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Abstract 

Pregnancy is a major physiological stress of the cardiovascular system. Weight gain 

significantly contributes to physical limitations. This thesis examines the effects on 

both physical and cardiac performance of weight gain in pregnancy. Utilising cardiac 

power output at rest and maximal exercise, I measured the effects of (i) inert weight 

loading (ii) pregnancy and (iii) obesity in the non-pregnant state, to determine the 

acute, chronic and also reversible changes.   

Weight loading using a pregnancy simulator suit (“Empathy Belly”) showed reduced 

physical performance, whilst showing an improvement in cardiac performance, 

predominantly by increasing the pressure generating capacity of the heart. 

Additional load carriage with the “Empathy Belly” and a rucksack, showed further 

reduction in physical performance, but no further improvement in cardiac 

performance. Pregnancy revealed significant reductions in physical performance 

and maintenance in cardiac performance compared to the non-pregnant post-

partum. Contrary to this, there were significant reductions in both physical and 

cardiac performance in pregnancy, compared to pre-conception. Changes in 

cardiac performance throughout pregnancy gradually improved, whilst there was a 

deterioration in overall physical performance. Obesity in the non-pregnant state, 

showed significant reduction in physical performance with a marked increase in 

cardiac performance. This was primarily driven by an increase in the flow 

generating capacity of the heart; the cardiac output. 

Inert weight loading, weight carriage in pregnancy and non-physiological weight 

gain in obesity in the non-pregnant state, all reduce physical performance. In 

contrast to this, both inert weight carriage and weight carriage in obesity increase 

cardiac performance. Acute weight loading induces an increase in pressure 

generating capacity, whilst chronic weight carriage leads to an increase in flow 

generating capacity.  

For the first time, I have shown that peak cardiac performance reduces in 

pregnancy from pre-conception, although this gradually improves throughout 

pregnancy and is likely to be in part caused by an increase in weight gain.  
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1 Literature Review 

Weight is defined as “a body’s relative mass or the quantity of matter contained by 

it, giving rise to a downward force” [Oxford Dictionary 2010]. When considering 

weight in humans, it is deemed in society as a sign of being healthy, if one is a 

normal weight and unhealthy if one is underweight or especially overweight. Society 

commonly stigmatises those individuals outside of the normal range and often leads 

to mocking and social isolation for those involved. Moreover, changes in body mass 

can occur for a number of reasons: from a growing child, to a pregnant woman, or 

self induced weight gain or loss seen in obesity and anorexia. Interventions can 

lead to dramatic changes in body mass: dieting; bariatric surgery where patients 

can lose up to 40% of their body mass [Buchwald et al 2004]; childbirth; amputation 

of a limb due to injury or severe peripheral vascular disease. It is often also 

necessary to carry external weight, which may be because of one’s occupation, 

such as a soldier carrying a rucksack or in everyday life, carrying a school or work 

bag or even carrying one’s own children. Some individuals choose to train their 

body, through weight lifting or performing dynamic exercise carrying weight, such 

as ankle weights or a weight suit. All of these weight changes inevitably lead to a 

change in stress on the cardiovascular system.  

 

1.1 Cardiovascular response to stress 

The human cardiovascular system is able to dynamically respond to stress, by 

having a reserve capacity to generate more force when necessary. This is 

prompted by neurohormonal and sympathetic activation and vagal inhibition. This 

results in a significant increase in heart rate, cardiac contractility, blood pressure, 

skeletal muscle blood flow and venous return with a drop in systemic vascular 

resistance, whilst peripheral vasoconstriction diverts blood away from the non- 

essential organs and inactive muscles. Different types of stress and exercise lead 

to varying levels of response. When more muscle groups are used, such as in 

weight bearing exercise, the fall in peripheral vascular resistance can be 

considerable. However, the blood pressure and cardiac output rises in parallel to 

the amount of work  [Berne et al 2010].  
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The cardiovascular system also has limits to its response in heart rate, stroke 

volume and oxygen consumption, all reaching a plateau at maximal exertion. It is 

traditionally accepted that stroke volume plateaus at 40-50% of VO2max [Astrand et 

al 1964]. However, current research suggests there is a range of responses, with 

some trained individuals showing a progressive rise in stroke volume up to VO2max. 

[Vella & Robergs 2005]. VO2max is generally considered as the best measure of the 

functional limitation (physical performance) of the cardiovascular system and is 

often used as an indicator of cardiopulmonary fitness. Seminal work by AV Hill 

showed that oxygen consumption reached a maximum level during peak physical 

work [Hill & Lupton 1923]. Subsequently, a plateau in VO2, despite increase in work, 

has been used to determine a subject’s maximum VO2 (VO2max). However, 

considerable variation in achievement of the plateau has been reported in the 

literature, therefore some investigators have chosen to test blood lactate levels or 

use a cut off respiratory exchange ratio as the key criterion of having attained 

VO2max. [Rossiter et al 2006, Howley et al 1995]. There is also considerable debate 

about what ultimately limits VO2max, between either a cardiac (circulatory) or neural 

(central governor model) regulation. The widely held view is that exercise is limited 

by the heart’s inability to pump blood to the skeletal muscle. The evidence for this, 

is the drop in blood flow in the legs when arm exercises are superimposed on 

maximal bilateral leg exercise, leading to a fall in tissue and blood pH from the build 

up of lactic acid in the muscles. [Brink-Elfegoun et al 2007, Ekblom 2009]. The 

opponents of this suggest that there is a centrally mediated mechanism during 

exhaustive exercise that limits exercise in order to limit myocardial ischaemia 

[Noakes & Marino 2009]. Further to this discussion a very recent trial examined 

whether cardiac performance, namely Cardiac Power Output (CPOmax), limited 

VO2max by assessing trained athletes during cycle exercise using 2 different rates of 

work. Despite similar VO2max and cardiac output (CO), the study showed that mean 

arterial pressure (MAP) was significantly higher and that increases in CPOmax also 

approached significance (8.1 v 8.5, p < 0.06) in the group with the higher work rate, 

suggesting that the heart works sub-maximally during incremental exercise tests 

[Elliott et al 2015]. 

 

1.2 Cardiovascular changes of inert increase in body weight 

When the increase in body mass is inert, in other words an external non-perfused 

increase in mass, such as seen with external weight carriage, one can clearly 
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establish how the cardiovascular system responds to weight alone. For many years 

the military has tried to establish the optimum pack weight for the soldiers going to 

war. In 1897, a British Royal Commission recommended a maximum fighting load 

of 40 pounds. In World War I this rose to 80% of body weight. In 1923, Cathcart et 

al found that the rate of oxygen consumption (referred to as energy cost), with 

weight loading, increases significantly when more than 40% body weight is carried, 

under laboratory conditions and therefore, under service conditions, a limit of one 

third of body weight was accepted, to maintain efficiency and health [Cathcart et al 

1923]. Interestingly, in a recent study in Afghanistan, soldiers carried a fighting load 

of 29kg and march loads up to 57.5kg [Orr 2010]. It is well recognised that the rate 

of oxygen consumption increases with the amount of load carried, as well as the 

amount of work performed [Haisman 1988; Abe et al 2004]. Borgols et al studied 

loading up to 30kg and showed that for each kilogram of weight increased, VO2 

increased by 33.5ml/min [Borgols et al 1977]. Soule et al also showed that, at a 

given speed, with every increase in weight carriage, there was an increase in VO2 

up to 70kg [Soule et al 1978]. Bhambhani et al examined the physiological 

differences in healthy men carrying 2 different weighted boxes (15 and 20kg) during 

submaximal treadmill exercise, and showed that there was an increase in oxygen 

consumption with the higher weight, but no change in cardiac output and blood 

pressure [Bhambhani et al 1997]. Bhambhani then went on to compare gender 

differences using the same methods and showed that the rate of oxygen uptake 

was significantly higher in women, compared to men, and that cardiac output and 

maximum heart rate rose in women only with higher weight carriage [Bhambhani et 

al 2000]. Sagiv et al also compared the differences in load carriage, using heavy 

backpacks (38kg and 50kg) in healthy male volunteers performing 4 hours of 

treadmill walking. He found significantly higher values of VO2, CO, HR, MAP and 

diastolic blood pressure (DBP) and significantly lower systemic vascular resistance 

(SVR) [Sagiv et al 1994]. Sagiv confirmed these findings in an older population 

(mean age 66 years) using two weights of 20 and 30kg, performing 30 minutes of 

submaximal treadmill exercise. They similarly showed a significant increase in CO, 

HR, MAP and DBP [Sagiv et al 2002].  

What is not clear, is whether additional weight carriage will help us differentiate 

between indirect and direct changes in peak cardiac performance and overall 

cardiac function, namely VO2max and CPOmax. It is also not clear whether cardiac 

performance can in fact supersede what is felt to be maximum functional 

performance at VO2max.  
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1.3 Cardiovascular changes to perfused increase in body 
mass 

The cardiovascular system also has the ability to adapt to changes in actual body 

mass over time. This generally occurs through a process of remodelling, caused by 

increased neurohormonal activation and vagal inhibition. If the increased body 

mass is perfused, as is the case in pregnancy and obesity, remodelling is further 

promoted by an increase in circulating blood volume. In the non-pregnant state, 

there is a curvilinear relationship between body mass and skeletal muscle mass 

[Janssen 2000], which further leads to increased muscle perfusion and venous 

return. However, the major difference in cardiovascular response between obesity 

and pregnancy is the dramatic change in haemodynamics seen in the first few 

weeks of pregnancy, even before body mass has changed.  

 

1.3.1 Cardiovascular changes in pregnancy  

1.3.1.1 Resting cardiovascular changes in pregnancy 

Cardiovascular changes in pregnancy have been extensively studied since the first 

measurement of resting cardiac output in pregnancy was reported by Lindhard in 

1915 [Lindhard 1915]. A number of investigators, including Stander and Cadden in 

1932 and then Burwell et al in 1938, measured the changes in cardiac output in 

pregnancy, using the acetylene method. They found that cardiac output increased 

rapidly during the first half of pregnancy and reached a maximum by the 32nd week 

of pregnancy (increase of 45-85%) [Stander and Cadden 1932; Burwell et al 1938]. 

Hamilton then went onto perform a single CO measurement, using the direct 

Cournand cardiac catheterization technique, on 75 pregnant women throughout 

pregnancy and compared them to 32 non-pregnant controls. In the 6-9th week of 

pregnancy, CO was unaltered, but then suddenly increased by the 10th week, 

reaching a peak at the 29th week, then plateauing until the 37th week and falling in 

the last 2 weeks. [Hamilton 1949]. In 1989 Clark et al examined the longitudinal 

resting haemodynamic changes in 10 women from third trimester to 12 weeks post-

partum, using the direct Fick technique. They found that pregnancy was associated 

with a significant rise in cardiac output and heart rate. They also reported a 

significant fall in systemic vascular resistance, but no significant change in 

ventricular stroke work index or mean arterial pressure [Clark et al 1989]. In 1990 
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Pivarnik et al performed a similar longitudinal study, examining the changes in 

cardiac output in 7 women between 37 weeks and 12 weeks post-partum, using the 

direct Fick technique at rest and during sub-maximal exercise. They found that 

responses of VO2, cardiac output and stroke volume during exercise were greater in 

pregnancy [Pivarnik et al 1990]. During a similar period a number of other 

longitudinal studies were performed using non-invasive methods to measure resting 

cardiac output using M-mode echocardiography, Doppler echocardiography and 

impedance cardiography [Rubler et al 1977; Katz et al 1978; Capeless & Clapp 

1989; Caton & Banner 1987; Easterling et al 1990; Robson et al 1989; Atkins et al 

1981]. There was intensive discussion about which non-invasive test provided the 

most accurate assessment of cardiac output, in keeping with invasive methods. 

Easterling et al found that impedance techniques correlated poorly with the 

thermodilution method [Easterling et al 1989], whereas echo Doppler techniques 

were shown to correlate well with thermodilution techniques [Rose et al 1984]. 

Robson’s study [Robson et al 1989], which assessed cardiac output in 13 subjects 

using the  echocardiography Doppler technique from pre-conception, then at 5 

weeks gestation and every 4 weeks through gestation to term, was felt to be the 

most valid study and therefore has been used to characterise the pattern of 

changes in cardiac output through pregnancy. Robson showed that cardiac output 

rose from 5 weeks and continued to rise to a maximum at 32 weeks by nearly 50%, 

and then fell slightly until term. He also showed that heart rate rose from week 5 

until 32 weeks by 17% and then remained constantly elevated until term. Stroke 

volume rose by week 8, reaching maximum values at 20 weeks, and was then 

maintained to term. Left ventricular and left atrial dimensions became enlarged by 

week 12, until the end of the second trimester, by 7% and 16% respectively and 

remained constant until term, while LV wall thickness progressively increased from 

week 12 to term by 28%. He also showed that SBP remained constant during 

pregnancy until 36 weeks, when there was a slight rise, whilst DBP fell, reaching a 

significant nadir by 20 weeks and then rising progressively and increasing above 

pre-conception levels by 38 weeks. SVR also progressively fell from the start of 

pregnancy until 20 weeks, before slowly rising to term, albeit with levels that 

remained significantly lower at 38 weeks than pre-conception [Robson et al 1989].  

Using post-partum as the non-pregnant state, both Mabie et al [Mabie et al 1994] 

and Desai et al [Desai et al 2004] performed echo studies, which showed that 

cardiac output increased by approximately 50% and that half of the increase had 

occurred early in the first trimester. However, they also showed that cardiac output 

then continued to steadily rise until term, rather than peaking in the early third 
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trimester. More recently, Ducas et al [Ducas et al 2014] made a comparison 

between transthoracic echocardiography (TTE) and cardiac magnetic resonance 

imaging in pregnancy and post-partum. 34 women underwent scans at 

approximately 34 weeks and 16 weeks post-partum and these showed that cardiac 

output increased by 80-85% using both techniques. However, TTE underestimated 

the values compared to MRI. There was a similar increase in left ventricular end-

diastolic volume (LVEDV) by 20-30% and LV mass by 45-50% between techniques, 

but again volumes and mass were underestimated by TTE. These differences are 

merely a reflection of the different imaging analysis techniques. Most recently 

Mahendru et al [Mahendru et al 2014] examined the longitudinal changes in resting 

cardiac output and blood pressure from pre-conception, through pregnancy and 

then again in post-partum, using a non-invasive validated inert gas re-breathing 

technique (Innocor, Innovision, Odense, Denmark). They showed a gradual rise in 

CO up to the second trimester, with a plateau in the third, before falling to pre-

conception levels by 12 weeks post-partum. As well as seeing a rise in heart rate 

throughout pregnancy by 20%, there was also a significant rise in stroke volume in 

pregnancy. However, they also identified a significant increase in SV in post-

partum, in comparison to the third trimester. Left ventricular ejection fraction did not 

significantly change throughout assessments. Blood pressure (systolic, diastolic 

and mean arterial) and systemic vascular resistance fell in pregnancy, reaching a 

nadir in the second trimester, before climbing again in the third trimester and post-

partum. However, systolic blood pressure in post-partum remained significantly 

lower than in pre-conception. They found no relationship between weight gain and 

cardiovascular changes.  

 

1.3.1.2 Exercise testing in pregnancy 

1.3.1.2.1 Maximal exercise testing in pregnancy 

A number of studies have examined the effects of pregnancy on VO2max using cycle, 

treadmill exercise and swimming [Artal et al 1986; South-Paul et al 1988, Sady 

1989; Lotgering et al 1991; Morton 1991; McMurray et al 1991; Spinnewijn et al 

1996; Heenan et al 2001]. Lotgering et al [Lotgering et al 1991] performed the only 

longitudinal study using treadmill exercise in all three trimesters and post-partum, 

whilst, at the same gestation, also compared differences with cycle exercise. They 

found no significant difference in VO2max between any trimester and post-partum, 

and no difference between exercise methods when VO2max was expressed in litres/ 

minute. Maximal heart rate either appeared to be similar or slightly reduced. Other 
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studies have shown similar results, showing no change in VO2max during maximal 

cycle exercise [Sady 1989; Spinnewijn et al 1996; Heenan et al 2001]. If VO2max  

was scaled by body mass, then one would have seen a fall in aerobic capacity, 

which would have been a false interpretation.  

Only one study in the literature, by Sady [Sady 1989], examined the longitudinal 

effect of CO in pregnancy during maximal cycle exercise. Sady used the acetylene 

re-breathing technique to measure CO and found that CO was higher in the third 

trimester in comparison to post-partum. Maximal heart rates were unchanged, 

thereby suggesting that an increase in SV was responsible. Sady also measured 

CO and VO2 at two submaximal levels and found the CO/ VO2 relationship was 

linear both during and after pregnancy, and suggested that there was a coupling 

mechanism between oxygen utilisation and oxygen delivery that was maintained in 

pregnancy. 

 

1.3.1.2.2 Submaximal exercise testing 

Many more studies examining the effects of pregnancy on submaximal exercise 

haemodynamics have been performed. The first comprehensive study was 

performed by Bader et al in 1955 [Bader et al 1955]. They measured CO, using the 

Fick technique in 46 pregnant women during supine cycling. No post-partum tests 

were performed, but they found that CO increased by 30-40% from rest with sub-

maximal exercise and was similar to a reference control group, although exercise 

was not standardised. Ueland and Hansen [Ueland & Hansen 1969] performed a 

study with standardised upright cycle exercise in 11 women throughout pregnancy 

and post-partum and measured CO using the dye dilutional method. They found at 

16 watts, there was a significant increase in CO and SV, that peaked at 20-24 

weeks and was then maintained until term. However, at higher intensity, cycling at 

32 watts, CO and SV still peaked at 20-24 weeks, but was not sustained and fell 

towards term. In contrast, Guzman and Caplan [Guzman & Caplan 1970] showed 

that CO remained elevated in pregnancy at all levels of cycle exercise (24, 41 and 

57 watts), while VO2, on the other hand, only increased during the lowest intensity 

exercise in pregnancy. Knuttgen and Emerson [Knuttgen & Emerson 1974]  

compared both cycle and treadmill sub-maximal exercise in 13 women throughout 

pregnancy and post-partum. They measured VO2  at peak using both methods of 

exercise and then CO at peak cycle exercise, using the CO2 re-breath technique. 

They found that VO2 was significantly elevated with weight bearing treadmill 
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exercise in pregnancy, but was unchanged with cycling. CO was not significant 

higher in pregnancy, but was increased (9.48 ± 0.25 l.min-1 versus 8.79 ± 0.31 l.min-

1). Pivarnik et al  [Pivarnik et al 1990] examined 7 women in the third trimester and 

post-partum, using both submaximal treadmill and cycle exercise and measured 

CO using the direct Fick technique. They showed a significant increase in VO2  and 

CO with both cycle and treadmill exercise in pregnancy and that the response 

became greater as exercise intensity increased. Stroke volume increased with the 

intensity of treadmill walking, regardless of pregnancy status. Spatling et al 

[Spatling et al 1992] examined the differences in response to VO2 between 

trimesters and post-partum during light and moderate cycle exercise and found that 

most of the change in VO2 occurred in the first trimester, whereas in the second 

trimester there was either a fall or plateau in VO2, before a gradual increase in VO2 

at term.  

  

1.3.1.3 Non-pregnant controls  

Most studies have used post-partum as a surrogate for the non pregnant control 

and have tended to choose 12 weeks post delivery as a time at which 

cardiovascular changes are felt to have returned to baseline [Gammeltoft 1926; 

Burwell et al 1938; Palmer and Walker 1949; Adams 1954; Roy et al 1966; Walters 

et al 1966; Ueland et al 1969; Katz et al 1978; Caton et al 1987; Atkins et al 1981; 

Davies et al 1986; Clark et al 1989; Sady et al 1989; Pivarnik 1990; Easterling et al 

1990; Lotgering 1991; McMurray et al 1991; Spinnewijn et al 1996]. Robson et al 

[Robson et al 1987] examined cardiac output using the Doppler echocardiography 

technique in late pregnancy and then continued to compare this post-partum at 2, 6, 

12 and 24 weeks. They showed a significant fall in cardiac output of 27-29% by 2 

weeks with a much more gradual decline up to 24 weeks. This was accompanied 

by similar structural changes in end diastolic left ventricular and left atrial 

dimensions by 2 weeks with no significant change therafter. When the post-partum 

measurements at 24 weeks were compared to age-matched non-pregnant controls, 

they had significantly higher measures of left ventricular mass and reduced ejection 

fraction, suggesting that even at 24 weeks, not all cardiovascular changes had 

returned to normal. Capeless and Clapp [Capeless and Clapp 1991] examined the 

serial changes in cardiac output and stroke volume, using m-mode 

echocardiography, in 13 women at pre-conception and then again at 6 and 12 

weeks post-partum and found that cardiovascular measures had not returned to 

pre-conception baseline at this stage. They then went on to examine serial resting 
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changes using the same method from pre-conception, through pregnancy and at 

12, 24 and 52 weeks post-partum. As well as showing that changes in CO occurred 

early, from at least 8 weeks, and progressed into mid-third trimester, they also 

showed that although changes in cardiac output reduced post-partum, they also 

remained elevated above pre-conception levels, even at 1 year post-partum. They 

also showed that those who had had previous pregnancies had an increased 

response to CO throughout pregnancy and post-partum, despite not having 

different baseline pre-conception CO. Sady et al [Sady et al 1990] examined the 

differences in resting, submaximal and maximal haemodynamics using the 

acetylene re-breathing method, whilst pregnant (25 ± 3 weeks) and then at both 2 

and 7 months post-partum. They showed that at rest VO2, HR, SV and CO were 

higher in pregnancy, whereas there was no significant difference in these 

parameters between post-partum tests. During submaximal testing the same 

haemodynamic measures were generally higher antepartum, however the only 

significant difference was that in the CO/ VO2 relationship between antepartum and 

7 months post-partum, but not at 2 months. At maximal exercise, CO and SV were 

higher antepartum compared to 2 and 7 months, but arterial-venous difference was 

lower at 7 months. The authors suggested that the majority of cardiovascular 

changes reduced by 2 months post-partum, but further time was needed for 

complete resolution.  

 

1.3.1.4 Effect of maternal weight gain on cardiovascular function 

Maternal weight gain occurs because of the combination of a growing fetus, 

amniotic fluid, an enlarged placenta and breast tissue, increase in fat mass, 

extracellular fluid and blood volume. Although there are established guidelines 

recommending weight-gain ranges, up to a maximum of 18kg [Rasmussen et al 

2009], 20-40% of women in the US and Europe exceed this [Cedergren 2006; 

Olson & Strawderman 2003]. High gestation weight gain is generally inversely 

proportional to pre-pregnancy weight and can lead to larger babies, maternal 

obesity and hypertension later in life [Edwards et al 1996; Fraser et al 2011]. The 

amount of weight gain successively increases with gestation from 1-3 kg in the first 

trimester, then by 300-500g a week from the second trimester to term. [Queensland 

Dieticians 2013]. These changes do not include any increase in skeletal muscle 

mass and, so cannot assist with the ability to perform physical work [Lynch et al 

2007]. 
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Non pregnant overweight females have significantly reduced cardiorespiratory 

fitness compared to normal weight females [Shazia et al 2015] and so the ability to 

perform work decreases, unless there is a significant increase in muscle mass or 

significant training. Direct measures of cardiac function, including CPO and CO, are 

both linearly correlated with VO2 in observation studies of healthy females 

[Goldspink et al 2009]. Therefore, it is likely that CO would fall in overweight 

individuals when performing maximal exercise. In contrast to this, Ahokas et al 

[Ahokas et al 1983] showed that pregnant rats who were starved by 50% had a 

20% maternal weight reduction in comparison to rats fed ad libitum displayed a 

30% reduction in CO at the same stage in gestation. This therefore suggests that 

weight is a factor in causing an elevation in cardiac output. Carpenter et al 

[Carpenter et al 1990] attempted to estimate the effect of weight gain on exercise 

performance by performing both submaximal cycle and treadmill exercise with 10 

pregnant women and then repeating these exercises post-partum and also 

performing treadmill exercise wearing weighted belts to equalise their body weights 

to that experienced in pregnancy. Absolute measures of VO2 and CO were higher 

during pregnancy than in post-partum for all forms of exercise, including weighted 

exercise. However, the decrease in VO2 during non-weight bearing cycle exercise 

was half that of weight bearing treadmill exercise. These changes were not 

significant when VO2 was scaled by body mass per kg. The relationship of VO2 and 

CO remained similar during and after pregnancy. Therefore, the authors concluded 

that body weight accounts for 75% of the increase in VO2 during weight bearing 

exercise and contributes to reduced exercise capacity due to the higher baseline 

VO2 and CO and additional work of weight carriage in pregnancy.  

Although the standard practice when reporting VO2 is to scale it by body mass and 

express it per kg, all the studies in the literature display absolute VO2 in ml.l-1, as 

suggested by Lotgering et al [Lotgering et al 1985], or should be normalised to lean 

body mass. Otherwise aerobic capacity would appear more unfairly limited in 

pregnancy, due to the increase in weight gain which, as previously stated, is not all 

related to an increase in muscle mass. 

 

1.3.2 Obesity prevalence, risk and assessment 

Obesity is a growing epidemic across the western world in both adults and children. 

In England, the prevalence has risen from 13% in men and 16% in women in 1993 

to 24% in men and 26% in women in 2011. Severe obesity (Obesity III, BMI ≥ 40 
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kg/m2) has now reached a prevalence of 2% in both men and women in the 

England and 4.1% in men and 6.7% in women in the US [HSCIC 2011, Sheilds et al 

2011]. It is well known that obesity is associated with increased mortality, however 

there is significant debate about whether those who are overweight (BMI ≥ 25-30 

kg/m2) or obesity class I (BMI ≥ 30-35 kg/m2) are at a higher risk. This was borne 

out in a large meta-analysis, which showed the lowest mortality group were those in 

the overweight category, with a 6% lower mortality than those with a normal BMI 

[Flegal et al 2013]. However, there are significant problems with using BMI alone to 

categorize individuals and ascribe risks to them. Firstly, it is known that BMI is a 

crude tool used to estimate body fat percentage and does not account for the 

natural variation in body composition [Rothman 2008]. Moreover, the presence or 

absence of metabolic health (abnormal glucose levels or lipid profiles) appears to 

have a more significant effect on risk of cardiovascular events than weight. Two 

large meta-analyses have shown that, although there is a slightly increased risk of 

cardiovascular events in metabolically healthy obese (MHO) patients compared to 

metabolically healthy normal weight individuals, normal weight individuals, who 

have metabolic dysregulation, have a significantly higher mortality than obese 

patients who are metabolically healthy [Kramer et al 2013; Fan et al 2013]. These 

normal weight individuals with high body fat percentage are part of a phenomenon 

called normal weight obesity, which has a higher risk of developing metabolic 

syndrome and cardiometabolic dysfunction [Oliveros et al 2014]. Individuals with 

MHO are more likely to have higher cardiorespiratory fitness than obese individuals 

with metabolic dysregulation and those individuals with high fitness levels have 

been shown to have a 30-50% lower risk of mortality than those with low fitness 

[Ortega et al 2013]. 

In the same way that high cardiovascular risk is commonly ascribed to obese 

individuals, poor cardiopulmonary fitness and cardiac performance is often 

predicted to be poor in obese patients. Due to the altered body geometry and 

physical demands on the body, obese individuals often complain of exercise 

limitation, breathlessness, fatigue and limb pains. Physicians regularly struggle to 

assess cardiac function accurately due to limitations in the techniques used to 

assess function [Poirier et al 2006]. These limitations are commonly seen with 

echocardiography, nuclear perfusion, CT and MRI scanning, which may either not 

be technically possible because the individual can not fit in the scanner or un-

interpretable due to poor image acquisition or artifact. Patients are then often 

stigmatized due to the physicians’ anecdotal personal experience with these 

diagnostic challenges. Healthcare providers often have both explicit and implicit 

views about obese patients that are regularly negative and can lead to impaired 

patient-centred communication in those who they believe will not be adherent to 
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advice. This can then lead to patient stress and avoidance and mistrust of 

healthcare providers. Patient disengagement and difficulties in assessing function 

accurately can then lead to poor management and outcomes [Phelan et al 2015].  It 

is essential to make an attempt to establish cardiac function in obese patients, 

either to assist with a decision to start treatment for heart failure or provide an 

assessment of risk and optimisation for a surgical procedure and anaesthetic, which 

inevitably requires some knowledge about an individual’s cardiac reserve. 

Independent factors associated with surgical mortality in obese patients undergoing 

bariatric surgery include age, male sex, cardiorespiratory fitness, electrolyte 

disorders and congestive cardiac failure [Livingston & Langert 2006; McCullough et 

al 2006]. The routine assessment of obese patients undergoing surgery should 

include a comprehensive medical history and examination, routine blood tests, an 

ECG and a chest x-ray [Poirier et al 2009]. Unfortunately, cardiac symptoms such 

as dyspnoea, exercise intolerance and leg swelling, are non-specific. Also clinical 

examination and assessment of the ECG often underestimates cardiac pathology in 

obese patients [Poirer et al 2006]. Therefore an attempt is made to obtain a more 

objective assessment, usually by performing cardiac imaging, when symptoms are 

suggestive of heart failure or if high risk surgery is to be performed. As already 

mentioned, imaging is often confounded by technical difficulties resulting from the 

patient’s body habitus [Lotia & Bellamy 2008].  

In order to both interpret and understand the physiological basis of changes in 

cardiac function in obesity, one must have knowledge of the merits and pitfalls of 

the current methods of assessment of cardiac function, as well as the current 

literature in this area in obesity.  

 

1.3.2.1 Changes in cardiac morphology and resting function in 
obesity  

In 1847, William Harvey was the first to describe the phenomenon “Obesity 

Cardiomyopathy”, when he recognised symptoms of heart failure in a severely 

obese man, who shortly afterwards died. He went on to describe his cardiac 

pathological autopsy findings as “large, thick and fibrous, with a considerable 

quantity of adhering fat, both in its circumference and over its septum” [Alexander 

1998a]. The first major post mortem series, by Willlius and Smith in 1933, confirmed 

the finding of enlarged cardiac weight with excess epicardial fat in obese 

individuals, but found no myocardial fat [Smith & Willius 1933]. They found that 

heart weight increased linearly with body weight up to 105kg and then levelled off. 

Subsequent post-mortem series have shown that the increase in weight is 
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secondary to uniform symmetric left ventricular hypertrophy. Biventricular dilatation 

has also been noted in many cases [Alexander & Pettigrove 1967; Warnes & 

Roberts 1989]. Most of these post mortem studies were performed in obese 

individuals who suffered from coronary artery disease or heart failure. Following the 

advent of non-invasive studies, obese individuals without cardiovascular disease 

were also evaluated and then compared to findings in lean individuals.  

Obesity is characterised by a build up of fat mass, as well as growth in fat-free 

mass - predominantly skeletal muscle and viscera. Although fat is less metabolically 

active than lean tissue, the overall oxygen consumption is higher at rest in obese 

individuals [Ravussin 1995; Frayn 1992]. However, when VO2 is scaled by body 

mass (per kilogram), it is lower in obese individuals [De Divitiis et al 1981]. Total 

blood volume also increases in proportion to weight gain [Alexander et al 1962; 

Messerli et al 1983] and leads to increased LV filling and stroke volume [Wikstand 

et al 1993; Carabello & Gittens 1987]. Heart rate remains unchanged and so 

cardiac output also increases and again appears to be proportional to the amount of 

weight [Backman et al 1973; Messerli et al 1982; Licata et al 1991, Messerli et al 

1983]. If CO is scaled by body surface area, it remains to be within normal range 

[Messerli et al 1982; Messerli et al 1983]. Reduced SVR also accompanies and 

facilitates these changes in normotensive obese individuals [Alexander et al 1962; 

Messerli et al 1982; De Divitiis et al 1981]. 

The first response to increases in blood volume and metabolic demand is an 

increase in stroke volume, leading to LV dilatation. This causes increased wall 

stress over time and stimulates myocardial growth and hypertrophy [Alpert 2001]. 

Hypertension occurs in 50% of obese individuals and can further stimulate 

increases in LV mass [Wong et al 2007]. Moreover, right ventricular dilatation and 

hypertrophy has been seen in extreme obesity [Alpert et al 1985]. In addition left 

atrial dilatation can occur. The incidence of structural changes varies in incidence 

and severity and is likely to be related to the severity of obesity, duration of obesity 

and presence of co-morbidities. These changes are often accompanied by impaired 

diastolic filling [Chakko et al 1991; Stoddard et al 1992] and high LV end-diastolic 

pressure (LVEDP) [Alexander et al 1962, De Divitiis 1981]. There appears to be a 

positive correlation with relative weight and BMI and indices of LV mass.  

LV systolic function, measured by ejection fraction, has been reported as either 

normal or hyperdynamic. Even in severe obesity, LV systolic dysfunction is 

uncommon in the absence of cardiovascular disease [Alpert et al 1993; Tumuklu et 

al 2007].  
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1.3.2.2 Changes in cardiac function with exercise in obesity  

Alexander understood that at a given level of activity, cardiac workload was greater 

for an obese subject, in comparison to a subject of ideal body weight. He 

demonstrated that at varying grades of moderate treadmill exercise those oxygen 

requirements of obese individuals were much greater. He also showed that the 

increase in CO and its relation with oxygen consumption was similar to that in lean 

individuals, [Alexander 1964]. However, at high workloads (> 5 times baseline), CO 

decreased to a low-normal level [Alexander et al 1998b]. Kaltman reported normal 

or high resting CO with high oxygen consumption appropriate to body weight in 12 

severely obese individuals. During exercise (passive leg raises) there was a 

consistent rise in stroke volume, parallel with an abnormal increase in LVEDP. 

Stroke work and central blood volume were also uniformly increased, consistent 

with a hyperdynamic and hypervolaemic state. Four patients were studied again 

after weight loss and 3 of the 4 had a normal response in LVEDP to exercise, i.e. 

no increase in LVEDP [Kaltman & Goldring 1976]. Alpert assessed the response of 

ejection fraction to exercise via radionuclide ventriculography and found a 

significant increase in those with normal LV mass, but no increase in those with 

increased LV mass [Alpert et al 1989]. More recently the effects of weight loss after 

bariatric surgery have shown significant incremental improvements in relative, but 

not the absolute aerobic capacity at 6 and then 12 months post surgery [de Souza 

et al 2010; Wilms et al 2013]. One however has to be cautious when interpreting 

data using oxygen consumption scaled by body mass in obese patients. Hothi 

showed in 152 obese patients with heart failure that although the mean VO2max/kg   

was lower in obese compared to absolute lean heart failure patients, the absolute 

VO2max was higher in the obese patients and direct markers of function, CPOmax was 

also significantly higher [Hothi et al 2015]. 

 

1.4 Measures of cardiac function  

In 1628, William Harvey published De Moto Cordis, and described the finding that 

blood circulated around the body, driven by the heart [Franklin 1933].  

“For it is by the heart's vigorous beat that the blood is moved.” 

He then went onto develop a measure of the heart’s function (cardiac output), by 

multiplying heart rate by stroke volume.  One problem with this concept was that it 

did not tell us how the heart performed as a displacement pump and how it 

maintained the circulation.  
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In 1908, Sir Arthur Mackenzie described two types of heart force: one at rest, 

sufficient to meet the needs of the body and a second reserve force, otherwise 

known as cardiac reserve, to be used only when needed during stress. He further 

went on to describe the importance of myocardial dysfunction and stated that “Heart 

failure is simply the inability of the heart muscle to maintain circulation”. He sought 

an explanation of this and came to the summation that heart failure was “the 

exhaustion of the reserve force of the heart”  [Mackenzie 1921]. 

In 1981 Lip-Bun Tan developed a new paradigm for evaluating overall cardiac 

pumping performance. He described the heart as a mechanical pump, which 

generates a continuous supply of hydraulic energy needed to maintain circulation to 

meet the metabolic demands of the body. Utilising the laws of physics, the rate of 

energy needed to move a volume of fluid (blood) continuously, is the product of 

pressure generation and flow rate. This rate at which the heart imparts this energy 

is the power output and as such is the ideal measure of cardiac performance. The 

maximal cardiac performance (pumping capability) is hence the maximum cardiac 

power output (CPOmax) during maximal stimulation [Tan et al 1981; Tan et al 1987]. 

CPOmax is the product of cardiac output and arterial pressure and hence 

encompasses not only the flow generating capacity (CO), but also the pressure 

generating capacity of the heart (MAP). Cardiac reserve is the difference between 

resting cardiac function and the maximum cardiac pumping capability. 

Evaluation of central haemodynamics, including cardiac output and central arterial 

and cardiac pressures, by invasive methods was a prominent feature of 

cardiovascular assessment in the middle part of the 19th century however, became 

less commonly used as newer and more non invasive technologies became 

available. Evidence also suggested that exercise capacity alone correlated poorly 

with newer measures of cardiac function, nominally ejection fraction [Benge et al 

1980; Franciosa et al 1981]. The most commonly used measures of cardiac 

function thereafter were left ventricular ejection fraction (LVEF) and fractional 

shortening, and have been used in multiple clinical trials and guidelines to assess 

treatment response or to act as a cut off point for therapy. 

In 1991 Mancini et al published a landmark study showing that a VO2max.kg above 14 

ml/min/kg gave prognostic value in patients with heart failure referred for cardiac 

transplantation, in addition to knowing the LVEF [Mancini et al 1991]. The 

explanation for this, is that according to the Fick principle, VO2 is determined by 

cardiac ouput and arteriovenous difference. VO2max was confirmed by multiple 

studies to be of prognostic value and has lead to the routine use of 

cardiopulmonary exercise testing in heart failure patients. The issue with VO2 is that 
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many other factors can influence it, including haemogloblin content, muscle mass 

and peripheral oxygen extraction and pulmonary disease. Cooke et al then 

confimed that it was possible to measure CPOmax non invasively using a CO2 

rebreathing technique, based on the indirect Fick principle [Cooke et al 1998]. 

Williams et al then went onto show that CPOmax was a more powerful prognostic 

indicator of survival than VO2max [Williams et al 2005]. This was confirmed by Lang 

et al, using an inert rebreathing technique (Innocor). More recent evidence has 

suggested that CPO is independent of VO2. Although VO2 is an indirect indicator of 

peak cardiac performance, this needs to be interpreted with some caution, 

particularly in stroke patients and patients with obesity and heart failure [Jakovljevic 

et al 2012; Hothi et al 2015].  

Other surrogate indices of cardiac performance include circulatory power (CircP = 

product of VO2 and MAP), cardiac output, stroke volume (SV) and stroke work (SW 

= product of SV and MAP). As with VO2max, these indicies are indirect measures of 

peak cardiac performance, as opposed to the “gold standard” direct measure. 

Figure 1.1 demonstrates the hierarchy of measures of cardiac function.  

 Figure 1.1 Heirarchy of measures of cardiac function 

 
 

[Adapted from Schlosshan 2007] 

CPO has not previously been studied with inert weight carriage or obesity. Pilot 

work analyzing CPO in pregnancy has been performed by my predecessor, Diane 

Barker. Although not reported in the literature, she established that maximal 

exercise testing and measurement of CPOmax is feasible and safe, upto 40 weeks 
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gestation. Much of her work focused on comparing the cross sectional difference 

between women with and without heart disease in pregnancy. She hypothesised 

that a cut off value of a CPOmax of greater than 2.6 watts may signify acceptable 

cardiac function for completion of pregnancy and child birth [Barker 2009]. 

Therefore using this technique may allow the possibility to individualise the cardiac 

reserve in pregnant patients with cardiac disease.  
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2 Methods 

Pregnancy can be viewed as a state of protracted cardiac stress and is associated 

with enormous physiological changes, induced not only by the enlarging gravid 

uterus, but also by neurohormonal and metabolic changes. The cardiovascular 

system is then further stressed during daily physical activities, and culminates in an 

extreme stress during labour. Impairment of any cardiac component and overall 

function will limit the ability to augment the requisite circulation. On top of these 

physiological demands, if there were any superimposed obstetric complications, 

such as bleeding, pre-eclampsia, embolism, then the inadequate cardiac reserve 

may present insurmountable problems. It can be presumed that cardiovascular 

systems with less reserve are more unlikely to cope well with these challenges. 

 

Characterizing the physiological changes in healthy women are fundamental in 

order to understand how the cardiovascular system adapts to this stress throughout 

pregnancy and is vital to identify those who have maladaptive responses and are 

potentially at risk. Much has been discovered about the cardiovascular physiology 

of pregnancy, but to date, almost all information in humans have been derived from 

evaluations made at rest, in different postures and only a few during submaximal 

exercise [Hennessy 1996; Khodiguian 1996; Mabie 1994; Hunter 1992; Easterling 

1990; Robson 1989; Ueland 1969; Vorys 1961] and many invasively [Clark 1989; 

Pirvarnik 1990; Duvekot 1994]. Although haemodynamic measurements at rest are 

much easier to perform, it has long been known that resting data often correlate 

poorly with organ function and clinical outcomes [Benge, 1980; Franciosa, 1981; 

Tan 1986; Tan 1990], in contrast to values obtained at peak stress, which are more 

predictive of physical function and outcomes [Cooke 1998; Cotter 2003; Cohen-

Solal, 2002; Scharf 2002].  
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2.1 Questions and hypothesis 

The key question: 

What effect does pregnancy have on peak physical and cardiac 

performance and functional cardiovascular reserve in humans? 

 

Hypothesis: 

Peak cardiac performance and functional cardiovascular reserve improves 

in and throughout pregnancy because of neurohormonal changes and 

weight gain. 

 

My aim was to assess the magnitude and modulators of the cardiovascular 

responses to pregnancy. I therefore designed a series of studies to answer a 

number of sub questions necessary to meet this objective. 

 

2.1.1 Sub Questions and Studies 

Chapter 3 

1. What is the most reliable way to assess resting cardiac function in pregnant 

women? 

Study I: Validity and reproducibility of resting measurement of cardiac output  using 

CO2 and inert gas rebreathing methods and transthoracic echocardiography 

 

2. What is the most reliable way to assess peak cardiac performance and 

functional reserve in pregnant women? 

Study II: Comparison of two techniques to measure cardiac output during exercise, 

using CO2 rebreath and inert gas rebreathing methods 

 

3. How reproducible is measurement of cardiac output at peak exercise? 

Study III: Reproducibility of measurement of cardiac output at peak exercise using 

Medgraphics Ultima 
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Chapter 4 

4. What is the effect of weight on peak cardiac performance and functional 
reserve in simulated pregnancy? 

Study IV: Cardiovascular effects of weight carriage using an “Empathy Belly” 

Chapter 5 

5. Does the magnitude of response in peak cardiac performance and 
functional reserve change with additional loading in simulated pregnancy? 

Study V: Cardiovascular effects of differential weight carriage 

Chapter 6 

6. What is the effect of pregnancy on peak cardiac performance and functional 
reserve, compared to post-partum? 

Study VI: Longitudinal cardiovascular effects of pregnancy compared to post-

partum 

Chapter 7 

7. What is the effect of pregnancy on peak cardiac performance and functional 
reserve, compared to pre-conception and how does this response change 
with gestation? 

Study VII: Longitudinal cardiovascular effects of pregnancy from pre-conception 

through to post-partum 

Chapter 8 

8. How do changes in body weight affect peak cardiac performance and 
functional reserve in the non-pregnant state? 

Study VIII: Cross sectional study to determine the cardiovascular effects of obesity 

 

2.2 Ethics  

The experimental procedures, simulated pregnancy and pregnancy studies were all 

approved by the Leeds (West) Ethics Committee (Appendix A). The 

recommendations from the Declaration of Helsinki (World Medical Association 

General Assembly 2008) concerning the use of human subjects were followed 

carefully because of the nature of the subjects studied. In addition, the experimental 

protocols were anonymously examined by two external reviewers from two distant 

Universities/Hospitals. One of these reviewers was a Consultant Obstetrician with a 

background of research in pregnancy and the other a Consultant Cardiologist with a 

background of research in patients with heart disease. The study and its aims were 

described in detail to all potential participants and interested subjects received a 
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written information sheet. All participating pregnant women gave their written 

informed consent. 

The obesity study was a retrospective analysis of clinical exercise tests used to aid 

patient management and therefore I did not seek approval by the ethics committee.   

2.3 Power calculations 

This was a pilot study and there are no previously reported studies of cardiac power 

output in pregnancy to guide sample size calculation. In the longitudinal study, the 

subjects acted as their own controls. Differences in VO2max were estimated to be 

similar to a previous exercise study in a group of patients with heart failure, 

requiring a sample size of 30 [Cooke et al., 2002]. Sady et al [Sady et al 1990] 

commented that with the differences between their pregnant and postpartum data, 

they would need ”an additional 3 – 32 subjects for a power of 0.8”. They had a 

sample size of 9, so assuming that our data would be similar, we would need 12 – 

41 subjects in each group to show a significant difference in longitudinal data. 

 

For the cross sectional study of obese patients, to demonstrate a conservatively 

estimated difference in the peak exercise VO2 of 150 ml.min-1 between the two 

groups (obese versus normal weight), with a 5% two-sided significance level and 

80% power, assuming a standard deviation of 326 ml.min-1, a sample size of 76 

subjects per group (152 in total) would be needed.  

 

Due to the inherent difficulties of the study tests, and the conflicting domestic, work, 

social and in some cases medical circumstances of the young subject group, I 

anticipated that not all those recruited would be able to complete the longitudinal 

studies. Therefore, I estimated that there would be a ‘dropout’ rate of 40%. 
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2.4 Measurement of cardiac power output and cardiac 
reserve 

Cardiac power output (CPO) is determined by the product of cardiac output and 

aortic pressure. It can be defined as the rate at which the heart imparts hydraulic 

energy into the arterial system to maintain circulation of blood. It is calculated as the 

product of mean arterial pressure (MAP) and the cardiac output (CO), multiplied by 

a correction factor (2.22 x 10-3) and is expressed in watts [Tan 1987]. The span of 

cardiac performance is depicted by cardiac reserve (CR), which is calculated by 

subtracting the resting CPO from the maximal CPO [Tan 1991]. 

 

 

Figure 2.1 Relations of cardiac functional capability and cardiac reserve when 

assessing cardiac performance. 

 
(Modified from Tan LB, (1986) Cardiac pumping capability and prognosis in heart 
failure. Lancet) 
 

The above figure shows that cardiac reserve is represented by the difference in 
maximal cardiac performance (CPOmax) and resting cardiac performance (CPOrest)  
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The methods for the non-invasive measurement of CPO at rest and during 

exercise, using cardiopulmonary exercise testing, was based on work previously 

performed in the cardiology department at Leeds General Infirmary, led by 

Professor L.B. Tan. This method was developed, validated and described by Cooke 

et al. [Cooke et al 1998].  

 

The measurement of blood pressure was done non-invasively by auscultation and 

MAP was calculated by the equation DBP + 0.412 (SBP – DBP), where DBP is 

diastolic blood pressure and SBP is systolic blood pressure [Meaney et al 2000]. 

 

CO was traditionally measured using invasive techniques (direct Fick, dye dilution 

and thermodilution) however, due to the impractical nature and potential risks of 

performing these tests during exercise, many non-invasive methods for measuring 

cardiac output have been developed. These have included rebreathing techniques 

using carbon dioxide CO2 [Collier 1956, Defares 1958] or an inert gas, such as 

acetylene [Grollman 1929]; Doppler echocardiography [Rawles and Haites 1984] 

and bio-electrical impedance cardiography [Kubicek et al. 1966]. Cooke et al chose 

to use the CO2 re-breathing technique during treadmill exercise, as it was a reliable 

and technically feasible to perform at peak exercise [Cooke et al 1988]. 

 

The process of measuring CPO and CR involves a three-stage procedure: 

1) An incremental cardiopulmonary exercise test to exhaustion to measure 

maximal oxygen consumption (VO2max), carbon dioxide production 

(VCO2max), and maximal heart rate (HRmax). 

2) Measurement of CPOrest 

3) Measurement of CPOmax, i.e. when subjects are exercising at their 

previously established VO2max (determined in stage 1).  
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2.5 Cardiopulmonary exercise test 

2.5.1 Participant familiarisation  

The purpose of the studies and the procedures were explained to subjects in full 

before they were enrolled into any of the studies. Subjects were familiarized with 

the exercise equipment and introduced to the staff at the beginning of the study. 

Two exercise tests were performed at each visit: an incremental and a single stage 

test. The first test was used as a familiarization study. When there was significant 

discrepancy between the results of the two tests, the single stage test results were 

used to reduce the effect of familiarization with the equipment and testing protocol.  

 

2.5.2 Laboratory Conditions 

All testing was performed in a dedicated cardiopulmonary-exercise testing 

laboratory at Leeds General Infirmary. The ambient temperature was maintained at 

21 degrees centigrade. The air pressure was measured before each test using a 

calibrated barometer and input into the software of the testing equipment. 

 

2.5.3 Participants’ instructions 

Subjects were asked to abstain from any vigorous physical activity for 24 hours 

prior to testing. They were further instructed to have no food and caffeine for 3 

hours and alcohol for 12 hours prior to their attendance. On arrival at the laboratory, 

the subjects were familiarized with the equipment and the procedures (treadmill, 

mouth piece, re-breath maneuvers). 

 

2.5.4 Exercise test equipment 

All exercise testing was conducted using the Quinton Q-Stress system (Cardiac 

Science, Pennsylvania, USA) and treadmill (Trackmaster TMX425 Full Vision Inc. 

3017 Full Vision Drive Newton, KS 67114, USA) (Figures 2.2 and 2.3 respectively). 

Exercise protocols were entered into the system and then drove the treadmill. At 

the beginning of each test subjects were fitted with a 12-lead electrocardiogram 

(ECG) using the Mason-Likar electrode placements (Table 2.1) specifically 

designed to reduce the motion artifacts, frequently observed during exercise [Pina 
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and Chahine 1984]. The Quinton system then recorded and printed 12 lead ECGs 

at rest and each minute until the end of recovery. Maximum heart rate was 

determined directly from the R-R interval of the ECG.  

 

2.5.5 Blood pressure measurements at rest and during exercise 

Arterial blood pressure was measured using a hand held sphygmomanometer, 

Welch Allyn Tycos Hand Aneroid Sphygmomanometer (Welch Allyn, New York, 

USA), at the left brachial artery, via manual auscultation. The appropriate size cuff 

(width: 40-50%, length: 80% circumference of arm) was chosen for each subject 

and applied to the bare, upper arm. Measurement of blood pressure was taken in 

accordance with the British Hypertension Society guidelines [Petrie et al 1986]. The 

stethoscope was placed over the artery, just above the antecubital fossa; the cuff 

was inflated beyond the estimated systolic pressure, and then deflated at a rate of 2 

mmHg per second. Systolic pressure was identified at the first Korotkoff sound (a 

repetitive, clear tapping sound for >2 consecutive beats) and diastolic at the fifth 

Korotkoff sound, after which all sounds disappeared [Frohlich, 1988]. Under resting 

conditions, blood pressure was taken in the seated position with the arm supported 

at heart level and after at least 3 minutes rest. During exercise, the subject’s arm 

was supported, at the level of the heart on the investigator’s shoulder. Blood 

pressure was then taken every 3 minutes and more frequently towards peak 

exercise to capture the peak blood pressure. It was also taken immediately post 

exercise and in recovery. 

 

2.5.6 Exercise Protocols 

Exercise protocols were standardised in each of the studies where possible. In 

studies using healthy and healthy pregnant individuals, the Bruce protocol was 

used [Bruce 1971]. In obese subjects, a new ramp protocol was devised, as both 

Bruce and modified Bruce protocols were too severe for most subjects to perform. 

The ramp protocol adopted a gentle 1 minute incremental rise in speed and 

gradient after a 2 minute constant run in rate, in order to allow subjects to exercise 

to their maximum within 10 minutes, in keeping with the recommendations of 

Buchfuhrer et al [Buchfuhrer et al 1983]. This was called the Lewis protocol (Table 

8.1, Chapter 8).  
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Table 2.1 Mason-Likar 12-Lead Electrode Placement 

Right Arm (RA) Right deltoid fossa, mid-clavicular  

Left Arm (LA) Left deltoid fossa, mid-clavicular  

Right Leg (RL) Right anterior axillary, mid-clavicular line  

Left Leg (LL) Left anterior axillary, mid-clavicular line 

V1 Fourth intercostal space to right of sternal border  

V2 Fourth intercostal space to left of the sternal border  

V3 Between V2 and V4  

V4 Fifth intercostal space mid-clavicular line 

V5 Anterior axillary line, in line with V4  

V6 Mid-axillary line, in line with V4 and V5 
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Figure 2.2 Quintin Q stress system 

     

 

Figure 2.3 Trackmaster treadmill 
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2.5.7 Breath by breath gas sampling analysis 

Continuous sampling of the respiratory gases were obtained during the incremental 

exercise test, and during the measurement of resting and maximal CPO, using the 

Medgraphics Ultima cardiopulmonary exercise testing system (Medgraphics 

Corporation, St Paul, Minnesota, USA) (Figures 2.4 and 2.5). The system 

performed breath-by-breath gas analysis that was analysed and presented via 

Breeze Suite version 5 (Figure 2.6).  

 

The gas analyser consisted of a zirconia fuel cell, that measured that oxygen (O2) 

and carbon dioxide (CO2) via an infra-red analyser. The zirconia fuel cell was split 

into a sample and reference chamber. The cell was semi permeable to oxygen 

molecules and their movement generated a voltage that was measured by the cell, 

thereby allowing measurement of O2 in the gas sample. The CO2 analyser was split 

into two chambers (reference and sample) through which beams of infra-red light 

were focused. CO2 absorbs infra-red light and so the light absorption in the sample 

chamber was compared to that in the reference chamber, thus allowing 

quantification of CO2 content.  

 

  



- 31 - 

Figure 2.4 Medgraphics Ultima cardiopulmonary exercise testing system 

     

Image of Medgraphics metabolic cart with Breeze suite displayed on a windows PC. 

http://www.medicalgraphicsuk.com 
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Figure 2.5 Medgraphics Ultima equipment 

        

                  

Images in clockwise from top left: Metabolic cart; 3 litre syringe; 
pneumotachometer; pitot tube and connector. 

Bottom: Diagram of pitot connector inserting into pneumotachometer. 

http://www.medicalgraphicsuk.com 
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Figure 2.6 Medgraphics Breeze Suite graphical display of outputs during a 

cardiopulmonary incremental exercise test 

 

VO2 (oxygen consumption (l.min-1) - red line); VCO2 (carbon dioxide production 

(l.min-1) - blue line); HR (heart rate (min-1) - dark red); VE (minute ventilation (l.min-1) 

- green line); AT (anaerobic threshold); Peak (peak and maximum are often used 

interchangably to signify maximal exercise). 

The figure shows a standard healthy response to exercise with a gradual increase 

in all parameters, but most notably VO2 is greater than VCO2 until AT is reached, 

when VCO2 exceeds VO2. At peak exercise there is a plateau in VO2 despite an 

increase in workload for greater than 1 minute and so VO2max has been achieved. 

This also falls within the predicted range, as shown by the pink bar.  Heart rate has 

also reached the maximum predicted heart rate (identified as the dashed dark red 

line). After exercise there is rapid fall in values as the subject recovers.  
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2.5.8 Calibration of Medgraphics Ultima 

The gas analyser was calibrated prior to every test using both reference (21% O2 

and balanced N2) and calibration (12% O2, 5% CO2 and balanced N2) gases 

(Medgraphics Corporation, St. Paul, Minnesota, USA). System response time or 

“phase delay” was checked and then ambient O2 and CO2 measurements were 

checked using the inbuilt on-line calibration system (Figure 2.7). The air-flow 

calibration was made via a pitot tube, attached at 90 degrees to a 

pneumotachometer (pre Vent, Medgraphics Corporation, St. Paul, Minnesota, USA) 

that measured the differential pressure of gas flow against 2 small tubes. The 

pressure was dependent on gas density and was therefore, sensitive to changes in 

gas composition. The pressure measurement was converted to air flow by first 

establishing a zero flow baseline, then 5 withdrawals and injections of air were 

made at different speeds using a certified 3-litre syringe (MedGraphics, St Paul, 

Minnesota, USA). This range of speeds simulated the varying respiratory rates 

observed throughout an exercise test (Figure 2.8). A correction factor, generated 

during the calibration, was applied to reduce the variability that exists between 

pneumotachometer.  
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Figure 2.7 Medgraphics on-line calibration system 

  
 

The figure shows the online screen image of the calibration system and system 

response time or “phase delay”, as well as ambient O2 and CO2 measurements 

within acceptable limits. 

 

Figure 2.8 Medgraphics airflow calibration 

 

The figure shows the screen image of airflow calibration, whereby 5 withdrawals 

and injections have been performed at varying speeds, guided by the red dotted 
lines. Similar volumes have been produced, and so calibration was successful. 
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2.5.9 Stage 1: Incremental exercise test - Measurement of VO2max 

Subjects were first weighed and had their height measured. They were then fitted 

with a 12-lead ECG. A nose clip was placed on the subject’s nose and they were 

then asked to place a rubber mouth-piece into their mouth, that was directly 

attached to a pneumotachometer with the gas sample line and airflow umbilical. 

The other end of the umbilical was inserted into the front of the Ultima unit. Air flow 

was passed through a drying cartridge before entering the gas module, to remove 

any moisture that may have caused contamination of the infra-red window. Inspired 

and expired gas samples were analysed breath-by-breath for oxygen uptake (VO2), 

carbon dioxide production (VCO2), respiratory exchange ratio (RER), end tidal 

partial pressure of carbon dioxide (PETCO2), tidal ventilation (VE), tidal volume (VT) 

and respiratory rate (RR). Gas analysis output was presented as the mean 5 of 7 

breaths to remove the confounding effects of large variations in ventilation. (Figure 

2.6) 

Baseline heart rate and blood pressure were recorded. After obtaining two minutes 

of resting data, the exercise test was commenced. Every three minutes, blood 

pressure measurements were taken and subjects were asked to score their 

symptoms using a Borg score (Appendix B). Exercise was terminated when the 

subject reached their maximum, peak volitional exhaustion and an immediate blood 

pressure was again recorded. Once the subject recovered, they were asked what 

their reason was for stopping. 

 

2.5.10 Resting period  

A rest period of at least 40 minutes was required between the two maximal exercise 

tests. To prevent hyperthermia, subjects were encouraged to drink water during the 

rest periods. This period was also utilised for completion of the SF-36v2 

questionnaire. 
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2.6 Measurement of cardiac output at rest 

2.6.1 Indirect Fick 

The Medgraphics Ultima cardio-pulmonary exercise system (Medgraphics 

Corporation, St. Paul, Minnesota, USA) was used to measure CO. Non-invasive 

measurements of CO were obtained using the well-established CO2 rebreathing 

techniques developed by Collier (equilibrium) and Defare’s (exponential) and the 

application of the Indirect Fick equation [Collier 1956, Defare 1958]: 

 

CO = VCO2 / CvCO2-CaCO2 

 

VCO2 = CO2 production 

CvCO2 = CO2 content of mixed venous blood derived from partial pressure CO2 

during rebreathing (PvCO2) 

CaCO2 = CO2 content of arterial blood estimated from expired end tidal pressure of 

CO2 (ETpCO2). 

 

2.6.2 Stage 2 - Cardiac output measurement at rest  

The Collier technique, was used to determine resting CO. Previous studies have 

shown this method to be the most accurate CO2 rebreathing technique for 

measuring resting CO (COrest) [Auchinloss et al 1980, Franciosa et al 1976, 

Zeidifard et al 1972]. 

The subject placed a nose clip on and inserted a rubber mouth piece. This was 

attached to a Hans Rudolph three-way rebreathing valve (Model 2870 series). A 

respiratory gas sample line was attached just in front of the valve, closest to the 

subject. A pre-Vent pneumotachometer was then attached to the outflow route of 

the valve, while a 5 litre anaesthesia bag, which acted as a CO2 re-breathing bag, 

was attached to the inferior part of the valve. The valve, which was operated 

manually by a plunger, allowed the subject to change from breathing atmospheric 

air, to re-breathing the gas mixture in the anaesthesia bag. The weight of the 
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equipment was supported by an extendable dog lead suspended from the ceiling 

(shown in Figure 2.9). 

The anaesthesia bag was filled with a medical grade gas mixture comprising 10% 

CO2, 35% O2 and balanced N2 to provide an initial partial pressure of CO2 (pCO2) 

greater than the subject’s mixed venous CO2 tension (pvCO2). The high content of 

O2 (35%) was sufficient to maintain normal arterial saturation throughout the 

rebreathing procedure. The volume of mixture corresponded to 1.5 to 2 times the 

subjects resting tidal volume (VT), which was obtained during a 5 minute seated 

resting period. 

Once satisfied that the subject was fully rested, the investigator inserted the plunger 

at the end of a tidal breath and instructed the subject to take a deep inspiratory 

breath and inhale the full volume of gas in the bag. The subject was then asked to 

continue rebreathing the gas mixture for the next 12 to 15 seconds until a plateau 

and equilibrium was achieved. The gases in the bag and alveoli mixed, a fall in 

pCO2 occurred resulting in equilibrium between the lung-bag system and pvCO2 

that was indicative of no further gas exchange. The equilibrium (shown on the 

capnograph of CO2 concentration, produced by the Breeze software, Figure 2.10) 

occurred between 8-12 seconds (or 4 to 5 breaths) from the start of the re-breathing 

maneuver and had to be maintained within 1mmHg for at least 2 respiratory cycles. 

At this point pCO2 was assumed to equal pvCO2. The software recognized 

equilibrium at the point where the difference between inspired and expired CO2 was 

less than 0.1% in two successive breaths. Calculation of the partial pressure of CO2 

in the venous blood was automatically made. The plunger was then pulled out and 

the subject was able to breath atmospheric air again. 

Continuous end-tidal CO2 (ETpCO2) readings taken for the preceding 30 seconds 

before the start of the rebreathing maneuver provided a value for alveolar pCO2 

(paCO2) from which arterial CO2 tension (paCO2) could be derived using tidal 

volume (VT) from the equation:  

 

paCO2 = 5.5 + 0.9 (ETpCO2) – 0.0021(VT) 

 

For the calculation of cardiac output using the indirect Fick equation it was 

necessary to convert the partial pressures of CO2 (paCO2 and pvCO2) into the 

content of CO2 (caCO2 and cvCO2). This allowed determination of the difference in 

veno-arterial content (CvCO2-CaCO2) using the CO2 dissociation curve for whole 
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blood. In calculating the veno-arterial content difference two assumptions were 

made for all individuals: i. Haemoglobin content was 15g/100ml of blood and ii. The 

oxygen saturation was >95%. The software automatically calculated these 

measures and CO using the indirect Fick equation and displayed them on screen. 

A minimum of three measurements were performed. The wash out period between 

tests was at least three minutes. An average of these measurements were taken as 

the measure of COrest. 

Figure 2.9 Subject performing resting CO2 rebreathing maneuver 

   

 

Figure 2.10 Capnograph of the CO2 concentration reaching equilibrium during 

the rebreathing maneuver 
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2.6.4 Stage 3 - Cardiac output measurement at maximal exercise 

The Defares’ exponential CO2 rebreathing method was used to determine cardiac 

output at maximal exercise (COmax) [Defares 1958]. The Defares’ method has 

shown to be more accurate and reliable with exercise stress [Ferguson et al 1968, 

Cade et al 2004, Vanhees et al 2000]. In addition it is better tolerated at maximal 

exertion [Jones 1997]. 

The subject inserted the mouth piece, attached to the three way valve, as in the 

resting test described above (4.2.3.3.4). The subject then performed a constant 

maximum workload exercise test for at least 5 minutes to the same VCO2 as 

achieved in the incremental test, as it was found that this achieved a peak VO2 of at 

least that obtained during the maximal standardized incremental test. The 

anaesthesia bag was then filled with a gas mixture of 4% CO2, 35% O2 and balance 

N2 to a volume of 1 to 1.5 litres greater than the subject’s maximal VT, determined in 

the incremental test. At the peak of the exercise, the plunger was pushed in at the 

end of expiration and the subject then rebreathed the gas mixture for 10 to 15 

seconds, whilst continuing exercise. The 4% CO2 was lower than the subject’s 

pvCO2 and resulted in an exponential rise in ETpCO2. A complete equilibrium was 

never attained and pvCO2 was mathematically calculated from the rise in ETpCO2. 

The plunger was then retracted and the treadmill gradient and speed were briefly 

reduced to ensure subject comfort, obtain a peak blood pressure measurement and 

change the contents of the bag.  The subject then exercised back to their peak 

again and the measurement was repeated. The Breeze software automatically 

displayed and applied a best fit exponential curve to the points, rejecting the first 

point and using eight seconds of rebreathing to create the exponential curve (Figure 

2.11) [Heigenhauser & Jones 1979]. End tidal points were manually adjusted to 

obtain the most accurate exponential curve. The Breeze software again 

automatically calculated CO using the indirect Fick equation and then displayed it 

on screen. 
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Figure 2.11 Exponential curve at peak exercise using the Defares’ method 
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2.6.3 Cardiac output measurement using inert gas rebreathing 
technique 

2.6.3.1 Innocor  

Innocor (Figure 2.12: Innovision, Odense, Denmark) is a relatively new compact 

device that was primarily designed to non-invasively measure CO, but has the 

option to also measure cardiopulmonary parameters. CO is measured by an inert 

rebreathing technique using nitrous oxide (N2O) and 1% sulphur hexafluoride (SF6).  

Breath by breath gas data analysis is performed and presented by the Innocor 

software (version 5.05). Monitoring and presentation of the data is via the Innocor 

integrated computer with an embedded Pentium processor and Windows XP 

operating system. Airflow is measured by means of a differential pressure 

flowmeter (pneumotachometer). CO2 gas analysis is performed by the photo 

acoustic gas analyser which uses the principle of Photo Acoustic Spectroscopy 

(PAS). O2 is analysed using an oxygen sensor (Oxigraf Inc., USA) based on the 

principle of laser diode absorption spectroscopy. 

  
 
Figure 2.12 Innocor     
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Image of Innocor device and touch screen operating system, Innovision 2005a. 
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2.6.3.2 Preparation for use 

It was necessary to ensure the six-tube connector and the gas analyser sampling 

tube was connected to the rebreathing valve unit (RVU) and the Innocor (Figure 

2.12). The Innocor has the option of using a pulse oximeter finger probe and non-

invasive blood pressure cuff, however these were not used due to the inherent 

inaccuracies with exercise. An 18 liters gas cylinder, containing 5% N2O and 1% 

SF6, 94% O2 (Innovision, Odense, Denmark) was also connected and the bottle 

pressure was checked on the Innocor to ensure it was adequate (>10 bar). 

 

Figure 2.13 Rebreathing valve unit and Gas cylinder attachment 

A 

 

 
 
 
 
 
 
 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 

 

A: Respiratory valve unit (RVU): 1- Gas sampling line, 2- Flowmeter, 3- Bacterial 

filter, 4- Mouth piece, 5- Rebreathing bag, 6- BBB port, 7- Rebreath port.  B: Back 

of Innocor device and attachment of gas cyclinder. 

 

  

Innovision Innocor™ Instructions for Use 
 
 

 
 
February 2008 COR-MAN-0000-001-IN /UK, B/9 5 

 

 

 
FIGURE 4. Gas cylinder connection, position (left) and cross sectional view (right). Note correct 
positioning of o-ring seal (right). 
 
 
 

 
 
FIGURE 5. Innocor with gas cylinder mounted and RVU in storage position. 
 
 
The right side panel is the patient interface panel (figure 6). 
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2.6.3.3 Calibration of Innocor 

Calibration of the flowmeter and the flow-gas delay was performed initially on the 

each day of testing. Calibration was also performed every time the gas sample line 

or the flowmeter was replaced. To calibrate the flowmeter, it was necessary to 

select ‘Setup’, and then select ‘Calibration- Adjust Flowmeter’ on the Innocor. A 

certified 3-litre syringe (MedGraphics, St Paul, Minnesota, USA) was then attached 

to the RVU and as instructed by the Innocor software the syringe was emptied and 

filled 5 times. 2 of the 5 strokes were faster to cover the physiological test range.  

A flow-gas delay calibration was also performed initially on each day of testing. 

Again ‘Setup’ was selected on the Innocor, followed by ‘Calibration- Calculate gas 

delay’. The operator then started breathing in and out of the RVU, initially making 

slow expirations followed by fast inspirations until the ‘OK’ button was highlighted. 

The delays should not vary more than 20-40 ms from day to day, as an error of 25 

ms can give a 5% error on the VO2 and VCO2 results. 

The oxygen sensor underwent a 1-point calibration on a monthly basis by the 

investigator, while both oxygen sensor and photoacoustic gas analyser required 

multi-point calibration performed by manufacturer periodically every 6-12 months. 

Again this calibration was found under ‘Setup”, then ‘Adjust O2’. 

 

2.6.3.4 Cardiac output measurement using Innocor 

Inert or “foreign” Gas Rebreathing is a well established technique introduced in 

1912 by Krogh and Lindhard [Krogh and Lindhard 1912]. It is known that pulmonary 

blood flow (PBF) generally reflects left ventricular cardiac output as long as no 

shunt is present. Pulmonary blood flow is that which perfuses the ventilated alveoli.  

Calculations are based on a single alveolar lung model with the following 

assumptions [Innovision 2005b]: 

1. Complete and instantaneous mixing of all gases in the volume of alveolar, dead 

space and bag volume. 

2. Instantaneous equilibrium of the soluble gas between alveoli and blood and 

between alveoli and tissue. 

3. Constant pulmonary blood flow and volume of lung tissue 

4. Negligible mixed venous concentration of soluble gas through the rebreathing 

period. 
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In order to measure CO, the Innocor had to determine both pulmonary blood flow 

and total systemic volume. This occurred through rebreathing small quantities of 

both a blood soluble, nitrous oxide (N2O), and insoluble gas, 1% sulphur 

hexafluoride (SF6), in a closed circuit.  

During rebreathing, the insoluble gas (SF6) decreased and reached equilibrium after 

a few breaths. The volume of the rebreathing bag was constant; therefore the total 

systemic volume could be determined from the dilution of SF6. However the total 

systemic volume was not constant during rebreathing due to more forced ventilation 

and increased oxygen uptake and higher CO2 production. The total systemic 

volume was defined as the middle of the first inspiration or time 0, which was 

difficult to measure due to incomplete mixing of SF6. Therefore the Innocor back 

extrapolated by drawing a line from where complete mixing had taken place and 

then determined volume at time zero. 

Formula to calculate total systemic volume at time zero: 

Vs.tot  =   Fi
0    . Vrb 

                  Fi,eq 

Vs.tot = Total systemic volume 

Fi
0 = Initial concentration of insoluble gas in the rebreathing bag 

Fi,eq = Equilibrium concentration of insoluble gas (back extrapolated to t = 0) 

Vrb = Volume of rebreathing bag 

In the same rebreathing maneuver, there was an initial disappearance of the 

soluble gas (N2O), attributed to absorption into lung tissue, followed by a slower 

absorption through alveola capillaries. The dissipation rate is proportional to 

pulmonary blood flow and can therefore be calculated. [Hoeper et al 1999]. 

Assuming pulmonary blood flow and total systemic volume are constant, the 

dissipation curve for N2O describes a mono-exponentially decreasing function of 

time. The formula to calculate pulmonary blood flow is: 

PBF = -β. Vs.tot .C1+C2 

                    αb 

 

PBF = Pulmonary blood flow 

Vs.tot  = Total systemic volume 
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C1 = 760/(PB -47) 

C2 = αt.Vt, Constant to account for disappearance of soluble gas in lung tissue 

αb = Bunsen solubility coefficient in blood 

αt = Bunsen solubility coefficient in tissue 

Vt = Lung tissue volume (default 600ml) 

PB = Ambient pressure in mmHg 

As previously mentioned, there is initially incomplete mixing at the start of the 

rebreathing maneuver, therefore corrections of concentrations of soluble gas (N2O) 

were made according to the change in concentration of the insoluble gas (SF6).  

 

2.6.3.5 Performing measurement of resting cardiac output using Innocor 

The investigator pressed ‘Test’ on the Innocor to initiate a test. The subject’s height 

(meters), and weight (kilograms) were measured and entered. The Haemoglobin 

(Hb) concentration was entered as 12 g/l, due to the majority of subjects not 

knowing their current haemoglobin level. 

The subject was instructed to put on a nose clip and breathed normally in and out of 

the RVU via a mouthpiece with a bacterial filter attached. The following parameters 

were then continuously measured: VO2, VCO2, VE and PETCO2.  

When the investigator was ready to perform a cardiac output measurement, the 

Innocor device automatically prepared the rebreathing bag by emptying and filling it 

with the necessary volume of gas. The volume was calculated automatically as 

40% of the predicted vital capacity at rest. The recommended mixture of gas at rest 

was 10% bolus of the gas container containing 94% O2, 5% N2O and 1% SF6. The 

rest was filled with ambient air, giving a mixture of 28.3% O2, 0.5% N2O and 0.1% 

SF6.   

Once the bag was filled and the subject was ready, the investigator pressed ‘Start’. 

At the end of the next expiration the valve switched, so that the subject then 

rebreathed the gas from the bag for a period of 10-15 seconds. During the 

rebreathing test, the subject was instructed to empty the bag during each inspiration 

at the speed indicated by the graphical tachymeter shown on Innocor (usually 20-30 

breaths/min). The test automatically stopped once there were adequate numbers of 
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breaths (usually 4 or 5) and the valve switched back to ambient air. A minimum of 

three measurements were performed. At least 5 minutes delay was necessary for 

washout of the inert gases between tests. The Innocor software calculated CO 

automatically, based on a rebreathing model, and were then displayed on screen. 

 

2.6.3.6 Performing measurement of cardiac output using Innocor during 

exercise 

At the beginning of the exercise testing session the Innocor was prepared and 

calibrated. The investigator then pressed ‘Test’ on the Innocor to initiate a test. The 

subject’s height (meters), and weight (kilograms) were measured and entered. The 

Haemoglobin (Hb) concentration was entered as 12 g/l. The exercise protocol was 

also entered with a planned sub-maximal CO in the protocol, although the Innocor 

was not used to drive the treadmill. 

The subject was instructed to put on a nose clip and breathed normally in and out of 

the RVU via a mouthpiece with a bacterial filter attached. The following parameters 

were then continuously measured: VO2, VCO2, VE and PETCO2. The investigator 

then started the exercise test and simultaneously started the exercise protocol on 

the Innocor. The subject then completed the exercise test, whilst continuously 

breathing through the RVU. 

Once the subject completed the exercise protocol, the Innocor automatically 

prepared the rebreathing bag by emptying and filling it with the necessary volume of 

gas. Once the bag was filled and the subject was ready, the investigator pressed 

‘Start’. At the end of the next expiration the valve switched, so that the subject then 

rebreathed the gas from the bag for a period of 10-15 seconds. During the 

rebreathing test, the subject was instructed to empty the bag during each inspiration 

at the speed indicated by the graphical tachymeter shown on Innocor (usually 20-30 

breaths/min). The test automatically stopped once there were adequate numbers of 

breaths (usually 4 or 5) and the valve switched back to ambient air. The innocor 

software calculated CO automatically, based on a rebreathing model, and was then 

displayed on screen. 
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2.7.4 Doppler Echocardiography 

Transthoracic echocardiogram was used as a reference and alternative method to 

determine CO using the doppler echocardiography technique. All of the scans were 

performed on a GE Vingmed VIVID 7 (Horten – Norway) and images were post-

processed on a dedicated Echopac PC. Imaging was performed by the same 

operator (the primary investigator) in a dedicated echocardiography room. 

Stroke volume (SV) was calculated from the product of aortic blood velocity and the 

cross sectional area of the aorta. The aortic blood velocity was determined by 

taking a continuous wave (CW) doppler measurement parallel through the aortic 

valve in the standard apical five chamber view. The area underneath the curve or 

the velocity time integral (VTI) was calculated by tracing the CW envelope. 3 

consecutive beats were averaged for each measurement. The diameter of the 

aortic orifice was then measured during systole in parasternal long axis view, by 

measuring from leading edge to leading edge of the anterior and posterior walls (as 

per BSE guidelines) [Wharton et al 2012] . Diameters of 3 consecutive beats were 

averaged and the cross sectional area (CSA) was then calculated:  

CSA = π x (D/2)2, where D = mean aortic diameter 

 

A three lead ECG was attached at the start of the scan. Subjects then lay down in 

the left lateral, semi recumbent position. Diameter of the aortic orifice and doppler 

measurements thought the aortic valve were taken, as described above. Heart rate 

(HR) was determined from the RR interval on the ECG at the same time as the 

doppler measurement. 

After completing the analysis to calculate SV, the cardiac output (CO) was then 

calculated  

CO = SV x HR 
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2.8 Quality of life and symptom assessment 

The SF-36v2 health survey is a multipurpose short-form health survey with 36 

questions that yield an eight scale profile of functional health and well being [Optum 

2015] (Appendix C). It is the most frequently used measure of patient reported 

outcomes, often labeled as quality of life [Scoggins and Patrick 2009]. Its 

predecessor, the SF-36 survey, was developed as part of the Medical Outcomes 

Study (MOS) to assess physical and mental health [Ware and Sherbourne 1992]. 

The SF-36v2 came was a minor alteration of the original survey to address 

problems of meanings of some words [Optum.com 2015]. The eight domains are: 

physical functioning, role limitations due to physical health, bodily pain, general 

health perceptions, vitality, social functioning, role limitations due to emotional 

problems, and mental health The SF-36v2 is takes five to ten minutes to complete. 

Scaled scores on the SF-36 are derived by summing the items together within a 

scale, dividing by the range of scores and then transforming raw scores to a 0-100 

scale. Higher scores in each scale indicate better functioning. Internal reliability of 

the SF-36 has been reported in 14 studies of more than 20,000 patients [Ware and 

Sherbourne 1992]. 

 

2.9 Data Analyses and calculations 

Conventional equations were used to calculate the following parameters: 

respiratory exchange ratio (RER=VCO2/VO2), minute ventilation (VE = product of 

tidal volume, Vt and respiratory rate, RR) and O2 consumptions normalized by body 

mass (VO2/kg). Cardiac output (CO in L.min-1) was calculated using the indirect 

Fick method and two or more measurements were taken in order to calculate a 

mean value. Mean arterial pressure (MAP in mm Hg) was calculated using the 

standard equation, MAP = DBP + 0.412*(SBP–DBP) [Meaney 2000].  

Cardiac power output (CPO in watts) was calculated using the following equation: 

CPO = cardiac work done per second = (CO x MAP) x K, where K is the conversion 

factor into watts (2.22 x 10-3) [Tan 1986]. Cardiac reserve (CR in watts) is the 

difference between cardiac power output at peak exercise and rest and was 

calculated using the following equation, CR = CPOmax – CPOrest [Tan 1991]. 

The systemic vascular resistance (SVR in dyne.sec.cm-5) was calculated as follows: 

SVR = (MAP/CO) x 80 [Klabunde 2011]; Circulatory Power (CircP in mm Hg.ml.min-

1), a surrogate index of cardiac power, was calculated as CircP = VO2 x SBP 

[Cohen-Sohal 2002]. Stroke volume (SV in ml) was calculated from measurements 
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of cardiac output (CO) and heart rate (HR) using the standard equation]: SV = CO/ 

HR  [Klabunde 2011. Stroke work (SW in g.m) was calculated using the product of 

stroke volume (SV) and mean arterial pressure (MAP): SW = SV x MAP [Klabunde 

2011].                                                     
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Chapter 3 Validation and reproducibility of cardiac 
output measurement 

3.1  Introduction 

Techniques to measure cardiac output have developed significantly over the last 

century. In clinical practice, measurement is primarily performed at rest, whereas 

measurement at peak exercise is only performed by the minority of physicians and 

researchers. Assessment of cardiac output via rebreathing techniques provides an 

accurate alternative to invasive methods (Fick, thermodilution and dye techniques) 

[Liu et al 1997,Triebwasser et al 1977, Muiesan et al 1968, Clausen et al 1970, 

Franciosa et al 1976, Gabrielsen et al 2002, Agastoni et al 2005], which are 

regarded as the most accurate way of measuring cardiac output [Nugent et al 

1994]. It is also clear that reproducibility using rebreathing methods improves with 

increasing workloads [Liu et al 1997, Yeh et al 1987, Vanhees et al 2000]. 

The most commonly used rebreath techniques reported in the literature are using 

either an inert-gas rebreathing method or the CO2 rebreathing method. One of the 

first inert gases introduced in the early 1900’s was Acetylene, however with the 

advent of rapid gas analysers in the 1950’s, the CO2 rebreathing method grew in 

popularity due to it being a technically simple and easily repeatable method (Jones 

1997), compared with mass spectrometers used in inert gas rebreathing methods, 

which were more expensive, unstable and complicated. More recently infrared 

photoacoustic spectroscopy analysers have been incorporated into a new Innocor 

device (Innovision, Denmark), which uses an inert gas (using a mixture of 0.5% 

nitrous oxide, 0.1% sulfurhexafluoride and 28% O2) and is simple to use, mobile 

and less costly than mass spectrometers [Gabrielsen et al 2002]. 

Comparisons between non-invasive rebreathing techniques has not been widely 

reported. Jakovljevic et al [Jakovljevic et al 2008] compared the inert rebreathing 

technique, using Innocor, to the CO2 rebreathing technique in 12 healthy subjects at 

rest and peak exercise using both the equilibrium and and exponential CO2 

rebreathing methods in comparison to the inert rebreathing method. He found that 

the equilibrium method produced significantly higher values at rest in comparison to 

the exponential and inert rebreathing methods. At peak exercise, there were no 

significant differences between the exponential and inert gas rebreathing methods 
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(P = 0.14). The mean difference and limits of agreement were 0.15 (-0.49 to 0.79) l 

min-1. 

Other studies have compared rebreathing methods to other non-invasive 

techniques, including impedance cardiography, echocardiography M-mode and 

Doppler techniques and cardiac magnetic resonance imaging [Tordi et al 2004, 

Julius 1990, Saur et al 2009a]. However, these were either performed at rest or 

using less accurate methods as a comparison and therefore do not help identify 

which rebreathing technique is the most reliable. 

Therefore, in order to decide which rebreathing method to adopt, it was necessary 

to determine the validity and reproducibility of each method. 

 

3.2  Study I: Validity and reproducibility of resting 
measurement of cardiac output  using CO2 and inert gas 
rebreathing methods and transthoracic 
echocardiography 

3.2.1 Purpose and hypothesis of the study 

The purpose of this study was to assess the repeatability and make a direct 

comparison of two commercially available systems that measure cardiac output 

(CO) using rebreathing techniques, with either carbon dioxide (CO2  rebreathing) 

using Medgraphics Ultima (Medgraphics Corporation, St. Paul, Minnesota, USA), or 

inert gas (IGR), using Innocor (Innovision, Odense, Denmark). Both of these were 

also compared to the echocardiography doppler (Doppler) technique, as this was a 

more familiar and readily available technique and has been more widely used and 

published. 

The hypotheses tested were 

(i) Measurement of CO at rest would not be significantly different between 

2 different rebreathing techniques (IGR and CO2 rebreathing) and Doppler. 

(ii) Measurement of CO at rest using rebreathing techniques (IGR and CO2 

rebreathing) and Doppler is reproducible and reliable. 
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3.2.2  Methods 

3.2.2.1 Study participants 

Healthy volunteers were recruited from Leeds General Infirmary and The University 

of Leeds via personal invitation. They were all healthy and physically active. All 

subjects underwent screening with a medical history, physical examination and 

resting ECG to ensure they were in fact healthy.  

Subjects were asked to abstain from any vigorous physical activity for 24 hours 

prior to testing. They were further instructed to have no food and caffeine for 3 

hours and alcohol for 12 hours prior to their attendance.  

 

3.2.2.2 Resting Doppler Echocardiography 

Initially subjects underwent a transthoracic echocardiogram to determine their 

resting CO using the doppler echocardiography technique. All of the scans were 

performed on a GE Vingmed VIVID 7 (Horten – Norway) and images were post-

processed on a dedicated Echopac PC. Imaging was performed by the same 

operator (the primary investigator) in a dedicated echocardiography room. The 

methods are described in detail in the Chapter 2. Two measurements of CO were 

taken 5 minutes apart, under the same conditions, to assess reproducibility and 

calculate a mean value for comparison with the other methods. 

Following the echo, subjects then underwent seated resting assessment of their 

cardiac outputs using both the Medgraphics and Innocor systems. Subjects were 

randomized to undergo testing using each system, so that there was no bias.   

 

3.2.2.3 Resting cardiac output measurement using CO2 rebreathing technique 

(Medgraphics Ultima) 

The Medgraphics Ultima cardio-pulmonary exercise (CPX) system (Medgraphics 

Corporation, St. Paul, Minnesota, USA) was used to measure resting CO using the 

Collier technique. The methods are described in detail in the Chapter 2. Two 

measurements of CO were measured after a 5 minutes wash out period, to assess 

reproducibility and calculate a mean value for comparison with the other methods. 
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3.2.2.4 Resting cardiac output measurement using inert gas rebreathing 

technique (Innocor) 

Innocor (Innovision, Odense, Denmark) measured CO by an inert rebreathing 

technique using nitrous oxide (N2O) and 1% sulphur hexafluoride (SF6). The 

methods are described in detail in the Chapter 2. Two measurements of CO were 

measured after a 5 minutes wash out period, to assess reproducibility and calculate 

a mean value for comparison with the other methods. 

 

3.2.3 Statistical analysis 

Statistical analysis was performed using IBM SPSS version 20.0 (SPSS Inc. 

Chicago, IL, USA). Descriptive statistics were performed to check data for 

parametric assumptions (normal distribution and homogeneity of variance). One 

way analysis of variance (ANOVA) was used to test differences between the three 

methods. Bland-Altman plots were constructed to assess agreement between 

different methods and duplicate measures of cardiac output using the same method 

[Bland and Altman 1986]. Intra class coefficients (ICC) and standard error of 

measurements (SEM) were calculated to establish within subject changes. 

 

3.2.4  Results 

13 subjects were recruited and had normal findings on screening, however one 

individual was then found to have an incidental mildly dilated aortic root on 

echocardiography. He had no evidence of hypertension, structural heart disease or 

cardiac dysfunction and therefore was allowed to continue. The mean age of all 

subjects was 26 ± 3.6 years, BMI 23.6 ± 2.8, with 3 out of 13 being female. All 13 

subjects completed all the resting without complications. 

All 3 groups had similar homogeneity of variances. One-way ANOVA indicated that 

within groups there was a significant difference in CO (F=5.140, P=0.011, 22% of 

variation in CO caused by method of estimating cardiac output). Post Hoc testing 

with Bonferroni correction showed that mean CO measured by IGR (Innocor) was 

significantly larger than CO2 rebreathing (Medgraphics) (mean difference 1.68 l.min-

1 higher, P=0.009). IGR was not significantly different from Doppler (mean 

difference 0.725 l.min-1 higher, P=0.527) and CO2 rebreathing was not significantly 

different from Doppler (mean difference 0.952 l.min-1 lower, P=0.233). Heart rate did 

not significantly vary between tests, however stroke volume similarly was higher 



- 56 - 

with IGR than with CO2 rebreathing (mean difference 26.3 ml, P=0.04) shown in 

Figure 3.1. 

Bland-Altman analysis shows the mean difference in cardiac output and limits of 

agreement between methods. IGR - CO2 rebreathing (1.68 ± 2.65 l.min-1) (Figure 

3.2); IGR – Doppler (1.17 ± 2.29 l.min-1) (Figure 3.3); and CO2 rebreathing – 

Doppler (-0.95 ± 3.16 l.min-1) (Figure 3.4). There was more variation with CO2 

rebreathing compared to echo with higher cardiac output values, whereas IGR 

tended to be higher than Doppler at lower mean values of CO, but lower at higher 

mean values. 

 

Figure 3.1 Comparison of resting cardiac output using different rebreath 

techniques and echocardiography 

 

This graph shows the differences in mean resting cardiac output, stroke volume and 

heart rate between the three methods: CO2 rebreathing (Medgraphics), inert 

rebreathing (Innocor) and echocardiography doppler technique (Echo). Innocor was 

found to have significantly higher resting cardiac output and stroke volume, in 

comparison to Medgraphics, however there was no difference in heart rate. Nor 

were there significant differences in any measurements between Medgraphics and 

Echo or Innocor and Echo.(*: p = 0.009; **: p = 0.04) 



- 57 - 

Figure 3.2 Bland-Altman plot to demonstrate mean difference and limits of 

agreement between inert gas rebreathing and  CO2 rebreathing  

 

 (CO: Cardiac output; IGR: inert gas rebreathe; SD: standard deviation) 

 

Figure 3.3 Bland-Altman plot to demonstrate mean difference and limits of 

agreement between inert gas rebreathing and echocardiography doppler 

methods 

 

(CO: Cardiac output; IGR: inert gas rebreath; Doppler: Echocardiography doppler; SD: standard deviation) 
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Figure 3.4 Bland-Altman plot to demonstrate mean difference and limits of 

agreement between CO2 rebreathing (Medgraphics) and echocardiography 

doppler methods 

  

(CO: Cardiac output; Doppler: Echocardiography doppler; SD: standard deviation) 

 
 

Figures 3.5 Bland-Altman plot to demonstrate mean differences and limits of 

agreement between duplicate measures of resting cardiac output determined 

by CO2 rebreathing   
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Figures 3.6 Bland-Altman plot to demonstrate mean differences and limits of 

agreement between duplicate measures of resting cardiac output determined 

by Inert gas rebreathing  

  

(CO: Cardiac output; IGR: inert gas rebreath; SD: standard deviation) 

 

Figures 3.7 Bland-Altman plots to demonstrate mean differences and limits of 

agreement between duplicate measures of resting cardiac output determined 

by Doppler echocardiography 

 

(CO: Cardiac output; Doppler: doppler echocardiography; SD: standard deviation) 
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3.2.5  Discussion  

The purpose of this study was to make a direct comparison of two commercially 

available systems that measure CO using rebreathing techniques, and compare 

them to a well established technique using Doppler echocardiography. In addition, 

the study aimed to assess reproducibility of these 3 methods at rest.  

The present study showed there was a distinct difference in measurements 

between the two techniques with those measures obtained by IGR (Innocor) being, 

on average, 1.7 l.min-1 higher than CO2 rebreathing (Medgraphics). One however 

cannot deduce from this which is the correct measure. When compared to Doppler, 

neither measure was significantly different, however Doppler measures on average 

were in between the two rebreathing measures and so one may assume that this 

figure may be more realistic. 

The study by Jakovljevic et al [Jakovljevic et al 2008] also compared the equilibrium 

CO2 rebreathing method, using the Medgraphics system, to the inert gas 

rebreathing method using Innocor, however found no significant difference between 

the two methods, although the actual measures of cardiac output were slightly 

higher using the CO2 rebreathing method (6.6 ± 1.5 versus 5.1 ± 0.9 l.min-1). It is 

difficult to explain why these results are very different and one can only assume 

different methods must be the main factor. Saur et al [Saur et al 2009] compared 

Innocor to Doppler echocardiography and also found a good correlation (r = 0.53, P 

< 0.001). They reported a mean difference of 0.4 ± 1.0 l.min-1, with Innocor yielding 

higher values which are in keeping with the present study. 

It is known that the CO2 rebreathing equilibrium method tends to underestimate CO 

at rest [Franciosa et al 1977, Nugent et al 1994, Wilmore et al 1982, Muiesan et al 

1968], and that both Innocor and Doppler echocardiography appear to closely 

correlate with invasive methods (Fick and thermodilution) [Agastoni et al 2005, 

Christie et al 1987, Bouchard et al 1987]. Saur et al [Saur et al 2009a] found that 

Innocor showed good agreement with MRI, which they felt to be the gold standard 

non-invasive method of assessment of CO at rest, but that it over-estimated CO in 

hyperdynamic circulations. Therefore, the closest measure of CO at rest, in young 

healthy female adults, may be best represented by Doppler echocardiography. 

The present study further showed that all three methods were highly reproducible 

with low standard errors of measurement. This is in agreement with others who 

have shown these methods to be reproducible at rest [Jakovljevic et al 2008, Saur 
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et al 2009b, Vanhees et al 2000, Robson et al 1987b].  

 

3.3  Study II: Comparison of two techniques to measure 
cardiac output during exercise, using CO2 rebreath and 
inert gas rebreathing methods 

3.3.1 Purpose and hypothesis of the study 

The purpose of this study was to make a direct comparison of two systems that 

measure cardiac output (CO), using the CO2 rebreathing method, using 

Medgraphics Ultima (Medgraphics Corporation, St. Paul, Minnesota, USA) and the 

inert gas rebreathing (IGR) method, using Innocor (Innovision, Odense, Denmark), 

during exercise. 

The hypothesis tested was 

(i) Measurement of CO at rest and during exercise would not be 

significantly different between IGR and CO2 rebreathing and would have 

acceptable measures of agreement 

 

3.3.2  Methods 

3.3.2.1 Study participants 

Healthy volunteers were recruited from Leeds General Infirmary and the University 

of Leeds via personal invitation. They were all healthy and physically active. All 

subjects underwent screening with a medical history, physical examination and 

resting ECG to ensure they were in fact healthy.  

Subjects were asked to abstain from any vigorous physical activity for 24 hours 

prior to testing. They were further instructed to have no food and caffeine for 3 

hours and alcohol for 12 hours prior to their attendance 

 

3.3.2.2 Exercise protocol 

Subjects were asked to perform 6 treadmill exercise tests during one visit. Subjects 
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initially performed stage I of the Bruce Protocol [Bruce et al 1971] (i.e. 3 minutes 

exercise at 1.7 mph and 10% gradient) twice, with 10 minutes recovery between 

tests. CO was measured at the end of each test using either the Innocor or 

Medgraphics Ultima. The order in which each test was done was randomised to 

exclude bias.  

After a further 10 minutes recovery, subjects performed two further exercise tests 

up to and including stage II of the Bruce Protocol (i.e. a total of 6 minutes exercise, 

first 3 minutes stage I, second 3 minutes stage II at 2.5 mph and gradient 12%). CO 

was measured by both methods at the end of each test. In between tests there was 

15 minutes recovery time. 

Finally subjects performed the last two exercise tests up to and including stage III of 

the Bruce protocol (i.e. a total of 9 minutes of exercise, first 3 minutes stage I, 

second 3 minutes stage II and last 3 minutes stage III of the Bruce protocol at 

3.5mph and 14%). CO was again measured at the end of each test by both 

methods. In between tests there was 20 minutes recovery. 

 

3.3.2.3 Cardiac output measurement using Medgraphics Ultima 

The Defares’ exponential CO2 rebreathing method was used to determine peak 

cardiac output (COmax) [Defares 1958]. The methods are described in detail in the 

Chapter 2. Only a single measure of CO was performed at the end of each 

submaximal exercise test. 

 

3.3.2.4 Cardiac output measurement using Innocor 

A single measure of CO was performed by using the Innocor at the end of each 

submaximal exercise test. The methods are described in detail in the Chapter 2.  

 

3.3.3  Statistical analysis 

Statistical analysis was performed using IBM SPSS version 20.0 (SPSS Inc. 

Chicago, IL, USA). Descriptive statistics were performed to check data for 

parametric assumptions (normal distribution and homogeneity of variance). One 

way analysis of variance (ANOVA) was used to test differences between the both 

methods. Correlation was established using the Pearson’s correlation. A Bland-
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Altman plot was constructed to assess agreement between methods [Bland and 

Altman 1986].  

 

3.3.4  Results 

Both groups have similar homogeneity of variances. One-way ANOVA indicated 

that within groups there was a significant difference in CO at rest and during all 

stages of sub-maximal exercise (F = 30.39, P < 0.0001), (Table 3.1). However there 

was a good correlation between the two (r = 0.897, P < 0.0001) (Figure 3.8). The 

Bland-Altman plot shows that at rest, IGR has consistently higher values, where as 

at all stages of exercise CO2 rebreathing has consistently higher values, with an 

overall bias of 2.98 ± 6.52 l.min-1. (Figure 3.9) 

 

Table 3.1. Difference in mean cardiac outputs between CO2 rebreathing and 

IGR methods, at rest and during submaximal exercise. 

 CO2 rebreathing CO  
Mean (SD)  

(l.min-1) 

IGR CO  
Mean (SD)  

(l.min-1) 

Rest 4.40 (1.22) 6.08 (1.30) 

3 min Bruce 15.41 (2.05) 10.84 (1.62) 

6 min Bruce 18.22 (1.96) 13.71 (2.34) 

9 min Bruce 21.88 (2.26) 17.56 (2.85) 

(CO: Cardiac output; IGR: innert gas rebreathing SD: standard deviation) 
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Figure 3.8 Correlation between IGR and CO2 rebreathing methods at rest and 

during exercise 

 
(CO: Cardiac output; IGR: innert gas rebreathing) 

 

Figure 3.9 Bland-Altman plot to demonstrate mean difference and limits of 

agreement between IGR and CO2 rebreathing methods at rest and sub-

maximal exercise  
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3.3.5  Discussion  

The purpose of this study was to make a direct comparison of two non-invasive 

systems that measure cardiac output during exercise using rebreathing techniques 

(CO2 and inert gas).  

The present study showed that both rebreath techniques are technically possible 

and easily performed at rest and during submaximal exercise. However although 

there appeared to be a linear correlation between measures, there were significant 

differences in values at rest and each submaximal stage of exercise. What was also 

clearly evident was that the pattern of agreement between measures changed if 

they were at rest (IGR 1.6 ± 1.4 l.min-1 higher) or during exercise (CO2 rebreathing 

4.5 ± 2.2 l.min-1 higher).  

As previously mentioned, Jakovlejevic et al [Jakovlejevic et al 2008] found no 

difference in cardiac output between IGR and CO2 rebreathing using the equilibrium 

method at rest. They also compared IGR and CO2 rebreathing using the 

exponential method at peak exercise and found good agreement with a mean 

difference of 0.15 ± 0.64 l.min-1. They however did not perform any values at sub-

maximal exercise and so studies are not directly comparable. 

It is generally accepted that CO2 rebreathing by the equilibrium method 

underestimates cardiac output at rest in comparison to invasive methods of 

assessment [Nugent et al 1994, Wilmore et al 1982, Muiesan et al 1968]. 

Therefore, this helps explain the differences seen in the present study at rest, 

where measures of cardiac output at rest were significantly lower using CO2 

rebreathing, in comparison to IGR. However, it also known that variability with the 

CO2 rebreathing method is larger at rest and improves with exercise [Reybrouck & 

Fagard 1990, Ferguson et al 1968, Clausen et al 1970]. Therefore, CO2 rebreathing 

is considered a valid and reliable method of measuring cardiac output during 

exercise, and has acceptable limits of agreement with invasive methods [Espersen 

et al 1995].   

Agastoni et al [Agastoni et al 2005] showed that Bland Altman plots confirmed no 

significant difference between IGR (using Innocor), Fick and thermodilution 

methods, cardiac output measured by IGR was less (95% of Fick and 78% of 

thermodilution). This helps explain why cardiac output by IGR was smaller than by 

CO2 rebreathing in the present study. 

A major limitation of the study was that there was no comparison between IGR and 
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CO2 rebreathing at maximal exercise. Maximal testing was attempted with the 

Innocor during the pilot phase and it was found that the Innocor could not reliably 

measure cardiac output at peak exercise in all subjects, because of an error in the 

software. This appeared to be primarily associated with individuals who have higher 

rates of peak oxygen consumption. This has not been reported in the past, however 

the Innocor was designed and has primarily been used for measuring cardiac 

output in patients with heart failure, rather than athletic healthy subjects. This issue 

was also explored with the company who supplied the machine. They understood 

that there was a safety mechanism that created an error when the oxygen content 

in the rebreath bag become too low. An error message then presented on the 

software to prevent the subject from continuing the re-breath test with inadequate 

oxygen in the bag. The company recommended to use a larger volume of gas at 

the time of the rebreath test to try to overcome this, which worked in a few more 

tests, but not all tests where the peak oxygen consumption was high (i.e. over 5000 

ml.min-1). Due to the small number of subjects being tested, it was considered to be 

reliable enough to perform the comparison at maximal exercise. The same error 

was not seen at all during sub-maximal exercise testing.  

 

3.4  Study III: Reproducibility of measurement of cardiac 
output at peak exercise using Medgraphics Ultima 

3.4.1  Purpose and hypothesis of the study 

Reproducibility of measurement of cardiac output at maximal treadmill exercise, on 

different days, in healthy subjects has not been reported. Therefore prior to 

embarking on studies to identify differences in cardiac outputs with different weight 

conditions, it was necessary to establish the reliability of the CO2 rebreathing 

method used in the laboratory (using the Medgraphics Ultima system).  

 

The hypothesis tested was 

(i) Measurement of cardiac output at maximal treadmill exercise, using the 

exponential CO2 rebreathing method, is reliable and will have acceptable 

measures of agreement and coefficient of variability. 
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3.4.2  Methods 

3.4.2.1 Study participants 

Healthy volunteers were recruited from Leeds General Infirmary and the University 

of Leeds via personal invitation. They were all healthy and physically active. All 

subjects underwent screening with a medical history, physical examination and 

resting ECG to ensure they were in fact healthy.  

Subjects were asked to abstain from any vigorous physical activity for 24 hours 

prior to testing. They were further instructed to have no food and caffeine for 3 

hours and alcohol for 12 hours prior to their attendance 

 

3.4.2.2 Exercise testing protocols 

Subjects were asked to attend the Leeds General Infirmary on three occasions to 

perform three separate cardiopulmonary exercise tests, during a two week period.  

The first test was performed using a ramp treadmill protocol, based on the Bruce 

protocol [Bruce 1971], which I called the Liverpool protocol, shown below (Table 

3.2). Subjects were asked to exercise to their peak volitional fatigue.  

The next two visits and tests were performed in order to measure their peak cardiac 

output and peak cardiac power outputs. Both of these tests were performed using 

the same identical protocol and workload as that achieved during their first test.  

The reason for choosing to use a ramp protocol with one minute increments was to 

obtain a more linear rise in VO2 relative to the workload and avoid fluctuations 

apparent with the Bruce protocol. The reason for choosing peak work load as the 

constant measure was to limit the variability and potential fluctuations in cardiac 

output necessary to perform the peak test.  

 

3.4.2.3 Initial maximal cardiopulmonary exercise test  

The first test was a standard maximal cardiopulmonary exercise test. The methods 

are described in detail in the Chapter 2.  
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3.4.2.4 Measurement of cardiac output and cardiac power output at maximal 

exercise 

The subject then went away and came back for two further visits within a 2 week 

period and where possible came at the same time of day. Identical procedures were 

used to measure cardiac output, using the Medgraphics Ultima, at maximal 

exercise determined by the workload and VO2max achieved in the initial exercise test. 

MAP was measured at peak exercise and then CPOmax was calculated. The 

methods are described in detail in the Chapter 2. 

 

Table 3.2 Liverpool protocol 

Stage Duration (min) Speed 
(km/h) 

Gradient 
(%) 

Equivalent 
stage in 
Bruce 

1 0-1 2.2 0  

2 1-2 2.2 0  

3 2-3 2.7 5  

4 3-4 2.7 10 I 

5 4-5 3.3 11  

6 5-6 4 12 II 

7 6-7 4.8 13  

8 7-8 5.5 14 III 

9 8-9 6.2 15  

10 9-10 6.8 16 IV 

11 10-11 7.4 17  

12 11-12 8 18 V 

13 12-13 8.4 19  

14 13-14 8.8 20 VI 

15 14-15 9.2 21  

16 15-16 9.6 22 VII 

 

3.4.3 Statistical analysis 

Statistical analysis was performed using IBM SPSS version 20.0 (SPSS Inc. 

Chicago, IL, USA). Bland-Altman plots were constructed to assess agreement 
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between cardiac output and cardiac power output. Intra-class correlation coefficient 

(ICC) and coefficient of repeatability (CoR) were calculated to establish within 

subject change in performance and the 95% limits of agreement respectively. 

Standard Error of Measurement (SEM) was also reported. 

 

3.4.4  Results 

Duplicate mean and standard deviation values for both COmax and CPOmax are 

displayed in Table 3.3. ICC for duplicate measures of COmax and CPOmax showed 

the test to be reliable and consistent. Equally the SEM and CoR were low and again 

confirm acceptable reliability of the test. Bland-Altman analysis revealed that the 

mean difference between duplicate measures and limits of agreement of COmax was 

0.23 (-2.91 to 3.37) l.min-1 (Figure 3.10), and 0.06 (-0.73 to 0.85) watts for CPOmax 

(Figure 3.11). The coefficient of variance for COmax was 6.9%. 

 

Table 3.3. Difference in duplicate measures of cardiac output, cardiac power 

output and oxygen consumption at maximal exercise. 

 Test  

mean (SD) 

Re-test 

mean (SD) 

ICC 

(95% CI) 

CoR SEM 

COmax 

(l.min-1) 

25.01 (3.28) 24.78 (3.25) 0.942 (0.828, 0.980) 3.468 ± 0.388 

CPOmax 

(watts) 

5.67 (1.12) 5.61 (1.15) 

 

0.969 (0.904, 0.990) 1.765 ± 0.239 

CI: confidence intervals; CO: cardiac output; CoR: coefficient of repeatability; CPO: cardiac 

power output; ICC =intra-class correlation; SD: standard deviation; SEM = standard error of 

measurement. 
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Figure 3.10 Bland-Altman plot to demonstrate limits of agreement between 

duplicate measures of maximal cardiac output 

 

(CO: Cardiac output; SD: standard deviation) 

 

Figure 3.11 Bland-Altman plot to demonstrate limits of agreement between 

duplicate measures of maximal cardiac power output 

 

(CPO: Cardiac power output; SD: standard deviation)  
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3.4.5  Discussion  

This is the first study to assess reproducibility of measurement of cardiac output 

and cardiac power output at maximal treadmill exercise, on different days, in 

healthy subjects, (using the CO2 rebreathing method). This studied confirmed the 

test to be highly reproducible and consistent both within subjects and over time and 

with low measurement errors. 

In previous studies done during submaximal exercise there has not been a 

significant difference between successive measurements of cardiac output using 

CO2 rebreathing exponential method [Vanhees et al 2000, Da Silva et al 1985, 

Heigenhauser and Jones 1989]. Cooke et al and Hodges et al appear to be the only 

groups that have examined reproducibility using this method during maximal 

treadmill exercise [Cooke et al 1998, Hodges et al 2004]. Cooke et al repeated 

maximal exercise tests on 12 patients with heart failure 4 weeks apart and found a 

mean difference of -0.15 l.min-1, CoR 1.13 l.min-1, limits of agreement were -1.28 to 

0.98 l.min-1 and coefficient of variation was 7.08%. Hodges examined the 

differences in cardiac output at maximal exercise in 98 healthy males and females 

(equal ratio) during the same visit and exercise test. After completing the first 

rebreathe maneuver at maximal exercise, the patient partially recovered until the 

gases had been expired and then performed a second rebreathe maneuver. She 

found a mean difference of 0.34 l.min-1, limits of agreement were -1.73 to 2.4 l.min-1 

and coefficient of variation was 6%. 

 

3.5 Conclusions 

Both CO2 rebreathing and IGR are feasible and reproducible methods to measure 

resting CO and appear to be independently in agreement with doppler 

echocardiography, despite not agreeing with each other. Both were also highly 

reproducible, therefore if one were to consistently use either technique to compare 

longitudinal changes in resting CO, this would be acceptable.  

However, measurement of cardiac output was significantly different using the IGR 

method (Innocor) and the CO2 rebreathing method (Medgraphics) at both rest and 

exercise. Although there was a linear increase in CO with both methods, as 

workload increased, the relation between values using both methods changed from 

rest to exercise and so can not be used interchangeably or be corrected with a 



- 72 - 

simple formula. 

Measurement of COmax and CPOmax during maximal treadmill exercise using the 

CO2 rebreathing method (Medgraphics) was shown to be reliable and consistent. 

Therefore for the purposes of this thesis, I concluded that although different 

rebreathing methods were available, the most reliable, consistent and appropriate 

method to assess both resting and maximal CO and CPO was using the CO2 

rebreathing method. 
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Chapter 4 

Study IV: Cardiovascular effects of weight carriage using a 
pregnancy simulator 

4.1 Introduction 

Changes in body mass during pregnancy can have a significant impact on patients 

with heart disease and, as such, pose significant challenges to clinicians in 

obstetrics, internal medicine, cardiology and anaesthesiology. Weight gain tends to 

precipitate or worsen symptoms of dyspnoea and fatigue [Milne 1978, Zib 1999], 

that may also mimic typical heart failure symptoms [Gei 2001]. When objectively 

tested, such as with symptom-limited treadmill exercise testing or submaximal walk 

tests (e.g. Shuttle or 6-minute walk tests), a reduction in exercise capacity would be 

noted. Formal cardiopulmonary exercise (CPX) testing is likely to show decreased 

peak O2 consumption (VO2max) [Artal 1986, Sady 1990], thus suggesting a new 

onset of or an exacerbation of pre-existing heart failure. It is often clinically difficult 

to differentiate whether the worsening symptoms and exercise intolerance are due 

to progressive cardiac impairment or merely secondary to weight gain. To resolve 

these issues, it is necessary to measure the overall function of the heart directly. 

Such a method of cardiac evaluation has become available and has been 

previously described [Tan 1986, Tan 1987], and can also be applied in the 

interdisciplinary field of maternal cardiology. The new conceptual basis is that each 

heart, whether normal, athletic or diseased, has its own ceiling performance above 

which it cannot exceed without intrinsic modification, such as through corrective 

surgery. The ceiling performance can be measured during maximum cardiac 

stimulation, however achieved. In clinical practice, a physiological, non-invasive 

means of maximally stimulating the heart is by conducting a symptom-limited 

exercise test. The haemodynamic variable that best represents overall organ 

function is cardiac power output (CPO) [Cotter 2003, Williams 2005], which when 

measured at peak exercise (CPOmax) has been shown to be the strongest predictor 

of prognosis in patients with heart failure [Williams 2001, Lang 2009].  

The impact of weight gain in pregnancy on exercise ability and the reserve 

function of the cardiovascular system can be subdivided into three major 

components: (i) the effects of carrying increased inert mass, (ii) the effects of 
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perfusing the extra tissue mass, and (iii) the combined effects of other factors, 

including the musculoskeletal, metabolic, neurohormonal and psychological effects 

of weight gain. In this investigation, as a first step, we set out to investigate the 

effect of increased inert mass upon exercise ability and cardiac function 

independent of changes in vasculature, metabolic and neurohormonal changes. 

During pregnancy, the average weight gain from pre-conception to term is 13 kg 

(range 7–19 kg) [Ferrari 2014]. This amount of weight gain can be simulated with 

the use a device called the “Empathy Belly” (Figure 4.1).  

4.2 Purpose and hypothesis of the study 

The purpose of the study was to examine the effects of “Empathy Belly” on aerobic 

exercise capacity and cardiac function at maximal exercise in healthy pre-

menopausal female subjects.  

The hypotheses tested in this investigation were 

(i) The carriage of “Empathy Belly”, simulating the extra weight gain at full 

term pregnancy, during maximal treadmill exercise, would result in a 

reduction in exercise duration and a concomitant decrease in VO2max  

(ii) Reductions in exercise duration and VO2max are associated with a 

proportional reduction in peak cardiac performance as represent by 

CPOmax 

(iii) Conventional indirect indicators of cardiac function are as reliable as 

direct measures of overall cardiac function during exercise stress testing 

with weight loading. 

4.3 Ethical approval 

Ethical approval was approved by the Leeds (West) Ethics Committee. 

 

4.4 Methods 

4.4.1 Study participants 

Female volunteers were recruited by direct invitation from colleagues at the 

University of Leeds and Leeds General Infirmary and friends and family members. 

Subjects attended a dedicated cardiopulmonary exercise laboratory at the Leeds 
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General Infirmary, and were screened and assessed by the investigator to establish 

that they were healthy and had no physical disability that would prevent them from 

exercising fully or carrying weight. Only those free from cardio-respiratory and 

neuromuscular problems, who were normotensive, BMI < 30 kg.m-2, and not taking 

medications proceeded to participate in the study. The first visit also allowed 

familiarization with the equipment and environment (treadmill, breathing equipment 

and maneuvers).  

Cardiopulmonary exercise testing was then performed over 2 subsequent 

visits, initially at baseline and then whilst wearing a pregnancy simulator, in the form 

of an “Empathy Belly” (Birthways, Inc, Vashon Island, USA) (Figure 4.1) 

[http://www.empathybelly.org]. The “Empathy Belly” is a weighted cloth garment 

that simulates the latter stages of pregnancy, by allowing the subject to experience 

the effects and distribution of weight carriage. It has a number of weighted 

components, which enabled up to 14.5kg of external weight carriage. The amount 

of weight worn was guided by the maximum amount the subject was able to tolerate 

without discomfort.  

 

4.4.2 Cardiopulmonary exercise tests 

An initial symptom-limited, maximal treadmill exercise test was performed, using the 

Bruce protocol, with the Medgraphic Ultima metabolic cart (Medgraphics 

Corporation, St. Paul, Minnesota, USA) and continuous ECG monitoring to 

measure and monitor breath-by-breath rates of ventilation, O2 consumption (VO2), 

CO2 production (VCO2), beat-by-beat heart rate (HR) and exercise duration. Manual 

cuff sphygmomanometry was used to measure systolic and diastolic blood 

pressures (SBP and DBP) in mm Hg. A second peak single-stage exercise test was 

performed after 45 minutes rest, to target the peak workload attained during the 

prior incremental test and enable measurement of cardiac output using the CO2 re-

breathing technique [Vanhees et al 2000]. Detailed explanation of the testing 

procedure and equipment used is outlined in Chapter 2.  

 

4.4.3 Statistics 

All data were analysed using SPSS. Data are presented as mean ± standard 

deviation, or as counts with proportions. Statistical comparisons were made with 

Student’s paired, two-tailed t test. A P value of < 0.05 was considered to be 

statistically significant. 
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Figure 4.1. A. Schematic diagram of an “Empathy Belly” 

 

Diagram of the pregnancy simulator suit (“Empathy Belly”), showing the distribution 

of weight. http://www.empathybelly.org 

 

Figure 4.1 B. Photographic image of “Empathy Belly” parts 

 

Simulator pregnancy suit (“Empathy Belly”), round weighted walls, smock and 

comparison to diagram of anatomical changes in pregnancy. 

http://www.empathybelly.org 
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Figure 4.1 C. A volunteer wearing an “Empathy Belly”  

 

Front and side view of a volunteer performing a cardiopulmonary exercise test, 

whilst wearing the pregnancy simulator suit (“Empathy Belly”). 

 

4.5 Results 

4.5.1 Study population baseline characteristics 

A total of 45 female volunteers were screened and 42 eligible participants were 

recruited, all of whom completed the study without any complication. All subjects 

were healthy and active, taking no regular medication, and had no impediment to 

exercise. The mean age was 26.2 ± 7.4 years, mean baseline body mass (BM) was 

62.7±7.1 kg, and mean BMI was 22.4 ± 1.9 kg.m-2. Load carriage in the form of the 

“Empathy Belly” garment (Belly) averaged 11.9 ± 1.5kg, which was equivalent to 

19.2 ± 3.0% of the subjects’ body weight (Figure 4.2). Since wearing the Belly is 

considered to be a simulation of the extra body mass gained at full-term pregnancy, 

in this investigation the combined inert mass of the Belly and the body mass of 

each subject will be supposed to be equivalent to the total body mass (74.7 ± 7.4 

kg) at full-term pregnancy. 
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Figure 4.2: Graph of individual and mean Belly weights relative to the body 

weights of participants. 

 
 

4.5.2 Gaseous exchanges and central haemodynamics during 
peak exercise 

During exercise testing, there were no adverse events and all subjects exercised to 

their volitional exhaustion, above a minimum respiratory exchange ratio (RER) of 

1.1. At peak exercise, there was a small difference between RERmax for the control 

(C, without loading) and weighted (B, “Empathy Belly”) tests (RERmax C: 1.23 ± 

0.08, B: 1.20 ± 0.07; P = 0.042). During control tests, 15 stopped exercise due to 

leg fatigue, 12 due to breathlessness, 5 to general fatigue, 1 due to dizziness and 8 

were hot or had a dry mouth. With Belly loading, 20 stopped due to leg fatigue, 8 

due to breathlessness, 7 due to general fatigue, 2 were dizzy, 3 had back pain and 

2 struggled to run with the belly. As shown in Figures 4.4, 4.6 and Table 4.1, 39 of 

42 participants exercised for a shorter duration when wearing the Belly. Thus, the 

average duration using the Bruce protocol was 13.5 ± 2.6 min during control 

exercise, and this decreased significantly with Belly to 11.8 ± 1.9 min (P < 0.001). In 

Figure 4.5 A, the down-sloping trend of data points showed a tendency for lower 

exercise duration with higher total weight carriage (body mass and inert mass). 

Figure 4.5 B shows that while carrying the Belly garment of 9-15 kg some 

participants managed to maintain the same exercise duration as without extra 

weight, while others decreased by as much as 5 minutes of the Bruce protocol 

treadmill exercise, with no obvious relationship between the actual weights carried 
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and exercise diminution. The VO2max was also significantly decreased (Figure 4.5 C, 

C: 2.78 ± 0.47, Belly, B: 2.67 ± 0.45 L.min-1, P = 0.012), but the reduction was even 

more marked when the O2 uptake was corrected for body mass VO2max/kg (C: 44.57 

± 7.47, B: 35.92 ± 5.38, P < 10-12) as shown in Figure 4.5 D. The peak minute 

ventilation (VEmax) was significantly lower during Belly loading (C: 99.4 ± 21.5, B: 

94.8 ± 21.4 L.min-1, P = 0.007), whereas end-tidal pCO2max (ETpCO2max) were not 

significantly different (C: 37.1 ± 4.9, Belly; 37.8 ± 4.7 mm Hg, P = 0.53).  

At peak exercise, the heart rate (HRmax), was slightly but significantly lower 

with Belly loading (C: 186.8 ± 11.0, B: 184.4 ± 11.2 min-1, P = 0.00144). The peak 

stroke volumes were not significantly different (SVmax, C: 119.8 ± 16.3, B: 120.9 ± 

18.7 ml, P = 0.679). The product of these two factors, cardiac output, was not 

significantly altered by the inert mass loading (COmax, C: 21.4 ± 2.8, B: 21.6 ± 3.2 

l.min-1, p = 0.626). In contrast, the heart generated greater systemic arterial 

pressures with physical loading, with increases in both systolic (ΔSBPB-C = 5.1 mm 

Hg [Confidence Interval, CI: 1.2, 9.1]) and diastolic (ΔDBPB-C = 3.5 mm Hg [CI: 1.2, 

5.7]) pressures with Belly loading during peak exercise. The mean arterial pressure 

at peak exercise (MAPmax) was significantly higher during loading (C: 93.3 ± 11.3, B; 

97.7 ± 9.5 mm Hg, P < 0.001). These occurred in the absence of significant 

difference in systemic vascular resistance (SVR) at peak exercise (C: 356 ± 79, B: 

371 ± 71 dyn.s.cm-5, P = 0.104). When subjects were loaded with the Belly during 

peak treadmill exercise, the heart generated and imparted significantly greater rates 

of cardiac hydraulic energy (C: 4.40 ± 0.68, B: 4.66 ± 0.73 W, P = 0.015), mainly 

through producing significantly greater work at each stroke (C: 151.3 ± 24.2, B: 

160.2 ± 25.8 g.m, P = 0.025). As shown in Figure 4.5 E, the up-sloping trend of 

datapoints suggest that there was a tendency of greater cardiac power output with 

increasing total weight (weight of body+Belly). The percentage increase in peak 

cardiac power was significant at 6.8% (95% CI: 2.4%, 11.2%). However, the 

surrogate index of cardiac power, CircPmax (C: 372 ± 91, B: 372 ± 88 mmHg.ml 

O2.min-1, P = 0.95) was not significantly altered by the Belly loading during peak 

exercise (Figure 4.5F). 

The impact of the inert mass carriage (Belly) on physical functional reserve, 

as measured by aerobic exercise capacity, is significantly reduced and associated 

with the significant reduction in treadmill exercise duration, as shown in Figure 4.6 

A. If the VO2max were to be expressed with correction for body mass, then the 

reduction appears even more marked (Figure 4.6 B). In contrast, when cardiac 

function was directly measured and represented as peak exercise cardiac power, 

then despite reduced exercise capacity, cardiac performance was nevertheless 
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higher with load bearing on treadmill (Figure 4.6 C). The relative mean changes of 

various physical and cardiac variables after Belly loading during peak treadmill CPX 

are shown in Figure 4.7. The most marked decrease with loaded exercise was in 

exercise duration followed by VO2max, while the most marked increase was in 

CPOmax followed by SWmax. The flow generating capacities of the heart (COmax and 

SVmax) were not significantly changed with loaded exercise, as was a surrogate 

(CircPmax) for peak cardiac power. 

 

Figure 4.3 Maximal exercise variables at baseline and with “Empathy  Belly”. 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: 

mean arterial blood pressure; SVR: systemic vascular resistance. *: p<0.01; **: p<0.05 

Differences in mean exercise variables between an unloaded (Base) test and test 

with the “Empathy Belly” (Belly) are displayed. The y axis shows absolute values. 

There is a significantly higher SBP (p = 0.014), DBP (p = 0.002) and MAP (p = 

0.001) at maximal exercise when wearing the “Empathy Belly”, but no significant 

difference in HR or SVR. 
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Table 4.1 Maximal exercise variables at baseline and with “Empathy Belly”.  

Variables 

  

Base Belly P value ∆ ∆% 

Mean (SD) Mean (SD) 
 

Mean (95% CI) Mean (95% CI) 

ExDur (mins) 13.5 (2.6) 11.8 (1.9) <0.001 -1.7 (-2.1, -1.3) -11.6 (-14.1, -9.2) 

VO2max (ml.min-1) 2781 (465) 2665 (453) 0.012 -115 (-196, -35) -3.7 (-6.5, -0.9) 

VO2max/kg 
(ml.kg.min-1) 44.6 (7.5) 35.7 (5.2) <0.001 -8.8 (-10.3, -7.4) -19.2 (-21.7, -16.6) 

VCO2max (ml.min-1) 3400 (585) 3151 (573) 0.002 -250 (-398, -101) -6.3 (-10.6, -2.0) 

HRmax (min-1) 186.8 (11.0) 184.4 (11.2) <0.01 -2.4 (-3.8, -1.4) -1.3 (-2.0, -0.5) 

SVmax  (ml) 119.8 (16.3) 120.9 (18.7) 0.679 1.0 (-3.9, 5.9) 1.4 (-2.4, 5.3) 

COmax (l.min-1) 21.4 (2.8) 21.6 (3.2) 0.626 0.2 (-0.6, 0.9) 1.1 (-2.0, 4.2) 

SBPmax (mmHg) 134.1 (24.9) 139.2 (20.4) 0.014 5.1 (1.2, 9.1) 5.0 (1.9, 8.1) 

DBPmax (mmHg) 65.3 (8.2) 68.8  (7.8) 0.002 3.5 (1.2, 5.7) 6.1 (2.7, 9.5) 

MAPmax (mmHg)  93.3 (11.3) 97.7  (9.5) 0.001 4.6 (2.3, 6.9) 5.6 (2.9, 8.2) 

SVRmax  
(dyn.s.cm-5) 

356.4 (79.2) 371.3 (70.5) 0.032 14.9 (1.8, 28.1) 5.5 (1.4, 9.6) 

SWmax (g.m) 151.3 (24.2) 160.2 (25.8) 0.025 8.9 (1.4, 16.4) 7.1 (2.1, 12.2) 

CPOmax (watts) 4.40 (0.68) 4.66  (0.73) 0.015 0.26 (0.07, 0.45) 6.8 (2.4, 11.2) 

CircPmax 

(mmHg.ml.O2.min-1) 
372 (91) 372 (88) 0.95 -0.5 (-15.9, 14.9) 0.9 (-3.3, 5.0) 

 

Data presented as mean (SD, standard deviation). CI: confidence intervals; CO: cardiac output; CircP: 

circulatory power; CPO: cardiac power output; DBP: Diastolic blood pressure; Ex Dur: exercise duration; 

HR: heart rate; MAP: mean arterial blood pressure; max: values at peak exercise; SBP: systolic blood 

pressure; SV: stroke volume; SVR: systemic vascular resistance; SW: stroke work; VO2: oxygen 

consumption; VCO2: carbon dioxide production  
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Figure 4.4 Maximal exercise variables at baseline and with “Empathy Belly”. 

 

Ex Dur: exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: 

cardiac power output; CircP: Circulatory power; SV: stroke volume; SW: stroke work. *: 

p<0.01;  **: p<0.05 

Differences in mean exercise variables between an unloaded (Base) test and test 

with the “Empathy Belly” (Belly) are displayed. The y axis shows absolute values. 

There is a significantly lower exercise duration (p < 0.001) and VO2max (p= 0.012) at 

maximal exercise when wearing the “Empathy Belly”, however both CPOmax (p= 

0.015) and SWmax (p = 0.025) were significantly higher. 
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Figure 4.5 A. Comparison of exercise duration with and without “Empathy 

Belly” 

 

Ex Dur: exercise duration; Base: unloaded test; Belly: test wearing pregnancy simulator 

suit 

The figure shows a comparison of exercise duration in minutes, whilst performing 

treadmill exercise using the Bruce protocol, between a baseline unloaded test (blue 

diamonds) and when wearing the “Empathy Belly” (clear circles). The red diamond 

shows mean baseline test and green circle the mean loaded test exercise duration.  

The down-sloping dashed regression line for all the data points suggests that there 

was a tendency towards greater exercise intolerance with higher total weights. 
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Figure 4.5 B. Change in exercise duration with load carriage wearing the 

“Empathy Belly” 

 

The figure shows the change in treadmill exercise durations (ΔExDur in minutes) 

from baseline (zero-weight carriage) to carriage of the “Empathy Belly” (ΔWt, kg). 

This showed that while carrying the “Empathy Belly”, some participants managed to 

maintain the same exercise duration as without extra weight, while others 

decreased by as much as 5 mins with no clear relationship between the actual 

weight carried and exercise diminution. 
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Figure 4.5 C. The change in peak oxygen consumption (ΔVO2max) with load 

carriage wearing the “Empathy Belly” 

  

The figure shows the change in VO2max (Δ VO2max) from baseline (zero-weight 

carriage) to carriage of the “Empathy Belly” (ΔWt, kg). The VO2max was significantly 

decreased when wearing the “Empathy Belly” (Base: 2.78 ± 0.47, Belly: 2.67 ± 0.45 

L.min-1, P = 0.012).  
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Figure 4.5 D. The change in peak oxygen consumptions corrected for body 

weight (ΔVO2max/kg) with load carriage wearing the “Empathy Belly”.  

 

The figure shows the change in VO2max/kg (Δ VO2max/kg) from baseline (zero-weight 

carriage) to carriage of the “Empathy Belly” garment (ΔWt, kg). There was a more 

marked reduction in O2 uptake wearing the pregnancy simulator suit when VO2max 

was corrected for body mass VO2max/kg (Base: 44.57 ± 7.47, Belly: 35.92 ± 5.38, P 

< 10-12). 
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Figure 4.5 E. Comparison of peak cardiac power outputs (CPOmax in watts) 

with and without “Empathy Belly”  

  

The figure shows a comparison of peak cardiac power outputs, whilst performing 

treadmill exercise, between a baseline unloaded test (blue diamonds) and when 

wearing the “Empathy Belly” garment (clear circles). The up-sloping dashed 

regression line for all the data points suggests there was a tendency towards higher 

peak cardiac power with higher total weight carriage. The mean differences were 

(Base (Red diamond): 4.40 ± 0.68, Belly (Green circle): 4.66 ± 0.73 W, P = 0.015) 
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Figure 4.5 F. The change in peak circulatory power with load carriage wearing 

the “Empathy Belly”. 

 

The figure shows the change in peak circulatory power (ΔCircPmax, a surrogate 

indicator of cardiac power) from baseline (zero-weight carriage) to carriage of the 

“Empathy Belly” (ΔWt, kg). CircPmax was not significantly altered by the Belly 

loading during peak exercise (Base: 372 ± 91, Belly: 372 ± 88 mmHg.ml O2.min-1, P 

= 0.95). 
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Figure 4.6. A. The relationship between change in peak O2 consumption and 

change in exercise duration with weight loading wearing the Empathy belly. 

 

The figure shows a concomitant reduction in peak O2 consumption (ΔVO2max) and 

exercise duration (ΔExDur) during maximal treadmill exercise, from baseline when 

weight loaded with the “Empathy Belly”. 
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Figure 4.6 B. The relationship between change in peak O2 consumption per 

kilogram and change in exercise duration with weight loading wearing the 

Empathy belly. 

 

The figure shows a more marked concomitant reduction in peak O2 consumption 

per kilogram (ΔVO2max/kg) and exercise duration (ΔExDur) during maximal treadmill 

exercise, from baseline when weight loaded with the “Empathy Belly”. 
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Figure 4.6 C. The relationship between change in peak Cardiac power output 

and change in exercise duration with weight loading wearing the Empathy 

belly. 

 

The figure shows an increase in peak cardiac power output (ΔCPOmax) with a 

divergent reduction in and exercise duration (ΔExDur) during maximal treadmill 

exercise, from baseline when weight loaded with the “Empathy Belly”. 
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Figure 4.7 Delta maximal exercise variables with “Empathy Belly”. 

 

CircPmax: peak circulatory power; CPOmax: cardiac power output; SWmax: peak stroke 

work. SVmax: peak stroke volume; COmax: peak cardiac output; VO2max: oxygen 

consumption; Ex Dur: exercise duration. *P<0.05, #P<0.001.  

 

The figure shows the changes in exercise variables with weight loading wearing the 

“Empathy Belly”. The most marked decrease was in exercise duration followed by 

VO2max, while the most marked increase was in CPOmax followed by SWmax. The flow 

generating capacities of the heart (COmax and SVmax) were not significantly changed 

with loaded exercise, as was a surrogate (CircPmax) for peak cardiac power. 

 

Table 4.2 Markers of exercise effort between baseline and “Empathy Belly” 

 Weight  

Mean (SD) 

Peak RER   

Mean (SD) 

Peak VE  

Mean (SD) 

ETpCO2 Peak   

Mean (SD) 

Base  62.7 (7.1) 1.23 (0.08) 99.4 (21.5) 37.1 (4.9) 

Belly 74.7 (7.4) 1.20 (0.07) 94.8 (21.4) 37.8 (4.7) 

P value  0.042 0.007 0.525 
RER: respiratory exchange ratio; VE: minute ventilation; ETpCO2: end-tidal partial 

pressure of carbon dioxide. 
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4.5.3 Resting central haemodynamics and gas exchange 

The only resting variables that significantly changed were diastolic blood pressure, 

which increased by 6.5% with weight carriage (p = 0.03), and VCO2rest, which 

increased by 23.8%. Heart rate, systolic blood pressure, mean arterial blood 

pressure and SVR did not significantly change, as shown in Table 4.3. Resting 

indicators of cardiac function including cardiac output, cardiac power output, stroke 

volume and stroke work all showed some increase but none significantly.  

 

Table 4.3 Resting variables at baseline and with “Empathy Belly”.  

Variables 

  

Base Belly P value ∆ ∆% 

Mean (SD) Mean (SD) 
 

Mean (95% CI) Mean (95% CI) 

VO2rest (ml.min-1) 218 (70) 239 (88) 0.180 20 (-9.8, 50.1) 18.1 (1.6, 34.7) 

VO2rest/kg 
(ml.kg.min-1) 

3.5 (1.3) 3.2 (1.2) 0.192 -0.3 (-0.8, 0.2) -0.5 (-14.9, 14.0) 

VCO2rest  
(ml.min-1) 

181 (57) 207 (75) 0.043 26 (1.5, 50.2) 23.8 (5.0, 42.5) 

HRrest  (min-1) 73.5 (10.3) 73.3 (12.8) 0.781 -0.3 (-3.5, 3.0) 0.3 (-4.5, 5.1) 

SVrest (ml) 47.9 (12.5) 52.1 (18.6) 0.067 4.2 (-0.2, 8.6) 9.8 (1.4, 18.2) 

COrest (l.min-1) 3.5 (0.9) 3.8 (1.3) 0.076 0.3 (-0.03, 0.6) 9.2 (0.3, 18.0) 

SBPrest (mmHg) 103.2 (11.2) 105.1 (10.6) 0.154 1.9 (-0.7, 4.5) 2.3 (-0.4, 5.0) 

DBPrest (mmHg) 62.0 (7.6) 65.5 (10.8) 0.030 3.5 (0.2, 6.8) 6.5 (1.1, 11.9) 

MAPrest (mmHg)  78.8 (8.1) 80.2 (8.1) 0.417 1.4 (-1.2, 4.1) 2.4 (-1.0, 5.8) 

SVRrest 
(dyn.s.cm-5) 1912 (477) 1868 (551) 0.506 -44 (-182, 94) -1.1 (-8.1, 5.8) 

SWrest  (g.m) 51.4 (14.6) 56.5 (20.4) 0.058 5.1 (-0.02, 10.2) 12.5 (3.0, 22.1) 

CPOrest (watts) 0.62 (0.18) 0.68 (0.24) 0.125 0.06 (0.0, 0.12) 12.5 (2.1, 22.9) 

 

Data presented as mean (SD, standard deviation); CI: confidence intervals; CO: cardiac output; CPO: 

cardiac power output; DBP: Diastolic blood pressure; HR: heart rate; MAP: mean arterial blood pressure; 

rest: values at rest; SBP: systolic blood pressure; SV: stroke volume; SVR: systemic vascular resistance; 

SW: stroke work; VO2: oxygen consumption; VCO2: carbon dioxide production  
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Figure 4.8 Resting variables at baseline and with “Empathy Belly” 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: 

mean arterial blood pressure; SVR: systemic vascular resistance. **: p<0.05 

Differences in mean resting variables between an unloaded (Base) test and loaded 

test with the “Empathy Belly” (Belly) are displayed. The y axis shows absolute 

values. There was a significantly higher diastolic blood pressure (p = 0.03) when 

wearing the “Empathy Belly”, however there were no significant difference in heart 

rate, systolic or mean arterial pressure or systemic vascular resistance. 
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Figure 4.9 Resting cardiac variables at baseline and with “Empathy Belly”. 

 

VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke 

volume; SW: stroke work. 

Differences in mean resting cardiac variables between an unloaded (Base) test and 

loaded test with the “Empathy Belly” (Belly) are displayed. The y axis shows 

absolute values. There were no significantly differences in cardiac variables when 

wearing the “Empathy Belly”, although there appeared to be a trend to higher 

measures of resting cardiac function. 
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4.5.4 Reserve haemodynamics 

There was a significant reduction in reserve oxygen consumption with weight 

carriage (p = 0.005) and no significant changes in heart rate reserve, cardiac output 

reserve, cardiac power output reserve, stroke volume reserve or stroke work 

reserve, as shown in Figure 4.6. However reserve cardiac power output significantly 

increased by 6%, when expressed as a percentage change from baseline, shown in 

Table 4.4.  

 

Table 4.4 Reserve variables at baseline and with “Empathy Belly”. 

Variables 

  

Base Belly P value ∆ ∆% 

Mean (SD) Mean (SD) 
 

Mean (95% CI) Mean (95% CI) 

VO2reserve 

(ml.min-1) 
2562 (464) 2427 (455) 0.005 -136 (-221, -51) -4.7 (-8.1, -1.3) 

VO2reserve/kg 
(ml.kg.min-1) 

41.0 (7.3) 32.5 (5.3) <0.001 -8.5 (-10.0, -7.0) -20.0 (-23.0, -17.1) 

HRreserve 

(min-1) 
113.3 (11.8) 112.1 (18.3) 0.894 -1.2 (-7.3, 4.9) -0.2 (-5.8, 5.4) 

SVreserve 
(ml) 

71.9 (20.5) 68.8 (25.2) 0.323 -3.2 (-9.4, 3.0) -3.4 (-11.9, 5.2) 

COreserve  
(l.min-1) 

17.9 (3.1) 17.8 (3.5) 0.808 -0.1 (-0.9, 0.7) -0.2 (-4.2, 3.9) 

SWrest  

(g.m) 
99.9 (23.3) 103.7 (29.9) 0.408 3.8 (-5.1, 12.8) 6.2 (-2.3, 14.6) 

CPOrest 
(watts) 3.78 (0.65) 3.98 (0.74) 0.076 0.20 (-0.01, 0.4) 6.4 (1.1, 11.7) 

Data presented as mean (SD, standard deviation); CI: confidence intervals; CO: cardiac output; CPO: 

cardiac power output; HR: heart rate; SV: stroke volume; SW: stroke work; VO2: oxygen consumption. 
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Figure 4.10 Reserve variables at baseline and with “Empathy Belly” 

 

HR: heart rate; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power 

output; SV: stroke volume; SW: stroke work. *: p<0.01. 

Differences in mean reserve variables between an unloaded (Base) test and loaded 

test with the “Empathy Belly” (Belly) are displayed. The y axis shows absolute 

values. There was only a significant reduction in reserve oxygen consumption 

(VO2resreve) seen with weight loading with the “Empathy Belly” (P <0.001). 

However there appeared to be a trend to higher cardiac power output reserve 

(CPOreserve) with weight loading with the Belly. 
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4.6 Discussion 

This study is the first to utilize a direct and comprehensive measure of cardiac 

function to test acute effects of weight changes to evaluate cardiac pumping 

capability in the absence of direct changes in vasculature, metabolic and 

neurohormonal status. The results show that the carriage of an inert weight in the 

form of an “Empathy Belly” (Figure 1) to simulate the net weight gained by women 

during the third trimester of pregnancy result in a significant 11.6% (95% CI: 9.2%, 

14.1%) reduction in exercise duration during standard Bruce protocol treadmill 

exercise testing, accompanied by a significant reduction in peak oxygen 

consumption (VO2max, P = 0.012). These observations supported our first 

hypothesis that the carriage of inert weight per se simulating the extra weight gain 

at full term pregnancy would result in a reduction in exercise capacity.  

The effects of gestational weight gain on physical and functional reserves have 

previously been investigated using submaximal bicycle ergometric exercise testing, 

but such non-weight bearing type of exercise is rather unrepresentative of what 

pregnant women experience during a common activity, like walking or climbing 

stairs, which are weight-bearing. It is during these activities that the pregnant 

mothers experience breathlessness and fatigue that overlap with symptoms which 

heart failure patients complain. For clinicians caring for pregnant cardiac patients, it 

is essential to delineate whether these symptoms represent true development or 

exacerbation of HF or whether they occur as a result of sheer weight gain by 

directly measuring cardiac function. Moreover, to gauge whether the heart can cope 

with labour, a maximal instead of submaximal exercise test would be more 

informative, such as the methodology employed in our current study.  

The rate of oxygen consumption at peak exercise (VO2max) is most commonly 

expressed per kilogram of body weight, VO2max/kg, and, as such, there was an even 

greater reduction of 18.8% (CI: 16.2%, 21.3%) with Belly carriage during peak 

treadmill exercise. According to conventional concepts in cardiological practice 

[Weber 1982, Myers 1998], these reductions suggest a reduction in cardiac 

pumping performance during peak exercise with extra-load carriage. However, the 

rate of hydraulic energy generated and imparted into the circulation by the heart did 

not decrease with the extra weight carriage of the “Empathy Belly”. Instead, we 

observed a significant peak cardiac power increase of 6.8% (P = 0.015), indicating 

that our second hypothesis (that peak cardiac performance would follow the 

diminution in Belly-loaded exercise capacity) was not supported by experimental 

evidence. Of all the available variables, since peak cardiac power (CPOmax) is the 

most direct representation of overall cardiac function [Tan 2010], our results 
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therefore show that some conventionally utilized indirect indicators of cardiac 

performance are not reliable when used in assessing cardiac function in states of 

weight changes such as during pregnancy. This experimental result therefore does 

not support our third hypothesis, thereby questioning the reliability of conventional 

indirect indicators of cardiac function in traditional cardiological practice, such as 

VO2max/kg [Mancini 1991], during states of weight gain. 

The net effects of carrying the weight of an “Empathy Belly” are equivalent to the 

inert component of weight gain during third-trimester or full-term gestation. As 

shown in Figure 2 and Table 1, with increased body weight carriage, there was an 

increase in cardiac pumping performance at peak exercise despite diminution of 

exercise tolerance and aerobic metabolism. Exercise duration and oxygen 

consumption both fell significantly with weight carriage. In contrast, both cardiac 

power output and stroke work both significantly increased. One important inference 

we can draw is that, in the context of weight gain, a diminution of exercise tolerance 

(represented by exercise duration in this study) or aerobic capacity (VO2max) can no 

longer be assumed to represent a reduction in cardiac pumping capability. It is also 

interesting to note that, unlike cardiac power, the often-used surrogate index of 

cardiac power, circulatory power, did not show any significant difference with versus 

without Belly loading, suggesting that it may not be a fully reliable surrogate. 

This is the first study examining the physiological responses to weight loading using 

the “Empathy Belly” type of pregnancy simulator. Published studies examining the 

effects of weight loading have primarily focused on assessing indirect measures, 

including oxygen consumption during submaximal exercise in a predominantly male 

military population wearing a range of rucksack designs and weights [Soule 1969, 

Soule 1978]. So far, it is not known how much weight carriage alone contributes to 

changes in peak oxygen consumption and cardiac function. However it has been 

shown that oxygen consumption during load carriage is directly dependent upon 

factors such as amount of exercise, body weight and weight of load carriage 

[Haisman 1988]. It has been estimated that for each kilogram of weight carried, the 

VO2 increases by 33.5ml/min [Borghols 1978]. Moreover in the latter stages of 

pregnancy oxygen consumption increases during weight bearing submaximal 

exercise, but does not change with non-weight bearing exercise (cycling) [Knuttgen 

1974, Ueland 1973]. Hence there appears to be a close relationship between 

increase in body weight and the additional oxygen consumption [Hutchinson 1981].  

The fact that extra weight carriage produces dichotomous outcomes of lower 

exercise capacity, but higher peak cardiac performance would require further 

discussion. Previous studies reported that at the same submaximal level of exercise 

on a treadmill, load carriage compared to unloaded exercise has been shown to be 
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accompanied with higher heart rates and oxygen consumption [Soule et al 1969]. 

Two studies by Sagiv et al in 1994 and 2002, compared the differences in 

submaximal haemodynamics between two different loads after a period of fixed rate 

walking in healthy males [Sagiv et al 1994] and healthy elderly subjects [Sagiv et al 

1995]. Unfortunately, the studies by Sagiv and colleagues did not measure cardiac 

output in the unloaded state to compare to the loaded state. Bhambhani’s studies in 

1997 compared the physiological responses during submaximal treadmill exercise 

with graded loads (15 and 20kg) and showed significant differences in HR, VO2, 

CO, and MAP during both load carriage tests compared to the unloaded tests 

[Bhambhani et al 1997]. Our study at maximal exercise showed a similar increase 

in MAP, but did not show significant differences in heart rate or CO and inversely 

showed a significant reduction in VO2 at peak exercise with loading. 

If the heart is required to perform at a higher level (by a ΔIncrement) at a selected 

submaximal level of exercise, in order to reach the same peak level of exercise (be 

it measured by the same stage of Bruce protocol, or the same VO2max), the heart 

will be required to perform above the previous peak by the same Δ Increment. For 

example, at a submaximal level of exercise, the cardiac output without loading is 

COsubmax, and with weight loading it is increased to COsubmax+ ΔCO. In order to 

support the same peak exercise level with weight loading as without loading, the 

COmax will need to be increased by a similar amount of ΔCO to give a higher COmax 

= (COmax+ ΔCO). Interestingly, as shown in Table 4.2, this was not attained as there 

was no significant change in COmax (P = 0.626). However, from physics and fluid 

dynamics, we know that the entity that maintains the continuous circulation is not 

flow, but hydraulic energy imparted by the heart [Tan 2010]. There was a 

corresponding and significant 6.8% (P = 0.015) increase in CPOmax with Belly, but 

this was presumably insufficient to prevent a significant fall in exercise capacity, as 

measured by exercise duration (P < 0.001) and VO2max (P = 0.012). 

Our investigation is the first to report the cardiovascular hydraulic impacts of extra 

load carriage on treadmills at maximal exertion. From the mechanistic viewpoint, 

performing treadmill exercise, whilst carrying weight, is a combination of both 

isometric and isotonic exercise. Cardiovascular responses during isotonic exercises 

consist of volume loading to the left ventricle, and the response is proportional to 

the amount of active skeletal muscles and intensity of exercise. There is an 

increase in cardiac output, heart rate and stroke volume with a decrease in SVR 

and less increase in blood pressure [Fletcher 1995, Vella 2005]. Cardiovascular 

responses during isometric exercises such as hand grip or weight-lifting, consist 

more of a pressure loading effect on the left ventricle than isotonic exercise, with a 

greater rise in arterial pressure, a smaller increase in cardiac output, primarily 
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through an increase in heart rate and no change in stroke volume and usually no 

significant change in systemic vascular resistance [Laird et al 1979]. The carriage of 

the extra Belly load during weight-bearing treadmill exercise is sustained by 

additional isometric muscle contractions, and this demands a greater hydraulic 

pressure to perfuse the recruited isometrically contracting postural muscles. This 

necessitates a higher pressure generating capacity by the cardiac pump without 

compromising its flow generation, both of which are supplied by the greater 

hydraulic energy imparted by the heart [Tan 1987, Chantler 2006].  

All subjects on both occasions exercised to RERmax above 1.1, which is 

conventionally accepted as adequate efforts for peak exercise (Table 4.2) [Milani 

2004]. It was noteworthy that no significant change in ETpCO2max between control 

and weight-loaded tests was observed. Knowing that the participants do not have 

hyperventilatory syndrome and were highly motivated individuals who performed 

each CPX test to their true volitional exhaustion irrespective of load carriage, it is 

reasonable to infer that the similar ETpCO2max values represent attainment of 

equivalent exercise limits during the unloaded and loaded exercise tests.  

 

4.61 Study Limitations 

The study was limited by the inability to measure flow (cardiac output) and blood 

pressure continuously non-invasively during peak exercise. This is not technically 

possible with the methods used, and can only be more accurately done with 

invasive measurements, which were felt not to be ethically appropriate. Equally we 

did not use any sophisticated scaling methods via measurements of body 

compositions using DEXA or whole body MRI scanning. This was felt not 

necessary, as individuals did not have a broad range of body sizes and they were 

used as their own controls and so had no change in body mass between tests. The 

effects of “Empathy Belly” on physical and cardiac performances in this 

investigation were acute effects, whereas during pregnancy, the weight gains are 

gradual and only reach the equivalent of the “Empathy Belly” mass at full term or 

during the third trimester. The difference between the total weight carrying the 

“Empathy Belly” and the unloaded weight was temporally more akin to the 

difference between the full-term versus post-partum weights. Equally it was not 

possible to simulate all the areas of weight change, particularly around the lower 

limbs or account for the musculoskeletal and respiratory changes that occur due to 

the enlarged uterus that occur in the latter stages of pregnancy. These issues 

would beneficially be addressed in future studies, and the adoption of the method of 

directly measuring cardiac reserve would also help in elucidating other component 
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impacts of pregnancy on the cardiovascular system other than from inert weight 

gain. 

 

4.7 Conclusion 

At peak exercise, weight loading using a pregnancy simulator resulted in a 

significant reduction in exercise duration and O2 consumption. Opposed to this, the 

hearts of healthy volunteers responded with significantly enhanced performance. 

Therefore, there was a divergent response in physical versus cardiac performances 

from wearing an inert mass equivalent to a standard weight gain at full-term 

pregnancy. When evaluating cardiac function in states of body weight alterations 

such as during pregnancy, it is no longer safe to assume that changes in VO2max 

would represent similar changes in cardiac functional reserve. One useful clinical 

practice point to draw from this investigation is that, to resolve any uncertainty 

about whether cardiac function has deteriorated or not during pregnancy, it would 

seem prudent to assess cardiac functional reserve directly, instead of indirectly. 
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Chapter 5 

Study V: Cardiovascular effects of additional weight loading 
using a pregnancy simulator and rucksack 

5.1 Introduction 

Obesity epidemic is an established and burgeoning health issue in industrialized 

societies [WHO 2000; Caballero 2007]. The risks are exacerbated in obese 

pregnant mothers, as at least two lives are involved in every pregnancy. The 

CEMACH 2007 Report has highlighted that “obese pregnant women with a body 

mass index (BMI) > 30 are far more likely to die”, necessitating guidelines on ideal 

weight gains during pregnancy to be drawn [Rasmussen et al 2009; Siega-Riz et al 

2013; CMACE/RCOG 2010]. The Institute of Medicine guidelines recommend a 

total weight gain throughout pregnancy to be between 5 and 18 kg, depending on 

the pre-pregnancy weight category, recommending most weight gain for those 

underweight and least for obese women [Institute of Medicine 2009]. Approximately 

40% of normal weight and 60% of overweight women gain more weight than the 

recommended guidelines [Chu 2009]. 

In cardiology, the issue of obesity is further complicated by the puzzle termed 

“obesity paradox” [Lavie et al 2013; Clark et al 2014; Padwal et al 2014], partly 

because cardiac functional responses to weight gains have been under investigated 

and poorly understood. Obesity and pregnancy can be viewed as different modes of 

body weight gain, and the impacts of extra tissue masses on the diseased hearts of 

cardiac patients pose significant challenges to practitioners in specialties including 

anaesthesiology, bariatric surgery, cardiology, midwifery and obstetrics. However, 

in cardiological practice, there is considerable uncertainty about the best ways of 

evaluating cardiac function in the context of significant weight gains. The carriage of 

excess body masses often results in the precipitation or worsening of symptoms of 

exertional dyspnoea and fatigue in both pregnancy and obesity [Gibson 2000; 

Jensen et al 2009; Bernhardt & Babb 2014]. This was confirmed in study IV 

(Chapter 4), where weight carriage caused significant reductions in both exercise 

duration and VO2max. It has also been reported that scaling VO2max by body mass 

highlights these differences further in both pregnancy and obesity [Wolfe 2005; 

Sady et al 1990; Hothi et al 2015]. Decrease in VO2max/kg is often interpreted as an 
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indirect evidence of progressive cardiac dysfunction and can often lead to 

introduction of heart failure therapies at one end, to exclusion from bariatric surgery 

and even termination of pregnancy at the other end. However, we now know from 

study IV (Chapter 4) that there were divergent responses in physical versus cardiac 

performances, wearing an inert mass equivalent to a standard weight gain at full-

term pregnancy. As a second step, it was necessary to establish if the same 

principle held true with a further increase in weight carriage. Moreover, are 

incremental deterioration and improvements seen in physical and cardiac 

performances respectively? 

 

5.2 Purpose and hypothesis of the study 

The purpose of this study was to examine the effects incremental weight carriage, 

using the “Empathy Belly” and a rucksack together, on aerobic exercise capacity 

and cardiac function at maximal exercise in healthy pre-menopausal female 

subjects.  

The hypotheses tested in this investigation were 

(i) The carriage of “Empathy Belly” and a rucksack, simulating the 

excessive weight gain at full term pregnancy, during maximal treadmill 

exercise, would result in a further reduction in exercise duration and a 

concomitant decrease in VO2max.  

(ii) There will be an incremental increase in peak cardiac performance with 

further weight loading. 

(iii) Conventional indirect indicators of cardiac function remain unreliable as 

measures of overall cardiac function, during exercise testing with 

increased weight loading. 

 

5.3 Ethical approval 

Ethical approval was approved by the Leeds (West) Ethics Committee. 

 

5.4 Methods 

Female subjects were recruited by direct invitation from colleagues at the University 

of Leeds, Leeds General Infirmary and friends and family members. Subjects 

attended a dedicated cardiopulmonary exercise laboratory at the Leeds General 
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Infirmary, and were screened and assessed by the investigator to establish that 

they were healthy and had no physical disability that would prevent them from 

exercising fully or carrying weight. Only those free from cardio-respiratory and 

neuromuscular problems, who were normotensive, BMI < 30 kg.m-2, and not taking 

medications proceeded to participate in the study. The first visit also allowed 

familiarization with the equipment and environment (treadmill, breathing equipment 

and maneuvers).  

Cardiopulmonary exercise testing was then performed over 3 subsequent visits. 

Test 1; baseline test; Test 2: wearing the “Empathy Belly” (Birthways, Inc, Vashon 

Island, USA) and Test 3: wearing the “Empathy Belly” and a weighted rucksack. In 

this study subjects were randomised to perform the tests in different orders (either 

A: Test 1, Test 2, Test 3; B: Test 2, Test 3, Test 1; C: Test 3, Test 1, Test 2). 

In Test 2, the “Empathy Belly” weight was fixed at 12.5Kg for all subjects. In Test 3, 

the total weight of the “Empathy Belly” and weighted rucksack was estimated to be 

35% of the subject’s body weight. The weight used in the rucksack was in the form 

of dumbbell weights to the nearest 1kg. The weight carried was distributed more 

evenly to enable subject comfort and prevent injury during exercise.   

Prior to visits, participants were instructed to refrain from vigorous physical activity 

for 24 hours prior to testing and to abstain from alcohol for 12 hours and have no 

food or caffeine for at least 3 hours beforehand.  

 

5.4.2 Cardiopulmonary exercise tests 

An initial symptom-limited, maximal treadmill exercise test was performed, using the 

Bruce protocol, with the Medgraphic Ultima metabolic cart (Medgraphics 

Corporation, St. Paul, Minnesota, USA) and continuous ECG monitoring to 

measure and monitor breath-by-breath rates of ventilation, O2 consumption (VO2), 

CO2 production (VCO2), beat-by-beat heart rate (HR) and exercise duration. Manual 

cuff sphygmomanometry was used to measure systolic and diastolic blood 

pressures (SBP and DBP) in mm Hg. A second peak single-stage exercise test was 

performed after 45 minutes rest, to target the peak workload attained during the 

prior incremental test and enable measurement of cardiac output using the CO2 re-

breathing technique [Vanhees et al 2000]. Detailed explanation of the testing 

procedure and equipment used is outlined in the methods chapter (Chapter 2).  
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5.4.3 Statistics 

All data were analysed using SPSS. Data are presented as mean ± standard 

deviation, or as counts with proportions. Statistical comparisons were made with 

Student’s paired, two-tailed t test. A P value of < 0.05 was considered to be 

statistically significant. 

 

5.5 Results 

5.5.1 Study population baseline characteristics 

A total of 26 female volunteers were screened and 25 eligible participants were 

recruited, all of whom completed the study without any complication. All subjects 

were healthy and active, taking no regular medication, and had no impediment to 

exercise. The mean age was 22.7 ± 3.4 years, mean baseline body mass (BM) was 

63.1 ± 6.1kg and mean BMI was 22.2 ± 1.7kg.m-2. Load carriage in the form of the 

“Empathy Belly” (Belly) averaged 12.8 ± 0.8kg, which was 20.5 ± 2.4% of the 

subjects’ baseline BM. Load carriage wearing the Belly and rucksack (Sack) 

averaged 22.1 ± 2.3kg, which was 35 ± 2% of the subjects’ baseline BM (Figure 

5.1).  

Since wearing the Belly is considered to be a simulation of the extra body mass 

gained at full-term pregnancy, in this investigation the combined inert mass of the 

Belly and the body mass of each subject will be supposed to be equivalent to the 

total body mass (74.7±7.4 kg) at full-term pregnancy. Similarly, the combination of 

bearing the Belly and the rucksack is regarded as a simulation of weight gain due to 

full-term pregnancy and obesity, giving the equivalent combined body mass of 85.2 

± 8.2 kg. 

 

5.5.2 Gaseous exchanges and central haemodynamics during 
peak exercise  

During exercise testing, there were no adverse events and all subjects exercised to 

their volitional exhaustion, above a minimum respiratory exchange ratio (RER) of 

1.1. At peak exercise, there was a small stepwise decrease in peak RER from 

baseline control CPX (C, without loading, 1.23 ± 0.09), to loading with “Empathy 

Belly” during CPX (B: 1.20 ± 0.07; P=0.132), and to Rucksack + Belly loading CPX 

(R: 1.18 ± 0.06; P=0.012 vs C, and P = 0.424 vs B), shown in Table 5.1. Similarly, 
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there was a small stepwise decrease in peak minute ventilation, (VEmax) from 

baseline control load-free CPX (C: 103.5 ± 17.0), to belly-loaded CPX (B: 97.4 ± 

20.2; P=0.106), and to CPX with rucksack + belly loading (R: 93.1 ± 20.0; P = 0.015 

vs C, and P = 0.093 vs B). However, the end-tidal pCO2max (ETpCO2max) were 

neither significantly altered with belly loading (C: 38.3 ± 5.3, B: 37.8 ± 4.8 mm Hg, P 

= 0.468), nor with rucksack + belly loading (R: 38.0 ± 4.5 mm Hg, P = 0.422). 

As shown in Figure 5.2A and Table 5.2, there was a stepwise progressive 

significant reduction in Bruce protocol exercise duration with each incremental inert 

mass loading during maximal CPX. Compared to control exercise (C: 14.5 ± 2.6 

min), all participants but one exercised for a shorter duration when wearing the 

Belly (B: 12.5 ± 1.7 min, P < 0.001), and every subject reduced exercise duration 

with the combined inert masses (R: 11.9 ± 2.0 min (P < 0.001). In Figure 5.2B, 

there was a downward trend of decline in exercise duration with higher combined 

body and load carriage. Figure 5.3 shows that load carriage during CPX reduced 

the exercise duration from zero to over 5mins of the Bruce protocol, but there was 

no apparent relationship between the mass carried and the extent of reduction. The 

VO2max was also significantly decreased with every increment of load carriage 

during CPX (Figure 5.3A, C: 2.90 ± 0.39, B: 2.76 ± 0.37, R: 2.65 ± 0.42 L.min-1, all 

P = 0.02), but the reduction was even more marked when the O2 uptake was 

corrected for the combined body and inert weight, VO2max/kg (C: 46.4 ± 7.9, B: 36.5 

± 4.9, R: 31.3 ± 5.2, all P < 0.001) as shown in Figure 5.3B and 5.3C.  

At peak exercise, the heart rate (HRmax), was slightly but significantly lower with 

Belly loading (C: 189.8 ± 9.4 min-1, B: 187.7 ± 9.4 min-1, P = 0.037), with a further 

fall with addition of the rucksack but not significantly (R: 186.4 ± 10.4 min-1, P = 

0.084), although the amplitudes of decrease were small (∆HRmax, B: -1.1%, and R: -

1.8%). The peak stroke volumes were not significantly different with either weight 

loading (SVmax, C: 123.9 ± 16.5 ml, B: 126.0 ± 20.8 ml, R: 125.9 ± 16.7 ml, all P > 

0.5). The product of these two factors, cardiac output, was not significantly altered 

by the inert mass loading either (COmax, C: 22.4 ± 2.2 l.min-1, B: 22.9 ± 2.9 l.min-1, 

R: 22.8 ± 2.5 l.min-1, all P > 0.3). In contrast, with Belly loading during peak 

exercise, the systemic mean arterial pressures was significantly higher (C: 88.0 ± 

9.5 mm Hg, B: 94.9 ± 9.0 mm Hg, P < 0.001), with a further rise with addition of the 

rucksack but incrementally not significantly (R: ∆MAPmax, 1.3 ± 7.5 mm Hg, P = 

0.412). Compared to baseline systemic vascular resistance (SVR) during peak 

unloaded CPX (C: 316 ± 42 dyn.s.cm-5), the SVR was slightly but significantly 

greater by 6.83 ± 13.56% (P = 0.019) with Belly loading and by 8.25 ± 14.61% (P = 

0.011) with combined belly and rucksack loading. With Belly loading at peak CPX, 
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the heart imparted significantly greater rates of cardiac hydraulic energy (C: 4.38 ± 

0.70 W, B: 4.81 ± 0.73 W, P = 0.001), but with addition of rucksack the further 

increment in CPOmax was not significant as shown in Figures 5.4A and 5.4B. 

Similarly, the heart produced significantly greater work at each stroke with Belly 

loading (C: 148.6 ± 26.6, B: 162.3 ± 28.8 g.m, P = 0.01) and with addition of 

rucksack (R: 164.7 ± 27.8, P = 0.002). However, the surrogate index of cardiac 

power, CircPmax (C: 349 ± 73, B: 359 ± 73 mmHg.ml O2.min-1, P = 0.291) was 

neither significantly altered by the Belly loading during peak exercise, nor with 

additional rucksack loading (R: 357 ± 71 mmHg.ml O2.min-1, P = 0.59). 

 The relative mean changes of various physical and cardiac variables after 

loading with both Belly and Belly and Sack, during peak treadmill CPX are shown in 

Figures 5.5 and 5.6. The most marked decrease with loaded exercise was in 

exercise duration carrying the Belly and Sack, while the most marked increase was 

in CPOmax carrying the Belly and Sack. Additional reduction was seen in exercise 

duration and both VO2max and VO2max/kg when more weight was carried. However 

there were no increases in CPOmax and its surrogates with additional weight 

carriage on top of the Belly.  

The impact of additional load carriage (Belly and Sack) on aerobic exercise 

capacity is reduced further and associated with a more significant reduction in 

treadmill exercise duration (Figure 5.7). However cardiac power output at peak 

exercise appears to linearly increase, despite reduced exercise capacity, with 

increased load carriage (Figure 5.8). The dichotomous response of increasing 

CPOmax and decreasing VO2max is more evident with increased load carriage (Figure 

5.9). The pressure generating response also appears to be greater with increased 

load carriage (Figure 5.10). 
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Table 5.1 Markers of exercise effort between tests at baseline and with 

differential weight carriage. 

 Weight  

Mean (SD) 

Peak RER   

Mean (SD) 

Peak VE  

Mean (SD) 

ETpCO2 Peak   

Mean (SD) 

Base  63.1 (6.1) 1.23 (0.09) 103.5 (17.0) 38.3 (5.3) 

Belly 75.8 (6.4) 1.20 (0.07) 97.4 (20.2) 37.8 (4.8) 

Sack 85.1 (8.2) 1.18 (0.06) 93.1 (20.0) 38.0 (4.5) 

Base vs Belly         
P value 

 

 
0.132 0.106 0.468 

Base vs Sack         
P value 0.012 0.015 0.422 

Belly vs Sack         
P value 0.424 0.093 0.868 

RER: respiratory exchange ratio; VE: minute ventilation; ETpCO2: end-tidal partial 

pressure of carbon dioxide. 

 

 

Figure 5.1. Weight loading with the “Empathy Belly” and “Empathy Belly & 

rucksack” 
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Table 5.2 A. Maximal exercise variables at baseline and with differential 

weight carriage. 

 Variables Base Belly Sack Base vs 
Belly 

Base vs 
Sack 

Belly vs 
Sack 

Mean (SD) Mean (SD) Mean (SD) P value P value P value 

Ex Dur (mins) 14.5±2.6 12.5±1.7 11.9±2.0 <0.001 <0.001 0.001 

VO2max (ml.min-1)  2897±394 2756±372 2648±415 0.023 <0.001 0.013 

VO2max/kg      
(ml.kg-1.min-1)  

46.4±7.9 36.5±4.9 31.3±5.2 <0.001 <0.001 <0.001 

HRmax (min-1)   189.8±9.4) 187.7±9.4 186.4±10.4 0.037 0.002 0.084 

SVmax (ml) 123.9±16.5 126.0±20.8 125.9±16.7 0.57 0.54 0.984 

COmax (l.min-1) 22.4±2.2 22.9±2.9 22.8±2.5 0.321 0.372 0.927 

SBPmax (mmHg)  120.4±17.1 130.0±16.8 134.2±14.8 <0.001 <0.001 0.172 

DBPmax (mmHg)  63.4±8.4 69.4±9.4 71.5±10.4 <0.001 0.001 0.180 

MAPmax (mmHg)  88.0±9.5 94.9±9.0 96.2±10.4 <0.001 <0.001 0.412 

SVRmax  
(dyn.s.cm-5) 

316±42 337±52 341±50 0.019 0.011 0.712 

SWmax (g.m) 148.6±26.6 162.3±28.8 164.7±27.8 0.01 0.002 0.561 

CPOmax (watts) 4.38±0.70 4.81±0.73 4.87±0.7 0.001 <0.001 0.626 

CircPmax 
(mmHg.ml.min-1) 

349±73 359±73 357±71 0.291 0.59 0.566 

 

Data presented as mean (SD, standard deviation). CI: confidence intervals; CO: cardiac output; CircP: 

circulatory power; CPO: cardiac power output; DBP: Diastolic blood pressure; Ex Dur: exercise duration; 

HR: heart rate; MAP: mean arterial blood pressure; max: values at peak exercise; SBP: systolic blood 

pressure; SV: stroke volume; SVR: systemic vascular resistance; SW: stroke work; VO2: oxygen 

consumption. 
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Table 5.2 B. Delta changes between maximal exercise variables at baseline 

and with differential weight carriage. 

Variables 

 

∆ Base vs 
Belly 

Mean (SD) 
95% CI 

%∆ Base  
vs Belly 

Mean (SD) 
95% CI 

∆ Base vs 
Sack 

Mean (SD) 
95% CI 

%∆ Base 
vs Sack 

Mean (SD) 
95% CI 

∆ Belly vs 
Sack 

Mean (SD) 
95% CI 

%∆ Belly vs 
Sack 

Mean (SD) 
95% CI 

Ex Dur 
(mins) 

-2.0 (1.3) 

-2.5, -1.5 

-13.2 (7.3) 

-16.0, -10.3 

-2.6 (1.3) 

-3.1, -2.1 

-17.4 (7.9) 

-20.5, -14.4 

-0.6 (0.7) 

-0.9, -0.3 

-4.8 (6.2) 

-7.2, -2.4 

VO2 max 

(ml.min-1) 
-141 (264) 

-245, -38 

-4.4 (9.3) 

-8.1, -0.8 

-249 (228) 

-338, -159 

-8.6 (7.9) 

-11.6, -5.5 

-107 (189) 

-181, -33 

-4.0 (7.0) 

-6.7, -1.2 

VO2max/kg 
(ml.kg-1.min-1) 

-9.9 (5.1) 

-11.9, -7.9 

-20.6 (8.2) 

-23.8, -17.4 

-15.1 (4.5) 

-16.8, -13.3 

-32.2 (6.3) 

-34.7, -29.8 

-5.2 (2.3) 

 -6.0, -4.3 

-14.3 (6.3) 

 -16.8, -11.9 

HRmax 

(min-1)  

-2.1 (4.8) 

-4.0, -0.2 

-1.1 (2.6) 

-2.1, -0.1 

-3.5 (5.1) 

-5.5, -1.5 

-1.8 (2.7) 

-2.9, -0.8 

-1.4 (3.8) 

-2.8, 0.1 

0.7 (2.0) 

-0.1, 1.5 

SVmax 

(ml) 
2.0 (17.7) 

-4.9, 9.0 

2.1 (13.4) 

-3.2, 7.3 

2.0 (15.9) 

-4.3, 8.2 

2.4 (12.0) 

-2.3, 7.1 

-0.1 (14.8) 

-5.9, 5.8 

1.0 (11.5) 

-3.5, 5.5 

COmax 

(l.min-1) 
0.48 (2.35) 

-0.45, 1.40 

2.3 (9.8) 

-1.5, 6.1 

0.43 (2.36) 

-0.50, 1.36 

2.4 (10.3) 

-1.7, 6.4 

-0.05 (2.50) 

-1.02, 0.93 

0.54 (10.9) 

-3.7, 4.8 

SBPmax 

(mmHg)  

9.6 (11.0) 

5.3, 13.9 

8.5 (9.4) 

4.9, 12.2 

13.8 (13.9) 

8.4, 19.3 

12.7 (13.0) 

7.6, 17.8 

4.2 (15.1) 

-1.7, 10.1 

4.2 (12.6) 

-0.7, 9.2 

DBPmax 

(mmHg)  

6.0 (6.0) 

3.7, 8.3 

9.8 (9.4) 

6.1, 13.5 

8.1 (7.3) 

5.3, 11.0 

13.2 (11.5) 

8.7, 17.7 

2.1 (7.7) 

-0.9. 5.1 

3.6 (10.9) 

-0.7, 7.8 

MAPmax 
(mmHg) 

6.9 (6.9) 

4.2, 9.6 

8.3 (8.5) 

5.0, 11.6 

8.2 (7.1) 

5.4, 11.0 

9.6 (8.6) 

6.3, 13.0 

1.3 (7.5) 

-1.7, 4.2 

1.5 (7.8) 

-1.6, 4.6 

SVRmax 

(dyn.s.cm-5) 

20.3 (40.4) 

4.4, 36.1 

6.8 (13.6) 

1.5, 12.1 

24.0 (43.3) 

7.0, 40.9 

8.3 (14.6) 

2.5, 14.0 

3.7 (49.8) 

-15.8, 23.2 

2.3 (14.7) 

-3.5, 8.0 

SWmax 

(g.m) 

13.7 (24.5) 

4.1, 23.3 

10.5 (16.9) 

3.9, 17.1 

16.1 (23.2) 

7.0, 25.2 

12.2 (16.1) 

5.9, 18.5 

2.1 (20.5) 

-5.6, 10.5 

2.4 (13.4) 

-2.9, 7.6 

CPOmax 

(watts) 

0.43 (0.58) 

0.20, 0.66 

10.8 (13.5) 

5.5, 16.1 

0.49 (0.59) 

0.26, 0.72 

12.2 (14.1) 

6.6, 17.7 

0.06 (0.58) 

-0.17, 0.29 

1.9 (13.1) 

-3.2, 7.0 

CircPmax 

(mmHg.ml 
O2.min-1) 

10.2 (47.2) 

-8.3, 28.7 

-4.4 (14.9) 

-10.2, 1.5 

8.1 (73.6) 

-20.8, 36.9 

4.9 (24.8) 

-4.9, 14.6 

-3.1 (51.4) 

-23.3, 17.1 

1.4 (23.4) 

-7.8, 10.5 

 

Data presented as mean (SD, standard deviation). CI: confidence intervals; CO: cardiac output; CircP: 

circulatory power; CPO: cardiac power output; DBP: Diastolic blood pressure; Ex Dur: exercise duration; HR: 
heart rate; MAP: mean arterial blood pressure; max: values at peak exercise; SBP: systolic blood pressure; SV: 

stroke volume; SVR: systemic vascular resistance; SW: stroke work; VO2: oxygen consumption. 
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Figure 5.2 A. Effect of loading with the “Empathy Belly” and “Empathy Belly & 

rucksack” on peak exercise capacity 

 
 
 

Figure 5.2 B. Effect of inert weight carriage on peak exercise capacity 
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Figure 5.3 A. Effect of loading with the “Empathy Belly” and “Empathy Belly & 

rucksack” on peak oxygen consumption  

 
 
 

Figure 5.3 B. Effect of inert weight carriage on peak oxygen consumption 
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Figure 5.3 C. Effect of inert weight carriage on peak oxygen consumption 

scaled by body mass (per kilogram) 
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Figure 5.4 A. Effect of loading with the “Empathy Belly” and “Empathy Belly & 

rucksack” on peak cardiac power output 

 
 

Figure 5.4 B. Effect of inert weight carriage on peak cardiac power output 
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Figure 5.5 A. Maximal exercise haemodynamics at baseline and with 

differential inert weight carriage. 

 

 

Figure 5.5 B. Maximal exercise variables at baseline and with differential inert 

weight carriage. 

 
HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean 

arterial blood pressure; SVR: systemic vascular resistance VO2: oxygen consumption; CO: 

cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke work. 

Significance in comparison to baseline test. *: p<0.01; **: p<0.05 
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Figure 5.6 Delta maximal exercise variables with differential inert weight 

carriage. 

  

CPO: cardiac power output; CO: cardiac output; VO2: oxygen consumption; Ex Dur: 

exercise duration;  

Significance between Baseline and Sack tests. *: p<0.01 

 

The relative mean changes of physical and cardiac variables after loading with both 

Belly and Sack (Belly & Sack) during peak treadmill CPX. The most marked 

decrease with loaded exercise was seen in exercise duration carrying the Belly and 

Sack, while the most marked increase was in CPOmax carrying the Belly and Sack. 

Additional reduction was seen in exercise duration and both VO2max and VO2max/kg 

when more weight was carried, however no improvement in cardiac performance 

was seen with additional weight carriage. 

  

* 

* 
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Figure 5.7 Relationship between the change in VO2max and change in exercise 

duration with differential inert weight carriage. 

 

 
 
 
 
Figure 5.8 Relationship between the change in CPOmax and change in exercise 

duration with differential inert weight carriage. 
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Figure 5.9 Relationship between the change in VO2max and change in CPOmax 

with differential inert weight carriage. 

 

 

Figure 5.10 Relationship between the change in MAPmax and change in CPOmax 

with differential inert weight carriage. 

  

 

 

 



- 122 - 

5.5.2 Resting measures 

With combined loading of the “Empathy Belly and rucksack”, the only resting 

variables that significantly changed were systolic arterial pressure (C: 102.1±11.8, 

R: 107.1±14.6 mm Hg, P=0.031), diastolic arterial pressures (C: 62.2±7.8, R: 

68.8±11.8 mm Hg, P=0.001) and mean arterial pressure (C: 78.7±8.8, R: 84.6±12.4 

mm Hg, P=0.002), as shown in Table 5.3A. SVR at rest did not change significantly. 

Other resting indicators of cardiac function including heart rate, stroke volume, 

cardiac output, and stroke work all showed no significant change, except cardiac 

power (p = 0.022, increase of 12%), while standing and carrying the combined 

weight of “Empathy Belly” and rucksack.  

 

Table 5.3 A. Resting variables at baseline and with differential weight carriage. 

 Variables 

 

Base Belly Sack Base vs 
Belly 

Base vs 
Sack 

Belly vs 
Sack 

Mean (SD) Mean (SD) Mean (SD) P value P value P value 

VO2 rest (ml.min-1) 196±40 202±33 214±56 0.609 0.16 0.301 

VO2rest/kg         
(ml.kg-1.min-1) 3.14 (0.72) 2.69 (0.50) 2.52 (0.60) 0.013 0.001 0.214 

HRrest (min-1)  74.4±11.4 73.4±12.7 74.2±13.7 0.665 0.928 0.734 

SVrest (ml) 43.7±10.4 45.5±11.4 43.2±10.3 0.408 0.826 0.073 

COrest (ml.min-1) 3.22±0.69 3.33±0.65 3.38±0.67 0.41 0.148 0.763 

SBPrest (mmHg)  102.1±11.8 105.1±12.1 107.1±14.6 0.069 0.031 0.418 

DBPrest (mmHg)  62.2±7.8 67.9±11.2 68.8±11.8 0.013 0.001 0.714 

MAPrest (mmHg)  78.7±8.8 83.3±10.8 84.6±12.4 0.009 0.002 0.539 

SVRrest (dyn.s.cm-5) 2026±428 2020±459 2010±423 0.945 0.874 0.934 

SWrest (g.m) 47.1±13.8 49.7±12.4 48.5±13.5 0.294 0.622 0.423 

CPOrest (watts) 0.58±0.17 0.62±0.15 0.64±0.19 0.174 0.022 0.575 
Data presented as mean (SD, standard deviation); CO: cardiac output; CPO: cardiac power output; DBP: 

Diastolic blood pressure; HR: heart rate; MAP: mean arterial blood pressure; rest: values at rest; SBP: 

systolic blood pressure; SV: stroke volume; SVR: systemic vascular resistance; SW: stroke work; VO2: 
oxygen consumption.  



- 123 - 

Table 5.3 B. Delta changes between resting variables at baseline and with 

differential weight carriage. 

 Variables ∆ Base vs 
Belly 

Mean 
(SD) 95% 

CI 

% ∆ Base 
vs Belly 

Mean 
(SD) 95% 

CI 

∆ Base vs 
Sack 

Mean 
(SD) 95% 

CI 

% ∆ Base 
vs Sack 

Mean 
(SD) 95% 

CI 

∆ Belly vs 
Sack 

Mean (SD) 
95% CI 

% ∆ Belly 
vs Sack 

Mean 
(SD) 95% 

CI 

VO2 rest 

(ml.min-1) 

5.9 (57.2) 

-16.5, 28.3 

7.5 (28.2) 

-3.6, 18.6 

17.9 (61.7) 

-6.3, 42.1 

11.9 (30.5) 

-0.04, 23.9 

12.0 (30.5) 

-0.04, 23.9 

7.5 (27.4) 

-3.3, 18.2 

VO2rest/kg 

(ml.kg.min-1) 

-0.45 (0.84) 

-0.78, -0.12 

-10.7 (23.4) 

-19.9, -1.5 

-0.62 (0.82) 

-0.94, -0.30 

-17.1 (22.6) 

-26.0, -8.2 

-0.17 (0.65) 

-0.42, 0.09 

-4.4 (23.4) 

-13.5, 4.8 

HRrest 

(min-1)  

-0.9 (10.5) 

-5.0, 3.2 

-0.4 (16.5) 

-6.8, 6.1 

-0.2 (8.7) 

-3.6, 3.3 

0.05 (11.8) 

-4.6, 4.7 

0.8 (11.1) 

-3.6, 5.1 

1.9 (15.1) 

-4.0, 7.9 

SVrest 

 (ml) 

1.8 (10.4) 

-2.3, 5.8 

5.8 (21.9) 

-2.8, 14.4 

-0.52 (11.8) 

-5.1, 4.1 

1.5 (24.0) 

-7.9, 10.9 

-2.3 (6.1) 

-4.6, 0.1 

-9.1 (40.6) 

-25.0, 6.8 

COrest 

(l.min-1) 

0.11 (0.67) 

-0.15, 0.38 

5.8 (21.0) 

-2.5, 14.0 

0.16 (0.53) 

-0.05, 0.36 

6.5 (17.5) 

-0.3, 13.4 

0.04 (0.72) 

-0.24, 0.33 

3.44 (22.4) 

-5.5, 12.3 

SBPrest  

(mmHg)  

3.0 (7.9) 

-0.1, 6.1 

3.2 (8.1) 

0.1, 6.4 

5.0 (10.9) 

0.7, 9.3 

5.1 (10.8) 

0.9, 9.4 

2.0 (12.1) 

-2.8, 6.8 

2.3 (12.7) 

-2.6, 7.3 

DBPrest  

 (mmHg) 

5.7 (10.7) 

1.5, 9.9 

9.9 (17.2) 

3.2, 16.7 

6.6 (8.4) 

3.3, 9.9 

10.7 (13.7) 

5.3, 16.0 

0.9 (11.9) 

-3.8, 5.5 

2.9 (19.1) 

-4.5, 10.4 

MAPrest  

(mmHg) 

4.6 (8.1) 

1.4, 7.8 

6.1 (10.7) 

1.9, 10.3 

5.9 (8.4) 

2.7, 9.2 

7.6 (11.0) 

3.3, 11.9 

1.3 (10.8) 

-2.9, 5.6 

2.2 (13.7) 

-3.2, 7.6 

SVRrest 

(dyn.s.cm-5) 

-6.5 (465) 

-189, 176 

1.5 (21.3) 

-6.8, 9.8 

-15.8 (495) 

-210, 178 

1.7 (22.7) 

-7.3, 10.6 

-9.3 (559) 

-229, 210 

3.7 (27.8) 

-7.2, 14.6 

SWrest  

(g.m) 

2.6 (12.2) 

-2.2, 7.4 

9.6 (25.3) 

-0.3, 19.6 

1.4 (13.8) 

-4.0, 6.8 

6.6 (29.8) 

-5.1, 18.3 

-1.2 (7.6) 

-4.2, 1.7 

-2.4 (14.4) 

-8.0, 3.3 

CPOrest  

(watts) 

0.04 (0.14) 

-0.02, 0.09 

10.7 (25.8) 

0.63, 20.9 

0.06 (0.12) 

0.01, 0.11 

11.7 (20.2) 

3.8, 19.7 

0.02 (0.18) 

-0.05, 0.09 

5.72 (31.7) 

-6.7, 18.2 
 
Data presented as mean (SD, standard deviation); CI: confidence intervals; CO: cardiac 
output; CPO: cardiac power output; DBP: Diastolic blood pressure; HR: heart rate; MAP: 
mean arterial blood pressure; rest: values at rest; SBP: systolic blood pressure; SV: stroke 
volume; SVR: systemic vascular resistance; SW: stroke work; VO2: oxygen consumption.  
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Figure 5.11 A. Resting variables at baseline and with differential inert weight 

carriage. 

 

 
Figure 5.11 B. Resting cardiac variables at baseline and with differential inert 

weight carriage. 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean 

arterial blood pressure; SVR: systemic vascular resistance; VO2: oxygen consumption; CO: 

cardiac output; CPO: cardiac power output; SW: stroke work.                             

Significance in comparison to baseline test. *: p<0.01; **: p<0.05* 
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5.5.4 Reserve haemodynamics 

There was a significant and incremental decrease in reserve oxygen consumption 

(VO2 reserve) (B: decrease 5%, p = 0.016; R: decrease 10%, p < 0.001; Belly versus 

Sack: p = 0.007). Significant increases were seen in both reserve cardiac power 

output (B: increase 12%, p = 0.002; Sack: increase 13%, p = 0.001) and reserve 

stroke work (B: increase 14%, p = 0.033; R: increase 18%, p = 0.011), however 

neither were significantly incremental. There were no significant changes in reserve 

cardiac output or reserve stroke volume, as shown in Tables 5.4A and B and Figure 

5.12.  

 

Table 5.4 A. Reserve variables at baseline and with differential weight 

carriage. 

 Variables Base 

 

Belly 

 

Sack 

 

Base vs 
Belly 

Base vs 
Sack 

Belly vs 
Sack 

Mean (SD) Mean (SD) Mean (SD) P value P value P value 

HRreserve (min-1) 115.5 (11.1) 115.4 (16.9) 112.2 (12.4) 0.978 0.087 0.468 

VO2 reserve (ml.min-1) 2701 (388) 2553 (375) 2434 (404) 0.016 <0.001 0.007 

SVreserve (ml) 80.2 (18.1) 80.5 (19.0) 82.7 (18.9) 0.934 0.553 0.495 

COreserve (l.min-1) 19.2 (2.3) 19.5 (2.8) 19.5 (2.6) 0.422 0.560 0.848 

SWreserve (g.m) 101.5 (24.8) 112.6 (26.7) 116.2 (26.1) 0.033 0.011 0.416 

CPOreserve (watts) 3.80 (0.65) 4.19 (0.68) 4.23 (0.69) 0.002 0.001 0.721 

 

Data presented as mean (SD, standard deviation). CO: cardiac output; CPO: cardiac power output; HR: 

heart rate; max: values at peak exercise; SV: stroke volume: stroke work; VO2: oxygen consumption. 
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Table 5.4 B. Delta changes between reserve variables at baseline and with 

differential weight carriage. 

 Variables  ∆ Base vs 
Belly 

Mean (SD) 
95% CI 

% ∆ Base 
vs Belly 

Mean (SD)   
95% CI 

∆ Base vs  
Sack 

Mean (SD)     
95% CI 

% ∆ Base 
vs Sack 

Mean (SD)        
95% CI 

∆ Belly vs  
Sack 

Mean (SD)     
95% CI 

% ∆ Belly 
vs Sack 

Mean (SD)        
95% CI 

HRreserve  

(min-1) 

-0.1 (21.4) 

-8.5, 8.3 

1.0 (18.9) 

-6.4, 8.4 

-3.3 (9.3) 

-7.0, 0.33 

-2.7 (7.9) 

-5.8, 0.4 

-3.2 (21.7) 

-11.7, 5.3 

-0.4 (20.0) 

-8.3, 7.4 

VO2 reserve  

(ml.min-1) 

-147 (283) 

-258, -36 

-4.9 (11.2) 

-9.3, -0.5 

-266 (233) 

-358, -175 

-9.8 (8.7) 

-13.2, -6.4 

-119 (202) 

-198, -40 

-4.6 (7.9) 

-7.7, -1.5 

SVreserve   

(ml) 

0.3 (17.4) 

-6.5, 7.1 

1.9 (19.0) 

-5.6, 9.4 

2.5 (20.8) 

-5.7, 10.7 

6.2 (25.7) 

-3.8, 16.3 

2.2 (16.0) 

-4.0, 8.5 

5.0 (20.5) 

-3.0, 13.0 

COreserve  

(l.min-1) 

0.36 (2.22) 

-0.51, 1.23 

2.2 (10.5) 

-1.9, 6.3 

0.27 (2.31) 

-0.63, 1.18 

2.0 (11.7) 

-2.6, 6.6 

-0.09 (2.33) 

-1.00, 0.82 

0.3 (11.9) 

-4.4, 5.0 

SWreserve  

(g.m) 

11.1 (24.5) 

1.5, 20.7 

13.5 (23.4) 

4.3, 22.6 

14.7 (26.9) 

4.2, 25.3 

18.3 (27.5) 

7.5, 29.1 

3.7 (22.1) 

-5.0, 12.3 

 5.5 (21.9) 

-3.1, 14.1 

CPOreserve  

(watts) 

0.39 (0.55) 

0.18, 0.61 

11.5 (14.7) 

5.7, 17.2 

0.43 (0.56) 

0.21, 0.65 

12.6 (15.8) 

6.4, 18.8 

0.04 (0.52) 

-0.17, 0.24 

1.7 (13.5) 

-3.6, 7.0 
 

Data presented as mean (SD, standard deviation). CI: confidence intervals; CO: cardiac output; CPO: 

cardiac power output; HR: heart rate; max: values at peak exercise; SV: stroke volume: stroke work; VO2: 
oxygen consumption. 
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Figure 5.12 Reserve variables at baseline and with differential inert weight 

carriage. 

  

 

HR: heart rate; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SW: stroke 

work. Significance in comparison to baseline test. *: p<0.01; **: p<0.05 

 

5.6 Discussion 

This study is the first to determine the effects of incremental weight loading on 

aerobic capacity and cardiac function at maximal exercise in healthy pre-

menopausal female subjects. All subjects exercised to RERmax above 1.15, and no 

significant changes were seen in RERmax, ETpCO2max and VEmax between loaded 

tests. We can therefore confidently say that maximum exercise was equivalent in 

each group. 

The results showed that additional inert weight loading, in the form of an “Empathy 

Belly” and rucksack, caused incremental reductions in maximal exercise and 

aerobic capacity, especially VO2max/kg. Additional loading also lead to significantly 

higher CPOmax and SWmax over baseline however, did not show significant 

incremental change with additional loading. There was no significant change in 

COmax, SVmax and CircPmax between baseline and different loading conditions. SVR 

reduced at peak exercise from rest in all tests and was significantly higher at peak 

exercise in the loaded tests however, was not significantly different between loads. 
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Cardiac reserve function (CPOreserve and SWreserve) increased with loading, although 

was not incremental, whilst VO2 reserve incrementally reduced with additional weight 

loading. These observations supported our first hypothesis that the carriage of 

additional inert weight, simulating excessive weight gain at full term pregnancy, 

would result in a further reduction in exercise capacity and VO2max. However, the 

second hypothesis was not found to be true, and so suggests that there is a ceiling 

to peak cardiac performance when carrying additional weight. Despite this, 

opposing responses were again seen between markers of physical performance 

(Exercise duration and VO2max) and direct markers of cardiac performance and 

reserve (CPOmax and CPOreserve) between baseline and loaded tests. Furthermore 

the study confirmed hypothesis three, that indirect indicators of cardiac function 

remain unreliable as directly measured overall cardiac function during exercise 

stress testing with increased weight loading.  

One can again infer that, in the context of excessive weight gain, diminution of 

exercise tolerance or aerobic capacity can no longer be assumed to represent a 

reduction in cardiac pumping capability. However, it is necessary to conduct further 

studies tp compare these changes from inert mass loading with perfused mass 

loading during pregnancy and obesity. 

Published studies examining the effects of additional weight loading have estimated 

that for each kilogram of weight carried, the VO2 increases by 33.5ml/min [Borghols 

1978]. Importantly, no studies have reported the effects of weight carriage on peak 

oxygen consumption and cardiac function. Additional weight loading with identical 

submaximal exercise has been shown to cause further increases in heart rate, 

diastolic blood pressure, mean arterial pressure, oxygen consumption and cardiac 

output with no significant differences in stroke volume, whilst maintaining low SVR 

[Bhambhani et al 1997, Sagiv et al 1994, Sagiv et al 2002]. 
The present study showed similar changes to that seen in Bhambhani and Sagiv’s 

studies however, inversely showed an incremental fall in VO2max with increased 

loading and so disagree with the suggestion that oxygen uptake increases with 

incremental weight carriage. It is likely that the primary reason for these differences 

is that all of the previous studies were performed at sub-maximal exercise. 

From the mechanistic viewpoint, carriage of additional weight, one might expect 

greater isometric muscle response. However, this was not seen and the higher 

pressure generating capacity was merely sustained between loads with no changes 

in SBPmax, DBPmax and MAPmax. One could therefore again hypothesize that there is 
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a limit to the hydraulic pressure that the heart can generate. To confirm this it would 

be necessary to conduct further studies with even more weight carriage. 

 

5.61 Study Limitations 

As well as the technical limitations relating to continuous measurement of flow and 

pressure mentioned in Chapter 4, the primary limitation of this study related to use 

of the “Empathy Belly” and a rucksack as a simulator of weight gain. However, in 

order to try and distinguish between effects of weight loading alone, it was 

necessary to use a weight loading model. One could argue that the distribution of 

weight loading was not akin to that in obesity however, such weight loading models 

do not exist. Future studies in pregnant and obese women will allow direct 

comparison, to see if the effects seen with these simulator models hold true. 

 

5.7 Conclusion 

Additional weight loading in healthy females, using a pregnancy simulator and 

rucksack, resulted in a significant incremental reduction in exercise duration and O2 

consumption during maximal treadmill exercise. Cardiac performance was 

maintained with additional weight carriage and has a divergent response to physical 

performance, compared to unloaded exercise. One advises that it is necessary to 

measure cardiac performance directly, rather than indirectly, during weight loading. 
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Chapter 6 

Study VI: Longitudinal cardiovascular effects of pregnancy 
compared to post-partum 

6.1  Introduction 

Heart disease has been the leading indirect (non-obstetric) cause of death in 

pregnancy for at least the last decade in both the UK and USA [Cantwell et al 2011; 

Creanga et al 2015]. However, it has been recognized for nearly a century that 

cardiac patients need to have enough cardiac reserve to cope with the 

cardiovascular stress of pregnancy and child birth [Mackenzie 1921]. Physiological 

changes during pregnancy facilitate the adaptation of the cardiovascular system to 

increase the metabolic needs of the mother, thus enabling adequate delivery of 

oxygenated blood to peripheral tissues and the fetus [Silversides & Colman 2007]. 

Weight gain progressively increases in the majority of women throughout 

pregnancy and has been suggested that weight contributes to reduced exercise 

capacity due to the higher baseline metabolic needs and the additional work of 

weight carriage [Carpenter et al 1990].  

There is uncertainty about the best ways of evaluating cardiac function in 

pregnancy. Routine clinical practice is to assess both cardiac structure and function 

using echocardiography. Cardiac function is estimated by the fraction of blood that 

is ejected out the heart with each cycle, i.e. ejection fraction. However, ejection 

fraction does not change with pregnancy [Geva et al 1997; Vlahović-Stipac et al 

2010]. As gestation advances, women become more symptomatic of fatigue and 

breathlessness [Milne et al 1978]. It is often difficult to differentiate whether the 

worsening symptoms and exercise intolerance are due to progressive cardiac 

impairment or merely secondary to pregnancy and the additional work of weight 

gain. 

Over the last century, extensive study of healthy women has characterized the 

haemodynamic responses to pregnancy. The majority of the studies show an 

increase in heart rate, stroke volume and cardiac output, accompanied by a fall in 

systemic vascular resistance and blood pressure. As gestation advances blood 

pressure rises and the improvements in cardiac output level off towards term 

[Burwell 1938; Hamilton 1949; Robson 1989; Mahendru 2014]. Unfortunately, there 
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are very few studies examining cardiac reserve and maximal haemodynamics in 

pregnancy. Most appear to show that VO2max remains unchanged [Lotgering et al 

1991; Spinnewijn et al 1996; Sady et al 1989, Heenan et al 2001]. However, Artal 

and South-Paul both showed a significant reduction in VO2max in their cross 

sectional studies [Artal et al 1986; South-Paul et al 1988]. Only one study has 

reported changes in CO at maximal exercise, on a cycle, and found that CO was 

higher in the third trimester in comparison to post-partum [Sady et al 1989]. 

Importantly, cycle exercise is non-weight bearing and so they are unlikely to have 

examined the effects weight gain from pregnancy on cardiac output. 

Studies IV and V showed divergent responses in physical and cardiac performance 

to acute inert weight loading and therefore question the role of VO2 as an indirect 

marker of cardiac function in pregnancy. One therefore needs to establish if this is 

the case. A key question is whether cardiac reserve reduces throughout pregnancy 

because of the higher baseline function and reduced exercise capacity.  

 

6.2 Purpose and hypothesis of the study 

The purpose of this study was to determine how pregnancy at each of the 

trimesters affects resting, peak and reserve metabolic function and cardiovascular 

haemodynamics in healthy female subjects.  

The hypotheses tested in this investigation were 

(i) Maximal treadmill exercise testing during pregnancy will result in a 

reduction in exercise duration and concomitant decrease in VO2max, 

which will become more marked as gestation increases.  

(ii) There will be an improvement in peak cardiac performance, as 

represented by CPOmax, in the latter stages of pregnancy, as weight 

increases. 

(iii) Cardiac reserve will be maintained in pregnancy due to the increased 

resting and peak cardiac function.   

(iv) Conventional indirect indicators of cardiac function are unreliable as 

measures of overall cardiac function during exercise stress testing in 

pregnancy. 

(v) Post-partum is a reliable surrogate marker for the non-pregnant state 
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6.3  Ethical approval 

Ethical approval was approved by the Leeds (West) Ethics Committee. 

6.4  Methods 

This was a prospective observational longitudinal study which compared the 

physiological cardiovascular changes seen in pregnancy with their non-pregnant 

state (chosen to be 3 months post-partum) in healthy participants.  

 

6.4.1 Study participants 

Healthy female volunteers, who were either pregnant or trying to get pregnant, were 

recruited from a wide range of avenues: Adverts were posted in the regional press, 

local radio, posters throughout the University of Leeds, Leeds teaching hospitals 

NHS trust, GP surgery waiting rooms and local gymnasiums. Email invitations were 

sent to all members of Leeds teaching hospitals NHS trust and the University of 

Leeds. Both hospital and community midwives were also encouraged to tell 

pregnant women about the study.  

Women contacted the study co-ordinator and were given written and verbal 

information about the study. Once they were happy to take part, they were initially 

screened to ensure that they were healthy and taking no medication, apart from 

vitamin supplements (folic acid), and invited to the Leeds General Infirmary for a 

first visit. Women were excluded if they were unable to walk on a treadmill or 

unwilling to perform exercise beyond their anaerobic threshold. Further exclusion 

criteria included: potential obstetric complications; including placenta praevia after 

26 weeks; incompetent cervix; pre-eclampsia; pregnancy induced hypertension; 

multiple gestation at risk of premature labour; ruptured membranes and 

uninvestigated vaginal bleeding or abdominal pain.  

 

6.4.2 Visit structure 

At the first visit, women who were suitable and willing to give up their time were 

consented. The testing procedures were explained and then they were shown the 

laboratory and equipment. Those women who were in their first trimester of 

pregnancy, who had not undergone their first fetal scan, also had a scan arranged 

prior to exercise testing. 
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Following recruitment, women were asked to attend the Leeds General Infirmary 

cardiology department for up to 5 visits to undergo assessment and physiological 

testing, depending on which stage of pregnancy they were recruited. The visits  

included a single visit in pre-conception, if they were trying to become pregnant; 

three visits in pregnancy: aiming for 10-12 weeks; 24-26 weeks and 36 weeks of 

gestation; and finally approximately 3 months post-partum. 

All subjects underwent full clinical assessment and examination and then had a 

transthoracic echocardiogram performed to ensure normal cardiac structure and 

resting function. During each visit, participants were assessed, to ensure their well-

being and establish their symptoms. Particular attention was taken to ensure no 

obstetric complications had occurred and therefore subjects were asked about 

vaginal bleeding, abdominal pain, headaches, leg pain or swelling in accordance 

with the Physical Activity Readiness Medical Examination for Pregnancy (Wolfe and 

Mottola, 2002). NYHA functional class was determined through enquiry about daily 

activities and exercise, shown below.  

 

Table 6.1 NYHA classification 

NYHA class Functional Capacity 

I No limitations during usual activities (i.e. Flight of stairs) 

II Slight limitation during usual activities 

III Marked limitation during usual activities 

IV Symptoms at rest, unable to carry on usual activities 

 

6.4.3 Cardiopulmonary exercise testing 

An initial symptom-limited, maximal treadmill exercise test was performed, using the 

Bruce protocol, with the Medgraphic Ultima metabolic cart (Medgraphics 

Corporation, St. Paul, Minnesota, USA) and continuous ECG monitoring to 

measure and monitor breath-by-breath rates of ventilation, O2 consumption (VO2), 

CO2 production (VCO2), beat-by-beat heart rate (HR) and exercise duration. Manual 

cuff sphygmomanometry was used to measure systolic and diastolic blood 

pressures (SBP and DBP) in mm Hg. A second peak single-stage exercise test was 

performed after 45 minutes rest, to target the peak workload attained during the 
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prior incremental test and enable measurement of cardiac output using the CO2 re-

breathing technique [Vanhees et al 2000]. Detailed explanation of the testing 

procedure and equipment used is outlined in Chapter 2.  

 

6.4.4 Quality of life assessment 

Subjects were asked to complete the SF-36 version 2, [Ware and Sherbourne 

2000], quality of life questionnaire at each visit. The SF-36v2 has 36 questions 

which assess functional health and well-being, divided into 8 sections. Scores were 

then scaled using a norm-based scoring using data from the 1998 National Survey 

of Functional Health Status, giving a number between 0-100, where 50 is the 

average score or norm. This is one of the most widely used health questionnaires in 

the world for measuring patient reported outcomes, having been reported in more 

than 19000 studies over 20 years. 

 

6.4.5 Statistics 

All data were analysed using SPSS. Data are presented as mean and standard 

deviation. Delta measures and percentage change in measures between trimesters 

and post-partum are also displayed as a mean and standard deviation with 95% 

confidence intervals. Statistical comparisons were made with Student’s paired, two-

tailed t test. A P value of < 0.05 was considered to be statistically significant. 

                       

6.5  Results 

6.5.1  Study population baseline characteristics 

91 healthy females were recruited and underwent testing. A total of 240 tests were 

performed with 57 participants undergoing tests in post-partum and in at least one 

gestation and or in pre-conception, shown in Table 6.2. All 57 subjects were healthy 

and taking no regular medication, and had no impediments to exercise.  

The mean age was 32.7 years (SD 4.3). 50 were Caucasian, 5 of Asian and 2 of 

Afro-Caribbean descent. All were generally active pre-pregnancy. Throughout 

pregnancy all women remained well and delivered after 37 weeks. 
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The differences in longitudinal weights are shown in Table 6.2. The maximal weight 

change was seen in the third trimester, where there was a significant 15% increase 

in weight.  

 

Table 6.2 Test performed and weight changes 

Trimester PC T1 T2 T3 PP 

Number tested 21 49 59 54 57 

  

Number with PP test 17 36 46 44  

Weight (kg)      
(SD) 

63.5 
(9.7) 

64.4 
(8.9) 

69.5 
(10.3) 

76.2 
(14.3) 

Weight at PP (kg)  
(SD) 

65.0 
(11.2) 

65.7 
(9.9) 

65.1 
(10.4) 

66.6 
(13.2) 

∆ Weight (%) 
P value 

-2.0 
0.057 

-1.6 
0.052 

7.1 
<0.001 

14.9 
<0.001 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum; SD: standard 

deviation. 

 

6.5.3  First Trimester versus Post-partum 

Changes in variables at rest and exercise, including reserve variables, between 

longitudinal tests performed in the first trimester and post-partum are shown in 

Tables 6.3 to and including Table 6.6 and Figures 6.1 to 6.5. At rest there were no 

significant differences in HRrest, SBPrest, MAPrest or SVRrest. However, DBPrest was 

significantly lower in the first trimester by 6%. VO2rest was also lower in the first 

trimester, but was not accompanied by a significant change in COrest, CPOrest, SVrest 

or SWrest. 

At maximal exercise, HRmax was significantly lower in the first trimester by 4%. 

There were no differences in SBPmax, DBPmax or SVRmax. Exercise duration was 

significantly shorter in the first trimester by 45 seconds (6%) however, there were 

no significant differences in VO2max, VO2max/kg, COmax, CircPmax, SVmax, CPOmax or 

SWmax. The largest change in cardiac function appeared to be a fall in CPOmax in the 

first trimester by 4%, however this just failed to reach significance (p = 0.072). 
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Table 6.3 shows the differences in markers of exercise effort between tests. No 

significant difference in RERmax or VEmax was identified between tests although, 

ETpCO2max was significantly lower and symptom scores were significantly worse in 

the first trimester. 

HRreserve was significantly lower in the first trimester by 7%. There were no 

significant changes in VO2reserve, COreserve, SVreserve, CPOreserve or SWreserve. The 

nearest significant change in cardiac function was a reduced CPOreserve, seen in the 

first trimester (4%, p = 0.093). 

 
Table 6.3 Markers of exercise effort and symptoms between first trimester 
and post-partum 

 RERmax 

Mean (SD) 

VEmax 

Mean  (SD) 

ETpCO2max 

Mean (SD) 

SF-36 

Mean  (SD) 

T1 1.12 (0.09) 81.4 (20.0) 32.0 (3.7) 77.0 (10.4) 

PP 1.15 (0.12) 80.5 (17.6) 35.2 (3.6) 81.7 (10.9) 

P value 0.275 0.740 <0.0001 0.034 
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Table 6.4 Maximal exercise variables at first trimester and post-partum 

 T1 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 

HRmax 

(min-1) 
176.7 (10.3) 183.9 (10.9) <0.001 -7.2 (8.9) 

-10.1, -4.3 
- 4.0 (4.9) 
-5.4, -2.2 

SBPmax 

(mmHg) 
132.2 (19.6) 134.6 (25.8) 0.501 -2.4 (21.3) 

-9.4, 4.5 
0.1 (15.9) 
-5.1, 5.3 

DBPmax 

(mmHg) 
63.6 (8.9) 63.4 (7.7) 0.912 0.2 (9.0) 

-2.8, 3.1 
0.9 (14.1) 
-3.7, 5.5 

MAPmax 

(mmHg) 
91.9 (11.1) 93.7 (9.8) 0.256 -1.8 (9.2) 

-4.8, 1.2 
-1.6 (9.7) 
-4.8, 1.6 

SVRmax 

(dyn.s.cm-5) 
420 (108) 411 (78) 0.570 9 (99) 

-23, 42 
3.4 (23) 

-4.2, 11.0 

Ex Dur  
(mins) 

11.9 (2.7) 12.6 (3.0) <0.001 -0.75 (1.1) 
-1.1, -0.4 

- 5.5 (9.1) 
-8.5, -2.5 

VO2 max 

(ml.min-1) 
2191 (400) 2220 (433) 0.605 -28 (325) 

-134, 78 
-0.1 (14.1) 
-4.7, 4.5 

VO2 max/kg 

(ml.min-1.kg-1) 
34.4 (6.8) 34.2 (6.9) 0.819 0.2 (5.2) 

-1.5, 1.9 
1.8 (14.8) 
-3.0, 6.6 

COmax 

(l.min-1) 
18.1 (3.2) 18.6 (2.5) 0.311 -0.5 (2.7) 

-1.4, 0.4 
-2.0 (14.3) 
-6.7, 2.7 

CPOmax 

(watts) 
3.68 (0.70) 3.86 (0.65) 0.072 -0.18 (0.58) 

-0.37, 0.01 
-4.1 (13.7) 
-8.5, 0.4 

CircPmax  

(mmHg.ml O2.min-1) 

292 (75) 300 (89) 0.473 -9 (70) 
-32, 14 

0.3 (22.8) 
-7.1, 7.8 

SVmax 

(ml) 

103.9 (18.9) 103.8 (14.5) 0.973 0.1 (16.7) 
-5.4, 5.6 

0.6 (16.0) 
-4.6, 5.8 

SWmax  

(g.m) 
129.6 (26.8) 132.4 (23.8) 0.448 -2.8 (21.5) 

-9.8, 4.3 
-1.5 (15.5) 
-6.5, 3.6 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: 

Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; Ex Dur: 

exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; CircP: 

circulatory power; SV: stroke volume; SW: stroke work. 
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Figure 6.1 Maximal exercise haemodynamics at first trimester and post-

partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood 

pressure; SVR: systemic vascular resistance. *: p<0.01 

 

 

Figure 6.2 Maximal exercise variables at first trimester and post-partum

 

Ex Dur: exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; 

CircP: Circulatory power; SV: stroke volume; SW: stroke work. *: p<0.01. 
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Table 6.5 Resting variables at first trimester and post-partum  

 T1 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD)      

95% CI 

% ∆ 
Mean (SD)        

95% CI 

HRrest 

(min-1) 
79.2 (13.3) 78.4 (10.7) 0.747 0.8 (13.8) 

-3.8, 5.3 
2.0 (17.7) 
-3.8, 7.8 

SBPrest 

(mmHg) 
99.3 (10.5) 101.3 (11.2) 0.308 -1.9 (11.3) 

-5.6, 1.7 
-1.3 (11.0) 
-4.9, 2.3 

DBPrest 

(mmHg) 
57.5 (7.7) 62.1 (8.3) 0.005 -4.6 (9.1) 

-7.6, -1.6 
-6.2 (14.3) 
-10.9, -1.5 

MAPrest 

(mmHg) 
75.6 (8.8) 76.3 (8.3) 0.676 -0.7 (9.9) 

-3.9, 2.5 
-0.2 (12.8) 
-4.4, 4.0 

SVRrest 

(dyn.s.cm-5) 
1761 (441) 1737 (471) 0.815 24 (609) 

-175, 223 
6.7 (33.7) 
-4.3, 17.8 

VO2rest 

(ml.min-1) 
238 (59) 283 (128) 0.045 -45 (130) 

-87, -3 
-6.8 (34.3) 
-18.1, 4.4 

COrest 

(l.min-1) 
3.63 (0.95) 3.69 (0.79) 0.764 -0.06 (1.20) 

-0.45, 0.33 
3.0 (36.5) 
-8.9, 14.9 

CPOrest 

(watts) 
0.61 (0.18) 0.63 (0.15) 0.717 -0.01 (0.23) 

-0.09, 0.06 
3.3 (39.6) 
-9.6, 16.2 

SVrest 

(ml) 

47.3 (14.7) 50.0 (13.1) 0.361 -2.7 (17.4) 
-8.3, 3.0 

0.07 (38.9) 
-12.7, 12.8 

SWrest   

(g.m) 
48.9 (16.5) 51.8 (15.2) 0.375 -3.1 (20.4) 

-9.7, 3.6 
0.5 (43.0) 
-13.6, 14.5 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: 

Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; VO2: 

oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 

work. 
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Figure 6.3 Resting variables at first trimester and post-partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood 

pressure; SVR: systemic vascular resistance. *: p<0.01 

 

 

Figure 6.4 Resting cardiac variables at first trimester and post-partum 

 

VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 

work. **: p<0.05 
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Table 6.6 Reserve variables at first trimester and post-partum 

  T1 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 

HRreserve     
(min-1) 

97.5 (16.9) 105.5 (11.5) 0.005 -8.0 (15.8) 
-13.1, -2.8 

-7.2 (15.3) 
-12.1, -2.2 

VO2 reserve  
(ml.min-1) 

1954 (399) 1937 (436) 0.792 17 (376) 
-106, 139 

3.1 (19.5) 
-3.2, 9.5 

COreserve       
(l.min-1) 

14.5 (3.3) 14.9 (2.7) 0.407 -0.4 (2.9) 
-1.4, 0.5 

-1.7 (20.0) 
-8.2, 4.8 

SVreserve        
(ml) 

56.6 (21.2) 53.8 (20.4) 0.474 2.8 (23.0) 
-4.7, 10.3 

15.3 (56.2) 
-3.0, 33.7 

CPOreserve  
(watts) 

3.07 (0.65) 3.23 (0.67) 0.093 -0.17 (0.57) 
-0.35, 0.02 

-4.0 (15.8) 
-9.1, 1.2 

SWreserve  

(g.m) 

80.9 (23.9) 80.6 (27.3) 0.946 0.3 (26.4) 
-8.3, 8.9 

7.3 (36.2) 
-4.5, 19.1 

SD: standard deviation; CI: confidence intervals; HR: heart rate; VO2: oxygen consumption; CO: cardiac 

output; CPO: cardiac power output; SV: stroke volume; SW: stroke work. 

 

Figure 6.5 Reserve variables at first trimester and post-partum 

 

HR: heart rate; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke 

volume; SW: stroke work. *: p<0.01. 
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6.5.4  Second Trimester versus Post-partum 

Changes in variables at rest and exercise, including reserve variables, between 

longitudinal tests performed in second trimester and post-partum are shown in 

Tables 6.7 to 6.10 and Figures 6.6 to 6.10. At rest HRrest was significantly increased 

by 10% in the second trimester. This was accompanied by a significant drop in 

DBPrest by 8%, MAPrest by 4% and SVRrest by 8%. There was no change in SBPrest. 

There were also no significant changes in VO2rest, COrest, CPOrest, SVrest or SWrest. 

However the percentage increase in COrest in the second trimester compared to 

post-partum was significant, with a mean increase of 12% (SD: 31.8; CI: 3.3, 21.6). 

At maximal exercise, HRmax was significantly lower in the second trimester by 4%. 

There were no significant changes seen in blood pressure or SVRmax. Exercise 

duration was significantly shorter by 90 seconds (11%) in the second trimester, 

which corresponded with a significantly lower VO2 max and VO2 max/kg, by 6 and 12% 

respectively. CircPmax was also significantly lower by 5% however, there were no 

significant changes in COmax, CPOmax, SVmax or SWmax. As shown in Table 6.7, there 

were no differences in RERmax or VEmax however, ETpCO2max was significantly lower 

and symptom scores were significantly worse in the second trimester. 

HRreserve was significantly lower the second trimester by 14%. Again there were no 

significant changes in VO2reserve, COreserve, SVreserve, CPOreserve or SWreserve. 

 

Table 6.7 Markers of exercise effort between second trimester and post-

partum 

 RERmax 

Mean (SD) 

VEmax 

Mean  (SD) 

ETpCO2max 

Mean (SD) 

SF-36 

Mean  (SD) 

T2 1.17 (0.10) 76.6 (19.3) 33.6 (4.6) 75.6 (9.5) 

PP 1.17 (0.12) 77.9 (19.2) 34.7 (4.0) 81.5 (10.2) 

P value 0.754 0.639 0.026 0.001 
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Table 6.8 Maximal exercise variables at second trimester and post-partum 

 T2 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD)     

95% CI 

HRmax 

(min-1) 
173.9 (10.4) 182.0 (12.4) <0.001 -8.1 (8.6) 

-10.6, -5.6 
-4.3 (4.9) 
-5.7, -2.9 

SBPmax 

(mmHg) 
136.1 (19.8) 137.8 (25.8) 0.606 -1.7 (21.9) 

-8.0, 4.6 
0.7 (16.5) 
-4.1, 5.4 

DBPmax 

(mmHg) 
62.7 (9.5) 63.6 (7.1) 0.505 -0.9 (9.1) 

-3.5, 1.7 
-1.0 (13.9) 
-5.0, 3.0 

MAP max 

(mmHg) 
92.7 (11.1) 94.2 (9.9) 0.197 -1.5 (7.8) 

-3.7, 0.8 
-1.4 (8.3) 
-3.8, 1.0 

SVR max 

(dyn.s.cm-5) 
426 (100) 426 (93) 0.994 0.1 (79.7) 

-23.0, 23.1 
1.0 (18.2) 
-4.2, 6.3 

Ex Dur  
(mins) 

10.7 (2.3) 12.2 (3.1) <0.001 -1.5 (1.5) 
-1.9, -1.0 

-11.0 (10.9) 
-14.1, -7.8 

VO2 max 

(ml.min-1) 
2039 (405) 2186 (446) 0.001 -146 (278) 

-227, -66 
-5.8 (12.7) 
-9.5, -2.1 

VO2 max/kg 

(ml.min-1.kg-1) 
29.6 (6.0) 34.0 (7.2) <0.001 -4.4 (4.7) 

-5.7, -3.0 
-11.8 (12.9) 
-15.5, -8.1 

COmax 

(l.min-1) 

18.0 (2.9) 18.2 (2.7) 0.534 -0.2 (2.4) 
-0.9, 0.5 

-0.5 (13.0) 
-4.3, 3.2 

CPOmax 

(watts) 

3.68 (0.66) 3.79 (0.65) 0.210 -0.11 (0.58) 
-0.28, 0.06 

-2.0 (14.7) 
-6.3, 2.2 

CircPmax 
(mmHg.ml O2.min-1) 

280 (74) 303 (91) 0.018 -23 (64) 
-41, -5 

-5.2 (19.6) 
-10.9, 0.4 

SVmax 

(ml) 

104.2 (15.1) 101.2 (15.3) 0.175 3.0 (14.7) 
-1.3, 7.2 

4.0 (14.7) 
-1.3, 7.2 

SWmax  

(g.m) 
131.2 (23.6) 129.6 (23.6) 0.606 1.6 (21.3) 

-4.5, 7.8 
2.4 (16.4) 
-2.3, 7.2 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: 

Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; Ex Dur: 

exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; CircP: 

circulatory power; SV: stroke volume; SW: stroke work. 
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Figure 6.6 Maximal exercise haemodynamics at second trimester and post-

partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood 

pressure; SVR: systemic vascular resistance. *: p<0.01 

 

 

Figure 6.7 Maximal exercise variables at second trimester and post-partum 

 

Ex Dur: exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; 

CircP: Circulatory power; SV: stroke volume; SW: stroke work. *: p<0.01;  **: p<0.05 
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Table 6.9 Resting variables at second trimester and post-partum  

 T2 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD)     

95% CI 

HRrest 

(min-1) 
86.7 (13.9) 79.9 (11.2) 0.001 6.8 (13.6) 

2.9, 10.8 
9.6 (17.7) 
4.5, 14.7 

SBPrest 

(mmHg) 
101.2 (11.6) 101.7 (10.0) 0.803 -0.5 (13.5) 

-4.4, 3.4 
0.2 (13.3) 
-3.7, 4.0 

DBPrest 

(mmHg) 
57.5 (10.9) 62.9 (7.5) 0.003 -5.4 (11.5) 

-8.7, -2.0 
-7.8 (17.5) 
-12.9, -2.7 

MAPrest 

(mmHg) 
73.8 (8.8) 77.2 (7.4) 0.028 -3.3 (10.0) 

-6.2, -0.5 
-3.7 (12.9) 
-7.5, -0.02 

SVRrest 

(dyn.s.cm-5) 
1483 (369) 1700 (499) 0.010 -217 (545) 

-375, -60 
-7.5 (29.3) 
-16.0, 1.0 

VO2 rest 

(ml.min-1) 
269 (83) 279 (121) 0.619 -10 (129) 

-47, 28 
5.2 (34.4) 
-4.7, 15.2 

COrest 

(l.min-1) 
4.22 (1.19) 3.92 (1.20) 0.069 0.30 (1.08) 

-0.02, 0.61 
12.4 (31.8) 
3.3, 21.6 

CPOrest 

(watts) 
0.70 (0.23) 0.67 (0.22) 0.436 0.02 (0.20) 

-0.04, 0.08 
8.2 (35.2) 
-2.0, 18.3 

SVrest 

(ml) 

49.8 (14.8) 52.4 (17.9) 0.302 -2.6 (16.9) 
-7.5, 2.3 

1.6 (35.9) 
-8.7, 12.0 

SWrest 

(g.m) 
50.5 (18.2) 54.9 (19.7) 0.118 -4.4 (18.7) 

-9.8, 1.0 
-2.1 (40.2) 
-13.8, 9.5 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: 

Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; VO2: 

oxygen consumption; CO: cardiac output;   CPO: cardiac power output; SV: stroke volume; SW: stroke 

work. 
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Figure 6.8 Resting variables at second trimester and post-partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood 

pressure; SVR: systemic vascular resistance. *: p<0.01;  **: p<0.05 

 

 

Figure 6.9 Resting cardiac variables at second trimester and post-partum 

 

VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 

work.  
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Table 6.10 Reserve variables at second trimester and post-partum 

 T2 
Mean (SD) 

PP 
Mean (SD) 

P 
value 

∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 
HRreserve  
(min-1) 

87.2 (17.8) 102.2 (15.7) <0.001 -14.9 (16.1) 
-19.6, -10.3 

-13.7 (17.9) 
-18.9, -8.5 

VO2 reserve  
(ml.min-1) 

1770 (413) 1907 (441) 0.006 -137 (319) 
-229, -45 

-5.8 (17.3) 
-10.8, -0.8 

COreserve  
(l.min-1) 

13.7 (3.2) 14.3 (3.2) 0.186 -0.5 (2.6) 
-1.3, 0.2 

-1.9 (18.3) 
-7.2, 3.4 

SVreserve    
(ml) 

54.4 (18.9) 48.9 (24.7) 0.081 5.6 (21.2) 
-0.6, 11.7 

33.6 (213) 
-28.1, 95.2 

CPOreserve  
(watts) 

2.98 (0.65) 3.11 (0.69) 0.133 -0.13 (0.58) 
-0.30, 0.04 

-2.6 (18.3) 
-7.9, 2.7 

SWreserve  
(g.m) 

80.8 (23.4) 74.7 (28.9) 0.125 6.0 (26.2) 
-1.5, 13.6 

24.7 (76.3) 
2.6, 46.7 

SD: standard deviation; CI: confidence intervals; HR: heart rate; VO2: oxygen consumption; CO: cardiac 

output; CPO: cardiac power output; SV: stroke volume; SW: stroke work. 

 

 

Figure 6.10 Reserve variables at second trimester and post-partum 

 

HR: heart rate; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke 

volume; SW: stroke work. *: p<0.01. 
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6.5.5 Third Trimester versus Post-partum 

Changes in variables at rest and exercise, including reserve variables, between 

longitudinal tests performed in third trimester and post-partum are shown in Tables 

6.11 to 6.14 and Figures 6.11 to 6.15. At rest, HRrest was significantly increased by 

21% in the third trimester. There was no significant change in blood pressure or 

SVRrest. Equally there were no significant changes in VO2 rest, COrest, CPOrest or 

SWrest. Interestingly SVrest was significantly lower in the third trimester by 3.6% (p = 

0.046).  The mean percentage difference in CPOrest was also significant higher in 

the third trimester by 14% (SD: 31.6, CI: 5.1, 23.8). 

At maximal exercise, HRmax was significantly lower in the third trimester. There were 

no significant changes in blood pressure, but SVRmax was significantly increased by 

10%. Exercise duration was significantly shorter by 2 minutes 18 seconds (18%), 

which corresponded with a lower VO2 max by 6% and VO2 max/kg by 18%. COmax was 

also significantly lower by 4% however, CPOmax, CircPmax, SVmax and SWmax did not 

significantly change between tests. As shown in Table 6.11, there were no 

differences in VEmax however, RERmax and ETpCO2max were significantly lower and 

symptom scores were significantly worse in the third trimester. 

HRreserve was significantly reduced in the third trimester by 18%. Equally VO2reserve 

and COreserve were significantly smaller by 7 and 6% respectively. CPOreserve, 

SVreserve and SWreserve were not significantly different however, the mean percentage 

difference showed a significant increase in SWreserve in the third trimester by 27% 

(SD: 75.7, CI: 4.6, 49.4). 

 
Table 6.11 Markers of exercise effort between third trimester and post-partum 

 RERmax 

Mean (SD) 

VEmax 

Mean  (SD) 

ETpCO2 max 

Mean (SD) 

SF-36 

Mean  (SD) 

T3 1.11 (0.08) 75.8 (15.3) 32.1 (3.7) 67.9 (11.8) 

PP 1.16 (0.13) 78.9 (17.1) 34.9 (3.6) 81.2 (11.0) 

P value 0.003 0.176 <0.0001 <0.0001 
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Table 6.12 Maximal exercise variables at third trimester and post-partum 

 T3 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 

HRmax 

(min-1) 
171.9 (12.0) 180.7 (15.3) <0.001 -8.8 (12.9) 

-12.6, -5.0 
-4.4 (9.4) 
-7.1, -1.6 

SBPmax 

(mmHg) 
140.3 (20.1) 137.4 (26.1) 0.429 2.9 (24.2) 

-4.2, 10.1 
4.5 (18.1) 
-0.9, 9.8 

DBPmax 

(mmHg) 
65.7 (8.4) 65.0 (7.8) 0.611 0.7 (8.4) 

-1.8, 3.1 
1.6 (13.0) 
-2.2, 5.5 

MAPmax 

(mmHg) 
97.5 (10.7) 95.1 (10.2) 0.095 2.5 (9.6) 

-0.4, 5.3 
3.0 (10.3) 
0.01, 6.1 

SVRmax 

(dyn.s.cm-5) 
462 (95) 429 (98) 0.015 33 (85) 

7.4, 57.9 
9.6 (19.6) 
3.8, 15.4 

Ex Dur 
(mins) 

10.0 (2.5) 12.3 (3.1) <0.001 -2.3 (1.6) 
-2.8, -1.8 

-18.1 (12.1) 
-21.7, -14.5 

VO2 max 

(ml.min-1) 
2074 (373) 2222 (421) 0.002 -147 (296) 

-235, -60 
-5.6 (13.0) 
-9.4, -1.7 

VO2 max/kg 

(ml.min-1.kg-1) 
27.7 (5.4) 34.1 (7.3) <0.001 -6.4 (4.9) 

-7.8, -5.0 
-17.6 (12.5) 
-21.3, -13.9 

COmax 

(l.min-1) 
17.3 (2.6) 18.3 (2.9) 0.013 -0.9 (2.4) 

-1.6, -0.2 
-4.1 (12.6) 
-7.8, -0.4 

CPOmax 

(watts) 
3.74 (0.68) 3.83 (0.66) 0.345 -0.09 (0.62) 

-0.27, 0.09 
-1.3 (15.1) 
-5.8, 3.1 

CircPmax  

(mmHg.ml O2.min-1) 

292 (73) 306 (84) 0.248 -13 (76) 
-36, 9 

-0.9 (24.5) 
-8.1, 6.4 

SVmax 

(ml) 

103.4 (16.5) 103.7 (20.0) 0.906 -0.4 (19.8) 
-6.2, 5.5 

1.6 (18.0) 
-3.7, 6.9 

SWmax 

(g.m) 
136.8 (24.8) 134.1 (30.0) 0.496 2.7 (26.3) 

-5.0, 10.5 
4.2 (18.3) 
-1.2, 9.6 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: 

Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; Ex Dur: 

exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; CircP: 

circulatory power; SV: stroke volume; SW: stroke work. 
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Figure 6.11 Maximal exercise haemodynamics at third trimester and post-

partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood 

pressure; SVR: systemic vascular resistance. *: p<0.01; **: p<0.05. 

 

 

Figure 6.12 Maximal exercise variables at third trimester and post-partum 

 

Ex Dur: exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; 

CircP: Circulatory power; SV: stroke volume; SW: stroke work. *: p<0.01. 
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Table 6.13 Resting variables at third trimester and post-partum  

 T3 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 

HRrest 

(min-1) 
87.4 (14.8) 77.6 (11.8) <0.001 9.9 (15.3) 

5.4, 14.4 
21.2 (3.2) 
8.1, 20.7 

SBPrest 

(mmHg) 
103.9 (12.7) 102.0 (10.5) 0.391 1.9 (14.4) 

-2.4, 6.2 
2.6 (13.9) 
-1.5, 6.7 

DBPrest 

(mmHg) 
63.0 (10.1) 63.3 (8.0) 0.841 -0.3 (10.4) 

-3.4, 2.8 
0.4 (16.2) 
-4.4, 5.1 

MAPrest 

(mmHg) 
79.3 (10.0) 77.1 (7.5) 0.152 2.2 (10.0) 

-0.8, 5.1 
3.3 (12.6) 
-0.4, 7.0 

SVRrest 

(dyn.s.cm-5) 
1650 (491) 1727 (524) 0.398 -78 (603) 

-256, 100 
0.95 (32.4) 
-8.6, 10.5 

VO2 rest 

(ml.min-1) 
288 (74) 270 (118) 0.365 18 (132) 

-21, 57 
17.0 (39.3) 
5.4, 28.6 

COrest 

(l.min-1) 
4.06 (0.86) 3.84 (1.05) 0.193 0.22 (1.10) 

-0.11, 0.54 
11.5 (31.7) 
2.1, 20.8 

CPOrest 

(watts) 
0.71 (0.17) 0.66 (0.19) 0.080 0.05 (0.20) 

-0.01, 0.11 
14.4 (31.6) 
5.1, 23.8 

SVrest 

(ml) 

47.7 (11.8) 52.9 (15.9) 0.046 -5.2 (16.8) 
-10.2, -0.2 

-3.6 (31.7) 
-13.0, 5.8 

SWrest  

(g.m) 
51.2 (13.4) 55.4 (17.5) 0.118 -4.3 (17.7) 

-9.5, 1.0 
-1.6 (30.3) 
-10.5, 7.4 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: 

Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; VO2: 

oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 

work. 
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Figure 6.13 Resting variables at third trimester and post-partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood 

pressure; SVR: systemic vascular resistance. *: p<0.01.       

 

 

Figure 6.14 Resting cardiac variables at third trimester and post-partum 

 

VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 

work. **: p<0.05. 
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Table 6.14 Reserve variables at third trimester and post-partum 

 T3 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 

HRreserve  
(min-1) 

84.5 (18.8) 103.1 (14.0) <0.001 -18.7 (16.3) 
-23.5 , -13.9 

-17.8 (17.4) 
-23.0, -12.7 

VO2 reserve  
(ml.min-1) 

1786 (365) 1952 (421) 0.001 -166 (317) 
-259, -72 

-7.0 (15.5) 
-11.5, -2.4 

COreserve 

(l.min-1) 
13.3 (2.9) 14.4 (3.2) 0.006 -1.1 (2.6) 

-1.9, -0.4 
-6.0 (17.9) 
-11.3, -0.8 

SVreserve 

(ml) 
55.7 (20.6) 50.83 (23.9) 0.222 4.8 (25.9) 

-2.8, 12.5 
31.6 (179) 
-21.3, 84.4 

CPOreserve  
(watts) 

3.03 (0.64) 3.17 (0.68) 0.145 -0.14 (0.64) 
-0.33, 0.05 

-2.7 (18.9) 
-8.2, 2.9 

SWreserve 
(g.m) 

85.6 (24.2) 78.7 (29.7) 0.156 7.0 (32.0) 
-2.5, 16.4 

27.0 (75.7) 
4.6, 49.4 

SD: standard deviation; CI: confidence intervals; HR: heart rate; VO2: oxygen consumption; CO: cardiac 

output; CPO: cardiac power output; SV: stroke volume; SW: stroke work. 

 

Figure 6.15 Reserve variables at third trimester and post-partum 

 

HR: heart rate; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke 

volume; SW: stroke work. *: p<0.01. 
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6.5.2  Post-partum versus Pre-conception 

Changes in variables at rest and exercise, including reserve variables, between 

longitudinal tests performed in pre-conception and post-partum are shown in Tables 

6.15 to 6.18 and Figures 6.16 to 6.20. At rest there was significantly lower mean 

HRrest seen in pre-conception, by 13%. Mean SBPrest, DBPrest and MAPrest were 

significantly higher in pre-conception by 8%, 14% and 14% respectively. This was 

accompanied by a significantly higher mean SVRrest by 37%. VO2rest was lower in 

pre-conception by 14%, although just failed to reach significance (p = 0.092). COrest 

was also lower by 11% and again just failed to reach significance (p = 0.058). 

However, CPOrest, SVrest and SWrest did not significantly change between tests. 

At maximal exercise there were no significant differences in HRmax or blood 

pressure. SVRmax was significantly lower in pre-conception by 10%. Exercise 

duration did not significantly change although, there were significantly higher values 

for VO2max by 24%, VO2 max/kg by 27%, COmax by 10%, CircPmax by 31% and SVmax by 

9% seen in pre-conception. Although CPOmax appeared to be higher in pre-

conception, it just failed to reach significance (p = 0.062). As shown in Table 6.15, 

there were no differences in RERmax or symptom scores however, VEmax and 

ETpCO2max were higher in pre-conception. 

HRreserve was significantly greater in pre-conception by 12%, as were VO2 reserve by 

32%, COreserve by 16%, SVreserve by 25% and CPOreserve by 11%.  

 

Table 6.15 Markers of exercise effort and symptoms between pre-conception 

and post-partum 

 RERmax 

Mean (SD) 

VEmax 

Mean  (SD) 

ETpCO2max 

Mean (SD) 

SF-36 

Mean  (SD) 

PC 1.20 (0.10) 95.0  (19.2) 37.1 (3.0) 83.8 (7.8) 

PP 1.18  (0.14) 80.1  (18.3) 34.5 (3.8) 80.5 (9.7) 

P value 0.286 0.003 0.025 0.103 
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Table 6.16 Maximal exercise variables at pre-conception and post-partum 

 PC 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 

HRmax 

(min-1) 
186.9 (7.1) 185.6 (9.8) 0.505 1.2 (7.5) 

-2.3, 4.8 
0.8 (4.1) 
-1.2, 2.8 

SBPmax 

(mmHg) 
125.3 (12.3) 120.9 (20.7) 0.297 4.4 (16.9) 

-3.6, 12.4 
5.6 (15.1) 
-1.6, 12.7 

DBPmax 

(mmHg) 
63.1 (7.0) 63.8 (6.3) 0.700 -0.7 (7.1) 

-4.1, 2.7 
-0.6 (11.4) 
-6.0, 4.8 

MAPmax 

(mmHg) 
89.6 (7.4) 91.2 (7.0) 0.407 -1.6 (7.6) 

-5.2, 2.1 
-1.5 (7.6) 
-5.2, 2.3 

SVRmax 

(dyn.s.cm-5) 
344 (49) 383 (43) 0.001 -39 (39) 

-0.58, -21 
-10.0 (9.9) 
-14.7, -5.3 

Ex Dur  
(mins) 

12.8 (3.5) 12.9 (3.7) 0.848 -0.07 (1.4) 
-0.8, 0.6 

-0.01 (12.2) 
-5.8, 5.8 

VO2 max 

(ml.min-1) 
2584 (476) 2115 (437) <0.001 469 (352) 

301, 636 
24.1 (20.4) 
14.5, 33.8 

VO2 max/kg 

(ml.min-1.kg-1) 
41.0 (7.0) 33.1 (7.9) <0.001 7.9 (5.6) 

5.2, 10.6 
26.9 (21.0) 
5.2, 10.6 

COmax 

(l.min-1) 
21.1 (2.9) 19.2 (2.2) 0.002 1.9 (2.2) 

0.9, 3.0 
10.4 (11.8) 
4.8, 16.0 

CPOmax 

(watts) 
4.21 (0.76) 3.89 (0.64) 0.062 0.32 (0.66) 

0.01, 0.64 
9.0 (16.6) 
1.2, 16.9 

CircPmax  

(mmHg.ml O2.min-1) 

325 (75) 256 (68) 0.001 69 (60) 
41, 97 

31.0 (28.3) 
17.6, 44.5 

SVmax 

(ml) 

115.3 (17.3) 105.7 (12.6) 0.010 9.5 (13.5) 
3.1, 16.0 

9.3 (13.6) 
2.9, 15.8 

SWmax 

(g.m) 
141.1 (28.3) 131.6 (22.6) 0.128 9.5 (24.4) 

-2.1, 21.1 
8.1 (18.5) 
-0.7, 16.9 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: 

Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; Ex Dur: 

exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; CircP: 

circulatory power; SV: stroke volume; SW: stroke work. 
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Figure 6.16 Maximal exercise haemodynamics at pre-conception and post-

partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood 

pressure; SVR: systemic vascular resistance. *: p<0.01 

 

 

Figure 6.17 Maximal exercise variables at pre-conception and post-partum 

 

Ex Dur: exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; 

CircP: Circulatory power; SV: stroke volume; SW: stroke work. *: p<0.01 
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Table 6.17 Resting variables at pre-conception and post-partum  

 PC 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 

HRrest 

(min-1) 
67.8 (10.2) 79.1 (11.2) 0.002 -11.2 (12.2) 

-17.0, -5.4 
-13.3 (13.6) 
-19.7, -6.8 

SBPrest 

(mmHg) 
104.4 (12.1) 97.2 (10.3) 0.045 7.2 (13.6) 

0.7, 13.7 
8.1 (14.1) 
1.4, 14.8 

DBPrest 

(mmHg) 
68.9 (11.8) 61.2 (9.4) 0.005 7.8 (10.0) 

3.0, 12.5 
13.7 (19.3) 
4.6, 22.9 

MAPrest 

(mmHg) 
88.5 (11.3) 73.8 (8.5) 0.001 9.8 (10.0) 

5.0, 14.5 
13.9 (14.8) 
6.8, 20.9 

SVRrest 

(dyn.s.cm-5) 
2187 (670) 1633 (345) 0.002 553 (602) 

267, 839 
36.6 (38.8) 
18.1, 55.0 

VO2rest       

(ml.min-1) 

200 (44) 263 (158) 0.092 -63 (144) 
-131, 6 

-13.7 (29.1) 
-27.6, 0.2 

COrest       
(l.min-1) 

3.25 (0.77) 3.73 (0.72) 0.058 -0.49 (0.98) 
-0.95, -0.02 

-10.9 (26.0) 
-23.2, 1.5 

CPOrest 

(watts) 

0.61 (0.17) 0.61 (0.14) 0.876 -0.01 (0.20) 
-0.10, 0.09 

2.3 (36.8) 
-15.2, 19.8 

SVrest 

(ml) 

46.7 (14.7) 49.4 (11.0) 0.419 -2.7 (13.5) 
-9.1, 3.7 

-3.7 (27.3) 
-16.7, 9.2 

SWrest 

(g.m) 
53.2 (17.9) 49.3 (11.5) 0.359 4.0 (17.2) 

-4.2, 12.1 
10.5 (39.2) 
-8.1, 29.2 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: 

Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; VO2: 

oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 

work. 
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Figure 6.18 Resting variables at pre-conception and post-partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood 

pressure; SVR: systemic vascular resistance. *: p<0.01; **: p<0.05 

 

 

Figure 6.19 Resting cardiac variables at pre-conception and post-partum

 

VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 

work. *: p<0.01 
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Table 6.18 Reserve variables at pre-conception and post-partum 

 PC 
Mean (SD) 

PP 
Mean (SD) 

P value ∆ 
Mean (SD) 

95% CI 

% ∆ 
Mean (SD) 

95% CI 

HRreserve      
(min-1) 

119.1 (10.0) 106.6 (11.5) <0.001 12.5 (8.9) 
8.3, 16.7 

12.3 (9.2) 
7.9, 16.7 

VO2reserve  

(ml.min-1) 
2383 (457) 1852 (413) <0.001 532 (361) 

360, 703 
31.8 (26.4) 
19.2, 44.3 

COreserve       
(l.min-1) 

17.9 (2.9) 15.5 (2.2) <0.001 2.4 (2.2) 
1.4, 3.5 

16.3 (16.1) 
8.6, 23.9 

SVreserve     
(ml) 

68.6 (16.0) 56.3 (11.9) 0.004 12.2 (14.9) 
5.2, 19.3 

24.9 (31) 
10.2, 39.6 

CPOreserve  

(watts) 

3.61 (0.72) 3.28 (0.64) 0.043 0.33 (0.62) 
0.04, 0.62 

11.2 (19.5) 
1.9, 20.5 

SWreserve  
(g.m) 

87.9 (22.3) 82.3 (20.7) 0.301 5.6 (21.4) 
-4.6, 15.7 

9.4 (26.7) 
-3.3, 22.1 

SD: standard deviation; CI: confidence intervals; HR: heart rate; VO2: oxygen consumption; CO: cardiac 

output; CPO: cardiac power output; SV: stroke volume; SW: stroke work. 

 

Figure 6.20 Reserve variables at pre-conception and post-partum 

 

HR: heart rate; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke 

volume; SW: stroke work. *: p<0.01; **: p<0.05. 
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6.6  Discussion  

The purpose of this study was to determine how pregnancy at each trimester 

affects resting, peak and reserve metabolic function and cardiovascular 

haemodynamics. As the study used post-partum as a baseline, it was also 

important to establish whether, three months after completed pregnancy, reserve 

metabolic function and cardiovascular haemodynamics were different from pre-

conception.    

Longitudinal measures were taken in each trimester and then 3 months post-partum 

to allow direct comparison. However, comparisons between trimesters were not 

performed because of the differences in the numbers and individuals recruited. The 

changes seen in each trimester were as follows: 

1st trimester: HRmax, HRreserve and exercise duration were significantly reduced in 

the 1st trimester compared to post-partum by 4%, 7% and 6% respectively. DBPrest 

and VO2rest were significantly reduced in the 1st trimester compared to post-partum 

by 6% and 7% respectively.  

2nd trimester: HRmax, HRreserve, exercise duration, VO2max, VO2reserve and CircPmax  

were all significantly reduced in the 2nd trimester compared to post-partum by 4%, 

14%, 11%, 6%, 6%, 5% respectively. DBPrest, MAPrest and SVRrest were significantly 

reduced in the 2nd trimester compared to post-partum by 8%, 4% and 8% 

respectively. 

3rd trimester: HRmax, HRreserve, exercise duration, VO2max, VO2reserve and COreserve 

were all significantly reduced in the 3rd trimester compared to post-partum by 4%, 

18%, 18%, 6%, 7%, 6% respectively. 

Based on these findings and using post-partum as a surrogate for the non-pregnant 

state, the present study has shown that markers of physical performance, including 

HRmax, HRreserve, exercise duration, VO2max, VO2reserve all reduce in pregnancy. 

Although no comparison was made between trimesters, the physical function 

appeared to progressively worsen as gestation advanced and so is in agreement 

with the first hypothesis. The progressive reduction in reserve HR and VO2 

appeared to be because of the increase in basal metabolic demands and limited 

aerobic capacity with exercise. Inevitably a large proportion of those demands were 

likely to be driven by the added weight gain. 

Despite the reduction in physical performance and physiological lowering of blood 

pressure and SVR in the early stages of pregnancy, CPOmax or CPOreserve remained 
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unchanged throughout pregnancy compared to post-partum. This suggests a 

protective or adaptive mechanism arises, where there is maintenance of both 

CPOrest and CPOmax. At rest, this response is driven by a maintenance and eventual 

increase in flow generating capacity in pregnancy, whilst the pressure generating 

capacity only improves in the latter stage of pregnancy, as more weight is carried. , 

blood pressure returns to normal, and CO is maintained, and so maintaining overall 

cardiac reserve. It is likely that the blood pressure recovery in the latter stages of 

pregnancy, is in part due to the chronic isometric exercise of carrying the foetus. At 

maximal exercise both the flow and pressure generating capacity were maintained 

in each trimester. There was no increase in CPOmax in the third trimester when 

there was the most weight gain and so is in disagreement with hypothesis ii.  

Again a differing response was seen between indirect markers of cardiac 

performance, namely VO2max and CircPmax, and the direct measure CPOmax. This 

follows on from what was shown in study IV and V and therefore one can advise 

that it is necessary to measure cardiac performance directly, rather than indirectly, 

during pregnancy to establish cardiac reserve. 

Importantly, there were a number of differences in post-partum, compared to pre-

conception. Exercise duration did not change however, VO2max, COmax, CircPmax, 

SVmax, HRreserve, VO2reserve, COreserve, SVreserve and CPOreserve were all significantly 

lower, whilst SVRmax was significantly higher in post-partum. At rest, HRrest, SBPrest, 

DBPrest, MAPrest and SVRrest were significantly lower, whilst VO2rest and COrest were 

significantly higher in post-partum. This clearly highlights significant physiological 

differences between both states. There was a non-significant 2kg increase in weight 

in post-partum and a minor non-significant reduction in quality of life score. In 

addition to this many women stated that they significantly reduced the amount of 

routine exercise both in pregnancy and in the post-partum period. However despite 

this it appears implausible that the differences can be explained by a minor change 

in weight gain and drop in cardiovascular fitness, especially as there was no 

difference in overall exercise time performed. It therefore suggests that the 

physiological changes that occurred in pregnancy have not reversed by 3 months. 

Although there are many studies investigating cardiovascular changes in 

pregnancy, there are very few studies that made assessments in both pre-

conception and post-partum. This appears to be the first study that studied the 

changes in peak cardiac function from pre-conception to post-partum. Capeless 

and Clapp [Capeless and Clapp 1991] used echocardiography to measure resting 

stroke volume and found that stroke volume remained elevated over pre-conception 

levels up to 12 weeks. However, Atkin et al [Atkin et al 1981] found that cardiac 

output fell in the post-partum period to levels lower than that in pre-conception, 
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before eventually rising to pre-conception levels by 10 months. Their data however 

showed a fall in cardiac output at the end of pregnancy, which is out of keeping with 

all the other data and raised questions about the validity of their technique. Robson 

et al [Robson et al 1987] studied the change in resting cardiac output using 

echocardiography from 38 weeks pregnant up to 24 weeks post-partum with serial 

measurements and found that the resting cardiac output fell significantly in the first 

2 weeks and then more gradually fell up until 24 weeks. Mahendru et al [Mahendru 

et al 2014] studied blood pressure and cardiac output changes using an inert gas 

technique and found that resting cardiac output and changes in SVR and blood 

pressure had returned to baseline by 14-17 weeks post-partum and SVR. Sady et 

al [Sady et al 1990] examined changes in cardiac output, using an acetylene 

rebreathing technique, at rest, sub-maximal and maximal upright cycle exercise in 

pregnancy and then 2 months and 7 months post-partum. She found that 

submaximal antepartum VO2, HR and SV were higher than at 7, but not 2 months 

post-partum. There was no difference in maximal HR or VO2 between groups, 

although cardiac output and stroke volume was higher in antepartum compared to 

both post-partum groups. The present study seems to agree with the finding that 

resting cardiac function remains elevated at 3 months post-partum, however in 

contrast to this suggests that COmax, VO2max and cardiac reserve are diminished in 

the post-partum at 3 months. This study however does not tell us if and when these 

changes return to baseline. 

 

6.61 Study Limitations 

The study was limited by the inability to measure cardiac output and blood pressure 

continuously, using non-invasive methods, during exercise. This is not technically 

possible with the methods used, and can only be more accurately done with 

invasive measurements, which were felt not to be ethically appropriate. The non-

pregnant state chosen in this study was at 3 months post-partum. As shown in the 

final comparison of data between pre-conception and post-partum, this is likely to 

be a non valid technique due to the ongoing differences in haemodynamics. 

Recruiting and studying women from pre-conception is much more difficult, 

predominantly due to the uncertain timeframe within which women become 

pregnant. The study was also performed with a predominantly Caucasian 

population, and therefore one has to apply caution applying these results to a non-

caucasian population.  
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6.7 Conclusions 

This study examined the differences in resting, peak and reserve metabolic function 

and cardiovascular haemodynamics during pregnancy and post-partum. Overall the 

consistent theme through pregnancy is worsening exercise tolerance with a 

reduction in HRmax, HRreserve, VO2max and VO2reserve, whilst maintaining the flow and 

pressure generating cardiac performance, i.e. CPOmax, CPOreserve, SWmax and 

SWreserve. This shows that the deterioration in exercise and aerobic capacity 

throughout pregnancy are more likely to be secondary to the increased metabolic 

demands of pregnancy and are not caused by worsening cardiac function. The 

adaptation in cardiac performance and cardiac reserve is therefore likely to be 

related to the increased circulating blood volume and weight carriage. 
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Chapter 7 

Study VII: Longitudinal cardiovascular effects of pregnancy 
from pre-conception to post-partum	  

7.1 Introduction 

Optimal management of women with heart disease in pregnancy requires the 

correct appraisal of the abnormal heart to make the necessary adaptations to the 

major haemodynamic and respiratory changes that take place in pregnancy, labour 

and delivery [Oakley 2007]. Therefore, it is absolutely essential that there is a 

comprehensive understanding of how the healthy heart adapts in pregnancy. 

Cardiovascular physiological changes have been studied extensively at rest with 

only a handful of studies examining dynamic changes with exercise and even less 

at maximal exercise. The advantage of testing cardiovascular haemodynamics at 

maximal exercise is to enable measurement of cardiac reserve [Tan 1991]. In 

addition, many of the earliest studies during exercise were cross sectional design, 

rather than longitudinal and so making causal inference less certain [Artal et al 

1986; Heenan et al 1986]. Longitudinal studies generally demand additional money 

and time and are often difficult to implement. Hence the sample sizes are often 

much lower due to the attrition of volunteers over the study period [Rindfleisch et al 

2008]. Furthermore the majority of studies use post-partum as a surrogate of the 

non pregnant state, rather than pre-conception. The differences in resting cardiac 

output and cardiac dimensions at pre-conception and post-partum has been 

examined and reported [Robson et al 1987; Capeless and Clapp 1991; Clapp and 

Capeless 1997]. Robson et al showed a significant fall in cardiac output of 27-29% 

by 2 weeks, with a much more gradual decline up to 24 weeks. Capeless and Clapp 

showed that cardiac output remained elevated above pre-conception levels at 52 

weeks post-partum. Study VI also found that COrest was significantly higher at 3 

months post-partum and that COmax, COreserve and CPOreserve were all significantly 

lower in post-partum. This highlights the importance of good study design, to allow 

us to try and establish a causal relationship to the cardiovascular physiological 

changes in pregnancy. 

Longitudinal studies, that have used pre-conception as the non-pregnant baseline, 

have shown that that resting HR and CO increases, whilst blood pressure and SVR 

decreases, from as early as 5 weeks [Atkins et al 1981; Robson et al 1989; 
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Capeless and Clapp 1989; Desai et al 2004; Mahendru et al 2014]. Longitudinal 

changes in COmax or CPOmax between pre-conception and pregnancy have not been 

previously reported. 

 

7.2 Purpose and hypothesis of the study 

The purpose of this study was to establish what physiological cardiovascular 

changes occur at rest and maximal exercise between pre-conception and 

pregnancy in healthy female subjects.  

The hypotheses tested in this investigation were 

(i) Pregnancy is associated with an increase in resting cardiac function 

compared to pre-conception.  

(ii) Cardiac performance and cardiac reserve remains preserved in 

pregnancy compared to pre-conception.  

(iii) Cardiac performance is maintained in pregnancy, despite a reduction in 

exercise duration and VO2max, with advancing gestation and weight gain. 

(iv) Blood pressure will increase at rest and maximal exercise, as weight 

increases with advancing gestation. 

 

7.3 Ethical Approval 

Ethical approval was approved by the Leeds (West) Ethics Committee. 

 

7.4 Methods 

This was a prospective observational longitudinal study which compared the 

physiological cardiovascular changes seen in pregnancy and post-partum with pre-

conception in healthy participants.  

 

7.4.1 Study participants and visit structure 

Healthy female volunteers were recruited using the same methods as per study VI 

however, all these women were not pregnant and were actively trying to get 
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pregnant. Once recruited, women underwent screening and testing as per study VI. 

All women had their first fetal scan organised by the study co-ordinator and 

performed in the Obstetric ante-natal clinic shortly after they became aware they 

were pregnant. This was done to confirm gestational age and prevent delays in 

women waiting for their scans through the routine pathways via community 

midwives. This also gave women confidence, prior to commencing exercise testing, 

and limited attribution of blame of any miscarriage to participating in the study. 

 

7.4.2 Cardiopulmonary exercise testing 

Physiological exercise testing was identical to study VI. 

 

7.4.3 Quality of life assessment 

The SF-36v2 questionnaire was used to assess quality of life at each visit [Ware 

2000]. Explanation of the questionnaire is in chapter 6. 

 

7.4.4 Statistical analysis 

All data were analysed using SPSS. Data are presented as mean and standard 

deviation. Delta measures and percentage change in measures from pre-

conception are also displayed as a mean and standard deviation with 95% 

confidence intervals. Statistical comparisons were made with Student’s paired, two-

tailed t test. One-way repeated measures ANOVA with a Bonferroni correction was 

used for multiple comparisons between measures during pregnancy. A P value of < 

0.05 was considered to be statistically significant. 

 

7.5 Results  

7.5.1 Study population baseline characteristics 

36 healthy females were recruited and underwent baseline visits and testing as 

outlined in the methods. 16 were unable to become pregnant within the recruitment 

time frame of 12 months, 6 either pulled out mid-way through the study or did not 

complete all 5 tests, leaving 14 subjects who underwent complete testing.  
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13 participants were Caucasian and 1 of Asian descent. All subjects were healthy 

and taking no regular medication, and had no impediments to exercise. They were 

all non-smokers and generally active and participated in some form of regular 

exercise pre-pregnancy, with one subject classified as an athlete. Throughout 

pregnancy all women remained well and delivered after 38 weeks. 

The mean age was 32.3 ± 4.5 years with baseline weight of 63.4 ± 9.8 kg and BMI 

25.9 ± 3.4 kg.m-2. The changes in weight are shown in Figure 7.1 and Table 7.1. 

The greatest magnitude of change was seen in the third trimester, where there was 

a significant 18% increase from baseline.  The mean time for subjects to get 

pregnant was 71 ± 87 days. The mean time of assessment post pregnancy was at 

127 ± 41 days. 

 

Figure 7.1 Weight at pre-conception, through pregnancy and at post-partum 

 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01 

 

Table 7.1 Change in weight from pre-conception, through pregnancy and in 

post-partum 

 PC T1 T2 T3 PP 

Weight  (kg) 
Mean (SD) 

63.4 (9.8) 63.3 (10.5) 68.7 (10.9) 74.7 (12.0) 64.2 (11.0) 

∆ Weight (%) 
P value 

 -0.2 (2.5) 
0.918 

8.4 (4.7) 
<0.001 

17.9 (6.6) 
<0.001 

1.0 (3.9) 
0.276 
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7.5.2 Resting measures 

Changes in longitudinal resting variables from pre-conception, through pregnancy 

and in post-partum are shown in Figures 7.2 to 7.4 and Tables 7.2 to 7.5. There 

were significant and successive increases in resting heart rate through pregnancy 

(F ratio 5.57, p = 0.01). The initial increase was by 9 beats per minute in the first 

trimester, increasing to 20 beats per minute higher than pre-conception in the third 

trimester. This then significantly dropped in post-partum, but was still significantly 

higher than pre-conception HRrest by 14 beats per minute (p = 0.015). 

Initial drops in systolic, diastolic and mean arterial pressures were seen in the first 

trimester by 6%, 18% and 12% respectively, although the drop in SBP failed to 

reach significance (p = 0.10). All blood pressures steadily rose through pregnancy, 

without reaching significance (SBP: p = 0.374, DBP: p = 0.126, MAP: p = 0.078), 

although this remained below pre-conception levels (significance only seen in DBP: 

p = 0.025). All blood pressures in post-partum then dropped however, only SBP 

had a significance decrease from third trimester (p = 0.047). All blood pressures 

were significantly lower than pre-conception levels by: SBP- 7% (p = 0.015), DBP- 

12% (p = 0.001), MAP- 10% (p = 0.002). 

Significant drops in systemic vascular resistance were seen in first trimester by 21% 

(p = 0.002), but then did not significantly change through pregnancy (F ratio 0.78, p 

= 0.469). In post-partum SVRrest did not significantly change (p = 0.61), but 

remained significantly lower than pre-conception SVRrest by 26% (p= 0.001). 
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Table 7.2 Resting variables at pre-conception, through pregnancy and at 

post-partum 

 PC 
Mean (SD) 

T1 
Mean (SD) 

T2 
Mean (SD) 

T3 
Mean (SD) 

PP 
Mean (SD) 

HRrest 

(min-1) 
66.8 (9.3) 75.9 (13.9) 82.6 (10.0) 86.5 (11.0) 76.6 (14.6) 

SBPrest 

(mmHg) 
103.0 (14.5) 95.2 (11.2) 99.7 (11.3) 99.9 (13.4) 94.3 (8.6) 

DBPrest 

(mmHg) 
69.7 (12.9) 55.4 (8.1) 58.6 (9.8) 61.4 (8.0) 60.9 (9.9) 

MAPrest 

(mmHg) 

83.4 (13.1) 71.8 (8.4) 73.4 (8.2) 77.3 (8.9) 74.2 (8.2) 

SVRrest 

(dyn.s.cm-5) 

2293 (671) 1765 (407) 1632 (354) 1696 (408) 1635 (347) 

VO2 rest 

(ml.min-1) 
193 (43) 218 (65) 232 (39) 273 (57) 231 (51) 

COrest 

(l.min-1) 
3.06 (0.69) 3.40 (0.81) 3.73 (0.79) 3.78 (0.72) 3.76 (0.78) 

CPOrest 

(watts) 

0.57 (0.18) 0.55 (0.16) 0.61 (0.17) 0.65 (0.15) 0.62 (0.15) 

SVrest 

(ml) 

44.5 (11.5) 43.9 (15.5) 44.0 (10.3) 43.7 (10.1) 49.8 (11.8) 

SWrest 

(g.m) 
50.8 (16.1) 43.1 (16.9) 44.4 (13.9) 45.6  (9.9) 50.0 (12.6) 

SD: standard deviation; HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: 

mean arterial blood pressure; SVR: systemic vascular resistance; VO2: oxygen consumption; CO: cardiac 
output; CPO: cardiac power output; SV: stroke volume; SW: stroke work. 
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Table 7.3 P values for difference between resting variables at pre-conception, 

through pregnancy and at post-partum 

 PC v T1 
P value 

PC v T2 
P value 

PC v T3 
P value 

T3 v PP 
P value 

PC v PP 
P value 

T1 to T3 
F ratio       
P value 

HRrest 

(min-1) 
0.007 <0.001 <0.001 0.017 0.003 5.57 

0.010 

SBPrest 

(mmHg) 
0.100 0.212 0.468 0.047 0.015 1.02 

0.374 

DBPrest 

(mmHg) 
0.002 0.004 0.025 0.822 0.001 2.25 

0.126 

MAPrest 

(mmHg) 

0.009 0.006 0.087 0.181 0.002 2.81 
0.078 

SVRrest 

(dyn.s.cm-5) 

0.002 0.001 0.004 0.610 0.001 0.78 
0.469 

VO2 rest 

(ml.min-1) 
0.107 0.029 <0.001 0.024 0.064 4.84 

0.016 

COrest 

(l.min-1) 
0.114 0.006 0.013 0.929 0.008 1.57 

0.228 

CPOrest 

(watts) 

0.638 0.415 0.224 0.513 0.336 2.46 
0.105 

SVrest 

(ml) 

0.863 0.873 0.788 0.088 0.110 0.003 
0.997 

SWrest 

(g.m) 
0.175 0.137 0.264 0.220 0.847 0.17 

0.847 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood pressure; 

SVR: systemic vascular resistance; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; 

SV: stroke volume; SW: stroke work; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third 
trimester; PP: post-partum. 
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Table 7.4 Changes between resting variables at pre-conception and through 

pregnancy and at post-partum 

 ∆ PC v T1 
Mean (SD)  

95% CI 

∆ PC v T2 
Mean (SD)  

95% CI 

∆ PC v T3 
Mean (SD)   

95% CI 

∆ PC v PP 
Mean (SD)  

95% CI 

HRrest 

(min-1) 
9.1 (10.7) 
3.5, 14.7 

15.9 (11.0) 
10.1, 21.6 

19.7 (11.5) 
13.7, 25.7 

9.9  (10.0) 
4.6, 15.1 

SBPrest 

(mmHg) 
-7.8 (16.4) 
-16.4, 0.8 

-3.3 (9.4) 
-8.2, 1.6 

-3.1 (15.4) 
-11.1, 5.0 

-8.7 (11.7) 
-14.8, -2.6 

DBPrest 

(mmHg) 
-14.3 (13.5) 
-21.4, -7.2 

-11.1 (12.1) 
-17.5, -4.8 

-8.3 (12.2) 
-14.7, -1.9 

-8.9 (7.7) 
-12.9, -4.8 

MAPrest 

(mmHg) 

-11.6 (14.1) 
-19.0, -4.2 

-10.0 (11.5) 
-16.0,  -4.0 

-6.1 (12.4) 
-12.6, 0.4 

-9.3 (9.1) 
-14.1, -4.5 

SVRrest 

(dyn.s.cm-5) 

-529 (526) 
-804, -253 

-662 (570) 
-960, -363 

-597 (631) 
-928, -267 

-658 (552) 
-948, -369 

VO2 rest 

(ml.min-1) 
24.6 (53.1) 
-3.3, 52.4 

39.2 (59.9) 
7.9, 70.6 

79.4 (63.5) 
46.2, 112.7 

37.6 (69.5) 
1.2, 74.0 

COrest 

(l.min-1) 
0.34 (0.76) 
-0.05,  0.74 

0.67 (0.76) 
0.27, 1.07 

0.72 (0.94) 
0.23, 1.22 

0.70 (0.84) 
0.26, 1.14 

CPOrest 

(watts) 

-0.03 (0.20) 
-0.13, 0.08 

0.04 (0.17) 
-0.05, 0.13 

0.08 (0.23) 
-0.04, 0.20 

0.05, (0.18) 
-0.05, 0.15 

SVrest 

(ml) 
-0.6 (12.3) 
-7.0, 5.9 

-0.5 (11.2) 
-6.4, 5.4 

-0.8 (10.4) 
-6.2, 4.7 

5.3 (11.5) 
-0.7, 11.3 

SWrest 

(g.m) 
-7.7 (20.0) 
-18.2, 2.8 

-6.4 (15.1) 
-14.3, 1.5 

-5.1 (16.4) 
-13.7, 3.5 

-0.8 (14.4) 
-8.3, 6.8 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic 
blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; VO2: oxygen 
consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke work; PC: pre-
conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. 
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Table 7.5 Percentage changes between resting variables at pre-conception 

and through pregnancy and at post-partum 

 %∆ PC v T1 
Mean (SD)  

95% CI 

%∆ PC v T2 
Mean (SD)  

95% CI 

%∆ PC v T3 
Mean (SD)  

95% CI 

%∆ PC v PP 
Mean (SD)  

95% CI 

HRrest 

(min-1) 
13.9 (15.6) 
5.7, 22.0 

25.4 (18.4) 
15.8, 35.0 

31.0 (19.5) 
20.8, 41.3 

14.7 (14.7) 
7.0, 22.4 

SBPrest 

(mmHg) 
-6.0 (15.8) 
-14.3, 2.2 

-2.5 (9.1) 
-7.3, 2.3 

-1.9 (13.6) 
-9.1, 5.2 

-7.4 (10.4) 
-12.9,   -2.0 

DBPrest 

(mmHg) 
-17.7 (19.5) 
-27.9, -7.6 

-14.1 (15.6) 
-22.3, -5.9 

-9.4 (16.8) 
-18.2, -0.6 

-11.7 (10.5) 
-17.1, -6.2 

MAPrest 

(mmHg) 

-12.0 (16.2) 
-20.5, -3.5 

-10.6 (12.8) 
-17.3, -3.9 

-5.8 (13.4) 
-12.9, 1.2 

-10.0 (10.1) 
-15.3, -4.8 

SVRrest 

(dyn.s.cm-5) 

-20.5 (18.0) 
-29.9, -11.1 

-25.9 (17.1) 
-34.8, -16.9 

-22.8 (20.9) 
-33.7, -11.9 

-26.1 (16.0) 
-17.7, -34.5 

VO2 rest 

(ml.min-1) 
14.3 (26.8) 
0.2, 28.3 

26.3 (37.8) 
6.5, 46.1 

46.2 (41.4) 
24.5, 67.9 

25.1 (40.1) 
4.1, 46.1 

COrest 

(l.min-1) 
14.3 (26.9) 
0.2, 28.4 

26.0 (30.8) 
9.9, 42.1 

29.8 (37.4) 
10.1, 49.4 

27.2 (29.4) 
11.8, 42.5 

CPOrest 

(watts) 
2.8 (38.5) 
-17.4, 23.0 

13.1 (31.7) 
-3.5, 29.7 

24.5 (44.6) 
1.2, 47.9 

15.4, (30.9) 
-0.8, 31.6 

SVrest 

(ml) 
1.4 (29.6) 
-14.1, 16.9 

3.8 (30.0) 
-11.9, 19.6 

2.1 (24.8) 
-11.0, 15.1 

17.5 (37.1) 
-1.9, 36.9 

SWrest 

(g.m) 
-8.5 (39.4) 
-29.1, 12.2 

-6.9 (31.9) 
-23.6, 9.9 

-3.0 (29.5) 
-18.4, 12.5 

5.9 (34.9) 
-12.4, 24.2 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic 
blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; VO2: oxygen 
consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke work; PC: pre-
conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. 
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Figure 7.2 Resting heart rate at pre-conception, through pregnancy and at 

post-partum 

 
PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01 

 

Figure 7.3 MAPrest at pre-conception, through pregnancy and at post-partum 

 
MAP: mean arterial blood pressure; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third 

trimester; PP: post-partum. *: p<0.01 
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Figure 7.4 SVRrest at pre-conception, through pregnancy and at post-partum 

 
SVR: systemic vascular resistance; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third 

trimester; PP: post-partum. *: p<0.01 

 

Figure 7.5 Percentage changes of resting variables at pre-conception, 

through pregnancy and at post-partum 

 
HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood pressure; 
SVR: systemic vascular resistance; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. 

*: P<0.01; **:p<0.05 
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7.5.3 Resting cardiac function 

Changes in longitudinal resting cardiac variables from pre-conception, through 

pregnancy and in post-partum are shown in Figures 7.6 to 7.11 and Tables 7.2 to 

7.5.   

There was a significant increase in VO2 rest in the first trimester by 14%, then a 

significant rise in oxygen consumption through pregnancy (F ratio 4.84, p = 0.016). 

In the third trimester VO2 rest was significantly higher by 46% from pre-conception   

(p < 0.001). VO2 rest then significantly fell in post-partum (p = 0.024). 

There were significant increases in resting cardiac output in the first trimester by 

14%. This then non- significantly rose through pregnancy (F value 1.57, p = 0.228), 

with the highest CO rest seen in third trimester (30% higher than pre-conception,      

p = 0.013). CO rest did not drop in post-partum and remained significantly higher 

than pre-conception by 27% (p = 0.008). 

Resting cardiac power output did not significantly change from pre-conception, 

throughout pregnancy or in post-partum. However there was a steady rise seen 

from the second trimester, peaking in third trimester at 25% above pre-conception 

CPOrest. Post-partum CPOrest did not significantly decrease and was non-

significantly higher than pre-conception by 15%. 

There were no significant changes seen in either resting stroke volume or stroke 

work from pre-conception or through pregnancy. There was a non-significant rise in 

SVrest in post-partum, which was just non-significantly higher than pre-conception by 

18%. 
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Figure 7.6 VO2 rest at pre-conception, through pregnancy and at post-partum 

 

VO2: oxygen consumption; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: 

post-partum. *: p<0.01; **: p<0.05 

 

Figure 7.7 Resting cardiac output at pre-conception, through pregnancy and 

at post-partum 

 
PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01; **: 
p<0.05 
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Figure 7.8 CPOrest at pre-conception, through pregnancy and at post-partum 

 
CPO: cardiac power output; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: 

post-partum.  

 

Figure 7.9 Resting stroke volume at pre-conception, through pregnancy and 

at post-partum 

 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum.  
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Figure 7.10 Resting stroke work at pre-conception, through pregnancy and at 

post-partum 

 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum.  

 

Figure 7.11 Percentage changes of resting cardiac variables at pre-

conception, through pregnancy and at post-partum 

 

VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 
work; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01; **:p<0.05 
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 7.5.2 Exercise and Aerobic Capacity 

Changes in longitudinal exercise and aerobic capacity from pre-conception, through 

pregnancy and in post-partum are shown in Figures 7.12 and 7.13 and Tables 7.7 

to 7.10.   

There was a minor non-significant reduction in peak exercise capacity in the first 

trimester (5%, p = 0.10). However exercise capacity significantly continuously fell 

during pregnancy (F ratio 13.25, p < 0.001). In the third trimester there was a 

significant 19% fall from pre-conception (p < 0.001), which then recovered in post-

partum (18 weeks) to similar times seen in pre-conception. This pattern also 

mirrored the subjects’ perceived function (NYHA class), which falls progressively 

through pregnancy and returned to normal in post-partum, shown in Table 8.6. 

Maximal oxygen consumption also significantly fell initially in the first trimester by 

5% (p <0.001). During pregnancy there was a significant progressive fall in VO2 max 

(F ratio 5.78, p = 0.008). The greatest change from pre-conception was seen in the 

third trimester, where VO2 max was 23% lower (p <0.001). There was a no significant 

rise in VO2 max in post-partum, with significantly lower values than pre-conception by 

19% (p <0.001).  

Subjects’ volition to complete a maximal exercise test worsened though pregnancy, 

shown in Table 8.6 by a drop in respiratory exchange ratio and VEmax, neither of 

which returned to the pre-pregnancy levels in the post-partum period. However all 

exercise tests did reach acceptable limits of RER > 1.10, between study periods. 

 

Table 7.6 Markers of exercise effort and symptoms between pre-conception, 

pregnancy and post-partum 

 RERmax 
Mean (SD) 

VEmax 
Mean (SD) 

ETpCO2 max 
Mean (SD) 

NYHA 
Mean (SD) 

PC 1.21 (0.10) 98.5 (19.8) 37.1 (5.3) 1.0 (0) 

T1 1.15 (0.08) 91.8 (18.6) 31.9 (4.1) 1.31 (0.48) 

T2 1.19 (0.10) 86.5 (22.2) 34.1 (6.3) 1.64 (0.74) 

T3 1.11 (0.07) 82.7 (17.3) 31.4 (4.2) 2.2 (0.89) 

PP 1.15 (0.15) 81.3 (19.3) 34.6 (3.7) 1.0 (0) 

SD: standard deviation; RER: respiratory exchange ration; VE: minute ventilation; ETpCO2: partial pressure of 
end tidal Carbon dioxide; NYHA: New York Heart Association symptomatic class; PC: pre-conception; T1: first 
trimester; T2: second trimester; T3: third trimester; PP: post-partum. 
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Table 7.7 Maximal exercise variables at pre-conception, through pregnancy 

and at post-partum 

 PC 
Mean (SD) 

T1 
Mean (SD) 

T2 
Mean (SD) 

T3 
Mean (SD) 

PP 
Mean (SD) 

Ex Dur  
(mins) 

13.6 (2.9) 12.8 (3.0) 11.7 (2.8) 11.0 (2.7) 13.6 (3.7) 

VO2 max  

(ml.min-1) 

2720 (442) 2320 (389) 2150 (356) 2091 (428) 2184 (383) 

VO2 max/kg 

(ml.min-1.kg-1) 
43.5 (8.4) 37.2 (7.1) 31.8 (6.2) 31.6 (7.2) 34.7 (7.6) 

HRmax 

(min-1) 
188.0 (6.9) 181.4 (8.2) 179.5 (6.6) 176.3 (19.2) 187.4 (8.0) 

SBPmax 

(mmHg) 
126.9 (14.6) 122.1 (15.7) 127.5 (18.6) 138.6 (20.3) 120.7 (22.8) 

DBPmax 

(mmHg) 
63.8 (6.5) 60.9 (6.1) 59.1 (5.9) 62.5 (8.3) 63.9 (6.9) 

MAPmax 

(mmHg) 
90.3 (7.4) 86.3 (7.6) 87.5 (8.2) 92.8 (9.7) 90.8 (7.4) 

SVRmax 

(dyn.s.cm-5) 
342 (44) 356 (32) 361 (38) 399 (41) 381 (44) 

CircPmax  
(mmHg.ml 
O2.min-1) 

349 (86) 287 (73) 275 (62) 292 (81) 264 (64) 

COmax 

(l.min-1) 
21.4 (2.6) 19.6 (2.6) 19.5 (2.1) 18.7 (2.1) 19.2 (2.1) 

CPOmax 

(watts) 

4.29 (0.73) 3.77 (0.77) 3.80 (0.63) 3.87 (0.74) 3.88 (0.63) 

SVmax 

(ml) 

115.9 (17.2) 110.5 (18.9) 109.7 (13.1) 108.2 (13.1) 104.2 (12.8) 

SWmax 

(g.m) 
143.0 (28.2) 130.8 (31.1) 131.0 (23.1) 137.2 (25.4) 129.2 (22.9) 

SD: standard deviation; HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: 
mean arterial blood pressure; SVR: systemic vascular resistance; Ex Dur: exercise duration; VO2: oxygen 

consumption; CO: cardiac output; CPO: cardiac power output; CircP: circulatory power; SV: stroke volume; SW: 

stroke work. 
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Table 7.8 P values for difference between maximal exercise variables at pre-

conception, through pregnancy and at post-partum 

 PC v T1 
P value 

PC v T2 
P value 

PC v T3 
P value 

T3 v PP 
P value 

PC v PP 
P value 

T1 toT3 
F ratio   P 

value 

Ex Dur  
(mins) 

0.100 <0.001 <0.001 <0.001 0.980 13.45 
<0.001 

VO2 max  

(ml.min-1) 

<0.001 <0.001 <0.001 0.239 <0.001 5.78 
0.008 

VO2 max/kg 

(ml.min-1.kg-1) 
<0.001 <0.001 <0.001 0.041 <0.001 13.45 

<0.001 

HRmax 

(min-1) 
0.002 0.001 <0.001 0.001 0.765 2.74 

0.099 

SBPmax 

(mmHg) 
0.301 0.904 0.038 0.009 0.169 8.11 

0.002 

DBPmax 

(mmHg) 
0.074 0.002 0.592 0.554 0.954 1.47 

0.249 

MAPmax 

(mmHg) 
0.031 0.084 0.292 0.295 0.788 8.92 

0.001 

SVRmax 

(dyn.s.cm-5) 
0.231 0.112 <0.001 0.069 0.003 14.01 

<0.001 

CircPmax  

(mmHg.ml 
O2.min-1) 

0.008 0.001 0.021 0.116 <0.001 0.72 
0.492 

COmax 

(l.min-1) 
0.007 0.004 0.001 0.086 0.006 1.62 

0.217 

CPOmax 

(watts) 

0.004 0.002 0.037 0.915 0.049 0.22 
0.801 

SVmax 

(ml) 

0.186 0.072 0.051 0.098 0.06 0.21 
0.814 

SWmax 

(g.m) 
0.059 0.022 0.337 0.076 0.052 0.97 

0.392 
HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood pressure; 

SVR: systemic vascular resistance; Ex Dur: exercise duration; VO2: oxygen consumption; CO: cardiac output; 
CPO: cardiac power output; CircP: circulatory power; SV: stroke volume; SW: stroke work. 
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Table 7.9 Changes between maximal exercise variables at pre-conception and 

through pregnancy and at post-partum 

 ∆ PC v T1 
Mean (SD)  

95% CI 

∆ PC v T2 
Mean (SD)  

95% CI 

∆ PC v T3 
Mean (SD)  

95% CI 

∆ PC v PP 
Mean (SD)  

95% CI 

Ex Dur 
(mins) 

-0.8 (1.7) 
-1.7, 0.1 

-1.9 (1.5) 
-2.6, -1.1 

-2.6 (1.4) 
-3.3, -1.9 

-0.01 (1.6) 
-0.9, 0.8 

VO2 max 

(ml.min-1) 
-400 (300) 
-557, -242 

-570 (318) 
-736,   -403 

-629 (377) 
-827, -431 

-536 (386) 
-738, -334 

VO2 max/kg 

(ml.min-1.kg-1) 
-6.3 (4.7) 
-8.8, -3.9 

-11.7 (5.3) 
-14.5, -9.0 

-12.0 (5.8) 
-15.0, -8.9 

-8.8 (6.1) 
-12.0, -5.6 

HRmax 

(min-1) 
-6.6 (6.7) 
-10.1, -3.2 

-8.5 (6.9) 
-12.1, -4.9 

-11.7 (9.2) 
-16.5, -6.9 

-0.6 (7.0) 
-4.2, 3.1 

SBPmax 

(mmHg) 
-4.8 (16.6) 
-13.5, 3.9 

0.6 (17.5) 
-8.6, 9.7 

11.6 (18.9) 
1.8, 21.5 

-6.2 (16.0) 
-14.6, 2.2 

MAPmax 

(mmHg) 
-4.0 (6.2) 
-7.2, -0.8 

-2.7 (5.5) 
-5.6, 0.1 

2.6 (8.7) 
-2.0, 7.1 

0.5 (7.3) 
-3.3, 4.4 

SVRmax 

(dyn.s.cm-5) 
14 (42) 
-8, 36 

20 (43) 
-3, 42 

58 (46) 
34, 82 

39 (40) 
18, 60 

CircPmax  

(mmHg.ml 
O2.min-1) 

-62 (74) 
-101, -23 

-73 (66) 
-108, -39 

-56 (80) 
-98, -14 

-85 (59) 
-116, -54 

COmax 

(l.min-1) 
-1.8 (2.1) 
-2.9, -0.7 

-1.9 (2.0) 
-2.9, -0.8 

-2.7 (2.3) 
-3.9, -1.5 

-2.1 (2.4) 
-3.4, -0.9 

CPOmax 

(watts) 

-0.52 (0.55) 
-0.81, -0.23 

-0.49 (0.47) 
-0.74, -0.25 

-0.42 (0.68) 
-0.78, -0.07 

-0.41 (0.70) 
-0.78, -0.04 

SVmax 

(ml) 

-5.5 (14.7) 
-13.1, 2.2 

-6.3 (12.0) 
-12.5, 0.01 

-7.7 (13.5) 
-14.8, -0.7 

-11.7, (13.4) 
-18.7, -4.7 

SWmax 

(g.m) 
-12.1 (22.0) 
-23.6, -0.6 

-11.9 (17.2) 
-20.9, -3.0 

-5.8 (21.6) 
-17.1, 5.6 

-13.8 (24.1) 
-26.4, -1.1 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic 

blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; Ex Dur: exercise 

duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; CircP: circulatory power; 
SV: stroke volume; SW: stroke work. 
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Table 7.10 Percentage changes between maximal exercise variables at pre-

conception and through pregnancy and at post-partum 

 %∆ PC v T1 
Mean (SD)  

95% CI 

%∆ PC v T2 
Mean (SD)  

95% CI 

%∆ PC v T3 
Mean (SD)  

95% CI 

%∆ PC v PP 
Mean (SD)  

95% CI 

Ex Dur 
(mins) 

-5.2 (13.8) 
-12.5, 2.0 

-13.3 (11.5) 
-19.3, -7.3 

-18.9 (10.1) 
-24.2, -13.6 

-0.3 (12.2) 
-6.7, 6.1 

VO2 max 

(ml.min-1) 
-14.2 (10.1) 
-19.5, -8.9 

-20.4 (10.0) 
-25.7, -15.1 

-22.8 (12.6) 
-29.4, -16.2 

-18.9 (13.4) 
-25.9, -11.9 

VO2 max/kg 

(ml.min-1.kg-1) 
-14.1 (9.5) 
-19.0, -9.1 

-26.5 (9.4) 
-31.4, -21.6 

-27.2 (10.6) 
-32.8, -21.7 

-19.6 (13.5) 
-26.7, -12.5 

HRmax 

(min-1) 
-3.5 (3.6) 
-5.4, -1.6 

-4.5 (3.7) 
-6.4, -2.5 

-6.2 (5.0) 
-8.8, -3.6 

-0.3 (3.6) 
-2.2, 1.6 

SBPmax 

(mmHg) 
-3.0 (13.5) 
-10.1, 4.0 

1.0 (14.7) 
-6.7, 8.6 

9.8 (15.0) 
1.9, 17.6 

-6.2 (16.0) 
-14.6, 2.2 

MAPmax 

(mmHg) 
-4.2 (6.7) 
-7.8, -0.7 

-3.0 (6.1) 
-6.2, 0.2 

3.1 (9.7) 
-2.0, 8.1 

0.9 (8.1) 
-3.3, 5.1 

SVRmax 

(dyn.s.cm-5) 
5.1 (11.1) 
-0.8, 10.9 

6.7 (12.7) 
0.02, 13.3 

18.0 (14.2) 
10.6, 25.5 

12.3 (12.6) 
5.7, 18.9 

CircPmax  

(mmHg.ml 
O2.min-1) 

-16.1 (19.1) 
-26.1, -6.1 

-19.4 (16.9) 
-28.2,  -10.5 

-14.5 (22.2) 
-26.1, -2.9 

-85.0 (59.1) 
-115.9, -54.1 

COmax 

(l.min-1) 
-8.0 (10.3) 
-13.4, -2.6 

-8.2  (9.3) 
-13.0, -3.3 

-11.9 (10.1) 
-17.2, -6.6 

-9.3 (10.6) 
-14.9, -3.8 

CPOmax 

(watts) 

-11.7 (12.8) 
-18.4, -5.0 

-10.9 (9.8) 
-16.1, -5.8 

-9.0 (15.3) 
-17.0, -1.0 

-8.2 (15.5) 
-16.3, -0.05 

SVmax 

(ml) 

-4.2 (13.1) 
-11.0, 2.7 

-4.5 (10.8) 
-10.1, 1.2 

-5.7 (11.9) 
-11.9, 0.5 

-9.2 (10.9) 
-3.5, -14.9 

SWmax 

(g.m) 
-8.0 (15.3) 
-16.0, -0.02 

-7.4 (10.9) 
-13.1, -1.7 

-2.8 (15.5) 
-10.8, 5.3 

-8.0 (16.0) 
-16.4, 0.4 

SD: standard deviation; CI: confidence intervals; HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic 

blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular resistance; Ex Dur: exercise 
duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; CircP: circulatory power; 

SV: stroke volume; SW: stroke work. 
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Figure 7.12 Exercise duration at pre-conception, through pregnancy and at 

post-partum 

 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01 

 

Figure 7.13 VO2max at pre-conception, through pregnancy and at post-partum 

 

VO2: oxygen consumption ; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: 
post-partum. *: p<0.01 
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7.5.3 Maximal exercise haemodynamics 

Changes in longitudinal exercise haemodynamics from pre-conception, through 

pregnancy and in post-partum are shown in Figures 7.14 to 7.17 and Tables 7.7 to 

7.10.   

At maximal exercise, heart rate significantly fell in the first trimester by 3.5% (p = 

0.002). Through pregnancy heart rate did not significantly fall (F ratio 2.74, p = 

0.099), however the greatest change from pre-conception was seen in the third 

trimester, where there was a significant 6% fall (p = 0.001). Heart rate then returned 

to baseline levels in post-partum. 

At maximal exercise, systolic blood pressure appeared to non-significantly fall 

initially. It then significantly increased through pregnancy (F ratio 8.11, p = 0.002). 

The largest change was seen in the third trimester, where there was a 10% 

increase from pre-conception (p = 0.034). SBPmax then significantly fell in the post-

partum period. 

At maximal exercise, diastolic blood pressure significantly fell in the first trimester (p 

= 0.074) and remained low in the second trimester, however did not significantly 

change through pregnancy (F ratio 1.47, p = 0.249). Despite this there appeared to 

be a rise in the third trimester and further non-significant rise in post-partum, when 

levels returned to baseline.  

At maximal exercise, mean arterial pressure significantly fell in the first trimester by 

4% (p= 0.031). There was then a significant rise in MAPmax seen through pregnancy 

(F ratio 8.92, p = 0.002). MAPmax in the third trimester appeared non-significantly 

increased from levels seen in pre-conception, (p = 0.292). MAPmax then remained 

similar in post-partum. 

At maximal exercise, systemic vascular resistance non-significantly increased in the 

first trimester by 5% (p = 0.231). There was then a significant increase in SVRmax 

throughout pregnancy (F ratio 14.01, p <0.001). The greatest change from pre-

conception was seen in the third trimester, where there was a significant increase of 

18% (p <0.001). SVRmax then non-significantly fell in post-partum (p = 0.069) and 

remained significantly 12% higher than in pre-conception (p = 0.003). 
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Figure 7.14 Maximal heart rate at pre-conception, through pregnancy and at 

post-partum 

 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01 

 

 

Figure 7.15 MAPmax at pre-conception, through pregnancy and at post-partum 

 
MAP: mean arterial blood pressure; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third 
trimester; PP: post-partum. **: p<0.05 
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Figure 7.16 SVRmax at pre-conception, through pregnancy and at post-partum 

 

SVR: systemic vascular resistance; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third 

trimester; PP: post-partum. *: p<0.01 

 

 

Figure 7.17 Percentage changes of exercise variables at pre-conception, 

through pregnancy and at post-partum 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood pressure; 

SVR: systemic vascular resistance; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. 

*: p<0.01; **: p<0.05. 
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7.5.4 Maximal cardiac function 

Changes in longitudinal measures of maximal cardiac function from pre-conception, 

through pregnancy and in post-partum are shown in Figures 7.18 to 7.22 and 

Tables 7.7 to 7.10.   

There was a significant reduction in maximal cardiac output in first trimester by 8% 

(p= 0.007). There was no significant change then seen through pregnancy (F ratio 

1.62, p = 0.217), although there appeared to be a slight reduction. There was a 

non-significant rise of COmax in post-partum, which remained significantly lower than 

pre-conception (p = 0.006).  

There was a significant reduction in maximal cardiac power output in first trimester 

by 12% (p= 0.004). There was no significant change seen through pregnancy (F 

ratio 0.22, p = 0.801), although there appeared to be a slight increase. There was 

no change seen in post-partum, however this value was lower than pre-conception 

(p = 0.049).  

There were no significant changes seen in maximal stroke volume throughout 

pregnancy from pre-conception, however SVmax appeared to remain non-

significantly lower in post-partum by 9% (p = 0.06).  

There appeared to be a non-significant reduction in maximal stroke work in the first 

trimester by 8% (p = 0.059). This remained low in the second trimester and was 

significantly lower than pre-conception by 7% (p = 0.022). However there was not a 

significant change in SWmax through pregnancy (F ratio 0.97, p = 0.392). Despite 

this there appeared to be a non-significant increase from the second to the third 

trimester. In post-partum there was a non-significant fall in SWmax. This appeared to 

be non-significantly lower than pre-conception SWmax by 8% (p = 0.052).  
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Figure 7.18 Maximal cardiac output at pre-conception, through pregnancy and 

at post-partum 

 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01. 

 

 

Figure 7.19 CPOmax at pre-conception, through pregnancy and at post-partum 

 
CPO: cardiac power output; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: 

post-partum. *: p<0.01; **: p<0.05. 
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Figure 7.20 Maximal stroke volume at pre-conception, through pregnancy and 

at post-partum 

 
PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum.  

 

 

Figure 7.21 Maximal stroke work at pre-conception, through pregnancy and at 

post-partum 

 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. **: p<0.05. 



- 193 - 

Figure 7.22 Percentage changes of resting cardiac variables at pre-

conception, through pregnancy and at post-partum 

 

VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 

work; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01; **:p<0.05 
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7.5.5 Reserve haemodynamics 

Changes in longitudinal reserve haemodynamic measures from pre-conception, 

through pregnancy and in post-partum are shown in Figures 7.23 to 7.28 and 

Tables 7.11 to 7.14.   

Heart rate reserve significantly decreased initially in the first trimester by 14% (p < 

0.001). There was a significant reduction in HRreserve throughout pregnancy (F ratio 

15.51, p < 0.001). The greatest change was in the third trimester, where HRreserve 

was 26% lower than in pre-conception (p < 0.001). HR res increased significantly in 

post-partum (p = 0.003) but remained significantly lower than pre-conception by 

11% (p < 0.001) 

Oxygen consumption reserve also significantly fell in the first trimester by 16% (p < 

0.001). Again there was a significant reduction in VO2 reserve throughout pregnancy 

(F ratio 9.2, p = 0.001). The greatest change was seen in the third trimester, where 

VO2 reserve was 28% lower than pre-conception (p < 0.001). There was a non-

significant rise in VO2 reserve in post-partum (p = 0.297) and this value remained 

significantly 23% lower than pre-conception (p < 0.001). 

Cardiac output reserve significantly fell in the first trimester by 11% (p = 0.004). 

This then appeared to reduce throughout pregnancy, however was not significant (F 

ratio 2.84, p = 0.077). The greatest change was seen in the third trimester with a 

17% fall compared to pre-conception COreserve (p < 0.001).  There was a non-

significant rise in COreserve in post-partum (p = 0.101) and this value remained 

significantly 15% lower than pre-conception (p = 0.001). 

Cardiac power output reserve significantly fell in the first trimester by 12% (p = 

0.005). CPOreserve then did not change significantly throughout pregnancy (F ratio 

0.05, p = 0.956). There was a slight non-significant rise in CPOreserve in post-partum 

(p = 0.709) and this value remained significantly 11% lower than pre-conception (p 

= 0.023). 

Stroke volume reserve and stroke work reserve did not significantly change from 

pre-conception or throughout pregnancy. However both SVreserve and SWreserve 

significantly decreased in post-partum from the third trimester (SVreserve: p = 0.014; 

SWreserve: p = 0.019) and were also significantly lower than in pre-conception by 

22% (p < 0.001) and 12% (p = 0.031) respectively. 
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Table 7.11 Reserve variables at pre-conception and through pregnancy and at 

post-partum 

 PC 
Mean (SD) 

T1 
Mean (SD) 

T2 
Mean (SD) 

T3 
Mean (SD) 

PP 
Mean (SD) 

HRreserve    
(min-1) 

121.2 (5.9) 105.5(13.8) 96.9 (11.7) 89.8 (13.6) 108.1 (9.5) 

VO2 reserve  
(ml.min-1) 

2527 (425) 2103 (357) 1918 (357) 1818 (403) 1911 (359) 

COreserve    
(l.min-1) 

18.3 (2.7) 16.2 (1.9) 15.8 (2.2) 14.9 (1.7) 15.5 (2.1) 

CPOreserve  
(watts) 

3.72 (0.71) 3.23 (0.65) 3.18 (0.62) 3.22 (0.64) 3.26 (0.61) 

SVreserve       
(ml) 

71.4 (14.6) 66.6 (13.8) 65.7 (14.3) 64.5 (8.6) 54.5 (12.0) 

SWreserve  
(g.m) 

92.2 (24.0) 87.8 (21.5) 86.7 (23.1) 91.6 (18.5) 79.2 (20.0) 

 

Table 7.12 P values for difference between reserve variables at pre-

conception and through pregnancy and post-partum 

 PC v  T1 
P value 

PC v T2 
P value 

PC v T3 
P value 

T3 v PP 
P value 

PC v PP 
P value 

T1 to T3 
F ratio       
P value 

HRreserve    
(min-1) 

<0.001 <0.001 <0.001 0.003 <0.001 15.51 
<0.001 

VO2 reserve  

(ml.min-1) 

<0.001 <0.001 <0.001 0.297 <0.001 9.20 
0.001 

COreserve    
(l.min-1) 

0.004 0.001 <0.001 0.101 0.001 2.84 
0.077 

CPOreserve  
(watts) 

0.005 <0.001 0.010 0.709 0.023 0.05 
0.956 

SVreserve       
(ml) 

0.392 0.227 0.165 0.014 <0.001 0.09 
0.875 

SWreserve  
(g.m) 

0.565 0.276 0.917 0.019 0.031 0.35 
0.706 

 

SD: standard deviation; HR: heart rate; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power 
output; SV: stroke volume; SW: stroke work; PC: pre-conception; T1: first trimester; T2: second trimester; T3: 

third trimester; PP: post-partum 



- 196 - 

Table 7.13 Percentage changes between reserve variables at pre-conception 

and through pregnancy and at post-partum 

 ∆ PC vs T1  

Mean (SD)  
95% CI 

∆ PC v T2 
Mean (SD)  

95% CI 

∆ PC v T3 
Mean (SD)  

95% CI 

∆ PC v PP 
Mean (SD)  

95% CI 
HRreserve    
(min-1) 

-15.7 (10.3) 
-21.1, -10.4 

-24.4 (10.4) 
-29.8, -18.9 

-31.4 (12.4) 
-37.9, -25.0 

-13.1  (9.7) 
-18.2, -8.1 

VO2 reserve  

(ml.min-1) 

-424 (291) 
-577, -272 

-609 (311) 
-772, -446 

-708 (369) 
-901, -515 

-616 (468) 
-861, -371 

COreserve    
(l.min-1) 

-2.2 (2.3) 
-3.4, -0.9 

-2.5 (2.3) 
-3.7, -1.4 

-3.4 (2.5) 
-4.7, -2.1 

-2.8 (2.4) 
-4.1, -1.6 

CPOreserve  
(watts) 

-0.49 (0.55) 
-0.78, -0.20 

-0.53 (0.43) 
-0.76,   -0.31 

-0.50 (0.62) 
-0.82, -0.18 

-0.46 (0.66) 
-0.81, -0.11 

SVreserve       
(ml) 

-4.9 (20.6) 
-15.7, 5.9 

-5.8 (17.0) 
-14.7, 3.1 

-7.0 (17.7) 
-16.2, 2.3 

-17.0 (13.3) 
-23.9, -10.0 

SWreserve  
(g.m) 

-4.5 (28.3) 
-19.3, 10.3 

-5.5 (18.2) 
-15.1, 4.0 

-0.7 (22.9) 
-12.6, 11.3 

-13.0 (20.1) 
-23.5, -2.5 

 

 

Table 7.14 Percentage changes between reserve variables at pre-conception 

and through pregnancy and post-partum 

 %∆ PC v T1  

Mean (SD)  
95% CI 

%∆ PC v T2 
Mean (SD)  

95% CI 

%∆ PC v T3 
Mean (SD)     

95% CI 

%∆ PC v PP 
Mean (SD)  

95% CI 
HRreserve    
(min-1) 

-13.2 (8.6) 
-17.7, -8.6 

-20.1 (8.6) 
-24.6, -15.6 

-26.0 (10.0) 
-31.2, -20.7 

-10.8  (7.6) 
-14.7, -6.8 

VO2 reserve  

(ml.min-1) 

-16.2 (10.2) 
-21.6, -10.9 

-23.7 (10.6) 
-29.2, -18.1 

-27.7 (12.9) 
-34.4, -21.0 

-23.1 (16.0) 
-31.5, -14.8 

COreserve    
(l.min-1) 

-10.6 (13.1) 
-17.5, -3.8 

-12.9 (12.2) 
-19.3,   -6.5 

-17.4 (12.4) 
-23.9, -10.9 

-14.6 (12.1) 
-21.0, -8.3 

CPOreserve  
(watts) 

-12.2 (15.0) 
-20.1, -4.4 

-13.7 (11.3) 
-19.6,  -7.8 

-12.4 (15.4) 
-20.4, -4.3 

-10.8 (16.4) 
-19.4, -2.3 

SVreserve       
(ml) 

-2.4 (30.4) 
-18.3, 13.5 

-4.8 (27.0) 
-18.9, 9.4 

-5.2 (27.1) 
-19.5, 9.0 

-22.3 (17.4) 
-31.4, -13.2 

SWreserve  
(g.m) 

1.0 (34.4) 
-17.0, 19.0 

-3.0 (26.8) 
-17.1, 11.0 

4.2 (27.9) 
-10.4, 18.8 

-11.7 (19.5) 
-21.9, -1.4 

SD: standard deviation; CI: confidence intervals; HR: heart rate; VO2: oxygen consumption; CO: cardiac output; 
CPO: cardiac power output; SV: stroke volume; SW: stroke work; PC: pre-conception; T1: first trimester; T2: 

second trimester; T3: third trimester; PP: post-partum 



- 197 - 

Figure 7.23 Heart rate reserve at pre-conception, through pregnancy and at 

post-partum 

 

HR: heart rate; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. 

*: p<0.01. 

 

Figure 7.24 VO2 reserve at pre-conception, through pregnancy and at post-

partum 

 
VO2: oxygen consumption; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: 

post-partum. *: p<0.01. 
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Figure 7.25 Cardiac output reserve at pre-conception, through pregnancy and 

at post-partum 

 

CO: cardiac output; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-

partum. *: p<0.01.   

 

Figure 7.26 CPO reserve at pre-conception, through pregnancy and at post-

partum 

 

CPO: cardiac power output; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: 

post-partum. *: p<0.01; **:p<0.05 
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Figure 7.27 Stroke volume reserve at pre-conception, through pregnancy and 

at post-partum 

 

SV: stroke volume; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-

partum. *: p<0.01. 

 

Figure 7.28 Stroke work reserve at pre-conception, through pregnancy and at 

post-partum 

 
SW: stroke work; PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-

partum. *: p<0.01; **:p<0.05 
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7.5.6 Symptom scores (SF-36v2) 

Changes in longitudinal symptom scores from pre-conception, through pregnancy 

and in post-partum are shown in Figure 7.29 and Tables 7.15 and 7.16.  SF-36v2 

scores were compared as a total score and split into domains of physical health and 

mental health.  

Physical health in all individuals was well within the normal range in pre-conception 

(mean: 85.2, SD: 6.3). There was a significant fall in score in the first trimester by 

11.6 (p = 0.002). Through pregnancy there was a significant fall in scores (F ratio 

25.8, p < 0.001). The greatest change was seen in the third trimester, where the 

score fell by 27.1 (p < 0.001). The score then significantly improved in post-partum 

(p <0.001) to levels similar to that seen in pre-conception. 

Mental health in all individuals was well within the normal range in pre-conception 

(mean: 80.3, SD: 8.5). There was a significant fall in score in the first trimester by 

5.5 (p = 0.030). Scores did not significantly change throughout pregnancy (F ratio 

3.1, p = 0.065), however the greatest difference in score was seen in the third 

trimester, where there was decrease by 10.8 (p = 0.014). Scores then non-

significantly improved in post-partum by 5.1 (p = 0.109) and remained significantly 

lower than pre-conception scores by 5.7 (p = 0.048). 

Overall SF-36v2 scores in all participants was well within normal range in pre-

conception (mean: 85.3, SD: 6.3).There was a significant decrease in score in the 

first trimester by 7.9 (p = 0.009). Through pregnancy there was a significant fall in 

scores (F ratio 25.1, p < 0.001). The greatest difference in scores was seen in the 

third trimester, where there was a decrease of 21.1 (p < 0.001).  Score in post-

partum then significantly increased by 16.8 (p < 0.001) to levels non-significantly 

slightly below scores seen in pre-conception (mean: 81.0, SD: 10.1). 
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Table 7.15 Symptom scores through pregnancy and at post-partum and 

changes from pre-conception  

 Physical 
health 

Mental  
health 

SF-36 Score ∆ SF-36 
 (v PC) 

%∆ SF-36  
(v PC) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 
95% CI 

Mean (SD) 
95% CI 

PC 85.2 (6.3) 80.3 (8.5) 85.3 (6.9)   

 T1 73.6 (10.5 ) 74.8 (8.0) 77.4 (9.2) -7.8 (9.2) 
-12.8, -2.9 

-8.9 (11.2) 
-15.0, -2.8 

T2 68.3 (10.6) 74.7 (7.2) 72.8 (9.2) -12.5 (11.0) 
-18.5, -6.5 

-14.1 (13.7) 
-21.5, -6.6 

T3 58.1 (14.2) 69.5 (14.2) 64.2 (14.2) -21.0 (14.7) 
-29.0, -13.1 

-24.4 (17.9) 
-34.1, -14.6 

PP 81.8 (8.6) 74.6 (12.6) 81.0 (10.1) -4.3 (8.6) 
-8.9, 0.4 

-4.9 (10.4) 
-10.5, 0.8 

SD: standard deviation; CI: confidence intervals; PC: pre-conception; T1: first trimester; T2: second trimester; 

T3: third trimester; PP: post-partum 

   

Table 7.16 P values for difference between symptom scores through 

pregnancy and at post-partum and changes from pre-conception  

  PC v T1 
P value 

PC v T2 
P value 

PC v T3 
P value 

T3 v PP 
P value 

PC v PP 
P value 

T1 to T3 
F ratio       
P value 

Physical 
health   

0.002 <0.001 <0.001 <0.001 0.155 25.8 
<0.001 

Mental  
health 

0.030 0.071 0.014 0.109 0.048 3.1 
0.065 

SF-36 
Score             

0.009 0.002 <0.001 <0.001 0.109 25.1 
<0.001 

PC: pre-conception; T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum 
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Figure 7.29 Percentage changes in symptoms scores from pre-conception 

 

T1: first trimester; T2: second trimester; T3: third trimester; PP: post-partum. *: p<0.01; **:p<0.05 

 

7.6 Discussion 

Study VII examined the physical and cardiac effects of longitudinally from pre-

conception, throughout pregnancy to 3 months post-partum. This is the first study to 

examine the longitudinal changes in COmax, CPOmax and VO2max before, during and 

after pregnancy. 

Initial changes were analysed between pre-conception and the first trimester. There 

were significant decreases in VO2max by 14%, VO2max/kg by 14%, HRmax by 3.5%, 

MAPmax by 4%, COmax by 8% and CPOmax by 12%. Importantly this is despite no 

change in exercise duration. No significant changes were also identified in SBPmax, 

DBPmax, SVRmax, SVmax and SWmax. At rest we identified significantly increases in 

HRrest, VO2rest and COrest by 14%. There were significant decreases in DBPrest by 

18%, MAPrest by 12% and SVRrest by 21%. No significant change was seen in 

SBPrest, CPOrest, SVrest and SWrest. As a result of the changes at rest and exercise, 

we calculated that there were significant decreases in HRreserve by 14%, VO2reserve by 

16%, COreserve by 11% and CPOreserve by 12%. SVreserve and SWreserve did not 

significantly change from pre-conception. 
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This study firstly agrees with the current literature, which states that resting HR and 

CO increase, whilst blood pressure and SVR decrease in the first trimester [Robson 

et al 1989, Desai et al 2004, Mahendru et al 2014]. Changes in CPOrest have not 

been previously reported, but we have shown that this does not significantly 

change. At maximal exercise, there was a significant decrease in COmax, CPOmax 

and VO2max, despite preserved exercise duration. Moreover, HRreserve, VO2reserve, 

COreserve and CPOreserve all decreased and so, this suggests a real reduction in 

cardiac performance in early pregnancy, that has not been previously identified. 

Changes in resting cardiac output in early pregnancy have been attributed to an 

increase in blood volume, neurohormonal activation, increase in left ventricular wall 

muscle mass and contractility [Robson et al 1989, Mabie et al 1994, Desai et al 

2004]. However, despite these physiological changes, it appears that the heart 

does not have the ability to sustain the same peak performance in early pregnancy. 

As a result of the enhanced resting cardiac function, cardiac reserve inevitably 

reduces. 

Changes in cardiovascular parameters between trimesters were then analysed. 

There were significant decreases in exercise duration, VO2max and VO2max/kg. There 

were significant increases in SBPmax, MAPmax, and SVRmax. However, there were no 

significant changes in HRmax, DBPmax, CircPmax, COmax, CPOmax, SVmax, and SWmax. 

At rest, there were significant increases in HRrest and VO2rest. There were no 

significant changes in SBPrest, DBPrest, MAPrest, SVRrest, COrest, CPOrest, SVrest, and 

SWrest. Therefore, there were significant decreases in HRreserve and VO2reserve, but no 

significant changes in COreserve, CPOreserve, SVreserve, and SWreserve. These changes 

seen at rest are again consistent with previous reports [Robson et al 1989, Mabie et 

al 1994, Desai et al 2004]. Although we did not report a significant change between 

repeated measures of COrest, we did actually see a peak rise in COrest in the second 

trimester and maintenance of this in the third trimester. The lack of significance may 

be because of the low number of subjects or because we used an analysis of 

repeated measures throughout pregnancy to compare a difference across 

measures. We also identified that CPOrest continues to rise progressively from the 

first trimester to the third trimester, although again was not statistically different 

overall between three trimesters. The same response was seen in HRrest and 

VO2rest, although both of these were statistically significant. The changes in direct 

and indirect markers of cardiac function at rest suggest that the cardiovascular 

system adapts to meet the demands of the growing foetus and increasing weight 

carriage. 
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In contrast to the only published longitudinal study examining VO2max at peak 

exercise throughout pregnancy, the present study showed a significant decrease in 

VO2max, associated with a significant reduction in exercise duration (using the same 

treadmill protocol). Lotgering et al [Lotgering et al 1991] performed a longitudinal 

study using treadmill exercise, whilst at the same gestation also compared the 

differences with cycle exercise, in all three trimesters and post-partum. He found no 

significant difference in VO2max between trimesters and post-partum and no 

difference between exercise methods. In our experience women became more 

symptomatic of pregnancy as gestation increased and therefore became less able 

to perform the same workload. In addition to reduced HRmax and VO2max, we also 

showed that HRreserve and VO2reserve both significantly fell throughout pregnancy. It 

therefore appears that HRmax and HRreserve may be a reasonable surrogate for 

VO2max and VO2reserve when assessing women in pregnancy. 

This is also the first study to report the longitudinal changes throughout pregnancy 

in COmax and CPOmax with maximal treadmill testing. Despite the significant 

reduction in exercise duration and VO2max, we showed no significant difference in 

both direct makers of cardiac performance (CPOmax), and surrogate markers  

(CircPmax, COmax, SVmax and SWmax). The mean CPOmax values in each trimester 

appear to show an increase from the first trimester to the third, however this failed 

to reach significance. The cardiovascular reserve measured both directly 

(CPOreserve) and indirectly (COreserve, SVreserve and SWreserve) also showed no 

deterioration throughout pregnancy. Importantly this showed preservation in peak 

cardiac performance throughout pregnancy. As we did not calculate absolute work 

load, which has to incorporate both the stage of exercise, but also the weight 

change, it is difficult to be absolutely certain if cardiac performance has increased 

for the level of work performed.   

Next, cardiovascular physiological changes between the third trimester and post-

partum (3 months) were analysed. There were significant increases in exercise 

duration, VO2max/kg and HRmax and a significant reduction in SBPmax in post-partum. 

There were no significant changes in VO2max, DBPmax, MAPmax, SVRmax, CircPmax, 

COmax, CPOmax, SVmax, and SWmax. At rest, there were significant decreases in 

HRrest, VO2rest and SBPrest in post-partum. However, there were no significant 

changes in DBPrest, MAPrest, SVRrest, COrest, CPOrest, SVrest, and SWrest. 

Consequently, there was a significant increase in HRreserve and there were 

significant decreases in SVreserve, SWreserve, but no change in VO2reserve, COreserve and 

CPOreserve. Interestingly, this analysis agreed with the maximal treadmill exercise 

study by Lotgering et al [Lotgering et al 1991]. Both studies showed no significant 
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changes in VO2max between the third trimester and post-partum. This is also in 

agreement with others who used maximal cycle exercise [Spinnewijn et al 1996, 

Heenan et al 1996]. The present study also agrees with the longitudinal study by 

Sady et al [Sady et al 1990]., which both saw no change in VO2max, but lower 

VO2max/kg in the third trimester. This suggests that scaling VO2max by body mass, 

potentially leads to a false interpretation of reduced aerobic capacity. The only other 

study examining COmax was performed by Sady et al, using an acetylene re-

breathing technique during maximal cycle exercise. They found that COmax was 

higher in the third trimester than 8 weeks post-partum, but showed no change in 

HRmax. Therefore, they attributed the change in cardiac flow to an increase in SVmax. 

The present study had a lower HRmax and no change in either COmax or SVmax in the 

third trimester. Notably, both studies have different methods, especially the 

difference in weight bearing exercise. Our present study had lower maximal heart 

rates and therefore suggests that the third trimester exercise test may not have 

been tolerated as well and so may not have been as maximal as the post-partum 

test. Symptom scores between tests were marginally different: RER 1.11 in the third 

trimester and RER 1.15 in post-partum however, peak ventilation capacity was 

unchanged. Hence one can at least say that there is no evidence of deterioration in 

COmax in the third trimester compared to post-partum. 

Furthermore this is the first study to report that there was no change in CPOmax or 

CPOreserve despite a significant reduction in exercise ability in the third trimester 

compared to 3 months post-partum. Both the flow and pressure generating 

capacities of the heart were maintained.  

The physiological changes were then examined between pre-conception and the 

third trimester. Besides changes already described between the third trimester and 

post-partum, the study showed significantly higher VO2max, CircPmax, COmax, and 

CPOmax and lower SVRmax in pre-conception. At rest we additionally identified lower 

COrest and higher DBPrest and SVRrest, but no change in SBPrest in pre-conception. 

As a conclusion, HRreserve VO2reserve, COreserve and CPOreserve were all significantly 

lower in the third trimester compared to pre-conception.  

 

7.61 Study Limitations 

The study was again limited by the inability to measure cardiac output and blood 

pressure continuously, using non-invasive methods, during exercise. The time 

frame in which subjects became pregnant after the pre-conception test was not 
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equal and it was not possible to control for variability in weight and cardiovascular 

fitness levels during that time. The study was further limited by the low number of 

subjects however, it was very difficult to control for this in the timeframe of the 

study, as women either did not become pregnant or pulled out because of 

unwillingness to continue in the study. The population studied were therefore 

biased by those who were self motivated to continue with the study. Equally all, bar 

one woman, were Caucasian and 7 of the 14 regularly performed regular exercise 

prior to pregnancy. This is therefore a relatively selective population, and so further 

study to confirm these findings in other populations.  

 

7.7 Conclusions 

Importantly, this study highlights the weakness in using post-partum as a surrogate 

for pre-conception. The present study is the first to show that there is an initial fall in 

both cardiac performance and cardiac reserve in pregnancy. After this there is 

maintenance of cardiac performance and reserve throughout pregnancy, despite 

deterioration in symptoms and fall in exercise ability and aerobic capacity. The 

initial changes in cardiac performance are independent of weight, however as 

gestation increases maintenance of cardiac performance may be related to the 

increased weight carriage. Again direct measurement of CPOmax was necessary to 

determine changes in cardiac performance in pregnancy, rather than surrogate 

measures.  
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Chapter 8 

Study VIII: Cross sectional study to determine the 
cardiovascular effects of obesity 

8.1 Introduction 

Obesity is a growing epidemic worldwide. In England, obesity prevalence has risen 

from 16% in 1993 to 26% in 2011, in female adults [HSCIC 2011]. The effect of 

different degrees of obesity on cardiovascular and overall prognosis are areas of 

debate, however severe obesity (Class III, BMI> 40kg.m-2) is associated with a poor 

prognosis [Lavie et al 2015; Flegal et al 2013]. One problem with using BMI alone 

to categorize individuals and ascribe risk is that BMI is a crude tool used to estimate 

body fat percentage and does not account for the natural variation in body 

geometry [Rothman 2008]. Moreover, poor cardiopulmonary fitness and cardiac 

performance is commonly predicted to be poor in obese individuals, as they 

regularly complain of exercise limitation, breathlessness, fatigue and joint pains. It 

is sometimes necessary to make an attempt to establish cardiac function in obese 

patients, either to aid decisions with treatment or risk stratification. However, 

assessing cardiac function accurately in obese individuals can be difficult, due to 

the limitation in techniques used to assess function, primarily using imaging [Poirier 

et al 2006]. One way to overcome this is to measure CPO at rest and maximal 

exercise, which would then allow calculation of cardiac reserve.  

A study by Alexander [Alexander 1964] showed that at varying grades of moderate 

treadmill exercise, CO and oxygen consumption were much greater in obese 

individuals than subjects with ideal body weight. However, at high workloads (> 5 

times baseline), CO decreased to a low-normal level [Alexander et al 1998b]. 

Kaltman et al [Kaltman et al 1976] also reported normal or high resting CO with high 

oxygen consumption appropriate to body weight in 12 severely obese individuals. 

During exercise (passive leg raises) there was a consistent rise in stroke volume. 

Stroke work and central blood volume were also uniformly increased, consistent 

with a hyperdynamic and hypervolaemic state. More recently the effects of weight 

loss after bariatric surgery have shown significant incremental improvements in 

relative, but not the absolute aerobic capacity at 6 and then 12 months post surgery 

[De Souza et al 2010; Wilms et al 2013]. Although there appeared to be an increase 

in oxygen consumption with weight loss, this was only when the absolute values 
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were scaled per kilogram. One has to be cautious when interpreting data using 

oxygen consumption scaled by body mass in obese patients. Hothi showed that the 

mean VO2max/kg was lower in obese patients with heart failure compared to lean 

heart failure patients, however the absolute VO2max and CPOmax was significantly 

higher in obese patients [Hothi et al 2015]. 

Study IV and V showed that additional acute inert weight loading resulted in a 

significant reduction in exercise duration and O2 consumption with a divergent 

improvement in CPOmax during maximal treadmill exercise. It is uncertain whether 

the same cardiovascular response occurs in chronic perfused weight carriage. 

 

8.2 Purpose and hypothesis of the study 

The purpose of this study was to determine the differences in cardiovascular 

physiology, at rest and maximal exercise, between females with significant excess 

weight (BMI > 35 kg.m-2) and lean females (BMI < 26 kg.m-2).  

The hypotheses tested in this investigation were  

(i) Aerobic capacity (VO2max/kg) will be significantly reduced in obese 

individuals in comparison to lean individuals.  

(ii) Absolute VO2max will increase as the severity of obesity (BMI) rises, due 

to the increased metabolic demands. 

(iii) There will be a significant increase in peak cardiac performance in 

obese individuals in comparison to lean individuals. 

(iv) Cardiac function at rest will be associated with an increase in pressure 

and flow generating capacity in obese subjects in comparison to lean 

individuals. 

(v) There will be a more significant reduction in peak cardiac performance 

and cardiac reserve with age, in obese individuals compared to lean 

individuals. 

(vi) Peak cardiac performance will not improve as the severity of obesity 

(BMI) increases. 

(vii) Conventional indirect indicators of cardiac function are unreliable as 

measures of overall cardiac function during exercise stress testing in 

obesity. 
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8.4  Methods 

This was a prospective observational cross sectional study aimed at comparing the 

physiological cardiovascular changes seen in obesity with age and sex matched 

healthy individuals.  

 

8.4.1 Study participants 

Females patients with morbid obesity (BMI >35) were enrolled from the obesity 

clinic at Leeds Teaching Hospitals NHS Trust. These patients had been referred by 

their general practitioners for obesity management, and were primarily being 

considered for bariatric surgery. They had an initial assessment with the lead 

obesity dietician, to assess suitability for surgical obesity management. They were 

then discussed in an Obesity Management multi-disciplinary meeting to determine 

management plan and if appropriate were then seen by to one of three bariatric 

surgeons. The patients being considered for surgery were then referred to the 

cardiology department for specific cardiac pre-operative assessment and 

physiological testing. 

 

8.4.2 Healthy controls 

The physiological data from controls used for comparison were obtained from 

previous studies performed by our research group, using the same equipment and 

methods. These healthy controls were both male and female with ages ranging 

from 20 to 80 years. They were previously recruited in an observational study of 

healthy sedentary individuals to determine the changes in cardiac function over 

time [Chantler et al 2006]. These data have provided our lab with our local normal 

values and are routinely used in clinical practice to plot variance of patient test 

results from the norm. Complete physiological data, weight, height, BMI and body 

surface area were available for comparison. 

 

8.4.3 Clinical cardiac assessment 

Patients attended the cardiology department initially in a clinic setting, and were 

assessed where possible by Professor Tan, Professor of Cardiology. This 

assessment included a full clinical history and examination, to delineate any cardiac 

symptoms or signs suggestive of cardiac disease and establish their previous 
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medical history and active medical problems and limitations. NYHA functional class 

was determined through enquiry about daily activities and exercise.  

Patients then underwent cardiopulmonary exercise testing to determine their 

aerobic capacity and cardiac reserve and also had a transthoracic echocardiogram 

to identify those with structural heart disease. If they gave a history of angina or 

history suggestive of symptomatic coronary artery disease, they also underwent 

either functional testing to look for cardiac ischaemia or a coronary angiogram to 

identify coronary artery disease, as per NICE guidelines [NICE CG126 2011]. 

Following testing and full clinical assessment, a clinical recommendation was made 

to the bariatric surgeon, to state whether they had adequate cardiac reserve and 

coronary perfusion where necessary to undergo surgery. 

 

8.4.4 Cardiopulmonary exercise testing 

An initial symptom-limited maximal treadmill exercise test was performed with the 

Medgraphic Ultima metabolic cart (Medgraphics Corporation, St. Paul, Minnesota, 

USA) and continuous ECG monitoring, to measure and monitor breath-by-breath 

rates of ventilation, O2 consumption (VO2), CO2 production (VCO2), beat-by-beat 

heart rate (HR) and exercise duration. Manual cuff sphygmomanometry was used 

to measure systolic and diastolic blood pressures (SBP and DBP) in mm Hg. The 

standard protocols used within the department are either a modified Bruce or Bruce 

protocol however, the starting speed and inclines were too severe for the majority of 

obese patients and could lead to them stopping within the first one to two minutes 

and not completing a meaningful level of exercise. Therefore, I designed a specific 

ramp protocol for these patients, called the “Lewis protocol” (Table 8.1). This had 

the advantage of starting with a very slow 2 minute walk and so allowing the patient 

to adjust to walking on a treadmill, followed by gradual increments in speed and 

gradient each minute. In practice, it was found that patients with marked exercise 

limitation tolerated this protocol much better and in the end performed an overall 

higher workload. When patient limitation was not as marked, the modified Bruce or 

Bruce protocols were used. A second peak single-stage exercise test was 

performed after 45 minutes rest to target the peak workload attained during the 

prior incremental test and enable measurement of cardiac output using the CO2 re-

breathing technique [Vanhees et al 2000]. Detailed explanation of the testing 

procedure and equipment used is outlined in Chapter 2.  
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Table 8.1 Lewis treadmill protocol 

Time 
(mins) 

Speed 
(mph) 

Gradient 
(%) 

0 to 2 1  0 

2 to 3 1.2  1 

3 to 4 1.4  2 

4 to 5 1.6  3 

5 to 6 1.8  4 

6 to 7 2.0  5 

7 to 8 2.2  6 

8 to 9 2.4  7 

9 to 10 2.6  8 

10 to 11 2.8  9 

11 to 12 3.0  10 

Continue to raise speed by 0.2 mph and gradient by 1% every minute 

 
 

8.4.5 Transthoracic echocardiogram 

Patients underwent a transthoracic echocardiogram, performed by a trained 

sonographer (British society of echocardiography certified) in the cardiology 

department at Leeds General Infirmary. A variety of machines were used, including 

GE Vivid 7, GE Vivid 9, Philips IE33. 

Standard echocardiogram protocol (British Society of Echocardiogram guidelines) 

was used where possible [Wharton et al 2012] however, due to the population 

being scanned, many images were not available or suitable for analysis. The study 

was performed in the left lateral position, with ECG gating, in a dedicated darkened 

room. Particular focus was to assess both chamber sizes of left ventricle, right 

ventricle and atria. Where possible LV wall thickness was measured, as was mitral 

valve forward flow and filling pattern. 

 

8.4.6 Statistics 

All data were analysed using SPSS. Data are presented as mean and standard 

deviation. Delta measures and percentage change in measures between obese and 

non-obese subjects are also displayed as a mean and standard deviation with 95% 
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confidence intervals. Statistical comparisons were made with Student’s paired, two-

tailed t test. A P value of < 0.05 was considered to be statistically significant. 

 

8.5  Results 

8.5.1 Study population baseline characteristics 

A total of 90 obese female (BMI > 35) patients were recruited and compared to 130 

age matched healthy female controls (BMI < 30). Differences in weight and body 

mass index are shown below in Figures 8.1 and 8.2 and Table 8.3. There were 

highly significant differences in weight across all ages with a mean difference of 68 

kg (p < 0.001). The same pattern was seen with differences in BMI, with mean 

difference of 26 k.m-2 (p < 0.001).  

Two obese patients were excluded because of severe limiting heart disease 

(Moderate - severe left ventricular systolic dysfunction; Severe coronary artery 

disease with limiting angina). A further seven obese patients were excluded 

because of their inability to perform exercise, due to excessive leg or joint pain. This 

left 81 obese patients available for analysis. 

All healthy subjects were fit and healthy and taking no regular medications. They 

had no impediments to exercise and either regularly performed no or moderate 

level exercise at most.  

Many of the obese patients had co-morbidities, the commonest of which are shown 

in Table 8.2. 12 patients had a previous history of cardiac problems, which at the 

time of assessment was of negligible functional significance. 8 had confirmed or 

suspected coronary artery disease (2 had previous small myocardial infarctions; 2 

had previous elective percutaneous coronary intervention; 4 had a history of well 

controlled angina); 1 had moderate aortic stenosis; 2 had atrial fibrillation; 1 had 

Wolf Parkinson White syndrome and 1 had previous myocarditis, with no 

deterioration in cardiac function on echocardiography.  

70 of the patients had been referred for cardiac assessment pre-bariatric surgery 

and at the time of analysis 60 had so far undergone surgery. 2 had been referred 

for assessment prior to other abdominal surgery and the other 9 patients were 

recruited from general cardiology and medical obesity clinics.  
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72 of the patients underwent transthoracic echocardiography either at the same first 

clinical visit or a few weeks prior to the assessment. 67 had good left ventricular 

systolic function; 5 had mild left ventricular systolic dysfunction and 1 had impaired 

right ventricular systolic dysfunction. 1 had moderate aortic stenosis and the other 

71 had no significant valve dysfunction. Electrocardiograms showed that 79 

patients were in sinus rhythm and 2 in atrial fibrillation.  

All patients and controls underwent exercise testing without complications. Obese 

patients were more symptomatic with a mean NYHA 1.3 ± 0.5, compared to no 

exertional symptoms in the control group. There was a significant difference 

between RERmax at peak exercise (Obese: 0.865  ± 0.12; Control: 1.19  ± 0.11, p < 

0.001). 

 

Table 8.2 Co-morbidities present in obese subjects 

 Number Percent (%) 

Hypertension 25 31.3 

Asthma or COPD 29 36.7 

OSA 19 24.4 

Diabetes 22 27.8 

Depression 30 38.5 

OA or Joint problems 38 48.7 

GORD 13 16.5 

Hypothyroidism 6 7.7 

Cardiac disease 12 15.6 

COPD: chronic obstructive pulmonary disease; OSA: obstructive sleep apnoea; OA: osteoarthritis; 

GORD: gastro-oesophageal reflux disease. 
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Figure 8.1 Differences in weight between healthy and obese subjects 

 
 

Figure 8.2 Differences in BMI between healthy and obese subjects 

 
 

Table 8.3 Differences in demographics between healthy and obese subjects 

 Age  (years) 

Mean (SD) 

Weight   (kg) 

Mean (SD) 

Height (cm) 

Mean (SD) 

BMI (kg.m-2) 

Mean (SD) 

BSA (m2) 

Mean (SD) 

Healthy 44.0 (11.5) 64.9 (8.0) 163.9 (6.5) 24.1 (2.6) 1.70 (0.12) 

Obese 44.7 (10.2) 132.6 (23.9) 162.3 (6.5) 50.3 (8.4) 2.29 (0.20) 

P value 0.640 <0.001 0.090 <0.001 <0.001 

∆Mean (SED)       

95% CI 

0.7 (1.5) 

-2.3, 3.7 

67.8 (2.3) 

63.3, 72.3 

-1.5 (0.9) 

-3.3, 0.2 

26.2 (0.9) 

24.3, 28.1 

0.59 (0.02) 

0.54, 0.63 

SD: standard deviation; SED: standard error of difference; CI: confidence intervals; BMI: body mass index; BSA: 

body surface area.  
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8.5.2 Differences in resting variables between healthy and obese 
subjects 

Cross-sectional differences resting variables in healthy and obese subjects are 

shown in Figures 8.3 and 8.4 and Table 8.4. At rest there was a significantly higher 

mean heart rate seen in the obese patients (p < 0.001) with a 33% difference 

between means. There were no significant differences in mean blood pressures, 

however systemic vascular resistance was significantly lower in obese patients (p < 

0.001) with a 30% difference. There were significant differences in all markers of 

cardiac function measured (p < 0.001) with a 55% increase in VO2 rest, 45% increase 

in COrest, 45% increase in CPOrest, 20% increase in SVrest and 19% increase in 

SWrest in obese patients. 

 

Table 8.4 Differences between resting variables in healthy and obese subjects 

 Healthy 
Mean (SD) 

Obese 
Mean (SD) 

P value ∆ Mean (SED)         
95% CI 

% ∆ 
means 

HRrest 
(min-1) 

67.3 (9.5) 89.6 (16.7) <0.001 22.3 (2.0) 
18.3, 26.3 

32.9 
 

SBPrest 
(mmHg) 

117.8 (13.5) 118.8 (22.4) 0.709 1.0 (2.7) 
-4.3, 6.4 

0.8 

DBPrest 
(mmHg) 

72.9 (7.8) 73.4 (11.0) 0.677 0.6 (1.4) 
-2.2, 3.3 

0.6 

MAPrest 
(mmHg) 

91.3 (9.4) 91.9 (11.9) 0.697 0.6 (1.5) 
-2.3, 3.5 

0.5 

SVRrest 
(dyn.s.cm-5) 

2072 (490) 1463 (408) <0.001 -610 (65) 
-737, -482 

-29.6 

VO2 rest 
(ml.min-1) 

224 (43) 347.5 (98.5) <0.001 124 (11) 
101, 146 

55.4 

COrest 
(l.min-1) 

3.70 (0.87) 5.36 (1.42) <0.001 1.65 (0.17) 
1.31, 2.00 

44.9 

CPOrest 
(watts) 

0.75 (0.20) 1.09 (0.33) <0.001 0.34 (0.04) 
0.26, 0.42 

45.4 

SVrest 
(ml) 

55.5 (13.1) 66.1 (21.4) <0.001 10.6 (2.7) 
5.4, 15.9 

19.6 

SWrest 
(g.m) 

69.2 (17.2) 82.1 (26.7) <0.001 12.9 (3.4) 
6.2, 19.7 

18.9 

SD: standard deviation; SED: standard error of difference; CI: confidence intervals; HR: heart rate; SBP: systolic 

blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular 

resistance; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: 

stroke work. 
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Figure 8.3 Differences between resting variables in healthy and obese 

subjects 

 

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood pressure; 

SVR: systemic vascular resistance. *: p<0.01 

 

Figure 8.4 Differences between resting cardiac variables in healthy and obese 

subjects 

  

VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke 
work. 
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8.5.3 Differences in exercise variables between healthy and obese 
subjects 

Cross-sectional differences in maximal exercise haemodynamic variables in healthy 

and obese subjects are shown in Figures 8.5, 8.6 and 8.7 and Table 8.5. At 

maximal exercise there were significantly lower mean heart rates in obese subjects 

(p < 0.001) with 13% difference. Mean arterial pressure did not significantly change, 

however systolic pressures were significantly lower (p = 0.003) and diastolic 

pressures significantly higher (p = 0.002) with an 8% and 7% difference between 

means seen respectively. Systemic vascular resistance was also significantly lower 

in obese subjects (p < 0.001) with a 21% difference in means. 

There was no significant difference seen in VO2 max however, there were 

significantly lower VO2 max/kg values in obese subjects (p < 0.001) with a 48% 

difference in means. The remainder of the cardiac measures were significantly 

greater in obese patients. There was an 18% increase in COrest (p < 0.001), 18% 

increase in CPOrest (p < 0.001), 9% increase in CircPmax, (p = 0.023), 39% increase 

in SVrest (p < 0.001) and a 37% increase in SWrest (p < 0.001). 

 

Figure 8.5 Percentage difference in means of maximal exercise variables in 

healthy and obese subjects 

  
SV: stroke volume, SW: stroke work, CO: cardiac output, CPO: cardiac power output, VO2: oxygen 

consumption, CircP: circulatory power, HR: heart rate, SVR: systemic vascular resistance. 
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Table 8.5 Differences between maximal exercise variables in healthy and 

obese subjects 

 Healthy 
Mean (SD) 

Obese 
Mean (SD) 

P value ∆Mean (SED)        
95% CI 

% ∆ 
means 

HRmax 

(min-1) 
174.6 (12.1) 151.5 (21.7) <0.001 -23.1 (2.6) 

-28.3, -18.0 
-13.3 

SBPmax 

(mmHg) 
171.8 (32.5) 158.4 (28.8) 0.003 -13.4 (4.4) 

-22.0, -5.0 
-7.9 

DBPmax 

(mmHg) 
71.4 (12.1) 76.7 (12.0) 0.002 5.3 (1.7) 

2.0, 8.7 
7.2 

MAPmax 

(mmHg) 
112.7 (18.6) 109.7 (13.0) 0.167 -3.0 (2.2) 

-7.3, 1.3 
-2.8 

SVRmax 

(dyn.s.cm-5) 
571 (175) 453.5 (89.0) <0.001 -118 (21) 

-158, -77 
-20.6 

VO2max 

(ml.min-1) 
2000 (488) 2081 (439) 0.225 80 (66) 

-50, 210 
3.9 

VO2max/kg 

(ml.min-1.kg-1) 
30.9 (6.9) 16.0 (3.6) <0.001 -14.9 (0.7) 

-16.3, -13.5 
-48.2 

COmax 

(l.min-1) 
16.7 (3.3) 19.8 (3.0) <0.001 3.1 (0.4) 

2.2, 4.0 
18.3 

CPOmax 

(watts) 
4.10 (0.64) 4.82 (0.89) <0.001 0.74 (0.11) 

0.52, 0.96 
17.7 

CircPmax  

(mmHg.ml O2.min-1) 

302 (70) 329 (89.5) 0.023 26.6 (11.6) 
3.7, 49.5 

8.5 

SVmax 

(ml) 

96.2 (17.4) 133.9 (23.5) <0.001 37.8 (3.0) 
31.8, 43.7 

39.1 

SWmax 

(g.m) 
145.1 (25.5) 199.6 (41.9) <0.001 54.5 (5.1) 

44.4, 64.6 
37.2 

     
SD: standard deviation; SED: standard error of difference; CI: confidence intervals; HR: heart rate; SBP: systolic 
blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood pressure; SVR: systemic vascular 
resistance; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; CircP: circulatory power; 
SV: stroke volume; SW: stroke work. 
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Figure 8.6 Differences between maximal exercise variables in healthy and 

obese subjects 

  

HR: heart rate; SBP: systolic blood pressure; DBP: Diastolic blood pressure; MAP: mean arterial blood pressure; 

SVR: systemic vascular resistance. *: p<0.01 

 

Figure 8.7 Differences between maximal exercise cardiac variables in healthy 

and obese subjects 

 

Ex Dur: exercise duration; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; CircP: 

Circulatory power; SV: stroke volume; SW: stroke work. *: p<0.01;  **: p<0.05 
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8.5.3.1 Changes in exercise haemodynamics with age in healthy and obese 

subjects 

Differences and changes with age for individual haemodynamic measures are 

shown in Figures 8.8 to 8.17. Changes in maximal heart rate decreased 

simultaneously with age in both healthy and obese individuals, with a marked lower 

heart rate seen in obese subjects throughout. Maximal mean arterial pressure did 

not change with age however, there appeared to be an increase in MAPmax in 

healthy subjects with age. Overall there were not significant differences between 

both groups. Systemic vascular resistance at maximal exercise only slightly 

increased in obese patients with age, however there was a marked increase in 

SVRmax in the healthy group leading to significant differences in means between 

groups. 

VO2max remained similar between groups and showed simultaneous reduction in 

values with age. However when VO2max was scaled per kilogram, values were 

significantly lower in obese subjects. The difference in values was more marked at 

younger ages, due to the difference in regression lines between groups. COmax was 

significantly higher in obese subjects and had very similar regression line to healthy 

subjects, showing a decrease in values with age. CPOmax showed a slight fall in 

values with age in obese subjects, however remained preserved with age in healthy 

subjects. This lead to larger differences in CPOmax between young healthy and 

obese subjects. When CPOmax was charted against VO2 max/kg it was evident that 

obese subjects achieved much higher CPOmax values at much lower VO2max/kg than 

in healthy subjects. 

SVmax values were preserved with age in obese subjects, as opposed to healthy 

subjects, who showed a fall in values with age. This lead to larger differences in 

SVmax in older subjects. SWmax was consistently higher in obese subjects and 

simultaneously showed a slight increase with age, as seen in healthy subjects. 
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Figure 8.8 Changes in HRmax with age in healthy and obese subjects 

 

 

 

 

Figure 8.9 Changes in MAPmax with age in healthy and obese subjects 
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Figure 8.10 Changes in SVRmax with age in healthy and obese subjects 

 

 

 

Figure 8.11 Changes in VO2 max with age in healthy and obese subjects 
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Figure 8.12 Changes in VO2 max/kg with age in healthy and obese subjects 

 

 

 

Figure 8.13 Changes in COmax with age in healthy and obese subjects 

 

 

 



- 225 - 

Figure 8.14 Changes in CPOmax with age in healthy and obese subjects 

 

 

 

Figure 8.15 Changes in CPOmax and VO2 max/kg  in healthy and obese subjects 
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Figure 8.16 Changes in SVmax with age in healthy and obese subjects 

 

 

 

Figure 8.17 Changes in SWmax with age in healthy and obese subjects 
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8.5.3.2 Changes in exercise variables with BMI in healthy and 
obese subjects 

Differences and changes with BMI for individual haemodynamic measures are 

shown in Figures 8.18 to 8.25. There were no significant differences in mean 

MAPmax between groups however, there was increase in MAPmax with BMI seen in 

healthy subjects, whereas MAPmax remained unchanged with BMI in obese 

subjects. SVRmax increases with BMI in healthy subjects, however reduces with BMI 

in obese subjects. VO2 max shows a similar rate of increase with BMI in both obese 

and healthy subjects however, when VO2max/kg decreases with BMI in both groups, 

with a steeper rate of decrease seen in healthy subjects. 

COmax and SVmax do not change with BMI in healthy subjects however, show a 

steady increase with BMI in obese subjects. CPOmax and SWmax both show steady 

increases in values with BMI in both healthy and obese subjects. 
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Figure 8.18 Changes in MAPmax with BMI in healthy and obese subjects 

 

 

 

 

Figure 8.19 Changes in SVRmax with BMI in healthy and obese subjects 
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Figure 8.20 Changes in VO2 max with BMI in healthy and obese subjects 

 

 

 

 

 

Figure 8.21 Changes in VO2 max/kg with BMI in healthy and obese subjects 
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Figure 8.22 Changes in COmax with BMI in healthy and obese subjects 

 

 

 

 

Figure 8.23 Changes in SVmax with BMI in healthy and obese subjects 
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Figure 8.24 Changes in CPOmax with BMI in healthy and obese subjects 

 

 

 

 

 

Figure 8.25 Changes in SWmax with BMI in healthy and obese subjects 
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8.5.4 Differences in reserve variables between healthy and obese 
subjects 

Cross-sectional differences in reserve haemodynamic variables in healthy and 

obese subjects are shown in Figures 9.26 and Table 9.6. There was a significant 

lower heart rate reserve seen in obese patients (p < 0.001) with a 42% difference in 

means. There was no significant difference in VO2reserve however, the other 

measures of functional cardiac reserve were significantly higher in obese subjects 

(p < 0.01). Differences in means were by an increase of 11% in COreserve, 11% in 

CPOreserve, 66% in SVreserve and 54% in SWreserve. 
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Table 8.6 Differences in reserve variables between healthy and obese 

subjects 

 Healthy 
Mean (SD) 

Obese 
Mean (SD) 

P value ∆Mean (SED)       
95% CI 

% ∆ 
means 

 
HRreserve   
(min-1) 

107.3 (12.5) 61.9 (19.5) <0.001 -41.8 (2.4) 
-46.5, -37.1 

-42.3 

VO2 reserve  
(ml.min-1) 

1776 (497) 1733 (421) 0.512 -43.2 (65.8) 
-173.0, 86.6 

-2.5 

COreserve     
(l.min-1) 

13.0 (3.6) 14.4 (2.9) 0.001 1.4 (0.4) 
0.6, 2.3 

10.8 

CPOreserve  
(watts) 

3.33 (0.64) 3.73 (0.81) <0.001 0.40 (0.10) 
0.19, 0.60 

11.4 

SVreserve        
(ml) 

40.7 (22.6) 67.8 (24.7) <0.001 27.1 (3.3) 
20.6, 33.6 

65.5 

SWreserve  
(g.m) 

75.9 (25.9) 117.5 (40.2) <0.001 41.6 (5.0) 
31.8, 51.4 

53.7 

SD: standard deviation; SED: standard error of difference; CI: confidence intervals; HR: heart rate; VO2: oxygen 

consumption; CO: cardiac output; CPO: cardiac power output; SV: stroke volume; SW: stroke work. 

 

Figure 8.26 Differences in reserve variables between healthy and obese 

subjects 

 

HR: heart rate; VO2: oxygen consumption; CO: cardiac output; CPO: cardiac power output; 

SV: stroke volume; SW: stroke work. *: p<0.01. 
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8.6 Discussion  

This study is the first to determine the differences in peak cardiac performance 

between obese females (BMI > 35 kg.m-2), without known cardiac dysfunction and  

lean healthy females (BMI < 26 kg.m-2), using maximal treadmill exercise. The 

results show that individuals who chronically carry excess perfused weight 

(Obesity) have 13%  significantly  lower HRmax (P < 0.001) and 48% lower VO2max/kg 

(P < 0.001) than lean individuals. Exercise duration was not compared, due to the 

differences in exercise protocols used. These observations support our first 

hypothesis that the chronic carriage of excess weight would result in a reduction in 

aerobic capacity. However, one has to be cautious when interpreting data using 

oxygen consumption scaled by body mass in obese patients. This is highlighted by 

the figures which compare both VO2max and VO2max/kg between groups with age and 

BMI (Figures 8.11, 8.12, 8.20, 8.21). Absolute VO2max values were not different  

between groups across all ages however, VO2max/kg in the obese group was 

significantly lower, particularly at a younger age. This could potentially discriminate 

against younger individuals when using this data, particularly for commencing 

treatment or considering cardiac transplantation. In addition, as BMI increases there 

appears to be an associated decrease in VO2max/kg, whereas absolute VO2max either 

stays the same or increases in both groups.  However, the metabolic demands 

during maximal exercise in the obese group only appear to increase slightly with 

increasing BMI. This is probably because the difference in body composition 

between obese patients is likely to be fat mass, rather than muscle. At rest VO2rest 

was higher in the obese group, but overall the VO2reserve did not differ between 

groups. This shows that the metabolic demands of chronic weight carriage are 

higher at rest and exercise.  

We can therefore say that scaling VO2 by body mass in obese subjects will lead to 

misinterpretation. The best way to scale haemodynamic parameters is to scale by 

lean body mass (LBM), which requires calculation of LBM [Chantler et al 2005]. 

Body composition assessment would require either a dual-energy X-ray 

absorptiometry scanner or use of a three compartment model, using body density 

by air displacement plethysmography and total body water by H2
18O dilution [Das et 

al 2003]. Neither of these models were available to us and therefore we can not 

utilise oxygen consumption as an indirect measure of cardiac performance with any 

confidence.  

The results did conclusively show that peak cardiac performance (CPOmax) and 

cardiac reserve (CPOreserve) was significantly higher by 17% and 11% respectively 
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(P < 0.001) in the obese group. This increase appears to be driven by the increased 

flow generating capacity, with a 39% higher SVmax (P < 0.001) and was not 

associated with a higher pressure generating capacity, with no difference in MAPmax 

between groups. These are in agreement with previous reports that also showed a 

hyperdynamic increase in SV and CO [Alexander 1964; Kaltman et al 1976], but 

disagree with the finding by Alexander that CO decreased to a low-normal level at 

high work loads [Alexander et al 1998b]. Moreover, these changes are the reverse 

of the changes associated with acute inert weight carriage, which saw an increase 

in pressure, but not flow generating capacity of the heart. This difference is likely to 

be secondary to the adaptive physiological responses that have taken place with 

chronic weight carriage. We know that blood volume increases, as well as cardiac 

chamber size and myocardial wall thickness. This inevitably leads to a larger left 

ventricular diastolic volume, increased contractility and hence larger stroke volume. 

At rest, we saw the same pattern with a significantly higher CPOrest by 45% (P < 

0.001) and SVrest by 19% (P < 0.001), although HRrest was also significantly elevated 

by 33% (P < 0.001) in the obese group. Again there was no significant difference in 

pressure generating capacity.  

With advancing age, there appeared to be a gradual downward decline in cardiac 

performance in the obese group. However, this did not ever fall below levels seen in 

lean healthy group (R2 = 0.06). With increased severity of obesity (BMI) cardiac 

function appeared to show a gradual increase in cardiac function (R2 = 0.27) down 

to level. These observations supports the concept that cardiac function adapts to 

obesity through an increase in central blood volume, stroke volume and cardiac 

output. However, with time (i.e. as individuals get older) the chronic volume loaded 

state leads to increased LV wall stress and hypertrophy and eventual diastolic or 

systolic dysfunction and LV failure. The group we studied excluded any individuals 

with known LV dysfunction or heart failure and therefore further study looking at 

longitudinal long term follow up of individuals without LV dysfunction is needed to 

establish if any or all have progressive loss of cardiac performance with prolonged 

obesity.  

Once again the responses of CPOmax and VO2max differ with weight carriage and 

reinforces the necessity to directly measure cardiac function when assessing 

individuals carrying any form of weight. 
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8.61 Study Limitations 

The study was again limited by the inability to measure cardiac output and blood 

pressure continuously, using non-invasive methods, during exercise. The major 

limitation is the cross sectional design, which enables comparison of means, but 

does not allow us to infer causality to the changes seen in cardiovascular 

haemodynamics with absolute certainty. One would have to study patients who 

were lean and then became obese, or study those who lost weight. The difficulty 

with the former concept is that this would be a very difficult study to recruit to and 

complete, due to volunteers generally not wanting to become obese. The challenge 

with the latter concept would be to try and establish whether chronic weight carriage 

leads to reversible changes in cardiovascular pathophysiology that can be identified 

after weight loss and if not, determine what changes are irreversible.  

The obese patients also had a mixture of co-morbidities and many were taking 

predominantly anti-hypertensive or diabetic medication, although did not have 

known cardiac dysfunction. Therefore, without controlling for these factors, which 

was not possible due to the small numbers tested, we can not again infer causality 

purely to weight carriage alone. There was also a significant difference in the 

measures of effort at maximal exercise between groups. The obese group on 

average had lower respiratory exchange ratios and peak heart rates than the 

healthy lean group. Although the motivation in the obese group was generally good, 

the majority did not perform regular exercise like the healthy group, and so their 

ability to cope with exercise was less well tolerated. This factor is not easy to 

control for, but despite that we still saw significantly improved cardiac performance 

in the obese group. 

 

8.7 Conclusions 

Chronic weight loading in morbidly obeses females resulted in significantly lower 

relative, but not absolute peak oxygen consumption, than healthy lean controls 

during maximal treadmill exercise. Peak cardiac performance and cardiac reserve 

was significantly higher in obese patients, with an increase in the flow, but not 

pressure generating capacity of the heart.  

Importantly, this study highlights the problem of scaling oxygen consumption by 

body mass in obese patients, due to the under estimation of physical performance. 

Again direct measurement of CPOmax is preferable to determine changes in cardiac 

performance in obesity, rather than with surrogate measures. 
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Chapter 9  

General Discussion 

 

The plan of this thesis was to determine what effects pregnancy and separately the 

weight loading in pregnancy have on cardiovascular physiology. In order to answer 

this question, subjects were studied longitudinally (acting as their own controls) in 

the pre-conception, pregnant and post-partum states. Based on prior 

considerations, it was important from the outset to determine serial changes in both 

physical and cardiac performance, as well as changes at rest, to establish reserve 

capacity. This approach has the theoretical, but potentially major, advantage of 

identifying a subject’s ability to respond to additional stresses in pregnancy, which 

most notably will include labour. It was also recognised at the outset that the major 

body of literature, studying cardiovascular physiological changes in pregnancy, has 

used post-partum as a surrogate for the prior non-pregnant state (pre-conception) 

[Gammeltoft 1926; Burwell et al 1938; Palmer and Walker 1949; Adams 1954; Roy 

et al 1966; Walters et al 1966; Ueland et al 1969; Katz et al 1978; Caton et al 1987; 

Atkins et al 1981; Davies et al 1986; Clark et al 1989; Sady 1989; Pivarnik 1990; 

Easterling et al 1990; Lotgering 1991; McMurray et al 1991; Spinnewijn et al 1996]. 

Clearly such an approach, while practical, may be fundamentally flawed. 

In addition to directly studying the effects of pregnancy in healthy women, attempts 

were made to deconstruct the possible confounding effects of weight gain during 

pregnancy.  Creation of a model for simulated pregnancy with use of the “Empathy 

Belly” and also of a physiological model of weight carriage – were an attempt to 

establish the normal response to weight loading. This was to allow comparison with 

the overall effects of pregnancy, which also include neuro-hormonal changes. 

The approach used to assess cardiac performance and reserve has been 

extensively studied and validated. However, there was an opportunity to further 

evaluate this method, in the context of new researchers, updated equipment and 

the availability of new alternative technology. The purpose of this was to establish 

that the CO2 rebreathing was the most valid and appropriate technique to be used 

in pregnant subjects. Traditionally invasive techniques were used to measure 

cardiovascular haemodynamics [Swan et al 1970] however, it is not justifiable to 

use this approach in healthy individuals.  Consequently, non-invasive techniques 

have been routinely adopted. Contradictory studies examining CO in pregnancy 
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have been reported in the literature and relate in part to the methods used to 

measure cardiac output [Atkins et al 1981; Robson et al 1989].  The most 

commonly reported method utilised Doppler echocardiography. Unfortunately this is 

generally best performed at rest thereby restricting its use as a means of assessing 

effects during exercise.  Other non-invasive methods have been used, most notably 

the re-breathing techniques [Knuttgen and Emerson 1974; Pivarnik et al 1993; 

Khodiguian et al 1996].   

In study I, two rebreathing methods (IGR and CO2 rebreathing) were directly 

compared with Doppler echocardiography at rest.  There was observed to be no 

overall agreement across all three methods, indicating that they cannot be 

considered to be interchangeable. There was agreement between each rebreathing 

method and the Doppler measurements based on Bland Altman analysis. However, 

this also demonstrated a slight difference in absolute values for cardiac output. This 

may be seen as a calibration effect. Each method was internally consistent and 

reproducible and so can used to compare serial changes.   

In study II, there were significant differences in measures of CO between 

rebreathing methods (IGR and CO2 rebreathing) at submaximal exercise. These 

results were highly consistent between subjects and therefore are likely to be real. 

This is in disagreement with the only other direct comparison of these two methods 

performed at exercise by Jakovlejevic et al, who found no difference in CO between 

methods at rest or peak exercise [Jakovlejevic et al 2008]. We failed to achieve 

adequate reliability from the IGR method at peak exercise, despite support from the 

manufacturer, and so the two studies can not be directly compared. One therefore 

must also be very cautious comparing similar measures between research groups, 

as it is likely that research methods will vary and machines may be calibrated to 

different normals.  

In study III, when CO was measured by the CO2 rebreathing method, there was 

good reproducibility and therefore we had confidence that this was the vaild method 

to be used for the remainder of the thesis to establish both peak cardiac 

performance and cardiac reserve.  

Study IV is the first to measure the effects of weight loading, in the form of an 

“Empathy Belly”, on physical and cardiac performance. This simulation was chosen 

to mimic the weight carriage experienced in the latter stages of pregnancy. It was 

found that weight loading directly enhances cardiac performance during maximal 

treadmill exercise, despite a reduction in exercise duration and fall in VO2max. The 

improvement in cardiac performance was through an increase in the pressure 
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generating capacity of the heart without a change in cardiac output. This 

observation is typical of the response seen during pure isometric exercise e.g. hand 

grip exercise [Laird et al 1979]. Maximum cardiac output and stroke volume 

remained constant, most probably as a result of similar overall workload, despite 

different exercise duration. There was a clearly divergent response in the direct 

marker of cardiac function, CPOmax, as compared to an indirect marker, VO2max. 

This brings into question the reliability of use of VO2max in interpretation of cardiac 

function, when inert weight is being carried. Importantly, this highlights a 

discrepancy that has not previously been fully appreciated.  

Study V is the first to examine the incremental physical and cardiac effects of inert 

weight loading in healthy females of child-bearing age.  Additional loading resulted 

in a further reduction in exercise duration and VO2max. Furthermore, incremental 

inert load carriage led to an increase in CPOrest however, did not result in a 

significant stepwise increase in cardiac performance or blood pressure during 

maximal treadmill testing. Previously reported studies have examined the effects of 

incremental weight carriage at submaximal exercise and found significant increases 

in HR, blood pressure and CO, but no change in SV. [Bhambhani et al 1997; 

Bhambhani & 2000; Sagiv et al 1994; Sagiv et al 2002]. In the present study heart 

rate did not change between loading conditions, because both were maximal tests. 

Therefore, we are likely to have measured an estimation of the peak cardiac 

performance. The lack of significant increase in cardiac performance suggests 

there is a limit to cardiac pumping capability, which is not fully achieved with 

unloaded exercise testing.  Again the divergent observations seen with VO2max and 

CPOmax were seen. This emphasizes the value of measuring cardiac function 

directly.  

Study VI examined the physical and cardiac effects of pregnancy, in each trimester 

and compared them longitudinally to the post-partum state, which was used as a 

surrogate for pre-conception. This is also the first study to assess differences in 

longitudinal effects on CPOmax and VO2max between pre-conception and post-

partum. In the first trimester, DBPrest and VO2rest, HRmax, HRreserve and exercise 

duration were significantly reduced compared to post-partum. In the second 

trimester, DBPrest, MAPrest, SVRrest, HRmax, HRreserve, exercise duration, VO2max, 

VO2reserve and CircPmax were all significantly reduced. Finally in the third trimester, 

HRmax, HRreserve, exercise duration, VO2max, VO2reserve and COreserve were all 

significantly reduced. No significant change in CPOmax or CPOreserve was seen 

throughout pregnancy. 
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Based on these findings and using post-partum as a surrogate for pre-conception, 

we have shown that markers of physical function, including HRmax, HRreserve, 

exercise duration, VO2max, VO2reserve all reduce in pregnancy. Although no 

comparison was made between trimesters, due to the different numbers studied, 

the physical function appeared to progressively worsen as gestation advanced. 

Despite the physiological lowering of blood pressure and systemic vascular 

resistance in the early stages of pregnancy due to hormonal effects, cardiac 

performance and cardiac reserve remained unchanged. This suggests a protective 

and adaptive mechanism has occured, whereby the increase in blood volume that 

occurs early in pregnancy, improves COrest and maintains COmax. As pregnancy 

advances and more weight is carried, blood pressure returns to normal, and CO is 

maintained, maintaining overall cardiac reserve. It is likely that the blood pressure 

recovery in the latter stages of pregnancy is in part due to the chronic isometric 

exercise of carrying the foetus. 

Importantly, study VI also showed that 3 months post-partum was a poor surrogate 

of pre-conception and highlighted that the cardiovascular physiological changes 

that have occurred in pregnancy have not returned to baseline at 3 months. Other 

studies have also concluded that physiological changes are not completely 

reversed by 3 months post-partum [Capeless 1991; Sady 1990; Robson et al 1987], 

whilst some suggest resting changes do return to baseline by 14-17 weeks post-

partum [Mahendru et al 2014]. One therefore has to interpret changes compared to 

post-partum with caution and where possible compare changes to pre-conception 

to understand the true physiological responses. 

Study VII examined the longitudinal physical and cardiac effects of pregnancy from 

pre-conception, throughout pregnancy, to 3 months post-partum. This is the first 

study to examine the longitudinal changes in CPOmax and VO2max before, during and 

after pregnancy. Initial changes were analysed between pre-conception and the first 

trimester. These data agree with findings from other studies that show that resting 

HR and CO increase, whilst blood pressure and SVR decrease in the first trimester 

[Robson et al 1989; Desai et al 2004; Mahendru et al 2014]. Changes in CPOrest 

have not been previously reported, and so we are the first to show that this does 

not significantly change. At maximal exercise, there was a significant decrease in 

COmax and CPOmax coinciding with a decrease in VO2max, despite preserved exercise 

duration. Moreover HRreserve, VO2reserve, COreserve and CPOreserve all decreased and 

so, this suggests a real reduction in cardiac performance that has not been 

previously identified.  
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Changes in cardiac output in early pregnancy at rest have been attributed to 

increasing blood flow, neurohormonal activation and an increase in left ventricular 

wall muscle mass and contractility [Robson et al 1989; Mabie et al 1994; Desai et al 

2004]. However, despite these physiological changes, it appears that the heart 

does not have the ability to sustain the same peak performance in early pregnancy. 

As a result of the enhanced resting cardiac function, cardiac reserve inevitably 

reduces. 

Changes between trimesters were then analysed. Our data at rest are again 

consistent with previous reports showing a gradual increase in HRrest, blood 

pressure and COrest [Robson et al 1989; Mabie et al 1994; Desai et al 2004]. 

Although we did not report a significant change between repeated measures of 

COrest, we did actually see a peak rise in COrest in the second trimester and 

maintenance of this in the third trimester. The reason for not showing significance 

was because we used an analysis of repeated measures throughout pregnancy to 

compare a difference across measures, rather than comparing change at each time 

point. We also identified that CPOrest continues to rise progressively from the first 

trimester to the third trimester, although again this was not statistically different 

overall across all three trimesters. However, VO2rest did show a statistically 

significant increase across trimesters. These changes in resting direct and indirect 

markers of cardiac function suggest that the cardiovascular system adapts to meet 

the demands of the growing foetus and increasing weight carriage. 

In contrast to the only published longitudinal study examining VO2max at peak 

exercise throughout pregnancy, the present study showed a significant decrease in 

VO2max, associated with a significant reduction in exercise duration (using the same 

treadmill protocol). Lotgering et al [Lotgering et al 1991] performed a longitudinal 

study, using treadmill exercise, whilst at the same gestation also comparing 

differences with cycle exercise in all three trimesters and post-partum. They found 

no significant difference in VO2max between trimesters and post-partum and no 

difference between exercise methods. In our experience women became more 

symptomatic of pregnancy as pregnancy progressed and therefore became less 

able to perform the same workload. In addition to reduced HRmax and VO2max, we 

also showed that HRreserve and VO2reserve both significantly fell throughout pregnancy.  

This is the first study to report the longitudinal change throughout pregnancy in both 

COmax and CPOmax with maximal treadmill testing. Despite the significant reduction 

in exercise duration and VO2max, we showed no significant difference in both direct 

makers of cardiac performance, namely CPOmax, and surrogate markers - CircPmax, 
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COmax, SVmax and SWmax. The mean CPOmax values in each trimester appear to 

show an increase from the first trimester to the third, however this fails to reach 

statistical significance. The cardiac reserve measured both directly (CPOreserve) and 

indirectly (COreserve, SVreserve and SWreserve) also showed no deterioration throughout 

pregnancy. Importantly, this shows preservation of cardiac reserve throughout 

pregnancy, after the inital fall from pre-conception. Although we were not able to 

accurately calculate absolute work load performed, which has to incorporate both 

the stage of treadmill exercise protocol, but also the weight of the indvidual, it is 

probable that the cardiac performance had increased for the level of work 

performed. The overall maintenance in cardiac performance appears to be driven 

by an increase in pressure generating capacity and is likely in part to be due to the 

increase in weight carriage, as is seen in inert weight carriage.  

Then changes between the third trimester and 3 months post-partum were 

analysed. There were significant increases in exercise duration, VO2max/kg and 

HRmax in post-partum. However, there were no significant changes in VO2max or 

COmax. The only other study examining CO, by Sady using an acetylene re-

breathing technique during maximal cycle exercise, found that COmax was higher in 

the third trimester than 8 weeks post-partum. The main difference in studies was 

the type of exercise, but also that the present study had lower HRmax in the third 

trimester, whereas Sady showed no difference between HRmax. This suggests that 

in our study, exercise was not tolerated as well in the the third trimester and 

potentially is related to the exercise being weight bearing. 

This is also the first study to report that there was no change in CPOmax or 

CPOreserve despite a significant reduction in exercise ability in the third trimester 

compared to 3 months post-partum. Both the flow and pressure generating 

capacities of the heart were unchanged, which is likely to be because the 

haemodynamic changes have not completely reversed.  

When changes between the third trimester and post-partum were compared to 

changes between the third trimester and pre-conception, we highlighted additional 

differences. Besides changes seen in post-partum, we showed significantly higher 

VO2max, CircPmax, COmax, and CPOmax and lower SVRmax  pre-conception. At rest we 

additionally identified lower COrest and higher DBPrest, SVRrest, but no change in 

SBPrest. As a conclusion, HRreserve VO2reserve, COreserve and CPOreserve were all 

significantly higher pre-conception, than in the third trimester. Importantly this study 

highlights the flaw of using post-partum as a surrogate for pre-conception. The 

present study provided invaluable evidence that there is an initial fall in both cardiac 
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performance and cardiac reserve in pregnancy. After this there is maintenance of 

cardiac performance and reserve throughout pregnancy, despite a fall in exercise 

ability and aerobic capacity. 

Study VIII is the first to determine the differences in peak cardiac performance 

between obese females (BMI > 35 kg.m-2), without known cardiac dysfunction and  

lean healthy females (BMI < 26 kg.m-2), using maximal treadmill exercise. We 

showed that chronic carriage of excess weight, that occurs in obese females, 

results in a reduction in aerobic capacity and physical performance, as evidence by 

lower VO2max/kg and HRmax compared to lean individuals. However, absolute VO2max 

values does not differ between groups across all ages. Whereas, VO2max/kg in the 

obese group is particularly lower at a younger age. Moreover, as BMI increases 

there appears to be an associated decrease in VO2max/kg, whereas absolute VO2max 

either stays the same or increases in both groups. The metabolic demands during 

maximal exercise in the obese group only appear to increase slightly with 

increasing BMI. This is probably because the difference in body composition 

between obese patients is likely to be fat mass, rather than muscle. At rest VO2rest 

was higher in the obese group, but overall the VO2reserve did not differ between 

groups. This shows that the metabolic demands of chronic weight carriage are 

higher at rest and exercise. We can therefore say that scaling VO2 by body mass in 

obese subjects will lead to misinterpretation of overall physical performance and 

aeobic capacity.  

Study VIII conclusively showed that peak cardiac performance (CPOmax) and 

cardiac reserve (CPOreserve) was significantly higher with chronic weight carriage. 

This increase appears to be driven by the increased flow generating capacity and 

was not associated with a higher pressure generating capacity. These findings are 

in agreement with previous reports that described a hyperdynamic increase in SV 

and CO [Alexander 1964; Kaltman et al 1976], but disagree with the finding by 

Alexander, that CO decreased to a low-normal level at high work loads [Alexander 

et al 1998b]. Moreover, these changes are the reverse of the changes associated 

with acute inert weight carriage, which saw an increase in pressure, but not flow 

generating capacity of the heart. This difference is likely to be secondary to the 

adaptive physiological responses that have taken place with chronic weight 

carriage. We know that blood volume increases, as well as cardiac chamber size 

and myocardial wall thickness [Alpert et al 2014]. This inevitably leads to a larger 

left ventricular diastolic volume, increased contractility and hence larger stroke 

volume.  
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At rest, we saw the same pattern with a significantly higher CPOrest and SVrest, 

although HRrest was also significantly elevated. Once again, the responses of 

CPOmax and VO2max differ with weight carriage and reinforces the necessity to 

directly measure cardiac function when assessing individuals carrying any form of 

weight. 

When we examine the effects of weight on physical and cardiac performance using 

the different models of weight carriage: inert (“Empathy Belly”); additional inert 

weight carriage (“Empathy Belly” and rucksack); Pregnancy, compared to post-

partum; Pregnancy compared to pre-conception; and Obesity compared to lean 

controls, we can identify both similarities and distinct difference (shown in Table 

9.1). Weight uniformally appears to be associated with a reduction in physical 

performance, as evidence by the worsening of symptoms (NYHA), the reduction in 

exercise capacity and aerobic capacity. Though the effect of weight on cardiac 

function appears to differ, depending on the model of loading. Acute inert weight 

loading results in an increase in the pressure generating capacity, but no change in 

flow generating capacity. Additional inert weight carriage does not result in a further 

rise, suggesting that peak cardiac function had already been demonstrated and 

achieved.  

The effect of pregnancy on cardiac performance differs depending on the timing of 

the non-pregnant baseline function (i.e. post-partum or pre-conception). When 

cardiac performance in pregnancy is compared to post-partum, there is no change, 

whereas when it is compared to pre-conception, cardiac performance is lower in 

pregnancy. The fact that weight does not significantly differ between pre-conception 

and post-partum, shows pregnancy itself has a direct and independent effect on 

peak cardiac function, that persists up to 3 months post-partum. The overall 

detrimental effect appears to be a reduction in the peak flow generating capacity of 

the heart. However, as described earlier the pressure generating capacity does 

increase with gestation and therefore in part is likely to be secondary to weight gain.  

Chronic weight carriage, in the form of obesity, results in an increase in cardiac 

performance by increasing the flow generating capacity of the heart with no change 

in pressure generation. This is rather suprising, as many obese patients develop 

hypertension and one might have expected a similar response to that seen in acute 

weight carriage with a more sustained isometric response.  
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Table 9.1 Effects of different forms of weight carriage on peak physical and 

cardiac performance. 

 NYHA ExDur VO2max VO2max/kg CPOmax COmax MAPmax 

Inert weight  

(Belly) 
N/A ↓ ↓ ↓ ↑ ↔ ↑ 

Additional  
Inert weight  

(Sack) 

N/A  ↓ ↓ ↓ ↔ ↔ ↔ 
Pregnancy  

(T3 v PP) ↑ ↓ ↓ ↓ ↔ ↓ ↔ 
Pregnancy 

(T3 v PC) ↑ ↓ ↓ ↓ ↓ ↓ ↔ 
Obesity 

 ↑ (↓) ↔ ↓ ↑ ↑ ↔ 
  

NYHA: New York Heart Association symptomatic class; ExDur: exercise duration; VO2: oxygen 

consumption; CPO: cardiac power output; CO: cardiac output; MAP: mean arterial pressure; Belly: 

Empathy Bell; Sack: rucksack and Empathy Belly;  T3: third trimester; PP: post-partum; PC: pre-

conception; ↑: increase; ↓: decrease; ↔: no change; (↓): likely decrease, although not compared. 

 

9.1 Future directions of study 

This study has provided new evidence of how pregnancy affects cardiac function at 

rest and maximal exercise in healthy women. One therefore could apply this 

knowledge to study women in pregnancy with cardiovascular disease to gain a 

better understanding of how different cardiac diseases, and how the severity of 

cardiac disease, responds during pregnancy. This, in time, could lead to studies to 

establish risk modeling to know when to intervene in pregnancy and achieve better 

maternal and fetal outcomes. 
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In addition, this study has shown how cardiac function responds to acute and 

chronic weight carriage. Further study could examine how cardiac function 

responds to significant weight loss in obese individuals, as seen in bariatric surgery 

and also how cardiac performance changes over time with sustained excess weight 

carriage. This can futher be applied to obese individuals with cardiovascular 

disease to determine if absolute CPOmax is a strong prognostic marker in morbidly 

obese patients with heart failure and thereby, in part, explain the obesity paradox. 

 

9.2 Conclusions 

Inert weight loading, weight carriage in pregnancy and non-physiological weight 

gain in obesity in the non-pregnant state, reduce physical performance. Both inert 

weight carriage and weight carriage in association with obesity increase cardiac 

performance. Acute weight loading induces an increase in pressure generating 

capacity, whilst chronic weight carriage leads to an increase in flow generating 

capacity.  

For the first time, I have shown that peak cardiac performance reduces in 

pregnancy, although this then gradually improves throughout pregnancy and is 

likely to be, in part, caused by an increase in weight gain. This important finding 

shows that testing cardiac reserve pre-conception is not necessarily an accurate 

reflection of how a patient with cardiac disease may respond in pregnancy. 

Therefore, perhaps peak cardiac performance, rather than indirect measures of 

cardiac function, should be established in pregnancy to aid management decisions 

in patients with established cardiac disease.  
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Appendix A  
Leeds (West) Research Ethics Committee 

A/B Floor, Old Site 

Leeds General Infirmary 

Great George Street 

Leeds 

LS1 3EX 

Tel: 0113 392 6788 

18th December 2006 

 

Professor Lip-Bun Tan 

Room 35/OB/009 

Old Nurses Home 

Leeds General Infirmary 

 
Dear Professor Tan,  

 
Study title: A study investigating the effects of pregnancy on the 

Functional REServe of the Heart in women with and 
without heart disease- the FRESH Pregnancy Study. 

REC reference: 03/121 
Protocol number: Tan / Barker March 2004 
 

Amendment number: Tan / Lewis Amendment 

Amendment date: 7th November 2006 
 

The above amendment was reviewed at the meeting of the Leeds (West) Sub-
Committee of the Research Ethics Committee held on 14th December 2006. 

Ethical opinion 

General recruitment email to be sent out across the Leeds Teaching Hospitals NHS 
Trust; Regional press advertisement (TV, radio and newspaper; advertisement in 
GP surgeries and local health clubs.   

 

Echocardiography assessments to be performed at each visit. 

 

The members of the Committee present gave a favourable ethical opinion of the 
amendment on the basis described in the notice of amendment form and supporting 
documentation. 
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The documents reviewed and approved at the meeting were: 

 

§ Notification of Substantial Amendment, dated 7th December 2006. 
§ Email to be sent across hospital. 
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§ Consent Form, Version 3, dated 6th December 2006. 
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§ Project Proposal, version 4, dated December 2006. 
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The members of the Ethics Committee who were present at the meeting were Dr 
John Puntis, Chair and Mrs Rhona Bratt, Committee Member. 

Research governance approval 
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Department for the relevant NHS care organisation of this amendment and check 
whether it affects research governance approval of the research. 
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The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees (July 2001) and complies fully with the Standard 
Operating Procedures for Research Ethics Committees in the UK. 

 

03/121: Please quote this number on all correspondence 

 

Yours sincerely 

 

 

Laura Sawiuk 

Committee Co-ordinator 

 

E-mail: laura.sawiuk@leedsth.nhs.uk 
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Appendix B 
 
THE BORG SCALE -  Leg Fatigue 

                                                                    

0         Nothing at all                            

 

0.5      Very, very little tired 

 

1         Very little tired 

 

2         A little tired 

 

3         Moderately tired 

 

4         Rather tired 

 

5         Tired       

 

6 

  

7         Very tired 

 

8 

 

9        

 

10       Extremely tired      
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THE BORG SCALE -  Shortness of Breath 

                                                                    

0         Nothing at all                            

 

0.5      Very, very slight (just noticeable)  

 

1         Very slight 

 

2         Slight (light) 

 

3         Moderate 

 

4         Somewhat severe 

 

5         Severe (heavy)       

 

6 

  

7         Very severe 

 

8 

 

9        

 

10       Very, very severe (maximal)      
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Appendix C 

 

The SF-36v2™  Health Survey 
 

Your Health in General 
 

1.  In general, would you say your health is: 
Excellent Very good Good Fair Poor 

! ! ! ! ! 
 
 
2. Compared to one year ago, how would you rate your health in general 

now? 
Much better 

now than one 
year ago 

Somewhat 
better now 

than one year 
ago 

About the 
same as one 

year ago 

Somewhat 
worse now 

than one year 
ago 

Much worse 
now than one 

year ago 

! ! ! ! ! 
3. The following questions are about activities you might do during a typical 

day.  Does your health now limit you in these activities?  If so, how much? 
 Yes, 

limited 
a lot 

Yes, 
limited 
a little 

No, not 
limited 
at all 

 a)  Vigorous activities, such as running, lifting 
heavy objects, participating in strenuous sports 

! ! ! 

 b)  Moderate activities, such as moving a table, 
pushing a vacuum cleaner, bowling, or playing 
golf  

! ! ! 

 c)  Lifting or carrying groceries ! ! ! 

 d)  Climbing several flights of stairs ! ! ! 

 e)  Climbing one flight of stairs ! ! ! 

 f)  Bending, kneeling, or stooping ! ! ! 

 g)  Walking more than a kilometre ! ! ! 

 h)  Walking several hundred metres ! ! ! 

 i)  Walking one hundred metres ! ! ! 

 j)  Bathing or dressing yourself ! ! ! 
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4. During the past 4 weeks, how much of the time have you had any of the 
following problems with your work or other regular daily activities as a 
result of your physical health? 

 All of 
the 

time 

Most of 
the 

time 

Some 
of the 
time 

A little 
of the 
time 

None 
of the 
time 

 a)  Cut down on the amount of time 
you spent on work or other activities ! ! ! ! ! 

 b)  Accomplished less than you would 
like 

! ! ! ! ! 

 c)  Were limited in the kind of work or 
other activities ! ! ! ! ! 

 d)  Had difficulty performing the work 
or other activities (for example, it 
took extra effort) 

! ! ! ! ! 

 
 
5. During the past 4 weeks, how much of the time have you had any of the 

following problems with your work or other regular daily activities as a 
result of any emotional problems (such as feeling depressed or anxious)? 

 All of 
the 

time 

Most of 
the 

time 

Some 
of the 
time 

A little 
of the 
time 

None 
of the 
time 

 a)  Cut down on the amount of time 
you spent on work or other activities ! ! ! ! ! 

 b)  Accomplished less than you would 
like ! ! ! ! ! 

 c)  Did work or other activities less 
carefully than usual ! ! ! ! ! 

 
6. During the past 4 weeks, to what extent has your physical health or 

emotional problems interfered with your normal social activities with 
family, friends, neighbors, or groups? 
Not at all Slightly Moderately Quite a bit Extremely 

! ! ! ! ! 
 
7. How much bodily pain have you had during the past 4 weeks? 

None Very mild Mild Moderate Severe Very severe 
! ! ! ! ! ! 

8. During the past 4 weeks, how much did pain interfere with your normal 
work (including both work outside the home and housework)? 
Not at all A little bit Moderately Quite a bit Extremely 

! ! ! ! ! 



- 274 - 

 

 

  

 
 
9. These questions are about how you feel and how things have been with you during 

the past 4 weeks.  For each question, please give the one answer that comes 
closest to the way you have been feeling.  How much of the time during the past 4 
weeks... 

 All of 
the 

time 

Most 
of the 
time 

Some 
of the 
time 

A little 
of the 
time 

None 
of the 
time 

 a)  did you feel full of life? ! ! ! ! ! 

 b)  have you been very nervous? ! ! ! ! ! 

 c)  have you felt so down in the dumps 
that nothing could cheer you up? ! ! ! ! ! 

 d)  have you felt calm and peaceful? ! ! ! ! ! 

 e)  did you have a lot of energy? ! ! ! ! ! 

 f)  have you felt downhearted and 
depressed? ! ! ! ! ! 

 g)  did you feel worn out? ! ! ! ! ! 

 h)  have you been happy? ! ! ! ! ! 

 i)  did you feel tired? ! ! ! ! ! 
 
10. During the past 4 weeks, how much of the time has your physical health or 

emotional problems interfered with your social activities (like visiting friends, 
relatives, etc.)? 

All of the 
time 

Most of the 
Time 

Some of the 
time 

A little of the 
time 

None of the 
time 

! ! ! ! ! 
 
11. How TRUE or FALSE is each of the following statements for you? 
 Definite

ly true 
Mostly 

true 
Don't 
know 

Mostly 
false 

Definite
ly false 

 a)  I seem to get sick a little easier 
than other people ! ! ! ! ! 

 b)  I am as healthy as anybody I 
know ! ! ! ! ! 

 c)  I expect my health to get worse ! ! ! ! ! 

 d)  My health is excellent ! ! ! ! ! 
THANK YOU FOR COMPLETING THIS QUESTIONNAIRE! 
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Clinicians recognise that heart failure (HF) patients suffer from exer-
cise intolerance to varying degrees, and those with theworst organ fail-
ure such as cardiogenic shock have the greatest limitation. Exercise
duration has been shown to correlate well with cardiac pump dysfunc-
tion [1]. Nowadays, exercise intolerance is usually quantified as aerobic
exercise capacity measured as peak O2 consumption (VO2max) during
cardiopulmonary exercise testing (CPX), previously introduced into car-
diology by Weber and colleagues as a tool to evaluate patients with HF
[2]. The authors described it as “an objective, reproducible and safe non-
invasivemethod for characterizing cardiac reserve and functional status
in patients with chronic cardiac failure”. This association and in terms of
clinical use, perceived equivalence with cardiac reserve led to the find-
ing that VO2max/kg is a strong predictor of HF prognosis [3] and this has
subsequently been adopted as a key selection criterion for cardiac trans-
plantation [4–6]. Subsequently, directmethods of measuring cardiac re-
serve and pumping capability became available [7,8], and whenever
entered into multivariate analyses together with VO2max, peak cardiac
power (CPOmax) emerged consistently as the stronger predictor of HF
prognosis [9,10]. Thesefindings are unsurprising since CPOmax is a direct
representation of cardiac organ pump function inmaintaining the circu-
lation [11]. In cross-sectional studies in healthy subjects [12] and HF

patients [13], instantaneous comparisons of VO2max and CPOmax have
also been found to be significantly correlated as shown in Fig. 1a.

Following from the above developments, the next relevant question
is: can VO2max be generally assumed to be a reliable, unequivocal, indi-
rect indicator of cardiac dysfunction? One necessary criterion to estab-
lish that VO2max is a generally good surrogate for cardiac functional
reserve is that any longitudinal change in VO2max must be accompanied
by a concordant change in CPOmax irrespective of how the change was
brought about. In other words, a decrease in VO2max will always occur
together with a decrease (not an increase) in CPOmax. In order to test
the hypothesis that the two variables, VO2max and CPOmax, fulfil this
criterion of concordant changes, we recruited healthy volunteers to per-
formmaximal treadmill exercises with and without carriage of an inert
mass which simulates body mass increments that are seen during
development of obesity or pregnancy.

Twenty-five healthy female volunteers within the child-bearing age
(mean age 22.74 ± 3.43 (SD) year; range 18.3 to 31.9 years), free from
any cardiorespiratory diseases or other significant medical disorders,
body mass of 63.1 ± 6.1 kg and BMI of 22.22 ± 1.75 kg·m−2, were re-
cruited and performed symptom-limited treadmill CPX in the absence
(C, control test) and presence of a weighted device (Empathy Belly,
Birthways, Inc., Vashon Island, USA) plus a standard rucksack (L, loaded
test). The study was approved by the Leeds (West) Ethics Committee.
The mean weight of the load carried was 22.1 ± 2.33 kg, equivalent to
35.0 ± 1.7% of the body mass of the participants (Fig. 1b). Non-
invasive haemodynamic measurements, CO2-rebreathing and standard
respiratory gas analyses as described previously [8,14] enabled record-
ing of resting and exertional haemodynamic parameters and measure-
ments of peak oxygen consumption (VO2max) and peak cardiac power
output (CPOmax). All subjects exercised beyond a respiratory exchange
ratio (RER) of 1.05 and reached their cardiopulmonary limits.

Weight-loading resulted in reduced exercise duration (C: 14.5±2.6,
L: 11.9 ± 2.0 min, P b 0.001) and VO2max (C: 2.90 ± 0.39, L: 2.65 ±
0.42 L·min−1, P b 0.001). The reduction was even more marked when
peak O2 uptake was corrected for body mass (VO2max/kg) (C: 46.4 ±
7.9, L: 32.2 ± 6.7 mL·min−1·kg−1, P b 0.001). The percentage reduc-
tions from baseline values for these indicators of exercise capacity
were 17.4 ± 7.9% for exercise duration, 8.6 ± 7.9% for VO2max and
30.5 ± 8.3% for VO2max/kg, as shown in Fig. 1b. However, these signifi-
cant reductions in exercise duration, VO2max and VO2max/kg, contrasted
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with a significant increase in the directly measured peak cardiac power,
CPOmax (C: 4.38 ± 0.70, L: 4.87 ± 0.75 W, P b 0.001). Compared to
baseline, the percentage increase in CPOmax was 12.2 ± 14.1% (95% CI:
6.6–17.7%). The systemic vascular resistance was not as low at peak
weight-loaded CPX compared to baseline (C: 316 ± 42, L: 341 ±
50 dyn·s·cm−5, P = 0.011).

Using the model of inert weight carriage to simulate body mass in-
crements with the development of obesity during maximal treadmill
CPX, the experimental data showed that both VO2max and CPOmax

were changed simultaneously but not in accordancewith our stated hy-
pothesis, as the changes in these variableswere in opposite directions. It
is evident that the significant correlation between these two variables
observed in cross-sectional studies, as shown in Fig. 1, is not borne out
on more stringent testing with a longitudinal study where the two var-
iables fail to produce concordant changes. The conventional concept
that VO2max is a good surrogate indicator of cardiac functional reserve
cannot be generalised to all possible scenarios encountered in clinical
practice. Caution should be exercised particularly in conditions of signif-
icant weight alterations such as in the contexts of cachexia, obesity and
pregnancy.

In conclusion, we can infer that a lowering of VO2max should not be
assumed to indicate a definite worsening of cardiac dysfunction. With-
out comprehending the biomedical circumstances, changes in VO2max

should not be crudely assumed to be a universally reliable indirect indi-
cator of parallel changes in cardiac functional capacity. The corollary is
also true, that CPOmax (had it been the more easily measured variable)
is not necessarily a good surrogate indicator of VO2max. A helpful clinical
implication is that, to gauge how good the cardiac pump is, the most

reliable and generally applicable method is to measure directly how
well the heart can generate and impart hydraulic energy to meet the
most demanding physiological stresses that can be imposed on the
circulation.
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Fig. 1. a. Cross-sectional studies indicating good correlation between VO2max and CPOmax

in a cohort of healthymale volunteers [12] and of heart failure patients [13]. b. Percentage
changes (Δ = Loading− Baseline) during CPX with inert mass loading vs. baseline CPX
without loading, in total mass (ΔWt), exercise duration (ExDur), peak O2 consumption
(VO2max), peak VO2max normalised for the combinedweight (VO2max/kg), and in peak car-
diac power output (CPOmax). *P b 0.001.
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