlinear least-squares minimization

which is solved using the MATLAB toolbox routine lsqnonlin. As expected, for

exact data, the numerical results obtained are very accurate. For noisy data µϵ
3

which consist of a random perturbation of the exact data µ3, the results for h(t),

v(y, t) and u(x, t) are still stable and accurate. The instability is only manifested

in the derivative h′(t) for which the use of a regularization method would be

warranted.



Chapter 8

Determination of the time-

dependent thermal diffusivity

and free boundary

8.1 Introduction

Many heat transfer applications can be modeled by the heat equation with a fixed

boundary. However, there are numerous other problems for which the domain or

the boundary varies with time and such problems are known as free boundary

or Stefan problems [11]. For instance, when a conductor melts and the liquid is

drained away as it appears, the heat conduction problem within the remaining

solid involves the heat equation in a domain that is physically changing with

time. In particular, the one-phase Stefan problem can be regarded as an inverse

problem.

In [94], the author investigated the heat equation with an unknown heat

source in a domain with a known moving boundary. In [48, 77], the authors

investigated the numerical solution of inverse Stefan problems using the method

of fundamental solutions. In [107], an inverse moving boundary problem is solved

using the least-squares method. In this chapter, we consider the time-dependent

nonlinear inverse one-dimensional and one-phase Stefan problem which consists

in the simultaneous determination of the time-dependent thermal diffusivity and

free boundary.

This chapter is organized as follows: In the next section, we give the formu-

lation of the inverse problem under investigation. The numerical methods for

solving the direct and inverse problems are described in Sections 8.3 and 8.4, re-

spectively. Furthermore, the numerical results and discussion are given in Section

8.5 and finally, conclusions are presented in Section 8.6.
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8.2 Mathematical formulation

Consider the one-dimensional time-dependent heat equation

ut(x, t) = a(t)uxx(x, t) + f(x, t), (x, t) ∈ Ω (8.1)

in the domain Ω = {(x, t) : 0 < x < h(t), 0 < t < T < ∞} with unknown free

smooth boundary x = h(t) > 0 and time-dependent thermal diffusivity a(t) > 0.

The initial condition is

u(x, 0) = ϕ(x), 0 ≤ x ≤ h(0) =: h0, (8.2)

where h0 > 0 is given, and the boundary and over-determination conditions are

u(0, t) = µ1(t), u(h(t), t) = µ2(t), 0 ≤ t ≤ T, (8.3)

−a(t)ux(0, t) = µ3(t),

∫ h(t)

0

u(x, t)dx = µ4(t), 0 ≤ t ≤ T. (8.4)

Note that µ1 and µ3 represent Cauchy data at the boundary end x = 0, whilst

µ4 represent the specification of the energy of the heat conducting system, [89].

First we perform the change of variable y = x/h(t) to reduce the problem

(8.1)–(8.4) to the following inverse problem for the unknowns a(t), h(t) and

v(y, t) := u(yh(t), t):

vt(y, t) =
a(t)

h2(t)
vyy(y, t) +

yh′(t)

h(t)
vy(y, t) + f(yh(t), t), (y, t) ∈ Q (8.5)

in the fixed domain Q = {(y, t) : 0 < y < 1, 0 < t < T} with unknown time-

dependent coefficients a(t) and h(t). The initial condition is

v(y, 0) = ϕ(h0y), 0 ≤ y ≤ 1, (8.6)

and the boundary and over-determination conditions are

v(0, t) = µ1(t), v(1, t) = µ2(t), 0 ≤ t ≤ T, (8.7)

−a(t)vy(0, t) = µ3(t)h(t), h(t)

∫ 1

0

v(y, t)dy = µ4(t), 0 ≤ t ≤ T. (8.8)

This model has been considered in [69]. The triplet (h(t), a(t), v(y, t)) is called

a solution to the inverse problem (8.5)–(8.8) if it belongs to the class C1[0, T ]×
C[0, T ]×C2,1(Q), h(t) > 0, a(t) > 0, t ∈ [0, T ], and satisfies the equations (8.5)–

(8.8). For the input data we make the following regularity and compatibility
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assumptions:

(A) µi(t) ∈ C1[0, T ], µi(t) > 0 for t ∈ [0, T ], i = 1, 2, 4, µ3(t) ∈ C1[0, T ],

µ3(t) < 0 for t ∈ [0, T ], ϕ(x) ∈ C2[0, h0], ϕ(x) > 0, ϕ′(x) > 0 for x ∈ [0, h0],

and f(x, t) ∈ C1,0([0, H1] × [0, T ]), f(x, t) ≥ 0 for (x, t) ∈ [0, H1] × [0, T ],

where

H1 = max
[0,T ]

µ4(t)

(
min

{
min
[0,h0]

ϕ(x),min
[0,T ]

µ1(t),min
[0,T ]

µ2(t)

})−1

;

(B) ϕ(0) = µ1(0), ϕ(h0) = µ2(0), and
∫ h0

0
ϕ(x)dx = µ4(0).

The following existence and uniqueness of solution theorems are proved in

[69].

Theorem 8.1. (Local existence)

If the conditions (A) and (B) are satisfied, then there exists t0 ∈ [0, T ], (defined

by the input data) such that a solution of problem (8.5)–(8.8) exists locally for

(y, t) ∈ [0, 1]× [0, t0].

Theorem 8.2. (Uniqueness)

Suppose that the following conditions are satisfied:

(i) 0 ≤ f(x, t) ∈ C1,0 ([0, H1]× [0, T ]);

(ii) ϕ(x) > 0 for x ∈ [0, h0], µ1(t) > 0, µ2(t) > 0, µ3(t) < 0, and µ4(t) > 0 for

t ∈ [0, T ].

Then a solution to problem (8.5)–(8.8) is unique.

8.3 Solution of direct problem

In this section, we consider the direct initial boundary value problem (8.5)–(8.7),

where a(t), h(t), f(x, t), ϕ(x), and µi(t), i = 1, 2, are known and the solution

u(x, t) is to be determined additionally with µi(t), i = 3, 4. To achieve this, we

use the Crank-Nicolson FDM, as described in the previous Chapters 2–6.

The discrete form of our problem is as follows. We divide the domain Q =

(0, 1)× (0, T ) into M and N subintervals of equal step length ∆y and ∆t, where

∆y = 1/M and ∆t = T/N , respectively. So, the solution at the node (i, j)

is vi,j := v(yi, tj), where yi = i∆y, tj = j∆t, and a(tj) = aj, h(tj) = hj and
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f(yi, tj) = fi,j for i = 0,M , j = 0, N . Based on the Crank-Nicolson FDM,

equation (8.5) can be approximated as:

− Ai,j+1vi+1,j+1 + (1 +Bj+1)vi,j+1 − Ci,j+1vi−1,j+1

= Ai,jvi+1,j + (1−Bj)vi,j + Ci,jvi−1,j +
∆t

2
(fi,j + fi,j+1) (8.9)

for i = 1, (M − 1), j = 0, N , where

Ai,j =
(∆t)αj

2(∆y)2
− (∆t)γjyi

4∆y
, Bj =

(∆t)αj

(∆y)2
, Cj =

(∆t)αj

2(∆y)2
+

(∆t)γjyi
4∆y

,

αj =
aj
h2j
, γj =

h′(tj)

hj
.

The initial and boundary conditions (8.6) and (8.7) can also be collocated as:

vi,0 = ϕ(h0yi), i = 0,M, (8.10)

v0,j = µ1(tj), vM,j = µ2(tj), j = 0, N. (8.11)

At each time step tj, for j = 0, (N − 1), using the Dirichlet boundary con-

ditions (8.11), the above difference equation (8.9) can be reformulated as a

(M − 1)× (M − 1) system of linear equations of the form,

Lv = b, (8.12)

where

v = (v1,j+1, v2,j+1, ..., vM−1,j+1)
T, b = (b1, b2, ..., bM−1)

T

and

L =



1 +Bj+1 −C1,j+1 0 · · · 0 0 0

−A2,j+1 1 + Bj+1 −C2,j+1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −AM−2,j+1 1 +Bj+1 −CM−2,j+1

0 0 0 · · · 0 −AM−1,j+1 1 +Bj+1


,
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b1 = A1,jv0,j + (1−Bj)v1,j + C1,jv2,j + A1,j+1v0,j+1 +
∆t

2
(f1,j+1 + f1,j),

bi = Ai,jvi−1,j + (1−Bj)vi,j + Ci,jvi+1,j +
∆t

2
(fi,j+1 + fi,j), i = 2, (M − 2),

bM−1 = AM−1,jvM−2,j + (1−Bj)vM−1,j + CM−1,jvM,j + CM−1,j+1vM,j+1

+
∆t

2
(fM−1,j+1 + fM−1,j).

As an example, consider the problem (8.5)–(8.7) with T = 1 and

a(t) = 1 + t, h(t) = 1 + 2t, h0 = h(0) = 1, ϕ(h0y) = (1 + y)2,

µ1(t) = 1 + 8t, µ2(t) = (2 + 2t)2 + 8t, f(h(t)y, t) = 6− 2t.

The exact solution of the direct problem (8.5)–(8.7) is given by v(y, t) = (1+ y+

2yt)2 + 8t, and the desired outputs are µ3(t) = −2(1 + t) and µ4(t) =
(2+2t)3−1

3
+

8t(1 + 2t). The numerical and exact solutions for v(y, t) are shown in Figure 8.1

and very good agreement is obtained. Tables 8.1 and 8.2 give the numerical heat

flux at y = 0 and the numerical integral in comparison with the exact values, i.e.

µ3 and µ4. These have been calculated using the following O(h2) finite-difference

approximations for derivative and trapezoidal rule for integration:

vy(0, tj) =
4v1,j − v2,j − 3v0,j

2∆y
, j = 1, N, (8.13)∫ 1

0

v(y, tj)dy =
∆y

2

(
v(0, tj) + v(1, tj) + 2

M−1∑
i=1

v(yi, tj)

)
, j = 0, N. (8.14)

From these tables it can be seen that the numerical results are in very good

agreement with the exact ones and that a rapid monotonic decreasing convergence

is achieved.

Table 8.1: The exact and the numerical heat flux −a(t)vy(0, t)/h(t) for M = N ∈
{10, 20}, for the direct problem.

t 0.1 0.2 ... 0.8 0.9 1

M = N = 10 -2.2000 -2.4000 ... -3.6000 -3.8000 -4.0000

M = N = 20 -2.2000 -2.4000 ... -3.6000 -3.8000 -4.0000

exact -2.2000 -2.4000 ... -3.6000 -3.8000 -4.0000
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Table 8.2: The exact and the numerical integral h(t)
∫ 1
0 v(y, t)dy for M = N ∈

{10, 20, 40, 100}, for the direct problem.

t 0.1 0.2 ... 0.8 0.9 1

M = N = 10 4.1789 6.5192 ... 31.8880 38.1539 45.0450

M = N = 20 4.1767 6.5158 ... 31.8660 38.1265 45.0113

M = N = 40 4.1762 6.5150 ... 31.8605 38.1196 45.0028

M = N = 100 4.1760 6.5147 ... 31.8590 38.1177 45.0005

exact 4.1760 6.5147 ... 31.8587 38.1173 45.0000
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Figure 8.1: Exact and numerical solutions for v(y, t) and the absolute error for the

direct problem obtained with M = N = 40.

8.4 Numerical approach for the inverse problem

In the inverse problem, we assume that the thermal diffusivity a(t) and free

boundary h(t) are unknown. Usually, the nonlinear inverse problem (8.5)–(8.8)

can be formulated as a nonlinear least-squares minimization. The regularized

objective function which is minimized is given by

F (a, h) =

∥∥∥∥∥− a(t)

h(t)
vy(0, t)− µ3(t)

∥∥∥∥∥
2

+

∥∥∥∥∥h(t)
∫ 1

0

v(y, t)dy − µ4(t)

∥∥∥∥∥
2

+ β
(
∥a(t)∥2 + ∥h(t)∥2

)
, (8.15)

where β ≥ 0 is a regularization parameter and the norm is usually the L2[0, T ]-

norm. For the simplicity of explanation, as in Chapter 4, Section 4.4, we choose

the same regularization parameter for regularizing both a(t) and h(t) in (8.16)

because, as it turns out, it was found a posteriori that regularization might, in

fact, not be necessary, as it happened with the inverse problem of Chapter 7.
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The discretization of (8.15) is

F (a, h) =
N∑
j=0

[
− aj
hj
vy(0, tj)− µ3(tj)

]2
+

N∑
j=0

[
hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+ β

(
N∑
j=0

a2j +
N∑
j=1

h2j

)
. (8.16)

The minimization of F subject to the physical constraints a > 0 and h > 0

is accomplished using the MATLAB toolbox routine lsqnonlin, as described in

the previous chapters. We take bounds for the positive quantities a(t) and h(t)

say, we seek them in the interval [10−10,103]. We also take the parameters of the

routine as follows:

• Number of variables M = N = 40.

• Maximum number of iterations = 102×(number of variables).

• Maximum number of objective function evaluations = 103×(number of vari-

ables).

• Solution and objective function tolerances = 10−10.

We take the initial guess as a(0) = h(0) = 1. It is worth mentioning that at the

first time step, i.e. j = 0, the derivative vy(0, 0) is obtained from (8.10) and

(8.13), as

vy(0, 0) =
4ϕ1 − ϕ2 − 3ϕ0

2∆y
, (8.17)

where ϕi = ϕ(h0yi) for i = 0,M . In addition, when we solve the inverse problem

we approximate

h′(tj) =
h(tj)− h(tj−1)

∆t
=
hj − hj−1

∆t
, j = 1, N. (8.18)

We also express h′(0) as

h′(0) =
µ′
2(0)− a(0)ϕ′′(h0)− f(h0, 0)

ϕ′(h0)
, (8.19)

which can easily be derived from equation (8.3) using the chain rule technique.

In (8.19), a(0) is unknown.

If there is noise in the measured data (8.8), we replace µ3(tj) and µ4(tj) in

(8.16) by µϵ1
3 (tj) and µ

ϵ2
4 (tj), namely,

µϵ1
3 (tj) = µ3(tj) + ϵ1j, µϵ2

4 (tj) = µ4(tj) + ϵ2j, j = 0, N, (8.20)
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where ϵ1j and ϵ2j are random variables generated from a Gaussian normal dis-

tribution with mean zero and standard deviations σ1 and σ2, respectively, given

by

σ1 = p× max
t∈[0,T ]

|µ3(t)|, σ2 = p× max
t∈[0,T ]

|µ4(t)|, (8.21)

where p represents the percentage of noise. We use the MATLAB function norm-

rnd to generate the random variables ϵ1 and ϵ2 as follows:

ϵ1 = normrnd(0, σ1, N + 1), ϵ2 = normrnd(0, σ2, N + 1). (8.22)

8.5 Numerical results and discussion

The numerical results are illustrated for two different examples according to the

linear or nonlinear variation of estimated coefficients. In addition, we add noise,

as in (8.20), to the measured input data (8.8). We have also calculated the root

mean square error (rmse) to analyse the error between the exact and estimated

solution, defined as,

rmse(a(t)) =

√√√√ 1

N + 1

N∑
j=0

(anumerical(tj)− aexact(tj))
2, (8.23)

rmse(h(t)) =

√√√√ 1

N

N∑
j=1

(hnumerical(tj)− hexact(tj))
2. (8.24)

For simplicity, we take T = 1.

8.5.1 Example 1

Consider the problem (8.1)–(8.4) with unknown coefficients a(t) and h(t), and

solve this inverse problem with the following input data:

µ1(t) = 1 + 8t, µ2(t) = (2 + 2t)2 + 8t, µ3(t) = −2(1 + t),

µ4(t) =
(2 + 2t)3 − 1

3
+ 8t(1 + 2t), h0 = 1, ϕ(x) = (1 + x)2, f(x, t) = 6− 2t.

One can remark that the conditions of Theorem 8.2 are satisfied hence, the

uniqueness of solution holds. With this data the analytical solution is given

by

a(t) = 1 + t, h(t) = 1 + 2t, u(x, t) = (1 + x)2 + 8t. (8.25)
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Then

a(t) = 1 + t, h(t) = 1 + 2t, v(y, t) = u(yh(t), t) = (1 + y(1 + 2t))2 + 8t, (8.26)

is the analytical solution of the problem (8.5)–(8.8).

Consider first the case where there is no noise in the input data (8.8). The

objective function (8.16), as a function of the number of iterations, is represented

in Figure 8.2. From this figure it can be seen that the convergence is rapidly

achieved in a few iterations. The objective function (8.16) decreases rapidly and

takes a stationary value of O(10−8) in about 7 iterations. The numerical results

for the corresponding unknowns a(t) and h(t) are presented in Figure 8.3. From

this figure it can be seen that the retrieved thermal diffusivity a(t) and free surface

h(t) are in very good agreement with the exact values from (8.26).

Next, we add p = 2% noise to the measured data µ3 and µ4, as in equation

(8.20). The regularized objective function (8.16) is plotted, as a function of the

number of iterations, in Figure 8.4 and convergence is again rapidly achieved.

Figure 8.5 presents the graphs of the recovered functions, whilst the rmse values

are given in Table 8.3. From this figure and table it can be seen that there is not

much difference between the numerical solution obtained with β = 0 or β = 10−3,

but there is some slight improvement in accuracy obtained for β = 10−1.

The recovered temperatures for β ∈ {0, 10−3, 10−1} are shown in Figure 8.6.

From this figure it can be seen that the temperature component of the solution is

stable and is not significantly affected by the inclusion of noise in the input data.
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Figure 8.2: Unregularized objective function (8.16), for Example 1 (—) and Example

2 (- - -) with no noise and no regularization.
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Figure 8.3: (a) Thermal diffusivity a(t), and (b) Free surface h(t), for Example 1 with

no noise and no regularization.
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Figure 8.6: (a) Temperature for β = 0, (b) β = 10−3, and (c) β = 10−1, for Example

1 with p = 2% noise.
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8.5.2 Example 2

In this example we consider the inverse problem (8.5)–(8.8) with the following

input data:

µ1(t) = 1 + 8t, µ2(t) = (1 +
√
2− t)2 + 8t, µ3(t) = −2

√
1 + t,

µ4(t) =
(1 +

√
2− t)3 − 1

3
+ 8t

√
2− t, h0 =

√
2, ϕ(x) = (1 +

√
2x)2,

f(x, t) = 8− 2
√
1 + t.

One can remark that the conditions of Theorem 8.2 are satisfied hence, the

uniqueness of solution holds. The solution to this inverse problem is given by

a(t) =
√
1 + t, h(t) =

√
2− t, u(x, t) = (1 + x)2 + 8t. (8.27)

Then

a(t) =
√
1 + t, h(t) =

√
2− t, v(y, t) = u(yh(t), t) = (1+ y

√
2− t)2 +8t, (8.28)

is the analytical solution of the problem (8.5)–(8.8). In this example the moving

boundary is given by a nonlinear function.

Initially, we consider the case of noise free in the input data (8.8). The

objective function (8.16), as a function of the number of iterations, is presented

in Figure 8.2. From this figure it can be seen that the convergence is rapidly

achieved in a few iterations. The objective function (8.16) decreases dramatically

and takes a stationary value of O(10−7) in about 7 iterations, the same as in

Example 1. The numerical results for the corresponding coefficients a(t) and h(t)

are presented in Figure 8.7. From this figure it can be seen that the identified

coefficients are in very good agreement with the exact values from (8.28).

Next, we add p = 2% noise to the measured data µ3 and µ4, as in equation

(8.20). The regularized objective function (8.16) is plotted, as a function of

the number of iterations, in Figure 8.8 and convergence is again rapidly achieved.

Figures 8.9 and 8.10 show the numerical solution (a(t), h(t), u(x, t)) and the rmse

values are given in Table 8.3. As in Example 1, one can observe that the inverse

problem is rather stable with respect to noise included in the input data.
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Figure 8.7: (a) Thermal diffusivity a(t), and (b) Free surface h(t), for Example 2 with

no noise and no regularization.
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Figure 8.8: Regularized objective function (8.16), for Example 2 with p = 2% noise.
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Figure 8.9: (a) Thermal diffusivity a(t), and (b) Free surface h(t), for Example 2 with

p = 2% noise and regularization.
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Figure 8.10: (a) Temperature for β = 0, (b) β = 10−3, and (c) β = 10−1, for Example

2 with p = 2% noise.
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Table 8.3: The rmse values for Examples 1 and 2 with p = 2% noise.

Example β = 0 β = 10−3 β = 10−1

1
rmse(a) = 0.1010 0.1004 0.0628

rmse(h) = 0.0932 0.0922 0.0872

2
rrmse(a) = 0.0336 0.0336 0.0368

rrmse(h) = 0.0253 0.0253 0.0248

8.6 Conclusion

The inverse nonlinear problem which requires simultaneously determining the

time-dependent thermal diffusivity and free boundary in the parabolic heat equa-

tion has been investigated. The resulting inverse problem has been reformulated

as a nonlinear least-squares optimization problem which produced stable and rea-

sonably accurate numerical results. Extension of the present work to include the

determination of unknown convection b(t)ux and reaction c(t)u coefficients in the

heat equation (8.1), in addition to the unknowns a(t) and h(t), [113], will be

considered in the next chapter.



Chapter 9

Multiple time-dependent

coefficient identification thermal

problems with a free boundary

9.1 Introduction

Prior to this study, references [53, 57, 69] investigated both theoretically and

numerically several combined formulations for the retrieval of the free boundary

together with the thermal diffusivity both which are unknown time-dependent

functions. The theoretical investigation has been extended recently to the case

of several multiple coefficients in [112, 113] and it the purpose of this chapter

to, apart from some theoretical clarifications which are elaborated in Section

9.2, perform the numerical realization using the FDM combined with a nonlinear

least-squares toolbox MATLAB routine, see Sections 9.3 and 9.4. In Section

9.5, we provide numerical results and discussion, whilst Section 9.6 presents an

extension to a triple unknown coefficient identification. Finally, conclusions are

highlighted in Section 9.7.

9.2 Mathematical formulation

Consider the one-dimensional time-dependent heat equation

ut(x, t) = a(x, t)uxx(x, t) + b(t)ux(x, t) + c(t)u(x, t) + f(x, t), (x, t) ∈ Ω (9.1)

for the unknown temperature u(x, t) in the domain Ω = {(x, t)| 0 < x < h(t), 0 <

t < T < ∞} with unknown free smooth boundary x = h(t) > 0 and time-

dependent coefficients b(t) and c(t) representing the convection/advection and
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reaction coefficients, respectively. Also in (9.1), f(x, t) represents a given heat

source, whilst a(x, t) > 0 is the given thermal diffusivity. In many applications,

[53, 113, 125], the thermal diffusivity depends on time only, but here we envisage

a more general physical situation in which the thermal conductivity depends on

time and the heat capacity depends on space such that their ratio defined as

the thermal diffusivity depends on both space and time. To give more physical

meaning to the inverse problem, we have in mind a process in which a finite slab

is undertaking radioactive decay such that its diffusivity, convection and reaction

coefficients are unknown but they depend on time [11, Chap.13], [90]. We finally

mention that extensions to cases when the time-dependent heat source is also

unknown or when some unknown coefficients may depend on space as well have

recently been considered elsewhere, [55, 52].

The initial condition is

u(x, 0) = ϕ(x), 0 ≤ x ≤ h(0) =: h0, (9.2)

where h0 > 0 is given, and the Dirichlet boundary conditions are

u(0, t) = µ1(t), u(h(t), t) = µ2(t), t ∈ [0, T ]. (9.3)

As over-determination conditions we consider, [112],

h′(t) + ux(h(t), t) = µ3(t), t ∈ [0, T ], (9.4)∫ h(t)

0

u(x, t)dx = µ4(t), t ∈ [0, T ], (9.5)∫ h(t)

0

xu(x, t)dx = µ5(t), t ∈ [0, T ]. (9.6)

Note that µ4(t) and µ5(t) represent the specification of the energy or, mass of

the heat conducting system and heat momentum, respectively, [16, 72, 89]. Also,

equation (9.4) represents a Stefan interface moving boundary condition.

Now we perform the change of variable y = x/h(t) to reduce the problem

(9.1)–(9.6) to the following inverse problem for the unknowns h(t), b(t), c(t) and

v(y, t) := u(yh(t), t):

vt(y, t) =
a(yh(t), t)

h2(t)
vyy(y, t) +

b(t) + yh′(t)

h(t)
vy(y, t)+c(t)v(y, t) + f(yh(t), t),

(y, t) ∈ QT (9.7)
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in the fixed domain QT := {(y, t) : 0 < y < 1, 0 < t < T} = (0, 1)× (0, T ),

v(y, 0) =ϕ(h0y), y ∈ [0, 1], (9.8)

v(0, t) =µ1(t), v(1, t) = µ2(t), t ∈ [0, T ], (9.9)

h′(t) +
1

h(t)
vy(1, t) =µ3(t), t ∈ [0, T ], (9.10)

h(t)

∫ 1

0

v(y, t)dy =µ4(t), t ∈ [0, T ], (9.11)

h2(t)

∫ 1

0

yv(y, t)dy =µ5(t), t ∈ [0, T ]. (9.12)

A variant of the theorem proved in [112] (under the additional assumption that

h(0) = h0 > 0 is known) ensures the unique solvability (locally in time) of the

inverse problem (9.7)–(9.12), proved in [60], as follows.

Theorem 9.1. Suppose that:

0 < a ∈ C2,0([0,∞)× [0, T ]), [0, f0] ∋ f ∈ C1,0([0,∞)× [0, T ]), where f0 ≥ 0 is a

given constant, 0 < ϕ ∈ C1[0, h0], 0 < µi ∈ C1[0, T ] for i = 1, 2, 4, 5, µ3 ∈ C[0, T ],

(µ2(0)− µ1(0))µ5(0)− (h0µ2(0)− µ4(0))µ4(0) ̸= 0, (9.13)

ϕ(0) = µ1(0), ϕ(h0) = µ2(0),
∫ h0

0
ϕ(x)dx = µ4(0), and

∫ h0

0
xϕ(x)dx = µ5(0).

Then, there is T0 ∈ (0, T ], such that there exists a unique solution (h(t), b(t), c(t),

v(y, t)) ∈ C1[0, T0]× (C[0, T0])
2× (C2,1(QT0)∩C1,0(QT0

)), h(t) > 0 for t ∈ [0, T0],

of the inverse problem (9.7)–(9.12).

Once the unique local solvability to the inverse problem (9.7)–(9.12) has been

provided by Theorem 9.1, the next three Sections 9.3–9.5 explain, discuss and

illustrate the procedures for obtaining an accurate and stable numerical solution.

But before we do that, in the next subsection we introduce another related prob-

lem in which the Stefan condition (9.10) is replaced by the second-order heat

moment condition (9.14).

9.2.1 Another related inverse problem formulation

It was pointed out in [112] that the Stefan condition (9.4), or (9.10), may be

replaced by the second-order heat moment measurement∫ h(t)

0

x2u(x, t)dx = µ6(t), t ∈ [0, T ], (9.14)
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or, in terms of the variable y = x/h(t),

h3(t)

∫ 1

0

y2v(y, t)dy = µ6(t), t ∈ [0, T ], (9.15)

respectively. Then, we can formulate the following theorem, see [60], on the local

unique solvability of the inverse problem (9.7)–(9.9), (9.11), (9.12) and (9.15),

which is a variant of Theorem 2 of [112] when h(0) = h0 > 0 is assumed to be

known.

Theorem 9.2. Suppose that:

0 < a ∈ C2,0([0,∞)× [0, T ]), [0, f0] ∋ f ∈ C1,0([0,∞)× [0, T ]), where f0 ≥ 0 is a

given constant, 0 < ϕ ∈ C1[0, h0], 0 < µi ∈ C1[0, T ] for i = 1, 2, 4, 5, 6,

µ4(0)µ6(0)− 2µ2
5(0)− h0(µ6(0)µ1(0)− 2µ4(0)µ5(0))

− h20(µ
2
4(0)− µ1(0)µ5(0)) ̸= 0, (9.16)

ϕ(0) = µ1(0), ϕ(h0) = µ2(0),
∫ h0

0
ϕ(x)dx = µ4(0),

∫ h0

0
xϕ(x)dx = µ5(0), and∫ h0

0
x2ϕ(x)dx = µ6(0). Then, there is T0 ∈ (0, T ], such that there exists a unique

solution (h(t), b(t), c(t),v(y, t)) ∈ C1[0, T0]× (C[0, T0])
2× (C2,1(QT0)∩C1,0(QT0

)),

h(t) > 0 for t ∈ [0, T0], of the inverse problem (9.7)–(9.9), (9.11), (9.12) and

(9.15).

9.3 Solution of direct problem

In this section, we consider the direct initial boundary value problem (9.1)–(9.3),

where h(t), b(t), c(t), a(x, t), f(x, t), ϕ(x), and µi(t), i = 1, 2, are known and the

solution u(x, t) is to be determined, additionally to the quantities of interest µi(t),

i = 3, 6. To achieve this, we use the Crank-Nicolson FDM based on subdividing

the solution domain QT = (0, 1) × (0, T ) into M and N subintervals of equal

step lengths ∆y and ∆t, where ∆y = 1/M and ∆t = T/N , respectively. At the

node (i, j) we denote vi,j := v(yi, tj), where yi = i∆y, tj = j∆t, ai,j := a(yi, tj),

hj := h(tj), bj := b(tj), cj := c(tj) and fi,j := f(yi, tj) for i = 0,M and j = 0, N .

Once the solution vi,j for i = 0,M , j = 0, N has been determined accurately,

the data (9.10)–(9.12) and (9.15) can be calculated using the following finite-
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difference approximation formula and trapezoidal rule for integrals:

µ3(tj) =
hj − hj−1

∆t
− 4vM−1,j − vM−2,j − 3vM,j

2(∆y)hj
, j = 1, N, (9.17)

µk+3(tj) =
hkj
2N

(
yk−1
0 v0,j + yk−1

M vM,j + 2
M−1∑
i=1

yk−1
i vi,j

)
, j = 1, N, k = 1, 2, 3.

(9.18)

9.4 Numerical approach to the inverse problems

In the inverse problems stated in Section 9.2, we wish to obtain simultaneously

stable reconstructions of the two unknown coefficients b(t) and c(t), together

with the free boundary h(t) and the transformed temperature v(y, t), satisfying

equations (9.7)–(9.12) or, (9.7)–(9.9), (9.11), (9.12) and (9.15), by minimizing the

Tikhonov regularized nonlinear objective function

F (h, b, c) =
N∑
j=1

[
h′j +

vy(1, tj)

hj
− µ3(tj)

]2
+

N∑
j=1

[
hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N∑
j=1

[
h2j

∫ 1

0

yv(y, tj)dy − µ5(tj)
]2

+ β1

N∑
j=1

h2j + β2

N∑
j=1

b2j

+ β3

N∑
j=1

c2j , (9.19)

or,

F1(h, b, c) =
N∑
j=1

[
hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N∑
j=1

[
h2j

∫ 1

0

yv(y, tj)dy − µ5(tj)
]2

+
N∑
j=1

[
h3j

∫ 1

0

y2v(y, tj)dy − µ6(tj)
]2

+ β1

N∑
j=1

h2j + β2

N∑
j=1

b2j

+ β3

N∑
j=1

c2j , (9.20)

respectively. In this case, we choose the most general regularization terms (βi)i=1,2,3

in order to allow for different weightings of the multiple parameters h(t), b(t) and

c(t). The unregularized case, i.e., βi = 0 for i = 1, 2, 3, yields the ordinary non-

linear least-squares method which usually produces unstable solutions for noisy

data. The minimization of F or (F1) subject to the physical constraint for the free

boundary h > 0 is performed using the MATLAB optimization toolbox routine

lsqnonlin. We take bounds for the positive quantity h(t) say, we seek it in the
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interval [10−10, 102] and the bounds for the quantities b(t) and c(t) say, we seek

them in the interval [−102, 102]. We also take the parameters of the routine as

follows:

• Number of variables M = N .

• Maximum number of iterations = 10× (number of variables).

• Maximum number of objective function evaluations = 105× (number of

variables).

• Solution and object function tolerances = 10−15.

In (9.19), we approximate the derivative of h(t) as in (8.18).

Condition (9.4) represents a Stefan condition of melting between a solid and

a fluid and, in general, µ3 is taken to be zero (or is assumed to be prescribed

exactly). Therefore, practically the experimental measurement errors are likely

to be only in the heat moments (9.5), (9.6) and (9.14). In order to model these

errors, we replace µk+3(tj), k = 1, 2, 3, in equations (9.11), (9.12) and (9.14) by

µϵk
k+3(tj), as

µϵk
k+3(tj) = µk+3(tj) + ϵkj, k = 1, 2, 3, j = 1, N, (9.21)

where ϵkj are random variables generated from a Gaussian normal distribution

with mean zero and standard deviation σk, given by

σk = p× max
t∈[0,T ]

|µk+3(t)|, k = 1, 2, 3, (9.22)

where p represents the percentage of noise.

9.5 Numerical results and discussion

In this section, we present a couple of typical test examples to illustrate the

accuracy and stability of the numerical scheme based on the FDM with M =

N = 40 combined with minimization of the nonlinear objective function (9.19)

or (9.20), as described in Section 9.4. To assess the accuracy of the approximate
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solutions, let us introduce the root mean squares error (rmse) defined as

rmse(h) =

√√√√ T

N

N∑
j=1

(hnumerical(tj)− hexact(tj))
2, (9.23)

rmse(b) =

√√√√ T

N

N∑
j=1

(bnumerical(tj)− bexact(tj))
2, (9.24)

rmse(c) =

√√√√ T

N

N∑
j=1

(cnumerical(tj)− cexact(tj))
2. (9.25)

9.5.1 Example 1

We consider the first inverse problem (9.1)–(9.6) with unknown coefficients h(t),

b(t) and c(t), and the following input data:

a(x, t) =
(1 + x)(1 + t)

2
, ϕ(x) =

1

1 + x
, µ1(t) = e3t, µ2(t) =

e3t

2 + t
,

µ3(t) = 1− e3t

(2 + t)2
, µ4(t) = e3t ln(2 + t), µ5(t) = e3t(1 + t− ln(2 + t)),

f(x, t) =
e3t(2− t)

1 + x
, h0 = 1, T = 1.

One can remark that conditions of Theorem 9.1 are satisfied hence, the local

uniqueness of this solution is guaranteed.

With the above data the analytical solution of the inverse problem (9.1)–(9.6)

is given by

h(t) = 1 + t, b(t) = 1 + t, c(t) = 1 + t, (9.26)

u(x, t) =
e3t

1 + x
. (9.27)

We also have that the analytical solution of the transformed inverse problem

(9.7)–(9.12) is given by equation (9.26) and

v(y, t) = u(yh(t), t) =
e3t

1 + y + yt
. (9.28)

The initial guesses for the vectors h, b and c are taken as 1, namely,

h0j = b0j = c0j = 1, j = 1, N. (9.29)

We consider first the case where there is no noise in the input data (9.10)–(9.12),
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i.e. p = 0 in (9.22). The objective function (9.19), as a function of the number

of iterations is presented in Figure 9.1. From this figure it can be seen that a

monotonic decreasing convergence is rapidly achieved in a few iterations. The ob-

jective function (9.19) decreases rapidly and takes a stationary value of O(10−15)

in about 95 iterations by the (-×-) line with initial guess (9.29) when we do not

employ any regularization, i.e. βi = 0, i = 1, 2, 3. In order to investigate the ro-

bustness of the nonlinear iterative routine lsqnonlin employed for minimizing the

objective function (9.19), in Figure 9.1 we also include the convergence history

for a different than (9.29) initial guess for the unknowns h, b and c namely,

h0j = b0j = c0j = 1− tj
2
, j = 1, N. (9.30)
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Figure 9.1: The objective function (9.19) without noise for Example 1.

As expected, from this farther initial guess (9.30) to the exact solution (9.26)

than (9.29) is it takes a slighter larger number of iterations (108 instead of 95),

but the minimization of the objective function (9.19) converges to similar very

small minimum values which are of O(10−15) to O(10−14). This means that

the routine used is robust by being quite insensitive to the initial guess for the

unknowns. In the remaining of this subsection and the next subsection 9.5.2,

figures are illustrated only for the initial guess (9.29). Although not illustrated,

we report that similar numerical results have been obtained for the other initial

guess (9.30).

The corresponding numerical results for the unknowns h(t), b(t) and c(t) are

presented in Figure 9.2. From this figure it can be noticed that a stable and very

accurate retrieval for the free boundary h(t) is obtained with a small rmse(h) =

1.7E − 4. Consequently, there is no need to regularize h and therefore, in what

follows, we take β1 = 0 in (9.19). The numerical reconstructions for b(t) and

c(t) are stable, but with less accurate values of rmse(b) = 0.0472 and rmse(c) =
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0.0260, respectively. However, when we add a little regularization with β2 = 10−7,

β3 = 10−8 to (9.19) we obtain a faster convergence in about 25 iterations to

reach a stationary value of O(10−5), see Figure 9.1 by the (-◦-) line, and even

more stable and accurate results for b(t) and c(t) with rmse values decreasing to

rmse(b) = 0.0394 and rmse(c) = 0.0213, respectively, see Figure 9.2.
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Figure 9.2: The exact (—) and numerical solutions without regularization (-�-), and

with regularization parameters β1 = 0, β2 = 10−7 and β3 = 10−8 (-△-) for: (a) the

free boundary h(t), (b) the coefficient b(t), and (c) the coefficient c(t), without noise

for Example 1.

Next, in order to investigate the stability of the numerical solution we add

some small percentage p = 0.1% of noise to the input data (9.11) and (9.12),

as in (9.21) for k = 1, 2. We have also investigated higher amounts of noise

p, but the results obtained were less accurate hence, they are not presented.

However, similar qualitative conclusions, regarding achieving stability through

regularization, maintain. Details regarding the number of iterations, number of

function evaluations, value of the objective function (9.19) at the final iteration,

the rmse values (9.23)–(9.25) and the computational time taken for running the

iterative minimization routine lsqnonlin are summarised in Table 9.1. One can
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notice that it takes almost one day to run the program without regularization.

The objective function (9.19), as a function of the number of iterations, is

plotted in Figure 9.3. From this figure it can be seen that in the absence of reg-

ularization, see the graph for βi = 0, i = 1, 2, 3, a slow convergence is recorded

and, in fact, the process of minimization of the routine lsqnonlin is stopped when

the prescribed maximum number of 400 iterations is reached. The corresponding

numerical results for the unknown coefficients are presented in Figure 9.4. From

Figure 9.4(a) it can be seen that stable and accurate numerical results are ob-

tained for the free boundary h(t). However, from Figures 9.4(b) and 9.4(c) one

can observe that unstable (highly oscillatory and unbounded) and very inaccurate

solutions for b(t) and c(t) are obtained. This is expected since the problem under

investigation is ill-posed and small errors in the measurement data (9.11) and

(9.12) lead to a drastic amount of error in the output coefficients b(t) and c(t).

Therefore, regularization should be applied to restore the stability of the solution

in the components b(t) and c(t). Since in Figure 9.4(a) the free boundary has

been obtained accurately, we fix β1 = 0 and we only take β2 and β3 as positive

regularization parameters in (9.19). These regularization parameters have been

chosen by trial and error, and some numerical results obtained from a couple of

choices are given in Table 9.1, and Figures 9.3 and 9.5. Justifying more rigor-

ously the choice of multiple regularization parameters in the nonlinear Tikhonov

regularization method is very challenging and will be the object of future numer-

ical investigations. At this stage, we only mention the idea of extending to the

nonlinear case some possible strategies of multi-parameter selection for the linear

Tikhonov regularization suggested in [20]. From Figure 9.3 it can be noticed that

a rapid convergence in less than 30 iterations is achieved for each selection of

regularization parameters. Furthermore, from Table 9.1 it can be seen that the

computational time is reduced from 1 day to less than an hour by the inclusion

of regularization in (9.19).
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Table 9.1: Number of iterations, number of function evaluations, value of the objective

function (9.19) at final iteration, rmse values (9.23)-(9.25) and the computational time,

for p = 0.1% noise for Example 1.

β1 = 0 β2 = β3 = 0 β2 = β3 = 10−4 β2 = β3 = 10−3

No. of iterations 401 23 28

No. of function evaluations 49446 2976 3596

Value of objective function

(9.19) at final iteration

0.0026 0.0345 0.1412

rmse(h) 0.0108 0.0026 0.0040

rmse(b) 105.34 1.1044 1.0787

rmse(c) 61.838 0.8184 0.6558

Computational time 23 hours 40 min 45 min
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Figure 9.3: The objective function (9.19) for p = 0.1% noise for Example 1.

The corresponding numerical reconstructions for the unknown free boundary

h(t) and the coefficients b(t) and c(t) are presented in Figures 9.5(a)-(c), respec-

tively. By comparing Figures 9.4(b) and 9.4(c) with 9.5(b) and 9.5(c) one can

immediately observe the dramatic improvement in stability and accuracy which is

achieved through the inclusion of regularization in the objective function (9.19).
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Figure 9.4: The exact (—) and numerical (−�−) solutions for: (a) the free boundary

h(t), (b) the coefficient b(t), and (c) the coefficient c(t), with p = 0.1% noise and no

regularization for Example 1.

9.5.2 Example 2

We consider now the second inverse problem (9.1)–(9.3), (9.5), (9.6) and (9.14)

with unknown coefficients h(t), b(t) and c(t), with the same input data as in

Example 1 of Subsection 9.5.1, but in which the Stefan condition data µ3(t)

given by equation (9.4) is replaced by the second-order heat moment µ6(t) given

by equation (9.15) as

µ6(t) =
e3t

2
(t2 − 1 + 2 ln(2 + t)), t ∈ [0, 1].

One can remark that conditions of Theorem 9.2 are satisfied and therefore, the

local existence of a unique solution is guaranteed.

The analytical solution is the same as that given by equations (9.26) and

(9.27). All the computational details are the same as for Example 1.
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Figure 9.5: The exact and numerical solutions for: (a) the free boundary h(t), (b) the

coefficient b(t), and (c) the coefficient c(t), with p = 0.1% noise and regularization for

Example 1.

As we did in Example 1, we start with the case of exact input data (9.11),

(9.12) and (9.15), i.e. p = 0 in (9.22). The objective function (9.20), as a

function of the number of iterations is displayed in Figure 9.6. From this figure it

can be noticed that a monotonic convergence is rapidly achieved (in the early few

iterations) and then turn to a steady slow convergence. The objective function

(9.20) decreases and takes stationary values of O(10−11) and O(10−6) in about 401

and 112 iterations for βi = 0, i = 1, 2, 3, and β1 = 0, β2 = β3 = 10−8, respectively.

The numerical results for the unknown coefficients are illustrated in Figure 9.7.

From this figure it can be noticed that, as in Example 1, a stable and very accurate

recovery for the free boundary h(t) is obtained with a small rmse(h) = 0.001.

With no regularization, the numerical results for b(t) and c(t) are quite unstable

and inaccurate with rmse values of 0.5962 and 0.4279, respectively. However,

when we apply the regularization with β1 = 0, and β2 = β3 = 10−8 to (9.20)

we obtain more stable and accurate reconstructions for b(t) and c(t) with rmse

values decreasing to 0.2908 and 0.1838, respectively.
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Next, we consider the case of noisy input data (9.11), (9.12) and (9.15) and

perturb them with p = 0.01% as in (9.21). Remark that in Example 2 we include

noise in all the input data µ4, µ5 and µ6, whilst in Example 1 noise was included

only in µ4 and µ5. Therefore, in Example 2 we take a smaller percentage of noise

than in Example 1. In addition, the investigation of the inversion of noisy data

performed in this subsection, when compared with that of Example 1, indicates

that the second inverse problem (9.1)–(9.3), (9.5), (9.6) and (9.14) is more ill-

posed than the first inverse problem (9.1)–(9.6). The case when no regularization

is included, i.e. βi = 0 for i = 1, 2, 3, is omitted since a similar unstable behaviour

to Example 1 shown in Figures 9.4(b) and 9.4(c) was obtained. The regularized

objective function (9.20) with β1 = 0, β2 = β3 = 10−6 shown in Figure 9.6

decreases rapidly and takes a stationary value of O(10−3) in 63 iterations. With

this selection of regularization parameters, the unknown coefficients are plotted

in Figure 9.7 using the dashed line style (- - -). The coefficients are reconstructed

with reasonable accuracy having the rmse values of 0.0022, 0.9498 and 0.6781 for

h(t), b(t) and c(t), respectively.
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Figure 9.6: The objective function (9.20) with no regularization (-×-) and with regu-

larization parameters β1 = 0, β2 = β3 = 10−8 (-△-), without noise for Example 2. We

also include with (-�-) the results for p = 0.01% noise, with regularization parameters

β1 = 0, β2 = β3 = 10−6.
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Figure 9.7: The exact (—) and numerical solutions with no regularization (-�-), and

with regularization parameters β1 = 0, β2 = β3 = 10−8 (-△-) without noise for Ex-

ample 2. We also include with (- - -) the numerical results for p = 0.01% noise with

regularization parameters β1 = 0, β2 = β3 = 10−6 for: (a) the free boundary h(t), (b)

the coefficient b(t), and (c) the coefficient c(t).

The next section investigates inverse problems similar to those of Sections

9.2, 9.4 and 9.5, but in which the time-dependent thermal conductivity is an

additional unknown.

9.6 Triple coefficient extension

Consider the one-dimensional time-dependent heat equation

ut(x, t) = a(t)uxx(x, t) + b(t)ux(x, t) + c(t)u(x, t) + f(x, t), (x, t) ∈ Ω (9.31)

for the unknown temperature u(x, t) with unknown free smooth boundary x =

h(t) > 0 and time-dependent coefficients a(t) > 0, b(t) and c(t). The initial

and Dirichlet boundary conditions are (9.2) and (9.3), respectively, and the over-

determination conditions are (9.4)–(9.6), together with the heat flux specification
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at x = 0, namely,

−a(t)ux(0, t) = µ̃3(t), t ∈ [0, T ]. (9.32)

As in Section 9.2, by performing the change of variable y = x/h(t) we reduce

the problem (9.2)–(9.6), (9.31) and (9.32) to the inverse problem for the unknowns

h(t), a(t), b(t), c(t) and v(y, t) := u(yh(t), t) given by:

vt(y, t) =
a(t)

h2(t)
vyy(y, t) +

b(t) + yh′(t)

h(t)
vy(y, t) + c(t)v(y, t) + f(yh(t), t),

(y, t) ∈ QT , (9.33)

equations (9.8)–(9.12) and

−a(t)vy(0, t)
h(t)

= µ̃3(t), t ∈ [0, T ]. (9.34)

A slightly corrected version of the theorem proved in [113] which ensures the

unique solvability (locally in time) for the inverse problem (9.8)–(9.12), (9.33)

and (9.34), has been provided in [60].

Theorem 9.3. Suppose that:

0 ≤ f ∈ C1,0([0,∞) × [0, T ]), 0 < µi ∈ C1[0, T ] for i = 1, 2, 4, 5, µ3 ∈ C[0, T ],

0 > µ̃3 ∈ C[0, T ], 0 < ϕ ∈ C2[0, h0], ϕ
′ > 0,

(lnϕ)
′′ ̸= 0, (9.35)

the compatibility conditions of the zero order:

ϕ(0) = µ1(0), ϕ(h0) = µ2(0),
∫ h0

0
ϕ(x)dx = µ4(0),

∫ h0

0
xϕ(x)dx = µ5(0),

and of the first-order:

µ′
1(0) = a(0)ϕ′′(0) + b(0)ϕ′(0) + c(0)ϕ(0) + f(0, 0),

µ′
2(0) = a(0)ϕ′′(h0) + b(0)ϕ′(h0) + c(0)ϕ(h0) + f(h0, 0),

}
(9.36)

are satisfied. Then, there is T0 ∈ (0, T ], such that there exists a unique solution

(h(t), a(t), b(t), c(t), v(y, t)) ∈ C1[0, T0]× (C[0, T0])
3×C2,1(QT0

), h(t) > 0, a(t) >

0 for t ∈ [0, T0], of the inverse problem (9.8)–(9.12), (9.33) and (9.34).

Remark. We can obtain the values of a(0), b(0) and c(0) directly from equations

(9.32) and (9.36). First, from (9.32) applied at t = 0 we have

a(0) = − µ̃3(0)

ϕ′(0)
. (9.37)
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Then, introducing (9.37) into (9.36) and solving the resulting system of equations

for b(0) and c(0) we obtain

b(0) =
ϕ(h0)

(
µ′
1(0) +

µ̃3(0)ϕ′′(0)
ϕ′(0)

− f(0, 0)
)
− ϕ(0)

(
µ′
2(0) +

µ̃3(0)ϕ′′(h0)
ϕ′(0)

− f(h0, 0)
)

ϕ(0)ϕ(h0)
(

ϕ′(0)
ϕ(0)

− ϕ′(h0)
ϕ(h0)

) ,

(9.38)

c(0) =
ϕ′(0)

(
µ′
2(0) +

µ̃3(0)ϕ′′(h0)
ϕ′(0)

− f(h0, 0)
)
− ϕ′(h0)

(
µ′
1(0) +

µ̃3(0)ϕ′′(0)
ϕ′(0)

− f(0, 0)
)

ϕ(0)ϕ(h0)
(

ϕ′(0)
ϕ(0)

− ϕ′(h0)
ϕ(h0)

) .

(9.39)

One can easily remark that the conditions on ϕ given in Theorem 9.3 ensure that

expressions (9.38) and (9.39) are well-defined. In particular, condition (9.35)

implies that the function ϕ′/ϕ is strictly monotone.

9.6.1 Another related inverse problem formulation

It was point out in [73] that the Stefan condition (9.4), or (9.10), may be replaced

by the second-order heat moment measurement (9.14), or (9.15), respectively.

Then we have the following local existence and uniqueness theorem, see [73] with

appropriate corrections.

Theorem 9.4. Let the assumptions of Theorem 9.3 be satisfied, except for the

condition on µ3 being replaced by the condition 0 < µ6 ∈ C1[0, T ]. Then, there

exists T0 ∈ (0, T ], such that there exists a unique solution (h(t), a(t), b(t), c(t),

v(y, t)) ∈ C1[0, T0]× (C[0, T0])
3 × C2,1(QT0

), h(t) > 0, a(t) > 0 for t ∈ [0, T0], of

the inverse problem (9.8), (9.9), (9.11), (9.12), (9.33) and (9.34).

9.6.2 Numerical implementation, results and discussion

The solution of the direct problem is based on the same FDM described in Section

9.3 with the simplification that the thermal conductivity coefficient a depends

now on t only. For the inverse problems under investigation in Section 9.6 we
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minimize the functionals

F̃ (h, a, b, c) =
N∑
j=1

[ajvy(0, tj)
hj

+ µ̃3(tj)
]2

+
N∑
j=1

[
h′j +

vy(1, tj)

hj
− µ3(tj)

]2
+

N∑
j=1

[
hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N∑
j=1

[
h2j

∫ 1

0

y2v(y, tj)dy − µ5(tj)
]2

+ β1

N∑
j=1

h2j + β2

N∑
j=1

a2j + β3

N∑
j=1

b2j + β4

N∑
j=1

c2j , (9.40)

and

F̃1(h, a, b, c) =
N∑
j=1

[ajvy(0, tj)
hj

+ µ̃3(tj)
]2

+
N∑
j=1

[
hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N∑
j=1

[
h2j

∫ 1

0

yv(y, tj)dy − µ5(tj)
]2

+
N∑
j=1

[
h3j

∫ 1

0

y2v(y, tj)dy − µ6(tj)
]2

+ β1

N∑
j=1

h2j + β2

N∑
j=1

a2j + β3

N∑
j=1

b2j + β4

N∑
j=1

c2j . (9.41)

The minimization of F̃ and F̃1 subject to the physical constraints h > 0 and

a > 0 are preformed using the MATLAB optimization toolbox routine lsqnonlin,

as described in Section 9.4. We also add noise in the heat flux (9.34), as described

at the end of Section 9.4.

9.6.2.1 Example 3

We consider first the inverse problem (9.2)–(9.6), (9.31) and (9.32) with unknown

coefficients h(t), a(t), b(t) and c(t), and solve this problem with the following

input data:

ϕ(x) = u(x, 0) = (1 + x)2, µ1(t) = u(0, t) = 1 + t, µ2(t) = u(h(t), t)

= (1 + t)(2 + t)2, µ̃3(t) = −a(t)ux(0, t) = −2(1 + t)2, µ3(t) = h′(t) + ux(h(t), t)

= 1 + 2(1 + t)(2 + t), µ4(t) =

∫ h(t)

0

u(x, t)dx =
1

3
(1 + t)2(7 + 5t+ t2),

µ5(t) =

∫ h(t)

0

xu(x, t)dx =
1

12
(1 + t)3(17 + 14t+ 3t2)

f(x, t) = 2 + 5t+ 4t2 + 6x+ 12tx+ 8t2x+ 2x2 + 3tx2 + 2t2x2, h0 = 1, T = 1.

One can remark that the conditions of Theorem 9.3 are satisfied and hence, the

local unique solvability of the inverse problem holds. With the data above, the
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analytical solution is given by

h(t) = 1 + t, a(t) = 1 + t, b(t) = −1− 2t, c(t) = −1− 2t, (9.42)

u(x, t) = (1 + t)(1 + x)2. (9.43)

Then, (9.42) and

v(y, t) = u(yh(t), t) = (1 + t)(1 + y + yt)2, (9.44)

is the analytical solution of the problem (9.8)–(9.12), (9.33) and (9.34).

The initial guess for the vectors h, a, b and c are taken as 1, 1, −1 and −1,

respectively.

We start the numerical discussion with the case of exact data, i.e. p = 0 in

(9.22). The objective function (9.40), as a function of the number of iterations, is

shown in Figure 9.8. From this figure it can be seen that a monotonic convergence

is achieved in 50 iterations if no regularization is applied. The unregularized

objective function (9.40) decreases rapidly in the first 10 iterations and then

steadily reaches a stationary low value of O(10−16). The numerical results for the

unknowns coefficients h(t), c(t), b(t) and c(t) are represented in Figures 9.9(a)–(d)

by the (−x−) lines. From these figures it can be observed that we obtain accurate

and stable reconstructions for free boundary h(t) and the thermal conductivity

a(t), whilst for the coefficients b(t) and c(t) some very slight instabilities appear.

Consequently, we do not need to regularize h(t) and a(t) and therefore, we are

take β1 = β2 = 0 in (9.40) and apply the Tikhonov regularization method with

some small regularization parameters β3 = β4 = 10−5. The accurate and stable

numerically obtained results are shown in Figures 9.9(a)–(d) by the (-�-) line.

The regularized objective function (9.40) for this case is also plotted in Figure

9.8 and a rapid monotone convergence is obtained in 26 iterations. A summary

of all details is presented in Table 9.2, where the rmse(a) is defined, similarly as

in (9.23)–(9.25), as

rmse(a) =

√√√√ T

N

N∑
j=1

(anumerical(tj)− aexact(tj))
2. (9.45)
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Table 9.2: Number of iterations, number of function evaluations, value of the objec-

tive function (9.40) at final iteration, rmse values (9.23)-(9.25) and (9.45), and the

computational time, without noise for Example 3.

β1 = β2 = 0 β3 = β4 = 0 β3 = β4 = 10−5

No. of iterations 50 26

No. of function evaluations 8415 4455

Value of objective function (9.40)

at final iteration

6.2E-16 0.0035

rmse(h) 3.3E-4 3.3E-4

rmse(a) 0.0021 0.0021

rmse(b) 0.0333 0.0207

rmse(c) 0.0335 0.0149

Computational time 90 min 50 min
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Figure 9.8: The objective function (9.40) without noise for Example 3.
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Figure 9.9: The exact (—) and numerical solutions (−x−) without regularization, and

(−�−) with regularization parameters β1 = β2 = 0, and β3 = β4 = 10−5 for: (a)

the free boundary h(t), (b) the coefficient a(t), (c) the coefficient b(t), and (d) the

coefficient c(t), without noise for Example 3.

Next, we investigate the stability of the numerical solution with respect to

some small percentage p = 0.1% of noise included in the input data µ̃3(t), µ4(t)

and µ5(t). The objective function (9.40), as a function of the number of iterations

in the case of no regularization employed is plotted in Figure 9.10. Form this

figure it can be noticed that a monotonic decreasing convergence is achieved

and the minimization process stops when the allowed tolerance is reached. On

the other hand, the numerical solutions for the unknown coefficients plotted in

Figure 9.11 are oscillatory and highly unstable except for the free boundary h(t)

which is accurate and stable. There is also some slight instability manifested

in Figure 9.11(b) in estimating the coefficient a(t), but the magnitude of these

oscillations is significantly much smaller than the highly unbounded and unstable

behaviour shown in Figures 9.11(c) and 9.11(d) illustrating the estimation of the

unregularized coefficients b(t) and c(t), respectively. As a result, we can take

β1 = β2 = 0 and then minimize (9.40) with various regularization parameters
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β3 = β4 ∈ {10−4, 10−3, 10−2}. Figure 9.12 shows the rapid monotonic decreasing

convergence of the regularized objective function, as the number of iterations

increases. The corresponding numerical results for the unknown time-dependent

coefficients are shown in Figures 9.13. A summary of the computational details, as

well as the rmse errors are included in Table 9.3. Overall, by comparing Figures

9.11 and 9.13 it can be observed some remarkable stability restored through the

inclusion of regularization. It is also interesting to remark that although we take

β2 = 0 and hence we do not penalise the coefficient a(t) in (9.40), some of the

regularization of the other two coefficients b(t) and c(t) is transferred to the former

unregularized coefficient a(t), compare Figures 9.11(b) and 9.13(b).
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Figure 9.10: The objective function (9.40) with p = 0.1% noise and no regularization

for Example 3.

Table 9.3: Number of iterations, number of function evaluations, value of the objec-

tive function (9.40) at final iteration, rmse values (9.23)-(9.25) and (9.45), and the

computational time, for p = 0.1% noise for Example 3.

β1=β2=0 β3=β4=0 β3=β4=10−4 β3=β4=10−3 β3=β4=10−2

No. of iterations 92 27 25 30

No. of function evaluations 15354 4620 4290 5115

Value of objective function

(9.40) at final iteration

8.4E-16 0.0449 0.3660 3.5102

rmse(h) 0.0043 0.0026 0.0022 0.0032

rmse(a) 0.2508 0.0487 0.0253 0.0398

rmse(b) 8.3489 0.5420 0.1991 0.2276

rmse(c) 7.8212 0.4354 0.1563 0.1646

Computational time 168 min 52 min 48 min 58 min
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Figure 9.11: The exact (—) and numerical solution (−�−) for: (a) the free boundary

h(t), (b) the coefficient a(t), (c) the coefficient b(t), and (d) the coefficient c(t), with

p = 0.1% noise and no regularization for Example 3.
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Figure 9.12: The regularized objective function (9.40), with regularization parameters

β1 = β2 = 0, and βi = 10−4 (−�−), βi = 10−3 (−▽−), βi = 10−2 (−△−), i = 3, 4,

with p = 0.1% noise for Example 3.
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Figure 9.13: The exact (—) and numerical solutions for: (a) the free boundary h(t),

(b) the coefficient a(t), (c) the coefficient b(t), and (d) the coefficient c(t), with regular-

ization parameters β1 = β2 = 0, and βi = 10−4 (−�−), βi = 10−3 (−▽−), βi = 10−2

(−△−), i = 3, 4, with p = 0.1% noise for Example 3.

9.6.2.2 Example 4

Consider now the second inverse problem given by equations (9.2), (9.3), (9.5),

(9.6), (9.14), (9.31) and (9.32) with unknown coefficients h(t), a(t), b(t) and c(t),

and solve this problem with the same input data as in Example 3 but replacing

µ3(t) by µ6(t) given by

µ6(t) =

∫ h(t)

0

x2u(x, t)dx =
1

30
(1 + t)4(31 + 27t+ 6t2), t ∈ [0, 1].

One can remark that the conditions of Theorem 9.4 are satisfied hence, the unique

local solvability of solution holds. The analytical solution is given by equations

(9.42) and (9.43). All the computational details and numerical representation are

the same as those for Example 3 except that noise is now included in the input

data µ6(t), as well. Figures 9.14–9.19, and Tables 9.4 and 9.5 represent/ illustrate

analogous quantities as Figures 9.8–9.13 and Tables 9.2 and 9.3 for Example 3
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and similar conclusions can be obtained.

It is also possible to compare, at least for the case without noise, the level

of information provided to the inverse problem by the Stefan condition (9.4) in

comparison with the second-order heat moment specification (9.14). Indeed, by

comparing Figure 9.8 and Table 9.2 with Figure 9.14 and Table 9.4, respectively,

it can be seen that the rate of convergence is much higher for Example 3 than for

Example 4. Moreover, the computational time required to achieve the converge

of the objective functions (9.40) and (9.41) is much higher for Example 4 than

for Example 3. Finally, by comparing the accuracy of the numerical results

presented in Figure 9.9 and Table 9.2 of Example 3 with Figure 9.15 and Table

9.4 of Example 4, respectively, one can clearly conclude that the Stefan condition

(9.4) provides significantly more information than the second-order heat moment

specification (9.14), especially in predicting the coefficients b(t) and c(t). Similar

considerations can also be made for the case of p = 0.1% noisy data, by comparing

Figures 9.10–9.13 and Table 9.3 of Example 3 with Figures 9.16–9.19 and Table

9.5 of Example 4, but this comparison is less reliable because in the latter example

we include noise in all the four input data µ̃3, µ4, µ5 and µ6, whilst in the former

example we include noise only in three input data µ̃3, µ4 and µ5, having the forth

one µ3 uncontaminated.
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Figure 9.14: The objective function (9.41) without noise for Example 4.
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Table 9.4: Number of iterations, number of function evaluations, value of the objec-

tive function (9.41) at final iteration, rmse values (9.23)-(9.25) and (9.45), and the

computational time with no noise for Example 4.

β1 = β2 = 0 β3 = β4 = 0 β3 = β4 = 10−5

No. of iterations 401 44

No. of function evaluations 66330 7425

Value of objective function

(9.41) at final iteration

7.2E-12 0.0035

rmse(h) 6.1E-4 5.9E-4

rmse(a) 0.0058 0.0048

rmse(b) 0.1289 0.0847

rmse(c) 0.1672 0.0999

Computational time 23 hours 138 min
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Figure 9.15: The exact (—) and numerical solutions (−x−) without regularization,

and (−�−) with regularization parameters β1 = β2 = 0, and β3 = β4 = 10−5 for:

(a) the free boundary h(t), (b) the coefficient a(t), (c) the coefficient b(t), and (d) the

coefficient c(t), without noise for Example 4.
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Figure 9.16: The objective function (9.41) with p = 0.1% noise and no regularization

for Example 4.

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

t

h
(t

)

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

t

a
(t

)

(b)

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

t

b
(t

)

(c)

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

t

c
(t

)

(d)

Figure 9.17: The exact (—) and numerical solutions (−x−) without regularization for:

(a) the free boundary h(t), (b) the coefficient a(t), (c) the coefficient b(t), and (d) the

coefficient c(t), with p = 0.1% noise for Example 4.
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Figure 9.18: The regularized objective function (9.41), with regularization parameters

β1 = β2 = 0, and βi = 10−5 (-�-), βi = 10−4 (-△-), βi = 10−3 (-▽-), i = 3, 4, with

p = 0.1% noise for Example 4.
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Figure 9.19: The exact (—) and numerical solutions for: (a) the free boundary h(t),

(b) the coefficient a(t), (c) the coefficient b(t), and (d) the coefficient c(t), with regu-

larization parameters β1 = β2 = 0, and βi = 10−5(-�-), βi = 10−4 (-△-), βi = 10−3

(-▽-), i = 3, 4, with p = 0.1% noise for Example 4.
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Table 9.5: Number of iterations, number of function evaluations, value of the objective

function (9.41) at final iteration, rmse values (9.23)-(9.25) and (9.45), and computa-

tional time, for p = 0.1% noise for Example 4.

β1=0, β2=0 β3=β4=0 β3=β4=10−5 β3=β4=10−4 β3=β4=10−3

No. of iterations 401 55 40 25

No. of function evaluations 66330 9240 6765 5610

Value of objective function

(9.41) at final iteration

0.0039 0.0260 0.0632 0.3820

rmse(h) 0.0156 0.0055 0.0044 0.0041

rmse(a) 0.8098 0.1338 0.0535 0.0354

rmse(b) 37.739 1.9712 0.5126 0.2073

rmse(c) 48.118 2.1369 0.5245 0.2218

Computational time 24 hours 150 min 81 min 48 min

9.7 Conclusions

In this chapter, a numerical investigation for the recovery of multiple time-

dependent coefficients entering the parabolic heat equation with a free bound-

ary has been presented. The moving boundary value problem has been first

transformed, by a simple change of variables, to a problem formulated in a fixed

domain. The analysis can also be extended to the case when both sides of the

finite slab are free, [111, 114].

Numerically, we discretised the governing equation using the FDM and solved

the inverse problem as a constrained regularized minimization using the MAT-

LAB optimization routine lsqnonlin. Notably, we report that the inclusion of

regularization, apart from restoring the stability of the numerical solution, it also

reduces the computational time for the minimization using the lsqnonlin routine

from several hours to several minutes, see Tables 9.1, 9.4 and 9.5. Numerical

results presented and discussed for several test examples show that accurate and

stable numerical solutions have been achieved. It is also interesting to conclude

that, based on the comparison between the Examples 3 and 4, the Stefan condi-

tion (9.4) contains more information than the second-order moment (9.14).



Chapter 10

Identification of a heterogeneous

orthotropic conductivity in a

rectangular domain

10.1 Introduction

The determination of coefficients in inverse heat conduction problems for the

parabolic heat equation, [70], continues to receive significant attention in a variety

of fields, such as heat transfer, oil recovery, groundwater flow, and finance. Some

researchers investigated the case of simultaneous identification of coefficients in

two-dimensional heat conduction problems, [23, 24, 124].

The identification of physical properties such as thermal conductivity using

measured temperature or heat flux values at wall sites is an important inverse

problem. A common identification strategy is the indirect one where one can min-

imize the gap between a computed solution and the measured data (observations)

via an iterative process, [115].

The main obstacle in this kind of problem is that there are usually so few

observations that one finds hard to evaluate the spatial derivative of temperature

by simple numerical differentiation. Therefore, heavier and more time-consuming

optimization techniques are needed to obtain reliable results.

The estimation of thermal properties for the multi-dimensional inhomoge-

neous and anisotropic media is rather scarce in the literature [17, 86]. The aim

of this chapter is to consider a two-dimensional coefficient identification prob-

lem to estimate the space and time varying principal direction components of an

orthotropic conductivity in a rectangular domain.

The structure of the chapter is as follows. In Section 10.2 we give the mathe-

matical formulation of the two-dimensional inverse problem and state its unique
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solvability. In Section 10.3 we briefly describe the explicit FDM used to discretise

the direct problem, whilst Section 10.4 introduces the constrained nonlinear mini-

mization problem that has to be solved using the MATLAB routine lsqnonlin. In

Section 10.5, numerical results are presented and discussed and finally conclusions

are given in Section 10.6.

10.2 Statement of the inverse problem

Consider the nonlinear inverse coefficient identification problem which requires

determining the principal direction components a(y, t) > 0 and b(x, t) > 0 of the

two-dimensional heterogeneous orthotropic rectangular mediumD = (0, h)×(0, ℓ)

together with the temperature u(x, y, t) satisfying the heat equation

ut = a(y, t)uxx + b(x, t)uyy + f(x, y, t), (x, y, t) ∈ QT := D × (0, T ), (10.1)

where f is a given heat source, subject to initial, boundary and overdetermination

conditions

u(x, y, 0) = ϕ(x, y), (x, y) ∈ D, (10.2)

u(0, y, t) = µ1(y, t), u(h, y, t) = µ2(y, t), (y, t) ∈ [0, l]× [0, T ], (10.3)

u(x, 0, t) = µ3(x, t), u(x, l, t) = µ4(x, t), (x, t) ∈ [0, h]× [0, T ], (10.4)

a(y, t)ux(0, y, t) = µ5(y, t), (y, t) ∈ [0, l]× [0, T ], (10.5)

b(x, t)uy(x, 0, t) = µ6(x, t), (x, t) ∈ [0, h]× [0, T ]. (10.6)

In the above setting one can see that Cauchy data are prescribed over the bound-

aries x = 0 and y = 0. Also by restricting the conductivity components a(y, t) and

b(x, t) be independent of x and y, respectively, it then makes sense to study the

injectivity/surjectivity of the mapping (a, b) 7→ (µ5, µ6). We finally mention that

in the general case when a(x, y, t) and b(x, y, t) depend on all coordinates then

the right hand side of (10.1) modifies as (a(x, y, t)ux)x+(b(x, y, t)uy)y+f(x, y, t).

There is no theory available for this general orthotropic inverse coefficient

identification, but at least in the isotropic case when a = b, all the knowledge

of the temperature u(x, y, t) for (x, y, t) ∈ QT is necessary in order to render a

unique solution, [49]. All this discussion warrants and justifies our assumption

that a(y, t) and b(x, t) are independent on the variables x and y, respectively.

Then, the measurements (10.5) and (10.6) are supplied as the correct traces of

functionals, according to the illuminating discussion of Cannon et al. [15].

Suppose that the following assumptions hold:
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(A1) ϕ ∈ C2+γ(D), µi ∈ C2+γ,1+γ/2([0, l]×[0, T ]), i ∈ {1, 2}, µk ∈ C2+γ,1+γ/2([0, h]

×[0, T ]), k ∈ {3, 4}, µ5 ∈ Cγ,γ/2([0, l] × [0, T ]), µ6 ∈ Cγ,γ/2([0, h] × [0, T ]),

f ∈ Cγ,γ/2(QT ) for some γ ∈ (0, 1);

(A2) ϕx(x, y) > 0, ϕy(x, y) > 0, (x, y) ∈ D, µ5(y, t) > 0, (y, t) ∈ [0, l] × [0, T ],

µ6(x, t) > 0, (x, t) ∈ [0, h]× [0, T ];

(A3) consistency conditions of the zero and the first orders.

We remark that a formal elimination of a(y, t) and b(x, t) in (10.5) and (10.6),

respectively, and substitution into (10.1) result in the nonlinear partial differential

equation

ut(x, y, t) =
µ5(y, t)

ux(0, y, t)
uxx +

µ6(x, t)

uy(x, 0, t)
uyy + f(x, y, t), (x, y, t) ∈ QT (10.7)

to be solved for the temperature u(x, y, t) subject to the initial and boundary

conditions (10.2)–(10.4).

The following theorems, [59], state the unique solvability of the inverse prob-

lem (10.1)–(10.6).

Theorem 10.1. Suppose that the assumptions (A1)-(A3) hold. Then for some

T0 ∈ (0, T ] there exists a solution of the problem (10.1)-(10.6) such that (a, b, u) ∈
Cγ,γ/2([0, l]× [0, T0])×Cγ,γ/2([0, h]× [0, T0])×C2+γ,1+γ/2(QT0

), a(y, t) > 0, (y, t) ∈
[0, l]× [0, T0], b(x, t) > 0, (x, t) ∈ [0, h]× [0, T0].

Theorem 10.2. Suppose that µ5(y, t) ̸= 0, (y, t) ∈ [0, l]×[0, T ], µ6(x, t) ̸= 0, (x, t) ∈
[0, h] × [0, T ]. Then a solution (a(y, t), b(x, t), u(x, y, t)) of the problem (10.1)-

(10.6) is unique in the space Cγ,γ/2([0, l]×[0, T ])× Cγ,γ/2([0, h]×[0, T ]) ×C2+γ,1+γ/2

(QT ), a(y, t) > 0, (y, t) ∈ [0, l]× [0, T ], b(x, t) > 0, (x, t) ∈ [0, h]× [0, T ].

10.3 Solution of direct problem

In this section, we consider the direct initial boundary value problem (10.1)–(10.4)

where a(y, t), b(x, t), f(x, y, t), ϕ(x, y), and µi, i = 1, 2, 3, 4, are known and the

solution u(x, y, t) is to be determined. To achieve this, we use the Forward-Time-

Central-Space (FTCS) finite-difference scheme which is conditionally stable, [92,

p.195].

We subdivide the solution domain QT into Mx, My and N subintervals of

equal step lengths ∆x and ∆y, and uniform time step ∆t, where ∆x = h/Mx,

∆y = ℓ/My and ∆t = T/N , for space and time, respectively. At the node

(i, j, k) we denote uki,j := u(xi, yj, tk), where xi = i∆x, yj = j∆y, tk = k∆t,
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akj := a(yj, tk), b
k
i := b(xi, tk) and f

k
i,j := f(xi, yj, tk) for i = 0,Mx, j = 0,My and

k = 0, N .

The simplest explicit difference scheme for equation (10.1) is given by

uk+1
i,j − uki,j

∆t
=akj

uki+1,j − 2uki,j + uki−1,j

(∆x)2
+ bki

uki,j+1 − 2uki,j + uki,j−1

(∆y)2
+ fk

i,j (10.8)

for i = 1,Mx − 1, j = 1,My − 1 and k = 0, N . The initial and boundary condi-

tions (10.2)–(10.4) give

u0i,j = ϕi,j, i = 0,Mx, j = 0,My, (10.9)

uk0,j = µ1(yj, tk), ukMx,j = µ2(yj, tk), j = 0,My, k = 1, N, (10.10)

uki,0 = µ3(xi, tk), uki,My
= µ4(xi, tk), i = 0,Mx, k = 1, N. (10.11)

Let ã and b̃ be the maximum values of a(y, t) and b(x, t), respectively, then, the

stability condition for the explicit FDM scheme (10.8) will be [97].

ã∆t

(∆x)2
+

b̃∆t

(∆y)2
≤ 1

2
. (10.12)

The heat fluxes (10.5) and (10.6) can be calculated using the second-order

FDM approximations:

µ5(yj, tk) = akj
4uk1,j − uk2,j − 3uk0,j

2∆x
, j = 1,My − 1, k = 1, N, (10.13)

µ6(xi, tk) = bki
4uki,1 − uki,2 − 3uki,0

2∆y
, i = 1,Mx − 1, k = 1, N. (10.14)

10.4 Numerical solution of inverse problem

In this section we aim to obtain stable reconstructions for the principal direction

components a(y, t) > 0 and b(x, t) > 0 of the two-dimensional heterogeneous or-

thotropic rectangular medium together with the temperature u(x, y, t) satisfying

the equations (10.1)–(10.6). One can remark that at initial time t = 0 the values

of the principal direction components are known and they can easily be obtained

form the overdetermination conditions (10.5) and (10.6) as

a(y, 0) =
µ5(y, 0)

ϕx(0, y)
, b(x, 0) =

µ6(x, 0)

ϕy(x, 0)
, y ∈ [0, ℓ], x ∈ [0, h]. (10.15)
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The inverse problem is solved based on the nonlinear minimization of the least-

squares objective function

F (a, b) :=
∥∥a(y, t)ux(0, y, t)−µ5(y, t)

∥∥2 + ∥∥b(x, t)uy(x, 0, t)−µ6(x, t)
∥∥2, (10.16)

or, in discretised form

F (a, b) =
N∑
k=1

My∑
j=0

[
aj,kux(0, yj, tk)− µ5(yj, tk)

]2
+

N∑
k=1

Mx∑
i=0

[
bi,kuy(xi, 0, tk)− µ6(xi, tk)

]2
. (10.17)

Regularization terms may also be included to enhance the stability of numerical

results but in this case, as in Chapter 2, regularization was not found necessary,

see later on the numerical results of Section 10.5.

The minimization of the objective functional (10.17), subjected to the physical

simple bound constraints a > 0 and b > 0 is accomplished using the MATLAB

optimization toolbox routine lsqnonlin.

Upper and lower bounds on the thermal conductivities a and b can be specified

according to a priori information on these physical parameters.

In the numerical computation, we take the parameters of the routine lsqnonlin

as follows:

• Maximum number of iterations = 105× (number of variables).

• Maximum number of objective function evaluations = 106× (number of

variables).

• Solution and objective function tolerances = 10−10.

The inverse problem (10.1)–(10.6) is solved subject to both exact and noisy mea-

surements (10.5) and (10.6). The noisy data is numerically simulated as

µϵ1
5 (yj, tk) = µ5(yj, tk) + ϵ1j,k, j = 0,My, k = 1, N, (10.18)

µϵ2
6 (xi, tk) = µ6(xi, tk) + ϵ2i,k, i = 0,Mx, k = 1, N, (10.19)

where ϵ1j,k and ϵ2i,k are random variables generated from a Gaussian normal

distribution with mean zero and standard deviation σ1 and σ2 given by

σ1 = p× max
(y,t)∈[0,ℓ]×[0,T ]

|µ5(y, t)|, σ2 = p× max
(x,t)∈[0,h]×[0,T ]

|µ6(x, t)|, (10.20)
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where p represents the percentage of noise. We use the MATLAB function

normrnd to generate the random variables ϵ1 = (ϵ1j,k)j=0,My,k=1,N and ϵ2 =

(ϵ2i,k)i=0,Mx,k=1,N as follows:

ϵ1 = normrnd(0, σ1,My + 1, N), ϵ2 = normrnd(0, σ2,Mx + 1, N). (10.21)

In the case of noisy data (10.18) and (10.19), we replace µ5(yj, tk) and µ6(xi, tk)

by µϵ1
5 (yj, tk) and µ

ϵ2
6 (xi, tk), respectively, in (10.17).

10.5 Numerical results and discussion

In this section, we present numerical results for the orthotropic thermal con-

ductivity components a(y, t), b(x, t) and the temperature u(x, y, t), in the case of

exact and noisy data (10.18) and (10.19). To assess the accuracy of the numerical

solution we employ the root mean square errors (rmse) defined by:

rmse(a) =

[
1

N(My + 1)

N∑
k=1

My∑
j=0

(anumerical(yj, tk)− aexact(yj, tk))
2

]1/2
, (10.22)

rmse(b) =

[
1

N(Mx + 1)

N∑
k=1

Mx∑
i=0

(bnumerical(xi, tk)− bexact(xi, tk))
2

]1/2
. (10.23)

For simplicity, we take h = ℓ = T = 1.

10.5.1 Example 1

Consider the inverse problem (10.1)–(10.6) with unknown coefficients a(y, t) and

b(y, t), with the input data ϕ and µi, i = 1, 6, as follows:

ϕ(x, y) = u(x, y, 0) = −(−2 + x)2 − (−2 + y)2,

f(x, y, t) =
101.5 + 3t+ x+ y

50
,

µ1(y, t) = u(0, y, t) = −4 + 2t− (−2 + y)2,

µ2(y, t) = u(h, y, t) = −1 + 2t− (−2 + y)2,

µ3(x, t) = u(x, 0, t) = −4 + 2t− (−2 + x)2,

µ4(x, t) = u(x, ℓ, t) = −1 + 2t− (−2 + x)2,

µ5(y, t) = a(y, t)ux(0, y, t) =
y + t+ 1

25
,

µ6(x, t) = b(x, t)uy(x, 0, t) =
x+ 2t+ 0.5

25
.
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One can remark that conditions of Theorems 10.1 and 10.2 are satisfied and

therefore, the local solvability of the solution is guaranteed. In fact, it can easily

be checked by direct substitution that the analytical solution is given by

a(y, t) =
y + t+ 1

100
, (y, t) ∈ [0, 1]× [0, 1], (10.24)

b(x, t) =
x+ 2t+ 0.5

100
, (x, t) ∈ [0, 1]× [0, 1], (10.25)

u(x, y, t) = −(x− 2)2 − (y − 2)2 + 2t, (x, y, t) ∈ QT . (10.26)

We take a coarse mesh size with N = Mx = My = 5, i.e. ∆x = ∆y = ∆t =

1/5 = 0.2. Then we need to choose an upper bound UB for a and b such that

the stability condition (10.12) is satisfied. This yields UB = 1/20 = 0.05. Also

since a and b represent positive physical quantities we take a lower bound for a

and b be given by LB = 0.01. Keeping the sought parameters inside the lower

and upper prescribed bounds through all the minimization process increases the

performance of identification, [50].

We start our investigation for simultaneously determining the principal direc-

tion components a(y, t) and b(x, t) in a heterogeneous orthotropic with the case

of exact input data, i.e. p = 0 in (10.20). To test the robustness of the itera-

tive method with respect to the independence on the initial guess, we take three

different initial guesses namely:

initial A: a0 = aexact + 3× 10−4randn(size(a)),

b0 = bexact + 3× 10−4randn(size(b)),

initial B: a0 = aexact + 3× 10−3randn(size(a)),

b0 = bexact + 3× 10−3randn(size(b)),

initial C: a0 = ones(size(a)), b0 = ones(size(b)).

where randn(:) is a MATLAB function.

Figure 10.1 shows the convergence of the objective function (10.17) with exact

input data (10.5) and (10.6) for the various initial guesses A, B and C. Table 10.1

gives more details of these computations including the computational time and

the rmse values (10.22) and (10.23). From Figure 10.1 and Table 10.1, it can be

seen that, as expected, the farther the initial guess is, e.g. initial C, the more

iterations and longer computational time are required to achieve convergence.

However, for all initial guesses, the objective function (10.17) converges to the

same very small minimum value of O(10−20). This shows robustness with respect

to the independence on the initial guess. Furthermore, one can notice that a rapid
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convergence is achieved for each initial guesses in more than eight iterations within

no more than 64 seconds. Moreover, from Table 10.1 it can be seen that there

is an excellent agreement between exact and numerically obtained solutions for

all initial guesses with rmse values being very low of O(10−12) to O(10−11) for

a(y, t) and b(x, t).
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Figure 10.1: The objective function (10.17) with no noise, for various initial guesses,

for Example 1.

Table 10.1: Number of iterations, number of function evaluations, value of the objective

function (10.17) at final iteration, the rmse values and the computational time, with

no regularization and no noise for Example 1 for various initial guesses.

initial A initial B initial C

No. of iterations 6 7 8

No. of function evaluations 511 584 657

Value of objective function

(10.17) at final iteration

2.3E-20 2.1E-19 6.9E-20

rmse(a) 3.6E-12 1.1E-11 2.9E-12

rmse(b) 5.8E-12 1.7E-11 1.1E-11

Computational time 49 sec 57 sec 64 sec
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Figure 10.2: The exact solution (left), numerical solution (middle), error between them

(right), with initial guess C, for: (a) a(y, t) and (b) b(x, t), with no noise, for Example

1.

In what follows, we take the initial guess for the unknown coefficients equal

to the constant matrix of ones, i.e. we choose the initial guess C. The numeri-

cally obtained results for a and b are illustrated in Figure 10.2 and an excellent

agreement can be observed.

Next we consider the case of noisy data (10.18) and (10.19) with p ∈ {1, 5, 10}%.

The numerically obtained results are illustrated in Figures 10.3–10.5 for p = 1%,

5% and 10%, respectively, and summarised in Table 10.2. From these figures

and table it can be seen that as the percentage of noise p decreases from 10% to

5% and then to 1% the numerically obtained solution becomes more stable and

accurate.
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Table 10.2: Number of iterations, number of function evaluations, value of the objective

function (10.17) at final iteration, the rmse values and the computational time, with

p ∈ {1, 5, 10}% noise, for Example 1.

p = 1% p = 5% p = 10%

No. of iterations 8 8 8

No. of function evaluations 657 657 657

Value of objective function

(10.17) at final iteration

2.4E-20 3E-20 7.4E-20

rmse(a) 4.2E-4 0.0021 0.0043

rmse(b) 3.3E-4 0.0017 0.0034

Computational time 61 sec 61 sec 63 sec
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Figure 10.3: The exact solution (left), numerical solution (middle), error between them

(right), for: (a) a(y, t) and (b) b(x, t), with p = 1% noisy data, for Example 1.
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Figure 10.4: The exact solution (left), numerical solution (middle), error between them

(right), for: (a) a(y, t) and (b) b(x, t), with p = 5% noisy data, for Example 1.
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Figure 10.5: The exact solution (left), numerical solution (middle), error between them

(right), for: (a) a(y, t) and (b) b(x, t), with p = 10% noisy data, for Example 1.
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10.6 Conclusions

The inverse problem concerning the identification of the principal direction ther-

mal conductivity components a(y, t) and b(x, t) of an orthotropic material and

the temperature u(x, y, t) in the two-dimensional heat equation in a rectangular

domain has been investigated. The additional conditions which ensure a unique

solvability of solution are given by the heat fluxes µ5 and µ6. The direct solver

based on an explicit finite difference scheme has been developed. The inverse

solver based on a nonlinear least-squares minimization has been solved using the

MATLAB toolbox routine lsqnonlin. For both exact and noisy data, the numer-

ical results obtained are accurate and stable.



Chapter 11

General conclusions and future

work

11.1 Conclusions

The work in this thesis has been devoted to solving various types of inverse co-

efficient identification problems in the parabolic heat equation. All these inverse

problems have practical physical interest in a real situation. For instance, identi-

fication of thermal properties of certain material, determination of unknown free

boundary of melting or freezing process, and so on.

In inverse coefficient identification problems, one or more coefficients is/are

unknown along with the main dependent variable. Therefore, we need more in-

formation to retrieve the missing coefficients. This extra information is usually

provided as measured over-specified data which contains random noise. If the un-

derlying problem is ill-posed then, this random noise causes huge oscillations and

unbounded behavior in the output solution. Consequently, traditional numerical

methods are not appropriate unless combined with some sort of regularization.

In this thesis, the inverse problems have been reduced to nonlinear constrained

optimization problems by adding penalty regularization terms to stabilize the so-

lution. These smoothing terms which are multiplied by regularization parameters

will damp the influence of random measurement errors in the numerical results.

There are several methods proposed to choose a single regularization param-

eter, e.g. the L-curve method, the discrepancy principle, etc. If multiple regular-

ization parameters are encountered one can try to generalize the L-curve criterion

to the L-hypersurface concept, [6], but then the analysis of multiple parameter

selection becomes tedious and time consuming. In this thesis, the emphasis was

on obtaining accurate and stable numerical solutions to several inverse coefficient

identification problems. In a first attempt, the regularization parameter has been
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chosen by simple trial and error, i.e. selected based on experience by first choos-

ing a small value and gradually increasing it until any numerical oscillations in

the unknown coefficients are removed. But nevertheless more research has to be

done in the future regarding the rigorous choice of regularization parameters for

ill-posed and nonlinear problems.

In all the inverse problems considered in this thesis, the accuracy and the

stability of the numerical results were thoroughly investigated for various mesh

sizes and various noise levels added into the input data to mimic the case of

measured data. Further, in all problems, we have used a FDM direct solver in

the process of the minimization of the residual least-squares functional associated

to the gap between the measured and the computed data. The whole iterative

process of minimization has been performed using MATLAB optimization toolbox

routines, which allow to impose simple bounds on the unknown coefficients and

do not need to supply (by the user) the gradient of residual functional.

In Chapter 1, a general introduction to inverse problems has been provided.

General description for the direct and inverse Stefan problem are given in Section

1.3 followed by the stability analysis for the inverse problems under investiga-

tion based on the Tikhonov’s regularization method with appropriate choice of

regularization parameters. Moreover, a brief description of two MATLAB op-

timization toolboxes have been explained along with some commands. A quick

overview of numerical methods which can be applied to solve PDEs has been pro-

vided and also, a flowchart explaining the stages of our procedure was sketched

in Section 1.7.

In Chapter 2, an inverse problem which requires determining the time-dependent

diffusivity with initial, periodic boundary conditions and non-local boundary

measurement has been investigated. The problem has been reformulated as a

nonlinear least-squares optimization problem which has been solved using the

MATLAB toolbox routine lsqnonlin. Numerical results indicate that accurate,

robust and reasonably stable solutions have been obtained. The robustness of

the iterative method was tested with respect to the independence on the initial

guess, i.e. by performing the iterative process for multiple initial guesses, and the

same numerical results have been obtained. This problem seems rather stable

and hence, in general, no regularization was found necessary to be employed.

In Chapter 3, a couple of inverse problems which require determining a time-

dependent thermal conductivity when the heat capacity is space-dependent but

given for the heat equation with overspecified conditions have been investigated.

The Inverse Problem I was found to be well-posed, whilst the Inverse Problem II

was found to be ill-posed and regularization was needed in order to obtain a stable
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solution. Numerical results illustrated for several benchmarks test examples show

that an accurate and stable solution has been obtained.

In Chapter 4, three inverse coefficient identification problems for simultane-

ously determining two time-dependent coefficients in a one-dimensional parabolic

heat-type equation from Cauchy boundary data have been considered. The prob-

lems have been reformulated as constrained regularization minimization prob-

lems. The numerically obtained results are shown to be stable and accurate.

Chapter 5 was concerned with a couple of inverse problems consisting of find-

ing the time-dependent coefficients and the time-dependent heat source term

in the parabolic heat equation with integral type overdetermination conditions.

Regularization has been imposed when noisy data has been inverted. Numerical

results presented and discussed for a couple of test examples show that reasonably

accurate and stable numerical solutions have been achieved.

Chapter 6 was concerned to present a numerical approach to identify simulta-

neously the time and space-dependent coefficients in a parabolic heat-type equa-

tion. The overdetermination conditions which ensure a unique solution are given

by the heat flux measurement and the total potential heat function specification

or, the time-average heat flux. The resulting inverse problems have been reformu-

lated as constrained regularized minimization problems which were solved using

the MATLAB optimization toolbox routine lsqnonlin, as in previous chapters.

The inverse problems have been found rather stable in the time-dependent ther-

mal conductivity coefficient, but less stable in the space-dependent coefficients

which multiply the lower-order terms in the governing PDE. Numerical results

obtained for a wide range of typical test examples under various noise levels

showed that accurate and stable numerical solutions have been achieved.

Chapter 7 was concerned with the inverse identification of a free boundary

and the temperature in the heat equation with nonlinear temperature-dependent

diffusivity, whilst Chapters 8 and 9 were concerned with one-phase inverse Stefan

coefficient identification problems. In these chapters, numerical investigations

for the recovery of multiple time-dependent coefficients entering the parabolic

heat equation with a free boundary subject to heat flux, specification of energy,

Stefan condition, first- and second-order heat moment have been presented. The

moving boundary value problem was first transformed, by a simple change of

variables, to a problem formulated in a fixed domain. In Chapter 9, the Stefan

condition can be replaced by a second-order heat moment specification. It is

interesting to remark that, based on the comparison between Examples 3 and

4, the Stefan condition contains more information than the second-order heat

moment. Notably, the inclusion of Tikhonov’s regularization method, apart from
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restoring the stability of the numerical solution, it also reduces the computational

time. Numerical results presented and discussed for several test examples show

that accurate and stable numerical solutions have been achieved.

Finally, in Chapter 10, the inverse problem concerning the identification of

the thermal conductivity of an orthotropic material and the temperature in the

two-dimensional heat equation in a rectangular domain has been investigated.

The overdetermination conditions which ensure the unique solvability of the so-

lution are given by the specification of a couple of heat fluxes. An explicit FDM

has been developed as direct solver, whilst the inverse solver based on a nonlinear

least-squares minimization has been efficiently implemented using the MATLAB

optimization toolbox routine lsqnonlin. For both exact and noisy data, the

numerical results have been obtained accurate and stable and hence the regular-

ization was found unnecessary.

11.2 Future work

One can remark that the numerical results presented in this thesis confirm the fact

that efficient approaches can be developed for more complicated coefficient identi-

fication problems, inverse initial value problems and inverse geometric problems.

As far as these features are concerned, one can suggest the following possible

future work:

• Extend the numerical FDM implementation to three dimensional problems;

• Investigate multiple-phase inverse coefficient Stefan problems, [111, 114];

• Extend the analysis to identify coefficients that depend both on space and

time;

• Investigate criteria to select multiple regularization parameters and employ

other minimization methods, e.g. genetic algorithms or globally convergent

methods, [5, 40], which do not depend on the initial guess;

• Apply the models in this thesis to real world problems concerned with

material characterisation and thermal property identification.
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