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Abstract 

 

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that 

is primarily characterised by the loss of the upper and lower motor 

neurons and which manifests as a progressive and fatal paralysis. The 

related proteins TDP-43 and FUS and the recently identified expansion 

within the C9orf72 locus are of major importance within this disorder. 

Evidence suggests ALS occurs as a distal axonopathy and axonal transport 

of cellular components is a process vital for the functioning of neuronal 

terminals and the survival of the neuron. SOD1-related ALS models have 

indicated axonal transport is an early pathology that precedes cell loss 

and clinical symptoms. Here, a survey of axonal transport of mitochondria 

and vesicles was conducted in Drosophila models of TDP-43, FUS and 

C9orf72. Axonal transport was found to be affected in some way in all 

models and thus represents pathology common to ALS-linked genes. 

However, the exact nature of the dysfunction varied between genes and 

conditions. Loss of dTDP-43 (TBPH) caused a decrease in mitochondrial 

but not vesicle transport, whereas the opposite was true for gain of the 

wild type and ALS-linked mutant proteins.  However, loss and gain of dFUS 

(Caz) affected both forms of transport, although ectopic expression of 

the human protein only affected vesicle transport. Both forms of 

transport were affected as a result of C9orf72 expansion, which is 

attributable to dipeptide repeat production and not RNA toxicity. 

Furthermore, in all models axonal transport dysfunction is correlated with 

the symptoms of neuromuscular dysfunction via the assessment of motor 

behaviours, suggesting it may be a contributory factor to the decline in 

motor functioning in these models of ALS.  
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1.1: Amyotrophic Lateral Sclerosis 

 

Amyotrophic lateral sclerosis (ALS) is typically an adult onset progressive 

neurodegenerative disorder and the most common form of motor neuron 

disease (MND) first described in the 1860s by the ‘father of neurology’ 

Jean-Martin Charcot (Kumar et al., 2011). It is characterised by the loss of 

both the upper motor neurons (UMN), a type of pyramidal cell known as 

Betz cells and the lower motor neurons (LMN), representing a 

catastrophic loss of motor nervous system functioning. 90% of ALS cases 

are of a sporadic origin (sALS) with the remaining 10% familial (fALS). The 

latter are predominantly caused by autosomal dominant mutations, but 

there are also a minority of cases showing autosomal recessive and X-

linked inheritance (Robberecht and Philips, 2013). A large array of genes 

have been linked to ALS (see section 1.2.1) including SOD1, TDP-43, FUS 

and C9orf72 (Renton et al., 2014). The prevalence of ALS in America has 

been defined as an average of 3.9 per 100,000 (Mehta et al., 2014). 

Similarly in Europe the average is 2.16 per 100,000 (Logroscino et al., 

2010). The condition is fatal, usually due to respiratory failure, with 

average life expectancy being 3-5 years from diagnosis (Robberecht and 

Philips, 2013).  

  

1.1.1: Motor System Architecture 

 

ALS preferentially, but not exclusively (see sections 1.2.4 and 1.2.5), affects 

the motor nervous system, the main cell type of which are the motor 

neurons. The UMN cell bodies reside in the primary motor cortex within 

the precentral gyrus of the frontal lobe. Their axons project downwards 

through the midbrain, the middle pons and middle medulla and are 

organised into two tracts collectively known as the pyramidal tracts. All 

the axons initially form the corticospinal tract but at the levels of both the 

pons and medulla some of the axons are routed to form the corticobulbar 
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tract to synapse with LMNs within the cranial nuclei, which go on to 

innervate the facial muscles. The remaining axons undergo a cross over 

known as the pyramidal dessication from ventral to lateral at the level of 

the caudal medulla to form the lateral corticospinal tract. This tract 

extends into the spinal cord where the UMN axons synapse with the spinal 

LMNs in the ventral horn. From here, the LMN axons project out of the 

ventral root to innervate the muscles of the body (Purves et al., 2001).  

 

1.1.2 Signs, Symptoms, Diagnosis and Treatment 

 

As is the case with many neurodegenerative disorders, ALS is a severely 

debilitating and fatal medical condition. In the United States it is known as 

‘Lou Gherig’s disease’ after the famous New York Yankee’s baseball player 

who’s promising career and life were claimed by the disease in 1941. As 

demonstrated by Gherig, the principal presenting symptoms of LMN 

degeneration in ALS are progressive muscle weakness, which leads to 

difficulties with physical movement such as walking, fasciculation 

(involuntary contraction and relaxation of muscles), loss of strength and 

power, such as batting a baseball, and hyporeflexia. These issues become 

relentlessly worse until physical movements become impossible and the 

patient is robbed of all strength and power. The affected body muscles 

correspondingly suffer from atrophy leading to the visible appearance of 

wasting (Gordon, 2013). Indicative of UMN dysfunction are hyperreflexia, 

spasticity (increased muscle tightness) and the abnormal regaining of 

Babinski’s reflex (upwards curling of the big toes upon stroking of the 

sole, a reflex that desists between 1-2 years of age) (Van Gijn, 1995).  

There is also the presence of Hoffman’s reflex which involves flicking the 

nail of the middle finger, which in positive cases, elicits a pathologic flexing 

of the thumb. The presence of these two reflexes is not exclusive to ALS, 

but is useful for diagnosis in conjunction with other signs. Patients may 

also demonstrate slurring of speech (dysarthria) and difficulty swallowing 

(dysphagia), the former of which can exacerbate emotional feelings of 
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frustration, while the latter can lead to malnutrition. The presence of the 

spilt-hand sign is considered to be a specific indicator of ALS (Kuwabara 

et al., 2008). It arises from the preferential atrophy of the thenar muscles. 

Why these muscles are targeted specifically is unknown (Benny and 

Shetty, 2012). Interestingly, some form of cognitive dysfunction is now 

recognised to be present in as many as half of patients to varying degrees 

of severity, with a subset (15%) meeting the criteria for frontotemporal 

dementia (FTD) (see section 1.2.4). Ultimately, the condition drives 

towards paralysis, and death occurs generally due to failure of the 

respiratory muscles (Gordon, 2013). 

 

It is considered to be somewhat challenging to give a definitive ALS 

diagnosis due to the current lack of biomarkers, although a number of 

these are on the horizon. For example, a low corticospinal fluid (CSF) 

ratio between phosphorylated tau and total tau is being put forward as a 

possible biomarker (Grossman et al., 2014). Despite these historic 

challenges, diagnosis is found to have a 95% accuracy (Gordon, 2013). 

Presently, a clinical diagnosis of ALS is a process of elimination to exclude 

an array of similarly-presenting disorders of the motor system. These 

include spinal muscular atrophy and multiple sclerosis. Compounded by 

the variable age at onset of symptoms between patients, the diagnosis 

process is often long, over a year in many cases (Nzwalo et al., 2014). ALS 

has been defined for the purpose of clinical trials on the basis of the 

revised El Escorial criteria, which involves a battery of electrophysiological 

tests including electromyography and nerve conduction velocity, 

performed to ascertain the level of LMN and UMN involvement and the 

number of areas affected, which provides a sliding scale of probability 

ranging from ‘definite’ to ‘suspected’ (Brooks, 1994; Miller et al., 1999). 

New revisions were made in 2006, termed the Awaji algorithm, which 

declared the equivalence of clinical and electromyogram (EMG) tests for 

the diagnosis and this has been demonstrated to be more useful and is 

now favoured (Carvalho and Swash, 2009).  
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There is no cure for ALS and treatment options are poor. Currently there 

is only one drug approved for use, Riluzole, which targets the 

excitotoxicity pathology of ALS (see section 1.4) and has been shown to 

decrease the release of glutamate neurotransmitter (Jehle et al., 2000). 

The effect of treatment with Riluzole however is small, with gains in 

lifespan of only an average of three months (Miller et al., 2012).  

 

The remaining options of care are restricted to the aim of increasing 

patient comfort for as long as possible. The dysphagia (difficulty 

swallowing), muscle weakness and atrophy all conspire to make 

malnutrition a severe threat to patients and it has been shown that those 

whose weight loss is greater at the time of diagnosis have reduced 

survival times (Limousin et al., 2010). Tube feeding becomes an option as 

patients decline as does the use of ventilation support when patients’ 

enter the stage of respiratory muscle incapacity. The majority of patients 

die from respiratory failure (Gordon, 2013).  

 

1.1.3: Histopathology  

 

ALS patient tissue at autopsy is characterised by a loss of the UMNs from 

the cortex. Within the ventral horns of the spinal cord, a loss of LMN cell 

bodies is observed. Cellular proteinaceous inclusions in MNs, glia and 

neurons in other brain regions are clearly visible upon immunostaining 

and are subdivided into multiple categories, the first of these is 

characterised as staining positive for ubiquitin, the protein that acts as a 

tag for the process of protein degradation via the proteasome. Ubiquitin-

positive inclusions are characterised as being skein-like (stringy) or 

round. The round inclusions have been suggested to resemble the Lewy 

bodies that characterise Parkinson’s disease, however they are devoid of 

α-synuclein and tau. These inclusions are positive for a number of 

proteins such as TDP-43, UBQLN2, and SQTSM1/p62 (see section 1.3 and 

1.4) ALS is also specifically characterised by the presence of Bunina 
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bodies. These are eosinophilic inclusions positive for the proteins cystatin 

C and transferrin, although it’s likely other proteins are also included but 

these again exclude α-synuclein and tau and also amyloid precursor 

protein among others (Okamoto et al., 2008). A third type of inclusion 

observed in ALS are neurofilament inclusions, which contain aggregates of 

neurofilaments and are more commonly seen in familial cases 

(Wijesekera et al., 2009). 

 

1.2: The Variability of ALS  

 

ALS is by no means a simple disorder, with broad variation observed for 

multiple clinical measures. The underlying reasons for much of the 

variability remain unknown and are the subject of intense research as we 

increase our understanding regarding what this variation can tell us about 

the disease and our efforts to treat it. 

 

1.2.1 Location of Onset 

 

The region(s) of the body where symptoms first arise is subject to 

variability; spinal onset is the most common, occurring asymmetrically 

within the limbs. Bulbar onset ALS, as the name suggests has presenting 

symptoms arising from pathogenic involvement of the bulbar muscles in 

the face and throat. Many patients suffer early from tongue fasciculation, 

which is a useful clinical measure of bulbar onset ALS, and have 

pronounced dysarthria and dysphagia. These patients also go on to 

develop limb and respiratory muscle involvement (Gordon, 2013). The 

rarest form of ALS onset is that of the respiratory muscles which in a 

retrospective study of incidence at a large ALS clinic, made up only 2.7 % 

of cases (Shoesmith et al., 2007). 
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1.2.2 LMN vs. UMN Involvement 

 

ALS can also present with much variation in the degree of LMN vs UMN 

involvement. ‘Flail arm syndrome’ (FA) and ‘Flail leg syndrome’ (FL) are 

both caused primarily by LMN dysfunction. In the case of FA the upper 

limbs and back are affected, with weakness and wasting and in FL these 

symptoms are present in either leg, with usually one affected at onset. 

Both are classified as being a variant of ALS, as there are some pathologic 

UMN signs, but these are much less apparent. In both, other body regions 

become affected towards the end of disease course, which is longer than 

classic spinal ALS (Wijesekera et al., 2009). Pyramidal phenotype ALS in 

contrast is characterised by primary UMN involvement with moderate 

LMN signs, the main symptoms are extreme spasticity and hyperreflexia 

(Chiò et al., 2011).  

 

Also undergoing consideration in the field is the classifications of the 

motor neuron disorders primary lateral sclerosis (PLS) and primary 

muscular atrophy (PMA) as specific disorders. They have been 

characterised as having pure UMN and pure LMN involvement, 

respectively and therefore as being distinct from any variant of ALS, which 

requires at least some involvement from both LMNs and UMNs (Brooks, 

1994). However this distinction has become difficult; in a recent study on 

autopsy samples, Riku and colleagues found 84.6% of the samples 

classified during life as PMA showed evidence of UMN degeneration (Riku 

et al., 2014). Similarly, a longitudinal study examining PLS category 

patients found 40% eventually develop electromyography signs of LMN 

degeneration and in their review of published autopsy studies, discovered 

only 2 out of 10 showed no histological changes consistent with LMN 

degeneration (D’Amico et al., 2012). Thus, these disorders are not 

definitively separate and should be described as an ALS spectrum from 

LMN to UMN dominance (Swinnen and Robberecht, 2014).  
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1.2.3 Differential Sex Effects, Age of Onset and Survival Time 

 

It is clear from epidemiological studies that men have a higher risk than 

women for ALS. In the United States there is a sex comparison of 4.8 men 

to 3 women per 100,000 per year diagnosed (Mehta et al., 2014). In 

Europe men again have a higher representation with a sex comparison of 

3.0 men to 2.4 women per 100,000 per year (Logroscino et al., 2010). 

However, studies that focus on familial cases, have reported no difference 

in incidence between genders (McCombe and Henderson, 2010). In terms 

of location of onset, women are more likely to have a bulbar onset., 

whereas spinal onset occurs more often among men (Haverkamp et al., 

1995; Traxinger et al., 2013) and respiratory onset patients in a large case 

study were 76% male (Shoesmith et al., 2007). In terms of level of 

presenting LMN and UMN involvement, both flail arm and flail leg variants 

also show a male prevalence (Chiò et al., 2011). These sex differences are 

also seen with the age of onset measure, with men more likely to have an 

earlier onset than women, possibly because women tend to make up a 

greater proportion of bulbar onset cases, which has a higher age of onset 

(Traxinger et al., 2013). No clear reasons for these sex differences have 

currently been elucidated, but have been postulated to include 

differences in exposure to environmental risk factors. It is an important 

area of research to understand how disease pathogenesis may be 

influenced by this factor (McCombe and Henderson, 2010).  

 

Aside from being influenced by sex, age of onset is influenced by several 

other factors. There is a high-risk age window around middle age for ALS, 

between 40 and 60 for familial and 58 and 63 for sporadic (Ingre et al., 

2015). However, whilst ALS is quoted as an adult onset neurodegenerative 

disorder, there are many documented cases of juvenile onset and early 

adult onset ALS. Juvenile and early adult onset are considered separate 

variations of ALS, with the juvenile form usually familial and interestingly, 

different mutations within the same disease-linked gene are associated 
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with different ages of onset (see section 1.3) (Gouveia and de Carvalho, 

2007). Age of onset also varies with other factors, bulbar cases are much 

more likely in older people (Turner et al., 2010), whereas preferential 

UMN involvement most often strikes juvenile and early adult onset cases 

(Sabatelli et al., 2008). 

 

Survival time is influenced by many of the above factors. An older age of 

onset is negatively associated with survival (Jordan et al., 2015), while 

young onset before 55 is characterised by greatly extended survival time 

(Magnus et al., 2002).  Unsurprisingly, in most cases of respiratory muscle 

onset survival does not extend beyond 18 months (Shoesmith et al., 2007). 

Bulbar onset is also associated with decreased survival times of 33 

months on average (Turner et al., 2010). There is currently no consensus 

upon whether sex per se influences survival time (McCoombe and 

Henderson, 2010).  

 

1.2.4 The ALS-FTD Spectrum 

 

Since the time it was defined as a distinct disease by Charcot in the 1860s 

until recently, it was thought that it was a ‘pure’ disease affecting only the 

motor function with no effect on cognition, something that was used as a 

silver-lining to console the newly diagnosed (Bennion Callister and 

Pickering-Brown, 2014), and it is often cited how fortunate it was that 

Stephen Hawking’s brain was not going to be touched by the disease. 

However, it has become apparent, largely from advances in clinical 

evaluation and continued assessment practices that there is a cognitive 

element to an estimated 50% of suffers. 15% of these are diagnosed with 

frontotemporal dementia (FTD). The converse is also true, with 15% of 

FTD patients meeting an ALS diagnosis with a further 35% exhibiting some 

signs of motor system dysfunction (Bennion Callister and Pickering-

Brown, 2014).  
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FTD is an umbrella term for a group of disorders characterised by 

degeneration in the frontal and temporal lobes of the brain resulting in 

behavioural and cognitive deficits, including in speech and language. Onset 

is typically in late middle age before the age of 65, with a prevalence of 15-

22 per 100,000 (Onyike and Diehl-Schmid, 2013). There are also a number 

of variants: the majority of sufferers are diagnosed with the behavioural 

form (bvFTD); the remainder present more clearly with speech or 

language difficulties, and are classified respectively as either progressive 

non-fluent aphasia (PNFA), or semantic dementia (SD) (Bennion Callister 

and Pickering-Brown, 2014). Patients who exhibit ALS with some cognitive 

or behavioural impairment are classified as ALS-Ci or ALS-Bi respectively. 

Patients who meet the criteria for both ALS and FTD are referred to as 

being ALS-FTD. From the other end of the spectrum, those with FTD and 

some degree of measured motor dysfunction are known as FTD-MND 

(Robberecht and Philips, 2013). 

 

Patients with FTD may be positive for TDP-43 containing ubiquitinated 

inclusions, which are a hallmark of ALS histopathology, and thus have a 

histopathological classification (termed frontotemporal lobar 

degeneration or FTLD) of FTLD-TDP. It has also been seen that ALS 

patients with dementia have TDP-43 positive ubiquitinated inclusions in 

their frontal and temporal lobes. These discoveries further demonstrated 

the connection between ALS and FTD (Forman et al., 2007). It is therefore 

now recognised that ALS and FTD represent the extreme poles of a 

disease continuum termed the ALS-FTD spectrum (Figure 1.1) 

(Robberecht and Philips, 2013). 
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1.2.5 Reclassification as a Multisystem Disease 

 

Further to the understanding of ALS as one of the extreme phenotypes of 

a spectrum disorder, ALS classification has now evolved to the awareness 

that ALS should be recognised as a multisystem disease. This is the 

understanding that ALS pathology is observed outside of the motor 

system, as discussed above.  It was noted that pathology is seen in a 

number of cases in the frontal and temporal lobes, but also to other 

nervous system subdivisions, indeed it has been known for several 

decades that motor neuron diseases were associated with Parkinsonism, 

dementia and other system involvement (Hudson, 1981). For example, 

ALS-Parkinsonism is a clinically recognised condition wherein signs and 

symptoms associated with Parkinson’s disease are also present. A case 

study involving three sporadic ALS cases that showed no cognitive 

impairment were seen to have neurodegeneration occurring in their 

substantia nigra and accompanying Parkinson’s associated symptoms 

including reduced body movement or hypokinesia (Desai and Swash, 

1999). Many genes recently discovered to be associated with the ALS-FTD 

spectrum give rise to additional pathologies in brain regions, such as the 

cerebellum in the case of C9orf72 and in muscle and bone in the case of 

VCP (Renton et al., 2014). 

 

 

 

Figure 1.1: The ALS-FTD spectrum showing the placement of key genes along the 
spectrum based on the disease manifestation of patients associated with mutations 
in each gene. Adapted from Ling et al., (2013). 



 15 

1.3: Etiology  

 

90% of ALS cases are sporadic in origin and 10% exhibit a familial 

inheritance. Like many diseases, ALS is classified as a multifactorial 

disease and the contributions of disease causing loci and the role of the 

environment on the disease initiation and progression are all-important 

areas of research in understanding the complex causes of this disease.   

 

1.3.1 Environmental Risk Factors 

 

As a multifactorial disease, the influence of the environment and gene-

environment interactions on causation and progression of ALS has been 

examined in depth. A number of factors have been assessed through 

epidemiology studies for a possible link to the development of ALS, such 

as sports injuries, herbicides/heavy metals and electromagnetic fields, to 

lifestyle factors like smoking.  

 

Sports injury has been associated with ALS in recent times. An increased 

incidence of ALS among Italian male professional football players had 

been noted at the turn of the millennium and was subjected to a 

retrospective study by Chiò and colleagues, who examined Italian-born, 

Italian-based professional players between 1970 and 2002. They found a 

strong relationship between playing professional football and ALS in this 

population. Interestingly there was an increased incidence of the bulbar 

onset form among this population and a predilection for midfielders. This 

risk was also positively associated with career length with an increase 

incidence among those with the longest careers. The age of onset in these 

cases was also significantly lower than in the general population. 

Reasoning for this effect include engagement in high levels of physical 

activity in general, football-specific physical trauma, such as heading the 

ball (a logical hypothesis for the higher incidence of the bulbar onset 
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form), use of illegal toxic performance-enhancing substances and 

increased exposure to possibly toxic chemicals used on pitches (Chiò et 

al., 2005). In 2009 they conducted a further study on the same population 

and included two further professional athlete groups, basketball players 

and road cyclists. Follow up of the footballers revealed three new ALS 

cases and confirmed the increased risk previously observed. However, no 

elevated risk was found for either of the other groups, suggesting that this 

risk may be a football-specific effect and not related to high rates of 

aerobic activity or use of drugs, as both these measures were noted to be 

higher in road cyclists or to general physical trauma, which was higher in 

basketball players. This narrowed the proposed environmental 

explanations to football related injury and the use of toxic chemicals 

including herbicides and pesticides on pitches. The higher incidence 

among midfielders was considered to be likely an effect of their genetic 

predisposition to physical endurance combined with football-specific 

environmental factor(s) (Chiò et al., 2009).  

 

Aside from professional football and its associated risks, there is evidence 

for other occupational hazards in developing ALS. Notably, it has been 

proposed that the increased incidence of ALS among those who work 

closely with electricity, such as electricians and electric machine 

operators (Deapen and Henderson, 1986), may be explained by a high 

exposure to extremely low frequency electromagnetic fields (ELF-EMF), 

which are those in the range of 3-3,000Hz. A meta-analysis on the 

available data by Zhou and colleagues sought to clarify the results from a 

myriad of conflicting reports and came to the conclusion that there was a 

moderate increase in risk to be found in those with electrical based 

occupations, but conceded this effect may be mediated by other factors 

such as increased frequency of electric shocks in these occupations 

instead of ELF-EMF itself. More work needs to be done to fully untangle 

these factors and to elucidate the true level of risk (Zhou et al., 2012). 
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There is strong evidence to suggest that pesticides confer a high risk of 

ALS, particularly in males (Ingre et al., 2015). A number of heavy metals 

and non-metals found in industry and in the wider environment have also 

been examined as risk factors, including cadmium, mercury, lead and the 

non-metal selenium (Trojsi et al., 2013). For example, drinking water with 

high levels of selenium was established to have a causal link to a set of ALS 

cases in Italy (Vinceti et al., 1996) and this was found to be positively 

correlated with the length of selenium exposure (Vinceti et al., 2010). A 

possible explanation has arisen from the fact high exposure has been 

shown to increase SOD1 (see section 1.3.2.1) localisation within 

mitochondria in culture, in a manner mimicking the effects of SOD1 

mutation, which provides one explanation as to how wild type SOD1 is 

implicated in sALS (Maraldi et al. 2011). Overall, epidemiology studies are 

still conflicted over the role of exposure to the heavy metals in ALS risk, 

but a general consensus for selenium as a risk factor appears to have 

emerged (Vinceti et al., 2012).  

 

ALS has been put forward as yet another disease in which smoking is a 

risk factor, with smokers having a reported 2-fold incidence over never- 

smoked controls in a large European cohort. Number of years smoked 

also had an effect on developing ALS, as did number of years since giving 

up smoking (Gallo et al., 2009). However, there is not total agreement in 

the literature as no smoking association was observed in a recent 

Michigan case-control study (Yu et al., 2014), or in one conducted in 

Philadelphia (Malek et al., 2014).  

 

There are also some interesting biological environmental hazards; in 

particular, ingesting cyanobacteria is strongly evidenced to increase ALS 

risk and was discovered as the cause of ALS-like disease observed in 

Guam (Bradley et al., 2013). These bacteria produce a neurotoxin, β-N-

methylamino-l-alanine, which in an in vivo study in rats, led to increased 

levels of active GSK3β and TDP-43, which are both associated with ALS  
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Table 1.1: Genes associated with ALS-FTD spectrum disease. Adapted from Marangi and 

Traynor, (2015).  
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(de Munck et al., 2013). Aside from cyanobacteria, infection with 

retroviruses is implicated in raising risk level for ALS (Alfahad and Nath, 

2013). 

 

1.3.2 Genes associated with the ALS-FTD spectrum 

 

The genetic study of this disease has been a field of exciting and rapid 

advances for over twenty-five years. In this time a large array of genetic 

loci have been linked to the disease (Table 1.1.). Genes associated with 

ALS-FTD spectrum causality are found on nearly every chromosome and 

almost all of them act in an autosomal dominant manner.  

 

1.3.2.1 SOD1 

 

The first genetic locus to be definitively linked to ALS was that of 

Superoxide dismutase 1 or SOD1 (Rosen et al., 1993) after a concerted 

hunt of the long arm of chromosome 21 via linkage analysis (Siddique et 

al., 1989; Siddique et al., 1991). The gene is located at 21q22.11 and to date, 

more than 170 mutations have been found within the gene (Ajroud-Driss 

and Siddique, 2015). SOD1 contains five exons all of which have been 

found to harbour ALS causative mutations, although the majority cluster 

in the last two exons. There are a few nonsense mutations caused by both 

deletions and insertions, however most are missense mutations caused 

by substitutions, the majority of which lead to autosomal dominant ALS 

(Finsterer, 2006). A notable exception is the D90A mutation, which can be 

both recessive and dominant (Anderson et al., 1995; Robberecht et al., 

1996). The best studied mutations include A4V, which is the most 

frequent mutation in the United States, which arose from two founders 

approximately 500 years ago (Saeed et al., 2009) and G93A, a rare 

mutation but which was the first to be modelled in a transgenic mouse 

(Gurney et al., 1994). SOD1 mutations account for approximately 12% of 
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familial ALS cases (Scotter et al., 2015). In terms of sporadic cases, a 

frequency of 1-2% is generally reported (Pasinelli and Brown, 2006) 

though a smaller frequency of 0.7% for SOD1 mutations was seen by Chiò 

et al., (2008). There is great heterogeneity in the manifestation of these 

mutations. One of the most severe is the A4V mutation, which leads to a 

rapidly progressing ALS disease, with a maximum survival time of just 24 

months (Juneja et al., 1997). 

 

SOD1 encodes for Cu/Zn superoxide dismutase, which acts as a 

homodimer containing two copper and two zinc ions (Beckman, 1973). 

Both metal ions and a disulphide bond between cysteines 57 and 146 are 

required for the structural integrity of the protein (Foreman and 

Fridovich, 1973). It is ubiquitously expressed (Fridovich, 1995) and is 

largely localised to the cytoplasm, but is also found in the mitochondrial 

intramembrane space (Weisiger and Fridovich, 1973). It can also be 

secreted in the extracellular fluid (Mondola et al., 2003) where it has a 

role in signal transduction (Rotunno and Bosco, 2013). SOD1 operates 

primarily in a protective function against oxidative stress caused by the 

free radical superoxide by converting it in a dismutation reaction involving 

copper to oxygen and hydrogen peroxide (McCord and Fridovich, 1969). 

SOD1-associated ALS is characterised by inclusions of the protein in 

neurons and also glial cells, which are negative for TDP-43 and FUS.  

 

1.3.2.2 TDP-43 

 

In their seminal studies, Neumann et al., (2006) and Arai et al., (2006) 

discovered that the then little-studied, ubiquitously expressed DNA/RNA 

binding protein TDP-43 was a component of the round and skein-like 

ubiquitinated inclusions that are characteristic of ALS and FTD patients. 

Subsequently, it was uncovered that the gene encoding it, TARDBP, 

harboured mutations within its structure that were causative of ALS 

(Gitcho et al., 2008; Sreedharan et al., 2008; Kabashi et al., 2008). 
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Figure 1.2: The structure of TDP-43. NTD= N-terminal domain – involved in 
homodimerisation, and aiding splicing. NLS = nuclear localisation signal – bipartite 
sequence allowing entry into nucleus. RRM1= RNA- recognition motif 1 – required for RNA 
binding, splicing activity, autoregulation, homodimerisation and incorporation into stress 
granules. RRM2- RNA-recognition motif 2 – Involved in DNA binding and 
homodimerisation. NES – nuclear export signal – required for shuttling into the 
cytoplasm. Glycine-rich region – Required for protein-protein interactions and 
incorporation into stress granules; also involved in RNA processing. This region shares 
homology with yeast prion proteins and is designated as prion-like owing to its 
aggregative propensity, it contains a Glutamine/Asparagine rich-region which is 
important for this behaviour. The majority of pathogenic mutations are situated in the 
Glycine-rich region and are almost all missense. Adapted from Janssens and Van 
Broeckhoven, (2013). 

 

Currently there are over 40 known pathogenic mutations in TARDBP, 

which account for approximately 4% of fALS cases, 1% of sALS cases and 

<1% of sporadic FTD (sFTD) cases, giving it a position towards the ALS end 

of the ALS-FTD spectrum (Scotter et al., 2015).  

 

TAR DNA Binding Protein of 43 kDa, TDP-43, was first described twenty 

years ago as a protein that bound to the TAR region, a regulatory element 

in the long terminal repeat of the DNA of the HIV-1 virus (Ou et al., 1995). 

Ubiquitously expressed and highly conserved through evolution, TDP-43 is 

composed of 414 amino acids and contains an N-terminal region (NTD), 

two RNA-recognition motifs (RRM), nuclear localisation (NLS) and nuclear 

export signals and a glycine rich C-terminal region (Figure 1.2). Most of 

the pathogenic mutations in TDP-43 are located within this glycine rich C-

terminal domain, suggesting this domain is important in disease (Pesiridis 

et al., 2009). 
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The two RRMs can be subdivided into two components, the octomeric 

ribonucleoprotein 1 (RNP1) and hexameric ribonucleoprotein 2 (RNP2), 

appearing in the order of RNP2 – RNP1 (Maris et al., 2005; Kuo et al., 

2009). The two RRMs of TDP-43 are situated in the middle of the protein 

with RRM1 comprising 90 amino acids from 101-191 and the slightly larger 

RRM2 comprising 93 amino acids, from 192-285 (Kuo et al., 2009). The 

NLS is situated between the NTD and RRM1 and is a bipartite sequence 

ranging from aa 82-98, whilst the NES is buried within RRM2 and is 

composed of the lecuine rich stretch from aa 239-250 (Winton et al., 

2008). The C terminal of TDP-43 was noted as being glycine-rich and a 

mediator of protein-protein interactions. Indeed, TDP-43 requires its C- 

terminal region to mediate interactions with proteins such as hnRNP A/B 

(Buratti et al., 2005). Thus, based on this structure, TDP-43 is a member 

of the heterogeneous nuclear ribonucleoprotein family (Ou et al., 1995).  

 

Functionally, TDP-43 operates as a homodimer (Kuo et al., 2009) to carry 

out a diverse array of cellular roles. The presence of the NLS and NES 

sequences indicated that TDP-43 was localised to both the nucleus and 

the cytoplasm and indeed the protein shuttles between these two 

compartments. However, there is a nuclear bias to its normal 

physiological distribution, with the majority localised to this compartment 

(Ayala et al., 2008), suggestive of its importance for nuclear function. 

Indeed, TDP-43 has nuclear roles in gene transcription and mRNA splicing 

regulation. In terms of transcription, TDP-43 has been shown to be a 

repressor of the promoter for the acrv1 gene in mouse spermatids 

(Lalmansingh et al., 2011). However, its role in mRNA splicing has been 

extensively studied. TDP-43 binds preferentially to UG-rich sequences 

contained within single-stranded RNA, which was first described in regard 

to its behaviour in binding to the transcript of the CFTR gene to promote 

skipping of exon 9 (Buratti and Baralle, 2001). Subsequently, in view of the 

growing understanding of TDP-43 as a gene expression and splicing 

regulator, several studies (Tollervey et al., 2011; Polymenidou et al., 2011; 
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Xiao et al., 2011; Sephton et al., 2011; Colombrita et al., 2012) sought to 

define its RNA targets and the nature of its splicing regulatory role. These 

studies utilised crosslinking, immunoprecipitation and high-throughput 

sequencing (CLIP-Seq) techniques to reveal that TDP-43 binds to and 

regulates thousands of RNA targets. Results from the studies formed a 

strong consensus that TDP-43 binds preferentially to long stretches of UG 

repeats and to intronic sites significantly distant from exon-intron 

boundaries and functions to conduct alternative splicing and control of 

transcript levels. In the study by Polymenidou and colleagues, knockdown 

of TDP-43 in mouse brain revealed the majority of transcripts 

downregulated were those pre-mRNAs with long introns and were 

enriched for roles at the synapse. They also included those transcripts for 

neurodegeneration-associated proteins, including the ALS associated 

Fused in Sarcoma (Fus) and neurofilament light chain (Nefl). These 

findings were corroborated in the study of FTLD-TDP cortical tissue by 

Tollervey et al., (2011). These studies also showed TDP-43 binds within the 

3’UTR to a number of transcripts, with such binding enriched within the 

cytoplasmic fraction of human brain tissue and SH-SY5Y cells in the study 

on by Tollervey et al., (2011). TDP-43 can also reduce the levels of its own 

transcript through binding within the 3’UTR, which has been shown to 

lead to an alternative splicing event, triggering nonsense-mediated decay 

(Polymenidou et al., 2011) or by promoting instability of the transcript 

without splicing activity (Ayala et al., 2011).  

 

Within the nucleus, TDP-43 also localises with the Drosha complex 

(Gregory et al., 2004), where it is involved in the processing of pri-

miRNAs, to which it has been shown to also bind, for the formation of pre-

miRNAs. Among those miRNAs regulated by TDP-43 is miR-132-3p, which is 

involved in neuronal growth. TDP-43 knockdown decreases miR-132-3p 

expression and leads to concomitant disruption of neuronal outgrowth in 

cells, indicating miRNA control is an important function of TDP-43 

(Kawahara and Mieda-Sato, 2012). 
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TDP-43 can shuttle between the nucleus and cytoplasm and the fraction 

that localises into the latter compartment serves a number of RNA- 

related functions. Several studies indicate that TDP-43 can translocate to 

the cytoplasm in response to cellular stress and stalling of translation 

initiation. TDP-43 is found, along with other RNA-binding proteins, within 

stress granules (Colombrita et al., 2009; Liu-Yesucevitz et al., 2010), which 

function to sequester those mRNAs that are not required for the cellular 

stress response in order to streamline translation towards necessary 

transcripts (Lindquist, 1981). These stress granules (SGs) can also 

associate with processing bodies (P- bodies), which serve as sites for RNA 

degradation and mRNAs can shuttle between the two, suggestive of a 

process of RNA triage (Anderson and Kerdersha, 2008). Incorporation of 

TDP-43 within stress granules requires its first RRM and the C-terminal 

domain (Bentmann et al., 2012), this domain contains a Q/N rich region, 

and shares homology with the yeast prion proteins, is designated as 

prion-like and thus as expected, is highly prone to aggregation (Johnson 

et al., 2009; (Fuentealba et al., 2010).  

 

Aside from SGs and P-bodies, TDP-43 is a component of another class of 

RNA-binding protein (RNP) granules within the cytoplasm, those that are 

involved in the transport of mRNA. Such TDP-43 and mRNA-containing 

granules have been found within the dendrites of rat hippocampal 

neurons co-localising with mRNAs of CAMKIIα and β-actin and were 

increased upon neuronal stimulation with KCl. TDP-43 was shown to act 

as a repressor of translation in an in vitro assay (Wang et al., 2008). This 

study also showed TDP-43 co-localising with other RNPs, namely Staufen 

and FMRP, which was corroborated in the work by Fallini et al., (2012) in 

which TDP-43 was observed within granules translocating along live axons 

of primary cultured mouse motor neurons, where TDP-43 was postulated 

to have a regulatory role on the process of axonal outgrowth. Work by 

Alami et al., (2014) also demonstrated mRNA-containing granules 

translocating along mouse primary cortical neurons which co-localised 
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with TDP-43, thus TDP-43 appears to have an important role in mediating 

the spatial distribution and regulation of mRNAs within neurites and 

regulating local translation.  

 

In ALS, TDP-43 is mislocalised from the nucleus to the cytoplasm, is 

cleaved to form C-terminal fragments and forms insoluble aggregates 

that are hyperphosphorylated and ubiquitinated (Arai et al., 2006; 

Neumann et al., 2006; Hasegawa et al., 2008). Mutations in TDP-43 

associated with ALS also lead to these outcomes (Yokoseki et al., 2008). 

The implications and relevance of each of these phenotypes in disease 

pathogenesis has been a matter of great debate within the field (see 

section 1.4). 

 

1.3.2.3 FUS 

 

Originally discovered as forming part of a fusion protein in sarcoma 

cancers (Crozat et al., 1993; Rabbitts et al., 1993), Fused in Sarcoma (FUS), 

otherwise known as Translocated in Liposarcoma (TLS), (herein referred 

to as FUS) was the second DNA/RNA-binding protein to harbour 

mutations linked to ALS (Vance et al., 2009; Kwiatkowski et al., 2009). 

Similarly to TDP-43, FUS lies towards the ALS end of the disease 

spectrum, with mutations occurring in 4% of fALS and 1% of sALS and no 

familial FTD (fFTD) cases are attributed to mutation in FUS, along with 

<1% of sFTD (Scotter et al., 2015). Missense, deletion and insertion 

mutations are all represented within FUS, although the former is the most 

prevalent and the majority act in a dominant manner to cause disease 

(Lagier-Tourenne et al., 2010).  

 

FUS is a member of the FET family, which also includes Ewing RNA-binding 

protein (EWS) and TATA-binding protein-associated factor 2N (TAF15), 

both themselves also implicated in ALS. Being a DNA/RNA-binding protein, 

FUS is structurally similar to TDP-43, although it is a larger protein of 526 
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amino acids owing to the presence of several additional domains (Figure 

1.3). The first 165 amino acids form the QGSY rich region, this is 

immediately followed by the first of three Arg-Gly-Gly (RGG) motif-repeat 

regions from aa 165-267. The only RRM within FUS comprises aa 285-371 

and harbours the nuclear exportation signal (NES). This lone RRM is 

followed by the second RGG motif region, a zinc finger domain (ZnF), the 

third RGG motif region and a non-classical nuclear localisation signal 

(NLS) (Iko et al., 2004). Over 50 mutations have been identified spread 

throughout the gene, but large clusters are found in all three RGG regions, 

the NLS and the QGSY rich region, however only a fraction of these have 

had their pathogenicity reliably proved to date (Deng et al., 2014). 

 

As is the case for TDP-43, FUS shuttles between the nucleus and 

cytoplasm with the majority localised to the nucleus under normal 

conditions, where it serves a host of functions (Zinszner et al., 1997). 

Utilising its DNA binding ability, FUS has been shown to be involved in the 

maintenance of genomic stability as homozygous knockout led to an 

increased radiation sensitivity, disrupted B lymphocyte development, 

chromosomal instability and perinatal death in mice (Kuroda et al., 2000; 

Hicks et al., 2000). FUS is a component of the DNA-damage response 

(DDR); it is recruited via PARP-1 to DNA damaged through oxidative stress 

(Rulten et al., 2014) and is recruited to sites of double-strand breaks 

(DSBs) in neurons, where it is postulated to be involved in signalling the 

presence of the ΥH2AX marker of DSBs. DDR also requires FUS to 

interact with the repair protein HDAC1, with which it is postulated to form 

a complex (Wang et al., 2013b). 

 

FUS is heavily involved in transcriptional regulation, associating with TFIID 

and RNA polymerase II, as well as an array of nuclear hormone receptors 

and other specific factors. Through this activity FUS has a role in control  
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Figure 1.3: The structure of FUS. QGSY rich region= Glutamine/Glycine/Serine/Tyrosine 
- region, has homology with the prion like domain, important in FUS self-assembly. Three 
RGG motifs=Arginine-Glycine-Glycine motif-rich domains, involved in RNA-binding, the 
second of which harbours an additional small prion-like domain. RRM = RNA-recognition 
motif, involved in RNA binding, ZnF = Zinc finger domain, involved in RNA binding, NES = 
nuclear export signal, required for shuttling from nucleus to cytoplasm, NLS = Nuclear 
localisation signal, required for shuttling from cytoplasm to nucleus. Mutations 
encompassing missense, deletions, insertions and frameshifts are located throughout 
the protein but cluster with high frequency within the RGG domains and the NLS. Not all 
of these mutations have had their pathogenicity proven beyond a reasonable doubt at 
this time. Adapted from Deng et al., (2014). 

 

of the cell cycle by repressing transcription of cyclinD1, the end result of a 

cascade of events stemming from DNA damage (Wang et al., 2008).   

 

Like, TDP-43, FUS is known to regulate RNA processing. It is found within 

the spliceosome (Zhou et al., 2002) and interacts with a number of 

splicing factors including the serine-arginine repeat domain containing 

(SR) family (Meissner et al., 2003). FUS binds RNA, which seems to be 

specified by a GUGGU motif (Lerga et al., 2001; Lagier-Tourenne et al., 

2012) and also RNA structure, likely AU-rich stem loops (Hoell et al., 2011). 

The RNA targets of FUS number in the thousands, with over 5000 targets: 

650 and 350 RNA levels and splicing events are changed respectively, 

upon depletion of this protein in mouse striatum and human-derived 

neurons (Lagier-Tourenne et al., 2012). 

 

FUS binds at multiple sites along its targets and maintains its binding until 

the completion of splicing, giving what has been dubbed a ‘saw-tooth’ 

appearance, which is postulated to function in transcriptional elongation 
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(Rogelj et al., 2012; Lagier-Tourenne et al., 2012; Ishigaki et al., 2012). Some 

of the transcripts bound by FUS are associated with ALS, such as SOD1 

and UBQLN1 and 2 (Lagier-Tourenne et al., 2012). FUS also autoregulates 

its own expression levels by binding to exon 7 to promote its skipping; this 

creates a frame shift and a stop codon, thus subjecting the transcript to 

nonsense-mediated decay (Zhou et al., 2013). 

 

There appears to be only limited overlap in the RNA targets of TDP-43 and 

FUS (Lagier-Tourenne et al., 2012; Colombrita et al., 2012; Honda et al., 

2014). Indeed TDP-43 and FUS have a greater commonality in targets 

whose expression levels they control as opposed to those whose splicing 

they control (Honda et al., 2014). Targets that overlapped and were 

downregulated in mouse brain and human-derived neurons upon TDP-43 

or FUS depletion are enriched for long introns, which are 

overrepresented in neurons and function in neuronal processes such as 

synaptic transmission (Lagier-Tourenne et al., 2012). The functions of 

distinct TDP-43 and FUS targets are also enriched for commonality, 

suggesting loss of TDP-43 or FUS could lead to common pathogenic 

outcomes (Honda et al., 2014).   

 

FUS was also found with TDP-43 in the Drosha complex for the processing 

of a set of pri-miRNAs, which it specifically binds, that function in neuronal 

and synaptic development. FUS also binds specifically to Drosha and aids 

its localisation to chromatin in a co-transcriptional manner (Morlando et 

al., 2012). 

 

Within the cytoplasm, an additional role for FUS as a transporter of mRNA 

to dendritic spines for the regulation of the actin cytoskeleton dynamics 

has been proposed (Fujii et al., 2005). Here, mRNA for Nd1-L, an actin 

stabilisation protein involved in maintaining dendritic spine morphology, 

was demonstrated to bind FUS via its 3’UTR and display significantly 
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enhanced spine localisation upon mGluR activation, which was disrupted 

with FUS knockout.  

 

FUS-positive inclusions containing full length and protein fragments of 

FUS are observed in patients with FUS mutation-linked ALS who exhibit 

FUS mislocalisation to the cytoplasm (Mackenzie et al., 2010). The exact 

features of the inclusion morphology vary with mutation, for example the 

P525L mutation gives rise to FUS-positive, cytoplasmic, round inclusions 

and basophilic inclusions, but these were skein-like in patient tissue with 

the R521C mutation (Mackenzie et al., 2011; Deng et al., 2014) Interestingly, 

these FUS-positive inclusions are negative for TDP-43, a trait shared with 

inclusions deriving from SOD1 patients. Unlike TDP-43 within inclusions, 

FUS does not appear to be abnormally phosphorylated or ubiquitinated 

(Mackenzie et al., 2010). FUS inclusion pathology, also known as FUS 

proteinopathy, is also a feature in the frontotemporal brain regions in a 

subsection of FTD patients with ubiquitinated inclusions, which are also 

negative for TDP-43, designated as FTLD-FUS (Mackenzie et al., 2008; 

Neumann et al., 2009). However, these patients do not harbour FUS 

mutations (Snowden et al, 2011) and show different features such as 

colocalisation with transportin 1 (Troakes et al., 2013) and 

hypomethylation of arginine residues, which may interfere with 

functioning of the NLS (Dormann et al., 2012).  The inclusions also differ in 

localisation, being nuclear and generally skein-like in appearance 

(Neumann et al., 2009). In addition, FUS inclusion pathology is observed in 

other similar neurodegenerative conditions, such as Neuronal 

intermediate filament disease where the inclusions are cytoplasmic  

(Mackenzie et al., 2010) and in polyglutamine diseases, manifesting 

primarily as neuronal nuclear inclusions (Doi et al., 2008).  
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1.3.2.4 C9orf72 

 

In 2011, the locus on chromosome 9 that had for some time been linked to 

ALS-FTD spectrum was uncovered as that of C9orf72. Patients can 

manifest ALS, FTD or both, providing a clear indication that these 

disorders are related as part of a spectrum (Renton et al., 2011; DeJesus-

Hernandez et al., 2011). This locus has been linked to a world average of 

7% sSALS, 39% fFALS, 6% sFTD and 25% fFTD cases (Scotter et al., 2015).  

 

C9orf72 contains 12 exons and can give rise to three transcriptional 

variants due to alternative splicing termed variants 1-3. Two protein 

isoforms can arise from these variants, the long isoform (or A) from 

variants 1 and 3, and the short isoform (or B) from variant 2 (Figure 1.4).  

 

 

 

 

 

 

 

 
 
 
Figure 1.4: The structure of C9orf72 and its transcript variants. (A) The C9orf72 gene is 
comprised of 12 coding exons, two of which are non-coding (1a and 1b). Within the first 
intron which separates these exons, is a hexanucleotide repeat sequence (GGGGCC)n. 
Expansion of this repeat is causative of ALS and FTD. There are three possible 
transcription variants due to alternative splicing. (B) Variant 1 is spliced to retain only 
exon 1b. (C) Variant 2 skips exon 1b and exon 5 to 10. (D) Variant 3 skips exon 1b but 
retains all other exons. Adapted from Rohrer et al., (2015). 
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Pathogenicity related to C9orf72 does not arise from point mutations or 

indels, but rather the expansion of a hexanucleotide repeat (GGGGCC) 

situated within the first intron or in the promoter region depending on 

the transcript variant (Renton et al., 2011; DeJesus-Hernandez et al., 2011). 

Wild-type alleles contain usually less than ten repeats with three common 

alleles of 2, 5 or 8 repeats (Suh et al., 2015). 

 

There is debate over what should be defined as the minimum repeats 

length required for pathogenic risk. A figure as low as 30 is the current 

consensus and there exists an intermediate level of expansion between 

30-500 that is shared among patients and controls, which is of unresolved 

consequence (Fratta et al., 2015). However patient alleles are frequently in 

the realm of several thousand repeats, representing a massive expansion 

(DeJesus-Hernandez et al., 2011; Beck et al., 2013). The expansion is also 

highly unstable and varies between tissues within the same person 

(Rohrer et al., 2015).  

 

The functions of the protein C9orf72 are in the early stages of being 

elucidated. Sequence analysis revealed it to be related to the Differentially 

Expressed in Normal and Neoplasia (DENN) proteins, which function as 

Rab-GEFs for the activation of Rab GTPases involved in membrane 

trafficking dynamics. As such, functions for C9orf72 are arising in the 

autophagy and endocytic pathways (Levine et al., 2013). 

 

Expanded C9orf72 can be transcribed in the sense direction leading to 

hairpin and four-stranded G quadruplex formation (Fratta et al., 2012). It 

is also transcribed in the anti-sense direction generating GGGGCC and 

CCCCGG containing pre-mRNAs. These have been observed to form into 

nuclear RNA foci within the brains of these patients, which serve to 

sequester RNA binding proteins (DeJesus-Hernandez et al., 2011). The 

repeat-containing RNA, both sense and anti-sense is also subject to an 

unusual form of translation termed repeat associated non-ATG (RAN) 
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translation, which does not require an upstream start codon. This 

phenomenon was first described in relation to the CAG repeat expansion 

in the SCA8 gene resultant in Spinocerebellar ataxia type 8 and has 

subsequently been found to be common amongst repeat expansion 

disorders (Ash et al., 2013; Zu et al., 2011). All six reading frames of C9orf72 

RNAs can be translated in this way, resulting in the generation of a series 

of dipeptide repeat proteins (DPRs), which in the sense direction are GA, 

GP, GR and in the antisense direction are GP, PA and PR (Gendron et al., 

2013; Mori et al., 2013b). However, GP and PR can also be generated by 

classical translation (Zu et al., 2011), which is interesting given a start 

codon is present in the reading frame that generates PR and that, at least 

in HEK293 cells, the presence of an AUG in this frame leads to increased 

PR abundance (Zu et al., 2013; Stepto et al., 2014). 

 

These DPRs have a high propensity to aggregate and are observed 

forming inclusions within C9orf72-associated patient brains and spinal 

cords. Such inclusions are positive for ubiquitin and contain the 

important protein degradation pathway proteins p62 and Ubiquilin 2 

(UBQLN2), whilst being free of TDP-43 (DeJesus-Hernandez et al., 2011; Al- 

Sarraj et al., 2011; Brettschneider et al., 2012). These inclusions join the 

RNA foci as specific pathologies of C9orf72 expansion mediated ALS-FTD 

disease. However, TDP-43-positive inclusions are also present and are 

pervasive throughout the brain, although not in the cerebellum or 

hippocampus, in cases manifesting as FTD and additionally in the spinal 

cord of those with accompanying ALS (Rohrer et al., 2015). It is not 

understood why some patients with C9orf72 expansion present with ALS 

and some with FTD, although it is known this can be influenced by genetic 

modifiers such as ATXN2, which reportedly increases the likelihood of an 

ALS phenotype (van Blitterswijk et al., 2014). 
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1.4: Mechanisms of Pathogenesis 

 

The etiology of ALS is clearly varied. The 90% rate of sporadic cases and 

10% of familial cases demonstrate the importance of both environmental 

and genetic factors.  Yet sporadic and familial ALS are also clinically 

indistinguishable and despite the myriad of associated genes, the majority 

of cases share a common clinical pathology. This pathology is also shared 

in many patients with FTD in the cases of FTLD-TDP-43 and, as has been 

described, ALS and FTD are now recognised to form part of a spectrum. It 

appears the common denominator is TDP-43 inclusions and disorders in 

which this takes place are termed TDP-43 proteinopathies.  Exceptions 

comprise cases arising from SOD1 and FUS, which nevertheless share 

varying degrees of relatedness that will be discussed below. 

  

1.4.1 TDP-43-Mediated ALS 

 

The majority of sporadic and familial ALS cases display TDP-43 

proteinopathy, with both wild-type and mutant TDP-43 observed to 

undergo mislocalisation to the cytoplasm, C-terminal fragmentation, 

aggregation of both fragments and full length protein, ubiquitination and 

hyperphosphorylation (Arai et al., 2006; Neumann et al., 2006; Hasegawa 

et al., 2008; Yokoseki et al., 2008). The pathogenicity of these 

observations has been the subject of intense research: are they a cause or 

a consequence and is disease caused by TDP-43 loss of function or a gain?   

 

Genetic knockout and overexpression studies have strived to answer 

these questions. Complete loss of TDP-43 homologs leads to an early 

lethality in animal model including mice (Sephton et al., 2010; Kraemer et 

al., 2010; Wu et al., 2010) and Drosophila (Feiguin et al., 2009; Fiesel et al., 

2010; Diaper et al., 2013). However, depletion in a tissue and time- 

manipulated manner has revealed that TDP-43 loss can lead to the 

development of age-related progressive ALS phenotypes in these models 
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(Wu et al., 2012; Iguchi et al., 2013; Feiguin et al., 2009; Diaper et al., 2013). 

However, studies overexpressing wild-type TDP-43 have also returned 

results demonstrating ALS-like disease phenotypes (Wils et al., 2010; Guo 

et al., 2011; Hanson et al., 2010; Ritson et al., 2010; Voigt et al., 2010; Li et al., 

2010; Miguel et al., 2011; Lin et al., 2011; Estes et al., 2011; Diaper et al., 2013). 

Hence, both loss and gain of TDP-43 appear able to cause pathogenesis. 

 

But what are the mechanisms of this pathogenesis? In human disease, 

TDP-43 is cleared from the nucleus and accumulates in the cytoplasm 

(Neumann et al., 2006). There is thus a concomitant lack of it in the 

nucleus, a compartment where 70% is normally to be found (Barmada et 

al., 2010). The loss of TDP-43 from the nucleus compromises its array of 

nuclear functions in RNA processing, including RNA stability and splicing 

regulation. As described above, depletion of TDP-43 leads to many splicing 

changes and transcript up and down-regulations, the latter of which 

include micro-RNAs (Tollervey et al., 2011; Polymenidou et al., 2011a; Xiao 

et al., 2011; Sephton et al., 2011). Thus, mislocalisation to the cytoplasm 

serves to create a loss of function in nuclear RNA processing (Scotter et 

al., 2015). Although TDP-43 is cleared from the nucleus in human disease, 

some models do not recapitulate this, such as Diaper et al., (2013), who 

found no mislocalisation of wild type Drosophila TDP-43 with loss or 

overexpression. This suggested TDP-43 doesn’t have to be removed from 

the nucleus to cause pathogenicity. This, they postulate, is caused through 

disruption of the stoichiometry of components within the 

ribonucleoprotein complexes in which TDP-43 functions.  This suggested 

what seems to be important is the levels of TDP-43 within the nucleus.  

 

Cytoplasmic TDP-43 can be cleaved into several species of C-terminal 

fragments of around 25 kDa (Neumann et al., 2006; Igaz et al., 2008).  

These fragment species all share the C-terminal domain and are highly 

prone to misfold and aggregation. They can therefore also form into 

aggregates that can sequester full length TDP-43 and other proteins and 
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become ubiquitinated and hyperphosphorylated, as seen in the patient 

tissue (Neumann et al., 2006; Igaz et al., 2008).  Intriguing, recent evidence 

by Woerner et al., (2016) has suggested aggregates of cytoplasmic C-

terminal fragments may be toxic through a mechanism disrupting 

nucleocytoplasmic transport of mRNA caused by altered distribution of 

nuclear pore complex components.  However, whether these fragments 

represent a toxic species is debatable since the RRM1 with its RNA-binding 

activity has been suggested to be necessary for toxicity (Voigt et al., 2010), 

a domain that is missing from most of the C-terminal fragments. In 

addition, the clearance of TDP-43 is thought to be promoted by 

fragmentation, which reduces cellular toxicity (Li et al., 2015).   

 

In addition to failure in RNA processing, protein degradation via the 

ubiquitin-proteasome system and autophagy is also considered to be 

defective in ALS (Thomas et al., 2013). The Ubiquitin-Proteasome System 

(UPS) and autophagy pathways degrade TDP-43 (Scotter et al., 2014). 

However, efficiency of protein degradation declines with age 

(Shringarpure et al., 2002; Cuervo, 2008) and may leave a cell susceptible 

to the consequences of cellular stress, which can be induced in myriad 

ways, such as oxidative and endoplasmic reticulum stress (Colombrita et 

al., 2009; McDonald et al., 2011), which may provide some explanation as to 

the age of onset of disease. These consequences are namely the 

mislocalisation, cleavage and misfolding of wild-type TDP-43 or mutant 

TDP-43, which has an increased propensity for those outcomes. The 

importance of proper protein degradation functioning in ALS is further 

evidenced by the fact ALS causative mutations are found in VCP, p62, 

UBQLN2 and OPTN, which are all components of these systems and that 

TDP-43 positive aggregates are a hallmark of ALS associated with 

mutation in all of these proteins (Scotter et al., 2015).  

 

As stated above, environmental cellular stress is known to be able to 

trigger the cytoplasmic mislocalisation of TDP-43. This can occur normally 
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in physiological conditions as part of the stress response, leading to its 

incorporation into stress granules (Liu-Yescucevitz et al., 2010). However 

the disease state likely represents a dramatic mislocalisation, as a 

consequence of continuous cellular stress. These stress granules are 

characterised as temporary structures assembling in stress and 

disassembling when the stress is removed. However, if the cellular 

stressors remain, it is postulated that these stress granules persist 

(Parker et al., 2012). Such cytoplasmic mislocalisation and stress granule 

persistence is also demonstrated with many mutations, occurring as they 

do in the aggregation prone, prion-like C-terminal domain of TDP-43 

(Dewey et al., 2011), which itself is required for aggregation and stress 

granule recruitment (Bentmann et al.,2012). As a consequence, it has been 

suggested that persistent stress granules ‘seed’ the development of 

protein aggregates. In support of this, the core stress granule protein TIA-

1 has been found to be present in the TDP-43-positive inclusions in 

patients’ spinal cords (Liu-Yesucevitz et al., 2010). 

 

These aggregates are subject to hyperphosphorylation and ubiquitination 

(Neumann et al., 2006), with hyperphosphorylation achieved via casein 

kinases 1 and 2 (Hasegawa et al., 2008; Kametani et al., 2009). However, it 

is not clear what the precise outcome of phosphorylation is in regard to 

toxicity (Scotter et al., 2015). This is also the case with ubiquitination of 

TDP-43, which can be achieved by several ubiquitin ligases, including 

Parkin (Hebron et al., 2013); clearly more work needs to be done to 

resolve this uncertainty (Scotter et al., 2015). 

 

Whether aggregates themselves are toxic is also a matter of debate: 

Cellular toxicity in the absence of aggregate formation has been seen, 

suggesting that it is cytoplasmic mislocalisation and not aggregates 

themselves that is toxic (Barmada et al., 2010; Arnold et al., 2013). 

However it is conceivable that this toxicity of cytoplasmic accumulation is 

occurring via smaller aggregates, such as oligomers that are hard to 



 37 

detect, and that these may be contributing to toxicity in a dominant 

negative manner by sequestering wild-type TDP-43, other RNA binding 

proteins and proteins with which TDP-43 is known to bind as well as RNA 

(Barmada et al., 2010; Scotter et al., 2015).There is also the prospect that 

they disrupt nucleocytoplasmic transport of mRNA out of the nucleus by 

altering localisation of nuclear pore complex proteins (Woerner et al., 

2016). 

 

Some further evidence in support of a toxic role for aggregates of some 

kind, even if not ‘mature’ aggregates, stems from the fact that activating 

autophagy leads to the clearance of aggregates and reduces TDP-43 

toxicity (Barmada et al., 2014; Maniecka and Polymenidou, 2015). Further 

consideration comes from the fact that ALS is observed to spread from 

location to location within the bodies of patients. This is highly 

reminiscent of prion like spread and aided the conception of the prion-

like theory of ALS progression and spread, similar theories have also been 

proposed in other neurodegenerative disorders such as Alzheimer’s 

disease (Polymenidou and Cleveland, 2011). This theory suggests that 

protein aggregates containing misfolded proteins highly prone to 

aggregation, such as TDP-43, can self-template their own assembly in a 

process by which they convert wild type, normally folded protein into a 

pathological misfolded form (Maniecka and Polymenidou, 2015). As was 

alluded to above for TDP-43, it has been suggested that the seeding of 

these self-templating aggregates may be via stress granules, which 

become pathologically persistent and act as high protein concentration 

clusters. This situation may be further exacerbated by the function of 

TDP-43 to auto-regulate the levels of its own transcript, generating a 

‘feed-forward’ loop in which auto-regulation is impaired by the 

cytoplasmic mislocalisation of the protein, leading to greater retention of 

TDP-43 transcripts, increasing the concentration of the protein available 

for incorporation into the aggregates and pathologic conversion 
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(Polymenidou et al., 2011; Ayala et al., 2011; Maniecka and Polymenidou, 

2015).  

 

1.4.2 FUS-Mediated ALS 

 

Like TDP-43, FUS appears to be important in development as knockout 

animal models display reduced viability. Knockout of Fus in mice 

produces perinatal lethality, a developmental abnormality in B-

lymphocytes, chromosome instability and male sterility (Hicks et al., 

2000). In Drosophila, knockout of the FUS homolog, caz, leads to a sub-

viability phenotype, wherein only rare escapers make it to adulthood. 

These escapers are short-lived and exhibit locomotor defects and 

morphological abnormalities in wings, eyes and genitals (Wang et al., 

2011). They have also been characterised with disrupted neuromuscular 

junctions (NMJs) (Sasayama et al., 2012; Xia et al., 2012), though this 

phenotype was not present in other models (Wang et al., 2011; Shahidullah 

et al., 2013).   

 

Wild-type and mutant FUS overexpression studies also demonstrate 

neurodegenerative phenotypes. In Drosophila, a rough eye phenotype is 

observed with overexpression of the human gene in this tissue, indicating 

loss of photoreceptor neurons (Chen et al., 2011). It also leads to an 

increase in the number of synaptic boutons in Drosophila, though for wild 

type only (Wang et al., 2011) and a reduction in the number of presynaptic 

active zones and impairment in synaptic transmission (Machamer et al., 

2014). Motor neuron cell bodies also appear to contain swellings and 

demonstrate axonal loss (Chen et al., 2011). In terms of viability and 

locomotor phenotypes, some studies have found no adult climbing 

defects at young adult stages (Wang et al., 2011), however others using 

different strains observed reduced viability and locomotion (Xia et al., 

2012; Chen et al., 2011; Machamer et al., 2014). ALS-linked FUS mutants are 

variable in their ability to rescue knockout phenotypes. They appear able 
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to rescue viability but not locomotion (Wang et al., 2011), suggesting a loss 

of this function at least of the P525L and R522G mutations. 

 

The pathogenesis of FUS-mediated disease share many similarities with 

TDP-43 although with the absence of TDP-43 proteinopathy. Many 

mutations in FUS lead to cytoplasmic mislocalisation of the protein. Such 

an event serves to sequester FUS from the nucleus leading to the loss of 

its RNA processing functions, resulting in mass changes in RNA transcript 

levels and splicing; some of these RNA targets are shared with TDP-43. 

This has given rise to the concept that TDP-43 and FUS converge on a 

common pathway to pathogenesis and further recognises RNA processing 

in ALS disease formation (Lagier-Tourenne et al., 2012; Honda et al., 2014). 

In further support of this, it is known that TDP-43 and FUS interact within 

complexes in an RNA-binding dependent way and that they operate in a 

pathway in which FUS is downstream of TDP-43, which was demonstrated 

by the fact caz can rescue locomotor phenotypes caused by knockout of 

the Drosophila TARDBP homolog, TBPH (Wang et al., 2011).  

 

Additionally, as for TDP-43, wild-type FUS can incorporate into stress 

granules in response to cellular stress (Anderson et al., 2008) and this 

tendency is increased by mutations, likely via increased cytoplasmic 

localisation (Bosco et al., 2010). These stress granules also show 

persistence after the removal of stress. Such stress granule recruitment 

has also been proposed to seed the formation of aggregates and drive the 

prion-like spread of disease, acting as concentration points for the 

recruitment of further FUS protein and pathogenic conversion (Vance et 

al., 2013; Maniecka and Polymenidou, 2015). In support of this, FUS 

contains several prion-like domains, which render it extremely aggregate- 

prone, being able to do so spontaneously in solution, (Sun et al., 2011) and 

these are required for FUS incorporation into stress granules (Bentmann 

et al., 2012). FUS also auto-regulates and loss of this function through 

cytoplasmic sequestration is thought to lead to the progression of these 
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insoluble prion-like aggregates, as it does in the case of TDP-43 (Zhou et 

al., 2013; Maniecka and Polymenidou, 2015). The recent evidence by 

Woerner et al., (2016) also hints at the possibility FUS aggregates, as TDP-

43 aggregates, cause disruption to nucleocytoplasmic transport, which 

likely contributes to toxicity.  

 

1.4.3 C9orf72-Mediated Disease 

 

As a more recently linked locus, C9orf72 pathogenesis is in the early 

stages of being elucidated; nevertheless an intensive study regime is 

rapidly shedding light on the potential disease mechanisms.  

 

Haploinsufficiency has been proposed, wherein levels of the transcript 

and of C9orf72 protein are decreased below what is physiological 

sufficient for function. In support of this,  a 5’ CpG island of the expanded 

allele has been reported to be hypermethylated (Xi et al., 2013; Liu et al., 

2014), a sign of gene silencing, and reductions in C9orf72 transcript 

expression are noted in the affected central nervous system (CNS) 

regions in these patients (DeJesus-Hernandez et al., 2011). To this end, 

there is also a reported trimethylation of lysine residues of histones H3 

and 4 (Belzil et al., 2013). However, reduction of C9orf72 levels in patient-

derived motor neurons actually served to ameliorate the observed 

transcriptional changes and even be protective (Sareen et al., 2013; Liu et 

al., 2014). Furthermore, in vivo modelling of C9orf72 knockdown in mice 

indicates that reduced expression is not causative of pathogenesis. 

Reduction via antisense oligonucleotides did not lead to overt phenotypes 

in one study (Lagier-Tourenne et al., 2013) and this has been 

corroborated recently in another, which employed neuronal and glial 

conditional knockout, discovering no evidence of neurodegenerative 

phenotypes (Koppers et al., 2015).  
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C9orf72 repeat expansion is transcribed in both sense and antisense 

directions and both can form into RNA foci within the nucleus. Such foci 

are an established hallmark of C9orf72 disease (DeJesus-Hernandez et al., 

2011). In multiple models their presence correlates with toxicity, for 

example in several non-neuronal cell lines as well as SH-SY5Y cells, 

expression of 38 and 72 repeats led to RNA foci formation within the 

nucleus, which were twice as numerous for the longer repeat indicating a 

relationship between repeat length and foci burden. No RNA foci were 

observed when a repeat length of 8 was expressed, which is within the 

normal range. Furthermore the RNA foci-containing SH-SY5Y cell 

population, but not controls, were subject to apoptotic machinery 

activation and concomitant increases in cell death. These results were 

corroborated in vivo with Zebrafish embryos (Lee et al., 2013).  

 

A well-known gain of function consequence of RNA foci in other diseases 

is the binding and sequestration of RNA binding proteins. Many such 

proteins have been found within these foci including hnRNP A1 and Purα 

in iPSC derived motor neurons and Neuro-2a cells (Sareen et al., 2013; Xu 

et al., 2013) In motor neurons of C9orf72 expansion ALS patients the RNA 

foci sequester SRSF2, hnRNP H1/F, ALYREF, with the addition of hnRNP A1 

in the cerebellum (Cooper-Knock et al., 2014), and in another study the 

cerebellar p62 positive and TDP-43-negative inclusions in patient tissue 

were positive for hnRNP A3 (Mori et al., 2013b). The sequestration of 

these RNA-binding proteins was linked to toxicity through serving to 

prevent their functions in RNA metabolism and evidence supports this. 

Pathogenic repeat length containing Neuro2a cells which sequester Purα 

into RNA foci, had toxicity alleviated by the additional overexpression of 

Purα itself, which was also seen in vivo in the Drosophila photoreceptors 

(Xu et al., 2013). In addition, the binding and sequestration of hnRNP H 

reduces the inclusion of exon 7 within TARBP2 transcripts (Lee et al., 

2013). Thus, the sequestration of multiple RNA-binding proteins within 

repeat expansion induced RNA foci is very likely an underpinning of 
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toxicity in C9orf72-mediated disease. This concept has further 

implications given that C9orf72 expansion disease is technically a TDP-43 

proteinopathy, since such TDP-43 positive inclusions are present. No 

evidence suggests TDP-43 is a binding partner of the hexanucleotide 

repeats. Rather, it is hypothesised that the sequestration of hnRNPs, 

which are TDP-43 interactors, may lead to TDP-43 dysfunction (Stepto et 

al., 2014). Further, a set of studies has proposed that a dysfunction in 

nucleo-cytoplasmic shuttling caused by toxic gain of function of the 

expanded RNA. A screen in Drosophila revealed genes with products 

involved in nucleocytoplasmic transport, to be modifiers of toxicity 

(Freibaum et al., 2015). Additionally, overexpression of the important 

nucleocytoplasmic transport protein RanGAP, which is a binding partner 

of the expanded RNA, prevented toxicity in cell and Drosophila models 

(Zhang et al., 2015). 

 

However, as previously described, C9orf72 expansion RNA is translated in 

both sense and antisense directions via RAN translation to form dipeptide 

repeat proteins. Aggregates containing all of these were detected within 

the hippocampus of patient tissue and evaluation of the pro-arg (PR) 

species revealed their presence led to an increase in cell death compared 

to controls, indicating that they are toxic (Zu et al., 2013). This work on 

the PR species is interesting given further recent evidence that it is 

arginine-containing DRPs that causes toxicity. Mizielinska and colleagues 

generated flies expressing expanded C9orf72 repeats engineered so that 

in each only one species of DPR was produced. In the proline-arginine ‘PR 

only’ and glycine-arginine ‘GR only flies’, neurodegeneration was observed 

via the measures of egg to adult viability, lifespan and rough eye 

phenotype. None of these measures were affected in control or ‘GA only’ 

and ‘PA only’ flies (Mizielinska et al., 2014). This is supported by the report 

that the GA species pathology is not correlated with neurodegeneration 

and the suggestion this might even be neuroprotective (Mackenzie et al., 

2013). The study by Mizielinska et al., (2014) also sought to seperately 
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consider RNA- and DPR-mediated toxicity by generating ‘RNA only’ 

constructs with stop codons in each reading frame to prevent DPR 

formation. Flies expressing these did not display any of the 

aforementioned neurodegenerative phenotypes in any of the range of 

repeat lengths or temperatures examined. Therefore, neurodegenerative 

toxicity can arise solely from DPR expression. A mechanism for this is also 

proposed through acting to block the functioning of nuclear pores and 

prevent nucleo-cytoplasmic shuttling. In a yeast model, PR dipeptides 

alone were observed to be capable of causing toxicity, which could be 

ameliorated by increasing nucleocytoplasmic transport towards control 

levels by overexpressing various genes connected to this function (Jovičić 

et al., 2015). However, given the evidence also in favour of RNA mediated 

toxicity, a strong case for both RNA and DPR toxicity is apparent for the 

likely causes of toxicity in human disease.   

 

1.4.4 SOD1-Mediated ALS 

 

SOD1 mediated disease is considered to occur via different mechanisms 

than other forms of ALS, given that it does not lead to TDP-43 

proteinopathy. 

 

It became apparent with the arrival of the first mouse models soon after 

its discovery as a fALS locus that mutant SOD1 (mSOD1) did not operate 

via a loss of function mechanism. For example, Reaume and colleagues 

generated a knockout mouse that did not demonstrate definitive ALS 

phenotypes (Reaume et al., 1996), but these were apparent in the G93A 

overexpressing model generated by Gurney et al., (1994). Thus, the 

consensus view is that mSOD1 acts via a toxic gain of function.  

 

To this end, it is known that mutations in SOD1 cause misfolding of the 

protein, which is subsequently ubiquitinated to target it to the 

proteasome for degradation. This clearance mechanism is perturbed 
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however by the capacity of mSOD1 to block the ubiquitin-proteasome 

system (Urushitani et al., 2002; Cheroni et al, 2009). Thus mSOD1 

prevents its own degradation and persists in the cell, forming aggregates. 

mSOD1 also leads to dysfunction in endoplasmic reticulum-associated 

degradation (ERAD), due to its presence within the ER, which further 

exacerbates misfolded protein persistence (Kikuchi et al., 2006). Another 

organelle affected by mSOD1 is the mitochondria. A small amount of SOD1 

is normally localised to the mitochondrial intermembrane space (IMS), 

where it carries out its dismutase reaction. mSOD1 is localised on the 

outer membrane and (OM), and within the latter its misfolded state 

disrupts mitochondrial function including alterations in redox potentials 

(Ferri et al., 2006). Glutamate excitotoxicity was one of the first 

pathogenic mechanisms proposed for mSOD1. It occurs via extracellular 

glutamate clearance failure and concomitant excessive calcium influx that 

is beyond the neurons’ storage capacity, which is thought to be mediated 

by reductions in astroglial glutamate transporter EAAT2 (Rothstein et al., 

1996). 

 

This last point illustrates the important relationship between the 

surrounding glia and motor neurons for disease; models suggest that 

mSOD1 drives non-cell autonomous progression. Indeed, astrocyctes 

expressing mSOD1 cause toxicity to and increased death of motor 

neurons (Nagai et al., 2007; Di Giorgio et al., 2007). mSOD1 is secreted 

from both neurons and glial, which activates the microglial. Such activated 

microglia from mSOD1 mice cause toxicity to motor neurons in culture, 

which appears to be due to aberrant prostaglandin signalling (de Boer et 

al., 2014).  

 

In common with TDP-43 and FUS, there is evidence to suggest that 

misfolded SOD1 propagates via prion-like spread. Wild-type SOD1 is not 

aggregation prone and is inherently stable, yet as stated above mutant 

SOD1 is misfolded and aggregates and has been shown to be able to seed 
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misfolding of wild-type SOD1 (Chia et al., 2010). Interestingly, it has also 

been suggested that oxidation of wild-type SOD1 can cause it to misfold, 

mimicking the actions of SOD1 mutation (Ezzi et al., 2007), a finding that 

has implications for sALS.  

 

 

1.5: ALS: Distal Axonopathy 

 

In patients, the pathogenesis described above ultimately drives neuronal 

destruction and loss and a noticeable absence of motor neurons from 

patient tissue upon examination. However, the question of precisely 

where within nervous system physiology ALS begins is a matter of some 

contention, and, like all studies seeking to elucidate information about 

disease onset, has been greatly hindered by the fact relevant patient 

tissue is usually gathered from those who died from the disease and thus 

represents the end-stages. However, clinical evidence from earlier 

disease time points demonstrates that there is a temporal disconnect 

between the manifestation of functional deficits at the NMJ, the onset of 

disease symptoms and the observed loss of the cell bodies.  

 

1.5.1 The Dying-Back Hypothesis  

 

One theory has been gaining a significant degree of support to explain this 

phenomenon. The ‘dying-back’ hypothesis states that ALS is a distal 

axonopathy in which pathological alterations occur within axonal 

terminals long before the manifestation of observable symptoms and 

death of the cell bodies themselves and that this distal dysfunction 

progresses backwards from the terminal, proximally towards the soma. 

Many neurodegenerative diseases have been classified as distal 

axonopathies such as Alzheimer’s disease, Hereditary Spastic Paraplegia 

and Charcot Marie Tooth disease Type 2 (Millecamps and Julien, 2013).  
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For ALS, a considerable amount of support for this hypothesis has been 

accumulating for a number of years from both human patients and animal 

models. In a compelling study, Fischer and colleagues made use of the 

premature death of an ALS patient from non-related factors early in 

disease course to examine the relationship between clinical symptoms 

and motor neuron loss. The man had been demonstrating physical 

weakness and atrophy and had electrophysiological changes indicating 

nervous dysfunction. However the autopsy showed no degeneration of 

the corticospinal tract, motor cortex or ventral roots and interestingly 

there was also no evidence of activated astrocytes or microglia, but 

rather a grouped atrophy of muscle fibres (Fischer et al., 2004). In a 

functional context, studies examining the state of axonal excitability in ALS 

have shown that the dysfunction observed in the potassium channels in 

patients is more severe in the distal region of the axon (Nakata et al., 

2006).  

 

Multiple animal studies have also provided data that such neuromuscular 

function alterations occur at the earliest points of disease and have made 

extensive use of the G93A SOD1 mouse model. It had been noted by Chiu 

and colleagues that at P90, when the physical symptoms began, there was 

an extensive loss of the lower motor neurons and denervation of the limb 

muscles (Chiu et al., 1995). Subsequently this denervation was shown to 

be underway as early as P50, long before symptom onset (Frey et al., 

2000). Based on these findings, Fischer and colleagues also used the G93A 

mouse model to test the dying back hypothesis. Denervation of motor end 

plates had begun by P47 in the mice, which did not display symptom onset 

until P80, after which motor neuron cell bodies began being lost from the 

spinal cord. This was a clear indication of distal to proximal progression 

(Fischer et al., 2004).  

 

Although most extensively studied for SOD1, such findings are also 

forthcoming for models of TDP-43 and FUS associated ALS. In their study 



 47 

of wild-type TDP-43, Diaper et al., (2013) found synaptic transmission 

defects in larvae experimentally determined to be the result of pre-

synaptic dysfunction, and that these defects occurred before neuronal 

cell death. With regard to FUS, recent evidence using a Drosophila model 

has demonstrated that overexpression too leads to defects in synaptic 

functioning with reductions in NMJ active zone number and reduced 

quantal size and content leading to synaptic transmission defects already 

apparent at the larval stage (Machamer et al., 2014). 

 

Many factors are implicated in this distal axonal degeneration and loss of 

the NMJs that centre on destruction of cytoskeletal integrity and NMJ 

stability, evidence of which is mostly gathered from the mSOD1 mouse. 

These include neuronal intrinsic and extrinsic factors involving muscles 

and the supporting terminal Schwann cells (TSC). For example, in these 

an aberrant increase in the levels of the repellent axon guidance proteins 

Sema-3a and Nogo-A have been recorded in TSCs and muscle cells, 

respectively. This leads to a scenario in which the nerve terminals are 

actively repelled from the NMJ (Krakora et al., 2012). The presence of 

neurotrophic factors is also critical and it has been shown that muscle 

specific expression of such factors like vascular endothelial growth factor 

(VEGF) can increase the number of NMJs and motor neurons maintained 

through disease (Keifer et al., 2014). 

 

1.5.2 Selective Vulnerability  

 

The motor system is noted as being particularly vulnerable to the 

development of ALS. The precise reasons for this are not completely 

understood, but likely arise from a combination of many factors, such as a 

relative fragility in view of excitotoxicity (Van Den Bosch et al., 2006).   An 

element of selectivity is also apparent within the population of motor 

neurons. Many studies have demonstrated that muscles are not uniformly 

affected in ALS and that this depends on the properties of the different 
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motor units, which is the collective name for all the muscle fibres 

innervated by one motor neuron. There are three types of motor unit. 

Motor units in which the neuron innervates Type IIb/x muscle fibres are 

designated as fast-fatigable (FF), Type IIa muscle fibres characterise fast-

resistant (FR) motor units and the third group, the slow (S) motor units, 

consist of Type I muscle fibres. A particular muscle’s motor neuron 

innervation or motor pool is determined by a mix of these motor units 

and can be highly variable in number (Burke et al., 1973).  

 

The decisions of the order of which motor units are recruited are laid 

down in Henneman’s size principle, which states that the smallest motor 

units are recruited first and the largest last. The size of a motor unit 

depends on the size of the motor neuron, as smaller motor neurons have 

fewer terminal branches. These smallest motor neurons have the lowest 

current requirements to reach threshold and so small motor units are 

most easily recruited (Henneman., 1957). The small motor units are Type 

S and contain the muscle fibres that have the most extended contraction 

times and lowest force generating capacity. Type FF motor units have the 

largest motor neurons and are the largest motor units and therefore, the 

recruitment of motor units in general proceeds from the slow, lowest 

force producing, least fatigable units to the fast, highest force producing 

and most fatigable units, from Type S to Type FF (Heckman and Enoka, 

2004).  

 

Thus, not all motor neurons are created equal. This has implications for 

ALS as examined in the G93A SOD1 mouse by Frey et al., (2000), Pun et al., 

(2006) and by Hegedus et al., (2007) who saw that the denervation 

occurring before symptom onset involved the Type FF motor units and 

represents a preferential denervation of these units. A further interesting 

phenomenon is that denervated IIb/x muscle fibres change to I and IIa and 

are innervated by the remaining motor neurons (Hegedus et al., 2008). 

This sprouting ability is lacking in Type FF motor units and is greatest in 
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Type S which are the last to be touched. It appears that loss of Type FF 

units leads to weakening but progression of symptoms becomes apparent 

when compensatory sprouting begins to fail in the Type S units later in 

disease (Frey et al., 2000; Pun et al., 2006; Hegedus et al., 2008; Maloney 

et al., 2014).   

 

It was suggested by Pun et al., (2006) and Hegedus et al., (2007) that a 

possible reason contributing to why Type FF units are preferentially lost 

earliest in disease might be due to the fact that they possess the largest 

motor neurons and was coupled with the fact that such neurons have the 

greatest metabolic requirements. Thus the importance of axonal 

transport in these neurons is apparent. Such transport is required for the 

delivery of components such as proteins and mRNA to the distal 

compartments and for the delivery of organelles such as mitochondria to 

provide the energy necessary for distal functioning. Conversely, it is also 

necessary for the removal of waste products out of the periphery and for 

the delivery of neurotrophic factors received at distal synapses to the cell 

soma. The importance of axonal transport integrity is further highlighted 

by the fact distal axonopathy can occur as a direct result of disruption to 

retrograde transport through excessive levels of a molecular motor 

subunit, Dynamitin (LaMonte et al., 2002). The importance of axonal 

transport might also contribute to the explanation as to why it is motor 

neurons are a preferentially affected cell type in ALS (Dadon-Nachum et 

al., 2011). Motor neurons are one group of neurons noted for their 

exceedingly long axons, which can grow up to a metre in length and it can 

be easily envisaged that disruption to this in such axons has negative 

consequences for its prolonged survival.  

 

1.5.3 Mechanisms of Axonal Transport 

 

The main form of intracellular transport takes place via microtubules, 

which are the largest of the cytoskeleton filaments. Microtubules are built 
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up sequentially from subunits, which themselves are a heterodimer of α 

and β tubulin, into protofilaments and thirteen of these coalesce together 

to form a hollow cylindrical filament. Each end of the microtubule has a 

distinct polarity owing to the differential exposure of either an α or β 

tubulin. Exposure of the former designates that end as the ‘minus’ end 

and exposure of latter designates the end as ‘plus’. Within the axons, the 

microtubules exist in parallel arrays that make use of the difference 

between the two microtubule ends to provide a sense of directionality. 

They are oriented so that their plus ends point distally and the minus 

ends point towards the soma. Thus, microtubules act as the roads or 

tracks upon which axonal transport takes place (Conde and Caceres, 

2009). 

 

Cargoes are taken along the microtubules by motor proteins. Transport 

towards the plus end, that is, towards the distal axon, which is termed 

anterograde transport, is achieved by members of the kinesin family. 

Kinesin 1, known as the conventional kinesin, is composed of two heavy 

chains (KHC), which each have a globular head domain in which the 

motor activity is situated, and the two heavy chains wind around each via 

their middle sections. Kinesins have a level of inherent variability in terms 

of their heavy chains, in humans Kinesin 1 has three types termed KIF5A, B, 

and C. Kinesins bind to microtubules via their head domains and use the 

energy from ATP hydrolysis to literally ‘walk’ along the microtubules, 

detaching and reattaching their head domains like feet. Retrograde 

transport, towards the cell soma, is achieved by cytoplasmic Dynein, 

which is a large protein complex containing two heavy chains, which again 

possess the motor activity and a number of intermediate, light 

intermediate and light chains. The head domains attach to the 

microtubule via a stalk that projects from this domain and similarly to 

Kinesins, Dynein utilises ATP hydrolysis to walk along the microtubules. 

Kinesins attach to cargo via the aid of kinesin light chain (KLC) or via a 

plethora of other adaptor proteins, which can be specific for individual 
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types of cargo. Dynein requires the aid of Dynactin, another large protein 

complex, in order to bind to cargo with this connection being performed 

by the smaller subunits of Dynactin which bind to the large subunit 

p150glued that also binds to Dynein and the microtubule, thus forming a 

connection between the cargo, the motor and the microtubule (Figure 

1.5). Transported cargoes move at varying speeds, characterised as either 

fast or slow. Mitochondria, lysosomes, vesicles and mRNA move via fast 

axonal transport (FAT) and many proteins such as neurofilaments are 

moved via slow axonal transport (SAT) (Millecamps and Julien, 2013). 

Both are however mediated by the same molecular motors; the difference 

in speed is thought to arise from the number and length of pauses 

(Brown, 2003). 

 

1.5.4 Axonal Transport in Neurodegenerative Diseases 

 

It is known that axonal transport is required for the proper functioning 

and survival of neurons, as mutations within proteins involved in it can 

cause neurodegeneration.  

 

Mutations in the kinesin motor protein KIF5A can underpin Hereditary 

Spastic Paraplegia (HSP) and cause axonal transport disruption and HSP 

too demonstrates distal axonopathy (Reid et al., 2002). HSP can also be 

caused by mutations in SPAST that codes for the protein spastin, which is 

a microtubule severing protein important for microtubule homeostasis. 

Knockout in mice causes development of axon blockages containing 

mitochondria and a motor phenotype (Tarrade et al., 2006). Another HSP 

gene locus, SPG7 encoding Paraplegin, a mitochondrial ATPase, causes 

retrograde transport defects when knocked out in mice, and gives rise to 

enlarged mitochondria and axonal swellings (Ferreirinha et al., 2004).  

 

Charco-Marie Tooth Disease Type 2 (CMT2) causes distal sensorimotor 

dysfunction and is also a distal axonopathy with axonal transport defects.  
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Figure 1.5: Molecular motors involved in axonal transport. Microtubules act as tracks 
upon which transport takes place; the two ends of the microtubule are different with the 

‘plus’ end exposing β tubulin and the ‘minus’ end exposing α tubulin. Microtubules in 

axons are oriented as parallel arrays with the plus ends pointing distally. Cargoes are 
transported with aid of molecular motor proteins. Kinesins are responsible for plus end 
directed transport. Kinesin 1 consists of two heavy chains with globular head domains 
that possess the motor ability, which bind to and walk along microtubules. It uses a light 
chain (KLC) or other adaptor proteins to bind cargo. Dynein is a large protein complex 
that mediates minus end directed transport. It binds to microtubules via stalks arising 
from its two head domains, which themselves possess the motor activity to allowing 
walking along the microtubule. Dynein requires the aid of another protein complex, 
Dynactin, to bind cargo. Diagram not to scale. Adapted from Millecamps and Julien., 
(2013). 
 

 
There are multiple subtypes and each possesses its own transport 

dysfunction phenotype. CMT2A is characterised by mutations in MFN2 

encoding Mitofusin2, a mitochondrial outer membrane protein required 

for mitochondrial fusion. When expressed in mice, these mutations lead 

to long arrays of fused mitochondria, which accumulate through axons. 

These mice develop motor axon loss and weakness in muscles leading to 

hindlimb gait defects (Detmer et al., 2008). Organelle retrograde 

transport is affected following mutation in the GTPase Rab7, which are 
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associated with CMT2B (Deinhardt et al., 2006). Axonal transport 

disruption caused by neurofilament aggregation underpins CMT2E and 

CMT2F, caused by mutations in neurofilament light chain and Heat shock 

protein B1 respectively, which in culture leads to progressive 

degeneration of neurites (Zhai, 2007). By contrast, mutations in 

cytoplasmic Dynein heavy chain 1 have been associated with CMT2O and 

Spinal muscular atrophy (SMA) characterised by severe retrograde 

defects (Weedon et al., 2011; Hafezparast et al., 2003; Millecamps and 

Julien, 2013). 

 

1.5.5 Axonal Transport as a Contributory Factor to ALS Dying-  
        Back 
 

In terms of ALS there is also evidence implicating dysfunctional axonal 

transport within the disease. Histopathological investigations showed 

abnormal enlargements composed of organelles and neurofilaments 

within the proximal axons of motor neurons (Carpenter, 1968; Okamoto 

et al., 1990; Saskai et al., 1990; Millecamps and Julien, 2013). The 

involvement of neurofilaments is interesting given that the major ALS 

spectrum-linked protein TDP-43, is intimately tied to this cytoskeletal 

component, being involved in transcriptional regulation of Neurofilament 

light chain (NEFL) mRNA and with its transport along axons in mRNA 

containing RNP (mRNP) granules. Furthermore, it is known that mutations 

in TDP-43 disrupt the axonal transport of mRNPs containing NEFL mRNA 

(Alami et al., 2014). Indeed, mouse models of mutant TDP-43 have 

revealed an overexpression of Peripherin and a decrease in 

Neurofilament light chain resulting in neurofilament organisation 

abnormalities and proximal axonal aggregates of the same (Swarup et al., 

2011). This study did not examine axonal transport but it had been 

previously discovered in cultured primary neurons that neurofilament 

transport can be reduced by phosphorylation through the aberrant 

activation of several kinases, such as p38, which was shown to occur in 
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response to glutamate and thus implicates excitotoxicity as an axonal 

transport disrupter (Ackerley et al., 2000).  

 

With further regard to the ALS-linked proteins, TDP-43, FUS and C9orf72, 

the pathology attributed to them in being sequestered and sequestering 

away other proteins, is suggested to be linked to axonal transport 

dysfunction. Indeed, it has already been seen that mutant TDP-43 can 

disrupt axonal transport of mRNA-containing granules (Alami et al., 2014), 

which is projected to have consequences for the functioning of the NMJ, 

that is, as stated above, known to be disrupted early in disease.  

 

However, within ALS, axonal transport has been most well studied for 

SOD1 models largely using the G93A mutation. In this model, axonal 

transport defects are considered to be one of the earliest defects arising 

and are pervasive, occurring in multiple types of cargo (Williamson and 

Cleveland, 1999; De Vos et al., 2007; Bilsland et al., 2010). In a modified 

G93A mouse model that had reduced expression of the transgene to elicit 

a milder phenotype, slow axonal transport was examined and found to be 

defective in the anterograde direction at P200, most likely due to the 

aggregations of neurofilaments, that occur in the proximal axons. 

Transport was impaired for neurofilaments but also other cytoskeletal 

components such as tubulin. Furthermore, fast axonal transport of 

proteins was also reduced (Zhang et al., 1997). In the G37R and G85R 

models this defect to slow axonal transport was an early event in 

pathogenesis and in fact has been reported as the earliest observable 

event in the G85R mouse (Williamson and Cleveland, 1999). However, in 

these models fast axonal transport of proteins was not impaired, 

suggesting some mutation specific effects. The neurofilaments in SOD1- 

mediated ALS are also phosphorylated (Krieger et al., 2003), a result that 

as described above can be the work of glutamate excitotoxicity, however, 

mSOD1 has also been demonstrated to lead to neurofilament 

phosphorylation via p38 activation (Morfini et al., 2013).  
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Further examinations of fast axonal transport of membrane bound 

organelles (MBOs) containing APP protein, showed this is reduced in both 

directions in the G93A  mouse derived neurons (De Vos., 2007), although 

MBOs as a measure of fast axonal transport were only inhibited in the 

anterograde direction in squid axoplasm (Morfini et al., 2013). This study 

went further to elucidate a mechanism implicating kinase activation in 

which the activation of p38 by mSOD1, causes phosphorylation of Kinesin-

1 to prevent Kinesin moving along microtubules and revealed that this was 

active in G93A mice.  

 

The transport of mitochondria has also been studied for SOD1-mediated 

disease in which it was severely reduced in the anterograde direction, 

leading to a net loss of mitochondria at the distal axon. This could 

potentially have an effect on transport in general and the functioning of 

the NMJ due to reductions in available ATP (De Vos et al., 2007; De Vos et 

al., 2008). This may be caused by the pathological associations of mutant 

SOD1 with the mitochondrial outer membrane (Miller and Sheetz, 2004; 

Vande Velde et al., 2011). 

 

However, a study attempting to rescue motor deficits by reducing 

Syntaphilin, a protein involved in anchoring mitochondria to prevent 

transport, was not able to do so (Zhu et al., 2011). There is also an 

interesting delay between the axonal transport dysfunction and axonal 

degeneration in several mSOD1 models. It has also been noted that in 

SOD1WT overexpression models  axonal transport defects develop without 

distal axonal destruction until the advanced stage of disease (Marinković 

et al., 2012; Millecamps and Julien, 2013). Thus, the authors surmise this 

indicates that axonal transport dysfunction at least of mitochondria is not 

a prerequisite for axonal degeneration initiation at least in the SOD1 

model (Marinković et al., 2012). However, they suggested this does not 

preclude such dysfunction, when it arises, from being a contributory 

factor for the progression of the disease. Although another group argues 
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that the G85R model has an atypical presentation and suggested their 

findings of mSOD1 mitochondrial dysfunction is consistent with a 

pathogenic role (Magrané et al., 2014). 

 

In regards to TDP-43, initial experiments in mouse primary neurons and in 

vivo within the sciatic nerve indicate that overexpression of the wild type 

and several pathogenic mutant proteins leads to early onset 

mitochondrial transport dysfunction (Wang et al., 2013a; Magrané et al., 

2014); however this was not observed in another study (Alami et al., 2014). 

Further work remains to be done to elucidate the relationship between 

mitochondrial and other cargo axonal transport and degeneration in this 

and other ALS models (Figure 1.6).  

 

 

 

 

 

 

 

 

Figure 1.6: ALS is postulated to occur as a distal axonopathy whereby functional deficits 
at the distal axon or terminals occur in the initial stages of the disease before symptom 
onset and proceed backwards towards the cell body culminating in the loss of the cell 
body later in disease course.  Defective Axonal transport is postulated to be a 
contributory factor to this process. Orange = mitochondria, green = vesicles. Adapted 
from Coleman., (2005).  

 

 

1.6: Model Organism: Drosophila melanogaster 

 

The fruit fly, Drosophila melanogaster is one of the most widely used 

organisms in biological research today. This owes much to its easy care 

and quick generation time. However, its enduring appeal as the model 

organism of choice for many researchers owes most to its genome, which 

Degeneration begins in 

distal axon and 

spreads proximally.  



 57 

has been completely sequenced and is separated into only four 

chromosomes. Despite the gulf of evolutionary time, many of the genes 

have been highly conserved and functional homologs for many human 

disease associated genes are present in the Drosophila genome.  

 

Arguably the most useful tool developed for use in Drosophila is the UAS-

GAL4 system (Brand and Perrimon, 1993). This is a two-part system 

comprised of the yeast transcriptional activator Galactose responsive 

factor 4 (GAL4) and its upstream activating sequence (UAS) to which it 

binds with specificity. Genes of interest are engineered to contain this 

sequence upstream of their start sites. When co-expressed, the GAL4 

protein will bind to the upstream activator sequences and induce 

expression of the gene of interest (Figure 1.7). The GAL4 protein can be 

placed under a range of promoters known as ‘drivers’ that can confer 

spatial and temporal selectivity. Some frequently used drivers include 

that of the daughterless gene which encodes a transcription factor 

(Cronmiller and Cummings, 1993) that is ubiquitously expressed and D42, 

which is specifically expressed in motor neurons. The GAL4-UAS system 

allows for numerous genetic manipulations from overexpression, to 

rescue when combined with a gene knockout line. 

 

Drosophila has proved an extremely useful organism for the study of 

neurodegeneration. Their nervous system and its development is well 

defined and easily accessed. Many functional assays have been developed 

to evaluate perturbations to the nervous system, such as the adult 

climbing test and larval crawling assay. The nervous system itself is simple 

to reach and to keep intact through dissection. It is also easy to visualise, 

which has made it a very attractive organism for the modelling of axonal 

transport.  
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Figure 1.7: The two part GAL4 – UAS system.  A fly line is engineered to contain the yeast 
transcription activator GAL4 downstream of a tissue-specific driver. This fly must be 
crossed to another containing the GAL4-specific upstream activator sequences (UAS) 
that have been placed upstream of a gene of interest. In the offspring containing these 
two elements, expression of GAL4 is driven in a tissue-specific manner, whereupon it 
binds to the UAS allowing for transcription of the gene of interest in that tissue. Adapted 
from St Johnston., (2002). 
 
 

 

1.7: Project Aims 

 

The primary aim of this project was to examine the state of fast axonal 

transport by live imaging fluorescently-tagged cargo within motor neuron 

axons of 3rd instar larvae in Drosophila models of TARDBP (TDP-43), FUS 

and C9orf72-linked ALS. Furthermore, the motor activities of these 

models were assessed through the means of behavioural assays such as 

larval crawling and young and aged-adult climbing. In this manner it was 

possible to correlate them with potential defects in axonal transport.  

 

Specifically, in regard to TARDBP and FUS, loss of the endogenous protein 

was examined as were the effects of overexpressing both the fly and 

human wild-type genes and pathogenic variants. This was to elucidate 

whether any defects arising operate via a loss or gain-of-function 
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mechanism.  In regard to C9orf72, possible toxicity of hexanucleotide 

repeats number was examined and the contributions of two potential 

mechanisms, RNA gain of toxic function and DPR protein generation, 

dissected.  

 

The hypotheses to be tested are as follows: 

 

1. The disruption to TDP-43 functioning through knockout, 

overexpression or pathogenic mutation interferes with axonal 

transport and contributes to the dying back pattern of 

degeneration characteristic of a distal axonopathy.  

 

2. The disruption to FUS functioning through knockout, 

overexpression or pathogenic mutation interferes with axonal 

transport and contributes to the dying back pattern of 

degeneration characteristic of a distal axonopathy.  

 

3. The expression of a pathogenic number of GGGGCC (G4C2) 

repeats interferes with axonal transport and contributes to the 

dying back pattern of degeneration characteristic of a distal 

axonopathy. 
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2.1: Drosophila Stocks 

 

2.1.1 Drosophila Husbandry 

 

Drosophila stocks were kept in standard vials and fed standard cornmeal 

media cooked by the fly facility with the addition of baker’s yeast. The 

stocks were kept in replicates of three, each at a different stage in the life 

cycle to allow for a continuous supply of new flies. The stocks were kept 

at 18°C as at this temperature the Drosophila lifecycle extends for an 

average of 40 days and thus stocks required to be flipped into fresh vials 

once every 3 weeks. Some lines were kept at 25°C if it became clear that 

they struggled to reproduce adequately at 18°C, since 25°C is the 

optimum temperature for this organism. If stocks were required in high 

volume for crosses, they were grown in plastic bottles containing the 

same media. 

 

Experimental crosses were grown at this optimum temperature of 25°C 

unless otherwise stated for individual experiments. At this temperature, 

the lifecycle is an average of 10 days, with third instar larvae appearing on 

the 5th day. It was aimed that each fly cross would contain a minimum of 4 

males and 7 virgin females. The crosses were flipped every two days to 

generate multiple replicates in case they were needed.  

 

Flies were selected for crosses and experiments on pads extruding CO2 to 

anesthetise them, thus making them amenable to being ‘pushed’ around 

with a paintbrush or forceps. The lowest CO2 exposure for anaesthesia 

was used within the shortest timeframe possible to minimise any possible 

effects of this gassing on the flies.  
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2.1.2 Drosophila Stock Lines 

 

The Drosophila stock lines used are listed below.  

 

Table 2.1 Mutant Lines 

BDSC = Bloomington Stock Centre 

 

Table 2.2 Overexpression Lines 
 

 
 
Table 2.3 Driver Lines 
 
 

 
 

A number of genotypes were created from these stocks for this study. For 

example, for the rescue experiments, each TBPH knockout line was 

Genotype Name Source

w; TBPH[delta23]/CyO.GFP TBPH
Δ23

Feiguin et al., 2009

w; TBPH[null]/CyO.GFP TBPHnull
Fiesel et al., 2010

w; TBPH[DD96]CyO.GFP TBPHDD96
Diaper et al., 2013

w; TBPH[DD100]CyO.GFP TBPHDD100
Diaper et al., 2013

w; caz[1]/FM7.GFP caz1
Wang et al., 2011

w; Opa1[s3475]/CyO.GFP Opa1-
BDSC 12188 (Spradling et al., 1999)

y w Marf[B]FM7c,Kr>GFP; stat/TM6B Marf-
BDSC 57097 (Sandoval et al., 2014)

Genotype Name Source

w; P{w+, UAS-lacZ} UAS-lacZ BDSC 1777 (Brand and Perrimon, 1993)

w; P{UAS-TBPH}attP2 UAS-TBPHWT
Wang et al., 2011

w; P{UAS-TDP-43 WT}attP2 UAS-TDP-43WT
Wang et al., 2011

w; P{UAS-TDP-43 M337V}attP2 UAS-TDP-43M337V
Wang et al., 2011

w; P{UAS-Flag-cazWT}attP2 UAS-cazWT Wang et al., 2011

w; P{UAS-Flag-cazP398L}attP2 UAS-cazP398L Wang et al., 2011

w; P{UAS-Flag-FUSWT}attP2 UAS-FUSWT Wang et al., 2011

w; P{UAS-Flag-FUSP525L}attP2 UAS-FUSP525L Wang et al., 2011

w; P{UAS-Pure(GGGGCC)3}attP40 UAS-Pure 3 Mizielinksa et al., 2014

w; P{UAS-Pure(GGGGCC)36}attP40 UAS-Pure 36 Mizielinksa et al., 2014

w; P{UAS-RO.36}attP40 UAS-RO.36 Mizielinksa et al., 2014

w; P{UAS-PR.36}attP40 UAS-PR.36 Mizielinksa et al., 2014

w; P{UAS-HA-mito.GFP}e UAS-mito.GFP BDSC 8443 (Pilling et al., 2006)

w; P{UAS-NPY.GFP} UAS-NPY.GFP Mudher et al., 2004

Genotype Name Source

w; P{da-GAL4} da-GAL4 BDSC 8641 (Wodarz et al., 1995)

w; P{elav-GAL4}C155 elav-GAL4 BDSC 458 (Lin and Goodman, 1994)

w; P{D42-GAL4} D42-GAL4 BDSC 8816 (Yeh et al., 1995)

y w; P{CCAP-GAL4}16 CCAP-GAL4 BDSC 2565 (Park et al., 2003)
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crossed into each of the overexpression transgene backgrounds. Also, in 

this study it was necessary to generate flies containing two genetic 

manipulations on the same chromosome, for example, for the study of the 

axonal transport of mitochondria. Here, recombinants TBPH-, CCAP-GAL4 

on chromosome II were required so that these may be crossed with 

TBPH-/CyO.GFP; UAS-mito.GFP/TM6B flies to produce homozygous TBPH 

knockout larvae expressing mito.GFP in the CCAP expression pattern: 

 
TBPH-,CCAP-GAL4 / TBPH- ; UAS-mito.GFP/+ 

 
 
To achieve this, TBPH-/CyO.GFP flies were crossed with CCAP-GAL4/CyO 

flies to produce TBPH-/CCAP-GAL4 progeny. Recombination only occurs 

in female flies and thus female progeny were selected and crossed with 

Gla/CyO males to generate potential TBPH-,CCAP-GAL4 /CyO. To test for 

recombination, male progeny from this cross were individually mated 

with TBPH-/CyO.GFP flies. The straight-winged and thus potential 

homozygous TBPH- progeny were assessed for the presence of CCAP-

GAL4 by the observation of the yellow eye colour phenotype caused by 

the presence of the mini-w+ marker in the CCAP-GAL4 construct.  As an 

additional test, these flies were crossed with UAS-mito.GFP line and the 

larvae were dissected to assess for presence of fluorescent cargo 

expressed in the CCAP-GAL4 pattern.  To test that TBPH- had recombined 

with CCAP-GAL4, the straight-winged yellow-eyed flies locomotor ability 

was observed. Those flies exhibiting the characteristic extreme motor 

defect as described by Feiguin et al., (2009) represented recombinants. 

Progeny from this cross was then established as a stock. Similarly, the 

TBPH-, UAS-mito.GFP recombinants were also generated and tested for 

the presence of the UAS transgene in the potential recombinant progeny 

through crossing with CCAP-GAL4 and the larvae dissected and assessed 

for the presence of fluorescent cargo.  
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2.2:  Statistical Analysis 

 

The type of statistical test to be carried out depends on whether the data 

are normally distributed. To assess this all data sets were subjected to the 

D’Agostino-Pearson normality test, which tests the extent to which the 

distributions of the data are different from the normal ‘Gaussian’ 

distribution. This test allows for ties between data points unlike some 

others. All data sets except those of the climbing assays passed the 

normality test.  

 

A parametric test can be used when data is normally distributed. For such 

data sets with only two independent groups (Figures 3.5, 3.8, 3.10), an 

unpaired two-tailed t test was carried out. This compares the difference 

between the means in consideration of the variability of the data. The null 

hypothesis is:  H0=μ1=μ2. A significant result, that is, the acceptance of the 

alternative hypothesis (HA), states that the means are significantly 

different.  

 

For all data sets (except for the climbing assay and those discussed 

above), which involve more than two groups, One-way analysis of variance 

(ANOVA) was conducted. This is a standard robust test on data with more 

than two independent groups. It functions to compare the means 

between the groups and indicates whether any of those means are 

significantly different. To do this it tests the null hypothesis (H0) which is: 

H0=μ1=μ2=μ3=μk. A significant result states that two or more means are 

significantly different.  

 

However, in order to discover which of the group means are significantly 

different from each other a post-hoc test must be carried out. These 

tests function to control for the increase in the experiment-wise error 

rate that is, they prevent the increased chance of a type 1 error (false 

rejection of H0), which occurs as an effect of conducting multiple 
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comparisons, keeping this to 5% as standard. There are many post-hoc 

tests to choose from, the choice of which is dependent on the type of 

comparisons to be carried out. The Tukey post-hoc test for example is 

used for the purposes of comparing every mean with all other means in 

the data set, however if it is necessary, as in this project, only to compare 

a specific set of means, then the Bonferroni or Sidak is required. The 

Sidak is described as a modification of the Bonferroni that is slightly less 

strict (conservative) and thus has more power. Whilst the Bonferroni is 

an appropriate test, it has been criticised as too conservative particularly 

with a large number of comparisons, thus the Sidak was chosen for this 

project. 

 

The Kruskal-Wallis test was used for the climbing assay analysis (Figures 

3.13, 3.14D, 3.16, 4.16, 4.17B, 4.19, 4.20, 5.5) as these data sets failed the 

normality test. This test is the non-parametric equivalent of the ANOVA 

and thus can be used when the distribution assumptions required for the 

ANOVA have not been met. It also allows for more than two groups to be 

compared, which the data in this study required to be compared, unlike 

the similar Mann-Whitney U test. The data are ranked from lowest to 

highest and assessed for the differences in the rank sums. It tests the null 

hypothesis that the differences in rank sums are a product of random 

sampling. The post-hoc test is the Dunn’s multiple comparisons test, 

which allows for selected pairs of columns. Here, the sum of ranks 

between a pair and the value of the expected average difference is 

compared.  

 

Each figure shows the mean with the error bars corresponding to the 

standard error of the mean (SEM) as it was desired to show an indicator 

of the accuracy of the mean values.  
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2.3: Live Imaging Axonal Transport 

 

For the assessment of axonal transport of mitochondria and vesicles, a 

live imaging approach was employed using the intact axons of motor 

neurons from Drosophila wandering third instar larvae. The following 

technique is adapted from that of Kuznicki and Gunawardena, (2010). In 

order to study live transport of mitochondria in Drosophila, this study 

utilised the UAS-mito.HA-GFP fly line (herein referred to as UAS-

mito.GFP) (Pilling et al., 2006), which was created using the fusion protein 

generated by Rizzuto et al., (1995). This protein is comprised of the 

mitochondrial-targeting signal of the Complex IV subunit VIII with the N 

terminal of the S65T GFP variant. To study vesicle transport, the UAS-

NPY-GFP fly line (Mudher et al., 2004) was used, which encodes a 

transport vesicle marking human Neuropeptide Y-GFP fusion protein.  

 
Table 2.4:Live imaging dissection solution from Kuznicki and Gunawardena, 
(2010): 

 
Stock Solution Working 

Solution 
10ml 

1 M NaCl  (Fisher Scientific 
10326390) 

128 mM NaCl 1.28 ml 

0.1 M EGTA (amnesco 0732) 1 mM EGTA 0.1 ml 
1 M MgCl2  (BDH 101494V) 4 mM MgCl2 0.04 ml 
1 M KCl  (BDH 101984L) 2 mM KCl 0.02 ml 
0.5 M HEPES  (Sigma 1001889450) 5 mM HEPES 0.1 ml 
0.5 M Sucrose (Sigma 101285288) 36 mM Sucrose 0.72 ml 

 
The solution was made fresh for each microscope session and adjusted to 
pH 7.2.  
 

2.3.1 Fillet Preparation  

 

Third instar larvae of the correct genotype were recovered from the vial 

with forceps and washed in dissection solution to clean off any food 

attached to them. Each larva was placed onto the Sylgard (Sigma761028) 
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slide and arranged so that it was straight and horizontal, dorsal side up. A 

dissection pin (Fine Science Tools 26002-10) was inserted within the tail 

and inserted into the plate. The mouth hook was pierced by a pin and 

pulled back so that the larva was stretched longitudinally as far as 

possible. This pin was then inserted into the plate. The lava was then 

immersed in a 1 ml bubble of dissection solution. Using the 

microdissection scissors (Fine Science Tools 15000-00), an incision was 

made at the tail end and using this as a starting point, the larva was cut 

open along its length from posterior to anterior. The guts, salivary glands 

and tracheal system within the larva were removed using forceps gently 

so as not to disturb the ventral ganglion or the motor nerves. The larva 

cuticle was then pinned back at the top and bottom on each side. A pin 

was inserted into the top of the ventral ganglion and pulled backwards so 

that the attached motor nerves are pulled taut in one focal plane. To 

prevent possible microscope lens damage, all the pins were pushed as far 

as possible into the Sylgard slide to avoid contact with the lens. More 

dissection solution was added slowly to the preparation in order to 

produce a large bubble of solution on the slide. 

 

2.3.2. Microscopy  

 

The Olympus FV1000 Fluoview confocal microscope (Olympus 

corporation) was used for all axonal transport experiments. The details of 

the setting parameters for mitochondria and vesicle microscopy were as 

follows:  

Table 2.5: Microscope parameters 

 

Parameter Mitochondria Vesicles 

Objective 60x Water NA 0.90 
Olympus LUMPLFL 

60x Water NA 0.90 
Olympus LUMPLFL 

Laser line 488 488 
Laser power 20% 60% 
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The prepared fillet was mounted into the microscope stage. The ventral 

ganglion was then located, this can be done via fluorescence for CCAP-

GAL4>mito-GFP larvae, however the signal from the CCAP-GAL4>NPY-GFP 

larvae was not sufficient to allow this and thus brightfield was used to 

locate the ventral ganglion in this instance. Once located, the slide was 

adjusted so that the ventral ganglion was just outside of the field of view. 

Locations for the movies were selected from the fluorescing motor axons 

within this field of view. Once selected, a region of interest (ROI) was 

defined that covered 75% of the computer screen. The mitochondria or 

vesicles within this ROI must all be clearly visible within the focal plane to 

allow clear kymograph production. Movies were taken at 1 frame per 5 s 

for 100 frames for mitochondria and 1 frame per 0.5 s for 100 frames for 

vesicles. Mitochondria movies therefore took a total of 500 s to record, 

whereas vesicle movies took 50 s. One movie per larva was taken for 

mitochondrial movies and up to 2 per larva for vesicle movies due to the 

reduced time required to take the movies.  

 

It must be noted that the results for some genotypes differ slightly 

between experiments, such as the TBPH knockout fly in Figure 3.1 and 4.6. 

This highlights that there is a level of inherent variability within the 

transport assay system that may result from difficult to control variables 

such as the temperature of the assay environment, which is noted to 

affect this transport (Godena, personal communication). However these 

differences do not affect the overall conclusions to be drawn for the data.  

 

2.3.3 Data Analysis 

 

2.3.3.1 Kymograph Production 

 

 Movies were analysed using the ImageJ software. They were changed into 

grey scale and subjected to the ‘stackreg’ plugin, which removes shaking 

or ‘drift’ from the images. A defined ROI was used to crop the movie; for 



 71 

this the ROI was taken for the area providing the most mitochondria or 

vesicle coverage. The ‘straighten’ plugin was then used to create a straight 

line of mitochondria or vesicles and then the ‘reslice’ and ‘Z projection’ 

tools were used to create a kymograph, which is a visual representation of 

the directional movement of an object through time (Figure 2.1). 

 

2.3.3.2 Kymograph Scoring 

 

Each trace on a kymograph represents one mitochondria or vesicle 

(cargo). Traces moving from left to right are cargo moving in the 

anterograde direction towards the synapse, those moving oppositely from 

right to left are moving in the retrograde direction towards the cell body. 

Vertical traces represent cargoes that have not moved during the time 

the movie was taken. Thus, cargos were scored into three categories, 

anterograde, retrograde and stationary.  

 

However, due to the bidirectional nature and stop-start behaviour of this 

axonal transport, many of the traces do not follow a perfect path. Some 

traces represent cargo that displayed motion in one direction followed by 

a stationary period or a sudden reversal. In addition, some cargo moved 

into or out of the movie region during the time period of the movie and 

thus do not extend from top to bottom.  Therefore, a scoring system was 

developed to deal with this possible ambiguity (see section 2.3.3.3). The 

kymographs were coded to allow for blinded scoring. Furthermore, the 

manual nature of the scoring introduced a level of subjectivity and thus, to 

counteract this, the kymographs were scored blind by an additional 

researcher and the scores compared, any discordant results that could 

not be resolved were discarded.   
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Figure 2.1: Live Imaging of axonal transport in third instar larvae. (A) Larvae were fillet 
dissected and movies were taken from axons within the field of view just distal to the 
ventral ganglion (red boxes). (B) Kymographs were generated of the resultant movies, 
which display distance travelled through time. Shown are frames from a movie of 
mitochondrial transport taken at intervals of 100 s and the kymograph of this movie. The 
movement of one mitochondrion is followed through time (red asterix) as seen on the 
frames and the resultant line interpretation on the kymograph.  
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2.3.3.3 Example Kymograph Scoring  

 
Movement must be over 60% for cargo to be designated as either 

anterograde or retrograde. Likewise non-movement must total at least 

60% to be considered as stationary. Anything between these such as 50% 

movement and 50% non-movement is classed as ‘indeterminate’ and is 

excluded from the analysis. An example of a scored mitochondrial 

transport kymograph is illustrated in Figure 2.2A. Mitochondria 1,3,5,6,7 

and 10 are all very clearly straight vertical traces and are comfortably 

assigned as ‘stationary’. Similarly, 2 uniformly extends from left to right 

and is assigned as ‘anterograde’. However, mitochondrion 4 demonstrates 

a brief stationary period as it intersects with 6, but this is sufficiently 

short to allow this trace to fall into the anterograde category. In the same 

vein, mitochondrion 9 begins with a short stationary period but the 

majority of movement (measured by eye) is from right to left and thus is 

assigned as ‘retrograde’. Mitochondria 8 and 11 do not start at the top or 

end at the bottom of the kymograph, respectively. These represent 

mitochondria that travelled outside the region of axon being examined or 

which entered it after the movie had begun. In these instances, they are 

included for scoring if they are present for at least 50% of the movie time. 

For 8 this is measured by the pale red line on the right side of the 

kymograph in Figure 2.2A and is just over 50%. Thus 8 is admitted to be 

scored as anterograde. The pale green line measures 11 and this too 

passes this test and is admitted to be assigned as retrograde.  

 

The scoring of vesicle transport kymographs was also undertaken 

according to these criteria (Figure 2.2B), but is more difficult owing to the 

smaller size of the vesicles and fainter fluorescent signal. In this example, 

vesicles 1 and 2 are not present for sufficient time and are excluded. 

Vesicles 3 and 4 pass this test and are included and assigned as 

anterograde. Vesicles 5,6 and 7 are all clearly anterograde whereas 9 and 

10 are clearly stationary and 11 has a stationary period but as per the rules 

described above is assigned as retrograde. Vesicles 8, 12 and 1 
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Figure 2.2: Examples of scored kymographs of axonal transport for (A) mitochondria 
and (B) vesicles. Each cargo is numbered and assessed according to a set of criteria. Red 
= accepted anterograde cargo. Green = accepted retrograde cargo. Blue = accepted 
stationary cargo.  Unmarked traces are not scored (see text for details). 

 

 

 

 

A 

B 
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demonstrate considerable variability in direction that is not deemed to 

total at least 60% in any one way, thus these vesicles are excluded from 

the score. Vesicle 13 appears stationary but it cannot be accurately 

followed all the way through the kymograph and is excluded on that basis. 

 

2.3.3.4 Statistics 
 

For each movie the cargo in each category were multiplied by 100 and 

then divided by the total number of cargo in that movie to find the 

percentage of the total cargo within that category. These numbers for 

each movie were then statistically analysed by the GraphPad Prism 

software 6.0. One-Way ANOVA was carried out for each category with the 

Sidak multiple comparison test on selected genotypes to allow pairwise 

comparisons. These pairs were control versus each experimental 

genotype and also between experimental genotypes as necessary.  

 

2.3.4 Mitochondrial Length Analysis 

 

The movies of the selected genotypes were subject to the kymograph 

production protocol up to the formation of the straight-line stacked 

movie. From this, single images of frames 1, 50 and 100 were taken and 

each was colour inverted. Images were then resliced from the top and 

stacked via the Z projection tool to create an image in which the 

mitochondria were uniformly 1 pixel high. The image was then made 

binary according to the default threshold to remove any background 

noise and the length of each mitochondrion was calculated using the 

‘analyse particle’ tool. This gave the length in pixels which was then 

converted to μm (1 pixel = 4.831μm based on microscope calculations). 

These scores were then statistically analysed by the GraphPad Prism 

software 6.0 using the student’s unpaired two-tailed t-test. At least 7 

animals and 70 mitochondria were analysed for each genotype. 
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2.4: Behavioural Assays 

 

To test the functional capacity of the neuromuscular system, a number of 

behavioural assays on both larvae and adult flies were carried out that 

give a readout of the effects of neurodegeneration within the nervous 

system on key locomotor phenotypes.  

 

2.4.1 Eclosion 

 

Pupae were picked gently from the vial and placed in a new vial at a 

maximum number of 25. The number of adult flies that emerged from the 

pupal case was assessed as a proportion of the total in each vial. A 

minimum of three biological replicates was used per genotypes. The 

scores from each replicate for each genotype were analysed by the 

Graphpad Prism software 6.0 using One-Way ANOVA with Sidak multiple 

comparison test.  

 

2.4.2 Larval Crawling and Turning 

 

2.4.2.1 Crawling 

 

Control and experimental crosses were established at 25 °C and flipped 

every two days. On the 5th day, the vials containing wandering third instar 

larvae were coded by an independent researcher, placed in the 

behavioural assay room at 23 °C and left to acclimatise for 2 hours. One 

larva at a time was recovered from its vial by forceps and washed gently in 

a dish of distilled water to remove any residual food from its body that 

may interfere with its crawling ability. The agarose (Bioline 41025) surface 

was then placed under the viewing microscope (Zeiss Stemi 1000) and 

the lamp was turned on.  The washed larva was then placed using forceps 

on the starting centre dot and left to acclimatise for 5 seconds. The timer 
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was then started and the number of peristaltic wave movements in a 2 

minute period was counted with the aid of the viewing microscope and 

recorded with a clicker counter (Figure 2.3B). When undergoing the 

crawling assay, larvae were placed at the centre of the plate. They 

typically crawled in a straight direction to reach the edge of the plate and 

then proceeded to crawl around the edge for the remainder of the assay. 

If a larva crawled up the side of the plate to the top and over, the 

experiment was stopped and that result was not counted. 

 

2.4.2.2 Turning 

 

After the crawling count, the larva was turned over to ventral side up 

gently with the aid of a paintbrush. The time the larva took to corkscrew 

its body back to dorsal side up was recorded as the larval turning count 

(Figure 2.3C). The larval locomotion assays were adapted from Feiguin et 

al., (2009) and Estes et al., (2011). 

 

2.4.2.3 Data Analysis 

 

For both crawling and turning, 5 larvae were counted per session over 4 

sessions to provide a total of 20 larvae per group. The experimental set-

up is as detailed in Figure 2.2. The scores from each replicate for each 

genotype were analysed by the GraphPad Prism software 6.0 using One-

Way ANOVA with Sidak multiple comparison test.  

 

2.4.3 Young Adult Climbing 

 

Young male flies between 0 and 3 days post-eclosion were placed in the 

behavioural assay room set at 23 °C to acclimatise for 1 hour. The flies 

were then transferred to the climbing tubes at a maximum number of 25 

per tube for a further 1 hour. The climbing tube containing the flies was 

inserted into position 1 of the countercurrent apparatus. The whole 
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apparatus was banged down gently onto the table surface to knock the 

flies to the bottom of the tube and the apparatus top section was slid 

across to allow the flies access to climb into the first of the top tubes. 

Concurrently to this motion, the timer was activated. Flies were given 10 

seconds to climb after which time the top section of the apparatus is slid 

back across.  The flies were then banged down and dropped into the 

bottom tube at position 2 and the climbing process proceeds again a 

further 4 times until the flies have had the possibility to make it into the 

bottom tube at position 6 (Figure 2.4). 

 

2.4.3.1 Data Analysis  
 
The number of flies within each of the bottom tubes was then counted. A 

climbing index score was generated based on the number of flies at each 

of the positions. The first position was given a score of 0 and position 6 

given a score of 5. The scores for each experiment were combined and 

the numbers of flies at each position were ranked. These were then 

analysed by the GraphPad Prism software 6.0 using One-Way ANOVA with 

the Sidak multiple comparison test. At least 50 flies were used in this 

analysis. The climbing index of each of the genotypes within an 

experiment were normalised to the experiment control score to enable 

comparisons to be made more easily between experiments. 

 

2.4.4 Aged Adult Climbing 

 

For the longitudinal study of the effects of age-related neurodegeneration 

on climbing ability, male flies were aged in cohorts and the climbing assay 

was performed at set time points as indicated in figures. Between assays, 

the flies were flipped every two days into fresh vials with no more than 25 

per vial.  
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Figure 2.3: The experimental equipment set-up for the larval crawling and turning 
behavioural assays. (A) The agar surface plate is placed on the microscope stage. The 
microscope did not have its own light source and so a lamp was used for this purpose to 
aid viewing. (B) During the crawling assay, larvae begin in the centre and typically crawl 
towards the plate edge and around. The number of peristaltic wave movements is 
counted in a 2-minute period. (C) In the turning assay, larvae are carefully turned ventral 
side up with a paintbrush and the time taken to reorient is counted.  

 
 
2.4.5 Comparison of Climbing with Males and Mated Females 

 

The climbing assays conducted in this study used cohorts of male flies of 

both control and experimental groups, which we have found has yielded 

the most consistent results within our lab. An alternative approach is the 

use of mated females. To test this, an aged climbing assay was conducted 

using the FUS ectopic expression lines driven by D42>GAL4. The results 

(Figure 2.5) illustrate that the conditions of mated female only (Figure 

2.5A) and male only (Figure 2.5C) gave comparable results. This is also 

true at day 30 (Figure 2.5B&D) with the mated female condition (Figure 

2.5B) producing a mild increase in severity compared to the males (Figure 
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2.5D). It is concluded that the use of male flies only for this assay is an 

appropriate experimental design.  

 

2.5   Immunohistochemistry 
 
In this project, specific genotypes were subject to immunohistochemistry 

for analysis of mitochondrial number at the NMJ in abdominal segment II 

(A2) (Figure 2.6A). These genotypes all expressed D42>mito.GFP to 

provide a mitochondrial signal and were stained with horseradish 

peroxidase (HRP) to provide a signal for the pre-synaptic neuronal 

membrane, allowing visualisation of the NMJ structure.  

 

Table 2.6: Antibodies: 

 

Table 2.7: NMJ Dissection solution from Kuznicki and Gunawardena, (2010): 

 

 

 

2.5.1 Sample Preparation 

 

Wandering third instar larvae were washed in NMJ dissection solution 

and dissected open as defined in section 2.2.2. However in this case, the  

 

Type Name Source Code     Dilution Host 

Primary HRP Jackson 
Immunoresearch  

323-005-
021 

1 in 250 Rabbit 

Secondary Alexa Fluor® 
594 
Anti-Rabbit 

Life Technologies A-21207 1 in 1000 Donkey 

Stock Solution Working Solution 10ml 
1 M NaCl 128 mM NaCl 1.28 ml 

1 M MgCl2 4 mM MgCl2 0.04 ml 
1 M KCl 2 mM KCl 0.02 ml 
1 M CaCl2 (Fisher Scientific 10158280) 0.1 mM CaCl2 0.001 ml 
0.5 M HEPES 5 mM HEPES 0.1 ml 
0.5 Sucrose 36 mM Sucrose 0.720 ml 
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Figure 2.4: The climbing assay. (A) A climbing tube containing the flies is added to 
position 1 of the counter-current apparatus. The flies are banged to the bottom of the 
tube (not shown) and the top part of the apparatus is shifted across (blue arrow) 
allowing the flies to climb up into the 1

st
 top tube. They are given 10 seconds to climb 

after which point (B) the top part of the apparatus is shifted back preventing further 
climbing of the flies still within the bottom tube. The apparatus is then banged down 
(black lightning bolt) forcing the flies to drop into the bottom tube at position 2. (C) This 
procedure is repeated 4 more times until the flies have had the chance to reach the last 
bottom tube. 

 

C 
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Figure 2.5: Aged climbing assay on FUS ectopic expression flies driven by D42-GAL4, 
using mated females at (A) day 0 and (B) day 30. Comparable results were shown when 
the same assay was conducted with males at (C) day 0 and (D) day 30. Climbing ability 
through time for (E) mated females and (F) males.  A-D normalised to control. Control = 
D42> LacZ. Statistics calculated using Kruskal-Wallis with Dunn’s multiple comparison 
test: * p < 0.05, *** p < 0.001.  
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ventral ganglion and the attached motor nerves were also removed. The 

dissection solution was then removed and the larvae were fixed with 4% 

paraformaldehyde (Agar Scientific AGR1026) for 20 minutes. The larvae 

were then washed 3 x 15 minutes in phosphate buffered saline with 0.1% 

Tween20 (Sigma P1379) (PBST) on a rocker at room temperature.  The 

larvae were subject to a minimum of 1 hour blocking in 5% foetal bovine 

serum (FBS) (Sigma F4135) in 0.1% PBST on a rocker at room 

temperature. Anti-HRP was added to this solution at a dilution of 1 in 250 

and placed at 4 °C overnight. Larvae were washed 3x 15 minutes in PBST 

on a rocker at room temperature. The larvae were then added to a 1 in 

1000 dilution of anti-Rabbit Alexa Fluor® 594 in a solution of 5% FBS in 

0.1% PBST, wrapped in foil and placed on a rocker at room temperature 

for 1 hour. Another round of washing 3x15 minutes in PBST followed.  

 

Larvae were mounted onto slides (Thermo Scientific 10144633A) and 

dried of solution before Mowiol (Polysciences 17951-500) was added and 

a coverslip (BDH 406) placed down. This was sealed with nail varnish. 

Sample slides were stored in darkness at 4°C. 

 

2.5.2 Microscopy 

 

The Olympus FV1000 Fluoview confocal microscope (Olympus 

corporation) was used for all immunofluorescence experiments.  

 

Table 2.8: Microscope parameters 

 
Parameter Mitochondria NMJ 

Objective 60x Oil Plan Apo NA 
1.42 (Nikon) 

60x Oil Plan Apo NA 
1.42 (Nikon) 

Laser line 488 543 
Laser power 20% 50% 

 
Z- stack images of 1 μm per slice were taken sequentially for 10-12 slices. 

Bright field images of muscles 6 and 7 were taken for each of the A2 



 84 

segments used in the immunofluorescence microscopy.  These images 

were taken using the Zeiss Axioskop MOT (Zeiss Corporation) using the 

10x Plan-NEOFLUAR objective (Zeiss). 

 

2.5.3 Data Analysis  

 

2.5.3.1 Image Analysis 

 

 Images were analysed using the ImageJ software. Each image was split 

into its constituent colour channels and these were stacked.  For the 

green channel (mitochondria), the rectangle selection tool was used to 

define a region of interest (ROI) encompassing only the NMJ area and the 

image was cropped for this region. This image was then made binary and 

the ‘analyse particle’ tool was employed to generate the number of 

mitochondria dots present in the image. For images of both mitochondria 

and NMJ staining, the channels were separated; both channels were 

stacked and then remerged. 

 

2.5.3.2 Mitochondrial Count Analysis 

 

The bright field muscle images of muscle 6/7 were used to measure the 

area of these muscles (Figure 2.6B). In ImageJ, the free-hand selection 

tool was used to draw around each muscle individually and the area was 

calculated using the ‘measure’ function. The scores for the each muscle 

were added together to create the muscle surface area (MSA) score. 

 

The MSA of the experimental larvae were normalised to the MSA of the 

control larvae to produce a normalised muscle surface area (NMSA) 

score; this is to remove the variable of different MSAs that could account 

for differences in mitochondrial number as larger muscles have larger 

NMJs.  
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The mitochondrial count of the experimental genotypes and the control 

(MC) was then normalised to the respective NMSA to give the normalised 

mitochondrial count (NMC). This was then normalised to the control 

NMC to provide the mitochondrial score (MS). These scores were then 

statistically analysed by the Graphpad Prism software 6.0 using either 

students unpaired two tailed t-test or One-Way ANOVA depending on the 

number of experimental groups with the Sidak multiple comparison test.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Mitochondrial number at the NMJ analysis. (A) The Drosophila third instar 
larva has a distinct abdominal repeating muscle architecture arranged into segments. 
The analysis was undertaken at the second segment termed ‘A2’. Within this segment, 
the NMJ on muscles 6 and 7 was analysed by fluorescence and (B) bright field images 
were taken for the calculation of muscle surface area for the mitochondrial count 
analysis.  
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Chapter 3: TDP-43 
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3.1: Aims and Hypothesis 

 

The primary aim of this project was to conduct a survey of axonal 

transport in terms of mitochondrial and vesicle cargoes, in three genetic 

models of ALS, and to examine whether this has any correlational effect 

on the behavioural motor functions of these models, tested through both 

larval and adult locomotor assays. The first to be assessed was TDP-43. 

 

It was hypothesised that disruption to TDP-43 functioning through 

knockout, overexpression or pathogenic mutation interferes with axonal 

transport and contributes to the dying back pattern of degeneration 

characteristic of a distal axonopathy.  

 

3.2: Considerations For Axonal Transport Studies 
 

3.2.1 Drosophila as a Model Organism For Axonal Transport 

 

Drosophila is an ideal model organism for testing a wide range of 

biological questions due to many factors pertaining to its simple 

husbandry and genome.  However, in terms of axonal transport, the 

majority of initial studies had been conducted using other organisms. 

Isolated giant squid axoplasm has been used extensively, as have primary 

mouse neurons grown in culture. The main advantages here are the ease 

of visualisation and, for axoplasm, the removal of potentially confounding 

factors such as functions of the cell body including transcription (Morfini 

et al., 2013). However, Drosophila has been gaining favour as a useful in 

vivo model and has been used successfully to study axonal transport by 

among others Pilling et al., (2006) and Godena et al., (2014). In the same 

year Alami et al., (2014) reported use of Drosophila motor neuron live 

imaging in their assessment of TDP-43 granule axonal transport. Though 

an in vivo model, it is experimentally difficult to successfully visualise and 
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capture movies from whole larvae, although a protocol for this is available 

(Miller et al., 2005). In practice, however, this method in our hands 

caused a shaking effect on the movies referred to as ‘drift’ due to the 

inherent internal movement within the larva that cannot be satisfactorily 

counteracted (Godena, personal communication). Thus, the fillet 

dissection approach of Kuznicki and Gunawardena, (2010) was employed. 

This method allows for easy exposure of the Drosophila central nervous 

system whilst leaving the motor neuron axons intact in situ within a live 

animal.  

 

3.3.2 CCAP as a Driver For Axonal Transport 

 

The main challenge when designing experiments investigating axonal 

transport is the clear visualisation of that transport. As the archetype 

strong motor neuron driver, D42-GAL4 (Yeh et al., 1995) is used in the 

majority of studies of behavioural motor function and is used in this study 

for those purposes. However, the use of it to study axonal transport 

(Pilling et al., 2006; Wang and Schwarz, 2009a) indicate that it is not best 

suited for this purpose. The segmental nerves projecting from the ventral 

ganglion contain between 60-80 motor and sensory axons, thus driving 

fluorescently tagged proteins involved in axonal transport with the all 

motor neuron driver D42-GAL4 creates a crowded view of transport 

occurring within the whole motor axon complement of the nerve. This 

leads to a severe difficulty in accurately following individual cargo. For this 

reason D42-GAL4 was not used in this study of axonal transport. 

  

An alternative motor neuron driver that has been used successfully in 

axonal transport studies (Wang and Schwarz, 2009a; Godena et al., 2014) 

is crustacean cardioactive pepetide (CCAP), which is a neuropeptide with 

functions in regulating heart rate (Nichols et al., 1999) and the circadian 

regulation of ecdysis (Park et al., 2003). It is expressed by a specific set of 

neurons within the brain and ventral ganglion. In the latter, there is at 
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least one bilateral pair of CCAP expressing neurons within each 

neuromere, with two bilateral pairs present in thoracic (t) 3 and 

abdominal (a) 1-4, one pair in a5-7 and one pair in a8-9. One of the pairs 

within t3, a1-4 and a8-9 are efferent neurons each projecting an axon that 

leaves the ventral ganglion in the segmental nerves (Ewer and Truman, 

1996). The CCAP-GAL4 driver line accurately follows this pattern of 

expression (Park et al., 2003; Santos et al., 2007; Karsai et al., 2013). Thus, 

the CCAP-GAL4 driver allows for the visualisation of fluorescently- tagged 

axonal transport cargo in one axon only of these segmental nerves and 

therefore allows accurate following and assessment of each cargo 

through its transport. For this reason it was chosen as the driver in this 

study. 

 

3.3: Mitochondrial Axonal Transport 
 

3.3.1 TBPH is the Drosophila Homologue of TDP-43  

 

The gene encoding for TDP-43, TARDBP, has been highly conserved 

through evolution. The Drosophila homolog of TDP-43 is known as TAR 

DNA binding protein homolog (TBPH) and the gene is located on the right 

arm of chromosome 2 at position 60A4 to 60A5 of the cytogenetic map 

(FlyBase). TDP-43 and TBPH share great structural and sequence 

similarity demonstrating 59% identity and 77% similarity over the N-

terminal and RNA recognition motifs, however, the C-terminal domain is 

not highly conserved and is markedly longer in TBPH, being comprised of 

532 amino acids to 414 of TDP-43  (Ayala et al., 2005; Romano et al., 2012). 

Previous studies have indicated that TDP-43 and TBPH are also 

functionally conserved through evolution. Indeed, the phenotypes of TBPH 

knockout flies can be rescued by expression of TDP-43WT. These include 

viability, lifespan, locomotor behaviours and NMJ morphology (Feiguin et 

al., 2009; Diaper et al., 2013). 
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TBPH also demonstrates conserved splicing functionality (Ayala et al., 

2005), consistent with the fact both proteins share the preferential 

binding of UG or TG repeats of RNA or DNA, respectively (Ayala et al., 

2005) and for the binding of other hnRNPs, such as hnRNP A1/A2 

(D’Ambrogio et al., 2009; Romano et al., 2014). Thus Drosophila is an 

excellent in vivo model for the study of the effects of loss of TDP-43.  

 

3.3.2 The Effect of Different Knockout Lines on Mitochondrial 
           Axonal Transport 

 

A number of TBPH knockout alleles have been generated to date. The 

initial phase of this study utilised two of these, TBPHΔ23 (Feiguin et al., 

2009) and TBPHnull (also referred to as TBPH1) (Fiesel et al., 2010). The 

former is a partial deletion of 1616 base pairs removing the 5’ regulatory 

region and a part of the coding region. No TBPH protein was detected by 

western blot. The latter is a complete deletion of coding sequence and no 

mRNA was detected via RT-PCR.  

 

To generate fly lines for this assay of mitochondrial axonal transport, 

these lines were recombined with CCAP-GAL4 and balanced using 

CyO.GFP. The lines were also separately recombined with UAS-mito.GFP 

and these were crossed together to generate homozygous TBPHnull and 

TBPHΔ23 flies expressing mito.GFP driven by CCAP-GAL4. In addition, these 

recombinant lines were crossed with each other to produce TBPHnull/Δ23 

trans-heterozygous knockout flies.  

 

Mitochondrial transport was assessed as described in section 2.3. Both 

homozygous knockout lines and the trans-heterozygous knockout 

demonstrate a significant reduction in the motile fraction of axonal 

mitochondria (Figure 3.1), with a concomitant increase in the stationary 

fraction, which is indicated by the increase in the number of vertical lines 

on the kymographs (Figure 3.1B). This phenotype is most severe for the 
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TBPHnull homozygous knockout line. The trans knockout line shares this 

phenotype, but is slightly less severe than either homozygous line. This is 

likely due to a modifying effect of the chromosomal backgrounds of the 

two knockout mutants. For this reason, the trans-heterozygous knockout 

combination was chosen for all further experiments. 

 

3.3.3 TBPHWT Rescues the Knockout Mitochondrial Transport 
          Deficit 
 

To validate whether this phenotype is a specific consequence of the loss 

of TBPH, a rescue experiment was conducted wherein TBPHWT was re-

expressed in the trans-heterozygous knockout background. Here, 

mitochondrial transport was rescued to a comparable level with the 

control (Figure 3.2). Thus a reduction in the axonal transport of 

mitochondria is a direct consequence of the loss of TBPH. This rescue 

could also be achieved by the expression of TDP-43WT and TDP-43M337V. 

 

3.3.4: The Effect of Ectopic Expression of TBPH, TDP-43 and a   
        Human Pathogenic Variant on Mitochondrial Axonal 
                                            Transport 
 

 
Previous studies have demonstrated that the ectopic expression of TDP-

43 also causes neurodegenerative phenotypes in a number of 

experimental systems including Drosophila. (Guo et al., 2011; Hanson et al., 

2010; Ritson et al., 2010; Voigt et al., 2010; Li et al., 2010; Miguel et al., 2011; 

Lin et al., 2011; Estes et al., 2011; Diaper et al., 2013) Thus, overexpression of 

both the fly and human wild type protein was examined for mitochondrial 

axonal transport. In addition, the expression of a protein containing an 

ALS-linked C-terminal mutation, M337V was also assessed. This variant 

was first described in the study linking mutation in TARDBP with ALS 

pathogenesis (Sreedharan et al., 2008) and was associated with both  
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Figure 3.1: TBPH loss results in a mitochondrial transport deficit. The two knockout 
mutants give rise to a clear deficit in mitochondrial transport with a concomitant 
increase in the stationary fraction. This result is also shared by but is slightly less severe 
in the trans-heterozygous knockout line. (A) Quantification, the number in brackets 
indicates number of movies analysed. (B) Representative kymographs of the indicated 
genotypes. Scale bars: Horizontal (distance) =10 μm, Vertical (time) =125 s. Control = 
CCAP-GAL4/+; UAS-mito.GFP/+. Graph shows mean ± SEM. Statistics calculated using 
One-way ANOVA with Sidak’s multiple comparison test: * p < 0.05, **p< 0.01, *** p < 
0.001. 
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Figure 3.2: The mitochondrial transport defect observed in the trans-heterozygous 
TBPH knockout fly could be completely rescued by the expression of  TBPH

WT
 / TDP-

43
WT

 and TDP-43
M337V

 transgenes. (A) Quantification, the number in brackets indicates 
number of movies analysed. (B) Representative kymographs of the indicated genotypes. 
Scale bars: Horizontal (distance) =10 μm, Vertical (time) =125 s. Control = CCAP-GAL4/+; 
UAS-mito.GFP/+. Graph shows mean ± SEM. Statistics calculated using One-way ANOVA 
with Sidak’s multiple comparison test: * p < 0.05, **p< 0.01. 
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spinal and bulbar onset cases. These transgenes were created by Wang et 

al., (2011) and are targeted insertions expressing at the same level. For this 

study they were combined with the CCAP-GAL4; UAS-mito.GFP. 

 

In contrast to the loss of TBPH, expression of either the fly or human 

protein (GOF) did not result in any alterations to the amount of 

mitochondrial transport. This was also the case for the human pathogenic 

variant, TDP-43M337V (Figure 3.3).  

 

3.4: Vesicle Axonal Transport 

 
3.4.1 Vesicle Imaging Frame Rate Optimisation 

 
Vesicle transport was assessed in terms of the movements of transport 

vesicles expressing a human Neuropeptide Y-GFP (NPY-GFP) fusion 

transgene (Mudher et al., 2004). These vesicles are continuously subject 

to axonal transport making them a good candidate for studies of axonal 

transport.  

 

Unlike for the mitochondrial transport, optimisation of this vesicle 

transport movie parameters had not been carried out within our lab 

before the start of this project. Neuropeptide-filled vesicles move 

birectionally through the axon at a speed of a minimum four-fold greater 

than that achieved by the fastest moving mitochondria (Millecamps and 

Julien, 2013). Attempting to image this transport at the mitochondrial rate 

of 1 frame per 5 s proved to be far too slow to sufficiently capture the 

movement of individual vesicles and led to a severely crowded view of 

transport that cannot be analysed from the kymographs (Figure 3.4A). 

The frame rate at which the movies of this transport were taken at 

therefore required optimisation. Several different frame rates were 

examined: 3 s, 1 s, 0.5 s (Figure 3.4B-D). The results indicate that the rate 

of 1 frame per 3 s is still insufficiently fast to capture a view of transport 
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that can be analysed from the resultant kymographs. A frame rate of 1 per 

1 s was a significant improvement however a rate of 1 frame per 0.5 s gave 

the clearest kymograph results and was therefore chosen as the frame 

rate for vesicle movie capture. 

 
In similarity to the mitochondria imaging parameters, the vesicle movies 

were taken for 100 frames.  The region of interest from which the movies 

were taken was also reduced due to the comparative difficulty in finding 

NPY-GFP expressing axons remaining in the focal plane for the necessary 

distance.  

 
3.4.2 Vesicle Transport in TBPH Loss 
 
 
To generate trans-heterozygous knockout fly lines for the examination of 

vesicle transport, the TBPHΔ23,CCAP-GAL4 recombinant fly line was 

crossed into the UAS-NPY-GFP background and was then mated with 

TBPHnull.  

 
Vesicle transport was assessed as described in section 2.2. Here, there 

was no observable defect in the amount of vesicle movement, which 

remained comparable to the control (Figure 3.5). 

 
3.4.3 The Effect of Overexpression of TBPH and Ectopic   
           Expression of TDP-43 and a Human Pathogenic Variant on  
             Vesicle Axonal Transport 
 
 
The transgenes described previously were mated with the CCAP-GAL4; 

UAS-NPY-GFP line to generate larvae bearing one copy of the transgene.   
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Figure 3.3: Gain of TDP-43 does not affect the level of mitochondrial transport. The 
overexpression of the fly wild type or ectopic expression of the human wild type protein 
and a human pathogenic variant TDP-43

M337V 
did not lead any alterations in the axonal 

transport of mitochondria. (A) Quantification, the number in brackets indicates number 
of movies analysed (B) Representative kymographs of the indicated genotypes. Scale 
bars: Horizontal (distance) =10 μm, Vertical (time) =125 s. Control = CCAP-GAL4/+; UAS-
mito.GFP/LacZ. Graph shows mean ± SEM. Statistics calculated using One-way ANOVA 
with Sidak’s multiple comparison test. 
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Figure 3.4: Frame rate optimisation for vesicle transport. (A) Imaging at a rate of 1 frame 
per 5 s provides a crowded view of transport that is impossible to analyse via 
kymographs. (B) This effect is only slightly improved reducing the frame rate to 1 per 3 s. 
(C) A further reduction to 1 per 1 s leads allows for the possibility to follow individual 
cargo however this is still difficult. (D) A frame rate of 1 per 0.5 provides a clear ability to 
follow cargo through transport and was chosen for the study. Scale bars: Horizontal 
(distance) =10 μm, Vertical (time) =12.5 s. 
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In contrast to the loss of TBPH, gain of this protein does cause a defect to 

the amount of vesicle transport as indicated by a significant increase in 

the stationary fraction (Figure 3.6). Neither the anterograde nor 

retrograde transport was reduced to the point of significance, however 

both were trending in that direction and the cumulative effect of this 

significantly increases the stationary fraction.  

 

Expression of the pathogenic mutant M337V also causes an increase in the 

stationary fraction and here this is can be traced to a significant reduction 

in the retrograde direction of transport, whereas anterograde transport 

is not affected. However, unlike the fly protein, gain of the wild-type 

human homolog did not disrupt this transport to any significant degree, 

although it was trending in that direction.  

 

3.5: The Effect of TBPH Gain on Mitochondrial  

 Morphology 

 
 

Whilst the gain of TBPHWT does not lead to any disruption to the amount 

of mitochondrial axonal transport, it was observed that the mitochondria 

appeared to be markedly increased in length compared to those of the 

control or TDP-43WT and TDP-43M337V. This was quantified as described in 

section 2.3.4 and found to be significant throughout the course of the 

movies (Figure 3.7).   

 

As a further validation of this observation, the lengths of mitochondria 

from the trans-heterozygous knockout (LOF) genotype were also 

assessed. Here, no significant difference in length was apparent during 

the movies (Figure 3.8). These mitochondria were not subjected to 

ultrastructural analysis and so it cannot be explicitly ruled out that the 

long lengths do not in fact represent a series of short clumped 

mitochondria. However, the fission/fusion genetic interaction studies 

described below render this unlikely. 
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Figure 3.5: Loss of TBPH does not cause any alterations to the transport of vesicles. (A) 
Quantification, the number in brackets indicates number of movies analysed (B) 
Representative kymographs of the indicated genotype. Scale bars: Horizontal (distance) 
=10 μm, Vertical (time) =12.5 s. Control = CCAP-GAL4/+; UAS-NPY-GFP/+. Graph shows 
mean ± SEM. Statistics calculated using Student’s t-test.  
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Figure 3.6: Overexpression of wild-type fly or human pathogenic variant M337V causes a 
defect in the axonal transport of vesicles with an increase in the stationary fraction of 
vesicles. This is caused by cumulative reductions in anterograde and retrograde 
transport, which is significant in the retrograde fraction for the pathogenic mutant. 
Overexpression of the human wild-type did not lead to any significant defect in this 
aspect of transport. (A) Quantification, the number in brackets indicates number of 
movies analysed. (B) Representative kymographs of the indicated genotypes. Scale bars: 
Horizontal (distance) =10 μm, Vertical (time) =125 s. Control = CCAP-GAL4/+; UAS-NPY-
GFP/LacZ. Graph shows mean ± SEM. Statistics calculated using One-way ANOVA with 
Sidak’s multiple comparison test: **p< 0.01, ****p<0.0001. 
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3.5.1 Genetic Interaction of TBPHWT with Mitochondrial Fission      
         and Fusion Genes  
 

 

Mitochondrial morphology is highly dynamic. Within cell bodies, they are 

commonly seen fused together to form long tubular networks. However, 

when travelling through axons, they do so as short, independent 

organelles. This fission and fusion of mitochondria is a property vital for 

their health and functioning and significant failure in these processes 

results in cell death and is a factor related to a number of diseases (van 

der Bliek et al., 2013).  

 
A considerable amount has been elucidated regarding the molecular 

machinery governing these processes, specifically the role of Dynamin 

related GTPases. Fission is caused by Dynamin-related protein 1 (DRP1) 

that acts similarly to Dynamin in the final constriction of separating 

mitochondria (Smirnova et al., 2001). Mitochondrial fusion is more 

complex, requiring different proteins for the fusion of the inner and outer 

membranes. Inner membrane fusion is mediated by Optic atrophy 1 

(OPA1), so named as mutations within it underpin Dominant Optic 

Atrophy (Delettre et al., 2000; Alexander et al., 2000). The GTPases 

Mitofusin 1 and 2 are the mediators of mitochondrial tethering and outer 

membrane fusion. Mutations in Mitofusin 2 are responsible for Charcot 

Marie Tooth Disease Type 2A (Zuchner et al., 2004), which is 

characterised as a distal axonopathy.  

 

DRP1 and OPA1 have corresponding Drosophila homologs named Drp1 and 

Opa1 respectively. There are two Drosophila homologs of the mitofusins, 

Fuzzy onions (Fzo) of which expression is restricted to sperm, and 

Mitochondrial assembly regulatory factor (Marf), which is ubiquitously 

expressed (Hwa et al., 2002). 
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Figure 3.7: Mitochondria are on average significantly longer in the axons of TBPH

WT
 

overexpressing larvae. (A) Quantification of 1
st

 frame. (B) Quantification of 100
th

 frame. 
(C) 1

st
 frame representative kymographs. (D) 100

th
 frame representative kymographs. 

Control = CCAP-GAL4/+; UAS-mito.GFP/LacZ. Numbers on bars: Top number = Number 
of animals quantified. Bottom number = Number of mitochondria quantified. Graph 
shows mean ± SEM. Statistics calculated using One-way ANOVA with Sidak’s multiple 
comparison test: * p < 0.05, *** p < 0.001. 
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Figure 3.8: No alteration to mitochondrial length was observed in the trans 
heterozygous knockout condition quantified from the (A) 1

st
 and (B) 100

th
 frames. (C) 1

st
 

frame representative kymographs. (D) 100
th

 frame representative kymographs. Control 
= CCAP-GAL4/+; UAS-mito.GFP/+. Numbers on bars: Top number = Number of animals 
quantified. Bottom number = Number of mitochondria quantified. Graph shows mean ± 
SEM. Statistics calculated using Student’s t-test.  
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Genotypes for this analysis were created by combining each of these lines 

with the UAS-TBPHWT fly and then with the CCAP-GAL4; UAS-mito.GFP 

line.  

 
The Drp1 overexpression line by itself did not lead to any alterations in 

mitochondrial length, which is consistent with previous findings in HeLa 

cells (Chang et al., 2010). Further, overexpressing Drp1 together with 

TBPH did not lead to a rescue of the length phenotype, but did in fact 

exacerbate increases in mitochondrial length (Figure 3.9A-B).   

 

The Opa1- heterozygote itself had no effect on mitochondrial length and 

did not cause a rescue of the TBPH overexpression effect. (Figure 3.9C-

D). 

 

However, while the marf- heterozygote also demonstrated a comparable 

mitochondrial length to the control, when introduced into the TBPH 

overexpression background, this resulted in a complete rescue of the 

mitochondrial length phenotype. This suggests an interaction, between 

TBPH and Marf in the regulation of mitochondrial length (Figure 3.9E-F). 

 

 
3.6 Mitochondria At The NMJ in TBPH Loss 
 
 

Due to the result that the loss of TBPH leads to a deficit in the axonal 

transport of mitochondria within motor axons, it was considered of 

interest to examine the possible effect of this on the number of 

mitochondria at the neuromuscular junction. Immunofluorescence was 

performed on fixed samples of third instar TBPH knockout larvae 

expressing UAS-mito-GFP driven by D42-GAL4 (see section 2.4). 

Compared to the outcross control, there was a significant increase in the 

number of mitochondria at the NMJ of muscles 6 and 7. The fact that the 
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Figure 3.9: Genetic interaction of TBPH with mitochondrial fission and fusion genes to 
assess for rescue of the increased mitochondrial length phenotype seen with the 
overexpression of TBPH. (A-B) The overexpression of Drp1 (fission) results in a further 
increase in mitochondrial length. (C-D) The heterozygous loss of Opa1 does not alter this 
phenotype. (E-F) Heterozygous loss of Marf (OM fusion) fully rescues the length 
phenotype. Numbers on bars: Top number = Number of animals quantified. Bottom 
number = Number of mitochondria quantified. The same images are shown reiteratively 
for control and TBPH

WT
.  Control = CCAP-GAL4/+; UAS-mito.GFP/LacZ. Graph shows 

mean ± SEM. A/C/E analysed together due to shared control and TBPH
WT

 using One-way 
ANOVA with Sidak’s multiple comparison test: * p < 0.05, **p< 0.01, ****p<0.0001.  
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Figure 3.10: Loss of TBPH causes an increase in the number of mitochondria at the NMJ. 
(A) Quantification, the number in brackets indicates number of images analysed. (B) 
Representative images. Red = HRP, Green = mito.GFP. Scale bar = 20 μm (full image), 10 
μm (crop). Control = D42-GAL4> UAS-mito.GFP.  Graph shows mean ± SEM. Statistics 
calculated using Student’s t-test (* p < 0.05). 
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number of mitochondria is increased was an interesting result that likely 

stems from consequences of the increased stationary behaviour of the 

mitochondria.  

 
3.7: Behavioural Analysis of TBPH loss  
 
 
3.7.1 Viability 
 
In their original characterisation, the TBPHΔ23 and TBPHnull lines were both 

assessed as having a severely reduced viability phenotype with only a few 

rare escapers eclosing in TBPHΔ23 homozygotes with the majority dying at 

the L3 stage and a recorded lethality at the 2nd instar stage of TBPHnull 

homozygotes. However, the TBPHnull line in our hands was viable to the 

third instar stage and produced very rare escapers. Other modifying 

factors within the genome and interaction with our particular 

environment could potentially explain this discrepancy, in addition the 

results from the mitochondrial transport experiment, which 

demonstrated the likelihood of background modifier effects, formed the 

decision to use the trans-heterozygote combination of TBPHnull/Δ23.  Thus, 

for the purposes of this study, the viability of the trans-heterozygote was 

examined. In line with the milder phenotype observed for this fly 

compared to the two homozygotes, the level of eclosion was on average 

18% that of the control. These adults however died within 5 days (Figure 

3.11A).  

 

Attempts were made to rescue this sub-viability phenotype with re-

expression of TBPHWT using several GAL4 drivers. Use of the all-motor 

neuron driver D42-GAL4 to express TBPHWT resulted in an almost 

complete rescue of the eclosion defect (Figure 3.11A). Driving expression 

with the pan-neuronal driver, elav-GAL4, fully rescues eclosion to control 

(Figure 3.11B). 
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This rescue experiment was also carried out using human TDP-43 both 

wild type (Figure 3.11C) and M337V mutant (Figure 3.11D) using the D42-

GAL4 driver. Expression of both of these transgenes fully rescued the 

phenotype indicating this functional ability is conserved in the ALS-linked 

protein. In addition, it seems in terms of eclosion that, whilst expression 

exclusively within the motor system is sufficient to create a very 

significant rescue, the extra-motor neuronal role of this protein increases 

the efficiency of this rescue.  

 
3.7.2 Larval Locomotion 
 
Given the results of the mitochondrial axonal transport experiments, 

which demonstrate a clear deficit, the locomotor capacity of the larvae 

was assayed to examine whether there is any correlation between motor 

ability and axonal transport defects. 

 

The larval crawling test was performed on these genotypes as described 

in section 2.4.2.1. Briefly, the larvae were set onto a smooth surface and 

the number of peristaltic wave crawling movements they performed in 

two minutes was recorded. The trans-heterozygous knockout larvae 

display a crawling ability 63% that of the control (Figure 3.12A). This was 

fully restored upon expression of wild-type and ALS mutant transgenes 

with D42-GAL4 (Figure 3.12A/C/E). In the turning test (section 2.4.2.2), 

which involved turning the larvae ventral-side-up with a paintbrush and 

recording the time taken to self-right, these results were also true. 

Turning ability was drastically compromised in the knockout larvae and 

fully rescued by motor neuron expression of the wild-type or mutant 

transgenes indicating this functional ability is conserved in the ALS linked 

protein (Figure 3.12 B/D/F).  
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Figure 3.11: TBPH knockout flies have a severe eclosion defect that can (A) be almost 
completely rescued by TBPH

WT
 expression driven by D42-GAL4 and (B) fully rescued 

when this is driven by elav-GAL4. (C-D) The phenotype can also be fully rescued by TDP-
43

WT
 and TDP-43

M337V
 driven by D42-GAL4. N= 4. Total number of animals = 100. Control = 

D42>LacZ or elav>LacZ. Graph shows mean ± SEM. Statistics calculated using One-way 
ANOVA with Sidak’s multiple comparison test: **p< 0.01, ****p<0.0001.  
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3.7.3 Adult Locomotion  
 
 
The TBPHnull/Δ23 adults that eclose also exhibit severe locomotor 

dysfunction displaying no quantifiable capacity to climb on day 0.  Unlike 

locomotion at the third instar larval stage, this phenotype could not be 

fully rescued by the motor neuronal expression of either wild type protein 

or TDP-43M337V.  Rather, only a modest partial rescue is achieved (Figure 

3.13A-C). This result suggests that this motor neuronal expression of the 

transgenes is not sufficient to rescue the climbing phenotype. This is an 

interesting result, particularly in relation to the wild-type proteins, given 

the fact both viability and larval locomotion is rescued as well as the 

axonal transport defect. It’s possible that within the adult, the expression 

levels of the proteins were not enough to rescue this form of locomotion. 

Another possibility is that extra-motor neuronal expression is required to 

rescue this phenotype.  

 

3.7.4 Analysis of Alternative TBPH Knockout Alleles 
 
The TBPHnull allele, may have additional effects on another gene, as in 

addition to being a complete deletion of the TBPH locus, also has a 

deletion of the 5’UTR of neighbouring gene bgcn (Voigt, personal 

communication). Therefore, to check that the TBPHnull/Δ23 trans-

heterozygous fly represents an appropriate model to analyse the effect of 

TBPH loss, complementation analysis was performed with two additional 

mutant lines, TBPHDD96 and TBPHDD100 created by Diaper et al., (2013). The 

TBPHDD96 line is missing the promoter and the coding sequence up to and 

including that for the second RRM. The TBPHDD100 line is a smaller deletion 

of the promoter and start codon. Both these mutant flies have a maximum 

eclosion score of 20% and escaper lifespan of 7 days and exhibit severe 

deficits in larval crawling and adult walking behaviour and climbing 

behaviour (Diaper et al., 2013).  
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TBPHnull/DD96 and TBPHnull/DD100 trans-heterozygous knockout flies 

demonstrate non-complementation through a clear eclosion defect, 

which is similar in severity to that seen in the TBPHnull/Δ23 line. (Figure 

3.14A). In addition this can also be almost completely rescued by motor 

neuronal expression of TBPHWT (Figure 3.14A). In further similarity with 

the TBPHnull/Δ23 line, larval crawling was significantly reduced and turning 

time was increased four-fold (Figure 3.14B&C) and both these 

phenotypes could be fully rescued by expression of TBPHWT within motor 

neurons. Unsurprisingly, adult locomotor ability was non-existent in either 

line and could only be partially rescued by motor neuronal expression of 

TBPHWT (Figure 3.14D).  

 

The level of similarity between these lines and the TBPHnull/Δ23 line indicate 

that the TBPHnull/Δ23 fly is likely to be an appropriate model for analysing 

the effect of TBPH loss.  

 

3.8: Behavioural Analysis of TBPH Overexpression    
         and Ectopic Expression of TDP-43 
 

 
3.8.1 Viability and Larval Locomotion 
 
 
Gain of TBPH and TDP-43 driven with D42-GAL4 has no effect on the 

viability of the flies. The same is also true for expression of the M337V 

mutant protein (Figure 3.15A). Similarly, the gain of either wild-type 

protein does not alter the crawling and turning measures of larval 

locomotion. However, the D42>TDP-43M337V line was characterised by a 

reduction in larval crawling to 88% of control and a 3.5 fold increase in 

turning time (Figure 3.15B-C). Thus, this suggests that in this model 

increasing the level of these wild- type proteins does not interfere with 

their development in terms of viability or motor function, but the ALS 

linked mutation causes a disruption to neuromuscular functioning at this 

early stage. 
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Figure 3.12: TBPH knockout larvae demonstrate a reduced locomotor capacity in terms 
of both crawling (A/C/E) and turning ability (B/D/F), which can be rescued by re-
expression of (A-B) TBPH

WT
, (C-D) TDP-43

WT
 and (E-F) TDP-43

M337V
 driven by D42-GAL4. 

N= 4. Total number of animals = 20. Control = D42>LacZ. Graph shows mean ± SEM. 
Statistics for A/C/E and B/D/F calculated together due to shared control using One-way 
ANOVA with Sidak’s multiple comparison test: ****p<0.0001.  
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Figure 3.13: TBPH knockout adult flies display severely compromised motor function, 
which can only be partially rescued by re-expression of (A) TBPH

WT
, (B) TDP-43

WT
 and 

(C) TDP-43
M337V

 driven by D42-GAL4. N= 3. Total number of animals = 50. Control = 
D42>LacZ. Graph shows mean ± SEM. A-C are normalised to control. Statistics (A-C) 
calculated together due to shared control using Kruskal-Wallis with Dunn’s multiple 
comparison test : *** p<0.001, ****p<0.0001.  
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3.8.2 Adult Locomotion 

 

The motor function of the adult flies mirrors that of the larvae when 

driven with D42-GAL4, with D42>TDP-43M337V 0-3 day old flies exhibiting a 

reduction in this ability to 63% control level (Figure 3.16A). Since ALS is a 

age-related and progressive disorder, the flies were aged in cohorts and 

the climbing test was performed every five days until day 30. The 

D42>TDP-43M337V flies continued to decline at a steady pace compared to 

the control, whereas the wild-type lines’ climbing capacity decreased 

modestly until day 25, at which point they exhibited a sharp decline 

compared to control. By day 30 the climbing ability of both wild-type lines 

and the mutant were comparably poor at just 10% the level of the control 

(Figure 3.16B & E). Therefore, it seems the effect of the pathogenic 

mutant continues to affect locomotor capacity and neuromuscular 

functioning as was the case in the larvae; however overexpression of the 

wild type proteins also has detrimental effects on this system that 

develop over time through ageing, which is interesting given the fact ALS 

is an age-related neurodegenerative disease.  

  

The picture of adult locomotor ability was more complex when these lines 

were driven by elav-GAL4. Unlike with D42-GAL4, the elav>TDP-43M337V 

flies exhibited no climbing defect at day 0, as was the case with 

expression of the TBPH and TDP-43 wild type proteins at this time point 

(Figure 3.16C) in contrast to the lethality seen with other lines (Diaper et 

al., 2013). At day 20 elav>TBPHWT and elav>TDP-43M337V caused a significant 

reduction in climbing ability. Both these genotypes continued to decline 

until by day 30 they exhibited climbing capacity of just 18% and 53% 

respectively. By contrast, elav>TDP-43WT did not lead to a climbing defect 

at any age examined (Figure 3.16D & F). The fact that elav>TDP-43M337V led 

to no climbing deficit at day 0 is interesting given the result with 

D42>GAL4 driver and suggests the strong expression of this protein within 

motor neurons is key to its early effect. 
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Figure 3.14: TBPH

null/DD96
 and TBPH

null/DD100
 trans-heterozygous knockout lines exhibit 

deficits in viability and motor behaviour. (A) TBPH
DD96/null 

and TBPH
DD100/null 

flies exhibit 
over a 50% reduction in eclosion. For both lines this can be almost completely rescued 
by re-expression of TBPH

WT 
with D42-GAL4. (B) Crawling and (C) turning behaviour is 

also reduced in both lines, which can be rescued by re-expression of TBPH
WT

 with D42-
GAL4. (D) Adult climbing ability is non-existent in either knockout line and can only be 
partially rescued by motor neuronal re-expression of TBPH

WT
. N= 4 (A), 4 (B/C), 3 (D). 

Total number of animals = 100 (A), 20 (B/C), 50 (D). Control = D42>LacZ.  D is 
normalised to control. Graph shows mean ± SEM. Statistics (A-C) calculated using One-
way ANOVA with Sidak’s multiple comparison test, for D calculated using Kruskal-Wallis 
with Dunn’s multiple comparison test : * p < 0.05, **p< 0.01,*** p<0.001.  ****p<0.0001.  
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Figure 3.15: Ectopic expression of TDP-43

M337V
 driven by D42-GAL4 causes viability and 

larval locomotor phenotypes. (A) No eclosion defect was observed with any of the three 
genotypes. (B) Only the human mutant has a significant larval crawling defect and (B) 
turning defect. N=4. Total number of animals = 100 (A), 20 (B/C).  Control = D42>LacZ. 
Graph shows mean ± SEM. Statistics calculated using One-way ANOVA with Sidak’s 
multiple comparison test: ****p<0.0001. 
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3.9: Summary 
 
 

The results for all TDP-43 experiments are summarised in Table 3.1. The 

loss of TBPH leads to defective axonal transport of mitochondria in third 

instar larvae, which was found to be a specific effect of TBPH through the 

fact it can be completely rescued by expression of the wild-type protein. 

This transport phenotype however appears to be selective as the 

transport of vesicles was not altered. The disrupted transport of 

mitochondria may also lead to the observed increase in the number of 

mitochondria at the neuromuscular junction through downstream 

consequences of the increased stationary behaviour of the mitochondria, 

indicating possible functional consequences of this transport defect at 

this structure.  

 

The disruption to axonal transport correlated with, and thus may 

contribute to, a severely reduced viability as measured by eclosion and in 

multiple measures of locomotion serving as readout of neuromuscular 

function. Specifically, TBPH loss results in significant reductions to 

crawling and turning ability of the third instar larvae and in adult climbing 

capacity, which is completely non-existent.  

 

As was the case with rescue of the mitochondrial transport phenotype, 

these deficits could be rescued with the expression of the fly and human 

wild-type proteins and the human ALS mutant in motor neurons further 

supporting a relationship between these transport defects and motor 

abilities. An exception is documented with the climbing ability of the 

adults, which could only be partially rescued. This last result may stem 

from insufficient expression levels of the transgenes and/or the need for 

extra-motor neuronal involvement of TDP-43. If time allowed, it would 

have been interesting to attempt to raise these flies at the temperature of 

29°C to increase the level of expression of the transgenes. In addition, 

attempting the rescue with the pan-neuronal driver elav-GAL4 would 
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Figure 3.16: Climbing ability of TDP-43 overexpression flies declines with age. (A) D42-
GAL4 driven expression of the TDP-43

M337V
 causes a decrease in climbing ability. (B) 

However, in aged flies (30 days) expression of the wild-type proteins also caused a 
severe locomotion defect. (C) By contrast, expression with elav-GAL4 causes no 
locomotor defect in young flies and (D) a severe reduction with elav>TBPH

WT
 and 

elav>TDP-43
M337V

 but elav>TDP-43
WT 

flies aged to 30 days. Climbing ability through time 
driven by (E) D42-GAL4 and (F) elav-GAL4. N=3. Total number of animals = 50. Control = 
D42>LacZ (A/B/E), elav>LacZ (C/D/F). A-D are normalised to control. Graph shows mean 
± SEM. Statistics calculated using Kruskal-Wallis with Dunn’s multiple comparison test: * 
p < 0.05, **p< 0.01, *** p < 0.001, ****p<0.0001.  
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serve to elucidate whether other neuronal populations are necessary for 

this rescue.  

 

The overexpression of TBPHWT and the ectopic expression of TDP-43M337V, 

but not TDP-43WT also resulted in a defect to axonal transport, However, 

in contrast to what was found for TBPH loss, mitochondrial transport was 

unaffected but vesicle transport was decreased. Thus loss and gain of 

TBPH have differential effects on axonal transport.  

 

Although the overexpression of TBPH does not lead to a defect in 

mitochondrial transport, it does appear to cause an increase in 

mitochondrial length. Genetic interaction experiments revealed that 

heterozygous loss of marf, the Drosophila homolog of Mitofusin 2, rescues 

this phenotype, indicating a relationship between Marf and TBPH. 

 
However, the axonal vesicle transport defect is not correlated with an 

eclosion defect of these genotypes indicating that the disruption is not so 

severe as to compromise the organism’s viability through development. 

Only the locomotor function in the motor neuronal expression of the 

pathogenic mutant larvae was affected. This was also true for young 

adults ability to climb. This climbing ability also displayed a progressive 

worsening with expression of all the proteins until day 30 when all three 

genotypes demonstrated just a fraction of the ability of the control. This 

mirrors the fact ALS in humans is generally an age-related disorder.  

 

The climbing capacity was slightly different for the pan-neuronal 

expression of these transgenes, being unaffected in young flies and 

reduced to a lesser extent in aged flies and not significantly so in terms of 

the expression of the human wild-type protein. Therefore this may point 

to the idea that strong expression within motor neurons is an important 

factor and further highlights the specific vulnerability of these neurons in 

this disorder.  
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It also appears that expression of ALS linked mutant protein results in 

pathogenic outcomes for axonal transport that correlates with motor 

behaviour, which is affected at the third instar stage. Thus the ALS mutant 

protein seems to exert an effect on neuromuscular functioning at an early 

time-point, which may in part be contributed to by disruption to the 

axonal transport of these vesicles. 

 

The finding that overexpression of wild-type protein, though causing 

vesicle transport disruption, doesn’t lead to larval or young adult 

locomotor phenotypes may highlight the neurons’ greater ability to cope 

with the effects of the increased amounts of the wild-type, as opposed to 

the mutant, protein. However, overexpression of wild type does lead, in a 

progressive, age-related manner, to locomotor dysfunction and the 

vesicle transport disruption highlighted here, could be a factor in this 

declining capacity to compensate.  

 

The fact that disruption to TBPH/TDP-43 levels alters axonal transport 

and does so in different ways, is an interesting finding that correlates with 

neuromuscular dysfunction and may have consequences for ALS 

pathogenesis. 
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 Table 3.1: Summary of experimental results for TDP-43. Arrows represent 
alterations to phenotype: Red = Reduction relative to control, yellow = increase, 
green = rescue and blue = no change. Thickness of arrow corresponds to strength 
of effect. Dashed line = Assay not undertaken. 
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Chapter 4: FUS 
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4.1: Aims and Hypothesis 

 

The second genetic model of ALS to be assessed in this study was FUS. 

Here too, the aim was to survey the state of axonal transport of 

mitochondria and vesicles and to examine whether any defects have any 

correlational relationship with the flies’ behavioural motor functions as 

assessed via larval and adult locomotor assays.  

 

It was hypothesised that disruption to FUS functioning through knockout, 

overexpression or pathogenic mutation interferes with axonal transport 

and contributes to the dying back pattern of degeneration characteristic 

of a distal axonopathy.  

 

4.2: Mitochondrial Axonal Transport 

 

4.2.1: Caz is the Drosophila homolog of FUS 

 

cabeza (caz) was identified as the Drosophila homolog of FUS (Stolow 

and Haynes, 1995). Within the fly genome caz is situated on the X 

chromosome at position 14B8 – 14B9 of the cytogenetic map (Flybase).  It 

encodes a protein that is 53% identical to FUS. The general structure of 

both proteins is conserved with Caz also containing an N-terminal QGSY 

rich region followed by a glycine rich region, a single RRM harbouring the 

NES domain and a zinc finger domain sandwiched between two RGG rich 

regions. However, Caz is shorter than FUS at 399 amino acids compared 

to 526 (Stolow and Haynes, 1995).  

 

Caz and FUS are also functionally conserved through evolution with the 

phenotypes of caz knockout flies rescued by the expression of FUSWT; 

these include viability, locomotion and lifespan (Wang et al., 2011).  



 128 

4.2.2 The Effect of Loss and Gain of Caz on Mitochondrial   

         Axonal Transport 
 
 
To study the loss of Caz, the caz1 knockout mutant was utilised. This 

represents a deletion of the promoter and 58% of the coding sequence. 

This mutant also included a deletion of the adjacent gene CG32576 for 

which a rescue construct was placed on this caz mutant chromosome 

(Wang et al., 2011). For the study of axonal transport of mitochondria, the 

caz1/FM7.GFP line was combined with CCAP-GAL4 and this new line was 

subsequently mated to UAS-mito.GFP flies. Since caz in located on the X 

chromosome, male wandering third instar larvae were selected for study.  

 

The gain of Caz and FUS was also examined both in terms of the wild type 

protein and an ALS linked mutant protein. In humans, the P525L mutation 

situated within the N-terminal nuclear localisation domain, results in an 

aggressive juvenile/adult onset form (Sproviero et al., 2012). The P398L 

mutation of Caz is in the equivalent position to the P525L mutation ALS 

linked mutation of FUS. These transgenes were created by Wang et al., 

(2011) and are targeted insertions expressing at the same level. 

Expression analysis indicated FUSWT, FUSP525L and CazWT localised to the 

nucleus of motor neurons, whereas CazP398L localised to the cytoplasm. 

For the study of gain of Caz, these transgenes were crossed with the 

CCAP-GAL4; UAS-mito.GFP line.  

 

The loss of Caz causes an increase in the stationary fraction of 

mitochondria within the axons. The same situation is apparent in the 

condition of Caz overexpression, although here the effect is marginally 

milder. The ectopic expression of the mutant protein CazP398L results in 

the most severe phenotype with 76% of mitochondria stationary. Thus it 

is clear that both loss and gain of Caz is sufficient to cause a disruption to 

the dynamics of this transport and this ability is retained within the 

mutant CazP398L protein (Figure 4.1). 
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4.2.3 Rescue of the caz Knockout Phenotype 

 
 
In the same manner as was performed for TBPH loss, a rescue experiment 

was conducted with both CazWT and CazP398L. For this, the Caz 

overexpression transgenes were crossed into the UAS-mito.GFP 

background and then mated with the caz1/FM7.GFP; CCAP-GAL4/TM6B 

line.  

 

At the standard temperature of 25°C, expression of neither the wild type 

nor the ALS mutant rescued the phenotype (Figure 4.2). At least for the 

wild type this was an unexpected result given the ability of CazWT to 

rescue other caz knockout phenotypes. One possible explanation is the 

levels of Caz were not sufficient to rescue this phenotype. Thus, the 

rescue experiment was conducted again on wandering third instar larvae 

that had been grown at the higher temperature of 29°C, which is 

commonly used to increase expression levels. This resulted in the 

complete rescue of the caz knockout phenotype to a level comparable 

with the control for expression of both the wild-type protein and the ALS 

mutant (Figure 4.3). Thus, the caz knockout mitochondrial axonal 

transport phenotype is a direct consequence of the loss of caz. 

Furthermore, this analysis demonstrated that the ability to rescue this 

phenotype is not disrupted in the P398L mutation.  

 
 

4.2.4 The Effect of FUS Ectopic Expression on Mitochondrial  
           Axonal Transport 
 
 
This analysis was repeated using the FUS containing fly lines UAS-FUSWT 

and UAS-FUSP525L. In contrast to the ectopic expression of the Drosophila  

equivalents that were inserted into the same attP site (attP40), the 

expression of neither of these proteins causes any disruption to the 

amount of axonal transport of mitochondria (Figure 4.4). 
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Figure 4.1: The loss of Caz results in severely defective mitochondrial transport, as does 
the overexpression of Caz

WT
 and Caz

P398L
. (A) Quantification, the number in brackets 

indicates number of movies analysed. (B) Representative kymographs of the indicated 
genotypes. Scale bars: Horizontal (distance) =10 μm, Vertical (time) =125 s. Control = 
CCAP-GAL4/+; UAS-mito.GFP/LacZ. Graph shows mean ± SEM. Statistics calculated 
using One-way ANOVA with Sidak’s multiple comparison test: * p < 0.05, **p< 0.01, *** p < 
0.001, ****p<0.0001. 
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Figure 4.2: The loss of Caz phenotype cannot be rescued by wild type or mutant Caz at 
25°C. (A) Quantification, the number in brackets indicates number of movies analysed. 
(B) Representative kymographs of the indicated genotypes. Scale bars: Horizontal 
(distance) =10 μm, Vertical (time) =125 s. Control = CCAP-GAL4/+; UAS-mito.GFP/LacZ.  
Graph shows mean ± SEM. Statistics calculated using One-way ANOVA with Sidak’s 
multiple comparison test: * p < 0.05, **p< 0.01, *** p < 0.001. 
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4.2.5 Rescue of caz Knockout Phenotype with FUS  
 
 

Given that many of the phenotypes arising from the knockout of caz can 

be rescued by the expression of FUSWT, an experiment was carried out to 

determine whether this was also true for this phenotype of mitochondrial 

axonal transport deficit. Similarly, the capacity of the ALS linked mutant 

protein FUSP525L to rescue this phenotype was also examined.  Fly lines for 

this analysis were made in the same manner as for the Drosophila 

homolog rescue experiment. 

 

Larvae were raised at the standard temperature of 25°C. Here, ectopic 

expression of both of these proteins completely rescued the caz 

knockout phenotype to a level comparable with the control.  Thus, in 

contrast to attempts to rescue with the expression of the Caz proteins at 

25°C, this temperature allows for the rescue the caz knockout phenotype 

(Figure 4.5). 

 
 

4.2.6 Rescue of TBPH Knockout Phenotype with caz  

 

TDP-43 and FUS as well as their fly homologues have been shown to 

genetically and physically interact (Ling et al., 2010; Kim et al., 2010; 

Freibaum et al., 2010; Lanson et al., 2011; Wang et al., 2011), It was also 

shown by cross-rescue experiments that the viability and lifespan 

phenotypes of TBPH knockout flies could be completely rescued by 

expression of Caz in neurons and the locomotor phenotype partially 

rescued. However, the reciprocal cross-rescue attempts did not alter the 

caz1 phenotypes. The authors thus concluded that caz and TBPH 

genetically interact with caz downstream of TBPH (Wang et al., 2011). 

 

 
 
 



 133 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.3:  Expression of either Caz

WT
 or Caz

P398L
 rescues this transport back to control 

level at the higher temperature of 29°C. (A) Quantification, the number in brackets 
indicates number of movies analysed. (B) Representative kymographs of the indicated 
genotypes. Scale bars: Horizontal (distance) =10 μm, Vertical (time) =125 s. Control = 
CCAP-GAL4/+; UAS-mito.GFP/LacZ.  Graph shows mean ± SEM. Statistics calculated 
using One-way ANOVA with Sidak’s multiple comparison test: * p < 0.05. 
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Figure 4.4: Expression of neither of FUS

WT
 or FUS

P525L
 had any effect on axonal transport 

of mitochondria. (A) Quantification, the number in brackets indicates number of movies 
analysed. (B) Representative kymographs of the indicated genotypes. Scale bars: 
Horizontal (distance) =10 μm, Vertical (time) =125 s. Control = CCAP-GAL4/+; UAS-
mito.GFP/LacZ. Graph shows mean ± SEM. Statistics calculated using One-way ANOVA 
with Sidak’s multiple comparison test. 
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Given this, an experiment was conducted to rescue the mitochondrial 

transport phenotype apparent in the TBPH knockout fly (see section 

3.3.2) with overexpression of CazWT or CazP398L at 29°C.  However, 

overexpression of neither was able to significantly rescue this defect, 

indicating that TBPH and Caz do not interact within a pathway to 

influence axonal transport of mitochondria (Figure 4.6). 

 

4.3: Vesicle Axonal Transport 
 
 

4.3.1 The Effect of Loss and Gain of Caz on Vesicle Axonal  
         Transport 
 
 
To generate caz knockout fly lines for the examination of vesicle 

transport, the caz1/FM7.GFP line was crossed with CCAP-GAL4; UAS-NPY-

GFP.  To generate the overexpression lines, the UAS-cazWT and UAS-

cazP398L lines were crossed with CCAP-GAL4; UAS-NPY-GFP.   

 

Here, in a similar manner to the result gained for mitochondrial axonal 

transport, the loss of caz causes a marked increase in the stationary 

fraction of vesicles. This increase is attributed to a significant decrease in 

the number of vesicles specifically from the anterograde motile fraction. 

The ectopic expression of CazWT and CazP398L also resulted in significant 

increase in the stationary fraction of vesicles and a concomitant decrease 

in the number of vesicles in the anterograde fraction. In line with the  

assessment of the mitochondrial transport, this was considerably more 

severe than demonstrated in the knockout genotype (Figure 4.7).  
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Figure 4.5: Expression of both of FUS

WT 
and FUS

P525L 
can rescue the caz knockout 

phenotype back to a comparable level with the control. (A) Quantification, the number in 
brackets indicates number of movies analysed. (B) Representative kymographs of the 
indicated genotypes. Scale bars: Horizontal (distance) =10 μm, Vertical (time) =125 s. 
Control = CCAP-GAL4/+; UAS-mito.GFP/LacZ.  Graph shows mean ± SEM. Statistics 
calculated using One-way ANOVA with Sidak’s multiple comparison test: * p < 0.05, **p< 
0.01. 
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Figure 4.6: Expression of neither Caz

WT 
nor Caz

P398L
 can rescue the axonal transport 

phenotype arising from the loss of TBPH. (A) Quantification, the number in brackets 
indicates number of movies analysed. (B) Representative kymographs of the indicated 
genotypes. Scale bars: Horizontal (distance) =10 μm, Vertical (time) =125 s. Control = 
CCAP-GAL4/+; UAS-mito.GFP/LacZ.  Graph shows mean ± SEM. Statistics calculated 
using One-way ANOVA with Sidak’s multiple comparison test: * p < 0.05, **p< 0.01.
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4.3.2 The Effect of FUS Ectopic Expression on Vesicle Axonal 
           Transport 
 
 

The transgenes described previously were combined with the CCAP-

GAL4; UAS-NPY-GFP line to generate larvae bearing one copy of the 

transgene.  

 

Unlike mitochondrial transport, of which there was no defect in the 

amount of movement, the expression of both FUSWT and FUSP525L led to an 

increase in the stationary fraction of vesicles and a decrease in the 

anterograde moving vesicles (Figure 4.8). Thus, within this system, FUS 

ectopic expression has a selective negative effect on axonal transport that 

can be a product of both expression of the wild type protein and an ALS 

linked mutant, indicating the importance of correct levels of the protein. 

 

4.3.3 Rescue of caz Knockout Vesicle Defect with caz and FUS  
 
 

As was carried out for the mitochondrial transport disruption 

demonstrated in the caz knockout fly, experiments were also conducted 

to rescue the vesicle transport deficit. This was attempted with both the 

wild type and mutant proteins of both fly and human homologs. For this, 

one copy of each transgene were combined with UAS-NPY.GFP and then 

crossed with caz1/FM7.GFP; CCAP-GAL4/TM6B.  

 

The re-expression of CazWT at 25°C can rescue the stationary fraction of 

vesicles down to a comparable level with the control and can almost 

completely rescue the deficit observed in the anterograde fraction. 

However, the expression of CazP398L was not able to significantly rescue 

the increased number of stationary vesicle seen in the caz1 larvae, 

although it was able to partially rescue the level of anterograde moving 

vesicles to a level that was not significantly different from the control 

score but that was also not significantly different from caz1 (Figure 4.9). 

This could thus be considered a partial rescue. 
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Figure 4.7: The loss of Caz results in a significantly increased percentage of stationary 
vesicles with the decrease in motility from the anterograde fraction. The result is similar 
with the expression of Caz

WT
 and Caz

P398L
 (A) Quantification, the number in brackets 

indicates number of movies analysed. (B) Representative kymographs of the indicated 
genotypes. Scale bars: Horizontal (distance) =10μm, Vertical (time) =12.5 s. Control = 
CCAP-GAL4/+; UAS-NPY-GFP/LacZ.  Graph shows mean ± SEM. Statistics calculated 
using One-way ANOVA with Sidak’s multiple comparison test: * p < 0.05, **p< 0.01, 
****p<0.0001.  
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Figure 4.8: Expression of wild-type FUS or ALS mutant FUS

P525L
 causes an increase in 

the stationary fraction of vesicles with a decrease in the anterograde fraction of motile 
vesicles. (A) Quantification, the number in brackets indicates number of movies 
analysed.  (B) Representative kymographs of the indicated genotypes. Scale bars: 
Horizontal (distance) =10μm, Vertical (time) =12.5 s. Control = CCAP-GAL4/+ ; UAS-NPY-
GFP/LacZ.  Graph shows mean ± SEM. Statistics calculated using One-way ANOVA with 
Sidak’s multiple comparison test: * p < 0.05, **p< 0.01, *** p < 0.001. 
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Figure 4.9: The vesicle transport phenotype arising from the loss of Caz can be rescued 
by the re-expression of Caz

WT
; however, this is not the case when the rescue is 

attempted with Caz
P398L

. (A) Quantification, the number in brackets indicates number of 
movies analysed. (B) Representative kymographs of the indicated genotypes. Scale bars: 
Horizontal (distance) =10μm, Vertical (time) =12.5 s. Control = CCAP-GAL4/+; UAS-NPY-
GFP/LacZ.  Graph shows mean ± SEM. Statistics calculated together with Fig 4.10 
(shared control) using One-way ANOVA with Sidak’s multiple comparison test: * p < 0.05, 
**p< 0.01, ***p<0.001.  
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Figure 4.10: The vesicle transport phenotype arising from the loss of Caz can be rescued 
by the re-expression of FUS

WT
 but not with FUS

P525L
. (A) Quantification, the number in 

brackets indicates number of movies analysed. (B) Representative kymographs of the 
indicated genotypes. Scale bars: Horizontal (distance) =10μm, Vertical (time) =12.5 s. 
Control = CCAP-GAL4/+; UAS-NPY-GFP/LacZ.  Graph shows mean ± SEM. Statistics 
calculated together with Fig 4.9 (shared control) using One-way ANOVA with Sidak’s 
multiple comparison test: * p < 0.05, **p< 0.01, ***p<0.001.  
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The results of the rescue experiments with the FUS transgenes follow this 

pattern with the wild type protein able to restore the stationary fraction 

to control level and increase the anterograde fraction to the point of 

being comparable to the control but not significantly different from caz1. 

In the same way as the fly homolog, FUSP525L was not able to rescue the 

increased amount of stationary vesicles but did increase the number of 

anterograde vesicles to a level comparable to the control but not 

significantly different to caz1 (Figure 4.10). This too, is characterised as a 

partial rescue. 

 
 
4.4: Mitochondria At The NMJ  

 
 

As with the model of TBPH loss, the number of mitochondria at the NMJ 

of muscles 6/7 was assessed within the caz knockout third instar larvae. 

Compared to the control, an increased number of mitochondria were 

apparent at this structure (Figure 4.11). This is likely as a result of the 

increased stationary amount of the mitochondria. 

 

By comparison, the overexpression of CazWT and CazP398L resulted in no 

significant alteration to the number of mitochondria (Figure 4.12).  This 

was a surprising finding given the effects upon mitochondrial axonal 

transport scores. Excess levels of Caz may therefore have a different 

effect on the processes leading on from the increased stationary 

behaviour of the mitochondria that results in a higher mitochondrial 

count at the NMJ. FUSWT and FUSP525L were not examined as neither had 

produced a mitochondrial transport phenotype.  
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Figure 4.11: Loss of Caz causes an increase in the number of mitochondria at the NMJ. 
(A) Quantification, the number in brackets indicates number of images analysed. (B) 
Representative images. Red = HRP, Green = mito.GFP. Scale bar = 20 μm (full), 10 μm 
(crop). Control = D42-GAL4>UAS-mito.GFP.  Graph shows mean ± SEM. Statistics 
calculated using Student’s t-test (*** p < 0.001). 
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Figure 4.12: Overexpression of Caz

WT
 or Caz

P398L
 has no effect on the number of 

mitochondria at the NMJ. (A) Quantification, the number in brackets indicates number of 
images analysed. (B) Representative images. Red = HRP, Green = mito.GFP. Scale bar = 
20 μm, 10 μm (crop). Control = D42-GAL4> UAS-mito.GFP.  Graph shows mean ± SEM. 
Statistics calculated using One-way ANOVA with Sidak’s multiple comparison test. 
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4.5: Behavioural Analysis of Caz Loss  
 
 

4.5.1 Viability 

 

In the original characterisation of the caz1 mutants, it was reported that 

only 14% successfully eclosed with the main lethal phase occurring 

between the third instar stage and late pupation (Wang et al., 2011).  A 

comparable level of eclosion was demonstrated in this study with an 

average of 13% of mutant larvae eclosing (Figure 4.13).  

 
Attempts were made to rescue this sub-viability phenotype by re-

expressing the wild type protein with the motor neuron driver D42-GAL4. 

This resulted in an almost complete rescue of eclosion (Figure 4.13A). 

Performing the same rescue with the pan-neuronal driver elav-GAL4 also 

resulted in an almost complete rescue with the wild type protein (Figure 

4.13B), as was described previously (Wang et al., 2011). A similar outcome 

was also observed with the expression of the human homolog, although 

this reaches complete rescue (Figure 4.13C&D). Both of these drivers 

were also used to drive expression of cazP398L and the FUSP525L. Here, both 

resulted in an almost complete rescue of eclosion with both patterns of 

expression, demonstrating functional conservation between homologs 

and within the mutant protein. 

 

4.5.2 Larval Locomotion 

 

As in the study of TDP-43, the locomotor capacity of the caz genetic 

models were examined to determine if is a relationship exists between 

motor ability and axonal transport defects. 

 

caz knockout third instar larvae demonstrate a severe larval crawling 

deficiency and over a 3–fold increase in time taken to self-right (Figure 

4.14).  These phenotypes are also directly linked to the loss of Caz as both 
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Figure 4.13: Loss of Caz causes a severe reduction in viability as measured by eclosion. 
This defect can be almost completely rescued by the expression of Caz

WT
 or Caz

P398L 

driven by either (A) D42>GAL4 or (B) elav>GAL4. (C) D42>GAL4 driven expression of 
FUS

WT
 but not FUS

P525L
 can completely rescue this phenotype, as can (D) expression of 

these proteins with elav>GAL4. N= 4. Total number of animals = 100. Control = D42>LacZ 
(A/C), elav>LacZ (B/D). Graph shows mean ± SEM. Statistics calculated using One-way 
ANOVA with Sidak’s multiple comparison test: * p < 0.05, **p< 0.01, ****p<0.0001.  
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can be completely rescued by the re-expression of CazWT within motor 

neurons via the use of D42-GAL4.  In addition both can also be completely 

rescued by the expression of CazP398L demonstrating this functional ability 

is conserved in the mutant protein (Figure 4.14A&B) 

 

Rescue with FUS transgenes were also attempted for these larval 

locomotion phenotypes. Motor neuronal expression of FUSWT resulted in 

an almost complete rescue of the phenotypes, as did this expression of 

ALS linked mutant FUSP525L again suggesting conservation of this function 

not only within the human homolog but also within the human mutant 

protein (Figure 4.15A&B). 

 

Both of these rescue experiments were also conducted using elav-GAL4. 

As expected, expression of both Caz proteins resulted in a complete 

rescue (Figure 4.14C&D), as did expressing of FUSWT (Figure 4.15C&D). 

However, expression of the ALS mutant managed only an almost complete 

rescue that was marginally but significantly less than the wild type protein 

(Figure 4.15C&D). These data suggest for larval locomotion ability, a 

comparative difference exists between the fly and human homologs in 

their capacity to rescue and that the ALS linked protein is not as 

functionally effective in non-motor neurons.  

 

4.5.3 Adult Locomotion 

 

Rare escaper adult caz1 flies have severely compromised walking speed 

and frequency and climbing ability (Wang et al., 2011).  The results in this 

study further corroborate this in terms of climbing ability, which was non-

existent (Figure 4.16).  

 

As was the case with larval locomotion, climbing capacity can be 

completely rescued by re-expression of the CazWT or CazP398L in motor  
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Figure 4.14: Loss of Caz results in severe deficits in larval crawling and turning, which 
can be completely rescued with (A/B) D42-GAL4 or (C/D) elav-GAL4 driven expression 
of Caz

WT
 or Caz

P398L
. N= 4. Total number of animals = 20. Control = D42>LacZ (A/B), 

elav>LacZ (C/D). Graph shows mean ± SEM. Statistics calculated for (A & Fig 4.15A), (B & 
Fig4.15B), (C & Fig 4.15C), (D & Fig 4.15D) due to shared control, using One-way ANOVA 
with Sidak’s multiple comparison test: ****p<0.0001.  
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Figure 4.15: Loss of Caz results in severe deficits in larval crawling and turning, which 
can be almost completely rescued with (A/B) D42-GAL4 driven expression of FUS

WT
 or 

FUS
P525L

. However, when driven with elav>GAL4, expression of FUS
WT

 completely rescued 
these phenotypes whereas the expression of FUS

P525L
 provided an almost complete 

rescue. N= 4. Total number of animals = 20. Control = D42>LacZ (A/B), elav>LacZ (C/D). 
Graph shows mean ± SEM. Statistics calculated for (A & Fig 4.14A), (B & Fig 4.14B), (C and 
Fig 4.14C), (D & Fig 4.14D) due to shared control, using One-way ANOVA with Sidak’s 
multiple comparison test: * p < 0.05, **p < 0.01, ****p<0.0001.  
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neurons or in all neurons (Figure 4.16A&B). Similarly the human wild type 

was also capable of fully rescuing this phenotype when expressed in 

motor neurons or in all neurons (Figure 4.16C&D). However, in line with 

previous results for walking (Wang et al., 2011), the ALS-linked mutant, 

though significantly improved on the knockout was still considerably 

reduced compared to the control in both patterns of expression (Figure 

4.16C&D). Therefore, the human mutant appears to have lost the 

functional ability necessary to fully mediate this motor skill.  

 

4.6: Behavioural Analysis of TBPH Knockout Cross 
           Rescue with Caz 
 

As described previously, TBPH knockout phenotypes can be cross-

rescued by Caz expression in neurons. To further corroborate this in view 

of the mitochondrial axonal transport result, eclosion and adult 

locomotion were assayed. Though here the assessment was made with 

motor neuronal expression of CazWT within the TBPH knockout 

background as opposed to pan-neuronally, the results are in agreement 

that CazWT can rescue viability (Figure 4.17A). The previous results of 

walking behaviour showed only a partial rescue, here in regard to 

climbing behaviour there was a full rescue (Figure 4.17B). Furthermore, 

both of these measures were also fully restored upon expression of 

CazP398L (Figure 4.17A&B).  

 

4.7: Behavioural Analysis of Caz Overexpression    
         and Ectopic Expression of FUS 
 

4.7.1 Viability and Larval Locomotion 

 

Gain of Caz, either wild type or mutant, caused no negative consequence  
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Figure 4.16: Loss of Caz causes a complete ablation of adult climbing ability at day 0, 
which can be completely rescued by the (A) D42-GAL4 or (B) elav-GAL4 driven 
expression of Caz

WT
 or Caz

P398L
. Similarly, expression of FUS

WT
 with (C) D42-GAL4 or (D) 

elav-GAL4 can completely rescue this phenotype. Expression of FUS
P525L

 with either 
driver produced a reasonable level of rescue that was however, significantly lower than 
the control or the rescue produced with FUS

WT
. N= 3. Total number of animals = 50. 

Control = D42>LacZ (A/C), elav>LacZ (B/D). A-D are normalised to control. Graph shows 
mean ± SEM. Statistics calculated using Kruskal-Wallis with Dunn’s multiple comparison 
test: * p < 0.05, ****p<0.0001.  
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Figure 4.17: Loss of TBPH causes severe eclosion and climbing defects. (A) The eclosion 
phenotype can be completely rescued by D42-GAL4 driven expression of either Caz

WT
 or 

Caz
P398L

. (B) The non-existent climbing ability of the TBPH knockout adults can also 
completely be rescued by D42-GAL4 expression of these proteins. N= 4 (A), 3 (B). Total 
number of animals = 100 (A), 50 (B). Control = D42>LacZ.  B is normalised to control. 
Graph shows mean ± SEM. Statistics for A calculated using One-way ANOVA with Sidak’s 
multiple comparison test, for B calculated using Kruskal-Wallis with Dunn’s multiple 
comparison test : ****p<0.0001.  
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Figure 4.18: D42-GAL4 driven overexpression of Caz proteins or ectopic expression of 
FUS proteins has no effect on (A&B) eclosion, (C&D) larval crawling and (E&F) larval 
turning. N= 4. Total number of animals = 100 (A&B), 20 (C-F). Control = D42>LacZ Graph 
shows mean ± SEM. Statistics calculated using One-way ANOVA with Sidak’s multiple 
comparison test.  
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on the developmental viability of the flies, with no eclosion defect 

recorded (Figure 4.18A). This was also the case for ectopic expression of 

both wild type and mutant FUS (Figure 4.18B). Similarly, overexpression of 

the Drosophila or human proteins, both wild type and mutant, has no 

effect on larval locomotion phenotypes of crawling and turning (Figure 

4.18C-F). 

 

4.7.2 Adult Locomotion 

 

Young adult flies expressing the Caz proteins were examined for climbing 

ability at age 0-3. CazP398L expressing flies exhibited no change in this 

locomotion, however a significant decrease was recorded for CazWT 

(Figure 4.19A). This represents an anomalous result and was not present 

when the flies were assayed again at day 10.  These flies were aged 

through to 30 days at which point both D42>cazWT and D42>cazP398L flies 

had large reductions in climbing capacity, which had been progressively 

declining since significantly diverging from that of the control at day 20 

(Figure 4.19B&E). By comparison, at day 0, pan neuronal expression of 

CazWT and CazP398L led to no alterations to climbing (Figure 4.19C), 

however again by day 30 this activity had reduced significantly (Figure 

4.19D) although at a slightly later time point than when expressed in 

motor neurons alone (Figure 4.19F). These data suggest excessive levels of 

Caz exert an age-related and progressively detrimental effect to 

neuromuscular function. 

 

In the same vein, the ectopic expression of FUS proteins was also assayed. 

In motor neurons, these proteins exerted no effect on climbing ability in 

young flies at day 0 (Figure 4.20A), however, at day 30 the D42>FUSP525L 

flies were significantly impaired whereas those expressing the wild type 

protein were not (Figure 4.20B&F). Pan-neuronal expression also 

revealed that whilst neither FUSWT nor FUSP525L have any negative effect in 

young flies (Figure 4.20C), aged FUSP525L expressing flies are significantly 
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Figure 4.19: Climbing ability of Caz

WT
 and Caz

P398L
 expression flies declines with age. (A) 

D42-GAL4 driven expression of Caz
WT

 leads to a moderate decrease in climbing capacity 
at day 0 that is not apparent at day 10.  (B) However by day 30, both D42>caz

WT
 and 

D42>caz
P398L

 flies demonstrate decline in this locomotion. (C) Expression of neither 
protein with elav-GAL4 causes a deficit in this activity at day 0, (D) however by day 30, a 
significant reduction in this is seen. Climbing ability through time driven by (E) D42-GAL4 
and (F) elav-GAL4. N= 3. Total number of animals = 50. Control = D42>LacZ (A/B/E), 
elav>LacZ (C/D/F). A-D are normalised to control. Graph shows mean ± SEM. Statistics 
calculated using Kruskal-Wallis with Dunn’s multiple comparison test * p < 0.05, **p< 
0.01, ****p<0.0001.  
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Figure 4.20: Climbing ability of FUS

P525L
 flies declines with age. (A) D42-GAL4 driven 

expression of FUS
WT

 and FUS
P525L 

has no effect on climbing ability of young flies at day 0, 
(B) however in aged flies at day 30, flies expression FUS

P525L
 demonstrate a significant 

reduction in this ability.  These results were mirrored in elav>FUS
WT

 and elav>FUS
P525L

 
flies at (C) day 0 and (D) day 30. Climbing ability through time driven by (E) D42-GAL4 
and (F) elav-GAL4. N= 3. Total number of animals = 50. Control = D42>LacZ (A/B/E), 
elav>LacZ (C/D/F). A-D are normalised to control. Graph shows mean ± SEM. Statistics 
calculated using Kruskal-Wallis with Dunn’s multiple comparison test: **p< 0.01, 
***p<0.001.  
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impaired in their climbing ability (Figure 4.20D&F). Thus, in terms of the 

human proteins, excessive wild type levels within the central nervous 

system neurons exerts no negative effect at any time-point examined 

although this was trending towards significance whereas expression of 

the ALS-linked protein leads to an age-related and progressive 

detrimental effect to neuromuscular function.  

 
4.8: Summary 
 
 
The results for all the Caz and FUS experiments are summarised in Table 

4.1. The loss of Caz causes a reduction in the amount of moving 

mitochondria within the axons of third instar larvae.  This defect can be 

fully rescued by the re-expression of CazWT, however this does not occur 

at the standard temperature of 25°C but is apparent at the raised 

temperature of 29°C suggesting that the level of protein at 25°C was not 

sufficient for rescue of this phenotype and becomes so due to the higher 

temperature. The phenotype arising from the loss of Caz can also be 

completely rescued by the expression of CazP398L at 29°C, indicating that 

this mutant protein acts in a similar manner to the wild type protein in 

terms of this function. 

 

This loss of Caz phenotype can also be completely rescued by both FUSWT 

and ALS linked mutant FUSP525L which unlike with the Drosophila 

homologs can be achieved at 25°C. These transgenes were subject to site-

directed integration and were shown to be expressing at comparable 

levels (Wang et al., 2011) and thus it is unlikely that this difference 

represents a variable expression level and is most likely to result from an 

inherent functionality difference between the fly and human proteins. 

 

caz knockout larvae also demonstrate an increase in the number of 

mitochondria at the neuromuscular junction, which may arise from the 
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resultant effects of the increased amount of stationary axonal 

mitochondria, which may have functional consequences for this structure. 

 

The loss of Caz also results in a severe disruption to the axonal transport 

of vesicles demonstrating that the disruption to axonal transport 

attributable to Caz loss of function is not selective, regarding to these two 

types of cargoes and may represent a broad defect of axonal transport.  

 

The axonal transport defects arising from the loss of Caz correlated with 

severe reduction in viability, as measured by eclosion, as well as several 

measures of larval and adult motor ability, and thus may be a contributory 

factor to these phenotypes.  

 

The viability phenotype can be almost completely rescued by the 

expression of wild type and mutant Caz proteins in both motor neurons 

only and in all neurons highlighting the neuronal requirements for Caz 

expression for developmental viability and also the possibility that extra-

neuronal expression is a factor as concluded previously by Wang et al., 

(2011). In addition, this study confirms these rescue results are also 

largely mirrored by ectopic expression of the human homologs and 

therefore show a functional conservation between fly and human and 

between wild type and mutant proteins in terms of mediating viability.  

 

The reductions in larval crawling and turning can be completely rescued 

by both Caz proteins and when expressed in either motor neurons or all 

neurons. The wild type and mutant human homologs however were not as 

efficient, being able to provide an almost complete rescue in either 

expression pattern. This again suggests that neuronal expression of these 

proteins is almost sufficient for rescue of a knockout phenotype but that 

extra-neuronal expression may also be a factor. However, pan-neuronal 

expression of FUSWT and FUSP525L also revealed a significant difference in 

their ability to rescue this phenotype, which was slightly less efficient with 
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the mutant. Thus, it seems that expression of this protein in extra-motor 

neurons has a negative impact on the larvae that influences 

neuromuscular functioning. 

 
The ablation of climbing ability in the caz knockout adult flies was also 

fully rescued by both Caz proteins and FUSWT when expressed with D42-

GAL4 and elav-GAL4, however, this was not shared by the human ALS 

linked protein which gave only a mild rescue and thus represents a 

functional loss caused by this human ALS linked mutation. 

 
In light of these rescue experiments, consideration of a correlational 

relationship between axonal transport defects and neuromuscular 

functioning, is complex. Mitochondrial transport is only rescued by caz 

transgenes at 29 °C whereas these viability and motor behaviour defects 

can be rescued at 25 °C. This would suggest there is no correlation 

between this transport defect and viability and locomotor behaviour, The 

vesicle transport defect however is fully rescued at 25 °C and this fact 

could be contributing to rescue of the motor behaviours, although this is 

only partially restored by the mutant protein.  However it remains 

possible that at this young time point the flies demonstrate an ability to 

cope with the transport defects.  

 

In terms of FUS proteins, mitochondrial transport is rescued at 25 °C with 

both proteins and vesicle transport is also rescued at 25 °C completely 

with the wild type and partially with the mutant. Thus, here, rescue of caz 

knockout transport defects correlates with and could contribute to 

rescue of larval motor behaviours. However, the partial vesicle transport 

rescue could be contributing to the inability of the human mutant to fully 

rescue all of these motor functions.  

 

The cross rescue experiments between TBPH and Caz demonstrated that 

Caz overexpression cannot rescue the mitochondrial transport disruption 

that occurs as a result of the loss of TBPH. However, Caz variants can 
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rescue the eclosion and climbing defects observed. Therefore, it appears 

that TBPH and Caz act separately to influence axonal transport of 

mitochondria but act within a genetic pathway to influence viability and 

motor behaviours. 

 

The overexpression of wild type and mutant protein of both fly and 

human homologs also results in severe disruption to the amount of axonal 

transport of vesicles. Thus, loss and gain of Caz result in similar effects on 

axonal transport of this cargo. However expression of neither FUS protein 

results in a mitochondrial transport phenotype in contrast to Caz and 

thus overexpression of fly and human homologs can exert differential 

effects on transport.  

 

The overexpression of Caz proteins however does not cause an alteration 

to the number of mitochondria at the NMJ unlike with the loss of Caz, the 

mitochondria are decreased in number despite the similarity in the effect 

on mitochondrial transport between the conditions. Therefore, it appears 

that these conditions exert a differential effect on the processes that 

result from the increased amount of stationary mitochondria.  

 

Interestingly, in this study the axonal transport phenotypes are not 

correlated with eclosion, larval locomotion or young adult climbing 

reduction indicating that within young flies, this compromised axonal 

transport is well tolerated. Aged adult flies expressing Caz proteins and 

the human ALS linked mutant on the other hand demonstrate a marked 

reduction in this activity and thus it is possible that the axonal transport 

phenotypes observed here are contributing in a progressive aged-related 

manner, to locomotor dysfunction. The situation is slightly different for 

the human homologs, where the wild type protein exerts no toxic effect 

on motor behaviours at any time point despite the axonal transport 

defects, this was however trending downwards and may after further 

ageing reach significance. The ALS-linked mutant became significantly 
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affected at a later point than the Caz equivalent and thus overexpression 

of the human proteins appears to have a slightly milder effect than the fly 

homologs.  

 

Overall, both loss and gain of caz/FUS levels alters axonal transport of 

mitochondria and vesicles, which is an interesting finding that bares some 

correlational relationship with neuromuscular dysfunction and thus may 

have consequences for ALS pathogenesis. 

 

 

 

 

 

 

 
 
 
 

 
 

 Table 4.1: Summary of experimental results for FUS. Arrows represent alterations to 
phenotype: Red = Reduction relative to control, yellow = increase, green = rescue and 
blue = no change. Thickness of arrow corresponds to strength of effect. Dashed Line = 
Assay not undertaken. N/A= Assay not applicable. 
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Chapter 5: C9orf72 
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5.1: Aims and Hypothesis 
 
 
The third genetic model of ALS to be assessed in this study was C9orf72. 

Once again the aim was to survey the state of axonal transport of 

mitochondria and vesicles and to examine whether any defects have any 

correlational effect on the flies’ behavioural motor functions as assessed 

via larval and adult locomotor assays.  

 

It was hypothesised that the expression of a pathogenic number of 

GGGGCC (G4C2) repeats interferes with axonal transport and 

contributes to the dying back pattern of degeneration characteristic of a 

distal axonopathy. 

 
 

5.2: The Effect of C9orf72 Expanded G4C2 Repeats 
on Mitochondrial Transport 
 
 
There is no Drosophila homologue of C9orf72 and thus knockout studies 

cannot be carried out in this organism. A previous study carried out by 

Mizielinska et al., (2014) sought to examine the effect of C9orf72 repeat 

expansions in Drosophila. To this end, they created pure repeat 

constructs of a non-pathogenic length of 3 repeats as well as various 

lengths within the pathogenic range such as 36 repeats. Although this is a 

low figure especially compared to the size of the expansions common in 

patients, it is considered within the currently defined pathogenic range. 

The authors carried out site directed insertion of these pure repeats to 

ensure comparable expression levels. With 36 repeats they found a 

moderate level of neurotoxicity in the fly eye when expressed with GMR-

GAL4 which also led to severely reduced viability when raised above 27°C. 

Expression of 36 but not 3 pure repeats in the adults by way of elav-

GeneSwitch driver also drastically reduces the flies’ lifespan.  
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For the assessment of axonal transport of mitochondria within these 

models, they were combined with CCAP-GAL4; UAS-mito.GFP. As 

expected, the expression of 3 G4C2 repeats had no effect on 

mitochondrial transport, however, 36 repeats caused a significant 

increase in the stationary fraction of mitochondria (Figure 5.1).  

 

The study by Mizielinska and colleagues also sought to separate the 

possible effects attributable to the expanded RNA and the DPR proteins. 

To this end, they created RNA only (RO) repeats of various lengths, which 

were made by inserting stop codons into each of the six reading frames 

thus inhibiting translation. In addition, they used alternative codons to 

produce protein only repeats. From their experiments of eye morphology, 

viability and lifespan they demonstrated that toxicity is attributable to the 

formation of DPR proteins given that they are absent in the RO flies even 

up to a repeat length of 288. Furthermore, they established that the 

neurotoxicity was specifically caused by those DPRs that contain arginine, 

namely PR (proline-arginine) and GR (glycine-arginine).  

 

Thus, we also sought to understand whether the mitochondrial transport 

defect observed was an effect specific to the formation of arginine 

containing DPR proteins from the expanded repeat RNA.  Here, 

expression of RO-36 had no effect on mitochondrial transport whereas 

PR-36 caused a very high increase in the stationary fraction and 

concomitant decrease in the motile fraction (Figure 5.1). Therefore it 

appears that expanded C9orf72 G4C2 repeats disrupt the axonal 

transport of mitochondria and that this is attributable to a DPR protein 

species and is not a consequence of RNA toxicity in this model.   
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Figure 5.1: The expression of the 36 repeat construct and the PR-36 repeat construct 
cause a reduction on the level of motile mitochondria within axons. The phenotype is 
most severe in the PR-36 expressing larvae. By contrast there is no effect with the 
expression of the 3 repeat construct or the RO-36 construct. (A) Quantification, the 
number in brackets indicates number of movies analysed. (B) Representative 
kymographs of the indicated genotypes. Scale bars: Horizontal (distance) =10 μm, 
Vertical (time) =125 s. Control = CCAP-GAL4/+; UAS-mito.GFP/LacZ. Graph shows mean 
± SEM. Statistics calculated using One-way ANOVA with Sidak’s multiple comparison test: 
* p < 0.05, **p< 0.01, *** p < 0.001, **** p < 0.0001. 

A 

Anterograde Retrograde Stationary
0

20

40

60

80

100
%

 M
ito

c
h

o
n

d
ri
a

Control

Pure-3

Pure-36

**

***

**

(12)

(13)

(10)

****

RO-36

PR-36

(8)

(10)

*

ns

ns

ns

nsns
ns

ns

B 

Control 

 36 

 3 

 RO-36 

 PR-36 



 170 

5.3: The Effect of C9orf72 Expanded G4C2 Repeats 
on Vesicle Transport 

 

As with the TDP-43 and FUS models, transport of vesicles was also 

examined in the same manner as mitochondrial transport and each of 

these lines was combined with CCAP-GAL4; UAS-NPY-GFP. Rather 

unexpectedly, the expression of 3 repeats caused a mild disruption to this 

vesicle transport, which was only fractionally more severe in the 36 

repeat larvae. However, there is no phenotype in the RO-36 condition as 

expected. Expression of PR-36 led to an extreme imbalance between 

stationary and motile vesicles (Figure 5.2).  

 

Why a normal number of repeats would lead to this disruption is 

unknown (see chapter summary) but it is clear that vesicle transport is 

another function that is affected by an arginine containing DPR species 

and not by any toxic effect of the expanded RNA.  

 

5.4: Mitochondria at the NMJ 
 
 
 

As with the other models wherein mitochondrial transport disruption was 

recorded, the number of mitochondria at the NMJ of muscles 6/7 was 

examined. Here, compared to the control, the expression of 3 and 36 

repeats was not significantly altered. In contrast, expression of both RO-

36 and PR-36 led to a decrease in the number of mitochondria at this 

structure (Figure 5.3).  

 
 
 

5.5: Behavioural Analysis of C9orf72 Expanded   
         G4C2 Repeats 
 

Viability was not formally quantified for these models due to time 

constraints, although no obvious defects at 25 °C were apparent through 

observation. However, the locomotor capacity of these models was  
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Figure 5.2: An increase in the stationary fraction of vesicles and a decrease in the motile 
fraction of vesicles is demonstrated in larvae with the expression of the 3, 36 and PR-36 
repeat constructs and is not seen with expression of the RO-36 construct. PR-36 causes 
the most severe disruption. (A) Quantification, the number in brackets indicates number 
of movies analysed. (B) Representative kymographs of the indicated genotypes. Scale 
bars: Horizontal (distance) =10 μm, Vertical (time) =12.5 s. Control = CCAP-GAL4/+; UAS-
mito.GFP/LacZ. Graph shows mean ± SEM. Statistics calculated using One-way ANOVA 
with Sidak’s multiple comparison test: * p < 0.05, **p< 0.01, **** p < 0.0001. 
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Figure 5.3: Expression of RO-36 or PR-36 results in a significant decrease in the number 
of mitochondria at the NMJ. (A) Quantification, the number in brackets indicates number 
of images analysed. (B) Representative images. Red = HRP, Green = mito.GFP. Scale bar = 
20 μm (top) , 10 μm (bottom). Control = D42-GAL4> UAS-mito.GFP. Graph shows mean ± 
SEM. Statistics calculated using One-way ANOVA with Sidak’s multiple comparison test: 
**p< 0.01. 
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examined to determine if motor ability correlated with the axonal 

transport defects. Motor ability was not previously examined in the 

original study by Mizielinska and colleagues, however, here, in terms of 

the larval motor behaviour of crawling, only the PR-36 condition led to a 

significant reduction when expressed by either D42-GAL4 (Figure 5.4A) or 

elav-GAL4 (Figure 5.4B). However, a mild but significant turning defect 

was apparent in both Pure 36 and PR-36 conditions when expressed with 

D42-GAL4, although this was only seen in the PR-36 condition when 

expressed with elav-GAL4.  

 

In terms of the locomotor ability of the adult flies, again it seems only the 

expression of PR-36 has any effect, producing a small yet significant 

reduction in this activity when expressed in motor neurons (Figure 5.5A) 

or all neurons (Figure 5.5B).  

 

5.6: Summary 
 
 

The results of all the C9orf72 experiments are summarised in Table 5.1. 

The expression of a pathogenic number of G4C2 repeats but not a wild 

type number results in a reduction in the amount of axonal transport of 

mitochondria. It was further identified that this is not a consequence of 

the expanded RNA transcript but is rather attributable to the formation of 

a DPR protein species. Vesicle transport in contrast appears to be 

affected by expression of both 3 and 36 repeats and may therefore be 

partly explained as an arbitrary consequence of the insertion of these 

transgenes within the fly. It is possible that expression of the pure 3 

repeats interferes with RNA regulation through acting as short interfering 

RNAs (siRNAs) that target complementary mRNAs for cleavage and 

destruction. This possibility may explain the vesicle transport specific 

nature of the effect of the 3 repeats if those targeted mRNA sequences 

code for proteins that function specifically in vesicle transport. A question 

that could be answered with an examination of such mRNA levels.  
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However, it is clear that the expression of expanded RNA that cannot 

produce DPR proteins has no effect on this transport whereas the 

expression of the PR species of DPR protein led to an almost complete 

ablation of motile vesicles. These findings further demonstrate the 

phenotypic consequences of the expansion of C9orf72 hexanucleotide 

repeats and argue in favour of a toxic role of DPR proteins and against 

that of a toxic gain of function of the expanded RNA itself.  

 

However, despite the axonal transport phenotypes, neuromuscular 

functioning appears to be only mildly affected in both larvae and young 

adults and is confined to the expression of the DPR protein, with the 

exception of the measure of larval turning which is also significantly 

affected by the expression of the pure 36 repeat construct. The increased 

severity of the phenotypes arising from expression of the PR-36 construct 

is possibly a consequence of the likely relative increase in abundance of 

this DPR species over the level of toxic DPR species present in the pure 36 

construct owing to the dedication of RAN translation to the PR species 

from the former. 

 

Therefore, it seems that these disruptions to axonal transport are 

reasonably well tolerated in young flies. Had time allowed, it would have 

been pertinent to have aged the flies and assessed whether the 

compromised state of axonal transport bares any correlational 

relationship to a progressive aged-related decline in neuromuscular 

function, which would further support a pathogenic role for axonal 

transport defects. 
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Figure 5.4: Expression of PR-36 causes a significant reduction in (A/C) larval crawling 
and (B/D) larval turning ability when expressed with either D42-GAL4 (A/B) or elav-GAL4 
(C/D). N= 4. Total number of animals = 20. Control = D42>LacZ (A/B), elav>LacZ (C&D). 
Graph shows mean ± SEM. Statistics calculated using One-way ANOVA with Sidak’s 
multiple comparison test: * p < 0.05, **p<0.01.  
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Figure 5.5: Climbing ability assayed at day 0 is significantly reduced by expression of PR-
36 driven by (A) D42-GAL4 or (B) elav-GAL4. N= 4. Total number of animals = 50. Control 
= D42>LacZ (A), elav>LacZ (B). A-B are normalised to control. Graph shows mean ± SEM. 
Statistics calculated using Kruskal-Wallis with Dunn’s multiple comparison test: * p < 
0.05, ** p < 0.01,  
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 Table 5.1: Summary of experimental results for C9orf72. Arrows represent 
alterations to phenotype: Red = Reduction relative to control, yellow = increase, 
green = rescue and blue = no change. Thickness of arrow corresponds to strength of 
effect. Dashed line = assay not undertaken. 
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CHAPTER 6: Discussion 
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6.1: Summary 

 

This study was concerned with examining axonal transport by way of two 

types of cargo, mitochondria and transport vesicles, in models of three of 

the major genes linked with ALS, TARDBP (TDP-43), FUS and C9orf72. The 

relationship between any such defects with viability and motor activity 

was carried out to determine whether axonal transport dysfunction is a 

possible contributory factor to neurodegeneration in ALS.  

 

6.2 TDP-43 

 

This study suggests that the loss of endogenous fly TDP-43 (TBPH) leads 

to a decrease in the transport of mitochondria and that this is a specific 

consequence of the loss of this protein. This dysfunction correlates with 

the severely reduced viability phenotype commonly seen in models of 

TDP-43 loss. The severity of the viability phenotype is striking with only a 

few rare escapers managing to eclose. It is certainly possible that the 

axonal transport disturbance in mitochondria within motor neurons is a 

factor in this lethality. This transport dysfunction also correlated with 

severe reductions in behavioural measures of neuromuscular function, 

that is, larval locomotion and adult climbing, and thus is also a possible 

contributory factor in this decline in locomotor capacity of the larvae and 

rare escaper adults. The neuromuscular junction is highly dependent on 

correct distribution and function of mitochondria and this reduced  

mitochondrial transport raises the possibility there may be an energy 

deficiency and calcium buffering abnormalities at the neuromuscular 

junction that impacts on its functioning.  

 

All of the axonal transport and locomotor phenotypes with the exception 

of climbing behaviour could be rescued by the expression of the fly and 

human wild type proteins and the known ALS- linked mutant M337V in 
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motor neurons. This serves as a further indication of a relationship 

between axonal transport functioning and neuromuscular health. This 

result also suggests that this mutant acts similarly to the wild type protein 

in terms of effect on mitochondrial transport, which argues against this as 

a mechanism through which this mutation confers toxicity in human 

disease associated with this mutation. This result agrees with the 

assessment by Alami et al., (2014) made in mouse primary neurons.  

However, this is in contrast to the results recorded by Wang et al., (2013a) 

who saw a decrease in transport for this mutant and the wild type protein 

also in mouse primary neurons, which may be due to experimental 

differences such as in expression levels. Thus, this situation requires 

further study.  

 

The lack of complete rescue by any of the transgenes of the adult climbing 

phenotype was a surprising finding in light of the results of the other 

behavioural assays. However, there was partial rescue, which was 

significantly improved on the knockout score. This suggests several 

possibilities, firstly, that the level of expression in the motor neurons may 

not be sufficient to give rise to a full rescue. Alternatively, this result may 

point to the possibility that since climbing is a complex behaviour, extra-

motorneuronal expression is necessary to carry out this function at a level 

comparable to the control. Had time allowed it might have been useful to 

attempt this rescue with a broader expressing driver such as elav-GAL4.  

 

The unaltered transport of vesicles in the condition of TBPH loss as 

measured in this study was a further intriguing finding. In view of the 

reduced mitochondrial transport result and the findings of both 

mitochondrial and vesicular disruption in SOD1 models of ALS (De Vos et 

al., 2007), it was considered likely that a similar dysfunction would be 

apparent, forming a hypothesis that loss of TBPH results in a general 

aberration to axonal transport. However, the lack of a phenotype as least 

as measured here in terms of motile and stationary fractions, rather 
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indicates that axonal transport dysfunction in this context is likely to be 

specific to mitochondria. 

 

This study is limited to a descriptive analysis of axonal transport and has 

not entered into an examination of a mechanism to explain these findings. 

However, there are some possibilities to be raised in regards to this. It is 

clear that the loss of TBPH results in a widespread dysfunction to RNA 

processing; splicing alterations and up and down regulations of 

expression levels (Tollervey et al., 2011; Polymenidou et al., 2011), which 

may lead to a change in axonal transport component availability. RNA 

target studies (Table 6.1) have shown TDP-43 binds to those of several 

motor proteins such as KIF13, a kinesin 3 motor involved in vesicle 

transport (Colombrita et al., 2012) and important adaptor protein kinesin 

light chain 1 (KLC1) (Xiao et al., 2011).  

 

In view of the mitochondrial specificity of TBPH knockout, it is interesting 

to note that TDP-43 is reported to bind to the mRNA of TRAK1  

(Colombrita et al., 2012), which is the homologue of the Drosophila 

protein Milton. This is an adaptor protein that along with another, Miro, 

mediates the binding of mitochondria to the motor kinesin 1 (Glater et al., 

2006). TDP-43 is also a reported binding partner of KIF1B, which is a 

kinesin 3 motor protein and also involved in the transport of mitochondria 

(Tollervey et al., 2011). A further interesting consideration is that TDP-43 

has been reported through immunofluorescence and immunoblot 

analysis to be physically present within mitochondria in the axons of 

mouse primary motor neurons (Wang et al., 2013a), which is suggestive of 

a potential functional role through possible interactions with transport 

components. If this is true of TBPH, loss of such a function could impact 

on mitochondrial transport. 

 

The analysis of mitochondrial number at the NMJ revealed that there is a 

greater number present upon the loss of TBPH. This was a surprising 
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finding given the transport phenotype. We expected that there would be a 

decrease at this structure as the overall reductions in the motile fraction 

result in more stationary mitochondria along the axon.  

 

The dynamic nature of mitochondrial transport is important. 

Mitochondria have a limited functional lifespan and are constantly 

accumulating damage. It is important that those mitochondria at the NMJ 

are functioning optimally to meet the high-energy demands and allow for 

proper function of the NMJ. It is not entirely clear at this stage whether 

those mitochondria travelling in the retrograde direction are those that 

are less healthy and have decreased functioning compared to those 

moving anterograde (Miller and Sheetz, 2004; Verburg and Hollenbeck, 

2008). Nevertheless, it remains possible that if axonal transport is 

becoming defective, more mitochondria remain at the NMJ and are not 

replaced nor are they sufficiently furnished with new components 

through fusing with incoming mitochondria (Schwarz, 2013), which leaves 

them vulnerable to accumulate damage. As a defence against this, 

mitochondria undergo fission to isolate such damage and to maximise the 

functionality of the healthy population. Such fission would result in an 

observed increase in the number of mitochondria. However, the 

functional state of these mitochondria at the NMJ was not examined in 

this analysis. It would be of interest to elucidate this information to gain a 

better understanding of whether the need to isolate dysfunction is 

causing the increase in mitochondria number at the NMJ.  

 

In contrast to the results described above, the overexpression of TDP-43 

proteins in this model did not produce any alteration to mitochondrial 

axonal transport. Rather, movement of transport vesicles is impaired, and 

mitochondrial transport is unaffected. Thus, it is clear that in this model, 

the loss and gain of TBPH exerts differential effects on axonal transport. It 

is well established that both loss and gain of TBPH results in 

neurodegenerative phenotypes and that correct levels of this protein are 
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of extreme importance. This work supports the concept that the 

stoichiometry of the proteins within the ribonucleoprotein complexes is a 

key factor and if altered through disturbed TDP-43 levels results in 

impaired functioning of these complexes (Diaper et al., 2013). Further, 

these changes to ribonucleoprotein complexes stoichiometry may result 

in differential effects of their functioning that may underpin the 

differences observed in the effect on axonal transport. Recent evidence 

has also suggested that cytoplasmic TDP-43 C-aggregates can block the 

export of mRNA out of the nucleus by causing altered distribution of 

nuclear pore complex components (Woerner et al., 2016), which again 

could lead to defects in axonal transport through the sequestration of 

those mRNAs coding for axonal transport related proteins. Ectopic 

expression of TDP-43WT in Drosophila has been reported to cause 

aggregate induced axon swelling in motor neurons (Li et al., 2010), which 

could be envisaged to create a physical block of transport, although the 

selective effect of transport disruption would seem to argue against this, 

at least at this stage examined.  

 

The level of vesicle transport dysfunction did not reach significance when 

the human wild type protein was expressed in the fly. However it was 

trending in that direction and may have reached significance if the 

number of samples in the analysis was to be increased. It is further 

anticipated that it may continue to decline and reach significance at a 

slightly later time point. This work also points to vesicle transport 

dysfunction as a consequence of the M337V mutation, which may have 

implications for the human disease.  

 

 The increase in mitochondrial length in the condition of TBPH 

overexpression was an intriguing finding. It is not clear why this would be 

an effect specific to only the fly wild type protein in this model, but likely 

points to a non-conserved difference between them. The fact that this 

phenotype can be rescued by a reduction in Marf, the fly homolog of 
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Mitofusin 2, the key protein involved in mitochondrial outer membrane 

fusion, indicates a relationship between TBPH and Marf in the regulation 

of mitochondrial length. It further suggests that excessive TBPH may 

interfere with the dynamics of fission and fusion through promoting 

fusion. This result is in contrast to that previously seen in mouse primary 

neurons (Wang et al., 2013b), wherein TDP-43 overexpression causes 

reduction in mitochondrial length with overexpression of Mitofusin2 

ameliorating this phenotype. It is unclear why these differences are 

apparent but perhaps may represent differences inherent to the model 

systems or conditions.  

 

In regards to the neuromuscular functioning in these overexpression 

models, no phenotype was observed in eclosion suggesting no effect on 

viability through development, which is consistent with the original 

characterisation of these fly lines (Wang et al., 2011), although this differs 

from some models (Estes et al., 2011; Diaper et al., 2013) as does the 

timing of motor deficits, although this was seen to be age dependent in 

severity in some models (Li et al., 2010; Voigt et al., 2010; Hanson et al., 

2010; Lin et al., 2011; Estes et al., 2011). In terms of the measures of 

locomotion in this model, only the expression of the human mutant 

M337V, produced a phenotype in the flies at the young stages, earlier than 

that seen with the wild type proteins, which may be influenced by the 

abnormal transport of vesicles recorded.  This would also suggest that 

neurons might have a greater ability to cope with the effects of an 

excessive amount of the wild type protein. However, age related and 

progressive decline in motor functioning was a result seen for the wild 

type overexpression in addition to the mutant. Therefore it is suggested 

that the vesicle transport defect may be a factor here within the aging 

paradigm, which negatively impacts the neurons abilities to cope.   
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6.3 FUS 

 

Axonal transport dysfunction is also a phenotype resulting from loss of 

Caz. However, unlike the loss of TBPH, both mitochondrial and vesicle 

transport is affected. Caz therefore appears to have a non-selective role 

in the functioning of axonal transport and its loss results in a broad-scale 

defect to this process. Such dysfunction is specifically attributable to the 

loss of Caz as the re-expression of this protein can rescue these 

phenotypes. Interestingly, in terms of mitochondria, this can only be 

achieved at 29°. Thus, it is clear that levels of Caz are vitally important for 

the correct functioning of mitochondrial axonal transport.  In regards to 

transport vesicles, the re-expression of Caz is fully able to restore the 

stationary fraction to control level but in conjunction with a partially 

restored anterograde fraction. This is attributable to a slight increase in 

the retrograde fraction. This pattern of rescue is also mirrored by 

expression of the human protein, FUS. However, the mitochondrial rescue 

was achieved at the standard temperature of 25°C unlike with Caz. Given 

the fact these transgenes were subject to identical site directed 

integration and known to be expressing at comparable levels (Wang et al., 

2011), a difference in expression does not seem likely as an explanation 

here, although this was not explicitly examined.  Rather, this likely stems 

from a difference in functionality between the two proteins, possibly 

owing to differences in structure. The results of rescue with the fly and 

human homologues of the ALS linked mutation P525L were intriguing, A 

full rescue of the mitochondrial phenotype was achieved but the vesicle 

rescue only partially so. A comparative difference is thus apparent in the 

capability of this mutation to mediate vesicle transport, which may have 

implications for ALS patients. 

 

 As with TDP-43, this study has not attempted to elucidate the exact 

molecular mechanisms but is considered to occur through the effects of 

RNA dysregulation. To this end, FUS has been reported to bind to multiple 
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Kinesin motor proteins including KIF5C, KIF1B and KIF3A, which are 

involved in the axonal transport of mitochondria and vesicles (Hoell et al., 

2011; Colombrita et al., 2012) (see Table 6.1). 

 

The axonal transport phenotypes attributable to the loss of Caz bears a 

correlational relationship to severe reductions in viability and multiple 

measures of neuromuscular functioning. This suggests that there may be 

both mitochondrial related and vesicle related deficiencies at the 

neuromuscular junction that could be contributing to the dysfunction of 

these motor activities. In this regard, it was interesting to note the 

increase in the number of mitochondria at the NMJ in the caz1 mutant, 

especially in light of the similar phenotype seen in the loss of TBPH. 

Examining the functional state of these mitochondria would therefore 

also be of interest.  

 

The behavioural phenotype rescue results further enhanced 

understanding of the relationship between axonal transport dysfunction 

and neuromuscular capacity. Behavioural phenotype rescue was 

conducted with expression driven in motor neurons only or in all neurons 

given the incomplete rescue results for some measures in preliminary 

experiments using only D42-GAL4. Rescue of all behavioural phenotypes 

was achieved by both wild-type Caz and the mutant protein when 

expressed in either motor neurons only or in all neurons. All of which 

were undertaken at the standard temperature of 25°C. However, the 

mitochondrial transport defect could only be rescued at 29°C. It seems 

unlikely then that there is any weight to be given to a contributory factor 

of mitochondrial transport dysfunction on neuromuscular functioning. 

Vesicle transport is however rescued at 25°C, which could be having an 

impact on behavioural phenotypes, although it is noted there is only a 

partial rescue with the mutant protein. Thus, the flies have a capacity to 

cope with this transport defect at this early time point. It may have been 

useful to age these rescue flies for a determination of whether such 
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motor activity suffers an age related decline that may be influenced by 

this transport defect.  

 

There were some small differences in the human proteins abilities to 

rescue behavioural phenotypes. Compared to the fly homologs, the 

human proteins were not as capable at rescuing larval locomotion in 

either motor neurons or in all neurons. This suggests the human homolog 

may not be as functionally efficient within the fly, and also that extra-

neuronal expression of FUS is important for neuromuscular function in 

agreement with the assessment made by Wang et al., (2011). Further 

FUSP525L was significantly worse than FUSWT, which was also the case in 

the attempted rescue of adult climbing. Thus these data suggest there is a 

loss of function caused by the P525L mutation on neuromuscular 

functioning, These results bear a correlational relationship to the rescue 

of axonal transport dysfunction with the lack of complete FUSP525L 

locomotor rescue possibly at least partly attributable to the partial rescue 

of vesicle transport.  

 

The overexpression of Caz variants caused severe mitochondrial and 

vesicle transport defects. Thus, loss and gain of Caz exerts the same 

effect on transport, possibly through a similar manner to what is 

postulated for TBPH in terms of ribonucleoprotein complex stoichiometry 

affecting RNA regulation. Furthermore, though the outcome is 

comparable, this does not preclude the concept that this may be achieved 

via different mechanisms. Elucidating the precise mechanisms would be a 

priority for further work. The result showing that the number of 

mitochondria at the NMJ is unaffected in these overexpression lines in 

contrast to the increase seen in the knockout condition further adds 

weight to the concept that there may be different mechanisms at play. It 

must also be noted that CazP398L was found to be nuclear/cytoplasmic 

(Wang et al., 2011) whereas the others were nuclear, at least as was 

determined in those experiments, which suggests cytoplasmic localisation 
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is not necessary to cause these defects, which again suggests a situation 

centred on ribonucleoprotein complex component levels.  

 

It was surprising to note that whilst overexpression of either human 

homolog led to a comparable vesicle transport defect, mitochondrial 

transport was unaffected. This differential effect of the overexpression of 

fly and human homologs on transport is unclear. Though these proteins 

are homologs, the human protein may act differently within the fly system 

in relation to the fly protein, which may be related to structural 

differences between them.  

 

However, the flies have a good capacity to tolerate these transport 

defects insofar as maintaining locomotor ability. The overexpression of 

none of the Caz or FUS variants produced any phenotypes in young 

animals. Intriguingly, this capacity declines in a progressive age-related 

manner in each condition with the exception of FUSWT, which 

nevertheless was trending downwards and may have reached significance 

at a later time point. To this end it may be useful to extend the assay for 

this purpose. It is interesting that Caz overexpressing flies were affected 

at an earlier time point than those expressing the human equivalents, 

especially given the fact the Caz variants exerted an effect on 

mitochondrial transport and FUS did not, which it is suggested may be a 

factor in the milder phenotype seen with overexpression of FUS. Overall 

these ageing data demonstrate that in this overexpression model there is 

a progressive age-related decrease in neuromuscular functioning that 

may be influenced by declining ability to cope with continual axonal 

transport abnormalities. These results differ slightly from those reported 

by other groups, who saw phenotypes at earlier stages upon 

overexpression in Drosophila (Xia et al., 2012; Chen et al., 2011; Machamer 

et al., 2014) but agree with those of Wang et al., (2011). It is not known why 

this would be the case but may be a result of different lines or conditions 

used.  
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Axonal Transport Machinery Name ALS model Vesicles / Mitochondria Function Reference

Microtubules Futsch (MAP1B) TDP-43, FUS Both Stability of microtuble tracks Godena et al., (2011), Hoell et al., (2011)

KIF13 TDP-43 Vesicles Colombrita et al., (2012)

KIF1B TDP-43, FUS Mitochondria Tollervey et al., (2011), Colombrita et al., (2012)

KIF5A TDP-43 Mitochondria Polymenidou et al., (2011)

KIF5C FUS Mitochondria Hoell et al., (2011), Colombrita et al., (2012)

KIF3A FUS Vesicles Hoell et al., (2011)

KIF3B FUS Vesicles Hoell et al., (2011)

KIF13B FUS Vesicles Hoell et al., (2011)

DCTN4 FUS Both Hoell et al., (2011)

DCTN5 FUS Both Hoell et al., (2011)

DCTN6 FUS Both Hoell et al., (2011)

DYNC1H1 FUS Both Hoell et al., (2011)

DYNC1I1 FUS Both Hoell et al., (2011)

DYNC1LI1 FUS Both Hoell et al., (2011)

DYNC2LI1 FUS Both Hoell et al., (2011)

DYNC2H1 FUS Both Hoell et al., (2011)

KLC1 TDP-43,FUS Vesicles Binding of vesicles to Kinesin Xiao et al., (2011), Hoell et al., (2011)

TRAK1 TDP-43 Mitochondria Binding of mitochondria to Kinesin Colombrita et al., (2012)

Movement of cargoMotor proteins

Adaptor proteins

In addition to the separate studies of TBPH and Caz, given the similarities 

and functional interactions between them, a consideration on their 

relationship in regards to axonal transport was undertaken.  It seems that 

at least in terms of mitochondria, the loss of either TBPH or Caz results in 

defective transport. This raised the question of whether they are acting in 

a genetic pathway to mediate this function, as has been discovered in 

terms of viability and locomotor behaviours through cross-rescue 

experiments using these transgenes (Wang et al., 2011). This was 

corroborated in this study in terms of the behavioural assays, however 

the fact the mitochondrial transport phenotype could not be rescued 

raises the concept that they are unlikely to interact within a pathway to 

mediate their role in this transport.  

 

Table 6.1: TDP-43 and FUS RNA targets associated with axonal transport. 

 

6.4: C9orf72 

 

The survey of axonal transport within the C9orf72 models also identified a 

disruption. The expression of the expanded pure repeats construct 

clearly caused a disruption of mitochondrial transport. However the 

effect of such expansion on the transport of vesicles is more complicated 

being that it was affected by the 3 repeat construct as well, which argues 

that this may be explained as a consequence of the construct insertion 

within the fly or that the 3 repeat result is the consequence of this insert 

causing RNA-mediated targeting of specifically vesicle transport 
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machinery mRNAs. However, results of the RNA only and PR-only 

conditions implicate toxicity related to the expansion. Overall it can be 

concluded that axonal transport is disrupted in this model and represents 

a novel phenotype of C9orf72 expansion. 

 

Among the three potential mechanisms of C9orf72 pathogenesis, 

haploinsufficiency is generally disfavoured, as multiple animal models 

have returned results illustrating the lack of overt symptoms upon 

C9orf72 knockdown/knockout (Lagier-Tourenne et al., 2013; Koppers et 

al., 2015).  A considerable amount of evidence has been gathered in favour 

of a gain of toxic function of the expanded RNA. These develop into RNA 

foci that are present in affected brain regions and serve to trap multiple 

species of RNA binding proteins and trigger a dysfunctional RNA 

metabolism (Stepto et al., 2014).  

 

However, in this model, axonal transport dysfunction at least regarding 

mitochondria and transport vesicles is not attributable to a toxic gain of 

function of the expanded RNA itself. This is consistent with the lack of 

phenotypes reported in the RNA-only flies in the original study by 

Mizielinska and colleagues and further by the locomotor results of this 

study. 

 

However, evidence is mounting for a pathogenic role of the dipeptide 

repeat proteins that are produced from the expanded RNA transcript 

through RAN translation. The results from this study further suggest a 

toxicity of the DPR proteins. Expression of one of these, proline-arginine 

(PR) results in severe mitochondrial and vesicle transport dysfunction. 

DPR proteins are highly aggregate prone and form into protein inclusions. 

It is conceivable that these may be affecting the availability of components 

of the transport apparatus, making it more likely that cargo will be 

stationary at any given time. Alternatively, and especially given both cargo 

were affected, these protein aggregates could be acting as physical 
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blockades within the axon. It may be of interest in future studies to 

conduct dual marker experiments for both aggregates and fluorescent 

transport cargo to elucidate whether this is the case.  

 

Interestingly, it has been shown in cultured astrocytes that the PR species 

of DPRs is able to enter the nucleus and aberrantly bind to nucleoli 

causing widespread RNA dysfunction, which ultimately led to cell death 

(Kwon et al., 2014). This raises the concept of a specific RNA dysfunction 

arising from the effect of the PR DPR species that may impact axonal 

transport function. This is further intriguing in light of the recent work 

suggesting the PR dipeptide may block the nuclear pores and prevent 

nucleocytoplasmic shuttling (Jovičić et al., 2015). A study utilising a 

Drosophila screen also saw nucleocytoplasmic transport dysfunction 

particularly of protein import with expression of pathogenic length G4C2 

repeats, including of nuclear import of TBPH. However the authors 

attributed this to RNA toxicity, specifically, the binding of important 

nucleocytoplasmic transport protein RanGAP to the expanded RNA and 

failed to detect the presence of DPRs, although they concluded their 

existence and potential effect could not be ruled out (Zhang et al., 2015). 

Another study undertook a screen using a Drosophila model expressing a 

(G4C2)58 repeats construct which led to nuclear and cytoplasmic 

inclusions and returned results indicating dysfunction in 

nucleocytoplasmic transport. Interestingly, they found a significant defect 

in the process of RNA export, which resulted in the retention of RNA 

within the nuclear compartment and which was corroborated in HeLa 

cells and iPSC derived patient neurons (Freibaum et al., 2015). Through 

the use of the (G4C2)58 construct this study identified potential toxicity 

from both RNA and DPRs and so this dysfunction cannot be concluded as 

a specific product of DPR toxicity, although they did report toxicity in 

another fly model exclusively associated with the GR arginine-containing 

DPR. This is an exciting new area that needs more clarifying studies but 

there is evidence, particularly from the studies by Kwon et al., (2014) and 
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Jovičić et al., (2015) to suggest, in common with that of TDP-43 and other 

aggregate prone proteins (Woerner et al. 2016), a functional mechanism 

for PR toxicity through which axonal transport (and other cellular 

processes) could be disturbed if key components are decreased in 

availability due to the breakdown in the nuclear pore traffic flow.  

 

This study focused on a species of DPR protein that contains arginine as 

such DPRs were identified in the study by Mizielinska et al., (2014) from 

whom the fly lines originated, to be the toxic DPR species. No effects on 

any of the measures of neurodegeneration were seen with the non-

arginine containing GA or PA species. This study did not assess these 

other DPRs in isolation thus, whether axonal transport dysfunction can be 

attributed specifically to arginine containing species cannot be concluded. 

However given the previous results it is hypothesised that this would be 

the case. Though it is noted that the non-arginine DPR proteins do have 

some evidence to suggest they are toxic (Zu et al., 2013; May et al., 2014). 

Thus, it would be interesting to examine expression of other DPR proteins 

to see whether axonal transport dysfunction arises.   

 

The result of the mitochondrial count analysis at the NMJ was difficult to 

interpret and seems inconsistent with the mitochondrial transport 

phenotypes. Here, there appeared to be fewer mitochondria, however the 

difference is small and may simply be an experimental artefact. 

Furthermore, neither is significantly different from the 3 repeats 

conditions, which itself, being in the non-pathogenic range, could arguably 

be used as an additional comparator.  

 

The evidence regarding neuromuscular functioning suggests that these 

flies are reasonably able to tolerate the axonal transport dysfunction at 

least at larval and young adult stages. Due to time constraints, viability as 

measured by level of eclosion was not quantified. However on an 

observational basis, this was unaffected at 25°C consistent with previous 
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findings (Mizielinska et al., 2014). At this temperature, larval locomotion 

was reduced in the DPR only condition and mildly in the pure 36 repeats 

condition, which is consistent with the axonal transport results. The 

relative difference in severity between these conditions may be as a result 

of an increased abundance of a toxic DPR species in the former. The 

effect of ageing on the locomotor capacity of these flies was not 

undertaken due to time constraints but would be useful to see whether 

age related decline in neuromuscular functioning is present in this model. 

Although previous work by Mizielinska and colleagues has showed that 

expanded repeats severely reduce the survival time of the flies and that 

this was not attributable to expanded RNA only toxicity. It is suggested 

that axonal transport dysfunction may be a factor in this model perhaps 

by contributing to a vulnerable neuronal environment that may lead to 

neuronal death and reduced lifespan. 

 

Although the relationship between repeat length and phenotype is not 

clear, the previous study showed the level of toxicity of expanded C9orf72 

repeats increased with repeat length and thus it may be useful to examine 

this relationship in regard to axonal transport, such a finding would add 

further weight to a pathogenic role for axonal transport dysfunction in 

this model. It is also recognised that these results should not be taken to 

suggest RNA specific toxicity is not a factor in human disease as many 

lines of evidence indicate that it is. In this context it may be useful to 

examine other, perhaps longer repeat RNA-only flies for axonal transport 

and neurodegenerative behavioural phenotypes.  

 

It must also be noted that this study ectopically expressed these PR only 

constructs within lower motor neurons in a fly model. However, whether 

this is clinically relevant is debatable given that within C9orf72 expansion 

positive patients DPR inclusions have been described as a limited 

pathology within these neurons (Gomez-Deza et al., 2015). Nevertheless, 

they are present in some patients and the possible effect of axonal 
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transport dysfunction cannot be ruled out. In addition, an examination of 

axonal transport within other brain neuronal populations may be of 

interest as it is clearly a phenotype that arises from the expression of at 

least one DPR protein. 

 

6.5: Conclusions and General Future Directions 

 

The survey of axonal transport within these three models has shown 

dysfunction in this system is a common finding in models of ALS that may 

be contributing to the observed neuromuscular dysfunction. The study is 

limited insofar as it is correlational and descriptive; nevertheless it 

highlights this pervasive dysfunction in axonal transport and serves as a 

base for future exploration. One aspect that could be explored further is 

additional measures of transport such as velocity, and number and length 

of pauses, which may be a useful expansion to this analysis of transport. 

Additionally, NMJ morphology was not examined and so it is not possible 

from this study to comment directly on the contribution of these 

transport defects to the dying-back process. Although other models of 

TDP-43, FUS show that NMJ morphology is affected in some models 

(Feiguin et al., 2009; Estes et al., 2011; Li et al., 2010; Xia et al., 2012; Chen et 

al., 2011). Furthermore, these axonal transport defects join synaptic 

transmission dysfunction as early phenotypes recorded in TDP-43 and 

FUS models (Diaper et al., 2013; Machamer et al., 2014) and raises the idea 

that they may be a factor in the development of this synaptic dysfunction, 

which would be interesting to explore. However, it may be that axonal 

transport disruption is a consequence and not a cause of degeneration, a 

distinction cannot be concluded here but the early time point of axonal 

transport defects is an interesting indicator that fits into the concept that 

transport dysfunction precedes symptom onset in patients.  

 

However, in the SOD1 models of ALS, the relationship between 

mitochondrial transport dysfunction and degeneration is not clear. 
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Several studies suggest evidence to support such a relationship, however 

the inability to rescue this when the mammalian protein, Syntaphilin, a key 

protein involved in anchoring mitochondria and inhibiting their transport 

is reduced argued against this (Marinković et al., 2012).Although there is 

no fly homologue of Syntaphilin, it would perhaps be interesting as an 

additional justification to assess the effect of reducing the stationary pool 

within models of TDP-43, FUS and C9orf72 linked ALS. In flies this could 

potentially be achieved by overexpressing the mitochondrial adaptor 

protein Milton, which using the mammalian equivalents, significantly 

increases the motile fraction in mice (Chen and Sheng, 2013). In this 

manner it could be elucidated whether such a rescue of mitochondrial 

motility is in fact able to positively impact neuromuscular functioning.  

 

The transport of other cargo, such as several types of vesicles has also 

been studied in the context of SOD1 models and one such cargo is 

reported here to be defective in further models of ALS. Thus, it is worth 

examining other types of cargo beyond mitochondria within such 

transport studies to gain a more complete picture of the state of axonal 

transport in ALS. 

 

As described above, this study of axonal transport in these three ALS 

associated genes found mitochondria and vesicles are affected in some 

manner for each, further building on the knowledge of axonal transport in 

ALS gathered from non-Drosophila studies of TDP-43 and SOD1, which 

leads to the conclusion mitochondrial and vesicle transport disruption is a 

common phenotype in ALS models. However, this axonal transport 

dysfunction is not a specific pathology to ALS; it is also seen extensively in 

other neurodegenerative disease models such as Huntington’s, 

Parkinson’s and Alzheimer’s diseases.  

 

However, the mechanisms underpinning the dysfunction differ between 

models demonstrating the vast manner in which axonal transport 
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dysfunction can arise. Within ALS, dysfunction related to TDP-43, FUS and 

C9orf72 expansion are likely to act through dysregulation/disruption of 

transport-related RNA targets as described above, whereas mutant SOD1 

pathologically associates with mitochondria and causes p38 activation 

which prevents the function of Kinesin (De Vos et al., 2008; Morfini et al., 

2013). In non-ALS models, PolyQ Huntingtin creates aggregates which are 

postulated to cause axonal blockade that disrupts vesicle transport and 

very probably other cargo in a Drosophila model (Sinadinos et al., 2009), 

prevents the interaction of an adaptor protein with the motors (Morfini et 

al., 2009) and promotes deacetylation of Tubulin (Dompierre et al., 2007). 

LRRK2 Roc-COR domain mutants also cause the latter, by binding to 

deacetylated microtubules, which has a measured severe effect on 

mitochondrial transport and likely, given the critical nature of stable 

microtubules as tracks for axonal transport, many other cargoes as well 

(Godena et al., 2014). In Alzheimer’s, mutations in Amyloid precursor 

protein (APP) and Presenilin 1 (PS1) both cause axonal transport 

dysfunction, with the former affecting vesicle transport (Salehi et al., 

2006) and the latter, motor-cargo binding, inhibiting vesicle and 

mitochondrial transport (Pigino et al., 2003).  Thus, ALS joins the list of 

neurodegenerative disorders within which multiple genetic models share 

the common phenotype of axonal transport dysfunction as well as being 

one of many more disorders with axonal transport dysfunction as a 

phenotype, which again highlights the importance of axonal transport in 

neuronal function and its dysfunction in disease.   

 

Overall, this study has shown there exists a commonality of axonal 

transport dysfunction in multiple models of ALS, which therefore may 

represent a unifying pathology in this disease, which is suggested to 

contribute to the development of motor dysfunction and to eventual 

neuronal loss. In light of this, an expansion of the survey to include other 

cargo and other time-points should perhaps be considered.  Future 

studies are also needed to elucidate the exact mechanisms underpinning 
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this dysfunction to further understand the role perturbations to this 

system play in this devastating disease.  
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