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ABSTRACT

Investment in immunity is costly: one way in which hosts can ameliorate these costs is 

through immune priming, whereby hosts develop increased protection to future infection 

following previous exposure to a parasite or immune elicitor. Priming offers hosts a more 

efficient way of managing immune insult by allowing for a stronger and faster response to 

an immune insult. As well as investing in physiological immune defences, hosts can also 

leverage behavioural responses to reduce the costs of infection.

Group-living  in  insects  offers  several  benefits,  such  as  predator  avoidance. 

However, it can be costly in terms of increasing the risks of exposure to parasites. Group 

facilitation of disease resistance through a variety of processes collectively known as 

'social immunity' is well established in the eusocial insects. Many gregarious insects share 

several features of their ecology with eusocial species, and should thus be predisposed to 

many of the same risks of infection, and the same evolved processes that mitigate these 

risks.  A  form  of  immune  priming  known  'social  immunisation'  has  recently  been 

described  in  eusocial  insects,  whereby  immunologically  naïve  individuals  exhibit 

enhanced immunity against infection after being housed with infected nestmates. Whether 

similar mechanisms exist in gregarious but non-social insects is unknown, and it is this 

premise that forms the conceptual basis of this thesis.

I investigated whether a non-social  but gregarious insect,  the mealworm beetle 

(Tenebrio  molitor),  altered  its  immune  investment  following  cohabitation  with  an 

immunestimulated conspecific. I examined the potential role of both physiological and 

behavioural  defences  in  offering  prophylactic  protection  against  perceived  pathogenic 

threat. I also investigated the potential mechanisms of such an form of immunisation by 

examining immune responses induced by cohabitation with conspecifics challenged by a 

live  (and transmissible)  bacterial  infection  and those  challenged  by  either  heat-killed 

bacteria or an artificial antigen (both non-transmissible). Finally, I examined the role of 

host behaviour in affecting immunisation, quantifying behavioural changes in immune-

stimulated  hosts  (referred  to  as  'sickness  behaviours')  to  try  and  identify  visual  or 

behavioural cues which may be utilised by naïve hosts to stimulate prophylactic defences, 

There  was  no  robust  evidence  for  a  parsimonious  process  of  gregarious 

immunisation.  However,  there  were  differences  between  the  sexes  in  their  immune 

responses  to  infection  threat,  as  well  as  in  their  induction  of  sickness  behaviours 
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following infection. Whilst there was little evidence for an upregulation of immunity in 

naïve  females,  females  appeared  to  exhibit  enhanced tolerance  of  infection  following 

cohabitation with a 'sick' conspecific, as they suffered no decrease in longevity despite the 

presence  of  relatively  high  parasite  loads.  Males  showed the  opposite  pattern  to  that 

predicted  by  gregarious  immunisation,  decreasing  their  investment  in  physiological 

defence following exposure to 'sick' conspecifics.

Despite  finding  no  clear  evidence  for  enhanced  resistance  through  a 

straightforward  process  of  gregarious  immunisation,  these  data  suggest  that  naïve  T.  

mollitor may be able detect social cues of infection produced by parasitised conspecifics. 

I  propose that  the immune responses displayed by both males  and females  constitute 

tolerance strategies which help hosts to minimise the costs of parasitism. Due to intrinsic 

differences in the life-history trajectories of the sexes, females are predicted to invest in 

immunological tolerance mechanisms aimed at self-preservation in order to preserve their 

capacity  for  future  reproduction,  whereas  males  are  predicted  to  terminally  invest  in 

reproduction in order to maximise their fitness.
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CHAPTER ONE:

INTRODUCTION

Parasites  are  the  largest  and  most  diverse  group  of  living  organisms  on  the  planet 

(Schmid-Hempel, 2011). By definition, parasites are detrimental to hosts fitness, and have 

been a strong selective force favouring the evolution of a sophisticated immune system in 

almost all cellular organisms (Schmid-Hempel, 2011). The consequences of parasitism are 

seen at both the individual and population level and play an important role in shaping the 

ecological and evolutionary dynamics of natural host populations (Altizer  et al. 2003; 

Anderson & May 1982; Hudson et al. 1998). 

1.1. The costs of immunity

Whilst  immunity  provides  a  crucial  defence  against  parasitism,  immune defences  can 

themselves be costly (Zuk & Stoehr, 2002; Schmid-Hempel, 2003). Hosts are predicted to 

optimise, rather than maximise, their investment in immunity in order to balance the costs 

of defence with the potential costs of parasitism (Sheldon & Verhulst, 1996). In brief, the 

costs  of  immunity  are  two-fold;  firstly,  there  are  evolutionary  costs  of  immunity 

associated with negative genetic covariance between the immune system and other fitness 

components (discussed in detail in Moret & Schmid-Hempel, 2000), and secondly, there 

are use and maintenance costs incurred during the deployment and maintenance of an 

effective immune response (Kraaijeveld & Godfray, 1997).

Three  classifications  of  use  and maintenance costs  have  been defined (Zuk & 

Stoehr,  2002).  Firstly,  resource-based  costs,  which  stem  from  energetic  constraints 

resulting from hosts having access to only a finite amount of resources which must be 

partitioned to and traded off between all necessary physiologies, including immunity (Zuk 

& Stoehr, 2002; Schmid-Hempel, 2003). Immunity may also be constrained by option 

costs (Zuk & Stoehr, 2002) that are not paid in energetic currency but rather through the 

use of shared structural  components  or functional  pathways in  the host;  for example, 

resistance against malarial infection leads to follicular apoptosis in Anopheles mosquitoes 

(Ahmed  & Hurd,  2006).  Together,  resource-based costs  and option  costs  account  for 

many of the trade-offs commonly observed between  immunity and various life-history 

traits, such as longevity, development rate, competitive ability and reproduction (Zuk & 

Stoehr, 2002; Schmid-Hempel, 2003). Trade-offs also occur within the immune system 
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itself, as investment in two different immune effectors can be antagonistic; for instance, a 

negative  phenotypic  relationship  exists  between constitutive  phenoloxidase  production 

and  induced  antimicrobial  activity  in  honey bees  (Apis  mellifera)  (Moret  & Schmid-

Hempel, 2001) and Tenebrio molitor (Moret & Siva-Jothy, 2003). Finally, hosts may incur 

costs  of  immunopathology  through  damaging  their  own  cells  and  tissues  during  an 

immune  response  (Nappi  et  al.,  1995;  Sadd  & Siva-Jothy,  2006).  Insects  possess  an 

arsenal of non-specific and cytotoxic effector systems, and are particularly susceptible to 

self-harm due to their relatively uncompartmentalised open haemocoel (Siva-Jothy et al., 

2005).  Indeed,  the  effects  of  immunopathology  have  been  demonstrated  in  Tenebrio 

molitor  (Sadd  &  Siva-Jothy,  2006),  where  Malpighian  tubules  become  melanised 

following  encapsulation  of  a  novel  antigen,  and  lose  a  significant  degree  of 

osmoregulatory  function  (Sadd  &  Siva-Jothy,  2006).  Immunopathology  has  been 

suggested to form as important a cost of immunity as pathological damage inflicted by 

parasites (Graham et al., 2005), and it is likely an important contributor to the decline in 

longevity reported after immune stimulation in Tenebrio molitor (Armitage et al., 2003).

1.2. Mechanisms of immunity

In order to infect an invertebrate, parasites must first successfully enter the host through 

ingestion by the host or by breaching the external barriers imposed by the host cuticle.  

Some  host  responses  are  rapidly  induced  following  infection  or  wounding,  such  as 

haemolymph coagulation and wound repair, which limit the systemic spread of parasites 

throughout the haemocoel and reduce the risk of further infection through open wounds 

(Hajek & St. Leger, 1994; Lavine & Strand, 2002).

Upon parasite invasion, the host relies on the ability of the physiological immune 

system to distinguish self from non-self (Siva-Jothy et al., 2005), through the recognition 

of pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharides (LPS) or 

peptidoglycans,  which  are  highly  conserved  features  of  bacteria,  fungi  and  viruses 

(Janeway, 2001; Siva-Jothy et al., 2005). Parasite recognition activates a suite of immune 

effectors  which  provide  protection  for  the  host.  In  invertebrates,  these  effectors  are 

generally classified as either cellular or humoral in nature (Siva-Jothy et al., 2005).

Cellular immunity is comprised by haemocytes which phagocytose or encapsulate 

parasites, and also function in coagulation and wound healing (Strand, 2008). Humoral 

immunity refers to soluble proteins, including antimicrobial peptides (AMPs) (Bulet & 

Stöcklin, 2004) and lysozymes, and various reactive cytotoxins, such as quinones, lectins 

and reactive oxygen species (Siva-Jothy et al., 2005).
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1.2.1. Constitutive versus inducible defence

Perhaps the two most important parameters characterising invertebrate immune effectors 

are  their  speed and specificity  (Schmid-Hempel  et  al.,  2003;  Figure 1.1).  Invertebrate 

immune effectors are often classified as either constitutive, which are always ready to act, 

or inducible, which are expressed only following parasite recognition (Hamilton  et al., 

2008).

Constitutive defences include phagocytic engulfment by haemocytes, antibacterial 

activity  of  some  lysozymes,  and  melanisation  by  phenoloxidase  (PO)  intermediates. 

These effectors provide the host with a fast and robust defence against a diverse range of 

parasitic threats, but can be coupled with immunopathological effects. For example, the 

PO cascade is a prominent component of constitutive defence, but releases a range of 

cytotoxic compounds which cause host immunopathology (e.g. Sadd & Siva-Jothy, 2006). 

Hosts may shield themselves from self-harm through protective barriers such as the basal 

lamina which  line  the  haemocoel (Chapman,  1998) or  temporally  through the  use  of 

multi-level  enzyme  cascades  which  allow  highly  cytotoxic  elements  to  be  stored  as 

inactive precursors until used in defence. For example, PO generally exists within the host 

in  the  form  of  an  inactive  zymogen,  prophenoloxidase  (proPO),  whose  activation  is 

rapidly  triggered  via  a  serine  protease  cascade  elicited  by  the  recognition  of  basic 

pathogen markers (Cerenius et al., 2010).

Inducible defences are only expressed by the host following parasite recognition. 

These defences include the production of antimicrobial  peptides  (AMPs;  Bulet  et  al., 

1999), and inducible cellular responses such as the proliferation of haemocytes (Sequeira 

et al., 1996) and the processes of phagocytosis, nodulation and encapsulation which act to 

smother  invading parasites,  starving them of  oxygen and nutrients  (Lavine  & Strand, 

2002).  Due to  their  inducibility,  these defences  typically  suffer  from a lag phase; for 

example, it  can take up  to 48 h for AMP expression to reach peak levels in  Tenebrio 

molitor following infection. However, inducible effectors are generally more specific than 

constitutive defences, with AMPs for example undertaking targeted action against narrow 

groups of parasites (e.g. Gram negative or Gram positive bacteria), and thus tending to 

cause less immunopathological damage to the host (Bulet et al., 1999).

The constitutive and inducible arms of the invertebrate immune system work in 

tandem to  provide  effective  and  long-lasting  protection  for  the  host,  and  have  been 

suggested to account for the success of insects due to their apparent ability to prevent the 

evolution  of  parasite  resistance  within  the  host  and  to  manage  persistent  infections 

(Haine, 2008).
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Figure  1.1.  A summary  of  insect  immune  effectors,  classified  by  their  speed  and 
specificity. Figure taken from Schmid-Hempel (2003).

1.3. Resistance versus tolerance

Host  can  undertake  two  types  of  strategy  to  preserve  fitness  during  infection,  either 

resisting the infection directly by attacking the parasite, or tolerating the negative effects 

of infection without targeting the parasite (Schneider & Ayres, 2008; Lazzaro & Rolff, 

2011; Medzhitov et al., 2012). Resistance responses are defined as host responses which 

reduce parasite fitness, generally by killing them, whereas tolerance responses are defined 

as host responses that allow the host to maintain health in the face of parasitic infection 

without attacking the parasite directly.  Hosts may tolerate parasitism immunologically, 

through the use of physiological effectors which limit parasite growth or reproduction or 

otherwise tolerate pathogen-induced damage, or tolerate the negative effects of infection 

through  non-immunological  changes  in  their  behaviour,  ecology  and  life-history  (see 

section 1.4.2.).

Resistance  responses,  particularly  those  provided  by  fast-acting  constitutive 

immune effectors, are generally associated with immunopathology (Nappi  et al., 1995; 
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Siva-Jothy  et al., 2005). Immunopathology should only be beneficial for the host when 

the fitness preserved through parasite killing is greater than the costs of collateral self-

harm, meaning that a trade-off should exist between resistance and tolerance strategies 

(Schneider & Ayres,  2008).  Assuming the infective parasite load decreases during the 

course of an immune response, and assuming the rate of parasite killing to be proportional 

to the level of immunopathology, one may expect the host to shift from actively resisting 

the pathogen towards tolerating its negative effects as the infection progresses (Figure 

1.2).  At  this  point,  the  host  may  attempt  to  limit  further  tissue  damage,  resource 

expenditure or other costs in order to limit the negative impact of infection upon fitness, 

tolerating  the  remaining  pathogen  burden  instead  of  trying  to  further  deescalate  it 

(Medzhitov et al., 2012).

Essentially,  there  is  an  upper  limit  to  which  a  host  can  invest  in  immune 

resistance,  after  which  the  damage caused by any  residual  pathogens  in  the  host  are 

actually less detrimental to host fitness than any further escalation of immunopathological 

self-harm. Tolerance may even provide a more economic defence in the case of highly 

virulent pathogens, or when the probability of reinfection is particularly high. Moreover, 

host tolerance strategies should be evolutionarily advantageous as they are not directly 

detrimental to parasite fitness and thus favour lower pathogenic virulence (Schneider & 

Ayres, 2008; Medzhitov  et al.,  2012). Indeed, theoretical models suggest that costs of 

immunity and development of parasite virulence should favour the evolution of tolerance 

strategies in many hosts (Boots et al. 2009).
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Figure 1.2. A theoretical function of the costs and benefits of pathogenic clearance upon 
the fitness of an infected host. The net benefit of immune investment is maximised at X1. 
Below the X1 threshold, ineffectual levels of host defence allow the pathogen to grow and 
multiply,  inflicting  damage  upon  the  host  and  exploiting  host  resources.  The  use  of 
resistance-based responses which actively attack or kill the parasite should be favoured at 
this stage. Above the X1 threshold, escalating costs of immunopathology and resource 
expenditure  resulting  from immune  defence  start  to  outweigh  damage  caused  by  the 
residual  pathogen population.  At this  stage,  the host may benefit  from switching to a 
tolerance-based response which is no longer directly aimed at killing the pathogen but 
does  act  to  otherwise  preserve  host  fitness;  this  may  include  the  use  of  non-
immunological life-history responses, such as terminal investment in reproduction. The 
threshold X1 is expected to vary depending on the virulence of the pathogen in question 
(e.g. rapidly escalating costs of highly virulent pathogens may favour a faster switch to 
host tolerance).
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1.4. Behavioural immunity

Although physiological immunity is a vital component of anti-parasitic defence, it can be 

thought of as an 'emergency service' which is launched only when the 'front-line' defences 

provided by morphology,  behaviour  and life-history  have  been breached (Hart,  1997; 

Siva-Jothy et al., 2005). Behavioural defences are generally less costly than physiological 

defences (Siva-Jothy et al., 2005; Schulenburg & Ewbank 2007), are faster to enact and 

have a  greater  degree of plasticity  (West-Eberhard,  1989),  and can be as effective as 

physiological  immune  responses  at  preserving  host  fitness  in  the  face  of  parasitism 

(Moore,  2002;  Schmid-Hempel  et  al.,  2003). Behavioural  responses  can  complement, 

augment  or  even replace the  need for  physiological  defences  by reducing the  risk of 

infection for the host or the risk of transmission to other susceptible conspecifics, or by 

influencing successful resistance or tolerance of infection by the host.

Both physiological and behavioural responses may thus be considered part of a 

single unified immune defence (Wilson-Rich et al., 2009), and low levels of physiological 

immunity are not necessarily  indicative of poor immunocompetence.  On the contrary, 

effective use of behavioural strategies may circumvent the need for investment in costly 

physiological defences, and could offer a net fitness benefit to the host. Immunological 

studies should therefore benefit from accounting for behavioural immune responses, yet 

these have been largely overlooked in the invertebrate immunology literature, particularly 

in studies conducted on non-social species (Hart, 1994).

1.4.1. Sickness behaviours

Following infection, hosts may modify their behaviour to reduce the costs of parasitism 

by  engaging  in  behaviours  such  as  anorexia,  self-grooming  or  behavioural 

thermoregulation  (Johnson,  2002;  Dantzer,  2009;  Adamo,  2006).  These  behavioural 

changes  are  collectively  termed  'sickness  behaviours'  (Hart,  1988;  Moore,  2002). 

Behavioural sickness has  been described as a 'motivational state' which allows infected 

hosts to re-prioritise their resource investment so as to minimise the costs of parasitism 

(Hart,  1988;  Johnson,  2002;  Dantzer,  2009).  For  example,  reduced  investment  in 

reproduction may allow infected hosts to refocus their resources into immune defence by 

preventing trade-offs between the two physiologies (Sheldon & Verhulst, 1996; Zuk & 

Stoehr,  2002).  Illness-induced  anorexia  is  a  common  sickness  behaviour  which  may 

facilitate host recovery and prevent the escalation of infection by limiting further parasite 

consumption from contaminated food sources (e.g. Pujol et al., 2001; Schneider & Ayres, 

2008; Adamo et al., 2010). Although sickness behaviours are assumed to be less costly 
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than investment in physiological immune defences (Siva-Jothy et al., 2005; Schulenburg 

& Ewbank 2007), hosts may still incur costs through missed opportunities (de Roode & 

Levefre, 2012), such as decreased mating success (e.g. Carver & Hurd, 1998; Adamo et  

al., 1999; Pai & Yan, 2003; Shoemaker et al., 2006). Correspondingly, some behavioural 

responses to infection are not intended to facilitate resistance against or recovery from 

infection,  but  rather  aimed  at  tolerating  the  negative  effects  of  infection  through  an 

increased  investment  in  other  (non-immunological)  life-history  traits,  such  as 

reproduction.

1.4.2. Behavioural tolerance

Behavioural  tolerance  strategies  differ  from  immunological  tolerance  mechanisms  as 

hosts do not seek to withstand physiological damage resulting from infection, but rather 

regain  fitness  by  investing  in  reproduction.  Such  fecundity  compensation  has  been 

described as a 'life-history escape attempt' (van Baalen, 1998; Minchella, 1985).

If the perceived threat to survival is great enough, infected individuals may seek to 

protect  against  fitness  losses  by  undertaking  a  'terminal  investment'  in  reproduction 

(Clutton-Brock,  1984;  Sheldon  &  Verhulst,  1996),  redirecting  resources  away  from 

immunity and into reproductive traits such as pheromone production, copulatory activity 

and sperm production. Due to intrinsic differences in life-history between the sexes, males 

stand to gain more from a terminal reproductive investment as females cannot linearly 

increase their reproductive success through increasing their number of matings. Females 

should instead be selected to invest more in immune defence in order to improve their 

chance of survival and so preserve their capacity for future reproduction (Bateman, 1948; 

Rolff, 2002). Indeed, most examples from the literature document terminal investment in 

males (Polak & Starmer,  1998; Adamo, 1999; Abbot & Dill,  2001; Shoemaker  et al., 

2006; Sadd et al., 2006; Krams et al., 2011).

1.4.3. Behavioural avoidance

Behavioural  responses  can  also  provide  a  host  with  prophylactic  protection  against 

parasitism by reducing their risk of contracting an infection, thus increasing the chance of 

'qualitative resistance' (i.e. complete avoidance of infection) (de Roode & Lefevre, 2012) 

and  thus  avoiding  costs  associated  with  physiological  immune  activation.  Hygienic 

behaviours, such as grooming behaviour, undertaking behaviour and sharing or spreading 

of  antimicrobials  may  offer  qualitative  resistance  by  discouraging  the  growth  of 

pathogens in the environment (Cremer et al., 2007; Otti et al., 2014). Physical avoidance 
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of parasites in the environment through avoiding contact with, feeding on or oviposition 

in contaminated sites or resources can allow hosts to avoid infection in themselves or in 

their offspring (Tasin et al., 2012; Hussain et al., 2010; Yanagawa et al., 2011; Ormond 

et al., 2011; Mburu et al. 2012; Sun et al., 2008; Stensmyr et al., 2012; Lam et al., 2010; 

Villani et al., 1994; Myles, 2002; Zhang et al., 2005). Furthermore, hosts may physically 

avoid infected conspecifics and reduce their contact rates with them in order to reduce the 

chance  of  disease  transmission  (Hamilton  &  Zuk,  1982;  Hart,  1990;  Moore,  2002). 

Effective use of parasite avoidance behaviours rely on the production of danger cues by 

immune-challenged individuals or pathogens in the environment,  and on the ability of 

other hosts to be able to detect these cues and respond to them (see section 1.7.1).

1.5. Immune priming

Although  encounters  with  parasites  are  often  unpredictable  (Combes,  1995;  Schmid-

Hempel,  1998),  being  infected  once  with  a  parasite  increases  the  probability  of  a 

reinfection for the host as the parasites are now present in the environment and also are 

likely to increase in abundance due to host-to-host transmission (e.g. Moret & Siva-Jothy, 

2003).  Selection  should  therefore  favour  the  evolution  of  an  immune memory which 

provides  the  host  with  a  stronger  and  more  rapid  immune  response  upon  secondary 

exposure to the same parasite (Kurtz, 2005).

Immunological  memory  is  well  understood  in  vertebrates,  where  the  adaptive 

immune system augments phenotypic resistance over the lifespan of individuals and even 

allows for the communication of specific resistance to offspring via the maternal transfer 

of antibodies (Janeway, 2001). Whilst such adaptive immunity was long thought to be 

absent in invertebrates due to their lack of specific B-cell–mediated and T-cell–mediated 

immune memory, a growing body of evidence has demonstrated the existence of specific 

immune memory in invertebrates, also known as 'immune priming' (reviewed in Little & 

Kraaijeveld, 2004; Kurtz, 2005; Schulenburg et al., 2009).

Invertebrates can become primed against a wide range of live pathogens, including 

parasitic tapeworms (Kurtz & Franz, 2003), Gram-positive (Pham et al., 2007) and Gram-

negative (Cong et al., 2008) bacteria, and viruses (Tidbury et al., 2011), as well as heat-

killed  pathogens  (Sadd  &  Schmid-Hempel,  2006;  Roth  et  al.,  2009a)  and  synthetic 

immune  elicitors  (Moret  & Siva-Jothy,  2003).  Immune  priming  can  augment  general 

defence  against  pathogens,  and  a  priming  state  can  persist  over  the  lifespan  of  an 

individual (Haine  et al.,  2008; Thomas & Rudolf, 2010), and can even be transmitted 

transgenerationally,  priming offspring immunity  (e.g.  Little  et  al.,  2003;  Kurtz,  2004; 
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Sadd et al., 2005; Moret, 2006; Roth et al., 2009b). Different forms of immune priming 

may be non-specific, providing an host augmented general defence against a wide range 

of parasites (e.g. Faulhaber & Karp, 1992; Lowenberger et al., 1999; Moret & Siva-Jothy, 

2003; Roth et al., 2009a), or highly specific, priming the host against one particular strain, 

species or group of parasites (e.g. Sadd & Schmid-Hempel, 2006; Roth et al., 2009a).

1.6. Immune prophylaxis

Whilst  inducible  defences  and  long-lasting  priming,  which  are  both  activated  post-

infection, allow the host to ameliorate some of the costs of infection in the event of a 

secondary  encounter  with  the  same  pathogen,  hosts  may  still  suffer  considerable 

pathogenic damage between the time of primary infection and the time it takes them to 

induce an effective immune defence, especially in the case of highly virulent pathogens. 

Anticipatory immune priming can bolster host defences in advance of infection, reducing 

the costs associated with their delayed induction.

Hosts benefit from initiating immune prophylaxes in response to environmental 

cues that provide a reliable indicator of increased pathogenic threat. Bacteria, fungi and 

yeast produce a range of volatile organic compounds (referred to as microbial VOCs, or 

MVOCs)  during  various  metabolic  functions.  MVOCs  are  of  ecological  relevance  to 

insects, as they can provide a reliable indicator regarding the quality of food sources or 

ovipoisition sites, and may signal pathogenic hazards in the environment (reviewed in 

Davis  et al., 2013). Insects have evolved various neural pathways for the detection of 

such  olfactory  cues  (Stensmyr  et  al.,  2012;  Farag  et  al.,  2013),  allowing  for  many 

MVOCs to serve as semiochemicals which induce a range of behavioural responses in the 

host, such as the behavioural avoidance, reduced feeding or reduced oviposition on sites 

contaminated with bacterial or fungal pathogens (Tasin et al., 2012; Hussain et al., 2010; 

Yanagawa et al., 2011; Ormond et al., 2011; Mburu et al. 2012; Stensmyr et al., 2012; 

Lam  et al.,  2010;  Villani  et  al.,  1994;  Myles,  2002;  Zhang  et  al.,  2005) (see section 

1.7.1.2).

1.6.1. Density Dependent Prophylaxis (DDP)

Density-dependent  prophylaxis  (DDP) is  a  form of socially-induced immune priming, 

which  has  been  observed  in  gregarious  coleopterans,  lepidopterans  and  orthopterans, 

whereby individuals  reared at  high population densities tend to develop more heavily 

melanised cuticles (Wilson & Reeson, 1998; Applebaum & Heifetz 1999; Barnes & Siva-

Jothy, 2000; Cotter et al., 2004). In Coleoptera, the cuticle may form a sink for harmful 
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quinones recruited for but not used in sclerotisation (Chapman, 1998), providing the host 

with a frontline defence against infection (Siva-Jothy et al., 2005). Cuticle darkness and 

thickness  are  both  positively  correlated  with  disease  resistance  in  many  species 

(Gershenzon 1994; Verhoog et al. 1996; Reeson et al., 1998; Barnes & Siva-Jothy, 2000), 

as thicker, more melanised cuticles are more able to resist enzyme degradation and hyphal 

penetration by fungal pathogens (Chapman 1982; Hajek & St Leger 1994).

DDP is a morphological immune prophylaxis which protects against the increased 

risk of  pathogenesis  present  at  higher  host  population  densities  (Reeson  et  al.,  1998; 

Wilson & Reeson, 1998; Schmid-Hempel, 1998; Barnes & Siva-Jothy, 2000), particularly 

in  cannibalistic  species  which  have  an  increased  threat  of  wounding  and  subsequent 

opportunistic infection at high population densities (Barnes & Siva-Jothy, 2000). DDP 

appears to be  stimulated by socially-derived mechanical cues which provide a reliable 

indicator  of  population  size  (i.e.  number  or  frequency  of  physical  contacts  with 

conspecifics) (Barnes & Siva-Jothy, 2000). However, DDP is an inflexible defence, as the 

level  of  cuticular  melanisation  becomes  fixed  in  early  adulthood  in  tenebrionids 

(Thompson, 2002; Armitage et al., 2003), and may have costs for the host. Darker, and 

therefore thicker, cuticles are less porous (Armitage  et al., 2003), which may limit the 

production  of  sex  pheromones  or  cuticular  hydrocarbons  (CHCs)  involved  in  sexual 

signalling and decrease the perceived attractiveness of the host (Armitage, 2002). Given 

that pathogenesis is often unpredictable (Combes, 1995; Schmid-Hempel, 1998), we may 

expect  selection  to  favour  the  development  of  phenotypically  plastic  immune 

prophylaxes.

1.6.2. Mechanisms of immune priming

The  molecular  mechanisms  underlying  immune  priming  in  invertebrates  are  largely 

unknown (Schulenburg et al., 2007), but similar selection pressures have likely favoured 

the convergent evolution of immune prophylaxes in plants (Ausubel, 2005). Some plants 

induce  immune prophylaxes  in  response to volatiles  produced by nearby conspecifics 

experiencing  infection  or  herbivory,  enabling  them  to  produce  a  more  rapid  and 

potentiated immune response in the event of a subsequent attack (Bate & Rothstein, 1998; 

Karban  et al., 2000; Arimura  et al. 2002; Engelberth  et al., 2004; Karban  et al., 2006; 

Heil  &  Ton,  2008;  Erb  et  al.,  2015).  However,  the  primed  state  is,  physiologically, 

relatively modest compared to that during actual parasite attack (Bate & Rothstein, 1998; 

Arimura  et al. 2002; Engelberth  et al., 2004), sensitising the host towards future attack 

without  suffering the costs  associated  with full-scale  immune activation  during actual 
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attack.  The constitutive expression of inducible  defences in plants has been shown to 

negatively  affect  several  key  aspects  of  fitness,  including  size,  growth  and  seed 

production  (Heil,  2002;  van  Hulten  et  al.,  2006),  similarly  to  invertebrates  (e.g. 

Kraaijeveld & Godfray, 1997; Moret & Schmid-Hempel, 2000).

Whilst the underlying mechanisms of immune priming differ greatly, it is likely 

that the primed state of immunity in invertebrates is also relatively dampened compared 

to  that  induced  by  actual  infection,  particularly  considering  the  immunopathological 

potential of immune activation in insects (Nappi et al., 1995; Sadd & Siva-Jothy, 2006). 

Intrinsic costs of immunity necessitate energetic, molecular and life-history trade-offs in 

all living hosts, suggesting there are inherent biological constraints to how an immune 

system can be constructed (Ausubel, 2005). In both plants and animals, immunological 

priming appears to provide a common adaptive solution to this problem,  sensitising the 

host for a faster and stronger response towards future infection whilst reducing the costs 

of immediate biochemical investment and immunopathology in the meantime.

1.7. Social immunisation

A form of  socially-induced  immune  prophylaxis  has  recently  been  described  in  two 

groups of eusocial insects, a termite,  Zootermopsis angusticollis (Traniello et al., 2002), 

and two ant species, Lasius neglectus (Ugelvig & Cremer, 2007; Konrad et al., 2012) and 

Camponotus pennsylvanicus  (Hamilton  et al., 2010). In these studies, immunologically 

naïve  individuals that were housed with immune-stimulated nestmates exhibited greater 

levels of resistance in response to a subsequent infection.  This phenomenon has been 

referred to as variously 'social immunisation', 'social vaccination', or a 'social transfer of 

immunity', and has been likened to the process of vaccination in humans (Konrad et al., 

2012).  Essentially,  it  appears  that  naïve  individuals  become  primed,  or  'immunised', 

against future infection through the social environment without suffering the same fitness 

costs associated with a previous, full-scale infection.

1.7.1. Mechanisms of social immunisation

Konrad  et  al. (2012)  propose  two  potential  routes  of  social  immunisation,  active 

immunisation  and  passive  immunisation,  which  need  not  be  mutually  exclusive. 

Essentially, active immunisation requires personal investment by a naïve host following 

contact  with  an  infected  conspecific  (either  through  the  personal  induction  of 

physiological  immunity  or  behavioural  responses),  whereas  in  passive  immunisation, 

defence  is  augmented  in  the  naïve  host  by  the  transfer  of  immune  factors,  but  not 
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pathogens, from an challenged conspecific (Rosengaus et al. 1999; Traniello et al. 2002; 

Feffermann et al. 2007; Konrad et al., 2012).

It should be noted that each of the mechanisms discussed below are distinct from 

the process of herd immunity,  whereby susceptible  individuals are passively protected 

from disease by the presence of resistant individuals in the population, who act to reduce 

the  risk  of  disease  transmission  (Anderson  &  May,  1982).  In  contrast,  social 

immunisation  relies  on  susceptible  individuals  actively  augmenting  their  protection 

against pathogenesis through the induction of a personal response (e.g. upregulation of 

physiological immunity or behavioural defences), regardless of whether this physiological 

change is initiated by another conspecific or de novo.

1.7.1.1. Active immunisation following direct parasite contact

Physical  interactions  between hosts  may  result  in  the  transfer  of  low-level  infections 

(Yamada  et  al. 1992),  causing  naïve  hosts  to  acquire  a  pathogenic  load  which  is 

insufficient  to  cause  systemic  infection  but  large  enough  to  provide  long-lasting 

protection against the pathogen in question by priming the immune system (Rosengaus et  

al., 1998; Konrad et al., 2012). This process has been likened to inoculation (also known 

as 'variolation') against smallpox in human medicine (Konrad et al., 2012).

Three of the four studies on social immunisation used a live entomopathogenic 

fungus, Metarhizium anisopliae (Traniello et al., 2002; Ugelvig & Cremer, 2007; Konrad 

et  al.,  2012).  Entomopathogenic  fungi  are  generally  obligate  killers  and  are  highly 

transmissible; furthermore, they typically infect the host by penetration, as opposed to via 

an oral route, meaning that the physical removal of spores through self-grooming and 

allogrooming forms an effective defence (Schmid-Hempel, 1998). Most insects tend to 

ingest the fungal conidia they remove through grooming, as they are typically inactivated 

in the midgut (Schmid-Hempel, 1998). Ingestion of these spores may provide the host 

with a controlled primary exposure to the fungus (Hart, 1990), allowing the host immune 

system to recognise specifics PAMPs and possibly induce a long-lasting and specific form 

of immune priming akin to secondary mode prophylaxis (Moret & Siva-Jothy, 2003).

However,  one  study  found  that  carpenter  ants  given  a  haemocoelic  (and  thus 

internalised) injection of the bacteria  Serratia marcescens stimulated increased immune 

investment  in  the  naïve  individuals  they  were  housed  with  (Hamilton  et  al.,  2010), 

suggesting  that  other  processes  besides  allogrooming  may  be  responsible  for  social 

immune transfer.
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1.7.1.2. Active immunisation following indirect parasite recognition

Immune priming may also be stimulated without direct parasite contact if naïve hosts are 

able to detect and respond to pathogenic cues, such as compounds released by parasites or 

compounds released by infected hosts.

For example, cuticular hydrocarbons (CHCs) are compounds present on the outer 

integument  of  insects  which  are  essential  to  intraspecific  communication  in  insects 

(Singer 1998; Wyatt 2003), and have been shown to become modified following immune 

stimulation in both social and non-social insects (Trabalon et al. 1999; Salvy et al., 2001; 

Richard et al., 2008; Nielson & Holman, 2011; Baracchi et al., 2012). Whilst pathogenic 

damage may be partially responsible for such changes – for example, fungal pathogens 

have also been shown to directly degrade host CHCs (Lecuona et al. 1991; Napolitano & 

Juarez,  1997)  –  similar  changes  in  the  chemosensory  profile  have  been  observed  in 

response to non-pathogenic immune elicitors (Richard  et al., 2008; Nielson & Holman, 

2011),  suggesting changes may also be induced by the host.  Immune factors  induced 

during immune stimulation can be transported from the haemolymph to the epicuticular 

surface (Schal et al. 1998), and studies have shown that Drosophila can induce expression 

of  AMPs  on  their  surface  epithelium  (Tzou  et  al.,  2002),  suggesting  that  the 

externalisation of induced immune factors during challenge may form a communicable 

immune cue for conspecifics.

Alternatively,  hosts  may  detect  pathogenic  cues  that  are  released  into  the 

environment through excretion by infected hosts.  Many bacteria and fungi release low 

molecular weight compounds, known as microbial volatile organic compounds (MVOCs), 

that  can  diffuse  readily  through  the  environment  (Davis  et  al.,  2012).  Whilst  these 

volatiles  primarily  evolved  to  communicate  information  between  bacteria  and  fungi 

themselves, they are also a reliable indicator of microbial presence in the environment, 

and a diverse range of host species have evolved the ability to detect them (Farag et al., 

2013). Many insect hosts, including ladybirds, moths, fruit flies, house flies and termites, 

exhibit  behavioural  avoidance,  reduced  feeding  and  reduced  oviposition  of  sites 

containing  MVOCs of  pathogenic  bacteria  and entomopathogenic  fungi  (Tasin  et  al., 

2012; Hussain  et al., 2010; Yanagawa  et al., 2011; Ormond  et al., 2011; Mburu  et al. 

2012; Sun  et al.,  2008; Stensmyr  et al.,  2012; Lam  et al.,  2010;  Villani  et al.,  1994; 

Myles, 2002; Zhang et al., 2005). Some MVOCs, termed 'necromones' (Yao et al., 2009), 

are chemicals  which are passively produced by the metabolism of amino acids which 

occurs during putrefaction of animal tissues (Medzhitov et al., 2012). Whilst necromones 

may  mediate  corpse  management  behaviours  in  eusocial  species  (e.g.  Wilson  et  al., 
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1958), they tend to induce avoidance of conspecific corpses in non-social insects, such as 

cockroaches (Rollo et al., 1994), springtails (Yao et al., 2009) and solitary bees (Abbott, 

2006).

Termites  (Coptotermes  formosanus) with  experimentally-removed  antennae 

engaged in more frequent grooming of nestmates with cuticle-attached fungal spores, but 

also experienced higher mortality  in response to experimental infection with the same 

fungus (Yanagawa  et  al.,  2009).  Termites  are  able  to  distinguish  between the  fungal 

strains of different virulence, removing (and ingesting) more conidia with low virulence 

(Mburu  et al.,  2005; Hussain  et al.,  2010; Yanagawa  et al.,  2011). This suggests that 

chemosensation plays an important role in coordinating grooming behaviour and social 

immunisation in termites, even though the mechanism of social transfer appears to be via 

mutual grooming (Yanagawa et al., 2009). Indeed, naïve termites exposed to an aqueous 

solution containing  M. anisopliae  conidia also increase their levels of mutual grooming 

and attack behaviours, suggesting that chemosensory cues alone are sufficient to produce 

certain prophylactic responses (Yanagawa et al., 2011).

Infected  hosts  may  excrete  pathogenic  materials  into  the  environment  (live 

pathogens,  dead  pathogens  or  pathogen-derived  compounds),  but  could  also  excrete 

immune factors or immune-related metabolites which could act as a semiochemical cue of 

pathogenic  threat  to  nearby conspecifics,  in  a  similar  way to  alarm pheromones (e.g. 

Schal et al., 1998; Tzou et al., 2002). For example, immunopathological damage incurred 

during  an immune  response in  Tenebrio  molitor can  cause  significant  damage  to  the 

Malpighian tubules (Sadd & Siva-Jothy, 2006). These structures are essential regulators 

of osmoregulation and a loss of function could cause a greater build up of waste products 

within immune-challenged hosts, having the potential to alter their chemosensory profile 

of the challenged host directly (e.g. their CHCs, pheromones, antimicrobial secretions) or 

indirectly (e.g. their excreta).

Finally, mechanical, visual and behavioural changes during infection may provide 

an infection cue to nearby conspecifics. For example, upon detection of a fungal pathogen 

in the nest, termites use a vibratory display as an alarm signal which induces an immune 

response in nearby nestmates (Rosengaus et al., 1999). Workers of the ant Formica rufa, 

which typically feed on nestmates carcasses, are able to discriminate and avoid nestmates 

killed  by  an  entomopathogenic  fungus  when their  carcasses  are  visibly  covered  with 

infectious  (mature)  conidia (Marikovsky, 1962). Interestingly,  the visual perception of 

infectious disease by humans stimulates an upregulation of the proinflammatory immune 

molecule  interleukin  (IL)-6  (Schaller  et  al.,  2010).  Sickness  behaviours  exhibited  by 
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immune-challenged hosts, such as reduced locomotion or reduced mating effort, may also 

provide nearby conspecifics with a reliable cue of pathogenic threat, and stimulate their 

investment in behavioural or physiological prophylaxes. However, sickness behaviours in 

non-social  hosts  are  more  likely  to  be  an  incidental  byproduct  of  infection  which  is 

intercepted, or 'eavesdropped' on (Stowe  et al., 1995), by naïve hosts, as opposed to a 

purposeful signal intended for communication, such as vibration in termites (Rosengaus 

et al., 1999).

Nevertheless, despite the potential for many different types of pathogenic cues to 

be produced, there has as yet been no experimental evidence of a signal-induced form of 

social immunisation (Konrad et al., 2012; Masri & Cremer, 2014).

1.7.1.3. Passive immunisation

Social immunisation in termites and ants has been attributed to the transfer of immune 

factors from exposed individuals to naïve nestmates through social processes of grooming 

and mutual feeding (Traniello  et al., 2002; Ugelvig & Cremer, 2007; Hamilton  et al., 

2010). During stomodeal  trophallaxis, liquid nutrients are shared throughout the insect 

colony (Hölldobler & Wilson, 1990), along with hydrocarbons important  in nest-mate 

recognition (Dahbi et al., 1999) and potentially other compounds present in bodily fluids. 

Transfer may also occur over externalised routes which do not involve direct host-host 

contact.  For example,  gut microbiota in bumble bees (Bombus terrestris) appear to be 

socially  transmitted  throughout  the colony via  a faecal-oral  route between individuals 

(Koch  &  Schmid-Hempel,  2011).  Individuals  prevented  from  feeding  on  faeces 

developed higher parasite loads when infected with a trypanosomatid gut parasite (Koch 

& Schmid-Hempel, 2011), suggesting that gut microbiota may be involved in the social 

transfer  of  immunity.  The authors  suggest  that  gut  microbiota  may reduce  growth of 

pathogenic species indirectly by increasing the level of competition for resources in the 

host gut and/or directly through stimulated host production of antimicrobials (Koch & 

Schmid-Hempel, 2011).

In carpenter  ants (Camponotus pennsylvanicus),  immune-challenged individuals 

increase their frequency of trophallaxis with naïve nestmates (Hamilton et al., 2010). The 

trophallactic  droplets  from challenged hosts  also have increased antimicrobial  activity 

(Hamilton  et  al.,  2010),  which  appears  to  be  due  to  increased  concentrations  of  a 

cathepsin  D-like  lysozymal  protease,  which directly  exhibits  antibacterial  activity  and 

catalyses  the  production  of  AMPs  (Thorne  et  al.,  1976;  Hamilton  et  al.,  2010). 

Trophallaxis appears to be essential for social immune transfer in this species, as naïve 
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ants  kept  near,  but  physically  separated  from,  challenged  nestmates  did  not  display 

increased resistance to subsequent immune challenge, suggesting that chemosensory or 

visual cues are insufficient to stimulate a priming response (Hamilton et al., 2010).

Whilst  the  transfer  of  immune  factors  has  been  suggested  to  be  a  ubiquitous 

immune  defence  across  the  social  insects  (Rosengaus,  2010),  social  behaviours  like 

trophallaxis  and  allogrooming  are  absent  in  non-social  insects.  However,  active 

immunisation  routes,  which  could  involve  the  direct  transfer  of  low-level  infection 

between hosts or the detection of conspecific cues of infection, are possible as they do not 

predicate upon sociality. It is also possible that immune effectors produced by challenged 

hosts may break down pathogens in the environment, creating elicitors (which may be 

host and/or pathogen derived) that prime other individuals that contact them (Bulmer et  

al., 2010).

1.8. Importance of social immunity in eusocial insects

Gregariousness has often been associated with a higher risk of pathogenesis (Schmid-

Hempel,  1998),  and  this  has  been  suggested  to  be  a  selective  force  favouring  the 

evolution  of  sociality  in  group-living  species  (Elliot  & Hart,  2010). The principle  of 

‘mass-action’ assumes  that  the  per  capita  risk  of  infection  increases  with  population 

density,  and is  implemented in  most standard epidemiological  models  (Elliot  & Hart, 

2010). However, this assumption is also dependent upon the specific host and pathogen in 

question, as not all parasites exhibit density-dependent transmission, and the relationship 

between contact  rate  between infected and susceptible  individuals  may be asymptotic 

with regards to host density (McCallum et al. 2001).

In fact,  the risk of  between-group disease transmission has  been suggested  by 

some models to be lower in more aggregated populations (Wilson et al. 2003; van Baalen 

& Beekman 2006). Indeed, many social insects tend to exhibit greater resistance when in 

dense groups than when alone (Rosengaus et al. 1998, Traniello et al. 2002; Calleri et al., 

2006;  Hughes  et  al.,  2002),  and per  capita  transmission  has  actually  been  found  to 

decrease  at  higher  densities,  perhaps  due  to  a  saturating  effect  (Reeson  et  al.,  2000; 

Hughes  et  al.,  2002;  Wilson & Cotter,  2008). Elliot  & Hart  (2010) suggest that  host 

population density is not the most important determinant of the likelihood of disease, and 

that  disease  transmission  is  a  function  of  both  frequency  and  density  dependency 

(Antonovics  et al. 1995; Begon et al. 1999). They argue that levels of 'connectivity' (or 

contact  rates)  are  a  greater  influence  upon pathogenic  susceptibility  and transmission 

rates,  and  that  behavioural  defences  in  particular  should  become  cheaper  in  more 
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connected populations (Elliot & Hart, 2010). Nevertheless, a meta-analysis has reported 

consistent positive correlations between group size and infection rates in the cases of 

parasites transmitted by close contact or via a faecal–oral route (Coté & Poulin 1995).

Kin  selection  is  likely  to  be  a  stronger  selective  force  in  highly  related 

populations, favouring group-level defences that reduce the risk of pathogenesis for all 

members of the group and should yield high inclusive fitness benefits. This has likely 

allowed for the evolution of complex 'social'  immune defences in the eusocial insects, 

such  as  self-grooming,  allogrooming  and  antimicrobial  secretion  (e.g.,  Hughes  et  al. 

2002, Traniello et al. 2002, Cremer et al. 2007, Cremer and Sixt 2009, Jackson and Hart 

2009).  Individual-level behavioural and physiological  immune responses (i.e.  personal 

immunity)  are  also  more  likely  to  provide  pleiotropic  benefits  in  highly  connected 

populations (Elliot & Hart 2010), and may provide an additional 'social barrier' against 

pathogenesis when expressed at the group level (Cremer et al., 2007).

Social insects stand to gain indirect fitness benefits from acting to reduce the risk 

of pathogenic transmission to nestmates when infected. For instance, sick carpenter ants 

(Camponotus  aethiops)  and honey bees  become ‘unsociable’,  reducing the amount  of 

time spent in the nest and reducing their frequency of social interactions, particularly with 

brood and the queen (Richard et al. 2008; Bos et al., 2012). Conversely, healthy carpenter 

ants  and  termites  have  been  shown  to  increase  their  contact  rate  with  parasitised 

conspecifics,  engaged  in  more  frequent  hygienic  behaviours  like  allogrooming 

antimicrobial gland secretion which reduce their susceptibility to disease (Hughes  et al. 

2002; Traniello et al. 2002; Calleri et al. 2006).

Although increased rates of social contact with infected individuals could easily 

facilitate  disease  transmission  in  dense  populations,  social  insect  societies  are  highly 

structured,  and  adaptive  modifications  of  spatial  distributions  and  social  interactions 

during pathogenesis can help to limit the spread of disease (Ugelvig & Cremer 2007). 

Furthermore, processes of social immunisation (e.g.  Traniello  et al., 2002; Hamilton  et  

al., 2010; Ugelvig & Cremer, 2007; Konrad et al., 2012) may provide a net benefit to the 

colony of increased contact with infected individuals, and it has been suggested that this 

could account for the relative rarity of contact limitation and social exclusion towards 

infected conspecifics in eusocial insects (Cremer et al. 2007).

1.9. Potential for 'social' defences in non-social insects

1.9.1. Selection for group-level defences

Although 'social immunity' is classified as any defence which increases the fitness of the 
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challenged  individual  and  one  or  more  conspecifics  (Cotter  &  Kilner,  2010),  some 

seemingly altruistic traits can be the product of selfish selective pressures. Kin-selection 

frameworks suggest that altruism in social insect colonies may be ‘enforced’ rather than 

voluntary,  as  it  seems that  social  sanctions  taken against  ‘cheaters’ (e.g.  reproductive 

workers) in the population may select for continuing cooperation in the population, rather 

than the inclusive fitness benefits of altruism (Wenseelers & Ratnieks 2006; Brown & 

Taylor 2010). Although high relatedness was probably initially required for sociality to 

evolve in insects (Brown & Taylor 2010), it has been suggested that the development of 

affordable punishment mechanisms could even permit levels of cooperation to increase as 

population relatedness decreases (Frank 2003; Brown & Taylor 2010).

Although immunity  may confer  pleiotropic  benefits  to  indirect  (kin)  fitness  in 

highly related populations, sociality need not be a prerequisite for the evolution of group-

level defences which benefit multiple members of the population (Elliot & Hart 2010). 

Immune responses  which  increase the  fitness  of  the individual,  such as  physiological 

resistance, behavioural avoidance or antimicrobial secretions, can become co-opted to act 

at the group-level, even if the group-level benefits they offer (i.e. to other conspecifics) 

are of secondary importance in terms of selection pressure (Elliot & Hart, 2010; Brown & 

Taylor, 2010).

1.9.2. Antimicrobial secretions

Larvae of the  Chrysomela leaf beetle, and the more distantly related brassy willow leaf 

beetle,  Phratora vitellinae,  constitutively secrete a volatile compound, salicylaldehyde, 

which  has  repellent  effects  on  generalist  predators  but  also  attracts  some  specialist 

pathogens and parasitoids (Pasteels et al., 1988; Gross et al., 2008). It has recently been 

shown that salicylaldehyde also has potent antimicrobial effects, and that the release of 

even small amounts can create an antimicrobial fumigant cloud around larvae which can 

provide effective protection from fungal and bacterial pathogens in the microenvironment 

(Gross  et  al.,  2008;  Gross  et  al.,  1998).  Groups  of  six  individuals  can  create  a 

significantly greater bacterial zone of inhibition than solitary individuals (Gross  et al., 

2008). Furthermore, leaf beetle larvae engage in a specialised group behaviour known as 

cycloalexy,  where  larvae  feed  together  in  closely  aggregated  groups  of  10  to  30 

individuals (Pasteels et al., 1988). Whilst this behaviour has been explained as providing 

increased  protection  against  predation,  it  may  also  offer  a  secondary  benefit  of 

augmenting antimicrobial defence through synergistically amplifying the salicylaldehyde 

fumigant cloud (Gross et al., 2008). 
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Such fumigants which provide disinfection of the local environment have been 

suggested to be a common form of immune defence in non-social insects (Gross  et al., 

2008).  The evolution of externalised immune defences may be favoured in species with 

have large  group sizes,  use permanent  and confined nests,  and keep more permanent 

stores of food (Otti et al., 2014). Larvae of the sawfly (Family Tenthridinoidea) and adult 

harlequin ladybirds (Harmonia axyridis) emit  similar  antimicrobial  compounds to leaf 

beetles,  whilst  glandular secretions  in water beetles  (Family Hydradephaga)  have also 

been found to inhibit bacterial growth on their cuticle (Gross  et al., 2008).  Tenebrionid 

beetles also produce externalised secretions, such as volatile benzoquinones, which have 

antimicrobial action (Tschinkel, 1975; Yezerski et al., 2000). Benzoquinone secretion is 

upregulated during tapeworm parasitism in  T. molitor (Yan & Phillips, 1993), and the 

compounds have been shown to have a repellent effect on conspecifics and predators in 

Tribolium  (Suzuki,  1980),  suggesting  they  may  have  some function  as  a  group-level 

defence.

1.9.3. Pathogen pressures

Non-social group-living  insects are likely to face many of the same pathogen threats as 

eusocial  species,  having  high  population  densities  and  often  higher  levels  of  genetic 

homozygosity,  two  factors  which  are  both  associated  with  an  increased  risk  of 

pathogenesis (Schmid-Hempel, 1998). However, non-social gregarious species lack the 

specialised forms of spatial and behavioural compartmentalisation which have been key 

to  the success of the eusocial  insects (Fefferman  et al.,  2007).  Furthermore,  although 

group living is predicted to cheapen the relative costs of behavioural defences (Elliot & 

Hart 2010), comparatively lower levels of relatedness may mean that selfish selective 

pressures in non-social species favour immune strategies which benefit personal fitness of 

the acting individual at the expense of increasing disease transmission in the population. 

For  instance,  in  many  non-social  species,  infected  individuals  (particularly  males) 

terminally invest in reproduction, increasing their reproductive activity to try and counter 

the costs of parasitism (Knell & Webberley, 2004; Sadd et al., 2006; Krams et al., 2011; 

Goodacre & Martin, 2012; Nielson & Holman, 2011). Sexual dimorphism in life-history 

investment  and immunocompetence  (Bateman,  1948;  Rolff,  2002)  can lead to  certain 

individuals  becoming  'superspreaders'  of  disease  (Galvani  &  May,  2005),  with  hosts 

actively driving parasite transmission in the population. Furthermore, hosts which tolerate 

infection are more likely to maintain within themselves a pathogenic reservoir which can 

infect other conspecifics. Whilst resistance may therefore be more strongly selected for in 
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social species (e.g. Stow et al., 2007; Turnbull et al., 2010), less highly related species are 

expected to favour more tolerance-based responses to infection or infection threat (Figure 

1.3).

The relative costs of behavioural versus physiological immune defences have been 

predicted  to  decrease  with  increasing  levels  of  population  connectivity  in  non-social 

species, and even more so with the level of sociality (Elliot  & Hart, 2010). However, 

hosts living in homogenous environments at high population densities with low dispersal 

rates are more likely to succumb to reinfection by the same pathogen (van Baalen, 1998). 

Long-lasting forms of physiological immune priming may therefore be less costly to hosts 

in terms of missed opportunities incurred through continual  expression of behavioural 

defences, such as conspecific avoidance or anorexia.

It therefore stands to reason that non-social but gregarious species should benefit 

from responding  to  environmental  cues  of  infection  provided  by  conspecifics,  which 

should be plentiful in their production, and from utilising these cues in order to modulate 

investment in both physiological and behavioural immune strategies in order to form an 

effective defence against parasitism.
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Figure 1.3.  The  effect  of  population  relatedness,  which  is  often  used as  a  proxy for 
sociality,  upon  the  costs  and  benefits  of  pathogenic  clearance  by  an  infected  host. 
Resistance-based responses reduce the parasite load of infected hosts and thus lower their 
potential for disease transmission to other conspecifics. On the other hand, hosts which 
tolerate infection are more likely to maintain within themselves a pathogenic reservoir, 
increasing their potential for disease transmission, especially if these hosts also increase 
their reproductive activity to try and counter the costs of infection. When considering the 
detrimental  effects  of  increased  transmission  upon  indirect  (kin)  fitness  in  related 
populations, hosts may be expected to favour resistance-based responses which are more 
likely to eliminate the pathogen, despite inflicting greater costs upon personal fitness. The 
optimal level of pathogen clearance should increase as the level of relatedness within the 
host population increases; for example, from moderate levels of relatedness (dashed line; 
maximum  inclusive  fitness  benefit  at  X2)  to  high  relatedness  (dotted  line;  maximum 
benefit at X3).
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1.10. Study organism

The yellow mealworm beetle,  Tenebrio  molitor  (Coleoptera:  Tenebrionidae)  has  been 

used  as  a  model  organism for  immunity  for  over  a  century  (e.g.  Gortner,  1910).  Its 

relatively short generation time (ca. 8 weeks), ease of culturing and relatively large body 

size make it amenable to laboratory studies, and a significant body of literature exists 

concerning their immunological and reproductive biology (Barnes & Siva-Jothy, 2000; 

Moret & Siva-Jothy, 2003; Armitage et al., 2003; Moret, 2006; Sadd & Siva-Jothy, 2006; 

Sadd et al., 2006; Haine et al., 2008; Johnston et al., 2014). Furthermore, the beetle is a 

stored  product  pest  which  causes  agricultural  damage  to  stored  food  sources  and 

endangers public health through food contamination (Stejskal & Hubert 2008).

As a gregarious stored product pest, the beetle shares several ecological factors 

with social insect species, such as high population density, the use of permanent nest sites 

with stored resources, and high pathogen presence in environment (e.g. Yezerski  et al., 

2005).  These  factors  should  increase  the  vulnerability  of  the  species  to  pathogenesis 

(Schmid-Hempel, 1998) and have been predicted to favour the development of group-

level  immune  responses  (Otti  et  al.,  2014).  Indeed,  many  tenebrionids,  including  T.  

molitor  produce  externalised  secretions  with  antimicrobial  activity,  such  as 

benzoquinones (Tschinkel, 1975). Whilst the primary purpose of these secretions appears 

to be to manage unwanted microbial growth in food stores (Yezzerski et al., 2000; Otti et  

al., 2014), they may also function as a group-level immune defence by reducing the risk 

of pathogenesis for surrounding conspecifics (e.g.  Yan & Phillips, 1993;  Zanchi, 2011), 

as well as acting as a predator deterrent (e.g. Suzuki, 1980).

T.  molitor females  are  polyandrous  (Drnevich  et  al.,  2001;  Worden & Parker, 

2005), a trait that benefits eusocial insects by increasing allelic diversity (Baer & Schmid-

Hempel, 1999; Hughes & Boomsma, 2004; Liersch & Schmid-Hempel, 1998; Seeley & 

Tarpy, 2007). Indeed,  multiple mating in  T. molitor  has been found to increase larval 

viability of offspring (Pai  et al.,  2005) and egg viability in F1 offspring (Pai & Yan, 

2003).  Owing to generational overlap, relatively low dispersal rates and a homogeneous 

environment,  parents and offspring should tend to face the same pathogenic pressures 

(Schmid-Hempel,  2005);  correspondingly,  transgenerational  immune  priming  has  also 

been documented in  this  species,  as well  as other closely related  tenebrionids  (Kurtz, 

2004; Sadd et al., 2005; Moret, 2006; Roth et al., 2009b).
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All of these factors are therefore predicted to predispose T. molitor to the development of 

group-level immune responses through use of 'social' cues (i.e. information derived from 

conspecifics). In this thesis, I explore the idea of 'gregarious immunisation' in T. molitor, 

whereby  uninfected  individuals  are  predicted  to  reduce  the  costs  of  infection  by 

physiological and/or behavioural responses to environmental cues of infection provided 

by immune-challenged conspecifics.

1.10. Thesis outline

The work conducted in this thesis investigates the potential for a form of socially-induced 

immune  priming,  which  is  hereafter  referred  to  as  'gregarious  immunisation',  in  the 

mealworm beetle,  Tenebrio  molitor. I  examined  the  role  that  both  physiological  and 

behavioural immune responses may play in the horizontal transfer of immunity.

Chapter 2 investigates the potential for physiological immune priming in T. molitor via 

an active route of gregarious immunisation. Immunologically naïve females were housed 

with a same-sex conspecific suffering from a live, and potentially transmissible, bacterial 

infection,  and  the  antibacterial  activity  and  survival  rates  of  naïve  cohabitants  are 

measured in response to subsequent bacterial challenge.

Chapter 3 further investigates a physiological form of gregarious immunisation, this time 

pairing naïve individuals with a conspecific challenge by an artificial immune elicitor to 

eliminate the potential for pathogen transmission. The mechanistic basis of priming was 

examined  by  measuring  levels  of  phenoloxidase  activity  and  encapsulation  in  naïve 

cohabitants  both  before  and  after  a  subsequent  immune  challenge.  This  aimed  to 

determine  whether  exposure  to  a  potential  pathogenic  threat  upregulates  constitutive 

immune defences  in  the naïve host or rather  sensitises  inducible  effectors  in order to 

allow for a potentiated, but not immediate, immune response reserved for future attack. I 

used both male/male and female/female pairs of challenged/unchallenged individuals in 

order to investigate for potential gender effects in priming.

Chapter 4 details the development of an automated tracking system which is capable of 

recording the movement of insects and extracting a range of metrics which allow for a 

quantitative description of locomotion.

Chapter 5 used the software developed in Chapter 4 to determine whether  T. molitor 

34



males and females exhibit sickness behaviours following immune challenge, in order to 

determine whether behavioural cues of infection produced by infected individuals play a 

role in immune priming for other conspecifics, and whether gender differences exist in 

behavioural responses to infection.

Chapter 6 brings together the main findings of the thesis  and their  implications,  and 

discusses potential avenues for future research.
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CHAPTER TWO:

COHABITATION WITH AN INFECTED CONSPECIFIC 
PROMOTES IMMUNE TOLERANCE IN 
IMMUNOLOGICALLY NAÏVE Tenebrio molitor

2.1. Introduction
Immunological memory is the ability of the immune system to respond more rapidly and 

effectively to pathogens that have been encountered previously. Whilst immune memory 

is well understood in vertebrates, it was long thought to be absent in invertebrates due to 

their lack of specific B-cell–mediated and T-cell–mediated immune memory. However, 

recent  work  has  documented  a  long-lasting  and  sometimes  specific  form of  immune 

memory  in  invertebrates,  known  as  'immune  priming'  (Schmid-Hempel,  2005b; 

Schulenburg  et  al.,  2007).  Insects  can  become  primed  against  a  wide  range  of  live 

pathogens, including parasitic tapeworms (Kurtz & Franz, 2003), Gram-positive (Pham et  

al., 2007) and Gram-negative (Cong  et al., 2008) bacteria, and  viruses (Tidbury  et al., 

2011),  as  well  as  heat-killed  pathogens  (Sadd  & Schmid-Hempel,  2006;  Roth  et  al., 

2009a) and synthetic immune elicitors (Moret & Siva-Jothy, 2003).

Perhaps  the  most  well-understood  form  of  immune  priming  in  insects  is 

secondary-mode prophylaxis, which is analogous to adaptive immunity in vertebrates; i.e. 

a  primary  infection  augments  host  resistance  upon  secondary  exposure  to  the  same 

pathogen  (Moret  et  al.,  2006).  Prophylactic  defences  are  enacted  before  full-scale 

infection  as  a  form  of  preventative  defence,  and  may  be  initiated  in  response  to 

environmental  cues  indicative  of  increased  pathogenic  threat,  such  as  increased  host 

population density (Wilson & Reeson, 1998; Barnes & Siva-Jothy, 2000), environmental 

pathogen presence (Pujol  et al., 2001; Yanagawa  et al., 2011), or conspecific infection 

status (Carver & Hurd, 1998; Worden et al., 2000; Worden & Parker, 2005; Vainikka et  

al., 2007).

The ability to discriminate infected from healthy conspecifics and subsequently 

induce  a  prophylactic  immune  response  has  recently  been  discovered  in  the  eusocial 

insects, where it has been referred to as 'social immunisation' (Konrad et al., 2012). It has 

been shown in both termites (Traniello et al., 2002) and ants (Ugelvig & Cremer, 2007; 

Hamilton  et  al.,  2010;  Konrad  et  al.,  2012)  that  healthy  individuals  cohabiting  with 

immune-stimulated  nestmates  can  enhance  their  resistance  and  subsequently  increase 

their survival in response to an infection to the same pathogen as that which infected their  
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nestmates.

There are two hypothesised (and non-exclusive) routes of social  immunisation; 

active  and  passive  (Konrad  et  al.,  2012).  Active  immunisation  involves  the  de  novo 

production  of  a  personal  immune response by a  naïve  host  following exposure to  an 

infected nestmate, either through the direct transmission of low-level infection between 

hosts (Konrad et al., 2012) or through the detection of infection cues by the infected host 

(e.g. chemosensory, visual or behavioural modifications) (Rosengaus et al. 1999; Konrad 

et  al.,  2012).  Passive immunisation  need not  require  the activation  of  the  host's  own 

immune system, as protection may be afforded by the direct transfer of (as yet unknown) 

immune factors from a challenged conspecific to naïve host, possibly through behaviours 

like social feeding (Rosengaus et al. 1999; Traniello et al. 2002; Feffermann et al. 2007). 

The  exposure  of  a  host  to  an  artificially  immune-challenged  conspecific  with  a  non-

transmissible 'infection' may therefore be distinct to exposure to a conspecific with a live, 

potentially transmissible pathogenic infection.

Although  social  immunisation  is  a  part  of  a  suite  of  complex  social  immune 

defences in the social  insects, eusociality need not be an essential  prerequisite for the 

evolution  of  group-level  immune  defences  (Elliot  &  Hart,  2010).  Individual-level 

physiological and behavioural responses may become co-opted at the group level if they 

increase overall defence for the individual, regardless of whether or not additional fitness 

benefits are also provided for surrounding conspecifics (Elliot & Hart, 2010; Brown & 

Taylor,  2010). Although  social  behaviours  which  have  been  suggested  to  contribute 

towards social immunisation, like social feeding (Rosengaus et al. 1999; Traniello et al. 

2002) and allogrooming (Hamilton  et al.,  2010; Konrad  et  al.,  2012),  are uncommon 

outside the social insects (Cremer et al., 2007), non-social species are known to undergo 

many  physiological  and  behavioural  changes  during  immune  challenge.  Whilst  such 

changes may be an incidental byproduct of infection in non-social species as opposed to a 

purposeful communication signal, they could still be used as a cue to inform investment 

in prophylactic if individuals are able to 'eavesdrop' on their neighbours  (Stowe  et al., 

1995).

The mealworm beetle,  Tenebrio molitor,  is a non-social  but gregarious stored product 

pest  which  undergoes  frequent  bursts  of  increased  population  density  (Tschinkel  & 

Willson,  1971)  and  exhibits  several  traits  with  density-dependent  polyphenism  (e.g. 

Barnes & Siva-Jothy, 2000). High population density, relatively low dispersal and high 

pathogen presence in a shared food source (Yezerski  et al., 2005; Otti  et al., 2014) are 
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ecological factors of this species which are thought increase vulnerability to pathogenesis 

(Schmid-Hempel 1998).

The chemosensory profile  of  T.  molitor is  known to vary with immune status 

(Nielsen  &  Holman,  2011),  and  females  are  able  to  discriminate  against  immune-

stimulated males (Worden et al., 2000; Sadd et al., 2006; Krams et al., 2011; Nielsen & 

Holman, 2011). Furthermore, T. molitor produce externalised secretions, such as volatile 

benzoquinones, which have antimicrobial action (Yezzerski et al., 2000; Otti et al., 2014). 

Secretion of these compounds is upregulated during tapeworm parasitism in  T. molitor 

(Yan & Phillips, 1993), and the compounds have been shown to have a repellent effect on 

conspecifics and predators in closely-related  Tribolium spp.  (Suzuki, 1980), suggesting 

they may have some function as a group-level  defence.  The evolution of  externalised 

immune  defences  may  be  favoured  in  such species  with  have  large  group sizes,  use 

permanent and confined nests, and keep more permanent stores of food (Otti et al., 2014).

Physiological and/or behavioural prophylaxes can reduce the costs of defence in 

environments  where  infection  is  more  likely,  and  the  potential  for  such  preventative 

defences should thus be higher in gregarious species because: (i) the encounter rate with 

infectious agents may be expected to be higher due to density-dependent effects, (ii) there 

are likely to be stronger kin selection effects that reduce the threshold for the evolution of 

behavioural  defences, and (iii)  there should be a greater opportunity to detect  cues of 

infection produced by conspecifics. I therefore investigated the potential for 'gregarious 

immunisation' in  T. molitor, whereby uninfected individuals are predicted to reduce the 

costs  associated  with  infection  by  investing  in  physiological  or  behavioural  defences 

following cohabiting with an infected conspecific.

I used the Gram-positive bacteria  Staphylococcus aureus  as an infective agent, 

which has been shown to cause persistent infection and induce a long-lasting immune 

response  (up  to  28  days)  in  T.  molitor  (Haine  et  al.,  2008).  The  bacteria  is  an 

opportunistic pathogen which is ecologically relevant, as it is often present at high levels 

in grain stores (e.g. Yezerski et al., 2005), and T. molitor endemically harbour high levels 

of the closely-related bacteria S. epidermis on their cuticle (e.g. Dobson, 2012). I 

predicted  that  cohabitation  of  an  immunologically  naïve  individual  with  an  infected 

conspecific  would  result  in  increased  resistance  and  enhanced  survival  in  the  naïve 

individual during subsequent infection. Furthermore, to distinguish between the different 

potential routes of active and passive gregarious immunisation (Konrad  et al., 2012), I 

used  either  live  or  heat-killed  bacteria  to  stimulate  an  immune  response  in  'sick' 

conspecifics. I predicted differences in immunity between naïve individuals cohabiting 
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with conspecifics with a live,  transmissible bacterial  infection and those cohabiting to 

conspecifics inoculated with heat-killed bacteria (i.e. a non-transmissible infection).

In this chapter, I examined:

• How immunity and survival respond to immune challenge in a naïve beetle that 

has cohabited with an infected conspecific

• The  quantitative  differences  in  induced  immunity  between  naïve  individuals 

housed  with  a  conspecific  with  a  live  (transmissible)  pathogen,  and  naïve 

individuals  housed  with  a  conspecific  with  a  heat-killed  (non-transmissible) 

pathogen
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2.2. Methods
2.2.1. Insect culturing

Final-instar larvae of Tenebrio molitor were purchased from a commercial supplier (Live 

Foods UK) and maintained in an insectary at 26±2°C under a 12/12hr light/dark cycle.   

Larvae  were  kept  at  a  density  of  ~800  individuals  per  30×15×10cm box,  and  were   

provided with ad libitum access to Progrub (Livefoods Direct Ltd) and supplemented with 

freshly cut potato once per week. Pupae were collected between 2-3 days after pupation, 

and were sexed and weighed before being maintained in isolation in grid box containers. 

Only female pupae with a wet weight of 116–232mg were used (representing  ± 2 S.D. 

around the population mean). Imagoes were provided with Progrub and a ~50mg potato 

supplement  upon  adult  eclosion,  and  all  treatments  were  performed  8-10  days  after 

eclosion.

2.2.2. Bacterial culturing

Bacteria  were  derived  from  a  single  ancestral  colony  of  erythromycin-resistant 

Staphylococcus  aureus  (JP015,  SH1000  background;  sourced  from  Simon  Foster, 

University  of  Sheffield).  The  bacteria  were  revived  from a  frozen  glycerin  stock  by 

plating onto Luria broth agar (2% LB, 1.5% agar) infused with 10µg/mL erythromycin, as 

well  as  5.6µg/mL amphotericin-B to prevent  fungal  growth.  Plates  were  incubated at 

37°C for 24 h before a single colony was removed and suspended in 30mL Luria broth 

(2% LB) infused with 10µg/mL erythromycin,  and cultured for 36-48 h in a shaking 

incubator (37°C, 110rpm), which is sufficient for the bacteria to reach stationary phase 

(Dobson, 2012).

Bacterial  population  density  was estimated  turbidometrically  by  measuring  the 

optical  density  (OD650nm)  of  the  bacterial  suspension  using  a  microplate  reader 

(VersaMax),  and  referencing  a  previously  calculated  calibration  curve.  The  bacterial 

suspension was then washed by two rounds of (i) pelleting by centrifugation (4500g for 

20mins  at  4°C),  (ii)  supernatant  removal,  (iii)  pellet  resuspension  in  1mL  sterile 

phosphate buffered saline (PBS), and (iv) recombination by pipetting and vortexing. The 

twice-washed solution was then used to prepare three different inoculates (see Table 2.1), 

which were adjusted to the appropriate concentrations by dilution with sterile PBS.
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Table 2.1. Full treatments for infected individuals and subsequent assay challenges for 
paired naïve individuals.

Group
Infected 

treatment

Naïve treatment

(antibacterial activity)

Naïve treatment 

(survival)

Live 

infection

2.5x104 CFUs 

live S.aureus

2.5x106 CFUs 

live S.aureus

5x107 CFUs 

live S.aureus

Heat-killed 

infection

2.5x104 CFUs 

heat-killed S.aureus

2.5x106 CFUs 

live S.aureus

5x107 CFUs 

live S.aureus

Procedural 

control
PBS

2.5x106 CFUs 

live S.aureus

5x107 CFUs 

live S.aureus

No-treatment 

control
- none -

2.5x106 CFUs 

live S.aureus

5x107 CFUs 

live S.aureus

2.2.3. Bacterial inoculate preparation

Three live inoculates were prepared (see Figure 2.1 for treatments): a 2.5x104  CFUs/mL 

to be administered to live-infected cohabitants (Inflive), and a 2.5x106  CFUs/mL inoculate 

to be administered to naïve individuals following assigned to the antibacterial  activity 

assay following cohabitation, and a 5x107 CFUs/mL inoculate to be administered to naïve 

individuals assigned to the antibacterial activity assay following cohabitation. A 2.5x104 

CFUs/mL heat-killed inoculate, administered to heat-killed infected cohabitants (Infheat), 

was also prepared by heating the live bacterial solution in a waterbath at 95°C for 30 mins 

before leaving to cool. The effectiveness of heat-killing treatment upon bacterial mortality 

was confirmed by plating out 200µL of undiluted heat-treated inoculate on control agar 

(infused with only 5.6µg/mL amphotericin-B) and incubating for 48 h at  37°C, as no 

CFUs were detected on any plate (n=6).

2.2.4. Staphylococcus aureus LD50 calculation

In order to determine an appropriate infective dose of bacteria with which to gain a useful 

measure of host survival, the median lethal dose (LD50) was calculated from a preliminary 

survival analysis which used a range of infective doses, from 102 to 108 CFUs (Appendix 

1). The LD50 after 14 days was estimated to be 5.33 x 107 CFUs per 5µL inoculate.

42



43

F
ig

u
re

 2
.1

. 
S

um
m

ar
y 

of
 m

et
ho

ds
 u

se
d 

in
 t

he
 e

xp
er

im
en

t. 
Pa

ir
s 

of
 f

em
al

e 
be

et
le

s 
w

er
e 

ho
us

ed
 t

og
et

he
r 

in
 P

et
ri

 d
is

he
s 

(5
0m

m
 d

ia
m

et
er

),
 w

it
h 

ea
ch

 
pa

ir
 c

on
si

st
in

g 
of

 o
ne

 n
aï

ve
 in

di
vi

du
al

 (
'N

') 
an

d 
on

e 
in

fe
ct

ed
 in

di
vi

du
al

 (
'In

f')
. G

ro
up

s 
di

ff
er

ed
 a

cc
or

di
ng

 to
 th

e 
tr

ea
tm

en
t a

dm
in

is
te

re
d 

to
 th

e 
in

fe
ct

ed
 

(I
nf

) 
co

ha
bi

ta
nt

: 
In

fliv
e  r

ec
ei

ve
d 

a 
li

ve
 i

nj
ec

ti
on

 o
f 

St
ap

hy
lo

co
cc

us
 a

ur
eu

s,
 I

nf
he

at
ed

 r
ec

ei
ve

d 
an

 i
nj

ec
tio

n 
of

 h
ea

t-
ki

ll
ed

 S
. 

au
re

us
, 

In
fPB

S  r
ec

ei
ve

d 
an

 
in

je
ct

io
n 

of
 p

ho
sp

ha
te

 b
uf

fe
re

d 
sa

li
ne

 (
P

B
S)

 a
s 

a 
tr

ea
tm

en
t 

co
nt

ro
l, 

an
d 

In
fN

T
C
 r

em
ai

ne
d 

un
ch

al
le

ng
ed

 a
s 

a 
no

 t
re

at
m

en
t 

co
nt

ro
l. 

A
ft

er
 7

2h
 

co
ha

bi
ta

ti
on

, 
na

iv
e 

co
ha

bi
ta

nt
s 

(N
) 

fr
om

 e
ac

h 
gr

ou
p 

w
er

e 
re

m
ov

ed
 a

nd
 r

ec
ei

ve
d 

a 
su

bs
eq

ue
nt

 i
m

m
un

e 
ch

al
le

ng
e 

in
 t

he
 f

or
m

 o
f 

a 
li

ve
 S

. 
au

re
us

 
in

fe
ct

io
n.

 H
al

f 
of

 t
he

se
 i

nd
iv

id
ua

ls
 h

ad
 t

he
ir

 h
ae

m
ol

ym
ph

 e
xt

ra
ct

ed
 8

h 
po

st
-i

nf
ec

ti
on

 t
o 

m
ea

su
re

 t
he

ir
 l

ev
el

 o
f 

an
tib

ac
te

ri
al

 a
ct

iv
it

y,
 a

nd
 h

al
f 

w
er

e 
as

si
gn

ed
 to

 a
 s

ur
vi

va
l a

na
ly

si
s 

fo
r 

th
e 

fo
ll

ow
in

g 
37

 d
ay

s.



2.2.5. 'Infected' beetle treatments

'Infected'  cohabitants were anaesthetised on ice before being inoculated using a sterile 

glass  microcapillary  which  had been  pulled  to  a  fine  point  using  an  electrode  puller 

(Narishige  PC-10).  The  microcapillary  was  inserted  through  the  pleural  membrane 

between the  seventh  and eight  abdominal  sternites,  and a  syringe  barrel  was used  to 

pneumatically  introduce  the  inoculate  to  the  haemocoel.  'Infected'  cohabitants  in  the 

procedural  control  group (InfPBS)  were injected with 5µL sterile,  ice-cold PBS,  whilst 

those in the no-treatment control group (InfNTC) remained unchallenged.

2.2.6. Cohabitation of infected-naïve pairs

Each  treatment  group  consisting  of  female-female  pairs,  with  each  individual  pair 

comprising one immune-challenged ('infected') individual and one unchallenged ('naïve') 

individual. Infected-naïve pairs were housed together for 72 h in a small Petri dish (50mm 

diameter) with  ad libitum access to Progrub and a 100mg potato supplement provided. 

Cohabitants  were individually  labelled  with a small  spot of acrylic  paint  on the right 

elytron in order to differentiate them.

2.2.7. 'Naïve' beetle treatments

After 72 h of cohabitation, naïve individuals in each treatment group were removed from 

their  pairs  and  randomly allocated  to one of two sub-groups: one to  quantify  in  vivo 

antibacterial  activity,  and  one  to  measure  long-term survival.  Naïve  individuals  were 

anaesthetised  on ice and given an immune challenge via the injection  of 5µL of live 

bacterial inoculate, which contained of either 2.5x106  CFUs (antibacterial activity assay) 

or 5x107 CFUs (survival assay).

2.2.8. Measuring antibacterial activity in naïve beetles

At 8 h post-infection, naïve individuals assigned to the antibacterial activity assay were 

anaesthetised on ice before being perfusion bled with 500µL sterile PBS. Perfusion bleeds 

were performed by everting the genitalia and making a small incision, before inserting a 

syringe  needle  into the  pleural  membrane exposed between the  head and thorax,  and 

gently flushing 500µL sterile PBS through the haemocoel to be collected in a chilled, 

sterile centrifuge tube. Perfused haemolymph samples were then serially diluted up to 10-4 

in  PBS,  and 200µL  of  each  dilution  was  plated  out  onto  erthyomycin-infused  agar 

(10µg/mL erythromycin and 5.6µg/mL amphotericin-B). Plates were incubated for 48 h at 

37°C  before  having  their  CFUs  enumerated  using  an  open-source  colony  counting 
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software, OpenCFU (Geissmann, 2013). The largest reliable colony count across plates 

was used as the final measurement of bacterial killing.

2.2.9. Measuring survival in naïve beetles

Naïve individuals assigned to the survival assay were housed individually in grid boxes 

with ad libitum access to food and a ~50mg potato supplement provided once per week. 

Survival  was  monitored  over  the  next  37  days,  and  mortality  was  confirmed  by  the 

absence of movement in response to a physical stimulus. It was difficult to conclusively 

establish bacterial infection as being the primary cause of mortality, as very low residual 

loads of experimental S. aureus are left in T. molitor more than 24 h after infection (Haine 

et  al.,  2008),  making it  difficult  to  a  culture an enumerable number of colonies.  The 

survival rates of naïve individuals were therefore compared to a baseline calculated from 

a control sample of untreated individuals of the same age whose survival was monitored 

over the same time period.

2.2.10. Statistical analysis

All  statistical  analyses  were  conducted  using  R  statistical  software  (v3.1.2;  R 

Development Core Team, 2014). As data on CFU counts were non-normally distributed, a 

negative binomial generalised linear model was fitted using the glm.nb function of the 

MASS package (Venables & Ripley, 2010). Naive individual body mass (calculated as 

pupal wet weight) was included as a covariate in the model (Table 2.2). To test for the 

effect  of  cohabitation  treatment  upon  survival  in  naïve  individuals,  Kaplan–Meier 

survival models with a Weibull distribution were fitted using the survreg function of the 

survival package (Therneau, 2011). Individuals that were still alive at the end of the 37 

day observation period were incorporated as right-censored data.
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2.3. Results
2.3.1. Bacterial clearance in naïve beetles following infection

There  was no significant  effect  of cohabitation  type upon bacterial  clearance  rates  in 

naïve individuals following subsequent infection (negative binomial GLM: F = 1.339; df 

= 3, 72; p = 0.268) (Figure 2.2). However, there was a non-significant positive correlation 

between between naïve individual  body mass and antibacterial  activity  (Pearson's:  t  = 

1.82, df = 74, p = 0.074). The inclusion of naïve weight as a covariate improved the 

predictive power of the negative binomial model (Table 2.2), and showed that weight was 

a  significant  predictor  of  antibacterial  activity  in  naïve  individuals  (negative  binomial 

GLM: F = 5.40; df = 1, 68; p = 0.023). There was a highly significant interaction effect  

between  weight  and  cohabitation  treatment  upon  the  rate  of  antibacterial  activity 

(negative binomial GLM: F = 6.54; 5.397, df = 3, 68; p < 0.001).

However, the effects of cohabitation treatment were opposite to that predicted  a 

priori. Naïve individuals housed with a cohabitant suffering a heat-challenged bacterial 

challenge (Nheated) displayed the lowest rates of bacterial clearance (97.8 ± 0.84% [mean ± 

S.E.]).  By  contrast,  naïve  individuals  housed  with  a  live-infected  cohabitant  (Nlive) 

exhibited the highest clearance rates (99.4 ± 0.36%). When body mass was accounted for, 

the  difference  in  residual  bacterial  load  between  Nheated and  Nlive individuals  was 

statistically  significant  (Nheated vs.  Nlive  :  z  =  -2.76,  p  =  0.029),  as  was  the  difference 

between Nheated and NNTC individuals (Nheated vs.  NNTC: z = 4.10, p < 0.001) (Table 2.3). 

Another unexpected result was that antibacterial activity exhibited by naïve individuals in 

the  no  treatment  control  group  (NNTC)  was  significantly  higher  than  that  of  naïve 

individuals in the procedural control group (NPBS) (NNTC vs.  NPBS  : z = 2.99, p = 0.015), 

although NNTC antibacterial activity did not differ significantly from Nlive individuals (Nlive 

vs. NNTC : z = 0.91, p = 0.798) (Table 2.3).

Table 2.2. Likelihood of negative binomial regression models fitted to data on bacterial 
load (CFU counts) in previously naïve beetles. The log-likelihood score is significantly 
higher for the model which includes weight as a covariate, and provides a significantly 
better fit to the data .
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Model d.f. logLik Δ logLik P-value
. ~ 1 (null) 2 -333.16
. ~ CFUs 5 -331.62 -1.54 3.0661 0.38154
. ~ . + weight 6 -330.77 -0.85 1.7009 0.19217
. ~ . + CFUs x weight 9 -326.12 -4.65 9.2992 0.02557

χ²



Figure 2.2. Effect of cohabitant treatment upon antibacterial activity in previously naïve 
beetles,  as  measured  by  the  number  of  Staphylococcus aureus  colony  forming  units 
(CFUs) recovered from their haemolymph 8 h after infection. Boxplots show the median 
and interquartile range (IQR), and whiskers extend to the minimum and maximum values 
within 1.5*IQR. Data are log-transformed to improve visibility.
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Table 2.3. Multiple comparisons of mean bacterial load (CFUs) between naïve 
individuals in each cohabitation treatment. Tukey's contrasts were performed on fitted 
data from the negative binomial model which included naïve beetle weight as a covariate.

2.3.2. Survival in naïve beetles following infection

There was a significant  effect  of cohabitation  type upon survival  in naïve individuals 

following infection (Cox proportional hazards test: χ2=10.48; df=3; p=0.015) (Figure 2.3). 

Survival  was  significantly  lower  in  naïve  individuals  cohabiting  with  live-infected 

conspecifics (Nlive) than naïve individuals in the PBS (Nlive vs. NPBS : z = 3.12; p = 0.002) 

or no treatment control (Nlive vs. Nnaïve: z=2.56, p=0.015) cohabitations. naïve individuals 

cohabiting  with  a  conspecific  with  a  heat-killed  infection  (Nheated) also  showed  some 

decrease in survival compared to controls, although this difference was not statistically 

significant (z=1.78; p=0.076).

The mortality of naïve individuals following infection was significantly greater for 

all  cohabitation  types  than  baseline  levels  (p<0.01);  only  2/32  individuals  from  the 

uninfected baseline population died during the 37 day observation period.  In contrast, 

mortality amongst infected naïve individuals was almost absolute; 95.2% (120/126) of 

individuals died within the 37 day observation period, with a mean survival time of 12.4 ± 

1.1 days (mean ± S.E.) across all cohabitation treatments.
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Comparison Estimate S.E. z value P-value

Heat-killed vs. Live -23.13 8.39 -2.76 0.029

PBS vs. Live -13.49 7.97 -1.69 0.326

PBS vs. Heat-killed 9.65 7.45 1.30 0.565
no treatment vs. Live 7.23 7.93 0.91 0.798

no treatment vs. Heat-killed 30.37 7.41 4.10 <0.001

No treatment vs. PBS 20.72 6.93 2.99 0.015



Figure 2.3. The effect of cohabitant treatment upon survival in previously naïve beetles 

following  infection  with  Staphylococcus  aureus.  The  black  line  depicts  the  baseline 

survival rate in a population of uninfected beetles of the same age and gender.
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2.4. Discussion
This study found that the immune status of an infected conspecific had a significant effect 

on the response of a naïve individual  to  subsequent  immune challenge.  However,  the 

directionality of this effect was not as predicted: naïve individuals housed with immune-

challenged  conspecifics  were  expected  to  exhibit  enhanced  resistance  to  subsequent 

infection. Instead, naïve beetles cohabiting with conspecifics with a live (and potentially 

transmissible)  bacterial  infection  (Nlive)  showed  reduced  longevity  in  response  to 

subsequent infection, whilst exhibiting no change in antibacterial activity (compared to 

naïve  individuals  exposed  to  a  healthy  conspecific  [NNTC]).  Conversely,  naïve  beetles 

housed with conspecifics  with a heat-killed (and non-transmissible)  bacterial  infection 

demonstrated  significantly  lower  rates  of  bacterial  clearance  following  subsequent 

infection, but did not show an associated decrease in longevity.

Although  unexpected,  these  results  raise  some  interesting  points.  Firstly,  they 

suggest that the induction of resistance mechanisms against  S. aureus  infection by  T. 

molitor  may incur  a  significant  survival  cost  for  the  host.  Furthermore,  the  different 

responses of naïve individuals cohabiting with conspecifics with either a live (Nlive) or 

heat-killed infection (Nheated) suggest that immune priming processes may act to augment 

tolerance,  not  resistance,  against  future  infection.  Finally,  it  is  possible  that  artificial 

infections  may  not  be  sufficient  to  induce  'gregarious  immunisation'  if  the  route  of 

immunisation relies on the direct transfer of low-level infection between hosts. Each of 

these points is discussed below.

2.4.1. Potential routes to social immunisation

A social transfer of immunity has been reported in eusocial insects, whereby immune-

stimulated  hosts  provide  a  'social  immunisation'  of  healthy  group  members  by 

augmenting their  resistance against subsequent pathogenic infection (Rosengaus  et al., 

1998; Traniello  et al.,  2002; Hamilton  et al.,  2010; Konrad  et al.,  2012). Such social 

transfer  of  immunity  may be acquired  via  two (non-exclusive)  routes  (Konrad  et  al., 

2012): through the active upregulation of an individual's own immune system following 

exposure  to  a  parasitised  neighbour  (active  social  immunisation  [e.g.  Konrad  et  al., 

2012]), or via the social transfer of immune compounds between hosts, priming naïve 

hosts without requiring direct activation of their  own immune systems (passive social 

immunisation [e.g. Rosengaus et al., 1998; Traniello et al., 2002; Hamilton et al., 2010]).
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2.4.1.1. Active immunisation

It is possible that naïve individuals housed with live-infected conspecifics show greater 

antibacterial  activity  (and suffered a concurrent reduction in longevity)  in response to 

subsequent  S.  aureus  infection  due  to  previous  contact  with  the  pathogen  via  their 

neighbour during the cohabitation period. Physical interactions between hosts may result 

in the transfer of low-level infections (Yamada et al. 1992), causing naïve hosts to acquire 

a pathogenic load which is insufficient to cause systemic infection but large enough to 

provide long-lasting protection against the pathogen in question by priming the immune 

system (Rosengaus et al., 1998; Konrad et al., 2012). However, whilst physical contact is 

the  most  common  transmission  route  for  fungal  pathogens  and  sexually-transmitted 

infections  (STIs),  most  bacterial  infections  typically  occur  via  oral  uptake  (Schmid-

Hempel, 1998).

Ingestion of pathogenic material by naïve individuals is the most likely route of 

transmission in this study, as Inflive individuals may have contaminated their surrounding 

food source through the excretion of live pathogens. For example, a large quantity  of 

viable  Staphylococcus epidermidis (the same amount  as retained in the intestine)  was 

found  to  be  excreted  from  the  nematode  Caenorhabditis  elegans  after  feeding  on  a 

bacterial lawn (Begun et al., 2007). Although the transmission of live pathogens was only 

possible by live-infected cohabitants, individuals inoculated with heat-killed bacteria may 

still have excreted dead bacteria into their surrounding environment. Non-living bacterial 

material, such as lipolysaccharide (LPS), is known to elicit a potent and specific immune 

response in many insects, including T. molitor (Moret, 2006).

Active  social  immunisation  may  also  be  mediated  by  the  dissemination  of 

infection cues produced by infected conspecifics. As well as developing visual indicators 

of disease (e.g.  spores on cuticle  during fungal  infection),  hosts  can exhibit  manifold 

changes  in behaviour  ('sickness behaviours';  see Chapter  5) and chemosensory profile 

during an immune challenge.  Chemosensory cues form a cornerstone of communication 

in insects (Singer, 1998; Wyatt, 2003), and represent the main route of communication in 

mealworm beetles, whose use of visual and auditory cues is relatively underdeveloped 

through adaptation to darkness (Wyatt, 2003; Carazo et al. 2004; Bryning et al., 2005). 

Male  T. molitor appear able to assess female reproductive status by chemosensory cues 

alone, demonstrating a preference for the odour of virgin over non-virgin females and 

sexually mature over immature females (Carazo  et al. 2004). Furthermore, pheromone 

production in  T. molitor  varies with reproductive status (Seybold & Vanderwel, 2003) 

and  condition  (Rantala  et  al.,  2003),  suggesting  chemosensory  cues  are  plastic  with 
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regards to immune status.

Cuticular hydrocarbons (CHCs) are compounds present on the outer integument of 

insects  which  are  used for  intraspecific  communication,  and can  transmit  information 

about age, sex, reproductive status and colony membership (Singer, 1998; Wyatt, 2003). 

Fungal  pathogens have been shown to degrade the levels  CHCs in some insect  hosts 

(Lecuona  et  al. 1991;  Napolitano  &  Juarez,  1997),  and  quantitative  changes  in  the 

hydrocarbon profile have been documented in honey bees and ants following parasitism 

with a virus (Baracchi et al., 2012) and macroparasites (Salvy et al., 2001; Trabalon et al. 

1999). CHC modifications have also been reported in honey bees (Apis mellifera) and T.  

molitor following  immunostimulation  with  lipopolysaccharide  (LPS)  (Richard  et  al., 

2008; Nielson & Holman,  2011), suggesting that at  least  some chemosensory cues of 

infection are produced by the host.  However,  it  is unclear whether these are adaptive 

signals intended to communicate immune status with conspecifics or merely an incidental 

byproduct of the immune response (e.g. resource depletion, immunopathology).

Upon  challenge,  the  fat  body  releases  antimicrobial  peptides  (AMPs)  and 

haemocytes into the haemolymph (Bulet & Stöcklin, 2004). These factors can be readily 

transported  from the  haemolymph to the epicuticular  surface  (Schal  et  al. 1998),  and 

Drosophila have even been shown to directly express AMPs at their surface epithelium 

(Tzou et al., 2002). Some endoparasites have also been observed to reduce haemolymph 

protein  levels  by  up  to  27% (Weinberg  &  Madel  1985).  This  suggests  that  internal 

changes in physiology during immune challenge can be translated into externalised cues 

of infection through their expression via cuticular pores or exocrine glands. The excretion 

of  pathogenic  or  host-derived  metabolic  byproducts  may  also  constitute  signals  of 

infection  produced  by  parasitised  hosts.  In  T.  molitor,  autoreactive  damage  incurred 

during an immune response can cause significant damage to the Malpighian tubules (Sadd 

& Siva-Jothy, 2006), which are essential regulators of osmoregulation. It is possible that 

activation of the immune response may lead to a build up of waste products within the 

haemocoel  of parasitised hosts,  which could in turn lead to the production of via the 

cuticle of exocrine glands. In mice, parasitised individuals have higher concentrations of 

plasma corticosterone in their urine, hormones which have been linked to the control of 

alarm odours (Dunn et al. 1987; Cocke et al., 1993), and females can display avoidance 

of  infected  males  using these cues (Kavaliers  & Colwell,  1992;  Penn & Potts,  1998; 

Arakawa et al., 2011).

Live-infected cohabitants (Inflive) in this study were likely to suffer greater levels 

of damage (immunopathogical  and pathological) and resource depletion from defending 
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against  a  live  and  actively-evading  pathogen;  consequently,  these  individuals  have  a 

greater potential to undergo behavioural and chemosensory alterations during infection, 

and thus a greater capacity to produce detectable cues of infection with which to prime 

neighbouring  conspecifics.  However,  whilst  the  results  show  that  Nlive  cohabitants 

demonstrated higher levels of antibacterial activity than Nheated, activity levels were not 

greater than those displayed by naïve cohabitants exposed to healthy cohabitants (NNTC, 

NPBS) (Figure 2.2).

2.4.1.2. Passive immunisation

Passive  social  immunisation,  whereby  host  immunity  is  activated  indirectly  by 

conspecifics as opposed to initiated by the host itself, may be mediated by the transfer of 

immune compounds between conspecifics (Rosengaus et al. 1999; Traniello et al. 2002; 

Feffermann et al. 2007). This may occur through an externalised route conducted over the 

body surface, such as contact with secreted substances during allogrooming (Traniello et  

al. 2002;  Fernandez-Marin  et al.,, 2006), or through an internalised route via the direct 

exchange  of  bodily  fluids  during  social  feeding  behaviours  such  as  trophallaxis 

(Rosengaus et al., 1998; Hamilton et al., 2010).

Whilst  the  transfer  of  immune  factors  has  been  suggested  to  be  a  ubiquitous 

immune defence across the social insects (Rosengaus, 2010), many social behaviours like 

trophallaxis  and allogrooming  are  absent  in  non-social  insects.  However,  externalised 

antimicrobial  secretions  are  produced  by  many  tenebrionid  species,  such  as  volatile 

benzoquinones  in  T.  molitor  and  closely-related  Tribolium  species (Tschnikel,  1974). 

Whilst the primary purpose of these secretions may be to manage unwanted microbial 

growth in food stores (Yezzerski et al., 2000; Otti et al., 2014), benzoquinones also have 

a  repellent effect on conspecifics and predators in  Tribolium  (Suzuki, 1980), and their 

secretion is also upregulated in Tenebrio molitor during parasitism by the rat tapeworm, 

Hymenolepis diminuta (Yan & Phillips, 1993). This suggests that these compounds may 

serve a secondary defensive function,  perhaps as a group-level  defence.  For example, 

salicylaldehyde-based  volatiles  secreted  by  the  brassy  willow  leaf  beetle  (Phratora 

vitellinae) have strong antimicrobial action, and when synergistically amplified in beetle 

aggregations,  form  a  fumigant  cloud  which  protects  against  fungal  and  bacterial 

pathogens in the microenvironment (Gross et al., 1998, 2008).

Although externalised  benzoquinone  secretions  could  possibly  act  to  passively 

immunise  naïve  individuals  that  ingest  them,  such volatile  cues  seem more  likely  to 

operate via the dissemination of olfactory cues through the environment. Furthermore, 
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this  study  finds  differences  between  naïve  individuals  housed  with  live-infected 

conspecifics (Nlive) and those housed with conspecifics receiving a heat-killed challenge 

(Nheated), suggesting that live pathogens may play an important role in the social transfer of 

immunity,  either  through  direct  pathogen  transmission  or  through  host  detection  of 

pathogen-derived cues (i.e. active routes of social immunisation).

2.4.2. Potential priming mechanisms

Immunity can be costly to use and maintain (Moret & Schmid-Hempel, 2000; Schmid-

Hempel, 2003) and can inflict extensive immunopathological damage upon the host (e.g. 

Sadd & Siva-Jothy, 2006), meaning that maximised investment in physiological immune 

defence  is  not  always  the  best  way for  the  host  to  minimise  the  costs  of  parasitism 

(Hamilton et al., 2007). Immune priming is therefore unlikely to be implemented by the 

constitutive upregulation of heavy-duty resistance mechanisms, and may rather involve a 

more a subtle form of immune activation.

2.4.2.1. Tolerance

Immune defence strategies can be broadly divided into groups: resistance, the ability to 

clear  invading  parasites,  and  tolerance,  the  ability  to  reduce  detrimental  effects  of 

parasites (Schneider & Ayres, 2008; Medzhitov  et al.,  2012). Insects possess an open 

haemocoel and an arsenal of cytotoxic and non-specific effector systems (Siva-Jothy et  

al., 2005); although these defences can be rapidly initiated, they can also incur fitness 

costs through immunopathological damage to self tissues  (Sadd & Siva-Jothy; Long & 

Boots, 2011). Although quantitative resistance appeared to be lower in Nheated individuals, 

this was not associated with a notable decrease in survival, suggesting that higher parasite 

burdens during infection may not have been coupled with a significant fitness cost.

Tolerance  of  infection  may  also  be  accomplished  through  non-immunological 

responses which help to the host ameliorate the costs of parasitism without targeting the 

parasite at all. Terminal investment in reproduction (Clutton-Brock, 1984) is a common 

life-history 'escape attempt' (van Baalen, 1998; Minchella, 1985) which can help counter 

negative effects of infection upon personal condition through increasing host reproductive 

fitness. Although no measures of reproductive success were taken from naïve individuals 

in  this  study,  it  is  possible  that  females,  when  threatened  with  an  increased  risk  of 

pathogenesis,  trade off physiological  immune activity  against  reproductive investment. 

Future work may benefit from examining the effects of cohabitant immune status upon 

both  immune  and  reproductive  function  in  mixed-sex  groups,  in  order  to  provide 
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threatened hosts with the ability to invest in reproduction as a life-history escape strategy. 

Furthermore,  terminal  investment  in  reproduction  typically  occurs  in  only  males 

following  infection  (Polak  &  Starmer,  1998;  Adamo,  1999;  Abbot  &  Dill,  2001; 

Shoemaker et al., 2006; Sadd et al., 2006; Krams et al., 2011; Nielson & Holman, 2011), 

as males are able to increase their  reproductive success linearly with their  number of 

matings, unlike females (Bateman, 1948). Investigating the effects of cohabitant immune 

status upon both naïve males and females may reveal if immune priming strategies vary 

between the sexes.

2.4.2.2. Sensitisation

A form of  social  immune  priming  is  also  known to  exist  in  plants,  whereby  certain 

species are able to prime themselves against  attack by responding to airborne volatile 

organic  compounds  (VOCs)  produced  by  conspecifics  experiencing  herbivory  or 

pathogenesis  (Bate  &  Rothstein,  1998;  Karban  et  al.,  2000;  Arimura  et  al. 2002; 

Engelberth  et al.,  2004; Karban  et al.,  2006; Heil  & Ton, 2008; Erb  et al.,  2015). In 

primed plants, the physiological state is relatively modest compared to that during actual 

parasite attack (Bate & Rothstein, 1998; Arimura  et al. 2002; Engelberth  et al., 2004); 

rather than being sensitive,  the host is instead sensitised to a secondary danger signal 

produced  only  in  the  event  of  subsequent  attack.  This  allows  for  a  more  rapid  and 

potentiated immune response to be launched only if and when required (Conrath  et al., 

2002;  Heil  &  Ton,  2008),  thus  reducing  the  costly  biochemical  investment  and 

immunopathology associated with full activation of the immune response (Heil,  2002; 

van Hulten et al., 2006).

A similar form of sensitisation has been suggested to explain immune priming in 

invertebrates (Schulenburg  et al., 2007), although the exact underlying mechanisms are 

still  unknown.  It  is  possible  that  differences  in  sensitisation  induced  by  cohabitant 

immune status could explain some of the variation in immunity and longevity measured 

between naïve individuals here, but this is purely speculative. Another experiment which 

measures  levels  of  constitutive  (before  subsequent  challenge)  and  inducible  (after 

subsequent  challenge)  immune  effectors  following  a  similar  cohabitation  period  may 

reveal a role for sensitisation in a gregarious immunisation process.

2.4.2.3. Secondary-mode prophylaxis vs. long-lasting immunity

If cohabitation with a conspecific with a heat-killed infection did help Nheated individuals 

to  tolerate  subsequent  infection  (as  discussed  above),  then  one  may expect  a  similar 
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response from Nlive individuals housed with live-infected conspecifics, yet this was not the 

case.  The observed differences  may stem from a distinction between the processes of 

social immunisation, secondary-mode prophylaxis and long-lasting immunity.

Nlive,  but  not  Nheated, individuals  had  the  potential  to  acquire  infection  via 

pathogenic  transmission  from their  cohabitant  through the  direct  transfer  of  infection 

('variolation').  Direct  contact  with  the  pathogen  could  have  induced  a  long-lasting 

immune  response  in  naïve  hosts  (e.g.  Haine  et  al.,  2008;  Johnston  et  al.,  2014)  or 

otherwise augmented their  responsive to secondary infection via a priming effect (e.g. 

Moret  et  al.,  2006).  This  would  explain  the  observations  of  augmented  levels  of 

antibacterial  activity  in  Nlive individuals,  as  well  as  decreased  longevity,  as  these 

individuals may have underwent two separate bouts of infection.

Long-lasting  elevation  of  antimicrobial  activity  following  infection  has  been 

reported in various insects, lasting from between 9–44 days (Faye et al. 1975; Azambuja 

et  al. 1986;  Bulet  et  al. 1992;  Korner  & Schmid-Hempel  2004;  Haine  et  al.,  2008; 

Johnston et al., 2014). A previous study which challenged T. molitor with a high dose of 

S. aureus found that antimicrobial activity was upregulated for up to 21 days, but also that 

the infective bacteria were able to recovered from host haemolymph for up to 21 days 

following infection (Haine  et al., 2008).  Such long-lived  immune responses have been 

suggested  to  prevent  the  evolution  of  pathogen  resistance  and  manage  persistent 

infections, with long-lasting expression of immune effectors acting to 'mop up' persistent 

pathogens which survive the first wave of host defences, and which can be more resistant 

to host defences as well as more virulent to the host (Haine  et al.,  2008). Haine  et al. 

(2008) suggest that such lasting immunity may have evolved to prevent the evolution of 

resistance in the infective bacterial population and/or to manage persistent infections, as 

opposed to being a prophylactic defence against reinfection from environmental bacteria, 

as in the case of secondary mode prophylaxis (Moret et al., 2006). However, defending 

against  a reemerging infection from persistent resident  bacteria  in  vivo  and defending 

against  an entirely  new infection from environmental  bacteria  are  both essentially  the 

same process (Dobson, 2012), and it is likely that a long-lasting immune response would 

provide protection against both potential routes of reinfection.

2.4.4. Non-adaptive explanations for effects of cohabitation

It is possible that the observed effects of treatment upon immunity were an artifact of the 

experimental  design  used,  as  the  forced  cohabitation  of  naïve  individuals  may  have 

prevented  the  expression  of  behavioural  defences  against  pathogenic  threat,  such  as 
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physical avoidance of challenge conspecifics. Behavioural responses can provide hosts 

with a quick and low cost defence against potential pathogen transmission (Siva-Jothy et  

al., 2005; Schulenberg & Ewbank 2007), and are likely to provide a greater fitness benefit 

when  they  allow  the  host  to  avoid  pathogen  exposure  entirely,  as  opposed  to  just 

augmenting post-infection defences (Schaller & Park, 2011).

For example, Drosophila melanogaster and D. simulans both exhibit behavioural 

avoidance of a natural parasitoid wasp (Leptopilina boulardi) and prefer to oviposit in 

clean  sites  with  an  absence  of  wasps  (Lefevre  et  al.,  2011).  However,  in  the  forced 

presence of wasps, only D. melanogaster females show a reduction in the number of eggs 

laid (Lefevre et al., 2011), and D. simulans larvae infected by parasitoid wasps are better 

able  to  melanotically  encapsulate  and  kill  wasp  eggs  than  D.  melanogaster  larvae 

(Schlenke  et al., 2007; Lefevre  et al., 2011). In other words,  D. simulans  continues to 

produce its normal complement of eggs as their offspring are more capable of resisting 

wasp  infection  via  physiological  immune  defence,  whilst  D.  melanogaster,  whose 

offspring  are  less  capable  of  mounting  a  successful  physiological  defence  response, 

instead  opt  to  limit  their  rate  of  oviposition.  Whilst  both host  species  exhibit  similar 

avoidance behaviours in response to the costs of parasitism, differences in their resistance 

strategies  emerge  due  to  trade-offs  between  physiological  and  behavioural  defences. 

Furthermore, forced cohabitation may have acted as a stressor upon naïve individuals due 

to  their  inability  to  escape  from a  potential  threat;  for  example,  mice  housed with  a 

tumour-bearing neighbour exhibit  symptoms of both psychological  and physical stress 

(Alves et al., 2006).

The importance of sexual selection as a mediator of immune defence could not be 

accounted for in this experimental design as only female-female pairs were used. The 

absence of breeding partners may have prevented hosts from investing in reproduction as 

a non-immunological life-history escape response to counter the costs of infection. It is 

also  possible  that  reliable  signals  of  infection  are  only  produced  in  the  presence  of 

members  of  the  opposite  sex.  For  example,  in  the  burying  beetle,  Nicrophorus 

vespilloides, breeding females only release methyl geranate, a substance which indicates 

breeding status, in the presence of a male partner, i.e. a signal receiver (Steiger  et al., 

2011). Such receiver-dependent chemical signalling is expected to evolve when costs are 

involved in the production or transmission of the signal (Steiger et al., 2011).

Another,  although less  likely,  possibility  is  that  infected  Inflive cohabitants  had 

their  behaviour  directly  manipulated  by  the  parasite.  For  instance,  starved  Tenebrio 

molitor and Tribolium confusum beetles have been shown to prefer to feed on the faeces 
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of rats infected with  Hymenolepis diminuta, a tapeworm to which themselves and rats 

both play hosts (Evans et al. 1992; Pappas et al. 1995), and an attractive volatile attractant 

is thought to be present in infective faeces (Evans et al. 1992). It is possible that S. aureus 

is  able  to  induce  behavioural  modifications  in  infected  hosts  which  facilitate  its 

transmission to neighbouring conspecifics.

2.4.5. Summary

This chapter did not find evidence for gregarious immunisation in  Tenebrio molitor, as 

neither resistance nor survival were augmented in naïve individuals following exposure to 

a sick conspecific. However, it is possible that cohabitation with an immune-stimulated, 

but non-contagious, conspecific augments the tolerance of naïve hosts to future infection, 

since these individuals were found to withstand higher pathogen loads without suffering a 

reduction in longevity.

The  key  difference  between  individuals  exposed  to  conspecifics  with  a  live 

infection and those exposed to conspecifics with a heat-killed infection is proposed to rely 

on the active transfer of low-level infection between hosts ('variolation'). This may act in 

concert with passive route of immunisation (e.g. transfer of immune compounds between 

hosts) or an indirect active route (e.g. olfactory detection of pathogenic presence), but 

does not appear to have an additive effect upon the resultant induction of immunity in 

naïve hosts. Instead, it seems likely that direct contact between a live pathogen and the 

host immune system overrides other relatively subtle effects of gregarious immunisation, 

as infection often necessitates an immediate response in order to preserve host fitness.
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In this chapter, I have shown that:

• Naïve  beetles  exhibit  differences  in  their  response  to  a  subsequent  infection 

following cohabitation with an immune-challenged conspecific

• Individuals exposed to conspecifics with a heat-killed bacterial infection (Nheated) 

exhibited relatively low rates of antibacterial activity in response to subsequent 

infection, but did not show a reduction in longevity

• Individuals exposed to conspecifics with a live bacterial infection (Nlive) displayed 

higher levels of antibacterial activity (versus Nheated), yet suffered from increased 

mortality
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CHAPTER THREE:

GENDER DIFFERENCES IN IMMUNE PRIMING OF 
NAÏVE Tenebrio molitor FOLLOWING COHABITATION 
WITH AN IMMUNE-CHALLENGED CONSPECIFIC

3.1. Introduction
Immune defences can be costly to maintain and use (Moret & Schmid-Hempel, 2000; 

Schmid-Hempel, 2003), and many immune effectors are induced only upon exposure to 

infection  as  opposed to  being  constitutively  expressed (Hamilton  et  al.,  2007).  Some 

invertebrates possess a form of adaptive immune memory, known as 'immune priming', 

whereby a primary pathogenic exposure can provide the host with enhanced protection 

against subsequent infections by the same pathogen (Kurtz & Franz, 2003; Moret et al., 

2006; Sadd & Schmid-Hempel, 2006; Pham et al., 2007; Roth et al., 2009b; Tidbury et  

al., 2011).

Immune priming may also be induced before infection if the host is able to use 

environmental  cues  of  pathogenic  threat  to  invest  in  prophylactic  protection  against 

potential  infection.  For instance,  insects can exhibit  behavioural  avoidance of infected 

conspecifics  (Carver  &  Hurd,  1998;  Worden  et  al.,  2000;  Worden  & Parker,  2005; 

Vainikka et al., 2007) and free-living pathogens in the environment (Villani et al., 1994; 

Myles, 2002; Zhang et al., 2005; Meyling et al., 2006; Ormond et al., 2011; Yanagawa et  

al., 2011), and may induce defences against indirect predictors of pathogenesis, such as 

high  population density (Reeson  et al., 1998; Wilson & Reeson 1998; Barnes & Siva-

Jothy, 2000).

Reliable  indicators  of  disease  produced  by  infected  conspecifics  should  be 

beneficial  to  naïve  hosts  if  they  are  able  to  use  them to  reduce  their  probability  of 

infection, such as by stimulating investment in behavioural and/or physiological immune 

prophylaxes. Indeed, a social transfer of immunity, referred to as ‘social immunisation’, 

has been described in termites (Traniello et al., 2002) and ants (Ugelvig & Cremer, 2007; 

Konrad  et al.,  2012; Hamilton  et al.,  2010),  whereby healthy individuals housed with 

infected  nestmates  become better  protected  against  subsequent  infection  by  the  same 

pathogen.  naïve hosts have been suggested to become 'immunised' through one of three 

(non-exclusive) routes: (i) active induction of immunity following direct contact with the 

pathogen via the transmission of low-level infection from infected nestmates (Traniello et  

al.,  2002;  Ugelvig  &  Cremer,  2007;  Konrad  et  al.,  2012),  (ii)  active  induction  of 
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immunity following the detection of infection cues produced by infected nestmates (e.g. 

chemosensory,  behavioural  or  visual  changes),  or  (iii)  passive  induction  of  immunity 

following  the  social  transfer  of  immune  factors  passed  on  from  infected  nestmates 

(Rosengaus & Traniello, 1999; Hamilton et al., 2010).

The mealworm beetle, Tenebrio molitor, is a stored product pest which is non-social but 

gregarious, and has several features of its ecology in common with social insects, such as 

high population density, permanent nest sites with stored resources and high pathogen 

presence in their  environment  (Yezerski  et al.,  2005; Otti  et al.,  2014).  These factors 

increase host vulnerability to pathogenesis (Schmid-Hempel 1998) and may predispose T.  

molitor to  the  development  of  group-level  immune responses  (Otti  et  al.,  2014).  The 

chemosensory profile of  T. molitor is  known to vary according to reproductive status 

(Seybold & Vanderwel, 2003; Carazo et al., 2004), condition (Rantala  et al., 2003) and 

during  immune  stimulation  (Nielsen  &  Holman,  2011).  Although  female  mealworm 

beetles are able to discriminate against the infection status of potential males (Worden, 

2000; Sadd  et al., 2006; Krams  et al., 2011; Nielsen & Holman, 2011), little is known 

about whether naïve individuals (male or female) could utilise such cues of infection to 

inform a prophylactic investment in immunity to protect against a threat of parasitism.

The invertebrate immune system is broadly composed of constitutive defences, 

which  are  always  ready  to  act  but  non-specific,  and  can  cause  immunopathological 

damage to the host (Sadd & Siva-Jothy, 2006), and inducible defences which are more 

specific but can take up to 48 h to reach peak activity (Haine  et al., 2008).  In plants, 

which can also undergo immune priming in response to volatiles produced by infected or 

herbivorised conspecifics (Bate & Rothstein, 1998; Karban  et al., 2000; Arimura  et al. 

2002; Engelberth et al., 2004; Karban et al., 2006; Heil & Ton, 2008; Erb et al., 2015), 

the physiological  state  of priming is relatively modest compared to that  during actual 

parasite attack (Bate & Rothstein, 1998; Arimura et al. 2002; Engelberth et al., 2004). In 

this way, primed hosts become sensitised to attack but not sensitive, able to launch a rapid 

and potentiated immuhne response in the event of subsequent attack whilst reducing the 

costs associated with an immediate full immune activation (Heil, 2002; van Hulten et al., 

2006).  It  is  possible  that  priming  in  invertebrates  is  produced  by  a  similar  form of 

sensitisation, although the underlying mechanisms are mostly unknown (Schulenburg et  

al., 2007).

Encapsulation  is  a  fast-acting  cellular  response  which  defends  the  host  by 

smothering invasive foreign bodies in haemocytes in order to starve parasites of oxygen 
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and nutrients. The cells in this capsule can undergo apoptosis and melanise through the 

action of cytotoxic  quinones produced by the  phenoloxidase cascade (Gillespie  et  al., 

1997). Phenoloxidase (PO) is an enzyme which catalyses the formation of melanin and 

the production  of highly reactive  and toxic  quinones  which form an essential  part  of 

constitutive defences in insects (Chapman, 1998), but which (alongside other defences 

such as  reactive  oxygen species)  are  known to be immunopathological  (Nappi  et  al., 

1995; Sadd & Siva-Jothy, 2006). However, phenoloxidase is generally found in the host 

haemocoel  in  the  form  of  an  inactive  precursor,  prophenoloxidase  (proPO),  which 

becomes  rapidly  activated  in  the  presence  of  microbial  compounds  (Cerenius  et  al., 

2008),  thus  limiting  the  immunopathological  costs  associated  with  its  expression.  PO 

activity and encapsulation ability are both positively correlated with pathogen resistance 

in insects (Braun et al., 1998). The haemocoelic insertion of a nylon monofilament is an 

immune  insult  which  incurs  a  significant  fitness  cost  in  Tenebrio  molitor  (Armitage, 

2003; Sadd & Siva-Jothy, 2006), and also provides an effective way to measure cellular 

encapsulation  against  a  novel  antigen  (e.g.  König  &  Schmid-Hempel  1995;  Schmid-

Hempel & Schmid-Hempel 1998; Ryder & Siva-Jothy, 2001).

In Coleoptera, the cuticle forms a mechanical barrier which can provide a frontline 

defence to infection (Siva-Jothy  et al.,  2005),  and more melanised cuticles have been 

shown to provide increased resistance against the entomopathogenic fungi, Metarizhium 

anisopliae,  which  invades  the  host  by  penetrating  the  cuticle (Barnes  &  Siva-Jothy, 

2000).  Cuticular  melanisation  is  also positively correlated with haemolymph levels  of 

phenoloxidase and prophenoloxidase in T. molitor, as well as in crickets (Reeson et al., 

1998; Barnes & Siva-Jothy 2000), which in turn augments resistance against systemic 

infection, and the cuticle has been suggested to be a sink for harmful quinones recruited 

for but not used in sclerotisation (Chapman 1982). Sclerotised proteins are impermeable 

to many fungal secretions,  resistant to enzyme degradation and can also mechanically 

prevent hyphal penetration (Hajek & St Leger 1994). However, cuticular melanisation is a 

density dependent polyphenism in T. molitor (i.e. dark cuticles are not a fixed trait in the 

population),  suggesting that highly melanised cuticles may carry a hidden cost for the 

host. One potential explanation is that darker, thicker cuticles are less porous (Armitage, 

2002), and may lower the attractiveness of the host by limiting the quantitative output of 

pheromones and cuticular hydrocarbons (CHCs) involved in sexual signalling.

In this chapter, I examine 'gregarious immunisation' in  Tenebrio molitor by cohabiting 

immunologically naïve adults with an artificially immune-challenged conspecific in order 
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to determine whether socially-derived cues of infection alter immune investment. I  use 

both male-male and female-female cohabiting pairs, although not mixed sex pairs in order 

to avoid the potentially confounding effects  of mating upon immunity (Rolff  & Siva-

Jothy, 2002), to investigate the effects of gender upon gregarious immunisation. Gender is 

often neglected in studies on ecological immunity despite the often-striking differences 

between immune investment in males and females (Rolff, 2002; Zuk & Stoehr, 2002; 

Joop & Rolff, 2004).

The use of a  artificial  immune elicitor  mimics  a  state  of 'sickness'  in the host 

whilst avoiding the potential for direct pathogen transmission between conspecifics, as 

well  as  avoiding  potential  parasitic  manipulation  of  physiology  or  behaviour  in  the 

immune-stimulated host. The only remaining potential routes of gregarious immunisation 

in naïve conspecifics should therefore be: (i) via the transmission of an immune factor 

from the challenged conspecific to the naïve host, or (ii) via the detection of an infection 

cue produced by conspecifics during immune challenge, such as semiochemical cues or 

sickness behaviours (Konrad et al., 2012).

Assuming  a  role  for  gregarious  immunisation  in  this  species,  I  predicted  that 

exposure  to  an  immune-challenged  conspecific  would  upregulate  immunity  in  naïve 

individuals.  By  measuring  levels  of  constitutive  immunity  (before  a  subsequent 

challenge)  and  inducible  immunity  (post-challenge),  I  aimed  to  determine  whether 

gregarious immunisation is achieved through full-scale activation of the immune system 

or by a more subtle priming response. Finally, positing the potential role of chemosensory 

signals in active gregarious immunisation and presuming a negative association between 

cuticle thickness and porosity, I predicted a negative correlation between the degree of 

cuticular melanisation in immune-challenged individuals and immune upregulation in the 

naïve individuals they were paired with.

In this chapter, I examine:

• The  effects  of  cohabitation  with  an  artificially  immune-challenged  conspecific 

upon investment in both cellular and humoral immunity in naïve beetles

• Gender differences in the immune responses of naïve cohabitants

• The role that cuticular melanisation (in both naïve and infected cohabitants) plays 

in these responses
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3.2. Methods
3.2.1. Insect culture

Final-instar larvae of Tenebrio molitor were purchased from a commercial supplier (Live 

Foods UK) and maintained in an insectary at 26±2°C under a 12/12hr light/dark cycle.   

Larvae were kept at densities of ~800 larvae per 30×15×10cm box, and were provided   

with ad libitum access to Progrub (Livefoods Direct Ltd) and supplemented with freshly 

cut potato once per week.

Beetles were collected as pupae within 2-3 days of pupation,  and were sexed, 

weighed and then maintained in isolation in grid box containers. (Only pupae with a wet 

weight of 78-112mg were used (representing ± 2 S.D. around the population mean). Upon 

imaginal eclosion, imagoes were provided with Progrub and a ~50mg potato supplement.

8-10  days  after  imaginal  eclosion,  adult  males  and  females  were  randomly 

assigned to one of three treatments (Figure 3.1). Each treatment group consisted of pairs 

of beetles; one immune-challenged ('infected', hereafter referred to as 'Inf') individual and 

one untreated ('naïve', hereafter referred to as 'N') individual.

3.2.2. Infected beetle treatment

Infected individuals in the experimental group were immune challenged by the insertion 

of a ~2mm length of nylon monofilament (0.15mm diameter) into the haemocoel between 

the third and fourth abdominal sternites. Infected individuals in the experimental control 

group were given a sterile stab between the third and fourth abdominal sternites as a 

wounding control, and those in the no treatment control group were untreated.

3.2.3. Naïve beetle treatment

Infected-naïve pairs were housed together for 72 h in a small Petri dish (50mm diameter) 

with ad libitum access to Progrub and a 100mg potato supplement. After this cohabitation 

period, naïve individuals were removed and randomly assigned to either one of two sub-

treatments: (i) a pre-challenge assay, in which haemolymph was extracted immediately to 

analyse constitutive levels of immunity following cohabitation, or (ii) a post-challenge 

assay, in which naïve individuals were given an immune challenge in the form of a nylon 

implant so as to quantify levels of inducible immunity, before having their haemolymph 

extracted for analysis and their nylon monofilament extracted 24 h later.
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3.2.4. Haemolymph extraction

Naïve  individuals  were  anaesthetised  on  ice  and had  their  haemolymph extracted  by 

perfusing the haemocoel with 500µL of sterile phosphate buffered saline (PBS). A 500µL 

perfusion  avoids  over-dilution  of  the  haemolymph  whilst  ensuring  a  relatively 

comprehensive  sampling  of  the haemocoel,  as  a  500µL perfusion  has  been shown to 

extract  >90%  of  total  haemocytes  from  T.  molitor  (Thompson,  2000).  Perfused 

haemolymph  was  vortexed  and  split  into  two  200µL  samples  before  being  stored 

immediately at -80°C to disrupt haemocytes. Frozen samples were defrosted on ice for 

<15 mins and centrifuged for 15 mins at 4°C at 12000 rpm before the supernatant was 

extracted for analysis.

3.2.5. Nylon retrieval and elytra removal

After being perfusion bled, all naïve individuals and Infnylon infected individuals had their 

elytra removed and stored at -20°C for later analysis. All naïve and infected individuals 

that  underwent  nylon challenge  were dissected  to  retrieve their  nylon monofilaments, 

which were subsequently stored in 5% sodium azide solution and refrigerated for later 

analysis.

3.2.6. PO and proPO activity

Phenoloxidase (PO) activity and total PO activity (combined activity of phenoloxidase 

and prophenoloxidase [proPO]) were quantified using a modified version of the protocol 

reported by Stoks et al. (2006). I added 40µL haemolymph supernatant, 120µL distilled 

water and 20µL L-DOPA (4mg/mL in PBS) to each well of a 96-well microplate. ProPO 

was activated by the addition of 20µL alpha-chymotrypsin (2mg/mL in PBS), whilst for 

wells in which PO only was measured, 20µL PBS was added. Plates were incubated for 5 

mins at room temperature before being placed in a plate reader (VersaMax) for 40 mins at 

30°C, where optical density was measured at 495nm (OD495nm) every 40 secs.

Enzyme activity, Vmax, was measured as the slope of the reaction curve during 

the linear phase under non-limiting substrate concentrations (Barnes & Siva-Jothy, 2000). 

This  was  quantified  in  R  (v3.1.2;  R  Development  Core  Team,  2014)  by  applying  a 

running median to smooth OD data before using a sliding window to determine the 10 

minute period with the largest linear increase in OD. All values were standardised relative 

to  a negative control run for each plate,  which consisted of two wells  with the same 

ingredients  aside  from 40µL PBS substituted  for  the haemolymph sample.  A positive 

control was also run for each plate, with two wells each consisting of 40µL mushroom 
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tyrosinase  (0.2mg/mL in  PBS;  Sigma-Aldrich  T3824)  in  place  of  haemolymph.  Each 

haemolymph sample was run in duplicate and a mean PO and total PO activity value 

calculated for each beetle.

3.2.7. Protein concentration

Total haemolymph protein concentration was estimated using the Bradford technique 

(Bradford, 1976). 5µL centrifuged haemolymph supernatant was added to 195µL 

Bradford reagent (Sigma: B6916) in microplate wells. Plates were incubated at room 

temperature for 5 mins before optical density was measured at 650nm (OD650nm), and 

protein concentration estimated by referencing a calibration curve calculated using a 

serial dilution of a protein standard (bovine serum albumin; Sigma-Aldrich 82516). 

Haemolymph samples were run in duplicate and their mean value calculated.

3.2.8. Nylon analysis

Whilst nylon encapsulation and melanisation is a widely used immune assay in studies on 

insects (König & Schmid-Hempel 1995; Schmid-Hempel & Schmid-Hempel 1998; Ryder 

& Siva-Jothy, 2000), little detail has been published on the specifics of image acquisition 

and  the  quantification  process,  which  can  be  highly  subjective.  A standardised  and 

automated method of analysis was therefore developed. To achieve this, an automated 

image  analysis  script  was  developed  in  C++  language  using  the  open-source  image 

analysis library, OpenCV  (http://opencv.willowgarage.com/). The image analysis script, 

calibration  tool  and  sample  images  are  documented  online 

(https://github.com/JoGall/nylon-encapsulation/).

Nylon  monofilaments  were  digitally  photographed  using  a  MicroPublisher  3.3 

RTV  camera  (QImaging,  Burnaby,  BC,  Canada)  attached  to  a  Leica  dissecting 

stereoscope (Wetzlar, Hessen, Germany). In the image analysis script, each image was: 

(a) converted to greyscale, (b) adaptively thresholded in order to binarise the image and 

subtract the background, (c) eroded and dilated to smooth contour  edges,  (d) had the 

single largest contour found and extracted to select the desired foreground, (e) given an 

encapsulation score by enumerating the absolute  number of pixels  within the contour 

which have a lower brightness than a user-specified threshold, (f) given a melanisation 

score by calculating the mean pixel saturation of all pixels within the contour, (g) had the 

total length of the monofilament estimated by calculating the length of a minimum rotated 

rectangle fitted to the detected contour. Finally, measurements were scaled to true spatial 

units  (mm2)  through calibration with a reference image of known size.  Sample image 
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showing this procedure are provided in Figure A2.2. 

 The  calibration  stage  is  a  vital  subjective  step  in  defining  the  level  of 

encapsulation,  as  human  judgment  is  required  to  distinguish  between  encapsulating 

cellular material (black) and non-cellular zones of darkening (more brown). The latter 

may be result of direct melanisation of the nylon monofilament or even melanisation of 

entangled  (non-encapsulating)  tissues,  such  as  fat  body  (samples  images  provided  in 

Figure A2.1). In order to calibrate the assay and find the most appropriate threshold, we 

manually estimated encapsulation for 10 nylon images using the thresholding function in 

ImageJ (http://imagej.nih.gov/ij). We then used the image analysis script to iterate over all 

possible thresholds (0-255) for the same images, and calculated the threshold whose result 

most closely matched the manual method (Figure A2.3).

3.2.9. Assessment of cuticular melanisation

Elytra  were  digitally  photographed  (setup  as  described  above)  under  direct,  intense 

illumination  from  a  lightbox,  as  the  elytra  of  lighter  brown  beetles  is  not  readily 

distinguishable  from black  beetles  under  normal  lighting  conditions  (Barnes  & Siva-

Jothy, 2000). In order to quantify cuticular luminescence, a similar image analysis script 

to the one described above was developed, again using the OpenCV library. In brief, each 

raw image was (a) converted to grayscale, (b) Gaussian blurred, (c) thresholded, and (d) 

had the single largest contour found and drawn. A darkness score was then given by the 

mean saturation of pixels in the detected contour. Elytron length was calculated by fitting 

a  minimum rotated  rectangle  fitted  to  the  detected  contour  and  outputting  its  length, 

before  scaling to true spatial  units  (mm2)  through calibration with a  reference image. 

Image samples of this procedure are provided in Figure A2.4. Both elytra (left and right) 

were analysed for each beetle and mean values of luminescence and length calculated.

3.2.10. Statistical analysis

All  statistical  analyses  were  conducted  using  R  (v3.1.2;  R Development  Core  Team, 

2014). Linear regressions were built for each response variable, with PO activity, total PO 

activity,  nylon  encapsulation  and  nylon  melanisation  data  being  log-transformed  for 

normality.  For  each  regression,  statistical  models  were  optimised  using  a  stepwise 

procedure, working backwards from maximal models that included all main effects (sex 

[male or female], cohabitant treatment [nylon, sterile stab or no treatment control], and 

challenge  status  [pre-challenge  or  post-challenge])  and  all  possible  interactions. 

Additional models were built to test for the effects of cohabitant treatment within each 
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gender  independently  by  omitting  sex  and  its  interactions  as  fixed  effects  from  the 

models. As body size is often positively correlated with the level of immune investment 

in many insect species, including T. molitor (e.g. Ryder & Siva-Jothy, 2001; Cotter et al., 

2004), pupal wet weight was initially included in the model, although proved to have no 

significant  effect  on the activity  of any measured immune effector,  nor  did it  have a 

significant interaction with any other fixed effect in the model.  Furthermore, there were 

no significant correlations between beetle weight and the level of any measured immune 

effector (Spearman's rank correlation: R2 < 0.02, df = 184; p > 0.2), and mean weight did 

not differ between males and females, so weight was excluded from the analysis.
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3.3. Results
3.3.1 Gender differences in immune responses of naïve cohabitants

When combining data from both sexes (see Table 3.1), a significant gender by cohabitant 

treatment interactions was apparent for measured levels of PO activity (F6,179  = 7.427, p 

<0.001) and total PO (combined PO and proPO) activity (F8,177  = 5.569, p = 0.005) in 

naïve individuals. There was also a significant interaction between naïve challenge status 

and  cohabitant  treatment  upon  total  PO  activity  (F8,177  =  3.362,  p  =  0.037)  and 

haemolymph protein concentration (F4,181  = 4.880, p=0.028) in naïve individuals, and a 

marginally non-significant main effect of naïve challenge status upon PO activity (F6,179 = 

3.829,  p  <0.052).  There  were  no  significant  predictors  of  nylon  encapsulation  or 

melanisation rates in naïve individuals, although there was a non-significant interaction 

between gender and cohabitant treatment upon nylon encapsulation (F5,89 = 2.920, p = 

0.059).

3.3.1.1 Immunity in naïve females

Additional models fitted only the female data show no significant effect of cohabitant 

treatment upon any measure of immunity in naïve individuals (Table 3.2), despite a non-

significant trend for higher PO activity in naïve females paired with immune-stimulated 

conspecifics (F3,92 = 2.929, p = 0.058). There was a significant effect of challenge status 

upon PO (F3,92 = 6.241, p = 0.014) and total PO activity (F3,92 = 5.040, p = 0.027) in naïve 

females,  although  activated  titres  recorded  after  subsequent  immune  challenge  were 

unexpectedly lower than constitutive levels recorded before challenge (Figure 3.2),  as 

were recorded concentrations of haemolymph protein (Figure 3.4).

3.3.1.2 Immunity in naïve males

Individual models fitted to male data show a significant interaction between cohabitant 

treatment and naïve immune status upon all immune measures except nylon melanisation 

(Table 3.2), although the interaction effect upon nylon melanisation was marginally non-

significant (F5,83  = 2.99,  p = 0.061).  However,  the effect of cohabitant treatment upon 

immunity  in  males  is  contrary  to  that  predicted:  instead  of  demonstrating  augmented 

defence  following  cohabitation  with  an  immune-stimulated  cohabitant,  Nnylon males 

exhibited  lower  levels  of  PO and total  PO activity  (Figure  3.2),  nylon encapsulation 

(Figure  3.2)  and haemolymph protein  concentration  (Figure  3.4)  compared to  control 

males  housed  with  non-challenged  cohabitants.  For  all  immune  measures  but  nylon 

melanisation, the effects of cohabitant treatment were only apparent in constitutive levels 
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of immunity, measured in naïve individuals before immune challenge.

3.3.2. Effects of cuticular melanisation

In Nnylon / Infnylon cohabiting pairs, there was a significant positive correlation between the 

cuticle  darkness  of  challenged  individuals  and  nylon  melanisation  in  their  naïve 

cohabitants  (t28=2.11,  p=0.044;  Table  3.4,  Figure  3.5A),  and  a  significant  negative 

correlation  between  Infnylon cuticle  darkness  and  Nnylon protein  concentration  (t58=2.12, 

p=0.038; Table 3.4, Figure 3.5B). There were no such correlates between Infnylon cuticle 

darkness and either PO or total PO activity in Nnylon individuals, although there was a non-

significant  trend  for  an  association  between  Infnylon cuticle  darkness  and  Nnylon 

encapsulation (t28=1.87, p=0.073; Table 3.4).

In contrast with previous studies (e.g.  Reeson et al., 1998;  Barnes & Siva-Jothy, 

2000; Armitage & Siva-Jothy, 2005), there were no striking associations between cuticle 

darkness and any measure of immunity measured within the same individuals (i.e. darker 

naïve individuals did not produce stronger immune responses) (summarised in Table 3.3). 

Although  there  was  some  evidence  for  a  positive  correlation  between  cuticular 

melanisation and haemolymph protein concentration in naïve individuals (p = 0.021), this 

difference was non-significant after correcting for multiple comparisons. As expected, PO 

activity  and  total  PO  activity  were  highly  correlated  (p<0.001),  and  both  were  also 

positively  correlated  with  haemolymph  protein  (p<0.001).  Nylon  encapsulation  and 

melanisation also showed a significant positive correlation with one another (p<0.001).

72



Table 3.1. Parameter estimates for linear models fitted to each measure of immunity in 
naïve beetles, for both sexes combined. Nylon encapsulation and melanisation were only 
measured  in  challenged  naïve  individuals  ('post-challenge'),  so  'treatment'  and  its 
interactions are omitted as an effect from these models. Significant effects (p<0.05) are 
highlighted  in  bold.  Parameters  for  main  effects  are  excluded  in  models  where  their 
interactions are significant.
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PO activity Total PO activity Haemolymph protein
Trait d.f. F P-value d.f. F P-value d.f. F P-value

sex - - - - - - 1 0.004 0.948
treatment - - - - - - 2 0.614 0.542

challenge 1 3.829 0.052 - - - 1 4.880 0.028
sex x treatment 2 7.427 <0.001 2 5.569 0.005 2 2.352 0.098

sex x challenge 1 2.829 0.094 1 1.843 0.176 1 1.369 0.257
treatment x challenge 2 1.919 0.150 2 3.362 0.037 2 0.028 0.867

sex x treatment x challenge 2 1.112 0.331 2 1.929 0.148 2 2.206 0.113

Nylon encapsulation Nylon melanisation
Trait d.f. F P-value d.f. F P-value

sex - - - 1 0.495 0.484
treatment - - - 2 0.757 0.472

sex x treatment 2 2.920 0.059 2 1.832 0.166



Table 3.2. Parameter estimates for linear models fitted to each measure of immunity in 
naïve beetles, for both sexes combined. Nylon encapsulation and melanisation could only 
be  measured  in  challenged  naïve  individuals  ('post-challenge'),  so  'treatment'  and  its 
interactions are omitted as an effect from these models. Significant effects (p<0.05) are 
highlighted  in  bold.  Parameters  for  main  effects  are  excluded  in  models  where  their 
interactions are significant.
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MALES
PO activity Total PO activity Haemolymph protein

Trait d.f. F P-value d.f. F P-value d.f. F P-value
treatment - - - - - - - - -
challenge - - - - - - - - -
treatment x challenge 2 3.311 0.041 2 4.682 0.012 2 3.642 0.030

Nylon encapsulation Nylon melanisation
Trait d.f. F P-value d.f. F P-value
treatment 2 3.514 0.039 2 2.990 0.061

FEMALES
PO activity Total PO activity Haemolymph protein

Trait d.f. F P-value d.f. F P-value d.f. F P-value
treatment 2 2.484 0.089 2 2.929 0.058 2 0.585 0.559
challenge 1 6.241 0.014 1 5.040 0.027 1 2.954 0.089
treatment x challenge 2 0.067 0.935 2 0.190 0.827 2 0.060 0.942

Nylon encapsulation Nylon melanisation
Trait d.f. F P-value d.f. F P-value
treatment 2 0.640 0.532 2 0.105 0.901



Figure 3.2.  Haemolymph phenoloxidase (PO) activity (A, B) and total  phenoloxidase 
(PO and proPO) activity (C, D) in naïve females (left column) and males (right column), 
measured either  before  (pre-challenge;  light  grey bars)  or  after  a  subsequent  immune 
challenge (post-challenge; dark grey bars). Bars indicate mean  ± S.E.. Bars that do not 
share  a  letter  differ  significantly  (p<0.05;  Tukey's  HSD tests  on  linear  models  fitted 
independently to data from each figure).
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Figure 3.3. Levels of nylon encapsulation (A, B) and nylon melanisation (C, D) in naïve 
females (left column) and males (right column). Bars indicate mean ± S.E.. Bars that do 
not share a letter differ significantly (p<0.05; Tukey's HSD tests on linear models fitted 
independently to data from each figure).).
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Figure 3.4.  Haemolymph protein concentrations  in naive females (A) and males  (B), 
measured either  before  (pre-challenge;  light  grey bars)  or  after  a  subsequent  immune 
challenge (post-challenge; dark grey bars). Bars indicate mean  ± S.E.. Bars that do not 
share  a  letter  differ  significantly  (p<0.05;  Tukey's  HSD tests  on  linear  models  fitted 
independently to data from each figure).

Table 3.3. Correlations between immune measures taken from naïve beetles (males and 
females  combined).  Spearman's  rank  correlation  coefficients  are  displayed  below the 
diagonal and raw p-values above it. Significant correlations (p<0.05) are highlighted in 
bold; asterisks indicate correlations that were no longer significant after Holm-Bonferroni 
correction for multiple comparisons.
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A B

Trait PO activity

Protein - <0.001 <0.001 0.555 0.525 0.021*

PO activity 0.667 - <0.001 0.235 0.598 0.121

Total PO activity 0.735 0.904 - 0.122 0.553 0.180

Nylon melanisation -0.108 0.216 0.279 - <0.001 0.959

Nylon encapsulation -0.117 0.097 0.109 0.801 - 0.906

Cuticle darkness 0.296* 0.202 0.176 0.010 0.022 -

Haemolymph 
protein

Total PO 
activity

Nylon 
melanisation

Nylon 
encapsulation

Cuticle 
darkness



Table  3.4.  Parameters  of  linear  models  fitted  between  cuticle  darkess  in  immune-
challenged  beetles  and  each  measure  of  immunity  taken  from  their  paired  naïve 
cohabitants. Significant correlations (p<0.05) are highlighted in bold, and plots of their 
correlation shown below (Figure 3.5).

Figure  3.5.  Correlations  between  cuticle  darkness  in  immune-challenged  beetles  and 
nylon  melanisation  (A)  and  haemolymph  protein  concentration  (B)  in  paired  naïve 
cohabitants. Lines show a linear regression fitted to the data (nylon melanisation: adjusted 
R² = 0.056, df = 1,58, p-value: 0.038 ; haemolymph protein concentration: adjusted R² = 
0.107, df = 1,28, p-value: 0.044).
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Trait estimate S.E. d.f. t P-value

. ~ haemolymph protein 16.49 7.78 58 2.12 0.038

. ~ PO activity 238.56 194.85 58 1.22 0.226

. ~ total PO activity 117.85 139.07 58 0.85 0.400

. ~ nylon melanisation -0.83 0.39 28 2.11 0.044

. ~ nylon encapsulation -502.84 267.65 28 1.88 0.071
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3.4. Discussion
In this chapter, I found that cohabitation with an immune-stimulated conspecific of the 

same sex alters immune investment in previously naïve  Tenebrio molitor  males, though 

not in females. However, the directionality of this effect was not as predicted a priori, as 

naïve males housed with challenged neighbours did not exhibit augmented immunity, but 

rather showed significantly lower levels of constitutive haemolymph PO and total PO (PO 

plus proPO) activity, and a significantly reduced ability to encapsulate a subsequent nylon 

challenge.  Although these  data  suggest  that  T.  molitor  males  at  least  may be able  to 

discriminate  against  conspecific  immune  status,  the  measured  responses  seem  to  be 

inconsistent with a process of gregarious immunisation.  The data also suggest there are 

gender  differences  in  how  naïve  individuals  respond  to  environmental  threats  of 

pathogenesis.

3.4.1. Gender differences and the role of sexual selection

An important  factor  which may have influenced interactions between cohabitants  and 

explained the observed gender differences is the differential  potential  for the adaptive 

modification of attractiveness traits by parasitised males and females. Immunity is traded-

off against other physiologies and life-history traits (Zahavi 1975; Stearns 1992; Sheldon 

&  Verhulst  1996),  and  hosts  must  distribute  their  finite  pool  of  resources  so  as  to 

maximise lifetime reproductive success. The terminal investment hypothesis suggests that 

hosts should invest more in current reproductive output if the chance of surviving to next 

reproduction  is  low (Clutton-Brock,  1984),  thus  ameliorating  the  costs  of  parasitism. 

However, males typically benefit  more from terminal reproductive investment as their 

reproductive  success  increases  linearly  with  their  number  of  matings,  unlike  females 

(Bateman, 1948). Females should instead be selected to invest more in immunity and 

other  strategies  which  improve survival  in  order  to  preserve  their  capacity  for  future 

reproduction (Rolff, 2002).

There is support for terminal investment in males of several insect species, with 

increased investment in reproductive traits,  such as pheromone production,  copulatory 

activity and sperm production, shown following pathogenesis (Polak & Starmer, 1998; 

Adamo, 1999; Abbot & Dill, 2001; Shoemaker et al., 2006; Sadd et al., 2006; Krams et  

al., 2011). In  T. molitor, males and females both undergo quantitative modifications of 

their cuticular hydrocarbon (CHC) profile during parasitism (Nielson & Holman, 2011), 

as documented in several eusocial insect species (Trabalon et al., 2000; Salvy et al., 2001; 

Richard  et  al.,  2008;  Evans  &  Spivak  2010).  Furthermore,  T.  molitor  females  are 
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preferentially  attracted  to  the  CHCs  of  immune-challenged  males  over  unchallenged 

males  (Nielson  &  Holman,  2011;  c.f.  Worden  et  al.,  2000),  perhaps  because  males 

increase the quantity of sex pheromones produced during infection (Sadd et al., 2006).

Sexually  transmitted  infections  (STIs)  are  widespread  in  insects  and  are 

commonly detrimental to fertility (e.g. Knell & Webberley, 2004), meaning that insects, 

particularly females, should be under selection to avoid mating with infected conspecifics 

(Loehle, 1997). However, in some species, males infected with STIs are able to attract 

even more mating partners than uninfected males (Knell & Webberley, 2004; Goodacre & 

Martin, 2012; Adamo et al., 2014). A host that behaves as if it were sick will not attract 

mates  (Knell  &  Webberley,  2004),  meaning  that  suppression  of  sickness  behaviours 

should  be  advantageous  for  preserving  individual  fitness,  particularly  for  males.  A 

common sickness behaviour is reduced mating effort, such as decreased calling effort in 

infected male  Gryllus  campestris  crickets (Adamo  et  al.,  2014),  which is  linked to  a 

reduction  in  male  mating  success  (Gerhardt  &  Huber,  2002;  Adamo  et  al.,  2014). 

However, parasites, particularly those that are transmitted through sexual contact (STIs), 

gain an advantage from the suppression of such host sickness behaviours as they are more 

likely to be transmitted if infected hosts continue normal rates of sexual contact. Indeed, 

STIs  are  more  likely  to  be  asymptomatic  than  other  diseases  (Lockhart  et  al.,  1996; 

Mackey & Immerman, 2003; Antonovics et al., 2011).

In this context, signalling by males during infection can be seen as a dishonest 

indicator of immune status (Sadd et al., 2006), and one which may lead to sexual conflict 

as females stand to suffer greater fitness costs than males by mating with an infected 

partner.  Females  may  incur  direct  fitness  costs  through  reduced  longevity  and/or 

reproductive success if the pathogen is transmitted. Immediate reproductive success may 

also  be  reduced  as  parasitised  males  often  undergo  changes  in  their  reproductive 

physiology;  for  example,  Tribolium  castaneum males  suffer  decreases  in  sperm 

production, sperm competitive ability and seminal fluid quality following parasitism with 

the  rat  tapeworm,  Hymenolepis  diminuta (Carver  &  Hurd,  1998;  Pai  &  Yan,  2003). 

Furthermore,  there  may  also  be  additional  costs  to  indirect  (kin)  fitness  if  parental 

pathogens are transmitted vertically to offspring, or if parental parasite susceptibility is 

inherited genetically in the offspring (Carazo et al., 2004). Tenebrio molitor females have 

been found to be preferentially attracted by filter paper discs of healthy males than those 

infected  with  the  rat  tapeworm,  (Worden  et  al. 2000;  Worden  & Parker,  2005),  and 

females mating with more attractive males have been shown to produce more offspring 

(Worden  et al., 2000) and have increased longevity (Vainikka  et al., 2007). Finally, in 
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species with sex-biased dispersal or parental care, one may expect greater investment in 

immunity by the sex which has the closest contact with kin, which is most commonly the 

female (Wilson & Cotter, 2013).

It has been suggested that the cost to females of assessing male signal honesty 

may outweigh the costs  of mating with an infected male (Nielson & Holman,  2011). 

Female T. molitor are known to mate with multiple males (Drnevich et al., 2000), and can 

increase their lifetime reproductive success through polyandry (Worden & Parker, 2005). 

Nevertheless, one may still expect mate choice to be plastic with regards to mate infection 

status, as some pathogens (e.g. castrating parasites or obligate killers) can inflict severe 

costs  upon their  host.  Arguably,  it  is  more favourable for hosts to employ an 'always 

avoid' strategy in response to infected conspecifics, avoiding these individuals regardless 

of  the  possible  type  or  intensity  of  infection;  false  negatives  in  the  identification  of 

parasitism stand to incur greater fitness costs than false positives (i.e. accidental exposure 

to contagious conspecifics versus accidental avoidance of healthy conspecifics). This is 

more likely to be true for gregarious species with a balanced sex ratio, such as T. molitor, 

as there are no shortage of prospective mates available.

On the other hand, the observed differences between males and females may be 

partially explained by differences in conspecific exposure, as naïve individuals were only 

housed with conspecifics  of the same sex.  If,  for example,  females were to  exhibit  a 

stronger immune response than males in response to immune challenge, one may expect 

females to produce a greater amount of immune-related cues. As discussed, females often 

invest more heavily in immunity than males due to life-history differences between the 

sexes (Rolff, 2002), and this may affect the production of externalised chemosensory cues 

of  infection  during  immune  challenge  given  mechanistic  links  between  internal 

physiology and externalised cues of immunity (e.g. Schal et al., 1998; Tzou et al., 2002). 

Here however, nylon-challenged males and females (Infnylon) did not significantly differ in 

their levels of immunity (data not shown), although it is possible that differences in other 

unmeasured immune effectors exist which lead to the production of different immune-

related cues by each sex. Alternatively, as male  T. molitor  are known to increase their 

expression of sex pheromones following immune challenge (Sadd et al., 2006; Nielson & 

Holman, 2011), and the apparently immunosuppressive response exhibited by naïve male 

cohabitants could be representative of a more general stress response, perhaps brought on 

by competition with an attractive rival male.

Same-sex pairs  were  used in  this  experiment  in  order  to  avoid  the  potentially 

confounding effects of mating upon immunity (e.g. Rolff & Siva-Jothy, 2002), but it is 
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likely  that  different  processes  would  occur  between  mixed-sex  pairs  of  immune-

challenged and naïve individuals.  For  example,  female  burying beetles  advertise  their 

breeding status via the emission of methyl geranate, a compound structurally related to 

juvenile hormone, and increase emission when in the presence of a male partner (Steiger 

et al., 2011). This suggests the cue is not a byproduct of breeding status but rather an 

intentional  signal  intended  for  communication;  the  authors  argue  that  such  receiver-

dependent signal transmission may have evolved to reduce the costs of maintaining or 

transmitting a signal (Steiger  et al., 2011). It is possible that similar selection pressures 

favour the production of signals which indicate immune status to potential mates and/or 

non-mate  conspecifics  (particularly  if  one  considers  a  social  framework  in  which 

individuals stand to gain benefits to inclusive fitness by reducing the risk of pathogen 

transmission to nearby kin in the population).

In  the  case  of  reproductive  signalling,  T.  molitor  males  prefer  mature  over 

immature females, and virgin over mated females (Carazo et al., 2004). Given that both 

previously  mated  and  unmated  females  benefit  from  mating  with  multiple  males 

(Drnevich et al. 2001; Worden & Parker 2005), signalling of reproductive status may not 

be in the best  interests  of females  (Svensson 1996).  Carazo et  al  (2004) suggest  that 

reproductive  signalling  in  T.  molitor  females  and  males  is  not  an  example  of  ‘true 

communication’  (i.e.  where  information  benefits  both  sender  and  receiver),  but  of 

specialisation  restricted  to  the  receiver,  who  is  able  to  ‘spy’  or  ‘eavesdrop’  on  a 

conspecific to gauge their suitability as a mate (Bradbury & Vehrencamp 1998; Sorensen 

& Stacey 1999; Wyatt 2003). In non-social species, where the direct costs to personal 

fitness during infection are likely to be higher than the indirect fitness costs to kin through 

transmission,  it  seems  probable  that  externalised  cues  of  infection  are  similarly  only 

produced as a byproduct, as opposed to being intended as a communication signal. Hosts 

that  are noticeably sick are typically  less  likely to attract  mates (Knell  & Webberley, 

2004), and one may even expect infected individuals to attempt to mask the symptoms of 

their  infection,  such  as  through  increased  sexual  signalling  in  immune-challenged  T.  

molitor males (Sadd et al., 2006; Nielson & Holman, 2011).

3.4.2. Haemolymph protein and illness-induced anorexia

Naïve  males  which  cohabited  with  nylon-challenged conspecifics  demonstrated  lower 

concentrations  of  protein  in  their  haemolymph,  and  this  reduction  coincided  with 

reductions  in  encapsulation  ability  and  in  PO  and  total  PO  activity  (Figure  3.4b). 

Haemolymph protein concentrations can be used as a measure of physiological condition 
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(Cotter et al., 2004, 2008), and previous studies have found a positive correlation between 

immunocompetence and haemolymph protein concentration in insects (Adamo, 2004; Lee 

et al., 2004; Povey et al., 2009). Lowered protein levels may be a consequence of reduced 

dietary intake of protein (Lee et al., 2004; Povey et al., 2009), and it is possible that Nnylon 

naïve  individuals  engaged  in  dietary  restriction  as  an  adaptive  response  to  avoiding 

infection. Illness-induced anorexia is a common sickness behaviour which may serve to 

starve  pathogens of key micronutrients such as iron (Hart, 1988), prevent the spread of 

pathogens from the gut  to the blood during a systemic infection (Dunn  et al.,  1994), 

and/or  to  prevent  the  diversion  of  resources  away from immunity  and  into  digestion 

(Weers & Ryan, 2006; Adamo et al., 2008; Adamo et al., 2010). However, anorexia may 

also be used as a  preventative strategy initiated in response to environmental cues  of 

pathogenic threat,  and may prevent  the host from consuming contaminated food (e.g. 

Zhang et al., 2005). It is possible that anorexia was the primary response to cohabitation 

elicited by Nnylon naïve males, and that this resulted in lower immunocompetence as a 

secondary effect of nutrient deprivation (e.g. Siva-Jothy & Thompson, 2002; Lee  et al., 

2008). Future work may benefit from investigating the impact of cohabitation with an 

infected conspecific upon feeding rates to determine the role that anorexia may play in 

prophylactic defence.

3.4.3. Role of cuticular melanisation

There was a positive association between the degree of cuticular melanisation in infected 

(Inf) cohabitants and the level of nylon melanisation and encapsulation observed in their 

paired  naïve  (N)  neighbours,  as  well  as  a  negative  correlation  between  Inf  cuticular 

melanisation  and  N  haemolymph protein  concentration.  In  Coleoptera,  the  highly 

melanised  cuticle  forms  a  mechanical  barrier  which  provides  a  frontline  defence  to 

infection, and more melanised cuticles have been shown to provide increased resistance 

against entomopathogenic fungi, such as Metarizhium anisopliae, which invade the host 

by penetrating the cuticle (Gershenzon 1994; Verhoog et al. 1996;  Reeson et al., 1998; 

Barnes  & Siva-Jothy  2000).  Cuticular  melanisation  is  also  positively  correlated  with 

haemolymph levels of PO and proPO (Reeson et al., 1998; Barnes & Siva-Jothy 2000), 

which in turn augments resistance against systemic infection. However, a large amount of 

variation  in  cuticular  darkness  exists  within  natural  T.  molitor  populations  (Barnes & 

Siva-Jothy,  2000)  and  dark  cuticles  are  not  a  fixed  trait,  suggesting  that  a  highly 

sclerotised cuticle may carry some fitness cost.

One  explanation  is  that  thicker  cuticles  contain  less  pores,  making  darker 
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individuals  appear  less  attractive  to  mates  due  to  the  constrained  production  of  sex 

pheromones and other volatiles (Armitage, 2002). However, the data in this study suggest 

that  naïve  individuals  respond  more  strongly  to  immune-challenged  neighbours  with 

darker,  thicker cuticles,  suggesting that volatile  signals may play an important  role in 

hosts determining the immune status of conspecifics. However, infected individuals with 

darker cuticles are also more likely to induce a stronger immune response (Reeson et al., 

1998;  Barnes  &  Siva-Jothy  2000),  which  may  induce  a  stronger  response  in  naïve 

individuals  if:  (i)  internal  physiology is  able  to  modify  the  externalised  CHC profile 

during immune challenge (e.g. Tzou et al., 2002; Schal, 2003), (ii) immune-related cues 

are produced in the excreta and able to be detected by neighbouring hosts, as infected 

individuals exhibiting a stronger immune response may be expected to suffer a greater 

degree  of  immunopathological  damage  to  tissues,  particularly  those  involved  in 

osmoregulation and excretion (Sadd & Siva-Jothy, 2006), or (iii) visual cues are involved 

in discrimination, as immune activity may also be positively correlated with the extremity 

of sickness behaviours displayed by infected individuals (Adamo, 2006).

Correlation between internalised upregulation of the phenoloxidase cascade and 

externalised upregulation of cuticular melanisation may be pleiotropic, with one unable to 

come without the other (Armitage & Siva-Jothy, 2005). The cuticle acts as a sink for 

harmful quinones recruited for but not used in sclerotisation (Chapman, 1998), and plays 

a major role in defence by resisting enzymatic degradation and hyphal penetration by 

fungal pathogens (Söderhäll & Ajaxon, 1982; Hajek & St Leger, 1994). Thus, melanin 

may enhance disease resistance in insects by augmenting the chemical defences of the 

cuticle as well as improving its physical impermeability. It is possible that such chemical 

defences alter  interactions with cuticular  micriobiota  in heavily melanised individuals, 

producing different chemosensory signals which can be detected by nearby conspecifics. 

If social (or gregarious) immunisation relies on chemosensory cues of infection, as has 

been suggested (Konrad  et al., 2012), the data in this chapter do not support the idea, 

since naïve individuals paired with challenged conspecifics possessing thicker  cuticles 

upregulated their immune system to a greater degree than naïve individuals paired with 

conspecifics with more tan cuticules.

3.4.4. Non-adaptive explanations

Data from Chapter 2 showed that naïve females housed with a conspecific with a live 

bacterial  infection  exhibited  reduced  longevity  in  response  to  subsequent  infection, 

despite  showing an  increase  in  antibacterial  activity.  Survival  may be  impacted  by a 
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trade-off between immunity and other physiologies or life-history traits (Zuk & Stoehr, 

2002;  Schmid-Hempel,  2003),  as  hosts  may  not  always  minimise  their  fitness  losses 

during infection simply by increasing their investment in immunity, and may choose to 

invest in life-history 'escape attempts', such as increasing their reproductive effort (van 

Baalen, 1998; Minchella, 1985). Another possibility is that trade-offs existed between our 

measures  of  immunity  and  other  immune  effectors  that  were  not  measured,  such  as 

lysozyme-like  activity,  which  has  been  found  to  be  negative  correlated  with 

phenoloxidase activity in previous studies (Cotter et al., 2004b; Adamo, 2004).

Alternatively, mortality may have been a non-adaptive consequence of the type of 

exposure; for example, naïve individuals were not able to physically escape from their 

immune-challenged cohabitants, rendering potential behavioural immune responses, such 

as physical avoidance of infected neighbours, redundant. Although there is evidence for 

social immunisation in termites (Traniello et al., 2002), another study found no difference 

between isolated and grouped termites  in  their  ability  to  encapsulate  a  nylon implant 

(Calleri et al., 2006). The authors suggest that social processes may not affect the cellular 

aspect  of innate  immunity,  and suggest that  group-level  immune strategies  like social 

immunisation  provide  a  prophylactic  ‘frontline  defence’  against  pathogenesis  which 

provides no benefit to hosts once a full-scale infection occurs (Calleri et al., 2006). Once 

the pathogen invades the host, the induction of a physiological immune response is likely 

to  lead  to  a  lesser  reduction  in  host  fitness  defence  than  continued  expression  of 

behavioural defences. However, increased mortality and increased antibacterial activity 

were  only  observed  in  female  T.  molitor exposed  to  conspecifics  infected  with  live 

bacteria  (Chapter  2),  and  not  those  housed  with  neighbours  treated  with  heat-killed 

bacteria  (a  non-transmissible  infection),  suggesting  a  potential  importance  of the 

transmission of low-level infection ('variolation')  between hosts (Yamada  et al.,  1992; 

Rosengaus et al., 1998; Konrad et al., 2012).

As an inert  and non-transmissible  elicitor,  the nylon implant  used to  stimulate 

immunity in this study resembles the heat-killed bacterial challenge used in the previous 

chapter. It is interesting, therefore, that the reduction of PO and total PO activity observed 

in Nnylon males in this study mirrors the downregulation of antibacterial activity exhibited 

in Nheat-killed females in the previous study.  However,  gender dimorphism in life-history 

caution comparisons of immunity between the sexes, and there is little similarity between 

Nnylon females  in  this  experiment  and  Nheat-killed females  in  the  previous  chapter. 

Furthermore, the two immune insults are likely have very different effects upon the host, 

both  mechanistically  (e.g.  cellular  versus  humoral  effectors,  specific  versus  general 
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recognition)  and  spatially  (nylon  insertion  likely  results  in  a  more  localised  immune 

response [e.g. Sadd & Siva-Jothy, 2006] than the haemocoelic injection of bacteria, which 

likely results in systemic infection).

Immune priming in invertebrates appears to rely on the upregulated expression of 

specific  cellular  recognition  receptors  following  contact  with  pathogen-associated 

molecular patterns (PAMPs; Schulenburg  et al., 2007), and augmented defence against 

secondary pathogenesis is likely mediated by upregulated and/or more rapid expression of 

highly specific immune effectors, such as antimicrobial peptides (AMPs; Schulenburg et  

al., 2007; Cerenius et al., 2010). It is possible that the type of immune challenge used in 

this study was not appropriate to stimulate a specific form of gregarious immunisation in 

naïve cohabitants, nor the production of specific immune cues by infected cohabitants, as 

nylon  monofilaments  provoke  a  non-specific  immune  response  due  to  their  lack  of 

specific PAMPs.

It seems probable that there are differences between the cues produced by nylon-

challenged  individuals  and  cues  produced  by  individuals  during  a  natural  (virulent) 

pathogenic infection. Potential damage resulting from the pathogen or from greater levels 

of host-induced immunopathology (e.g. Sadd & Siva-Jothy, 2006) during a live infection 

may influence the production of chemosensory cues.  In the case of nylon implantation, 

the encapsulation response is a localised response to a spatially discrete foreign body, and 

the production of immunological effectors is therefore more concentrated in the vicinity 

of the immune insult, as opposed to be systemic throughout the haemocoel (e.g. Sadd & 

Siva-Jothy, 2006). If alterations in the chemosensory profile of an individual are mediated 

by the transport of immunological compounds from within the haemocoel through the 

cuticle (Schal, 2003), then one may expect the intensity of the (internal) immune response 

to be correlated with the level of changes in (external) CHCs (and other chemosensory 

compounds).  Therefore,  it  is  possible  that  nylon  implantation,  whilst  sufficient  to 

stimulate  a  costly  physiological  immune  response,  is  insufficient  to  stimulate  the 

production  of  externalised  cues  of  infection,  which  may explain  the  apparent  lack  of 

gregarious immunisation in this study.

3.4.5. Summary

This chapter did not find evidence for a gregarious immunisation process in  Tenebrio 

molitor, as naïve individuals did not exhibit enhanced immunity following cohabitation 

with an immune-challenged conspecific. However, males paired with a 'sick' conspecific 

showed a downregulation of several immune effectors, suggesting that T. molitor are able 
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to  detect  and respond to  socially-derived cues  of  infection  produced by conspecifics. 

Furthermore,  there  appeared  to  be  an  association  between  the  level  of  cuticular 

melanisation in immune-challenged individuals and the resultant levels of immunity in 

naïve cohabitants they were housed with, although the reason for this is unknown. It is 

possibly that  darker  beetles,  which  often exhibit  greater  immunocompetence,  produce 

different  cues of infection that  are detected by naïve conspecifics  and used to inform 

immune priming.

In this chapter, I have shown:

• Cohabitation with an artificially immune-challenged conspecific can alter immune 

investment in naïve males, but not females

• In males, this effect was opposite to that predicted: naïve individuals housed with 

nylon-challenged conspecifics displayed significantly lower constitutive levels of 

haemolymph PO and total PO (PO plus proPO) activity, and significantly lower 

rates of nylon encapsulation following challenge

• Gender  differences  in  immune  responses,  as  males  exhibited  an  unexpectedly 

higher level of PO and total PO activity than females, as well as interaction effects 

between gender and cohabitation type

• A potential  role of cuticular  melanisation  in  this  process:  there was a positive 

correlation  between  cuticle  darkness  in  immune-challenged  individuals  and 

resultant immune activity in their paired naïve cohabitants
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CHAPTER FOUR:

DEVELOPMENT OF AN AUTOMATED BEHAVIOURAL 
TRACKING SYSTEM

4.1. Introduction
Locomotor activity impacts almost all aspects of a mobile animal's ecology. Movement 

underpins  key  fitness-driving  traits,  such  as  foraging,  mating,  courtship,  learning 

processes,  and  immunity  (Martin,  2004).  Many  of  the  most  commonly  measured 

behaviours  in  animals,  such  as  ambulation,  freezing  (resting  immobile),  jumping, 

vectorial information (speed, acceleration), positional information (e.g. site preference, 

orientation  angle)  –  as  well  as  psychological  measures  typically  considered  in  only 

vertebrate studies, such as anxiety, obsession and aggression – are emergent from tracking 

the movement vectors of an individual, i.e. the organism's spatial coordinates over time.

The quantification of the complex movement patterns of mobile organisms has 

become an  integral  subject  in  biological  research,  and  has  been  facilitated  by  recent 

advances  in  automated  tracking  methods.  Automated  systems  provide  a  much  higher 

throughput than manual methods, and tend to be more reliable due to the consistency of a 

processing algorithm, which does not suffer observer fatigue or drift (Noldus et al., 2001). 

Digital methods can also yield behavioural metrics that would be difficult or impossible 

to  quantify  manually,  such  as  velocity,  acceleration  and  turning  angle,  as  well  as 

calculating time and spatial location with a high degree of accuracy.

As computing capabilities have increased and costs decreased over the last decade, 

automated tracking  systems  have  progressed  from  rudimentary  and  often  unreliable 

analogue systems which described mostly discrete behaviours, to digitised methods which 

can  detail  an  array  of  continuous  kinematic  variables.  Several  digitiser-based  video 

tracking systems are commercially available, but there are drawbacks with many of these. 

Firstly, many trackers are developed only for the most well-studied model organisms (e.g. 

Drosophila [Gomez-Marin et al., 2012, Dankert et al., 2009], C. elegans [Swierczek, et  

al., 2011], zebrafish [Beyan & Fisher, 2013], mice [de Chaumont  et al., 2012]), being 

highly  tailored  to  the  particular  morphology  and  movement  patterns  of  their  target 

species. Secondly, many of these programs are designed to address specific behavioural 

paradigms, and thus offer little flexibility, often requiring specialised apparatus or the use 

of  highly  specific  experimental  designs.  Thirdly,  much  available  tracking software  is 

proprietary and requires a substantial fee (up to $10,000), as well as additional annual 
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license  fees  to  use  (e.g.  EthoVision  [Noldus  et  al.,  2001],  ANY-maze 

[http://www.anymaze.com]). Of the free and open-source options available, several tend 

to parse output files (containing the tracked X,Y-coordinates) with toolboxes reliant on 

proprietary  software,  such  as  MATLAB (e.g.  Ctrax,  Flytrax  [Branson  et  al.,  2012]). 

Finally, of the published open-source tracking software, many are largely inflexible and 

onerous  to  modify,  necessitating  in-depth  knowledge  of  the  relevant  programming 

language as well as a substantial investment of time. Several have not been kept updated 

sufficiently,  and  are  unstable  to  use  or  are  entirely  non-functional  (e.g.  SwisTrack 

[Lochmatter et al., 2008], MotMot [Straw & Dickinson, 2009]).

Advancements in computer-vision capabilities and the increasing availability and 

support  of  open-source  libraries,  such  as  OpenCV  (Willowgarage, 

http://opencv.willowgarage.com), are creating a new and accessible ecosystem of highly 

customisable and affordable tools for biologists  to study the behaviour of almost any 

organism.

This chapter details the development of an automated behavioural tracking platform for 

insects, 'UbiTrail'. The software was designed to be (i) versatile, working with a range of 

morphologically  and behaviourally  distinct  insect  species  and within  a  range of  non-

specialised experimental designs, (ii) affordable, using exclusively open-source software 

and inexpensive hardware, and (iii) robust, working under imperfect lighting conditions, 

handling  insect  occlusion  and  other  experimental  variables  that  lead  to  lower 

repeatability.  A  statistical  package  was  also  developed  to  define  and  analyse  key 

behavioural metrics from the tracking data.

The  system  was  developed  primarily  to  collect  quantitative  data  on  immune-

induced  behavioural  modifications  ('sickness  behaviours').  Such  data  are  generally 

lacking in insects (Adamo, 2006). The system was also used in experiments to investigate 

whether  behavioural  cues  of  infection  are  produced  by  immune-challenged  Tenebrio 

molitor (Chapter  5),  and  whether  naïve  beetles  display  a  behavioural  avoidance  of 

infected conspecifics as a form of immune defence (Appendix 4).

In this chapter, I:

• Develop a computer vision system to track the movement of insects

• Develop a statistical package to define and extract key behavioural metrics from 

tracked coordinates and produce biologically meaningful quantitative data
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4.2. Methods
4.2.1. Description of the system

The  tracking  software,  UbiTrail,  was  written  in  C++  using  the  OpenCV  library 

(Willowgarage,  http://opencv.willowgarage.com),  and  under  the  CodeBlocks  design 

environment (http://codeblocks.org). The software source code and compilers for Unix 

and  Microsoft  Windows  operating  systems  are  freely  available  online 

(http://sourceforge.net/projects/ubitrail),  as  is  the  associated  package  for  statistical 

analysis, Rubitrail, as well as a user manual, sample videos and sample data.

The details of the image analysis process are described in detail in Figure 4.1. In 

brief,  the  software  uses  a  dynamic  learning  algorithm  to  learn  to  identify  moving 

foreground objects during an initial  training period (default  value of 500 frames, ~25 

seconds). In order to solve ambiguities in foreground detection, a likelihood model is built 

on the fly, based upon several key features of known foreground, including contour shape, 

pixel colour and distance between current contour and last detected contour, with the most 

likely single contour being taken as foreground. 

4.2.2. Using the software

UbiTrail currently works with digital video files as input, although an option for real-time 

analysis is under development. Videos can be recorded using an inexpensive USB video 

camera (any webcam with a resolution of 640x480 pixels or better is suitable) and are 

easily  captured  using  the  open-source  multimedia  player,  VLC  (VideoLAN, 

http://videolan.org/vlc).

After recording a video, the user is able to define a mask to denote the position of 

areas within the arena, as well as sub-territories within individual areas, if desired. The 

user is then able to adjust several processing parameters in order to optimise tracking 

accuracy,  such as sensitivity  (which determines how likely noise is  to be detected as 

motion) and the number of frames used to train the motion detector.

The software can be implemented either via the command line or using a graphical 

user interface (GUI). The GUI is a simple assistant which allows the user to interactively 

define  the  inputs  and  output  options,  preview the  defined  mask  over  the video,  and 

visualise the actual tracking process on-the-fly (Figure 4.2). Command line usage can 

increase efficiency by allowing the user to iteratively analyse multiple videos without the 

need for continual input.

The software outputs a CSV file containing an X,Y coordinate, timestamp, area ID 

and territory ID (if applicable) for each detected object in each frame of a video. Also 
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Figure 4.1. (left) Flow diagram of tracking software process.  UbiTrail  takes a digital 
video file as input and returns a CSV file containing tracked X,Y-coordinates for each 
frame in each defined area, as well as a header containing metainformation extracted from 
the video. Each frame, F(t), is extracted individually from the video and de-noised using a 
(9x9) median blur filter. A motion frame is then produced by subtracting the current frame 
from a running weighted average of previous frames, F(t-1), which is used to model the 
background. At this point, the mask is applied to split the frame up into individual areas. 
In areas where motion is detected, a dynamic learning algorithm based upon a mixture of 
Gaussian (MoG) background subtraction method is used to identify moving foreground 
objects. The MoG algorithm is trained separately for each individual area, with the rate of 
learning being increased following ambiguous frames in which the movement of more 
than one foreground object is detected, and decreased following unambiguous frames in 
which  movement  of  exactly  one  foreground  object  is  detected.  In  order  to  solve 
ambiguities in foreground detection, an on-the-fly likelihood model is built based upon 
several key features of known foreground objects, including contour shape, mean and 
standard  deviation  of  pixel  colour  in  the  red,  green  and  blue  channels,  and  distance 
between centre  of  the current  contour  and centre  of  the last  detected contour.  A log-
likelihood, L, is then calculated under the assumption of normal distribution, where:

and where n is the total number of features, i is a given feature, xi = value of feature i, mi 

is the psuedo-mean of feature i, and si is the pseudo-standard-deviation of feature i. When 
more than one contour is detected, the contour with the maximum log-likelihood is taken 
as the foreground object. An initial training round (default = 500 frames) is used to train  
the  background  subtraction  algorithm  and  build  a  suitable  likelihood  model  for 
foreground detection, ensuring valid foreground detection throughout the video analysis.
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included is a header containing metainformation, such as name, duration, and number of 

frames per second, as well as the X,Y-coordinates of each detected area. Video files of the 

tracking process can also be optionally returned, either as a single video of the global 

arena or as separate videos for each individual area.

Figure  4.2. The  graphical  user  interface  (GUI)  of  the  UbiTrail  software,  with  key 
elements labelled. The outline of the mask which defines each individual arena is shown 
in blue, with its assigned area number depicted inside the green square. The above sample 
shows  a  test  on  Drosophila  melanogaster adults,  where  variation  in  background 
luminosity was created to test for the robustness of background subtraction, and covering 
objects (unlabelled black objects) were introduced to test for the effects of occlusion upon 
insect tracking.
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4.2.3. Rubitrail analysis package

The analysis software, Rubitrail, is a package written for the open-source 

statistics  software  R  (R  Core  Development  Team,  http://r-project.org).  The  package 

extracts multiple features from the raw data outputted by the tracking software, including 

velocity, turning angles, activity levels and positional information, as well as allowing the 

user to define their own additional variables for analysis. Whilst all scripts within the 

package  are  fully  customisable,  a  single  master  function  is  included  to  aid  user 

accessibility, requiring as input only a list of CSV files for analysis and a scale calibration 

(pixels/mm).

4.2.3.1. Pre-processing data

4.2.3.1.1. Undistortion

Fisheye lenses and low-cost wide-angle lenses can produce a significant degree of barrel 

distortion  in  the  images  they  capture,  having  the  potential  to  impact  the  validity  of 

detected movements in a tracking software (Figure 4.3). This can be corrected using a 

simple algorithmic transformation:

where r is the distance of a given pixel to the centre of the uncorrected image and R is the 

distance of the pixel in the corrected image.  This transformation  can either be applied 

before tracking analysis  by transforming each image frame of the raw video, or after 

tracking  by  transforming  the  detected  X,Y-coordinates;  Rubitrail  utilises  the  latter 

method.  Ready-made  parameter  sets  for  particular  cameras  can  be  found online  (e.g. 

http://sourceforge.net/projects/hugin/files/PTLens%20Database),  or  can  be  calculated 

manually by taking a calibration image (see Figure 4.3) and using the undistortion feature 

in  a  number  of  image  manipulation  programs  (e.g.  ImageMagick, 

http://imagemagick.org).
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Figure 4.3. The effects of lens undistortion upon images and tracked coordinates. (A) An 
image of a chessboard pattern is captured during the recording stage and used to calibrate 
parameters for an undistortion matrix. The effects of undistortion (raw [left] vs. processed 
[right])  are  shown for (B) raw video frames,  (C) tracked movement vectors,  and (D) 
fitting a minimal enclosing circle to arenas.
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4.2.3.1.2. Linear interpolation

In frames where insects are occluded by obstacles or glare, or a contour is otherwise not 

found, X,Y position is inferred using linear interpolation. X,Y-coordinates are not inferred 

for  training  frames,  where  the  insect  has  yet  to  be  detected.  In  instances  where  no 

movement is detected throughout the entire video, zero velocity is inferred for all frames, 

but all other metrics regarding positional information are defined as NA. In cases where 

movement is not detected in the latter frames of a video (e.g. the insect does not move in 

the final two minutes of analysis), the last confirmed object position is used as the X,Y-

coordinates for the remaining frames.

4.2.3.1.3. Trajectory smoothing

Camera noise, lighting abnormalities, non-locomotory insect movements (e.g. grooming, 

antennation) and imperfections in foreground segmentation can cause false movements to 

be  identified,  increasing  the  noise  in  detected  X,Y trajectories.  Furthermore,  lateral 

oscillation in the detection of moving objects is common (Hen et al., 2004); this may be 

due to alternated movement between the insect head and posterior ('tail') between frames. 

Both of these factors are manifest in the tracked coordinates as a relatively small jitter, 

with perturbations no larger than the maximum length of the tracked insect. Two methods 

were used to correct this noise.

Firstly,  trajectories  were  smoothed  by  using  a  simple  moving  median  with  a 

window size of 20 data points (1s) with a 1 point step size (0.05s). These values were 

found  to  preserve  overall  trajectory  information  and  provide  greater  accuracy  in 

determining velocity, turning angles and overall activity level (Figure 4.4). Secondly, due 

to  the  size  of  the  smoothing  window,  insects  were  often  falsely  determined  to  have 

negligible, but non-zero, velocity (>0 mm/s). A movement threshold was implemented to 

filter smoothed velocity data, with near-zero velocities of <1mm/s (~2 pixels/s; a value 

used in similar tracking software [Valente et al., 2007; Robie et al., 2010; Colomb et al., 

2012]) redefined as zero velocity (=0mm/s) (Figure 4.5). 
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Figure  4.4.  Smoothing  of  tracked  x,y-coordinates.  (A)  shows  a  60s  sample  of  raw 
trajectories outputted by the tracking software, whilst (B) shows the same trajectory after 
application of a rolling median with window size of 3s (60 frames).

Figure 4.5. Histogram of smoothed velocity frequency (logarithmic scale), with lower 
threshold (red line: 0 mm/s) and upper thresholds defined (green line: 1 mm/s)
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4.2.3.2. Extracting metrics

Several key metrics regarding movement were calculated from the smoothed trajectory 

data.

4.2.3.2.1. Velocity metrics

Distance  moved  was  calculated  as  the  Pythagorean  distance  between  smoothed  X,Y-

coordinates  in  successive  frames.  Summing  each  movement  length  over  the  entire 

analysis yielded the total distance travelled (mm). Dividing distance travelled by time 

gave instant velocity (mm/s), and the first derivative of instant velocity was used to define 

acceleration (mm/s2).

4.2.3.2.2. Angular metrics

Turning angle was calculated as the angle between successive velocity vectors (Figure 

4.6). Considering the movement from Ρ0 to Ρ1, α0 is the  absolute movement angle, the 

turning angle,  γ, can be calculated as α0  -  α1.  Movement paths of walking insects are 

generally continuous, and do not have discrete break points that make it easy to define 

moves; a common solution is to resample movement at regular time intervals and connect 

successive positions with linear interpolation. Here, smoothed data were down-sampled to 

a rate of 1 frame per second (Figure 4.6). Meander is a measure of movement tortuosity 

which combines turning angle with distance travelled, and increased meander is generally 

associated with navigational uncertainty (Collins et al., 1994). Meander is calculated by 

dividing the turning angle by the instantaneous velocity (θ * mm/s) (Martin et al., 2004). 

Turnaround events were defined as turns of 180° ± 25° which were completed within the 

space of one second (example highlighted in Figure 4.6e).

Many animals show a tendency to turn around an arena (Yaski  et al., 2011), a 

behaviour which is often interpreted as an escape response. Escape responses are well-

studied in cockroaches, which rapidly turn directly away (180°) from threatening stimuli, 

such as a puff of wind, and accelerate away (Domenici et al., 2008). A similar response is 

observed  in  Tenebrio  molitor  (pers.  obs.),  although  this  behaviour  may  equally  be 

representative of roving behaviour or foraging activity, as opposed to an anti-predation or 

stress response.
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Figure 4.6. Calculation of turning angles. (A) shows a 15s sample (300 frames) of raw 
tracked X,Y-coordinates, with corresponding number of seconds overlaid (red text). The 
area inside the blue box is a 5s subsample which is zoomed on in (B-E), where (B) shows 
the same raw X,Y-coordinates with number of seconds (red text), (C) shows coordinates 
that have been smoothed using a rolling median with a window of 20 frames [1s]), (D) 
shows coordinates that have been smoothed (window=20) and then resampled at 20Hz (1 
frame per  s),  and  (E)  shows  the  final  relative  turning  angles  (in  degrees;  blue  text) 
calculated from smoothed and resampled coordinates in (D).
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4.2.3.2.3. Activity metrics

Run length encoding (RLE) was used to temporally smooth velocity in order to derive 

activity metrics, allowing identification of stationary and mobile phases. RLE is a form of 

data compression which identifies patterns in consecutive sequences (runs) of data. For 

example,  a  binary  sequence  of  characters,  “AAAAABBABBB”,  may  be  run  length 

encoded as,  “5A, 2B,  1A, 3B”.  Here,  information on mobility  was calculated by run 

length encoding smoothed and thresholded velocity data to determine whether movement 

speeds were above or below a subjectively-defined threshold velocity (1mm/s) (Figure 

4.7). Owing to noise between frames in detected velocities, a sliding window of 3s was 

used to classify movement transitions (see Figure 4.8); i.e. when velocity was above the 

defined  threshold  (>=1mm/s)  threshold  for  a  period  of  >=3s,  the  insect  entered  a 

movement phase, and when its speed fell below 1mm/s for a period of >3s, the insect 

entered a stationary phase. The absolute number of phases transitions and mean duration 

of mobile and stationary phases was calculated for each insect.

Figure 4.7. Determination of insect movement (mobile vs. stationary) using run length 
encoding. The top plot shows a 60 s sample of smoothed insect movement speed (mm/s), 
where the red line represents the user-defined speed threshold; here, 1mm/s. The bottom 
plot shows the same 60 s sample but speed has been run length encoded into a binary 
format, whereby the insect is classified as mobile (1) when moving faster than the speed 
threshold and stationary (0) when moving slower.
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Figure 4.8. A sample of different sliding window sizes for smoothing run length encoded 
movement data, from raw data (1 frame interval) to 10s (200 frame interval). n indicates 
the number of defined transitions between mobile and stationary phases, which can be 
seen become eroded as the size of the sliding window increases. A sliding window of 3s 
was used  in  the  final  analysis  as  this  was found to  preserve  biologically  meaningful 
pausing events whilst still reducing noise from oversampling.
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4.2.3.2.4. Spatial analysis

'Heat  maps'  can  be  outputted  to  provide  a  fast  and  intuitive  overview of  an  insect's 

location during the course of the experiment (Figure 4.9). Two metrics, thigmotaxis and 

exploration, were also developed in order to quantify the amount of time spent in certain 

zones of the arena. Thigmotaxis (or centrophobism) is the tendency of many animals to 

display a central zone avoidance in open-field experiments, with individuals moving in 

the peripheral areas where they can physically touch the walls of the arena, and avoiding 

central  areas,  which  are  presumed  more  threatening  as  they  leave  the  insect  more 

vulnerable to predation (e.g. Gotz & Biesinger, 1985; Colomb et al., 2012). Exploratory 

(or  roving)  behaviour  is  often  defined  in  vertebrates  alongside  such  metrics  as 

shyness/boldness, aggression and neophobia (Dingemanse et al., 2002), but can be simply 

defined as the propensity of an individual to move around their environment.

In order to normalise the spatial locations for each arena, a minimum enclosing 

circle was fitted to each arena to determine its exact boundaries, before tracked Cartesian 

coordinates (x,y) for each arena were converted to polar coordinates (r,θ). To quantify 

thigmotaxis, each defined minimum enclosing circle was divided into two zones of equal 

area: an inner disc and an outer ring (Figure 4.10), and each r,θ-coordinate was defined as 

belonging in the inner or outer zone based upon its distance from the centre of the arena.

 To quantify exploration, each circular arena was divided into a network of 96 

cells of equal area by a series of concentric circles and line segments (Figure 4.11). The 

grid  cell  location  of  each  r,θ-coordinate  in  a  trajectory  path  is  determined,  and  a 

measurement of proportion of territories visited (number of unique cells visited / total 

number of cells) is calculated for each insect over the course of observation.
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Figure 4.9. Sample 'heatmaps' showing the frequency insect locations over the course of a 
60  minute  recording,  with  yellow  areas  being  visited  frequently  and  blue  areas 
infrequently. Each background image is a frame taken from the raw video analysed by the 
tracker.  (a)  shows an insect  which displayed a  high level  of exploration as  well  as a 
relatively high degree of thigmotaxis. (b) shows an insect which did not display sufficient 
movement during the recording to be tracked (<500 frames [25s] in which motion was 
detected). (c) shows an insect with a high degree of thigmotaxis but a relatively low level 
of  exploration.  (d)  shows  an  insect  with  a  high  level  of  exploration,  although  with 
movement being concentrated primarily on the right hand side of the arena.Figure 4.10. 
Visualisation of the thigmotaxis metric. A minimum enclosing circle (outer boundary of 
red ring) is fitted to each circular arena, which is then divided into two zones of equal 
area, an inner zone (shown in red) and an outer zone (shown in grey). The radius of the 
inner circle, rinner, is  √2 times smaller than the radius of the outer enclosing circle, router. 
Each X,Y-coordinate in a trajectory path (black line) is designated as being in the inner or 
outer zone based upon its Pythagorean distance from the midpoint of the arena. I.e. a 
coordinate (xt,yt) is classified as being in the outer zone if:
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Figure 4.11. Visualisation of the exploration metric. A minimum enclosing circle is fitted 
to each circular arena, which is then divided into a network of grid cells of equal area by 
concentric  circles  and line segments.  Here,  8 concentric  circles  and 12 line segments 
(shown above in red) compose a grid of 96 cells. Given a number of circles i:n, the radius 
of circle i, ri, is given by the formula:

where rn is the radius of the outermost circle enclosing the arena. Given a number of line 
segments, j:n, the angle of segment j, θj, is given by the formula:

The cell location of each coordinate in a smoothed trajectory path (shown above in black) 
is then determined, and the total number of unique cells visited by the insect used as a 
measure of exploration.

106



4.2.4. Testing tracking accuracy

Implemented smoothing and thresholding procedures acted to eliminate the majority of 

false artifacts from raw trajectories. To quantify the remaining level of unreliability in the 

system and measure its accuracy, the tracker was compared to human users. Videos were 

manually  authenticated  by  producing  a  series  of  images  at  random points  during  the 

analysis, and asking human users to estimate the x,y position of objects in the image using 

a simple interactive C++ application (Figure 4.13). For the same frames, human-estimated 

object coordinates were compared with raw object coordinates detected by the software, 

and  with  processed  object  coordinates  returned  after  movement  thresholding  and 

smoothing in order to gain a correlative measure of accuracy (Figures 4.14 & 4.15).

Figure 4.13. A sample of the human scoring test application used to examine automated 
tracking accuracy. Raw frames were randomly extracted from a video and opened in a 
simple C++ application. Users then clicked the point at which they deemed the centre of 
mass of insect to be (shown as blue dots with white circle). User-defined x,y-coordinates 
were  then  compared  with  coordinates  defined  by  the  tracking  software  for  the  same 
frames (see Figure 4.14 & 4.15).
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Figure 4.14. Correlation  between user-defined X,Y-coordinates  of  insect  location and 
coordinates outputted by the automated tracker.

Figure  4.15. Boxplot  showing  Pythagorian  distance  (in  mm)  between  tracked  X,Y-
coordinates  of  insects  outputted  by  the  software  and  coordinates  defined  by  users. 
Boxplots  show  the  median  and  interquartile  range  (IQR),  and  whiskers  represent 
1.5*IQR. For comparison, the mean body length of adult T. molitor is ~18mm.
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4.3. Summary
The developed tracker, UbiTrail, is capable of recording the trajectory of up to 24 insects 

simultaneously with relatively high spatial (up to 0.5mm / pixel) and temporal resolution 

(up to 30Hz). A range of biologically meaningful behavioural metrics have been defined 

in  order  to  produce  quantitative  data  on  insect  locomotion,  including  information  on 

velocity, turning angles and location, as well as several more specific behaviours such as 

turnarounds, thigmotaxis and exploration.

The  tracker  is:  (i)  versatile,  having  been  tested  on  a  range  of  insect  species, 

including Tenebrio molitor, Drosophila spp. (both adults and larvae), ants (Lasius niger), 

aphids (Acyrthosiphon pisum) and bean weevils (Acanthoscelides obtectus), (ii) robust, 

working  with  relatively  low  resolution  video  images  (640  x  480  px),  imperfect  and 

variable  lighting  conditions  and  moderate  levels  of  visual  occlusion  and  background 

variation, and (iii) accurate, as tracked coordinates of  T. molitor were found to closely 

match (<10% of the body length of the insect away from) coordinates determined by 

human users. Furthermore, the system is inexpensive as the software makes use of only 

open-source tools and does not require specialised apparatus for experimental set ups or 

recording. Finally, the inclusion of a graphical user interface (GUI) for video analysis and 

R package, Rubitrail, for statistical analysis, aim to maximise accessibility to the user and 

allow for tracking analysis 'straight out of the box'.

The developed system is  used in Chapter 5 to investigate locomotory sickness 

behaviours  in  T.  molitor,  and  help  determine  whether  behavioural  cues  of  infection 

produced by conspecifics play a role in immune priming in naïve conspecifics.

In this chapter, I have:

• Developed  a  computer  vision  system to  automatically  track  the  movement  of 

insects

• Developed a statistical package to define and extract key behavioural metrics from 

tracked coordinates and gain biologically meaningful quantitative data
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CHAPTER FIVE:

SICKNESS BEHAVIOUR IN Tenebrio molitor 

5.1. Introduction
The physiological immune system is an important defence against parasites, but can be 

considered as the final line of defence in a series of barriers which include behaviour, 

morphology and life-history (Combes 2001; Rigby et al., 2002). Physiological responses 

are often costly (Barnes & Siva-Jothy 2000; Siva-Jothy  et al., 2005; Wilson & Cotter 

2008)  and  can  be  thought  of  as  an  'emergency  service'  (Siva-Jothy  et  al.,  2005). 

Behavioural defences, on the other hand, are generally less costly to implement (Siva-

Jothy et al., 2005; Schulenburg & Ewbank 2007), are faster to enact and have a greater 

degree  of  plasticity  (West-Eberhard,  1989),  and  can  be  as  effective  as  physiological 

immune  responses  at  preserving host  fitness  in  the  face  of  parasitism (Moore,  2002; 

Schmid-Hempel et al., 2003).

Hosts can use a range of behavioural responses to reduce their risk of contracting 

an infection in order to confer qualitative resistance against pathogenesis, i.e. complete 

avoidance  of  infection  (de  Roode & Lefevre,  2012).  However,  hosts  will  not  always 

manage to avoid contact with parasites. Once a pathogen successfully invades a host, the 

host can employ a further suite of distinct behavioural responses which limit the negative 

fitness  consequences  of  infection  and  provide  quantitative  resistance,  which  reduces 

parasite load (de Roode & Lefevre, 2012). Behavioural changes induced during infection 

are collectively termed 'sickness behaviours' (Hart, 1988; Moore, 2002), and complement 

or even replace the action of costly physiological immune effectors. Generally, sickness 

behaviours  induce  a  state  of  energy  conservation  or  otherwise  allow  quantitative 

resistance  of  infection  through  resistance  mechanisms  which  either  limit  pathogen 

growth, or  through  tolerance mechanisms which limit damage caused during infection 

(pathological damage, immunopathological damage, and costs of resource expenditure) 

(Schneider & Ayres, 2008; de Roode & Lefevre, 2012). Sickness behaviours have been 

documented in a range of vertebrate (Penn & Potts, 1995; Owen-Ashley & Wingfield, 

2012) and invertebrate hosts (Adamo, 2006), and the most common responses include 

reduced activity, lower levels of exploration, reduced food and water intake, decreased 

social  contacts,  fever  and  decreased  reproductive  behaviour  (Johnson,  2002;  Adamo, 

2006; Dantzer et al., 2009).
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Some  sickness  behaviours  may  be  a  maladaptive  consequence  of  parasitism 

caused  by  pathogenic  damage,  self-inflicted  immunopathological  damage  or  resource 

depletion  (Johnson,  2002),  and  some  may  even  be  the  direct  result  of  parasitic 

manipulation which aims to increase the fitness of the parasite by prolonging infection or 

facilitating  transmission  to  other  susceptible  hosts  (Poulin,  1995;  Adamo,  2012). 

However,  many sickness behaviours have been suggested to constitute  adaptive,  host-

induced  changes  which  help  augment  host  resistance,  facilitate  recovery  or  hinder 

transmission between hosts (Moore, 2002). Behavioural sickness has been described as a 

'motivational state' which allows sickened hosts to re-prioritise their resource investment 

(Hart, 1988; Johnson, 2002; Dantzer, 2009).

However, not all responses will be necessarily based upon immune defence, as 

hosts may also minimise the fitness costs associated with infection and immune activation 

by  investing  in  other  beneficial  life-history  traits,  particularly  reproduction. In  some 

cases,  if  the  chance  of  recovery  is  sufficiently  low  or  the  the  risk  of  reinfection 

sufficiently  high,  it  may be  more  beneficial  for  the  host  to  counter  fitness  losses  by 

refocussing  energy  expenditure  solely  into  reproduction  through  terminal  investment 

(Clutton-Brock, 1984). These non-immunological responses have been referred to as life-

history  'escape  attempts',  which  form  a  tolerance  strategy  that  allows  the  host  to 

ameliorate the costs of infection (van Baalen, 1998; Minchella, 1985). There are examples 

of both increased and decreased locomotory activity following infection in different insect 

species  (reviewed  in  de  Roode  & Lefevre,  2012).  One  study  found  that  Drosophila  

species  infected  with  Wolbachia exhibited  either  decreased  or  increased  locomotor 

activity  depending  on  the  host  species  and  the  bacterial  strain  (Peng  et  al. 2008), 

suggesting that sickness behaviours may have a high degree of specificity and plasticity.

Sensing  pathogens  in  the  environment  has  most  commonly  been  attributed  to 

chemosensory cues detected via the olfactory and gustatory systems, and the detection of 

immune status in conspecifics has been suggested to utilise similar mechanisms (Konrad 

et  al.,  2012).  However,  but  little  is  known about  the  potential  role  of  visual  and/or 

behavioural  cues  in  this  process,  although  behavioural  cues  are  thought  to  mediate 

avoidance of infected potential mates in rats (Penn & Potts, 1995; Kavaliers & Colwell, 

1995) and attraction to infected same-sex conspecifics in house finches (Hawley  et al., 

2007),  and visual  cues  of  infection  (e.g.  cuticular  spore  attachment)  may  be  used  to 

stimulate  hygienic  grooming  behaviour  in  ants (Marikovsky,  1962).  Whilst  immune-

induced chemosensory changes are partially understood in Tenebrio molitor (Nielsen & 

Holman,  2011),  knowledge  of  locomotory  and  behavioural  changes  during  immune 
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challenge is lacking. Sickness behaviours exhibited by infected individuals may interact 

with  behavioural  resistance  mechanisms  induced  by  non-infected  individuals;  for 

example, if hosts greatly reduce their range of movement, social contacts and/or sexual 

activity  during  infection,  we  may  not  expect  naïve  hosts  to  actively  invest  in 

physiological or behavioural prophylaxes towards a sick neighbour, as protection would 

already be passively afforded.

This  study investigates  the  potential  for  sickness  behaviours  during  artificial  immune 

stimulation in the mealworm beetle, Tenebrio molitor. The use of lipolysaccharide (LPS), 

a non-pathogenic immunogen, to insult the host immune system eliminates the possibility 

of parasitic manipulation of host behaviour. By using the tracking software developed in 

Chapter 4 to generate quantitative behavioural data, I hope to identify sickness behaviours 

in immune-stimulated beetles. I examine behaviour in both males and females to search 

for  potential  gender  differences,  and  compare  host  responses  to  both  primary  and 

secondary immune challenge in order to investigate the role of immune priming upon 

sickness behaviour. This approach can establish whether behavioural cues of infection 

play  a  role  in  socially-informed  prophylactic  immune  strategies,  such  as  gregarious 

immunisation (see Chapters 2 & 3) or behavioural avoidance (see Appendix 4).

In this chapter, I examined:

• The  effect  of  a  non-pathogenic  immune  challenge  upon  the  expression  of 

locomotory sickness behaviours

• The effect of gender upon behavioural responses to immune challenge

• Differences in locomotion expressed immediately (1 h) after immune challenge 

and those expressed after a recovery period (7 days after challenge)
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5.2. Methods
5.2.1. Insect culturing

Final-instar larvae of Tenebrio molitor were purchased from a commercial supplier (Live 

Foods UK) and maintained in an insectary at 26±2°C under a 12/12hr light/dark cycle.   

Larvae were kept at densities of ~800 larvae per 30×15×10cm box, and were provided   

with ad libitum access to Progrub (Livefoods Direct Ltd) and supplemented with freshly 

cut potato once per week. Pupae were collected between 1–3 days after pupation, and 

were sexed and weighed before being maintained in isolation in grid box containers. Both 

male and female imagoes were provided with Progrub and a ~50mg potato supplement 

upon adult eclosion, and treatments being performed 8-10 days after eclosion.

5.2.2. Insect treatments

Preliminary trials showed the level of individual variation in all measured behaviours to 

be  high,  with  levels  of  variation  within  sexes  and  treatment  (i.e.  naïve  vs.  immune-

challenged) greater than the levels of variation between them (data not shown). A paired 

sample approach was therefore adopted to compare behaviour during immune challenge 

with  baseline  levels  of  unchallenged behaviour  in  the  same individuals.  Beetles  were 

observed for a 1 h period on two occasions, one week apart (i.e. day 0 & day 7). They 

were randomly assigned to one of three treatment groups: 'infection', 'recovery' or 'control' 

(see Table 5.1). Individuals in the 'infection' group were initially immunologically naive 

and challenged with LPS one week later, whilst those in the 'recovery' group were initially 

immune challenged and observed in the absence of any further immune challenge the next 

week. Those in the 'control' group remained unchallenged in both observation periods in 

order to control for any potential effects of habituation (e.g. Sokolowski et al., 2012).

Before  each  observation,  individuals  assigned  to  be  immune-challenged  were 

anaesthetised  on  ice  for  5  minutes  before  injection  with  5µL  of  0.5mg/mL 

lipopolysaccharide  (LPS;  Sigma  L2630),  suspended  in  sterile,  ice-cold  phosphate 

buffered  saline  (PBS).  Injections  were  performed  by  inserting  a  sterile  glass 

microcapillary, which had been pulled to a fine point using an electrode puller (Narishige 

PC-10), through the pleural membrane between the seventh and eight abdominal sternites, 

and using a syringe barrel  to pneumatically introduce the inoculate to the haemocoel. 

Individuals with no immune-challenge scheduled were also anaesthetised on ice for 5 

minutes but received no immune insult. Immediately after treatment, beetles were placed 

into Petri dishes (90mm diameter) with filter paper on the bottom surface. Petri dishes 

were  then  sealed  with  masking  tape  to  prevent  individuals  from  escaping  and  limit 
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potential communication of olfactory or visual cues between arenas. Petri dishes were 

then placed in the observation chamber (Figure 5.1), and beetles were given 5 minutes to 

acclimatise before their movement was video recorded for 60 minutes. After recording, 

beetles were removed and housed individually in plastic grid boxes with ad libitum access 

to Progrub and a potato supplement provided once per week.

5.2.3. Experimental apparatus

Video capture took place in an upright, temperature-controlled incubator (SLS Qualicool) 

which was maintained at 26°C. Petri dishes were placed atop a sheet of white paper in 

order to provide good background contrast  for tracking. A USB webcam was held in 

place above the observation area by a standard retort clamp stand, and connected to an 

external laptop (Intel Core 2 Duo 2.00 Ghz processor, 1 GB RAM, 120 GB HDD, Ubuntu 

12.04). Light was provided by an anglepoise lamp fitted with a red fluorescent light bulb; 

Tenebrionids are highly photosensitive, but, like most insects, lack the photoreceptors to 

detect red light (Crozier, 1924). Foil was also affixed to the internal walls of the incubator 

to help diffuse light more evenly and reduce glare on the Petri dish lids. The experimental 

setup is shown in Figure 5.1. Videos were recorded using the free and open-source media 

player  VLC (https://www.videolan.org/vlc).  A calibration  image  of  a  chessboard  was 

taken before each new trial in order to later correct for lens distortion introduced by the 

webcam (see Chapter 4; Figure 4.3).

Table 5.1. List of treatments used in each observation period. A paired sample design was 
adopted using the same individuals over two observation periods to test for the presence 
of sickness behaviour ('infection') or recovery behaviour ('recovery'). A treatment was 
also included in which individuals remained unchallenged in both observation periods in 
order to control for any potential effects of habituation ('control').

Group Day 0 Day 7

Infection - no treatment - LPS

Recovery LPS - no treatment -

Control - no treatment - - no treatment -
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Figure 5.1. Experimental apparatus used to record beetle behaviour. Beetles were 
observed in a homogeneously illuminated incubator inside Petri dishes lined with filter 
paper discs, and filmed from above with a USB camera connected to a nearby laptop.

5.2.4. Video tracking and calculation of behavioural metrics

Videos  were  analysed  with  UbiTrail  (see  Chapter  4),  and  the  raw  x,y-coordinates 

calculated for each beetle were processed in R (v3.1.2; R Development Core Team, 2014) 

using the co-developed package, RUbiTrail  (see Chapter 4). A number of behavioural 

metrics were extracted from the trajectory data of each insect, based on movement (speed, 

acceleration, total distance travelled, number of pauses, pause duration, walk duration), 

orientation  (turning  angle,  meander,  turnarounds  [~180°  turns])  and  positioning 

(thigmotaxis  [~centrophobism],  roving  behaviour  [~exploration]).  The  definitions  and 

biological significance of these metrics are discussed in detail in Chapter 4.

5.2.5. Statistical analysis

For each individual, differences in medians between the two observation periods (i.e. Day 

7 median – Day 0 median) were calculated for each behavioural metric. Medians were 
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chosen to describe behavioural metrics as means exhibited clearly non-normal 

distributions. A multivariate analysis of variance (MANOVA) was built to test for the 

main effects of sex (male, female) and treatment (infection, recovery, control), as well as 

a sex by treatment interaction, upon all behavioural metrics combined. Post-hoc one-

sample t-tests were then conducted on each behavioural metric independently to 

determine the directionality and significance of individual behavioural changes. Finally, a 

principle components analysis (PCA) was performed on the raw differences data using the 

princomp() function in R.
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5.3. Results
5.3.1. MANOVA

Analysis  of  data  for  both sexes  combined showed no significant  effects  of  gender  or 

immune treatment upon overall behaviour (all metrics combined; Table 5.2). However, 

individual ANOVAs (on each metric individually) revealed a significant effect of gender 

upon turning angle and total time spent stationary, a significant effect of treatment upon 

pause duration, and a significant gender by treatment interaction effect upon acceleration 

(Table 5.3).

5.3.2. Post-hoc t-tests

Post-hoc t-tests found no significant behavioural changes in either males or females in the 

'infection' group, which remained immunologically naïve at day 0 and were challenged 

with  LPS  on  day  7  (Table  5.4;  Figure  5.2).  However,  behavioural  differences  were 

apparent in the 'recovery' group, in which individuals were challenged with LPS on day 0 

but  were  unchallenged  on  day  7  (Table  5.4;  Figure  5.2).  Recovering  males  showed 

significant  increases  in  metrics  of  movement  (larger  distance  travelled,  increased 

acceleration) and activity (increased walk duration, reduced time spent stationary). These 

males  also  exhibited  significant  changes  in  trajectory  (increased  turning  angle,  more 

turnarounds),  although these differences  may have been an artifact  of cohabitation as 

control males who remained unchallenged in both observation periods showed a similar 

increase in turning angle and number of turnarounds, as well as a decrease in their overall 

speed  (Table  5.4).  Recovering  females,  on  the  other  hand,  exhibited  few changes  in 

behaviour.  Only  an  increase  in  the  number  of  pauses  was  apparent  in  the  second 

observation period, although this difference was mirrored in the control group, suggesting 

it  may  also  be  a  consequence  of  habituation  rather  than  immune  status  (Table  5.4). 

Immune status appeared to have no effect upon positioning in the arena for either gender, 

as no effect of treatment was found upon thigmotaxis or exploration.

5.3.3. Behavioural correlations

Before  conducting  the  principal  components  analysis  (PCA),  behavioural  metrics  that 

were  highly  correlated  with  one  another  were  discarded;  median  values  for  speed, 

meander, thigmotaxis, exploration, number of pauses, duration of pauses and duration of 

walks were thus retained. The first three principal components (PCs) explained 31.5%, 

28.5% and 13.0% of the total  variance between individuals,  respectively.  PC loadings 

showed that speed and walk duration (PC1), number of pauses (PC2), and exploration 
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(PC3) are the most influential factors in these components (Table 5.5). However, the PCA 

failed to  demonstrate  clear  differences  between gender  or between treatments  (Figure 

5.3). Combined with the MANOVA (Tables 5.2 & 5.3), these results suggest that immune 

stimulation with LPS does not greatly affect overall patterns of locomotion in either males 

or females, but may nevertheless cause differences in more subtle behavioural features, 

such as speed, turning or activity levels, and that these responses may also vary between 

males and females.

Table 5.2. Results of MANOVA conducted on differences combined for both genders and 
all treatment groups. Raw differences in medians were calculated for each individual 
between the first replicate (Day 0) and the second (Day 7).
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Terms d.f. Pillai F num d.f. den d.f. P-value
sex 1 0.195 1.153 12 57 0.338
treat 2 0.379 1.129 24 116 0.324
sex x treatment 2 0.314 0.900 24 116 0.601
Residuals 68



Table 5.3. Individual ANOVA results for each behavioural metric included in MANOVA. Significant effects (p<0.05) are highlighted in bold.

Acceleration Distance travelled Exploration

Term df Sum Sq Mean Sq F P value df Sum Sq Mean Sq F P value df Sum Sq Mean Sq F P value
sex 1 8.57E-002 8.57E-002 0.030 0.862 1 3.32E+008 3.32E+008 1.919 0.170 1 2.76E-002 2.76E-002 1.418 0.238
treat 2 5.18E+000 2.59E+000 0.917 0.404 2 2.18E+008 1.09E+008 0.630 0.536 2 4.92E-002 2.46E-002 1.262 0.290
sex x treatment 2 2.45E+001 1.22E+001 4.332 0.017 2 4.74E+008 2.37E+008 1.370 0.261 2 3.38E-002 1.69E-002 0.866 0.425
Residuals 68 1.92E+002 2.83E+000 68 1.18E+010 1.73E+008 68 1.33E+000 1.95E-002

Meander Number of pauses Speed

Term df Sum Sq Mean Sq F P value df Sum Sq Mean Sq F P value df Sum Sq Mean Sq F P value
sex 1 5.53E+000 5.53E+000 0.858 0.358 1 2.33E+000 2.33E+000 0.019 0.890 1 1.60E+000 1.60E+000 0.089 0.766
treat 2 1.21E+001 6.05E+000 0.939 0.396 2 2.63E+002 1.31E+002 1.086 0.343 2 2.11E+001 1.05E+001 0.591 0.557
sex x treatment 2 1.51E+000 7.57E-001 0.117 0.889 2 1.61E+002 8.07E+001 0.667 0.516 2 2.02E+001 1.01E+001 0.567 0.570
Residuals 68 4.38E+002 6.44E+000 68 8.23E+003 1.21E+002 68 1.21E+003 1.79E+001

Pause duration Thigmotaxis Total time stationary

Term df Sum Sq Mean Sq F P value df Sum Sq Mean Sq F P value df Sum Sq Mean Sq F P value
sex 1 1.37E+011 1.37E+011 1.610 0.209 1 1.38E-001 1.38E-001 0.764 0.385 1 4.11E-001 4.11E-001 4.099 0.047
treat 2 7.40E+011 3.70E+011 4.339 0.017 2 1.03E-003 5.13E-004 0.003 0.997 2 2.45E-001 1.22E-001 1.221 0.301
sex x treatment 2 1.52E+010 7.59E+009 0.089 0.915 2 4.24E-002 2.12E-002 0.118 0.889 2 4.20E-001 2.10E-001 2.093 0.131
Residuals 68 5.80E+012 8.53E+010 68 1.22E+001 1.80E-001 NA NA 68 6.82E+000 1.00E-001

Turnarounds Turning angle Walk duration

Term df Sum Sq Mean Sq F P value df Sum Sq Mean Sq F P value df Sum Sq Mean Sq F P value
sex 1 7.06E+002 7.06E+002 1.916 0.171 1 3.66E+002 3.66E+002 5.148 0.026 1 4.26E+010 4.26E+010 2.125 0.150
treat 2 1.59E+003 7.97E+002 2.162 0.123 2 3.85E+002 1.92E+002 2.704 0.074 2 7.33E+010 3.66E+010 1.826 0.169
sex x treatment 2 7.67E+002 3.83E+002 1.041 0.359 2 2.35E+002 1.17E+002 1.648 0.200 2 3.43E+010 1.71E+010 0.855 0.430
Residuals 68 2.51E+004 3.68E+002 68 4.84E+003 7.12E+001 68 1.36E+012 2.01E+010



Table 5.4. Summary of post-hoc t-tests conducted for each behavioural metric within each sex and within each treatment.

Differences in medians were calculated for each individual between the first replicate (Day 0) and the second (Day 7), and are expressed as a 
percentage of the population mean of the first replicate. One sample t-tests were conducted on each set of raw differences to determine significantly if 
they differed significantly from zero. Raw p-values are presented, with significant effects (p<0.05) highlighted in bold.

MALES
Infection Recovery Control

Metric % change S.E. t df p % change S.E. t df p % change S.E. t df p
Acceleration -50.96 55.62 0.785 12 0.447 +526.69 181.22 -2.748 12 0.018 -45.24 26.69 1.666 12 0.122
Distance travelled -3.80 34.09 0.042 12 0.968 +114.50 34.57 -3.022 12 0.011 +12.07 18.28 -0.730 12 0.479
Exploration -5.67 11.09 0.406 12 0.692 +19.85 10.91 -1.615 12 0.132 +1.39 3.30 -0.918 12 0.377
Meander +3.49 17.45 -0.121 12 0.905 +52.88 27.19 -1.557 12 0.145 +48.39 23.74 -2.148 12 0.053
Number of pauses +15.24 20.61 -0.867 12 0.403 +12.79 20.29 -0.426 12 0.678 +47.85 25.22 -1.723 12 0.111
Pause duration +267.98 275.56 -0.925 12 0.373 -86.70 60.59 1.409 12 0.184 -62.39 27.69 1.947 12 0.075
Speed -16.40 19.02 0.801 12 0.439 +8.49 16.46 -0.201 12 0.844 -26.48 11.84 2.245 12 0.044
Thigmotaxis +9.55 19.54 -0.226 12 0.825 -0.71 16.76 0.244 12 0.811 +19.07 17.88 -1.060 12 0.310
Total time stationary -17.41 12.84 1.441 12 0.175 -48.74 9.70 4.568 12 <0.001 -17.21 9.62 1.792 12 0.098
Turnarounds +13.98 22.08 -0.583 12 0.571 +139.55 34.81 -3.602 12 0.004 +71.43 33.13 -2.391 12 0.034
Turning angle +59.15 109.34 -0.540 12 0.599 +386.35 19.83 -4.663 12 <0.001 +376.78 147.03 -2.606 12 0.023
Walk duration +158.74 136.33 -1.188 12 0.258 +191.65 74.99 -2.537 12 0.026 -2.58 41.72 -0.219 12 0.830

FEMALES
Infection Recovery Control

Metric % change S.E. t df p % change S.E. t df p % change S.E. t df p
Acceleration +88.63 55.82 -1.588 13 0.136 +1.76 52.13 -0.034 16 0.974 -17.50 33.38 1.168 10 0.270
Distance travelled +10.32 21.19 -0.487 13 0.634 +20.27 46.10 -0.440 16 0.666 -14.13 24.09 0.079 10 0.938
Exploration -3.68 9.85 0.374 13 0.715 -0.43 6.01 0.071 16 0.944 -0.94 8.53 0.049 10 0.962
Meander +2.29 26.44 -0.087 13 0.932 +21.45 26.88 -0.798 16 0.436 +42.55 26.99 -1.452 10 0.177
Number of pauses +11.25 26.86 -0.419 13 0.682 +50.00 17.52 -2.855 16 0.011 +39.57 17.60 -2.563 10 0.028
Pause duration +187.76 138.64 -1.354 13 0.199 -92.13 50.91 1.810 16 0.089 -16.58 25.69 0.499 10 0.629
Speed -5.68 19.80 0.287 13 0.779 -5.27 26.16 0.201 16 0.843 -29.26 26.48 0.555 10 0.591
Thigmotaxis +27.62 23.19 -1.191 13 0.255 +24.19 15.92 -1.520 16 0.148 +12.32 16.18 -0.724 10 0.486
Total time stationary -17.94 12.97 1.383 13 0.190 +7.66 19.54 -0.392 16 0.700 -7.21 13.92 0.618 10 0.550
Turnarounds +24.01 39.20 -0.612 13 0.551 +51.56 25.23 -2.044 16 0.058 +58.30 26.43 -2.032 10 0.070
Turning angle -8.69 98.19 0.089 13 0.931 +18.48 57.81 -0.320 16 0.753 +118.74 91.59 -1.300 10 0.223
Walk duration +118.03 115.34 -1.023 13 0.325 -64.37 31.14 2.067 16 0.055 -35.81 26.86 1.683 10 0.123



Figure 5.2. Heatmap demonstrating effects of immune status upon differences in 
measured behavioural metrics, split by gender. Red colours indicate a decrease in median 
values between observation periods and green colours indicate an increase. Values are the 
mean of raw differences in medians for each individual between replicates, expressed as a 
percentage of the first replicate median. For example, for males in the 'infection' group, 
median acceleration was 0.817 mm.s-2 on Day 0, and the mean of median differences 
between individuals on Day 7 and Day 0 was -0.416 mm.s-2, resulting in a mean 
difference of -51% (-0.416 / 0.817 = -0.509). Text size is inversely proportional to the p-
value derived from each t-test.
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Table 5.5. Principal component (PC) loadings for the first three components extracted 
from analysis of behavioural differences. PC1 explains 31.5% of variation between 
individuals, PC2 explains 28.5% and PC3 explains 13%. Loadings in bold are >70% of 
the largest loading and indicate the most significant factors in the component (Mardia et 
al. 1979).

Figure 5.3. A scatter plot of the first two principal components from the PCA of 
behavioural differences. Each dot represents an individual and ellipses represent the 80% 
confidence interval for the group. Although PC3 (which explains an additional 13.0% of 
the variance) is not included here, its inclusion in 3D models provides little additional 
distinction between groups (data not shown).
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PC1 PC2 PC3
exploration 0.30 0.40 0.59
meander -0.49 0.28 0.01
number of pauses -0.18 0.59 0.05
pause duration -0.16 -0.57 0.08
speed 0.57 0.03 0.00
thigmotaxis 0.30 0.25 -0.78
walk duration 0.44 -0.15 0.19



5.4. Discussion
This quantitative analysis of behaviour suggests that immune stimulation with LPS does 

not  greatly  affect  overall  patterns  of  locomotion  in  either  males  or  females,  but  may 

nevertheless cause differences in more subtle behavioural features, such as speed, turning 

or  activity  levels,  and  that  these  responses  may  vary  between  males  and  females. 

Importantly,  the  ‘recovery  period’  included  in  this  study  sheds  light  on  short-term 

temporal changes in behavioural responses to infection, as key behavioural differences 

only became apparent 7 d after infection. Whilst both males and females exhibited little 

change  in  locomotion  immediately  after  immune  stimulation,  only  males  showed 

significant increases in their rate of locomotion and overall levels of activity at 7 d post-

challenge.  Comparing  responses  between  the  sexes,  it  appeared  that  males  showed  a 

greater level of inactivity and reduction in movement speeds than females immediately 

after infection, yet greater increases than females in speed, activity and turning at 7 d 

post-infection.  The  potential  for  such  behavioural  changes  to  represent  sickness 

behaviours  is  considered  below,  as  are  potential  explanations  for  observed  gender 

differences.

5.4.1. Fitness benefits of sickness behaviours

Immune-induced changes in behaviour are collectively known as 'sickness behaviours' 

(Hart, 1988). Whilst sickness behaviours were once considered to be a passive byproduct 

of physical debilitation resulting from infection, there is mounting evidence that many 

behavioural  modifications  represent  an  adaptive  response  which  reduces  the  costs  of 

parasitism  (Adamo,  2006),  preserving  host  fitness  by  facilitating  mechanisms  of 

resistance or recovery,  or offering indirect fitness benefits  through investment in non-

immunological  life-history  traits  such  as  reproduction  (e.g.  Polak  &  Starmer,  1998; 

Adamo,  1999;  Barribeau  et  al. 2010).  Illness-induced anorexia is  a  common sickness 

behaviour  in  invertebrates,  observed  in  response  to  both  live  infection  and  artificial 

immune stimulation  (Schneider & Ayres, 2008; Adamo  et al., 2010).  Although feeding 

rates were not measured in this study, meandering behaviours, such as greater distances 

travelled,  longer  durations  of  activity,  higher  levels  of  exploration  and  more  turning 

behaviour, may form a proxy for foraging strategies. Increased locomotor activity may be 

indicative of increased rates of food seeking (Delthier, 1976), suggesting that the reduced 

overall  activity  observed  in  immune-challenged  males  could  indicate  a  reduced 

motivation to forage. It is not clear why this appears to be restricted to males, but it may 

be  indicative  of  gender  differences  in  life-history-based  tolerance  strategies  such  as 
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terminal investment (discussed in section 5.4.3).

Several  adaptive  explanations  have  been  offered  for  the  reduction  of  feeding 

during infection,  including the  starvation of infective pathogens of key micronutrients 

such as iron (Hart, 1988; Ong et al., 2006), the prevention of trade-offs between digestion 

and immunity (which both rely on the same protein, apolipophorin III, for lipid transport 

[Weers & Ryan,  2006; Adamo  et al., 2008; Adamo  et al., 2010]), or the restriction of 

immunopathological  damage  through  limitation  of  resources  available  to  invest  into 

cytotoxic  immune  functions  (Schneider  &  Ayres,  2008;  Adamo  et  al.,  2010). 

Alternatively,  post-infection  anorexia  may  prevent  the  continued  consumption  of 

contaminated food, preventing an escalation of the parasitic load and thus limiting the 

intensity and duration of infection. For example,  Caenorhabditis elegans tend to vacate 

feeding  sites  containing  the  pathogenic  bacteria,  Serratia  marcescens,  but  not  sites 

containing  their  standard food source,  Escherichia coli (Pujol  et  al.,  2001). Increased 

enzymatic activity induced in the gut following pathogen ingestion is thought to induce a 

systemic  'malaise’  response  which  could  influence  host  behaviour  via  bidirectional 

signalling processes between cells in the gut and the brain (Adamo et al., 2006; Zhang et  

al., 2005).

An alternative explanation is that reduced levels of activity and exploration during 

immune challenge may represent conservative behaviours which prevent infected hosts 

from venturing into new and unknown territory, where their weakened state may leave 

them more vulnerable to predation. Although not observed here, decreased environmental 

exploration  may reduce  the risk of  encountering  additional  threats  of  pathogenesis  or 

aggressive encounters from conspecifics in unknown areas of the local environment, and 

allow time for recovery and limit horizontal transmission.  Fear and anxiety have been 

suggested to overlap sickness effects in rodents (Dantzer, 2009; Kinoshita  et al., 2009), 

and  observations  of  increased  thigmotaxis  in  LPS-treated  mice  coincide  with  overall 

reductions in locomotory activity (Kinoshita et al., 2009). In support of this, it has been 

shown that nematodes (Caenorhabditis elegans) that are allowed to feed on a bacterial 

lawn  contaminated  with  Staphylococcus  aureus  are  able  to  clear  their  infection  if 

transferred to an uncontaminated food source within 8 h (Sifri et al., 2003). This suggests 

that  continual  environmental  surveillance and behavioural  modulation by the host can 

preserve fitness even after they directly contact a pathogen.

Whilst  males  exhibited  a  typical  lethargic  response  after  immune  challenge, 

females appeared to increase their  level of activity  and acceleration.  This could result 

from physiological differences between the sexes during immune challenge, given that 

125



females typically exhibit greater levels of immunocompetence and lower mortality than 

males  in  response  to  infection  (Rolff,  2002).  Alternatively,  differences  in  life-history 

strategies may account for these differences, as females that increase their level of activity 

or  exploration  may  benefit  from finding  sites  for  foraging  or  oviposition  which  are 

uncontaminated  by pathogens.  Although several  other studies have found evidence of 

reduced activity levels and slower speeds of locomotion in insects following pathogenic 

infection (e.g. Webster  et al., 2000; Evans  et al., 2009), the use of LPS as an artificial 

immune  elicitor  in  this  experiment  eliminates  the  potential  for  parasite  manipulation. 

There are numerous studies in the vertebrate  literature which find that  LPS challenge 

reduces overall activity and increases resting time (e.g. Yirmiya et al. 1994; Engeland et  

al., 2001; Owen-Ashley et al. 2006; Hawley et al., 2007; Burness et al. 2010), but only 

one example exists in the invertebrate literature (Aubert & Richard, 2008); however, this 

study was conducted in honey bees, in which mechanisms of social immunity may play a 

prominent role in the expression of sickness behaviour.

5.4.2. Indirect fitness benefits of sickness behaviours

Decreased levels of locomotion have been suggested to decrease the spread of a pathogen 

in  social  insect  colonies  (Traniello  et  al.,  2002;  Aubert  &  Richard,  2008),  possibly 

conferring a net benefit  to inclusive fitness by reducing transmission to kin.  Sickness 

behaviours may also offer indirect fitness benefits to kin by providing related conspecifics 

with a behavioural cue of infection which can inform investment in prophylactic immune 

defences, such as the induction of physiological immune priming or avoidance behaviour. 

Recent studies in social insects have found evidence of 'social immunisation', whereby 

immunologically naïve hosts that are housed with parasitised conspecifics augment their 

resistance to subsequent infection by the same pathogen, presumably either through the 

transmission of low-level  pathogenic infection or the transfer of host-derived immune 

factors (Traniello et al., 2002; Ugelvig & Cremer, 2007; Hamilton et al., 2010; Konrad et  

al., 2012). Termites and ants have been found to increase their rates of social contact with 

and allogrooming of infected conspecifics (Hughes  et al., 2002; Yanagawa & Shimizu, 

2009,  2012;  Aubert  & Richard,  2008),  which  may  facilitate  immunisation  through  a 

'controlled exposure' (Hart, 1990).

Whilst  T. molitor  do not exhibit sociality, they are gregarious and share several 

key  ecological  features  of  sociality,  such  as  high  population  densities,  the  use  of  a 

permanent and confined habitat and the presence of stored food. These factors have been 

suggested to increase pathogenic susceptibility (Schmid-Hempel, 1998) and may favour 
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the development of group-level defences (Otti et al., 2014). However,  previous chapters 

found no evidence to support the existence of a similar gregarious immunisation process 

in T. molitor (Chapters 2 & 3). In vertebrate species, sociality is generally reduced during 

immune  stimulation  (Dantzer,  2009),  although little  data  is  available  on the effect  of 

immune challenge upon non-sexual contact rates in non-social insects. It is possible that 

sophisticated behavioural immune defences can only evolve in eusocial societies, as non-

social  insects do not exhibit  many of the behaviours which are suspected to facilitate 

social  immunisation,  such  as  allogrooming  and  trophallaxis  (Rosengaus  et  al.,  1998; 

Traniello et al., 2002; Hamilton et al., 2010). Although a behavioural choice experiment 

yielded no effect  of conspecific  odour upon avoidance or attraction of challenged vs. 

unchallenged  individuals  of  either  sex  (Appendix  4), the  potential  role  of  sickness 

behaviours  as  a  cue  which  stimulates  conspecific  investment  in  immune  prophylaxes 

merits further study.

5.4.3. Gender differences and sexual conflict

The observed differences in  behaviour between males  and females following immune 

challenge may be due to differences in life-history strategies between the sexes; males 

stand to gain more than females from increasing their investment in reproduction during 

infection,  as males can linearly increase their immediate reproductive success through 

increasing their number of matings (Bateman 1948; Rolff, 2002). Females should invest 

more in immune defence in order to preserve their future reproductive capacity and thus 

maximise their lifetime reproductive success (Rolff, 2002), and, in many species, females 

exhibit greater levels of immunocompetence than males (reviewed in Rolff, 2002).

If the perceived threat to survival is great enough, infected males may preserve 

fitness  by  undertaking  'terminal  investment'  in  reproduction  (Clutton-Brock,  1984), 

redirecting resources away from immunity and into reproductive traits such as pheromone 

production, copulatory activity and sperm production (Polak & Starmer, 1998; Adamo, 

1999; Abbot & Dill, 2001; Shoemaker et al., 2006; Sadd et al., 2006; Krams et al., 2011). 

In male  T. molitor, quantitative changes in the CHC profile (Nielson & Holman, 2011) 

and production of sex pheromones (Sadd et al., 2006) during immune challenge increases 

the attractiveness of immune-challenged males to females (Sadd et al., 2006; Nielson & 

Holman, 2011; c.f. Worden et al., 2000; Worden & Parker, 2005).

Although  we may  expect  terminally-investing  males  to  increase  their  level  of 

activity and exploration in order to find more mates, we found that immune-challenged 

males instead exhibited reduced activity.  T. molitor  produce highly potent volatile (and 
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non-volatile)  sex  pheromones  which  attract  the  opposite  sex  (Bryning  et  al.,  2005), 

meaning that males may be able to remain stationary and secure matings, reallocating 

resources from non-essential locomotory behaviour into direct reproductive investment 

(e.g. pheromone production, ejaculate quality). Indeed, one study found that female  T. 

molitor  prefer  males  that  exhibit  reduced  locomotory  activity  following  an  artificial 

immune insult (Krams et al., 2011), and another found that the attractiveness of male T. 

molitor  was  negatively  correlated  with  encapsulation  ability  (Krams  et  al.,  2014). 

Furthermore, more attractive males also exhibit higher resting metabolic rates and suffer 

from reduced longevity (Krams et al., 2014), suggesting that an important trade-off exists 

between investment in reproduction (through sexual signalling) and other physiologies in 

males.

Sexual  signalling in immune-challenged males can therefore be dishonest  with 

regards to condition (Sadd et al., 2006). Such a false advertisement of mate quality stands 

to create sexual conflict, as copulating with an infected mate can incur costs to personal 

fitness in females, as well as the fitness of their offspring, for instance through horizontal 

transmission of infection (e.g. Knell & Webberley, 2004), reduced reproductive quality of 

mates (Carver & Hurd, 1998; Pai & Yan, 2003), or if parasite susceptibility is inherited 

genetically in the offspring (Carazo et al., 2004).

Females  may  seek  to  avoid  these  costs  by  reducing  investment  in  some 

reproductive activities. Female mealworm beetles may similarly reduce their reproductive 

investment  restricting the production of sexual  signals.  4-methyl-nonanol  is  a  volatile 

pheromone produced by female  T.  molitor (Tanaka  et  al.,  1986)  whose production is 

downregulated  within  12h  of  mating  (Seybold  &  Vanderwel,  2003),  reducing  the 

attractiveness of mated females (Carazo et al., 2004). Alternatively, in a natural mixed-

sex  population,  females  could  avoid  unwanted  solicitation  by  males  during  immune 

challenge by physically avoiding them, which could explain the increased locomotory 

activity observed in females following LPS injection.

Gender differences in the adaptive values of behavioural responses may explain 

the observed differences between males and females following immune challenge.  As 

females  often  exhibit  greater  immunocompetence  and  greater  efficiency  of  immune 

responses compared to males (Rolff, 2002), it is possible the greater decreases in overall 

activity  seen  here  in  males  are  a  maladaptive  consequence  of  immunopathological 

damage  and/or  resource  depletion  following  immune  stimulation.  Local  histological 

changes in infected tissue or damage resulting from infection could affect higher-level 

physiological functions and behaviour such as locomotor activity (Evans  et al., 2009). 
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Insect hosts can also cause immunopathological damage to their own tissues during an 

artificial immune challenge (Sadd & Siva-Jothy, 2006). Tetracycline treatment has been 

shown  to  cause  reductions  in  the  density  of  mitochondria  in  Drosophila and  cause 

damage to sensory mushroom bodies,  which alters locomotory activity (Martin  et  al., 

1998).

5.4.4. Opportunity costs and recovery

Although  behavioural  responses  to  infection  can  be  significantly  less  costly  than 

physiological immune defences (Siva-Jothy et al., 2005; Schulenburg & Ewbank 2007), 

they may still incur fitness costs for the host. However, the primary currency in which 

these costs are paid may differ;  whereas physiological  immune effectors tend to have 

directly detrimental effects upon immediate host condition through immunopathological 

damage  and  resource  expenditure,  behavioural  responses  tend  to  carry  more  indirect 

‘opportunity costs' (de Roode & Levefre, 2012), such as reduced ability to forage or fewer 

reproductive prospects. Not all behavioural strategies are necessarily intended to improve 

host condition through the action of immunological resistance or tolerance mechanisms, 

and hosts may also ameliorate  the fitness costs  associated with infection and immune 

activation by investing in other beneficial life-history traits, such as reproduction. Such 

non-immunological responses to parasitism have been referred to as 'life-history escape 

attempts' (van Baalen, 1998; Minchella, 1985).

In the period immediately after infection, males exhibited no significant changes 

in  behaviour  compared  with baseline  levels  before  infection;  there  was a  trend for  a 

decreased rate of acceleration, although a similar decrease was also exhibited in males 

which remained unchallenged in both observation periods, suggesting this change was 

more likely a result of habituation or age-related changes, such as senescence. However, 

when males were observed after a recovery period of 7 d, individuals showed increases in 

several metrics of activity (greater distance travelled, less time spent stationary, longer 

periods of movement, and greater levels of turning). Females, on the other hand, showed 

no significant changes in behaviour in either of the two observation periods following 

immune  stimulation,  although  there  was  some  weak  evidence  for  increased  activity 

(increased acceleration and less pauses) in females immediately after challenge.

It is possible that these gender differences were due to differential latencies in the 

induction  of  behavioural  defences  between  males  and  females.  As  beetles  were  only 

observed for a period of 1 h immediately following immune challenge, it is possible that 

sickness behaviours which took longer to be expressed may not have been observed. An 
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alternative  explanation  is  that  such late-acting  behavioural  changes  could  function  as 

'recovery  behaviours',  which  repay  opportunity  costs  incurred  during  sickness,  when 

defensive strategies, such as anorexia, lethargy and reduced libido, were prioritised over 

other  life-history  traits  such  as  feeding,  social  interaction  and  reproduction.  LPS 

stimulated males may have: (i) became lethargic immediately after challenge in order to 

focus  their  investment  of  resources  into  reproduction,  and  increased  their  rate  of 

locomotion  afterwards  in  order  to  forage and recover  their  physical  condition,  or  (ii) 

became  lethargic  in  order  to  maximise  investment  in  physiological  immune  defence 

following challenge, and increased their rate of locomotion in order to search for mates 

and recover lost reproductive fitness. Given that overall activity and acceleration were 

significantly higher in females immediately after immune stimulation, it is possible that 

females did not have such an opportunity debt to repay, and therefore had no measurable 

recovery period.

Future work would benefit from investigating this temporal element in more detail 

in order to identify if (and when) there is a peak expression of sickness behaviour. This 

could provide information on the latency of behavioural immune responses, determining 

whether challenged hosts reach a nadir of sickness, and how long it takes them recover 

fully and return to their normal baseline behaviour. Furthermore, temporal changes were 

apparent  within  the  60  minute  observation  period,  as  distance  travelled,  velocity  and 

exploratory behaviour showed a tendency to decline in both males and females (Appendix 

3).  Habituation  is  a  classically  observed  trait  in  rodents,  which  display  decreased 

locomotion and increased inactivity around 15-20 min after being placed in an open field 

arena (e.g.  Kinoshita  et  al.,  2009),  and has also recently been observed in honeybees 

(Sokolowski et al., 2012).

5.4.5. Context-dependence and behavioural plasticity

Given  that  behavioural  responses  are  inherently  labile,  we  may  expect  behavioural 

immune defences to be plastic with regards to environmental and social factors which 

modify the risk of pathogenic transmission (such as host population density, pathogen 

presence in the environment or seasonal variation), the dynamics of infection (e.g. general 

condition,  coinfection status or exposure history of host),  or the ability of the host to 

regain  fitness  through  investment  in  non-immune  life-history  traits,  particularly 

reproduction  (e.g.  gender,  quality,  availability  and  breeding  status  of  surrounding 

conspecifics).

In this  experiment,  behaviour was monitored in a relatively small  arena which 
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contained  no  food  or  water  and  in  which  individuals  were  kept  in  social  isolation, 

meaning it is possible that the observed behavioural responses to immune challenge were 

not  representative  of a natural  context  in  which individuals  are  able  to  mate,  feed or 

escape the confines of the observation arena. The absence of potential mates may have 

altered the expression of sickness behaviours in immune-challenged males and females.

In  Drosophila melanogaster,  males  and females both maximised investment  in 

immunity when given ad libitum access to food but deprived of sexual partners (McKean 

& Nunney, 2005), suggesting that males will only terminally invest in reproduction when 

they stand to gain fitness returns from doing so. Following artificial immune stimulation, 

male rats (Yirmiya et al., 1995) and birds (Lopes et al., 2013) have also been shown to 

behave  similarly  to  uninfected  males  when  allowed  access  to  females,  presumably 

trading-off reproductive investment against immunity. We may expect males to suppress 

sickness behaviours when females are present, as hosts that behave as if they were sick 

may be less likely to attract mates (Knell & Webberley, 2004). Furthermore,  receiver-

dependent signal transmission may evolve in order to reduce the costs of maintaining or 

transmitting  a  costly  signal.  For  example,  female  burying  beetles  (Nicrophorus  

vespilloides)  advertise  their  breeding  status  via  the  emission  of  methyl  geranate  (a 

compound similar to juvenile hormone), but do so only when a male partner is present 

(Steiger et al., 2011).

5.4.6. Non-adaptive explanations for behavioural modifications

It is possible that the observed differences in behaviours were a maladaptive artifact of the 

immune challenge or experimental design used in this study. Firstly, LPS challenge may 

not have constituted a survival threat sufficient enough to provoke true behavioural 

sickness. Whilst LPS is effective at enhancing the level of activity of certain immune 

effectors in insects (Moret et al., 2003), it confers a relatively low cost in terms of 

mortality in T. molitor (Moret & Siva-Jothy, 2003; Vainikka, 2007; c.f. crickets [Jacot et 

al., 2004], bumble bees [Moret & Schmid-Hempel 2000]), and may not be perceived as a 

serious survival threat by the host. Secondly, a terminal investment in reproduction is 

expected only when the costs of responding to infection outweigh the benefits of 

successful resistance, and we may thus expect a relatively minor immune challenge with a 

low risk of mortality such as LPS to be insufficient to stimulate a terminal investment in 

males. Finally, as discussed above, the absence of conspecifics in the observation arena 

may have prevented the expression of non-immunological defensive strategies, such as 

escape behaviour or increased reproductive investment.
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5.4.7. Summary 

This chapter provides some evidence for subtle behavioural modifications in a non-social 

insect  host  induced  by  challenge  with  a  non-pathogenic  immune  elicitor.  Gender 

differences in behavioural responses are attributed to dimorphic life-history investment 

strategies  between  males  and  females,  which  may  also  explain  differences  between 

behaviours  modifications  observed  immediately  after  immune  challenge  and  those 

observed  after  a  one  week  'recovery'  period.  Future  work  on  sickness  behaviours  in 

insects  may  benefit  from  taking  concurrent  measures  of  behavioural  responses  and 

physiological immune effectors from the same individuals in order to examine the trade-

offs between these two lines of immune defence. Although the tracking software used in 

this chapter is only capable of measuring the movement of one insect per observation 

arena, it would be interesting to examine the expression of sickness behaviours in a more 

natural population consisting of multiple, mixed-sex individuals. This would allow us to 

investigate whether behavioural cues of infection can be used to stimulate investment in 

immune prophylaxes such as immune priming or behavioural avoidance.

In this chapter, I have:

• Found some evidence for the expression of subtle sickness behaviours which are 

not a consequence of parasite manipulation

• Found  a  potential  role  for  a  behavioural  'recovery  period',  in  which  delayed 

behavioural  changes following immune challenge (here,  7 days post-challenge) 

may help mitigate certain opportunity costs occurred during actual challenge

• Identified gender differences in behavioural responses to immune stimulation

132



CHAPTER SIX

GENERAL DISCUSSION

6.1. Summary of thesis
Physiological  and  behavioural  prophylaxes  can  reduce  the  risk  of  hosts  becoming 

infected,  enhance  their  ability  to  resist  invading pathogens,  or  help  them tolerate  the 

fitness  costs  of  infection.  In this  thesis,  I  have investigated  the potential  for  a  'social 

transfer of immunity', which I term 'gregarious immunisation', in a non-social but group-

living  insect,  Tenebrio  molitor.  Gregarious  insects  are  exposed  to  many  similar 

pathogenic risks as social insects, yet lack many of the sophisticated group-level immune 

defences  which  characterise  the  eusocial  insects,  suggesting  that  hosts  should  benefit 

from  responding  to  social  cues  of  pathogenic  threat  in  order  to  inform  a  suitable 

investment in prophylactic immune defence.

I  first  investigated  whether  naïve  female  beetles  exhibited  enhanced  resistance  to 

subsequent infection following cohabitation with a bacterially-infected female conspecific 

(Chapter 2). There was little support for  gregarious immunisation in this experiment as 

naïve individuals that were paired with a neighbour suffering from a live Staphylococcus  

aureus infection  showed  no  increase  in  antibacterial  activity  following  subsequent 

infection by the same pathogen, and actually suffered from decreased longevity (relative 

to naïve individuals that were housed with a healthy neighbour). Interestingly, however, 

naïve  individuals  that  were  paired  with  neighbours  given  an  injection  of  heat-killed 

Staphylococcus  aureus  exhibited  a  significant  decrease  in  their  level  of  antibacterial 

activity  following  subsequent  bacterial  infection,  yet  showed  no  decrease  in  their 

longevity. Despite the lack of evidence for gregarious immunisation, the data do suggest 

that  cohabitation  with  an  immune-stimulated,  but  non-contagious,  conspecific  could 

promote enhanced tolerance of infection by the same pathogen in naïve individuals. This 

could be an advantageous strategy when the risk of pathogenesis is high, as hosts would 

be better able to preserve fitness by circumventing survival costs of infection and immune 

activation. Although the specific mechanisms remain to be investigated, similar studies in 

eusocial insects (Hamilton  et al., 2010; Konrad et al., 2012) suggest that the naïve host 

may become primed through direct contact with the pathogen or pathogenic material. In 

this experimental design, live transmission is a possibility from neighbours with a live 
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bacterial infection, but not from neighbours with a heat-killed infection. It is possible that 

the direct transfer of live bacteria between hosts leads to non-adaptive pathology in naïve 

hosts, but that contact  with dead bacterial  material  produces an advantageous form of 

immune priming which helps the host to combat the same pathogen or its effects during 

subsequent full-scale infection.

I then went on to investigate the role of gender differences in  gregarious immunisation 

through  the  effect  of  cohabitation  with  a  conspecific  suffering  from  only  a  non-

transmissible immune challenge (Chapter 3). By using both male-male and female-female 

pairs of naïve/infected individuals, and measuring both constitutive (before a subsequent 

immune challenge) and inducible (post-challenge) defences of naïve individuals, I could 

assess whether cohabitation-induced priming occurs via the immediate induction of an 

immune response following the cohabitation period, or via a sensitisation to a secondary 

danger signal (i.e. priming against future full-scale infection).

The data  showed obvious  differences  between the  immune  responses  of  naïve 

males and females following cohabitation. There was little effect of cohabitant immune 

status upon either constitutive or induced immunity in females, but in males, there was a 

significant effect which was opposite to that predicted by the gregarious immunisation 

hypothesis.  Naïve  males  housed  with  nylon-challenged  conspecifics  exhibited  lower 

levels of constitutive phenoloxidase activity and haemolymph protein concentrations (pre-

challenge),  and  significantly  lower  levels  of  induced  nylon  encapsulation  (post-

challenge).  This was corroborated by data from a separate experiment, whereby males, 

but not females, showed a reduction in phenoloxidase activity after being housed in the 

presence of bacterial volatiles (Appendix 5). Together,  these  findings  implicate  a 

role  of  chemosensory  cues  of  pathogenesis  in  altering  host  immune  investment,  as 

opposed to direct pathogen transfer between hosts. In support of this idea, the data also 

indicate a positive correlation between the degree of cuticular melanisation in immune-

challenged individuals and immune activity in their paired naïve cohabitants, although 

exactly how cuticular darkness may affect the production of cues of infection by immune-

challenged hosts remains to be determined.

I developed an automated tracking system that is capable of recording the movement of 

insects and extracting a range of metrics to describe locomotion quantitatively (Chapter 

4). I then used this software to investigate whether male and female T. molitor engage in 

sickness behaviours following an immune challenge (Chapter 5), which allowed me to 
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determine whether behavioural cues of infection produced by infected individuals may 

play a role in stimulating gregarious immunisation.

Here, there was some evidence for subtle changes in behaviour following immune 

stimulation, and evidence that these responses differed between males and females. Both 

sexes exhibited few behavioural changes in the first 1 h following infection challenge, but 

when observed after  a 7 d 'recovery period'  post-challenge,  males exhibited a general 

increase in overall rates of movement and activity, whilst females showed no difference 

in  behaviour.  This  suggests  that  females  do  not  exhibit  any major  behavioural  shifts 

during  or  after  immune  challenge,  unlike  males,  which  appear  to  experience  delayed 

behavioural  changes in response to challenge.  One explanation for this  finding is that 

males, which typically have lower immunocompetence and life-history strategies which 

focus  more  on  reproduction  than  self-preservation,  increase  their  investment  in 

locomotory activities (e.g. mate searching, foraging) for some time after infection to help 

mitigate  the  costs  of  missed opportunities  incurred  during infection  (e.g.  less  mating, 

anorexia). In the context of gregarious immunisation, it seems unlikely that such subtle 

behavioural changes during artificial immune challenge could provide a reliable signal of 

conspecific immune status, although true pathogenic infection seems more likely to result 

in more noticeable changes in both locomotion and physiology by causing pathology and 

more exhaustive resource expenditure.

Finally, a choice experiment found no evidence that naïve individuals (either male 

or  female)  showed avoidance  of  immune-challenged  conspecifics  (either  same-sex  or 

opposite  sex) (Appendix 4).  Naïve individuals  did not appear  to exhibit  any aversion 

towards the odour of immune-challenged conspecifics, and naïve females actually showed 

some  evidence  of  being  preferentially  attracted  towards  males  that  had  received  an 

immune-challenged 48 h previously. 
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6.2. Discussions arising from this thesis
6.2.1. Gender differences

Fundamental life-history differences between the sexes mean that males are able to gain a 

linear  increase in  reproductive  success  by increasing their  number  of  matings,  unlike 

females (Bateman 1948; Rolff, 2002). In order to maximise their lifetime reproductive 

success,  females are  generally predicted to  invest more in immunity to preserve their 

capacity for future reproduction (Rolff, 2002), and females tend to exhibit a greater level 

of immunocompetence than males in many insect species (Nigam et al. 1997; Radhika et  

al. 1998; Kurtz et al. 2000; Kurtz & Sauer 2001; Siva-Jothy et al. 2001).

I  found  consistent  differences  in  immunity  and behaviour  between  T.  molitor  

males  and  females  throughout  this  thesis.  Naïve  males  housed  with  an  infected 

conspecific downregulated their investment in constitutive immunity (Chapter 2), unlike 

females (Chapters 2 and 3), and displayed more noticeable modifications in locomotory 

behaviours  than  females  following  immune  stimulation  (Chapter  5).  Such  gender 

differences may stem from sexually dimorphic life-history strategies, which are predicted 

to modulate the role of sexual selection on host responses to a pathogenic threat.

6.2.2. The effect of sexual selection upon host-pathogen dynamics

If the perceived costs of current or future infection are sufficiently high, hosts may benefit 

from  changing  their  investment  strategies  away  from  immunological  resistance 

mechanisms,  which  kill  the  invading  pathogen and/or  limit  its  growth,  into  tolerance 

mechanisms  which  allow  the  host  to  preserve  fitness  without  actively  attacking  the 

pathogen.  Strategies  like  terminal  investment  represent  “life-history  escape  attempts” 

(van Baalen, 1998; Minchella, 1985) which allow the host to tolerate the negative effects 

of  infection  through investment  in  non-immunological  life-history  traits.  In  this  way, 

terminally investing hosts trade-off self-preservation, driven by natural selection, against 

reproduction, driven by sexual selection.

While terminally investing hosts may gain fitness through increased reproductive 

effort following infection, healthy individuals choosing to mate with an infected partner 

may suffer several costs. There may be direct fitness costs for mating partners via the 

transfer  of  sexually  transmitted  infections  (STIs),  which  are  widespread  in  insects 

(Burand et al., 2012) and often detrimental to fertility (Knell & Webberley, 2004). Direct 

reductions in reproductive fitness are also common during infection, as infected males can 

have poorer sperm quality (Carver & Hurd, 1998; Pai & Yan, 2003) and infected females 

may lay eggs of poorer quality, depending on the type of immune challenge (Adamo et  
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al., 1999; Shoemaker  et al., 2006). Furthermore, there may be indirect fitness costs to 

offspring if  parasites  are  vertically  transmitted  (e.g.  Goodacre & Martin,  2012),  or  if 

parasite susceptibility is genetically inherited by the offspring (e.g. Carazo et al., 2004). 

The costs for offspring are also likely to become compounded if both parents are infected 

at the time of mating. However, the costs are predicted to be greater for healthy females 

mating with infected males than healthy males mating with infected females, as males 

invest  less  resources  per  offspring  and  their  reproductive  potential  is  ultimately 

constrained only by their number of mates (Bateman, 1948).

Despite  these  potential  costs,  there  is  little  evidence  that  many  insects  avoid 

mating  with infected conspecifics  (Fedina & Lewis,  2008; c.f.  Carver & Hurd, 1998; 

Worden  et  al.,  2000;  Worden  &  Parker,  2005;  Vainikka  et  al.,  2007).  Elevated 

reproductive effort in invertebrates during infection is well documented (Thornhill et al., 

1986; Polak & Starmer, 1998; Adamo, 1999; Abbot & Dill, 2001; Shoemaker et al., 2006; 

Sadd  et  al.,  2006;  Krams  et  al.,  2011),  and there are,  in  fact,  numerous examples  of 

immune-challenged  males  being  able  to  attract  more  mating  partners  than  healthy 

individuals  (Knell  &  Webberley,  2004;  Goodacre  &  Martin,  2012),  including  in  T.  

molitor (Sadd  et  al.,  2006;  Krams  et  al.,  2011;  Nielson  &  Holman,  2011).  My 

experiments similarly suggested that immune-challenged males became more attractive to 

females  (Appendix  4),  and  neither  males  nor  females  appeared  to  avoid  immune-

challenged conspecifics. There may be several explanations for this apparent lack of mate 

choice.

Firstly,  sexual  signalling  by  infected  males  may  be  dishonest  with  regards  to 

condition (Sadd et al., 2006), as males may enhance their attractiveness through increased 

investment in sexual signalling despite being in an unhealthy condition (Sadd et al., 2006; 

Krams  et al., 2011; Nielson & Holman, 2011).  Hosts that are obviously sick should  be 

less likely to attract mates (Knell & Webberley, 2004), and infected hosts may be under 

selective pressure to suppress signs of sickness in order to combat the fitness costs of 

parasitism with reproduction. This should be especially true in non-social species, which 

are likely to gain more in direct fitness from increasing their level of reproduction during 

infection than they stand to lose in terms of indirect (kin) fitness through increasing the 

rate of disease transmission in the population.

Secondly, the benefits of mating with additional partners may outweigh the costs 

of  missing  a  mating  opportunity,  even if  the  sexual  partner  is  infected.  Polyandry  is 

highly beneficial for female T. molitor (Drnevich et al., 2001; Worden & Parker, 2005), 

as  multiple  mating  increases  larval  viability  of  offspring  (Pai  et  al.,  2005),  enhances 
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insemination  success  of  sons  (Pai  &  Yan,  2003)  and  increases  egg  viability  in  F1 

offspring (Pai & Yan, 2003). Female tenebrionids appear to possess peri-mating and post-

mating choice mechanisms (see below) which may allow them to retrospectively exercise 

mate choice when mating with infected males of poor quality.

Thirdly, mating with an infected male may provide indirect fitness benefits for 

potential offspring. Males that are able to increase their attractiveness during infection 

(e.g. Sadd et al., 2006; Nielson & Holman, 2011) may produce sons that inherit the same 

trait and thus also possess the ability to mitigate the fitness costs of parasitism through 

increased investment in reproduction. Such a trait should become more advantageous as 

the risk of infection in the population increases. Healthy males may also gain from mating 

with infected  females;  for  example,  female  crickets  (Gryllus  texensis)  infected  with a 

potentially lethal pathogen (Serratia marcescens) increase their rate of egg laying when 

environmental  resources  are  favourable,  offering  fitness  gains  for  the  healthy  male 

(Adamo et al., 1999; Shoemaker et al., 2006).

Finally, offspring may benefit through transgenerational immune priming (TGIP), 

whereby infected mothers (and fathers) produce offspring that are more resistant to the 

same pathogen as their parents (Little et al., 2003; Sadd et al. 2005; Moret 2006; Sadd & 

Schmid-Hempel,  2007;  Freitak  et  al.,  2009;  Tidbury  et  al.,  2011;  Roth  et  al. 2009b; 

Zanchi et al., 2011). In insects with short generation times and low dispersal rates which 

experience little environmental change, such as T. molitor, offspring are likely to face the 

same pathogenic  pressures  as  their  parents.  TGIP can  therefore  be  effective  way for 

infected hosts to indirectly mitigate fitness costs of parasitism, especially if this strategy is 

paired with an increase in reproductive activity.

Whilst the direct transfer of bacterial pathogens from the maternal gut lumen to 

developing eggs has been shown following oral infection in female  Galleria mellonella  

(Freitak et al., 2014), such a mechanism of vertical pathogen transmission seems unlikely 

to occur via infected males, as bacterial deposition is suggested to occur at an early stage 

of egg development. Mating with an infected male may even be advantageous by better 

informing appropriate  immune priming in offspring,  augmenting  their  defence against 

contemporary pathogenic threats in the environment.  The efficacy of transgenerational 

immune priming may be further enhanced by multiple mating, as mothers who 'sample' 

more males should acquire more information regarding current environmental challenges, 

and should be more likely to produce optimally primed offspring.

It is possible that the benefits of multiple mating therefore outweigh the benefits of 

screening mates prior to copulation, and could explain why pre-copulatory mate choice 
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processes appear to be largely absent in tenebrionids (Fedina & Lewis, 2008). Indeed, the 

cost  to  female  T. molitor of  assessing male  signalling  honesty has  been suggested  to 

outweigh  the  costs  of  mating  with  a  parasitised  male  (Nielson  &  Holman,  2011). 

Nevertheless,  tenebrionids  may utilise  cryptic  female choice processes in  order to vet 

their  mating partners.  For example,  female  Tribolium castaneum have been shown to 

actively block spermatophore transfer from starved males of poor phenotypic condition 

(Fedina & Lewis, 2006), and even eject their spermatophores shortly after mating (Qazi 

et al., 1996; Fedina, 2007).

An  intriguing  new  study  by  Peuss  et  al. (in  press)  suggests  that  Tribolium 

castaneum  decrease  their  expression  of  two  heat-shock  proteins  (Hsp83  and  Hsp90) 

following cohabitation with wounded conspecifics. The authors suggest that depletion of 

Hsp90, which is a suppressor of mutagenic transposon activity,  acts to generate novel 

genetic diversity in offspring and increase evolvability of the next generation. This could 

represent  a  bet-hedging  strategy  by  the  host,  which  revolves  around  a  life-history 

tolerance  of  pathogenesis  as  opposed  to  immunological  resistance  through  personal 

immune defence. Such a strategy is likely to be more beneficial when combined with an 

increased reproductive effort by the parental host.

For these reasons, the driving force of sexual selection in tenebrionids can often 

run  counter  to  natural  selection  pressures  which  should  favour  self-preservation 

mechanisms,  such  as  the  deployment  of  physiological  immune  responses  against 

pathogenic  threat.  Nevertheless,  the  effects  of  cohabitation  treatment  upon  immunity 

reported in this thesis (Chapters 2 and 3), and the findings of Peuss et al. suggest that the 

ability to discriminate against conspecific immune status does exist in tenebrionids.

6.2.3. Effects of host tolerance upon epidemiology and host-parasite coevolution

The  downregulation  of  immunity  shown  by  males  exposed  to  an  environmental 

pathogenic  threat  (Chapter  3,  Appendix  5)  and  the  apparent  suppression  of  sickness 

behaviours shown by males experiencing actual immune challenge (Chapter 5) suggest 

that male T. molitor prioritise reproduction above immune defence when facing costs of 

parasitism. As well as creating a potential for sexual conflict due to differing life-history 

strategies between the sexes, this strategy may have important impacts on host-parasite 

coevolution.

In  many  insect  species,  individuals  undergo  immunosuppression  after  mating, 

which  likely  prevents  the  diversion  of  resources  away  from  reproduction  and  into 

immunity and should be particularly favourable for terminally investing hosts (Sheldon & 
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Verhulst  1996).  Mating  has  been  shown  to  reduce  phenoloxidase  titres  in  Tenebrio 

molitor (Rolff  & Siva-Jothy 2002),  reduce  encapsulation  ability  in  damselflies  (Siva-

Jothy et al. 1998), suppress antibacterial activity in Drosophila melanogaster (McKean & 

Nunney, 2001), and decrease encapsulation ability, lytic activity and haemocyte number 

in the cricket,  Allonemobius socius (Fedorka  et al. 2004). In some species, males may 

benefit from the  induction of post-mating immunosuppression in females, which boosts 

female reproductive output (Lawniczak et al. 2007; Fedorka et al. 2007), although post-

mating female immunosuppression in Drosophila melanogaster has been suggested to be 

a predominantly female-driven trait that has not evolved through sexual conflict (Short & 

Lazzaro,  2010).  It  is  therefore  not  always  clear  whether  such  responses  to  infection 

represent an adaptive strategy which benefits the male host, an adaptive strategy which 

benefits  the  female  host,  or  even  a  maladaptive  strategy  which  benefits  the  parasite. 

Communicable parasites may benefit from affecting host condition in such a way so as to 

suppress sickness behaviours, particularly those which are transmitted through physical or 

sexual contact, as hosts that behave as if they were sick should be less likely to attract 

mates (Knell & Webberley, 2004).

For example, the cricket  Gryllus texensis typically exhibits sickness behaviours 

during infection, such as anorexia and reduced sexual activity (Gerhardt & Huber, 2002; 

Jacot et al., 2004). However, when infected with the iridovirus IIV-6/CrIV, which induces 

sterility in females and reduces sperm motility to the point of effective sterility in males 

(Adamo  et al., 2014), male and female crickets both continue to mate as normal, and 

infected males are quicker to court  females than healthy males (Adamo  et al.,  2014). 

Infected  crickets  also  undergo  immunosuppression,  exhibiting  lower  levels  of 

phenoloxidase activity and total haemolymph protein (Adamo et al., 2014). In this case, 

continued reproduction is unlikely to be beneficial for infected hosts, as female crickets 

have few eggs and are incapable of storing sperm from previous matings, and the sperm 

motility of infected males is extremely low.

Similarly,  Drosophila  melanogaster infected  with  Drosophila  C  virus  (DCV) 

upregulate expression of a pheromone binding protein, pherokine-2 (Phk-2), which is not 

directly  involved  in  viral  resistance  (Sebatier  et  al.,  2003).  A  molecule  with  similar 

sequence structure to Phk-2, MbraAOBP2, has been shown to bind the pheromone cis-

vaccenyl-acetate (Bohbot,  et al., 1998), which is transferred by male Drosophila during 

copulation  and  has  an  anti-aphrodisiac  effect  on  future  female  courtship  (Brieger  & 

Butterworth,  1970).  Interestingly,  Phk-2  is  expressed  in  the  ejaculatory  bulb  of 

Drosophila males, and its upregulated expression following infection could represent a 
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reproductive defence strategy for infected males, especially as DCV is not transmitted 

vertically (Sebatier  et al., 2003). This could explain why DCV-infected flies have been 

shown to have higher fecundity and fertility than uninfected hosts (Gravot et al., 2000).

Whilst DCV infection in Drosophila therefore appears to offer a fitness benefit to 

both the host and parasite  (and may thus even be considered mutualism),  IIV-6/CrIV 

iridovirus infection in crickets may more likely be a form of parasitic manipulation of 

host behaviour (e.g. Poulin, 1995; Adamo, 2012). Regardless of whether the aphrodisiac 

effect induced by infection is the result of a targeted attack by the virus, a biochemical 

byproduct of the site of infection,  or an intentional  behavioural  response by the host, 

terminal investment strategies can be under positive selection in both host and parasite. 

Tolerance strategies (both immunological and life-history based) can thus have important 

effects upon the coevolutionary dynamics between hosts and parasites, and the sexually 

dimorphic effects uncovered in this thesis may in part be explained by such complexities 

in coevolution between T. molitor and its natural parasites.

6.2.4. Proximate mechanisms of immune cue production and detection

The  social  transfer  of  immunity  may  not  involve  the  direct  transfer  of  pathogens  or 

immune molecules between hosts, but instead hinge upon the detection of social signals 

that reliably indicate infection (e.g. chemosensory cues, visual symptoms of infection; 

Konrad  et al., 2012).  Infection can alter the chemosensory profile of insect hosts, and 

qualitative changes in  cuticular hydrocarbon (CHC) profile, which has many important 

functions  in  communication  in  insects  (Singer,  1998;  Wyatt,  2003), have  been 

documented following immune stimulation in several eusocial insects species (Trabalon 

et al., 2000; Salvy et al., 2001; Richard et al., 2008; Evans & Spivak 2010), as well as in 

T. molitor (Nielson & Holman, 2011). Pheromone production in T. molitor is also known 

to  alter  according  to  reproductive  status  (Seybold  & Vanderwel  2003;  Carazo  et  al., 

2004), condition (Rantala et al., 2003) and possibly immune status (Sadd et al., 2006).

Whilst the social  transfer of immune factors between hosts may play a role in 

social immunisation in eusocial insects (Rosengaus & Traniello, 1999;  Hamilton  et al., 

2010),  the  social  behaviours  of  trophallaxis  and  allogrooming,  which  are  thought  to 

mediate this process, are largely absent in non-social  insects. However,  chemosensory 

cues may still be emitted passively via exocrine glands or in waste products. For example, 

antimicrobial  factors in the haemolymph can be readily transported to the epicuticular 

surface (Schal et al., 1998; Tzou et al., 2002), and infected hosts may excrete pathogenic 

materials  (live  pathogens,  dead  pathogens  or  pathogen-derived  compounds)  into  the 
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environment which could be capable of eliciting an immune response in naïve individuals 

that contact them.

Insects are able to eavesdrop on microbial volatile organic compounds (MVOCs) 

released by bacteria and fungi in the environment (Davis et al., 2012; Farag et al., 2013), 

which provide the host with a reliable indicator of microbial presence in the environment 

and inform a range of behavioural prophylaxes, including behavioural avoidance, reduced 

feeding and reduced oviposition  at  sites  with detectable  MVOCs (Tasin  et  al.,  2012; 

Hussain et al., 2010; Yanagawa et al., 2011; Ormond et al., 2011; Mburu et al. 2012; Sun 

et al., 2008; Stensmyr et al., 2012; Lam et al., 2010;  Villani  et al., 1994;  Myles, 2002; 

Zhang et al., 2005). In support of a role of chemosensory cues in influencing immunity, I 

found evidence that male, but not female, T. molitor that were exposed to MVOCs from a 

bacterial  pathogen exhibited reduced phenoloxidase activity  in response to subsequent 

immune  challenge  (Appendix  5).  This  is  intriguing,  as  the  invertebrate  literature 

documents  more  instances  of  females  responding  to  environmental  MVOCs,  perhaps 

because the most commonly observed responses involve the modification of oviposition 

strategies

Alternatively, it is possible that cohabitating males (in Chapter 3) did not detect 

immunological cues of infection per se, but rather responded to other cues elicited by an 

infected  male,  such as  sickness  behaviours.  As male  T.  molitor  often  invest  more  in 

sexual signalling during immune challenge to increase their attractiveness (Sadd  et al., 

2006; Nielson & Holman, 2011), it is possible that naïve males also trade-off reduced 

investment  in  immunity  in  favour  of  reproduction  as  a  response  against  increased 

competition for mates.  However,  the similar  response observed following exposure to 

MVOCs (Appendix 5) suggests that males are able to detect environmental chemosensory 

cues of infection directly. It could be that males are more sensitive to such infection cues, 

having  an  increased  propensity  to  detect  and/or  respond  to  them,  which  would  also 

support the findings of reduced immunity in naïve males following cohabitation with an 

immune-challenged conspecific (Chapter 3).

6.2.5. Communication or eavesdropping?

Even if insects are capable of producing signals of infection, such as chemosensory cues 

or sickness behaviours, with the intended purpose of intraspecific communication with 

conspecifics, there may be costs of maintaining or transmitting such signals. For example, 

female burying beetles (Nicrophorus vespilloides) advertise their breeding status via the 

emission  of  the  hormone  methyl  geranate,  and  increase  their  emission  when  a  male 
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partner is present (Steiger  et al., 2011).  It seems likely that this hormone is produced 

passively  as  a  byproduct  of  mating,  rather  than  intended  as  a  form  of  ‘true 

communication’ (i.e. where information benefits both sender and receiver), as females 

stand  to  gain  from  multiple  mating  (Drnevich  et  al.,  2001).  This  is  an  example  of 

specialisation restricted to the receiver, or ‘eavesdropping' (Stowe et al., 1995; Bradbury 

& Vehrencamp 1998; Sorensen & Stacey 1999; Wyatt 2003).

Such a  form of  signalling  has  been suggested  to  influence  mate  choice  in  T. 

molitor,  as  males  show a  preference  for  virgin  over  mated  females,  mediated  by the 

nonvolatile  pheromone,  4-methyl-1-nonanol,  whose  production  is  downregulated  in 

females  following  mating  (Tanaka  et  al.,  1986;  Carazo  et  al.,  2004). Passive  cues 

produced during infection  may play a similar  role  in the social  signalling of immune 

status given parsimonious evolution of chemosensory signalling.  Whilst some eusocial 

insects engage in corpse management behaviours as a social immune defence (reviewed 

in Cremer et al., 2007), non-social insects instead tend to show avoidance of conspecific 

corpses, for example in cockroaches (Rollo et al., 1994), springtails (Yao et al., 2009) and 

solitary bees (Abbott, 2006). Attraction to or avoidance of corpses appears to be mediated 

by the fatty acids oleic acid and linoleic acid (Wilson et al., 1958; Howard & Tschinkel, 

1976), which have been referred to as 'necromones' (Yao et al., 2009). These compounds 

are produced passively by injured or dying cells through altered enzymatic or microbial 

processes, and are thus byproducts of infection as opposed to communicatory signals.

Interestingly,  social immune priming in plants via green leafy volatiles (GLVs) 

produced by neighbouring plants during herbivory or pathogenesis (Bate & Rothstein, 

1998; Karban  et al., 2000; Arimura  et al. 2002; Engelberth  et al., 2004; Karban  et al., 

2006;  Heil  & Ton, 2008) has been suggested to  be an example  of eavesdropping,  as 

opposed to  true communication  (Conrath  et  al.,  2006).  These  volatiles  likely  initially 

evolved in order  to prime distal  parts  of the plant  more rapidly than vascular signals 

within the plant could, priming these parts of the plant to augment their resistance during 

subsequent attack (Heil & Ton, 2008). However, since these volatiles are a reliable cue of 

environmental threat, neighbouring plants should benefit from being able to eavesdrop on 

the signal and use it  to inform their  own immune prophylaxis.  Such immune volatile 

production  could  therefore  benefit  indirect  (kin)  fitness  in  populations  with  high 

relatedness (e.g. plant species with short-range dispersal), where they could be classified 

as a social immune defence (Cotter & Kilner, 2010) despite only direct fitness benefits 

initially  favouring  the  evolution  of  the  trait.  Furthermore,  production  of  such  an 

interceptable signal is unlikely to be selected against unless the costs of priming nearby 
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neighbours (e.g. by offering them a competitive advantage) outweigh the benefits offered 

to the acting individual.

6.2.6. Ecological relevancy and plasticity of immune priming

The  importance  of  sexual  selection  as  a  mediator  of  immune  defence  could  not  be 

accounted for in this experimental design as only same-sex pairs were used. As such, the 

absence of breeding partners  precludes  understanding investment  in reproduction as a 

non-immunological, life-history escape response to ameliorate the costs of infection. 

It  is  also  possible  that  reliable  signals  of  infection  are  only  produced  in  the 

presence  of  members  of  the  opposite  sex.  For  example,  in  the  burying  beetle, 

Nicrophorus vespilloides, breeding females release methyl geranate, a substance which 

indicates breeding status, but only when in the presence of a male partner (i.e. a signal 

receiver; Steiger et al., 2011). Such receiver-dependent chemical signalling is expected to 

evolve when costs are involved in the production or transmission of the signal (Steiger et  

al.,  2011),  and  has  been  shown  previously.  For  example,  female  Drosophila  

melanogaster upregulate expression of antimicrobial peptides and phenoloxidase activity 

following  mating  (Fedorka  et  al. 2004),  and  recently  mated  female  crickets  exhibit 

increased resistance to subsequent parasitism (Shoemaker et al. 2006). Additionally, both 

male and female  D. melanogaster maximise their  immune investment  when given  ad 

libitum  access  to  food  but  deprived  of  sexual  partners,  yet  only  males  demonstrate 

immune  suppression  when  given  access  to  mates  (McKean  &  Nunney,  2005).  This 

suggests that terminal investment in reproduction is a phenotypically plastic defence, and 

suggests  that  males  modulate  their  immune  strategy  based  upon  social  cues  in  their 

environment (i.e. presence of females).

Given  the  inherent  plasticity  of  behaviour  and  comparatively  low  costs  of 

behaviour defences versus physiological (Siva-Jothy et al., 2005; Schulenburg & Ewbank 

2007), it is possible that sickness behaviours form the most important part of an effective 

immune response, offering flexibility with regards to unpredictable environmental factors 

shaping  infection,  recovery  and  host  fitness  (e.g.  host  resource  availability, 

immunological history and current coinfection, mating opportunities). Also, considering 

that  males  are  a  more  likely  source  of  disease  transmission  to  females,  particularly 

regarding sexually transmissible infections, mixed sex effects on immune defence warrant 

further study. It may also be interesting to investigate whether sickness behaviours are 

expressed in a pathogen-dependent and/or dose-dependent manner; for example, terminal 

investment may be only be expected in the case of particularly damaging infections, such 
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as those caused by highly virulent pathogen or by high infection titres.

6.2.7. Implications for other non-social insects

Similar  immune phenomena to  social  immunisation  are  know outside  of  the  eusocial 

insects. Some plants are able to prime themselves against future attack by priming their 

immune system in response to airborne volatile organic compounds (VOCs) produced by 

conspecifics whom are experiencing herbivory or pathogenesis (Bate & Rothstein, 1998; 

Karban  et al., 2000; Arimura  et al. 2002; Engelberth  et al., 2004; Karban  et al., 2006; 

Heil & Ton, 2008; Erb et al., 2015). In the vertebrate literature, rats have been shown to 

induce both behavioural and immune prophylaxes following cohabitation with immune-

stimulated  conspecifics,  demonstrating  behavioural  avoidance  of  their  challenged 

nestmates (Kavaliers & Colwell,  1995; Penn & Potts,  1998; Arakawa  et al.,  2011) or 

altering  several  physiological  features  associated  with  stress  and  immunity,  such  as 

noradrenaline  turnover  and neutrophil  activity  (e.g.  Penn & Potts,  1998; Alves  et al., 

2006).

Comparing  immunity  in  invertebrates  and  plants  is  problematic  due  to  vast 

mechanistic  differences  between  the  groups,  but  parallels  between  invertebrates  and 

vertebrates  should  also  be  cautioned  for  several  reasons.  Inverteberates  are  generally 

more short-lived, have higher fecundity, faster gestation periods, and typically invest less 

in  their  offspring,  in  terms  of  immediate  resource  expenditure  (e.g.  oviparity  versus 

viviparity)  and  parental  care,  than  vertebrates.  Long-lived  species  should  favour  the 

protection of future reproductive success in the face of pathogenic threat. Furthermore, 

species that live longer should encounter more parasites (a quantitatively greater number 

and a qualitatively more diverse selection) within their lifespan, increasing the importance 

of an adaptive immune system (within a single generation). On the other hand, species 

with a short  generation  time and the ability  to  upregulate  fecundity massively during 

infection (e.g. by laying large clutches of eggs) may benefit more from maximising their 

immediate reproduction, especially when such a strategy is combined with mechanisms of 

transgenerational immune priming which prime immunity in offspring, whom are likely 

to face the same pathogenic threats as their parents (van Baalen, 1998; Schmid-Hempel, 

1998). Such differences in life-history suggest that non-immunological forms of tolerance 

like terminal investment in reproduction may represent a much more feasible strategy to 

counter the costs of parasitism in non-social  insects,  and may explain why this thesis 

found no evidence for gregarious immunisation in T. molitor (Figure 6.1).

Externalised  antimicrobial  secretions  are  known  to  be  produced  by  many 
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tenebrionid  species,  such as  volatile  benzoquinones  in  T.  molitor  and  Tribolium spp. 

(Tschnikel,  1974).  Whilst  the primary purpose of these secretions  may be to  manage 

unwanted  microbial  growth in  food stores  (Yezzerski  et  al.,  2000;  Otti  et  al.,  2014), 

benzoquinones also have a  repellent effect on conspecifics and predators in  Tribolium 

(Suzuki, 1980), and their secretion is also upregulated in T. molitor during parasitism by 

the rat tapeworm, Hymenolepis diminuta (Yan & Phillips, 1993).

This suggests that these compounds may serve a secondary defensive function, 

perhaps as a  group-level  defence. Defences  enacted at  the level  of the individual  can 

become co-opted to act at the group-level under certain ecological conditions (Elliot & 

Hart, 2010; Brown & Taylor, 2010), which Otti  et al. (2014) suggest may include large 

group sizes, use of permanent and confined nests, and permanent food storage; all traits 

shared by T. molitor. For example, salicylaldehyde-based volatiles secreted by the brassy 

willow  leaf  beetle  (Phratora vitellinae)  have  strong  antimicrobial  action,  and  when 

synergistically amplified in beetle aggregations, form a fumigant cloud which protects 

against  fungal  and  bacterial  pathogens  in  the  microenvironment  (Gross  et  al.,  1998, 

2008).

The externalised secretion of antimicrobial compounds such as benzoquinones or 

production of detectable pathogenic cues which may stimulate conspecific investment in 

immunity  are  unlikely  to  have  evolved  primarily  for  their  function  as  a  group-level, 

socialised defence in  T. molitor.  Any benefits  these defences confer to kin fitness are 

therefore predicted to be of secondary importance  in their  selection.  Furthermore,  the 

potential for dishonest signalling in populations with low relatedness is high, as the direct 

fitness  benefits  of securing matings  despite  infection are likely to be greater  than the 

indirect (kin) fitness costs of facilitating pathogen transmission in the population.
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Figure  6.1. Theoretical  considerations  of  terminal  reproductive  investment  strategies 
upon host fitness during pathogenesis. (A) depicts the probability of survival during the 
lifespan of a healthy individual, which naturally declines as a function of age (solid line). 
Infection generally acts to shorten longevity, although hosts which successfully defend 
against  infection  by  resisting  the  invading  pathogen  or  physiologically  tolerating  its 
damage (dashed line) are predicted to live longer than hosts which allow themselves to 
succumb to infection in order to invest in other (non-immunological) life-history traits, 
such as reproduction (dotted line).

(B-D) depicts reproductive success as a function of age. (B) Healthy hosts begin 
mating once reaching sexual maturity and usually achieve peak reproductive output some 
time  before  natural  senescence.  (C)  Infected  hosts  are  likely  to  suffer  decreased 
reproductive success as a result of reduced longevity and lower mating success resulting 
from  pathogenic  and/or  immunopathological  damage,  reduced  resource  availability, 
reduced  attractiveness,  and reduced quality  of  gametes  and/or  offspring.  (D)  Infected 
hosts which tolerate the effects of infection through a terminal investment in reproduction 
are likely to achieve peak reproductive success sooner than hosts investing in immune 
defence, but are likely to die sooner.

Even  if  host  strategies  (C)  and  (D)  both  yield  the  same  level  of  lifetime 
reproductive success for the infected host (shaded areas), immediate changes which allow 
the  host  to  more  rapidly  reach  their  maximum  reproductive  output  should  be  more 
beneficial  for  fitness  given  the  uncertain  conditions  of  infection  (e.g.  pathogenic 
virulence,  risk of reinfection,  resource availability).  If the perceived threat  to survival 
posed by a current infection, or the perceived threat posed by detected pathogens in the 
environment, is sufficiently high, hosts may thus be predicted to favour investment in life-
history  escape  attempts  over  investment  in  immune  defence.  Figure  modified  from 
Agnew et al. (2000).
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6.3. Future research
6.3.1. Chemical identification of immune-related chemosensory cues

Although  this  thesis  suggests  that  chemosensory  cues  (host-derived  semiochemicals 

and/or parasite-derived MVOCs) may play a role in modulating the immune investment 

of  naïve individuals,  the exact  compounds involved are unknown.  Mass  spectrometry 

could identify  semiochemicals  that  are  altered  in  males  and females  through immune 

challenge;  both  airborne  volatiles,  such  as  sex  pheromones  (collected  by  headspace 

sampling), and contact-based non-volatiles, such as cuticular hydrocarbons, such as CHCs 

(collected by immersion). Use of isolated concentrates of these compounds in behavioural 

choice experiments could then reveal their resultant effects upon attraction or avoidance 

displayed by same-sex and opposite-sex conspecifics, and further experiments could more 

thoroughly  determine  their  role  in  the  induction  of  immunological  and  behavioural 

investment strategies.

6.3.2. Identify role of behavioural immune-related cues in immune priming

Whilst  I  found evidence for locomotory changes (sickness  behaviours)  in response to 

immune stimulation, and found no evidence that volatile chemosensory cues produced by 

immune-challenged  conspecifics  induce  aversion  in  naïve  individuals,  I  did  not 

investigate  whether  conspecific  sickness  behaviours  can  alter  immune  investment  in 

nearby naïve hosts.  The development  of a behavioural  tracker  (or modification of the 

software developed in Chapter 3) which is capable of tracking two or more insects in the 

same arena simultaneously, would allow investigation of how pathogenic threat affects 

behaviour  in  naïve  hosts,  as  well  as  shedding  light  on  the  behavioural  interactions 

between naïve and immune-challenged conspecifics (e.g. number of physical contacts, 

physical distance between hosts).

6.3.3. Additional experimental considerations

Although  same-sex  cohabiting  pairs  were  used  in  my  experiments  to  exclude  the 

potentially confounding effects of mating upon immunity (Rolff & Siva-Jothy, 2002), the 

responses undertaken by naïve hosts may not have been representative of those in a more 

natural setting due to a lack of mating partners. This may have prevented hosts from the 

use of strategies aimed at tolerating the potential costs of pathogenesis, such as terminal 

reproductive investment (e.g. McKean & Nunney, 2005). Furthermore, whilst my results 

suggest that male T. molitor may undergo terminal investment following direct immune 

challenge and indirect pathogenic threat, additional experiments could demonstrate this 
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explicitly by taking measurements of reproductive investment and reproductive output in 

males and females (e.g. mating frequency, sperm quality/quantity, egg count, offspring 

fitness).  Measurement  of  other  non-immunological  traits  that  affect  the  dynamics  of 

infection,  such as  feeding rate  (which  was  beyond the  scope of  behavioural  tracking 

software), may also quantify the importance of non-physiological responses in immune 

tolerance. 

Finally,  the use of one-on-one pairs of naïve/immune-challenged beetles in my 

cohabitation experiments may have been ineffective for the investigation of a gregarious 

immunisation process. It is possible that the quantity of immune-related chemosensory 

cues  produced  by  a  single  immune-challenged  host  are  undetectable,  or  that  its 

concentration is insufficient to induce an immune priming response in nearby naïve hosts. 

Indeed,  in  a  gregarious  species  such  as  T.  molitor,  a  single  immune-challenged 

conspecific is a relatively small infection threat for the population. Further experiments 

may use more than one immune-challenged individual to impose an infection threat for 

naïve hosts, or even vary the perceived infection threat through a titration (i.e. varying the 

number  of  challenged  individuals,  or  varying  the  ratio  of  challenged:unchallenged 

conspecifics)  to  determine  whether  there  danger  signals  only  stimulate  investment  in 

immune priming above certain thresholds.

6.3.4. Investigation of socially-induced immune priming with greater temporal 
resolution

Similar experiments to those conducted in this thesis that incorporate a greater degree of 

temporal resolution could allow investigation of time-dependent elements of  gregarious 

immune priming. While the cohabitation experiments in this thesis examined immunity in 

naïve individuals  after  being housed with an immune-challenged conspecific  for 72 h 

(Chapters 2 and 3), it is possible that this was an inappropriate exposure duration for the 

elicitation of immune prophylaxes. It is possible that immunological response is initiated 

rapidly in naïve hosts upon exposure to an infection threat, and that this response peaks 

sometime before 72 h. Conversely, a long-term exposure of >72 h may be required before 

immune prophylaxes, which are typically long-lasting and may be costly to maintain, are 

invested in by naïve hosts. In the vertebrate literature for example, one study found that 

mice exhibited  changes in locomotion and noradrenaline turnover only after 7 days of 

cohabitation with an immune-challenged nestmate (Tomiyoshi et al., 2009), and another 

study found that behavioural changes and hyperalgesia only occurred after a cohabitation 

period of 14–21 days (Langford et al., 2006). Furthermore, this thesis found evidence of 
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behavioural modifications 7 days after immune stimulation, although the use of only two 

observation periods means that the latency period in the induction of these responses is 

unknown. Observations conducted over a longer time period and with greater frequency 

could reveal exactly when certain sickness behaviours are induced and how long for.

6.4. General conclusions
In conclusion, the work conducted in this thesis provides little evidence for the existence 

of  gregarious immunisation in a non-social  but gregarious insect.  However,  socialised 

cues of infection produced by immune-challenged conspecifics do appear to influence 

immune investment in immunologically naïve males at least, causing a downregulation of 

an  important  constitutive  immune  effector  which  may represent  a  non-immunological 

form  of  parasitic  tolerance.  Behavioural  responses  and  life-history  modifications  are 

overlooked in many immunological studies, and are often assumed to be simply traded-

off against immunity as opposed to forming an adaptive anti-parasite strategy in their own 

right, as well as a synergistic effect with immunity. Although immunity is a highly plastic 

trait, it seems that relatively inflexible host life-history traits and ecology may be equally 

important  influences  on the undertaken responses to infection threat.  Further work on 

other non-social  insect species which differ from  T. molitor  in their  ecology and life-

history  (e.g.  higher  rates  of  dispersal,  more  parental  care,  lower  levels  of  polygamy, 

longer  lifespans)  must  be  conducted  before  we are  able  to  conclude  that  sociality  is 

necessary trait for the development of socialised forms of immunity.
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APPENDICES

APPENDIX 1:

CALCULATION OF Staphylococcus aureus LD50

In order  to  determine  an appropriate  dosage of  Staphylococcus  aureus  with which to 

infect hosts in Chapter 2, the median lethal dose (LD50) was calculated from a survival 

analysis which used a range of infective doses, from 102  to 108  CFUs (Figure A1.1). The 

LD50 after 14 days was estimated to be 5.33 x 107 CFUs per 5µL inoculate (Figure A1.2). 

Beetles were cultured, treated and housed in the same manner described in Chapter 2.

Figure  A1.1.  Survival  analysis  of  naïve  individuals  infected  with  varying  dosages 
Staphylococcus aureus, as well as a procedural control (PBS; blue dashed line) and a no 
treatment control (CTRL; black line).
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Figure A1.2.  (a) Proportion mortality of individuals 14 days after being infected with 
varying  dosages  of  live  S.  aureus.  Red  line  indicates  median  lethal  dose  (LD50)  at 
5.33x107 CFUs. (b) LD50 similarly calculated for different time points post-infection, from 
3 days to 17 days.
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APPENDIX 2: 

IMAGE ANALYSIS OF NYLON ENCAPSULATION AND 
CUTICULAR MELANISATION

Sample  images  and  calibration  data  from  the  image  analysis  processes  described  in 

Chapter 3. The image analysis script, calibration tool and sample images are documented 

online (https://github.com/JoGall/nylon-encapsulation/).

Figure  A2.1.  Sample  images  showing  the  various  states  of  extracted  nylon 
monofilaments. (a) shows low levels of both encapsulation and melanisation as the nylon 
filament has retained its light colour and has little cellular material attached, (b) shows a 
high  level  of  melanisation  (brown areas)  but  relatively  low encapsulation,  (c)  shows 
amount  of  encapsulation  (black  areas),  (d)  shows  low  levels  of  encapsulation  and 
melanisation, though with a mass of Malpighian tubules attached that could be mistaken 
for encapsulating material (light brown area).
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Figure A2.2. (a) Raw image and (b, c) processed image masks of an encapsulated nylon 
monofilament. In both image masks, grey areas show the identified foreground, in which 
mean pixel saturation is calculated to produce a melanisation score. Black areas show 
pixels that are below the user-defined brightness threshold within the foreground area. 
These  pixels  are  enumerated  to  give  an  encapsulation  score.  A stringent  brightness 
threshold (70) was used to define encapsulating material in (b), whilst  a more lenient 
threshold  (110)  was  used  in  (c).  The  red  line  depicts  the  calculated  length  of  the 
monofilament.
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Figure  A2.3.  Calibration  of  the  user-defined  brightness  threshold  used  to  define 
encapsulation score. Iteration of the automated image analysis script across a series of 
calibration images generated encapsulation scores for all possible brightness thresholds. 
Automated scores were then compared to manually calculated scores to find the closest 
matching brightness threshold, as shown by the red line.
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Figure A2.4. (a) Raw image and (b) post-processed image of a T. molitor elytron. (b) The 
black area shows the fitted mask, from which cuticular melanisation was estimated as the 
mean pixel saturation. Red lines show the minimum bounding rotated rectangle fitted to 
the mask, from which elytron length was estimated as the length of the rectangle's longest 
side.
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APPENDIX 3: 

TEMPORAL PATTERNS IN Tenebrio molitor BEHAVIOUR

Additional  figures  and  analyses  related  to  Chapter  5  are  presented  here,  showing 

differences in various behavioural metrics in Tenebrio molitor males and females during 

non-pathogenic immune stimulation.

[starts overleaf]
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Figure A3.1. Temporal changes in behaviour in males and females during the course of 
the 60 min observation period, with behaviour following LPS challenged depicted in red 
and unchallenged baseline behaviour depicted in blue. Behavioural metrics shown are: 
(A) total distance travelled (mm), (B) mean speed of locomotion (mm/s), (C) proportion 
of time spent stationary, (D) exploration behaviour (proportion of arena cells visited and 
(E) thigmotaxis (proportion of time spent in perimeter of arena). Data are binned into 10 
min intervals. Lines depict means and shaded areas depict mean ± S.E.M..
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APPENDIX 4: 

BEHAVIOURAL PREFERENCE OF IMMUNOLOGICALLY 
NAÏVE Tenebrio molitor TOWARDS CHEMOSENSORY 
CUES PRODUCED BY IMMUNE-CHALLENGED 
CONSPECIFICS

A4.1. Introduction

Although avoidance of parasitised individuals is predicted to benefit non-social insects by 

allowing them to reduce the risks of acquiring an infection, there is conflicting evidence 

on behavioural avoidance in  Tenebrio molitor, with some studies reporting aversion of 

parasitised conspecifics and others reporting increased attraction (Carver & Hurd, 1998; 

Worden et al., 2000; Worden & Parker, 2005; Sadd et al., 2006;  Vainikka  et al., 2007; 

Krams et al., 2011; Nielsen & Holman, 2011). This experiment investigated behavioural 

preference of immunologically naïve T. molitor towards immune-challenged conspecifics. 

The use of an artificial immune elicitor, lipopolysaccharide (LPS), was used to stimulate 

immunity  whilst  excluding the  potential  for  parasite  manipulation  upon any observed 

changes  in  attraction.  I  accounted  for  the  interacting  effects  of  sexual  selection  on 

behavioural preference by examining choice in both males and females vs. same-sex and 

opposite-sex conspecifics.

A4.2. Methods

A.4.2.1. Insect treatments

Insects were cultured as described in Chapter 2, and used in trials between 8-10 days after 

imaginal  eclosion.  Behavioural  preference  was  tested  using  a  Y-maze  olfactometer 

(Figure A4.1). In each trial, naïve beetles were presented with a choice of two conspecific 

treatments;  an  immune-challenged  conspecific,  injected  with  5µL  of  0.5mg/mL 

lipopolysaccharide  (LPS)  (as  described  in  detail  in  Chapter  5),  or  an  unchallenged 

conspecific  (no treatment).  In order to  investigate whether behavioural  choices varied 

over the course of a conspecific's immune response, separate trials were conducted at 0h, 

24 h and 48 h post-challenge. A factorial design was used to test the preference of naïve 

males and females towards both same-sex and opposite sex conspecifics. However, both 

treated conspecifics presented in each trial were always of the same sex (i.e. challenged 

male  vs.  unchallenged  male,  or  challenged  female  vs.  unchallenged  female).  Whilst 
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procedural controls were not conducted here, previous work conducted in T. molitor has 

shown  that  males  and  females  prefer  the  odours  of  healthy  and  immune-challenged 

conspecifics  over  blank  odours  (i.e.  they  prefer  conspecific  presence  over  absence, 

regardless of conspecific immune status) (Nielsen & Holman, 2011). Treated beetles were 

placed in glass vials which were affixed to each arm of the olfactometer. The arm position 

(left vs right) of treatments was randomised for each trial. Purified air was passed over 

each vial (flowing towards the olfactometer entrance) at a rate of 1 L/min using a charcoal 

filtered air delivery system (Analytical Research Systems;  OLFM-4C-ADS+V). Airflow 

was allowed to proceed for at least 1 minute before naïve beetles were introduced into the 

olfactometer and their position in the arena recorded over 5 minutes. 

Figure A4.1. Y-maze olfactometer set-up. A vacuum pump blows purified air  through 
each of  the  sample  tubes  (top  left  and top  right),  which  both  contain  an  insect,  and 
downstream towards the olfactometer entrance, E. A focal beetle whose preference is to 
be tested is introduced into this entrance and its position in the arena recorded as either 
left arm, right arm, or neutral (central part of tube before bifurcation).
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A.4.2.2. Statistical analysis

Two choice metrics were used to measure preference: duration of time spent by naïve 

beetles in each zone of the olfactometer (challenged, unchallenged and neutral), and first 

zone chosen by naïve beetles (challenged vs. unchallenged). Duration data were analysed 

using a general linear model. First choice data were analysed using Chi-squared tests to 

assess  whether  choice  of  treatment  arm  by  naïve  beetles  significantly  differed  from 

random (50%). All analyses were conducted in R (R Core Development Team, http://r-

project.org). 

A4.3. Results

A.4.3.1. No zone choice

95.6% of individuals made a choice between one of the two arms of the arena during the 

5 min observation period.

A.4.3.2. Duration of time spent in each zone

There was an effect of conspecific immune status on male preference for females (F = 

4.15; df = 2, 282; p = 0.017) and on female preference for females (df = 2, 282; 9.92; p < 

0.001), but not for either male or female preference regarding males (p > 0.12) (Figure 

A4.2). There was also a significant interaction effect between conspecific treatment and 

the duration of their infection upon preference in each sex pairing (p < 0.05 for all). Post-

hoc t-tests  conducted within each group showed only one significant  difference,  with 

naïve females  preferring to  remain  in  the unchallenged zone when choosing between 

other females at 0 h post-challenge (Table A4.1).

A.4.3.3. First zone choice

In most  trials,  conspecific  treatment  (challenged vs  unchallenged)  had no effect  upon 

preference in naïve beetles (Table A4.2). However, naïve females exhibited a significant 

avoidance  of  challenged  female  conspecifics  immediately  after  immune  challenge 

(infection time = 0), and naïve females exhibited a significant attraction to challenged 

male conspecifics 48 h after immune challenge (infection time = 48).

A.4.3.4. Time taken to make first zone choice

Males and females did not differ in the length of time taken to make their first choice (t = 

0.81, df = 1, p = 0.417), and the mean length of time taken to make a choice for both 

188



sexes combined was 28.19 ± 1.18 s (mean ± S.E.). On average, males and females took 

longer  to  make a  decision  when they  first  chose  the  olfactometer  arm containing  an 

immune-challenged conspecific (30.36 ± 2.02 s) than the arm containing an unchallenged 

individual (26.29 ± 1.41 s), although this difference was not significant (t = 1.65, df = 1, p 

= 0.099).

Figure A4.2. Proportion of the total observation period (5 minutes) spent by naïve beetles 
in each zone of the Y-tube olfactometer (immune-challenged conspecific zone [LPS; red], 
unchallenged  conspecific  zone  [no  treatment;  blue],  neutral  zone  [neutral;  grey]).  (a) 
naïve females choosing between treatment females, (b) naïve females choosing between 
treatment males, (c) naïve males choosing between treatment females, (d) naïve males 
choosing between treatment males. Bars indicate mean ± S.E.
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Table A4.1.  Results  of t-tests  on time spent  in zone data (time spent  in neutral  zone 

excluded). Significant results (p<0.05) are highlighted in bold.

Naïve 

sex

Challenged

sex

Infection

time
Pref? Statistics

Female Female 0 yes t = 3.17, df = 61.71, p = 0.002

Female Female 24 no t = 0.966, df = 62, p = 0.3377

Female Female 48 no t = 0.211, df = 60.44, p = 0.8334

Female Male 0 no t = 0.115, df = 61.693, p = 0.9087

Female Male 24 no t = 1.46, df = 60.873, p = 0.1486

Female Male 48 no t = 0.752, df = 61.931, p = 0.4549

Male Female 0 no t = 0.488, df = 61.953, p = 0.6274

Male Female 24 no t = 0.768, df = 61.878, p = 0.4455

Male Female 48 no t = 0.822, df = 61.975, p = 0.4144

Male Male 0 no t = 0.883, df = 61.788, p = 0.3804

Male Male 24 no t = 0.924, df = 61.931, p = 0.3592

Male Male 48 no t = 0.533, df = 61.933, p = 0.5957
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Figure A4.3. First treatment zone of the Y-tube olfactometer entered by naïve beetles 
(immune-challenged  conspecific  zone  [LPS;  red],  unchallenged  conspecific  zone  [no 
treatment;  blue]).  (a)  naïve  females  choosing  between  treatment  females,  (b)  naïve 
females choosing between treatment males, (c) naïve males choosing between treatment 
females, (d) naïve males choosing between treatment males. Dashed line reflects random 
zone choice (50%).
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Table A4.2.  Results  of chi-squared tests  on first  zone chosen data.  Significant results 
(p<0.05) are highlighted in bold.

Naïve 

sex

Challenged

sex

Infection

time
Pref? Statistics

Female Female 0 yes χ2 = 7.258, df = 1, p-value = 0.007

Female Female 24 no χ2 = 0.125, df = 1, p-value = 0.724

Female Female 48 no χ2 = 0.290, df = 1, p-value = 0.590

Female Male 0 no χ2 = 0.00, df = 1, p-value = >0.999

Female Male 24 no χ2 = 1.58, df = 1, p-value = 0.209

Female Male 48 yes χ2 = 3.90, df = 1, p-value = 0.048

Male Female 0 no χ2 = 1.13, df = 1, p-value = 0.289

Male Female 24 no χ2 = 0.00, df = 1, p-value = >0.999

Male Female 48 no χ2 = 1.29, df = 1, p-value = 0.257

Male Male 0 no χ2 = 0.13, df = 1, p-value = 0.724

Male Male 24 no χ2 = 0.81, df = 1, p-value = 0.369

Male Male 48 no χ2 = 0.62, df = 1, p-value = 0.433

A4.4. Discussion

These data  suggest  that  Tenebrio molitor  do not  exhibit  aversion towards the volatile 

odours of immune-challenged conspecifics,  either  of same of the sex or opposite sex. 

Instead,  naïve  females  actually  appeared  to  become  preferentially  attracted  towards 

immune-challenged males that had been insulted 48 h earlier, supporting data from the 

literature which suggests that immune-challenged males become more attractive due to 

terminal investment in reproduction through an increased investment in sexual signalling 

(Sadd  et  al.,  2006;  Nielson & Holman,  2011; Krams  et  al.,  2011).  This  experimental 

design relied on the detection of volatile (airborne) cues of infection by naïve individuals, 

but it is possible that less volatile semiochemical cues may be involved in the detection of 

conspecific immune status. For example, cuticular hydrocarbons (CHCs) are known to 

change quantitatively during immune insult in T. molitor (Nielson & Holman, 2011), but 

are  long-chained  and  poorly  volatile,  and  necessitate  direct  physical  contact  to  be 

detected. The role of visual cues of infection, such as sickness behaviours, upon induction 

of immune defence (either physiological or behavioural) also remains to be investigated. 

It is possible that olfactory and visual cues of infection act synergistically to inform a 

process of gregarious immunisation in T. molitor.
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APPENDIX 5: 

ALTERED IMMUNE INVESTMENT OF NAÏVE Tenebrio 
molitor IN RESPONSE TO THE ENVIRONMENTAL 
PRESENCE OF MICROBIAL VOLATILES

A5.1. Introduction

Many bacteria and fungi release microbial volatile organic compounds (MVOCs) which 

diffuse readily through the environment (Davis et al., 2012), and can be detected by a 

diverse range of host species (Farag  et al., 2013). Several studies in insects have found 

that hosts exhibit a range of behavioural responses following the detection of MVOCs in 

the environment, including physical avoidance, reduced feeding and reduced oviposition 

(Tasin  et al., 2012; Hussain  et al., 2010; Yanagawa  et al., 2011; Ormond  et al., 2011; 

Mburu et al. 2012; Sun et al., 2008; Stensmyr et al., 2012; Lam et al., 2010; Villani et al., 

1994;  Myles, 2002; Zhang  et al., 2005). Here, I investigated whether  Tenebrio molitor  

modulates its investment in  physiological immunity as a form of prophylactic defence 

against a perceived pathogenic threat in the environment.

A5.2. Methods

A5.2.1. MVOC preparation

Erythromycin-resistant  Staphylococcus aureus  were cultured as described in Chapter 2. 

Briefly, a single S. aureus colony was suspended in 30mL Luria broth (2% LB, 10µg/mL 

erythromycin,  5.6µg/mL amphotericin-B) and cultured for 48 h in a shaking incubator 

(37°C,  110rpm)  until  reaching  a  stationary  phase.  Bacterial  population  density  was 

estimated turbidometrically by measuring the optical density (OD650nm) of the bacterial 

suspension using a microplate reader (VersaMax) and referencing a previously calculated 

calibration  curve,  before  diluting  the  suspension  down  to  a  final  solution  of  5x106 

CFUs/mL. 200µL of this suspension was then plated onto erythromycin-infused agar (2% 

LB,  1.5% agar,  10µg/mL  erythromycin,  5.6µg/mL  amphotericin-B)  and  incubated  at 

37°C for 24 h to yield a plate with approximately 106 CFUs. Bacterial MVOCs were then 

extracted by adding 5mL hexane to bacterial plates and agitating for 1 min. MVOCs have 

been shown to be extractable in hexane (Crespo et al., 2008). To ensure that beetles would 

not become primed through direct infection with live bacteria which may be present in the 
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hexane solution,  the presence of live bacteria was tested for  by plating out 200µL of 

undiluted hexane solution on control agar (2% LB, 1.5% agar, 5.6µg/mL amphotericin-B) 

and incubating for 48 h at 37°C. No CFUs were detected on any plate (n=8).

A5.2.2. Insect treatments

Beetles were cultured as described in Chapter 2, and used in the experiment at 8-10 days 

post-imaginal eclosion. Immunologically naïve (untreated) beetles were housed in a small 

Petri dish (50mm diameter) with ad libitum access to Progrub, to which 1mL of hexane 

suspension  was  added.  Beetles  were  housed  together  for  72  h,  and  then  randomly 

assigned to one of two sub-treatments; one which measured constitutive (pre-challenge) 

defence  through  immediate  immune  assay,  and one  which  measured  inducible  (post-

challenge) defence by challenging beetles and assaying them 24 h later.

Beetles in the pre-challenge group had their haemolymph extracted and analysed 

immediately after the hexane exposure period. Those in the post-challenge group were 

wounded through the insertion of a sterile stainless steel pin (0.15mm diameter) between 

the third and fourth abdominal sternites, before having their haemoylmph extracted for 

analysis  24 h later.  Haemolymph extraction,  phenoloxidase (PO) activity  analysis  and 

haemolymph protein concentration analysis were all performed as described in Chapter 3.

A5.2.3. Statistical analysis

Linear regressions were built for each response variable using R (v3.1.2; R Development 

Core Team, 2014), with PO activity and total PO activity log-transformed for normality. 

For  each  regression,  statistical  models  were  optimised  using  a  stepwise  procedure, 

working backwards from maximal models that included all main effects (sex [male or 

female],  treatment [MVOC hexane or non-MVOC hexane],  and challenge status [pre-

challenge or post-challenge]) and all possible interactions. Additional models were built 

to test for the effects of MVOCs within each gender independently by omitting sex and its 

interactions as fixed effects from the models.

A5.3. Results

A5.3.1. Overall linear model 

The interaction between hexane treatment and challenge status had a significant effect 

upon total PO activity (F5,212 = 5.90, p = 0.016), as well a marginally non-significant effect 

upon haemolymph protein concentration (F5,212 = 3.93, p = 0.051; Table A5.1). There was 
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a marginal effect of treatment upon observed PO activity (F5,212 = 3.26, p = 0.072) and 

protein concentration (F5,212 = 3.67, p = 0.059), but there were no effects of gender upon 

any immune response.

A5.3.2. Male immune response

In males, the type of hexane exposure had a significant effect upon PO activity (F3,212  = 

2.83, p = 0.005) and proPO activity (F3,212 = 2.15, p = 0.033). Males exposed to bacterial 

volatiles  exhibiting  significantly  lower  levels  of  induced total  PO (combined PO and 

proPO) activity than those exposed to the blank hexane control, although this difference 

in induced PO activity between treatments was non-significant. There was no interaction 

effect between the presence of bacterial volatile and immune challenge status upon either 

PO or proPO activity (p>0.1). There was also a significant effect of bacterial  volatile 

presence on haemolymph protein concentrations in males  (F3,70  = 2.56, p=0.014), and a 

non-significant  interaction  effect  between  bacterial  volatile  presence  and  immune 

challenge challenge status (F3,70 = 1.98, p = 0.052).

A5.3.3. Female immune response

In  females,  there  was  no  significant  effect  of  bacterial  volatile  presence  or  immune 

challenge status (pre-challenge vs. post-challenge) upon either PO or proPO activity, nor 

any interaction effects between the two variables (p > 0.7 for all). Haemolymph protein 

concentration  was  not  measured  in  females  pre-challenge,  although  analysis  of  post-

challenge  females  revealed  no  effect  of  bacterial  volatile  presence  on  post-infection 

protein concentrations (p > 0.2).

Table A5.1. Parameters for linear models fitted to each of the immune measures taken 
from naïve beetles. Significant effects (p<0.05) are highlighted in bold. The parameters 
for main effects are excluded in models where their interactions are significant.
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PO activity

Term F P-value F P-value F P-value
sex 0.578 0.448 0.294 0.588 0.539 0.465
treatment 3.257 0.072 - - 3.674 0.059
challenge 2.315 0.129 - - 0.145 0.705
sex x treatment 0.153 0.696 0.673 0.412 0.496 0.483
sex x challenge 0.008 0.929 0.003 0.954 - -
treatment x challenge 0.532 0.466 5.899 0.016 3.929 0.051
sex x treatment x challenge 0.495 0.482 0.404 0.526 - -

Total PO 
activity

Haemolymph 
protein



Figure  A5.1. Immune  activity  of  male  T.  molitor following  72  h  exposure  to  the 
environmental presence (Hexane+SH1000) or absence (Hexane-) of bacterial  volatiles, 
and either before (light bars) or after (dark bars) a subsequent immune challenge (sterile 
stab).  (A)  shows  PO  activity,  (B)  shows  total  PO  activity  (PO  and  proPO  activity 
combined), and (C) shows haemolymph protein concentrations. Bars that do not share a 
letter differ significantly (p < 0.05; Tukey's Honest Significant Differences Test).
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Figure  A5.2. Immune  activity  of  female  T.  molitor following  72  h  exposure  to  the 
environmental presence (Hexane+SH1000) or absence (Hexane-) of bacterial  volatiles, 
and either before (light bars) or after (dark bars) a subsequent immune challenge (sterile 
stab).  (A)  shows  PO  activity,  (B)  shows  total  PO  activity  (PO  and  proPO  activity 
combined), and (C) shows haemolymph protein concentrations, although data are only 
available for females post-challenge. Bars that do not share a letter differ significantly (p 
< 0.05; Tukey's Honest Significant Differences Test).
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A5.4. Discussion

Naive males, though not females, appeared to downregulation production of an important 

humoral immune effector following exposure to chemosensory cues of pathogenic threat, 

as  provided  by  bacterial  MVOCs.  This  complements  data  showing  reduced  immune 

investment in males, but not females, following cohabitation with an immune-challenged 

conspecific (Chapter 3). Combined, these data suggest that  Tenebrio molitor are able to 

detect  cues  of  infection  threat  from  their  environment,  and  that  these  cues  may  be 

chemosensory  in  nature.  Terminal  investment  in  reproduction  as  a  life-history  escape 

response as a prophylactic response to the perceived costs of parasitic threat. However, 

future work will  benefit  from gathering  measures  of reproductive  success from naïve 

individuals during environmental MVOC exposure to explicitly define a role for terminal 

investment as a preventative form of infection tolerance.
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