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Abstract

This thesis investigates the properties of various modelled photospheric motions as

generation mechanisms for magnetohydrodynamic (MHD) waves in the low solar

atmosphere. The solar atmosphere is heated to million-degree temperatures, yet

there is no fully understood heating mechanism which can provide the ≈ 300 W/m2

required to keep the quiet corona at its observed temperatures. MHD waves are one

mechanism by which this energy could be provided to the upper solar atmosphere,

however, these waves need to be excited. The excitation of these waves, in or below

the photosphere is a complex interaction between the plasma and the magnetic

field embedded within it.

This thesis studies a model of a small-scale magnetic flux tube based upon a

magnetic bright point (MBP). These features are very common in the photosphere

and have been observed to be affected by the plasma motions. The modelled flux

tube has a foot point magnetic field strength of 120 mT and a FWHM of 90 km, and is

embedded in a realistic, stratified solar atmosphere based upon the VALIIIc model.

To better understand the excitation of MHD waves in this type of magnetic struc-

tures, a selection of velocity profiles are implemented to excite waves. Initially a

study of five different driving profiles was performed. A uniform torsional driver

as well as Archimedean and logarithmic spiral drivers which mimic observed tor-

sional motions in the solar photosphere, along with vertical and horizontal drivers

to mimic different motions caused by convection in the photosphere. The results

are then analysed using a novel method for extracting the parallel, perpendicular

and azimuthal components of the perturbations, which caters to both the linear

and non-linear cases. Employing this method yields the identification of the wave

modes excited in the numerical simulations and enables a comparison of excited

modes via velocity perturbations and wave energy flux. The wave energy flux distri-

bution is calculated, to enable the quantification of the relative strengths of excited

modes. The torsional drivers primarily excite Alfvén modes (≈ 60% of the total

flux) with contributions from the slow mode. The horizontal and vertical drivers

primarily excite slow and fast modes respectively, with small variations dependent

upon flux surface radius.
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This analysis is then applied to more in depth studies of the logarithmic spiral

driver. Firstly, five different values for the BL spiral expansion factor are chosen

which control how rapidly the spiral expands. Larger values of BL make the driving

profile more radial. The results of this analysis show that the Alfvén wave is the

dominant wave for lower values of the expansion factor, whereas, for the higher val-

ues the parallel component is dominant. This transition occurs within the range of

the observational constraints, demonstrating that under realistic conditions spiral

drivers may not excite most of their wave flux in the Alfvén mode.

Finally, the logarithmic spiral is further studied, but with a variety of different

periods. Ten periods from 30 to 300 seconds are chosen, and the simulations are

again analysed using the flux surface method employed previously. The results of

this study are minimal variation in the percentage wave flux in each mode, with

no more than 20 % variation in any mode for any flux surface studied. Within this

small variation, some non-linear changes in the wave flux were observed, especially

around the more important small periods. Due to the short life time of the MBPs it

is thought the short period waves would have more effect and therefore this non-

linear variation in wave flux could have some impact on the modes present in the

solar atmosphere.
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Chapter 1

Introduction

1.1 The Sun

The Sun has been the subject of study by humanity since the dawn of civilisation.

The processes in the Sun and in its atmosphere have a direct impact on life on Earth.

The radiation that reaches the Earth provides the energy life needs to flourish and

the interaction of the solar wind with the upper atmosphere generates the aurora.

Modern study of the Sun focuses on understanding the processes that drive changes

in the Sun such as total radiation output and dramatic events such as solar flares or

coronal mass ejections.

The properties and behaviour of the Sun change dramatically with distance from

the centre of the Sun. The core of the Sun is where the nuclear fusion reaction

occurs, this region is the source of energy for the Sun and the rest of the plasma

above this layer transports this energy to the photosphere and beyond. Above the

solar core, the first large region of plasma, is the region where energy transport

by radiation dominates, this region is very dense and it takes a single high-energy

photon approximately 170,000 years to travel outwards from the core to the photo-

sphere (Priest, 2014). This radiative zone extends out to 0.7 R⊙ (solar radii) (Priest,

2014), at that point a narrow region called the tachocline exists, where the plasma

stops rotating as a solid body, and starts rotating with different velocities at different

latitudes. Above this tachocline radial energy transport is dominated by convective

motions. This convective zone extends out to the visible surface or photosphere.

The convective plasma motions that move hot plasma up to the photosphere are

responsible for a lot of the interesting features and properties of the photosphere

and higher layers of the solar atmosphere. The photosphere is the point where the

Sun becomes mostly transparent to light. It is the photosphere and the layers above

it that have the most direct influence on the Earth.
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Fig. 1.1 A schematic diagram of the structure of the Sun. (Kelvinsong, 2015)

The solar atmosphere is often described as various distinctive vertically strati-

fied layers, the lowest of which is the photosphere. At the top of the photosphere

there is a point named the temperature minimum. At this point the temperature

of the Sun is at its lowest, around 4,500 K. Above the photosphere, there is a region

called the chromosphere, so named because of the colourful emission lines, such as

Hαwhich dominate its emission. From the chromosphere upwards a drastic change

in plasma properties occur. The plasma density drops rapidly and the temperature

increases. This region is named the transition region and is the focus of much

study. Above the transition region, is the solar corona, which is a low density, high

temperature region, were the effects of magnetic field are dominant. A diagram

showing the structure of the solar atmosphere is shown in Figure 1.1, the changes

in temperature and density from the photosphere to the low corona are shown in

Figure 1.2.

The solar corona (Figure 1.3) is very hot, with temperatures exceeding even 10

million degrees Kelvin, however, it is also very rarefied, with densities of the order

of 10−12 kg
m3 . This means that the energy density of the corona is much lower than

that of the lower layers of the solar atmosphere, e.g. the photosphere, where the

temperature is of the order of 5,000 K. In spite of this the quiet Sun, solar corona

requires a constant energy input in the region of 300 W/m2 (Priest, 2014) to maintain

its high temperatures. There is currently no fully understood mechanism which

transports this energy, from the photosphere, through the transition region and

into the corona. (Aschwanden et al., 2007; Erdélyi and Ballai, 2007; Parnell and De

Moortel, 2012) The energy transport in the Sun is understood up to just above the

photosphere, where it is mainly dominated by either radiation or convection. In

the layers of the atmosphere above the temperature minimum, there is no longer
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Fig. 1.2 Density (blue) and temperature (green) profiles of the solar atmosphere,
above the photosphere, combining the McWhirter et al. (1975) and Vernazza et al.
(1981) semi-empirical models.

an obvious mechanism transporting the observed quantities of energy. Convection

and conduction are both unable to transport enough energy due to the density be-

ing too low. Radiation is also ruled out due to the optical depth being too high, due

to the low density. While certain regions of the chromosphere have more complex

thermal characteristics, the statements above hold for the corona. Therefore, other

energy transport mechanisms have to be heating the solar atmosphere, from the

low chromosphere, to the corona.

1.2 Coronal Heating

To maintain the temperature of the solar atmosphere, especially the corona, energy

has to be transported from the photosphere upwards. The mechanism by which this

happens is largely unknown, however, it is very widely accepted that it involves the

solar magnetic field. One key reason for this is that, to a first order approximation,

the magnetic field in the solar atmosphere extends vertically away from the Sun. It

therefore connects the layers of the solar atmosphere together, providing a potential

corridor for non-thermal energy transport.

The magnetic field is thought to be generated in the tachocline, the region be-

tween the radiative and convection zones. It then is convected up with the plasma
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Fig. 1.3 The solar corona at 17.1 nm, showing plasma in the region of 1 million
degrees Kelvin. Taken by the AIA instrument on the SDO spacecraft on 06 Mar 2016
at 13:57. (Pesnell et al., 2012; The SunPy Community et al., 2015).

to the photosphere, where it emerges and forms magnetic structures on various

scales in the atmosphere. These structures range from small Magnetic Bright Points

(MBPs) to coronal loops with lengths up to a few 100 Mm. The interaction between

the plasma and the magnetic field under the wide variety of plasma conditions

present in the solar atmosphere are under intense investigation. Dependant upon

the relative strengths of the magnetic and kinetic pressure and the degree of ion-

isation the relative importance of the kinetic or magnetic properties vary and the

potential interactions to generate heating vary.

Two leading mechanisms have been proposed, by which this energy given to the

magnetic field could heat the atmosphere: magnetic reconnection and magneto-

hydrodynamic (MHD) waves. Magnetic reconnection is where the plasma is under

high stress, and re-configures itself, in the process transferring a large amount of

energy into plasma motions. This reconnection mechanism is widely thought to be

the driving forces behind some of the largest explosive events observed on the Sun,

such as Coronal Mass Ejections (CMEs) and solar flares. It is also thought to be a

good way to transfer magnetic energy into the plasma in the corona. The second,

MHD waves, are the focus of the rest of this thesis. MHD waves have the potential

to heat the corona by using the magnetic structures that span the solar atmosphere

as wave guides. MHD waves excited in, or below, the photosphere, then travel up

along the magnetic field lines. Higher up in the atmosphere these wave motions, by
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some mechanism, transfer their energy into the surrounding plasma. These waves

can occur on all scales of magnetic structures, from small-scale photospheric flux

tubes, to giant coronal loops. The driving mechanism for both these energy transfer

mechanisms are the plasma motions in, and below, the photosphere. It is therefore

important to understand the properties of the solar photosphere.

1.3 The Photosphere

-225.0 0.0 225.0

225.0

0.0

-225.0

X-position [arcsec]

Y
-p

os
it

io
n

[a
rc

se
c]

Fig. 1.4 A G-Band image of the solar photosphere.

The photosphere is a highly dynamic place where hot plasma, having risen through

the convection zone, cools and then sinks. The plasmas interaction with the mag-

netic field in the photosphere is obvious through various structures observed in the

photosphere. These structures vary from the large sunspots, which can be multiple

times the size of the Earth, to the small MBPs. As well as these magnetic structures

there are various scales of convection cells observed in the photosphere, commonly

named granulation. Granulation is the result of small-scale convection, where the

hot plasma rises in the centre of the convective cell and then cools and sinks around

the edges. The smallest and most prominent scale of granulation is shown in Fig-

ure 1.4.

The fact that the plasma and the magnetic field are generally locked together,

means that the convective motions of the plasma have an effect on the magnetic

field in the photosphere. The horizontal motion of the plasma at the top of the
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granulation cells, as it moves from the hot core to the cool edges, causes a build-up

of magnetic field in the lanes between these cells. It is in these regions that MBPs

are formed, by this accumulation of magnetic field. (Keys et al., 2013; Shelyag et al.,

2004)

MBPs are one structure of particular importance for the rest of this thesis. Small-

scale magnetic structures, like MBPs, are exceedingly common over the solar pho-

tosphere and therefore could have a cumulative effect if they are conduits for even

small amounts of energy into the higher regions of the atmosphere. In combination

with this, they are highly dynamic structures, formed in the chaotic inter-granular

lanes, where the plasma is driven by the horizontal convective motions as well as

the down drafts from the sinking plasma. These plasma motions, in combination

with the magnetic fields, have the potential to drive MHD waves of some variety,

especially when modelling the photosphere as an ideal MHD plasma (which will be

discussed more in Chapter 2). This thesis is going to explore the generation of MHD

waves in photospheric magnetic structures similar in properties to a MBP.

Chapter 2 will provide the theoretical background, while Chapter 3 describes

the numerical configuration and analysis methodology for the simulations that are

described in Chapter 4 to 6, and the conclusions are summarised in Chapter 7.

Finally, in Chapter 8 a new tool for solar physics data analysis, SunPy, is discussed.



Chapter 2

Background

2.1 Magnetohydrodynamics

Ideal magnetohydrodynamics (MHD) is the description of a plasma as a single per-

fectly conducting fluid. This description of the plasma has certain constraints on its

validity. For the purposes of study in this thesis, the ideal MHD equations are a very

applicable description of the plasma in the solar atmosphere. The first assump-

tion the MHD description makes regarding the nature of the solar plasma is that

it behaves like a fluid. This means that there are very frequent collisions between

the particles that comprise the plasma. Connected to this is the assumption that

the temperature of the electrons and the ions are equal, implying that there are

frequent interactions between the two species, and that the plasma can be treated

as a single fluid. Secondly, the MHD description is only valid in a certain window of

temporal and length scales. The characteristic length of the plasma has to be suffi-

ciently large so that the particle motion around the magnetic field can be ignored.

The temporal scales also have to be substantially longer than the frequency of the

kinetic motions. However, the temporal scale has to be short enough that the slow

dissipative effects, such as restive decay of the magnetic field, can be neglected.

Two other approximations are made, which enable the description of the plasma as

a single fluid: the quasi-neutrality assumption, which is the assumption that there

are very similar numbers of positive and negative charges present in the plasma; and

the assumptions that the relative velocities of the positive and negative charges are

small. Finally, but very importantly, it is assumed that the plasma is non-relativistic,

i.e. the motions of the plasma are substantially smaller than the speed of light. The

application of all these assumptions leads to a formulation of the equations govern-

ing the motion of the plasma based on Maxwell’s equations and the equations of gas

dynamics, these are the ideal MHD equations, which are given below:
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∂ρ

∂t
+∇· (ρv) = 0, (Mass Conservation) (2.1)

ρ

(
∂

∂t
+v ·∇

)
v+∇p − 1

µ
(∇×B)×B−ρg = 0, (Equation of Motion) (2.2)

∂p

∂t
+v ·∇p +γp∇·v = 0, (Energy Equation) (2.3)

∂B

∂t
−∇× (v×B) = 0, (Induction Equation) (2.4)

subject to

∇·B = 0, (Solenoidal Condition) (2.5)

p = kB
ρ

m
T, (Ideal Gas Law) (2.6)

where ρ is the density, v is the velocity, p is the pressure, γ is the ratio of specific

heats (usually taken as 5/3), B is the magnetic field, kB is Boltzmann’s constant,

m is the mass, T is the temperature, and µ is the magnetic permeability of free

space (Goedbloed and Poedts, 2004).

As these MHD equations form the base for all the simulations and analysis to

follow in this thesis, it is worth considering if the assumptions made when forming

the equations hold in the photosphere and chromosphere of the Sun where we will

be studying wave propagation. To consider the validity of the equations, we need

to pick a set of characteristic parameters for the region of the Sun over which to

assess the validity of the equations. To do this the photosphere is chosen, and the

parameters from the Vernazza et al. (1981) model C are used, along with this we

choose a length scale of 1km and a velocity of 1 km s−1, the values used below are

tabulated in Table 2.1. As discussed earlier there are a number of conditions that

must be met for the single fluid MHD equations to be valid:

1. Velocities are non-relativistic. This is definitely true for all the simulations in

this thesis, where velocity amplitudes are < 1km s−1.

2. The density must be high enough that collisions are frequent and that the

number of charged particles within a Debye radius is large 4πnλ3
D /3 >> 1 (Priest,

2014).

3. Length scales must be substantially longer than the characteristic lengths of

plasma motions, the longest of which is the ion gyro-radius.

4. Time scales must be substantially longer than the characteristic plasma time
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scales, the longest of which is the ion gyro-frequency.

5. The plasma must be totally ionised and quasi-neutral.

Using the parameters in Table 2.1 it can be demonstrated that condition two

is met, 4πnλ3
D /3 = 9.4384331 × 1015 >> 1. The ion gyro-frequency can then be

calculated using Ωi = Z eB
mi

, assuming that Z = 1 Ωi = eB
mi

= 14368250 s−1 ≡ Pi =
6.9597896× 10−8 s << 1 s, thereby satisfying condition three. Condition four can

be satisfied by showing that Ri = V0
Ωi

= 1 km s−1

14368250 s−1 = 6.9597896×10−5 m << 1 km.

Condition five, that of complete ionisation and quasi-neutrality is not met in the

photosphere, as you can clearly see in Table 2.1, ne ̸= ni . The ionisation ration in

the photosphere and low-chromosphere, up to 2000 km in height above the photo-

sphere varies from 10−4 to ≈ 1 (Priest, 2014). The sensitivity of the MHD equations

to this ionisation ratio can be compensated for under a regime with very high colli-

sion rates, where the neutrals and the ionised species have similar bulk properties

due to collisions. This is largely true in the photosphere, at least in the relatively

low-strength magnetic field structures studied in this thesis however, it ceases to be

true in the chromosphere where the collision rate is substantially lower. (Khomenko

et al., 2014) This has large potential effects on wave propagation in the region of the

solar atmosphere to be simulated in this thesis. These effects and specifically the

affects they have on wave generation and propagation are still a relatively young

area of study, and have often been ignored in wave propagation studies in the past.

Various work has been performed on the effects of this ambipolar diffusion caused

by this low ionisation ratio on the different types of MHD waves, i.e. Kumar and

Roberts (2003); Soler et al. (2010); Zaqarashvili et al. (2011). To better simulate the

physics of the chromosphere and include this ambipolar diffusion effect, multi-fluid

MHD could be employed, such as that described in Khomenko et al. (2014). In this

thesis, the MHD equations as described above will be employed, and the assump-

tion of total ionisation or very high collision rates will be made. This decision allows

the use of existing single-fluid mathematical and computational models, as well as

utilising the MHD wave analysis described in Section 2.1.1.

2.1.1 MHD Waves

Just like a non-ionised fluid, which supports a sound wave, due to the restoring

force of the pressure, plasma supports wave phenomena (Alfvén, 1942). Waves in

plasmas also interact with the magnetic field, and the coupling of the magnetic

field to the motion of the plasma. This leads to the presence of a wide variety

of wave modes in plasma, dependent upon the geometry and physical properties
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Parameter Characteristic Value
Temperature 6420 K

Velocity 10000 m
s

Magnetic Field 150 mT

Time Scale 1 s

Ion Number Density 1.66×1023 1
m3

Electron Number Density 6.433×1019 1
m3

Ion gyro-frequency 14368250 1
s

Ion gyro-radius 0.00069597896 m

Debye Length 1.3568597×10−8 m

Table 2.1 Table of characteristic values of plasma parameters in the photospheric
region of the simulations to be performed.

of the plasma being perturbed (Jess et al., 2015). For the analysis performed in

this chapter we shall consider a plasma with a static, and uniform background, the

magnetic field shall be of a constant strength and aligned solely with the z axis.

As will be demonstrated, this configuration leads to the existence of three wave

modes, called the fast-magnetoacoustic wave, the slow-magnetoacoustic wave and

the Alfvén wave. These are the only wave modes an infinite uniform plasma sup-

ports, in more complex geometries a wider variety of modes exist. This choice of

geometry is a highly simplified model of the solar atmosphere, the observed at-

mosphere has both strong non-uniformity in density and magnetic field as well as

many other properties which violate these assumptions. As will be discussed later,

this simplified model allows the construction of a model which can be easily applied

to the numerical simulations and physical inferences drawn.

In this section we are going to summarise the derivation of the MHD wave equa-

tion for a uniform plasma. The starting point for this analysis is the ideal MHD

equations that are described in Section 2.1. Our static background conditions are

described by Equation (2.7) below,

B = Bb + B̃(r, t ),

v = 0+ ṽ(r, t ),

p = pb + p̃(r, t ),

ρ = ρb + ρ̃(r, t ),

(2.7)

where the subscript b denotes a background quantity, and the tilde denotes a per-
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turbation to this quantity. The perturbation is much smaller than the background

quantity. In assuming a static background plasma, we are implicitly assuming the

solar atmosphere largely static, and there are no bulk flows present. This is clearly

false on most time scales observed on the Sun, however, the assumption going for-

ward is that on the short (≈ 10 minute) time scales discussed for the rest of this

thesis, that we can assume the background solar atmosphere is static. The presence

of flows and other background movement in the plasma will change the behaviour

of wave modes in the solar atmosphere and is the subject of study. Substituting

Equation (2.7) into the ideal MHD equations and neglecting 2nd order or higher

terms and any gradients of the homogeneous background quantities, leads to the

linearised MHD equations given below,

∂ρ̃

∂t
+ρb(∇· ṽ) = 0, (Mass Conservation) (2.8)

ρ0
∂ṽ

∂t
=−∇p̃ + 1

µ
(∇× B̃)×Bb , (Equation of Motion) (2.9)

∂p̃

∂t
+γpb (∇· ṽ) = 0, (Energy Equation) (2.10)

∂B̃

∂t
=∇× (ṽ×Bb), (Induction Equation) (2.11)

∇· B̃ = 0. (Solenoidal Condition) (2.12)

The sound speed and the Alfvén speed for the static background state are given by

c ≡
√
γpb

ρb
, (2.13)

b ≡ Bbp
ρb

, (2.14)

respectively.

To simplify the analysis and, with the aim of describing the velocity perturba-

tions in Section 2.1.2, it is helpful to describe the system of linearised MHD equa-

tions just in terms of the velocity v. This is achieved by substituting Equations (2.8),

(2.10) and (2.11) into Equation (2.9), which gives

∂2ṽ

∂t 2
− (

(b ·∇)2I+ (b2 + c2)∇∇−b ·∇(∇b+b∇)
) · ṽ = 0, (2.15)

where I is the identity matrix, b is the Alfvén speed given in Equation (2.14) and

c is the sound speed given in Equation (2.13) (Goedbloed and Poedts, 2004). This

equation can be solved using plane wave solutions, i.e. solutions of the formρ(r, t ) =
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ρ̂e i (k·r−ωt ), which equate to performing the following substitutions into Equation (2.15):
∂
∂t →−iω and ∇→ i k. Which, given in matrix form yields the relation:

−k⊥(b2 + c2)−k2
∥b2 0 −k⊥k∥c2

0 −k∥b2 0

−k⊥k∥c2 0 −k∥c2




v∥
vφ
v⊥

=−ω2


v∥
vφ
v⊥

 . (2.16)

In this form the notation for the components of the velocity is with respect to the

magnetic field. v∥ is the velocity component parallel to the magnetic field, v⊥ is

perpendicular to the magnetic field in one plane and vφ represents velocity perpen-

dicular to the magnetic field in the other plane. It should also be noted that the

notation for perturbed velocity is dropped for the rest of this chapter, as there is no

background velocity, so all velocity terms are perturbations.

To obtain non-trivial solutions the determinant of Equation (2.16) is calculated,

ω(ω2 −k2
∥b2)

(
ω4 −k2(b2 + c2)ω2 +k2

∥k2b2c2
)
= 0, (2.17)

where k = k∥+k⊥.

Three physically interesting solutions can be found to Equation (2.16), by equat-

ing the two terms, in brackets, to zero. The first term (ω−k2
∥b2) leads to the Alfvén

wave solution:

ω2
A = k2

∥b2, (2.18)

ωA =±k∥b, (2.19)

where the positive solution is forward-propagating and the negative solution backward-

propagating. The second term leads to two solutions, describing propagation in

both directions. Taking the square root of the second term, and then solving the

quadratic,

ω2
s, f =

1

2
k2(b2 + c2)

(
1±

√
1−σ(k2

∥/k2)
)

(2.20)

where

σ= 4b2c2

(b2 + c2)2
(2.21)

which are the fast and slow magneto-acoustic modes, for the positive and negative

solutions, respectively.

These three modes, and the ω= 0 entropy mode are all the oscillatory solutions

supported by a plasma with a uniform background. In Section 2.1.2, the perturba-

tion of the velocity vector caused by oscillations is identified, which will be used

throughout this thesis for identification of these modes.
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2.1.2 Velocity Perturbations

The following chapters use the components of the velocity perturbation to identify

and characterise the wave modes in the numerical domain. In this section it shall be

shown that the three wave modes derived in the last section each perturb a different

component of the velocity with respect to the magnetic field vector.

First, consider the Alfvén wave, with its eigenfrequencies given by Equation (2.19).

Substituting Equation (2.19) into Equation (2.16) we can clearly see that the only

component of the velocity perturbed by the Alfvén wave is the vφ component, or

that perpendicular to the plane of k.

Next, considering the slow and fast modes, and starting from Equation (2.20),

the velocity perturbations can be calculated. Substituting Equation (2.20) into the

eigenvalue equation leads to the following relationship between v⊥ and v∥:

v∥ =αs, f
k∥
k⊥

v⊥, (2.22)

where

αs, f = 1− k2b2

ω2
s, f

. (2.23)

At this stage it is helpful to make a simplifying assumption about the domain in

which we wish to derive this relationship. In Section 3.1, the physical domain to be

modelled in this thesis will be described such that it is entirely below the transition

region and has plasma β > 1 everywhere. In this region of the solar atmosphere

the plasma pressure or kinetic pressure is much larger than the magnetic pressure.

In other words, the kinetic effects dominate the dynamics of the plasma. This is

called the high-β regime, as β = pk

pm
, or β = 2c2

γb2
in terms of c and b as defined in

Equations (2.13) and (2.14) above, so in a high-β regime it is clear that c2 >> b2. This

assumption can be used to simplify Equation (2.20) because (c2+b2) ≈ c2. Applying

this assumption to Equation (2.21) and then to Equation (2.20):

σ≈ 4b2c2

(b2 + c2)2
(2.24)

≈ 4b2c2

c4
(2.25)

≈ 4b2

c2
(2.26)
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ω2
s, f =

1

2
k2(b2 + c2)

1±
√

1−σ
k2
∥

k2

 , (2.27)

=1

2
k2c2

1±
√

1− 4b2

c2

k2
∥

k2

 . (2.28)

(2.29)

Let,

δ=4b2

c2

k2
∥

k2
,

(2.30)

such that,

ω2
s, f =

1

2
k2c2

(
1± (1−δ)

1
2

)
. (2.31)

Performing a Taylor expansion of (1−δ)
1
2 and considering δ<< 1, gives,

f (δ) = f (0)+δ f ′(0)+O(δ2),

(1−δ)
1
2 = 1− 1

2
δ+O(δ2), (2.32)

= 1− 1

2

4b2

c2

k2
∥

k2
+O(δ2), (2.33)

(1−δ)
1
2 = 1− 2b2

c2

k2
∥

k2
+O(δ2). (2.34)

Substituting this back into Equation (2.31) one obtains,

ω2
s, f =

1

2
k2c2

(
1±

(
1− 2b2

c2

k2
∥

k2

))
. (2.35)

It is at this point the slow mode and the fast mode need to be considered in

isolation. The fast mode is the solution where the positive root is taken, and the
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slow mode the negative root. Considering the slow mode first:

ω2
s =

1

2
k2c2

(
1−

(
1− 2b2

c2

k2
∥

k2

))
, (2.36)

=1

2
k2c2

(
2b2k2

∥
k2c2

)
, (2.37)

ω2
s =b2k2

∥ . (2.38)

Then the fast mode:

ω2
f =

1

2
k2c2

(
1+

(
1− 2b2

c2

k2
∥

k2

))
(2.39)

=1

2
k2c2

(
2− 2b2

c2

k2
∥

k2

)
(2.40)

=k2c2 − k2c2b2

c2

k2
∥

k2
(2.41)

=k2c2 −k2b2
k2
∥

k2
. (2.42)

Applying the high β approximation c2 >> b2,

ω2
f =k2c2. (2.43)

Having simplified ωs, f , αs, f can be calculated:

αs =1− k2b2

ω2
s

(2.44)

=1− k2b2

b2k2
∥

(2.45)

=1− k2

k2
∥

(2.46)

=1−
k2
∥ +k2

⊥
k2
∥

(2.47)

=1−
k2
∥

k2
∥
+ k2

⊥
k2
∥

(2.48)

=k2
⊥

k2
∥

, (2.49)
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α f =1− k2b2

ω2
f

(2.50)

=1− k2b2

k2c2
(2.51)

=1− b2

c2
. (2.52)

Again, considering the high-β approximation,
b2

c2
<< 1

α f =1. (2.53)

Substituting into Equation (2.22) for the slow mode the following relation is ob-

tained:

v∥ =αs
k∥
k⊥

v⊥ (2.54)

=k2
⊥

k2
∥

k∥
k⊥

v⊥ (2.55)

=k⊥
k∥

v⊥, (2.56)

and, for the fast mode:

v∥ =α f
k∥
k⊥

v⊥ (2.57)

= k∥
k⊥

v⊥. (2.58)

Finally, to demonstrate the relative strength of the parallel and perpendicular

modes the following ratio is calculated:

|vz |
|vx |+ |vz |

. (2.59)
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For the fast mode this becomes:

|v∥|
|v⊥|+ |v∥|

=
k∥
k⊥ |v⊥|

|v⊥|+ k∥
k⊥ |v⊥|

, (2.60)

=
k∥
k⊥

1+ k∥
k⊥

, (2.61)

= 1
k⊥
k∥ +1

. (2.62)

By assuming that the waves propagate parallel to the magnetic field, i.e. upwards

through the atmosphere, implying k∥ >> k⊥, and
k⊥
k∥

<< 1 it can be seen that |v∥| >>
|v⊥|, and therefore the fast mode can be seen to perturb the parallel component of

the velocity.

However, for the slow mode this becomes:

|v∥|
|v⊥|+ |v∥|

=
k⊥
k∥ |v⊥|

|v⊥|+ k⊥
k∥ |v⊥|

, (2.63)

=
k⊥
k∥

1+ k⊥
k∥

, (2.64)

= 1
k∥
k⊥ +1

, (2.65)

Again, assuming that k∥ >> k⊥, i.e.
k∥
k⊥

>> 1, so that for the slow mode, |v∥| << |v⊥|.
The slow mode perturbs, predominately, the component of the velocity perpendic-

ular to the magnetic field.

2.1.3 Calculating Wave Flux

To calculate the relative strengths of the excited waves we compute the ‘wave energy

flux’ vector everywhere in the domain. To do this we use the equation for the wave

energy flux given in equation (2.14) of Leroy (1985). This equation can be written

using notation similar to the rest of this thesis, by applying H = B/µ0 and the vector

identity a× (b×c) = a ·cb−a ·bc. The result is given in Equation (2.66) below.

Fwave ≡ p̃k v+ 1

µ0

(
Bb · B̃

)
v− 1

µ0

(
v · B̃

)
Bb , (2.66)
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where a subscript b represents a background variable, a tilde represents a perturba-

tion from the background conditions and pk represents kinetic pressure.

The validity of this equation for the wave energy flux is widely discussed, as it is

only one of many solutions to the fundamental energy conservation equation. This

fact is discussed in detail in Section 4 of Bogdan et al. (2003), where the utility of

this method of calculating wave energy flux for numerical simulations of the solar

atmosphere is considered. Bogdan et al. (2003) compares the above definition of the

wave energy flux to the total nonlinear MHD energy flux, it is shown that the total

energy flux is dominated by a ‘stationary flow’ of energy, or local effects, rather than

the energy contained in the wave like phenomena that this thesis wishes to study.

It is because of this that this method of quantifying the energy contained within

the MHD waves generated in the simulation domain is chosen. Equation (2.66) is

derived in Leroy (1985) for linear MHD waves by both a perturbation method from

the general form of the MHD equations and from the linearised equations. The

relative merits of these two derivations is discussed in Leroy (1985). This equation

for wave energy flux is selected due to it being designed to represent the energy in

the linear MHD wave modes, and from other sources present in the equations. It

should not however, be taken as a perfect metric, which is why it is chosen only

to use Equation (2.66) to calculate the relative strengths of the wave modes. This

analysis provides the desired result: an understanding of how the different plasma

conditions and wave drives change the spectra of MHD wave modes generated,

while eliminating any concern about the accuracy of Equation (2.66) when account-

ing for absolute energy values.

2.2 Computational Methods

Differential equations are part of the fundamental language of physics, from their

origins describing motion in Newton’s laws to the MHD equations which describe

the dynamics of plasma in the Sun. Often coupled systems of differential equa-

tions cannot be solved analytically either at all or without making large assumptions

about the nature of the system, such as the geometry. The most widely known

system of equations that cannot be solved analytically is the three body problem,

where, described by Newton’s laws, three masses interact with each other via gravity.

The numerical solutions to this problem allowed the revolution in modern space

flight, and the launch of the two Voyager probes on their ‘grand tour’ of the solar sys-

tem. Numerical solutions to the MHD equations are widely used to gain an insight

into systems which are too complex to allow analytical solutions of the equations.

This section covers the basic principals of numerical approximations to differentials
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and some of the limitations of this method.

A differential is the gradient of a function over an infinitesimally small range.

The numerical approximation takes this range and makes it finite, calculating the

differential from an approximation of some kind, the most simple being a finite

difference approximation. The finite difference approach is the one used in this

thesis and commonly for computational fluid dynamics problems, it approximates

the differential by calculating the gradient over a finite length in space. In multiple

dimensions this changes to calculating the derivative over a finite grid, the resolu-

tion of which determines the accuracy of the solution.

2.2.1 Finite Difference Method

The definition of a derivative is f ′(x) = lim
∆x→0

f (x+∆x )− f (x)
∆x

; the finite difference method

approximates this equation by making ∆x finite. The general form of a finite differ-

ence equation is f (x +b)− f (x + a). The two simplest variations on this equation

are the forward and backward differences, ∆+ f = f (x +∆x)− f (x) and ∆− f = f (x −
∆x)− f (x), respectively. These two types of equations can be used to approximate

the derivative, f ′(x) ≈ f (x+∆x )− f (x)
∆x

for a forward difference and f ′(x) ≈ f (x)− f (x−∆x )
∆x

for a backward difference.

These equations can be derived from a Taylor expansion of f (x ±∆x),

f (x −∆x) = f (x)−∆x f ′(x)+ ∆
2
x f ′′(x)

2!
− ∆

3
x f ′′′(x)

3!
+ ∆

4
x f i v (x)

4!
+ ... (2.67)

f (x +∆x) = f (x)+∆x f ′(x)+ ∆
2
x f ′′(x)

2!
+ ∆

3
x f ′′′(x)

3!
+ ∆

4
x f i v (x)

4!
+ ... (2.68)

The forward difference equation is the first-order truncation of the f (x +∆x)

Taylor series, and likewise for the backward difference. From this it can be seen

that the truncation error of a forward and backward difference approximation is

O(∆x), and that the accuracy could be improved by increasing the number of terms

included.

Another way to fundamentally reduce the error, while maintaining the first-order

nature of these solutions is to combine the forward and backward difference into a

central difference approximation of the form f (x) = 1
2

(
f (x +∆x)+ f (x −∆x)

)
. To

first order the result is

f ′(x) = f (x +∆x)− f (x −∆x)

2∆x
. (2.69)

This formulation has error O(∆2
x) due to the combination of the two Taylor series ex-

pansions. The accuracy of the solution is important, for it determines how well the

computed solution represents the true solution. The most obvious way to increase
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the accuracy of the solution is to increase the number of terms included from the

Taylor expansion of the forward and backward differences.

The Sheffield Advanced Code (SAC), described in Section 2.3 uses the 4th order

central difference scheme to calculate the spatial derivatives. Below the derivation

of a fourth-order central difference scheme in one dimension is given. Starting from

Equations (2.67) and (2.68) and subtracting the second from the first, to the fourth

order gives,

f (x +∆x)− f (x −∆x) = 2∆x f ′(x)+ 2∆3
x f ′′′(x)

3!
+O(∆4

x). (2.70)

The second step is then to calculate the same subtraction for 2∆x which can be

written as

f (x +2∆x)− f (x −2∆x) = 4∆x f ′(x)+ 16∆3
x f ′′′(x)

3!
+O(∆4

x). (2.71)

Finally, subtracting Equation (2.71) from 8×(Equation (2.70)) and rearranging for

f ′(x) gives

f ′(x) = 8 f (x +∆x)−8 f (x −∆x)− f (x +2∆x)+ f (x −2∆x)

12∆x
+O(∆4

x), (2.72)

which is the fourth order central difference scheme in one dimension for a uniform

spacing of ±∆x . This scheme can be expanded into n dimensions by using the basic

property of differentiation ∂2u
∂x∂y = ∂

∂x

(
∂u
∂y

)
= ∂

∂y

(
∂u
∂x

)
. This scheme provides good

accuracy while being computationally efficient. However, as discussed in the next

section, it suffers with some numerical stability constraints.

Numerical Stability

Due to the nature of the approximations used in numerical calculation of deriva-

tives, some schemes are limited in their ability to provide an accurate solution in

certain conditions. There is a wide variety of methods used to numerically ap-

proximate derivatives, this section has dealt with one of the most conceptually and

mathematically simple methods. This simplicity means it can be implemented in a

very computationally efficient manner, however, it also means that the solution can

become unstable.

Instability in the calculation of derivatives occurs when a small error in the cal-

culation of the derivative at one point on the mesh is amplified as the calculation

proceeds on to subsequent points. This effect is a consequence of explicit schemes

for solving partial differential equations numerically. One condition for stability of
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an explicit time stepping scheme is the Courant-Friedrichs-Lewy (CFL) condition,

which imposes a limit on the size of the time step used to solve the equations based

on the speed of perturbations in the domain. This condition is not sufficient to

ensure stability however, and depending on the type of the solver and the physical

simulation further methods may have to be employed to ensure numerical stability.

In the Sheffield Advanced Code (SAC) (see Section 2.3), an explicit time scheme and

an explicit central-difference finite difference scheme is employed. To ensure the

stability of the solution in space when using the central difference scheme SAC adds

artificial diffusion and viscosity terms to the MHD equations, which act to stabalise

the solution at the very small scales. This is discussed more in the next section, but

will by necessity have some impact on the physicality of the solutions. This effect

however is tuned to be very small and is discussed in (Shelyag et al., 2008).

2.3 Sheffield Advanced Code

This thesis uses the Sheffield Advanced Code (SAC) (Shelyag et al., 2008) for all MHD

simulations, SAC is based on the VAC code (Tóth, 1996). The SAC code solves the

ideal MHD equations, for a plasma with static background conditions. This ap-

proach enables the code to solve for small perturbations, while the background con-

ditions vary by orders of magnitude through the solar atmosphere. The successful

application of this approach is clearly dependant upon a realistic, magnetohydro-

static background condition. The construction of this background is described in

Section 3.1.

The SAC code was developed to simulate MHD waves as solutions to the ideal

MHD equations given in Equations (2.1) and (2.4) with a static background. There-

fore, the equations solved by SAC are a rearranged version of the ideal MHD equa-

tions and are given below (taken from Shelyag et al., 2008),

∂ρ̃

∂t
+∇· [v(ρb + ρ̃)] = 0+Dρ(ρ̃), (2.73)

∂[(ρb + ρ̃)v]

∂t
+∇·[v(ρb+ρ̃)v−B̃B̃]−∇[B̃Bb+BbB̃]+∇p̃t = ρ̃g+Dρv [(ρ̃+ρb)v], (2.74)

∂ẽ

∂t
+∇· [v(ẽ +eb)− B̃B̃ ·v+vp̃t ]−∇[(B̃Bb +BbB̃) ·v]+ptb∇v−BbBb∇v = ρ̃g+De (ẽ),

(2.75)
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∂B̃

∂t
+∇· [v(B̃+Bb)− (B̃+Bb)v] = 0+DB (B̃). (2.76)

Where:

p̃t = p̃k +
B̃2

2
+BbB̃, (2.77)

is the total perturbation pressure, and:

p̃k = (γ−1)

(
ẽ − (ρ̃+ρb)v

2
−BbB̃+− B̃2

2

)
, (2.78)

so,

p̃t = (γ−1)

[
ẽ − (ρ̃+ρb)v2

2

]
− (γ−2)

(
BbB̃+ B̃2

2

)
, (2.79)

and,

ptb = (γ−1)eb − (γ−2)
B2

b

2
(2.80)

is total background pressure.

The first major change between these equations and the ones given in Equa-

tions (2.1) and (2.4) is the addition of the background and perturbation variables for

each term. This allows the study of the perturbations on top of a static background.

Another, more subtle, change is the move to the energy density per-unit volume e

and more importantly the addition of various D terms.

The D terms in the SAC equations are hyper-diffusion or hyper-viscous terms

that enforce numerical stability upon the equations, they are adapted from Nord-

lund and Galsgaard (1995) and shall not be replicated here in detail, however, they

are described in Shelyag et al. (2008). The function of the diffusive and viscous

terms are to smooth out any deviations from the solution on a local scale to a larger

scale, thereby reducing the compounding of the error keeping the solution stable.

There are secondary effects from using this type of numerical stability enforcement,

primarily that if the diffusion terms are too high it can lead to damping of the ac-

tual solution and deviation of the approximation from the correct solution, also in

regions of rapid change such as shocks it adds an extra non-physical diffusion to

the shock. However by choosing a minimum value of the coefficients to maintain

stability these effects can be reduced to an acceptable level, especially for the linear

wave studies presented in this thesis.
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Methodology

3.1 Magnetohydrostatic Background Conditions

The numerical simulations performed for the MHD wave mode analysis in this the-

sis all make use of the ability of SAC (Section 2.3, Shelyag et al. 2008) to solve for

perturbations on top of a static MHD equilibria. To perform these experiments, a

background atmosphere needs to be constructed. Quiet Sun regions were chosen

for study, therefore this section details the construction of an atmosphere represen-

tative of the quiet Sun. This choice reduces the complexity of the modelled magnetic

field and should allow for more accurate separation of the MHD wave effect from

any other energy transfer processes, such as bulk flows.

The first step in constructing a static model for the solar atmosphere is to under-

stand the hydrodynamic properties of the background plasma. Models of properties

such as the density and pressure have been created for various heights in the solar

atmosphere, based on observations and theory. The profile used in this thesis is

the Vernazza et al. (1981) model C, which covers the range of heights in the solar

atmosphere from the photosphere (0 km) to 2.5 Mm above the photosphere. A plot

of the density, pressure and temperature from this model is shown in Figure 3.1.

On top of this hydrostatic background, a magnetic field is required to study

MHD waves. The type of magnetic phenomena to be investigated are small scale

photospheric structures that occur frequently over the disk of the Sun. Magnetic

Bright Points (MBPs) were chosen as an observational feature to use as a guide for

the background model, since they are well studied and there are good estimates

of their physical properties. Feng et al. (2013) performed a study of Photospheric

Bright Points (PBPs), which are assumed to be analogous to MBPs, using the Dutch

Open Telescope, and found that the peak of the log-normal distribution gave a di-

ameter of 232 ± 40 km for the quiet Sun. They also show that 50% of the PBPs
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Fig. 3.1 Graph of the Vernazza et al. (1981) model C showing the density (blue),
pressure (green), and temperature (red). The solid lines show the interpolated
values used to construct the numerical model, at the resolution of the numerical
domain.

they analysed had the major axis of their ellipse less than 1.5 times longer than the

minor axis, showing that they are to a first approximation circular, however, with

some PBPs having quite a large deviation from this approximation. Utz et al. (2013)

performed a similar study investigating the average magnetic field strength of MBPs

using the Hinode SOT instrument. They find that in a quiet Sun region the average

magnetic field strength of a MBP is 135.0±1.0 mT. Sánchez Almeida et al. (2004) also

performed a statistical study of MBPs, finding that in their sample that most MBPs

have lifetimes of less than 10 minutes. They also note, and present some evidence,

that this is probably an upper bound estimate, and true lifetimes may be shorter.

From this information, and taking into account the properties of the hydrostatic

background chosen, a magnetic field can be constructed with properties similar to

the MBPs. The 3D magnetic field will be generated using work of Gent et al. (2014,

2013), and the implementation of that paper in the pysac library1. The magnetic

field will be constructed as a self-similar field, in the same manner as Schlüter and

Temesváry (1958), it is constructed for an axis-symmetric flux tube, with a Gaussian

radial profile given in Equation (3.3). The vertical profile of the magnetic field,

along the axis of the flux tube is given in Equation (3.6) as a summation of two

exponentials, one for controlling the profile in the low atmosphere and one for

1https://github.com/SWAT-Sheffield/pysac
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controlling the profile in the upper atmosphere. The magnetic field is therefore

specified by Equations (3.1) to (3.3), (3.5) and (3.6), which are modified versions of

the equations presented in Gent et al. (2014), simplified for a single flux tube model.

Bbx =−S(x −x0)B0zG
∂B0z

∂z
,

Bby =−S(y − y0)B0zG
∂B0z

∂z
,

Bbz = SB0z
2G +b00,

(3.1)

f = r 2B0z2

2
, (3.2)

G = exp

(
− f

f 2
0

)
, (3.3)

r =
√

(x −x)2 + (y − y)2, (3.4)

(3.5)

B0z = b01 exp

(
− z

z1

)
+b02 exp

(
− z

z2

)
, (3.6)

where Bbi are the components of the background magnetic field; f0 is the horizontal

scaling length; x0, y0, z0 are the coordinates of the footpoint of the field where z0 = 0

which is considered to be the photosphere as shown in Figure 3.1; b01 and b02 are

two real constants that sum to 1 and specify the relative strength of the two expo-

nentials controlling the vertical field strength profile, while z1 and z2 control the

field strength profile with height; finally S is the footpoint field strength. Similarly

to Gent et al. (2014) a uniform background field (b00) is also added to the model.

This weak ambient vertical field provides for a more realistic atmosphere, instead of

an atmosphere where there is only one magnetic flux tube present. The parameters

used in constructing the background atmosphere in this thesis are given in Table 3.1.

The result of this flux tube construction is a 2D Gaussian profile for the cross-

sectional magnetic field, with a full width at half maximum (FWHM) of ≈ 90 km,

and a full width at a 10th of maximum (FWTM) of 170 km at the photosphere, which

corresponds to the lower bound of the observations in Sánchez Almeida et al. (2004).

The primary reason for the smaller footpoint, in comparison with the observations

in Utz et al. (2013), is the hydrodynamic model used for the photosphere, which

has an upper limit to the amount of magnetic pressure it can support. Plots of the

magnetic field strength in the photosphere are shown in Figure 3.2, for both a 1D

and 2D profile. A vertical slice through the background atmosphere is then shown
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(a) 1D slice through the centre of the domain. The green line shows a fitted gaussian to
the numerical domain. The cyan lines show the FWHM and the magenta line shows the
FWTM. (The Astropy Collaboration et al., 2013)
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through domain. The black line shows the FWHM and the green line
shows the FWTM of the gaussian profile.

Fig. 3.2 Magnetic field strength plots for the photospheric layer in the numerical
domain.
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Parameter Value
b00 0.55 mT
b01 0
b02 1
f0 0.03938 Mm
z1 0.4 Mm
z2 0.25 Mm
S 143.6 mT

Table 3.1 Table showing all the parameters for Equations (3.1) to (3.3), (3.5) and (3.6)
used in constructing the background atmosphere for the simulations in this thesis.

in Figure 3.3, with the structure of the magnetic field shown over-plotted on the

Alfvén speed. As can be seen in Figures 3.3 and 3.4, the magnetic field expands

non-linearly as the kinetic pressure decreases with height. It should also be noted

that the background atmosphere has been constructed up to 1.6 Mm above the

photosphere defined in Vernazza et al. (1981). This is a deliberate choice to exclude

the region where the plasmaβ= 1. The reasons for this choice lie in the studies to be

performed using this atmosphere: this thesis is explicitly studying the generation of

MHD waves in the photosphere and chromosphere and not their propagation into

the higher layers of the solar atmosphere. It is therefore easier to exclude the very

interesting, but also complex physics that occurs around the β= 1 region.

Once the magnetic field has been constructed, the final step in constructing

the background atmosphere is to ‘add’ the magnetic field to the hydrostatic back-

ground. To achieve this in a way that creates a physical and magnetohydrostatic

background atmosphere, the physical effects of the presence of the magnetic field

on the plasma must be taken into account. This is done using the principal of

magnetohydrostatic equilibrium as described by Equation (3.7),

∇P =∇p +∇|B|2
2µ0

− (B ·∇)
B

µ0
= ρg, (3.7)

which describes the pressure balance between the kinetic and magnetic forces present

in a MHD plasma; where P is the total pressure, p is the kinetic pressure ρ is the

density, g is the acceleration due to gravity (assumed to be constant), and µ0 is

the vacuum magnetic permeability coefficient. The solution to this equation with

the magnetic field specified above is analytically derived in Gent et al. (2014, 2013).

The solution to the pressure balance equation is such that the kinetic pressure is

modified to compensate for the magnetic pressure and tension forces. This leads to

an analytically stable solution to be used by the SAC code.

The numerical domain chosen for the work presented in this thesis is 2.0×2.0×
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Fig. 3.3 Vertical slice through the background atmosphere, with the Alfvén Speed
shown in the background with magnetic field lines overplotted in blue.

1.6 Mm in size in the x, y and z directions, with a resolution of 1283 grid points,

giving a physical size of 15.6 × 15.6 × 12.5 km3 for each grid cell. A 3D rendering

of the domain is shown in Figure 3.4, which shows the extent of the domain, the

magnetic field geometry and the background density and thermal pressure.

3.2 Flux Surfaces

Once the background atmosphere has been constructed and simulations performed,

it is necessary to be able to identify and quantify the MHD waves excited by the var-

ious drivers. This section describes the analysis method developed for the research

presented in this thesis, which the proceeding chapters will utilise.

As shown in Section 2.1.2, MHD waves propagating through a plasma cause per-

turbations in velocity. As the perturbation velocity is one of the physical variables

calculated by the SAC code, this fact provides a mechanism by which we can identify

the waves in the simulation domain. However, the challenge is decomposing the

velocity vector, calculated by SAC in the reference frame of the simulation domain

(Vx , Vy , Vz) into the frame of the magnetic field i.e. a velocity parallel to the magnetic

field, V∥, perpendicular to the magnetic field, V⊥, and a component perpendicular

to the magnetic field in the other plane Vφ, in which the waves are mathematically
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Fig. 3.4 A 3D view of the background atmosphere. Magnetic field lines are shown
in green (log scale) with their seed points plotted as blue dots, density (log scale) in
yellow-black and thermal pressure (log scale) in yellow-blue. The full width at half,
tenth and 100th of maximum are shown in red contours at the base of domain.

described. To fully support all the types of linear and non-linear calculations SAC

is capable of this method needs to calculate this decomposition for each time step.

This is not strictly required for the simulations analysed in this thesis, as only lin-

ear perturbations are studied, however, this analysis method was developed to be

general.

Considering this problem more closely, the V∥ component is trivial to calculate,

as it is the projection of V onto B. Vφ, the azimuthal component, can be defined

as Vφ = V∥×V⊥. Therefore, the challenging component to calculate is V⊥, the com-

ponent perpendicular to the magnetic field. When only a two dimensional system

is considered (e.g. Bogdan et al., 2003; Fedun et al., 2011; Shelyag et al., 2012), the

vector perpendicular to the magnetic field is well defined, as it is perpendicular to

the parallel vector in the one degree of freedom available to it. In three dimensions

however, there is a whole plane perpendicular to the parallel vector. It is therefore

obvious that some other construct is needed.

The chosen solution to finding the V⊥ vector is to numerically construct a mag-

netic flux tube. A flux tube is a mathematical construct within a magnetic field that
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encloses a constant amount of magnetic flux over its whole length. Flux tubes, as a

consequence of the fact they contain a fixed amount of magnetic flux, trace the field

and move with the magnetic field lines. A flux tube constructed in the numerical

domain would have a boundary, a ‘flux surface’ which would allow the computation

of a normal vector from this surface. The magnetic field described in Section 3.1, has

a Gaussian profile, and is therefore continuous at every point in the domain. This

means that there is no defined ‘edge’ upon which to draw a flux surface, meaning

that it is possible to define any number of arbitrary flux surfaces at any point in the

domain.

The flux surface would be constructed numerically in the domain, and therefore

would be a series of small planes connected together to form the surface. The equa-

tion of a plane is defined by three arbitrary points in a Cartesian geometry, x1,2,3,

y1,2,3, and y1,2,3, where the numerical subscript denotes the index of the point; the

normal vector n = (a,b,c) and a constant d :

ax1,2,3 +by1,2,3 + cz1,2,3 +d = 0. (3.8)

Equation (3.8) can therefore be used to calculate the normal vector to the numeri-

cally constructed flux surface. Taking the three points which define the plane and

setting d = 0 leads to a set of simultaneous equations which can be solved for n.

3.2.1 Constructing Flux Surfaces Numerically

This section describes the numerical construction of the flux surfaces, and the set

of normal vectors defined upon them. This implementation employs the Visual-

isation Tool Kit (VTK2) and the MayaVi package (Ramachandran and Varoquaux,

2011) to provide a high-level Python interface to VTK. A flux surface is defined as

the set of field lines which form a boundary of a flux tube. Due to the fact that the

magnetic field, as constructed in Section 3.1, is continuous the choice of ‘boundary’

is arbitrary, as any boundary could be chosen. The process of computing these flux

surfaces is illustrated in Figures 3.5 to 3.9.

The first step, shown in Figure 3.5 as blue dots, is the selection of the seed points

for the field lines. This effectively defines the location of the flux surface. For the

background conditions described in Section 3.1 the magnetic field is axisymmetric,

therefore a circle of seed points is chosen at the top of the domain, centred around

the axis of the magnetic field defined in Section 3.1. The radius of this circle defines

which arbitrary flux surface is constructed.

2VTK 6.1 (www.vtk.org)

www.vtk.org
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The second step (Figure 3.6) is the tracing of the field lines from the given seed

points through the domain. This calculation is performed using the vtkStreamTracer
class, using the Runge Kutta 4 integrator, integrating backwards along the field lines.

The third step is the construction of a surface from the set of field lines traced in

step 2. The result of this is shown in Figure 3.7. The surface is generated using the

vtkRuledSurfaceFilter, which, as configured, connects each point in field line

fi with the two adjacent points in field line fi+1. This is then repeated for each

field line calculated, and between the last and first field lines. A zoomed in view

of the constructed surface is shown in Figure 3.8 with the edges of the component

polygons shown. The result of the vtkRuledSurfaceFilter is a series of triangles

connecting each point in adjoining field lines.

Finally, now that a set of triangular planes have been defined between the field

lines, normal vectors can be extracted. This is done automatically by

vtkRuledSurfaceFilter, however, the orientation of the vector can vary. There-

fore a check is implemented in the pipeline to ensure the normal vector is always

orientated away from the original axis of the background magnetic field. The result-

ing normal vectors are shown in Figure 3.9

The number of normal vectors calculated is dependant on the number of trian-

gles, which is, in turn, determined by the number of seed points and the step size of

the field line integrator. The number of seed points used is 100 for all the analysis

in this thesis. The resolution of the integrator is left at the default as calculated by

VTK.

Once the normal vectors have been constructed, it is simple to compute the

azimuthal vector from the magnetic field unit vector, and the normal vector nφ =
n⊥×n∥ where n⊥, n∥ are also both unit vectors. Using n⊥, n∥ and nφ it is possible to

project any vector quantity calculated in the simulations into this reference frame,

and use it for the analysis of MHD waves.
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Fig. 3.5 Due to the axisymmetric nature of the background field, an axisymmetric
ring of seed points is chosen. This example uses a ring at a radius of 936 km from
the centre of the domain.

Fig. 3.6 The seed points are then used to trace field lines. The field lines naturally
form a flux surface by definition.
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Fig. 3.7 Once the field lines have been traced a surface is constructed from small
polygons (triangles) using the vtkRuledSurfaceFilter algorithm.

Fig. 3.8 This figure shows the outlines of the triangles of which the surface
comprises.



34 Methodology

Fig. 3.9 By using the surface triangles, a vector normal to the surface can be
calculated at each vertex. This is done automatically by the vtkRuledSurfaceFilter
algorithm.



Chapter 4

MHD Waves excited by Different

Photospheric Drivers 1

4.1 Driving Waves from the Photosphere

As discussed in Chapter 2 the plasma conditions in the photosphere are conducive

to the generation of MHD waves. The photosphere is seeded with small-scale mag-

netic features and dynamic plasma motions as a result of the photospheric granu-

lation. In this chapter the motions that are common in the inter-granular lanes will

be studied for their potential ability to drive MHD waves in small scale magnetic

flux tubes. Considering the physical conditions of the inter-granular lanes, where

parcels of hot plasma rise, expand and then sink down these lanes. It is possi-

ble to imagine the motions present: vertical motion caused by rising and sinking

plasma; horizontal motion caused by the expansion and contraction of the plasma

as it cools; and spiralling motion in which plasma sinks down magnetic field lines,

analogous to that of water down a plug hole.

The horizontal and vertical motions are commonly observed in high-resolution

observations, the spiralling motions were observed in an inter-granular lane by Bonet

et al. (2010, 2008) and various types of spirals have been observed in the higher lay-

ers of the atmosphere by Wedemeyer et al. (2013); Wedemeyer-Böhm and Rouppe

van der Voort (2009); Wedemeyer-Böhm et al. (2012). These observations of mo-

tions in the solar atmosphere are used as inspiration for highly simplified oscilla-

tory drivers. The drivers described below are by necessity oscillatory, as this study

focuses on the MHD waves, it should be noted however, that oscillating spiral mo-

tions of the form described below have not been, and may never be observed. A

circular driver, an Archemedian spiral, a spiral which expands by a fixed amount for

1This chapter is based on Mumford et al. (2015) with permission from the copyright holder.



36 MHD Waves excited by Different Photospheric Drivers

each rotation, and a logarithmic spiral where the spiral expands by an exponentially

increasing amount with every rotation will be simulated. All three of these torsional

drivers, while observed or hypothesised to exist in regions of down flow in the so-

lar photosphere, are implemented in the numerical domain as horizontal motions,

without a down flow component. This is primarily done to simplify the model,

and to separate the interesting oscillatory behaviour from the sinking motion of the

plasma. As well as these circular and spiral drivers, a horizontal and vertical driver

will be simulated, to model the rising of the plasma, and the horizontal granular

buffeting observed in the inter-granular lanes.

To drive waves in the numerical domain described in Section 3.1, the plasma

has to be ‘moved’ by numerically adding a velocity field to the domain. This is

done by adding the desired velocity field to a 3D region close to the bottom of the

domain, within the modelled photosphere. This velocity field is attenuated with

a Gaussian profile in three dimensions and is located at the centre of the domain,

aligned with the foot point of the magnetic field. This velocity field is then multi-

plied by a sine function to make it periodic. The generic form of the driver is given

in Equation (4.1):

V(x, y, z) = F(x, y, z) e
−

(
z2

∆z2 + x2

∆x2 + y2

∆y2

)
sin

(
2π

t

P

)
, (4.1)

where, V(x, y, z) is the output velocity field, F(x, y, x) is an arbitrary function which

defines the form of the driver, ∆x, ∆y , ∆z are the half-widths of the Gaussian func-

tion in the three spatial dimensions, and P is the period of the driver. The values

used for the width of the Gaussians are fixed through out this thesis and are: ∆x =
∆y = 0.1 Mm and ∆z = 0.05, the origin of the driver is at z = 100 km above the

photosphere.

The five representative driving motions, horizontal, vertical, circular, Archeme-

dian spiral and logarithmic spiral are then defined by the form of F(x, y, z). For the

horizontal and vertical drivers F(x, y, z) is a constant in the direction of the motion,

x for horizontal and z for vertical, for the spiral drivers the forms of F(x, y, z) are

given for the circular driver in Equation (4.2),

Fx = A
y√

x2 + y2
, (4.2a)

Fy =−A
x√

x2 + y2
, (4.2b)
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the logarithmic spiral in Equation (4.3),

Fx = A
cos(θ+φ)√

x2 + y2
, (4.3a)

Fy =−A
sin(θ+φ)√

x2 + y2
, (4.3b)

where

θ = tan−1
( y

x

)
, φ= tan−1

(
1

BL

)
.

and the Archemedian spiral in Equation (4.4),

Fx = A
B A x

x2 + y2

y√
x2 + y2

, (4.4a)

Fy =−A
B A y

x2 + y2

x√
x2 + y2

. (4.4b)

B A = 0.005 and BL = 0.05 are dimensionless expansion parameters for the Archeme-

dian and logarithmic spirals, respectively. The amplitude A of all the drivers is set

to 10 ms−1 for all the simulations performed in this chapter and the period is fixed

at 240 s. The period of 240 s was chosen arbitrarily, but primarily to allow for two

complete periods within the 600 s run time of the simulations, with a small margin.

Visualisations of these velocity fields can be seen in Figure 4.1.

4.2 Running and Analysing Simulations

Five simulations, one for each driver profile, were performed using the SAC code as

described in Section 2.3. These simulations were performed using the background

conditions described in Section 3.1 on a 1283 grid with physical dimensions of 2.0×
2.0 × 1.6 Mm3 in the x, y and z directions respectively, and with an origin in the

z direction of 0.061 Mm above the photosphere. The plasma was driven using the

different drivers described in Section 4.1 continuously for the 600 s of physical time

simulated.

Once the MHD simulations were complete, the data was loaded into the Python

flux surface analysis pipeline, as described in Section 3.2, which then calculated the

velocity perturbation and wave flux vectors in the frame of the flux surfaces, which

are analysed in Section 4.2.1.
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(a) Logarithmic spiral velocity field with expansion factor BL =
0.05
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(b) Archemdian spiral velocity field with expansion factor B A =
0.005
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(c) Uniform spiral velocity field

Fig. 4.1 Horizontal cuts through the spiral driver at the peak amplitude height z =
0.01 Mm for the three torsional drivers. Red lines are streamlines of the velocity
vector field, overplotted on the velocity magnitude |V |.
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(a) Snapshot at t = 154 s

(b) Snapshot at t = 461 s

(c) Snapshot at t = 600 s

Fig. 4.2 Snapshots at three time steps of a 3D render of the simulation domain for
the logarithmic spiral driver with a flux tube radius of r = 936 km (at the top of
the computational domain). Shown in the domain are magnetic field lines and field
strength contours in cyan, as well as the velocity vector field at the peak height of the
driver shown as green and black arrows at the base, and the reconstructed surface
coloured with the azimuthal velocity component (Vφ).
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4.2.1 Analysing Wave Excitation

The results of applying the analysis discussed in Section 3.2 is shown in Figure 4.2, as

snapshots at times 154, 461 and 600 s of the wave propagation along the flux surface,

as generated by a logarithmic spiral driver with a period of 240 s. The strength

and positions of these perturbations change as the simulations progress and the

wave fronts travel along the tube. Also shown is a vector plane at the peak vertical

height of the driver, which illustrates the velocity field driving the oscillations. To

analyse the propagation of separate wave modes the velocity components along

a single magnetic field line on the flux surface were extracted and time-distance

diagrams for each component were constructed. One magnetic field line is chosen

at the beginning of the simulation and the values on the polygons between this field

line and an adjacent field line are extracted for each time-step and presented as the

time-distance diagrams in Figure 4.3. The perturbations are assumed to be linear,

therefore no correction is made for the (vertical) movement of the surface itself.

This assumption is verified by calculating the variation in the coordinates for the

polygons at each time-step and it is found to be substantially less than one grid

point for all the results presented here.

Mode Identification

To aid in identifying the observed MHD wave modes the phase speed of the per-

turbations in the time-distance diagrams shall be considered initially. To aid in the

analysis of Figure 4.3 the Alfvén speed v A and sound speed cs , as well as the speed

of the fast magneto-acoustic wave (fast speed) v2
f =

√
c2

s + v2
A and the slow speed

v−2
s =

√
c−2

s + v−2
A are overplotted for the equilibrium background, starting at 60 s,

the first peak of the driver amplitude. It should be noted that these speeds are an

approximation of the simulated system because of the non-constant, non-uniform,

non-straight magnetic field in a stratified solar atmosphere, where one would ex-

pect the observed phase speed to deviate from these first-order estimations, as can

be seen in Figure 4.3.

First, the horizontal driver is considered (Figure 4.3a), in the most detail. In the

V∥ component we expect to see the fast mode being the dominant mode, which is

observed. There is also a weaker presence of a perturbation with a phase speed

closer to that of the Alfvén and slow speeds but offset from the starting point of the

over-plotted lines. This is attributed to the coupling of the wave modes in our non-

homogeneous plasma. In the V⊥ component the presence of a slow mode travelling

close to the slow speed vs (solid line). This mode is the dominant contribution in

this panel and is much more pronounced than the parallel component. Finally, the
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azimuthal velocity component (Vφ) has a very small contribution, of an order of

magnitude less, travelling at the Alfvén speed, which is attributed to the driver not

being perfectly centred upon the flux tube axis.

Comparing the results of the wave excitation by the vertical driver to that of the

horizontal driver, it is easy to draw parallels in the description. However, there are

some key differences. In this case, of wave excitation by the vertical driver, most of

the perturbation is in the V∥ velocity component, with a much stronger contribution

from the fast mode (≈ 20× stronger than V⊥). There is also evidence of a rapidly

spatially attenuated mode observed in the top panel of Figure 4.3b. This spatial

damping is attributed to the expansion of the magnetic flux tube, and the dispersion

of the wave energy over a wider volume as the tube expands. The V⊥ component on

the vertical driver’s time-distance diagram is very weak, with only a weak fast mode

component easily visible, apart from some reflection from the top boundary after

≈ 300 s. Finally, the vertical driver’s Vφ component is, like its horizontally driven Vφ
counterpart, substantially weaker than the other two components.

Next, the results of the three simulations with torsional drivers are analysed.

The time-distance diagrams for the three different torsional drivers have similar

properties; the vast majority of the perturbation for all the torsional drivers is, as

expected, in the Vφ component. The time-distance diagrams for the uniform tor-

sional and the Archimedean spiral driver, Figures 4.3c and 4.3d, have in their V∥
component clear evidence of both the fast mode travelling close to the fast speed,

and another very weak mode travelling close to the slow speed. This is attributed to

the same wave mode coupling as observed in the horizontal driver’s time-distance

diagram. The logarithmic spiral simulation has a more predominant signature in

the V∥ velocity component, where the rapidly spatially damped slow mode is the

predominant signal, similar to that observed in the case of the vertical driver. In

all three torsional drivers there is a notable presence of the slow mode in the V⊥
component. The Vφ component is clearly dominant, attributed to weaker coupling

between the Alfvén mode and the magnetoacoustic modes, as opposed to between

the magnetoacoustic modes. The signals in the two other components, however,

demonstrates that even the circular driver can excite non Alfvén modes.

To gain a clearer understanding of the relative strength of each wave mode iden-

tified in Figure 4.3 we now calculate the percentage wave energy flux carried by each

component.
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Fig. 4.3 Decomposed velocity perturbation time-distance diagrams along the flux
surface at radius r = 468 km for all simulated drivers. Horizontal black lines
are plasma-β contours, over-plotted are characteristic background speeds, the
dot-dashed line is the fast speed (v f ), the dashed line is the sound speed (cs), the
dotted line is the Alfvén speed (v A) and the solid line is the slow speed (vt ).
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Fig. 4.4 Decomposed wave energy flux time-distance diagrams along the flux
surface at radius r = 468 km (approximately central in the flux tube) for all simulated
drivers. The three components of energy flux (F∥, F⊥ and Fφ) are calculated, then,
the proportion for each component is shown for a strip up the flux surface.
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4.2.2 Wave Energy Flux

To calculate the relative strengths of the excited waves the ‘wave energy flux’ vector

is computed everywhere in the domain using Equation (2.66) (see Section 2.1.3 for

a discussion on this choice). Once the wave energy flux has been computed, it

is decomposed into parallel, perpendicular and azimuthal components using the

same method as the velocity vector. Using the analysis method outlined in Sec-

tion 4.2.1 time-distance diagrams are computed for the relative wave energy flux

(see Figure 4.4). Due to the ratio nature of the data being displayed in Figure 4.4,

the plots are filtered such that all points where F 2 < 10−5 are masked from display.

This prevents the early points in the simulation biasing the results when no pertur-

bations have yet reached those points in the domain. This filtering is also applied to

the calculation of the average wave energy flux.
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Fig. 4.5 Percentage total available energy flux comparison (calculated using
Equation (2.66)), for all drivers and all flux surfaces. The F∥ component is shown
as green, the F⊥ component is shown in red and the Fφ component is shown in
blue.

By studying Figures 4.4 and 4.5 we find that for the wave modes excited by the
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horizontal driver 58.0% of the energy flux is in the perpendicular component F⊥
which is attributed to the slow mode. The rest of the flux is in the parallel com-

ponent F∥. The vertical driver simulation has 86.2% of the energy flux in the F∥
component, identified as the fast sausage mode, with the F⊥ component only con-

tributing 13.1%. The simulations with spiral drivers all have between 40% and 60%

of their energy flux in the azimuthal component Fφ. The logarithmic spiral source

excites a slightly higher percentage of the flux in the slow mode and the fast mode,

in comparison to the uniform torsional and Archimedean spiral driver.

The summarised energy flux results, and their equivalents for different flux tube

radii are shown in Figure 4.5. With reasonable accuracy we can attribute each of the

energy flux components shown to one or two MHD wave modes. The F∥ component

is generally the fast mode. The F⊥ component is almost exclusively excited by the

slow mode. Finally, the Fφ is attributed to the Alfvén mode. Another interesting

result is that the type of spiral driver used has a minimal impact upon the amount

of flux in each wave mode (see Figure 4.5). The two spiral drivers had comparable

flux and wave mode profiles to the circular driver, showing that the two spirals did

not generate extra, non-Alfvén modes. This could be dependent upon the spiral

expansion factor used in the logarithmic and Archimedean spirals, which could be

the subject of a further parameter study.

4.2.3 Flux Tube Radius

The plasma properties vary within the computational domain due to the magnetic

field configuration. This also means that the wave propagation on the surface of a

flux tube is dependent upon its radius. The radius of the flux tube is defined at the

top of the domain as its initial radius. There are an arbitrary number of definable

flux tube surfaces in our domain as defined from the top outer edge of the domain

inwards. To demonstrate the difference in propagation caused by the change in

plasma properties, especially β, over the domain all the analysis was performed for

three different flux tubes, with radii of r = 936 km, r = 468 km and r = 156 km; These

radii are chosen to represent a good spectrum across the domain.

The results of the flux calculations are summarised in Figure 4.5. The smallest

radius flux tube, shown in the top panel, shows that, for the torsional driver simu-

lations, less azimuthal (Fφ) flux is generated closer to the axis of the flux tube. This

is expected due to a higher magnetic pressure towards the axis of the tube; the flux

is, instead, excited evenly in the parallel (F∥) and perpendicular (F⊥) components

as predominately fast and slow modes. For higher radii surfaces the F∥ component

dominates the F⊥ component; as the distance from the axis increases the influence
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of the slow mode decreases. In the case of the horizontal and vertical drivers, most

of the flux is excited in the slow and fast modes respectively. In the horizontal

case, for the larger radius tube, the fast mode, in the F∥ component, again begins

to dominate the slow mode, in the F⊥ component.

4.3 Conclusion

This chapter has presented 3D numerical simulations showing wave propagation

from simulated photospheric drivers, up through the low solar atmosphere towards

the transition region. Simulations were run mimicking five types of photospheric

motions: horizontal, vertical, uniform torsional, Archimedean and logarithmic spi-

ral velocity fields were modelled. The resulting perturbations were analysed, the

wave modes identified and their percentage wave energy flux contribution deter-

mined. It has been shown that for all drivers with a torsional component the main

contribution to the flux was the Alfvén wave. While the vertical driver mainly excited

the fast modes and the horizontal driver primarily generated the slow mode, in these

high β simulations.

This chapter studied three torsional drivers, the circular driver, the Archemedian

spiral and the logarithmic spiral. It is interesting to note that these driving profiles

do not exclusively excite the Alfvén mode. In fact they excite less than 60 % of the

total wave flux into the Alfvén mode. This result demonstrates that these physical

driving velocity fields, with a Gaussian profile generate a more varied set of modes

than an analytical eigenmode driver. Also this means that it is highly probable that

a complete spectrum of MHD modes are omni-present in the low solar atmosphere,

and all with non-negligible magnitudes. On top of this, the lack of variation between

the types of spiral drivers is interesting. It would have been logical to hypothesise

that the spiral drivers would generate significantly less Alfvén mode flux than the

simpler circular driver, however, this is not the case. It is probable that the selection

of relatively low expansion factors for the spirals has a significant bearing on this

result and this therefore will become the study of the next chapter.

In this chapter some arbitrary choices were made regarding the parameters for

the driver profiles. The first of these was the choice of amplitude A = 10 ms−1, this

choice, while arbitrary, is largely redundant, because as mentioned, the wave modes

under study are linear in nature, this means that the properties of the wave should

scale linearly with amplitude. The other choices made, namely the choice of BL =
0.05 and P = 240 s are going to be the study of the next two chapters.



Chapter 5

Effects of Expansion Factor on

Logarithmic Spiral MHD Wave

Excitation 1

This chapter will investigate the effect of logarithmic spiral-type velocity drivers

in the solar photosphere and their properties as MHD wave generation mecha-

nisms. Chapter 4 studied five representative photospheric velocity fields as drivers

for MHD waves. It was concluded that the logarithmic, Archemedian and uniform

spiral drivers all generate similar (±10%) excited energy fluxes. One of the param-

eters selected arbitrarily in Chapter 4 was the expansion factors for the logarithmic

and Archemedian spirals. This chapter analyses the effects of the spiral expansion

factor on the MHD waves generated by these velocity fields, motivated by the ob-

servational studies and constraints of Bonet et al. (2008). In Bonet et al. (2008)

magnetic bright points (MBPs) were observed spiralling in an inter-granular lane,

where cold plasma sinks down into the convection zone. Bonet et al. (2008) fit the

observed locations of the MBP with time to the equation for a logarithmic spiral,

shown in Equation (5.1),

θ = 1

BL
ln

( r

a

)
, (5.1)

(Feynman et al., 1964) where r is the radius of the spiral and a is a positive real

constant, and obtained a value of B−1
L = 6.4±1.6 ≡ BL = 0.15 for the dimensionless

expansion factor parameter.

In Bonet et al. (2010) a larger sample of photospheric vortices were studied, de-

spite not fitting spirals to the observed motions, a number density of photospheric

vortices was calculated as d ≃ 3.1×10−3 vortices Mm−2 minute−1, which therefore

1This chapter is based on Mumford and Erdélyi (2015) which is licensed under the terms of the
CC-BY 4.0 License.
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provides an upper limit of the number of logarithmic spiral-like vortices in the solar

photosphere.

This chapter investigates the role of the spiral expansion factor (BL) in the gen-

eration of MHD waves in a non-potential Gaussian magnetic flux tube, embedded

in a realistic stratified solar atmosphere. The observational result of Bonet et al.

(2008) is used as a starting point and values ±3× and ±10× that value are then

employed to give five points in the parameter space, centred around their result,

which is illustrated in Figure 5.1.

5.1 Simulation Configuration

The numerical domain used for the simulations described in this chapter is identi-

cal to that used in Chapter 4 and described in Section 3.1. This magnetohydrostatic

background is perturbed during the simulations using a 3D Gaussian weighted log-

arithmic spiral velocity driver, as described by Equations (4.3) and (5.2):

Vx = A
cos(θ+φ)√

x2 + y2
e
−

(
z2

∆z2 + x2

∆x2 + y2

∆y2

)
sin

(
2π

t

P

)
, (5.2a)

Vy =−A
sin(θ+φ)√

x2 + y2
e
−

(
z2

∆z2 + x2

∆x2 + y2

∆y2

)
sin

(
2π

t

P

)
, (5.2b)

where:

θ = tan−1
( y

x

)
, φ= tan−1

(
1

BL

)
,

A = 20p
3

, ∆x = ∆y = 0.1 Mm and ∆z = 0.05 and P = 180 s. BL is the logarithmic

spiral expansion factor discussed above (Mumford et al., 2015). As in Chapter 4, the

observed profile from Bonet et al. (2008) is implemented in the horizontal plane,

without any down flow component.

Figure 5.2 shows the calculated velocity profiles for the peak vertical height of

the driver. Overplotted on these profiles are streamlines that trace a logarithmic

spiral with different expansion factors.

5.2 Analysis

The analysis of these simulations proceeds in the same manner as the analysis de-

scribed in Section 3.2 and 4.2.1. The flux surfaces are constructed and the velocity

vector and wave flux vectors are decomposed in to the flux surface frame. These

vectors are then used to identify and quantify the wave modes propagating within
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0.015 0.050 0.150 0.450 1.500

BL

Fig. 5.1 The parameter space of BL used in this work, with the x-axis on a logarithmic
scale. The green error bars show the fit uncertainty of the value observed by Bonet
et al. (2008).

the domain, as described in Section 2.1.2. The wave flux vector, calculated using

Equation (2.66), is used to quantify the relative strengths of the components, as

discussed in Section 2.1.3.

5.2.1 Results

To assist in the visualisation and analysis of the results provided by the flux surfaces

the vector components along one field line are extracted for all time steps. These

data are then plotted as time-distance diagrams, as described in Section 4.2.1, the

resulting figures are show in Figures 5.3 and 5.4.

Combining the decomposed velocity vector plotted in Figure 5.3 and the de-

composed wave flux vector plotted in Figure 5.4 we can reliably describe the nature

of the waves generated in the simulations. Overplotted on all panels in Figures 5.3

and 5.4 are the phase speeds for the background conditions, the dot-dashed line is

the fast speed v f , the dashed line is the sound speed cs , the dotted line is the Alfvén

speed v A and the solid line is the slow speed vs . By comparing these characteristic

phase speeds to the ridges in the time-distance diagrams it can be seen that in

the panels for the torsional component (third panel in each figure), the dominant

perturbation travels with the Alfvén speed (solid line). This perturbation is inter-

preted as an Alfvén wave. For the perpendicular component (second panels) it can

be seen that the dominant perturbation travels with the fast speed (dashed line),

therefore this perturbation could be interpreted as a fast mode. It can be inferred

that this perturbation is more likely to be a sausage mode perturbation due to the

radial nature of the driver, in that it should not perturb the axis of the flux tube

and, that we observe no significant displacement on the flux surfaces during the

simulation. The most interesting result is shown for the parallel component (top

panel in each figure), where for lower values of BL , the amplitudes are low, but the

perturbations that are present travel with the fast speed (dotted line). However,
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Fig. 5.2 Cuts in the [x-y] plane through the driving velocity field. The magnitude of
velocity is plotted in blue with velocity vectors overplotted in black and a streamline
seeded at the centre plotted in red. A plot is shown for each value of BL used in the
simulations.
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as BL increases the perturbations change form. There seems to appear a second,

superimposed perturbation travelling with a speed close to that of the slow (or tube)

speeds. This second perturbation seems to grow proportionally to BL , and can

be seen to be dominant in Figures 5.4d and 5.4e. This second, and for large BL ,

dominant perturbation is clearly being driven by the radial component of the spiral

driver. A comparison can be drawn between this perturbation and those driven by

the vertical driver in Chapter 4, and as in Chapter 4 it is attributed to a sausage mode.

The presence of both the fast and slow mode in the parallel component of velocity

is attributed to the uncoupled boundary conditions for the velocity and magnetic

field, as the interaction between the two components at the boundary could drive a

second wave mode.

The wave flux graphs in Figure 5.4 are components normalised to the magnitude

of the wave flux vector, thus showing the relative strengths of the components. Tak-

ing Figure 5.4a for the BL = 0.015 spiral it can be seen that most of the excited wave

flux is in the azimuthal component, associated with the Alfvén wave. As the expan-

sion factor (BL) increases, the driver becomes more radial, and the flux starts to shift

from the azimuthal component into the parallel component. This is interpreted as

a change of the dominant mode from the torsional Alfvén wave into a superposition

of the fast and slow modes, with dominant velocity perturbations parallel to the field

lines. It can be seen that within the parameter range observed in Bonet et al. (2008)

and the simulations spanning this range (shown in Figures 5.3c and 5.3d), the paral-

lel component becomes substantially more dominant. This means that the change

in the spectrum of excited MHD wave modes is sensitive to the expansion factor of

a spiral driver, in the region of the expansion factors observed in the photosphere.

In Chapter 4 it was observed that there is a small but significant percentage of

the wave energy flux contained in the perpendicular component. This appears to

be inversely coupled to the spiral expansion factor of the driver, as it decreases pro-

portionally with the azimuthal wave flux component. The size of the perpendicular

component is also inversely proportional to the initial radius of the flux surface, as

can be seen by its decrease in the three panels of Figure 5.5.

This change in excitation of MHD waves is summarised in Figure 5.5, where the

average value of normalised wave flux
F 2
∥,⊥,φ

F 2
∥ +F 2

⊥+F 2
φ

over all time is plotted. Fig-

ure 5.5 shows that, between the values of BL = 0.15 and BL = 0.45 there is a turn-

ing point where the torsional component becomes less dominant, with expansion

factors larger than BL = 0.15 having the parallel component being the dominant

component. This turning point occurs within the range of the fitted spirals in Bonet

et al. (2008) and, therefore, implies that photospheric spirals may indeed generate a
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Fig. 5.3 Velocity time-distance diagrams for all simulated values of BL for the surface
with an initial top radius of 468 km. Shown in green are the phase speeds for the
background conditions, the dot-dashed line is the fast speed v f , the dashed line is
the sound speed cs , the dotted line is the Alfvén speed v A and the solid line is the
slow speed vs . Note that plasma β> 1 for all heights in the domain.
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Fig. 5.4 Normalised wave energy flux time-distance diagrams for all simulated
values of BL for the surface with an initial top radius of 468 km. Shown in blue
are the phase speeds for the background conditions, the dot-dashed line is the fast
speed v f , the dashed line is the sound speed cs , the dotted line is the Alfvén speed
v A and the solid line is the slow speed vs . Note that plasma β > 1 for all heights in
the domain.
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variety of different MHD modes with varying strengths.

5.3 Conclusions

This chapter presented a parameter study of the logarithmic spiral expansion factor.

This parameter controls how tightly wound the logarithmic spiral is, a series of val-

ues were chosen around an observed value from Bonet et al. (2008). The simulations

that were run with expansion factors less than BL = 0.15 (the value in Bonet et al.

(2008)), result in the Alfvén wave being dominant, with the exception of the 156

km flux surface. The behaviour of the wave modes on the 156 km flux surface is

worthy of note, the Fφ and F⊥ components, attributed to the Alfvén and slow modes

respectively, track each other closely for all values of the expansion factor. This has

two potential interpretations, firstly, that the slow mode and the Alfvén mode, close

to the axis of the magnetic flux tube are both weakened equally as the expansion

factor increases or secondly, that there is some coupling between the perturbations

in both the Fφ and F⊥ components. It can be seen that this link between the Fφ and

F⊥ components can not be seen in the results from the 936 km surface, and to a

substantially lesser extent in the 468 km surface results.

As the expansion factor increases beyond BL = 0.15 the F∥ component becomes

dominant, with ≈ 80% of the flux being in the F∥ component for BL = 1.5 and the

156 km surface. As can be seen in Figure 5.2 the driver profile for BL = 1.5 is largely

radial, making it expected that some significant change in the wave mode distribu-

tion would occur. The results shown in Figures 5.3e and 5.4e resemble those of the

vertical driver simulated in Chapter 4 and the results in Figures 4.3e and 4.4e. This

is probably a result of the spherical geometry of the problem, and it is interpreted

by the author as both drivers exciting sausage mode oscillations.

The next chapter will investigate the relative strengths of the wave modes as

period is varied for the logarithmic spiral driver.
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Fig. 5.5 Comparison of percentage square wave energy flux for all simulations and all
calculated flux surfaces, plotted against spiral expansion factor on a log scale. The
parallel component of wave energy flux is shown as blue circles, the perpendicular
component as green dashes and the azimuthal component as red crosses. The green
shaded region shows the fit uncertainty in the value observed in Bonet et al. (2008)





Chapter 6

Effects of Period on MHD Wave

Generation from a Logarithmic Spiral

Driver

Chapter 4 and 5 studied the effects of the driving velocity profile and the logarithmic

spiral expansion factor (BL) on the MHD wave excitation. In both of these previous

chapters, arbitrary periods were chosen, in this chapter the effect of this choice

of period on the wave excitation by the logarithmic driver is studied. The solar

photosphere is populated with an outstanding variety of different frequency wave

modes. Acoustic (p-mode) waves have a wide frequency spectra, with a peak power

at 5 minutes (Leighton et al., 1962), and a large number of MHD waves at different

frequencies have been observed in the low solar atmosphere; Dorotovič et al. (2014);

Freij et al. (2014) observe oscillations in magnetic pores at periods ranging from 3

minutes to 25 minutes; Morton et al. (2011) observe sausage modes with periods

ranging from 30 to 447 seconds; and Fujimura and Tsuneta (2009) observe oscilla-

tions with periods between 3 and 6 minutes in pores and between 4 and 9 minutes

in the inter-granular lanes. Multiple other studies have also observed oscillations

at different frequencies (e.g. Bogdan and Judge, 2006; Jess et al., 2009; Kobanov

et al., 2006; Mathioudakis et al., 2013; McIntosh et al., 2011; Morton et al., 2012;

Reznikova and Shibasaki, 2012; Vecchio et al., 2007; Zaqarashvili and Erdélyi, 2009).

It is therefore interesting to study a range of possible frequencies for the driving

motions, to see what effects this has on the excitation of MHD waves.
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6.1 Simulation Configuration

This chapter employs the same magnetohydrostatic background as Chapter 4 and 5

which is described in Section 3.1. The plasma is also driven by the same logarithmic

spiral driver as given in Equations (4.3) and (5.2), the expansion factor is selected as

the central point of the parameter sweep performed in Chapter 5, BL = 0.15. A plot

of the driver profile is shown in Figure 6.1.
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Fig. 6.1 Horizontal velocity profile of the logarithmic spiral driver with expansion
factor BL = 0.15. The normalised magnitude of velocity is shown by the colour map
and the cyan arrows follow the vector field. The red line is a velocity streamline
seeded in the centre of the domain.

This chapter aims to vary the period (P ) of the driver, and measure the effects

on the wave excitation, however, varying the period of the driver will vary the total

amount of energy added to the domain by the driver. This would therefore heavily

bias the analysis of the results, so it important that the amplitude of the driver

is varied along with the period to maintain a constant energy input. Below, the

relationship between the period (P ) and amplitude (A) is derived to maintain a

constant amount of kinetic energy (Ek ) over the run time of the simulation (T )

assuming T = nP , where n is an integer.

The kinetic energy for any point in space at any instant in time is given by:

Ek = 1

2
m v2 (6.1)



6.1 Simulation Configuration 67

where m is the mass and v is the velocity. Ek can be computed over an arbitrary

volume V , which leads to:

m = ρ(x, y, z) V. (6.2)

The simulations are perturbed by a driver with the following general profile:

v(x, y, z, t ) = A G(x, y, z)sin

(
2πt

P

)
, (6.3)

where A is the amplitude of the velocity and G(x, y, z) is a normalised spatial distri-

bution. Substituting Equation (6.3) into Equation (6.1) for velocity and integrating

for all time gives,

ET (x, y, z) =
∫

T

1

2
ρ(x, y, z) V A2 G2(x, y, z) sin2

(
2πt

P

)
d t (6.4)

= 1

2
ρ(x, y, z) V A2 G2(x, y, z)

∫
T

sin2
(

2πt

P

)
d t (6.5)

= 1

2
ρ(x, y, z) V A2 G2(x, y, z)

[
1

2
T − P

8π
sin

(
4πT

P

)]
(6.6)

recalling T = nP this simplifies to

ET (x, y, z) = nP

4
ρ(x, y, z) V A2 G2(x, y, z), (6.7)

To calculate the total energy input to the numerical domain Equation (6.7) needs

to be integrated over all space in the numerical domain. In the chosen background

equilibrium the profile ρ(x, y, z) is given by a numerical calculation from a reference

background and modified for the presence of the magnetic flux tube. This means

that Equation (6.7) can only be numerically integrated and therefore, can be written

as:

ET = nPA2V

4

( ∑
x,y,z

ρ(x, y, z) G2(x, y, z)

)
, (6.8)

Equation (6.8) provides a relationship between the amplitude and period of the

driver, however, it can be simplified by considering that many of the variables re-

main constant for each simulation performed in this chapter. For all simulations

run in this chapter the driver is the same, meaning G(x, y, z) is constant, the back-

ground conditions and therefore ρ(x, y, z) are also constant as is the numerical do-

main and therefore V . It is therefore possible to let,

Q = V

4

∑
x,y,z

ρ(x, y, z) G2(x, y, z) (6.9)
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Period [seconds] Amplitude [ms−1]
30.0 20

p
2

60.0 20

90.0 20
√

2
3

120.0 10
p

2

150.0 4
p

10

180.0 20p
3

210.0 20
√

2
7

240.0 10

270.0 20
3

p
2

300.0 4
p

5

Table 6.1 Tabulation of the period and amplitude pairs used in this work such that
total kinetic energy input remains constant.

where Q is a constant. Substituting this into Equation (6.8) the final result is ob-

tained:

ET = nPA2 Q, (6.10)

A2 = 1

ET nQ

1

P
(6.11)

A2 ∝ 1

P
(6.12)

Using the arbitrary amplitude selected in Chapter 4 of 10 ms−1 for the 240 s

driver, the desired amplitude for each of the periods selected can be calculated

relative to this. The result of these calculations is shown in Table 6.1. Periods varying

from 30 to 300 seconds are chosen in increments of 30 seconds, this provides 10

points in the parameter space. The upper limit of 300 seconds was chosen to give

two complete periods within the 600 second upper lifetime estimate given in Sánchez

Almeida et al. (2004). The 300 second limit was also partly chosen for practical

purposes; with the background atmosphere described in Section 3.1 and run times

over 600 s some reflections effects from the top numerical boundary start to affect

the results.
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6.2 Results

To analyse the MHD wave generation effectively the relative strength of each com-

ponent must be parameterised for the different periods of driver. To do this we

decompose the velocity and the wave energy flux as described in Section 2.1.3 onto

the surface of the flux surfaces as detailed in Section 3.2. The velocity decompo-

sition allows us to analyse the generated modes and identify what types of modes

are in the generated spectra. The wave energy flux analysis is presented in terms of

F 2
j percentages, this allows for a neat visualisation showing the relative strengths of

each component, where the three components sum to 100%.

To make visualisation and analysis of the surfaces easier the values of the de-

composed parameters are shown for one field line for all time steps in the simu-

lation. In Figure 6.2 the values of velocity are shown in the form of time-distance

diagrams for these field line strips, in Figure 6.3 the decomposed square wave flux

is shown. Overlaid on both sets of plots are the characteristic phase speeds of a

uniform plasma; the Alfvén speed v A and sound speed cs , as well as the fast speed

v f =
√

c2
s + v2

A and the slow speed vs =
√

c−2
s + v−2

A . While these speeds will deviate

from the true wave speeds in the inhomogeneous simulation domain, they provide

a useful guide.

It is clear from the Vφ (lowest) frames in Figure 6.2 that the dominant perturba-

tion is travelling at approximately the Alfvén speed, we can therefore reliably deduce

that the torsional component of the velocity is, as expected, the Alfvén wave. The

V⊥ (second) panels also show a wave front propagating at the slow speed. For the

high-β plasma, in the sub-chromosphere region of the solar atmosphere, this is

the velocity component that is perturbed by the slow wave in a uniform plasma

(as described in Section 2.1.2). It can be noted that as the period gets longer this

perturbation becomes more pronounced in the V⊥ panel. In the shorter-period

frames (30s and 90s) there is a lower-amplitude front propagating close to the fast

or sound speeds. This is attributed to the coupling of the fast and slow wave modes

due to the inhomogeneity of the plasma. Finally, in the V∥ (top) panels, there is not

one dominant wave front, however evidence of two wave fronts, one propagating at

the slow speed and one at the fast speed can be discerned. The front propagating

with the fast speed can be attributed to the fast mode, as in a uniform high-β plasma

the fast mode would perturb the parallel component of the velocity vector. As with

the V⊥ component the existence of the slow mode is attributed to the non-uniform

nature of the simulation domain.

The identification of the wave modes in the velocity perturbations can inform

the analysis of the wave flux time-distance diagrams in Figure 6.3. In Figure 6.3 the
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total square wave flux is calculated as the sum of the square of each component,

F 2 = F 2
∥ +F 2

⊥+F 2
φ, the square of each component is then normalised by this square

total to give a percentage value for each component. This is then plotted along one

field line, like the velocity components.

The percentage wave flux shown in Figure 6.3, can be combined with the analy-

sis of Figure 6.2 to determine the relative strengths of the wave modes. In compar-

ison to the upper panels of Figure 6.2, where it was difficult to distinguish between

the fronts travelling at the fast and slow speeds, in the F 2
∥ (top) panel of Figure 6.3 it

is clear that the component with the most flux is the fast mode. However, this signal

is dominated by the slow mode perturbation in the F⊥ component. Figure 6.3 also

shows that in the F 2
⊥ (middle) panel, the flux is more evenly shared between the two

superimposed components, with the ratio apparently changing dependant upon

period. This observation should be considered when drawing conclusions from the

relative strength of the F 2
∥ component. The F 2

φ (bottom) panel is again dominated

by the Alfvén component.

In Figure 6.4 a summary of the average percentage square wave flux is presented

for each of the 10 simulations performed. The average value was taken for one

field line for all time throughout the simulation. The three panels of Figure 6.4

are for three flux surfaces seeded at different initial radii at the top of the domain,

showing results for different parts of the simulation domain. In all three panels it

can be seen that the averages for the perpendicular component (green dashes), re-

main constant with respect to period. While the torsional (red crosses) and parallel

(blue dots) components fluxes are clearly period dependant. Recalling the analysis

of Figures 6.2 and 6.3 from above, we can attribute the perpendicular flux to the

slow wave, the parallel flux to the fast wave and the torsional flux to the Alfvén

wave. We can therefore conclude that the relative strengths of the fast mode and

the Alfvén mode are period dependant, with the Alfvén mode overall dominating

more at larger periods. While the growth in relative strength of the Alfvén mode is

reasonably linear for the 156 km radius flux surface, the larger flux surfaces show

some non-linear variation in average wave flux. The percentage of the flux in the

torsional component, which is dominant for all periods, only varies by < 10 % for

the 936 and 468 km flux surfaces. For the 156 km flux surface the variation is larger,

≈ 20 %.

6.3 Conclusion

In this chapter the same logarithmic spiral driver that was studied in Chapter 4

and 5, with the oscillatory period of the driver varied. Figure 6.4 gives an overview
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Fig. 6.2 Velocity time-distance diagrams for six different period and amplitude
combinations are plotted, in each pane three components of velocity are plotted
for a flux surface of r = 468 km. Shown in green are the phase speeds for the
background conditions, the dot-dashed line is the fast speed v f , the dashed line
is the sound speed cs , the dotted line is the Alfvén speed va and the solid line is the
slow speed vs .
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Fig. 6.3 Percentage square wave flux along one field line is plotted over the length of
the simulation, for different period and amplitude combinations. Shown in green
are the phase speeds for the background conditions, the dot-dashed line is the fast
speed v f , the dashed line is the sound speed cs , the dotted line is the Alfvén speed
va and the solid line is the slow speed vs .
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of the results, it shows that overall the percentage of the wave flux attributed to the

Alfvén wave only varies by < 20 %. It is interesting to note that the slow mode pertur-

bation seen in the V⊥ panels of Figure 6.2 becomes more prominent in the longer

period simulations. While this observation is not clearly presented in the average

wave flux results (Figure 6.4), some evidence of this shift can be seen in the wave

flux time-distance diagrams in Figure 6.3. In spite of this result however, it does not

appear to make a significant difference to the total amount of energy in the different

identified wave modes. It appears therefore that the period of the logarithmic spiral

driver is not as critical to the wave modes it excites as the expansion factor or indeed

the driving profile.

The small (< 20%) variation in the Alfvén mode flux is largely non-linear for short

periods (< 180 s). However, the variation becomes more linear at shorter periods

for the flux surfaces that are closer to the centre of the domain. The presence of

this variation at short periods is most interesting because of the relative importance

of these periods. If the lifetime of MBPs is short, < 10 minutes (Sánchez Almeida

et al., 2004), then the shorter period modes have a larger chance of being excited

and surviving for multiple periods. This non-linearity is therefore an interesting

result, with potential effects on the strength of the wave modes present in the low

chromosphere. When analysing these results however it is important to remember

a limitation of the analysis. The percentage square wave flux was averaged over

an integer number of periods to ensure a constant total amount of kinetic energy

was added to the domain (see Section 6.1). However, the total run time of all the

simulations was fixed at 600 s, this means that the shorter period simulations were

averaged over a larger number of periods than the long period ones. There does

however, seem to be no correlation between the non-linearity and the number of

periods averaged over. This result should be investigated further to confirm its

validity.
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Fig. 6.4 Average percentage square wave flux plotted against period. For each vector
component on the flux surface the value of the wave flux squared along one field line
is taken and then the fraction of the square total calculated, and then averaged over
an integer number of periods, shown in brackets on the x axis. This provides a high-
level overview of the relative strengths of each mode. The azimuthal component is
shown as red crosses, the parallel component as blue circles and the perpendicular
component is shown as green dashes. The top panel displays the average wave flux
for the flux surface closest to the centre of the domain at r = 156 km the second
panel at r = 468 km and the bottom panel at r = 936 km.



Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

This thesis has studied the generation of magnetohydrodynamic waves in the so-

lar photosphere, and their propagation from the photosphere to the base of the

chromosphere. In Chapter 4, five different photospheric drivers were used to excite

MHD waves. The vertical driver was found to excite primarily fast mode perturba-

tions in the V∥ component of the velocity. The horizontal driver primarily excited

slow mode perturbations in the perpendicular (V⊥) component. The three torsional

drivers, a circular driver as well as Archemedian and logarithmic spirals all excited

between 40 and 60 % of their wave flux in the Alfvén mode, with the rest distributed

between the fast and slow modes. The uniformly low proportion of excited Alfvén

wave for all the torsional drivers has an interesting implications for the generation

of the widely sort after Alfvén wave. If even idealised circular motions in the photo-

sphere only excite ≈ 45% of their wave flux in the Alfvén mode, then the estimates

of the total amount of available Alfvén flux, which could propagate through the

chromosphere at potentially heat it and the corona, may be overestimated.

Chapter 5 continued the study of the logarithmic spiral driver. In this chapter,

the expansion factor was varied and the effects on the distribution of excited wave

modes studied. In Chapter 4 the expansion factor was arbitrarily chosen to be BL =
0.05, in Chapter 5 a variety of expansion factors were simulated based around the

observational results of Bonet et al. (2008). This study observed MBPs spiralling in

a inter-granular lane, a logarithmic spiral was fitted to the observed locations of the

MBP and a expansion factor of B−1
L = 6.4± 1.6 = BL = 0.15 calculated. Unlike the

logarithmic spiral driver used in Chapter 4, not all the expansion factors simulated

in Chapter 5 resulted in the Alfvén wave being the dominant mode. In fact, the mid-

point of the parameter space studied, BL = 0.15 was the last point simulated where
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the Alfvén mode was dominant, for the two points with higher expansion factors

the fast mode was the dominant mode. This accentuates the results of Chapter 4,

in that even less Alfvén flux is generated for driver profiles based on observational

data. If a distribution of expansion factors are present in the photosphere around

the observed expansion factor BL = 0.15 a large proportion of these vortexes would

be generating more fast mode flux than Alfvén flux.

Chapter 6 varied the driving period of the logarithmic spiral driver, while keep-

ing the expansion factor at BL = 0.15, in line with the simulations presented in

Chapter 5. The period choices in Chapter 4 and 5 were 240 and 180 s respectively,

both of these were selected arbitrarily. To cover a good range of the period param-

eter space, 10 periods were selected varying from 30 to 300 seconds, in steps of

30 s. The upper limit of 300 seconds being chosen for a combination of physical

and practical purposes. The maximum lifetime of the MBPs observed by Sánchez

Almeida et al. (2004) was 10 minutes, so setting the upper limit as 300 s allows for

two complete periods with this upper bound of MBP lifetime. In addition to this,

running simulations for a much longer time period leads to interference by some

reflection from the top numerical boundary. The effects of the period on the excited

wave mode distribution were varied. The Alfvén fluxes varied up to a maximum

of 20% for the narrowest flux surface, and substantially less than that for the other

two wider surfaces. Interestingly, however, there was some variation in the form of

the observed wave fronts in the velocity time-distance diagrams. At higher periods

there is a small shift in the velocity perturbations from the fast mode to the slow

mode (V∥ to V⊥). This observation is not really reflected in the average wave flux

results, however, there was a small increase in the perpendicular component for

the last 3 or 4 periods in the sample. Overall, it can be concluded that while the

period has some effect on the wave modes generated, especially close to the axis

of the flux tube, the effect is much less pronounced than for the other changes

made to the driver in this thesis. This work could be extended by attempting to

calculate the complete spectrum of the system, by seeding the domain with random

perturbations and performing a Fourier analysis on the result to identify the whole

spectra of eigenmodes.

When considering the conclusion of this thesis, namely that spiral drivers excite

a spectra of wave modes, it is worth keeping in mind the limitations of the analysis.

Primarily, the limitation of the spatial extent of the data studied. Due to the need to

construct flux surfaces to successfully decompose the vector quantities into a refer-

ence frame that lends itself to the analysis of MHD wave modes, these wave modes

can, by definition, only be analysed on the constructed surfaces. Throughout this

thesis, three representative surfaces have been used to understand the dynamics
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at different points throughout the domain. However, when considering the results,

especially in Chapter 6, where interesting results were observed close to the axis of

the magnetic flux tube, it would be advantageous to be able to study the variation

of the analysis continuously through the domain. In addition to this, the types of

torsional oscillatory drivers used in these simulations have not been observed in the

solar atmosphere. The observations used for comparisons are of flows, presumed to

be downward flows in inter-granular lanes, it would be an interesting extension of

this work to study the effects of these downward spiral flows on wave excitation.

Beyond this fundamental limitation of the analysis method applied, the theo-

retical description of the plasma used to interpret the results presents some limi-

tations. Firstly, a uniform field approximation was described in Chapter 2, this is

an over-simplification of the numerical domain, where a plasma with some degree

of spherical symmetry, in a stratified atmosphere was studied. While much theory

exists surrounding the nature of MHD waves in spherical geometry, this too would

prove inadequate to analytically describe the plasma conditions in the simulation,

indeed this is the purpose of numerical experiments. However, some further analy-

sis using this theory could be performed, especially utilising the spatial coordinates

of the flux surfaces in the domain, to measure the displacement of the surface from

the equilibria.

7.2 Future Work

The research documented in this thesis has explored a variety of parameters of the

velocity fields that drive waves in the solar atmosphere. The logarithmic spiral driver

was studied the most intensely with the period and its expansion factor both anal-

ysed. The scope for future work is vast, with substantially more parameters that

could be varied. One set of parameters which has remained constant over all the

simulations run in this thesis is the FWHM of the Gaussian driving volume. This

parameter defines in what volume the majority of the driving energy is added to

the simulation. In this thesis, this volume has been quite small, meaning most of

the energy has been added close to the centre of the magnetic flux tube. This may

not be completely physical, because the plasma motions in the photosphere are not

limited to the volume of a MBP, or even the inter-granular lane in which they are

embedded. When varying the FWHM of the driving profile it would be important to

reconsider the analysis undertaken in Chapter 6 to ensure the total kinetic energy

remained constant. This would involve moving the G(x, y, z) term out of the con-

stant of proportionality, and accounting for it when selecting the amplitude. The

results of this study would be interesting, especially when analysing the difference
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between the flux surfaces closest to the centre of the magnetic flux tube, to the ones

further away.

An effect that has not been explored in this thesis, is the effects of the boundary

conditions on the results of the simulations. Specifically, for the linear wave modes

studied the magnetic field perturbations and the velocity perturbations should be

tightly coupled. This effect is not accounted for in the boundary conditions imple-

mented by the SAC code, so the boundary conditions may introduce some coupling

between the wave modes. This effect and the coupling between the velocity and

magnetic field could be investigated by driving the magnetic field as opposed to the

velocity, as in an ideal plasma for linear waves the effects of this should be identical.

As discussed in Section 2.1 the ideal, single-fluid MHD equations used through-

out this thesis do not take into account the very low ionisation ration (≈ 10−4) in the

photosphere and the combination of low ionisation and low density in the chro-

mosphere. Taking this effect into account, especially when considering the wave

energy flux in the chromosphere, is likely to have a significant impact on the re-

sults presented. Changing to a multi-fluid MHD model however, would require

major improvements and changes to the SAC code. There is starting to appear

some work on simulating MHD waves taking into account the effects of the neutral

species e.g. Shelyag et al. (2016). This approach in the low-atmosphere, coupled

with the traditional single-fluid approach in the low corona will be important in

obtaining a full picture of wave propagation and damping in the solar atmosphere.

If MHD waves are to be driven as simulated in this thesis, and then propagate into

the corona, the effects of partial ionisation in the low atmosphere will have to be

considered, as this is likely to have a significant impact on the amplitudes of the

waves as they encounter the transition region.

More fundamentally, the work presented in this thesis could be extended by

varying the magnetic field configuration. With the work performed in Gent et al.

(2014, 2013) it is trivial and computationally efficient to calculate multiple stable

background atmospheres. The atmosphere used in this work, is limited to below

the transition region, because the expansion properties of the magnetic field, as

used, would cause the pressure and density to become un-physical above this re-

gion. Therefore, a different more self-consistent atmosphere should be built and

the effects of the changing expansion rate on the wave generation studied. If an

atmosphere was constructed which had the same footpoint properties, e.g. mag-

netic field strength and FWHM, the author hypothesises that the effects on the wave

flux profiles would be minimal. However, it is more than possible that the changes

in plasma properties in the higher regions of the simulation domain would cause

some deviation from the results presented in this thesis. If the work in this thesis



7.2 Future Work 87

were to be extended higher into the atmosphere the perturbations may well become

non-linear, this would require analysing the simulations in a different manner, not

constrained by linear MHD theory. The SAC code and the flux surface analysis

described in Section 3.2 both support non-linear perturbations, so could be used

for this analysis.

Finally, an interesting avenue for future study is to construct more complex back-

ground atmospheres from multiple flux tubes, such as in Gent et al. (2014) and

future extensions to that work. This would allow for construction of an atmosphere

based on observation data of the magnetic field, and more interestingly co-aligned

observations of the photospheric velocity field. While these results would more

accurately mimic the reality of the solar surface they would present significant chal-

lenges in the analysis of the simulations. The magnetic flux surface algorithm pre-

sented in Section 3.2 is capable of selecting any flux surface even in a highly unstruc-

tured domain. This would enable similar analysis to that of this thesis, however care

would have to be taken in the interpretation.





Chapter 8

SunPy: A Tool for Open Solar Physics

The SunPy project (The SunPy Community et al., 2015) aims to facilitate and pro-

mote the use and development of a community-led, free and open-source solar

data-analysis software based on the scientific Python environment. Utilizing the

scientific Python environment which has an extensive tool-set, allows for the cre-

ation of high-quality data-analysis software package for Solar Physics. The adoption

of Python as a scientific programming language is, in part, due to that fact that

Python is a free, general-purpose, powerful, and easy-to-learn high-level program-

ming language. This fact has fostered a large community that is slowly growing in

many fields both inside and outside of science, where Python is also widely used in

areas such as ‘big data’ analytics, web development, and educational environments.

A perfect example is the pandas (McKinney, 2010, 2012) Python package, which

was started to simply analysis of financial data and has since grown into a gener-

alised time-series data-analysis package. Further, Python has seen extensive adop-

tion within the astronomy community (Greenfield, 2011) which is a field that shares

many goals and challenges with the solar physics community.

The development of a package such as SunPy is made possible by the rich ecosys-

tem of scientific packages available in Python. Core packages such as NumPy, SciPy
(Jones et al., 2001), and matplotlib (Hunter, 2007) provide the basic functionality

expected of a scientific programming language, such as array manipulation, core

numerical algorithms, and visualisation, respectively. Building upon these foun-

dations, packages such as astropy (astronomy; The Astropy Collaboration et al.,

2013), pandas (time-series; McKinney, 2012), and scikit-image (image process-

ing; van der Walt et al., 2014) provide more domain-specific functionality.

Within Solar Physics, the SolarSoft (SSW) library (Freeland and Handy, 1998)

is widely used, which is built upon the IDL (Interactive Data Language), a propri-

etary data-analysis environment. In contrast, SunPy is a open-source package that
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provides the core tools for solar data analysis and aims to be a free and modern

alternative.

8.1 Community Development

SunPy is a community developed package, the source code is hosted on GitHub

https://github.com/sunpy and two mailing lists and an IRC channel serve as the

projects communication channels. This collaborative nature of the project is its

greatest strength. This chapter will my primary contributions to the project, but

it is to be understood that they were all developed in a collaborative manner with

the other members of the SunPy community.

I have been involved heavily in the SunPy project for the past three years. During

this time I have mentored three students through the Google Summer of Code and

ESA Summer of Code in Space programs, founded the SunPy board as a governance

structure for the project and served as lead developer. During my time as lead

developer I have strived to integrate the SunPy project with the wider scientific com-

munity and especially the astrophysical community. I have contributed to many

different projects to add or fix features for use by SunPy, especially in Astropy where

I have helped guide design and creation of multiple features used in SunPy.

8.2 Representation of Imaging Data

One of the main submodules of SunPy is the ‘Map’ submodule which presents a

unified interface to different sources of imaging data. Most image data in solar

physics is stored in the FITS (Flexible Image Transport System) file format (Pence

et al., 2010). However, even where data to be loaded by SunPy is in the FITS file for-

mat the critical information, the metadata, describing the observations is not stored

in a consistent manner. Despite the development of standard ways to describe coor-

dinate information in FITS files (FITS-WCS) (Greisen and Calabretta, 2002; Thomp-

son, 2006) data generated before these standards were adopted and other meta data

not related to the coordinates of the images do not follow these standards. The

problem of non-standard meta data is the primary motivator for the architecture

of the SunPy ‘Map’ submodule.

The ‘Map’ module employs the object orientated (OO) nature of the Python pro-

gramming language to allow specific data sources, such as different instruments, to

map their meta data to a standard SunPy interface to that data. The GenericMap
class defines this standard interface, it provides human readable properties to ac-

https://github.com/sunpy
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cess common meta data, such as the FITS-WCS coordinate information and other

common meta data such as instrument and date. The GenericMap class defines

these mappings using a strict interpretation of the standards and the most common

conventions in solar physics. Specific instruments that deviate from these stan-

dards, or desire other specialisations, define a subclass of the GenericMap class to

override any properties to provide the correct information to the user in the stan-

dard manner. This design results in a class hierarchy where each instrument has a

associated class, and the user would have to manually load the data into the correct

class to obtain the desired behaviour. To improve the user experience a unified

interface to the ‘Map’ module was designed for the first official release of SunPy

(v0.2).

The function of this unified interface was to extract the data from a file provided

by the user and load it into the correct class. The implementation of this original

interface, named make_map was complex and hard to extend. It is for this reason

that for SunPy v0.3 the interface to the Map submodule was redesigned, a process

which the I led. The new design of the ‘Map’ module made use of a system where

each subclass of GenericMap registers itself with a ‘Factory’ class upon its initilisa-

tion. This registration procedure supplies a function to the factory class to use to

ascertain from the meta data which class should be used to interpret the data. The

implementation of the RegisteredFactoryBase was provided by a contributor to

SunPy, and the integration of it into the ‘Map’ module was performed by the author.

The Map class provides a high-level interface to the user, it is deisgned to be able

to parse a wide variety of inputs, including filenames, filenames with wildcards,

and raw data and meta data pairs. This flexibility makes it simple for the user to

initialise a Map object specific to the data being loaded, without the user having

to understand or appreciate the underlying architecture. This design also makes it

simple for developers of SunPy or advanced users to create a Map class for a custom

instrument or data source, and continue using their existing code.

8.3 Solar Physics Coordinate Systems

Thompson (2006) describes a set of commonly used coordinate systems for solar

physics data analysis. These systems are frequently used by any person performing

analysis of solar imaging data. As of SunPy v0.6 SunPy handles representation of

these coordinate systems by pairs of floating point numbers, and the conversion

between the systems by calls to functions where the extra information needed to

perform the conversion is explicitly provided. This system, while functional for the

current internal needs of the SunPy library, is not intuitive or powerful for the end
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users of the library.

The Astropy library (The Astropy Collaboration et al., 2013) in its v0.4 release

provided a modular and general framework for the representation of celestial coor-

dinate systems and the transformations between them. Prior to the development

and subsequent release of this new submodule, the author collaborated with the

Astropy developers to ensure that the design of this new system would be compati-

ble with the requirements of solar physicists and the coordinate systems described

in Thompson (2006). The author also contributed to the implementation of the

Astropy submodule, by co-writing the coordinate representation system.

Since the development of the Astropy coordinates framework, I have led the

work to implement the solar physics coordinates systems within the SunPy library.

This work is expected to form a part of the upcoming v0.7 release of the SunPy

library. The implementation of these systems presented some challenges specific

to solar physics. The main convention difference between astronomy and solar

astronomy is the ‘wrapping’ of the longitude coordinate in spherical coordinate

systems. In most astrophysical systems the longitude runs between 0◦ and 360◦,

whereas in solar physical systems, including the most commonly used helio-projective

system, the longitude coordinate takes values between −180◦ and +180◦. This dif-

ference in convention required subclassing the Astropy ‘Representation’ classes to

change the default values of the coordinate wrapping. This itself lead to extra re-

quirements to sanitise inputs and ensure the Astropy library did not override the

change in defaults.

The second major solar physics specific challenge that was overcome in the im-

plementation was the transition from the projective coordinate frame of imaging

data to the three-dimensional solar centric coordinate systems commonly used to

describe features independent of the location of the observer. The mathematics of

this coordinate conversion are described in Thompson (2006), and regularly utilised

by a multitude of codes and analysis pipelines. The process however, is not with-

out its assumptions and it was important in the design of the user interface that

no flexibility was lost and all options exposed to the user. This required that the

fundamental assumption of this conversion, that the Sun emits radiation on a solid

sphere of known radius was customisable by the user. The assumption of a fixed

radius sphere allows the calculation of the distance between an observer and the

point on the sphere corresponding to a position in an image. This calculation of

distance converts a two dimensional projective coordinate system into a three di-

mensional observer centric coordinate system, which in turn allows the conversion

to different coordinate frames. This conversion step is only applied either when

the user explicitly requests it without changing coordinate system, or when it is
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required to perform a coordinate transformation requested by the user. Conversion

from the two dimensional to the three dimensional system uses the RSun attribute

of the HelioProjectiveFrame class which allows the user to customise the physical

radius of the Sun being observed.

This implementation of the solar physics coordinate systems on top of the As-

tropy coordinates module provides a significant advantage to the SunPy library.

Due to the coordinate independent nature of the design, tools that are built for

astrophysical applications can support solar physics coordinate systems with no

extra work required by the authors of these tools. This, therefore, provides both an

excellent, user friendly interface to a set of very common solar physics coordinate

representations and transformations while getting access to the high quality tools

which make use of this framework.

8.4 The Future of SunPy

Adoption of the SunPy library by the wider solar physics community is predicated

on the provision of high quality tools which enable new and exciting discoveries.

The new features described in this chapter form part of the wider effort to enable so-

lar physics data analysis within the Python ecosystem. The author has contributed

to the SunPy library in many smaller ways, and has acted in the role of lead devel-

oper, while building the community around the project.
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