
Developing Embedded Software Using
Compile-Time Virtualisation

Ian Gray

This thesis is submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science
University of York

September 2010

ii

Abstract

The architectures of embedded systems are becoming increasingly non-standard and applic-
ation-specific. They frequently contain multiple heterogenous processing cores, non-uniform
memory, complex interconnect or custom hardware elements such as DSP and SIMD cores.
However, programming languages have traditionally assumed a single processor architecture
with a uniform logical address space and abstract away from hardware and implementation
details. As a result, the programmer is prevented from making efficient use of unique hardware
features by the abstraction models of the programming language and must use abstraction-
breaking techniques such as libraries, OS calls, or inline low-level coding.

This thesis describes Compile-Time Virtualisation (CTV), a virtualisation-based technique for
assisting the mapping of general-purpose software onto complex hardware. CTV introduces
the Virtual Platform, an idealised view of the underlying hardware that presents a simplified
programming model. The Virtual Platform ensures that general-purpose code will execute
correctly regardless of the complexity of the actual platform. In order to effectively exploit
application-specific architectures, CTV allows the programmer to influence the mappings im-
plemented by the Virtual Platform, for example to target specific processors or hardware ele-
ments. CTV differs from existing run-time virtualisation systems in that its virtualisation layer
only exists at compile-time, resulting in a system which displays minimal run-time overheads.

An implementation of CTV called Anvil is developed which is evaluated alongside the general
CTV approach. Experiments and simulations demonstrate that CTV-based systems can be
used to efficiently target a wide range of complex systems.

iii

iv

Contents

Abstract iii

Table of Contents xii

List of Figures xvi

Acknowledgements xvii

Declaration xix

1 Introduction 1

1.1 Characterising embedded architectures . 2

1.2 Programming embedded architectures . 4

1.3 Architecture support in modern languages . 5

1.3.1 Parallelism . 6

1.3.2 Memory . 7

1.3.3 Unique hardware elements and custom hardware 8

1.4 Thesis Aims . 8

1.5 Hypothesis . 9

1.6 Thesis Structure . 9

2 Literature 11

2.1 Architecture-oriented languages . 12

2.1.1 Parallelism . 12

v

2.1.2 General-purpose programming on GPUs 15

2.1.3 Non-uniform memory architectures . 16

2.1.4 Partitioned Global Address Space languages 19

2.1.5 Data streaming architectures . 20

2.1.6 Datapath architectures . 21

2.1.7 Architecture description languages . 23

2.2 Other architecture-aware techniques . 25

2.2.1 OS services in dedicated hardware . 25

2.2.2 Architecture-aware application mapping . 26

2.3 Virtualisation and Virtual Platforms . 26

2.3.1 Virtual machines . 27

2.3.2 Virtualisation in the OS . 28

2.3.3 Virtual machines for software languages 29

2.3.4 Virtual platforms for verification . 29

2.3.5 Other virtualisation-based techniques . 31

2.4 Generating hardware from software-style descriptions 31

2.4.1 Hardware description languages . 32

2.4.2 High-level synthesis languages . 34

2.4.3 System design languages . 40

2.4.4 Hardware / software co-design . 44

2.4.5 Problems with co-design . 46

2.5 Implementation fabrics for embedded systems . 46

2.5.1 Application-Specific Integrated Circuits (ASICs) 47

2.5.2 Field-Programmable Gate Arrays (FPGAs) 47

2.5.3 Advanced FPGA architectures . 48

2.5.4 The FPGA design process . 49

2.5.5 Coarse-Grained Reconfigurable Arrays (CGRAs) 50

2.5.6 Partial Dynamic Reconfiguration (PDR) . 51

2.6 Problems with existing research . 53

vi

2.6.1 Inappropriate abstraction models . 54

2.6.2 Limitations of high-level synthesis . 56

2.6.3 Poor support for dynamic systems and architectures 57

2.6.4 Practical issues . 59

3 Compile-Time Virtualisation 61

3.1 Overview . 61

3.2 Clustering . 62

3.3 Clustering model motivation . 64

3.4 System model . 65

3.4.1 System model layers . 67

3.4.2 Program layer . 67

3.4.3 Logical layer . 70

3.4.4 Target layer . 73

3.4.5 Expressing existing languages . 76

3.4.6 Expressing C with the system model . 77

3.4.7 Expressing Ada with the system model . 81

3.4.8 Expressing Java with the system model . 85

3.5 Compile-Time Virtualisation and the Virtual Platform 88

3.5.1 Moving from run-time to compile-time . 91

3.6 The CTV system model . 92

3.6.1 Model overview and rationale . 92

3.6.2 VP requirements . 95

3.7 The Object Manager model . 101

3.7.1 OM specification . 104

3.8 Conclusion . 109

4 Anvil: An Implementation of CTV 111

4.1 Implementation overview . 112

4.2 AnvilADL - Virtual Platform description . 113

vii

4.2.1 AnvilADL - syntax . 114

4.2.2 Processors and memory . 118

4.2.3 Communication topology . 120

4.2.4 Custom hardware items . 120

4.2.5 DMA controllers . 121

4.2.6 The logical layer - clusters and hardware mapping 122

4.2.7 Mapping features directly . 124

4.2.8 Object managers . 125

4.3 Refactoring overview . 126

4.4 Refactoring: Parse input program . 127

4.4.1 Identify thread bodies . 128

4.4.2 Generate call graphs . 131

4.4.3 Determine shared data items . 132

4.4.4 AnvilADL consistency checks . 135

4.5 Refactoring: Code splitting . 136

4.6 Refactoring: Build architecture-specific libraries 137

4.7 Communications layer . 137

4.7.1 Implementing inter-processor communications 138

4.7.2 Resolving software elements to host processors 142

4.8 Shared memory system . 143

4.8.1 Library interface . 144

4.8.2 Refactoring for remote shared data . 146

4.8.3 Associating mutexes with shared data . 147

4.8.4 Pointers . 148

4.8.5 Link scripts . 149

4.8.6 Other comments on shared memory . 150

4.8.7 Cache coherency . 150

4.9 Embedded pthreads library . 152

4.9.1 Service level functions . 153

viii

4.9.2 Architecture level functions . 156

4.9.3 Code refactoring for embedded pthreads 158

4.10 Custom hardware drivers . 159

4.11 Compilation . 161

4.12 Distributed dynamic memory allocation . 162

4.12.1 User-defined shared objects (UDSOs) . 163

4.12.2 Describing UDSOs using AnvilADL . 164

4.12.3 UDSO example . 167

4.13 Implementing migration . 171

4.13.1 Migrating OMs . 171

4.13.2 Migrating shared data . 172

4.13.3 Migrating threads . 173

4.13.4 Causes of migration . 175

4.14 Traceability . 175

4.15 Restrictions on input code . 178

4.16 Conclusion . 179

5 Evaluation 181

5.1 Targeting architectures with CTV and Anvil . 181

5.1.1 Capability-centric descriptions . 182

5.1.2 Heterogeneous architectures . 184

5.1.3 Non-uniform memory . 186

5.1.4 IBM Cell . 188

5.1.5 FPGA-based Cell-like system . 190

5.1.6 IO and custom hardware . 192

5.1.7 Texas Instruments OMAP family . 195

5.1.8 Summary . 197

5.2 Overheads . 198

5.2.1 Sources of overhead . 198

ix

5.2.2 Reduction of overheads due to CTV . 200

5.2.3 Object managers . 202

5.2.4 Shared memory . 204

5.2.5 Cache coherency . 212

5.2.6 Compilation times . 212

5.2.7 Summary . 213

5.3 Clustering . 214

5.3.1 Clustering experiments . 215

5.3.2 Clustering simulations . 217

5.3.3 Migration times . 222

5.3.4 Updating the communications layer . 225

5.3.5 Summary . 226

5.4 Conclusion . 226

6 Conclusions 229

6.1 Summary of findings . 230

6.2 Future work . 232

6.2.1 More expressive source languages . 232

6.2.2 CTV and hardware development . 233

6.2.3 Hierarchical Virtual Platforms . 233

6.2.4 Implications on WCET analysis . 234

6.2.5 Anvil improvements . 235

6.3 Conclusion . 235

A Object Manager message protocol 237

A.0.1 Thread operations . 238

A.0.2 Mutex operations . 239

A.0.3 Condition Variable operations . 240

A.0.4 Shared variable operations . 241

A.0.5 Protected object operations . 243

x

A.0.6 Miscellaneous operations . 243

A.0.7 Migration operations . 244

B Experimental data 245

B.1 Effect of undirected migration . 245

B.2 Transfer efficiency timings . 246

B.3 Simulation results: varying execution time . 246

B.4 Simulation results: varying data access frequency 247

B.5 Simulation results: varying migration frequency 248

C Hardware generation from Anvil 249

C.1 Hardware generation example . 251

D Anvil Example 255

D.1 Input application . 255

D.1.1 mappings.anv . 255

D.1.2 main.c . 256

D.1.3 sobel.h . 256

D.1.4 sobel.c . 257

D.2 Anvil output . 257

D.2.1 anvil settings cpu0.h . 258

D.2.2 anvil settings cpu1.h . 259

D.2.3 anvil specific cpu0.c . 259

D.2.4 linkscript.ld . 261

D.2.5 microblaze 0.c . 264

D.2.6 microblaze 1.c . 265

E Anvil UDSO Example 267

E.1 udsoexample.anv . 267

E.2 main.c . 268

E.3 queues.h . 269

xi

E.4 queues.c . 269

E.5 cpu1.c . 270

E.6 cpu2.c . 271

F 3-DES Example 273

F.1 Input application . 273

F.1.1 mappings.anv . 273

F.1.2 main.c . 274

F.1.3 des.h . 276

F.1.4 des.c . 276

F.2 Output application . 287

F.2.1 anvil settings cpu0.h . 287

F.2.2 anvil settings cpu1.h . 287

F.2.3 anvil settings cpu2.h . 288

F.2.4 anvil specific cpu0.c . 288

F.2.5 anvil specific cpu1.c . 290

F.2.6 anvil specific cpu2.c . 291

F.2.7 linkscript.ld . 291

F.2.8 microblaze 0.c . 292

F.2.9 microblaze 1.c . 294

F.2.10 microblaze 2.c . 295

Bibliography 296

xii

List of Figures

1.1 The ‘memory gap’ . 3

1.2 Example smartphone architecture . 4

1.3 Dual-processor architecture . 7

2.1 UPC implementation of vector addition. 13

2.2 Chapel implementation of data-parallel matrix addition 14

2.3 Chapel implementation of task-parallel sort . 14

2.4 The memory layout of the Nintendo DS . 16

2.5 The Sequoia Abstract Machine Model . 17

2.6 Sequoia example of constant vector multiplication 18

2.7 A data streaming architecture for performing stereo depth extraction. 21

2.8 Streams-C example . 22

2.9 An example of pipeline balancing . 23

2.10 A RICA grid during a single clock cycle . 24

2.11 Moving operating system services into dedicated cores 26

2.12 Smalltalk’s reflective capabilities . 30

2.13 The co-design ladder . 33

2.14 State machine-style high-level synthesis. 35

2.15 Datapath-style high-level synthesis. 35

2.16 A SystemC specification of a two-input NAND gate. 43

2.17 A VHDL specification of a two-input NAND gate. 43

2.18 Hardware / software co-design tradeoffs . 44

xiii

2.19 The target architecture of classical hardware / software co-design 45

2.20 Early FPGA architecture . 49

2.21 The standard FPGA design flow. 50

2.22 Partial dynamic reconfiguration . 51

2.23 Run-time system with run-time reconfiguration support 53

2.24 On-chip networks for PDR . 54

2.25 The stack of VMs in the standard general-purpose architecture. 55

2.26 Programming language scope is limited . 55

2.27 C cannot natively describe shared data. 56

2.28 Unguided thread migration problems . 58

3.1 Clusters in a large software system. 62

3.2 The clustering model influencing hardware mappings 65

3.3 The single-program model compared to the multi-program model. 66

3.4 The layered system model. 68

3.5 The logical layer. 73

3.6 The use of clusters and cluster targets. 74

3.7 Hardware ports . 76

3.8 How external hardware is modelled by the target layer. 76

3.9 A suitable system model representation of the C example. 80

3.10 CTV overview . 90

3.11 How the compile-time view of CTV differs from the run-time view. 91

3.12 CTV’s system model and the Virtual Platform . 93

3.13 Problems caused by the assumption of a single logical memory space 96

3.14 Example architecture that requires multistage permutation routing. 98

3.15 The OM model contrasted with a centralised model 103

3.16 The OM model . 103

3.17 Offline generation of routes to objects that may migrate. 107

4.1 Overview of Anvil, an implementation of CTV. 111

xiv

4.2 Overview of the main processes in the Anvil system 113

4.3 EBNF of AnvilADL’s syntax . 115

4.4 Direct hardware mapping with AnvilADL . 124

4.5 The main processes inside the Anvil compiler . 127

4.6 AST produced by Anvil from a simple code fragment. 129

4.7 An example callgraph generated during the code splitting phase. 133

4.8 Using clustering to reduce resolution requirements 143

4.9 AST informing Anvil that coherency is handled between two CPU cores. 151

4.10 Instructions to clear the Microblaze data cache . 153

5.1 Simple dual-core architecture as it is implemented on an FPGA. 182

5.2 The simple dual-core architecture of figure 5.1 as it is modelled. 183

5.3 An example of a heterogeneous embedded architecture. 184

5.4 Different configurations of Microblaze soft processor 184

5.5 The performance of the same code fragment on different target processors. . . 186

5.6 An example architecture with a non-uniform memory architecture. 187

5.7 The address map of both processors in the NUMA example. 187

5.8 The effect of mapping data items to different memory spaces 188

5.9 Block diagram of the Cell processor architecture [180] 188

5.10 5-core Cell-like system with custom interconnect 190

5.11 Block encryption time for 3-DES . 191

5.12 3-DES implementation block diagram. 192

5.13 Example architecture containing custom hardware elements. 193

5.14 Quadratic evaluation times . 195

5.15 Evaluation time (clock cycles) . 201

5.16 The service layers of Anvil’s OMs . 202

5.17 The code footprint of an OM scales according to its use 203

5.18 Anvil’s shared memory can attain optimality in some situations. 206

5.19 The placement of associated mutexes is significant 208

xv

5.20 A non-uniform memory architecture to evaluate the shared memory system. . . 209

5.21 Transfer rates between shared memory blocks . 210

5.22 Time taken to transfer shared variable data in the architecture of figure 5.20 . . 211

5.23 Compilation times of benchmark programs when using Anvil. 213

5.24 The experimental architecture . 215

5.25 Resultant slowdowns experienced after a single migration. 217

5.26 Timings used in the clustering simulation. 219

5.27 Task execution time on smaller architectures . 220

5.28 Task execution time on larger architectures . 220

5.29 Varying task migration chance with and without cluster-based migration (8x8 grid)221

5.30 Varying how frequently tasks access shared data (8x8 grid) 222

5.31 Time taken to migrate managed objects over a range of architectures. 223

5.32 Total migration times separated into processing and transmission times. 224

6.1 Hierarchical VPs . 234

C.1 Example of an architecture that could be generated. 252

xvi

Acknowledgements

First and foremost I would like to thank my supervisor Neil Audsley for his advice and support,
not just over the course of this thesis but throughout my entire academic life at York. From ac-
cepting me as an undergraduate through to the completion of my thesis, his help and guidance
has been invaluable.

I also extend my gratitude to all of the members of the Real-Time Systems Group at York for
providing an enjoyable and closely-knit working environment. Particularly, my assessor Andy
Wellings, and my colleagues Jack Whitham and Nick Lay who were always around to answer
my many questions and whose work on the RTS Virtual Lab was essential for the completion
of my experiments.

Finally, I would like to thank my family, friends, and my girlfriend Erin, without whom this would
not have been possible.

xvii

xviii

Declaration

This thesis has not previously been accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree other than Doctor of Philosophy of the
University of York. This thesis is the result of my own investigations, except where otherwise
stated. Other sources are acknowledged by explicit references.

Some work in this thesis is based on research by the author that has previously been accepted
for publication in international conferences. [92, 93, 94]

I hereby give consent for my thesis, if accepted, to be made available for photocopying and for
inter-library loan, and for the title and summary to be made available to outside organisations.

Signed ...(candidate)

Date ...

xix

xx

Chapter 1

Introduction

Embedded systems are application-specific computer systems that are deployed as part of
a larger device or system. They are transparently integrated into their host systems so that
the user is not explicitly aware of their presence. Unlike general-purpose computers they fre-
quently perform only a small set of dedicated tasks that does not change, although with the
development of user-programmable smartphones and similar devices even this distinction is
becoming increasingly blurred. Consumer electronics is one of the largest markets for such
devices, and the International Technology Roadmap for Semiconductors [118] shows their
complexity (for example the number of integrated processors in a design) is increasing rapidly.
The automotive industry makes extensive use of embedded systems to create engine man-
agement or system diagnostic modules, and they are also frequently deployed in high-integrity
systems such as aeroplanes, factories, medical devices and power stations. In general, almost
all digital devices contain some kind of embedded computer system.

Embedded systems are becoming ubiquitous. In the past, the substantial cost associated
with digital technology meant that computer systems would only be used in situations that
actively required computer control and would be otherwise impossible if attempted by a human
operator. Precision engineering is one such example, where a human would be incapable of
the fine motor skills required and so computer-controlled actuators are used. However as
technology progressed and the cost of microprocessors decreased, embedded systems were
integrated into more and more devices where computer control was not strictly essential but
instead simply added new features or improved existing ones. As silicon technology advanced
further, processors have become so inexpensive that they are now commonly used to actually
reduce the cost of a system. Often a large number of integrated circuits can be replaced by a
single embedded processor with no loss in computational power, thereby reducing the overall
build cost of the system. Indeed, the pervasiveness of embedded systems is so great that of
the nearly 8.3 billion microprocessing units shipped in the year 2000, 8.14 billion (98%) were
used in embedded applications [217].

This trend is allowing technology to move towards the idea of pervasive computing [195],
where a large number of small, inexpensive embedded devices are deployed throughout all
facets of everyday life. These devices are frequently networked, either to each other or via the
internet. For example, lighting, temperature and other controls in the rooms of a house might
be networked with biometric sensors worn by inhabitants to allow the internal environment to

1

Chapter 1. Introduction

be automatically monitored and adjusted. The main concept of pervasive computing states
that the user does not need to consciously interact with the system, it instead integrates itself
into everyday life. This was described by Mark Weiser as follows:

”The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.” [236].

Embedded systems present a unique set of design challenges [160, 104]. The computational
requirements placed on embedded systems are constantly increasing, but their physical size
severely limits the amount of processing power and memory that they have access to. Further-
more, embedded applications are often battery-powered so they must minimise the amount of
energy they consume. As a result, the architectures of embedded systems are frequently more
complex and application-specific than that of a general-purpose system.

1.1 Characterising embedded architectures

Limits on single-core clock speed mean that the designer cannot simply keep using faster and
faster processors, they must instead leverage parallelism and include multiple processing ele-
ments in their designs. Due to the general trends expressed by Moore’s Law, transistor counts
of hardware architectures double approximately every 18 months. This has allowed hardware
designers to integrate an increasing number of cooperating elements into a single design. This
has become known as the System-on-Chip (SoC) paradigm [83] and is a divergence from the
common single-processor, single-memory space assumed by most programming languages.

The application-specific nature of embedded systems means that the designer will use different
kinds of processing element to perform the various subtasks that are required by the system.
Control logic will be implemented on a simple processor core with shallow pipeline, limited
throughput and no floating-point unit, whereas encoding or decoding tasks might be assigned
to dedicated DSP cores.

However, it is not just processing units that are non-standard. Memory access times have
been increasing much slower than processor clock speeds [241] - a phenomenon known as
the ‘memory gap’ - making memory access the bottleneck in most general-purpose systems.
The memory gap is illustrated in figure 1.1. Caches can alleviate this to some extent, but they
consume a large amount of power and silicon area and they make it very difficult to reason
about the worst-case execution time of the system. As embedded systems interact with the
outside world they are frequently classified as real-time systems [31], and so the designer must
be able to perform this analysis to prove that their system will meet its timing constraints. Due to
all this, the memory layout of embedded systems is usually as non-standard and application-
specific as the processing devices that it is built around, making use of a range of different
memory technologies and topologies.

Finally, because embedded systems have a predetermined function, it is common for some
parts of that function to be implemented using dedicated hardware rather than software. Such
cores are frequently orders of magnitude faster than an equivalent software implementation
and consume less power, at the expense of greater silicon area and manufacturing cost.

2

1.1. Characterising embedded architectures

1

10

100

1000

10000

R
e
la

ti
ve

p
e
rf

o
rm

a
n

ce

DRAM - 2x every 6 years

CPU - 2x every 2 years

Time

Figure 1.1: The ‘memory gap’ - memory access times have not scaled at the same rate as
processor performance. Equivalent graphs show similar gaps between application complexity
vs programmability and power consumption vs battery capacity.

These factors have led to an explosion in the variety of on-chip architectures being deployed.
A major trend is towards more specialised, application-specific designs that may contain:

• Multiple heterogenous processing elements [87, 35].

• On-chip networks and buses, possibly spanning clock domains [59, 139, 240, 268]

• Non-standard memory hierarchies with shared memory and the integration of new mem-
ory technologies [76, 11, 22]

• Unique features of the implementation fabric such as DSP cores [210, 243], SIMD units
[122, 190], or other custom hardware [98, 81]

Such architectures are non-regular and are heavily biased towards efficient execution of a spe-
cific task. Modern smartphone architectures are good examples of this, as they are optimised
for low-power usage and contain a wide range of unique I/O devices. A generalised smart-
phone architecture is shown in figure 1.2. Modern examples have at their centre a System-
on-Chip device such as the Texas Instruments OMAP [58] which comprises a main processor,
embedded memory, and hardware graphics acceleration. This performs the majority of ap-
plication processing, runs the phone’s operating system, and renders graphics. Outside the
central processor there is a collection of external devices connected over a diverse selection
of on-chip buses, each optimised for their expected traffic patterns. Modern smartphones are
multicore devices because they have a dedicated baseband processor which receives high-
level commands from the main processor and implements the low-level communications over
the phone’s radios. Some of the deviations from general-purpose design that allow low power
operation are:

3

Chapter 1. Introduction

Main processing SoC

Main
CPU

2D and 3D
graphics

Local
RAM

Off-chip bus
endpoints

Baseband
processor

Bluetooth

GSM

Wifi

GPS

Main
system
RAM

Flash
memory Accelerometer

Touchscreen
input

SIM interface

Screen output

Compass

RAM / Flash

USB interface

DMA

Figure 1.2: An example modern smartphone architecture.

• They use processors with low clock speeds and implement complex calculations directly
in dedicated logic. Dedicated logic uses much less power than a powerful processor, but
takes up space and increases hardware complexity.

• They use processors with custom instruction sets tailored towards the target application.

• All devices in the system use aggressive power scaling and sleep modes. Devices turn
off as much as possible, at the expense of throughput.

• Modular design allows for entire sections of the architecture (such as the Bluetooth stack
for example) to be deactivated when not in use.

All of these features require some amount of developer attention in order to be used effectively.
Developing for such diverse platforms requires that the programming model used is amenable
to architectural variety and can effectively exploit the hardware to its full capacity. The follow-
ing section discusses the architectural support provided by the most common programming
languages and highlights the areas in which this support is insufficient.

1.2 Programming embedded architectures

Programming complex embedded architectures is a considerable challenge. The first embed-
ded systems were relatively simple and performed only a small number of fixed operations.
They still contained examples of the non-standard features described above, but because of
the small amount of functionality that they had to implement the majority of systems were pro-
grammed in assembler with program sizes of only a few thousand lines. Manual assembly

4

1.3. Architecture support in modern languages

programming is error-prone and requires a high degree of programmer skill, but it also allows
the greatest amount of expressive power over the operation of the processor and the system
as a whole. The programmer can directly control features such as memory access, register
allocation and the use of custom hardware without being limited by the expressive power of a
high-level language or compiler.

Modern embedded systems are now considerably larger and many are programmed with
millions of lines of code. This increase in complexity makes the exclusive use of assem-
bly programming infeasible and forces the adoption of high-level languages. However, these
languages evolved for use on general-purpose computers and so do not provide abstraction
models that allow the programmer to reason about architectural concepts. In general, the im-
plementation architecture of languages (such as C or Ada) is assumed to be a single processor
with a standard instruction set, no external hardware elements and a single, contiguous, logical
address space. If multiple processors are present then a symmetric multiprocessor architec-
ture with operating system support is assumed. Deviations from this require the programmer
to break the abstraction models of the language, using techniques such as in-line assembly
programming, code annotations, custom compilers, language extensions and custom linker
directives. These techniques reduce programmer comprehension and limit traceability and
debugging.

As there is no sign that computation requirements for embedded systems will stop increasing,
it is expected that the kinds of architectures being developed for use in such systems will
continue to get more complex, and so this problem will worsen over time.

1.3 Architecture support in modern languages

Language support for complex modern architectures is poor in common programming lan-
guages due to the manner in which they have developed over the last 40 years. The first
high-level languages like C [129] and Fortran [212] were developed to reduce the complexity
inherent in assembly programming. For example, C was developed to assist in the porting of
the UNIX operating system, which was originally developed in assembly language [129].

Much of the complexity that is managed by high-level languages comes from architecture-
specific features that the programmer does not want to deal with, such as manually assigning
registers to program variables or management of the stack and heap. Due to the observation
that the vast majority of computer systems in use were single-processor systems with a single
contiguous block of memory, such an architecture was a reasonable assumption for the lan-
guages of the time to use. Fortran, which was targeted at supercomputers of the 60s and 70s
hides all architectural details, including parallelism, from the programmer.

These languages made programming much easier by making assumptions based on a stan-
dard target architecture and hiding all hardware concerns. Unfortunately, the legacy of these
choices has meant that modern programming languages can hide what are now important
architectural details from the programmer.

This section examines the ways in which three major languages, Ada [15], C/C++ [72], and
Java [9] can express and exploit the modern architectural features identified previously in sec-
tion 1.1. These three languages are considered because C and C++ are by far the most com-

5

Chapter 1. Introduction

mon high-level languages used in current embedded systems, Ada is a rigourously-defined
language developed to be suitable for use in safety-critical embedded systems, and the Real-
Time Specification for Java [91] is an attempt to make the popular Java language suitable for
such systems also.

1.3.1 Parallelism

In general, modern languages provide reasonable support for parallelism. Ada and Java both
include the concept of concurrency as a native part of the language and so therefore their run-
time systems both include schedulers that the programmer can control. Also in both Ada and
the Real-Time Specification for Java (RTSJ) [91] the programmer can control task/thread pri-
orities and scheduling schemes that allow a high level of control over the units of concurrency
in their program and the ways in which they interact. C/C++ provide no language-level sup-
port for concurrency at all, but it is expected that they will be used under a POSIX-compliant
operating system which is guaranteed to provide a similar level of concurrency control though
system calls. The POSIX threading library is called pthreads [115] and provides dynamically-
created threads and synchronisation using mutexes and condition variables. The pthreads
interface is simple and does not provide high-level thread control, meaning that it can be chal-
lenging to write and debug large multithreaded programs to ensure liveness and the absence
of deadlocks.

All of these languages carry the underlying assumption that the target architecture is com-
prised solely of relatively equivalent processors with a single shared block of memory. In
Ada 95 it is not possible to directly express which processor should be assigned which task,
demonstrating that the language assumes that it is not of critical importance. Newer revisions
of the language are likely to address this [237]. Using the thread affinities of the RTSJ it is pos-
sible to specify that threads should only execute on certain processors, however the default
is for threads to be able to migrate between all processors and affinities simply narrow this.
This places a requirement on the language’s run-time system to implement thread migration,
and requires a system-wide scheduler. In systems with separate memory spaces migration is
usually very difficult because data needs to be kept physically close to the thread that uses it
in order to maintain performance. Affinities do not currently allow the programmer to express
this. Also, if the processors in the system use different instruction set architectures (ISAs)
then migration is not possible without recompilation or the use of multi-architecture binaries
(such as Java bytecode). Finally, with the introduction of DSP cores and vector processors
the programmer has to manually split their code between the varying processing devices and
separately compile each program to make use of the different capabilities of these cores.

Another option available to programmers is to make use of an autoparallelising compiler, de-
scribed in section 2.1.1. Autoparallelising compilers automatically extract the parallelisation
inherent in the input code, at the penalty that they often cannot extract as high a degree of
parallelism as would be possible though manually rewriting the code. When using an au-
toparallelising language or compiler, because the programmer does not manually define the
parallel units (threads, processes, etc.), they cannot map them to the processors of the target
architecture. This leads to the same problems already discussed in this section.

6

1.3. Architecture support in modern languages

CPUCPU

RAM RAM

Figure 1.3: An architecture with two separate memory spaces can be difficult to target in
standard programming languages.

1.3.2 Memory

In C/C++ all memory is presumed to be equivalent. That is, that the memory is all the same
type (no scratchpads [11, 207], locked caches [231], etc.) and that access time is unrelated
to address. C’s arrays and pointer arithmetic relies upon the system appearing to have a
single contiguous block of main memory starting at address 0, but in practice this limitation
can be ameliorated by run-time address translation in the kernel and MMU. However, as there
is no concept of different blocks of memory in C, the programmer cannot express that different
blocks have different properties, such as access latency or average contention. The family of
I/O instructions on x86 processors (IN, OUT, etc.) can only be used through the use of inline
assembly because the programmer cannot express to the compiler which data accesses are
I/O and which are memory. Related to this, variables are placed in memory by the linker,
outside of the programmer’s control. The use of thread affinities can position computation, but
only if a compatible kernel is used and it can not position data.

This situation is improved in Ada, which still has most of the problems of C but allows the
use of representation specifications to give the programmer a higher level of control over the
placement of program data. This mechanism was included for the programming of low-level
device drivers however, and it is unwieldy use on general-purpose memory for standard pro-
gram variables. Representation specifications allow the programmer to specify the absolute
address that data should be stored at, which can be combined with a very low-level knowl-
edge of the target architecture to place data in specific memory spaces throughout the design.
However both languages still assume a single consistent address space across all memory in
the system. This is reasonable for a modern SMP system [96] (which these languages tend
to target), but in embedded systems this is rarely the case. A system with two processors,
each processor with its own memory (figure 1.3) exposes the weakness in this approach. An
address map is a feature of a processor → memory connection rather than a program, but
since the days of C and Fortran they have been assumed to be equivalent.

Furthermore, it is not reasonable for the programmer to have to manually place all the variables
in their system as this becomes too onerous once a system grows large and complex. Linkers
would be able to allocate addresses effectively throughout a complex memory space, but they
are restricted by the assumptions made by source languages. The programmer is not given
the ability to influence the linker to place memory items in specific parts of the system.

7

Chapter 1. Introduction

1.3.3 Unique hardware elements and custom hardware

Support for unique hardware elements is limited in most modern languages. Due to the fact
that the abstractions of these languages were developed under the assumption that the target
architecture would be fixed and uniform, the programmer has to work outside the language
to exploit non-standard hardware elements. Techniques such as Ada’s representation speci-
fications or the use of hand-written linker scripts are used to fix program variables to specific
addresses and thereby allow the manipulation of memory-mapped devices. Equally, access
to these hardware features require manual function calls in all of the major languages. The
hardware feature can never be used as a first-class part of the language. For example, if an
architecture contains a vector co-processor it should be automatically used by the language
for calculating the result of vector operations. However this is not the case and the program-
mer is forced to manually construct driver functions and pass operands to the co-processor
specifically. The end result is broadly the same, but the final code is much less readable and
is not portable to an architecture that contains, for example, two such co-processors.

1.4 Thesis Aims

This work aims to explore the many reasons why developing software for modern embedded
systems is problematic and proposes a possible solution. Modern embedded systems will be
characterised and from this, a new abstraction technique for embedded development will be
presented that fulfills the following goals:

• Heterogeneous architectures: The main goal of this work is to present a system that
can aid development of software for modern embedded architectures. The system should
also be able to target the kind of future embedded architectures that can be forecast
from current trends. These architectures are likely to contain dozens, perhaps hundreds
or thousands, of heterogeneous processing devices that are served by a highly-irregular
memory hierarchy consisting of many different memory technologies. Communication
between processing devices will use a variety of media, such as shared buses and on-
chip networks. Many existing solutions for programming multicore architectures display
scalability problems and are only suitable for use over a small number of processor cores.

• Minimal run-time overheads: Due to the intended target domain of embedded and
real-time systems, it is undesirable to introduce a heavyweight middleware layer, as has
been done with systems such as CORBA [183]. This work aims to minimise run-time
overheads as much as possible because this allows designers to create system archi-
tectures with reduced clock speeds and lower architectural complexity. Systems with
lower clock speeds can consume much less power [142], which is of particular impor-
tance for devices that are battery-powered (such as mobile phones or sensor networks).
Even for mains-powered devices, lower power consumption results in looser demands
for cooling and greater manufacturing tolerances.

• Predictability: Due to the fact that many embedded systems are also real-time systems,
it is critical that the proposed solution does not undermine execution time analysis or
traceability.

8

1.5. Hypothesis

• Compatibility with existing languages and toolchains: The proposed solution should
remain as compatible as possible with the languages and tools that are already used in
the embedded industry. Formal verification of compilers is a very expensive and time-
consuming process, so companies are often unwilling to discard this effort simply to
adopt a new programming language. Also, adoption of a drastically-different language
reduces the productivity of software engineers whilst they learn the new tools. This
work proposes a system that is language-agnostic, allowing it to make use of existing
languages but to also benefit from the development of more-suitable embedded systems
languages in the future.

1.5 Hypothesis

Abstraction and virtualisation have been shown to be useful techniques for hiding implemen-
tation complexity and providing a high-level programming model to aid software development.
However, they introduce significant overheads and the programmer cannot influence the map-
ping of their application when targeting non-standard architectures. This thesis contends that
moving the virtualisation layer from run-time to compile-time will allow the programmer more
control over the implementation of the system, resulting in support for a much wider range
of target architectures, the exploitation of unique hardware features, and lower run-time over-
heads.

1.6 Thesis Structure

The structure of this thesis is as follows. Chapter 2 looks at related work and analyses the
current problems encountered in embedded systems development. Chapter 3 then introduces
Compile-Time Virtualisation (CTV) as a potential solution to these problems. Chapter 4 dis-
cusses Anvil, an implementation of CTV that is designed to show its applicability to real-world
systems. Chapter 5 evaluates CTV and Anvil against previous work and the thesis hypothesis,
and chapter 6 concludes with a summary of findings.

9

Chapter 1. Introduction

10

Chapter 2

Literature

This chapter will give an overview of relevant research that has attempted to describe, analyse,
or efficiently exploit heterogeneous embedded architectures. The chapter will particularly focus
on modern embedded systems by considering the elements that such architectures commonly
contain, what challenges they pose, and the ranges of solutions that have been proposed to
overcome these challenges. The chapter is split into three main approaches to the problem of
targeting non-standard architectures:

• Describe the architecture from a software viewpoint. If the programmer can include
hardware considerations at the same abstraction level as their software then it is possible
to give the compiler and toolchain more mapping information. Section 2.1 looks at new
languages or language extensions that all attempt to do this by bringing architectural
information up to the source-code level. The section describes the common features of
embedded architectures, and then looks at the way that each of these features can be
represented in software.

• Hide the architectural complexities. Abstraction is an essential feature of software
development that is designed to help the programmer to manage the complexity of large
systems. Abstraction can be provided by the programming language or operating system
(as discussed in section 2.1), but a branch of research attempts to completely hide ar-
chitectural details from the programmer through the insertion of a run-time virtualisation
layer that handles software to hardware mapping. Section 2.3 considers virtualisation
and the way that this can be done.

• Generate the hardware along with the software. If the target hardware is generated
from a software description then it is guaranteed that it will be compatible with the se-
mantics of the program. There are two main approaches to this - section 2.4 discusses
hardware description languages and high-level synthesis systems and section 2.4.4 dis-
cusses hardware/software co-design.

The chapter also discusses the implementation fabrics that are commonly used to build em-
bedded systems in section 2.5 because the unique properties of different implementation
choices can affect the overall efficiency of the final design. Particular attention is paid to

11

Chapter 2. Literature

FPGA-based systems because they afford the designer some interesting new options that are
not possible with standard fixed hardware.

2.1 Architecture-oriented languages

As a result of the insufficient architectural support provided by mainstream languages (de-
scribed in section 1.3) a number of new research languages have been developed. The fol-
lowing sections describe languages that have been designed to provide better support for con-
currency (section 2.1.1), non-uniform memory architectures (section 2.1.3), and new computa-
tion paradigms such as data streaming applications (section 2.1.5) and data-path computation
(section 2.1.6).

2.1.1 Parallelism

Making use of architectural parallelism is one of the main areas that modern languages are
concentrating on. The clock speeds of single cores have reached a plateau, and without a
major redesign it is unlikely we will see the kind of increases experienced from the late 80s up
until around the year 2000 [215]. Therefore, to keep increasing in computational throughput
architectures must include an increasing number of processor cores. At the time of writing,
the largest supercomputer in the world contained 224,162 cores [202]. Clearly the challenge
for programmers and language designers therefore is to create a development environment in
which this massive amount of parallelism can be reasonably exploited.

As detailed in section 1.3, modern language support for parallelism is reasonable but lack-
ing in some areas. All of the major languages rely on explicit parallelism - the programmer
must manually identify the parallel tasks in their code an describe them as such. This is ac-
ceptable for low numbers of cores, but becomes much harder as the numbers of tasks and
processor cores increases. Programmers have to contend with issues of deadlock, interfer-
ence, scheduling, data passing and functional correctness; few of which are treated explicitly
in existing languages. Two approaches have developed to manage this problem. First, a new
class of parallel programming languages has emerged to try to allow the programmer to more
easily express issues of parallel execution. Second, languages that attempt to automatically
extract parallelism have been created. These two alternatives are described below.

UPC

Unified Parallel C (UPC) [34] is an extension to C designed for supercomputing environments.
UPC allows the programmer to express a Single Instruction Multiple Data (SIMD) style of ex-
ecution. A UPC program typically only has a single thread of execution per processor core,
with parallelism coming from the ability to express massively parallel loop or array-based op-
erations. UPC does not provide a programming model that is as high-level as that of Chapel,
because it requires the programmer to explicitly use barrier and lock-based synchronisation
control. Figure 2.1 shows a vector addition operation in UPC. No assumptions are made about

12

2.1. Architecture-oriented languages

#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main() {

int i;

upc_forall(i=0; i<N; i++; i)

v1plusv2[i]=v1[i]+v2[i];

}

Figure 2.1: UPC implementation of vector addition.

the data accessed in the upc forall statement. If the data is not disjoint across parallel oper-
ations, the result is undefined.

UPC’s main contribution is its strict definition of the memory model. The programmer’s view of
the system is that of a set of threads, each executing in a partition of a single global address
space. This is known as the Partitioned Global Address Space (PGAS) model, described in
section 2.1.4. UPC threads have affinity with a specific partition and also their own private
memory space. As a result, UPC explicitly requires the implementation hardware to expose a
global address space, which can be challenging to implement on some non-uniform memory
architectures. Figure 2.1 shows an example of UPC.

Chapel

Chapel [38] is a parallel programming language developed by Cray with the stated goal of
increasing the productivity of supercomputing platforms. Chapel is not an autoparallelising
language, it instead aims to give the programmer abstractions that allow the expression of
potentially parallel operations which can then be exploited by the compiler and runtime. Simi-
larly, the programmer directs placement of data throughout the memory hierarchy and makes
explicit use of synchronisation constraints.

Unlike UPC, Chapel programs contain a set of explicitly-defined threads of execution. Chapel
allows the use of coarse-grained task-level parallelism (similar to Java threads or Ada tasks)
that require explicit synchronisation, but also introduces constructs for fine-grained parallelism
that use implicit synchronisation and data passing. Figure 2.2 shows the forall statement
which expresses loop-level parallelism to the compiler, which can therefore automatically make
use of available cores, pass input data appropriately, synchronise the worker threads, and
collate output results, all without direct programmer input. Figure 2.3 shows a program that
expresses that two processes may execute concurrently and again the compiler will automat-
ically handle data flows and synchronisation. As with UPC, the language assumes that race
conditions are not generated by the parallelisation. These two examples demonstrate that
Chapel is a data-parallel language. The concept of data-parallel languages was developed in
the late 80s to early 90s with the HPF [151], ZPL [146] and SISAL [77] languages.

As Chapel was developed to run on supercomputing architectures, it tends to assume a regular
SMP or grid-based architecture. On this kind of system it can use the concepts of locales
and domains to bind computation and data together onto specific nodes of the architecture.
However, it can be challenging to make full use of entirely irregular architectures and it relies on
the presence of a hardware-supported single shared memory space across the entire system.

13

Chapter 2. Literature

var n: int = 1000;

var a, b, c: [1..n, 1..n] float;

forall ij in [1..n, 1..n]

c(ij) = a(ij) + b(ij);

Figure 2.2: Chapel implementation of data-parallel matrix addition. (Fine-grained, data-parallel
programming.)

computePivot(lo, hi, data);

cobegin {

Quicksort(lo, pivot, data);

Quicksort(pivot, hi, data);

}

Figure 2.3: Chapel implementation of task-parallel sort. (Coarse-grained, task-parallel pro-
gramming.)

The memory programming model exposed by Chapel is broadly a PGAS model (section 2.1.4).

OpenMP

Unlike the programming languages discussed in the previous sections, OpenMP [39] is an
API for multi-threaded shared memory parallelism that can be implemented on top of a given
operating system with many different languages providing bindings to it. Currently the API is
specified for C/C++ and Fortran and it has been implemented on many Linux and Windows-
based platforms. OpenMP is designed for shared memory systems and cannot target dis-
tributed memory systems on its own. For such systems it is common for designers to use the
combination of OpenMP and another API specification called MPI [97]. MPI (Message Passing
Interface) is designed to provide an API for communication in a distributed system, and it is
primarily used in cluster and high-performance computing contexts.

Due to its implementation as an API for languages like C and Fortran, OpenMP is limited in
the amount of freedom that it has to express new execution models. As a result, it exclusively
uses a ‘fork and join’ model of parallel execution, whereby a master thread is the only thread
running in the system until it enters a parallel region, at which point a team of lightweight worker
threads are created (or ‘forked’) to perform the work. At the end of the region, the main thread
waits for all worker threads to complete before continuing. Using this model the programmer
can express code that can be parallelised and the compiler will perform the necessary work.
OpenMP can support similar constructs to Chapel’s forall and cobegin statements.

Other languages

A large number of languages have also developed to express similar constructs to UPC and
Chapel. X10 [42] was developed by IBM as a derivative of Java to provide an object-oriented
approach to parallel computing. It uses a similar partitioned global address space to UPC and

14

2.1. Architecture-oriented languages

attempts to prevent the locking problems that complicate parallel programming by introducing
the concept of parent and child relationships for tasks. A child is not allowed to wait for a
parent, easing analysis of code and helping to reduce deadlocks.

Intel Threading Building Blocks (TBB) [187] is a C++ template library which aims to simplify the
low-level parallelisation primitives already provided by C++. TBB allows the definition of tasks
which are automatically balanced across the cores of the system to perform load balancing and
maximise cache hits. It offers similar constructs to those found in Chapel and UPC, but also
provides many low-level constructs, such as mutexes and atomic fetch and add operations.
TBB’s memory model is similar to C++’s flat model with the addition of thread local storage.
The use of MPI is recommended when using TBB on a distributed system with shared memory.

All of the other systems currently mentioned in this section require the programmer to manually
identify the parallelism in their code. However, it is also possible to attempt to automatically
derive this information from a single-threaded program. This can be done from standard lan-
guages using parallelising compilers (SUIF [244], Polaris [24]), or from specialised languages
that have constructs to help the parallelising compiler, such as SieveC [63]. In general however,
autoparallelising systems tend to perform rather poorly because they still rely on the structure
of the input software. The programmer must carefully express their code in such a way that
any potential parallelism is exposed. Code written purely for single-threaded execution tends
to contain only a small amount of potential parallelism. For example, data dependencies that
prevent parallel execution can often only be removed by complex restructuring of the control
flow or the introduction of new data structures, both of which are outside the scope of most
auto-parallelising systems. Also, the parallelisation step complicates debugging and verifica-
tion because the code running on the target architecture is not the code that the programmer
wrote. Finally, code that is automatically parallelised cannot be bound by the programmer to
specific areas of the target architecture, meaning that its use is restricted to uniform cluster-
based systems.

2.1.2 General-purpose programming on GPUs

Recently, a number of new languages have been developed to make use of graphics process-
ing units (GPUs). Whether integrated as part of the motherboard chipset or as a dedicated
expansion board, GPUs comprise a main processing core and a number of vector processing
units and are designed to vastly accelerate the kinds of operations that are performed by 3D
visualisations. The host computer issues commands to the main core which in turn uses its
vector units to calculate the result (and store it as pixel data in a frame buffer typically). If
the programmer can cast their algorithm in terms of the supported graphics operations they
can be sent to the GPU for evaluation, and because GPUs typically have dozens of vector
processing units and tightly-coupled dedicated RAM with very low latency the calculation will
be performed in a fraction of the time that the host processor would require.

In order to make GPUs useful for general purpose computing, GPU vendors inserted pro-
grammable stages into their rendering pipelines, and extended the chip to support higher
precision arithmetic than is typically required by graphics alone. Two important languages
have developed to assist programmers in using these new features, CUDA [175] and OpenCL
[169]. Both of these languages provide similar constructs to the rest of the parallelising lan-
guages discussed in section 2.1.1, but with an emphasis on loop-parallel operations that can

15

Chapter 2. Literature

DTCM
(16kB)

Data
Cache

Inst.
Cache

ARM9

ITCM
(32kB)

BIOS

Game
Cartridge
(32MB)

Main memory
(4MB)

ARM7
BIOS IWRAM

(64kB)

Video
RAM

Palette
RAM

Fast Shared
RAM

(16kB ×2)

Figure 2.4: The memory layout of the Nintendo DS [111]. The dual-CPU system has 4MB of
shared memory which is relatively slow, many banks of dedicated fast RAM that have much
lower latency, and multiple caches.

be expressed as SIMD vector operations.

General-purpose programming on GPUs, or GPGPU as it has become known, gives regular
computer users access to supercomputing-style programming environments, but the technique
is not generally applicable for use on embedded architectures. GPGPU is aimed towards
efficient utilisation of data streaming architectures with high degrees of data parallelism (SIMD
systems) and does not support irregular embedded architectures.

2.1.3 Non-uniform memory architectures

The memory layout of modern embedded systems is becoming highly variable. As mentioned
in chapter 1, memory access rates have not increased at the same rate as processor clock
speeds leading to a disparity that has promoted the use of caches, and sometimes multi-
layered caches. Also, as systems are moving to include greater amounts of parallelism (sec-
tion 2.1.1) it is no longer efficient to require that all processor cores arbitrate for access to a
single memory space. Architectures are including a mixture of shared and private memories
with many different variations of DMA access and cache coherency algorithms. One such ex-
ample is that of the Nintendo DS, a portable computer games console, which contains a highly
non-standard memory system described in figure 2.4.

In general the following features are observed:

16

2.1. Architecture-oriented languages

Memory

Level N-1

Control

Proc.

Memory

Level N-2

Control

Proc.

Memory

Level N-2

Control

Proc.

Memory

Level 0

Control

Proc.

Processing Element

Memory

Level 0

Control

Proc.

Processing Element

Figure 2.5: The Sequoia Abstract Machine Model

• Levels: Memory is frequently layered. Fast memory is kept close to the processor whilst
large and slow memories are further away. This describes caches, but in the context
of the System-on-Chip paradigm it also describes local memory and remote memory,
where local memory is on the processor’s memory bus and remote memory must be
accessed through an on-chip network.

• Layout: Cores can have their own blocks of private memory and there can also be blocks
of shared memory that are accessed by a number of cores. There may or may not be a
single block of memory accessible to the entire system.

• Caching: Caches can be multi-layered and may use many different cache coherency
mechanisms.

• New memory technologies: The system might employ novel memory techniques such
as scratchpad memories or locked caches.

As has been discussed in sections 1.3 and 2.1.1, programming languages have developed as-
suming that system memory is a single contiguous block of memory, so when the architecture
is no longer compatible with this assumption the programmer is forced to step outside the lan-
guage to ensure their program operates correctly and uses the available hardware efficiently.

As a result, a number of programming languages have been developed with the intent of
allowing the programmer to better exploit the memory hierarchy. Sequoia [76] is one such
example. Sequoia is an extension to C that concentrates on the data transfers that take place
throughout the execution of a program. It models the system memory as a tree of memories
where higher memories in the tree are generally larger yet slower. Each memory module
may have associated with it a control processor, which can operate on the data stored in that
memory. This model is shown in figure 2.5.

Sequoia programs are composed from tasks. Tasks are abstract - they do not refer to physical

17

Chapter 2. Literature

void task<inner> VectScale::Inner(in float A[N], in float x, out float Y[N])

{

tunable T;

unsigned int numBlks = (128+T-1)/T;

mappar (unsigned int i = 0 : numBlks) {

VectScale(A[i*T;T], x, Y[i*T;T]);

}

}

Figure 2.6: Sequoia example of constant vector multiplication. The mappar statement assumes
disjoint operations.

locations in the target architecture until a mapping phase that takes place during compilation.
Communication between tasks is only possible by task calling, where a task at memory level i
calls a subtask mapped to memory level i − 1. Input arguments are then copied from level i to
i−1 and when the task completes the output arguments are copied back. This explicit copying
allows the compiler to make use of DMA engines and to maximise cache effectiveness. An
example Sequoia program for adding two vectors is shown in figure 2.6. The main limitation
of Sequoia is that it assumes a hierarchical memory layout in which processing elements
pull data from ‘far away’ into caches or other tightly-coupled memories. Grid and cluster-
based architectures may not fit well into this model. Also, when decomposing a problem into a
Sequoia program, the programmer is still required to have a reasonable amount of architecture-
specific knowledge. The resulting program can be mapped to other architectures but is likely
to be quite inefficient without refactoring.

In addition to Sequoia, many of the languages presented in the previous section on addressing
parallelism provide ways for the programmer to express memory features. UPC allows local
and global arrays that have the concept of hierarchical memory, and the locales of Chapel,
ZPL and X10 all convey similar features. These languages however, tend to assume a sin-
gle flat memory space and concentrate on task-to-task transfers (horizontal) rather than the
hierarchical (vertical) transfers that Sequoia considers.

Charm++ [126] is an object-oriented parallel programming language based on C++ primarily
intended for use on regular supercomputing architectures. Charm++ uses explicit thread-level
parallelism and a run-time system to pass remote method invocations between computation
nodes. The mapping of chares (Charm++’s threading objects) to processing nodes is trans-
parent to the programmer, which permits the run-time system to dynamically reallocate com-
putation to support features such as dynamic load balancing, fault tolerance and application
footprint scaling (how many computing nodes an application is assigned to). Charm++ is poorly
suited for use in embedded architectures because its primary benefits are only apparent when
used on a regular grid of largely homogenous processing cores. AMPI [108] is an implemen-
tation of MPI on top of the Charm++ run-time that augments the standard provisions of MPI
with the dynamic capabilities of Charm++.

STAPL (Standard Template Adaptive Parallel Library) [186] is a C++ template library similar to
STL which is designed to provide support for writing programs with shared or distributed mem-
ory. It provides a set of components similar to the components in the ISO C++ standard library.
Programmers build applications using STAPL-derived data structures which are automatically

18

2.1. Architecture-oriented languages

distributed through shared memory by the STAPL run-time system. STAPL provides a uniform
shared object view of the target memory architecture, throughout which STAPL-derived data
structures are distributed. The physical distribution of STAPL objects can be assigned auto-
matically or can be user-specified. A novel feature of STAPL is that it can present a flat shared
memory architecture to the novice user or a partitioned global address space (section 2.1.4)
to an advanced user depending on which API features they use.

2.1.4 Partitioned Global Address Space languages

A number of the programming languages already presented in this section fall into the category
of Partitioned Global Address Space (PGAS) languages. PGAS is a memory model for parallel
programming that represents one of the first major divergences from the uniform, flat memory
model of early languages like C.

The primary difference between a flat model and the PGAS model is that a PGAS model
includes the concept of local and remote memory accesses. In a flat model all memory ac-
cesses are treated as equal, and carry the implicit assumption that there are no significant
differences in latency between addresses. In an SMP shared-memory system this assump-
tion is reasonable because it is supported by the hardware. However in an embedded system
with disparate memory spaces this is often not the case, as some accesses may require the
navigation of numerous on-chip buses and so are much slower.

The PGAS model still assumes the presence of a single, contiguous global address space, but
it allows the programmer to split that address space into a set of partitions. Threads (or the
language’s equivalent) and shared data items can then be assigned to reside within a single
partition. All memory accesses by a thread to data that is in the same partition are termed local
accesses. Accesses to data from a different partition are termed remote (or global) accesses.
Local accesses are notionally cheaper than remote accesses, in terms of latency, throughput,
power usage etc.

The PGAS model is sometimes informally subdivided into synchronous PGAS and asyn-
chronous PGAS [194]. This distinction is not universally-applied and many authors simply
use the term PGAS to refer to both forms. When the distinction is made, a synchronous
PGAS model assumes that each partition runs on approximately similar hardware and so is
tailored towards the execution of vector ope rations, highly-parallel programs, and the SIMD
paradigm. This is the model commonly used in high-performance computing languages such
as UPC. In contrast, the asynchronous model relaxes the homogeneity requirement and al-
lows partitions to be much more disparate. For example, a traditional networked computing
architecture where nodes are of different architectures, capabilities, and operating systems.
Unlike the synchronous model which tends towards the execution of fine-grained parallelism,
asynchronous partitions invoke coarsely-grained jobs on other partitions. The X10 language
[42] is an example of this model.

The advantages of the PGAS model are that it provides more information about the memory
hierarchy in a high-level way that does not overburden the programmer. The compiler and
run-time system are still tasked with the complex task of implementing the communications
and ensuring cache coherency, unless it is already provided by the architecture (such as with
cc-NUMA). The programmer can use the memory partitions to give more guidance about the
way in which their program should be implemented in an architecturally-neutral way. Placing

19

Chapter 2. Literature

a set of threads into the same partition informs the compiler and toolchain that they are tightly
coupled and should be placed physically close together on the target architecture. Threads
from different partitions are loosely-coupled and so may be mapped to separate regions of the
architecture.

The main limitation of PGAS languages is the requirement for a single global address space
(albeit a partitioned one) and that they tend to still assume perfect cache coherency across
that address space. PGAS languages were motivated by high-performance computing ar-
chitectures which are necessarily regular, so they are weaker at targeting highly non-uniform
systems.

There are many examples of PGAS languages, many of which have already been described.
Split-C [57], X10, Chapel [38], and Titanium [106] are some of the more well-known examples.

2.1.5 Data streaming architectures

When programming a conventional single processor system with a uniform global address
space model, the programmer uses a ‘programmable state machine’ paradigm. This paradigm
is served well by imperative programming languages like C, Java, Pascal, Fortran etc. How-
ever, hardware can take many different forms, some of which are easier to program when using
a different computational paradigm.

Data streaming architectures are one such example. Broadly speaking, the computation per-
formed by embedded architectures tends to be either control-driven or data-driven. Control-
driven tasks involve reading the state of a small amount of input data (such as sensor values
or user input) and then effecting some simple output as a response. The computation may be
quite complex, but it is based on a small amount of input data and produces a relatively small
amount of output data. A good example of this kind of system is a digital calculator. Input is
very sparse and output is commonly only a single number, but still the calculations performed
might be very complex. Processor-based systems can implement these designs well. Data-
driven tasks, conversely, must cope with huge volumes of data that frequently produce similarly
large volumes of output data. Video compression or real-time encryption are examples of this.
The huge data rates of these problems means that processor-based designs are frequently
incapable of performing fast enough, and custom architectures must be created. Data stream-
ing architectures are designed as a directed graph where the nodes of the graph are kernels
and the edges are data flows, as shown in figure 2.7. Kernels perform some fixed operation
on their input data (such as a FFT, a linear congruence filter, etc.) and may be implemented
using either simple combinatorial logic, specialised DSP cores, or with software running on
full processor cores. Kernels therefore operate in parallel, and will have their own memory to
avoid contention. Data flows are point-to-point to remove the need for bus arbitration and they
make use of input and output buffers to improve performance and prevent pipeline stalls.

Standard imperative programming has trouble expressing these architectures because the pro-
grammer has to manually describe each kernel as a task or thread and the overall operation
of the stream becomes obfuscated. Therefore, a class of languages known as data stream-
ing languages has emerged to allow a more natural programming model. Streams-C [89],
StreamC [162] and StreamIt [221] are all similar languages that bring the notion of a kernel
into the language, but they also allow the programmer to connect kernels together in a high-
level way and it is in this area where they provide the greatest contribution. Figure 2.8 shows

20

2.1. Architecture-oriented languages

Input
filtering

Feature
extraction

Stereo depth
extraction

Input
filtering

Feature
extraction

Depth map

Left
image

Right
image

Kernel

Data source

Data flow

Figure 2.7: A data streaming architecture for performing stereo depth extraction.

an example of a Streams-C program which declares a single process with a number of input
and output streams. Much more complex stream layouts are possible.

Standard imperative languages with notions of concurrency (like Java or Ada) allow parallel
kernels to be defined, but they do not address the unique requirements of streaming architec-
tures. Pipeline stages must be balanced to achieve a high throughput. As shown in figure 2.9,
if stages are not of similar length then the system performance is degraded. The stream-
ing languages above all provide compiler support to automatically split stages and high-level
simulation or debugging support to assist the programmer in balancing their design. Also,
the compilers of the above languages will generate flow control code which would have to be
otherwise manually written by the programmer.

2.1.6 Datapath architectures

Datapath architectures are another implementation style commonly used in embedded sys-
tems. The evolution of processors from CISC to RISC to Very Long Instruction Word (VLIW)
[78] shows a trend towards simpler (and therefore faster) hardware, but at the cost of greater
code footprint and compiler complexity. In VLIW systems the compiler is given control over
the run-time scheduling of the functional units of the processor. This scheduling information
is encoded in instruction words that may be hundreds of bits long. This allows the hardware
of the processor to become much simpler, as instruction decoding logic is reduced, hardware
instruction scheduling units are not required, and techniques like out-of-order instruction ex-
ecution require almost no additional hardware. Datapath architectures are the successors of
VLIW processors, in that they compile applications for more general-purpose datapaths. VLIW
concepts are used (instruction words are very long and complex compilers are required), but
the target hardware units are no longer a fixed processor pipeline but a configurable set of
units that can be adapted for different applications.

NISC [188] allows the designer to compile standard C code to nanocodes which are VLIW-
style instruction words that control the operation of a generalised datapath to execute the
programmer’s input code. The compiler is passed an architecture description which describes
the datapath layout. The programmer can add extra functional units at any time by amending
the architecture description and recompiling, allowing for easy design-space exploration.

21

Chapter 2. Literature

//Streams-C process declarations

/// PROCESS_FUN read_image_run

/// OUTPUT word_o

/// OUTPUT ImageDef_o

/// PROCESS_FUN controller_run

/// INPUT input_i

/// OUTPUT frame_o

/// PROCESS_FUN contrast_run

/// INPUT frame_i

/// OUTPUT remap_o

/// PROCESS_FUN remap_run

/// INPUT remap_i

/// OUTPUT output_o

//Streams-C process body declaration

/// PROCESS_FUN_BODY

SC_FLAG(tag);

SC_REG(frame_word, 32); //Declare stream registers

SC_REG(remap_word, 16);

int frame[256*256];

//Open the streams before the kernel starts

SC_STREAM_OPEN(frame_i);

SC_STREAM_OPEN(remap_0);

//While data is still present in the stream

while(SC_STREAM_EOS(frame_i) != SC_EOS) {

//...Process the input data...

//Data can be read into local memory like this

SC_STREAM_READ(frame_i, frame_word, tag);

frame[i] = SC_REG_GET_BITS_INT(frame_word, 0, 32);

//When kernel is complete, close streams

SC_STREAM_CLOSE(frame_i);

SC_STREAM_CLOSE(remap_0);

}

/// PROCESS_FUN_END

Figure 2.8: Example of a process declaration in Streams-C.

22

2.1. Architecture-oriented languages

Longest stage

split into multiple smaller stages

Figure 2.9: An example of pipeline balancing. The upper pipeline has a lower throughput
because each stage must wait for the single long stage. Throughput is improved by splitting
the long stage into smaller sections, at the cost of a small increase in latency and area.

The RICA [130] system targets a totally-connected grid of functional units of variable size.
The functional units are taken from a standard VLIW processor and include arithmetic units,
memory load and store units and standard register banks. At compile time, the compiler
schedules multiple datapaths through this grid that start at either a RAM read or register bank,
go through the required arithmetic units, and end at either a RAM store or register bank.
These schedules are encoded into instructions and become the VLIW program of the RICA
architecture. This is shown in figure 2.10. Because a new instruction is issued each clock
cycle the result of this is that the RICA architecture behaves like a set of datapaths that can
reconfigure on each clock cycle to perform the operations that are required by the original
program.

RICA displays between 5 and 10 times the throughput of the ARM7 and the OpenRISC32
processors whilst consuming approximately the same amount of power. However, the large
routing and interconnect requirements mean that it consumes 7.6 times more silicon area.

2.1.7 Architecture description languages

Systems that target changing, non-standard architectures must provide a facility to describe
the target architecture. This might be done in a variety of ways, and one of the most common
is the emerging area of Architecture Description Languages (ADLs).

ADLs [49] are a class of languages that are used to formally represent the architecture of a
given system. They may be used to describe hardware implementation architectures, but most
frequently ADLs are used describe the software architectures of large systems. The main use
of ADLs are as a tool for cooperation between design teams. The ADL serves as a formal
communication point when designing very large systems between the various hardware and
software teams. The software teams write code to fit an architecture described by the ADL,
whilst the hardware teams devise an implementation platform that will be able to efficiently
execute the described system. ADLs also allow the analysis of languages at a very high level,
allowing designers to reason about the performance and correctness of the system before
development is complete.

23

Chapter 2. Literature

RAM

READ

R5

RAM

READ

R7

MUL

SUB

MUL

RAM

READ

ADD

R5

R6

MUL

ADD

RAM

READ

MUL

SUB

RAM

WRITE

R8

R3

Figure 2.10: Example of a RICA grid during a single clock cycle. All data flows begin at either
a RAM read or register, and end at a RAM write or register. The following clock cycle may
have a totally different layout of data flows.

ADLs are currently a rather loose concept and there is no universal agreement on the abstrac-
tions that ADLs should have. Generally, architecture refers to the components that comprise
the system, the behavioural specifications of those components, and the patterns and mech-
anisms that describe the interactions between them. In this way, they share many concepts
with system design languages, that are discussed in section 2.4.3. Whilst there is no spe-
cific definition, it appears that an ADLs should display the majority of the following features
[153, 198]:

• Abstraction of architectural components and their behaviour

• Representation of communications and interfaces, along with protocols and implemen-
tations

• Types and type checking

• Support for hierarchical refinement

• Ability to reason about time and causality

• Machine-readable - permitting the development of easy-to-use (and possibly graphical)
analysis tools

ADLs appear to have fallen out of fashion recently and there are not many newer examples
being developed. This is likely down to the dominance of UML [25] which often is used to
perform a similar role and also that they have never been fully embraced by industry as a
whole. Some examples of early ADLs are ACME [86], Rapide [153] and Wright [5]. Newer

24

2.2. Other architecture-aware techniques

ADLs appear to focus on highly dynamic architectures, such as π-ADL [176] which leverages
the π-calculus and DAOP-ADL [182] which takes elements from aspect-oriented programming
to describe dynamic run-time behaviour.

2.2 Other architecture-aware techniques

Section 2.1 talked about new languages or language extensions that were aimed at providing
the programmer greater visibility of the target architecture. From this information, the program-
mer could either tailor their code to be more efficient, or control the implementation of their
code to obtain a better mapping. There exist a number of techniques however that attempt to
target future architectures through the addition of architectural information, but are not in them-
selves new languages. All of these lend weight to the argument that architectural information
is an important consideration for the development of modern embedded systems.

2.2.1 OS services in dedicated hardware

The Multiprocessor System-On-Chip (MPSoC) paradigm is a common area of research be-
cause it can be particularly challenging to provide efficient Operating System support. On a
normal symmetric multiprocessor (SMP) or multicore system, applications that need OS ser-
vices can make a relatively efficient cross-core request. However, in an MPSoC there may be
a huge number of cores which are all competing for OS services at any one time. Also, the
use of POSIX services assumes that there exists a kernel that is compatible with the MPSoC’s
layout and the chosen processor type. Recent work [3] moves the core OS services out of a
processor core and into dedicated hardware modules connected to the main system bus. The
modules are:

• Synchronization manager: Synchronises threads, provides mutexes.

• Conditional variables: Provides POSIX condition variables.

• Thread manager and thread scheduler: Allows threads to fork and join with other
threads, and manages the run queue.

The resulting architecture is shown in figure 2.11. The primary advantage of this approach is
that there is not a single bottleneck for all OS services, it is now theoretically possible for one
core to request a mutex lock at the same time as another core requesting a condition variable.
Also, because the services are implemented in dedicated hardware, no processor time is
lost to these services and they can be processed considerably faster than a general-purpose
processor is capable of. The hardware modules allow a standard set of operating system
services to be used in MPSoCs regardless of architecture, promoting coding standards and
aiding software development.

The main disadvantage of the system, however, is that the modules must all sit on a single
main system bus so the design as a whole experiences a single request bottleneck, although it

25

Chapter 2. Literature

CPU

Software interface

Software
thread

Software
thread

Software
thread

Hardware
interface

Hardware
thread

Hardware
interface

Hardware
thread

Sync.
manager

Conditional
variables

Thread
manager

Thread
scheduler

Shared
memory

System bus

Figure 2.11: Moving operating system services into dedicated cores to improve efficiency and
ensure they are always available.

has been ameliorated by the move to dedicated hardware. It is not clear whether such a tech-
nique can be extended to ‘bridge’ system buses and therefore allow truly parallel OS requests.
Also, the size of the hardware modules is considerable and they can only be reasonably ac-
commodated on the largest commercial FPGAs (see section 2.5.2) currently available.

2.2.2 Architecture-aware application mapping

A common theme in much recent work is that the standard approach of abstracting away
from the target architecture is unsustainable. Providing the toolchain with a greater level of
architectural information can greatly aid the process of mapping applications to non-regular
systems, reducing inefficiency.

The system by Kim et. al. [134] explores the problem of mapping software applications to
Coarse-Grained Reconfigurable Arrays (CGRAs) with NUMAs. The authors note that it is not
enough to simply improve the computation speed - the local memory architecture must also
be considered in order to achieve scalability. By providing the mapping system with extra infor-
mation about the target CGRA, including the number of available memory banks, their location
and available bandwidth, a more power efficient mapping can be achieved. The presented
heuristic achieves up to 62% reduction in the energy-delay product.

2.3 Virtualisation and Virtual Platforms

Virtualisation is a general term for the abstraction of computing resources from their physical
implementation. For standard desktop computing architectures the abstracted resources are
frequently processing cores, memory spaces, communication resources, and I/O devices (net-
work interfaces, keyboards etc.), but the term is much more general and can relate to almost
any part of a given system. Virtualisation inserts a layer in the abstraction hierarchy of a sys-
tem. The layer exposes a set of virtual resources that items at a higher abstraction levels can

26

2.3. Virtualisation and Virtual Platforms

be implemented on top of. The mapping of the virtual resources to actual physical resources
is hidden.

Virtualisation is used in a large variety of applications. It is most commonly understood to refer
to software-based virtual machines which are discussed in section 2.3.1, but virtualisation
also exists in the way operating systems are built (section 2.3.2) and is frequently used for
verification and simulation of systems (section 2.3.4). Other techniques related to virtualisation
are summarised in section 2.3.5.

2.3.1 Virtual machines

Virtual Machines (VMs) are the most well-known application of virtualisation and are com-
monly employed in all areas of computing, from high-end industry down to the home user.
VMs became popular in the early 1970s as an alternative to system simulation [90]. Simulat-
ing a system involves the run-time interpretation of the entire ISA of a simulated processor as
well as simulation of the memory and system buses. This results in execution times that are
many orders of magnitude slower than native execution. Whilst this is required when simulat-
ing a new architecture or custom processor, it is frequently the case that the simulated system
shares enough commonality with the host machine that some aspects could be executed na-
tively, resulting in near real-time execution speed. The simulated machine becomes a virtual
machine.

A VM is defined by Popek and Goldburg [184] as “an efficient, isolated duplicate of a real
machine”. They also define a Virtual Machine Monitor (VMM), which is a piece of software
running on the host machine that enables this virtualisation to take place. The VMM is defined
to provide the following three features:

• Equivalence: The software executed by the VM should operate the same (expect in
terms of execution speed) as if it were executing on a native machine. This requirement
must still hold if the host is hosting multiple VMs and software of its own.

• Resource control: The VMM is in complete control over the virtual resources. In prac-
tical terms, this usually means running as a privileged process in the host operating
system (hosted), or using a specialised virtualising operating system (native). Note that
this requirement means that it is not possible to run a VMM inside a VM.

• Efficiency: Where possible the machine instructions of the virtual machine should exe-
cute natively on the host machine.

There are a large number of modern VMMs available, although they are more frequently known
by the modern term hypervisor. There are two broad classifications of VMM that exist. Native
VMMs are software systems that execute directly on the target hardware to provide virtuali-
sation services to hosted operating systems. Pioneered with CP/CMS [56] in the late 1960s
at IBM to provide time-sharing services on mainframe computers, modern examples include
VMware ESX Server [232, 234], Xen [12, 48], and the L4 microkernel family [145]. Hosted
VMMs are the second classification and are different to native VMMs because they run on
a normal operating system and host VMs within its process. Most commercial products for

27

Chapter 2. Literature

end-users are of this type and include VMware Server [233], QEMU [21], Microsoft Virtual PC
[53] and VirtualBox [213].

A normal hosted VM that is running an unmodified operating system (guest OS) will occa-
sionally attempt to perform privileged operations that the host OS cannot allow. For example,
paging and virtual memory operations must only be performed by the host OS and whenever a
guest OS attempts to manipulate the memory management unit the operation must be trapped
and replaced with a virtualisation-safe alternative. Similar problems are encountered when the
guest OS attempts to access I/O devices (e.g. power management features). This trapping
mechanism introduces overhead and requires dedicated hardware support from the processor
and target hardware. An alternative to this called paravirtualisation was introduced with the
Denali system [238] in which the VMM provides purely virtual instructions that do not have
a direct counterpart in the target ISA. These instructions are conceptually similar to OS sys-
tem calls that allow VMs to directly communicate with their VMM. These allow, for example, a
hosted VM to sleep where previously the hosted OS would spin in a busy loop. Denali also
sets aside dedicated memory areas for fast and efficient VM to VMM communication. The
main disadvantage of paravirtualisation is that it requires the software of the hosted VM to be
modified to include the virtual instructions as appropriate. This means the technique is not
compatible with closed-source software unless a special version is produced by the software
vendor.

2.3.2 Virtualisation in the OS

The previous section described one form of software-based virtualisation – the provision of an
entire VM on top on an existing system. However, standard multiprogrammed operating sys-
tems also use a range of techniques that can be linked to the field of virtualisation. Essentially,
they expose a VM to each currently executing process that displays a variety of desirable prop-
erties, rather than forcing developers to create hardware-specific versions of their applications.
The following features are virtualised by modern OSs:

• To aid relocatable code and remove a dependency on memory layout, the memory space
of a process starts at address 0 and is much larger than the available physical memory.
The VM hides address translation, paging, and concerns regarding virtual memory.

• Shared resources (such as processor time, memory, I/O devices, OS services) are auto-
matically shared between processes by the OS.

• Features such as coherent interprocess communications and atomic actions are pro-
vided.

• Hardware variations are hidden. For example, a 64-bit processor is exposed as 32-bit
to a 32-bit process, yet a 64-bit process executing at the same time has full access to
the 64-bit instruction set. The memory addresses of standard hardware features are
homogenised though OS API calls.

28

2.3. Virtualisation and Virtual Platforms

2.3.3 Virtual machines for software languages

This section has so far discussed VMs as a way of sharing hardware between multiple software
processes. However, it can equally be used as to aid the development of architecturally-neutral
code that can be frequently reused and easily ported to new systems and architectures.

The most well-known example of this is the Java Virtual Machine (JVM) [147], which is at the
heart of the Java language. The JVM provides a VM which shares the resources available
to it (processor cores and memory spaces) amongst the threads of the system, but more
importantly it also provides a single target for all Java developers regardless of the actual target
hardware. If a standards-compliant JVM implementation exists for a given system, almost all
existing Java code will run correctly on that system. Furthermore, it can be said that Java
uses paravirtualisation-style techniques because Java code can call directly into the JVM, but
it is arguably not a ‘pure’ VM because the language provides low-level system access through
extension libraries which means that some code can be platform-specific.

A number of other very-high level languages make similar use of VM-based implementations.
Smalltalk [189] is an object-oriented, reflective language that was created at Xerox PARC dur-
ing the 1970s. It bears a number of conceptual similarities to Lisp in that it is almost entirely
written in itself, and is organised using meta-level objects that represent most parts of the
language, including the classes, methods, compiler, interpreter and even stack frames. To-
gether, the Smalltalk runtime (an interpreter and just-in-time compiler) presents a VM model
to the programmer’s code. Smalltalk has one of the most complete sets of reflective facilities
of any language in widespread use. For example, it is possible for an object to examine its
own run-time stack or to refine the methods that it implements at run-time. Code blocks can
be passed between objects and their contents examined and altered before being executed.
Smalltalk classes frequently cooperate to construct other classes, and therefore implement a
metaobject protocol [133, 132, 131, 157, 46]. Figure 2.12 shows an example of one of the
ways in which Smalltalk implements introspection and intercession. The expressive power af-
forded to the programmer by Smalltalk necessitates its implementation using a virtual machine
because it is not possible to build and modify the source code of a running program without
virtualisation, interpretation, or complex just-in-time compilation.

2.3.4 Virtual platforms for verification

Virtualisation is commonly used to assist designers in the verification and validation of their
systems. Modern MPSoCs may contain dozens of interacting modules and complex bus
topologies that make the actual overall performance of the system almost impossible to de-
termine simply through code inspection and offline analysis. Frequently with such systems,
the performance of an individual core can be sufficiently estimated, but system bottlenecks
appear as an emergent property of many cores and may be chaotic and transient in nature.
Therefore, for all but the most safety-critical systems, a form of testing is preferred over anal-
ysis. Standard testing, where the system is implemented and its performance measured is
problematic for two main reasons. Firstly, many systems are costly to implement because they
require the creation of a custom ASIC (see section 2.5.1). FPGA technology (section 2.5.2)
can help reduce this cost, but FPGAs are lower in speed than ASICs which might force a
slightly different behaviour, limiting the value of the testing. Secondly, whilst the inputs to the
test hardware can be controlled and the outputs observed, it it impossible to determine exactly

29

Chapter 2. Literature

"Declare 4 local variables for use."

| x y className methodName |

"Set className and methodName to string values."

className := ’MyClass’.

methodName := ’aMethod’.

"Evaluate className as code, rather than a string."

"x is set to the result of the evaluation."

x := Compiler evaluate: className.

"Check that the evaluation succeeded by asking if x"

"is a subclass of the class Class. Class is the ancestor"

"of all classes in Smalltalk and a descendant of the"

"Object class, the root of the hierarchy."

(x isKindOf: Class) ifTrue:

[

"The evaluation was successful so create a new instance"

"of MyClass. Save it in y."

y := x new.

"Ensure that y will respond to the method ’aMethod’."

(y respondsTo: methodName asSymbol) ifTrue:

[

"It will, so execute it."

y perform: methodName asSymbol

]

]

Figure 2.12: An example of Smalltalk’s reflective capabilities. Smalltalk comments are en-
closed in double quotation marks ("").

30

2.4. Generating hardware from software-style descriptions

what is happening inside the design. It is possible to observe that the design can sustain a
given data throughput, but no insight is obtained as to why.

One solution to this problem is to simulate the design rather than implement it. The effect of the
code is still observed rather than reasoned about, but complete visibility of the internal state
of the system can be obtained. Of course, simulation suffers from its own problems, primarily
the amount of computation time it takes, poor availability of cycle-accurate component models,
and the enormous volume of data it can produce.

The CoWare Virtual Platform [54, 230] attempts to mitigate some of these problems through
the use of virtualisation. CoWare creates a virtual platform, which is an executable simulation
of the device hardware and the environment in which it is operating. This is different to standard
simulation because, as with other modern virtualisation systems, parts of the target code can
execute natively on the host processor. This means that execution speed can be orders of
magnitude faster than pure simulation. The CoWare system allows the designer to inspect the
state of the simulation, set breakpoints, watch memory and apply stimulus to the system, all
with the intent of giving the designer a greater understanding of how their system is operating
as a complete design. The main limitation of the CoWare system is that, due to its goal
of native execution, only processors that have a broadly compatible ISA can be virtualised
efficiently and the designer can only use processors for which there exists a CoWare model.
Unique application-specific processors or components cannot be virtualised and the designer
must instead rely on standard simulation.

2.3.5 Other virtualisation-based techniques

Processor virtualisation can be used to divide a physical processor’s time among a set of virtual
machines, as discussed in section 2.3.1. Whilst this section discussed such systems for use in
servers and desktop computers, similar techniques can also be used in the embedded domain,
where its main goal is to provide temporal isolation for parts of the system. For example, one
aspect of a system might be timing-critical and so is developed and verified to a high standard.
Virtualisation can then be used to ensure that non-timing-critical tasks in the rest of the system
do not compromise the performance of the timing-critical code. This requires the virtualisation
system to be composable [168]. The main advantage of such a system is that it requires only
the timing-critical parts of the system to be analysed for correctness, the rest of the system
can be implemented as normal and any erroneous behaviour will be contained. This assumes
that the virtualisation layer and compilers are correct and trusted.

2.4 Generating hardware from software-style descriptions

The previous sections in this chapter have discussed the ways in which software language
research has attempted to find better ways for the programmer to reason about the implemen-
tation environment of their code. This may concern the mapping of the software system to the
hardware, as was primarily discussed in section 2.1, or the ways in which virtualisation can
be leveraged to hide unimportant details and make this mapping simpler, as in section 2.3.
An alternative approach to this mapping problem is to actually generate the hardware directly
from software descriptions. This can range from low-level hardware description languages

31

Chapter 2. Literature

(section 2.4.1) through system design languages (section 2.4.3) to high-level synthesis sys-
tems (section 2.4.2) which take as input a program of similar abstraction level to that of normal
software languages.

2.4.1 Hardware description languages

When the first embedded systems were being developed, the available fabrication technolo-
gies meant that only relatively small circuits could be built. Designs were presented in the form
of a schematic diagram showing the circuit as a design composed of logic gates or transistors,
which could then be fed into CAD tools to create silicon masks directly. Early microprocessors
were complex, but it was still tractable for the designers to work with schematics to describe
their entire design. Designing with schematics meant that the hardware designers had com-
plete control over every flip-flop and logic gate in the system, which was important because
even a slight sub-optimality was expensive.

The main problem with this approach was that the lack of abstraction meant schematics be-
came very difficult to work with when design sizes began to increase. Since the development
of the integrated circuit in the early 1960s and consequently the microprocessor in around
1970, the logic density and effective computational power of digital circuits has increased mas-
sively. The gate count of modern processors is measured in the hundreds of millions, making
a complete schematic diagram unmanageably large. To remedy this, Hardware Description
Languages (HDLs) were developed.

HDLs are a software-based technique for describing the arrangement of elements in a digital
circuit. They describe the circuit’s operation and organisation and can frequently also be used
to simulate the described circuit and thereby verify the design. HDLs are a higher level of
abstraction than schematics as they allow the designer to partition a design into a logical
hierarchy of instantiated components, whereas a schematic is single-level and flat.

One of the first HDLs, ABEL [254], was devised in 1983 for targeting programmable logic
devices but it was not until the late 1980s that modern HDLs were developed. Modern HDLs
provide a higher level of abstraction than simple netlist formats like EDIF [69] because they
allow for large amounts of circuitry to be designed very rapidly using source code that shares
some abstractions with traditional programming languages. The language might include a
notion of time or state, common arithmetic operators and program flow statements like loops
and condition tests. A tool called a synthesis engine is then used to convert these statements
into a netlist-based logic description for implementation. This process, known as synthesis,
is analogous to compilation of software programs to relocatable object code. As shown in
figure 2.13, these developments have led towards the unification of software and hardware
design flows into what has become known as hardware / software co-design (section 2.4.4).

The two most common HDLs that are in use today are VHDL [43] and Verilog [64]. They both
provide a rich expressive environment for designing digital circuits and are widely supported by
industry-level toolsets. VHDL (VHSIC Hardware Description Language) was initially developed
as a way of documenting the behaviour of ASICs, but has now grown into a tool for designing,
simulating and synthesising them also. As a result only a subset of VHDL can be directly
synthesised to hardware, the rest of the language can only be simulated. VHDL was designed
to be similar in style to the Ada programming language [15] and so it shares a very similar
syntax, is case insensitive and is strongly-typed. Verilog, in contrast, was designed to be

32

2.4. Generating hardware from software-style descriptions

Sequential program code (e.g. C, VHDL)

Implementation

Microprocessor plus
program bits: “software”

VLSI, ASIC, or PLD
implementation:

“hardware”

Assembly instructions

Machine instructions

Logic gates

Logic equations / FSMs

Register transfer

Compilers
(1960s, 1970s)

Assemblers, linkers
(1950s, 1960s)

Behavioural synthesis
(1990s)

RT synthesis
(1980s, 1990s)

Logic synthesis
(1970s, 1980s)

Figure 2.13: The co-design ladder: recent maturation of synthesis enables a unified view of
hardware and software. Figure from [228]

familiar to C [129] programmers so it is case sensitive and uses a preprocessor. As with
VHDL, only a subset of Verilog is synthesisable.

Both languages differ fundamentally from their procedural language counterparts, however,
because Ada and C are both imperative languages whereas VHDL and Verilog are declara-
tive. Whilst in a standard programming language two consecutive statements are executed
one after the other, in a HDL they are generally executed in parallel because each statement
describes a hardware element that is operational at all times. The designer must implement
state machines and other techniques in order to achieve sequential execution.

The main problem with using HDLs is that of simulation. Once a design has been generated
the designer needs to verify that it is functionally correct before it is fabricated. Fabrication is
a very expensive process (see section 2.5.1) so it is essential that mistakes are not made in
the final mask. Verification of HDL-based designs can be performed through formal analysis
of the code [68, 224] but this is a highly-skilled technique that is both time-consuming and
expensive. Frequently time-to-market constraints instead force the company to verify using
functional simulation. Simulation is performed by compiling the HDL using a simulating com-
piler (for example ModelSim [164]) and then applying a series of stimuli to the input ports of
the design and observing the effect on the output ports. Clearly this suffers from problems
of test coverage, and because it is a computationally-expensive operation it is frequently very
slow. FPGAs (section 2.5.2) have helped with this problem by allowing rapid prototyping and
therefore reducing the overhead of simulation, but they introduce new problems of visibility. It
is not possible to single-step through an FPGA-based design applying arbitrary inputs and to

33

Chapter 2. Literature

observe the internal state of the circuit as it is with a simulator.

2.4.2 High-level synthesis languages

Whilst HDLs greatly aid the design of hardware, newer design trends are beginning to strain
current techniques. 50 million gate ASICs are commonplace today, yet the design and verifi-
cation tools used to design these systems remain similar to those developed a decade ago.
There is a disparity between the capability of modern fabrication technologies and the de-
signer’s ability to create and validate designs to make use of them [250]. Current HDLs force
the designer to express the functionality of their system in terms of state machines and inter-
acting parallel processes communicating only by bit vectors. Any higher-level software features
like function calls or abstract data-types are non-synthesisable. For larger designs this makes
development challenging and is a barrier to code maintainability and reuse.

As a result, there has been a great deal of research into the field of high-level language synthe-
sis. The aim of such research is to increase the abstraction level of synthesisable HDL code,
thereby making it simpler for the designer to create large systems without having to consider
low-level implementation issues. Such high-level languages attempt to provide more expres-
sive power than is afforded to the designer by standard HDLs. For example, this may include
support for compound data types, procedures and functions, object-orientation, polymorphism,
etc. A small amount of expressive code can be used to generate a large and complex circuit
through the use of a verified compiler and synthesis tool. The high abstraction level allows
the designer to concentrate on system-wide architectural concerns rather than gate-level con-
cerns, potentially resulting in a better design. Also, when higher-level descriptions are used
simulation becomes much more efficient because the programmer-provided model of the tar-
get circuit is smaller.

Synthesis techniques vary between languages but they all must perform the following main
tasks [150]:

• Resource allocation: Determine the resources available to the synthesis system (adders,
registers, reconfigurable area, buses, etc.)

• Scheduling: Determine the order in which each operation in the input design is exe-
cuted, often this step can include register stages to balance pipelines and must balance
the throughput of the design against resource usage.

• Binding: Map features of the input design to the resources of the implementation fabric.
For example, variables will be mapped to registers and storage elements.

• Control synthesis: Generate the control logic that marshals the flow of data through the
design so that it operates correctly.

Many of these stages also involve optimisation stages that are not shown. For example, before
the synthesis runs an optimiser will commonly rewrite parts of the input code to make better
use of the chosen implementation fabric, combine similar operations, or remove unnecessary
ones.

34

2.4. Generating hardware from software-style descriptions

Current
state

Next state Synchronous

Combinatorial

Data sources
(RAM, registers)

Data stores
(RAM, registers)

M
u
ltip

le
xe
rs

Functional unit D
e
m
u
ltip

le
xe
rs

Functional unit

Functional unit

Functional unit

Functional unit

Figure 2.14: State machine-style high-level synthesis.

Synchronous

Combinatorial

Functional
unit

B
u
ffe
r

Functional
unit
B
u
ffe
r

Functional
unit

B
u
ffe
r

Stream
input

Stream
output

Figure 2.15: Datapath-style high-level synthesis.

There are two main implementation schemes that are employed by high-level synthesis sys-
tems, state machine and datapath. State machine-based synthesis builds a one-hot state
machine, which is a synchronous circuit that exists in a given state and transitions to another
state each clock cycle. The state transitioned to can be either dependent upon the passage of
time (clock cycles), the value of internal registers, or the value of external inputs. The current
state signal is used to schedule and control the flow of data through the rest of the circuit,
which comprises standard functional units such as registers, adders, multiplexers etc. This
implementation strategy is particularly good at describing complex control logic which can be
encoded in the ‘next state’ circuitry, but it can suffer from low clock speeds because it tends to
generate long combinatorial paths. This synthesis style is shown in figure 2.14.

In contrast, datapath-based synthesis [209] removes the state machine logic and instead
chains together a series of functional units to form a pipeline where data enters at one end,
flowing through each unit until it reaches the end. This style requires almost no control logic,
but it is much less flexible and does not describe complex changes in control flow very well.
More complex schemes employ a form of Very-Long Instruction Word (VLIW) [78] coding to
schedule the operation of the functional units and therefore provide greater flexibility. Two such
systems are discussed in depth in section 2.1.6 and many other examples exist [165, 101, 113].
Datapath synthesis tends to produce shorter combinatorial paths, and is excellent for generat-
ing circuits to process large volumes of data, although its inflexibility may force the otherwise
unnecessary duplication of functional units. This style is illustrated in figure 2.15.

Kahn Process Networks (KPNs) [123] are frequently used as a computation model for datapath

35

Chapter 2. Literature

synthesis-based systems. KPNs model computation as a group of deterministic sequential
processes that communicate with either other though FIFO channels. This very closely models
hardware pipelines and data paths, so they have been used in systems such as Daedalus [223]
and Sesame [74] to generate hardware descriptions from C code.

Handel-C

Handel-C [26] is a well-known high-level synthesis language developed by Celoxica as a suc-
cessor to LOLA [80] for rapid prototyping of hardware designs to FPGAs and ASICs. It is
implemented as a subset of ANSI C with a number of extensions that allow for parallelism
and communication between parallel blocks. All state machine and control flow hardware is
inferred and generated automatically by the Handel-C synthesiser. This means that an off-the-
shelf solution that is written in ANSI C can often be synthesised directly to hardware, once
wrapped in a hardware interface.

The process of synthesising Handel-C to hardware is very similar to the way in which normal C
is compiled to object code. The compilation strategy is basically recursive descent, but rather
than recursively generating machine code, the synthesiser generates small hardware blocks
which are recursively connected together. The resulting circuit is expressed in the EDIF format
which can then be optimised by any number of tools before the design is converted to an FPGA
bitfile by vendor-specific toolchains.

The Handel-C design process is fundamentally different to the way in which a circuit is built
up with a hardware description language such as VHDL. As mentioned previously, VHDL is
a declarative language whereas Handel-C (like its parent language C) is imperative. As a
result, to describe two events that occur sequentially can be difficult in VHDL as a one-hot
state machine must be described that switches between the two events in the correct order.

process Do_The_Tasks(clk, current_state)

begin

if (clk’event and clk = ’1’) then

if (current_state = 1) then

Do_Task_One;

elsif (current_state = 2) then

Do_Task_Two;

end if;

end if;

end process;

process Change_State(clk)

begin

if (clk’event and clk = ’1’) then

if(current_state = 1 and Task_One_Finished) then

current_state <= 2;

end if;

end process;

In Handel-C this is much simpler because state machines are automatically inferred by the
synthesiser and the inherently sequential nature of C can be exploited by simply calling the
two items one after the other.

36

2.4. Generating hardware from software-style descriptions

void main(void)

{

Do_Task_One;

Do_Task_Two;

}

Like most standard programming languages, normal Handel-C designs can only include a sin-
gle clock source. The reason for this is that Handel-C was designed to have a very predictable
timing model and the provision of multiple clock sources would undermine this aim. It is possi-
ble to make use of multiple clock sources in a Handel-C project but this is achieved by creating
multiple designs, each with its own void main(void) function, and then linking them together
using the Handel-C IDE. The designs can then export and import communication channels to
share data asynchronously. This approach is quite limited because the encapsulation of de-
sign units is performed outside of the language and it gives no scope for modular composition,
meaning that designs cannot be nested. Also, only channels can be shared between designs;
variables, signals, interfaces and functions cannot. The number of clock sources is limited to
the number of clock nets available on the FPGA.

There are a number of problems with Handel-C that limit its potential for exclusive use in the
embedded systems market. First, Handel-C has a very simple timing model that is intended
to produce circuits with easily predictable performance characteristics. Essentially, the model
states that “every assignment and communications statement takes one clock cycle, everything
else has no cost” [235]. This means that all assignments will take the same amount of time
and so it is easy to inadvertently reduce the maximum speed of the entire circuit by introducing
a single statement with a large propagation delay. To avoid this, the programmer must split
large sections of combinatorial logic into multiple stages. This splitting cannot be done by the
compiler as it would violate the semantics of the program.

Related to this problem is the fact that even though Handel-C appears to be standard C, it is
in fact targeted at a very different implementation. Consequentially, a programmer who forgets
this and writes in the style that they would for normal C will end up with an extremely inefficient
design. This can be seen when comparing loop termination constraints in the two languages.
In C it is common to compose a loop as such: for(x=0; x<10; x++). However it is more
efficient in Handel-C to replace the less-than comparator with an inequality check: for(x=0;
x!=10; x++). The inequality check is a simpler circuit than the comparator that is required
by the less-than operator and so it results in a smaller design. Finally, due to its reliance on
standard C, Handel-C lacks real modular decomposition or encapsulation making it difficult
to use when producing larger designs and limiting the language’s potential for code reuse.
As a result of all these problems, Handel-C is now positioned as a language for synthesising
function accelerators and custom logic cores rather than entire systems.

Lava

Most high-level synthesis languages tend to be imperative, based on a language like C or Ada.
Lava [23] is noteworthy because it is based on Haskell [121], meaning that it has functional
semantics instead. Functional semantics are useful for hardware description because they
carry strong compositional information. In a functional language each function is expressed
as a composition of smaller functions, in exactly the same way that circuits are built from a

37

Chapter 2. Literature

composition of smaller circuits. This structure greatly facilitates code reuse and is perfect for
describing certain types of circuit, primarily signal processing designs. As a result, Lava makes
use of a data path implementation style.

Lava is primarily used as a platform for analysing hardware and formally verifying designs.
System components (written in standard Haskell) can have many different interpretations. The
default interpretation synthesises the function to a netlist, but more complex interpretations
allow higher-level understanding, verification, simulation, and reasoning about non-functional
properties. Also, because Lava uses Haskell as an underlying language, the system can
handle symbolic data and expressions rather than purely concrete ones that would be required
by a C-based language.

For example, the following code describes a half adder in Lava:
halfAdder (a, b) = (sum, carry)

where

sum = xor2 (a, b)

carry = and2 (a, b)

This circuit has two input wires (a and b) and two output wires (sum and carry). This imple-
mentation uses two logic gates, an and gate and an xor gate.

Two half adders can then be combined into a full adder as follows:
fullAdder :: (Bit,(Bit,Bit)) -> (Bit,Bit)

fullAdder (carryIn, (a,b)) = (sum, carryOut)

where

(s1, c1) = halfAdder (a, b)

(sum, c2) = halfAdder (carryIn,s1)

carryOut = xor2 (c2, c1)

Lava essentially embeds VHDL-style code in low-order functions and builds a type system on
top of this to ensure consistency. Higher-order functions can then succinctly describe regularity
that would ordinarily involve repetitive or complex VHDL code. A good example of this is the
way that a ripple carry adder can be constructed from full adders.
rippleCarryAdder (carryIn, (as,bs)) = (sum,carryOut)

where

(sum,carryOut) = row fullAdder (carryIn, zipp (as,bs))

In this description, row is a connection pattern that chains full adders together, one for each bit
of the input vector, and zipp combines the output bits into a single output vector.

The main limitations of Lava come from its use of Haskell. Due to its functional nature it can be
difficult to reason about precise timing properties of a circuit, and I/O is very difficult to handle
in a clean way. As a result, creating large Lava-based systems that meet timing closure can
be challenging.

Other high-level synthesis languages

Aside from the languages already presented, there are a huge number of languages that can
be targeted at hardware implementations rather than software ones.

38

2.4. Generating hardware from software-style descriptions

The York Hardware Ada Compiler (YHAC) [235] has shown success in retargeting the Ada
language to generate hardware designs in the form of EDIF netlists. (Ada is a very large
language so only the Ravenscar subset [30] is implemented.) YHAC translates sequential
Ada into hardware by generating one-hot state machines for each procedure. Unlike Handel-
C, these state machines allow for individual operations to take multiple clock cycles, thereby
reducing propagation delay in the final design and maximising potential clock speed. However,
the inefficiency of a one-hot implementation style means that circuit scalability can be reduced
and sizable programs can often be translated into very large circuits. YHAC can make use
of Ada’s native support for concurrency and will create a new state machine for each task,
giving the programmer access to true parallelism. Therefore, YHAC implements Ada’s coarse-
grained concurrency model instead of the fine-grained model found in Handel-C.

NENYA [33] translates Java bytecodes into a dedicated datapath circuit that can be imple-
mented on hardware that supports partial dynamic reconfiguration (see section 2.5.6). The
technique uses temporal partitioning, which separates bytecodes into graphs that do not need
to occupy the device at the same time. Then, the system attempts to generate separate data
path circuits for each temporal partition that then can be executed by a reconfigurable frame-
work which implements the virtual hardware paradigm (discussed in [148] and [79]). The
system extracts control dependency graphs, data dependency graphs and data flow graphs
from the bytecodes and uses them to create the partitions. Problems with this approach are
centred around its use of Java bytecodes as an input source. The translation of sequential
byte codes to hardware can be rather inefficient as it results in circuits that are influenced
more by the design of the Java virtual machine than by the source code from which they were
generated. This can be compared with NISC (section 2.1.6), which tends to be more effective
because it is based on x86 opcodes, but does not consider temporal partitioning.

SPARK [100] is another C to VHDL high-level synthesis system that distinguishes itself from
similar systems by attempting to combine the features of a high-level synthesis engine with
that of a parallelising compiler to obtain an efficient hardware implementation without the need
to extend the input C code (as is required by Handel-C, etc.). For the same reasons as Handel-
C, SPARK cannot efficiently synthesise large software systems so it is particularly focussed
towards the development of co-processors and signal processing applications. SPARK uses a
similar finite state machine model to Handel-C, but it employs a large number of optimisations
to the code first in an attempt to extract the highest level of instruction-level parallelism possible.
After the optimisations a scheduling and allocation phase maps the software operations onto
hardware constructs, and then a code generation phase outputs VHDL for synthesis using
standard tools.

The input to SPARK is standard ANSI C, but with the restrictions of no pointers, no function
recursion, and no irregular control-flow jumps. Handel-C allows the use of limited pointers, but
also prevents recursion and arbitrary jumps because they are highly challenging to implement
in hardware. Arbitrary pointers and jumps are difficult to implement because of the static nature
of hardware. Consider the following program:

void myfunction(void * mypointer) {

int x;

x = *(int *)pointer;

}

In a software implementation, the mypointer is referencing a value in memory, so the program
can deference mypointer at run-time and access the location to which it is pointing. The cast

39

Chapter 2. Literature

and dereference translates to only a single opcode in most instruction sets. However, in a
hardware implementation mypointer is referring to another functional unit elsewhere in the
system. The program does not constrain in any way which part of the system this pointer may
be referencing, so in the worst case x must have a connection from all other units in the entire
system, leading to an infeasible amount of routing.

SPARK achieves good performance overall and the optimisations it applies result in an up to
68% reduction in circuit size, but it is restricted by the inherent limitations of C. All systems
that attempt to automatically parallelise C can extract some useful parallelism, especially from
simple loops that can be unrolled into vector operations, but they cannot extract system and
component-level parallelism because C does not allow the programmer to express these con-
cepts. It is for this reason the SPARK limits itself to synthesising a single component rather
than the entire system. Also, because of its finite state machine-based implementation strat-
egy it suffers from the same problem as Handel-C in that each extra line of code increases the
amount of routing and multiplexing in the final circuit leading to a greater than liner increase in
circuit size.

Finally, Catapult C [165] is a synthesis system that is becoming increasingly popular in industry
which converts C++ programs to RTL designs. Like SPARK, it requires no language extensions
or annotations in the actual input code. However, where SPARK uses extensive optimisations
to extract parallelism automatically, Catapult C relies on extensive user input throughout the
execution of the toolchain to provide circuit scheduling information. When using Catapult C
the user places constraints on various non-functional properties of the design to influence the
behaviour of the synthesis tool. For example, the user can set the desired clock speed and
Catapult C will insert pipeline stages appropriately in order to ensure that the requested speed
can be met. To exploit parallel execution, the user can request loops in the input code to be un-
rolled, either partially or fully. Catapult C’s main limitation is that it is heavily focussed towards
the synthesis of datapath designs and it preferentially generates pipelines. The synthesis of
state machine-based control logic is still immature. The user is required to use a special class
called Control which has different implementation semantics to the rest of the class hierarchy.
Also, like most other high-level synthesis systems, it is considerably better when synthesising
relatively small systems because hardware cannot be easily shared and reused so the final
design size grows considerably as the input program lengthens.

2.4.3 System design languages

HDLs tend to lead to a bottom-up design style. The designer uses low-level constructs to
build component libraries, and then instantiates those components to create a system. In a
rigourous design flow, the designer will testbench each newly-created component to verify that
they are working correctly. Then, once the entire library is complete and the top-level system
design built, integration tests are performed to ensure that the components function together
as intended. It is not as easy to simulate a design top-down, however, because VHDL and
Verilog do not allow high-level descriptions of black box components. It is possible to use non-
synthesisable features of the languages to achieve a slightly higher abstraction level whilst
simulating, but in general the entire design must be fully-reified before simulation can take
place.

In contrast, system design languages attempt to focus on a more top-down approach that

40

2.4. Generating hardware from software-style descriptions

allows designers to give ambiguous, unimplementable high-level descriptions of components
which can be very quickly simulated together as a complete system. Then, once these ini-
tial simulations are complete the designer can begin iteratively refining the components of the
design until they are sufficiently specific enough to be implemented. The advantage of this
approach is that it is usually during integration testing that system bottlenecks become appar-
ent. By performing such testing early it is possible to get initial estimates of performance and
resource usage that can help guide the entire design process.

It should be noted that system design languages are orthogonal to high-level synthesis lan-
guages because their implementable subset is generally equivalent to that of standard HDLs.
They could be combined with high-level synthesis to increase their abstraction level, but this is
generally not done.

SystemC

SystemC [116] is a system design language that has gained a large amount of support in
industry. An IEEE standard, SystemC was primarily developed to allow the design and sim-
ulation of systems at multiple levels of abstraction. It is based on C++ [72] and implemented
as a library of classes and macros which allows it to keep the same syntax as standard C++.
An unmodified C++ compiler can compile a SystemC simulation model. The SystemC lan-
guage can be viewed as both a HDL and a simulation language because whilst its main aim
is to verify the design of a system, a subset of the language can be synthesised directly to
hardware. However, the synthesisable subset of SystemC is equivalent in terms of expressive
power to that of VHDL or Verilog [95] so it does not offer the extra layer of abstraction in the
final hardware description that high-level synthesis languages provide (section 2.4.2).

SystemC models concurrent hardware units as modules that can communicate and exchange
data through ports. Inside modules, processes are the main unit of computation and are sim-
ulated concurrently. Processes pass data and synchronise using channels. A library of built-in
primitive types are supported, or the user can define their own composite types. SystemC
encourages layered simulation, where higher layers are less accurate but very fast to evaluate
and lower levels approach cycle-accurate simulation but take correspondingly longer to run.
SystemC also allows for layers to be mixed - some parts of the system are simulated cycle
accurate and some at a higher-level. Example layers are as follows:

• Layer 3 - Message Layer: Entirely untimed simulation where all communication is as-
sumed to be point-to-point, so therefore bus arbitration is not considered. Essentially
the only operations supported are send message and receive message. Simulations at
this level are inaccurate but very fast and are used to obtain rough estimations about the
functionality of the system and to begin to see where the system’s main bottlenecks are
likely to be.

• Layer 2 - Transaction Layer: This level begins to take the implementation architecture
into account so busses are simulated and some approximate communication timing is
considered. For example, the bus can be modelled as a SystemC module and written
such that communications are serialised with appropriate priority and scheduling mech-
anisms applied. Transmission time may be modelled as a simple function of message
length.

41

Chapter 2. Literature

• Layer 1 - Transfer Layer: At this level the simulation contains all the code that will
execute on the target platform so detailed software simulation can be performed, but
cycle-accurate timing cannot be obtained because the hardware is not fully modelled.

• Layer 0 - Register Transfer Level: This level is the lowest level of abstraction and
includes a full model of the target hardware and the complete system software. It is
cycle-accurate, but also the most computationally-demanding. This is equivalent to the
simulation of RTL-level VHDL.

Layers such as these allow designers to very quickly create a complete system model that can
still be informally tested for functional correctness. Then, as the design is reified the simulation
becomes more accurate (but slower to execute) and true verification can start to be performed.
At the lowest levels of reification, the simulation is equivalent in accuracy and speed to a full
HDL simulation. Many projects have used SystemC for transaction-level modelling of various
systems [32, 191, 177].

A SystemC program compiles to a standard software executable, which when executed per-
forms the simulation of the system being developed. If a hardware implementation is required
then a specialist translation tool is required to turn the SystemC code into a HDL or netlist
format. This is in contrast to HDLs which primarily describe hardware and are simulated by a
dedicated simulation engine.

Most of the criticisms of SystemC are related to its base language, C++. As C++ is a sequen-
tial language, describing concurrency and timing properties requires the use of preprocessor
macros and library calls that can seem counter-intuitive, whereas in other HDLs these con-
structs are first-class parts of the language. This can be seen in figure 2.16, a SystemC
description of a NAND gate. Many preprocessor macros are used (SC MODULE, SC CTOR...) in
order to implement syntax that is not available in normal C++. Also, due to fact that the Sys-
temC macros are attempting to give C++ declarative semantics (like VHDL or Verilog) it can
be difficult to separate code that actually describes hardware from code that exists solely to
aid the simulator. Figure 2.17 shows an equivalent VHDL description for comparison.

Also, as noted by in [67], it is easy to inadvertently develop a non-deterministic SystemC model
due to the fact that the simulator must mimic hardware concurrency on a sequential processor.
This leads to a slightly different execution order each time the simulation is run resulting in
race conditions and different simulation results for each run. These problems are very difficult
to detect from the simulation alone and may persist into the final hardware design.

Other system design languages

Whilst SystemC is probably the most well-known system design language there are a number
of similar languages that are frequently used. SpecC [84] is a superset of ANSI-C which
was developed to fulfil the same goal as SystemC and so it supports the same top-down
transaction-based modelling approach. Whereas SystemC models structure and behaviour
separately (with modules and processes respectively), SpecC consolidates these together with
a single behaviour construct. As a result, SpecC supports behavioural hierarchies which are
harder to model in SystemC. Also, SpecC provides slightly more control over the scheduling
of the simulation’s execution sequence by adding support for static scheduling and explicit

42

2.4. Generating hardware from software-style descriptions

#include "systemc.h"

SC_MODULE(nand2) // declare nand2 sc_module

{

sc_in<bool> A, B; // input signal ports

sc_out<bool> X; // output signal ports

void the_nand2() // a C++ function

{

X.write(!(A.read() && B.read()));

}

SC_CTOR(nand2) // constructor for nand2

{

SC_METHOD(the_nand2); // register do_nand2 with kernel

sensitive << A << B; // sensitivity list

}

};

Figure 2.16: A SystemC specification of a two-input NAND gate.

use ieee.std_logic_1164.all;

entity nand2 is port

(

a,b: in std_ulogic;

x: out std_ulogic

);

end nand2;

architecture struct of nand2 is

begin

process (a,b)

begin

x <= a nand b;

end process;

end struct;

Figure 2.17: A VHDL specification of a two-input NAND gate.

43

Chapter 2. Literature

Metric Hardware Software

Throughput high low
Power usage 1 low high
Silicon area 2 high low
Design time high low

Maintainability hard easy

Figure 2.18: The tradeoffs that hardware / software co-design attempts to balance. 1For small
functions, an ASIC will use less power than a processor. However, the power usage of a
processor is capped and extra functionality can be added by placing more code in memory for
only a very small increase in power consumption. 2As above. A processor is a one-off logic
cost beyond which extra functionality is cheap. New functionality in an ASIC design is costly.

description of state machines. SystemC instead must rely on dynamic scheduling which can
lead to the problem of non-deterministic simulations in some cases, as previously discussed.

SystemVerilog [214] is high-level abstraction of Verilog which provides similar modelling tech-
niques to SystemC and SpecC. However, unlike these two languages its main focus remains
gate-level synthesis. Whilst SystemC and SpecC are frequently used to verify systems only,
SystemVerilog is primarily a HDL and so is almost always used to generate an actual hardware
implementation.

2.4.4 Hardware / software co-design

Hardware / software co-design is an active field of research which is primarily motivated by
the observation that, for most embedded systems, much of their functionality can be either
implemented as dedicated hardware or as a software routine running on some form of em-
bedded microcontroller. Both approaches carry inherent advantages and disadvantages (see
figure 2.18) and co-design attempts to balance these to find a sufficient design that meets
restrictions placed on various metrics such as execution time, hardware density, power con-
sumption or build cost. Unlike system design languages discussed in the previous section,
co-design attempts to perform this system partitioning automatically though the use of a co-
design framework and a partitioning algorithm based on search.

In the classic description of co-design [246], the operation of a system is specified in an
implementation-independent way along with a quantitative list of requirements that the final
implementation must meet. The co-design engine then creates the hardware / software parti-
tion by assigning the various functions of the system to either hardware or software. This can
be done using a variety of search methods such as simulated annealing [75] or Tabu search
[71]. The hardware functions are synthesised to dedicated hardware and the software func-
tions are compiled to opcodes for execution on a predetermined processor core. Once these
processes are complete, the entire system can be evaluated by a co-simulation engine that
returns a set of performance metrics. If these metrics show that the system does not meet
its specification the process is repeated. This time, however, the hardware / software partition
is moved and so the implementation method for some functions is changed. This new imple-
mentation can then be regenerated and reevaluated until a solution is found that meets the
system’s initial constraints.

44

2.4. Generating hardware from software-style descriptions

CPU
(Executes software

functions)

Hardware Module 1
(Executes hardware

functions)

RAM
(Stores software and

allows communication)

Hardware Module n
(Executes hardware

functions)

Figure 2.19: The target architecture of classical hardware / software co-design

The target architecture for such classical co-design systems involves a single shared system
bus, upon which sits a single processor (to execute the software tasks), a number of custom
hardware co-processors (to implement the hardware tasks) and a block of shared memory (see
figure 2.19). More recent work has reduced this restriction; for example work by Niemann and
Marwedel [172] describes a system that supports multi-processor architectures and Kalavade
and Lee [124] examine the partitioning problem when applied to more general architectures.

Recent work [200] has looked at co-design from a software engineering point of view by ex-
tending the object hierarchy of the RTSJ to include new classes that encapsulate hardware
and software implementations of threads. The object framework automatically marshals the
communications between threads, allowing the final implementation choice to be changed
transparently by the designer, even at a very late stage of development. However, the target
architecture for this work is still a single embedded Java processor with a number of hardware
accelerators connected to a common bus, and it does not provide integration with high-level
synthesis engines for generating the hardware accelerators automatically.

Due to the lack of a truly implementation-independent language for expressing a system’s
functionality, all co-design frameworks tend to be either software-based, or hardware-based,
depending upon the format in which the design is initially specified. In a system such as
Cosyma [75], the entire design is described in a specially-created superset of C called CX .
CX is still a software language, it simply augments C with a few necessary concepts, such as
that of tasking. Therefore, initially a Cosyma design is entirely implemented in software. When
the system is run, it uses a specified cost function to evaluate the design and then begins to
automatically move parts of the code into dedicated hardware through the use of a synthesis
engine. Conversely, the work by Gupta and De Micheli [99] is hardware-based because the
initial system specification is a circuit design written in the language HardwareC, a language
which adopts most of the semantics and syntax of C but is modified to allow unambiguous
hardware modelling. In this work, only when the system cannot meet its stated requirements
are sections of hardware moved to the software partition. This is achieved by translating from
HardwareC to standard C using a code generation engine and then compiling the new code
for a generic microprocessor. Despite their differing approaches, it appears most co-design
systems achieve similar levels of overall success.

More modern work [239] attempts to avoid this dependence on either hardware or software by
focusing on a single target domain (high-volume data processing, e.g. video) and restricting
the flexibility of their task model. Applications are represented as directed acyclic graphs of

45

Chapter 2. Literature

tasks using a synchronous dataflow model [141]. Inter-task communication is strictly limited
to use only pipeline buffers. Tasks still have to be written in C/C++ for software or Verilog for
hardware, but the system model is implementation-agnostic, allowing for a fairer partitioning
system. However, like most systems this work only targets the software tasks to a single
processor.

2.4.5 Problems with co-design

There are a number of barriers to progress in the co-design field, but perhaps the most press-
ing is that the task of searching all possible partitions for an optimal solution has been shown
to be a case of integer linear programming [171] and so therefore NP-hard. In the general
case such a problem requires an exhaustive brute-force search. Wolpert’s “No Free Lunch”
theorem [248, 249] can be used to state that there is no single search algorithm that will be
able to perform better than an exhaustive search of all possible partitions in the worst case. As
a result, heuristic-based search algorithms must be used and it is this that has been the focus
of much work [125, 70, 71, 227]. This problem can be mitigated in practice, as the optimal
solution is rarely required, merely one that is good enough to meet the system requirements.

Secondly, most co-design frameworks rely on an accurate measurement of the performance
metrics of the partitioned design to guide their heuristic search. In other words, the system
makes decisions commonly based on the worst-case execution time (WCET) of both code and
hardware and the expected size of compiled code and synthesised hardware. There is a mas-
sive body of work concerned with calculating the WCET of software but such analysis is very
time consuming and relies on the target code being relatively small, written in an analysable
language, compiled with a simple compiler and executed on a predictable processor with a
minimal amount of caching, branch prediction or otherwise complex behaviour. Also, WCET
analysis is rarely fully automatic.

A major issue with co-design is that the vast majority of systems all target the same architec-
ture (a single processor with a single bus that contains a set of hardware accelerators). As
mentioned, some work has been done to try to move this to a multiprocessor model [172, 124],
but it has not been heavily expanded upon. Clearly a single processor will eventually prove to
be a bottleneck in future systems, so this problem must be solved.

Similarly, it is difficult to accurately predict how large the outcome of hardware synthesis will be
without actually performing it. Without detailed implementation-specific knowledge utilisation
figures must be estimated. These analysis errors mount as the size of the design increases,
making the co-design framework increasingly less effective. Similarly, it can be very difficult to
predict the effect of communication and synchronisation delay in a partitioned system, and a
few sources of such delay can negate the speed up that would otherwise be gained [246].

2.5 Implementation fabrics for embedded systems

This section gives an overview of the implementation fabrics that are commonly used for em-
bedded systems. The choice of fabric is important for the system designer because it can have
a drastic effect on the efficiency of their design.

46

2.5. Implementation fabrics for embedded systems

2.5.1 Application-Specific Integrated Circuits (ASICs)

Application-Specific Integrated Circuits (ASICs) [204] are integrated circuits that are designed
to fulfil a specific purpose, in contrast to the various series of industry-standard integrated
circuits such as the 7400 series [218] of standard logic circuits. Collectively they represent the
most common implementation choice for modern systems.

Being application-specific, ASICs are custom-built at dedicated silicon fabrication plants. As
a result, there is an incredibly high initial cost for setting up the plant, which involves the
generation of a photomask. Photomasks, or commonly just masks, are used by the ASIC
fabrication process to lay out the various layers of silicon that compose the final design. The
problem with ASIC development is that mask costs are extraordinarily high, and they increase
further for higher-density manufacturing processes. A 90nm mask may cost around $0.75m,
a 65nm mask $1.5m, and a 45mn mask as high as $3m. This means that ASICs are only
cost-effective if a very large number will be produced that can offset the mask cost. However,
the per-unit cost of an ASIC is very low as once the mask is created it is possible to fabricate
large volumes of the circuit for a relatively low cost.

The main advantage of ASICs as an implementation fabric is that they provide the highest
transistor density available. ASIC designs contain well over 100 million transistors in a tiny
area, and have lower power requirements and a higher maximum clock frequency than a
similar system built from stock parts. As a rule of thumb, a design implemented as an ASIC is
two to three times faster than the same design implemented in an FPGA of a similar technology
node [155]. For certain designs, this disparity can be even greater.

Aside from their high set up cost, the main disadvantage of ASICs is that they are completely
fixed at fabrication time. It is essential that the design being fabricated is perfect, because if
errors are found later they cannot be corrected. As a result, the high mask cost is in addition to
equally high costs of simulation and verification that must be performed on the design before
it is sent to the plant to be built. It is this lack of flexibility that led to the development of
programmable logic devices (PLDs).

PLDs attempt to keep the speed and integration level of ASICs but provide some amount
of flexibility to achieve the following two goals. First, if the designer can program the de-
vices then the expensive mask-making stage can be avoided. Second, if the device can be
multiply-reprogrammed then it becomes possible to correct errors without purchasing replace-
ment hardware and testing and verification becomes cheaper and easier. Early PLDs were
very simple, allowing the synthesis of only a single combinatorial logic function. However, as
integration increased the effective logic density of these devices also increased leading to the
development of FPGAs, which can be thought of as truly ‘reprogrammable ASICs’.

2.5.2 Field-Programmable Gate Arrays (FPGAs)

An FPGA is an example of a class of programmable logic devices known as gate arrays. In a
gate array architecture, transistors, logic gates, and other active devices are placed in a regular
lattice pattern and connected with interconnect wires. These wires are configurable and can
be arranged to connect the resources of the device in a structured manner. By placing the
interconnect lines correctly, a process known as routing, the components on the device can be

47

Chapter 2. Literature

connected to form almost any desired circuit.

FPGAs were initially developed in the mid 1980s [50] and were marketed as an alternative
way of evaluating ASIC designs. Previously, evaluating a designed circuit required that either
the design was manually built from connecting discrete components, or it was fabricated as a
custom-built ASIC. Both methods were time consuming and very costly. FPGAs changed this
by giving the designer an implementation fabric onto which designs could be programmed.
Evaluation could begin almost immediately, and once errors were found and corrected the
device could be reused. This prototyping method drastically increased the efficiency of ASIC
design, but also opened up new possible implementation methods. As the size and speed of
FPGAs increased and their unit costs decreased, more and more embedded systems were
developed that included an FPGA in the final circuit design, rather than an ASIC. This avoided
the heavy set-up costs associated with creating a custom IC and is very suitable for products
that are sold in low to medium volumes or that do not require the (currently much higher) logic
density and clock speed of a custom-built ASIC.

On a basic FPGA, the primary resources are Configurable Logic Blocks (CLBs), interconnect
and input/output blocks (IOBs). (See figure 2.20) CLBs make up the majority of the com-
ponents on the FPGA and are used to create sections of logic that implement the primary
functionality of the device. They are constructed from Look-Up Tables (LUTs) and flip-flops
and can be programmed to perform one of a large set of logical functions on their inputs.
CLBs are connected to each other by programmable interconnect which can be configured to
selectively route signals across the FPGAs. It is the vast amount of interconnect that actually
consumes the majority of the silicon area of an FPGA [27], up to 70% on some architectures.

In all modern FPGA architectures interconnect follows a hierarchical model. The majority of
interconnect is named ‘local interconnect’ and is constructed from short wires that may only
span a small number of CLBs. This is most commonly used to connect the inputs and outputs
of adjacent CLBs to form a single large logic function, such as a multiplier or shift register.
In order to connect distant parts of the FPGA, ‘global interconnect’ exists which comprises
longer wires that may span the entire width of the FPGA. Due to area constraints, global
interconnect is much less common than local interconnect and so can often be a very limited
resource. Finally, global clock nets are a special type of global interconnect which exist solely
to propagate clock signals throughout the FPGA. Due to the complex hardware involved in
reducing clock skew, there are generally only a few clock nets available on a device, 4 on the
Xilinx Spartan-IIe [253] for example.

2.5.3 Advanced FPGA architectures

Whilst all FPGAs are composed of LUTs and interconnect, modern FPGAs contain a number
of additional embedded modules for performing specialised tasks. These allow for greater
design flexibility as they operate at a high speed and can be used to implement functions that
would take up much of the normal FPGA fabric. For performing complex control operations
many high-end FPGAs include processor cores as part of their architecture, such as the Xilinx
Virtex-4 [257] which contains four PowerPC 405 cores. The surrounding logic presents the
cores with information and collects the results once processing is complete. Due to the fact
that these cores are implemented as embedded ASICs rather than derived from the normal
FPGA fabric, they can be clocked at much higher rates than processors synthesised from the

48

2.5. Implementation fabrics for embedded systems

Interconnect

CLB

IOB

Figure 2.20: Early FPGA architecture showing CLBs surrounded by interconnect and interact-
ing with the outside world though IOBs [251].

FPGA fabric (which are known as softcores).

Most applications require some form of memory to store programs or data. Whilst RAM can
be synthesised by combining LUTs appropriately, this is very inefficient. Therefore integrated
RAM blocks are a common feature in FPGA architectures. In Xilinx and Altera FPGAs these
are called BlockRAMs and on the largest Virtex-5 FPGA [255] there are over 11 Megabytes of
them. BlockRAMs are highly configurable with different widths, depths, and numbers of access
ports. [6]

In addition to embedded softcores and distributed RAM, many other design elements are com-
monly integrated into FPGA fabrics. Some devices include dedicated multiplier units that can
perform calculations much faster than similar logic synthesised from the CLBs, clock man-
agement circuits distributed across the FPGA help to manage clock skew and create stable
clock dividers and high-speed I/O modules such as the Xilinx RocketI/O modules allow off-chip
communication at 11 GBit per second [252].

2.5.4 The FPGA design process

FPGAs store their current configuration in special configuration memory. As this memory is
volatile, the device must be reconfigured with a configuration file (known as a bitfile) each
time it is powered up. The process of creating a bitfile to program an FPGA with is shown in
figure 2.21.

1. Design: The required design is expressed in a form that is acceptable to the FPGA
design tools. This may be a schematic, an EDIF netlist, or hardware description language
(section 2.4.1).

2. Translate: The user input is translated to logic gates, essentially converting all forms of
input to the schematic form.

3. Map: The resulting logic gates are mapped into CLBs and other atomic elements of the
target FPGA fabric.

49

Chapter 2. Literature

Design
(VHDL, EDIF…)

Logic
Gates

Mapped
Design

Placed
Design

Routed
Design

Bitfile

Translate Map

Place
Generate

Config. File Route

Figure 2.21: The standard FPGA design flow.

4. Place: The mapped CLBs are placed onto the device. The mapping algorithm will at-
tempt to keep logically related CLBs together to minimise routing. The placement algo-
rithm is a version of the bin packing problem and is NP-complete. [267] As a result this
stage can take a long time to execute and at times of high utilisation the placer must
resort to a simple exhaustive search.

5. Route: The interconnect between the placed CLBs is finalised. The routing algorithm
attempts to use the shortest interconnection lines possible to reduce propagation delay
and power consumption. Due to the large amount of interconnection required by most
designs, it is possible for a design to fit onto a device at the placement stage but for
routing to be impossible due to lack of space. Again, this problem is NP-complete.

6. Bitfile generation: The placed and routed design is converted to a bitfile that can be
used to configure the target FPGA. The final bitfile can only be applied to the exact FPGA
model for which it was created.

2.5.5 Coarse-Grained Reconfigurable Arrays (CGRAs)

There are two major disadvantages that can be observed with the use of FPGAs for digital
design:

• Interconnect cost: As mentioned previously, unlike ASICs, interconnect makes up the
majority of the area of an FPGA. The ideal FPGA architecture could potentially connect
any CLB to any other CLB in the device as this gives the most flexible implementation
fabric and simplifies the design tools significantly. However this cannot be implemented
on any reasonably-sized device because the routing costs would be too high. FPGA
architects must attempt to balance ease of use with the resultant routing costs.

• Complexity of place and route: The place and route stage of FPGA development is a
very computationally-expensive step because the placer must examine a huge number
of potential layouts.

Both of these problems are associated with the small size of the reconfigurable units in the
FPGA fabric. The idea behind Coarse-Grained Reconfigurable Arrays (CGRAs) is that if these
units are made larger the device becomes less flexible, but the design tools have a much sim-
pler solution space to examine. Typical CGRA-based systems are the MorphoSys [201] and

50

2.5. Implementation fabrics for embedded systems

FPGA

Configuration
storageFixed circuit

R
econfigurable

tiles

Figure 2.22: Partial dynamic reconfiguration - self-contained tiles of the design can be
swapped between the FPGA and external storage in the same way that conventional virtual
memory swaps pages of data between main memory and magnetic storage.

RaPiD [66] systems. Due to the limited flexibility of CGRAs, control logic can be difficult to im-
plement. As a result, many CGRA systems are designed to be tightly coupled with a standard
processor, such as ADRES [163] and REMARC [167]. CGRAs are limiting for general-purpose
development and have not seen the penetration into industry that FPGAs have, but they fill an
important niche in providing flexible and easy to use co-processors for data streaming appli-
cations.

2.5.6 Partial Dynamic Reconfiguration (PDR)

A major benefit of an FPGA-based implementation fabric is the ability to reconfigure the device
at run-time. The configuration engines of modern FPGAs allow a running device to be stopped
and reconfigured with a different bitfile, effectively turning it into a different circuit. This gives
rise to entirely new application areas and allows for an FPGA design which can respond to a
mode change or other significant event in the system by altering its behaviour drastically. This
dynamic reconfiguration allows for a number of mutually-exclusive features to be implemented
on the same hardware at different times, thereby reducing silicon area. A good example ap-
plication of this ability is a hardware video decoder. A dedicated ASIC is normally required to
decode each supported video format, but if an FPGA is used instead then different bitfiles for
the various formats can be stored in a ROM and then programmed in when required. Also,
firmware updates can be issued to add support for new formats after the device has been
shipped.

Recent FPGAs also allow for a more fine-grained reconfiguration mechanism. Rather than
reconfiguring the entire device as described above, it is possible to load a partial bitfile which
only affects a subset of the device whilst the unaffected areas continue to run. This technique
is known as partial dynamic reconfiguration (PDR) and was introduced in the mid 1990s with
the Xilinx 6200 FPGA [51]. PDR allows designers to ‘swap’ in and out ‘pages’ of hardware
in a manner that is analogous to the way that virtual memory systems swap pages of virtual
memory out to disk when physical memory is full. This has created the concept of virtual
hardware that, like virtual memory, allows a reconfigurable array to appear to the designer
larger than it actually is by swapping unused areas of hardware to external storage.

One difficulty with the use of PDR is that no FPGA allows for individual logic cells of the

51

Chapter 2. Literature

device to be reconfigured. Reconfiguration must instead be done on a tile-by-tile basis, where
the size of a tile is defined by the FPGA family. The reconfiguration tiles of the first FPGAs
that supported PDR were columns that ran from the top of the device to the bottom. This
meant that complex arrangements for providing cross-device communications were necessary.
Essentially, PDR was one-dimensional. Later FPGAs, such as the Virtex-4 [257] increased the
granularity of PDR to allow a true 2D grid of tiles, thereby simplifying its use.

Another consideration when using PDR is the time associated with performing the reconfig-
uration. Bitfiles are large and must be passed in to the FPGA though the configuration port,
which is usually clocked much slower than the FPGA itself. Consequentially, even with partial
bitfiles reconfiguration is of the order of milliseconds [197]. Whilst not prohibitive, this is much
longer than processor context switch times and so care must be taken to ensure that timing
constraints are still met. Further, it is much easier to perform PDR if the designer first shuts
down the FPGA (stop the clock but retain internal configuration and state) and then starts it
up again once configuration is complete. This reduces the possibility of metastability from sig-
nals crossing reconfiguration boundaries. However, this affects the timing of the entire circuit.
PDR does not require the device to be shut down, but the complexity of the resulting design is
increased.

Although PDR is still not commonly used in industry due to poor tool support and the vastly
increased complexity of the final design, numerous research projects have begun to exploit
its potential. Recent work [226, 20] has developed a framework for using PDR to reduce the
number of control systems present in modern automobiles. New cars can contain over 70
microprocessor systems for controlling the vast array of electronics that are now fitted as stan-
dard. Some of these processors are safety-critical and are not considered by this work, but
the majority are of low-importance and are only infrequently required by the user. Examples
include the controllers for the electric windows or the sunroof. The presented work partitions
the FPGA into two areas. One area is a control section responsible for parsing incoming CAN
messages and driving the reconfiguration. The rest of the device is a set of ‘slots’ into which
control units can be configured. The number of slots therefore determines the maximum num-
ber of parallel operations that can be executed at any one time. If the control section receives
a message for a device which is not currently occupying one of its slots then it decompresses
a stored bitfile for that device and configures it into a free slot using a least-recently used pol-
icy similar to that of memory caches. The resulting system has been shown to vastly reduce
the hardware requirements for soft real-time components without a perceptible degradation
in responsiveness from the user’s perspective, with most response times less than 10ms. A
system diagram is shown in figure 2.23.

A common paradigm that PDR is applied to is that of a custom instruction set processor, a
processor which can dynamically load new operations at run-time. DISC [245] is a processor
entirely implemented on a standard FPGA, using a portion of the device as a fixed execution
controller and the rest of the device as space in which to store custom instructions, thereby
accelerating the application by up to 24 times. The Chimaera reconfigurable processor [102] is
an ASIC-based processor which contains an amount of embedded FPGA-style reconfigurable
hardware. Chimaera uses this reconfigurable hardware to store the execution units of custom
machine instructions, whilst the ASIC section performs all standard operations. PDR has also
been used to create a reconfigurable co-processor that sits alongside a standard processor
[103].

NoC-based designs have been proposed [158, 110] that may allow PDR to be used in a more

52

2.6. Problems with existing research

Main control

Reconfiguration control / microcontroller software-based run-time system

Reconfiguration
controller

Bus
interface

State
memory

Flow
control

Signal
partitioning

Bus arbiter

I/O

C
L
B
 In
te
r
f
a
c
e

B
u
s d

rive
r

Function A

S
ta
te
 I/O

D
a
ta
 I/O

C
o
n
tro

l sig
n
a
ls

C
L
B
 In
te
r
f
a
c
e

B
u
s d

rive
r

Figure 2.23: Run-time system with run-time reconfiguration support and a soft processor.
[226].

general sense than the systems above. The problem that this work attempts to solve is that it
is very difficult to retain on-chip communications between dynamically changing components
as they are swapped in and out. These systems work by ‘hooking’ rectangular reconfigurable
tiles onto a static network layout as they are configured into the device. Essentially, a static
grid-based network of interconnect is laid down on the chip with router components placed at
regular intervals. This may be in one or two dimensions. This part of the design is static and
is not affected by run-time reconfiguration. Most of the routers are not connected to a tile and
so sit idle, but when the system wants to swap in a hardware tile it can select a free router
and ‘hook’ the incoming tile off the selected router. If the tile is very large it may overwrite
a number of other routers in the surrounding area, but the grid layout will be maintained.
This way, incoming tiles can always communicate with each other, as shown in figure 2.24.
Recent work [52] has considered the problems associated with creating bitfiles that can be
located anywhere in the reconfigurable device and uses a ‘bitstream filter’ to give the illusion
of relocatable bitfiles. The problem with these NoC-based techniques is that the limitations
of PDR granularity did not initially allow these to be efficiently implemented. Even though the
layout of the network grid remains the same, the act of reconfiguring a tile (even with the same
data) can potentially cause metastability in signals that pass across a tile boundary and the
contents of any on-chip storage elements will be lost. As the technology matures, however,
these problems will be reduced and it is likely that future systems will be based on work like
this and the automobile framework above.

2.6 Problems with existing research

This chapter has introduced a number of different approaches that aim to afford the program-
mer better use of complex embedded architectures. Whilst many of them show some level of
success, they display a number of overarching problems that can be broadly separated into

53

Chapter 2. Literature

Router

Network

1x1 tile

1x2 tile

Figure 2.24: On-chip networks are being developed to give a predictable structure to PDR-
based systems and thereby make them easier to develop.

two main categories - conceptual and practical. Conceptual problems (sections 2.6.1 to 2.6.3)
arise from a fundamental limitation of the approach’s premise and are the most severe as they
tend to represent a limitation that implementation ingenuity cannot hide. Practical problems
(section 2.6.4) are slightly less serious, but may be onerous for the end-user or the developers
of compilers and toolchains. These two problem categories are discussed in the rest of this
section.

2.6.1 Inappropriate abstraction models

Many of the presented approaches for allowing better use of complex architecture employ
either an extension to an existing language (almost always C) or develop an entirely new lan-
guage. The idea behind this is that existing languages lack the expressive power to describe
architectural details so by adding these in the programmer will be able to exploit future archi-
tectures more easily. One example of a language extension is the RTSJ, which is a real-time
extension to Java which includes a large number of concepts that allow the programmer to
discuss the processors and memory hierarchy of the target architecture. An example of a new
language is Sequoia which focusses on mapping the program more effectively into the memory
hierarchy.

The problem with the approaches presented is that they all use broadly the same abstraction
model that programming languages have used since the development of high-level languages
decades ago. As required by the standard programming model, features such as operating
systems, memory hierarchies and hardware devices were developed to be transparent to the
end-user. This resulted in the model developing into a stack of virtual machines, with the higher
layers built upon guarantees from the lower layers. This is shown in figure 2.25.

Each virtual machine hides underlying details to simplify programming and insulate the pro-
grammer from implementation changes. VM1 is built from the actual hardware and presents a
single contiguous address space and in-order execution of opcodes. VM2 is presented by the

54

2.6. Problems with existing research

ASIC CPU, MMU, comms
Soft architecture

VM1

VM2

VM0
FPGA

RTOS

Logical address space

OS API Language
Runtime

VM3User code

Figure 2.25: The stack of VMs in the standard general-purpose architecture.

Normal ‘C’-
level code

CPU RAM Higher-level
viewpoint

CPU RAM

Figure 2.26: Traditional programming languages describe what runs on a processor, not the
architecture in which the program executes.

real-time operating system (RTOS) so that each process believes it has sole control over the
processor, access to atomic actions, and other RTOS features. VM3 represents the language-
level virtual machines of languages like Java and Smalltalk. Unfortunately these VMs add inef-
ficiency because they do not allow easy access to underlying hardware. It therefore becomes
difficult for code at higher layers to access custom hardware without the use of hand-written
libraries and techniques that are outside the abstraction model of the programming language.
When custom hardware elements are introduced they either cannot be exploited (as with func-
tion accelerators) or they cause architectural assumptions of the VMs to fail and user code no
longer functions (as with non-contiguous memory layouts).

As a result of this, from a semantic point of view programming languages describe the software
running on a single processor (or a collection of tightly-coupled homogenous processors) from
within an implicit standard architecture. They do not describe the system as a whole, and the
details of how the code is mapped into the architecture are hidden from the programmer. This
is shown in figure 2.26.

The presented approaches attempt to solve this discrepancy from within the scope of normal
programming languages by keeping the same abstraction model but allowing extra keywords
or pragma-style concepts that allow the programmer to ‘drill through’ the abstraction layers.
Whilst this does allow the programmer to achieve the implementation they require, it has a
number of problems. Primarily it is not the way that the programmer wants to work. Consider
using C to target a multi-processor system where each processor has private memory and
there is also a block of shared memory. The programmer may write the code in figure 2.27 but
they do not have any control over where the threads thread1 and thread2 are actually placed,

55

Chapter 2. Literature

pthread_t thread1, thread2;

int shareddata[4500];

void *task1(){...}

void *task2(){...}

int main(void)

{

pthread_create(&thread1, NULL, task1, NULL);

pthread_create(&thread2, NULL, task2, NULL);

pthread_join(&thread1);

pthread_join(&thread2);

return 0;

}

Figure 2.27: C cannot natively describe shared data.

and they do not know to which memory block shareddata will be mapped.

To map the shared data into the correct space in RAM, the programmer must communicate
their desired mapping to the linker. To do this they tag the shareddata declaration with a new
section name and instruct the linker to move that section to the appropriate place. Using the
gcc toolchain the programmer tags the declaration like this:

int shareddata[4500] __attribute__((section ("sharedmemory")));

And then declares the new sharedmemory section in a custom link script which is passed to ld.
If 0x8C000000 is the address at which shared memory starts the declaration looks like this:

. = 0x8C000000;

sharedmemory : { }

Whilst this works, it is very complex and requires the programmer to do a lot of work outside
of their source language. Also it is architecture-dependent when it does not need to be. It is
very rare that the programmer wants to manually place the data at a specific address, instead
they wish to express the concept that shareddata should be in memory that is accessible to
the host processors of threads thread1 and thread2. Without these concepts the programmer
is forced to manually place the data. With the amount of processor cores in modern super-
computers [202] this is clearly not sustainable for supercomputing environments. Embedded
environments are smaller and less regular so mapping is still feasible, but it is error-prone and
must be repeated after any significant software or hardware changes.

2.6.2 Limitations of high-level synthesis

There is currently no high-level synthesis language that has completely replaced the use of
HDLs like Verilog and VHDL. The reason for this is that the abstraction models of high-level
synthesis languages mimic that of software languages and consequentially do not give the
designer the ability to choose between different implementation strategies. When designing
systems, the hardware designer may choose between interacting state-machines in raw logic,

56

2.6. Problems with existing research

opcodes on an embedded processor core, dataflow and asynchronous logic circuits, processor
and function accelerator pairs, or some combination of these techniques. High-level synthesis
systems do not give this freedom, and tend to select a single strategy which will work very well
for some designs and very poorly for others.

For example, Handel-C creates interacting one-hot state machines, but for designs that are
best implemented using mainly asynchronous logic it can only describe an inefficient solution
that is unnecessarily large and takes longer to execute than required. Similarly, Lava is based
on a function composition paradigm that describes signal processing circuits well but cannot
express state easily.

It appears that high-level synthesis has hit a self-imposed limit and it will not improve without
a change in the way it is realised. Synthesis works well within a narrow design space, but
rapidly diverges from the optimal solution outside of this space, to the point where often large
classes of designs cannot be implemented at all. As a result it may be tempting to simply keep
adding extensions to the source language, but this cannot completely bridge the semantic gap
between design space and implementation fabric because both are changing at a pace that is
far too rapid. For example, the globally-asynchronous, locally-synchronous design paradigm
[41] discussed in 1984 is now fully embraced by modern SoCs yet programming languages
are still not capable of expressing this kind of paradigm well. The Ada Distributed Systems
annex [28] appeared in 1995, but it is too heavyweight for efficiently targeting SoCs with tightly-
coupled communication and memory systems.

2.6.3 Poor support for dynamic systems and architectures

Whilst many embedded systems are entirely static, as embedded platforms become increas-
ingly parallel the issue of dynamic migration of computation is introduced. Embedded systems
commonly include the following dynamic features:

• Multiprocessor systems: As with desktop machines, devices with multiple execution
units support a form of POSIX-style threading model that schedules threads over many
cores, perhaps allowing migration at run-time.

• Power scaling: Reducing power consumption is essential for many embedded devices.
A device that is under low load may switch some cores off and migrate all their computa-
tion onto a smaller active set.

• Fault tolerance: As cores fail, if possible it is desirable to migrate any threads that were
executing on them to other areas of the system. This also applies to the failure of on-chip
communications media.

• Load balancing: Load balancing systems allow for systems to better deal with infre-
quent bursts of high volumes of computation (e.g. in a network switch).

• Dynamic reconfiguration: FPGA technologies allow embedded architectures to change
at run-time through partial dynamic reconfiguration [226], leading to high amounts of dy-
namism.

57

Chapter 2. Literature

Migrate

Thread

Data

Data
access

CPU

Figure 2.28: Unguided thread migration can lead to increased inter-thread distances and poor
performance.

A key issue, therefore, is how standard programming languages may allow efficient exploita-
tion of these dynamic features of the target platform by the programmer. This is difficult in
typical languages (eg. C) because the inherent programming models do not represent the
underlying hardware architecture. The solution used in general multiprocessor and distributed
architectures is to use middleware-based solutions like MPI [97], CORBA [183] or PVM [88].
However these are not appropriate for embedded systems due to their inefficiency and need
for complex Operating System and communications support. For programming multiprocessor
embedded systems therefore there are two distinct issues to consider: program structure and
memory coherency.

Program structure

Programs are generally expressed in units such as threads and data objects. However, the
relationship between threads and data (ie. which data objects are required by a thread) is not
present in most programming languages. Then, when a thread migrates from one processor to
another, the language runtime lacks the necessary structure that would allow it to migrate with
it any related threads and the data they use. This unguided thread migration can lead to in-
creased inter-thread distances and therefore higher communications latency and poor memory
access times, as shown in figure 2.28. This problem affects embedded systems particularly,
because they are rarely homogenous grid architectures of the kind found in supercomputing
environments.

In an attempt to mitigate this problem, some languages allow the programmer to bind threads
to only execute on a subset of available processors. Thread affinities in RTSJ [61] are one
such example. Affinities describe which processors a thread may be scheduled upon at run-
time, but there is no way to bind items of shared data to that thread or to state that threads
should be grouped and moved together. It may sometimes be possible to infer this data to a
limited extent with static analysis, but this does not help in the general case.

Chapel’s locales can group threads and data, and then a locale can be bound to specific nodes
of the architecture. However locales are low-level, forcing all threads in a locale to execute on
the same processing node and limiting the sharing of data between locales. Also, Chapel’s
shared-memory model and a regular grid architecture are rather heavyweight for many em-
bedded systems. UPC allows threads to have private and shared data, and it also introduces
the concept of data affinity which states that a particular thread ‘owns’ a particular data item.
Unfortunately it does not allow clustering of threads as the model is flat rather than hierar-

58

2.6. Problems with existing research

chical, and like Chapel it is not an embedded language and was designed for heavyweight
supercomputing architectures.

Coherency

Whilst embedded architectures employ complex, hierarchical, heterogenous models, almost
all existing languages assume a contiguous global address space. The programmer cannot
effectively map the data of their program onto the memory hierarchy, and has little control over
data transfers. The result of this single address space assumption is that many software lan-
guages place heavy demands on cache coherency algorithms, usually that the entire system is
kept coherent. This is very expensive (in terms of execution time and required hardware) and
it does not scale to support large numbers of caches. On embedded platforms it is even worse
because their application-specific nature means that frequently the programmer actually only
needs to keep a few small areas of the system coherent, as determined by their application.

Lightweight schemes that limit coherency into islands are more scalable than complete co-
herency solutions [149], but they require significant support from the programming environ-
ment. This support is typically not available. C assumes that the entire program is within
a single contiguous address space, and its non-analysable pointer arithmetic requires per-
fect coherence across all memory. Furthermore, because threads are not a first-class part
of the language they cannot be reasoned about in terms of the data that they use. Ada’s
Distributed Systems Annex allows for the notion of separate memory spaces, but it produces
very heavyweight partitions that cannot communicate or share data without the use of explicit
communication. Inside a partition the memory model is similar to C. The Java language has
a flat memory model, as this is what is exposed by the JVM. The RTSJ [91] allows the pro-
grammer to provide more information about memory regions using the concepts of scoped and
immortal memory. There is no concept of threads and data being related and coherency is still
presumed to be across all memory. As mentioned previously, UPC allows threads to claim an
item of data as its own, but the model requires all shared data to be accessible to all threads.

Some recent work has considered ways to limit this coherency problem. Huang et. al. [109]
augments the programmer’s source code at points where locks are requested and released
with library calls to determine what shared data is required by which parts of the design.
Similarly, Virtual Tree Coherence (VTC) [73] uses a tree-based coherency system to limit co-
herence actions to the necessary subset of the nodes of an on-chip network.

In general, however, existing languages do not allow the programmer to limit their coherency
demands and therefore allow the implementation of a more efficient system that better reflects
the needs of the application.

2.6.4 Practical issues

Along with the conceptual problems listed above, there are a number of practical problems
that most existing solutions exhibit. The most obvious is that whenever a new language is
designed it cannot be used without the development of an associated compiler. This problem
is also evident with language extensions, because if an open-source compiler for the base
language exists then it can be extended, but it will take a lot of verification and validation

59

Chapter 2. Literature

effort before the new compiler is trusted enough to be used in an industrial or safety-critical
environment. This applies to other parts of the software toolchain also, such as debuggers,
profilers, and development environments.

Related to this problem, reuse of legacy code is often not possible when a new language
or language extension is developed. Clearly with a totally new language all code must be
rewritten, but this problem also applies to language extensions that augment the target domain
of an existing language. A good example of this is Handel-C, an extension of ANSI C for
performing high-level synthesis of hardware. Handel-C is almost a complete superset of ANSI
C (only a few C operations are not permitted) but it is not possible to reuse existing C code
to any degree because whilst the result may be functionally correct, it is very likely to display
undesirable non-functional properties.

For example, standard software engineering encourages as much code reuse and generalisa-
tion of functions as possible because caching effects cause such code to execute faster. How-
ever, in a naive hardware implementation this actually has the opposite effect. Code reuse can
result in wide multiplexers on the input and output ports of the hardware functions (because
many other parts of the system use it). This consumes logic and results in slower maximum
clock speeds. Less general coding will result in multiple hardware functions where there origi-
nally was only one, but they will have narrower multiplexers and run faster. In essence, whilst
developing in Handel-C may look like developing in C, it is a very different paradigm and re-
quires different skills from the programmer.

The issue of programmer expertise is also of interest to industry. Retraining programmers
to develop in a new language is wasted time from a company’s perspective, and it may take
months before programmers can produce code of the same quality as in the previous lan-
guage.

From a more research-oriented view, because there is such a huge number of new languages
and language extensions (as presented in this chapter) the community is in danger of becom-
ing fragmented. Research does not benefit the majority because everyone is using their own
language and must reimplement the new results in their own compilers and toolchains.

Finally, one clear problem with many of the research languages presented here is that they
have a tendency to be domain-specific, or to only tackle a single problem. Sequoia is a good
example, as it has solely concentrated on allowing developers to program complex memory
hierarchies, but it does not attempt to expose custom hardware elements to the programming
language. System design languages such as SystemC are very good at exploiting custom
hardware elements, but their synthesisable subset is a lower level of abstraction than high-
level languages like Java, which can limit programmer productivity. It is not possible for the
programmer to use the interesting features of all these languages, they must select a single
language and accept the disadvantages of that language also.

60

Chapter 3

Compile-Time Virtualisation

3.1 Overview

Chapter 2 discussed the observation that existing software development models incorporate
a stack of abstraction layers (figure 2.25) that are unsuitable for the programming of non-
standard system architectures. This conventional abstraction stack evolved at a time when
underlying hardware consisted solely of a single processor with a single, logically-contiguous,
memory space. Software languages began to hide these details from the programmer be-
cause they were static, resulting in an implicit target architecture. Modern languages still use
this model, so do not allow code to target varying architectures without breaking existing ab-
stractions.

Most recent research has attempted to solve this problem by extending software languages
with architectural concepts, but as discussed in section 2.6.1 this technique has currently only
met with limited success because of a fundamental semantic discontinuity – software lan-
guages describe the actions to be performed by a processor, they do not describe the system
in which that processor exists. Furthermore, section 2.6.4 highlighted that it is desirable to use
existing languages and compilers if possible due to the rapid rate of hardware evolution. It is
infeasible to develop a new language and associated toolchain for each new paradigm that ap-
pears, and currently many newer hardware concepts are still either unsupported by languages
(such as scratchpad memories and partial dynamic reconfiguration) or poorly supported (non-
uniform memory architectures).

The approach taken in this thesis and presented in this chapter is to use a more appropriate
programming model for describing embedded software that can be used to express the ar-
chitectural mapping concerns that are inherent in embedded development. The model uses
clustering to introduce controlled dynamic behaviour that can be used to increase scalability of
the final system whilst preserving thread and data locality. This is supported by virtualisation-
based techniques that present the programmer with an intermediate platform for which soft-
ware can be developed using standard programming languages. This is termed the Virtual
Platform (VP) and is tailored to fulfil the architectural assumptions of the chosen source lan-
guage, thereby aiding development. Unlike standard virtualisation, the mappings from this

61

Chapter 3. Compile-Time Virtualisation

Thread

Shared data item

Slow inter-cluster
communications

Fast intra-cluster
communications

Cluster

Figure 3.1: Clusters in a large software system.

intermediate platform to the target hardware are exposed to the programmer for high-level
alteration. To maintain efficiency, all virtualisation takes place at compile-time rather than run-
time (as with existing techniques). Therefore, the technique introduced by this thesis is called
Compile-Time Virtualisation (CTV).

Section 3.2 introduces and defines the clustering model, which is then refined into a complete
system model in section 3.4. Section 3.4.5 discusses the way that three existing languages (C,
Ada and Java) can be represented in this system model. CTV is then introduced in section 3.5
as a way of implementing the clustering system model in resource constrained embedded
systems. CTV’s system model is detailed in section 3.6, and section 3.7 describes a novel
communications layer called the Object Manager model that is used by CTV to distribute OS-
style services in a scalable and efficient manner.

3.2 Clustering

Section 2.6.3 discussed the problems that existing languages have when addressing the dy-
namism that is present in modern embedded systems. One of the identified issues is that the
programmer cannot group threads into cooperating thread groups along with the data that they
use. In essence, the programming model is flat rather than hierarchical. This causes two main
problems when attempting to distribute the program over a heterogeneous embedded archi-
tecture. First, during thread migration tightly-linked threads can become separated from each
other and from their data, leading to longer memory access times and greater inter-thread
communication latency. Second, the flat memory models used by standard languages force
the system to maintain cache coherency across the entire architecture. This is unnecessary,
because for most programs coherency is only required between a small number of cores per
item of shared data.

Rather than considering the whole system at a single level of granularity (like the threading
models of Hoare’s original CSP, MPI-based systems, and POSIX pthreads1), this thesis in-

1POSIX threads are not completely flat as they can be spawned hierarchically (one thread creating sub-threads)
but from that point onwards they execute flat and independently.

62

3.2. Clustering

troduces a model that specifies the system as a set of interacting clusters. This is shown
in figure 3.1. The aim of this model is to allow the computation and communication of the
system to be better expressed. The clustering model [94]2 is a system specification model
formed from the PGAS languages 2.1.4 and using elements of MPI [97] and ccNUMA (e.g.
[152, 143]). These all acknowledge the importance of system partitioning, in which partitions
are used to delimit communication requirements and break up the memory model into logically
distinct sections.

A cluster is composed of:

Threads A possibly dynamic set of programmer-defined application threads. Whilst this pri-
marily refers to language-level threads (like those of Java or the tasks of Ada) they might
also refer to more finely-grained mechanisms, such as cobegins or parallel for-loops.

Shared data Items of shared data that are used primarily by the threads of the system.

Two relationships are defined by the clustering model:

Sibling ↔ Sibling: Siblings are threads and data items contained within the same cluster.

Parent ↔ Child: The threads and data items contained within any given cluster are referred
to as the children of that cluster. Accordingly, the cluster can be referred to as the parent
of those items.

The clustering model is used to allow a system specification to express the relative importance
and frequency of the various communications that take place in the system. This model is not
a semantic one and it does not change, for example, the scoping rules of the source language.
It provides additional information that is not included in most existing languages that can be
used to influence the implementation. This extra information is called coupling. Coupling is
a relative partial ordering between the threads and data items in a system and affects the
following two properties:

• Communications: If two items (threads, data items) are tightly-coupled then they re-
quire frequent, or low-latency communication. This typically means that they coordinate
on the same sub-problems, share the same input and temporary data, and exchange
frequent, low-level messages and locks. For example, a thread is tightly-coupled with its
local data items. Conversely, if two items are loosely-coupled then their communications
are less frequent, higher-level, and not as critical to the overall throughput of the entire
system.

• Coherency: If two items are tightly-coupled then they are afforded a greater level of
cache coherency than items that are loosely-coupled. Cache coherency is frequently
treated as a binary property (either present or absent) but this is not the case. Many dif-
ferent coherency implementations exist that provide different levels of service at differing
costs. For example:

2The paper cited here used the term Islands of Coherency to refer to an earlier version of what is now the clustering
model.

63

Chapter 3. Compile-Time Virtualisation

– Hardware-based cache coherency systems (see section 3.6.2) offer the fastest co-
herency but consume a large amount of die area and do not scale well to large
numbers of coherent units.

– Automatic software-based coherency uses a run-time system to monitor shared
data accesses and invalidate cache lines accordingly. This does not require any
extra hardware but increases the workload of the processor as it must now check
for potential coherency problems.

– Explicit software-based coherency (such as that used by the Rthreads system [65])
uses offline analysis to determine potential coherency problems at compile-time.
This results in the lowest processor overhead, but pessimistic analysis can result in
increased communications requirements and therefore increased latency.

A flat model presumes that the same coherency model is applied uniformly across all
components of the system. The clustering model provides extra information at compile-
time from the programmer that may be used by the implementation to relax this restric-
tion. For example, loosely-coupled items may use a coherency model that provides
slower coherency but at the resulting reduced implementation cost.

3.3 Clustering model motivation

The clustering model must be considered in terms of complex, non-unform architectures for
its purpose to become apparent. In more regular SMP-style architectures, use of the model
is not as important, although it supports dynamic systems well (see later). Whereas these
architectures have either a shared bus or otherwise uniform communications, in a complex
architecture this is not the case and all manner of communication and memory topologies may
be introduced. Consequentially, thread and data positioning has a large effect on system per-
formance, yet source languages for the most part do not provide coupling information to guide
these choices. Clustering model allows the programmer to provide this missing information.

The clustering model does not limit variable scope or in any way change the source program-
ming model. If a variable is visible across the entire system (such as when using a language
like C) then it still is when using the clustering model. Instead, the clustering model should be
viewed as providing modelling information about where that data is most likely to be used. The
requirements of the language must still be fulfilled by the implementation, but it may choose
to provide a reduced service for loosely-coupled communications and concentrate on tightly-
coupled areas (clusters) by placing data in a memory space close to the processors that will
access it. Processors that host loosely-coupled threads may still access it, but the communi-
cation will be slower.

The model provides good support for scalable development. With a flat model all threads are
defined at the same level. Therefore, because the programmer cannot express otherwise, a
flat programming model implies that cache coherency and communication requirements apply
equally over the entire system, limiting scalability. The necessity to discover this information
is often then pushed to an automatic profiling or hot-spotting system that can tune a system
during runtime. In contrast, the clustering model allows relative bounds to be placed on the
communication and coherency requirements of the application at compile time. This can al-
low the compiler and run-time systems to use weaker, more scalable coherency solutions for

64

3.4. System model

CPU
1

CPU
2

Cache Cache

CPU
3

Cache
RAM

Hardware
coherency

links

Thread a Thread b Thread c

Cluster

Source language model

Target architecture

Mappings

Cluster Cluster

Figure 3.2: Example showing how the clustering model influences mapping to target architec-
tures.

communications that are less time-critical.

Finally, the clustering model supports dynamic systems in which threads and data may migrate
(due to OS activity, power management, fault tolerance etc.). In a flat model migrations are
undirected. In the clustering model, when a thread is migrated the system can choose to
also migrate its siblings in order to maintain the coupling of the system. Constraints can be
expressed on migration in an architecturally-neutral way. Section 5.3 investigates the costs
associated with directed and undirected migrations and demonstrates that for the majority of
systems the clustering model is preferable when compared with undirected migration.

Figure 3.2 gives an example of how the clustering model can influence the implementation
toolchain without introducing architecture-specific constraints. In the example system depicted
there are three threads - a, b and c. Threads a and b are placed inside a single cluster and
so are more tightly-coupled with each other than they are with thread c. Consequentially, if
this system is implemented on a system in which only two of the processors support hardware
cache coherency this specification provides a hint that these cores should be occupied by
threads a and b. Communication with c is less time-critical so its placement is less constrained.

3.4 System model

This section defines the system model used by this thesis that implements the clustering model
of the previous section. This model is used to represent high-level features of embedded
software, the typical embedded architectures that such software runs on, and the mappings
between the two.

The techniques developed in this thesis support embedded system development using a
single-program model, in which the programmer provides a single program that wholly de-

65

Chapter 3. Compile-Time Virtualisation

CPU CPU

CPU

cpu1.c:

void main(void) {…}

cpu2.c:

void main(void) {…}

cpu3.c:

void main(void) {…}

CPU CPU

CPU

program.c:

void main(void) {

 thread1() {…};

 thread2() {…};

 thread3() {…};

}

Single-program model

Multi-program model

Figure 3.3: The single-program model compared to the multi-program model.

scribes the operation of the entire system. This is in contrast to a multi-program model in
which the programmer has to provide a separate program for each execution unit (processor,
co-processor, etc.) of the system. These are shown in figure 3.3. The single-program model
is often preferable from the developer’s perspective because it supports architecturally-neutral
development (it is possible to develop software without knowledge of the number or type of
available processors in the final system) and high-level language features can be used to
describe communication and coordination between concurrent units. A multi-program model
forces explicit programming of these interactions.

This thesis assumes a single program model with the following characteristics:

Concurrency As a consequence of the single-program model, the languages used for system
development must support concurrency otherwise it would not be possible to describe
the operation of a system with more than one processor. This concurrency is considered
by the system model.

Shared memory threading Due to the stated focus on real-time embedded systems devel-
opment, the system model is based on the characteristics of three languages frequently
used in this domain - C, Ada and the Real-Time Specification for Java (RTSJ). Accord-
ingly, an imperative programming style is used with explicit, coarsely-grained parallelism.
The model is still generic enough to support other languages and programming styles.
Note that whilst Ada and Java both include concurrency as integral to the language, C
does not and it must therefore be added through libraries. Most existing concurrency
libraries such as TBB [187] and the Boost threads library [242] rely on the use of C++, so
it is therefore assumed that the C programs discussed make use of the POSIX pthreads

66

3.4. System model

[115] library. The pthreads library allows the expression of concurrency though oper-
ating system threads rather than pure language threads, so pthreads expresses a flat
threading model.

Program structure The model describes the structure of the input program rather than the in-
dividual operations that it performs. This is because it is used alongside the programming
language and not as a replacement for it.

Target architecture description The target architecture of the embedded system is modelled
so that its characteristics are available to the system. As with the previous point, this
modelling is high-level and not a complete description of the hardware.

3.4.1 System model layers

The system model is composed of three layers:

• Program layer (section 3.4.2): Describes the input program in terms of the threads and
data items that it is composed of.

• Logical layer (section 3.4.3): Sits below the program layer and allows the definition of
clusters that the programmer can use to describe the coupling of the system. The pro-
gram is mapped into these clusters.

• Target layer (section 3.4.4): Describes the target architecture of the system, onto which
the clusters of the logical layer are mapped.

The model is depicted in figure 3.4. The program layer is mapped into clusters of the logical
layer, the clusters are mapped to the target layer. These mappings are described by the logical
layer (section 3.4.3).

This model is intended for use in addition to the source code of the modelled application, so
it is not intended to fully detail the low-level operation of the system but rather to describe the
high-level features of the code. The following three sections explain each layer in detail.

3.4.2 Program layer

The program layer (depicted as the top layer in figure 3.4) expresses the input program as
three sets of objects:

• Concurrent objects: A set of the units of concurrency of the source language. As noted
from the requirements of the system model (section 3.4), concurrency is an essential
modelling primitive, motivated by the trend towards highly-parallel architectures.

• Shared objects: Passive constructs that expose services that are called by the concurrent
objects of the system. Shared objects allow multiple concurrent elements to synchronise
with each other and coordinate their execution to avoid race conditions and the corruption
of shared data (for example, mutexes, condition variables or protected objects).

67

Chapter 3. Compile-Time Virtualisation

Source code

Concurrent
objects

Shared
objects

Shared data
objects

CPUs Channels Memory spaces External hardware

Logical
layer

Program
layer

Clusters

Cluster targets

Target
layer

Target architecture

Figure 3.4: The layered system model.

• Shared data: Data items that are read and written by the concurrent objects of the sys-
tem. Synchronisation is not assumed and mutual exclusion should be enforced with a
shared object if required.

Note that the program layer does not explicitly model the communications between concurrent
objects. For example, a CSP-based model would represent channels, over which the inter-
process communications are conveyed. Such an approach would assist when mapping the
application to a target architecture, but it is not supported by the languages used in embedded
development that this work is focussing on (C, Ada, RTSJ). Consequentially, communications
channels are modelled by the target layer as an implementation target rather than a system
specification.

The elements from this layer are now defined:

Concurrent object A concurrent object models programming constructs that are used by the
programmer to define units of coarsely-grained parallelism. They have the following fea-
tures:

• An independent thread of control. The concurrent object executes until the object is
destroyed (or stopped by another thread) or the application terminates.

• Local variables (stack, heap). Whilst executing, the object may arbitrarily create and
delete local variables on either a private stack or private heap.

• Single logical address space. Whilst executing, the object may arbitrarily access
shared data (for reading/writing). The programmer does not have to make any

68

3.4. System model

special considerations for data accesses that are remote, they are accessed just
like normal variables in the code.

• System-wide communications. The object can use the facilities of any shared ob-
jects without consideration of the connectivity target architecture.

• Arbitrary complexity. The model does not imply anything about the relative com-
plexity or workload of a concurrent object.

• Mapped to processing elements. Concurrent objects are ultimately mapped to the
processing elements of the target architecture as threads of control. If multiple con-
current objects are mapping to the same element then the use of a multiprogram-
ming kernel is assumed. Multiprogramming concepts such as scheduling, priorities,
etc. are not covered by the general system model, but may be supported by an
implementation of the model.

Shared object: A shared object models language features that are used to coordinate the ex-
ecution of concurrent objects, and to pass data between then in a controlled and thread-
safe manner.

• Passive thread of control. The primary difference between a shared object and a
concurrent object is that a shared object does not have an independent thread of
control. They exist from application start to termination, but do not execute or use
processor time unless they are requested by a concurrent object. From a logical
view, the request is evaluated by the concurrent object which performed it.

• Provides services. A shared object exposes a set of services (in the form of proce-
dures) that are called by the threads of the system. As a shared object is passive,
the execution of these procedures is notionally executed by the calling thread, as
with a procedure call in most languages. The procedures exposed vary depending
on the source programming language. Some languages may only expose certain
types of shared object, some may allow the programmer to define their own. For
examples of shared objects in existing languages see section 3.4.5. The calling
thread provides a set of arguments for the call, and after the call has been executed
it receives a reply. Arguments and replies are typed using the type system of the
source language. Objects must support arguments passed by value, implementa-
tions can choose whether or not to also support passing arguments by reference in
limited circumstances.

• Local variables. Like a concurrent object, shared objects have access to a stack
and heap and may create and store local variables whilst executing. This stack and
heap are notionally separate to other objects (as the shared object may migrate into
another memory space) so direct pointers should not be passed between shared
objects.

• Internal locality. A shared object can be assigned to a single processing unit of the
system, it cannot be split across multiple units in the system model. (An implemen-
tation may still choose to do this, providing that it is transparent to the user.)

• Internal coordination. Shared objects are used to coordinate the execution of con-
current objects and so provide coordination over the procedures that they export.
Functions execute under mutual exclusion, and may obtain one of two locks in the
object, the read lock and the write lock. The read lock can be held by any number
of functions at any one time, but if any function holds the read lock then none can

69

Chapter 3. Compile-Time Virtualisation

acquire the write lock. Similarly, if any function holds the write lock then none can
acquire the read lock. The write lock can only be held by one function at any one
time. In addition, all exported procedures can be guarded to allow execution only
when a given guard evaluates to true. The guard must be a logical predicate with no
side-effects over variables local to the shared object. If a concurrent object attempts
to call a guarded function which evaluates to false, the call is queued until the guard
becomes true. Queued threads do not hold any locks. Guards are re-evaluated
after the completion of an exported function call. Accordingly, more complex guards
can be implemented by defining a new local logical variable that controls the guard
and re-evaluating this variable’s value at the end of all functions that might have
affected its state.

• Mapped to processing elements. Like concurrent objects, shared objects are ulti-
mately mapped to the processing elements of the target architecture. As passive
objects, they are executed in response to messages from other parts of the system,
so may be implemented in a message handling thread, or an interrupt handler. To
avoid a heavyweight implementation, an implementation may collapse all shared
objects on a given processor into the same handling thread. This is the approach
taken in this thesis, see chapter 4.

Shared data: Items of shared data model language-level items of shared data. They have the
following characteristics:

• Globally-static, locally-dynamic. Individual shared data items cannot be created
or deleted (globally-static), but they may grow or shrink arbitrarily according to the
restrictions of the language (locally-dynamic). For example, a shared data item can
implement a dynamically-sized array (but note the later restriction about memory
spaces).

• Typed. Shared data items are typed using the same type system as data items
from the source programming language. An array or other compound type creates
a single shared data item.

• Located in a single physical address space. The shared data item cannot span
multiple physical address spaces, either initially or after expansion.

• Mapped to memory spaces. Shared data items are ultimately mapped to (and there-
fore placed in) the memory spaces of the target architecture.

Note that shared data items are a restricted case of shared objects, effectively a shared object
with ‘get’ and ‘set’ operations that manipulate a single variable. Shared data items are provided
in order to model the situations in which shared data is used without a wrapping object (such
as when lock-free algorithms [105, 14, 229] are used) or if the language abstraction model
does not support arbitrary shared objects (such as C).

3.4.3 Logical layer

The logical layer sits between the program layer and the target layer. The items defined at
this layer are not part of the input source code and do not have a physical implementation in
the target architecture. They are abstract, logical items that are responsible for defining the

70

3.4. System model

clusters of the clustering model and for expressing controlled dynamic behaviour in the form
of thread and data migration. It is this layer which performs architectural mapping of the input
code and defines a formal link between software and the hardware upon which it executes.

The layer defines two sets:

• Clusters

• Cluster targets

A cluster is as defined in the clustering model, and is used to express the coupling of the source
application. Clusters are used to state that a group of concurrent objects, shared objects and
data items are tightly-coupled. They are similar to Chapel locales (section 2.1.1) in that they
are used to inform the toolchain and run-time of an implementation that its constituent threads
and data should execute closely together. Locales are more constraining than clusters as
they are closer to the implementation, making them bound to specific processors or processor
layouts and requiring a flat memory space. Clusters, on the other hand, are closer to the
system specification and so do not restrict implementation choices beyond the coupling (as
defined in the clustering model, section 3.2) that they express.

A cluster target (CT) is an abstraction of the processing elements and memory spaces of the
target layer. Informally, CTs are used to state (from knowledge of the implementation architec-
ture) that a given group of processors and memory spaces in the target layer (section 3.4.4)
are a good location for executing a cluster. CTs are distributed across multiple physical proces-
sors, so that code executing on a CT may actually execute on any of its physical processors.
Similarly, data stored in a CT may be actually stored in any of its physical memory spaces.

This layer also contains the following formal mappings that are used to distribute items from
the program layer onto elements of hardware in the target layer:

• concurrentobjects ∪ sharedobjects ∪ shareddata assignedtoÐÐÐÐÐÐ→ clusters: Each concurrent
object, shared object and item of shared data must be assigned to exactly one cluster,
according to the coupling of the system. (Many items may be mapped into the same
cluster and there may be many clusters in the system.)

∀x ∈ (concurrentobjects ∪ sharedobjects ∪ shareddata)⋅
∃l ∈ clusters ⋅ x ∈ l ∧ (∀l2 ∈ clusters ⋅ x ∈ l2 Ô⇒ l = l2)

– The mappings at this level represent the level of control over architectural mapping
that is afforded by the system model.

– If the programmer places all items in the same cluster then the result is a flat pro-
gramming model with a single shared memory space. Source layer items cannot
be individually mapped throughout the target architecture. The cluster can still be
placed throughout the system, but only as a single monolithic unit.

– If each source level item is mapped to its own cluster then the programmer can
manually place each thread, shared data item etc. throughout the target architec-
ture.

– Therefore, the mean cardinality of the clusters in a system represents the degree
to which elements of the application can be individually mapped by the system

71

Chapter 3. Compile-Time Virtualisation

model. As this approaches one, more control is afforded and mapping becomes
less monolithic but requires more effort from the programmer and provides less
clustering information.

• cluster
executesonÐÐÐÐÐÐ→ CT : Each cluster must be assigned to at least one CT to specify

where in the target architecture it is executed. Multiple clusters can be mapped to a
single CT.

∀l ∈ clusters ⋅ ∃t ∈ clustertargets ⋅ l ∈ t

– Assigning a cluster to more than one CT allows the run-time system to migrate the
cluster between the CTs at run-time. When to do this is defined by the implementa-
tion.

– Migration policies are not specified or modelled by the system model. They are
provided by either the implementation or application.

– If a cluster l is assigned to exactly one CT then the threads and shared data items
of l may migrate throughout the CT but not elsewhere.

• CT
comprisesÐÐÐÐÐÐ→ processor∪memoryspace: Each CT must comprise of at least one proces-

sor which has access to least one memory space from the target layer.

∀t ∈ clustertargets ⋅ ∃p ∈ processors,m ∈memoryspaces ⋅ p ∈ t ∧m ∈ t ∧m ∈memory(p)

where memory(p) is the set of memory spaces in the address map of processor p.

– Let C be the set of clusters mapped to a CT t. The union of the threads and shared
objects assigned to the clusters of C are mapped to the processors assigned to t,
and may migrate throughout them (according to an external migration policy).

– Equally, the union of the shared data items assigned to the clusters of C are mapped
to the memory spaces assigned to t, and may migrate throughout them.

– A typical use of CTs is to define a target that encompasses all the cores of a multi-
core processor. This allows the hardware designer to specify that the implementa-
tion toolchain may freely place threads on any of the cores.

These mappings are depicted in figure 3.5.

For the modelled system to be totally static (without migration) the following invariant must
hold:

(∀p1, p2 ∈ processors, l ∈ clusters, t1, t2 ∈ CTs,x ∈ (concurrentobjects ∪ sharedobjects)⋅

(p1 ∈ t1 ∧ t1 ∈ l ∧ x ∈ l) ∧ (p2 ∈ t2 ∧ t2 ∈ l ∧ x ∈ l) Ô⇒ p1 = p2)

⋀

(∀m1,m2 ∈memoryspaces, l ∈ clusters, t1, t2 ∈ CTs, d ∈ shareddata⋅

(m1 ∈ t1 ∧ t1 ∈ l ∧ d ∈ l) ∧ (m2 ∈ t2 ∧ t2 ∈ l ∧ d ∈ l) Ô⇒ m1 =m2)

Informally, this states that each thread and shared object of the system must be located on
exactly one processor, and each shared data item must be located in exactly one memory

72

3.4. System model

Source code Logical layer Target architecture

Cluster

Concurrent
object

Data item

Cluster
target

Physical CPU

Physical
memory space

Shared object

Figure 3.5: The logical layer.

space. This is true when, for every processor and shared object of the system, if l is the cluster
that the item is in, the cardinality of the processors assigned to the CTs that are assigned to l
must be one (and equivalently for shared data and memory spaces).

The two-layered approach of the logical layer has a number of advantages, as illustrated in
figure 3.6 which gives an example of their use. In the depicted architecture, the programmer
wants to express that due to the slow link in the centre of the architecture, tightly-coupled
threads should execute as a group on either processors 1 and 2 or processors 3 and 4, but
not a mixture of the two as this will require large amounts of data to be transferred over the
centre link. Equally, the data items used by these threads should be stored in the appropriate
memory bank. This is a common problem that has not yet been addressed by existing thread
affinity sets or locale-based approaches. Clustering can tie threads and data together, but is
not sufficient to express the locations on the physical architecture that are suitable mapping
targets. With this model, the programmer can partition their program into clusters of interacting
threads and data, and their target architecture into clusters of processors and memory spaces
that can execute those clusters. Then, the logical layer mappings allow precise control of
computation and data placement where it is required, and powerful cluster-based control for
more dynamic areas of systems.

The second benefit to this approach is that it provides a clean separation of concerns between
the application programmer and the hardware designer. The source layer and the clusters into
which it is split are completely architecture-neutral. They are used to express the coupling
of the software alone, and can be determined by the programmer without any knowledge of
the final target architecture. Similarly, CTs are defined by the hardware engineer without any
knowledge of the software that will be executed on the target layer. It is only the mapping
between clusters and CTs that requires knowledge of the entire system. This is in contrast to
locale and affinity -based approaches where hardware-specific mapping information is prema-
turely included in the software specification.

3.4.4 Target layer

The target layer provides a high-level view of the target architecture as four sets of architectural
elements:

• Processing elements: The processors of the target architecture.

• Communication channels: Hardware features that transfer data between processing el-
ements.

73

Chapter 3. Compile-Time Virtualisation

CPU 1

CPU 2

Shared
RAM 1

Slow comms.

CPU 3

CPU 4

Shared
RAM 2

Cluster target

Concurrent
objects

Shared
data

Shared
objects

Cluster

Logical
mappings

Figure 3.6: The use of clusters and cluster targets.

• Memory spaces: The distinct memory spaces in the system.

• Other hardware elements: Custom hardware elements of the target architecture (such
as function accelerators) and I/O devices.

To allow code and data to be mapped to these sets, they are mapped into cluster targets by
mappings that were defined in the logical layer (section 3.4.3). The architectural element sets
are defined as follows:

Processing element The processing elements set models the features of the hardware whose
behaviour is controlled directly by the concurrent objects of the input source code. Most
commonly this refers to processors and processor cores.

• Processing elements must be connected to at least one memory space that is used
for code and data storage. They may be connected to more.

• The specific element types that are supported are determined by the implementa-
tion and toolchain, but examples include standard processors, the individual cores
of a multi-core processor, DSP cores, application-specific processing devices and
soft processing cores on reconfigurable logic.

• The toolchain is responsible for compiling the code of the concurrent objects into a
form that is suitable for the processing element(s) to which it is mapped.

Communication channel The set of communication channels models the data transfer mech-
anisms of the architecture (such as buses, on-chip networks, FIFO mailboxes, etc.). Note
that this set only expresses channels that are useful for sending data between concur-
rent objects. Real architectures are likely to contain a number of hardware elements that

74

3.4. System model

might be considered communication channels, but are not directly accessible by a pro-
cessor for the use of sending data to another processor. For example, cache coherency
links are not modelled as channels because the programmer’s code can not make use
of them directly.

• Channels include at least two endpoints, which are connection points that are used
by processors to send and receive data.

• For this reason, external I/O (which would only expose a single internal endpoint) is
expressed as a custom hardware element.

• Endpoints may be buffered or unbuffered. Buffered endpoints provide flow control
to ensure lossless data transfer.

• Endpoints are memory-mapped (or mapped into processor I/O space for processors
that have dedicated peripheral buses) and so therefore can be accessed by the
processors from driver code.

Memory spaces The memory spaces set models the memory and data storage features of
the target architecture.

• Memory spaces may contain data, code or both, according to the architecture of
the processing elements used. The compiled code of concurrent objects and shared
objects and the bit-level representations of shared data items are stored in the mem-
ory spaces of the system.

• Memory spaces may be accessible by multiple processing elements.

• Caches are not described as a separate memory space because their use is trans-
parent to software and the processor (although not to analysis which must still con-
sider their presence). Any memory space may be cached, but this is a feature of
the connection between a processing element and a memory space rather than just
of the memory. The exact way that caching is specified is implementation-specific,
see section 4.2.

Other hardware The other hardware elements set models features of the target architecture
that are accessible from the processing elements of the system but are not expressed
by the previous three sets. This includes I/O devices, which are required for interfacing
with the outside world, and application-specific hardware such as function accelerators,
radio transceivers or real-time clocks.

• Similar to the way that channels are connected to a processing element via end-
points, hardware elements are connected to processing elements via ports.

• A hardware element must have at least one port.

• Like channel endpoints, ports are either memory-mapped or I/O space mapped so
that they can be manipulated by the processing elements of the system.

• Ports can be either synchronous or asynchronous, and different ports of the same
hardware element can be of different types. Synchronous ports provide blocking
read and write semantics, which means that the processor accessing it must wait
for the operation to complete before it continues with its execution. Asynchronous
ports provide non-blocking semantics and allow the processor to trigger an action
which will complete later.

75

Chapter 3. Compile-Time Virtualisation

CPU CPU

H/W

Async.
0x100034C0

Sync.
0x2000BA00

Sync.
0x2000BA00

Figure 3.7: Ports describe the connection between a hardware device and a processing ele-
ment.

Hardware type Port configuration

Std. function accelerator 1 sync. port

Mailbox 1 sync. for sending,
1 async. for receiving

CAN Network n async. ports

CSP channel 2 sync. ports

Figure 3.8: How external hardware is modelled by the target layer.

• The use of asynchronous ports requires that the hardware element can interrupt the
processing element to which the port is connected.

• A single hardware device may have ports that are connected to many different pro-
cessors, or multiple ports that connect to the same processor. Ports are not a
physical feature of the target architecture, they are a logical abstraction of the ways
in which the hardware can be accessed, as shown in figure 3.7.

Examples of how some kinds of external hardware can be represented in this model are shown
in figure 3.8.

3.4.5 Expressing existing languages

In order to demonstrate that the presented system model is suitable for expressing the struc-
tural concepts of existing embedded development languages, this section will detail how pro-
grams written in three languages commonly used in embedded systems (C, Ada, and Java)
can be represented. This is done by showing how the concurrency, coordination, and data
sharing features of each language are represented by the sets of the program layer. Im-
plementation details are not considered in this section. For a full description of a C-based
implementation see chapter 4.

Note that this section concentrates on how existing languages are expressed in terms of the
CTV source model. Due to the fact that none of these three languages provide explicit cluster-

76

3.4. System model

ing semantics, the clustering of the logical layer is not demonstrated. In an actual implementa-
tion, this missing clustering information may be obtained directly from the programmer (using
pragmas or an external language), inferred from the program structure, or from automatic pro-
filing and analysis.

For each language mapping, the set of shared objects is extended to include implicit ‘thread
helper’ shared objects, one for each thread in the application. These helper objects are exactly
the same as standard shared objects and are used to implement the direct inter-thread com-
munications of the chosen language. Shared objects are used for this (rather than extending
the semantics of concurrent objects) because different source languages demonstrate differ-
ent inter-thread communication models. By using implicit shared objects the system model
can remain constant and does not have to be redefined for each language.

3.4.6 Expressing C with the system model

Due to the fact that parallelism is not a part of the C language, the combination of C and the
POSIX pthreads library is discussed here.

• Concurrent objects: pthreads are represented using concurrent objects. A concurrent
object is used to model each instance of the pthread t type, and one to model the main

thread (the application entry point). Concurrent objects execute immediately after cre-
ation. pthreads, on the other hand, can be declared but are not scheduled for execution
until the main thread makes the appropriate pthread create call to start the thread in
question. Therefore, concurrent objects are created by pthread create, rather than by
the declaration of a pthread t instance. Similarly pthread exit causes the concurrent
object to be destroyed.

• Shared objects: C does not support the structured programming constructs neces-
sary to allow the programmer to define their own shared objects. Consequentially, co-
ordination between threads is provided by pthreads’ mutexes and condition variables.
Each instance of the pthread mutex t or pthread cond t types are represented by a
shared object. Mutexes are created and destroyed by calls to pthread mutex init

and pthread mutex destroy. Condition variables are created and destroyed by calls
to pthread cond init and pthread cond destroy. The operations and state provided
by mutexes and condition variable shared objects are defined by the pthreads standard,
but the common operations are listed below for reference:

– Mutexes:

* Created by: pthread mutex init

* Destroyed by: pthread mutex destroy

* Interface:
· pthread mutex lock

· pthread mutex timedlock

· pthread mutex trylock

· pthread mutex unlock

* State:

77

Chapter 3. Compile-Time Virtualisation

· Current state of the mutex (either ‘free’, or which pthread holds the mutex)
· Queue of pthreads currently waiting on the mutex.

– Condition variables:

* Created by: pthread cond init

* Destroyed by: pthread cond destroy

* Interface:
· pthread cond wait

· pthread cond timedwait

· pthread cond signal

· pthread cond broadcast

* State:
· Queue of pthreads currently waiting on the condition.

For both types, mutual exclusion over all of their exported functions is required so they all
acquire the shared object’s write lock. This ensures that, for example, concurrent calls to
pthread mutex lock cannot result in two pthreads receiving the mutex.
Shared objects are also used to model threads joining and querying the status of other
threads. For each thread in the system there is also a corresponding ‘thread helper’
shared object with the following properties that can be accessed by other system threads:

– Thread helpers:

* Created by: pthread create

* Destroyed by: pthread exit

* Interface:
· pthread join

* State:
· Current state of the thread (created, running, terminated, etc.)
· Queue of threads waiting to join this thread.

• Shared data: As shared variables in C lack any form of auxiliary semantics (locking,
coherency, etc.), they can be directly represented by data items in the system model.

Shared data can only be passed between C pthreads in one of two ways: global variables
or pointers. For a variable to be in scope of two threads it must be declared in an enclosing
scope. However, C does not allow nested functions, so the only scope above a thread body
is global scope. Alternatively, scoping can be bypassed by creating a reference to a shared
variable and passing it into the thread when it is created. Due to the complexity of arbitrary
pointer usage, an implementation may need to restrict the use of pointers to an analysable
subset.

An important issue to be considered is that pthreads semantics are not provided by the lan-
guage compiler or runtime, but by the pthreads library functions, which are themselves calls
into a kernel executing on the target processor. The kernel is required to provide thread dis-
patching, scheduling, etc. As a result, using C with pthreads introduces the requirement that
the implementation include either a full embedded operating system or a microkernel that im-
plements a subset of the POSIX standard.

The following C code shows the standard producer / consumer pattern implemented in pthreads.

78

3.4. System model

#include <pthread.h>

#include <queues.h>

queue_t the_queue;

pthread_cond_t condvar;

void* producer_body(void*);

void* consumer_body(void*);

int main(void) {

pthread_t prod_thread;

pthread_t cons_thread;

pthread_mutex_t shared_mutex;

pthread_cond_init(condvar, NULL);

pthread_mutex_init(mutex, NULL);

//Create the threads, pass the mutex to them

//Error handling not shown

pthread_create(&prod_thread, NULL, producer_body, (void*)shared_mutex);

pthread_create(&cons_thread, NULL, consumer_body, (void*)shared_mutex);

pthread_join(prod_thread, NULL);

pthread_join(cons_thread, NULL);

return 0; //Success

}

void* producer_body(void* mux) {

pthread_mutex_lock((pthread_mutex_t*)mux);

//...Check if queue is not full...

//...Add an item to the_queue...

pthread_cond_signal(condvar);

pthread_mutex_unlock((pthread_mutex_t*)mux);

}

void* consumer_body(void* mux) {

pthread_mutex_lock((pthread_mutex_t*)mux);

pthread_cond_wait(condvar, (pthread_mutex_t*)mux);

//Process an item from the queue

pthread_mutex_unlock((pthread_mutex_t*)mux);

}

This code is modelled using the following system model shown in figure 3.9. There are three
threads in the example code, the main thread that is the application entry point, and two cre-
ated threads. These are all modelled as concurrent objects. Two explicit shared objects are
used, a mutex and a condition variable. These are the variables pthread cond t condvar

and pthread mutex t shared mutex. Other variables are modelled as shared data items,
queue t the queue in this case. It can be seen that whilst instances of pthread cond t,
pthread mutex t and pthread t can be viewed as shared data, they are really only used
as identifiers that are passed to the pthreads API. Accordingly they are treated specially, as

79

Chapter 3. Compile-Time Virtualisation

mainprod_thread cons_thread shared_mutex condvar

the_queue
Producer/Consumer Startup

main
(helper)

prod_thread
(helper)

cons_thread
(helper)

Figure 3.9: A suitable system model representation of the C example.

shared objects.

Also, three implicit thread helper shared objects exit for the three threads of the system. The
only shared data used is an instance of a queue datatype that is used by the producer and
consumer threads. Note that the entire datatype is represented by a single shared data item,
even though it is internally represented by a compound structure type with many constituent
primitive types.

Also shown in figure 3.9 is an appropriate clustering of the application. As the majority of
the communication and data transfers are between the producer and consumer threads, and
these threads also primarily use the shared data, mutex and condition variable, all of these
constructs are assigned to a single cluster. The main thread, however, has low communication
requirements as it simply has to initialise the system then wait for the other threads to complete.
Accordingly, it is assigned to a separate cluster.

The system model presented in figure 3.9 captures code structure (in the concurrent objects,
shared objects and shared data) and captures the application’s coupling (through clustering)
but the programming model used is still that of the target language - in this case C with
pthreads. As discussed previously, the C programming model assumes a single processor
architecture with a uniform address space so the program is limited to implementation on
such a platform. For example, it cannot be distributed so that the two clusters are located
on different processors with physically-separate memory without considerable rewriting and
architecture-specific coding. This problem is not limited to C, and is the case with the follow-
ing two languages presented in the next two sections. The work presented in this thesis is a
potential solution to this problem.

The presented solution can be compared to a post-partitioning approach [16] in which a sin-
gle input program is distributed at compile-time to multiple target programs. However, post-
partitioning requires that the input program has already been partitioned into distributable units
(such as by using the Ada Distributed Systems Annex [28]). This can restrict development to
heavyweight partitions, limit program reuse, and it introduces architectural specification early in
the software design. The work in this thesis aims to allow architectural specification to be per-
formed at a very late stage of application development and with high amounts of code reuse.
It does this by allowing programmer-directed mappings between the programming model of
the source language and the target architecture through the concept of a Virtual Platform,
introduced later in section 3.6.

80

3.4. System model

3.4.7 Expressing Ada with the system model

Ada is a much larger language than C and provides a range of additional features that the
programmer can use to express the behaviour of their application. In the context of this work,
the primary difference between the two is that concurrency is a native part of Ada rather than
provided through the use of an external library and OS as it is with C.

Ada provides application-level concurrency with the use of native tasks. Tasks are lexical
constructs that have their own thread of control, may be nested, and can communicate with
each other to share information and services. Ada manages the use of shared data through
the provision of protected objects (POs). POs are passive objects that contain a private state
and export a set of functions and procedures which can be called by the tasks of the system.
POs are based on monitors [107] and consequentially provide automatic synchronisation over
the exported functions and procedures. Only one protected procedure may be executing at any
one time. Protected function calls may be executed concurrently (because Ada functions are
pure functions that cannot affect the state of the PO) but never concurrently with a protected
procedure call.

Tasks also provide entries for direct inter-task communication without the use of an interme-
diary PO. Entries are similar to Handel-C channels, in that they provide communication with
blocking semantics. Both the sender and receiver must be ready before the communication
can take place. One blocks until the other is ready. Unlike Handel-C channels, entries can
provide two-way communication. An entry allows two tasks to synchronise at a specific point,
transfer data, coordinate for a series of operations, and then diverge again afterwards. Entries
may be guarded by a boolean expression.

Finally, tasks provide a similar range of operations to pthreads. Tasks can start, join, query,
and terminate other threads. Like the way that C is modelled in the previous section, these
operations are provided by an implicit shared object with an interface that is defined later.

The system model is used to model Ada programs as follows:

• Concurrent objects: Concurrent objects represent Ada tasks. Tasks start executing
immediately once the declaring task (which may be the ‘main’ task) reaches its begin

keyword. This matches the semantics of concurrent objects. Execution of task activation
is strictly defined in Ada and these rules must be observed by a CTV implementation by
ensuring that tasks are created at the correct time and by the runtime of the correct task.

• Shared objects: Shared objects represent POs. In C, the programmer can not define
their own shared objects because it does not have the required constructs. As a re-
sult, C programs only require two types of explicit shared objects (mutexes and condition
variables). In Ada, the programmer defines their own POs that can provide arbitrary in-
terfaces and more complex synchronisation semantics, but the model remains the same.

– Protected objects:

* Created by: PO instantiation

* Destroyed by: PO leaving scope / explicit deallocation

* Interface: The interface of the shared object contains all protected procedures,
protected functions, and entries of the PO. In accordance with Ada’s rules, pro-

81

Chapter 3. Compile-Time Virtualisation

tected functions will attempt to obtain the shared object’s read lock while pro-
tected procedures will attempt to obtain the shared object’s write lock. Entries
will attempt to obtain the object’s write lock, and may also be guarded by a
boolean expression which is modelled using shared object guards where pos-
sible.

* State:
· All local variables of the PO. Note that due to the fact that Ada allows arbi-

trary nesting of blocks, POs may declare internal tasks or other POs. These
items can be considered part of the state of the PO, but they must still be
modelled using concurrent objects and shared objects respectively. See
below for more notes on nesting versus clustering.

· A queue of tasks waiting on each entry.

Implicit ‘task helper’ shared objects are created along with each task / concurrent object
to allow the modelling of the task rendezvous and other directly inter-task operations.
Essentially, the helpers are modelling the parts of the Ada run-time that are used to
implement inter-task communications. CTV’s system model does not allow direct com-
munication between concurrent objects, so this functionality is provided by helpers. The
advantage of doing this is that such services can then be sensibly mapped onto the com-
munication channels of the target architecture. If they were part of the concurrent object
then this would not be possible.

– Task helpers:

* Created by: Task creation

* Destroyed by: Task completion / termination

* Interface:
· This section uses ‘associated task’ to refer to the task that this task helper

is associated with. ‘Remote task’ refers to any other task of the system that
may be interacting with the associated task.

· accept: Called by the associated task to accept an entry. The task will
block until a corresponding entry call is made by a remote task.

· entry: Called by a remote task to call an entry. The remote task will block
until a corresponding accept call is made by the associated task.

· selectaccept: Called by the associated task to selectively accept an set of
entries.

· selectentry: Called by a remote task to indicate it is selectively calling an
entry of the associated task. The entry call may not complete if the remote
task takes a different branch in the select.

· terminate: Called by the associated task to terminate itself.
· abort: Called by a remote task to forcibly abort this task.
· requeue: Called by a remote task to requeue itself on a given entry.

* State:
· Current state of the task (Unactivated, Runnable, Sleep, Terminated)
· A queue of tasks waiting on each entry.

• Shared data: Shared data items are used to represent variables that are shared be-
tween tasks but that are not wrapped inside the state of a PO. Recall that these items
provide no synchronisation.

82

3.4. System model

Ada is a nested block-structured language. A function body may, for example, declare other
functions, procedures, tasks and protected objects. The declared items may themselves also
declare child items. Concurrent Ada programs are frequently written using subtasks within
tasks because the run-time features of the tasking model can be relied upon to provide auto-
matic synchronisation and coordination. A parent task does not complete until all child tasks
have completed.

It is important not to confuse the nesting of the input program with the clustering of the logical
layer. Nesting affects the semantics of the program (as shown in the example above) and is
used by the programmer for scoping, encapsulation, and expressibility. Clustering does not
affect any of these issues and is instead additional information about the intent of the pro-
grammer and they way in which the code might be best implemented. The two may be related
in some programs, but contradictory in others. Clustering could be automatically derived from
the nesting of the program, but this is outside the scope of this thesis.

procedure ProdCons is

task BufferTask is

entry Append(x: in Item);

entry Remove(x: out Item);

end BufferTask;

task body Buffer is

Count : Integer = 0;

begin

loop

select

when Count < MaxSize => accept Append(x : in Item) do

--Store x in buffer

end Append;

or

when Count > 0 => accept Remove(x : out Item) do

--Set x to the next item

--Remove it from the buffer

end Remove;

end select;

end loop;

end Buffer;

task Producer;

task body Producer is

begin

for i in 0..10 loop

--Produce an item

Buffer.Append(theitem);

end loop;

end Producer;

task Consumer;

task body Consumer is

begin

for i in 0..10 loop

Buffer.Remove(theitem);

--Consume the item

83

Chapter 3. Compile-Time Virtualisation

end loop;

abort Buffer;

end Consumer;

begin

--The above tasks will be created and started when this procedure is elaborated.

--The procedure will exit when the tasks exit.

end ProdCons;

This example shows an implementation of the producer / consumer pattern in Ada using tasks
and the task rendezvous to pass data. The example has four tasks in total, the Producer

task, the Consumer task, the Buffer task, and the main task which is executing the procedure
ProdCons. Producer, Consumer and Buffer are all created when the body of ProdCons is
elaborated by the main task and the procedure will not exit until all the internal tasks have
completed. No explicit shared objects are used, but there are four implicit task helper objects,
one for each task.

The interfaces exposed by these objects are defined above. In the example, the Producer

task and the Consumer task both call an entry of the Buffer task. This is modelled as the
Buffer concurrent object calling the accept method of its task helper shared object, and the
Producer and Consumer concurrent objects calling their entry method. Buffer exports two
entries which are guarded by simple boolean guards based on an internal state variable count.
These guards are evaluated by the task helper and the entry calls processed accordingly. The
guards are reevaluated after each entry call is completed. The Consumer task calls the abort

procedure of Buffer’s task helper to halt its execution once the program is complete. The
tasks are all nested inside the ProdCons procedure, however, this does not require them to be
placed in the same cluster.

The previous example uses a ‘buffer’ task to pass data between the producer and consumer
tasks. Since Ada 95 a more common way of doing this is to use a protected object, as shown
in the followng example.

procedure ProdCons2 is

protected Buffer is

entry Append(x : in Item);

entry Remove(x : out Item);

private

Count : Integer := 0;

end Buffer;

protected body Buffer is

entry Append(x : in Item) when Count < MaxItems is

begin

--Add x to the buffer

end Append;

entry Remove(x : out Item) when Count > 0 is

begin

--Remove an item from the buffer

return theitem;

end Remove;

end Buffer;

84

3.4. System model

task Producer;

task body Producer is

begin

for i in 0..10 loop

--Produce an item

Buffer.Append(theitem);

end loop;

end Producer;

task Consumer;

task body Consumer is

begin

for i in 0..10 loop

Buffer.Remove(theitem);

--Consume the item

end loop;

end Consumer;

begin

--The above tasks will be created and started when this procedure is elaborated.

--The procedure will exit when the tasks exit.

end ProdCons2;

This version of the code is modelled in the system model using three tasks, Producer, Consumer
and the main task. It uses four shared objects, the explicit Buffer object (which is now a
protected object) and three implicit task helper objects. The Buffer shared object has the
following interface:

• entry Append: Receives a single item, obtains the object’s write lock, guarded by the
value of Count.

• entry Remove: Takes no parameters, returns a single item, obtains the object’s write
lock, guarded by the value of Count.

Use of the write lock ensures that only one entry can be executed at any one time to match
the programming model of Ada’s protected objects.

3.4.8 Expressing Java with the system model

As a highly object-oriented language, Java is differentiated from the previous two languages in
that truly raw data is not present in a Java program. Since JSR-201 in 2004 [29], all primitive
types are automatically ‘boxed’ by the compiler. This means that an integer literal may be
declared using the int keyword, but this will be converted to an instantiation of the Integer

class, which is a wrapper object for a native integer. This is important because rather than
simply being raw data, instances of the class Integer contain methods that can be called by
threads in the system. An example of this is the Integer.toString method which converts the
boxed native integer into a string object. In order to capture these methods, a Java program
when represented using the system model does not use raw shared data at all. Instead all of

85

Chapter 3. Compile-Time Virtualisation

its shared data is represented as shared objects because shared objects can include arbitrary
methods.

• Concurrent objects: Concurrent objects are used to model the threads used in the
Java program. In Java, threads can be created in two ways, either by implementing the
Runnable interface and using the Thread constructor, or by directly subclassing thread.
In either case, a thread object is created. Execution of the thread constructor triggers
the creation of the concurrent object. The thread will not actually begin executing until
its start method is called to remain consistent with Java. (Thread constructors are
executed by the creating thread as normal.) The concurrent object is destroyed either
when the thread completes its run method, when the thread exits due to an unhandled
exception, or when the entire application completes (in the case of a daemon thread).
As with the previous two languages, a helper shared object is created along with each
concurrent object to allow other threads to interact with it and join it.

• Shared objects: Shared objects are used to represent all the passive elements of a
Java application. Commonly this makes up the vast majority of the code of the system.
A shared object is an instance of a class that can be accessed by the concurrent objects
(threads) of the system. Normal Java programming style can lead to the use of a large
number of such object instances, hence its reliance on a garbage collector, (although
embedded Java programming is traditionally more conservative). The large number of
shared objects that Java uses means that manually mapping these to the target archi-
tecture is likely to become an onerous task for the programmer. Mapping will need to be
partially automated, for example if an instance is assigned to a given processor then all
of its contained instances are also mapped to the same processor. This is outside the
scope of this thesis.

– Object Instances:

* Created by: Class instantiation.

* Destroyed by: Instance’s reference counter reaches zero.

* Interface:
· The interface of the shared object contains all non-static methods of the

instance. Methods declared as synchronized automatically acquire the
shared object’s write lock before commencing, the read lock is not used.
Guards are not required as they cannot be expressed in Java.

· An implicit synchronize() method is provided to allow non-synchronised
code to acquire the object’s write lock through the use of Java’s synchronize
construct.

· The Object class defines three methods that are used for thread synchroni-
sation that require special attention - wait(), notify() and notifyAll().
When a thread calls the wait method of an object it is held suspended in
a queue until the object’s notify() or notifyAll() methods are called.
This is identical to the condition variable model that is used in pthreads
(discussed in the previous section). These three methods are exposed by
every shared object.

* State:
· All local variables of the instance. As with Ada, nested instances can be

considered part of the state of the shared object, but they must still be
appropriately modelled using concurrent objects and shared objects.

86

3.4. System model

· A queue of threads waiting on the object.

Implicit ‘thread helper’ shared objects are created along with each thread / concurrent
object to allow direct inter-thread operations. The interface of this shared object is as
follows:

– Thread helpers:

* Created by: Thread creation (calling the Thread.start method)

* Destroyed by: Task completion (thread exits its run method or encounters an
unhandled exception)

* Interface:
· join: Allows another thread to wait for this thread to complete execution.
· interrupt: Raise an InterruptedException in the target thread.
· setPriorty / getPriorty: Manage the thread’s priority. This might not

have any effect if the thread is mapped solely to a given processor, but if
it shared its processor then scheduling will need to be considered by the
implementation.

* State:
· Current state of the thread (new, runnable, waiting, terminated, blocked,

timed waiting) and its priority.
· A queues of tasks waiting to join this thread.

• Shared data: As previously mentioned, Java’s ‘autoboxing’ prevents the use of raw data
in a Java program. The programmer uses only shared objects.

The following example shows a producer / consumer pattern in Java that uses the wait and
notify methods to implement thread synchronisation.

public class ProdCons {

protected LinkedList list = new LinkedList();

class Producer extends Thread {

public void run() {

while (true) {

//... Produce an object ...

synchronized(list) {

while (list.size() == MAX)

list.wait();

list.addFirst(justProduced);

list.notifyAll();

}

if (done) break;

}

}

}

87

Chapter 3. Compile-Time Virtualisation

class Consumer extends Thread {

public void run() {

while (true) {

Object obj = null;

synchronized(list) {

while (list.size() == 0) {

list.wait();

}

obj = list.removeLast();

list.notifyAll();

if (done) break;

}

//... Consume the object ...

}

}

}

}

In this example there are three concurrent objects, the Producer thread, the Consumer thread,
and the main thread. Five shared objects are used, two implicit objects for the ProdCons in-
stance and the list instance, and three implicit thread helper objects. Of these, the list

instance object has the most work to do. Both threads call its wait() and notifyAll() meth-
ods to enqueue themselves and release each other. list is responsible for maintaining these
queues and waking up the appropriate thread when called to do so. Both threads also call
list’s synchronize() method to manually obtain the object’s write lock and ensure mutual
exclusion.

Another implementation of this pattern may choose to subclass the LinkedList class and
extend it with synchronised ‘add item’ and ‘remove item’ methods. Threads can then call these
methods directly without having to worry about obtaining locks. The implementation for this
is identical, however. Instead of threads calling synchronize() first and then interacting with
the list as in the example above, the synchronised methods call synchronize() to obtain the
lock automatically. The rest of the code remains the same.

3.5 Compile-Time Virtualisation and the Virtual Platform

The analysis of modern embedded development in chapter 2 demonstrated that existing pro-
gramming languages provide unsuitable abstraction models when developing code for deploy-
ment on complex embedded architectures. The system model introduced at the start of this
chapter rectifies this by introducing more appropriate, hardware-targeted abstractions, but it
cannot be used without extra support from the language to define clusters, cluster targets, the
mappings between source language elements, logical elements, and the target architecture.
This could be achieved by the development of a new language and compiler, but this is unde-
sirable. Instead, the work in this thesis presents a way of using the system model with existing

88

3.5. Compile-Time Virtualisation and the Virtual Platform

languages and toolchains, thereby maximising code reuse and aiding industrial acceptance.

Compile-Time Virtualisation (CTV) is a technique developed and presented in this thesis that
uses a virtualisation-based approach to simplify the targeting of code to embedded architec-
tures. CTV supports the clustering model of section 3.2 and the general system model of
section 3.4, thereby providing support for the creation of scalable, dynamic, heterogeneous
systems. It allows the programmer to continue working with existing embedded programming
languages, specifically C, Ada and Real-Time Java, by providing greater control over the soft-
ware implementation and allowing tighter, more efficient mappings to non-standard architec-
tures.

CTV replaces the existing layers of virtualisation and abstraction that are present in standard
software development (as discussed in section 2.6.1) with a single virtualisation layer across
the entire architecture, termed the Virtual Platform (VP), which has three main features:

Compatibility with the chosen programming model: The VP is a high-level view of the un-
derlying hardware that presents the same programming model as that which is expected
by the developer’s chosen source language. For example, if the developer is working in
C, the VP presents a single logical address space with uniform inter-thread communi-
cation and uniform cache coherency. The actual target hardware may be very different.
This means that the VP has to distribute code and data throughout the system, and to
handle communications transparently. Issues such as caching and coherency must also
be considered. In essence, as with standard run-time virtualisation the layer is tasked
with ensuring that the programmer’s code operates correctly without low-level program-
mer intervention. Because the layer hides low-level implementation details it allows for
code to be architecturally-neutral, as the developer does not need to break the abstrac-
tion models of the language.

Flexible mappings from the virtual architecture to actual hardware: Every system based
on virtualisation contains a set of virtualisation mappings. These mappings place ele-
ments of the software and virtual hardware onto the actual physical hardware. (For ex-
ample, threads → processors, variables → memory spaces etc.) In a standard run-time
virtual machine, these virtualisation mappings are implemented by a run-time system
and are both fixed and largely opaque to the programmer. In CTV, the mappings are
made flexible, allowing the programmer to use their application-specific knowledge to
influence the implementation of the code and achieve a better mapping onto the target
architecture. For example, the designer can choose to place threads that frequently com-
municate onto processors that are physically close to each other, or to place global data
in memory spaces that are close to where its it going to be needed to minimise copying.
The first feature of the VP, ‘compatibility with the chosen programming model’, ensures
that despite how the programmer adjusts these mappings the software will still operate
correctly, only its non-functional properties will be affected.

Visibility of custom hardware elements: Custom hardware elements are exported up to the
programmer through the VP at design-time and presented in a form that is consistent with
the source language’s programming model. This allows these elements to be effectively
exploited without extra development effort and in a manner that is consistent with the
current programming model. For example, function accelerators can be exposed to the
programmer as standard functions that are called like a library routine. The virtualisa-
tion system has enough information to handle marshaling of data, synchronisation, data

89

Chapter 3. Compile-Time Virtualisation

User code (C, Ada etc.)

Virtual platform (programmer’s view of the platform)

Target description

Target architecture (the actual physical platform)

CPUs,
H/w accelerators,
Channels, memories
Logical elements

Designer-provided
mappings

Inter-process
communications

Threads

Single, contiguous
address space

Standard RISC
processors

Hardware
features

Distributed
code

NUMA

Heterogeneous
processors, custom ISAs

Custom hardware,
function accelerators

Program
layer

Target
layer

Clusters, coupling,
logical processors

Virtualisation layer uses existing compilers

Virtualisation
and the

logical layer

Thread and
data migration

Figure 3.10: An overview of CTV, showing how it relates to the layers of the system model
(figure 3.4)

copying issues etc. Programmer intervention is not required. Note that legacy code
written without knowledge of custom hardware is not refactored to make use of it. This
problem is orthogonal to CTV and developments in the area of automatic hardware map-
ping could be included, but this is outside the scope of this thesis.

An overview of the CTV system and how it relates to the system model presented earlier in this
chapter is shown in figure 3.10. CTV assumes that the mappings of program layer elements
to target layer elements are performed manually by the programmer. Automatic mapping is
related to the field of co-design and is an orthogonal problem, so is outside the scope of this
thesis. Also, CTV does not perform auto-parallelisation of the input code. Examples of auto-
parallelising compilers are described in section 2.1.1, and this thesis assumes that the input
code is expressed in a sufficiently parallel way such that it can be appropriately mapped to the
target architecture. Automatic parallelisation techniques can be used in conjunction with CTV,
but this is not discussed.

CTV does not duplicate the work of system design languages like SystemC (presented in
section 2.4.3). The design method used by these languages requires the designer to begin at
a high level of abstraction and iteratively refine the design until it is of a sufficiently low level to
be implementable, and they tend to allow the generation of both hardware and software. CTV
instead focusses on the generation of software for a pre-existing architecture by giving the
programmer influence over implementation choices that are normally made by the compiler.
Nonetheless, because the CTV toolchain is given a large amount of architectural information
it can be used to generate the target architecture at the same time as the compiled code (as
discussed in appendix C) making it useful as part of a hardware/software co-design framework.

The Virtual Platform of CTV is so named because it is a true virtualisation layer that sits above
the actual target platform. The term should not be confused with virtual platforms that are

90

3.5. Compile-Time Virtualisation and the Virtual Platform

Target hardware

Communication framework

Software 1

Software 2RTOS

Virtual
machine

Virtual
machine

Target hardware

Communications libraries

Refactored
Software 2

Refactored
Software 1

RTOS

Compile-time view Run-time view

Virtualisation layer

Virtual
Platform

Virtual
Platform

Figure 3.11: How the compile-time view of CTV differs from the run-time view.

used primarily for verification, such as the CoWare Virtual Platform [54, 230], discussed in
section 2.3.4. CTV’s VP provides a virtualisation layer that increases the abstraction level of
the target hardware, thereby allowing for architecture-agnostic software development. CTV’s
VP is an integral part of the programming model. CoWare’s VP uses virtualisation in a different
sense. It aims to reproduce the target hardware inside a simulation host, aiding debugging by
allowing the designer to simulate their design with greater transparency. CoWare’s VP does
not change the programming model that the programmer must use, and does not hide any of
the implementation complexities of non-standard target hardware.

3.5.1 Moving from run-time to compile-time

As its name implies, Compile-Time Virtualisation is differentiated from run-time virtualisation
systems by the fact that its virtualisation layer only exists during compilation. The lack of run-
time virtualisation means that overheads are reduced to a minimum, which is essential when
developing for resource-constrained embedded systems. Specifically, the system does not
have to store code for an interpreter or run-time support system, and each instruction of the
compiled program executes natively on the target hardware. This is illustrated in figure 3.11.

To understand the semantic difference between run-time and compile-time virtualisation it is
helpful to first consider Java, an archetypal example of run-time virtualisation. Java’s Virtual
Machine (the JVM) interprets the compiled bytecodes of the user’s program. The JVM con-
ceptually sits as a layer between the output of the compiler and the capabilities of the target
processor, interpreting the compiler output so that it can be understood by the processor and
executed. The JVM has the effect of making it appear to the programmer as if the processor
is capable of executing Java bytecodes, where in reality it cannot. In other words, because the
virtualisation exists at run-time, it extends the run-time capabilities of the system.

In contrast, CTV’s virtualisation exists at compile-time which allows it to instead extend the
compile-time capabilities of the system. By sitting as a layer between the user’s uncompiled
code and an unmodified target compiler, CTV makes it appear to the programmer as if a
given compiler can efficiently target a range of architectures that it normally cannot without

91

Chapter 3. Compile-Time Virtualisation

extending the input language. This allows CTV to solve one of the main problems identified
in chapter 2 - that hardware architectures change too rapidly to develop new languages and
toolchains for each new technology that appears. Indeed, Anvil (the example implementation
of CTV presented in chapter 4) uses unextended ANSI C and an unmodified version of the
gcc compiler yet it allows the programmer to effectively target complex hardware from the
source language level that would normally require the use of hand-coded assembly, custom
link scripts, and other abstraction-breaking techniques.

CTV is a way of extending the capabilities of a pre-existing language and compiler in a con-
trolled way to meet changing future demands. This vastly helps code reuse, because existing
code is not made obsolete when a new architectural paradigm is developed that would pre-
viously have required a new language or language extension. Instead, the capabilities of the
virtualisation layer are expanded. Also, all users of the base compiler benefit when it is im-
proved, unlike the current situation where each language extension uses a fork of the original
compiler. New features can spread to all uses much more easily.

For completeness it should be observed that run-time virtualisation and CTV are orthogonal
techniques, and it is possible to combine both in the same design process. However, the ben-
efits of doing so in a resource-constrained embedded systems are limited as both techniques
attempt to solve similar problems but from different starting points.

3.6 The CTV system model

3.6.1 Model overview and rationale

The CTV system model implements the system model presented in section 3.4, and is shown
in figure 3.12. Source programs are represented as sets of concurrent objects, shared objects,
and shared data items. Target architectures are represented as sets of processors, commu-
nication channels, memory spaces and unique hardware elements. The source program is
grouped into a set of clusters that define the coupling of the application, and the target archi-
tecture is grouped into a set of cluster targets, which are sites that are particularly suitable for
the implementation of a cluster. The semantics and definitions of these sets are all identical to
the previously presented system model.

CTV’s system model, however, deviates from the general model in two important ways. The
first is the introduction of the VP layer between the program and target layers. The VP layer
is responsible for the distribution of the program layer over the target architecture and is more
implementation-focussed than the purely abstract system model previously presented. The
VP implements the clustering and mapping of the logical layer, and contains a model for the
integration of unique hardware elements (function accelerators etc.) into the programming
model of the system. The exact requirements of the VP are enumerated and discussed in
section 3.6.2. To operate, the VP defines a novel communications architecture called the
Object Manager model, which is discussed in section 3.7.

The second deviation from the general system model is that due to the stated focus on the
development of embedded software, the CTV system model is compile-time static. This means
that the following restrictions are applied to the system:

92

3.6. The CTV system model

Source code

Channels

Virtual
platform

Program
layer

Target
layer

Target architecture

Virtual Platform

Object
Managers

Clusters
Hardware

model
Cluster targets

CPUs Memory spaces

Concurrent
objects

Shared
objects

Shared
data

External hardware

Figure 3.12: CTV’s system model shows the introduction of the Virtual Platform

• Static program layer. Concurrent objects, shared objects and shared data items cannot
be created or destroyed at run-time. Essentially, it must be possible to statically analyse
the input code to determine all the instances that are required. Individual shared data
items (like a linked list structure) may still grow or shrink dynamically, although they are
restricted to reside entirely in a single memory space. Concurrent objects can also be
arbitrarily started and stopped.

• Static logical layer. The clusters and cluster targets of the logical layer must be defined
when the application is programmed and when the architecture is designed respectively.
They cannot be adjusted as the program is executing.

• Static target layer. The target architecture cannot arbitrarily change at run-time. Existing
elements may be powered on and off at any point (due to power scaling or faults) but, in
general, new hardware cannot be introduced.

• Static clustering. The assignment of program layer objects to clusters and target layer
objects to cluster targets must remain fixed throughout the execution of the program.

• Static mappings. The mappings between clusters and cluster target must remain fixed.

This restricts the run-time behaviour of the applications represented by this model, but in prac-
tice such restrictions are often placed on embedded applications in order to preserve timing
behaviour, allow correctness analysis, or to guarantee memory and power constraints are
met. The static system model does not result in a static system at run-time. The logical layer
still permits the use of a large amount of run-time dynamic behaviour in the system, but that

93

Chapter 3. Compile-Time Virtualisation

behaviour is first specified at compile-time. Also, for truly dynamic applications that require
non-analysable creation of threads or shared data items these restrictions can be relaxed in
implementations of the model. One example of when this is done is discussed in section 4.12,
which shows the use of dynamic shared memory structures in a CTV implementation.

The justification for the static restriction is as follows. Standard development processes for
C, Ada and Java provide a highly-permissive system model that can allow a large amount of
dynamic behaviour. This dynamism can be broadly categorised into dynamism of the applica-
tion specification and dynamism of the application implementation - examples of which are as
follows:

• Specification dynamism: Run-time changes to the specification of the application:

– Control: Run-time variation of the threads of control in the system. e.g. dynamic
native thread creation (Ada, Java) or threading provided out of the scope of the
language (C with pthreads). Fine-grained parallelism constructs, such as the par

statement of Occam and Handel-C (see section 2.4.2) do not in general introduce
dynamism as they are static language features.

– Data: Run-time variation of the data shares of the system. e.g. Run-time memory
allocation (malloc of C, new of Ada and Java) and then passing a reference to the
newly-created data (using pointers in C, access types in Ada or object references in
Java).

– Structural: Computational reflection [203, 206, 60] allows the programmer to change
the structure of the program (including defined functions, class methods, declared
variables etc.) without changing the source code. e.g. java.lang.reflect in
Java or the reflective capabilities of most interpreted languages such as Smalltalk,
Python, Ruby and many others.

– Semantic: Reflection can also extend to allow the programmer to alter the semantics
of the application at run-time by reflecting on the language interpreter or compiler.
e.g. Smalltalk and Lisp.

• Implementation dynamism: Run-time changes to the way in which the application is
implemented on a given architecture:

– Mapping: The physical locality of control and data in the system (threads → pro-
cessors, data → memory spaces). e.g. Dynamic thread migration over multicore
architectures (implemented in most major OS kernels for load-balancing and fault
tolerance and by some hardware architectures such as hyperthreading processors
[159]). Also includes the use of dynamic memory architectures [111].

– Recompilation and just-in-time compilation: Recompiling applications due to run-
time profiling information, ‘hotspotting’ and adaptive optimisation [10], or to make
use of dynamic processor capabilities (see next).

– Dynamic hardware: Features of the hardware that may change at run-time due
to the behaviour or requirements of the application. FPGA-based partial dynamic
reconfiguration (see section 2.5.6) can introduce additional hardware as required
[226] or dynamically change the features of processors according to run-time profil-
ing [154].

94

3.6. The CTV system model

No existing language models allow the programmer to explicitly delimit their use of specification
dynamism to within a sub-partition of the whole application. Specific language subsets can be
defined that exclude undesirable features (e.g. the Ravenscar subsets of Ada [30] and Java
[140]), but these subsets remove the features completely from the entire application (and may
require new compilers or tools to check compliance). This is a problem because an embedded
programmer will generally avoid the use of dynamism, apart from in non-critical areas of the
system where its use greatly simplifies software development. However, because language
run-time systems must always be built to support the dynamic features the additional overhead
must be paid even in static areas of the system. (In this context, ‘overhead’ refers both to the
code footprint and execution time of run-time libraries, but also to the predictability of the
software and how easily it can be analysed for correctness.)

In contrast, in a fully-static system, programs use a fixed number of threads and shared ob-
jects that do not migrate between processors. Consequentially, because the hardware ar-
chitecture is also modelled, communication resources can be allocated offline. When used
with analysable subset languages (like Ravenscar Ada / Java) the resulting implementation is
easier to analyse and verify for correctness in safety-critical contexts. It will also require less
run-time support, leading to lower memory overheads and faster execution times.

Use of the clustering system model still allows for useful dynamism in the final implementa-
tion, but this dynamism is explicitly enumerated and modelled. The programmer can create
fully-dynamic systems (one program-wide cluster mapped onto one architecture-wide CT),
fully-static systems (one cluster per thread / coordination primitive / data item, one CT per
processor-memory pair, one-to-one mappings) and anything in between. The implementation
is given much more information about the intended behaviour of the program, and can tailor
it accordingly. Static parts of the system require only minimal support libraries, and are not
affected by parts of the system that implement dynamic behaviour.

This represents a conceptual change from the way that systems are normally designed. With
the assumption of no dynamic behaviour the ‘default’ run-time support required is minimal.
Any extra dynamic behaviour that is enumerated by the programmer can be explicitly included
by the run-time system, only for the areas of the system that need it.

3.6.2 VP requirements

The purpose of the VP is to allow the architecturally-neutral software of the source application
to execute correctly on highly non-standard target architectures. The requirements of the VP
therefore can be determined by enumerating the ways in which the architecturally-neutral code
can fail and remedying them. In all cases, code will fail to execute correctly when the underlying
architecture does not meet the implicit assumptions made by the language’s programming
model. The targeted languages (C, Ada, Java) therefore require the following features of the
VP:

• Provision of a single logical address space over a NUMA

• Universal communications between all system elements

• Cache coherency

95

Chapter 3. Compile-Time Virtualisation

CPU

CPU

Mem

Mem

s
h

a
re

d
 b

u
s

int shareddata;

thread a_thread {

print shareddata;

};

thread another_thread {

print shareddata;

};

shareddata mapped to

a _ th r e a d
 ma p p e d to

a no t h e r _ t h r e a d m a p p e d t o

This access is OK.

It uses this

connection.

This access fails! No

direct connection

to the shared data.

Figure 3.13: Problems caused by the assumption of a single logical memory space in non-
uniform architectures.

• Thread and data migration

These requirements are linked to the system model and examined in detail in the following
sections.

Single logical address space

C, Ada and Java, like the majority of common imperative languages, assume the presence of
a single logical memory space in which the data of their program is stored. This is a realistic
assumption for general-purpose architectures, but not so for embedded architectures in which
non-uniform memory architectures (NUMAs) are common. The language model assumes that
any data item in scope can be accessed from any part of the code. In an architecture in which
all processors have access to the same memory (such as SMP or cc-NUMA) this assumption
holds. However, consider the system shown in figure 3.13. Two threads are allocated to
different processors, and each processor has its own local memory space. Data allocated to
the local memory space of one processor cannot be accessed by the other, and the code will
fail. If the data is duplicated so that it appears in both memory spaces, then updates to the
data from one processor will not affect the data in the other and consistency will be lost.

In terms of the system model, for each processor p of the target layer, the VP is required to
ensure that every shared data item (from the program layer) that is accessed by the concurrent
objects that may execute on p appears to be located in a memory space attached to p. The
set of concurrent objects (COs in the formula) that may execute on p is as follows:

execute(p) = ∑
c∈COs

∃l ∈ clusters, t ∈ targets ⋅ c ∈ l ∧ l ∈ t ∧ p ∈ t

Distributed shared memory (DSM) systems [211] have been proposed as a solution to this

96

3.6. The CTV system model

problem. Implemented either as part of the operating system [114], as middleware, or as
an application library, a shared memory system allows the consistent sharing of data between
multiple computation nodes by monitoring the use of shared memory segments and distributing
changes to the memory appropriately. There is a wide range of algorithms and shared memory
paradigms in use that are appropriate for different usage models, programming models, and
target architectures [174].

DSM algorithms can be sorted into four main categories:

• Centralised: The data is physically stored in one place only. Accessors must read from
and write to this location serially through a central ‘data server’.

• Non-migrating replicated: The data is replicated between all accessors, changes to the
data are propagated between accessors.

• Migrating: The data is stored by its accessors, but only one copy is maintained at any
one time. When another accessor wishes to access the data it is migrated to the new
accessor and the old accessor deletes its copy.

• Replicated migrating: The data is stored by all accessors, but access semantics operate
like the migration algorithm. An access token is passed between accessors, along with
local changes to the data.

Furthermore, DSM systems can be subdivided depending on their granularity:

• Page-based: The distributed units are pages (address ranges) of memory. These sys-
tems are the most flexible as they require no specific software support and can be im-
plemented transparently. They suffer from fragmentation issues and cannot optimise
as aggressively due to a lack of source code knowledge. Two examples of this kind of
system are Teamster [40] and Strings [192].

• Object-based: Distributes language-level objects (integers, arrays, structures etc.). Re-
quires language support, but allows for more efficient implementation than a page-based
system. Existing examples of such systems are Adsmith [144] or Rthreads [65].

The VP is therefore required to implement a shared memory system which can allow all threads
of the system to access the data items that they require, transparently. Due to the level of
source code information that CTV has, an object-based solution is a better choice than a
page-based solution. The main advantage of page-based systems (transparency) is already
provided by CTV’s virtualisation layer, the VP.

Universal communications

Related to the assumption of a single shared memory space, languages assume the availability
of universal communications between all computing nodes of the architecture. The implicit
architecture is that of either a totally-connected grid of processors and memory spaces, or a
single shared bus. The result of this assumption is that, in terms of the system model, the
architecturally-neutral code of the concurrent objects assumes that it can communicate with

97

Chapter 3. Compile-Time Virtualisation

CPU 4 CPU 5 CPU 6

CPU 3

CPU 0 CPU 1 CPU 2

Shared bus 0

Shared bus 1

Figure 3.14: Example architecture that requires multistage permutation routing.

all the other concurrent objects and shared objects in the system. The system model does
not explicitly model communications, they are implicit based on the shared objects and shared
data items that each concurrent object accesses.

Figure 3.14 illustrates an architecture in which this assumption is invalid. In this architecture
there are two shared buses along which processors can communicate. Only a single proces-
sor, CPU3, is connected to both buses. Therefore to send a message from CPU 0 (situated
on one bus) to CPU 4 (situated on the other bus) it is necessary to transmit in two hops, using
CPU 3 as a relay. On larger architectures this generalises to communications that may involve
multiple hops to reach their destination and may also have alternate routes. In the literature
this routing problem is referred to as multistage permutation routing [216].

This problem may be solved using either an online or an offline solution. Online solutions use
routing protocols commonly based on the OSI seven layer model [117] that is used in the inter-
net and other large networks. Nodes store routing information about possible destinations and
construct spanning trees at run-time so that they know where to send packets. This results in
a flexible system, but overheads and implementation costs are high due to the complexity and
storage requirements of the routing hardware. Also, such algorithms are best suited for dy-
namic networks that may change their topology, but the majority of an embedded architecture
is static and only small areas may require adaptability.

Accordingly, many researchers have considered offline routing protocols that use information
about the structure of the network to inform routers at design time how to route their packets.
Systems such as SoCBUS [240] use this principle. In SoCBUS, each node knows whether
any other node is generally North, South, East or West so it knows which interface to relay
the message onto. Also, many real-time NoC systems fully route their messages statically
at design time to allow for offline analysis of traffic patterns, latency, and bandwidth. Early
work [18, 156] showed that with sufficient information about the expected traffic beforehand it
is possible to generate scalable and efficient routes for multistage permutation routing. This
work has led to the development of wormhole routing [170]. These problems are still being
considered for more complex network topologies [47].

The VP is required to implement a routing system that allows universal communication be-
tween all nodes of the system. The static nature of the CTV system model can be exploited
to allow the implementation an offline system with lower overheads than an online system. A

98

3.6. The CTV system model

small component of the system must still operate online, to account for the dynamism of the
logical layer.

Coherent caches

When shared memory is accessed through caches by multiple processors it becomes neces-
sary to keep those caches coherent. In terms of the system model, this situation arises when
all the following are true:

• In the target layer, there exists a memory spacem that is accessible from two processors,
p1 and p2.

• There exists two concurrent objects, c1 and c2 that may at some time execute on p1 and
p2 respectively.

∃c1, c2 ∈ concurrentobjects ⋅ c1 ∈ execute(p1) ∧ c2 ∈ execute(p2)

execute is the set of all concurrent objects assigned to a processor and was defined
above.

• There exists a shared data item d that is accessed by both c1 and c2.

• p1 and p2 have data caches in their implementation.

If all of these are true then cache coherency must be considered. Coherency schemes vary
in their implementation medium (whether they are hardware, software, or hybrid), the mecha-
nisms by which they detect coherency issues, and the algorithm they use to resolve them.

A common subdivision is to split cache coherency solutions into hardware-based and software-
based schemes [208]. Hardware-based systems are implemented entirely as dedicated hard-
ware units, usually connected to the memory bus of the system. This is the kind of coherency
solution found inside coherent multicore processors, like the ARM Cortex [83]. Such solu-
tions have the advantage that their use is entirely transparent to the programmer, but they
can require a large amount of power-consuming coherency hardware and their lack of soft-
ware knowledge leads to overly pessimistic coherency assumptions. They have no way of
knowing whether shared data will be needed in the future, so they are forced to keep data
that was once shared coherent long after it has been deallocated by the program. Similarly,
without software knowledge they do not know which processors will access the shared data
in the future so they are forced to pessimistically keep all cores coherent. Two examples of
hardware-based schemes are snooping protocols [127] and snarfing protocols [7]. Snooping
involves the monitoring of memory bus traffic by a dedicated hardware unit of the cache con-
troller to detect potential coherence problems. When detected, the affected cache lines are
invalidated. Snarfing is similar to snooping except when a remote processor modifies data that
the snarfing cache controller has cached, the controller updates its local copy.

Software-based approaches use software libraries to explicitly create shared memory regions
that are to be kept coherent. Such an approach requires the programmer to manually main-
tain the cache, but can provide a lower-overhead solution that is more scalable than a purely
hardware-based scheme. They reduce many of the problems of hardware-based schemes

99

Chapter 3. Compile-Time Virtualisation

because the extra software information can be used to reduce overly pessimistic coherency
assumptions. The main drawback of a software-based scheme is that they require processor
time to execute, thereby potentially reducing the throughput of the system.

An example of a software-based mechanism is directory-based coherence [1, 36]. Directory-
based coherency stores a table (the directory) of all items for which coherency is to be main-
tained. Processors explicitly request and update entries in the directory. This is more scalable
than snooping-based mechanisms which determine this information by inspecting transactions
on the memory bus (at either the software or hardware level). Unfortunately, programming lan-
guage assumptions of universal coherency still require this directory to be available to all cores
of the system. As identified previously in section 2.6.3, recent work [149] has showed limiting
coherency into coherency regions is more scalable, but requires explicit software support.

Inevitably as embedded architectures become more complex, hybrid schemes will become
required as parts of the target architecture provide hardware coherency whilst other sections
do not. The VP is required to implement a cache coherency system that allows the proces-
sors of the system to use shared data over complex architectures without compromising the
coherency of that data. The extra amount of software support afforded by CTV allows the VP
to implement a low-latency scheme that is appropriate for varying target architectures.

Migratable threads and data

The final requirement of the VP is that to support the logical layer of the system model it
must be able to implement thread and data migration throughout the processors and memory
spaces respectively of the target architecture. Recall that the model defines two forms of
migration:

• A cluster may migrate to any of the cluster targets to which it is mapped.

• A concurrent object c may migrate between the processors of the cluster target to which
c’s cluster is currently mapped. Equally, a shared data item d may migrate between the
memory spaces of the cluster target to which d’s cluster is currently mapped.

Thread migration is the task of moving an executing thread from one target processor to an-
other. It involves moving the thread’s code, state and its local data (stack). On shared memory
architectures this can sometimes be implemented simply by passing a reference to the data.
Without shared memory the data has to be explicitly moved. Migration may occur inside a
cluster and between clusters depending on the implementation used. This is discussed more
in section 4.13.

After migration the system must resume in a consistent and coherent state. In a general-
purpose computing environment this can be very challenging, as the presence of arbitrary
pointers (such as in C) vastly complicates the migration and memory translation process. In
languages that do not allow raw pointers (Ada and Java), the task is simpler as only the refer-
ence has be to translated.

Thread migration techniques can be coarse-grained or fine-grained. Course-grained systems
such as UPVM [136, 137] provide the migration of user level processes, which are coarsely-
grained computation units that do not share memory and only communicate using message

100

3.7. The Object Manager model

passing. Therefore, the migration mechanism only needs to transfer the state of the user level
process, shared memory does not need to be updated. The downside of such systems is the
requirement for message-passing as the top-level communications mechanism, and that the
state of the processes can be very large.

Fine-grained systems such as MILLIPEDE [82, 119] and Ariadne [161] allow the migration of
lightweight threads that exist inside a shared memory environment. Such systems generally
require the transfer of smaller amounts of state (threads only use a small amount of local stack
space compared to full processes) but the presence of shared memory complicates matters
as any references to migrated data must be updated.

Given CTV’s target domain of heterogeneous embedded systems, there are a number of ad-
ditional requirements that must be taken into account. In a homogeneous architecture the
source and target processor might have different ISAs. The binary for one processor of the
system might not work for another. To solve this problem, the potential migrations must be
determined in advance, and the code recompiled for each potential target processor. Related
to this, if the processors have different architectures then it is not possible to transfer the state
of one processor to another directly. Either limitations must be placed on the migration targets
(for example to only migrate between broadly compatible processors) or they must only take
place at predefined ‘checkpoints’ in the code where migration is safe. Finally, if the processors
use different representations (big-endian vs little-endian), data-marshalling for local data must
be performed.

Clearly in an actual implementation, unrestricted thread migration from any processor to any
other processor is impossible in the general case. However, the level of source information that
is afforded to the designer by CTV’s system model allows for appropriate restrictions on mi-
gration to be codified and checked, so that it can be supported in the areas of the architecture
that are amenable.

3.7 The Object Manager model

The previous sections detailed the features that must be provided by the VP. In order to imple-
ment these, the VP defines a unique communications framework called the Object Manager
(OM) model that makes use of the compile-time nature of CTV and the extra information pro-
vided by its system model to provide a scalable implementation.

It is not possible to use a standard OS kernel to provide the required communication, shared
memory and thread migration services. Doing so would introduce a bottleneck in the system,
as all threads would have to communicate with the OS kernel to use the provided services.
The OS is typically located on a single core (or a single group of cores) and so as systems
grow larger this limits scalability.

In response to this problem, distributed operating systems (DOS) have been developed, of
which there are a number of recent examples [238, 17, 173]. In a DOS, the OS is composed
of two layers, the microkernel layer and the service layer. The microkernel provides the min-
imal functionality required for the operation of the rest of the node. Commonly this includes
features such as threading, scheduling, interrupt handling, timing, callback routines, and heap
management. These features are localised to within a single processing core and do not

101

Chapter 3. Compile-Time Virtualisation

require communication with other cores.

Running on top of the microkernel is the service layer which provides unified OS services
to the rest of the system. In a DOS, provision of these services is distributed across the
entire multicore system. This distribution requires coordination to maintain elements of global
OS state between all the OS-carrying nodes of the system. For example, when a thread
locks a mutex this information must be distributed to all other nodes of the system so that
further attempts to lock the same mutex are blocked. The problem with this approach is that
maintaining this distributed state can require a large amount of communication. Existing DOS
approaches have been designed with the goal of providing a transparent, general-purpose
solution. The lack of compile-time information about the intended application forces the DOS
to pessimistically maintain state across the entire system in case it is later required.

The OM model leverages CTV to take a different approach. Applied at compile-time, the OM
model has access to the full source code of the application, along with the program, target and
logical layers of the CTV system model. It makes use of this unique clustering and mapping
information to limit propagation of state and the provision of OS services to the subset of the
system that actually requires them. Rather than attempting to provide all services at multiple
points throughout the system and then coordinate to achieve a consistent state, the OM model
only provides each service at a single node, but that node can be mapped physically close to
the threads that require it. Services are also provided at a fine level of granularity. For example,
rather than all mutexes being coordinated by a dedicated ‘mutex manager’, individual mutexes
are provided as separate services and can exist on different cores of the architecture, close to
the threads that require it. Other threads in the system that do not access that mutex do not
affect the scalability of the final implementation. The result is an application-specific system
for the provision of OS services, that is capable of much lower run-time overheads than a
general-purpose system (as highlighted in figure 3.15).

It can be seen therefore that the OM model replaces the service level of the traditional dis-
tributed operating system model, it does not replace the microkernel. Existing microkernels
can be used by the OM model without modification so there is no need to redefine them.

The OM model has three main advantages. First, the scalability of the model is limited only
by how interconnected the source application is. If all mutexes, shared data items etc. are
accessed by all threads of the system then the OM model performs no better than a standard
OS. However, for better-constructed programs in which shared items are only required by a
subset of the system threads, communication requirements are accordingly reduced. Second,
the model is decentralised and can support large architectures. Hardware-permitting, simul-
taneous service requests can execute in true parallel, due to the fact that OMs do not need
to propagate and maintain a single OS state. This is illustrated in figure 3.16. Finally, the
implementation of the OMs can be more efficiently mapped to the target architecture than a
general-purpose system that is required to support a range of architectures. As detailed in
the following section, each OM is mapped to elements of the target layer from the CTV sys-
tem model. This allows the services provided by the OM to be located physically close to the
threads that require them.

102

3.7. The Object Manager model

Centralised mutex
service

thread
(needs mutex a)

thread
(needs mutex a)

thread
(needs mutex b)

Object manager
(manages mutex a)

thread
(needs mutex a)

thread
(needs mutex a)

thread
(needs mutex b)

Object manager
(manages mutex b)

All mutex requests must be
coordinated between system
nodes. System does not know
in advance which nodes will
need access to which mutex.
General-purpose

No single point of contention.
OS architecture reflects
application architecture. Maps
to complex architectures easier,
but less flexible as mutex access
is statically determined.
Application-specific

OS model

Object manager model

Figure 3.15: The difference in approach between existing OS systems in which services are
provided at a uniform location and the OM model.

OM1

OM3OM2

OM4

OM6

OM5

CPU

OMn
Object
Manager

Request

Figure 3.16: The OM model is totaly decentralised. Hardware-permitting, simultaneous service
requests execute in parallel.

103

Chapter 3. Compile-Time Virtualisation

3.7.1 OM specification

Overview

The OM model defines at compile-time a static set of object managers (OMs) that are dis-
tributed across the target architecture. An OM has the following features:

• Manages shared objects and shared data. Each shared data item and shared object
(including implicit ‘thread helper’ shared objects, see section 3.4.5) from the program
layer must have exactly one OM. An OM can manage any number of items. ‘Managing
an item’ means providing the OS services associated with that item, defined in detail
later in this section.

• Passive. OMs are passive objects. They only perform actions in response to a com-
munication from a concurrent object elsewhere in the system. This allows them to be
implemented in interrupt handlers.

• Single thread of control. OMs contain a single thread of control (because they execute
at a level of abstraction lower than the kernel). Therefore if an OM manages multiple
objects, the requests are serialised and not reentrant. Accordingly, commonly-used ser-
vices should be assigned to their own OMs on their own processing element. Less
frequently-used services may share OMs and processing elements.

• Mapped to the target architecture. OMs can be implemented in either software or hard-
ware, as described later in this section. Software OMs are mapped to a set of target
processing elements from the target layer. At run-time, the OM may migrate between
the set of processors to which it is mapped in a way exactly the same as concurrent
objects mapped to a cluster target in the logical layer. Hardware OMs are mapped as
custom hardware elements of the target layer. Migration of OMs might be omitted by an
implementation if desired. In this case, the system will allow concurrent objects, shared
items and shared data to migrate, but not OMs, and if a processor which is hosting an
OM shuts down the system may fail to operate correctly.

• Static. As the set of OMs in the system is compile-time static, OMs cannot be created or
deleted at run-time.

• No heap. Unlike shared objects, OMs may contain only static state variables. These
cannot be (and need not be) accessed by other objects in the system, including by other
OMs. A software implementation should endeavour to limit the size of this state so as to
affect software on the host processor as little as possible. The OM will still make use of
the stack for implementing function calls etc.

• No remote access. OMs cannot directly access shared data or shared objects during
their execution. To do so would involve the OM calling services on other OMs which can
lead to deadlock, as well as resulting in unpredictable execution behaviour. (On complex
architectures OM’s will still coordinate to provide distributed communications, but this
happens at a level lower than that of the input program.)

• Very low abstraction level. OMs must be able to execute without using any OS features
at all (for times when they are mapped to a processing node without a microkernel). This
means that dynamic memory allocation and similar features must be avoided.

104

3.7. The Object Manager model

• Generated at compile-time. Because of CTV’s static system model, the behaviour of
each OM can be largely determined at compile-time. The CTV system model speci-
fies the objects in the input program, the layout of the hardware architecture, and the
mappings between the input program and the hardware architecture. From this, and in-
formation on where in the target architecture each OM is to be located, each OM can
statically determine the communications routines required to send messages to other
threads, perform offline routing for more complex architectures, and include only the
driver code which is required by the chosen architecture. If the architecture or input pro-
gram changes, the OM layer must be regenerated and recompiled (or resynthesised in
the case of hardware OMs).

Services provided by an OM

Recall that the purpose of the OM communications model is to implement the requirements of
the VP as detailed in section 3.6.2. The set of services that each OM is required to provide
is determined by the objects that it manages. OMs can manage shared objects (including
implicit ‘thread helper’ shared objects detailed in section 3.4.5) and shared data items. OMs
must manage the union of the services that are required by its managed items. Recall that
OMs do not provide all of the services that are traditionally provided by OS kernels and are
frequently (but not necessarily) combined with a microkernel or full kernel to provide the user
application with access to services like threading, scheduling and dynamic memory allocation.
This section details the services that OMs are required to provide.

• Services provided by all OMs

– Offline, multistage permutation routing for all communications. The OM can de-
termine offline which other OMs and processors the OM will potentially need to
communicate with. The routing for these communications is performed offline.

– Message forwarding. Related to the provision of offline message routing, many
architectures will require OMs to be able to act as routers, passing messages from
one interface to another across the system.

– Migration support, detailed later in this section.

• OMs that manage shared objects: From the definition of shared objects given in sec-
tion 3.4.2, the following services need to be provided:

– Remote procedure / function calls for the interface of the shared object.

– Internal locks (the read lock and write lock) that may be automatically acquired by
the interface subroutines.

– Interface guards that are correctly observed and reevaluated.

– Migration support, detailed later in this section.

• OMs that manage shared data:

– Object-based shared memory system with migration semantics. Allows the proces-
sors which access this shared item to migrate the data (or a portion of it) into their
local memory space, access it, and then migrate the changes back to the remote

105

Chapter 3. Compile-Time Virtualisation

copy. Correct concurrent operation does not have to be guaranteed, it can be as-
sumed that the input program will correctly obtain and use mutual exclusion in all
situations in which shared memory is accessed by multiple clients.

– Cache coherency across all processors that access the shared data and have
caches. The specific algorithm is not specified, but as all requests for shared data
pass through the OM the system can efficiently implement a directory-based algo-
rithm. Cache coherency hardware should be used by the OM if available.

– Migration support, detailed later in this section.

• OMs that manage ‘thread helper’ shared objects

– Thread helper objects are implicitly-defined shared objects and so are supported in
exactly the same way as shared objects. The interface exposed is determined by
the language mapping, as discussed in section 3.4.5.

– Migration support, detailed later in this section.

Implementation styles

An OM exists at a physical point in the hardware architecture, but the actual implementation of
an OM is undefined by the OM model. There are two main implementation styles that can be
adopted by the OMs - software or hardware.

Software-based solutions implement an OM as an interrupt handler in the processing elements
of the system. The handler is triggered by the receipt of communications from concurrent ob-
jects in the system requesting access to the OM’s provided services. This allows for maximum
flexibility, as OMs can be created and removed easily (at compile-time). However this causes
interference to the execution of the processor’s threads. Software OM’s allow local requests
(requests in which the concurrent object and the OM are hosted on the same node) to execute
very quickly.

Hardware-based solutions use custom, dedicated hardware units that are custom-built to im-
plement the required services and to be accessible from the processing elements of the sys-
tem. This is similar to existing hardware-provided OS services [3], but application-specific
rather than general-purpose and of a much lower granularity (individual objects if required).
Hardware implementations allow higher response times than software and does not affect
software execution, but requires new hardware to be generated for each new OM mapping. If
the designer allocates an OM to manage an additional service, or moves it to another location,
the hardware must be regenerated. Mixed approaches are also possible in which high-traffic
OMs (like the manager of a heavily-used mutex) are implemented in dedicated hardware and
other OMs are implemented in software.

Accounting for migration

Dynamism defined by the logical layer allows concurrent objects, shared objects, and shared
data items to migrate at run-time over a subset of the target architecture. The migration of
an object is provided as a service by its OM. Migration consists of two phases - the actual

106

3.7. The Object Manager model

CPU
D

CPU
B

CPU A
(message

source)

CPU
C

Cluster target
(contains

target thread)

Calculated route

Figure 3.17: Offline generation of routes to objects that may migrate.

migration, and then the updating of communication links with the new location of the migrated
object.

To perform the actual migration, the migration service must be able to pause the execution of
the object, move it and its internal state to the target location, and restart its execution. As-
suming the absence of race conditions, the system execution should proceed identically (from
a functional perspective) as it would have done without the migration. In an homogeneous ar-
chitecture this is possible, but arbitrary migration across heterogeneous architectures can be
hard to implement, so an implementation will place strict limitations on the type and scope of
migrations possible. Also, OMs may be mapped to more than one physical processor from the
target layer, meaning that the OM may choose migrate itself as well as the object it manages.
Support for this is optional and is specified by the implementation.

Once the migration has been completed, other parts of the system should be able to con-
tinue executing without being disrupted. The OMs form a statically-routed communication
network across the target architecture, so after a migration these links must be updated. This
is implementation-neutral and so is defined by the OM model. The situations that must be
considered are as follows:

• Concurrent object migration: Recall that the system model does not provide direct
inter-concurrent object communications. All communications use an intermediary shared
object (including implicit ‘thread helper’ shared objects). Therefore the only feature of the
system that is affected when a concurrent object moves is its manager, which still needs
to be able to interact with the thread to perform operations such as interrupting or ter-
minating it. Therefore, the concurrent object’s manager must, at compile-time, prepare
routes to all possible cores that the concurrent object may migrate too. When target-
ing migration across a broadcast network the routes will be identical, but non-standard
architectures might result in more complex scenarios, as depicted in figure 3.17. 3

3Note that as shown in section 3.4.5, for the presented languages C, Ada and Java the interactions between a

107

Chapter 3. Compile-Time Virtualisation

• Shared object migration: Migration of shared objects is more complex than migration
of concurrent objects because other objects of the system can communicate directly
with the migrated item. There are two suitable algorithms that can be used to solve this
problem described below. These algorithm have different costs and benefits, so the most
suitable choice depends on the behaviour of the system being implemented.

– Location propagation: In this algorithm, the OM of the migrating item is respon-
sible for storing a list of all objects that can communicate with it. This list must be
obtained at compile-time from static analysis. It is not enough to build a list at run-
time because the object may migrate before the first communication from a remote
object. When the object is migrated by its OM, the OM must send a message to all
objects in its communication list to inform them of its new position.
The advantages of this algorithm are that it can support arbitrarily complex archi-
tectures, and it can operate in a system in which all OMs migrate and there is no
provision for global broadcast. Also it does not impose any overhead on normal
communications because each object maintains a consistent system view. The
disadvantages are that the communications list can become rather large in some
applications and impose a large memory footprint on the OM of the migrating item.
Also, after a migration many communications are required to propagate the new
location to all accessors.

– Intermediary manager The intermediate manager algorithm uses a second OM as-
signed to a static location, called an intermediate manager (IM) to store the current
location of the migrating object. The IM must not migrate throughout the execution
of the application so that accessors can statically route their communications to it.
Objects that wish to communicate with the migrating object first communicate with
the IM, which then forwards the communication to the appropriate location. During
a migration, the migrating object’s manager informs the IM of the new location. If
the OM of the migrating object does not itself migrate, then the IM and the OM can
be combined into a single location.
This algorithm introduces a small communications overhead as objects must have
their communications routed by the IM to the actual object. However, the commu-
nication requirements after a migration are reduced and decoupled from the layout
of the application making the algorithm more scalable. Also the potentially large
communication lists do not need to be obtained and stored.

These algorithms are only required when migrating objects across an irregular architec-
ture. If migrating throughout a broadcast network (such as CAN or Ethernet) then such
techniques are unnecessary because the method of access (broadcasting a packet and
waiting for the reply) is the same. This can be determined at compile-time so only the
required algorithms are implemented.

• Shared data migration: Shared data migration is similar to the migration of a shared
object. The actual migration is simpler as it only requires the copying of the shared data
from one memory space to another. Once this is complete, the same algorithms as
above are used to ensure that the rest of the system can still access the shared data
item.

concurrent object and its manager are infrequent and require only low bandwidth. Therefore an implementation will
likely choose not to migrate the object’s manager when possible.

108

3.8. Conclusion

3.8 Conclusion

This chapter has further explored the problems that are encountered when developing soft-
ware for complex, non-standard architectures. The programming models of existing languages
assume a fixed, standard architecture of homogeneous processors and globally-contiguous
shared memory that is very different to the majority of embedded systems. As a result, soft-
ware cannot be adequately mapped over these systems and the programmer is forced to break
the abstraction models of their source language with low-level, hardware-dependent code. This
is error-prone, time-consuming, and limits code reuse.

Furthermore, existing development models fail to allow the programmer to express the cou-
pling of their application. Coupling is defined as a relative partial ordering between the threads
and data items in a system. Tightly-coupled items communicate and share data frequently,
whereas loosely-coupled items tend to only exchange infrequent, high-level messages. Exist-
ing development toolchains do not allow the programmer to provide this information, however
it is of great importance when targeting embedded architectures due to their heterogeneity.
Coupling information allows the toolchain to place tightly-coupled items closer together and
route their communications over higher-bandwidth links. It can also be used to influence task
migration policies, thereby supporting dynamic embedded systems.

This chapter has defined the clustering model, which is a hierarchical model for application
development that allows the expression of coupling. This is developed into a full system model
that models features of the source application, features of the target architecture, and the way
that the source items are distributed over the hardware. The system model includes a logical
layer that presents an expressive model for task and data migration.

The developed system model requires considerable support from the programming language
that is typically not provided. For example, it requires the assumptions of global shared mem-
ory and universal cache coherency to be relaxed so that more complex architectures can be
supported in which such assumptions would be inefficient and wasteful. To solve this problem,
a virtualisation-based technique is developed called Compile-Time Virtualisation (CTV). CTV
is a language-agnostic technique that presents the programmer with a Virtual Platform (VP)
that is an idealised view of the underlying hardware. The VP supports the assumptions of
their chosen language. For example, it presents global shared memory but implements this
on a non-uniform memory architecture. Unlike existing virtualisation-based techniques, the VP
does not introduce run-time overhead because it is applied solely at compile-time. This makes
it suitable for use in resource-constrained embedded systems.

In order to support future architectures, CTV uses a novel communications layer called the
Object Manager (OM) model. The OM model builds on the clustering and architecture mapping
information provided by CTV to present a scalable solution to on-chip communications. The
OM model provides services such as communication, coordination, shared memory and task
migration in a distributed manner without the need for a full operating system running on each
processor of the system. The OM is entirely decentralised, removing a potential source of
bottlenecks and making it as scalable as the architecture of the source application.

109

Chapter 3. Compile-Time Virtualisation

110

Chapter 4

Anvil: An Implementation of CTV

The previous chapter introduced CTV, a virtualisation-based technique to assist the develop-
ment of software for complex embedded systems by exposing extra architectural details to the
programmer. CTV was defined to support a clustering-based programming model that allows
the programmer to better target partially-dynamic non-uniform architectures. CTV’s system
model was defined, along with its novel decentralised communications layer which is termed
the Object Manager (OM) model. The OM model is used to provide OS services in a scalable
way across complex architectures without the need for a traditional distributed OS and its asso-
ciated overheads. The OM model relies heavily on the extra programmer support afforded by
the CTV system model and its compile-time nature. In this chapter, an implementation of CTV
is presented along with in-depth implementation details that show how CTV can be utilised in
practice.

Anvil, shown in figure 4.1, is an implementation of CTV that takes applications written in ANSI
C as its input. The programmer makes use of the POSIX pthreads library [115] to describe
multiple threads of control and their interactions. C was chosen because it is an industry-
standard language that has been used extensively for the development of both soft real-time
and hard real-time embedded systems. Tool support for C is mature and extensive, and as
shown in section 3.4.6 it is easily represented by the CTV system model (once it has been
combined with pthreads to express parallelism and coordination). Ada is also extensively used

C + POSIX pthreads ANVIL refactoring engine
+ unmodified gcc

FPGA-based heterogeneous
multicore NUMA system

Figure 4.1: Overview of Anvil, an implementation of CTV.

111

Chapter 4. Anvil: An Implementation of CTV

for embedded development, but C was selected because it is a simpler language that is easier
to parse and analyse.

Anvil maps its input programs over FPGA-based, complex, multi-core architectures with non-
uniform memory, custom on-chip interconnect, and non-standard hardware features such as
function accelerators. Due to the fact that the input code is standard ANSI C, Anvil uses an
unmodified version of the gcc compiler internally for object code generation. Input code is
extensively refactored so that gcc is presented with source code that will operate correctly on
the target architecture.

As CTV is a compile-time technique, restrictions have to be placed on the run-time behaviour
of the input code that Anvil can process. These restrictions are collated and summarised at
the end of this chapter in section 4.15 and are motivated and discussed throughout in their
relevant sections.

The chapter first describes an overview of the Anvil implementation scheme (section 4.1). It
then defines AnvilADL, a description language that is used by the programmer to describe the
target architecture and the behaviour and capabilities of Anvil’s VP. Then, the compile-time
refactoring process that Anvil uses to generate its run-time libraries and distribute the pro-
grammer’s code over the target architecture is detailed in section 4.3. Section 4.12 describes
how Anvil allows the definition of shared objects to support the use of dynamic data structures
across non-uniform memory architectures. The implementation of migration is discussed in
section 4.13, and the impact that Anvil’s refactoring has on traceability is considered in sec-
tion 4.14.

4.1 Implementation overview

As a compile-time system, Anvil is centred around a source-to-source refactoring engine which
takes the programmer’s architecturally-neutral input C code and refactors it for execution on
the target architecture. Anvil is comprised of the following parts (shown in figure 4.2):

• AnvilADL. A simple architecture description language that is used by the programmer to
describe their code in terms of the CTV system model (section 3.4). AnvilADL allows the
definition of all the elements of the source, logical and target layers, and to describe the
mappings between them. As it is designed to support a CTV system, the definition and
placement of OMs is also performed here. This layer is presented along with the input
code to the rest of the Anvil toolchain. AnvilADL is described in section 4.2.

• Refactoring engine. Anvil’s refactoring engine is a full C parser and static analysis tool
that understands the semantics of the pthreads library. It is used to analyse the input
source code and apply source-to-source transformations to turn the input single-program
into code suitable for execution on the target architecture. The result of this stage is a
set of programs (one for each target processor) which implement the same functionality
as the input program. The refactoring is guided by the programmer though the map-
pings in the AnvilADL description of the system. The refactoring engine is described in
section 4.3.

• Object manager libraries. As detailed in section 3.7.1, to support the CTV system model

112

4.2. AnvilADL - Virtual Platform description

AnvilADL parser
Refactoring engine
C parser and static

analysis tool

Library generation
routines

Compiler and linker
Uses the unmodified gcc

toolchain

Input application
ANSI C with pthreads, single

program description

AnvilADL system description
Describes target architecture

and software mappings

Processor-specific
executables

Processor-specific libraries
Communications, shared

memory, embedded pthreads,
custom hardware support

Processor-specific programs
Program for each target

processor, refactored to use
the generated libraries

Figure 4.2: Overview of the main processes in the Anvil system

the Object Managers are required to implement a range of OS services, including cache
coherency and shared memory systems. The code to do this is provided in a range of
libraries that are included as necessary at compile-time by the refactoring engine. These
libraries are detailed in section 4.6.

• Custom hardware support. Anvil includes a library of driver functions that are used for
accessing communication channels and other elements of custom hardware according
to the CTV hardware model (section 3.4.4). These are integrated into the OM code at
compile-time as required.

The rest of this chapter describes the above technologies and details their implementation and
use.

4.2 AnvilADL - Virtual Platform description

AnvilADL is a simplified architectural description language that is used by the programmer to
represent their system. Primarily it describes the input application, target architecture, and the
mappings between them in terms of the system model (section 3.4). The following features
are described:

• Features of the source application (from the program layer, section 3.4.2) – concurrent
objects, shared objects and shared data.

113

Chapter 4. Anvil: An Implementation of CTV

• Features of the target architecture (from the target layer, section 3.4.4) – processors,
channels, memory spaces, custom hardware.

• Logical elements (from the logical layer, section 3.4.3) – clusters, cluster targets.

• Mapping information (source layer objects → clusters, clusters → cluster targets, cluster
targets → target layer objects).

Also described are lower-level implementation details:

• Detail of target layer objects to provide more information to the toolchain. For example a
processor’s ISA, or whether a given memory space is cached.

• The connectivity and topology of the target architecture (the way in which memory spaces
and channels are connected to processors).

• The OMs of the system (section 3.7), and which objects are assigned to which OMs.

The ADL is responsible for defining the VP that is used in an Anvil system. The programmer
uses AnvilADL to express the way in which their code should be mapped to a given archi-
tecture. This is then used to influence the operation of the rest of the Anvil system. The
same input code can be mapped differently, or to a different architecture, by providing different
AnvilADL. The following sections describe the AnvilADL language.

4.2.1 AnvilADL - syntax

AnvilADL does not have the expressive power of a full ADL [49] because it only needs to
provide a high-level view of the software and hardware architectures in terms of the layers of
the CTV system model (as defined in section 3.4.1). AnvilADL’s syntax is shown in figure 4.3.
A section of AnvilADL code is called a description, in the way that a section of C code is called
a program. This is because AnvilADL is not executable or compilable, it is used to describe
and model a system.

An AnvilADL description consists of two types of statements, declarations and assignments.
Declarations are used to introduce new features into the description. Each feature is cate-
gorised into one of the following feature categories:

• processor, memory, channel or hardware are used to define architecture features that
are modelled by the CTV system model’s target layer (section 3.4.4).

• cluster and target are used to define the objects of the logical layer (section 3.4.3).

• manager is used to define OMs (section 3.7).

Within the architectural categories, features can be given a type to provide further information
about their implementation. For example, a declared feature can be of category processor,
and of type PowerPC. This type is a freeform string, which is used to inform Anvil’s refactoring
engine which library functions should be used to interact with this hardware element. Giving

114

4.2. AnvilADL - Virtual Platform description

(* AnvilADL syntax definition *)

(* Top-level non-terminal *)

description ::= {declaration | assignment}

(* Declarations *)

declaration ::= identifier_list ":" feature_category [iptype];

identifier_list ::= identifier | identifier "," identifier_list

feature_category ::= "processor" | "memory" | "hardware" | "channel" |

"cluster" | "target" | "manager"

(* Assignments *)

assignment ::= lvalue "=" rvalue ;

lvalue ::= identifier "^" attributename

rvalue ::= literal | parameterised_instance | lvalue

(* Complex types *)

parameters ::= "(" list ")"

array ::= "[" list "]"

list ::= list_item | list_item "," list

list_item ::= parameterised_instance | literal

parameterised_instance ::= identifier [parameters]

(* Base types *)

iptype ::= string

literal ::= number | string | array | boolean | "None"

boolean ::= "True" | "False"

(* Identifiers are case insensitive, start with a letter, and contain

letters, digits or _. Strings are delimited with double quotes

numbers can be in decimal (687), hex (0x2AF) or binary (0b1010101111) *)

Figure 4.3: EBNF of AnvilADL’s syntax

115

Chapter 4. Anvil: An Implementation of CTV

a feature an explicit type is optional. Each feature has a textual identifier that is used to refer
to the feature elsewhere in the description. In AnvilADL, identifiers are case insensitive, must
start with a letter, and after which can contain letters, digits or the underscore character.

Note that source layer elements (concurrent objects, etc.) are not in the above list of fea-
ture categories. When using AnvilADL, the programmer does not need to explicitly define
the source layer objects as this information can be obtained from static analysis of the input
code. The CTV system model is compile-time static, which means that the input code must be
compile-time statically-analysable. Section 4.15 discusses the limitations that this places on
Anvil’s input code, but once these restrictions are met the analysis phase can scan the input
code to determine the objects present in the code. Section 3.4.6 described in more detail the
way in which the features of C with pthreads are represented by the CTV system model, but to
summarise:

• Each call to pthread create with a unique instance of a variable of type pthread t

creates a new thread. These are represented by concurrent objects. From an implemen-
tation perspective, the thread is created in the memory space of the processor to which
the thread is mapped. Anvil’s shared memory library (section 4.8) distributes data across
non-uniform memory spaces to hide such details from the programmer.

• Instances of pthread mutex t and pthread cond t, created by pthread mutex init and
pthread cond init respectively, are represented by shared objects. C does not allow the
programmer to natively create their own shared objects, but an Anvil feature described
in section 4.12 adds this capability.

• Global variables are represented as shared data items.

Assignments are used to give more detail about an architectural feature, to describe the topol-
ogy of the target hardware, and to map source layer elements to logical and target layer el-
ements. This is done by assigning values to the attributes of the declared features in the
description. Attributes can be set by the programmer to add more information into the de-
scription. Each feature category defines a set of attributes which apply to all types within that
category. For example, all processors have a memory attribute which is used to attach memory
spaces to it. Type attributes are extra attributes that can be defined only for a given instance
type. For example, a UART channel type can define a baud rate attribute.

The category attributes are detailed below, and examples of attribute use are given in the
following sections.

116

4.2. AnvilADL - Virtual Platform description

Processor attributes

Attribute name Value Purpose

memory parameterised memory in-
stance

Sets the main (boot) memory of the proces-
sor.

extramemory parameterised memory in-
stance

Defines an additional memory block for the
processor.

threads Array of threads The threads that are directly mapped to this
processor.

cache Array of [instruction, data] The types of caches used by the given pro-
cessor.

Memory attributes

Attribute name Value Purpose

size Number Size of the memory space (words).
width Number Width of the memory space (bits).
variables Array of shared data

items
The variables that are directly mapped to this
memory location.

Channel attributes

Attribute name Value Purpose

endpoints array of parameterised
processor instances

Defines the endpoints of the channel.

bandwidth Number Informal measure of average bandwidth,
used by the routing algorithm (section 4.7).

Variable attributes

Attribute name Value Purpose

mutex Name of mutex instance The mutex associated with the shared vari-
able (see section 4.8.3).

readcache Size (bytes) Size of the variable’s read cache.
writecache Size (bytes) Size of the variable’s write cache.
fetchall Boolean Fetch and update the entire variable using

bulk transfers.
targets Array of target instances The targets that this variable is mapped to.

117

Chapter 4. Anvil: An Implementation of CTV

Cluster attributes

Attribute name Value Purpose

contains Array of source level in-
stances

Define the threads, mutexes, CVs, and vari-
ables that are part of the cluster.

Target attributes

Attribute name Value Purpose

contains Array of processor and
memory instances

Define hardware that makes up the cluster
target.

coherent boolean Whether the processors of the cluster auto-
matically kept cache coherent by the target
architecture.

Manager attributes

Attribute name Value Purpose

manages Array of threads, mu-
texes, CVs, shared vari-
ables

Create an OM that manages these items.

executes on Array of processor in-
stances

The processor upon which the manager
should execute.

Protected attributes

Attribute name Value Purpose

functions Array of function names The functions associated with the Anvil pro-
tected object (see section 4.12).

state Array of variable names The state of the protected object.
identifier String The instance identifer used by the protected

object.

4.2.2 Processors and memory

The first step in creating a description is to declare the processors and memory spaces of
the target architecture. For example, the following description creates two different types of
processor and three memory spaces.

118

4.2. AnvilADL - Virtual Platform description

cpu1 : processor Microblaze;

cpu2 : processor Picoblaze;

cpu1^barrelshifter = True;

mem1, mem2, sharedmem : memory BlockRAM;

The declared processors are of type Microblaze and Picoblaze respectively. In addition, the
programmer has used an assignment to set the Microblaze instance’s barrelshifter type
attribute to true to provide more detail to the compiler. barrelshifter is a type attribute
used to denote whether or not the instance is synthesised with a barrel shifter or not, and the
compiler can use this information to make use of the extra opcodes that require a barrel shifter.
The memories are all declared as instances of type BlockRAM.

The next phase is to use the memory and extramemory attributes to describe the memory
hierarchy. The memory attribute is used to define the memory space into which code and
data for a given processor may be stored and must be set for all processors in the system.
Processors may share memory, if supported by the specific memory type.

The extramemory attribute defines memory spaces that are connected but if possible should
not be used for code or local data (the stack and heap). An extraemory memory space might
be slower, or shared by multiple processors, so it is primarily intended for storing shared data
items. Anvil will only store code and local data in extramemory spaces if the processor’s other
memory is full. Both memory and extramemory can be assigned an array of memory instances
to describe more complex memory layouts. It is not currently possible to explicitly separate
code and data storage, but this could be implemented in a future version if required.

When assigning memory spaces, it is necessary to describe the memory map of the processor.
This is done by passing parameters to the memory and extramemory assignments, as shown
in this example:

mem1^size = 8388608;

mem2^size = 8388608;

mem1^width = 32;

mem2^width = 32;

sharedmem^size = 256;

cpu1^memory = [mem1(0x00000000)];

cpu2^memory = [mem2(0x00000000)];

cpu1^extramemory = [sharedmem(0x02000000)];

cpu2^extramemory = [sharedmem(0x02000000)];

Here mem1 has been assigned to cpu1, mem2 to cpu2, and sharedmem as a block of shared mem-
ory that can be accessed by both processors. The sizes of each memory space have been
given using the size and width attributes, which are measured in words and bits respectively.
In this example, 8,388,608 32-bit wide words equals 32 MiB. The base address of the memory
space → processor connection is given as a parameter during the attribute assignment. Note
that most processors require boot code to be placed at its zero address so memory should
be allocated to cover that address range. This is a hardware design issue however and Anvil
assumes that the target architecture as described is correct so it does not check such issues
and simply allocates code from the earliest possible address. If memory is incorrectly assigned
or insufficiently to store the required program then this will be detected by the linker in most
toolchains.

119

Chapter 4. Anvil: An Implementation of CTV

A number of consistency checks can be performed by the Anvil tools at this stage. Anvil will
verify that each processor in the system is provided with at least one memory space and
will inform the user if this is not the case. Also, the size and width attributes of each memory
space are checked to ensure they are consistent with the memory map provided by the memory

attribute of each processor. If these or similar checks fail, the user is informed and required to
correct their description.

4.2.3 Communication topology

Once the processors and memory spaces of the target architecture have been specified, the
communications topology can be defined. This information is required so that Anvil’s refac-
toring engine can correctly route inter-thread communications over the appropriate hardware
channels. Instances of category channel are defined and then connected to the processors
of the system using the endpoints attribute, which is assigned an array of the channel’s end-
points. Endpoints were defined in section 3.4.4 as the logical connection points that join pro-
cessors to channels. Endpoints must be parameterised with the following information:

• The address at which the channel’s endpoint is located in the processor’s memory space.
Expressed as a hexadecimal or decimal literal.

• Whether the above address is in I/O space or memory space (because some processors
support a separate peripheral space). Expressed as either the string "mem" or the string
"io".

• The interrupt vector of the endpoint, or "None" if interrupts are not present.

The channel’s type may also require that each endpoint is given extra parameters after the
initial three. For example, a network often requires that each endpoint is assigned a unique ID
(for example, a MAC address in Ethernet).

In the following example, a simple UART channel is created and connected between the two
processors. The example also shows more examples of type attributes that the designer has
used to provide extra information about the channel.

myuart : channel UART;

myuart^baud = 9600;

myuart^uartsettings = "8N1";

myuart^endpoints = [cpu1(0x80000000, "mem", 0), cpu2(0x80001000, "mem", 0)];

4.2.4 Custom hardware items

Custom hardware items (which describe hardware items from the target layer of section 3.4.4)
are instantiated in a similar way to channels. While endpoints connect channels to processors,
ports connect custom hardware items to processors. Ports require the same parameters as
endpoints, with the addition that each port must be specified as either synchronous or asyn-
chronous. The following example shows the instantiation of two custom hardware features,

120

4.2. AnvilADL - Virtual Platform description

one which uses interrupts and one which does not (and so must be polled). The CTV system
model does not require the use of interrupts, but it supports them when available.

cpu1, cpu2 : processor;

cb : hardware Callback;

cb^ports = [cpu1(0x80000000, "mem", 0)];

cb^callback = "functionname";

gpio : hardware GPIO;

gpio^ports = [cpu1(0x8000A000, "mem", None), cpu2(0x8000A000, "mem", None)]];

The first hardware feature is of type Callback, which is a small timer component that is used
by a processor to schedule an interrupt after a variable delay provided by the programmer
at run-time. The assignment to its ports attribute shows that the hardware feature exposes
a single port, located at memory address 0x80000000 and interrupt vector 0. Because an
interrupt vector is provided the port is asynchronous. The Callback type also defines a custom
attribute callback which is set to the name of the function that should be called when the
callback is triggered (”functionname” in this case). This is an example of the way that hardware
elements can be brought up to the abstraction level of source code without requiring onerous
implementation detail. This example also highlights that whilst channels are required to have
at least two endpoints, custom hardware items may expose only one port. More information is
given about custom hardware elements in section 4.10.

The second hardware feature is a general purpose I/O component used for external commu-
nications. It can be accessed from both processors so it is described with two ports. These
ports are synchronous because they do not provide an interrupt vector (the assignment to
gpio^ports sets the third argument to None). Interrupts are not used for this hardware feature.

4.2.5 DMA controllers

Some architectures include DMA controllers to allow the rapid movement of data between two
memory locations. It is possible to fully describe a DMA controller as a custom hardware item,
but this would require the programmer to activate it manually. So that the shared memory
libraries (described in section 4.8) can automatically use any DMA engines present, a special
DMA type is also provided as a subtype of the hardware type.

A DMA engine is described as an instance of the DMA type, and has the same memory attribute
as a processor. The ports attribute is still used to describe which processors can access the
DMA engine.

mem1, mem2 : memory BlockRAM;

dma : DMA Xilinx_DMA;

dma^memory = [mem1(0x00000000), mem2(0x10000000)];

dma^ports = [cpu1(0x80000000, "mem", 0), cpu2(0x80000000, "mem", 0)];

In this description, a DMA engine that can access both mem1 and mem2 is memory-mapped
to two processors, cpu1 and cpu2. The DMA engine’s type is Xilinx DMA, which informs the
refactoring engine which driver should be used.

121

Chapter 4. Anvil: An Implementation of CTV

4.2.6 The logical layer - clusters and hardware mapping

Once the processors, memory spaces, channels and custom hardware elements have been
instantiated and their attributes set, the programmer has defined the target architecture to a
sufficient level of detail. The next stage is to define the logical layer which consists of clus-
ters and cluster targets. Recall from the description of the logical layer (section 3.4.3), the
purpose of the logical elements is to identify the clustering of the source application by assign-
ing program layer elements to clusters, and to identify suitable areas for the implementation
of a cluster in the architecture by assigning target later elements to cluster targets. Clusters
are then mapped to at least one cluster target. (Mapping to more than one target expresses
run-time dynamism.)

In AnvilADL, logical elements are defined with the cluster and target feature categories.
Instances of these categories do not have types.

As identified in section 3.4.3, a cluster target must contain at least one processor and memory
space. Processors and memory spaces are assigned into a cluster target by setting the cluster
target’s contains attribute, as shown by the following example.

cpu1, cpu2, cpu3 : processor;

mem1, mem2, mem3 : memory;

myclustertarget : target;

myclustertarget^contains = [cpu1, cpu2, mem1];

When a processor is added to a cluster target, that processor’s main memory (the memory
assigned to the processor’s memory attribute) is also implicitly added to the cluster target as it
will be used by the processor. This is shown in the following example.

cpu1 : processor;

mem1 : memory;

cpu1^memory = [mem1];

myclustertarget : target;

myclustertarget^contains = [cpu1, mem1];

//The above line is equivalent to the following line. mem1 is added implicitly.

myclustertarget^contains = [cpu1];

Because a processor must have its memory attribute set and these memory spaces are implic-
itly added to the cluster target, this therefore guarantees that the target will contain useable
memory spaces. Extra memory spaces that are not bound to a specific processor may also be
added. The computation requirements of all items assigned to a cluster are notionally shared
between all the processors of the cluster target to which it is assigned. If the cluster is as-
signed to more than one cluster target, it will only use one cluster target at any one point in
time. Similarly, all the data storage requirements of all the items assigned to a cluster are
shared between the memory spaces of the cluster target to which it is assigned.

Threads, shared objects and data items are assigned into clusters also by using the contains

attribute. However, because the programmer is not required to define the source layer items,
the values assigned to contains for a cluster will refer to objects defined in the source code
rather than in the AnvilADL description. Consider the following example application:

122

4.2. AnvilADL - Virtual Platform description

int data1;

float data2[50];

pthread_t thread1;

pthread_mutex_t mutex;

int main(void) {

pthread_create(&thread1, 0, func, 0);

...

}

This code declares a thread called thread1, a mutex shared object mutex and two items of
shared data data1, and data2. These can be assigned to a cluster as follows:

mycluster : cluster;

mycluster^contains = ["thread1", "data1", "mutex", "data2"];

For clusters, the array assigned to mycluster^contains is an array of strings where each
string corresponds to the name of an item in the input code. In the cluster target example the
array assigned to contains was an array of feature identifiers. If the pthread t instance is de-
clared in a scope other than global scope, the programmer is required to use a disambiguating
name.

void func(void) {

pthread_t thread1;

...

In this code the thread thread1 is not in global scope, so must be disambiguated using the
period character “.” and the function name as follows:

mycluster^contains = ["func.thread1"];

This technique can also be used to specify threads inside structure types, and the C array
indexing operator “[]” can be added to uniquely specify a single instance in an array of threads.

As program size increases, the syntax for declaring clusters can become tedious. The syn-
tax used in this thesis is sufficient, but further work might consider either improving this, or
developing GUI and tool support to aid developers.

Once the input program has been developed, cluster assignments can be obtained from a
variety of sources. For simple programs, programmer experience and code inspection will be
sufficient. For larger systems it may be necessary to employ profiling, analysis, or search-
based co-design techniques.

After the clusters and cluster targets have been defined, all that remains is to state which
clusters should execute upon which cluster targets. This is done with the targets attribute
of clusters. targets is assigned an array of cluster targets to specify the targets that it is
permitted to migrate between.

clus1 : cluster;

targ1, targ2: target;

clus1^targets = [targ1, targ2];

123

Chapter 4. Anvil: An Implementation of CTV

thread

processor

thread

cluster

cluster
target

processor

Figure 4.4: Direct mapping is equivalent to creating individual clusters for each mapped item.

4.2.7 Mapping features directly

The previous section detailed how the programmer maps source layer items to the processors
and memory spaces of the target architecture using the mappings of the logical layer. Strictly,
the CTV system model requires all threads, shared objects, and data to be mapped to clusters,
which are then mapped to cluster targets and thereby the processors and memory spaces of
the target architecture. AnvilADL fully supports this model, but for convenience it also allows
the logical layer to be skipped in the areas of the system where dynamism is not required. This
allows a more concise description of the system. Threads and shared objects can be directly
assigned to processors, and shared data items can be directly assigned to memory spaces.
Doing so is a shortcut for creating a single cluster that contains only the item being mapped,
and mapping that cluster to execute on a cluster target that only contains a single processor
and memory space. This is illustrated in figure 4.4.

Threads are mapped to processors directly through the use of the threads attribute of proces-
sor features.

void *threadfunc(void) {

...

}

int main(void) {

pthread_t mythread;

pthread_create(&mythread, 0, threadfunc, 0);

...

}

cpu1 : processor;

cpu1^threads = ["main", "main.mythread"];

In the above example, cpu1 is assigned two threads. "main" is the thread that is running at the
start of the C program. "main.mythread" is a disambiguating name for the pthread instance
which is created by the main thread. Mapping variables to memory spaces is performed in a
similar way, using the variables attribute of memory space features.

124

4.2. AnvilADL - Virtual Platform description

int globalvar;

int main(void) {

int localvar;

...

mem1 : memory;

mem1^variables = ["globalvar", "main.localvar"];

4.2.8 Object managers

The final phase in creating an AnvilADL description is the definition and placement of the
OMs in the system. In a CTV-based system all elements from the source layer must have
exactly one OM, and each manager must be assigned to exactly one processor of the target
architecture. Managers are defined by creating a manager feature and assigning program layer
items to its manages attribute. The OM can then be mapped to a set of target processors by
assigning it to a cluster (to support migration), or by setting its executes on attribute (for direct
mapping).

cpu1, cpu2 : processor;

om : manager;

clus : cluster;

om^manages = ["globalvar", "main.localvar"];

//Add the OM to a cluster

clus^contains = [om];

//OR map it directly

om^executes_on = [cpu1];

If an OM is assigned to a cluster then it is specified as a migratable OM (discussed in sec-
tion 4.13.1) and at run-time it will be mapped to one of the processors of the cluster target
upon which the cluster is currently executing. Anvil automatically selects offline a single pro-
cessor from each cluster target to form the OMs target processors set. It is between these
processors that the OM will migrate. The programmer can assign non-migrating OMs to a
single processor using the executes on attribute.

It is possible to use executes on to ‘hint’ to Anvil which processors should host a migrating
OM. By assigning an OM to a cluster and setting its executes on attribute, the OM is declared
as migratory, but the processors from executes on are used as its target processors. In this
case, executes on should contain at least one processor from each cluster target.

∀o ∈ OMs ⋅ ∃c ∈ clusters ⋅ o ∈ cˆcontains∧
(∀t ∈ clustertargets ⋅ t ∈ cˆtargets Ô⇒ ∃p ∈ processors ⋅ p ∈ oˆexecutes on ∧ p ∈ t)

To simplify the implementation of OMs, in Anvil the OM of a shared variable must be mapped
to a processor that has access to that variable. Therefore, if a variable is mapped to a cluster
its manager should also be mapped to the same cluster to allow the manager to migrate along
with the data.

125

Chapter 4. Anvil: An Implementation of CTV

The problem of optimal OM specification is difficult. The number of OMs in the system, their
locations, and the mappings of elements to OMs can have a large effect on the performance
of the final system. An optimal assignment has to balance the following factors:

• Threads should be located close to the data they use most frequently.

• Threads that communicate frequently should be located close together, or ideally on the
same processor.

• The OM of a system object is a single point of contact for all threads that wish to interact
with that object. As a result the OM should be positioned so that it is close to the threads
that most frequently access it.

• The more items that an OM must manage, the greater the burden on the host processor.
Request latency will also increase accordingly.

• If data is accessed by threads on multiple physical processors, it should be assigned to
shared memory to reduce copying time. This may require the accessing threads to be
allocated to processors with access to shared memory.

• To avoid congestion of communication channels, tightly-coupled threads should be as-
signed so that they do not have to communicate over otherwise heavily-utilised links.

A multi-optimisation problem such this is challenging, and it is worsened by the fact that static
analysis can only provide inaccurate indications of the complete system performance. As a
result, any attempt to solve the optimisation must either use inaccurate performance informa-
tion that may differ greatly from the characteristics of the actual system, or rely on very slow
simulations. Work has been done to assist in this area. Modelling and simulation frameworks
such as Artemis [181], StepNP [179] and MESH [178] have shown how both offline and on-
line modelling can be used to better map applications over complex MPSoC platforms. These
approaches would have to be extended so that they are aware of the OM communications
layer. Existing work [128] has concentrated on the problems of evaluating task assignments in
complex embedded systems. The processes and results presented in these systems could be
usefully applied to CTV. Also, there is a lot of crossover from the techniques used in hardware /
software co-design (as discussed in section 2.4.4). Because of the volume of work in this area,
the problem of optimal OM assignment is considered to be outside the scope of this thesis.

4.3 Refactoring overview

This section documents the Anvil refactoring process. Recall that the purpose of the refactoring
engine is to take a single program description of the application and refactor it into a set of
programs that are specifically targeted at the processors of the implementation platform. The
focus of this stage is to produce a low overhead implementation that is suitable for use in a
resource-constrained embedded system. The process is depicted in figure 4.5 and can broken
down into the following steps:

1. Parse input program: Cast the input program in terms of the CTV input model (sec-
tion 4.4).

126

4.4. Refactoring: Parse input program

Anvil compiler

Source code (C pthreads)
VP

description

Thread, mutex, CV
identification

Shared variable
identification

OM assignment

Data flow
analysis

Communication
stub generation

and injection

Code refactoring

pthread call
refactoring

Build embedded
pthreads library

Hardware
support libs

Retargeted code gcc Object code

Code splitting

Split
into

objects,
assign
OMs

Build
libs,

modify
input
code

Build external
hardware drivers

Build hardware
callbacks

Figure 4.5: The main processes inside the Anvil compiler

2. Code splitting: Split the single input program into a set of programs, one for each target
processor (section 4.5).

3. Build architecture-specific libraries: Build an OM-aware shared memory system, an
embedded pthreads implementation and custom hardware drivers. These libraries are
processor-specific so a set is generated for each target processor (section 4.6).

4. Refactor processor-specific programs: to use the libraries generated in the previous
stage.

5. Compile: Using standard gcc (section 4.11).

These stages are now described in more detail.

4.4 Refactoring: Parse input program

The objective of the first phase is to parse the input program and identify the threads, mutexes,
condition variables and items of shared data that are used. These correspond to the concurrent
objects, shared objects, and shared data of the CTV system model. Recall that the developer
does not define these in their AnvilADL, they are determined from the input source. The parser
used is an LALR parser implemented using PLY [19], an implementation of the lexical analyser
Lex and the parser generator Yacc for the Python programming language. The input C code is
parsed in a single pass, taking special care to ensure that after a typedef expression has been

127

Chapter 4. Anvil: An Implementation of CTV

successfully parsed the new type name is fed back into the lexer so subsequent instances of
the type name generate a TYPE token rather than an IDENTIFIER token. The C preprocessor
cpp must first be applied to the input code as the parser does not implement preprocessing
directives.

Anvil parses the incoming source code, generating the abstract syntax tree and annotating it
with symbol tables at each scope. In the representation chosen by Anvil, symbol tables can
be located at the top of every compound statement. The generated AST of a small example
program is shown in figure 4.6.

From this AST, the refactoring engine recursively searches the symbol tables for variables of
type pthread t, pthread mutex t and pthread cond t. This identifies the threads, mutexes
and condition variables used in the program. If an array of these types is found, the array size
must be compile-time static. Lists, and other data structures, are currently not supported. This
method finds all possible instances of these types, even if a given execution of the program
will not instantiate them all due to run-time branching.

Shared data variables are normal variables, but that are accessed by multiple threads. This is
more challenging to identify and requires the refactoring engine to perform three tasks:

• The thread bodies of the system are identified. A thread body is the function that is
passed to a pthread create call to start a thread. Instances of pthread t must be
matched with their thread bodies to allow the refactoring engine to determine the entry
point for each thread in the system.

• Callgraphs are built for each thread. From this, the engine determines the code that
could possibly be accessed by each thread. As discussed in section 4.4.2, this phase
requires that if function pointers are used they are declared constant.

• The callgraphs are analysed to determine which non-local data items are potentially
accessed by more than one thread.

These three stages are described in the following sections.

4.4.1 Identify thread bodies

When using pthreads, a thread is not started until a pthread create call is issued. This
call takes four arguments, but of interest here are the first and third arguments which are
respectively the pthread t instance of the thread being created and a pointer to the function
that should be used as the thread’s body. The refactoring engine needs to statically determine
these pairings so that it can perform static analysis on the code of each thread. This example
shows the simplest case of this problem:

128

4.4. Refactoring: Parse input program

int main(int argc, char *argv[])

{

int x;

return 0;

}

translation_unit[1]

. Symbol Table

. . main (function): TS=[’int’] TQ=[] SCS=[] Line=tree.c [2-6]

. function_definition[3]

. . Symbol Table

. . . argc (object): TS=[’int’] TQ=[] SCS=[] Line=tree.c [2-2]

. . . argv (object): TS=[’char’] TQ=[] SCS=[] Line=tree.c [2-2]

. . declaration_specifiers[1]

. . . type_specifier = "int"

. . declarator[1]

. . . direct_declarator[2]

. . . . direct_declarator = "main"

. . . . parameter_type_list[1]

. parameter_list[2]

. parameter_declaration[2]

. declaration_specifiers[1]

. type_specifier = "int"

. declarator[1]

. direct_declarator = "argc"

. parameter_declaration[2]

. declaration_specifiers[1]

. type_specifier = "char"

. declarator[2]

. pointer = "*"

. direct_declarator[2]

. direct_declarator = "argv"

. constant_expression_opt

. . compound_statement[2]

. . . Symbol Table

. . . . x (object): TS=[’int’] TQ=[] SCS=[] Line=tree.c [4-4]

. . . declaration_list[1]

. . . . declaration[2]

. declaration_specifiers[1]

. type_specifier = "int"

. init_declarator[1]

. declarator[1]

. direct_declarator = "x"

. . . statement_list[1]

. . . . return_statement[1]

. expression[1]

. constant = "0"

Figure 4.6: AST produced by Anvil from a simple code fragment.

129

Chapter 4. Anvil: An Implementation of CTV

void *threadfunc(void *a) {

...

}

pthread_t thread1;

int main(void) {

pthread_create(&thread1, 0, threadfunc, 0);

}

In this example thread1’s body is the function threadfunc, and this can easily be determined
because the arguments of the pthread create call are direct references to the thread instance
and the function body. This task becomes more difficult when more complex programs are
encountered.

The general problem of determining the values of the arguments passed to pthread create

is one of data-flow analysis, particularly that of determining reaching definitions [4]. Every
assignment is a definition. A definition d reaches a statement s in the program if there is a path
from d to s in which d is not overwritten. Paths are determined by looking at every basic block
of the program and noting the definitions at the start of the block and at the end. Essentially
the reaching definitions are a list of all the assignments that can have determined the value
of a given variable. To determine the pairings of thread instances and their body functions,
it is necessary to determine the reaching definitions of the first and third arguments of every
pthread create call. Then, all possible pairings generated by that pthread create call are
the cross product of those two sets of reaching definitions. Frequently this will result in the
situation where a given thread instance might be assigned any of a set of thread bodies.

A system which implemented the algorithm above could accept largely unrestricted input code,
but can lead the programmer into inadvertently developing a very inefficient system. If the
reachability analysis cannot uniquely determine a thread’s body function, it must assume that
all possible functions might be used and compile them all for that thread. In turn, this pes-
simism will propagate throughout the later analysis stages. Consequentially, this version of
Anvil imposes restrictions on calls to pthread create that force the programmer to make such
situations explicit.

In Anvil, each individual pthread create call must uniquely identify a thread instance and
body function, and those must be declared either at global scope or as a static variable. For
each pthread create call, the first and third parameters are resolved by recursively looking
up through the stack of symbol tables in the AST. If they do not resolve to an instance of
the type pthread t and a function respectively in the global symbol table then an error is
raised. This does not severely limit the programmer’s expressibility, however, because multiple
pthread create calls are still allowed for each pthread t instance. Should the programmer
wish to define a program in which the body of a thread is determined at run-time, they can do
so as follows:

130

4.4. Refactoring: Parse input program

//body1 and body2 not shown

int main(void) {

static pthread_t thethread;

if(some_condition)

pthread_create(&thethread, 0, body1, 0);

else

pthread_create(&thethread, 0, body2, 0);

}

In this case, the refactoring engine allows thethread to have two possible implementations,
but has forced the programmer to do state this explicitly. Another potential problem arises from
the use of arrays of pthread t instances. Consider the following code:

int main(void) {

int y;

static pthread_t thethreads[20];

y = some_function();

pthread_create(&thethreads[y], 0, threadbody, 0);

}

Once the refactoring engine determines after constant propagation that the index of thethreads
is not compile-time constant it adds threadbody as a potential thread body for all indices of
thethreads. Equally, if the third argument to pthread create is an array with a non-constant
index then all functions of the array are set as potential thread bodies. These constructs are
allowed because it is a common paradigm to set up an array of worker threads all with the
same body. Further code analysis could place bounds on the possible values of the loop vari-
able and thereby improve the accuracy of this algorithm, but as it is not the focus of this work
these are not explored further and are left as future work.

4.4.2 Generate call graphs

Once the thread bodies of the system have been determined the analysis generates the po-
tential call graphs of each thread. This is performed statically using the following algorithm,
which is an instance of a standard depth-first search with edge colouring to prevent cycles:

For each thread instance:

Push all thread bodies (identified in the previous step) onto a stack

While stack is not empty:

Pop the top function off the stack

Add the popped function to callgraph for this thread instance

Examine the function, identifying all the call sites

For each call site:

If the function has not already been pushed onto the stack for

this thread instance:

Push it onto the stack

131

Chapter 4. Anvil: An Implementation of CTV

The search keeps a list of previously-visited nodes to ensure that call cycles are not followed
infinitely. A list is built for each thread instance showing the subset of the input code that it
covers. This algorithm does not operate correctly when non-constant function pointers are
passed between threads and functions. For this reason, Anvil does not allow variable func-
tions pointers to be used in the input code. The pointer passed to pthread create should be
constant.

After application of the search, the resulting graph can be output using the DOT graph visuali-
sation format for manual inspection, an example of which is shown in figure 4.7.

4.4.3 Determine shared data items

Once the callgraphs of each thread have been built, the analysis can determine which variables
are shared between multiple threads and therefore need to be modelled by the CTV system
model. The following algorithm is applied:

For each function in the input application:

For each statement in the function:

For each identifier:

Follow the identifier back to the symbol table entry it refers to.

(This allows the analysis to correctly respect scoping rules)

Annotate the symbol table entry with the name of the current

function.

Once each variable has been annotated with the functions that access it, this information can
be trivially combined with the callgraphs generated by the previous step to determine which
variables are accessed by multiple thread instances.

Anvil relies on accesses to shared data being statically analysable. However, arbitrary pointer-
based access to data is the general case unanalysable. This is a common problem encoun-
tered in real-time and safety-critical systems, as verification relies on the behaviour of the code
being analysable. Real-time subset languages (or coding styles, such as MISRA C [220]) al-
ready carry such a restriction. For example, rule 104 of MISRA C states that ”Non-constant
pointers to functions shall not be used” and places restrictions on pointer casting and other
non-analysable operations. Anvil is not quite as restrictive as MISRA C as it is intended for use
in the entire embedded domain rather than just safety-critical systems, but some of the pointer
restrictions are similar.

Note that this problem is largely unique to C because of the low-level access to memory
addresses that it permits. Languages like Java and Ada already prevent pointer arithmetic
because of this problem, instead using immutable object references and access types respec-
tively.

Using pointers to access shared data is very common in C so Anvil does not simply disallow
pointer use. Instead, Anvil allows pointer-based access to shared data providing that the
pointer is initialised to point to the data item in question. If the pointer is initialised to a variable,

132

4.4. Refactoring: Parse input program

�����������

	��
�����
�����

����������
��������

�����
����������� ������������

������������

����������
�������

����������������
������

����������������������

�����
�������������

�����
����
�����

�����
�������������

��������������

������������������������

�����
����
�������

�����
�����

������
�����
��������

���
����
���

�����
������

��������������

��		�����

�������	�����		�

��������������

�����
����
����
����

���������
���

�����
�����

Figure 4.7: An example callgraph generated during the code splitting phase.

133

Chapter 4. Anvil: An Implementation of CTV

it can be followed through the source code using data flow analysis1.

The following algorithm is used:

• The analysis routine searches for points in the code where pointer types are created that
are initialised to point to variables identified as shared.

• For each shared data pointer p initialised to point to shared variable s:

– Annotate p in the AST as a reference to potentially-remote data s.

– For the scope of p, determine any other pointers to which p is assigned. This in-
cludes function calls into which p is passed as an argument.

– For each pointer or argument, mark the assignment target as a reference to s.
(Function arguments may reference more than one shared item after this algorithm
has completed if the function is called from multiple places.)

• Keep recursively applying this algorithm until all pointer references have propagated
throughout the application.

Clearly this algorithm will mark large amounts of the program if p is global and commonly-used,
and in this case the input program will have to be restructured or the inefficiency accepted.
More advanced analysis techniques such as context-sensitive pointer analysis can be used
to reduce this problem. Pointer arithmetic is not allowed to change the pointer’s target to a
different object. For example, in the following code the pointer is assumed to still refer to a
section of the shared data after the assignment.

int shareddata[50];

int *mypointer = shareddata;

//mypointer is annotated to be a reference to shareddata

mypointer = mypointer + 7;

//mypointer is still a reference to shareddata

Equally, the following is not allowed:

int shareddata1[50];

int shareddata2[50];

int *mypointer1 = shareddata1;

int *mypointer2 = shareddata2;

//This is not allowed as it changes mypointer2’s target object

mypointer2 = mypointer1;

The complete set of restrictions imposed on input code by Anvil are listed in section 4.15.

1A similar restriction is used to allow pointer-based access to threads, mutexes and condition variables, as de-
scribed in section 4.9.

134

4.4. Refactoring: Parse input program

4.4.4 AnvilADL consistency checks

After the above parsing stages have been completed, the AnvilADL must also be parsed. As
AnvilADL is a much simpler language than C, the parser only has to extract from the source
code the set of declared features and the attribute assignments associated with each one.
Once complete, the following consistency checks are performed against the AnvilADL and the
input source:

• Assignments must be correctly typed. If an assignment refers to a feature then that
feature must already have been defined and be of the appropriate type. For example, in
the assignment cpu1^memory = mem1, the object mem1 must be have been defined and
of type memory.

• Any source language items that are referred to in the ADL must exist and be of the correct
type. For example in the assignment cpu1^threads = ["thread1"], there must be at
global scope an instance of the pthread t type called thread1.

• Each thread, mutex, condition variable, and shared data item from the source language
must be assigned to exactly one OM. An OM may manage multiple items. (From the OM
model of section 3.7)

• Each OM must be assigned to at least one processor. (From the OM model of sec-
tion 3.7)

• Each processor must have its memory attribute set to an appropriate memory space.

• Each thread must be assigned to either exactly one processor using the processor’s
threads attribute, or to a cluster using the cluster’s contains attribute. (From the defi-
nition of clusters in section 3.4.3.)

• Similarly, each shared data item must be assigned to either exactly one memory space
using the memory’s variables attribute, or to a cluster using the cluster’s contains

attribute. (From the definition of clusters in section 3.4.3.)

• A shared variable’s OM must be assigned to a processor that has access to the memory
space that contains the variable.

• Each cluster must be assigned (by setting its targets attribute) to at least one cluster
target. (From the logical layer definition of a cluster, section 3.4.3.)

• Each cluster target must contain at least one processor and at least one memory space.
(From the logical layer definition of a cluster, section 3.4.3.)

• Each channel must have at least two defined endpoints. (From the target layer model of
section 3.4.4.)

• Each hardware item must have at least one defined port. (From the target layer model of
section 3.4.4.)

• For each feature, any required type attributes must be set.

135

Chapter 4. Anvil: An Implementation of CTV

• If a shared variable can be migrated (it is assigned to a cluster with multiple cluster
targets) then it must also have an associated mutex (see section 4.8.3) or data may be
lost during a migration. (This restriction is due to the implementation of migration and is
discussed in section 4.13.)

• By assigning an OM to a cluster and setting its executes on attribute, the OM is declared
as migratory, but the processors from executes on are used as its target processors. In
this case, executes on should contain at least one processor from each cluster target.

If these checks all pass then parsing is complete and the refactoring process can begin.

4.5 Refactoring: Code splitting

The code splitting stage is the first phase of the refactoring process that actually manipulates
the input code. At this stage, the application is expressed as single input program. It is
necessary to split this program into a set of output programs, one for each target processor
of the system. The AnvilADL description states which processors the threads of the system
should be mapped to, and to which memory spaces items of shared data should be mapped.

To create the processor-specific programs, Anvil performs the following actions:

• The processor-specific programs needs to contain the source code for all the threads
that may be scheduled on the processor. To determine this, for each processor p defined
in the AnvilADL read the p^threads attribute. Then add to this list the threads that may
migrate to p. This is the set of threads in cluster c, where c is assigned to cluster target t
and p is in t. The union of these two thread sets is called the processor’s thread set.

• Create an empty source file that will hold the code for this processor.

• For each thread in the processor’s thread set, traverse its callgraph and add all encoun-
tered functions into the source file. This step must also include prototypes of functions
that are prototyped and copy any required typedefs. The result of this stage is effectively
the same as dead-code removal [4] and could be similarly achieved by copying across
a custom-generated main function that calls the thread bodies of the processor’s thread
set. Any other unused functions would be removed.

• If the main thread is in the processor’s thread set then copy across the existing main

function.

• If the main thread is not in the processor’s thread set then create a new, custom main

function that initially sleeps, waiting for a message to wake it up. This wake up mes-
sage is described in appendix A and is send by another thread in the system calling
pthread create with the appropriate arguments. It then calls the specified body func-
tion. For threads that have a set of possible body functions, the function to call is specified
by the pthread create message.

If more than one thread is scheduled for execution on the processor, a microkernel is linked
in to provide minimal scheduling and localised OS services. Currently, Xilinx’s xilkernel [256]

136

4.6. Refactoring: Build architecture-specific libraries

is used as it is very lightweight and can be configured to provide the absolute minimum of
required features.

4.6 Refactoring: Build architecture-specific libraries

The output of the code splitting stage is a set of programs, trimmed so that they contain only
the code that is required for the threads of each target processor. These programs will not
execute correctly because they may reference non-local shared memory or use the POSIX
pthreads library which does not support distribution over complex architectures. To solve these
problems, four architecture support libraries must be built that handle these problems, and then
the code of each program refactored to make appropriate use of the newly-created libraries.
The libraries are:

• An OM-aware communication library (section 4.7) – Allows the transfer of messages
between the OMs and processors of the system. All other libraries use this layer as a
base to implement their higher-level algorithms.

• An OM-aware shared memory system (section 4.8) – Handles remote data access,
cache coherency and data marshalling, using the OMs to provide a distributed solu-
tion that avoids a single point of contention (as is experienced when using a standard
OS).

• An embedded pthreads library (section 4.9) – Issues pthreads calls across a non-uniform
architecture for manipulating threads, mutexes and condition variables using the OMs of
the system.

• Driver code for custom hardware elements (section 4.10) – Allows the manipulation of
custom hardware elements from within the C programming model without the need for
low-level programming.

These libraries are processor-specific. For every processor in the system the libraries are gen-
erated and the processor’s code is refactored to make use of its specially-generated libraries.
This allows the code throughout the system to be optimised to use the memory, communica-
tions and hardware that is available to each specific processor. The following sections detail
the specification and generation of these libraries.

4.7 Communications layer

Section 3.6.2 discussed the need for the OMs to implement a universal communications layer
that allows all threads to communicate transparently. This is done by implementing a compile-
time multistage permutation routing system [216] (see section 3.6.2). Each processor of the
system (that is involved in a communication) has a small communications kernel added to its
interrupt handler to allow the processor to fetch and forward messages. Some processors will
be used as routers, forwarding messages between otherwise separate areas of the architec-
ture.

137

Chapter 4. Anvil: An Implementation of CTV

In the Anvil system, routes are calculated offline. Because of this, it is necessary to create
routes for all the communications that are required by the system. At this level, a communi-
cation is considered to occur between processors rather than between higher-level software
entities such as threads or shared objects. When a request is encountered to send a message
to a given thread, the thread is first resolved into the ID of its host processor. Doing this has a
number of advantages:

• By routing communications between processors, the problem of routing communications
remains purely an architectural concern and the software does not have to be consid-
ered.

• When multiple software elements are situated on the same host processor, it is wasteful
to store identical routing information for each element.

• If software elements can migrate between processors, this occurs at an abstraction level
above that of processor-to-processor communications. The problem of handling this
migration is neatly confined to the problem of mapping a software element to its host
processor. Once this is done, the rest of the layer can implement the communication.
This separation allows the communications layer to be built in a modular fashion in which
one module implements the physical communications and the other keeps track of where
each software element is located throughout the system.

These two modules will be discussed in the following sections.

4.7.1 Implementing inter-processor communications

The set of all possible communicating processor pairs in a system is the cross product c × o,
where c is the set of all processors in the system and o is the set of all processors that have
at least one OM mapped to them. C’s programming model, and CTVs use of thread helpers,
means that communications are always between a processor and an OM (which is hosted by
a processor). This observation reduces the number of routes that it is necessary to calculate.

The current Anvil implementation enumerates routes for all the above pairs, but as Anvil is
used to target larger architectures this will become infeasible. However, two methods exist
to further limit the routes that need to be calculated. First, it is often possible to determine
statically exactly which processors a given processor will communicate with and only calculate
routes for those. A communication is initiated between two processors a and b exactly when:

• A thread mapped to a accesses a variable that is managed by an OM mapped to b.

• A thread mapped to a manipulates a mutex, condition variable or thread helper object
that is managed by an OM mapped to b.

Much of this information is extracted during the initial parsing stage, and by techniques detailed
in the discussion of the shared memory system (section 4.8) that deal with pointers. This
information can be used to trim the calculation of routes that are never used.

138

4.7. Communications layer

Secondly, as architectures grow their communications requirements are increasingly handled
by on-chip networks or multi-drop buses. For such channels, the individual nodes on the
channel can be viewed as equivalent. Consider an ethernet network of four processors. There
are 16 possible routes in this system (4 nodes × 4 nodes) but because they are all on a shared
communications medium only one route needs be to calculated. The destination address
for each packet will differ, but the route is exactly the same (send the packet to the network
interface, it will appear at the correct node). Communication equivalence drastically reduces
the required routing calculations.

Calculating an appropriate route is performed using an implementation of Dijkstra’s algorithm
[62]. Weights are assigned to the channels of the system based on their average throughput,
and the algorithm is implemented to find a route which maximises the cost (meaning that
it uses channels with the largest throughput). The programmer can manually change these
routes after the code generation phase if necessary.

Once a route is calculated, it must be stored in the system in a way that makes it available at
run-time. Broadly, there are three ways of doing this:

• Centralise routing information in a global ‘route manager’. Flexible and saves memory
throughout the system, but causes a large bottleneck so is not considered.

• Add routing information to the sender. Senders have to store entire routes for every
processor that they may communicate with, and they have to embed that information in
the message, but intermediary nodes do not need to store this information.

• Distribute routing information throughout the nodes of the system. The code for each
processor is augmented with routing tables that are consulted whenever a message has
to be transmitted forwarded. This means that messages can be small as they do not
have to carry routing information, but each processor must store the first stage of a route
to every other processor.

Anvil currently implements the third option listed above. Each processor is required to store
a routing table that contains entries for all other processors in the system. The entry for
processor p describes the channel that is used to send a message to p. This is similar to the
routing tables that are stored by standard Ethernet routers. The same techniques described
above to reduce the number of routes that must be calculated can be used to reduce the size
of the routing tables. The table for processor a only needs to contain an entry for processor b
if either:

• a communicates directly with b. The actions that cause a communication are enumerated
above.

• There exists a route in the system in which b directly follows a. In this case, a will be
required to forward a message to b, which is equivalent to a direct communication.

Anvil does not implement a fault-tolerant communications layer so the records in the routing
tables are currently constant. A system that can cope with individual processor failures could
be implemented on top of this layer but this is not considered in this thesis.

139

Chapter 4. Anvil: An Implementation of CTV

These tables are small. Each table entry is only a single byte, resulting in a tiny overhead
for current embedded systems of only tens of cores. The footprint of this routing information
is much smaller than the memory footprint of an equivalent middleware solution such as a
CORBA Orb. Still, as architectures grow larger, CTV’s system model allows the communi-
cations layer to maintain scalability through the information provided by the clustering model.
Each cluster can be assigned a ‘gateway’ processor that is used to perform inter-cluster com-
munications. Then, processors need only store routing information for the other processors
in their cluster. Inter-cluster communications are passed to the gateway processor which can
communicate with other gateways. This is identical to the hierarchical routing model used
by the internet. The only requirement is that all processors have a globally-unique identifier
(equivalent to the internet’s IP addresses). This routing model is not implemented in the cur-
rent version of Anvil, but can be once the sizes of embedded systems have grown enough to
warrant its implementation.

With the routing tables created, Anvil builds the actual code that implements the communica-
tions layer. It exposes the following functions:

• anvil send to thread(int targetthreadid, int *packet, int len):

– targetthreadid: the global ID of the target thread

– packet: a pointer to a character buffer containing the packet data

– len: the length in bytes of the packet data

Used to send a message to a thread of the system. The thread must be first re-
solved to a processor ID, and the communication is then implemented using a call to
anvil send to cpu. The resolution step is discussed in the following section.

• anvil send to cpu(int cpuid, int *packet, int len):

– cpuid: the global ID of the target processor

– packet: a pointer to a character buffer containing the packet data

– len: the length in bytes of the packet data

Sends a message to a given processor of the system. Processors are given globally-
unique identifiers so that they can be identified at run-time. The implementation of this
function is simply a large case statement that calls the appropriate channel driver to send
the message.

An example of the generation of anvil send to cpu is below. The target architecture is de-
scribed using this AnvilADL description:

140

4.7. Communications layer

cpu0, cpu1, cpu2, cpu3, cpu4 : processor;

c0to1 : channel mbox;

c0to1^ports = [cpu0(0x80000000), cpu1(0x80000000)];

c0to2 : channel mbox;

c0to2^ports = [cpu0(0x80001000), cpu2(0x80001000)];

c0to3 : channel can;

c0to3^ports = [cpu0(0x80002000, 1), cpu3(0x80002000, 2)]; //Second argument is priority

c0to4 : channel uart(115200, 8, False, 1); //115200 baud, 8N1.

c0to4^ports = [cpu0(0x80004000), cpu1(0x80004000)];

Below is the version of anvil send to cpu compiled for processor cpu0. (We are assuming
that cpu0 is assigned ID 0, cpu1 is assigned ID 1 etc.) The function does nothing if called
to send a message to processor 0. This is because to prevent unnecessary buffer copying
this situation is handled at higher levels of the library stack. For the other processor IDs,
an appropriate driver function is called to send the message over the channel selected by the
routing algorithm (which is trivial on this architecture). Channel drivers are stored in an external
archive in a uniform format that makes them easy to be used from generated code. Note that
the parameters for the driver functions are given in the port definitions of the AnvilADL.

void _anvil_send_to_cpu(int targetcpuid, int *packet, int len) {

int x;

for (x = 0; x < len; x++) {

switch(targetcpuid) {

case 0:

break;

case 1:

mbox_write(0x80000000, packet[x]);

break;

case 2:

mbox_write(0x80001000, packet[x]);

break;

case 3:

can_write(0x80002000, 1, 2, packet[x]);

break;

case 4:

uart_write(0x80004000, packet[x]);

break;

default:

break;

}

}

}

The other processors have to use multistage routing to communicate with any processor other
than cpu0. cpu0 is used to forward messages between the other processors. As a result,
cpu1’s version of anvil send to cpu is as follows:

141

Chapter 4. Anvil: An Implementation of CTV

void _anvil_send_to_cpu(int targetcpuid, int *packet, int len) {

int x;

for (x = 0; x < len; x++) {

switch(targetcpuid) {

case 0:

case 2:

case 3:

case 4:

mbox_write(0x80000000, packet[x]);

break;

default:

break;

}

}

}

4.7.2 Resolving software elements to host processors

It is necessary for the communications layer to be able to resolve a given software element
(thread, mutex, condition variable etc.) to the processor upon which they are implemented.
Commonly this information is known at compile-time because embedded systems are largely
static systems. In this case, this resolution is trivially implemented during code refactoring.
However, when migration of software elements is permitted the resolution becomes more com-
plex and must include run-time support.

As observed in the previous section, the CTV system model ensures that all communications
are between a thread and an OM. Therefore there are two situations that must be accounted
for:

1. When a thread communicates with a (non-static) OM it must be able to resolve the current
location of the OM.

2. An OM must be able to communicate with the items that it manages.

Note that this means that threads do not need to be able to resolve the location of other
threads. The responsibility for doing this falls to their OMs.

Considering the first problem, algorithms for solving this have already been discussed in sec-
tion 3.7.1. Anvil currently implements the location propagation algorithm, in which the position
of each OM is stored in all processor nodes of the system. When an OM migrates, it must up-
date all processors with its new position. This algorithm means that migrations are expensive,
but that resolutions are very fast.

Only the position of migratable objects needs to be stored, and only on processors that access
that object. Still, as systems grow in size a more scalable approach must be used. As with the
routing tables of the previous section, the clustering information of the CTV system model can
be used to good effect. A single processor in each cluster can be assigned the role of tracking
migrations and resolving program elements to their host processors. The rest of the cluster

142

4.8. Shared memory system

Resolution requests

passed to IM

ClusterProcessor

When threads migrate

they only update their IM

Processor used as

intermediary manager (IM)

Resolution

requests passed

between IMs

Figure 4.8: Using clustering to reduce resolution requirements when threads can migrate.

can statically-route to this resolution service, and inter-cluster resolutions can therefore be
performed hierarchically according to the clustering structure of the application. This reduces
the memory overhead considerably (only one core is affected) and resolution time is kept
small because most resolution requests are intra-cluster communications, which are fast. This
is essentially the intermediary manager algorithm from section 3.7.1, but applied hierarchically
and with clustering knowledge to ensure efficient mapping. This is illustrated in figure 4.8.

The second problem is simpler and is solved by ensuring that an OM tracks the current location
of the items that it manages. As described in section 4.13 (which discusses the way that the
actual migration of threads and data items is implemented in Anvil) it is an object’s manager
that performs its migration. Therefore an OM will always be able to keep track of the current
positions of its managed items, and therefore it will always be able to communicate with them.

4.8 Shared memory system

The primary goal of the shared memory system is to allow the VP to present a single logical
address space to the source language because this is the memory model assumed by C. As
detailed in section 3.6.2, this requires the implementation of an object-based distributed shared
memory system [211, 174] that can allow the threads of the system to share data efficiently
and coherently.

This library is required to ensure correct behaviour in the following two situations. In all cases
it is assumed that the program already exhibits correct concurrent behaviour without race
conditions.

1. A thread is accessing data that is not locally-addressable (i.e. it is not directly connected
to the memory bus of the processor) and may be shared between multiple threads. In
this case, the OMs of the system must cooperate to pass data between the processors
of the system to give the illusion that all data is available to each thread.

2. A thread is accessing data which is locally-addressable, but is shared between multi-
ple processors. In this case, data does not have to be moved by the OMs, but if the
processors have caches then coherency must be considered.

143

Chapter 4. Anvil: An Implementation of CTV

In the case where the thread is accessing data that is locally-addressable and not shared
between multiple threads the existing language implementation will operate as expected.

The shared memory system implemented by Anvil uses migration semantics. Migration se-
mantics state that when a thread is accessing an item of shared data the canonical version of
the data is migrated to it for the duration of the access. In practice, this means that the data (or
part of it) is logically transferred to the memory space of the accessor thread, which is free to
operate on the data in any way before releasing it. Upon release, the data is logically migrated
back to its original location. Logical migration means that the data does not strictly have to be
moved. Only control of the data is moved.

These semantics were chosen because they are compatible with the mutex-based coordina-
tion of pthreads-based programs. Migration semantics are not specified by the CTV model
and other schemes may equally have be implemented. For example, for languages with co-
ordination semantics that encourage more finely-grained parallelism (such as Occam [120])
migration may be too coarsely-grained.

4.8.1 Library interface

The shared memory library presents two functions for reading and writing shared memory
items:

• int anvil read sv(int svid, int offset, int size, int managercpu)

– svid: the global ID of the shared variable to read

– offset: offset in bytes to start reading from

– size: the number of bytes to read

– managercpu: the global ID of the processor which hosts the OM of this shared
variable

– Returns the number of bytes read.

• int anvil write sv(int svid, int offset, int size, int managercpu)

– svid: the global ID of the shared variable to write

– offset: offset in bytes to start writing to

– size: the number of bytes to write

– managercpu: the global ID of the processor which hosts the OM of this shared
variable

– Returns the number of bytes written.

Recall that each shared variable is managed by an OM, which is implemented as an interrupt
handler on a processor which has direct access to the shared variable. Therefore, these
functions are essentially implemented as remote DMA requests. When the target processor
(that hosts the variable’s OM) receives the request they will either write into or read from their
local memory as instructed.

144

4.8. Shared memory system

Communications are passed over the OM communications layer (using anvil send to cpu)
so details such as routing and packaging of messages are all handled. As a result, the
implementation of these functions is very simple. anvil read sv sends a message to the
variable’s handler, and waits for a set of reply messages containing the data it requested.
anvil write sv sends the written data back to the OM, which stores it.

The first argument to each function is the svid, or shared variable ID. This is a globally-unique
identifier which is assigned to every shared variable in the system and is passed between OMs
to identify the variable being accessed. At compile-time, each OM is statically-built with a list
of the variables they manage with automatically-generated code. For example:

#define _ANVIL_TOTAL_MANAGED_VARS 3

#define _ANVIL_TOTAL_ACCESSED_VARS 2

#define _ANVIL_MANAGED_VARS_INITIALISER {0, 0}, {1, 0}, {3, 0}

#define _ANVIL_ACCESSED_VARS_INITIALISER {2, 0}

typedef struct {

int id;

unsigned char * data;

} _anvil_var_t;

_anvil_var_t _anvil_managedvars[_ANVIL_TOTAL_MANAGED_VARS] =

{_ANVIL_MANAGED_VARS_INITIALISER};

_anvil_var_t _anvil_accessedvars[_ANVIL_TOTAL_ACCESSED_VARS] =

{_ANVIL_ACCESSED_VARS_INITIALISER};

The library-generation routines build the #define lines at the top of this example to param-
eterise the general code below. In this example, the OM mapped to the processor that this
library is being built for manages shared variables 0, 1 and 3. The library also needs a data
structure that describes the shared variables that code on this processors accesses. In this
case, only one shared variable (ID 2) is accessed.

The anvil var t struct is used for both managed and accessed variables and stores the ID
of the variable and a pointer to where the data is stored. For managed variables this is a
pointer to the actual storage location of the variable. In an accessed variable, this is a pointer
to an equally-sized area of memory that is available for use, into which the shared data may
be migrated.

In this implementation, all remotely accessed shared data has an area of local reserved mem-
ory into which it may be copied when the thread is working on it. This system is used because
it has more predictable real-time performance and the system can guarantee that there will be
available memory to perform the copy. For systems which infrequently access a large num-
ber of shared data items this can waste a lot of memory, so an alternative system can be
implemented which instead dynamically allocates local space upon request using malloc and
free.

In the example above, the pointers are all initialised to 0. This is because they are set by code
injected through refactoring as shown in examples in the following section.

Note that both anvil read sv and anvil write sv alow the operation to begin from a byte
offset within the shared variable. This is used to implement pointer-based access to shared
variables, as discussed later in section 4.8.4.

145

Chapter 4. Anvil: An Implementation of CTV

4.8.2 Refactoring for remote shared data

The refactoring engine must analyse the input code, determine which statements potentially
access shared data, and inject code to invoke the shared memory system correctly. Sec-
tion 4.4.3 showed how the refactoring engine determines which variables in the program are
shared data items. The refactoring engine scans the AST of the input code to locate expres-
sions of the program in which remote shared variables are used as L- or R-values. R-values
correspond to reads and L-values correspond to writes. Calls that remotely fetch and update
the shared data from its source location are then injected before and after these accesses.
The engine assumes that the program is well-behaved and only accesses shared data under
mutual exclusion. This is a common assumption in such systems as it is impossible to en-
sure correct operation if the input program is scheduling-dependent or otherwise contains race
conditions. Consider the following code:

void main(void) {

printf("%d\n", x);

x = x + 1;

}

Here, x is a shared variable which is read and written by the code in main. Anvil transforms
the code into the following:

1 extern _anvil_a_var_t _anvil_accessedvars[];

2 extern _anvil_var_t _anvil_managedvars[];

3

4 int x; //Local space for remote data

5

6 void main(void) {

7 _anvil_accessedvars[0].data = (unsigned char *) x;

8

9 _anvil_read_sv(0, 0, 0, 4); //id, offset, len, bytes

10 printf("%d\n", x);

11 _anvil_read_sv(0, 0, 0, 4); //id, offset, len, bytes

12 x = x + 1;

13 _anvil_write_sv(0, 0, 0, 4);

14 }

Lines 1 and 2 declare external references to the auto-generated data structures of the shared
memory system. Lines 4 and 7 show how these structures are populated with suitable pointers.
After declaring local space (line 4), the address of the local space is stored into the structure.
This system is used because it does not require the refactoring engine to implement a linker
and perform manual address space allocation. The refactoring engine defers to the standard
compiler chain.

Lines 9, 11 and 13 are the injected read and write calls. In this simple example, no mutexes
are present so the system simply places a read call before each read statement and a write
call after the write statement. This results in correct functional behaviour but clearly can lead
to poor performance if data is frequently accessed.

146

4.8. Shared memory system

4.8.3 Associating mutexes with shared data

The reason that Anvil has not been able to ameliorate the two read calls in the previous exam-
ple is that the input program is poorly behaved and it is not accessing its shared data (variable
x) under mutual exclusion. In Anvil, it is possible to associate each item of shared data with a
given mutex. This allows the system to only read once when the mutex is locked, to internally
cache all writes to that data, and to only update the final value when the associated mutex is
released. This is the technique used to good effect by the Rthreads system [65] and is not
novel to Anvil. In the example below, the read and write calls are only inserted once.
extern _anvil_a_var_t _anvil_accessedvars[];

extern _anvil_var_t _anvil_managedvars[];

int shdata; //Local space for remote data

void main(void) {

_anvil_accessedvars[0].data = (unsigned char *) shdata;

pthread_mutex_lock(&mux); //This lock was in the original code

_anvil_read_sv(0, 0, 0, 4); //id, offset, len, bytes

printf("%d\n", shdata);

shdata = shdata + 1;

_anvil_write_sv(0, 0, 0, 4);

pthread_mutex_unlock(&mux);

}

Data items can be associated with mutexes by applying a mutex attribute to the shared data
item in the Anvil ADL. For example, the code above has associated mutex mux with data item
shdata. This can be achieved adding the following line to the VP description:

shdata^mutex = "mux";

If this is done, the shared memory system can rely on the guarantee of mutual exclusion to
reduce the number of reads and writes that it performs. When a mutex is locked, read and
write caches are maintained for each associated variable. When a read takes place it is only
fetched if it is not already in the read cache. Similarly, when a variable is written it is only stored
in the write cache. When the mutex is unlocked the write cache is flushed.

Anvil requires the programmer to tune appropriate read and write cache sizes. When the write
cache fills up it is flushed. When the read cache fills up, items are discarded and so variables
may be fetched multiple times. Although not implemented in Anvil due to time constraints, LRU
and Pseudo-LRU are likely to be appropriate replacement policies. A study to determine the
best policy is outside the scope of this thesis but is interesting further work.

The sizes of the caches for each item can be described using AnvilADL as follows:

shdata^readcache = 10;

shdata^writecache = 10;

An alternate approach is to not use caches and instead fetch the entire data item once when
this mutex is locked. The entire item will be written back when the mutex is released. This

147

Chapter 4. Anvil: An Implementation of CTV

works well for algorithms that read whole arrays of input data, or which require frequent random
access to sections of the array, but demonstrates poor performance if only a small subset of
the array is needed as a lot of data can be unnecessarily copied. This approach is entirely
predictable, which is important in safety-critical systems, and it is amenable to DMA and burst
transfers to improve throughput. This behaviour is specified by setting the fetchall attribute.

shdata^fetchall = True;

Anvil requires the programmer to manually associate mutexes with variables because when
C is used as the source language this is difficult to automatically derive. If the program is
static enough for an analysis engine to determine that the only situations where a given item
of shared data is accessed lie between lock and unlock requests for the same mutex then it is
safe to assume that the two should be associated. However this is frequently not the case and
it is likely that for most programs many associations could not be statically determined.

However, this is a limitation of the source language rather than of CTV. If the language pro-
vides the programmer with a way to express this relationship from their source code then such
inference is not required. Java, for example, allows the programmer to define a class with
instance variables and synchronised methods. All other threads that call any of the class’s
synchronised methods must first lock an implied mutex, and this mutex can be automatically
associated with the instance variables of the class.

4.8.4 Pointers

Recall that the refactoring stage described in section 4.4.3 can identify many forms of pointer-
based access to remote variables. In order to implement this, the shared memory system uses
offsets. Consider the following code:

int shareddata[50];

int *pointer = shareddata;

pointer[4] = pointer[5];

After it has been determined that shareddata is a shared variable, because pointer is ini-
tialised it will have been marked as accessing shareddata and therefore a target of the shared
memory refactoring system.

The first step of the refactoring rewrites the pointer declaration so that it is initialised to zero.
This allows it to be used as an offset by multiplying its current value by the size of the element
it points to. The example above uses a pointer to an integer, so its address will be multiplied by
four. From this point on, the refactoring proceeds exactly as before. Calls to anvil read sv

and anvil write sv are injected before and after the pointer is dereferenced, with the calls
ameliorated when the variable is associated with a mutex.

When using this technique, data marshalling must be considered when transferring data be-
tween processors of different endianness. Anvil does not yet support data marshalling, but it
can be added as an extension to the implementation.

148

4.8. Shared memory system

4.8.5 Link scripts

An important part of the shared memory system involves the use of link scripts to manipulate
the positioning of shared data items. If a given processor has only one attached bank of
addressable memory then the precise location of data items in memory is not important and
the standard compiler toolchain can be allowed to position items automatically. However, if
an item is to be placed in a specific memory bank (and therefore is tied to a specific address
range) then the toolchain must be appropriately instructed. This is done through the creation
of link scripts. To illustrate this, consider an architecture described by the following ADL:

cpu1 : processor Microblaze;

mem1 : memory BlockRAM;

mem2 : memory BlockRAM;

cpu1^memory = [mem1(0)];

cpu1^extramemory = [mem2(0x20000000)];

This ADL describes a processor with two memory banks, the second of which starts at ad-
dress range 0x20000000. gcc and ld (the gcc linker) will treat the entire address range as
homogeneous and may place variables in any location. However, the ADL specifies that a
given variable, shareddata, should appear in the second memory bank. To do this, Anvil
locates shareddata in the source code by searching the symbol tables and tags it with an
attribute called section. This is a gcc-specific extension that informs the linker that the given
declaration should be placed in a certain section. The refactored declaration looks like this:

int shareddata __attribute__((section ("mem2shareddata")));

The resulting code is gcc-specific and cannot be compiled on other compilers that do not
support this extension. With this attribute, the linker will be instructed to place shareddata in
a section named mem2shareddata if possible. It therefore must be given a link script which
defines this section. The entire link script used is sizable, but the part of interest is as follows:

/*...*/

SECTIONS

{

/*...Other section declarations...*/

. = 0x20000000;

mem2shareddata : {}

}

This sets the current address to 0x20000000 and declares a section called mem2shareddata.
When given this link script ld will attempt to place variables as specified by the programmer.
This script is generated automatically by the Anvil refactoring process.

The problem with this approach is that Anvil must ensure that each processor has a consistent
view of the layout of shared memory. Consider the situation where two processors share a
block of shared memory to which two variables are mapped. Whilst the two processors may
place the shared memory block at different base addresses in their memory map, they must
internally place the two variables at the same offset, or else they will be accessing different
bytes when referring to the same variable. ld is a single memory space linker and does not
provide support for doing this automatically, so the easiest way to ensure that this requirement
is met is for Anvil to place shared data items manually.

149

Chapter 4. Anvil: An Implementation of CTV

It does this by creating a new section for each item of shared memory and locating those
sections to the same offsets in in the memory map of the processor which accesses it. This
adds a small amount of complexity to Anvil, but because ld is still used to perform the actual
linking it is not too onerous. Anvil has to decide on a mapping order for the variables, determine
the size of each variable, and place them consecutively.

Determining the size of a shared data item is difficult when it is a dynamic data structure like
a linked list. For discussion on how dynamic data objects are distributed throughout the Anvil
system see section 4.12.

4.8.6 Other comments on shared memory

Anvil has enough compile-time information to exploit burst-mode and DMA transfers to speed
data transmission. The analysis described in this section allows the compiler to determine at
which points large data transfers are likely to take place. This can be paired with architectural
information provided by the programmer in the VP description to enable the automatic use of
on-chip high-bandwidth communication modes, such as burst transfers and DMA. If a DMA
engine is present in the system, processors can be instructed to use it automatically. Whilst
not yet implemented in Anvil (DMA use currently requires manual intervention), these features
could be integrated into the current system.

Also to reiterate, the details of the specific algorithms described in this section are not specified
by CTV. As new, more effective shared memory techniques are developed they can be used
by CTV implementations like Anvil to increase efficiency or decrease the run-time restrictions
placed on the code. Also, whilst CTV’s compile-time nature does place some limits on the
run-time variability of the programmer’s source code, it offers as a tradeoff that it can leverage
structural information from the source language in a way that run-time systems cannot. Es-
sentially, CTV has access to the high-level source code whereas a run-time system can only
work from the stream of opcodes of individual threads.

4.8.7 Cache coherency

The second situation that the shared memory library must consider is when threads are ac-
cessing shared memory and they have caches that must be kept coherent. Cache coherency
is a well-studied problem and the results from existing work [55, 45] can be directly imple-
mented in CTV. As coherency is not the focus of this work, Anvil currently only implements a
simple algorithm that ensures correctness. A more complex algorithm, such as those men-
tioned previously, could increase efficiency but are not yet implemented.

The algorithm implemented is as follows:

• Threads read data from a shared variables via interactions with the variable’s OM. The
implementation requires this to occur even when accessing shared variables that are
local to the current processor.

• This imposes low overhead because the OM for the accessed variable will be either
mapped to the current processor (so it will require only a function call) or a processor in

150

4.8. Shared memory system

CPU1 : processor;

CPU2 : processor;

coherentcores : target;

coherentcores^coherent = True;

Figure 4.9: AST informing Anvil that coherency is handled between two CPU cores.

the same SMP node (so a single inter-core message). If the variable is associated with
a mutex it is not necessary to inform the OM upon every write and read. Accessors need
only inform the OM about a read once when the associated mutex is locked, and about
writes (if they are made) only once the mutex is released. The provides a form of weak
consistency [174], in which the programmer enforces consistency though correct use of
synchronisation primitives.

• Each OM maintains a list of the threads that have accessed the variable since the last
time it was written.

• When one of the threads writes a value back to the shared data, the caches of all the
other threads may now be invalid.

• The next time a thread on the invalid list contacts the OM to begin a read, it replies
informing the processor that it must flush its cache lines that cover the shared variable.

Some architectures support cache coherency natively (e.g. the ARM Cortex [83]), so when
targeting these architectures Anvil does not need to consider coherency and assumes it will
be provided automatically. The programmer can inform Anvil that coherency is automatically
handled between a set of processors by adding them to a single cluster target and setting the
coherent attribute of the cluster target in the AnvilADL. An example description is shown in
figure 4.9.

Anvil’s simple cache coherency can be illustrated as follows. Consider this code segment:

int shareddata[50];

void main(void) {

printf("%d\n", shareddata[0]);

}

As discussed in section 4.8, the above code will be refactored as follows:

extern _anvil_a_var_t _anvil_accessedvars[];

int shareddata[50];

void main(void) {

//Link the shared item to OM

_anvil_accessedvars[0].data = (unsigned char *) shareddata;

//Inform the OM that we are reading the shared data

_anvil_read_sv(0, 0, 0, 4); //id, offset, len, bytes

printf("%d\n", shareddata);

}

151

Chapter 4. Anvil: An Implementation of CTV

The call to anvil read sv causes the transmission of a M SVREAD message to the OM of the
shared data item. The OM will then respond either with one of three messages:

• M SVREPLY if the requesting thread does not have direct access to the requested data
(such as in a non-uniform memory architecture with separate memory spaces).

• M SVREPLYSMP if the processor hosting the requesting thread does have direct access to
the shared data item (such as in an SMP architecture) and the data has not changed
since it was last fetched by a thread on that processor.

• M SVREPLYCLEARCACHE if the thread does have access (such as in an SMP architecture)
and the data has changed since it was last fetched by a thread on that processor so
caches should be flushed by the requesting processor.

M SVREPLY is a long, potentially multi-part message which contains the requested data.
M SVREPLYSMP and M SVREPLYCLEARCACHE are short acknowledgement messages which inform
the requesting thread that it is OK to proceed. However, if an M SVREPLYCLEARCACHE is received
then the OM has detected that there is a potential for cache inconsistency so the requesting
thread must clear the corresponding data cache lines, assuming caches are used. If the
processor is not using cache then M SVREPLYSMP and M SVREPLYCLEARCACHE can be treated as
equivalent.

Clearing a cache line varies depending on the target processor. On the Microblaze processor
it is not possible to clear individual lines, so the entire cache must be flushed. This is done
using the instructions in figure 4.10.

There is potential for an optimisation for SMP-style architectures in which no processor uses
cache. In these architectures, the M SVREPLY, M SVREPLYSMP, and M SVREPLYCLEARCACHE be-
come redundant and the entire coherency system can be removed. The system will rely on
mutual exclusion to ensure consistency.

4.9 Embedded pthreads library

In order to support pthreads-style constructs, Anvil provides an OM-aware implementation of
the base pthreads services that is suitable for distributing over complex embedded architec-
tures. Operations pertaining to mutexes, condition variables, and threads are provided as:

• A set of normal C functions that replace the supported pthreads functions. Rather than
making calls to an embedded operating system as the original pthreads functions do,
these use the underlying communications layer to send messages to the OMs of the
system, requesting the appropriate features. The functions have different arguments
to the original pthreads functions, so the refactoring engine is required to refactor the
original calls.

• A set of interrupt handling routines that implement the OM-based functionality of mu-
texes, condition variables and threads. These are installed as interrupt handlers on the
host processors of the system’s OMs, and they respond to the messages sent by the
replacement pthreads functions.

152

4.9. Embedded pthreads library

#Make space on stack for a temporary and save r12

addi r1, r1, -4

swi r12, r1, 0

#Disable data cache

#(Clear the dcache enable bit in MSR)

mfs r12, rmsr

andi r12, r12, ~128

mts rmsr, r12

#Re-enable data cache

#(Set the dcache enable bit in MSR)

mfs r12, rmsr

ori r12, r12, 128

mts rmsr, r12

#Load r12 and return

lwi r12, r1, 0

rtsd r15, 8

addi r1, r1, 4

Figure 4.10: Instructions to clear the Microblaze data cache

Because the library is automatically-generated for each target processor its functionality for
both the replacement functions and interrupt handlers is split into two levels, an architecturally-
neutral service level and an architecturally-specific architecture level.

Service level: Architecturally-neutral. Implements the functionality of the threads, mutexes,
condition variables and shared data items as a set of OMs that are to be distributed
amongst the processors of the system. Uses stub functions for all architecture-specific
operations, such as ‘send to thread’ or ‘enable interrupts’. The code for this level is
shared between all processors.

Architecture level: Architecture-specific. Implements all the stub functions of the service
level. This level is processor-specific and is generated at compile-time by the refactoring
engine.

4.9.1 Service level functions

The service level implements the following pthreads functions which operate as defined by the
POSIX standard [115]:

• pthread create

• pthread exit

• pthread join

• pthread mutex lock

153

Chapter 4. Anvil: An Implementation of CTV

• pthread mutex trylock

• pthread mutex unlock

• pthread cond wait

• pthread cond signal

• pthread cond broadcast

This is not the full set of services defined in the POSIX standard, as a complete implementation
is outside the scope of this work. Instead, the above functions were identified as an interesting
subset of services to work with. The pthreads functions provide the same functionality that the
standard pthreads calls do, but their arguments are slightly altered in the following way:

• pthread * functions: The first argument (normally a pointer to a pthread t instance)
becomes the global ID of the thread. Also, the global ID of the processor which hosts the
thread’s OM is required.

• pthread mutex * functions: The first argument (normally a pointer to a pthread mutex t

instance) becomes the global ID of the mutex. Also, the global ID of the processor which
hosts the mutex’s OM is required.

• pthread cond * functions: The first argument (normally a pointer to a pthread cond t

instance) becomes the global ID of the CV. Also, the global ID of the processor which
hosts the CV’s OM is required.

The implementation of these functions sends the appropriate request to the OM’s proces-
sor and waits for the reply. Because the actual act of sending and receiving messages is
architecture-specific, the library declares a set of stub functions that are later implemented by
the architecture level.

The following Anvil-specific functions are also introduced by the service level:

void anvil wait until released(void)

Wait until this thread is awoken by a pthread create call from elsewhere in the
system. Used by the refactoring process when splitting the input program into a
set of processor-specific programs.

int anvil read sv(int svid, int offset, int size, int managercpu)

svid The global ID of the shared variable to read
offset Offset in bytes to start reading from
size The number of bytes to read
managercpu The global ID of the processor which hosts the OM of this shared

variable
Return value Number of bytes read.

Read the specified number of bytes from a shared data item. Injected by the
refactoring process.

154

4.9. Embedded pthreads library

int anvil write sv(int svid, int offset, int size, int managercpu)

svid The global ID of the shared variable to write
offset Offset in bytes to start writing to
size The number of bytes to write
managercpu The global ID of the processor which hosts the OM of this shared

variable
Return value Number of bytes written.

Write the specified number of bytes back to a shared data item. Injected by the
refactoring process.

int anvil find thread by id(int threadid)

threadid The global ID of the thread
Return value The index of the thread in the OM’s internal data structures

Search the threads hosted by the current processor for the given thread ID.

void anvil send buffer(int initword, int word, int byteno, int

offset, unsigned char *data, int size, int cpuid)

initword First word of the buffer
word, byteno,
offset

Used to implement unaligned transfers

data Data buffer to send
size Number of bytes to send
cpuid Global ID of destination processor

Send a buffer to another processor using the communications layer.

void anvil wake thread(int index)

index Index of thread in OM’s internal data structures. Found with
anvil find thread by id

Called by the Anvil messaging layer to wake the given thread. If the thread was
not asleep this function does nothing.

void anvil set current thread to wait(void)

Called by the message handling routines to place the currently executing thread
in a sleep state, later to be woken by anvil wake thread.

155

Chapter 4. Anvil: An Implementation of CTV

4.9.2 Architecture level functions

The architecture level implements the following functions, which are declared as stubs at the
service level:

void anvil send to thread(int targetthreadid, int *packet, int len)

targetthreadid Global ID of the target thread
packet Data buffer to send
len Number of bytes to send

Send a message to the named thread, uses the underlying channels of the target
architecture.

void anvil send to cpu(int cpuid, int *packet, int len)

cpuid Global ID of the target processor
packet Data buffer to send
len Number of bytes to send

Send a message to a processor, uses the underlying channels of the target ar-
chitecture.

void anvil interrupts enable(void)

Enable interrupts on the current processor. Often this must be implemented using
inline assembly code.

void anvil interrupts disable(void)

Disable interrupts on the current processor.

void anvil sleep(void)

Place the processor into a low-power state. Not all processors support low-power
modes, in which case this function should simply perform no operation and the
library will automatically spin-lock as appropriate.

int anvil read from interrupt(int vec)

vec Interrupt vector to read from
Return value Index of created message buffer

Read a received message into an internal message buffer from a channel at-
tached to a given interrupt vector.

156

4.9. Embedded pthreads library

int anvil interrupt ready(int vec)

vec Interrupt vector to check
Return value Zero if interrupt vector is deasserted

Check whether a given interrupt vector has received a message.

int anvil get interrupt vector(void)

Return value Interrupt vector of the currently active interrupt

Called inside an interrupt handler to determine the interrupt vector of the currently
active interrupt.

void anvil acknowledge interrupt(int vec)

vec Interrupt vector to acknowledge

Acknowledge and clear the currently active interrupt. If the processor is using an
interrupt controller then driver code is inserted here to manipulate the controller
appropriately.

These functions are assembled from a set of hardware libraries that the Anvil refactoring en-
gine is provided with that include code fragments that describe how to, for example, send a
byte over a UART channel or to put an OpenRISC processor into sleep mode. Then, from the
ADL provided by the programmer, Anvil can select appropriate drivers and code.

For example, anvil sleep on an Arm Cortex-M3 processor can be expanded to the following:

void _anvil_sleep(void) {

asm("wfi"); //Execute the WFI instruction

}

A Microblaze processor (as it is an FPGA softcore) does not support any form of low-power
mode. Consequentially, anvil sleep on an Microblaze expands to:

void _anvil_sleep(void) {

//NOP

}

To support such processors, the Anvil runtime uses a spin lock that calls anvil sleep each
time it spins. On a processor that supports sleep it will only spin once.

157

Chapter 4. Anvil: An Implementation of CTV

4.9.3 Code refactoring for embedded pthreads

Once the pthreads functions have been built, the original pthreads calls must be refactored
to use the replacement functions. This requires converting the arguments of the original
calls from pthreads’ internal representations of threads, mutexes and condition variables into
globally-unique IDs that can be used to send messages to the appropriate OM.

In the simple case, the arguments are passed directly so they can simply be fetched from the
symbol table. For example:

pthread_mutex_t mux;

void main(void) {

int pthread_mutex_lock(pthread_mutex_t *mut);

}

It is trivial to resolve mux to uniquely identify the mutex that is being manipulated and convert
the pointer into mux’s unique identifier. When pointers are used, however, this becomes more
difficult. The embedded pthreads library solves this problem by converting the pointer from a
local memory address into the ID of the mutex it references directly. As noted in section 4.8,
the shared memory system only allows pointers to shared variables if the pointer is initialised
to point to the shared variable. The same rule is applied to pointers of the following types:

• *pthread t

• *pthread mutex t

• *pthread cond t

The refactoring engine scans the AST for all pointer declarations of the above types, checks
which item they are initialised to, and converts the initialisation so that the pointer stores the
ID of the referenced item instead of its local memory address.

pthread_t mythread;

pthread_t *pointer; //Not allowed!

pthread_t *pointer = &mythread; //OK, refactored to...

pthread_t *pointer = (pthread_t *) 7; //(assuming the global ID of mythread is 7)

After refactoring, a call to pthread mutex lock has the following prototype:

int pthread_mutex_lock(short om_cpu_id, short mutex_id);

The two arguments are now the ID of the processor which is hosting the mutex’s OM, and the
ID of the mutex itself. The processor ID is used by the communications layer to statically route
messages and make appropriate use of the underlying hardware channels. The mutex ID is
read at run-time by the OM.

158

4.10. Custom hardware drivers

4.10 Custom hardware drivers

Anvil allows the programmer to use elements of custom hardware from within the programming
model of C. This is implemented in two main sections:

1. Code that handles incoming interrupts, thereby allowing hardware elements to trigger
the execution of user-provided code on the target processor.

2. Code that manipulates a given hardware element using pre-written driver code as appro-
priate.

The first section concerns interrupt handling. When building the main Anvil interrupt handler
for the current processor, code is inserted to execute a user-provided interrupt service routine
(ISR) whenever an interrupt occurs that has the interrupt vector of a known hardware element.
The pertinent sections of the main Anvil interrupt handler look like this:

void main_anvil_handler()

{

int vec, currentirq;

//Get the vector of the current interrupt

vec = _anvil_get_interrupt_vector();

//...snip...

// Main interrupt message handling and OM implementation

//...snip...

//Check if it is an accelerator that is interrupting us

for(currentirq = 0; currentirq < _ANVIL_ACCS; currentirq++)

if(_anvil_acc_irqs[currentirq].id == vec) _anvil_acc_irqs[currentirq].callback();

//Acknowledge the interrupt

_anvil_acknowledge_interrupt(vec);

}

The functions anvil get interrupt vector and anvil acknowledge interrupt are archi-
tecture-specific stub functions that fetch and acknowledge the current interrupt vectors respec-
tively. Because this depends on both the type of the processor and the target architecture, the
implementations of these functions are fetched from a bank of hardware libraries. The function
is written once for each processor type that Anvil supports and archived for use by the library
generation routines. For example, the implementation of anvil acknowledge interrupt for
a Microblaze processor with an interrupt controller is:

void _anvil_acknowledge_interrupt(volatile int *intc, int num)

{

int i, mask;

mask = 0x01;

for(i = 0; i < num; i++) mask = mask << 1;

(*(intc + 3)) = mask;

}

159

Chapter 4. Anvil: An Implementation of CTV

This manipulates an attached interrupt controller that is located at base address intc.

The for loop of the main Anvil interrupt handler runs once for each interrupt and searches
an internal data structure that contains definitions of all hardware accelerators to see if the
current interrupt originated from a hardware element that must be handled. This data structure
is defined using the following code:

#define _ANVIL_ACCS 2

#define _ANVIL_ACCS_INITIALISER {1, 0}, {2, 0}

typedef struct {

char id;

void (*fnpointer)(void); //The function to call when this interrupt fires

} _anvil_acc_irq_t;

_anvil_acc_irq_t _anvil_acc_irqs[_ANVIL_ACCS] = {_ANVIL_ACCS_INITIALISER};

This defines an array of structs of type anvil acc irq t, one for each attached hardware
interrupt. These structs contain two elements, the interrupt vector to which they relate and
the address of an ISR function to call when the interrupt fires. As with the shared memory
library, the definitions of ANVIL ACCS and ANVIL ACCS INITIALISER are generated by the
Anvil refactoring engine at compile-time from the programmer’s AnvilADL description.

The second section of this library allows the programmer to interact seamlessly with custom
hardware elements. All supported peripherals have a library header file that defines the func-
tions that are supported by that piece of hardware. For example, a UART transceiver’s driver
includes functions to send a byte, receive a byte and to check the status of the input and output
buffers. This code is retrieved from Anvil’s external hardware archives and added to the output
code as appropriate.

All Anvil driver functions take as their first parameter a C struct that describes the target pe-
ripheral. As required by the CTV system model’s target layer (section 3.4.4), Anvil must be
provided with the base address and interrupt vector for each hardware element. For exam-
ple, the driver struct for a callback peripheral (a programmable stopwatch that can be set to
interrupt the processor after a user-provided amount of time) is:

typedef struct

{

volatile int *addr;

} callback_t;

Its driver consists of a single function:

void callback_schedule(callback_t callback, int t);

To allow the programmer to use this peripheral, when the current processor has access to
this peripheral Anvil inserts an instance of the callback t struct with the same name as was
provided in the AnvilADL. This allows the programmer to describe in the ADL that a peripheral
of a given name exists, and then to use that name directly in their code as the argument to
driver functions. The programmer does not have to resort to adding architectural details such
as addresses or interrupt vectors to the application. A complete example using the callback
hardware follows.

160

4.11. Compilation

In the following AnvilADL, the programmer has described a single instance of the callback
hardware, called cbhw. cbhw is connected via its only port to the processor cpu1. The param-
eters of this port describe it as being memory-mapped at base address 0x8000A000 and on
interrupt vector 0. The programmer has specified that a function called mycallback should be
fired when the hardware reports back.

cpu1 : processor Microblaze;

cbhw : hardware Callback;

cbhw^ports = [cpu1(0x8000A000, "mem", 0, "mycallback")];

This hardware can be used transparently by the programmer by referencing cbhw and writing
mycallback as follows.

#include <callback.h>

void mycallback(void) {

//Do something

}

void main(void) {

callback_schedule(cbhw, 2000); //Callback in 2000 clock cycles

}

The refactoring engine amends the programmer’s code to include a definition for the driver
struct, which it calls cbhw. The following line is inserted in the programmer’s code:

callback_t cbhw = {mycallback};

This allows the driver routines to operate correctly. More complex hardware elements will pass
more arguments into the driver struct. The address and interrupt vector that the programmer
provided in the architecture description are folded into the main Anvil interrupt handler when it
is auto-generated. This links the receipt of an interrupt at run-time to the callback routine.

The callback hardware is an example of a user-provided interrupt handler, but more complex
hardware drivers can provide their own handlers in exactly the same way.

4.11 Compilation

The output of the Anvil refactoring process is as follows:

• One set of source files per target processor of the original application. Generated by the
code splitting phase and refactored to call functions from the Anvil libraries.

• A precompiled object file that implements the shared parts of the embedded pthreads
library.

• One set of source files per target processor that implement the architecturally-specific
Anvil libraries. Includes the communications library, shared memory system, parts of the
embedded pthreads library, and any hardware drivers that are used by the application.

161

Chapter 4. Anvil: An Implementation of CTV

• A custom linker script per processor, generated by the shared memory system.

Due to the fact that Anvil uses unmodified ANSI C, the output code can be compiled with a
standard C compiler such as the gcc compiler suite. Because the target architecture may
contain many different types of processor, an appropriate compiler must be selected for each
processor-specific program and library. Currently this process is not automated.

The refactored processor-specific programs and each processor-specific library are all sepa-
rately compiled to object files using an appropriate compiler. Then, for each target processor
its object code is linked against its specific libraries using any custom link scripts generated by
the shared memory library. The result of this is a single executable for each target processor.
The executables can then be used in a variety of ways depending on the target application.
They might be programmed directly into on-chip flash-based storage, stored on disk, transmit-
ted into dynamic RAM during a bootstrap phase, or in the case of FPGAs, merged into the
FPGA’s configuration bitstream. This is not considered part of the Anvil build process.

4.12 Distributed dynamic memory allocation

In order to aid verification and offline analysis, hard real-time and safety-critical software tends
to only make use of fixed-size data structures. Variable-size structures can grow and shrink
according to program flow and input data, meaning that it can be difficult to make guarantees
about their maximum size or timing properties. Nonetheless, dynamic structures are frequently
used in soft real-time and general-purpose software for their flexibility and ease-of-use.

Dynamic structures require the use of a memory management system which maintains a heap
structure and provides methods to allocate and deallocate chunks of storage. In C, these are
provided by the malloc and free functions as part of its standard library. Unfortunately, C
assumes that it is executing within a single logical memory space so it does not provide a
method for distributing malloc calls over the class of complex embedded architectures that
are targeted by systems like Anvil and CTV.

Consider the following pseudocode:

//Shared data item, implemented as a linked list

linked_list shareddata;

Producer thread {

D := malloc() //Dynamically create a new data item

Call produce(D)

Add D to ’shareddata’

Repeat as necessary

}

Consumer thread {

D := the next data item from ’shareddata’

Call consume(D)

Call free(D) //Dynamically free D

Repeat as necessary

}

162

4.12. Distributed dynamic memory allocation

This example uses a C-style programming model. Like C, it implicitly assumes that both
threads and the shared data item all reside within the same memory space. Therefore, the
calls to malloc and free will refer to the same heap and the code will operate as expected.
However, if the consumer thread and the producer thread are mapped to different processors
that reside within different memory spaces then the code will fail because malloc and free will
operate on different heaps.

In general, the problems encountered are as follows:

• C’s runtime only maintains a single heap, so malloc will only allocate memory from that
heap. Other memory spaces in the system will remain unused.

• C does not allow the programmer to reason about the processors or memory spaces in
the mapped system. As a result, each malloc call will simply attempt to allocate memory
from the local memory of whichever processor is executing the call. This is acceptable
when the processor merely requires temporary local storage, but it is not suitable for use
in implementing shared dynamic data structures. Such data structures require memory
to be allocated from a specific memory space - the space in which the data structure is
located.

• C does not support true abstract data types. These are implemented as a set of library
functions that (by convention) are passed a reference to a structure which contains the
internal state of the data type. There is no high-level semantic link between these func-
tions and programmers must rely on conventions, such as including all functions of a
data type in a single header file or naming them with a common prefix.

• Consequentially, these functions must always execute on the processor of the thread that
is manipulating the data, rather than the processor of the shared object’s OM (which is
closer to the data and therefore more efficient). In a distributed system it is more effi-
cient to pass high-level operations (i.e. ‘insert item’, ‘delete item’, ‘sort list’) to a closely-
situated OM that performs the operation rather than attempting to perform the operations
remotely.

To solve these problems, Anvil provides the programmer with a way of encapsulating state
and the operations that can be performed on that state into a user-defined shared object. The
limitations of C mean that the only shared objects that are normally available are those which
represent the threads, mutexes and condition variables of the pthreads API. Anvil allows the
user to add extra directives to the AnvilADL to define new shared objects, which can then
be mapped to the target architecture. User-defined shared objects are implemented solely to
improve the mapping of software to the target architecture - they do not change the semantics
of the code in any way.

4.12.1 User-defined shared objects (UDSOs)

User-defined shared objects (UDSOs) are give the programmer the ability to define their own
limited form of shared objects (from the CTV system model). The advantages of this are as
follows:

163

Chapter 4. Anvil: An Implementation of CTV

Support for dynamic structures: As discussed above, C (and therefore Anvil) cannot sup-
port dynamic data structures within a complex non-uniform architectures because it as-
sumes a single logical address space. Shared objects have access to a stack and heap
(in Anvil this is the stack and heap of their OM), so encapsulating data structures along
with the functions that manipulate them inside a shared object solves this problem.

Reduces communication overhead: The shared object is mapped as a single entity, ensur-
ing that its functions remain physically close to the data they manipulate. Threads only
need call the high-level interface of the shared object rather than being forced to ma-
nipulate the data remotely themselves, thereby reducing communication and coherency
requirements.

No change to the semantics of C: UDSOs are a mapping feature only, they do not change
the functional semantics of the input program in any way.

Reduces code storage overheads: Functions only need to be compiled and stored once for
each UDSO, rather than by every client which accesses the object.

The shared objects (from the CTV system model) that can be defined using UDSOs are limited.
Due to the fact that such features cannot be expressed by C, it is not possible to use guards on
shared object function calls. Also, in order to ensure that the semantics of C are not affected,
the UDSOs does not use its read or write locks. This means that mutual exclusion is not
guaranteed by the UDSO. A UDSO has the following features:

• A UDSO comprises a set of C functions and a set of C variables. They are represented
as a shared object in the CTV system model.

• The functions make up the interface of this shared object. The variables make up its
state.

• Because shared objects have their own memory space, dynamic memory allocation is
possible within a UDSO (but confined to the memory space of the UDSO), thereby allow-
ing the efficient implementation and manipulation of dynamic data structures. Extreme
care should be taken if pointers are passed out of a UDSO as they will become invalid if
the UDSO is migrated.

• Like any other shared object, each UDSO must have exactly one OM.

• The code for shared functions is compiled only for the processor upon which its manager
is mapped. Other threads in the system call this OM to execute the protected functions.

• The UDSO’s variables are mapped to the address space of its OM.

4.12.2 Describing UDSOs using AnvilADL

When describing UDSOs in C, there are two situations that need to be accounted for:

1. The first situation is when the programmer wishes to merely group a unique set of func-
tions and variables together as a UDSO and map them as a single unit. Each function

164

4.12. Distributed dynamic memory allocation

is unique to the UDSO being defined. To do this, the programmer needs to be able to
state which functions should be exposed as the interface of the UDSO, and which items
of shared data should become its internal state.

2. A more complex situation is encountered when functions are shared between UDSOs.
For example, a queue datatype may be instantiated many times, but the get and put

functions are shared between all instances. In standard C programming, these get and
put functions will take a pointer to a structure which contains the state of the queue and
therefore allows them to work on many queues without duplicating code. For each call
of these shared functions, the compiler needs to be able to determine which instance
of a UDSO is being affected. Because CTV is a compile-time technique, this must be
possible at compile-time.

The first situation can be solved easily using AnvilADL. AnvilADL allows the programmer to
declare UDSOs using instances of the protected feature category. Functions and shared
variables are then added to the UDSO by assigning to the protected’s functions and state

attributes respectively. This is shown in the following example:

stack_t thestack;

void push_to_stack(int item) {

//Add an item on to ’thestack’

...

}

int pop_from_stack(void) {

//Remove an item from ’thestack’

...

}

void main() {

push_to_stack(4);

x = pop_from_stack();

}

stack : protected;

stack^functions = ["push_to_stack", "pop_from_stack"];

stack^state = ["thestack"];

cpu1 : processor;

mem1 : memory;

cpu1^memory = [mem1];

cpu1^manages = [stack];

In this example, the functions push to stack and pop from stack affect the variable thestack

only. Only one stack is maintained by the code and the AnvilADL can wrap up these functions
and the stack’s state inside a single UDSO called stack. As the UDSO is represented as a
shared object in the CTV system model it is required to have an OM, which is set to cpu1 in the
above AnvilADL. The code for push to stack and pop from stack are compiled for processor
cpu1 and stored in its code memory, which in this example is mem1. thestack is stored in the
memory of cpu1, which in this case is mem1.

165

Chapter 4. Anvil: An Implementation of CTV

The second situation is more complex and arises from the fact that the code presented in
the previous example is slightly atypical. More commonly, the code for push to stack and
pop from stack would be parameterised to allow them to operate on more than one stack.
Consequentially, the compiler needs to be able to determine for each call of these functions
which UDSO is being affected, as this will be translated into a procedure call to the affected
shared object. To do this, Anvil introduces the concept of an instance identifier. An instance
identifier is a C variable that is passed as an argument into functions that are shared between
UDSOs. It can be used by the compiler to identify at compile-time which UDSO is being called.
Consider the following code:

void queue_put(queue_t thequeue, int item) {

//Add ’item’ to ’thequeue’

}

int queue_get(queue_t thequeue) {

//return the top item from the queue

}

void main() {

queue_t q1, q2; //Declare two queues

queue_put(&q1, 4); //Affects the first queue (q1)

queue_put(&q2, 7); //Affects the second queue (q2)

x = queue_get(&q1); //Affects the first queue (q1)

}

This code is more typical of the way that data structures are defined in C. Here, the instances
of the queue t datatype (q1 and q2) can be considered instance identifiers because they de-
termine which queue is affected by the otherwise identical calls to queue put and queue get.
In an object-oriented language this might be explicitly expressed as:

q1.queue_put(4);

q2.queue_put(7);

x = q1.queue_get();

AnvilADL allows the programmer to describe the instance identifiers that are present in their
program. Then, when the compiler encounters a shared function call it can use the instance
identifier to determine which UDSO the call is referring to. Instance identifiers therefore cannot
be created dynamically and must be either a global variable or a static function variable.

Instance identifiers and their UDSOs are provided as part of an AnvilADL description. After
declaring a protected feature, if it requires an instance identifier this can be set by assigning
to its identifier attribute. Then, when providing the function names that form the UDSO
(with the functions attribute) the programmer must specify which argument is the instance
identifier. The queue example above can be expressed in AnvilADL as follows:

q1, q2 : protected;

q1^identifier = "main.q1";

q2^identifier = "main.q2";

q1^functions = ["queue_put"(1), "queue_get"(1)];

q2^functions = q1^functions;

166

4.12. Distributed dynamic memory allocation

This defines two UDSOs that share the queue put and queue get functions in their interfaces.
The functions assigned to the functions attribute are followed by integers in parentheses
which state which argument corresponds to the instance identifier. This value is 1-based, so
‘2’ corresponds to the second argument. The functions of the UDSO may have their instance
identifiers in different positions, although it is common C programming convention to keep this
the same. Note that in the example above the only state encapsulated within the UDSO is
the instance identifier itself. The instance identifier is automatically assumed to be part of the
UDSO so it is not necessary to set the state attribute.

Due to the fact that UDSOs are distributed across non-uniform memory architectures, not all
functions can be used as shared functions. In both UDSOs with and without instance identifiers
the following two restrictions apply:

• Arguments (except the instance identifier) must be passed by value, not by reference.
Because the target and source processors may not share any memory, passing by ref-
erence is frequently not possible.

• Argument lists must be of fixed length. Variable argument functions are not supported in
Anvil, although future work could introduce this if required.

4.12.3 UDSO example

This section describes the complete implementation of an example UDSO, from specification
down to implementation code running on the target architecture, and details the refactoring
stages required. For clarity, this section only presented an annotated summary of the source
code. Appendix E contains the full source.

• In the first stage of refactoring, the AST of the program is searched to find all locations
where the functions of UDSOs are called (the functions assigned to the functions at-
tribute of the protected in the AnvilAST). For every call the refactoring engine has to
determine which UDSO the call refers to. If the function is not shared between UDSOs
(it does not need an instance identifier) then this is trivial. If it is shared, then the refac-
toring engine ensures that the argument which corresponds to the instance identifier can
be statically-traced back to an instance identifier.

• After this analysis, the OM of each UDSO can be augmented to perform the functions
assigned to its functions attribute. Each function is assigned a unique ID which is used
by the internal messaging protocol. The messages M UDSOCALL and M UDSOREPLY are
used to implement the actual shared function calls, as described in appendix A. The
OM’s message handler is extended to handle these messages.

• Because the OM now calls the shared functions, they will be compiled to object code for
the host processor of the UDSO’s OM. If these functions use dynamic memory allocation
(malloc and free) then either an embedded implementation of these functions will be
required or the processor must be running a kernel that provides this functionality. An
embedded microkernel such as Xilinx’s xilkernel [256] is ideal for this purpose. Dynamic
memory will be allocated from the target processor’s heap only. The programmer is
required to ensure that the dynamic memory requirements of the OM does not exceed
the memory that is available to it.

167

Chapter 4. Anvil: An Implementation of CTV

• Finally, Anvil’s refactoring phase (section 4.3) refactors every function call to send the
appropriate message to the UDSO’s OM and then wait for any response.

For simplicity the queue presented here stores integers. A more general queue can be built,
but care must be taken to ensure that its interface uses pass-by-value. The queue presents
the following interface:

\\C code

struct{} queue_t; //Implementation omitted

void queue_put(queue_t *q, int item);

int queue_get(queue_t *q);

int queue_empty(queue_t *q);

In this example, a single instance of the queue type is manipulated by two threads in the
following program:

\\C code

#include "queues.h"

#include <pthreads.h>

queue thequeue;

pthread_t producer_thread, consumer_thread;

void *producer_thread_body()

{

int item;

while(running)

{

item = produce_next_item(); //Produce an item

queue_put(thequeue, item); //Insert the item into the queue

//(Omitted) Signal a condition variable to notify the consumer

}

pthread_exit();

}

void *consumer_thread_body()

{

int item;

while(running)

{

//(Omitted) Wait on a condition variable for a signal

while(!queue_empty(&thequeue)) { //Empty the queue

item = queue_get(thequeue); //Get an item from the queue

consume_item(item) //Consume the item

}

}

pthread_exit();

}

void main(void)

{

//(Omitted) Initialise the queue

168

4.12. Distributed dynamic memory allocation

//Set up both threads

pthread_create(&producer_thread, NULL, producer_thread_body, NULL);

pthread_create(&consumer_thread, NULL, consumer_thread_body, NULL);

//(Omitted) Perform extra initialisation, join on the above threads

}

For this queue, the struct queue t is used as the instance identifier and internal state of the
UDSO. The two threads producer thread and consumer thread are intended to be mapped
to different processors. Because the internal implementation of the queue (can be found in
appendix E) uses a linked list and dynamic memory, it would not be possible to distribute it
over Anvil’s shared memory system without the use of a UDSO.

The following ADL is used to define the queue as a UDSO and map it appropriately. The
producer thread is mapped to the same processor as the queue (cpu1), the consumer thread
is mapped to another processor (cpu2).

AnvilADL code

cpu1, cpu2 : processor Microblaze;

queue : protected;

queue^identifier = "thequeue";

queue^functions = ["queue_put"(1), "queue_get"(1), "queue_empty"(1)];

cpu1^manages = [queue];

cpu1^threads = ["producer_thread", "main"];

cpu2^threads = ["consumer_thread"];

The functions of the shared object are assigned unique IDs so that the M UDSOCALL and
M UDSOREPLY messages can refer to them correctly. The following IDs are used:

Function ID

queue put 0
queue get 1

queue empty 2

In the original code the threads call functions to directly manipulate the queue. The refactoring
changes this so that instead of calling the function the threads send a M UDSOCALL message to
the OM that hosts the target UDSO. The thread then waits for a M UDSOREPLY message to re-
ceive the return value of the function. In this example the calls to queue empty and queue get

in consumer thread body, and the call to queue put in producer thread body must be refac-
tored. The routines to send and receive M UDSOCALL and M UDSOREPLY messages are part
of the communications layer, the messages are described in appendix A. After refactoring,
consumer thread body looks like this:

169

Chapter 4. Anvil: An Implementation of CTV

\\C code

void consumer_thread_body(void)

{

int item;

while(running)

{

//(Omitted) Wait on a condition variable for a signal

while(!_anvil_udso(0, 2)) { //(Refactored) Empty the queue

item = _anvil_udso(0, 1); //(Refactored) Get an item from the queue

consume_item(item) //Consume the item

}

}

pthread_exit();

}

anvil udso is a variable argument function defined as part of the communications layer. Its
parameters are the ID of the target UDSO, the ID of the shared function, and the arguments
of the shared function. Its behaviour is to send a M UDSOCALL message to the manager of the
target UDSO and then wait for the M UDSOREPLY message that contains the return value, if any.
Note that in this example there is only one UDSO so it has been assigned ID 0.

During the Anvil refactoring stage (section 4.3), the code is split (see section 4.5) as follows:

• cpu1:

– Existing main function.

– producer thread body

– queues.h and its associated queues.c.

– The Anvil communications and pthreads libraries.

– This processor requires a kernel, as it uses dynamic memory (malloc and free).

• cpu2:

– Autogenerated main function which waits for consumer thread to be created by the
main thread.

– consumer thread body

– The Anvil communications and pthreads libraries.

– This processor does not require a kernel and does not include the queue implemen-
tation.

Threads mapped to cpu2 are no longer dependent on the implementation of the queue datatype
because they send UDSO messages instead of attempting to directly manipulate the datatype.
The queue is localised entirely within the memory space of cpu1 and its implementation only
has to be compiled for a single processor. Note that the use of the UDSO in this example
has not changed the semantics of the code, it has instead added extra mapping information
that allows the refactoring engine to better distribute dynamic data structures to a non-uniform
memory architecture.

170

4.13. Implementing migration

4.13 Implementing migration

In order to implement the logical layer, Anvil supports the migration of data and OMs throughout
the system. The migration of threads and Anvil POs are supported by the system model but
not yet implemented as to do so is outside the scope of this thesis. Section 4.7.2 discussed
how the communication layer accounts for migration to ensure that the rest of the system
can continue to communicate with migrating objects. This section explains how migration is
supported by the OM model and how it is implemented.

Migration is always performed by the manager of the migrating object. The OM will prepare the
object for migration, send it to the target processor, restart it, and inform the rest of the system
that the migration has taken place. In some situations, the OM will also need to migrate itself
at this time. This section will detail how the various items of the system are migrated and the
limitations that are encountered when doing so.

4.13.1 Migrating OMs

The first migration type that must be considered is the migration of an OM. In Anvil, OMs
migration is heterogeneous, meaning that they can migrate between all processor types.

As detailed in section 4.2.8, AnvilADL marks OMs as migratable by assigning them to the
contains attribute of a cluster c. Anvil will then automatically select a single processor from
each cluster target to which c is mapped to form a set of the OM’s target processors. This au-
tomatic selection can be overridden by also assigning to the manager’s executes on attribute.

The model, therefore, is that OMs may migrate between a set of target processors in a way
that is consistent with the cluster-based migration model. However, in order to maintain imple-
mentation efficiency this is not the way that it is actually implemented. It is not necessary to
perform true code migration to move the OM. As highlighted later in section 4.13.3 this is very
difficult in an unconstrained heterogeneous environment. Instead, OMs are placed on each
target processor and control over the managed items (threads, shared objects, shared data
items) is migrated between the OMs, rather than the OMs themselves.

When an OM migrates, it passes the state of its managed objects to the target instance and
updates the communications layer so that the rest of the system sends their requests to the
new manager. OM migration is implemented using the following algorithm:

• All managed items must be shut down.

– For variables and shared objects (mutexes, CVs, Anvil POs) the migrating OM com-
pletes any requests currently underway and stops responding to further requests.
Any requests that arrive from this point on are queued.

– If a request takes too long to complete it may be aborted (for example, if a thread
is requesting a lock that another thread has claimed and then forgotten to unlock).
The current implementation assumes that all requests will complete in finite time.

– For threads, the thread is removed from that processor’s run queue. If the thread is
in a critical region the OM must wait until the thread leaves the region and can be
unscheduled.

171

Chapter 4. Anvil: An Implementation of CTV

• The OM transfers its current state to the target OM instance. The state of an OM is
defined in section 3.4.6 but can be summarised as follows:

– For all OMs, the current request queue.

– For mutex OMs, the current owner of the muetex and the queue of all waiting
threads.

– For CVs OMs, the queue of pthreads currently waiting on the condition.

– Thread helper OMs, the current state of the thread and the queue of all threads
waiting to join it.

This state transfer is easy to implement, because the OM is not currently executing. It
transfers its state using messages defined in the OM message protocol which is detailed
in appendix A.

• The OM updates all existing processors with its new location. This is detailed in sec-
tion 4.7.2.

• The OM messages the target OM instance to begin executing.

• All managed items are then restarted by the new instance and the system resumes. All
queued requests can be answered.

It is possible when using this algorithm for the source OM to have transferred its request queue
and completed migration, but due to network delays a request still arrives at the source OM.
This is not a problem because the source OM is still operational, even though it has transferred
its management duties to another instance. In this case the request is forwarded on to the
migration target.

Note that if the source and target processors use different endian representations then the
migrating OM must convert the transferred bytes appropriately. To implement this, an OM can
query the endianness of the target processor with the M GETENDIANNESS message.

Migration of a managed object is performed by the transmission of a M MIGRATE message from
the source to the target. This is a multi-part message which contains the ID and state of the
migrating object. This message is defined in appendix A.

If a shared variable is being migrated between memory spaces that can both be accessed by
the source processor, it is not necessary to involve the target OM throughout the data transfer.
Instead, the source processor transfers the shared variable itself (which could involve the use
of DMA), and then sends a M MIGRATE with an empty state. The receiving OM understands
that the data has been moved accordingly. This can be done because in Anvil space for
shared variables is statically allocated at compile-time. A system which used dynamic memory
allocation would have to include a negotiation phase in which the target OM replies to the
source with a suitable address to copy the data to.

4.13.2 Migrating shared data

The migration of shared data elements is an extension of OM migration. As detailed previ-
ously, the OM of a shared variable must be assigned to a processor that has access to the

172

4.13. Implementing migration

memory that contains the shared variable. This affects the migration behaviour. There are two
situations encountered when migrating shared data:

• The variable migrates to a memory space that is still accessible to the processor hosting
its OM.

• The variable migrates to a memory space that is inaccessible to its OM.

In the first situation, the OM has to perform a bulk memory copy from the old location to the
new location. It must ensure that no threads are currently accessing the data by requesting
the lock of the shared variable’s associated mutex (section 4.8.3). Anvil does not support
migrating shared variables that do not have an associated mutex. The associated mutex is
released once the data copy is complete.

The second situation requires that the OM migrate itself to a suitable location, along with
the value of the shared variable. The OM migration proceeds exactly as detailed above in
section 4.13.1. When the OM transfers its state to the target processor it copies across the
shared data. As with the previous situation, the migration ensures that it holds the shared vari-
able’s associated mutex before proceeding. The current implementation of Anvil pre-allocates
space for the shared data to migrate into to provide greater reliability. Each OM contains du-
plicate definitions of the shared variable and the data is copied between these using a raw
pointer. A more flexible but less predictable approach could instead attempt to allocate space
dynamically just before migration, failing if there is not enough spare memory.

4.13.3 Migrating threads

Migrating a thread is much more challenging than migrating the OMs or shared data items
of the system. These items are both passive objects with a fixed functionality so it is easy
to implement migration which takes place only when they are in a known state. Also, their
internal state is well-defined by the Anvil specification so it is clear what data must be migrated.
Threads, on the other hand, are active objects that are defined by the programmer with an
unknown state and memory usage. Making this even more challenging is that in an embedded
context the source and target processors might be of different architectures. This requires the
implementation of a heterogeneous process migration framework.

The process of transferring a running thread from one processor to another requires the fol-
lowing steps:

• First the thread must be stopped so that its execution does not interfere with the migra-
tion. It is not possible to halt execution at any arbitrary point because the in-memory
source and target executables may be different, meaning the current program counter
value will have no meaning in the target system.

• This problem is solved using a checkpointing system in which checkpoints are added at
frequent points in either the source code or opcodes of the thread. Threads may only be
migrated once they reach a checkpoint. The checkpoints are identical in the source and
target executables, thereby allowing a program counter correspondence across different
ISAs and executable formats.

173

Chapter 4. Anvil: An Implementation of CTV

• The execution context of the thread must be extracted. This consists of the state of the
processor’s registers and the thread’s stack. This can be obtained from the kernel on the
source processor, normally named a process control block (PCB).

• The context must be translated so that it fits the architecture of the target processor. This
requires converting register contents appropriately and marshalling between different
data representations. This translation is not always possible so it imposes restrictions on
the migrations that are supported.

• The translated context is transferred to the target processor and a new thread created
from it. The thread is now executing on the target processor and kernel.

There are a number of existing systems which implement heterogeneous process migration
systems. Tui [205], Dome [8], Gantel et. al. [85], and Ramkumar et. al. [185] all use a version
of the algorithm above to migrate tasks between processors with differing instruction sets and
architectures. These approaches differ by the manner and frequency at which checkpoints are
added, displaying different run-time properties accordingly.

Systems based on Java or other interpreted languages have the advantage that threads are
compiled to bytecodes so portability is guaranteed. Examples of such systems are JESSICA2
[269], the work by Sakamoto et. al. [193] and the work by Truyen et. al [225].

Anvil does not currently implement a thread migration mechanism because the required amount
of implementation effort places it outside the scope of this thesis. It is further work to take a
system such as Tui and implement it as part of Anvil. This section instead argues that CTV
provides support to a thread migration system and does not interfere with their implementation.

The CTV system model of Anvil assists thread migration systems in the following ways:

• As detailed in sections 4.7 and 4.13, the communications layer of Anvil supports migra-
tion by ensuring that the rest of the system can transparently communicate with migrating
items. Messages are always routed to the current location of the object without requiring
any extra effort from the sender. Existing thread migration systems tend to be imple-
mented either on SMP-style architectures or over large-scale networked architectures,
and so rely on network routing to provide this. CTV and Anvil supports routing over
complex non-standard architectures.

• Similar to the previous point, the shared memory system of Anvil supports thread migra-
tion by ensuring that the migrated thread can still access shared data items.

• CTV promotes a programming model in which dynamic behaviour is explicitly enumer-
ated at compile-time. The programmer states exactly which processors a given thread
may migrate over. As a result, if the thread migration system cannot support a given
type of processor it can still be used in the static parts of the system. This is in contrast
to existing systems, such as Tui, which restrict the entire system to migration-amenable
processors.

Due to the fact that Anvil deals with inter-thread communication, shared memory and hardware
access, it places only one restriction on the implementation of a thread migration system – that
it is unsafe to migrate a thread whilst it is executing within the Anvil libraries. If the thread is

174

4.14. Traceability

currently updating the communications layer or interacting with an OM it must complete that
operation before it is migrated. When using the checkpointing system described above that is
used by many heterogeneous thread migration systems, checkpoints should only be placed in
the user’s code, and not in the code that is generated by the Anvil refactoring engine. If this is
done then Anvil will not interfere with existing thread migration systems.

4.13.4 Causes of migration

The previous sections have detailed the way that a CTV-based system implements migration
of threads and data. The implementation uses the clustering information provided by the CTV
system model, alongside the OM model, to provide migration services in a scalable way that
does not introduce unnecessary bottlenecks into the system. However, the implementation
presented so far assumes the presence of a higher-level algorithm that decides when migration
should take place, which items should migrate, and to where.

The use of migration to improve the performance of a system is well-studied. Migration has
been used to improve systems according to a wide range of metrics such as throughput in a
distributed environment [119, 44], communication minimisation [222], fault tolerance [37, 2] or
power scaling [166].

Anvil does not yet implement any form of automatic migration and assumes the presence of
a user library to implement a suitable migration policy. There are two reasons for this. Firstly,
Anvil should not re-implement the existing work from sources such as those described in the
previous paragraph. Secondly, because of the wide range of reasons for implementing migra-
tion in an embedded system it would not be possible to create a ‘one size fits all’ policy that
works well for all target systems. A migration policy to assist the shutdown of processors for
power saving is unlikely to work well in a system which uses migration for application flexibility
and maximising throughput. Future work will extend Anvil to include a wide range of migration
algorithms and thereby avoid the need for the programmer to work at this level, but this is
outside the scope of this thesis.

Currently, migration is triggered by calling the following functions:

• anvil migrate om(int sourcecpu, int omid, int targetcpu);

• anvil migrate thread(int sourcecpu, int threadid, int targetcpu);

• anvil migrate sv(int sourcecpu, int svid, int targetaddress);

These functions initiate the transmission of a M MIGRATE message to the appropriate OM. The
OM then begins the migration process as detailed in the previous sections.

4.14 Traceability

The refactoring stage adds a layer of transformation to the programmer’s source code, and so
CTV’s impact on traceability must be considered. Clearly, the code that is executing on the

175

Chapter 4. Anvil: An Implementation of CTV

target platform is not the code that the programmer wrote, and this can cause problems for
interactive debuggers. However, as Anvil’s aim is to take a single input program and split it into
multiple programs that are distributed over a multi-core architecture, this impact is unavoidable.

Due to the fact that Anvil performs all of its refactoring at compile-time in an entirely predictable
manner, it is still possible to refer any given line of output code back to the source code line
that it came from, as long as the VP mappings are known. Anvil’s refactoring stages can be
thought of as similar to standard compiler optimisations. They can make drastic changes to
the ordering and function of the actual final instructions, but because these are predictable it
is possible to carry standard debugging information into the object file and not lose visibility.

The following features must be accounted for in any debugging environment:

• The most significant changes made during refactoring are by the code splitting phase,
which splits the single input program into a set of output programs, one for each target
processor. Each output program is a subset of the input program (as determined by
code reachability analysis). Consequentially, the vast majority of these output programs
remain identical and easily traceable back to the input code, although the debugging
environment should account for the fact that code is frequently duplicated over multiple
processors, especially in the case of common libraries. All output programs, apart from
the one derived from the initial main function, will have a custom entry point which waits
until other threads in the system wake it with a pthread create call.

• Extra code is injected into the output programs to implement the distributed shared mem-
ory system (section 4.8). This code consists of shared variable read and write calls, and
chance management functions. These changes are only minor and can easily be traced
in exactly the same way as if the programmer had added them manually. However, such
refactoring can affect timing and memory use so in areas where such features are im-
portant the code analysis tools must operate on the refactored version of the program.

• pthread functions are refactored from the POSIX standard form into the Anvil form. This
means that they have different arguments, but their traceability remains otherwise the
same. This could affect data-flow analysis and data-dependency graphs.

• The communications and embedded pthreads libraries are dynamically-generated and
added to the output source code. This means that during debugging, the dynamic nature
of the libraries must be considered and the programmer must ensure that the result of the
refactoring stage is taken into account by their debugging environment. However, whilst
the libraries are dynamic, they only change in small, well-defined areas. The entire of
the service level (see section 4.9) is static and does not change. At the architecture
level only function implementations change, functions are not created or removed. This
means that call chains and traces are unaffected.

• Interrupt handlers are added to implement sections of the communication library. If an
embedded kernel is being used, this interrupt handler is attached to the kernel’s existing
interrupt handling scheme. The code for the handler is static, although unused sections
are optimised out in a similar way to standard dead code removal that is implemented
by many compilers and linkers. When debugging, the programmer should be aware that
such a handler has been added.

• If an object manager is mapped to a target processor, the code for that processor will
be augmented with the OM’s code. This code is largely static, but as with the interrupt

176

4.14. Traceability

handler for the communications layer, sections that are not required will be removed. The
main difference implied by the presence of an OM is the extra memory required for OM
data structures (request queues, mutex and condition variable state, etc.).

• The use of hardware methods results in some functions of the source language calling
driver code to manipulate external devices. The code for these drivers comes from an
external support library and should be included in the debugging environment.

One problem caused by the presence of the refactoring stage is that if the compiler reports
an error during development it will report the error location according to its position in the
refactored code rather than the original source. Due to the fact that all of the refactoring steps
mentioned above are entirely predictable, it is possible to filter the reported error locations
before presenting them to the user. This requires either modifying the compiler or piping its
output through a VP-aware filter. However, for many smaller edits it is sufficient to use line
annotations.

Line annotations exist in many toolchains to allow the input code to manipulate the compiler’s
internal line counting and thereby produce better error messages. CTV can use these facilities
so that inserted code does not affect line numbering of any errors in the programmer’s original
source code. The following example shows how this is done with gcc. The original code,
shown below, reads from a shared variable and so will have extra lines injected into it by the
refactoring engine.

1 void main(void)

2 {

3 int x;

4

5 x = shareddata; //Shared variable read

6

7 printf(%d\n, x); //Syntax error

8 }

As can be seen, there is a syntax error on line 7 (the programmer has forgotten to enclose the
format string passed to printf in quotation marks). If this code is passed to gcc it will report
line 7 as the source of the error. However, the refactoring phase adds a number of lines to
the program to ensure that the remote variable access operates as expected, resulting in the
following:

1 extern _anvil_a_var_t _anvil_accessedvars[];

2 int shareddata; //Local space for remote data

3 void main(void)

4 {

5 int x;

6

7 _anvil_read_sv(0, 0, 0, 1); //id, offset, len, bytes

8 x = shareddata; //Shared variable read

9

10 printf(%d\n, x); //Syntax error

11 }

The compiler now reports that the error is on line 10, which is unhelpful to the programmer. To
avoid this, the preprocessor directive #line can be used as follows.

177

Chapter 4. Anvil: An Implementation of CTV

1 extern _anvil_a_var_t _anvil_accessedvars[];

2 int shareddata; //Local space for remote data

3 #line 1

4 void main(void)

5 {

6 int x;

7

8 _anvil_read_sv(0, 0, 0, 1); //id, offset, len, bytes

9 #line 5

10 x = shareddata; //Shared variable read

11

12 printf(%d\n, x); //Syntax error

13 }

Error messages will now correctly correspond to the programmer’s original source code.

4.15 Restrictions on input code

In summary, the following restrictions are placed on the input code that Anvil can accept:

• The language must conform to the ANSI C standard. gcc attributes and other extensions
are also supported for compatibility with standard libraries.

• Instances of pthread t, pthread mutex t and pthread cond t must be declared either
global or static. They may be placed in arrays, but the array size must be compile-time
static.

• Dynamically allocated memory (using malloc and free) cannot be shared between
threads, unless enclosed in an Anvil PO (section 4.12).

• Pointers used to access shared data must be initialised to point at the shared data item.

• Pointers used to refer to threads, mutexes or condition variables must be initialised to
point at the item.

• Pointers, once initialised to an object, can not be assigned to point to a different object.

• For every pthead create call, the first argument must be a direct reference to a pthread t
instance. Multiple pthread create calls can be used to describe threads with multiple
thread bodies.

• Non-constant function pointers cannot be used in Anvil.

In addition to this the programmer should be aware that pointers passed between threads
are not guaranteed to work. If at compile-time the threads are mapped to processors with
different memory maps then problems can arise. This is not checked. Programmers are
instead encouraged to pass an ID number or similar which can be resolved at the target thread
in order to refer to shared objects.

178

4.16. Conclusion

4.16 Conclusion

This chapter has introduced Anvil, an implementation of CTV that supports the clustering sys-
tem model described in the previous chapter. Anvil’s input language is ANSI C (with use
of the POSIX pthreads library assumed to provide concurrency and coordination) and it dis-
tributes input code over FPGA-based, heterogenous, non-uniform memory architecture sys-
tems. This chapter also defines a simple architecture description language called AnvilADL (in
section 4.2) which is used to describe the target architecture of a system and the way in which
the input program should be mapped to it.

Due to the compile-time nature of CTV, Anvil is based around a source-to-source refactor-
ing engine, described in section 4.3. The user’s input code is split from a single input pro-
gram into a set of subprograms, one for each target processor of the system. Then, a set of
processor-specific libraries are constructed that implement the communications layer, a dis-
tributed shared memory system, an implementation of pthreads for embedded systems, and
include all required hardware drivers. The processor-specific subprograms are then refac-
tored to use the generated libraries. The result of the refactoring process is that the user’s
architecturally-neutral code is mapped according to their AnvilADL description and will exe-
cute correctly.

A requirement of the CTV system model is that the application’s structure is fixed at compile-
time. Accordingly, Anvil places restrictions on the run-time variability of the input code, which
are summarised in section 4.15. These restrictions allow the implementation of the Anvil li-
braries to be only as large as is required by the current application. Only features that are
actually used by threads on a given processor need to be included in its support libraries.
For example, if a processor does not migrate then it does not need to store code to perform
a migration, even if other processors in the system host migrating objects. The overheads
associated with a feature are limited to the processors that use it.

Anvil provides support for run-time migration, with its communication library ensuring that mi-
grating objects can always be communicated with. Anvil does not yet implement migration
policies, or techniques for heterogeneous thread migration as these are studied extensively in
existing work.

179

Chapter 4. Anvil: An Implementation of CTV

180

Chapter 5

Evaluation

Chapter 3 introduced Compile-Time Virtualisation (CTV), a technique that can be used to fa-
cilitate the mapping of embedded software to complex, non-standard architectures. This was
exemplified in chapter 4 which introduced Anvil, an implementation of CTV based on the C
programming language. Anvil implements CTV’s system model and virtualisation techniques
to allow applications written in standard C to be mapped to heterogeneous FPGA-based ar-
chitectures.

In this section, CTV and Anvil are evaluated against their stated goals. Section 5.1 examines
the expressibility that CTV and Anvil affords the programmer when targeting code at non-
standard architectures. Section 5.2 evaluates the overheads in a CTV-based system and in
Anvil specifically, and section 5.3 evaluates the clustering model and how it can be useful for
targeting current and future embedded architectures.

5.1 Targeting architectures with CTV and Anvil

This section evaluates whether the CTV system model, and the CTV implementation Anvil, are
sufficiently expressive to be used for the development of software for current embedded archi-
tectures. The model’s descriptive capabilities are explored in terms of both the representation
of the target architecture and the representation of software to hardware mappings.

To do this, a range of architectures are shown along with corresponding AnvilADL descrip-
tions and notes about software mapping. The architectures of real systems are described to
show applicability to real-world problems, and invented architectures are used to argue about
future systems and specific situations. Where appropriate, example applications are mapped
to these architectures.

By using the refactoring techniques detailed in section 4.3, the Anvil refactoring engine can
target all the architectures shown. Small code examples are shown to demonstrate the way in
which software can be distributed over these architectures. Note that because this section is
evaluating the expressibility of CTV and Anvil, the performance of the final mapped system is
not considered here. Section 5.2 presents an in-depth analysis of overheads and efficiency.

181

Chapter 5. Evaluation

Microblaze 1

PLB interface

BRAM memory
controller

BlockRAM
(32KiB)

Mailbox

PLB (bus)

Microblaze 2

PLB interface

BRAM memory
controller

BlockRAM
(32KiB)

PLB (bus)

LMB
(bus)

LMB
(bus)

Interrupt Interrupt

Figure 5.1: Simple dual-core architecture as it is implemented on an FPGA.

The CTV system model has already been shown to be suitable for describing the programming
models of existing embedded development languages. Section 3.4.5 showed how programs
written in C, Ada, and Java can all be described by the model, and chapter 4 contains many
examples of how C code is represented by AnvilADL.

5.1.1 Capability-centric descriptions

The CTV system model does not fully describe all details of the target architecture. Implemen-
tation details that are transparent to the programmer are omitted because their transparency
means that they do not have an effect on the way in which software is mapped. In essence,
the CTV system model (and therefore AnvilADL) is only concerned with the capabilities of the
architecture from a processor-centric viewpoint 1.

The capability-centric view of CTV is illustrated by the architecture shown in figure 5.1. This
architecture is a simple FPGA-based dual-core system comprised of two Xilinx Microblaze
processors [258], each with their own separate memory and connected via a mailbox com-
munication channel [262]. Note that implementation requirements of the processors require
the inclusion of details such as peripheral buses, memory buses, interrupt lines and memory
controllers.

Rather than express all these details, figure 5.2 shows that way that CTV models the architec-
ture. The differences are:

1Note that the omitted information does affect the non-functional properties of the architecture, and so affects
mapping decisions. Because Anvil does not perform automatic mapping it does not need this information, but an
automatic system would require extra attributes in the AnvilADL.

182

5.1. Targeting architectures with CTV and Anvil

Microblaze 1 Microblaze 2

Mailbox

BlockRAM
(32KiB)

BlockRAM
(32KiB)

Figure 5.2: The simple dual-core architecture of figure 5.1 as it is modelled.

• Memory is expressed simply as the abstract concept of a ‘memory space’ rather than
including details of the memory controller and how it connects to the actual memory
and to the processor. Caches are expressed as a property of the memory → processor
connection, rather than by including the cache, cache controller, and associated buses.

• Interprocessor communications are expressed as abstract ‘communication channels’.
This carries all required semantic information without detailing channel hardware and
the way it is connected to the target processors.

These two changes have the advantage that they provide extra semantic information. It is
not possible to tell from the architecture of figure 5.1 that the mailbox hardware is used for
interprocessor communications, without detailed knowledge of the PLB interfaces and the be-
haviour of the mailbox hardware itself. However, in the simplified architecture of figure 5.2, this
is all replaced with a ‘channel’ object that is defined to provide interprocessor communications.
Similarly for memory, without detailed knowledge of the memory controllers the system cannot
automatically determine their purpose. However once simplified to a ‘memory space’ object
their use is clearly defined.

The AnvilADL description of this architecture is as follows:

cpu1, cpu2 : processor Microblaze;

mem1, mem2 : memory BlockRAM;

cpu1^memory = [mem1(0x0, 0x7FFF)];

cpu2^memory = [mem2(0x0, 0x7FFF)];

mem1^size = 8192;

mem2^size = 8192;

mem1^width = 32;

mem2^width = 32;

mbox : channel Mailbox;

mbox^endpoints = [cpu1(0x80000000, 0), cpu2(0x80000000, 0)];

183

Chapter 5. Evaluation

Microblaze
(with barrel
shifter and

FPU)

Microblaze
(small)

CAN

BlockRAM
(32KiB)

BlockRAM
(32KiB)

JOP

BlockRAM
(32KiB)

Figure 5.3: An example of a heterogeneous embedded architecture.

FPU Barrel shifter Area (LUTs) Max frequency (MHz)

None None 1421 92.621
None Yes 1647 92.615
Basic Yes 2660 89.946

Extended Yes 3134 89.594

Figure 5.4: Different configurations of Microblaze soft processor on the Xilinx XC3S500e
FPGA. [260]

5.1.2 Heterogeneous architectures

A common distinction between embedded architectures and general-purpose or high-perform-
ance architectures is that embedded systems tend to contain heterogeneous processing ele-
ments with greatly differing capabilities. Consider the architecture in figure 5.3. It contains two
Microblaze processors that are broadly similar but configured differently so that they contain
different functional units. The larger Microblaze contains a barrel shifter unit and floating point
unit. This enables it to perform many more operations, but increases its size accordingly, as
shown in figure 5.4.

The third processor is a different processor type, the JOP Java processor [196]. JOP (Java Op-
timised Processor) is a hardware-based implementation of the Java Virtual Machine that allows
direct execution of Java bytecodes. JOP has much more predictable execution time bounds
than a Microblaze executing the same bytecodes through a software-based JVM, making it
suitable for real-time systems.

The memories used in the architecture are the same as in the previous example and communi-
cations are provided by an on-chip CAN bus using a Xilinx CAN interface [259]. The hardware
is described as follows:

bigmb, smallmb : processor Microblaze;

bigmb^barrelshifter = True;

bigmb^fpu = True;

184

5.1. Targeting architectures with CTV and Anvil

jop : processor JOP;

mem1, mem2, memjop : memory BlockRAM;

bigmb^memory = [mem1(0x0, 0x7FFF)];

smallmb^memory = [mem2(0x0, 0x7FFF)];

jop^memory = [memjop(0x0, 0x7FFF)];

mem1^size = 8192;

mem2^size = 8192;

mem3^size = 8192;

mem1^width = 32;

mem2^width = 32;

mem3^width = 32;

can : channel CAN;

can^endpoints = [bigmb(0x80000000, 0, 0),

smallmb(0x80000000, 0, 1), jop(0x80000000, 0, 2)];

Due to the large amount of heterogeneity in this system, the placement of code throughout the
architecture is particularly important. Consider the following program fragment:

pthread_t calcthread;

void vector_mult(float *data, int len, float mult) {

int i;

for(i = 0; i < len; i++)

data[i] = data[i] * mult;

}

void *calculation_thread() {

float data[50];

float multfactor;

...prepare data...

vector_mult(data, 50, multfactor);

}

void main(void) {

...

pthread_create(&calcthread, 0, calculation_thread, 0);

...

}

This code makes use of floating point arithmetic to perform a vector multiplication, so if im-
plemented on a processor without a floating point unit the compiler must emulate the floating
point operations with integer arithmetic. Mapping the code fragment is performed simply by
adding one of the following lines to the AnvilADL:

185

Chapter 5. Evaluation

Processor Execution time (cycles)
1 iteration 100 iterations

smallmb 15,034 1,503,734
bigmb 631 63,426
jop 51,002 114,428

Figure 5.5: The performance of the same code fragment on different target processors.

bigmb^threads = ["calcthread"];

//OR

smallmb^threads = ["calcthread"];

Note that Anvil’s source language is C rather than Java so it cannot normally use the JOP
processor. For illustrative purposes, mapping to JOP was performed manually by wrapping the
calculation thread function up as a Java program and compiling it using the JOP toolchain.
No other refactoring is needed in this example. The compiler should be told to use the FPU in
the Microblaze that supports it by adding the -mhard-float compiler switch.

Figure 5.5 shows the effect that different mappings can have on system performance. In each
case exactly the same results are obtained, but the amount of time taken to perform the vector
multiplication varied considerably. Clearly, when mapped to bigmb the hardware floating point
unit can be used and the code executes quickly. smallmb’s software emulation is over 23 times
slower. JOP’s result is different again. It takes much longer to execute, but this is because the
measured time taken includes the overhead of setting up the processor’s microcode stores. As
this test shows a short program that is only executed once, this overhead dominates. Longer
programs increase JOP’s efficiency relative to the other two processors.

This example shows two important points about CTV and Anvil. The first is that CTV’s main
contributions are in providing seamless architectural mapping and exposing a high-level hard-
ware interface to allow efficient exploitation. The architecture is exposed in a high-level manner
that allows quick and easy exploration of the solution space. However, the second point is that
CTV still relies on the presence of a suitable source programming model and compiler to make
use of the underlying hardware. Because Anvil’s source language is C and not Java, it cannot
make effective use of the JOP processor and so manual intervention is required. Section 3.4.8
showed how the system model can be applied to Java, so this is a limitation of Anvil rather
than CTV.

5.1.3 Non-uniform memory

The architecture in figure 5.6 shows a non-uniform memory architecture. The architecture
contains two processors that each have their own block of memory and have access to a single
block of shared memory. The shared memory is a block of off-chip DDR2 memory controlled
by a multi-port DDR2 memory controller (not shown). In the implementation this controller
is the Xilinx Multi-port Memory Controller (MPMC) [265]. The architecture is represented in
AnvilADL as follows:

186

5.1. Targeting architectures with CTV and Anvil

Microblaze 1 Microblaze 2

Mailbox

BlockRAM
(32KiB)

BlockRAM
(32KiB)

Shared DDR2
(64MiB)

Figure 5.6: An example architecture with a non-uniform memory architecture.

Address Contents

0x00000000 - 0x00007FFF BlockRAM
0x00008000 - 0x0FFFFFFF Unassigned
0x10000000 - 0x10FFFFFF Shared DDR2 memory

Figure 5.7: The address map of both processors in the NUMA example.

cpu1, cpu2 : processor Microblaze;

mem1, mem2 : memory BlockRAM;

sharedmem : memory MPMC_DDR2;

cpu1^memory = [mem1(0x0, 0x7FFF), sharedmem(0x10000000, 0x10FFFFFF)];

cpu2^memory = [mem2(0x0, 0x7FFF), sharedmem(0x10000000, 0x10FFFFFF)];

mem1^size = 8192;

mem2^size = 8192;

mem1^width = 32;

mem2^width = 32;

sharedmem^size = 16777216;

sharedmem^width = 32;

//64 MiB

can : channel Mailbox;

mbox^endpoints = [cpu1(0x80000000, 0), cpu2(0x80000000, 0)];

The resulting address map of both processors is shown in figure 5.7.

As with the previous example, this sort of architectural feature highlights the importance of
code mapping. Anvil’s communications layer means that shared data can be placed in any
memory space and the application will still execute correctly, but the difference in performance
is significant. Figure 5.8 shows the effect that memory mapping decisions have on a set of
benchmark programs executing on CPU1. If the program’s primary input data is local (assigned
to memory mem1) then the execution is in some cases two orders of magnitude faster than if
the data is mapped to a remote memory location (mem2 in this architecture).

187

Chapter 5. Evaluation

Benchmark
Execution time (cycles)

Input data Input data
stored locally stored remotely

fdct 9908 216350
quicksort 26157 320142
binarysearch 1114 9502
bsort 78044 1075473
sobel 574097 21811154

Figure 5.8: The effect of mapping data items to different memory spaces in the architecture of
figure 5.6. Adding caches would reduce the discrepancy for programs that frequently access
the same data (sobel) but have little effect on programs that do not (binarysearch).

PPE

L2 cache

L1 cache

Power
core

SPE

Local
storage
+ DMA

SPE

Local
storage
+ DMA

SPE

Local
storage
+ DMA

SPE

Local
storage
+ DMA

SPE

Local
storage
+ DMA

SPE

Local
storage
+ DMA

SPE

Local
storage
+ DMA

SPE

Local
storage
+ DMA

Main memory
(XDR)

FlexIO FlexIO

Element Interconnect Bus

Memory
controller

Figure 5.9: Block diagram of the Cell processor architecture [180]

5.1.4 IBM Cell

Cell [122] is a microprocessor architecture that consists of a general-purpose RISC-based core
alongside a set of coprocessors designed to accelerate multimedia and vector processing ap-
plications. The central RISC core is called the Power Processing Element (PPE) (sometimes
simply Processing Element) and the surrounding auxiliary cores are called Synergistic Pro-
cessing Elements (SPEs). The cores are connected using an internal bus called Element
Interconnect Bus (EIB). The memory hierarchy of the Cell makes extensive use of DMA. Con-
nected to the EIB is a memory controller which allows access to external memory. Each SPE,
however, is equipped with its own DMA engine that can be scheduled to fetch data into their
own local memory. The PPE has two levels of standard cache. A block diagram of the archi-
tecture is shown in figure 5.9.

The Cell can be described in AnvilADL using the following code. Note that most Cell con-
figurations contain eight SPEs - the repeat declarations are omitted from the description for
brevity.

188

5.1. Targeting architectures with CTV and Anvil

spe0 : processor SPE;

//and declarations for spe1, spe2 etc.

eib : channel EIB;

eib^endpoints = [ppe, spe0, spe1...];

mic : memory XDR;

mic^width = 64;

//mic^size set to the system memory capacity

ppe^memory = mic;

spe0local : memory SPE_LOCAL; //SPE local store

spe0^memory = spe0local;

//and declarations for spe1, spe2 etc.

//Note, it is tempting to add the following

//spe0^extramemory = mic;

//but this is incorrect because SPEs do not have direct access

//to system memory. Instead, the programmer references shared

//data assigned to system memory and the communication layer

//provides the associated DMA to pre-load local storage.

//FlexIO access

flexio0, flexio1 : hardware FlexIO;

flexio0^ports = [ppe, spe0, spe1...];

flexio1^ports = [ppe, spe0, spe1...];

//DMA controllers

spe0dma : DMA SPE_DMA;

spe0dma^memory = [spe0local, mic];

spe0dma^ports = [spe0, ppe];

When using CTV-based techniques to target the Cell the following points should be considered:

• The complexity of the EIB can be transparently handled by the EIB channel, associated
drivers, and the refactoring engine. The EIB’s efficiency is increased by using messages
that are closer in length to eight bus cycles. Such information allows the refactoring
engine to automatically optimise the size of multi-part messages.

• Mapping the input program to the PPE and SPEs can be handled transparently by the
refactoring engine. This allows the programmer to place their code appropriately through-
out the architecture. The EIB is organised as a ring so the mapping of pipeline stages to
SPEs can have a significant effect on application throughput. CTV’s transparent mapping
capabilities can aid this considerably.

• Access to the Cell’s IO is provided by wrapping the FlexIO IO controller as a custom
hardware element. The programmer must access the FlexIO manually, but CTV hides
the low-level code required to access it over the EIB.

• The PPE’s cache does not need to be explicitly modelled because its operation is trans-
parent to the programmer.

189

Chapter 5. Evaluation

Core 0

Core 1 Core 2

Core 3 Core 4

I/O

RAMRAM

RAM

RAM

RAM RAM

Figure 5.10: 5-core Cell-like system with custom interconnect

• The SPEs are SIMD processors, capable of large, single-cycle vector operations. CTV
assumes that a suitable programming model and compiler are used to effectively exploit
this capability. Unextended ANSI C is unlikely to stretch the capabilities of the SPEs,
making Anvil a poor choice for high-performance Cell programming due to its lack of
fine-grained parallelism. This is not a limitation of CTV, however, as a version of C with
support for loop-parallel operations could have been used (or an auto-parallelising com-
piler as discussed in section 2.1.1).

• Note that many Cell programming models also use mailboxes for communication be-
tween SPEs. These can be modelled as channels, as shown in the examples of sec-
tion 5.1.1.

The key to achieving high throughput in Cell programming is effective use of the SPE’s memory
engines. The SPEs cannot directly access system memory. Instead, accesses are passed
through a Memory Flow Controller inside the SPE that uses its DMA engine to fetch data from
system memory or pass data to another SPE. This can be modelled by CTV by modelling the
SPE’s local memory and data in system memory as shared data items. Then, when accessed
by SPE code the communications layer automatically handles the required DMA accesses.
This has to be normally done with manual programmer intervention through the use of custom
libraries, or middleware. More information on memory transfers and analysis of efficiency can
be found in section 5.2.4.

CTV has an interesting advantage over purely run-time systems because it has access to
the entire source code of the system, during the refactoring stage. This allows CTV to auto-
matically schedule memory transfers offline to maximise EIB use. A full investigation into the
benefits of this is outside the scope of this thesis however, as this section simply aims to show
that the CTV system model can suitably target the Cell processor.

5.1.5 FPGA-based Cell-like system

Figure 5.10 shows a five-core FPGA-based system that is based on features of the Cell and is
considered to help show the scalability of CTV and the OM model. In this architecture, cores 1-
4 are small Microblaze cores with a 3-stage pipeline (representing the SPEs) whilst core 0 has
a floating point unit, 5-stage pipeline, and instruction and data caches. Like the Cell, each core

190

5.1. Targeting architectures with CTV and Anvil

10
15
20
25
30
35
40

cy
cl

es
 (

x1
,0

0
0

,0
0

0
)

Theoretical
Actual

0
5
10

1 2 3 4 5

C
lo

ck
 c

Number of cores

Figure 5.11: Block encryption time for 3-DES compared against the theoretical best-case
speedup.

has its own local memory and can access main system memory over the interconnect. The
only significant differences from the programmer’s perspective is that cores 1-4 are not vector
processors and the different bus topology, which has been selected to increase the complexity
of the architecture. The architecture consumes 91% of the target FPGA’s logic resources and
has a maximum throughput of 2160 Dhrystone MIPS at 360MHz.

To test the ability of the communications layer and shared memory system to operate over
such a complex architecture, an implementation of the 3-DES encryption algorithm [13] was
developed that can scale to a variable number of worker threads. 3-DES was chosen because
it is a block cypher that, once the encryption key is distributed to all workers, can be easily
parallelised by encrypting multiple blocks concurrently.

The structure of the implementation is shown in figure 5.12. It uses a single controller thread to
allocate blocks to worker threads located elsewhere in the system. Each block is modelled as
a shared data variable, and access to them protected by associated mutexes (section 4.8.3) to
improve the efficiency of the shared memory system. The worker threads are signalled to start
by the controller thread which passes the block number to encrypt and the key. Once signalled
they begin encrypting their block and the controller thread waits for them to complete. Note
that due to the requirement that threads are compile-time static, the worker threads are not
being created and destroyed for each block, they are instead passed a list of blocks to encrypt.
An implementation could also use a pthreads thread pool.

The efficiency of the shared memory system for this implementation is very good because its
memory access pattern is simple and predictable. The entire block is fetched, encrypted, and
transmitted back, so no unnecessary copying takes place. Section 5.2.4 evaluates this issue,
and compares against existing shared memory systems where appropriate.

Figure 5.11 shows time taken to encrypt fifty blocks of data using for varying numbers of active

191

Chapter 5. Evaluation

Controller thread

Worker threads

Blocks to
encrypt

Blocks for encryption
(shared data items in main memory)

Encryption
engine

Mutexes
(one for each data block) lock

mutex

access
shared

variable

Key

start thread

join on completion

Figure 5.12: 3-DES implementation block diagram.

cores when compared against the theoretical best-case speed up (200% for 2 cores, 300%
for 3 cores etc.). The best-case is unattainable because it disregards time taken moving data
and for inter-thread communication, but it serves to provide scale and a point of comparison to
the results. The results show that the system scales well to five cores and that the distributed
nature of the OMs allows the system to execute without the presence of a sole bottleneck.
When used with associated mutexes the shared memory system can move the blocks of data
efficiently, as evaluated later in this chapter.

5.1.6 IO and custom hardware

As detailed in section 4.10, Anvil allows the programmer to make use of function accelerators
and I/O channels that are present in the implementation architecture. The way in which this is
achieved uses standard techniques for accessing external devices, but the use of CTV allows
Anvil to reduce the burden that this places on the programmer, creating code which is more
portable and easier to maintain.

Figure 5.13 shows an architecture built to demonstrate this. The target system is a single-core
Microblaze system containing a custom hardware element which is designed to evaluate the
quadratic polynomial y = ax2+bx+c in IEEE floating point arithmetic. The coefficients a, b, and
c are presented to the hardware unit and on the next clock cycle y is available. The Microblaze
core used in this system does not have a floating point unit, so any floating point operations
specified by the input source code have to be implemented in software by the compiler.

The I/O in the architecture is a standard UART and a set of LEDs connected via a general-

192

5.1. Targeting architectures with CTV and Anvil

Microblaze

BlockRAM

Quadratic
evaluation unit

UART

GPIOLEDs

Figure 5.13: Example architecture containing custom hardware elements.

purpose I/O (GPIO) core.

The quadratic evaluation unit, UART, and GPIO are accessed through synchronous ports and
therefore the only parameter they require is the memory address at which they are located.
The system is described in AnvilADL as:

cpu0 : processor Microblaze;

mem0 : memory BlockRAM;

cpu0^memory = [mem0];

quadeval : hardware Quadratic;

quadeval^ports = [cpu0(0x86000000)];

extuart : hardware UART_IO;

extuart^baud = 9600;

extuart^uartsettings = "8N1";

extuart^ports = [cpu0(0x88000000)];

leds : GPIO(8, "O");

leds^ports = [cpu0(0x8A000000)];

The Anvil hardware libraries define the interface to these cores through driver functions:

//Quadratic evaluation unit

typedef struct {

volatile int *addr;

} quad_t;

int evaluate_quadratic

(quad_t *quad, char a, char b, char c){

*(quad.addr) = (a << 16)|(b << 8)|c;

return (*(quad.addr + 1));

}

//UART

typedef struct {

volatile int *addr;

char recv_buffer[UART_BUFSIZE];

int recv_start = 0;

193

Chapter 5. Evaluation

int recv_count = 0;

} uart_t;

void uart_send_char(uart_t *uart, char c) {

while (*(uart->addr + 2) & 0x08);

*(uart->addr + 1) = c;

}

//Receive function not shown.

//Adds the received byte to the circular buffer recv_buffer

//LEDs

typedef struct {

volatile int *addr;

} gpio_t;

void gpio_output(gpio_t *gpio, int val) {

*(gpio->addr) = val;

}

The various structure types hold the port’s parameters and any internal values required by the
driver. The declaration of these structs is inserted into the source code during refactoring, one
for each instance declared in the AnvilADL description. For the above description, the following
is inserted.

quad_t quadeval = {(int *)0x86000000};

uart_t extuart = {(int *)0x88000000};

gpio_t leds = {(int *)0x8A000000};

Once this is done, to access the quadratic evaluation unit the user can write code to use
the evaluate quadratic function normally and the refactoring will ensure that it is always
compiled to access the correct memory locations. No run-time overhead is associated with
this because the code is generated statically at compile-time. Example application code is
shown below:

int main(void) {

char c;

c = uart_get_char(uart);

gpio_output(leds, c);

}

This way of handling external devices is not new, it is the accepted way of doing this in C-
based languages. However, the interesting points are that CTV allows the user to define the
presence of their hardware in the Anvil ADL and then simply use those devices without any
extra structure definitions. The user does not have to copy addresses or interrupt vectors
into their code, and interrupt handlers can be automatically applied to the correct devices.
This code is portable to any architecture with similar devices present, whereas the traditional
method may not be.

Figure 5.14 shows the number of clock cycles taken to evaluate a single equation using soft-
ware emulation and the hardware accelerator, over a range of input values. The hardware

194

5.1. Targeting architectures with CTV and Anvil

Software With h/w acceleration

3808 - 3910 cycles 48 cycles

Figure 5.14: Quadratic evaluation times

version is two orders of magnitude faster than software emulation, only requiring two bus
transactions to evaluate an expression.

5.1.7 Texas Instruments OMAP family

The Texas Instruments OMAP (Open Multimedia Application Platform) [58] is a range of System-
on-Chip devices developed for use in portable embedded devices. They are frequently de-
ployed in mobile phones or similar devices and feature multi-core architectures with a wide
range of integrated peripherals. Programming for the OMAP platform requires being able to
make effective use of the following architectural features:

• The OMAP contains a range of memory technologies arranged in a non-uniform memory
architecture. The architecture contains caches and DMA engines.

• All devices in the OMAP family contain a wide range of peripherals and I/O devices that
can be used to perform specialist tasks.

• Devices in the OMAP range contain an embedded ARM core, a programmable DSP
core, and some also contain a GPU. Therefore code must be split across multiple het-
erogeneous processing elements with different programming paradigms.

CTV is well-suited to targeting architectures with complex memory hierarchies and can effec-
tively describe the different memory types present in the architecture and their locations. For
example, The following AnvilADL fragment describes the memory topology of the OMAP3530
[219].

//These two lines inform Anvil that coherency must be

//considered, and which CPU driver to use to manipulate

//the cache lines.

main : processor CortexA8;

main^cache = [instruction, data];

//112k on-chip Boot ROM

bootrom : memory ROM;

bootrom^width = 32;

bootrom^size = 28672;

//64k on-chip RAM

intram : memory;

intram^width = 32;

intram^depth = 16384;

//Off-chip RAM

195

Chapter 5. Evaluation

gpmc : memory GPMC;

ddrsd : memory DDR_SDRAM;

intram^width = 32;

ddrsd^width = 32;

//^depth depends on the attached RAM device

main^memory = [bootrom, intram, gpmc];

//DMA controller

dma : DMA OMAP_DMA;

dma^memory = [bootrom, intram, gpmc];

dma^ports = [main];

The GPMC memory controller of the OMAP can control multiple external memory devices. If
this is the case in the target architecture then the designer can choose to model the whole
GPMC as one large memory space or model the attached memories separately if they have
differing characteristics.

Note that the description above does not specify the address ranges for the internal memory
devices. On boot, the memory devices are configured and mapped by the OMAP firmware’s
first stage boot loader. As a result, the above description should be populated with the set up
values that are used so that the VP correctly reflects the underlying hardware.

Anvil’s shared memory system can use the declared memory spaces to allocate storage. The
OMAP already has a unified address space (from the perspective of the ARM core), but Anvil
can facilitate the use of DMA and shared memory mapping. Examples of this are explored
later in section 5.2.4.

The peripherals that are part of the OMAP can be represented as custom hardware compo-
nents due to the fact that they are all memory-mapped and can be effectively wrapped in driver
code. Examples of how to do this are presented in sections 4.10 and 5.1.6. The peripherals
on the OMAP family include the following:

• Serial UARTs

• I2C bus interfaces

• General-purpose IO controllers

• General-purpose timers and watchdog timers

• A2D and image capture chips

These peripherals are all passive, responding to accesses from the main ARM processor, so
they are well described by the CTV target layer (section 3.4.4).

The main difficulty with targeting the OMAP is that it contains heterogeneous processors –
an ARM9 core, a VLIW DSP core, and a GPU in many cases. Whilst such systems are
supported by the CTV system model, Anvil cannot target these processors effectively because
DSP programming is unsupported in ANSI C and gcc. This is a limitation that results from
Anvil’s source language. CTV is language-agnostic, so an implementation could be developed
that is based on another language or language extension that supports vector programming

196

5.1. Targeting architectures with CTV and Anvil

more easily, such as OpenMP (see section 2.1.1). In this case, CTV would be able to map
vector programming constructs to be executed on the DSP or GPU. For example, in OpenMP
a vector multiplication can be expressed as follows:

int main(int argc, char *argv[]) {

const int N = 100000;

int i, a[N];

#pragma omp parallel for

for (i = 0; i < N; i++)

a[i] = 2 * i;

return 0;

}

The omp parallel for pragma identifies that the operation should be sent to one of the other
processors for execution.

Because of C’s unsuitability for DSP programming, Anvil cannot fully support the OMAP archi-
tecture. An Anvil extension that allowed vector processing is possible but outside the scope of
this thesis.

5.1.8 Summary

This section has demonstrated that both CTV’s system model and Anvil’s AnvilADL are suffi-
ciently expressive to allow the targeting of modern embedded systems. A caveat is identified
that, because C does not support vector-based processors, Anvil also cannot support such
processors without the implementation of a language extension. The area of GPU program-
ming (section 2.1.2) is still developing and stabilising so it was not considered by this thesis,
but implementation of languages such as OpenCL [169] or OpenMP [39] to support vector
processors is interesting further work and fully-supported by the CTV system model.

An observation from this section is that AnvilADL descriptions can be reused in the same way
that code libraries can. Section 5.1.4 contains an AnvilADL description for the Cell processor
which once created can be reused in multiple projects that wish to target the same hardware.
Only the statements which perform architectural mapping would need to change. Accordingly,
future work could consider coding styles for AnvilADL descriptions which split the description
more cleanly into three sections:

• Hardware description: Description of the target architecture in terms of its processors,
memory spaces, channels, and hardware elements. Definition of cluster targets. Identi-
fication of DMA engines. Specification of interrupts, address spaces, etc.

• Software description: Cluster definitions. Mutex associations. Anvil POs. Instances of
OMs and the items they manage.

• Mappings: Mappings of threads to processors and data to memories. Assignment of
clusters to cluster targets. Mapping of OMs to processors.

197

Chapter 5. Evaluation

The hardware description section need only be updated if the hardware is revised, and can
be reused by other projects that are to be executed on the same architecture. The software
description section need only be updated if the software is changed and can be reused when
the same application is to be ported to a new target architecture. The mapping section is
unique to the combination of application and target hardware and must be updated when
either change.

In this section the range of supported processors is limited to those which can be easily im-
plemented on the experimental hardware, a set of Xilinx FPGAs. It should be noted however
that support for additional processor architectures can be easily included into Anvil. Support
for a processor requires a compatible compiler and toolchain, and that processor drivers are
written to implement the architecture-level functions of the embedded pthreads library (defined
in section 4.9.2).

5.2 Overheads

Sections 3 and 4 claimed that the compile-time nature of CTV allows it to introduce a much
smaller amount of overhead into the final system than equivalent run-time techniques. This
section investigates this statement.

Section 5.2.1 enumerates the potential areas from which overhead may originate in an em-
bedded system. Sections 5.2.2 and 5.2.3 then go on to discus how the compile-time nature
of CTV can be leveraged to reduce these. It demonstrates that in the worst-case, CTV can
choose to ‘fall back’ to a purely run-time system and therefore does not increase overall sys-
tem overheads. Sections 5.2.4 and 5.2.5 then examine in detail the overheads of the shared
memory system. Finally, section 5.2.6 looks at the compilation overheads introduced by CTV.

5.2.1 Sources of overhead

To analyse CTV’s effect on run-time overheads it is necessary to first consider the potential
sources of overhead in existing systems. When developing systems in a high-level program-
ming language, overhead is used here as an informal measure of the difference in performance
between:

• the best possible series of machine instructions to achieve a given task,

• and the best high-level program that achieves the same task, and that can be written
without leaving the high-level programming model.

The qualification about not leaving the high-level programming model is because it is possible
to write abstraction-breaking programs such as a C program that is just a wrapper for inline
assembly code. Overhead is not codified as a quantitative measure because ‘performance’
can refer to different design goals such as memory usage or data throughput.

Modern programming languages may introduce overhead in any of the following areas:

198

5.2. Overheads

• Interpretation: Some systems, such as standard Java or Smalltalk, do not compile
to native opcodes and must be either interpreted or ‘just-in-time’ compiled using a JIT
compiler [138, 266]. This allows for a very flexible and dynamic language but requires the
presence of a virtual machine and compiler at run-time which imposes a large memory
footprint. Also, interpreted languages are frequently slower than natively compiled ones.

• Heavyweight communications: Because languages are general-purpose and the run-
time is not given architectural information, the communications layer implemented by
standard languages is very general and lacks architectural specialisation. Custom archi-
tecture communications channels may be unused. Also, because the language run-time
does not have any knowledge of the input program the communications layer inserts
many unnecessary layers of indirection. Even when two static threads communicate, the
layer will frequently require an OS call or similar to determine the threads’ current loca-
tions, rather than refactoring the input code to simply make the communication directly.

• Data copying: When two threads share data but execute in physically separate areas
of the architecture, copying and updating of shared data is inevitable. However, modern
languages frequently do not contain a model of the target memory hierarchy and com-
munications infrastructure, resulting in programs which are forced to communicate and
share data inefficiently.

• Operating system support: Most modern languages cannot execute without some form
of OS or rub-time support. The OS provides services, like threading, communications,
coordination etc. and the various threads of the system must call in to the OS to use
them. However, this creates a bottleneck, because almost always the OS only executes
on a single processor of the system, forcing all other cores to call in to it frequently. Some
languages (such as Ada) can replace the OS with a complex language run-time, but the
bottleneck problem remains.

• Memory management: Most languages assume a single logical address space over the
entire architecture to simplify programming. This is frequently an unworkable assumption
with large NUMA systems, but on simpler architectures it can still place sizable demands
on the hardware. Complex memory management units (MMUs) are required to maintain
this abstraction. MMUs are very expensive in terms of silicon area and many embedded
processors do not have them.

• Cache coherency: Languages tend to assume perfect cache coherency across the
entire system. Programmers are not asked to consider that in some cases shared data
might be incoherent. As a result, as systems move to hundreds of cores or more complex
topologies coherency becomes increasingly unworkable. Rather than only maintaining
coherency for data objects that require it, all memory is kept coherent across all caches
in the system because that is what is required by the programming model. This leads
to a large amount of overhead in terms of execution time (in the case of software cache
coherency) of silicon area (for hardware cache coherency).

• I/O and interrupts: Low-level device driving requires efficient handling of interrupts and
direct memory-mapped I/O. In higher-level languages that abstract away from hardware
features (such as Java), inefficiency can be introduced, either because the language
model does not consider such details, or because OS calls are required.

The following section considers the way in which CTV attempts to reduce these areas of inef-
ficiency.

199

Chapter 5. Evaluation

5.2.2 Reduction of overheads due to CTV

Many of the identified sources of inefficiency in section 5.2.1 originate from the fact that input
code is written without architectural knowledge and the run-time system is executing without
knowledge of the application. Accordingly, the two must interact using general-purpose APIs
during execution and cannot specialise without losing generality. CTV instead provides archi-
tectural mapping information at compile-time, allowing a general programming model but one
that can still specialise to reduce overheads.

This gives CTV the potential to reduce run-time overhead in the following areas:

• Heavyweight communications: Because the architectural mappings are provided at
compile-time, CTV’s communications layer can statically route communications between
non-migrating elements. (Anvil’s implementation of this is described in section 4.7.)
The overheads associated with run-time dynamic routing are only incurred for situations
where they are absolutely required. The programmer can also direct communication over
specific communication channels to make efficient and predictable use of the underlying
hardware.

• Data copying: Copying data cannot be avoided, but CTV’s compile-time information
allows the shared memory system of an implementation (Anvil’s is described in sec-
tion 4.8) to determine at compile-time when copying is required. This information can be
leveraged to preload caches and schedule DMA transfers.

• Operating system support: CTV distributes OS services over the architecture in a
scalable manner using the OM model, preventing system bottlenecks (section 3.7).

• Memory management: Most embedded systems only use statically-allocated data and
do not load external code, so they do not require complex memory management. CTV
can use code refactoring and the OM model to provide more complex memory manage-
ment from software when it is required (section 4.8).

• Cache coherency: The clustering model (section 3.2) allows the programmer to limit
the required coherency in their system, thereby allowing the system to relax coherency
requirements and only maintain coherency between tightly coupled areas that require it.

Every system displays a certain amount of inescapable overhead that originates from the need
to move data across non-uniform memory architectures or send messages over communi-
cation channels. Assuming efficiently-written input code, this overhead cannot be reduced.
Non-essential overhead in addition to this is what CTV attempts to eliminate.

When implemented as a solely compile-time system, there are two possible areas in which a
CTV-based system could perform worse than a middleware-based run-time system:

• CTV uses a general-purpose communications protocol for implementing architecture
support libraries and the OM model, that is based on the programming model of the
chosen language. (These messages are detailed in appendix A.) A programmer with
application-specific knowledge could implement a custom communications system that
performs better for the target application.

200

5.2. Overheads

Benchmark With CTV Without CTV

quicksort-fpu 26,222 26,222
fast-dct 7,716 7,716
binarysearch 114 114
linkedlist 3453 3453

Figure 5.15: Evaluation time (clock cycles)

• Whilst the specifics of the shared memory, routing, and cache coherency algorithms are
not specified by CTV’s system model, they are applied at compile-time. It is not always
possible for the compiler to statically determine exactly which elements of shared data
are read in a given code block, so as a result a compile-time system may be forced to
assume the worst and transfer more data than is actually required.

In general however, the extra overhead that the use of CTV can introduce is provably no
worse than that of existing systems, because in the worst case, CTV could simply choose
to implement existing run-time shared memory and communication systems. (For example,
Adsmith or Rthreads, see section 3.6.2.) This would remove many of the areas in which CTV
has the potential to leverage compile-time information to reduce overheads, but it demonstrates
that the use of CTV is never required to make a system less efficient.

CTV’s compile-time overhead reduction can be contrasted with the just-in-time (JIT) compila-
tion employed by the JVM or languages like Haskell. JIT compilation allows run-time accel-
eration of code, but requires the presence of a full compiler and general-purpose VM. CTV’s
compile-time specialisation makes use of the extra information provided by the system model
to reduce these requirements at the expense of increased compilation overheads.

CTV’s potential to use compile-time information to reduce overheads is illustrated effectively
when Anvil is used to target a single-processor system with a single block of memory - the
standard Von Neumann-style architecture assumed by C’s programming model. Because this
architecture does not require the use of any of Anvil’s libraries, no run-time overhead is intro-
duced at all. The VP and the actual platform are the same, meaning that the virtualisation
reduces to nothing. With a run-time system that makes use of translation or virtualisation
layers (Java / Smalltalk) or heavyweight middleware (such as CORBA [183]) even when the
benefits of these systems is not needed they still introduce significant run-time overheads.

Figure 5.15 shows the execution times of four benchmark programs when run with and without
the aid of Anvil. It shows that because of the compile-time nature of Anvil, it does not need to
alter the code so that it executes correctly on the target architecture and the resulting execution
time overhead is therefore 0%.

Having demonstrated that CTV’s worst-case performance is the same as existing run-time
systems, the following sections detail aspects of Anvil, enumerate its performance, and where
appropriate compare with existing systems.

201

Chapter 5. Evaluation

Base Object Manager services
Message receipt and transmission
Message forwarding
Channel drivers
Custom hardware drivers
Target processor drivers

Static thread management
Thread operations

Static mutex /cv management
Mutex operations
CV operations

Shared data management
Shared data operations
Read/write caching
Cache coherency

Migration services
Thread migration (currently unsupported)
OM migration
Data migration
Maintenance of communications layer

Figure 5.16: The service layers of Anvil’s OMs

5.2.3 Object managers

Section 5.2.2 showed that CTV can reduce its impact to the minimum required by the input
application. This section shows this effect on the OMs of the system, and how they may
change in response to the source application.

OM features are added according to figure 5.16. Every OM provides a base set of features
that allow it to form part of the communications layer and forward messages for parts of the
system. If the OM also manages objects, the services for those objects are included in its
compiled code base. Finally, if migration is supported then a further layer of code is required
to provide migration services. Figure 5.17 shows how the code size of the OM changes as
its supported features change. Note that this table shows indicated sizes only. Most features
of the OM share functions and data structures so it is difficult to precisely apportion code to
specific feature sets. Also, these numbers are for a Microblaze OM, other processors may be
slightly different.

Even though the current Anvil code base is not optimised, it can be seen that OMs only impose
a small code footprint on the embedded processor, up to approximately 7.6kB. For comparison,
the Xilkernel microkernel (which is heavily optimised) requires 16kB of code for basic round-
robin scheduling and limited interrupt handling, or 22kB for its full feature set [256].

The scale of these sizes is highlighted by considering the memory footprint of run-time middle-
ware solutions such as CORBA ORBs. Although not directly comparable due to their differing
feature sets, Real-Time CORBA [247] is aimed at deployment in real-time and embedded sys-
tems despite the TAO ORB measuring 2075kB in size, and the ZEN Real-Time ORB measuring
approximately 2539kB [135].

The OM’s throughput does not change by a significant amount as features are added. The

202

5.2. Overheads

Configuration Code size (bytes)

Base 5256
Manage mutexes 6180
as above plus threads 6656
as above plus CVs 7092
as above plus shared variables (manage only) 7200
as above also accessing shared variables 7390
as above plus POs 7490
Full 7790

Figure 5.17: The code footprint of an OM scales according to its use. Numbers given for the
Microblaze soft processor.

reason for this is that OM features are triggered by the receipt of request messages. There-
fore the main body of the OM, once it has assembled an incoming message simply tests the
message’s type and jumps to the appropriate handler routine. The code looks like this:

void process_message(int buffer) {

switch(bufferitem(buffer, 2)) {

#ifdef _ANVIL_OM_BASE

case M_FORWARDMESSAGE:

//Handle

break;

#endif

#ifdef _ANVIL_OM_THREAD

case M_THREADCREATE:

//Handle

break;

case M_THREADEXIT:

//Handle

break;

...

OMs also require memory for their internal data structures. In Anvil this data footprint is pre-
dictable because these structures are statically allocated at compile-time. Other implementa-
tions may choose to dynamically allocate this data from a heap to increase flexibility at the loss
of predictability. Because of this static allocation, each OM is parameterised by two values:

• ANVIL REQUEST QUEUE SIZE: Determines the maximum number of requests that can be
queued on a managed object (mutex, shared variable, etc.) This is currently set to its
worst-case value, which is the number of processors (including the current processor)
that host threads that access this object.

• ANVIL CIRC BUFF SIZE: The number of concurrent unbuffered messages this processor
can handle. This is currently set to its worst-case value, which is the number of channels
and custom hardware items that the processor is connected to.

The required memory for this data is shown in the following table:

203

Chapter 5. Evaluation

Item Size

Message buffers 3 + (34 × ANVIL CIRC BUFF SIZE) bytes
Hosted thread state 4+(4∗ ANVIL REQUEST QUEUE SIZE) bytes per currently

hosted thread
Managed thread state 3 + (4 ∗ ANVIL REQUEST QUEUE SIZE) bytes per thread
Managed mutex state 3 + (4 ∗ ANVIL REQUEST QUEUE SIZE) bytes per mutex
Managed CV state 2 + (4 ∗ ANVIL REQUEST QUEUE SIZE) bytes per CV
Managed PO state 3 + (4 ∗ ANVIL REQUEST QUEUE SIZE) bytes per PO
Managed shared variable state 5 bytes per shared variable
OM local variables and buffers Approximately 56 bytes not including stack frame over-

head. Varies depending on target architecture.

5.2.4 Shared memory

This section examines Anvil’s shared memory system (section 4.8). This evaluation focusses
on the following two features of shared memory systems:

Transfer selection An efficient shared memory system should only transfer bytes that are
required by the application. For example, if a processor only accesses part of a re-
mote array, only that section should be transferred to it before execution and transferred
back afterwards. This section considers the volume of data transferred by Anvil’s shared
memory system and only analyses the input code and the way in which it is refactored.

Transfer efficiency Once the algorithm has decided which bytes to transfer, they should be
moved efficiently without requiring undue processing overhead. This section uses actual
implementation tests to measure execution and transfer times.

These are discussed in the next two sections.

Transfer selection

The shared memory system implemented by Anvil is functional and demonstrates optimal
or close to optimal performance for some programs, but is less effective for others. Due to
the fact that Anvil’s base language, C, does not consider non-uniform memory architectures,
the shared memory system cannot always extract enough information to achieve an optimal
implementation. This section will show how different programming styles can affect efficiency.

Section 4.8 described the algorithms that are used by the shared memory system. Migration
semantics are implemented, meaning that before an item of shared data is accessed it is
transferred from the remote location to the memory space of the accessor node. If the data
is stored in memory that is shared between the remote node and the accessor node then this
transfer is not required, and only cache coherency is considered (section 5.2.5).

The first presented test illustrates the importance of using an associated mutex. Consider the
following code in which a thread is created for performing a scalar vector addition. The created
thread also sums the elements of the vector and outputs it to the user.

204

5.2. Overheads

int shareddata[50];

pthread_t thread1;

pthread_mutex_t mux;

void *vectoradd(void *add) {

int i; int sum;

pthread_mutex_lock(&mux);

for(i = 0; i < 50; i++) {

shareddata[i] = shareddata[i] + *(int *)add;

sum = sum + shareddata[i];

}

pthread_mutex_unlock(&mux);

//Report sum to the user

...

pthread_exit();

}

void main {

int x = 20;

//Fill shareddata with data

...

//Spawn a thread to do the vector addition

//Pass it the value of x

pthread_create(&thread1, 0, vectoradd, (void *)&x);

//Wait for thread to complete

pthread_join(thread1, 0);

}

Anvil does not automatically associate mutexes with shared data items, so the connection
between mux and shareddata must be made explicitly using AnvilADL. If it is not made, then
Anvil inserts calls to read and write shareddata before each time it is read and before each
time it is written respectively. Accordingly, two calls to anvil read sv are added and the code
of the vectoradd function is refactored as follows:

void *vectoradd(void *add) {

int i; int sum;

pthread_mutex_lock(&mux);

for(i = 0; i < 50; i++) {

_anvil_read_sv(0, i * sizeof(int), sizeof(int), 0);

shareddata[i] = shareddata[i] + *(int *)add;

_anvil_write_sv(0, i * sizeof(int), sizeof(int), 0);

_anvil_read_sv(0, i * sizeof(int), sizeof(int), 0);

sum = sum + shareddata[i];

}

pthread_mutex_unlock(&mux);

205

Chapter 5. Evaluation

Situation Items transferred

Without assoc. mutex 150 (100 read, 50 write)
With assoc. mutex 100 (50 read, 50 write)
Optimal performance 100 (50 read, 50 write)

Figure 5.18: Anvil’s shared memory can attain optimality in some situations.

//Report sum to the user

...

pthread_exit();

}

Anvil has not associated the mutex with shareddata so it can not guarantee that it is operating
under mutual exclusion and is forced to fetch the same data twice. Also, it is forced to fetch
and write back the array in single item chunks, one per loop iteration, rather than copying
the entire array at once. Anvil can request the required values from the array individually
because the shared memory system supports pointer-based offset-driven access as described
in section 4.8.4. This however means that the transfer cannot take advantage of burst-mode
transfers or DMA.

If the programmer’s AnvilADL associates the mutex with shareddata then the function is in-
stead refactored as follows:

void *vectoradd(void *add) {

int i; int sum;

pthread_mutex_lock(&mux);

_anvil_read_sv(0, 0, sizeof(shareddata), 0);

for(i = 0; i < 50; i++) {

shareddata[i] = shareddata[i] + *(int *)add;

sum = sum + shareddata[i];

}

_anvil_write_sv(0, 0, sizeof(shareddata), 0);

pthread_mutex_unlock(&mux);

//Report sum to the user

...

pthread_exit();

}

Figure 5.18 shows the amount of data that must be transferred in each situation. As can be
seen, when Anvil uses an associated mutex optimality can be attained in this situation.

The above code is a good example of the kind of program that Anvil’s shared memory system
handles very well. The shared data is accessed in its entirety so it is not inefficient to transfer
the entire array when its associated mutex is locked. Many embedded systems with high
performance requirements access data in this way because they implement encoders, image

206

5.2. Overheads

processors or similar systems.

The next example shows the situation that that Anvil handles poorly. Consider the following
code:

sample_t samples[];

pthread_mutex_t mux;

void sw_fft(int start, int end) {

pthread_mutex_lock(&mux);

//Process the specified portion of the sample array

//Implementation omitted

pthread_mutex_unlock(&mux);

}

void main(void) {

int pos;

while(processing) {

//Process the sample window

sw_fft(pos, pos + 64);

//Slide the window

pos++;

}

}

This code implements a sliding window FFT algorithm, in which a window is slid over the
sample array one element at a time. This is a fairly common paradigm in signal processing
applications as it allows a circular sample buffer to be used indefinitely. Unfortunately because
of the low-level nature of C, the code contains no higher-level information about the behaviour
of this algorithm. The optimal behaviour is to fetch the first 64 samples on the first call to sw fft

as a bulk transfer and then on subsequent calls fetch only one additional sample, discarding
the oldest sample resulting in 64 + i transfers, where i is the number of times the window is
processed.

Anvil’s read caches should be able to reach this optimal performance (if a perfect LRU replace-
ment policy is implemented) but it cannot because of the way that the programmer has locked
the associated mutex. Because the mutex is only held for the duration of the call to sw fft,
Anvil is forced to refetch the samples on each call because they may have changed between
mutex locks. If the programmer moved the mutex lock to surround the main while loop then
optimality would be obtained. This is shown in figure 5.19.

It should be noted that similar problems arise when considering cache coherency schemes, as
the problem of maintaining a coherent cache is equivalent to maintaining a distributed shared
memory system.

This starts to expose the main weakness with Anvil’s shared memory system. Here, the pro-
grammer is forced to think about the way that data flows throughout their program and place
the associated mutexes accordingly. Whilst this can be seen as a reasonable compromise and
necessary, the C programming model which is exposed by CTV’s VP promotes transparent

207

Chapter 5. Evaluation

Situation Items transferred DMA possible

Mutex locked in sw fft 64 × i No
Mutex locked in main 64 + i No
Optimal performance 64 + i Yes for initial transfer

Figure 5.19: The programmer is forced to consider placement of associated mutexes to get
close to optimality. i is the number of iterations of the sliding window.

shared memory. The C programmer is not used to such concerns, and using mutexes to con-
trol data flow is unusual. Also, DMA is still not possible because there is no way to express that
on the first call to sw fft the read cache should be bulk filled, although this could be added in
an extension to AnvilADL. Using CTV with other languages that are more explicit about data
transfer (such as PGAS languages, section 2.1.4) would help with this. CTV, unlike run-time
systems, can benefit greatly from increased expressibility in the source language.

The final example demonstrates another interesting situation that can arise from Anvil’s shared
memory system. The following code shows a binary search algorithm that executes over a
shared array.

int shareddata[50];

pthread_t thread1;

pthread_mutex_t mux;

int result;

void *binary_search(void *t) {

//Values hard-coded for clarity

int low = 0;

int high = 49;

//Dereference the target value

int target = *(int *)t;

pthread_mutex_lock(&mux);

//Perform the binary search

while (low <= high) {

int middle = low + (high - low) / 2;

if (target < shareddata[middle])

high = middle - 1;

else if (target > shareddata[middle])

low = middle + 1;

else

{

//Return result to calling thread

result = middle;

break;

}

}

pthread_mutex_unlock(&mux);

pthread_exit();

}

208

5.2. Overheads

CPU 0 CPU 1

Shared
Mem 0

Shared
Mem 1

DMA
engine

Local
Mem 0

Local
Mem 0

Mailbox communications

Figure 5.20: A non-uniform memory architecture to evaluate the shared memory system.

int main(void)

{

int x = 23; //Value to search for

pthread_create(&thread1, 0, bsearch, (void *)&x);

pthread_join(thread1, 0);

//Result can be read from shared variable ’result’

}

Because this algorithm relies on random access to the shared array, the programmer might
specify that the shared memory system should bulk transfer the array when the associated
mutex is locked using the fetchall attribute (see section 4.8.3). This allows Anvil to use burst
transfers and DMA and is very efficient.

The problem with this is that the average case (and worst case) performance of this code
is O(log n), meaning that for the example above with 50 items in the array, only six reads
are required in the worst case. As a result, fetching the entire array is very wasteful and it is
actually faster in this case to not associate mux with the shared data and only fetch data when it
is required. Anvil will fetch exactly the data required, and although these fetches will be slower
because they are random and so cannot bulk copy, this is likely to be faster overall.

Transfer efficiency

Whilst the previous section concentrated on the efficiency of Anvil’s shared memory system
in terms of the data that it elected to transfer, this section analyses the overhead inherent in
those transactions. All tests execute on the architecture shown in figure 5.20.

Two types of transfer are possible:

Memory-to-memory transfers When a single processor is moving data between two mem-
ory spaces that it can directly access. (Common in SMP architectures.)

Processor-to-processor transfers When the source and target memory spaces are not both

209

Chapter 5. Evaluation

Transfer Size Sequential accessRandom accessDMA

4 260 278 203

8 460 461 212

16 839 860 311

32 1605 1668 524

64 3119 3266 911

128 6152 6479 1697

256 12203 12899 3281

512 24324 25737 6365

0

5000

10000

15000

20000

25000

30000

0 64 128 192 256 320 384 448 512

C
o

m
p

le
ti

o
n

ti
m

e
(c

yc
le

s)
M

e
an

o
f

1
6

tr
an

sf
e

rs

Transfer size (bytes)

Sequential access

Random access

DMA

Figure 5.21: Transfer rates of shared data between the two shared memory blocks (‘Shared
Mem 0’ and ‘Shared Mem 1’) using different transfer modes.

visible to any one processor, so two processors must cooperate to move the data. (Com-
mon in NUMA architectures.)

These are discussed in the following two sections.

Memory-to-memory transfer

The shared memory system transfers shared data by passing it from the OM that manages
the shared data item to the processor which requested it. This requires processing time from
both processors, but if DMA engines are available in the target architecture then this can be
offloaded to allow the processor to execute other threads. The test architecture provides a
DMA engine (the Xilinx-provided XPS Central DMA Controller [261]) that is accessible from
processor 0 and can be used by Anvil.

In the first test, figure 5.21 shows the transfer times for various sizes of shared data item when
transferring data between the two blocks of shared memory (‘Shared Mem 0’ and ‘Shared
Mem 1’) using different transfer modes. Because this example is transferring between the two
shared memory blocks, DMA can be used when the transfer is a sequential access.

The graph shows that the difference between random access and sequential access in this
architecture is minimal, although sequential access is slightly faster in all cases. This is be-
cause the relatively slow speed of the soft processor masks the access time of DDR memory.
This difference will become more apparent when using faster processors that can saturate the
memory controller. DMA access is however much faster because the DMA engine is dedicated

210

5.2. Overheads

Size (bytes) Transfer time (cycles) Time consumed by
transmission delay

4 1212 28%
8 1392 37%

10 1340 39%
40 2760 69%
80 4512 80%
120 6178 86%
240 11368 92%

Figure 5.22: Time taken to transfer shared variable data in the architecture of figure 5.20

hardware that does not experience the bus transaction and execution fetch overhead that the
processor does. Another advantage of using DMA is that the processor can execute other
threads whilst waiting for the transfer to complete.

A measure of efficiency for these transfers can be obtained by comparing the amount of cy-
cles that are spent waiting for the memory and bus transfer against the amount of cycles
spent processing the transfer. This does not apply to DMA-based transfer. For the sequential
access and random access results, on average 86% of the execution time involves initiating
bus transfers or waiting for the memory controller. Therefore only 14% of the execution time
(3646 cycles for the 512 byte transfer) is spent executing code from the Anvil shared memory
libraries.

Processor-to-processor transfer

In the previous test, only one processor was involved in the transfer because it had direct
access to both the source and destination memory spaces. This test demonstrates the other
form of transfer that the shared memory system must account for, in which this is not the case.
The transfers in this test are between the two local memory spaces ‘Local Mem 0’ and ‘Local
Mem 1’. This requires processor 0 to request data from processor 1, and the data is transferred
using the communications layer. Note that DMA cannot be used in this situation because the
memory spaces are local to the processor.

The results of this test are shown in figure 5.22, and the transfer times can be broken down as
follows:

• Approximately 760 cycles are required for the initial request packet sent to the processor
hosting the shared data’s OM.

• The processor hosting the shared data’s OM suffers a base overhead of approximately
100 cycles responding to the request packet’s interrupt, parsing it, and creating a new
transmit buffer to start the transfer.

• From that point, the buffer can be filled trivially with memcpy, taking around 10 cycles per
word. If unaligned accesses are supported, or data marshalling is required, this buffer
assembly time will take extra processing. Equally, if the memory is slower then fetching
will consume more cycles.

211

Chapter 5. Evaluation

• On the mailbox-based communication channel of the test architecture, transmission
takes 162 cycles per four byte word, assuming no bus congestion.

• The receiving processor suffers approximately 180 cycles of overhead setting up a re-
ceive buffer.

• As above, copying from the receive buffer to normal memory is trivial, but extended if
accesses are unaligned or marshalled.

Figure 5.22 also shows the percentage of the transfer time which is consumed waiting for the
communications medium to transfer the raw data. As this trends towards 100% the transfer
reaches maximum efficiency as no faster transfer is possible on the target architecture. As can
be seen, for the smallest transfers the complete transfer time is dominated by the time taken
to assemble, transmit, receive and parse the initial request packet. However, as the request
grows in size the transmission time of the reply begins to dominate and therefore increase the
overall efficiency. This highlights the importance of using bulk transfers rather than random
shared variable access.

5.2.5 Cache coherency

The cache coherency algorithm implemented by Anvil is described in section 4.8.7. Anvil im-
plements a weak coherency system that ensures correctness by emptying cache lines when-
ever coherency problems can arise (when a node writes to shared data that another node has
previously read). Anvil refreshes the entire shared variable in these situations, which is ineffi-
cient if only a small part of a large array has changed. Coherency algorithms are well-studied
and more efficient algorithms can be implemented as an extension to Anvil’s OMs, but this is
outside the focus of this work. As a result the current performance of Anvil’s coherency system
is not evaluated.

There are many areas in which the compile-time nature of CTV may be able to assist in the
implementation of more efficient coherency systems. For example, clustering information can
be leveraged to provide strict coherency inside a cluster and only weak consistency between
clusters. Equally, nodes that do not access a given shared data items do not affect its co-
herency, resulting in a more scalable system that current solutions which attempt to keep the
entire of memory coherency across all nodes. In the worst case, an existing run-time system
can be implemented, so therefore the use of CTV does not result in a less efficient system
than what is already possible with the state-of-the-art.

5.2.6 Compilation times

A CTV-based system trades run-time overheads for compile-time overheads. A lot more work
has to be performed at compile-time, including parsing, static analysis, code splitting, code
refactoring, and then traditional compilation of code for each target processor. As a result,
compilation times in a CTV-based system are much greater than for a run-time only system.
Furthermore, the Anvil parsing and refactoring engine (section 4.3) is written in the Python
programming language. Because Python is interpreted, its execution speed is much slower
than a native programming language.

212

5.2. Overheads

Number of cores Average compilation
in target architecture time (seconds)

1 0.391
2 0.662
3 1.031
4 1.330
5 1.502

Figure 5.23: Compilation times of benchmark programs when using Anvil.

It is difficult to make meaningful comparisons of the time taken by a CTV-based compiler
because it is automating much of the architectural-mapping work that has in other systems to
be performed by the programmer (or by a run-time middleware layer every time the program is
executed). In general, compilation takes much longer than normal but is not overly onerous.

The primary factor that determines compilation time for the current implementation is the num-
ber of target processors. Each processor requires a new refactoring pass and invocation of
gcc. The benchmark programs used in section 5.1.3 were compiled for a range of architectures
with differing numbers of cores and the results are shown in figure 5.23.

For all input programs, the actual code had only a small effect on the overall execution time as
parsing time is dominated by the time taken to load the Python interpreter. The output stage
is slow, taking around 300ms per target processor for these relatively simple examples. For
comparison, standard compilation of programs this size takes around 0.1 seconds.

In general, CTV takes many times longer than traditional compilation. However, the slow imple-
mentation of the Anvil compiler, the requirement to load the Python interpreter, and the lack of
optimisation are heavily contributory to this. Given equivalent levels of implementation quality,
the refactoring engine should take no longer to parse the input code than the actual compiler
2. The AnvilADL description then has to be parsed, but AnvilADL is a simple language and
the descriptions are very much smaller than the application source code. Also the refactoring
engine should take a comparable amount of time to the intermediary code generation phase
of the compiler.

This section highlights that the major difference experienced is that, because libraries are
generated and compiled for each target processor, CTV-based compilation times scale linearly
with regards to the number of processors in the target system. Therefore it is expected that
compilation time for a single processor system could be optimised to be of a similar order of
magnitude to normal compilation, but each additional target processor will require a similar
amount of compilation time again.

5.2.7 Summary

In summary, this section has demonstrated that the run-time overheads present in Anvil are
very low when compared with similar run-time systems. This is attributed to the code special-

2Note that it is possible to hook into the compiler to use its parsing stage directly and avoid the multiple parses that
are currently required, but this was avoided to demonstrate that CTV can operate with an unmodified compiler.

213

Chapter 5. Evaluation

isation and architectural mapping made possible by the CTV methodology, and to CTV’s use
of the OM model.

Investigation has shown that Anvil’s shared memory system, whilst providing transparency,
still requires the programmer to consider the way that they write their code in order to ensure
efficient operation of the distributed memory and cache coherency algorithms. In all examined
cases, close to optimal behaviour can be obtained although it was identified that an extension
to support DMA for sliding window algorithms might be beneficial. This highlights that there is
only so much that can be done without any support from the language. However, CTV’s unique
ability to present a simplified programming model thorough the use of Virtual Platforms allows
for architectural mapping of amenable code to be performed automatically, greatly assisting
deployment on complex architectures. Also, unlike a post-partitioning approach in which the
architecture of the software is heavily influenced by the implementation target, CTV and Anvil
allow for simple solutions to be quickly developed and tested without any hardware knowledge.
These might display inefficient memory usage patterns, but will operate correctly and provide
useful testing and profiling information. Memory use can be corrected and optimised later,
once hardware and software architectures are finalised.

CTV’s VP exposes a single logical address space which can encourage programmers to forget
about the way that they use shared variables. Whilst CTV guarantees that any code (subject
to its restrictions) will execute correctly, if the shared memory use is not coded as discrete
transfers then the code will be inefficient. Also, because of the VP’s single address space
abstraction, it might be slightly unclear to the programmer why their code is inefficient. This
is not a problem for analysis or predictability as the refactoring stage can be as predictable
as required, but IDE feedback to support the developers to make these decisions would be
helpful in an industrial implementation of CTV.

Another avenue of research would be to implement an analysis phase which attempts to deter-
mine which policy is more appropriate, or to use a run-time ‘tuning’ algorithm which changes
its behaviour based on previous executions.

5.3 Clustering

The clustering model (section 3.2) that is supported by CTV allows the system designer to
guarantee that their applications will maintain locality of computation and data when executing
on highly dynamic platforms. The two-level logical layer (section 3.4.3) allows greater ex-
pressibility than affinities or other forms of direct mapping that are usually the only available
placement mechanism.

The argument behind focussing on the maintenance of locality is that it will result in a lower ex-
ecution time for the running application due to decreased communication latencies. However,
cluster-based migration requires extra overhead at each migration point because the entire
cluster must be migrated rather than a single object. As a result, there are some situations
where the use of clustering is less efficient than simply allowing unrestricted migration.

To further explore the circumstances that affect this, experiments have been performed (de-
tailed in section 5.3.1) and a simulator developed (detailed in section 5.3.2).

214

5.3. Clustering

CPU 1

RAM

CPU 2

RAM

S
h
a
re
d
 R
A
M
 1

Mailboxes

CPU 3

RAM

CPU 4

RAM
S
h
a
re
d
 R
A
M
 2

Figure 5.24: The experimental architecture

5.3.1 Clustering experiments

The experimental architecture (figure 5.24) is a non-standard four-core system implemented
upon a Xilinx XC4VLX25 Virtex 4 FPGA on the Xilinx ML401 prototyping board and uses the
Microblaze soft-processor. The cores are arranged as two pairs, and each pair has their own
bank of shared memory. The pairs can communicate using a dedicated communications buffer.

Consider that in the presented system threads can freely migrate between all four cores. When
this happens it is preferable for data to move along with the threads that use it, because
the communication link between the two pairs is based on mailboxes and is relatively slow.
Therefore, if a thread moves from CPU1 to CPU3 but its local data does not, the central link
will become a bottleneck resulting in poor system performance. Without both the clustering
model and the architectural model provided by CTV this requirement cannot be expressed in
existing programming systems through the use of affinities alone.

The AnvilADL description of this architecture is as follows:

//Hardware elements

maincode : cluster;

cpu1, cpu2, cpu3, cpu4 : processor;

mem1, mem2, mem3, mem4 : memory;

leftshared, rightshared : memory;

cpu1^memory = [mem1, leftshared];

cpu2^memory = [mem2, leftshared];

cpu3^memory = [mem3, rightshared];

cpu4^memory = [mem4, rightshared];

//Communications

mbox : channel Mailbox;

m1to2, m3to4 : channel Mailbox;

mbox^endpoints = [cpu1(0x80000000), cpu2(0x80000000),

cpu3(0x80000000), cpu4(0x80000000)];

m1to2^endpoints = [cpu1(0x80001000), cpu2(0x80001000)];

m3to4^endpoints = [cpu3(0x80001000), cpu4(0x80001000)];

//...and I/O channels for external comms not shown

//Logical layer

215

Chapter 5. Evaluation

leftpair, rightpair : target;

leftpair^contains = [cpu1, cpu2, leftshared];

rightpair^contains = [cpu3, cpu4, rightshared];

anapplication : cluster;

//Add elements from the source to the cluster by setting

//anapplication^contains

anapplication^targets = [leftpair, rightpair];

In this description, each pair of processors is grouped together as a cluster target, and a single
cluster is defined. Any source level items (threads, data, etc.) that are assigned to that cluster
will be implemented either entirely on the left-hand pair or entirely on the right-hand pair. They
will not be assigned separately.

A range of single and multi-threaded benchmarks were run on the target system. Each pro-
gram was executed in three different modes and the resulting execution times are shown in
figure 5.25. In this figure, all results are normalised against the local execution time, which
is the time taken when running with its data in local shared memory (i.e. it has not migrated
at all). Migrated shows the same program, but when one of its threads has been migrated
to the other CPU pair and must fetch its data remotely. Clusters shows the cost of execut-
ing the application with cluster-aware migration. This includes the initial cost of migrating the
application’s data and then its subsequent execution time.

Note that for these tests, thread migration is simulated because Anvil does not yet implement it.
The thread is compiled for each target processor that it may migrate to (according to the logical
mappings in the AnvilADL) and during a migration the source thread is simply terminated and
its clone created on the target processor.

In order to ensure that the simulation results are realistic, it is necessary to measure the
amount of data required to describe the state of the current thread. Every thread migration, an
amount of dummy data equal to this state is transferred from source to target.

Because this simulation does not use heap data (data that is allocated with malloc and free)
thread state consists of the contents of the stack and the contents of the processor regis-
ters 3. The Microblaze has 32 general-purpose registers and up to eighteen special registers
(depending on configured options) resulting in 50 words of state. The size of the stack is
determined by fetching the current stack pointer and comparing it to the base stack pointer.
For applications that require Xilkernel, the pthread attr getstack function is used to obtain
a worst-case guarantee of the current stack size.

The results show that clustering allows threads to migrate throughout a heterogeneous archi-
tecture without risking incurring sizable performance penalties. Most programs complete in
between 1.1 and 2.8 times the execution time, as compared to between 8.5 and 37.9 times for
systems in which the thread has migrated but not its associated data.

One outlier is the binary search benchmark. This system performs slightly worse when using
full cluster than not. The reason for this is that the search only reads on average log n data
items (where n is the input array length) yet migrating the entire array requires n accesses.
Whilst individual random accesses are much slower than the burst transfer used migrating a

3If heap data was supported it would not affect the results, as the same amount of state needs to be transferred
but it is fetched from a different location.

216

5.3. Clustering

Local Migrated Clusters Migrated normalised Islands normalised
fdct 9908 216350 28217 21.83589019 2.847900686
quicksort 26157 320142 36944 12.23924762 1.412394388
binarysearch 1114 9502 10041 8.52962298 9.013464991
bsort 78044 1075473 91013 13.78034186 1.166175491
sobel 574097 21811154 942935 37.99210586 1.642466343

0

5

10

15

20

25

30

35

40

fdct quicksort binarysearch bsort sobel

S
lo

w
d

o
w

n
fa

ct
o

r

(n
o

rm
a
lis

e
d

a
g

a
in

st
lo

ca
l
e
xe

cu
ti

o
n

)

Migrated

Clusters

Figure 5.25: Resultant slowdowns experienced after a single migration. ‘Migrated’ shows
results if only the thread is migrated. ‘Clusters’ shows results for migrating the thread and its
data. All times include the time taken for one migration followed by one execution.

cluster, the execution time is slightly faster overall. This indicates that whilst cluster-based
migration appears a good choice for most benchmark programs, care should be taken if the
program only accesses a small number of random elements from a large data source. The
converse of this is the Sobel filtering example. Because the Sobel algorithm frequents the
same pixel values multiple times, full cluster migration is vastly more efficient.

5.3.2 Clustering simulations

This section presents results gained from a simulator that was developed to explore the ef-
fect of cluster-based migration on large grid-based systems. The architecture simulated is a
regular grid of processing nodes, where each node has its own local memory. There is no
global shared memory and caches are not modelled, so the simulation architecture is much
closer to a large embedded architecture than the type of systems found in high-performance
computing. The simulation framework creates a random set of tasks and assigns them to a
variable number of clusters in the system. It also creates a random amount of shared data
items and adds these to the clusters. The following task model is used:

The simulation (t, d, c, p) is composed of:

• Tasks

• Shared data items

217

Chapter 5. Evaluation

• Clusters

• Processing nodes

A task t has:

• An execution time

• A memory access pattern that is a set of tuples (d, f) in which d is a shared data item
and f is the probability that on any given clock cycle the task will access d.

• The current processing node to which it is assigned.

• A worst-case state size. The largest amount of state in bytes that must be transferred to
migrate the state of this task.

A shared data item d has:

• A size

• The current processing node to which it is assigned.

Clusters (c) are represented as a set of tasks and shared data items. Each processing node
(p) has a likelihood of being shut down at any given instruction. When a node is shut down,
any tasks and data items that are on that node must be migrated elsewhere. The simulation
assumes that all processing nodes share a common clock. Communications are modelled
assuming a static routing system similar to the CTV communications layer (section 4.7). Ac-
cordingly, transfer costs are measured as a function of the number of hops they require. Link
congestion is not considered in this model.

Task sets are generated as follows. In all cases unless otherwise stated, values were obtained
by analysing the characteristics of the embedded benchmarks used in figure 5.25 and other
example programs written for section 5.1. As a result, the values tend to represent smaller
programs more than large monolithic systems (like a kernel or similar). However this sec-
tion demonstrates that as programs grow in size and task length the importance of clustering
increases, so these results are more likely to be conservative.

• The number of clusters is currently uniformly selected from 1 to 5. Due to the fact that
the clustering model is not currently used for embedded development, it is not possible to
determine suitable values from existing systems. Accordingly, these values are chosen
as they are reasonable estimates of the number of ‘jobs’ performed by smaller embedded
systems at any one time. Larger systems may perform more tasks at once, but as stated
above, the focus of this simulation is on smaller-scale embedded systems.

• The number of tasks in a cluster is uniformly selected from 1 to 10, which was selected
from experience as reasonable values for the amount of parallelism inherent in a given
problem. Embarrassingly parallel problems can of course contain a much larger amount
of tasks when implemented on general-purpose computers, but ten is reasonable for
embedded implementations because each task imposes a state footprint in memory so
the number will be kept rather low.

218

5.3. Clustering

Item Time (cycles)

Random memory access cost 31
Initiate burst transfer 31
Cost per word after initiation of burst transfer 1
Communication cost per hop 85

Figure 5.26: Timings used in the clustering simulation.

• The number of shared data items in a cluster is uniformly selected from 1 to 10.

• Shared data accesses are set at between every 10 operations to every 300 operations.
This hides the fact that in reality memory access occurs in bursts, but because this
simulation does not consider congestion this does not affect the results.

• Data items are sized from between 4 bytes and 1024 bytes, and are selected uniformly.

• Task state size and execution time is selected to be between 10,000 and 1,000,000
cycles and selected uniformly. The effect of varying task size is examined specifically
later.

• Migration chance is more difficult to select representative values for, as such dynamic
systems are currently rare in the embedded domain. Accordingly, the base migration
rate is set so that on average ten tasks can complete their execution per single migration,
which ensures that migration is of a realistic order of magnitude. The effect of varying
migration chance is examined specifically later.

The simulation runs in two modes. In clustering mode the simulation uses the clustering in-
formation provided by the c set to migrate the entire cluster (tasks and data) when any of its
constituent nodes are shut down. In undirected mode the simulation ignores the c set and
only migrates tasks and data when their host node is shut down. Memory access times and
inter-node communication times are taken from experimental results on real softcore-based
FPGA systems to ensure that they are of appropriate relative sizes. These times are shown
in figure 5.26. Access times on non-FPGA systems tend to be at least an order of magnitude
greater due to the heightened discrepancy between processor clock speed and memory clock
speed, so this would only increase the importance of fast memory accesses.

Figures 5.27 and 5.28 show the effect of varying task execution time on grids of different
sizes. In these experiments the probability of migrating tasks from a processing node is fixed
at on average one migration every 100,000 clock cycles. This is deliberately very frequent -
real systems are likely to migrate much less and therefore demonstrate lower overheads. As
can be seen, on the smallest architecture (2x2) migrating the entire cluster appears on balance
less efficient as the costs of migrations are considerably higher and do not give any real benefit
due to the small size of the system and rapid migrations. However, on all larger architectures
migrating whole clusters results in systems that display lower memory access costs. The tests
for the 4x4 architecture demonstrate clearly that for tasks with short execution times the tasks
are only likely to be migrated a small number of times so the large transfer cost of migrating an
entire island is not beneficial. Longer tasks, however, rapidly become less and less efficient as
they migrate further from their data. This is demonstrated most noticeably by the results for the
8x8 and 16x16 architectures which are in some cases are 6.5 times slower without clustering.

219

Chapter 5. Evaluation

Cycles 2x2 4x4 2x2 (clusters)4x4 (clusters)

1000 34.44174 46.5139 49.70258 60.69951

2000 38.16819 54.27951 58.48806 86.12849

3000 42.51987 64.80415 64.41355 96.83889

4000 45.84813 79.10892 75.59271 104.1463

5000 48.7167 85.09222 79.89989 116.7668

8000 57.2128 111.3863 91.14611 131.2029

10000 61.26422 123.2766 93.47391 144.7676

30000 91.22376 206.3607 110.7565 171.5972

50000 99.28805 234.0486 114.1832 176.3468

75000 106.1413 250.5995 116.1023 180.2109

100000 107.7264 260.0787 116.9218 181.756

500000 114.4323 281.5583 119.2663 185.4763

1000000 114.9134 284.2536 119.3352 186.0934

0

50

100

150

200

250

300

1000 10000 100000 1000000

A
ve

ra
ge

co
st

o
f

m
e

m
o

ry
ac

ce
ss

(c
yc

le
s)

M
e

an
o

f
2

0
0

si
m

u
la

ti
o

n
s

Task execution time (cycles)

2x2

4x4

2x2 (clusters)

4x4 (clusters)

Figure 5.27: Varying task execution time with and without cluster-based migration on smaller
architectures

Cycles 8x8 16x16 8x8 (clusters)16x16 (clusters)

1000 64.60985 97.6345 77.68015 84.46197

2000 85.7351 146.2421 91.74573 102.7288

3000 109.0896 189.9565 99.75772 117.0724

4000 140.1554 275.6804 113.4943 129.7004

5000 159.6111 312.7723 120.5026 136.7974

8000 221.1295 433.7211 139.4464 144.5795

10000 257.7527 481.487 148.4278 161.1851

30000 438.305 874.452 175.0393 185.8523

50000 502.4106 1052.126 182.2269 195.3263

75000 548.9748 1142.948 185.147 194.8632

100000 569.9989 1176.096 186.9509 195.415

500000 612.8686 1277.882 190.7358 200.8769

1000000 620.0729 1293.105 190.4101 202.0581

0

200

400

600

800

1000

1200

1400

1000 10000 100000 1000000

A
ve

ra
ge

co
st

o
f

m
e

m
o

ry
ac

ce
ss

(c
yc

le
s)

M
e

an
o

f
2

0
0

si
m

u
la

ti
o

n
s

Task execution time (cycles)

8x8

16x16

8x8 (clusters)

16x16 (clusters)

Figure 5.28: Varying task execution time with and without cluster-based migration on larger
architectures

220

5.3. Clustering

No clusters With cluster migration

5000 566.5932 793.7069

4000 567.7468 662.3259

3000 569.4096 555.7466

2000 565.4127 423.1426

1000 570.5454 299.9851

800 569.1592 275.4255

500 570.5668 234.8409

300 558.7677 213.3812

200 568.3472 200.7665

100 560.7912 187.0716

80 567.9956 184.7198

50 565.4348 182.4433

30 567.0835 179.69

10 562.9642 176.552

5 563.4717 175.4793
0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000

A
ve

ra
ge

m
e

m
o

ry
ac

ce
ss

co
st

(c
yc

le
s)

M
e

an
o

f
2

0
0

si
m

u
la

ti
o

n
s

Average cycles between shared data access

No clusters

With cluster migration

Figure 5.29: Varying task migration chance with and without cluster-based migration (8x8 grid)

Another interesting observation is that when using clustering, the results for the 8x8 architec-
ture are almost identical to the results for the 16x16 architecture. The reason for this is that
clustering guarantees that locality will be preserved. If the architecture grows in size it does
not affect intra-cluster communications, and the coupling of the system is preserved. Commu-
nications between clusters will on average be slower, but these are much less common and
involve smaller amounts of data. This demonstrates that a system that uses clustering and
coupling displays greater scalability than one that does not.

Figure 5.29 shows the effect of varying the task migration chance. When migrations are unre-
alistically frequent (around every 200 cycles) the cost of full cluster migration is much higher
than migrating single items. For more realistic systems, cluster-based migration results in
lower average memory access times by a factor of 3 in some cases. As the chance of migra-
tion becomes smaller, access times for systems with clustering and systems without clustering
converge. This is because it becomes increasingly unlikely that a task will experience a migra-
tion at all, thereby negating the difference between the two approaches.

Finally, figure 5.30 shows the effect of varying the frequency with which tasks access their
shared data items. When cluster-based migration is not being used, this has no effect on
overall system performance because the migration mechanism does not consider which data
items are accessed by which tasks. As can be seen, if tasks only access their shared data
infrequently (of a similar order of magnitude to the chance of migration) then migrating whole
clusters displays no benefit whilst increasing the average cost. However, more frequent access
results in much faster access times. This indicates that cluster-based migration is beneficial
when shared data is accessed at a frequency which is at least an order of magnitude higher
than the average inter-migration time. This is very likely to be the case for all realistic systems,
but should nonetheless be considered.

These simulation results indicate that the use of clustering information in the CTV system
model has the potential to greatly increase the efficiency of embedded systems that make

221

Chapter 5. Evaluation

Average cycles between migrationsNo clusters With cluster migration

8000000 34.16276 34.60438

6000000 35.11801 34.49795

4000000 36.33422 36.64601

2000000 46.92136 44.02498

1000000 58.767 54.365

800000 67.24365 59.30429

600000 71.17957 75.81294

400000 97.01094 76.89513

200000 161.5028 113.9187

100000 255.3693 136.8228

80000 287.9516 145.9045

60000 335.7085 153.8996

40000 398.3937 163.559

20000 506.1253 178.1781

10000 566.0277 186.5245

8000 581.655 189.366

6000 594.9275 194.7239

4000 600.5326 205.4564

2000 613.8175 232.2611

1000 620.5518 285.5091

800 620.6358 308.8517

600 621.7833 355.9926

400 623.6716 445.2245

200 624.3347 694.3351

100 625.3181 1227.862

0

200

400

600

800

1000

1200

1400

100 1000 10000 100000 1000000 10000000

A
ve

ra
ge

co
st

o
f

m
e

m
o

ry
ac

ce
ss

(c
yc

le
s)

M
e

an
o

f
2

0
0

si
m

u
la

ti
o

n
s

Average cycles between node migrations

No clusters

With cluster migration

Figure 5.30: Varying how frequently tasks access shared data (8x8 grid)

use of thread migration. If shared data is accessed very infrequently, migrations are incredibly
common, or the architecture is very small the costs can outweigh any benefits. However, on
the majority of medium to large embedded systems with dynamism, the technique can be used
to deliver sizable performance benefits.

5.3.3 Migration times

The previous section used simulation results to demonstrate the potential for cluster-based
migration supported by the CTV system model to increase the overall efficiency of dynamic
systems. This section focusses on Anvil’s support for OM and shared data migration, and
the efficiency of the underlying communications layer. As detailed in sections 4.13.1 and
4.13.2, Anvil currently supports the migration of OMs and of shared data items, whilst thread
migration is supported by the CTV system model and Anvil communication layers but is not yet
implemented.

Recall from section 4.13.1 that in the Anvil implementation a migrating OM migrates control of
its managed items to a waiting OM on the target processor. This requires the transferal of the
state of the object and any queued requests. Once migrated, the source OM must update the
communications layer so that future requests are sent to the target OM. This section details
the costs of the managed object migration whilst the following section considers the cost of
updating the communications layer.

Section 5.2.3 detailed the size in bytes of the stored state for managed threads, mutexes, CVs
and shared data items so these are not repeated here. The data that must be transferred
during a migration is therefore:

222

5.3. Clustering

Item Accessors State size Comms. Migration Time
medium time (cycles) (at 100Mhz)

Mutex 2 11 bytes Mailbox 1094 11 µs
Mutex 2 11 bytes UART 1304 13 µs
Mutex 4 19 bytes Mailbox 1418 14 µs

CV 2 10 bytes Mailbox 1110 11 µs
Thread 4 20 bytes Mailbox 1436 14 µs

Shared variable 2 120 bytes Mailbox 5610 56 µs
Shared variable 2 120 bytes UART 6662 67 µs
Shared variable 2 240 bytes UART 13104 131 µs

Figure 5.31: Time taken to migrate managed objects over a range of architectures. ‘Accessors’
is the number of other objects in the system that access the migrating object.

Item Size

Managed thread The thread’s state
Managed mutex The mutex’s state
Managed CV The CV’s state
Managed shared variable The shared variable’s state (plus the size in bytes of the

shared variable if the target processor does not have direct
access to the memory space that currently contains the vari-
able)

OM The sum of all the objects that it manages

As detailed in section 4.13, a managed object is migrated with the M MIGRATE message. The
transmission time of such messages varies considerably depending on target architecture and
the topology of the application. Handling these messages does not involve the manipulation
of complex data structures so they can be dealt with very quickly. The Anvil OM manages an
array of the items it is currently managing and simply adds the incoming migrating item to the
end.

To give an indication of migration costs, figure 5.31 shows the migration times for a range of
objects over different communications channels. These costs all assume that the migrating
object’s state is in block RAM or cached memory so it can be accessed quickly. Given its small
size and frequent access pattern this assumption is reasonable. If the state is in external RAM
then access times will be accordingly slower.

Migration times are relatively small. At 100Mhz, migration takes between 11 and 15 microsec-
onds for mutexes, threads and CVs, and scales linearly for larger shared variables. Note that
the results in figure 5.31 do not include the time taken to update the communications layer,
detailed in the following section.

Although not strictly comparable, these times are much lower than existing thread migration
systems such as JESSICA2 [269], a Java-based system in which the presented migrations
take between 3838 microseconds and 242012 microseconds at 540MHz. At similar clock
speeds, distributed systems such as Ariadne measure migration times in 10,000s to 100,000s
of microseconds [161]. Neither of these systems are designed for low-overhead embedded
architectures so the comparison is not entirely accurate, but it does serve to illustrate that

223

Chapter 5. Evaluation

Shared variable

(120 bytes)

Mutex

(4 accessors)

Mutex

(2 accessors)

Packet assembly 156 132 128

Transmission 5074 759 597

Processing 380 203 203

0 1000 2000 3000 4000 5000 6000

Shared variable
(120 bytes)

Mutex
(4 accessors)

Mutex
(2 accessors)

Clock cycles to perform migration

Packet assembly

Transmission

Processing

Figure 5.32: Total migration times separated into processing and transmission times.

Anvil’s lightweight, less fully-featured approach that requires extra programmer input (through
the AnvilADL description) allows for migration times that are much lower than transparent, yet
more heavyweight solutions.

Figure 5.32 further examines the results for three of the migrations in this table. The results
are similar to those obtained in section 5.2.4 (which discussed transfer efficiency of the shared
memory system) because the underlying transfer mechanism is the same. For the mutex with
two accessors, 57% of the total migration time is consumed waiting for the communications
medium to transmit the actual state information from source to target. For the mutex with
four accessors, more state needs to be transferred and this rises to 64%. For the 120 byte
shared variable, over 90% of the migration time is consumed by transmission time alone. This
shows that the main limiting factor for migration times in the Anvil system is the speed of
the underlying transmission medium and that the overheads imposed by the OM system are
therefore acceptable.

Figure 5.31 lists the number of other objects in the system that access the migrating object
because, as detailed in section 5.2.3, the state of a managed object in Anvil is proportional
in size to the maximum number of requests that can be queued upon it. Anvil currently guar-
antees that the worst-case situation in which all requests are placed simultaneously can still
be handled (by setting ANVIL REQUEST QUEUE SIZE to the number of other objects that access
this object). This is pessimistic because as systems grow this forces the state size of managed
objects to grow also increasing migration times accordingly.

To account for larger systems, the implementation can use clustering information from the
Anvil system model. An object is much more likely to be accessed by its siblings (items in the
same cluster) than items from other clusters. A better implementation can statically-allocate
state space for siblings but dynamically-assign space for extra-cluster objects, thereby placing
an upper limit on state size. This is much better suited for large systems, but does include the
requirement that if, at a critical instant, the request queue fills up then the requester must be

224

5.3. Clustering

able to back off and try again later similar to CSMA/CD in broadcast networks, decreasing the
implementation’s predictability.

5.3.4 Updating the communications layer

After an object has migrated, the communications layer must be updated so that each trans-
mitter is aware of the new location of the node. The algorithms for doing this are covered in
section 3.7.1. Anvil implements the location propagation algorithm, in which after a migration
all nodes are informed of the new location. Accordingly, the worst-case cost c to update the
communications layer after migrating an object from processor x is termed cx and given as:

cx =
p

∑
p∈P

comms(x, p)

where P is the set of processors in the system and comms(a, b) is the cost of sending a com-
munications update message from a to b. This is the worst-case cost, because in architectures
that contain broadcast communication channels the update can be sent to multiple processors
simultaneously.

This compares favourably with Ethernet-based systems which are designed to cope with a
greater amount of run-time variability. In Ethernet-based systems, when a host moves none
of its peers are directly updated. Instead, when one of those peers attempts to communicate
with the migrated host the connection times out, which triggers a broadcast message from the
peer to determine the host’s new location. This is more stable for large, unreliable networks
with a large number of migrations, but does not provide very tight bounds on communication
delays which can cause problems when developing real-time systems.

For the size of systems that Anvil has currently been used on this overhead is small. The size
of the position update message (M POSITION UPDATE) is only eight bytes, so for Microblaze-
based FPGA systems transmission times are approximately 600 clock cycles per processor,
depending on exact communication topology. Therefore, for a modest five-core system, a
migration requires at most four short messages transferring 32 bytes of information in total.
This is much less than the overhead associated with reading even a modestly-sized shared
variable.

Still, for larger systems it is possible to use clustering information to avoid updating all pro-
cessors after each migration. Described in section 4.7.2, the intermediary manager algorithm
allocates a manager for each cluster that is responsible for handling requests for objects out-
side the cluster. Objects outside the cluster are not updated with the current position of migrat-
able elements inside the cluster. Instead, they forward the request through the intermediary
manager meaning that M POSITION UPDATE messages need to only be sent to the siblings of a
migrating object, reducing the cost further and ensuring scalability.

The cost for migrating an object under this scheme becomes:

cx =
p

∑
p∈C

comms(x, p)

where C is the cluster target that contains x.

225

Chapter 5. Evaluation

5.3.5 Summary

In summary, evaluation of the clustering model through both experiments on actual hardware
and simulations has shown that it can be instrumental in supporting future architectures with a
large number of processing cores. The model has particularly been shown to be beneficial for
supporting systems that use thread and data migration.

Simulations identified that the clustering model is not always appropriate, and in extreme cases
its extra migration cost (migrating all threads and data of a cluster rather than only individual
items) can result in a less efficient system. Cluster-based migration is unsuitable if the target
architecture is very small, shared memory accesses are very rare, or migrations are incredibly
frequent. However, in cases that describe more typical scenarios, cluster-based migration can
result in greatly improved memory access times that scale well to larger architectures.

5.4 Conclusion

This chapter has evaluated the effectiveness of CTV-based approaches for targeting complex,
non-standard architectures. The CTV system model has been shown to be sufficiently ex-
pressive to allow the representation of modern embedded architectures and the software that
executes on them. A range of theoretical and actual architectures were demonstrated with a
range of different applications executing on them. CTV has also been shown to be able to
leverage its compile-time nature to reduce overheads in many key areas of the final implemen-
tation whilst still offering the developer the programming model that they are used to.

It was identified that due to Anvil’s chosen source language of C with pthreads, Anvil cannot
effectively target vector processors, such as DSP cores or GPUs. Anvil must be extended
before such architectures can be used, either with a compiler than can extract vector opera-
tions automatically or by adding support for a language extension that allows the expression
of vector operations (like OpenCL or OpenMP).

Anvil has been shown to impose very small overheads that are in some cases orders of mag-
nitude less than equivalent run-time systems. This is because such run-time systems often
provide a much greater range of functionality than is required at each processor of the target
system. Anvil’s OMs only need to provide the specific services used by the threads of the
system, and so can use their compile-time information to reduce their run-time impact accord-
ingly. Equally, architecture information is used to hard code as much of the low-level drivers as
possible, leading to efficient library implementations. In the worst case, if the source applica-
tion is highly dynamic then CTV-based techniques will impose no extra overhead than run-time
systems as they can choose to implement the run-time system in its entirety.

This section has shown that CTV cannot completely hide from the application developer that
they are writing software for an embedded architecture. Although the CTV VP presents a stan-
dard programming model and Anvil’s refactoring engine can make any code that is within its
model execute correctly, experiments have shown that the shared memory system in particular
can show very poor performance on certain code examples. The programmer must be aware
when using shared data that the data will flow from a remote source, so they should code
their algorithm to support bulk transfers of data and access data sequentially in a predictable

226

5.4. Conclusion

manner. If this is done then the shared memory system can approach optimality, but if it is
not then highly inefficient behaviour can be created. It was identified that IDE support could
greatly assist with this.

227

Chapter 5. Evaluation

228

Chapter 6

Conclusions

This work has introduced Compile-Time Virtualisation, a technique for assisting the devel-
opment of embedded software for deployment on complex, non-standard architectures. The
hypothesis (section 1.5) stated that:

Abstraction and virtualisation have been shown to be useful techniques for hid-
ing implementation complexity and providing a high-level programming model to
aid software development. However, they introduce significant overheads and the
programmer cannot influence the mapping of their application when targeting non-
standard architectures. This thesis contends that moving the virtualisation layer
from run-time to compile-time will allow the programmer more control over the im-
plementation of the system, resulting in support for a much wider range of tar-
get architectures, the exploitation of unique hardware features, and lower run-time
overheads.

This hypothesis has been demonstrated throughout the thesis. Chapter 3 described the man-
ner in which a virtualisation system can be moved from run-time to compile-time, and high-
lighted that the technique is language and implementation fabric agnostic. Chapter 4 showed
a method by which this design can be implemented in practice.

Experiments and simulations described in chapter 5 demonstrated the benefits of CTV over
existing run-time virtualisation systems. Section 5.1 describes the additional control afforded
to the programmer over the implementation of their software, and details the range of target
architectures that a compile-time system is capable of supporting. Section 5.2 details the over-
heads in the CTV implementation and describes the areas in which it displays lower overheads
than existing run-time systems. Sections 3.2, 3.7 and the evaluation in section 5.3 argue about
the scalability benefits that are demonstrated by the CTV approach, and show that CTV avoids
inherent implementation bottlenecks. The scalability of the final implementation is only limited
by that of the input programming language.

Section 6.1 summarises the findings of the work and section 6.2 discusses possible future
developments from the work introduced by this thesis. Finally, section 6.3 concludes.

229

Chapter 6. Conclusions

6.1 Summary of findings

As discussed in general in chapter 2 and specifically in section 2.6.1, the programming models
of high-level languages have traditionally attempted to abstract away architectural information.
The reason for this is that early computing architectures were fixed so the programmer did not
need to be aware of the specifics of the implementation toolchain. However, as architectures
become increasingly heterogeneous and complex, the programmer’s inability to reason about
the architecture leads to two main problems:

Inflexibility Because the architecture is hidden by the abstraction layers of the programming
model, a program cannot use unique architectural features (such as function acceler-
ators, DSP cores, I/O, vector processors etc.) without inserting architecture-specific,
abstraction-breaking code. Non-uniform memory architectures require either the use of
a run-time shared memory system (section 3.6.2) or direct manipulation of the linker
(exemplified in section 2.6.1).

Inefficiency The programming models of many existing languages assume a single-processor
(or uniform SMP) system with contiguous shared memory. As systems deviate from this,
layers are inserted to hide discrepancies. These layers may take the form of hardware
(such as memory management units) or run-time operating systems and middleware
layers. These all add inefficiency to the final implementation.

Increasing flexibility

This thesis demonstrates that CTV helps to solve the ‘inflexibility’ problem by replacing the
existing layers of abstraction with a virtualisation layer that creates a Virtual Platform (VP). The
VP is an idealised view of the underlying hardware designed to present a virtual architecture
that is compatible with the programming model of the source language. The features that the
VP must expose are discussed in section 3.6.2.

VP-based development is very flexible because the architectural mappings that it implements
can be influenced by the programmer. This is unlike the assumptions of the source language
which are fixed by the language definition, and unlike the behaviour of compilers which can
only be changed by creating a new compiler and associated toolchain. The VP mappings can
be influenced by the programmer to effectively exploit the target architecture, making use of
any unique hardware features as appropriate. The virtualisation ensures that the specified
mapping will execute correctly.

Allowing the programmer to influence the implementation toolchain in this way is shown to
allow the capabilities of a pre-existing language and compiler to be extended in a controlled
way to meet changing future demands. This aids code reuse, because existing code is not
made obsolete when a new architectural paradigm is developed that would previously have
required a new language or language extension.

The CTV approach is orthogonal to automatic parallelisation, co-design, or automated sys-
tem synthesis. Such systems are designed to assist the programmer with the development
of systems, either by creating hardware from analysis of the input software, or by altering the
software specification to increase its potential for parallelism, etc. These techniques can be

230

6.1. Summary of findings

used alongside CTV to mutual benefit. For example a VP could be used to assist co-design
frameworks. By insulating input software from hardware changes, the CTV VP could allow
greater flexibility in evaluating new candidate architectures. Equally, auto-parallelising compil-
ers assist CTV by ensuring that the input program has sufficient parallelism to allow for efficient
distribution over a multi-core architecture.

Increasing efficiency

The second problem of ‘inefficiency’ is solved by moving the virtualisation of the VP to compile-
time rather than run-time. The thesis demonstrates in section 3.5.1 that such a move trades
run-time flexibility for implementation efficiency. In a Compile-Time Virtualisation (CTV) sys-
tem, because the structure of the program and architecture must be known by the compiler
the run-time behaviour of the application is slightly restricted. These limitations are detailed
section 3.6.1, and exemplified in section 4.15.

The benefit is that for the majority of embedded applications that do not require much run-time
dynamism, very low overhead solutions can be created. Section 5.2 demonstrated that the
level of information available to the compiler in a CTV-based system allows for static sections
of the system to vastly reduce the amount of run-time support that they require, reducing
memory and processing requirements.

The thesis introduces the Object Manager (OM) model, which is a model for the provision of
distributed OS services in a non-uniform embedded system. The OM model uses the extra
compile-time information provided by CTV to implement a low-overhead system that provides
distributed shared memory, coordination, concurrency and migration without imposing bottle-
necks in the way that a traditional OS kernel does. The OS model is shown to support the CTV
system model to distribute applications over complex architectures.

In section 2.6.3, the thesis observes that many existing programming models demonstrate poor
scalability by assuming universal shared memory with globally-coherent caches and a totally-
connected grid of processing nodes. This does not reflect the structure of actual applications,
in which each shared data item tends to only be accessed by a small subset of the system
threads. Also, these models do not link threads with the data that they use, leading to poor
support for systems with dynamic migration.

Accordingly, a clustering-based system model is introduced in section 3.2 which defines the
concept of coupling. Coupling allows the programmer to specify the extent to which elements
of their application interact. Tightly-coupled elements interact frequently and are more time-
critical. The clustering model is shown to allow the implementation to relax some of the co-
herency and communication assumptions of the programming model and to concentrate on
only tightly-coupled items. Section 5.3 shows the benefits that this has for large systems, or
systems that support thread and data migration.

The VP and clustering model are both part of an overall system model used by this thesis,
introduced in section 3.4 and refined for compile-time use by CTV in section 3.6. This model
is shown to be suitable for representing three languages commonly used in embedded devel-
opment (C, Ada and Java) in section 3.4.5. The model is shown to be expressive enough to
allow CTV to target a wide range of architectures in section 5.1.

231

Chapter 6. Conclusions

The decentralised and inherently parallel nature of the OM model allows for the VP to pro-
vide an implementation that will scale to large systems as much as the input program allows
it to. Clearly if the input program is structured as a large number of tasks which all depend on
the same mutexes and shared data then scalability is restricted and the resulting implemen-
tation will be similar to a standard distributed operating system. However, as programmers
(and programming languages) increasingly consider parallelisation and complex architectures,
CTV can take advantage of this to provide more scalable and efficient implementations. The
bottlenecks are placed back on the specification of the programming model, and onto the
programmer themselves.

Finally, the thesis presents Anvil, an implementation of CTV based on the C programming lan-
guage. Anvil is compared to existing run-time systems and demonstrates very low overheads
compared to existing run-time approaches.

6.2 Future work

There are a number of areas of future development based on the work in this thesis.

6.2.1 More expressive source languages

As highlighted in chapter 5, Anvil currently cannot effectively target vector processors because
its chosen input language of C with pthreads does not allow the programmer to describe data-
parallel and SIMD-style operations. Also, in order to support dynamic data structures over a
NUMA, Anvil required extra compositional information from the programmer in the form of Anvil
POs (section 4.12).

As emphasised in this thesis, a key advantage of CTV-based systems over run-time systems is
that because CTV’s virtualisation layer exists at compile-time it can take advantage of the high-
level expressive capabilities of the source language. The mapping capabilities of CTV-based
systems increase with the expressive power of the input language, whereas a run-time system
only has access to compiled machine instructions of individual target processors. Higher-level
semantics and inter-thread interactions are lost.

Therefore, an interesting avenue of research involves looking at applying CTV to a language
with greater expressive power than that of C. The following areas are of particular interest:

OpenMP As mentioned in section 5.1.7, OpenMP allows the programmer to express both
coarse-grained and fine-grained parallelism. This would allow a CTV system to make
more efficient use of SIMD-based processing architectures.

Occam Languages that are based on CSP and similar computation models provide explicit
enumeration of the communication channels in a program and how they are used. This
greatly assists mapping to the communication channels of embedded architectures.

Hardware-description languages See below.

232

6.2. Future work

6.2.2 CTV and hardware development

In CTV as presented in this thesis, the target architecture is provided through a hardware
description in terms of the CTV system model. An alternative to this is that CTV could be used
to assist with the development and refinement of the target architecture. There are three main
ways in which this can be done:

Co-design CTV can be integrated into an existing co-design framework that designs and re-
fines the target architecture instead. A common difficulty experienced by co-design is
that the application software needs to adapt to the iterating architecture. Currently, this
is done by limiting memory access, communications and I/O, and providing a run-time
wrapper layer that the software must use. CTV could instead be used to automatically
refactor an architecturally-neutral program so that it executes efficiently on the various
candidate architectures as they are evaluated by the framework. This would ease the
software development of co-design systems, and allow more flexible architectural re-
finement, in excess of the standard co-design architecture that most systems mandate
(described in section 2.4.4).

High-level synthesis An interesting potential area of research is the integration of high-level
synthesis into the CTV system model. Currently, CTV models custom hardware ele-
ments as part of the target architecture and shared objects as part of the input applica-
tion. However, the only practical difference between these two concepts is the manner
in which they are implemented. If the input language is a high-level synthesis language
(section 2.4.2) such as Handel-C or Catapult-C (or if a synthesising compiler is used)
then the CTV implementation could allow the programmer to change between hardware
and software implementations automatically. CTV’s communications layer would auto-
matically ensure that messages are correctly routed. Similar work has already been
done in the JEOPARD project [199] in order to add hardware-implemented object meth-
ods to the Java programming language, so results and techniques from this project would
be useful.

Run-time reconfiguration Currently the CTV system model targets a fixed architecture, but
FPGA-based systems can make use of run-time reconfiguration to dynamically change
the target hardware as the system is executing (see section 2.5.6). CTV’s communication
and migration facilities could be used to provide support for this reconfiguration.

The unifying trend of these three research directions is that CTV frees the architecture designer
from the limitations imposed by the source language. CTV’s VP is guaranteed to expose
a compatible programming model that will ensure correct functional operation of the input
application. This allows iterations and improvements to be made to the target architecture
independently of the input software.

6.2.3 Hierarchical Virtual Platforms

Moving virtualisation from run-time to compile-time allows for presence of many virtualisation
layers in the same system without imposing extra run-time cost. Section 5.2 showed how
compile-time virtual layers collapse during the compilation process to impose the minimum

233

Chapter 6. Conclusions

Actual platform
Complex multi-core architecture

Firmware VP
Simple architecture, maps to entirety of actual platform

Device
firmware

Embedded
OS

User VP
Maps to subset of

firmware VP

User
program

User
program

Figure 6.1: Hierarchical VPs allow for different views of the actual platform to be presented to
different classes of program.

level of run-time overhead required. This property will remain if multiple nested or hierarchical
VPs are used in the same system.

Accordingly, the situation depicted in figure 6.1 is possible. The figure shows the complex
architecture of a mobile computing device, such as a smartphone. A VP is present to hide the
underlying complexity of the architecture and assist the development of firmware and operating
system software. However, user applications (which might be from an external source and
therefore are untrusted) exist on top of a further VP. This VP hides a greater amount of the
architecture so only the application processor is visible and the real-time tasks of the baseband
processor cannot be affected.

Hierarchical VPs could be used for the following purposes:

• Simplified development: Applications that do not need access to the full architecture
can be presented with a highly-simplified (virtual) target architecture.

• Sandboxing: Sandbox VPs can prevent access to real-time areas of the hardware, or
guard against the behaviour of malicious software. Also, because the sandbox VP has
access to the entire source code of the sandboxed software, it can actually change its
behaviour rather than simply prevent certain actions. For example, a sandbox VP can
alter its hosted applications so that all memory accesses are directed through a given
communication link, therefore freeing other links for other potentially real-time tasks.

6.2.4 Implications on WCET analysis

When developing hard real-time systems, it is necessary to perform Worst-Case Execution
Time (WCET) analysis to ensure that the system will meet its deadlines. One of the main chal-
lenges associated with WCET analysis is the reduction of analysis pessimism, which results
from uncertainty in the analysis. If analysis is overly pessimistic then a system that uses it will
be safe, but will be very wasteful due to over-provision.

234

6.3. Conclusion

The following areas of further research are areas in which CTV can potentially reduce analysis
pessimism or improve the WCET of hard real-time systems:

• CTV reduces the layers of run-time middleware support required. For a static architec-
ture CTV has a very predictable performance because the communications and shared
memory libraries are hard-coded for each target processor.

• The clustering model, and the provision of distributed OS services by the OM model,
helps to make the system more scalable by bounding the interference experienced by a
thread from other clusters in the system. Interactions still have to be modelled by WCET
analysis, but the overall pessimism is likely to be reduced.

• Commonly, some parts of a target architecture will be fast (complex processors with
caches and dynamic memory), and some parts will be slower but predictable (short
pipelines, no caching, static memory). The extra mapping information provided by CTV’s
system model allows for time-critical code to be appropriately mapped to predictable
areas of an otherwise heterogenous architecture, thereby assisting WCET analysis on a
wider range of architectures.

6.2.5 Anvil improvements

There are a number of areas in which Anvil’s implementation can be improved. These are:

• Implementation of modern cache coherency algorithms to improve the performance of
the shared memory system in SMP-style architectures.

• Support for true heterogeneous thread migration (an algorithm similar to the work in
[85] is appropriate). Anvil currently does not migrate threads, only shared data, shared
objects and OMs.

• Optimisation of OM code and the refactoring engine to reduce Anvil’s run-time code
footprint and compile-time overheads. Anvil is a research project and so the code is more
focussed on clarity and debugging capabilities than optimisation. The Anvil compiler and
refactoring engine can be rewritten in a faster language.

• Support for a wider range of embedded processors.

These items were not important to develop the work contained within this thesis, but would
help to allow further investigation into the efficacy of Anvil for use in industrial contexts.

6.3 Conclusion

This thesis has demonstrated how Compile-Time Virtualisation can aid the development of
software for architecturally-complex embedded systems. The CTV system model is defined
as a language-neutral model that can be used with a wide range of input languages and is

235

Chapter 6. Conclusions

expressive enough to target current and future embedded systems. CTV uses a compile-time
Virtual Platform that is lightweight and introduces a very amount of low run-time overhead.
It is still necessary to restrict the code used by the programmer in order to obtain efficient
mapping, as CTV requires that the input code is largely amenable to static analysis. Use of
an analysable language subset (for example MISRA-C [220]) would provide guidelines and
coding styles to assist developers. An implementation of CTV based on the C programming
language is presented and evaluated using actual implementations and simulations to show
the efficiency and flexibility of the CTV approach.

236

Appendix A

Object Manager message protocol

Anvil defines an internal messaging protocol that is used by the OMs to communicate with each
other. This protocol implements the various OM operations required by Anvil’s implementation
of CTV. Other implementations will have different requirements and so will need a different set
of messages. These messages are conveyed by the communication channels of the target
implementation and sent by the architecture layer of Anvil’s libraries (sections 4.8, 4.9 and
4.10). In the current implementation, only 16-bit identifiers are used for thread and CPU IDs,
limiting the system to 65,536 of both. A full production system for future massively-parallel
systems may wish to increase this limit by using 32-bit identifiers. This protocol assumes that
all threads and OM managers share an ID space and are all unique.

Also, messages are currently limited to 256 bytes in length, although in practice are always
much shorter. This is because on-chip communications tend to take negligible time to establish
a connection so the overhead of sending a batch of short messages is much less than would
be the case over networks such as Ethernet or the internet. The advantage of short messages
is that sending and receiving delays are shorter, latency is reduced, and they do not cause
as lengthy pauses in processing on the source and destination nodes. These features can all
be tuned by the implementation later, however. In a production system it is likely that average
message length would be a factor of the communication medium.

Messages are currently not acknowledged because on-chip communications media are reli-
able. Clearly if an unreliable medium is used then acknowledges, flow control, and packet
reordering will all need to be added to the protocol. Due to the fact that the CTV implementa-
tion knows offline whether a given medium is reliable or unreliable, it can switch between the
two protocol styles depending on the link, resulting in lower overheads on better transmission
media. These are all future implementation work.

The rest of this section details the messages used in the Anvil implementation. Each message
is named, its structure detailed, and then notes given that describe interesting features of its
use.

237

Appendix A. Object Manager message protocol

A.0.1 Thread operations

M THREADCREATE

Source Thread ID Length Operation ID Thread ID

2 bytes 1 byte 1 byte 2 bytes

6 0x01 ID of thread to create

Generated by a pthread create call. This message should be sent to the target thread’s
OM which will then wake the appropriate thread. In the case where the thread’s OM is not
hosted on the same processor as the thread (or when the thread is on a logical processor
and may therefore move at run-time, see section 3.4.1) the OM will repeat the message to the
appropriate processor. This message should be idempotent.

M THREADEXIT

Source Thread ID Length Operation ID

2 bytes 1 byte 2 bytes

5 0x02

Sent from a thread which is exiting by calling pthread exit, to the thread’s OM. The manager
notes that the thread is now exited, so that threads joining it can now be notified.

M THREADJOIN

Source Thread ID Length Operation ID Thread ID

2 bytes 1 byte 1 byte 2 bytes

6 0x03 ID of thread to join

Sent by a pthread join call to the OM of the thread being joined. The OM will reply with a
M THREADJOINREPLY message. The OM will reply immediately if the requested thread is not
currently executing, or it will queue join requests and reply later once the thread to join exits
(with a M THREADEXIT message).

M THREADJOINREPLY

Source Thread ID Length Operation ID Thread ID

2 bytes 1 byte 1 byte 2 bytes

6 0x05 ID of thread being joined

Sent as by the OM as a reply to a M THREADJOIN message.

238

A.0.2 Mutex operations

M MUTEXLOCK

Source Thread ID Length Operation ID Mutex ID

2 bytes 1 byte 1 byte 2 bytes

6 0x10 ID of requested mutex

Sent by a pthread mutex lock call to the OM of the mutex being requested. The OM will
maintain a queue of requests and grant them in FIFO order. The manager replies with a
M MUTEXREPLY message. The requesting thread must block until the M MUTEXREPLY message is
received.

M MUTEXREPLY

Source OM ID Length Operation ID Thread ID Mutex ID

2 bytes 1 byte 1 byte 2 bytes 2 bytes

8 0x11 ID of requesting thread ID of mutex

Sent by the OM in reply to a M MUTEXLOCK or M MUTEXTRYLOCK to indicate that the named thread
has obtained the mutex lock.

M MUTEXTRYLOCK

Source Thread ID Length Operation ID Mutex ID

2 bytes 1 byte 1 byte 2 bytes

6 0x12 ID of requested mutex

Similar to the M MUTEXLOCK message, but the OM will always reply immediately with either a
M MUTEXREPLY if the lock is granted or a M MUTEXREPLYNEGATIVE if the mutex is currently locked
by another thread. The requesting thread must block until one of these messages is received,
but not until the mutex lock is granted. The OM will not add an unsuccessful lock request to
the lock queue, the thread must try again later.

M MUTEXUNLOCK

Source Thread ID Length Operation ID Mutex ID

2 bytes 1 byte 1 byte 2 bytes

6 0x13 ID of locked mutex

239

Appendix A. Object Manager message protocol

Send to the mutex’s OM by a call to pthread mutex unlock to relinquish a mutex lock. This
message should only be sent by threads that currently hold the mutex lock in question. Upon
receipt of this message the OM will send a M MUTEXREPLY to the next thread (if any) that is in
the request queue for that mutex.

M MUTEXREPLYNEGATIVE

Source OM ID Length Operation ID Thread ID Mutex ID

2 bytes 1 byte 1 byte 2 bytes 2 bytes

8 0x14 ID of requesting thread ID of mutex

Sent in response to a M MUTEXTRYLOCK to indicate that the lock request was unsuccessful. The
requesting thread is not added to the request queue.

A.0.3 Condition Variable operations

M CVWAIT

Source Thread ID Length Operation ID CV ID

2 bytes 1 byte 1 byte 2 bytes

6 0x20 ID of CV

Sent by a call to pthread cond wait. The requesting thread is added to the CV’s wait queue.
The requesting thread should block until it is sent a M CVWAITREPLY.

M CVWAITREPLY

Source OM ID Length Operation ID Thread ID CV ID

2 bytes 1 byte 1 byte 2 bytes 2 bytes

8 0x21 ID of released thread, ID of CV
or -1 to release all threads

Sent when a CV’s OM receives either a M CVSIGNAL or M CVBROADCAST. If the CV is signalled,
only one thread from the CV’s wait queue is signalled. If the CV is broadcast then all threads
are signalled by setting thread ID to -1.

240

M CVSIGNAL

Source Thread ID Length Operation ID CV ID

2 bytes 1 byte 1 byte 2 bytes

6 0x22 ID of CV

Sent from a pthread cond signal call to the OM of the CV. The OM will respond by waking a
single thread from the CV’s wait queue (if any) with a M CVWAITREPLY message.

M CVBROADCAST

Source Thread ID Length Operation ID CV ID

2 bytes 1 byte 1 byte 2 bytes

6 0x23 ID of CV

Sent from a pthread cond broadcast call to the OM of the CV. The OM will respond by waking
all threads from the CV’s wait queue with a M CVWAITREPLY message in which the target thread
ID is set to -1.

A.0.4 Shared variable operations

M SVREAD

Source Thread ID Length Operation ID SV ID Offset RequestLength

2 bytes 1 byte 1 byte 2 bytes 4 bytes 1 bytes

11 0x36 ID of SV Byte offset Bytes of the
into the SV SV requested

Reads RequestLength bytes from the shared variable, starting at offset Offset. The OM of
the shared variable will respond with one of three messages:

• M SVREPLY if the requesting thread does not have direct access to the requested data.

• M SVREPLYSMP if the thread does have access (such as in an SMP architecture) and the
data has not changed since it was last fetched.

• M SVREPLYCLEARCACHE if the thread does have access (such as in an SMP architecture)
and the data has changed since it was last fetched so caches should be flushed by the
requesting processor.

241

Appendix A. Object Manager message protocol

M SVREPLY

Source OM Length Operation Target SV ID Offset Data
ID ID thread ID

2 bytes 1 byte 1 byte 2 bytes 2 bytes 4 bytes Variable

12 + Data 0x37 ID of SV Byte offset
into the SV

Sent in response to a M SVREAD message. As this message might be very long (up to 256 bytes
in this implementation but potentially longer in others) the implementation processes this mes-
sage as it is being received byte by byte. This prevents the need for potentially large internal
message buffers and minimises the memory footprint of the message handling subsystem.

Note that if the OM and the requesting thread both have direct access to the shared variable
(such as in a SMP architecture), then the data field is omitted (and length updated accordingly).

M SVWRITE

Source OM ID Length Operation ID SV ID Offset Data

2 bytes 1 byte 1 byte 2 bytes 4 bytes Variable

10 + Data 0x38 ID of SV Byte offset into the SV

Writes a block of data into the requested SV at the requested offset. Like M SVREPLY this
message might be very long so it is processed incrementally in a similar way.

M SVREPLYSMP

Source OM ID Length Operation ID SV ID

2 bytes 1 byte 1 byte 2 bytes

6 0x39 ID of SV

Sent in response to a M SVREAD message when the requesting thread also has direct access
to the requested shared variable (such as in an SMP architecture). This message informs the
requesting thread that it is OK to proceed, and that the data in the shared variable has not
changed since the last time it was requested so it is not necessary to clear caches before.

M SVREPLYCLEARCACHE

Source OM ID Length Operation ID SV ID

2 bytes 1 byte 1 byte 2 bytes

6 0x3A ID of SV

242

Sent in response to a M SVREAD message when the requesting thread also has direct access
to the requested shared variable (such as in an SMP architecture). This message informs the
requesting thread that it is OK to proceed, but that the data in the shared variable has changed
since the last time it was requested so data cache lines corresponding to this data item should
be cleared first.

A.0.5 Protected object operations

M UDSOCALL

Source Length Operation PO ID Function Arguments
OM ID ID ID

2 bytes 1 byte 1 byte 2 bytes 1 byte Variable

0x40 Byte array interpreted
as function arguments

Used by the Anvil protected object model (section 4.12.1) to call a protected function. The
arguments field is a variable length field which is the arguments of the protected function
concatenated as a byte array. All arguments are passed by value.

M UDSOREPLY

Source Length Operation PO ID Function Return value
OM ID ID ID

2 bytes 1 byte 1 byte 2 bytes 1 byte Variable

0x41 Protected function return
value

Sent in response to a M POCALL message, contains the return value of the protected function.

A.0.6 Miscellaneous operations

M GETENDIANNESS

Source OM ID Length Operation ID Target CPU ID

2 bytes 1 byte 1 byte 2 bytes

6 0x42

Request the endianness of a processor.

243

Appendix A. Object Manager message protocol

M GETENDIANNESSREPLY

Source OM ID Length Operation ID Target OM ID Endianness

2 bytes 1 byte 1 byte 2 bytes 1 byte

7 0x43 0 for little-endian
1 for big-endian

Sent in response to a M GETENDIANNESS message.

A.0.7 Migration operations

M MIGRATE

Source OM ID Length Operation ID Item ID Target OM ID Object state

2 bytes 1 byte 1 byte 2 bytes 2 bytes Variable

See below

Sent to migrate an object from one OM to another. The ‘Operation ID’ field is used to identify
the type of object being migrated according to the following table:

Operation ID Migrating object type

0x50 Thread helper
0x51 Mutex
0x52 Condition Variable
0x53 Shared variable

M POSITION UPDATE

Source OM ID Length Operation ID Item ID New CPU ID

2 bytes 1 byte 1 byte 2 bytes 2 bytes

8 See below

Sent after a migration from the source OM to inform other processors of the new location of
the migrated object. The ‘Operation ID’ field is used to identify the type of object according to
the following table:

Operation ID Migrating object type

0x60 Thread helper
0x61 Mutex
0x62 Condition Variable
0x63 Shared variable

244

Appendix B

Experimental data

B.1 Effect of undirected migration

Data for figure 5.25. Shows resultant slowdowns experienced after a single migration. ‘Mi-
grated’ shows results if only the thread is migrated. ‘Clusters’ shows results for migrating the
thread and its data.

Benchmark Local Migrated Clusters Migrated Clusters
(cycles) (cycles) (cycles) (normalised) (normalised)

fdct 9908 216350 28217 21.835 2.847
quicksort 26157 320142 36944 12.239 1.412

binarysearch 1114 9502 10041 8.529 9.013
bsort 78044 1075473 91013 13.780 1.166
sobel 574097 21811154 942935 37.992 1.642

245

Appendix B. Experimental data

B.2 Transfer efficiency timings

Data for figure 5.21. Shows transfer rates of shared data between the two shared memory
blocks of the architecture in figure 5.20 using different transfer methods. Each value is the
mean of 16 transfers.

Transfer Size Sequential access Random access DMA
(bytes) (cycles) (cycles) (cycles)

4 260 278 203
8 460 461 212

16 839 860 311
32 1605 1668 524
64 3119 3266 911
128 6152 6479 1697
256 12203 12899 3281
512 24324 25737 6365

B.3 Simulation results: varying execution time

Data for figures 5.27 and 5.28. The effect of varying task execution time with and without
cluster-based migration. Each value is the mean of 200 simulations.

Cycles 2x2 4x4 2x2 4x4
(clusters) (clusters)

1000 34.44 46.51 49.70 60.70
2000 38.17 54.28 58.49 86.13
3000 42.52 64.80 64.41 96.84
4000 45.85 79.11 75.59 104.15
5000 48.72 85.09 79.90 116.77
8000 57.21 111.39 91.15 131.20
10000 61.26 123.28 93.47 144.77
30000 91.22 206.36 110.76 171.60
50000 99.29 234.05 114.18 176.35
75000 106.14 250.60 116.10 180.21

100000 107.73 260.08 116.92 181.76
500000 114.43 281.56 119.27 185.48
1000000 114.91 284.25 119.34 186.09

246

B.4. Simulation results: varying data access frequency

Cycles 8x8 16x16 8x8 16x16
(clusters) (clusters)

1000 64.61 97.63 77.68 84.46
2000 85.74 146.24 91.75 102.73
3000 109.09 189.96 99.76 117.07
4000 140.16 275.68 113.49 129.70
5000 159.61 312.77 120.50 136.80
8000 221.13 433.72 139.45 144.58
10000 257.75 481.49 148.43 161.19
30000 438.31 874.45 175.04 185.85
50000 502.41 1052.13 182.23 195.33
75000 548.97 1142.95 185.15 194.86

100000 570.00 1176.10 186.95 195.41
500000 612.87 1277.88 190.74 200.88

1000000 620.07 1293.10 190.41 202.06

B.4 Simulation results: varying data access frequency

Data for figure 5.30. The effect of varying how frequently tasks access shared data on an 8x8
grid. Each value is the mean of 200 simulations.

Average cycles between No clusters With cluster
shared data access migration

5000 566.59 793.71
4000 567.75 662.33
3000 569.41 555.75
2000 565.41 423.14
1000 570.55 299.99
800 569.16 275.43
500 570.57 234.84
300 558.77 213.38
200 568.35 200.77
100 560.79 187.07
80 568.00 184.72
50 565.43 182.44
30 567.08 179.69
10 562.96 176.55
5 563.47 175.48

247

Appendix B. Experimental data

B.5 Simulation results: varying migration frequency

Data for figure 5.29. The effect of varying task migration chance with and without cluster-based
migration on an 8x8 grid. Each value is the mean of 200 simulations.

Average cycles No clusters With cluster
between migrations migration

8000000 34.16 34.60
6000000 35.12 34.50
4000000 36.33 36.65
2000000 46.92 44.02
1000000 58.77 54.37
800000 67.24 59.30
600000 71.18 75.81
400000 97.01 76.90
200000 161.50 113.92
100000 255.37 136.82
80000 287.95 145.90
60000 335.71 153.90
40000 398.39 163.56
20000 506.13 178.18
10000 566.03 186.52
8000 581.66 189.37
6000 594.93 194.72
4000 600.53 205.46
2000 613.82 232.26
1000 620.55 285.51
800 620.64 308.85
600 621.78 355.99
400 623.67 445.22
200 624.33 694.34
100 625.32 1227.86

248

Appendix C

Hardware generation from Anvil

The presentation of CTV and Anvil in this thesis focussed on its ability to target and refactor
a software application for execution on a pre-existing architecture. The architecture is de-
scribed to the compile-time system by the programmer through the VP mappings. However,
as discussed in section 6.2 it would also be possible to leverage the architectural information
provided by the programmer to automatically generate an implementation of the target archi-
tecture in a hardware description language (HDL) such as VHDL or Verilog. This appendix
describes one way in which this could be achieved.

Note that the presented system does not use hardware/software co-design techniques (sec-
tion 2.4.4). Co-design frameworks build the execution architecture by analysing and measuring
the behaviour of the input code and then using a form of search to determine which features to
implement in hardware and which in software. This example assumes that the hardware has
already been designed at the block level (perhaps using co-design) and describes how Anvil
could be extended to provide a fast way to implement it.

Xilinx’s Platgen tool [263] is suitable for use as an underlying HDL generator. Platgen is an tool
provided by Xilinx for automatically instantiating IP cores and buses to create an embedded
system. It takes as its input a system specification file and outputs VHDL, EDIF, and Verilog
code that can then be passed through normal FPGA synthesis and place and route tools for
implementation. The system specification is a microprocessor hardware specification (MHS)
file [264] which describes the following features:

Processors: Instantiated from IP cores in Xilinx’s core libraries.

Address spaces: Memories are declared and their connections to microprocessors described
in terms of the address ranges that they inhabit and the bus connection that they use.

Bus architectures: Buses are instantiated from a selection of supported types. Currently
supported are Processor Local Bus (PLB) from IBM’s CoreConnect architecture [112],
Local Memory Bus (LMB), Fast Simplex Link (FSL), On-Chip Peripheral Bus (OPB), Xilinx
Cache Link (XCL) and a few others.

Peripherals (IP cores): Instantiated from IP cores in Xilinx’s core libraries, peripherals may

249

Appendix C. Hardware generation from Anvil

be entirely internal to the system (such as a timer), or may connect to external resources
(such as a UART or memory controller).

Connectivity: External signals are defined and connected to internal peripherals allowing the
system to communicate with the outside world.

During instantiation, the connections between cores and the various system buses are defined.
Cores may export internal signals that are connected to other cores or to external ports. This
allows, for example, a timer core to export an interrupt signal that can be routed to the IRQ pin
on an embedded processor. Finally, each core has a set of parameters that may be adjusted to
change the core’s behaviour. Examples of these parameters are the number of internal buffers
in a network interface or the baud rate of a serial transceiver.

The process of generating hardware from Anvil therefore concerns the translation of AnvilADL
(section 4.2 to an MHS file. Due to the fact that the AnvilADL description is a high-level de-
scription of the hardware, the translation has a lot of freedom over implementation-specific
details. A possible translation algorithm is as follows:

1. Parse the AnvilADL to determine the elements in the system (processors, channels etc.)
and the attributes applied to them.

2. Translate Anvil types to corresponding Xilinx IP cores. Because Platgen is used as the
back-end HDL generator, the types requested in the ADL are translated to corresponding
supported IP cores. For example, in the current version of Xilinx’s tools, all processors
must be implemented using either Picoblaze, Microblaze or OpenRISC.

3. Instantiate cores. Code is created to instantiate the processors (Microblaze etc.), chan-
nels (UART, mailbox, CAN etc.), and other peripherals (timer etc.) in the target system.
No addresses or ports are set at this stage.

4. Determine the connectivity of the system. This is done in two stages, memory connec-
tivity and communications connectivity.

• A graph of memory connectivity is an unconnected directed graph (N,E) of nodes
N and edges E where N is the union of the processors and memory spaces in the
system, and an edge e ∈ E from n1 to n2 indicates that memory space n2 is mapped
into the address range of processor n1. This is determined by parsing the memory

attributes of processor objects.

• A graph of communications connectivity is an unconnected directed graph (N,E) of
nodes N and edges E where N is the union of the processors and communication
channels in the system, and an edge e ∈ E from n1 to n2 indicates that processor
n1 is connected to channel n2, and therefore can communicate with other proces-
sors that are connected to the same channel. This is determined by parsing the
endpoints attribute of channel objects.

From these two graphs the bus topology of the system can be generated.

5. Generate bus topology. The bus topology of the system can now be determined. There
are two topology schemes that can be used, and schemes could be mixed.

250

C.1. Hardware generation example

• Dedicated bus: This scheme generates a single memory bus and a single periph-
eral bus for each processor in the target system. (If a processor has no peripherals
then the peripheral bus would not be generated.) This involves the instantiation of
a bus in the MHS file and then setting the BUS INTERFACE parameter of each pro-
cessor instance. Then, the channels are connected to the peripheral buses of their
attached processors, according to the communications connectivity graph. Periph-
erals are attached to the peripheral bus. This involves setting the BUS INTERFACE

parameter of the peripheral instance. For IP cores that need to be connected to the
buses of many processors, a shared bus can be created and bridged to all desired
buses.

• Shared bus: The scheme described above provides high data throughput as each
processor has its own peripheral and memory bus. However it is also possible to
create an shared bus architecture in which processors share the same peripheral
and memory bus. This results in reduced bandwidth, but also lower logic area
requirements as fewer bus controllers need to be instantiated. Some buses have
hard limits on the maximum number of slaves or masters that can be connected
which must be checked.

Extra attributes would need to be added to the AnvilADL description to allow the pro-
grammer to specify the bus topology required.

6. Generate address maps. Once the connected items have been determined for each
bus, the address map can be built. Each peripheral has a required address size which
can be determined automatically by checking the definition of the IP core. For memory
controllers, the size is determined from the depth and width attributes in the AnvilADL
of the corresponding memory object.

7. Connect interrupts. The ports attribute of peripherals is used to inform the hardware
generation process which elements of hardware can interrupt which processors. If a
processor does not provide enough native interrupt lines then an interrupt controller in-
stance can be created and connected appropriately by instantiating a pre-built processor-
specific template.

8. Synthesise MHS file.

The resulting MHS file could then be passed to Platgen, which will generate the target archi-
tecture as a set of HDL files and synthesis scripts for implementation of the architecture on an
FPGA.

C.1 Hardware generation example

This section gives an example of how the Anvil hardware generation could operate. The exam-
ple system is a simple shared-bus, dual-processor system with no shared memory but mailbox
communication and an external serial interface. This is shown in figure C.1.

Such an architecture is described by the following ADL:

251

Appendix C. Hardware generation from Anvil

Microblaze Microblaze

Local
memory

(BlockRAM)

Local
memory

(BlockRAM)

Mailbox

Shared PLB

UART

Figure C.1: Example of an architecture that could be generated.

cpu1, cpu2 : processor Microblaze;

mem1, mem2 : memory BlockRAM;

cpu1^memory = mem1;

cpu2^memory = mem2;

mbox = channel Mailbox;

uart = hardware UART(115200, 100000000);

mbox^endpoints = [cpu1(0x81e20000, "mem", 0), cpu2(0x82040000, "mem", 0)];

uart^ports = [cpu1(0x84000000, "mem", None), cpu2(0x84000000, "mem", None)];

Although given in the above example, is it not necessary for the programmer to specify ad-
dresses if they are not otherwise constrained as the system could generate and assign them
automatically. From analysis of the ADL it is possible to build an MHS file around a single
shared PLB bus. A number of extra components are added automatically (a clock generator
and reset generator, and instruction and data local memory buses) from templates provided
by Xilinx. An example resulting MHS file is shown here.

PORT sys_clk_pin = dcm_clk_s, DIR = I, SIGIS = CLK

PORT sys_rst_pin = sys_rst_s, DIR = I, RST_POLARITY = 0, SIGIS = RST

PORT fpga_0_RS232_Uart_RX_pin = fpga_0_RS232_Uart_RX, DIR = I

PORT fpga_0_RS232_Uart_TX_pin = fpga_0_RS232_Uart_TX, DIR = O

BEGIN clock_generator

#Details skipped for brevity

END

BEGIN proc_sys_reset

#Details skipped for brevity

END

252

C.1. Hardware generation example

BEGIN microblaze

PARAMETER INSTANCE = microblaze_0

PARAMETER C_INTERCONNECT = 1

PARAMETER HW_VER = 7.20.d

BUS_INTERFACE DPLB = plb_0

BUS_INTERFACE IPLB = plb_0

BUS_INTERFACE DLMB = dlmb_0

BUS_INTERFACE ILMB = ilmb_0

PORT MB_RESET = mb_reset

PORT INTERRUPT = xps_mailbox_0_Interrupt_0

END

BEGIN microblaze

PARAMETER INSTANCE = microblaze_1

PARAMETER HW_VER = 7.20.d

BUS_INTERFACE IPLB = plb_0

BUS_INTERFACE DPLB = plb_0

BUS_INTERFACE ILMB = ilmb_1

BUS_INTERFACE DLMB = dlmb_1

PORT MB_RESET = mb_reset

PORT INTERRUPT = xps_mailbox_0_Interrupt_1

END

BEGIN plb_v46

PARAMETER INSTANCE = plb_0

PARAMETER HW_VER = 1.04.a

PORT PLB_Clk = sys_clk_s

PORT SYS_Rst = sys_bus_reset

END

BEGIN lmb_v10

PARAMETER INSTANCE = dlmb_0

PARAMETER HW_VER = 1.00.a

PORT SYS_Rst = sys_bus_reset

PORT LMB_Clk = sys_clk_s

END

#And similar LMB declarations for ilmb_0, dlmb_1 and ilmb_1

BEGIN lmb_bram_if_cntlr

PARAMETER INSTANCE = dlmb_cntlr_0

PARAMETER HW_VER = 2.10.b

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007FFF

BUS_INTERFACE SLMB = dlmb_0

BUS_INTERFACE BRAM_PORT = dlmb_cntlr_0_BRAM_PORT

END

#And similar BRAM controller declarations for ilmb_cntlr_0,

#dlmb_cntlr_1 and ilmb_cntlr_1

253

Appendix C. Hardware generation from Anvil

BEGIN bram_block

PARAMETER INSTANCE = lmb_bram_0

PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTB = dlmb_cntlr_0_BRAM_PORT

BUS_INTERFACE PORTA = ilmb_cntlr_0_BRAM_PORT

END

#And a similar BRAM declaration for lmb_bram_1

BEGIN xps_mailbox

PARAMETER INSTANCE = xps_mailbox_0

PARAMETER HW_VER = 1.00.a

PARAMETER C_SPLB0_BASEADDR = 0x81e20000

PARAMETER C_SPLB0_HIGHADDR = 0x81e2ffff

PARAMETER C_SPLB1_BASEADDR = 0x82040000

PARAMETER C_SPLB1_HIGHADDR = 0x8204ffff

BUS_INTERFACE SPLB0 = plb_0

BUS_INTERFACE SPLB1 = plb_0

PORT SYS_Rst = mb_reset

PORT Interrupt_0 = xps_mailbox_0_Interrupt_0

PORT Interrupt_1 = xps_mailbox_0_Interrupt_1

END

BEGIN xps_uartlite

PARAMETER INSTANCE = RS232_Uart

PARAMETER HW_VER = 1.01.a

PARAMETER C_BAUDRATE = 115200

PARAMETER C_DATA_BITS = 8

PARAMETER C_ODD_PARITY = 0

PARAMETER C_USE_PARITY = 0

PARAMETER C_SPLB_CLK_FREQ_HZ = 100000000

PARAMETER C_BASEADDR = 0x84000000

PARAMETER C_HIGHADDR = 0x8400ffff

BUS_INTERFACE SPLB = plb_0

PORT RX = fpga_0_RS232_Uart_RX

PORT TX = fpga_0_RS232_Uart_TX

END

254

Appendix D

Anvil Example

This appendix shows a simple system with two threads (the main thread and one invoked
thread) to perform Sobel edge filtering in both the X and Y directions in parallel. This would
typically be used in the first stage of a vision system.

D.1 Input application

The following four files are the input to the Anvil refactoring engine. The application’s code is
contained in main.c, sobel.c and sobel.h. mappings.anv contains the AnvilADL mappings.

D.1.1 mappings.anv

cpu1 : processor Microblaze;

cpu2 : processor Picoblaze;

mem1, mem2, sharedmem : memory BlockRAM;

cpu1^memory = [mem1(0x00000000)];

cpu2^memory = [mem2(0x00000000)];

cpu1^extramemory = [sharedmem(0x8C000000)];

cpu2^extramemory = [sharedmem(0x8C000000)];

cpu1^threads = "main";

cpu2^threads = "thread2";

sharedmem^variables = ["sourceimage", "outputx", "outputy"];

mbox : channel Mailbox;

mbox^endpoints = [cpu1(0x84000000, "mem", 0), cpu2(0x84000000, "mem", 0)];

om : manager;

om^manages = ["main", "thread2", "sourceimage", "outputx", "outputy"];

255

Appendix D. Anvil Example

D.1.2 main.c

#include <mblib.h>

#include <pthread.h>

#include "addresses.h"

#include "sobel.h"

char sourceimage[IMSIZE][IMSIZE];

char outputx[IMSIZE][IMSIZE];

char outputy[IMSIZE][IMSIZE];

void* thread2body(void *arg) {

yfilter(sourceimage, outputy);

pthread_exit(0);

}

int main(void){

pthread_t thread2;

//Enable interrupts

intc_enable_all_interrupts(intc_0);

intc_master_enable(intc_0);

mb_enable_interrupts();

uart_send_char(external_uart, ’!’);

uart_send_char(external_uart, ’\n’);

//Start timer

initialise_timer(timer_0);

start_timer(timer_0);

//Set off other thread

pthread_create(&thread2, 0, thread2body, 0);

//Filter here

xfilter(sourceimage, outputx);

//Wait for other thread

pthread_join(thread2, 0);

//Print time

uart_print_int(external_uart, *(timer_0 + 2));

uart_send_char(external_uart, ’\n’);

return 0;

}

D.1.3 sobel.h

#ifndef _SOBEL_H

#define _SOBEL_H

#define IMSIZE 200

256

D.2. Anvil output

void xfilter(char image[IMSIZE][IMSIZE], char dest[IMSIZE][IMSIZE]);

void yfilter(char image[IMSIZE][IMSIZE], char dest[IMSIZE][IMSIZE]);

#endif

D.1.4 sobel.c

#include "sobel.h"

void xfilter(char image[IMSIZE][IMSIZE], char dest[IMSIZE][IMSIZE])

{

int weight[3][3] = {{-1,0,1},{-2,0,2},{-1,0,1}};

int x, y, i, j;

for (y = 1; y < IMSIZE - 1; y++)

for (x = 1; x < IMSIZE - 1; x++)

{

dest[y][x] = 0;

for (j = -1; j <= 1; j++)

for (i = -1; i <= 1; i++)

dest[y][x] += weight[j + 1][i + 1] * image[y + j][x + i];

}

}

void yfilter(char image[IMSIZE][IMSIZE], char dest[IMSIZE][IMSIZE])

{

int weight[3][3] = {{-1,-2,1},{0,0,0},{-1,2,1}};

int x, y, i, j;

for (y = 1; y < IMSIZE - 1; y++)

for (x = 1; x < IMSIZE - 1; x++)

{

dest[y][x] = 0;

for (j = -1; j <= 1; j++)

for (i = -1; i <= 1; i++)

dest[y][x] += weight[j + 1][i + 1] * image[y + j][x + i];

}

}

D.2 Anvil output

Nine files are produced by the Anvil refactoring engine:

257

Appendix D. Anvil Example

File Language Purpose

anvil settings cpu0.h C header Configures the Anvil pthreads library
anvil settings cpu1.h C header Configures the Anvil pthreads library
anvil specific cpu0.c C code Low-level hardware drivers
anvil specific cpu1.c C code (Same as anvil specific cpu0.c, see below)

linkscript.ld LD link script
microblaze 0.c C code Code for CPU 0
microblaze 1.c C code Code for CPU 1
sobel.c C code (As input, not shown)
sobel.h C header (As input, not shown)

The following points can be observed in the output files:

• The code has been split so that the thread bodies are now in separate files, one for each
processor. A custom main function was generated for the invoked thread.

• The shared data items have been moved into shared memory using attributes, and a
custom linker script generated based on the architecture description (linkscript.ld) to
inform the linker of this.

• The code now depends on Anvil’s embedded pthreads implementation. This implements
the internals of the OM in the system (located on processor 0).

• The pthreads calls are refactored accordingly.

• The anvil specific cpuX.c files are created to implement the low-level communica-
tions and interrupt handling. As this architecture is symmetric these files are identical,
but on more complex architectures this file can grow to be quite large, if a lot of custom
hardware must be accessed. Drivers for hardware devices (such as the Mailbox device
in this case) are included here, and offline routing implemented here.

• The anvil settings cpuX.h files are created to configure the Anvil pthreads library
according to any OMs hosted by the processor to ensure that only the minimal subset of
the library is linked in.

D.2.1 anvil settings cpu0.h

#define _ANVIL_THISTHREADID 0

#define _ANVIL_TOTAL_MANAGED_THREADS 2

#define _ANVIL_TOTAL_MANAGED_MUTEXES 0

#define _ANVIL_TOTAL_MANAGED_VARS 3

#define _ANVIL_TOTAL_MANAGED_CVS 0

#define _ANVIL_TOTAL_ACCESSED_VARS 0

#define _ANVIL_TOTAL_SYSTEM_THREADS 2

#define _ANVIL_TOTAL_SYSTEM_MUTEXES 0

#define _ANVIL_TOTAL_SYSTEM_CVS 0

#define _ANVIL_MANAGED_THREADS_INITIALISER {0, 0, 0}, {1, 0, 0}

#define _ANVIL_MANAGED_MUTEXES_INITIALISER

#define _ANVIL_MANAGED_CVS_INITIALISER

#define _ANVIL_MANAGED_VARS_INITIALISER {0, 0, 4}, {1, 0, 4}, {2, 0, 4}, {3, 0, 4}

258

D.2. Anvil output

#define _ANVIL_ACCESSED_VARS_INITIALISER

#define _ANVIL_CIRC_BUFF_SIZE 8

#define _ANVIL_MSG_IRQS 1

#define _ANVIL_MSG_IRQS_INITIALISER {0, 0, -1}

#define _ANVIL_ACCS 0

#define _ANVIL_ACCS_INITIALISER

D.2.2 anvil settings cpu1.h

#define _ANVIL_THISTHREADID 1

#define _ANVIL_TOTAL_MANAGED_THREADS 0

#define _ANVIL_TOTAL_MANAGED_MUTEXES 0

#define _ANVIL_TOTAL_MANAGED_VARS 0

#define _ANVIL_TOTAL_MANAGED_CVS 0

#define _ANVIL_TOTAL_ACCESSED_VARS 0

#define _ANVIL_TOTAL_SYSTEM_THREADS 2

#define _ANVIL_TOTAL_SYSTEM_MUTEXES 0

#define _ANVIL_TOTAL_SYSTEM_CVS 0

#define _ANVIL_MANAGED_THREADS_INITIALISER

#define _ANVIL_MANAGED_MUTEXES_INITIALISER

#define _ANVIL_MANAGED_CVS_INITIALISER

#define _ANVIL_MANAGED_VARS_INITIALISER

#define _ANVIL_ACCESSED_VARS_INITIALISER

#define _ANVIL_CIRC_BUFF_SIZE 8

#define _ANVIL_MSG_IRQS 1

#define _ANVIL_MSG_IRQS_INITIALISER {0, 0, -1}

#define _ANVIL_ACCS 0

#define _ANVIL_ACCS_INITIALISER

D.2.3 anvil specific cpu0.c

#include "anvil_pthreads.h"

#include "mblib.h"

volatile int *mailbox = (int *)0x84000000;

volatile int *timer_0 = (int *)0x85000000 ;

void _anvil_send_to_thread(int targetthreadid, int *packet, int len)

{

int x;

for (x = 0; x < len; x++)

{

switch(targetthreadid)

{

case 0:

break;

case 1:

mbox_write(mailbox, packet[x]);

break;

}

}

259

Appendix D. Anvil Example

}

void _anvil_interrupts_disable(void)

{

mb_disable_interrupts();

}

void _anvil_interrupts_enable(void)

{

mb_enable_interrupts();

}

int _anvil_read_from_interrupt(int vec)

{

switch(vec)

{

case 0:

//mbox

return mbox_read(mailbox_0);

break;

default:

//Unknown interrupt, disable it

intc_disable_interrupt(intc_0, vec);

return 0;

break;

}

}

int _anvil_interrupt_ready(int vec)

{

switch(vec)

{

case 0:

//mbox

return mbox_check(mailbox_0);

break;

default:

//Unknown interrupt, disable it

intc_disable_interrupt(intc_0, vec);

return 0;

break;

}

}

int _anvil_get_interrupt_vector(void)

{

return 0;

}

void _anvil_acknowledge_interrupt(int vec)

{

//nop

}

260

D.2. Anvil output

void _anvil_sleep(void)

{

//nop

}

D.2.4 linkscript.ld

OUTPUT_FORMAT("elf32-microblaze", "", "")

ENTRY(_start)

_TEXT_START_ADDR = DEFINED(_TEXT_START_ADDR) ? _TEXT_START_ADDR : 0x50;

_HEAP_SIZE = DEFINED(_HEAP_SIZE) ? _HEAP_SIZE : 0x0;

_STACK_SIZE = DEFINED(_STACK_SIZE) ? _STACK_SIZE : 0x400;

SECTIONS

{

.vectors.reset 0x0 : { KEEP (*(.vectors.reset)) } = 0

.vectors.sw_exception 0x8 : { KEEP (*(.vectors.sw_exception)) } = 0

.vectors.interrupt 0x10 : { KEEP (*(.vectors.interrupt)) } = 0

.vectors.debug_sw_break 0x18 : { KEEP (*(.vectors.debug_sw_break)) } = 0

.vectors.hw_exception 0x20 : { KEEP (*(.vectors.hw_exception)) } = 0

. = _TEXT_START_ADDR;

_ftext = .;

.text : {

*(.text)

(.text.)

(.gnu.linkonce.t.)

}

_etext = .;

.init : { KEEP (*(.init)) } =0

.fini : { KEEP (*(.fini)) } =0

PROVIDE (__CTOR_LIST__ = .);

PROVIDE (___CTOR_LIST__ = .);

.ctors :

{

KEEP (*crtbegin.o(.ctors))

KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))

KEEP (*(SORT(.ctors.*)))

KEEP (*(.ctors))

}

PROVIDE (__CTOR_END__ = .);

PROVIDE (___CTOR_END__ = .);

PROVIDE (__DTOR_LIST__ = .);

PROVIDE (___DTOR_LIST__ = .);

.dtors :

{

KEEP (*crtbegin.o(.dtors))

KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))

KEEP (*(SORT(.dtors.*)))

KEEP (*(.dtors))

}

PROVIDE (__DTOR_END__ = .);

PROVIDE (___DTOR_END__ = .);

. = ALIGN(4);

261

Appendix D. Anvil Example

_frodata = . ;

.rodata : {

*(.rodata)

(.rodata.)

(.gnu.linkonce.r.)

CONSTRUCTORS; /* Is this needed? */

}

_erodata = .;

/* Alignments by 8 to ensure that _SDA2_BASE_ on a word boundary */

/* Note that .sdata2 and .sbss2 must be contiguous */

. = ALIGN(8);

_ssrw = .;

.sdata2 : {

*(.sdata2)

(.sdata2.)

(.gnu.linkonce.s2.)

}

. = ALIGN(4);

.sbss2 : {

PROVIDE (__sbss2_start = .);

*(.sbss2)

(.sbss2.)

(.gnu.linkonce.sb2.)

PROVIDE (__sbss2_end = .);

}

. = ALIGN(8);

_essrw = .;

_ssrw_size = _essrw - _ssrw;

PROVIDE (_SDA2_BASE_ = _ssrw + (_ssrw_size / 2));

. = ALIGN(4);

_fdata = .;

.data : {

*(.data)

(.gnu.linkonce.d.)

CONSTRUCTORS; /* Is this needed? */

}

_edata = . ;

/* Added to handle pic code */

.got : {

*(.got)

}

.got1 : {

*(.got1)

}

.got2 : {

*(.got2)

}

/* Added by Sathya to handle C++ exceptions */

.eh_frame : {

*(.eh_frame)

}

.jcr : {

*(.jcr)

262

D.2. Anvil output

}

.gcc_except_table : {

*(.gcc_except_table)

}

/* Alignments by 8 to ensure that _SDA_BASE_ on a word boundary */

/* Note that .sdata and .sbss must be contiguous */

. = ALIGN(8);

_ssro = .;

.sdata : {

*(.sdata)

(.sdata.)

(.gnu.linkonce.s.)

}

. = ALIGN(4);

.sbss : {

PROVIDE (__sbss_start = .);

*(.sbss)

(.sbss.)

(.gnu.linkonce.sb.)

PROVIDE (__sbss_end = .);

}

. = ALIGN(8);

_essro = .;

_ssro_size = _essro - _ssro;

PROVIDE (_SDA_BASE_ = _ssro + (_ssro_size / 2));

. = ALIGN(4);

_fbss = .;

.bss : {

PROVIDE (__bss_start = .);

*(.bss)

(.bss.)

(.gnu.linkonce.b.)

*(COMMON)

. = ALIGN(4);

PROVIDE (__bss_end = .);

}

. = ALIGN(4);

.heap : {

_heap = .;

_heap_start = .;

. += _HEAP_SIZE;

_heap_end = .;

}

. = ALIGN(4);

.stack : {

_stack_end = .;

. += _STACK_SIZE;

. = ALIGN(8);

_stack = .;

_end = .;

}

263

Appendix D. Anvil Example

.tdata : {

*(.tdata)

(.tdata.)

(.gnu.linkonce.td.)

}

.tbss : {

*(.tbss)

(.tbss.)

(.gnu.linkonce.tb.)

}

. = 0x8C000000;

sharedmemory : { }

}

D.2.5 microblaze 0.c

#include <mblib.h>

#include "anvil_pthreads.h"

#include "addresses.h"

#include "sobel.h"

char sourceimage[IMSIZE][IMSIZE] __attribute__((section ("sharedmemory")));

char outputx[IMSIZE][IMSIZE] __attribute__((section ("sharedmemory")));

char outputy[IMSIZE][IMSIZE] __attribute__((section ("sharedmemory")));

int main(void)

{

//Enable interrupts

intc_enable_all_interrupts(intc_0);

intc_master_enable(intc_0);

mb_enable_interrupts();

uart_send_char(external_uart, ’!’);

uart_send_char(external_uart, ’\n’);

//Start timer

initialise_timer(timer_0);

start_timer(timer_0);

//Set off other thread

pthread_create(1, 0); //Thread ID 1, OM is on CPU 0

//Filter here

xfilter(sourceimage, outputx);

//Wait for other thread

pthread_join(1, 0); //Thread ID 1, OM is on CPU 0

//Print time

uart_print_int(external_uart, *(timer_0 + 2));

uart_send_char(external_uart, ’\n’);

264

D.2. Anvil output

return 0;

}

D.2.6 microblaze 1.c

#include <mblib.h>

#include "anvil_pthreads.h"

#include "addresses.h"

#include "sobel.h"

char sourceimage[IMSIZE][IMSIZE] __attribute__((section ("sharedmemory")));

char outputx[IMSIZE][IMSIZE] __attribute__((section ("sharedmemory")));

char outputy[IMSIZE][IMSIZE] __attribute__((section ("sharedmemory")));

void* thread2body(void *arg) {

yfilter(sourceimage, outputy);

pthread_exit(0);

}

int main(void)

{

//Enable interrupts

mb_enable_interrupts();

//Wait until we (thread 1) are started by the main thread

_anvil_wait_until_released();

//Call the thread body

thread2body();

return 0;

}

265

Appendix D. Anvil Example

266

Appendix E

Anvil UDSO Example

This appendix contains the full source of the Anvil UDSO example presented in section 4.12.3.
This example is mapped onto a simple dual core SMP system using the AnvilADL in
udsoexample.anv. The input source files are main.c, queues.h and queues.c. After Anvil’s
refactoring has been applied, the two output sources cpu1.c and cpu2.c are produced. Note
that in the output files, the entire code for the queue datatype has been removed. This is
because the queue code is compiled into the OM which manages the UDSO (which in this
case is mapped to cpu1.

E.1 udsoexample.anv

cpu1, cpu2 : processor Microblaze;

mem1, mem2 : memory BlockRAM;

cpu1^memory = [mem1(0x0, 0x7FFF)];

cpu2^memory = [mem2(0x0, 0x7FFF)];

mem1^size = 8192;

mem2^size = 8192;

mem1^width = 32;

mem2^width = 32;

mbox : channel Mailbox;

mbox^endpoints = [cpu1(0x80000000, 0), cpu2(0x80000000, 0)];

cpu1^threads = ["main", "producer_thread"];

cpu2^threads = ["consumer_thread"];

queue : protected;

queue^identifier = "thequeue";

queue^functions = ["queue_put"(1), "queue_get"(1), "queue_empty"(1)];

om : manager;

om^manages = [queue, "mutex", "cond", "main", "producer_thread", "consumer_thread"];

om^executes_on = [cpu1];

267

Appendix E. Anvil UDSO Example

E.2 main.c

/*

Producer / Consumer example

Note that the code in this implementation has been simplified for clarity

and does not represent a complete solution to the producer/consumer problem.

*/

#include "queues.h"

#include <pthread.h>

#include <stdio.h>

queue_t thequeue = QUEUE_INIT;

pthread_t producer_thread, consumer_thread;

pthread_cond_t cond;

pthread_mutex_t mutex;

//Dummy produce and consume functions

int produce_next_item(void) {

static index = 0;

sleep(1);

return index++;

}

void consume_item(int item) {

printf("%d\n", item);

}

//Thread bodies

void *producer_thread_body(void *t)

{

int item;

while(1) //Run constantly for this example

{

item = produce_next_item(); //Produce an item

pthread_mutex_lock(&mutex);

queue_put(&thequeue, item); //Insert the item into the queue

pthread_cond_signal(&cond); //Signal the consumer

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}

void *consumer_thread_body(void *t)

{

int item;

while(1) //Run constantly for this example

{

pthread_mutex_lock(&mutex);

pthread_cond_wait(&cond, &mutex); //Wait to be signalled

while(!queue_empty(&thequeue)) {

268

E.3. queues.h

item = queue_get(&thequeue); //Get an item from the queue

consume_item(item); //Consume the item

}

pthread_mutex_unlock(&mutex);

}

pthread_exit(0);

}

//Main function

int main(void)

{

pthread_mutex_init(&mutex, 0);

pthread_cond_init(&cond, 0);

pthread_create(&producer_thread, 0, producer_thread_body, 0);

pthread_create(&consumer_thread, 0, consumer_thread_body, 0);

pthread_join(producer_thread, 0);

pthread_join(consumer_thread, 0);

}

E.3 queues.h

#ifndef _QUEUE_H

#define _QUEUE_H

typedef struct q_node {

int dataitem;

struct q_node *next;

} queue_t;

#define QUEUE_INIT {0,0}

void queue_put(queue_t *q, int data);

int queue_get(queue_t *q);

int queue_count(queue_t *q);

int queue_empty(queue_t *q);

#endif

E.4 queues.c

#include "queues.h"

void queue_put(queue_t *q, int data) {

while (q->next != 0) q = q->next;

q->next = (queue_t *) malloc (sizeof (queue_t));

q = q->next;

q->next = 0;

q->dataitem = data;

269

Appendix E. Anvil UDSO Example

}

int queue_get(queue_t *q) {

queue_t *temp;

int rv;

if(q->next != 0) {

temp = q->next;

rv = temp->dataitem;

q->next = temp->next;

free(temp);

return rv;

}

return -1;

}

int queue_count(queue_t *q) {

int count = 0;

if(q != 0) {

while(q->next != 0) {

count++;

q = q->next;

}

}

return count;

}

int queue_empty(queue_t *q) {

if(q->next == 0) return 1; else return 0;

}

E.5 cpu1.c

#include "queues.h"

#include "anvil_pthreads.h"

#include <stdio.h>

//Dummy produce and consume functions

int produce_next_item(void) {

static index = 0;

sleep(1);

return index++;

}

//Thread bodies

void *producer_thread_body(void *t)

{

int item;

while(1) //Run constantly for this example

{

item = produce_next_item(); //Produce an item

270

E.6. cpu2.c

pthread_mutex_lock(0, 0); //Mutex ID 0, OM is on CPU 0

_anvil_udso(0, 0, item); //UDSO ID 0, queue_put

pthread_cond_signal(0, 0); //CV ID 0, OM is on CPU 0

pthread_mutex_unlock(0, 0); //Mutex ID 0, OM is on CPU 0

}

pthread_exit(1, 0); //Thread ID 1, OM is on CPU 0

}

//Main function

int main(void)

{

pthread_mutex_init(0, 0); //Mutex ID 0, OM is on CPU 0

pthread_cond_init(0, 0); //CV ID 0, OM is on CPU 0

pthread_create(1, 0); //Thread ID 1, OM is on CPU 0

pthread_create(2, 0); //Thread ID 2, OM is on CPU 0

pthread_join(1, 0); //Thread ID 1, OM is on CPU 0

pthread_join(2, 0); //Thread ID 2, OM is on CPU 0

}

E.6 cpu2.c

#include "anvil_pthreads.h"

#include <stdio.h>

//Dummy produce and consume functions

void consume_item(int item) {

printf("%d\n", item);

}

//Thread bodies

void *consumer_thread_body(void *t)

{

int item;

while(1) //Run constantly for this example

{

pthread_mutex_lock(0, 0); //Mutex ID 0, OM is on CPU 0

pthread_cond_wait(0, 0, 0, 0); //CVID 0, OM on CPU 0, Mutex ID 0, OM on CPU 0

while(!_anvil_udso(0, 2)) { //UDSO ID 0, queue_empty

item = _anvil_udso(0, 1); //UDSO ID 0, queue_get

consume_item(item); //Consume the item

}

pthread_mutex_unlock(0, 0);

}

pthread_exit(2, 0); //Thread ID 2, OM is on CPU 0

}

271

Appendix E. Anvil UDSO Example

272

Appendix F

3-DES Example

This appendix contains the full source of the 3-DES program presented in section 5.1.5. The
input application is shown, and then an instance of the output when it is mapped over three of
the five cores in the target architecture (shown in figure 5.10).

F.1 Input application

F.1.1 mappings.anv

cpu1 : processor Microblaze;

cpu2 : processor Microblaze;

cpu3 : processor Microblaze;

mem1, mem2, mem3, sharedmem : memory BlockRAM;

cpu1^memory = [mem1(0x00000000), sharedmem(0x8C000000)];

cpu2^memory = [mem2(0x00000000), sharedmem(0x8C000000)];

cpu3^memory = [mem2(0x00000000), sharedmem(0x8C000000)];

cpu1^threads = ["main", "workers[0]"];

cpu2^threads = ["workers[1]"];

cpu3^threads = ["workers[2]"];

sharedmem^variables = ["outputdata"];

outputdata : variable;

outputdata^mutex = "outputstream";

outputdata^writecache = 64;

mbox1 : channel Mailbox;

mbox1^endpoints = [cpu1(0x84000000, "mem", 0), cpu2(0x84000000, "mem", 0)];

mbox2 : channel Mailbox;

mbox2^endpoints = [cpu1(0x85000000, "mem", 1), cpu3(0x84000000, "mem", 0)];

273

Appendix F. 3-DES Example

om : manager;

om^manages = ["main", "workers", "outputdata", "inputstream", "outputstream"];

F.1.2 main.c

#include <pthread.h>

#include "des.h"

#define BLOCKS 5000

#define BLOCKSIZE 64

#define WORKER_THREADS 3

//Prototypes

void *worker_body(void *a);

void outputblock(bool *block, int blocknum);

void getblock(bool *block, int blockno);

//pthread API objects

pthread_t workers[WORKER_THREADS];

pthread_mutex_t inputstream = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t outputstream = PTHREAD_MUTEX_INITIALIZER;

bool outputdata[BLOCKS][BLOCKSIZE];

//---

//Main function

int main(int argc, char *argv[]) {

int x;

//Create worker threads

for(i = 0; i < WORKER_THREADS; i++)

pthread_create(&workers[i], NULL, worker_body, &i);

//Join workers

for(i = 0; i < WORKER_THREADS; i++)

pthread_join(workers[i], 0);

return 0;

}

//---

//Body function for the workers

//Should be passed an integer to give it an ID

void *worker_body(void *a) {

int blockno, x;

bool inblock[BLOCKSIZE], outblock[BLOCKSIZE];

//3DES keys, distributed to each thread

bool key1[56] = {

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

274

F.1. Input application

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0};

bool key2[56] = {

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1};

bool key3[56] = {

1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,

1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,

1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,

1,0,0,0,0,0,0,0};

//Read the ID

num = *(int *)a;

//Begin encryption loop

for(blockno = num; blockno < BLOCKS; blockno += WORKER_THREADS) {

//Grab the mutex for the input stream

pthread_mutex_lock(&inputstream);

//Get the block

getblock(inblock, num);

//Release the mutex

pthread_mutex_unlock(&inputstream);

//Perform 3DES

EncryptDES(key1, outblock, inblock, 0);

EncryptDES(key2, inblock, outblock, 0);

EncryptDES(key3, outblock, inblock, 0);

//Grab the mutex for the output stream

pthread_mutex_lock(&outputstream);

//Write the block out

outputblock(outblock, blockno);

//Release the mutex

pthread_mutex_unlock(&outputstream);

}

pthread_exit(0);

}

//---

void getblock(bool *block, int blockno) {

//Implementation omitted. Could be read from memory or an external I/O device

}

void outputblock(bool *block, int blocknum) {

//Implementation omitted. Could be written to memory or an external I/O device

}

275

Appendix F. 3-DES Example

F.1.3 des.h

/***

* des.h *

* Header file for des.c *

* *

* Written 1995-8 by Cryptography Research (http://www.cryptography.com) *

* Original version by Paul Kocher. Placed in the public domain in 1998. *

* THIS IS UNSUPPORTED FREE SOFTWARE. USE AND DISTRIBUTE AT YOUR OWN RISK. *

* *

* IMPORTANT: U.S. LAW MAY REGULATE THE USE AND/OR EXPORT OF THIS PROGRAM. *

* *

* *

* REVISION HISTORY: *

* *

* Version 1.0: Initial release -- PCK. *

* Version 1.1: Changes and edits for EFF DES Cracker project. *

* *

***/

#ifndef __DES_H

#define __DES_H

typedef char bool;

void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose);

void DecryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose);

#endif

F.1.4 des.c

/***

* des.c *

* Software Model of ASIC DES Implementation *

* *

* Written 1995-8 by Cryptography Research (http://www.cryptography.com) *

* Original version by Paul Kocher. Placed in the public domain in 1998. *

* THIS IS UNSUPPORTED FREE SOFTWARE. USE AND DISTRIBUTE AT YOUR OWN RISK. *

* *

* IMPORTANT: U.S. LAW MAY REGULATE THE USE AND/OR EXPORT OF THIS PROGRAM. *

* *

* *

* IMPLEMENTATION NOTES: *

* *

* This DES implementation adheres to the FIPS PUB 46 spec and produces *

* standard output. The internal operation of the algorithm is slightly *

* different from FIPS 46. For example, bit orderings are reversed *

* (the right-hand bit is now labelled as bit 0), the S tables have *

* rearranged to simplify implementation, and several permutations have *

* been inverted. For simplicity and to assist with testing of hardware *

* implementations, code size and performance optimizations are omitted. *

276

F.1. Input application

* *

* *

* REVISION HISTORY: *

* *

* Version 1.0: Initial release -- PCK. *

* Version 1.1: Altered DecryptDES exchanges to match EncryptDES. -- PCK *

* Version 1.2: Minor edits and beautifications. -- PCK *

* Version 1.3: Changes and edits for EFF DES Cracker project. *

* *

***/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <limits.h>

#include "des.h"

static void ComputeRoundKey(bool roundKey[56], bool key[56]);

static void RotateRoundKeyLeft(bool roundKey[56]);

static void RotateRoundKeyRight(bool roundKey[56]);

static void ComputeIP(bool L[32], bool R[32], bool inBlk[64]);

static void ComputeFP(bool outBlk[64], bool L[32], bool R[32]);

static void ComputeF(bool fout[32], bool R[32], bool roundKey[56]);

static void ComputeP(bool output[32], bool input[32]);

static void ComputeS_Lookup(int k, bool output[4], bool input[6]);

static void ComputePC2(bool subkey[48], bool roundKey[56]);

static void ComputeExpansionE(bool expandedBlock[48], bool R[32]);

static void DumpBin(char *str, bool *b, int bits);

static void Exchange_L_and_R(bool L[32], bool R[32]);

static int EnableDumpBin = 0;

/**/

/* */

/* DES TABLES */

/* */

/**/

/*

* IP: Output bit table_DES_IP[i] equals input bit i.

*/

static int table_DES_IP[64] = {

39, 7, 47, 15, 55, 23, 63, 31,

38, 6, 46, 14, 54, 22, 62, 30,

37, 5, 45, 13, 53, 21, 61, 29,

36, 4, 44, 12, 52, 20, 60, 28,

35, 3, 43, 11, 51, 19, 59, 27,

34, 2, 42, 10, 50, 18, 58, 26,

33, 1, 41, 9, 49, 17, 57, 25,

277

Appendix F. 3-DES Example

32, 0, 40, 8, 48, 16, 56, 24

};

/*

* FP: Output bit table_DES_FP[i] equals input bit i.

*/

static int table_DES_FP[64] = {

57, 49, 41, 33, 25, 17, 9, 1,

59, 51, 43, 35, 27, 19, 11, 3,

61, 53, 45, 37, 29, 21, 13, 5,

63, 55, 47, 39, 31, 23, 15, 7,

56, 48, 40, 32, 24, 16, 8, 0,

58, 50, 42, 34, 26, 18, 10, 2,

60, 52, 44, 36, 28, 20, 12, 4,

62, 54, 46, 38, 30, 22, 14, 6

};

/*

* PC1: Permutation choice 1, used to pre-process the key

*/

static int table_DES_PC1[56] = {

27, 19, 11, 31, 39, 47, 55,

26, 18, 10, 30, 38, 46, 54,

25, 17, 9, 29, 37, 45, 53,

24, 16, 8, 28, 36, 44, 52,

23, 15, 7, 3, 35, 43, 51,

22, 14, 6, 2, 34, 42, 50,

21, 13, 5, 1, 33, 41, 49,

20, 12, 4, 0, 32, 40, 48

};

/*

* PC2: Map 56-bit round key to a 48-bit subkey

*/

static int table_DES_PC2[48] = {

24, 27, 20, 6, 14, 10, 3, 22,

0, 17, 7, 12, 8, 23, 11, 5,

16, 26, 1, 9, 19, 25, 4, 15,

54, 43, 36, 29, 49, 40, 48, 30,

52, 44, 37, 33, 46, 35, 50, 41,

28, 53, 51, 55, 32, 45, 39, 42

};

/*

* E: Expand 32-bit R to 48 bits.

*/

static int table_DES_E[48] = {

31, 0, 1, 2, 3, 4, 3, 4,

5, 6, 7, 8, 7, 8, 9, 10,

278

F.1. Input application

11, 12, 11, 12, 13, 14, 15, 16,

15, 16, 17, 18, 19, 20, 19, 20,

21, 22, 23, 24, 23, 24, 25, 26,

27, 28, 27, 28, 29, 30, 31, 0

};

/*

* P: Permutation of S table outputs

*/

static int table_DES_P[32] = {

11, 17, 5, 27, 25, 10, 20, 0,

13, 21, 3, 28, 29, 7, 18, 24,

31, 22, 12, 6, 26, 2, 16, 8,

14, 30, 4, 19, 1, 9, 15, 23

};

/*

* S Tables: Introduce nonlinearity and avalanche

*/

static int table_DES_S[8][64] = {

/* table S[0] */

{ 13, 1, 2, 15, 8, 13, 4, 8, 6, 10, 15, 3, 11, 7, 1, 4,

10, 12, 9, 5, 3, 6, 14, 11, 5, 0, 0, 14, 12, 9, 7, 2,

7, 2, 11, 1, 4, 14, 1, 7, 9, 4, 12, 10, 14, 8, 2, 13,

0, 15, 6, 12, 10, 9, 13, 0, 15, 3, 3, 5, 5, 6, 8, 11 },

/* table S[1] */

{ 4, 13, 11, 0, 2, 11, 14, 7, 15, 4, 0, 9, 8, 1, 13, 10,

3, 14, 12, 3, 9, 5, 7, 12, 5, 2, 10, 15, 6, 8, 1, 6,

1, 6, 4, 11, 11, 13, 13, 8, 12, 1, 3, 4, 7, 10, 14, 7,

10, 9, 15, 5, 6, 0, 8, 15, 0, 14, 5, 2, 9, 3, 2, 12 },

/* table S[2] */

{ 12, 10, 1, 15, 10, 4, 15, 2, 9, 7, 2, 12, 6, 9, 8, 5,

0, 6, 13, 1, 3, 13, 4, 14, 14, 0, 7, 11, 5, 3, 11, 8,

9, 4, 14, 3, 15, 2, 5, 12, 2, 9, 8, 5, 12, 15, 3, 10,

7, 11, 0, 14, 4, 1, 10, 7, 1, 6, 13, 0, 11, 8, 6, 13 },

/* table S[3] */

{ 2, 14, 12, 11, 4, 2, 1, 12, 7, 4, 10, 7, 11, 13, 6, 1,

8, 5, 5, 0, 3, 15, 15, 10, 13, 3, 0, 9, 14, 8, 9, 6,

4, 11, 2, 8, 1, 12, 11, 7, 10, 1, 13, 14, 7, 2, 8, 13,

15, 6, 9, 15, 12, 0, 5, 9, 6, 10, 3, 4, 0, 5, 14, 3 },

/* table S[4] */

{ 7, 13, 13, 8, 14, 11, 3, 5, 0, 6, 6, 15, 9, 0, 10, 3,

1, 4, 2, 7, 8, 2, 5, 12, 11, 1, 12, 10, 4, 14, 15, 9,

10, 3, 6, 15, 9, 0, 0, 6, 12, 10, 11, 1, 7, 13, 13, 8,

15, 9, 1, 4, 3, 5, 14, 11, 5, 12, 2, 7, 8, 2, 4, 14 },

/* table S[5] */

{ 10, 13, 0, 7, 9, 0, 14, 9, 6, 3, 3, 4, 15, 6, 5, 10,

1, 2, 13, 8, 12, 5, 7, 14, 11, 12, 4, 11, 2, 15, 8, 1,

13, 1, 6, 10, 4, 13, 9, 0, 8, 6, 15, 9, 3, 8, 0, 7,

11, 4, 1, 15, 2, 14, 12, 3, 5, 11, 10, 5, 14, 2, 7, 12 },

/* table S[6] */

279

Appendix F. 3-DES Example

{ 15, 3, 1, 13, 8, 4, 14, 7, 6, 15, 11, 2, 3, 8, 4, 14,

9, 12, 7, 0, 2, 1, 13, 10, 12, 6, 0, 9, 5, 11, 10, 5,

0, 13, 14, 8, 7, 10, 11, 1, 10, 3, 4, 15, 13, 4, 1, 2,

5, 11, 8, 6, 12, 7, 6, 12, 9, 0, 3, 5, 2, 14, 15, 9 },

/* table S[7] */

{ 14, 0, 4, 15, 13, 7, 1, 4, 2, 14, 15, 2, 11, 13, 8, 1,

3, 10, 10, 6, 6, 12, 12, 11, 5, 9, 9, 5, 0, 3, 7, 8,

4, 15, 1, 12, 14, 8, 8, 2, 13, 4, 6, 9, 2, 1, 11, 7,

15, 5, 12, 11, 9, 3, 7, 14, 3, 10, 10, 0, 5, 6, 0, 13 }

};

/**/

/* */

/* DES CODE */

/* */

/**/

/*

* EncryptDES: Encrypt a block using DES. Set verbose for debugging info.

* (This loop does both loops on the "DES Encryption" page of the flowchart.)

*/

void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) {

int i,round;

bool R[32], L[32], fout[32];

bool roundKey[56];

//int x;

//for(x = 0; x < 100000; x++);

EnableDumpBin = verbose; /* set debugging on/off flag */

DumpBin("input(left)", inBlk+32, 32);

DumpBin("input(right)", inBlk, 32);

DumpBin("raw key(left)", key+28, 28);

DumpBin("raw key(right)", key, 28);

/* Compute the first roundkey by performing PC1 */

ComputeRoundKey(roundKey, key);

DumpBin("roundKey(L)", roundKey+28, 28);

DumpBin("roundKey(R)", roundKey, 28);

/* Compute the initial permutation and divide the result into L and R */

ComputeIP(L,R,inBlk);

DumpBin("after IP(L)", L, 32);

DumpBin("after IP(R)", R, 32);

for (round = 0; round < 16; round++) {

280

F.1. Input application

if (verbose)

printf("-------------- BEGIN ENCRYPT ROUND %d -------------\n", round);

DumpBin("round start(L)", L, 32);

DumpBin("round start(R)", R, 32);

/* Rotate roundKey halves left once or twice (depending on round) */

RotateRoundKeyLeft(roundKey);

if (round != 0 && round != 1 && round != 8 && round != 15)

RotateRoundKeyLeft(roundKey);

DumpBin("roundKey(L)", roundKey+28, 28);

DumpBin("roundKey(R)", roundKey, 28);

/* Compute f(R, roundKey) and exclusive-OR onto the value in L */

ComputeF(fout, R, roundKey);

DumpBin("f(R,key)", fout, 32);

for (i = 0; i < 32; i++)

L[i] ^= fout[i];

DumpBin("L^f(R,key)", L, 32);

Exchange_L_and_R(L,R);

DumpBin("round end(L)", L, 32);

DumpBin("round end(R)", R, 32);

if (verbose)

printf("--------------- END ROUND %d --------------\n", round);

}

Exchange_L_and_R(L,R);

/* Combine L and R then compute the final permutation */

ComputeFP(outBlk,L,R);

DumpBin("FP out(left)", outBlk+32, 32);

DumpBin("FP out(right)", outBlk, 32);

}

/*

* DecryptDES: Decrypt a block using DES. Set verbose for debugging info.

* (This loop does both loops on the "DES Decryption" page of the flowchart.)

*/

void DecryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) {

int i,round;

bool R[32], L[32], fout[32];

bool roundKey[56];

EnableDumpBin = verbose; /* set debugging on/off flag */

DumpBin("input(left)", inBlk+32, 32);

DumpBin("input(right)", inBlk, 32);

DumpBin("raw key(left)", key+28, 28);

DumpBin("raw key(right)", key, 28);

/* Compute the first roundkey by performing PC1 */

281

Appendix F. 3-DES Example

ComputeRoundKey(roundKey, key);

DumpBin("roundKey(L)", roundKey+28, 28);

DumpBin("roundKey(R)", roundKey, 28);

/* Compute the initial permutation and divide the result into L and R */

ComputeIP(L,R,inBlk);

DumpBin("after IP(L)", L, 32);

DumpBin("after IP(R)", R, 32);

for (round = 0; round < 16; round++) {

if (verbose)

printf("-------------- BEGIN DECRYPT ROUND %d -------------\n", round);

DumpBin("round start(L)", L, 32);

DumpBin("round start(R)", R, 32);

/* Compute f(R, roundKey) and exclusive-OR onto the value in L */

ComputeF(fout, R, roundKey);

DumpBin("f(R,key)", fout, 32);

for (i = 0; i < 32; i++)

L[i] ^= fout[i];

DumpBin("L^f(R,key)", L, 32);

Exchange_L_and_R(L,R);

/* Rotate roundKey halves right once or twice (depending on round) */

DumpBin("roundKey(L)", roundKey+28, 28); /* show keys before shift */

DumpBin("roundKey(R)", roundKey, 28);

RotateRoundKeyRight(roundKey);

if (round != 0 && round != 7 && round != 14 && round != 15)

RotateRoundKeyRight(roundKey);

DumpBin("round end(L)", L, 32);

DumpBin("round end(R)", R, 32);

if (verbose)

printf("--------------- END ROUND %d --------------\n", round);

}

Exchange_L_and_R(L,R);

/* Combine L and R then compute the final permutation */

ComputeFP(outBlk,L,R);

DumpBin("FP out(left)", outBlk+32, 32);

DumpBin("FP out(right)", outBlk, 32);

}

/*

* ComputeRoundKey: Compute PC1 on the key and store the result in roundKey

*/

static void ComputeRoundKey(bool roundKey[56], bool key[56]) {

282

F.1. Input application

int i;

for (i = 0; i < 56; i++)

roundKey[table_DES_PC1[i]] = key[i];

}

/*

* RotateRoundKeyLeft: Rotate each of the halves of roundKey left one bit

*/

static void RotateRoundKeyLeft(bool roundKey[56]) {

bool temp1, temp2;

int i;

temp1 = roundKey[27];

temp2 = roundKey[55];

for (i = 27; i >= 1; i--) {

roundKey[i] = roundKey[i-1];

roundKey[i+28] = roundKey[i+28-1];

}

roundKey[0] = temp1;

roundKey[28] = temp2;

}

/*

* RotateRoundKeyRight: Rotate each of the halves of roundKey right one bit

*/

static void RotateRoundKeyRight(bool roundKey[56]) {

bool temp1, temp2;

int i;

temp1 = roundKey[0];

temp2 = roundKey[28];

for (i = 0; i < 27; i++) {

roundKey[i] = roundKey[i+1];

roundKey[i+28] = roundKey[i+28+1];

}

roundKey[27] = temp1;

roundKey[55] = temp2;

}

/*

* ComputeIP: Compute the initial permutation and split into L and R halves.

*/

static void ComputeIP(bool L[32], bool R[32], bool inBlk[64]) {

bool output[64];

int i;

283

Appendix F. 3-DES Example

/* Permute

*/

for (i = 63; i >= 0; i--)

output[table_DES_IP[i]] = inBlk[i];

/* Split into R and L. Bits 63..32 go in L, bits 31..0 go in R.

*/

for (i = 63; i >= 0; i--) {

if (i >= 32)

L[i-32] = output[i];

else

R[i] = output[i];

}

}

/*

* ComputeFP: Combine the L and R halves and do the final permutation.

*/

static void ComputeFP(bool outBlk[64], bool L[32], bool R[32]) {

bool input[64];

int i;

/* Combine L and R into input[64]

*/

for (i = 63; i >= 0; i--)

input[i] = (i >= 32) ? L[i - 32] : R[i];

/* Permute

*/

for (i = 63; i >= 0; i--)

outBlk[table_DES_FP[i]] = input[i];

}

/*

* ComputeF: Compute the DES f function and store the result in fout.

*/

static void ComputeF(bool fout[32], bool R[32], bool roundKey[56]) {

bool expandedBlock[48], subkey[48], sout[32];

int i,k;

/* Expand R into 48 bits using the E expansion */

ComputeExpansionE(expandedBlock, R);

DumpBin("expanded E", expandedBlock, 48);

/* Convert the roundKey into the subkey using PC2 */

ComputePC2(subkey, roundKey);

DumpBin("subkey", subkey, 48);

/* XOR the subkey onto the expanded block */

284

F.1. Input application

for (i = 0; i < 48; i++)

expandedBlock[i] ^= subkey[i];

/* Divide expandedBlock into 6-bit chunks and do S table lookups */

for (k = 0; k < 8; k++)

ComputeS_Lookup(k, sout+4*k, expandedBlock+6*k);

/* To complete the f() calculation, do permutation P on the S table output */

ComputeP(fout, sout);

}

/*

* ComputeP: Compute the P permutation on the S table outputs.

*/

static void ComputeP(bool output[32], bool input[32]) {

int i;

for (i = 0; i < 32; i++)

output[table_DES_P[i]] = input[i];

}

/*

* Look up a 6-bit input in S table k and store the result as a 4-bit output.

*/

static void ComputeS_Lookup(int k, bool output[4], bool input[6]) {

int inputValue, outputValue;

/* Convert the input bits into an integer */

inputValue = input[0] + 2*input[1] + 4*input[2] + 8*input[3] +

16*input[4] + 32*input[5];

/* Do the S table lookup */

outputValue = table_DES_S[k][inputValue];

/* Convert the result into binary form */

output[0] = (outputValue & 1) ? 1 : 0;

output[1] = (outputValue & 2) ? 1 : 0;

output[2] = (outputValue & 4) ? 1 : 0;

output[3] = (outputValue & 8) ? 1 : 0;

}

/*

* ComputePC2: Map a 56-bit round key onto a 48-bit subkey

*/

static void ComputePC2(bool subkey[48], bool roundKey[56]) {

int i;

285

Appendix F. 3-DES Example

for (i = 0; i < 48; i++)

subkey[i] = roundKey[table_DES_PC2[i]];

}

/*

* ComputeExpansionE: Compute the E expansion to prepare to use S tables.

*/

static void ComputeExpansionE(bool expandedBlock[48], bool R[32]) {

int i;

for (i = 0; i < 48; i++)

expandedBlock[i] = R[table_DES_E[i]];

}

/*

* Exchange_L_and_R: Swap L and R

*/

static void Exchange_L_and_R(bool L[32], bool R[32]) {

int i;

for (i = 0; i < 32; i++)

L[i] ^= R[i] ^= L[i] ^= R[i]; /* exchanges L[i] and R[i] */

}

/*

* DumpBin: Display intermediate values if emableDumpBin is set.

*/

static void DumpBin(char *str, bool *b, int bits) {

int i;

if ((bits % 4)!=0 || bits>48) {

printf("Bad call to DumpBin (bits > 48 or bit len not a multiple of 4\n");

exit(1);

}

if (EnableDumpBin) {

for (i = strlen(str); i < 14; i++)

printf(" ");

printf("%s: ", str);

for (i = bits-1; i >= 0; i--)

printf("%d", b[i]);

//printf(" ");

printf("\n");

/*for (i = bits; i < 48; i++)

printf(" ");

printf("(");

for (i = bits-4; i >= 0; i-=4)

286

F.2. Output application

printf("%X", b[i]+2*b[i+1]+4*b[i+2]+8*b[i+3]);

printf(")\n");*/

}

}

F.2 Output application

When mapped over three of the processors of the target architecture, 12 output files are pro-
duced by the Anvil refactoring engine:

File Language Purpose

anvil settings cpu0.h C header Configures the Anvil pthreads library
anvil settings cpu1.h C header Configures the Anvil pthreads library
anvil settings cpu2.h C header Configures the Anvil pthreads library
anvil specific cpu0.c C code Low-level hardware drivers
anvil specific cpu1.c C code Low-level hardware drivers
anvil specific cpu2.c C code Low-level hardware drivers

linkscript.ld LD link script
microblaze 0.c C code Code for CPU 0
microblaze 1.c C code Code for CPU 1
microblaze 1.c C code Code for CPU 2
des.c C code (As input, not shown)
des.h C header (As input, not shown)

F.2.1 anvil settings cpu0.h

#define _ANVIL_THISTHREADID 0, 1

#define _ANVIL_TOTAL_MANAGED_THREADS 4

#define _ANVIL_TOTAL_MANAGED_MUTEXES 2

#define _ANVIL_TOTAL_MANAGED_VARS 1

#define _ANVIL_TOTAL_MANAGED_CVS 0

#define _ANVIL_TOTAL_ACCESSED_VARS 1

#define _ANVIL_TOTAL_SYSTEM_THREADS 4

#define _ANVIL_TOTAL_SYSTEM_MUTEXES 2

#define _ANVIL_TOTAL_SYSTEM_CVS 0

#define _ANVIL_MANAGED_THREADS_INITIALISER {0, 0, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}

#define _ANVIL_MANAGED_MUTEXES_INITIALISER {0, 0, 0}, {1, 0, 0}

#define _ANVIL_MANAGED_CVS_INITIALISER

#define _ANVIL_MANAGED_VARS_INITIALISER {0, 0, 4}

#define _ANVIL_ACCESSED_VARS_INITIALISER {0, 0}

#define _ANVIL_CIRC_BUFF_SIZE 8

#define _ANVIL_MSG_IRQS 1

#define _ANVIL_MSG_IRQS_INITIALISER {0, 0, -1}

#define _ANVIL_ACCS 0

#define _ANVIL_ACCS_INITIALISER {0, 0}

F.2.2 anvil settings cpu1.h

287

Appendix F. 3-DES Example

#define _ANVIL_THISTHREADID 2

#define _ANVIL_TOTAL_MANAGED_THREADS 0

#define _ANVIL_TOTAL_MANAGED_MUTEXES 0

#define _ANVIL_TOTAL_MANAGED_VARS 0

#define _ANVIL_TOTAL_MANAGED_CVS 0

#define _ANVIL_TOTAL_ACCESSED_VARS 1

#define _ANVIL_TOTAL_SYSTEM_THREADS 4

#define _ANVIL_TOTAL_SYSTEM_MUTEXES 2

#define _ANVIL_TOTAL_SYSTEM_CVS 0

#define _ANVIL_MANAGED_THREADS_INITIALISER

#define _ANVIL_MANAGED_MUTEXES_INITIALISER

#define _ANVIL_MANAGED_CVS_INITIALISER

#define _ANVIL_MANAGED_VARS_INITIALISER

#define _ANVIL_ACCESSED_VARS_INITIALISER {0, 0}

#define _ANVIL_CIRC_BUFF_SIZE 8

#define _ANVIL_MSG_IRQS 1

#define _ANVIL_MSG_IRQS_INITIALISER {0, 0, -1}

#define _ANVIL_ACCS 0

#define _ANVIL_ACCS_INITIALISER {0, 0}

F.2.3 anvil settings cpu2.h

Identical to anvil settings cpu1.h apart from the definition of ANVIL THISTHREADID which
is set to 3.

F.2.4 anvil specific cpu0.c

#include "anvil_pthreads.h"

#include "mblib.h"

volatile int *mbox1 = (int *)0x84000000;

volatile int *mbox2 = (int *)0x85000000;

volatile int *intc0 = (int *)0x86000000;

void _anvil_send_to_thread(int targetthreadid, int *packet, int len)

{

int x;

for (x = 0; x < len; x++)

{

switch(targetthreadid)

{

case 0:

break;

case 1:

break;

case 2:

mbox_write(mailbox1, packet[x]);

break;

case 3:

mbox_write(mailbox2, packet[x]);

288

F.2. Output application

break;

}

}

}

void _anvil_interrupts_disable(void)

{

mb_disable_interrupts();

}

void _anvil_interrupts_enable(void)

{

mb_enable_interrupts();

}

int _anvil_read_from_interrupt(int vec)

{

switch(vec)

{

case 0:

//mbox

return mbox_read(mailbox_0);

break;

default:

//Unknown interrupt, disable it

intc_disable_interrupt(intc_0, vec);

return 0;

break;

}

}

int _anvil_interrupt_ready(int vec)

{

switch(vec)

{

case 0:

//mbox1

return mbox_check(mbox1);

break;

case 1:

//mbox2

return mbox_check(mbox2);

break;

default:

//Unknown interrupt, disable it

intc_disable_interrupt(intc0, vec);

return 0;

break;

}

}

int _anvil_get_interrupt_vector(void)

{

289

Appendix F. 3-DES Example

return intc_get_vector(intc0);

}

void _anvil_acknowledge_interrupt(int vec)

{

intc_acknowledge_interrupt(intc0, vec);

}

void _anvil_sleep(void)

{

//nop

}

F.2.5 anvil specific cpu1.c

#include "anvil_pthreads.h"

#include "mblib.h"

volatile int *mbox = (int *)0x84000000;

void _anvil_send_to_thread(int targetthreadid, int *packet, int len)

{

int x;

for (x = 0; x < len; x++)

{

switch(targetthreadid)

{

case 0:

mbox_write(mbox, packet[x]);

break;

case 1:

break;

case 2:

break;

case 3:

break;

}

}

}

void _anvil_interrupts_disable(void)

{

mb_disable_interrupts();

}

void _anvil_interrupts_enable(void)

{

mb_enable_interrupts();

}

int _anvil_read_from_interrupt(int vec)

{

290

F.2. Output application

switch(vec)

{

case 0:

//mbox

return mbox_read(mbox);

break;

default:

//Unknown interrupt, disable it

intc_disable_interrupt(intc_0, vec);

return 0;

break;

}

}

int _anvil_interrupt_ready(int vec)

{

switch(vec)

{

case 0:

//mbox

return mbox_check(mbox);

break;

default:

return 0;

break;

}

}

int _anvil_get_interrupt_vector(void)

{

return 0;

}

void _anvil_acknowledge_interrupt(int vec)

{

//nop

}

void _anvil_sleep(void)

{

//nop

}

F.2.6 anvil specific cpu2.c

Identical to anvil specific cpu1.c.

F.2.7 linkscript.ld

Identical to linkscript.ld from appendix D.

291

Appendix F. 3-DES Example

F.2.8 microblaze 0.c

#include "anvil_pthreads.h"

#include "des.h"

#define BLOCKS 5000

#define BLOCKSIZE 64

#define WORKER_THREADS 3

//Prototypes

void *worker_body(void *a);

void outputblock(bool *block, int blocknum);

void getblock(bool *block, int blockno);

bool outputdata[BLOCKS][BLOCKSIZE] __attribute__((section ("sharedmemory")));;

//---

//Main function

int main(int argc, char *argv[]) {

int x;

//Enable interrupts (microblaze, intc)

extern volatile int * intc;

intc_enable_all_interrupts(intc);

intc_master_enable(intc);

mb_enable_interrupts();

//Create worker threads

pthread_create(1, 0, 1); //Thread ID 1, OM CPU ID 0, Arg 1

pthread_create(2, 0, 2); //Thread ID 2, OM CPU ID 0, Arg 2

pthread_create(3, 0, 3); //Thread ID 3, OM CPU ID 0, Arg 3

//Join workers

for(i = 0; i < WORKER_THREADS; i++)

pthread_join(1, 0); //Thread ID 1, OM CPU ID 0

pthread_join(2, 0); //Thread ID 2, OM CPU ID 0

pthread_join(3, 0); //Thread ID 3, OM CPU ID 0

return 0;

}

//---

//Body function for the workers

//Should be passed an integer to give it an ID

void *worker_body(void *a) {

int blockno, x;

bool inblock[BLOCKSIZE], outblock[BLOCKSIZE];

//3DES keys, distributed to each thread

bool key1[56] = {

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

292

F.2. Output application

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0};

bool key2[56] = {

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1};

bool key3[56] = {

1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,

1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,

1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,

1,0,0,0,0,0,0,0};

//Read the ID

num = _anvil_get_int_threadarg();

//Begin encryption loop

for(blockno = num; blockno < BLOCKS; blockno += WORKER_THREADS) {

//Grab the mutex for the input stream

pthread_mutex_lock(0, 0); //Mutex ID 0, OM CPU ID 0

//Get the block

getblock(inblock, num);

//Release the mutex

pthread_mutex_unlock(0, 0); //Mutex ID 0, OM CPU ID 0

//Perform 3DES

EncryptDES(key1, outblock, inblock, 0);

EncryptDES(key2, inblock, outblock, 0);

EncryptDES(key3, outblock, inblock, 0);

//Grab the mutex for the output stream

pthread_mutex_lock(1, 0); //Mutex ID 1, OM CPU ID 0

//Write the block out

outputblock(outblock, blockno);

//Release the mutex

pthread_mutex_unlock(1, 0); //Mutex ID 1, OM CPU ID 0

}

pthread_exit(1, 0); //Thread ID 1, OM CPU ID 0

}

//---

void getblock(bool *block, int blockno) {

//Implementation omitted. Could be read from memory or an external I/O device

}

void outputblock(bool *block, int blocknum) {

//Implementation omitted. Could be written to memory or an external I/O device

}

293

Appendix F. 3-DES Example

F.2.9 microblaze 1.c

#include "anvil_pthreads.h"

#include "des.h"

#define BLOCKS 5000

#define BLOCKSIZE 64

#define WORKER_THREADS 3

//Prototypes

void *worker_body(void *a);

void outputblock(bool *block, int blocknum);

void getblock(bool *block, int blockno);

bool outputdata[BLOCKS][BLOCKSIZE] __attribute__((section ("sharedmemory")));;

//---

//Main function

int main(int argc, char *argv[]) {

//Enable interrupts (microblaze)

mb_enable_interrupts();

_anvil_wait_until_released();

}

//---

//Body function for the workers

//Should be passed an integer to give it an ID

void *worker_body(void *a) {

int blockno, x;

bool inblock[BLOCKSIZE], outblock[BLOCKSIZE];

//3DES keys, distributed to each thread

bool key1[56] = {

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0};

bool key2[56] = {

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1};

bool key3[56] = {

1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,

1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,

1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,

1,0,0,0,0,0,0,0};

//Read the ID

num = _anvil_get_int_threadarg();

294

//Begin encryption loop

for(blockno = num; blockno < BLOCKS; blockno += WORKER_THREADS) {

//Grab the mutex for the input stream

pthread_mutex_lock(0, 0); //Mutex ID 0, OM CPU ID 0

//Get the block

getblock(inblock, num);

//Release the mutex

pthread_mutex_unlock(0, 0); //Mutex ID 0, OM CPU ID 0

//Perform 3DES

EncryptDES(key1, outblock, inblock, 0);

EncryptDES(key2, inblock, outblock, 0);

EncryptDES(key3, outblock, inblock, 0);

//Grab the mutex for the output stream

pthread_mutex_lock(1, 0); //Mutex ID 1, OM CPU ID 0

//Write the block out

outputblock(outblock, blockno);

//Release the mutex

pthread_mutex_unlock(1, 0); //Mutex ID 1, OM CPU ID 0

}

pthread_exit(2, 0); //Thread ID 1, OM CPU ID 0

}

//---

void getblock(bool *block, int blockno) {

//Implementation omitted. Could be read from memory or an external I/O device

}

void outputblock(bool *block, int blocknum) {

//Implementation omitted. Could be written to memory or an external I/O device

}

F.2.10 microblaze 2.c

Identical to microblaze 1.c.

295

Bibliography

[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation of directory
schemes for cache coherence. SIGARCH Comput. Archit. News, 16(2):280–298, 1988.

[2] Adnan Agbaria and Roy Friedman. Starfish: Fault-tolerant dynamic MPI programs on
clusters of workstations. Cluster Computing, 6(3):227–236, 2003.

[3] Jason Agron and David Andrews. Building heterogeneous reconfigurable systems with
a hardware microkernel. In Proceedings of CODES+ISSS ’09, pages 393–402, New
York, NY, USA, 2009. ACM.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[5] Robert Allen and David Garlan. The Wright architectural specification language. Tech-
nical report, Carnegie Mellon School of Computer Science, 1996.

[6] Altera Corporation. Stratix IV device family overview.
http://www.altera.com/products/devices/stratix-fpgas/stratix-iv/stxiv-index.jsp, Nov 2009.

[7] Craig Anderson and Jean-Loup Baer. Two techniques for improving performance on
bus-based multiprocessors. Future Generation Computer Systems, 11(6):537 – 551,
1995. High-Performance Computer Architecture.

[8] Jose N Arabe, Adam Beguelin, Bruce Lowekamp, Erik Seligman, Mike Starkey, and Pe-
ter Stephan. Dome: Parallel programming in a heterogeneous multi-user environment.
Technical report, Pittsburgh, PA, USA, 1995.

[9] Ken Arnold and James Gosling. The Java programming language (2nd ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[10] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. Adap-
tive optimization in the Jalapeno JVM. In OOPSLA ’00: Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and appli-
cations, pages 47–65, New York, NY, USA, 2000. ACM.

[11] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Marwedel.
Scratchpad memory: design alternative for cache on-chip memory in embedded sys-
tems. In CODES ’02, pages 73–78, 2002.

[12] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS
Oper. Syst. Rev., 37(5):164–177, 2003.

296

[13] William C Barker. Recommendation for the triple data encryption algorithm (TDEA) block
cipher, nist special publication; 800-67., May 2004.

[14] Greg Barnes. A method for implementing lock-free shared-data structures. In SPAA
’93: Proceedings of the fifth annual ACM symposium on Parallel algorithms and archi-
tectures, pages 261–270, New York, NY, USA, 1993. ACM.

[15] J. Barnes. Programming in Ada95. Addison Wesley, 1995.

[16] Jonn Barnes, editor. Ada 95 Rationale - Annex E - Distributed Systems. Springer-Verlag,
1995.

[17] Baumann et al. The Multikernel: a new OS architecture for scalable multicore systems.
In Proceedings of SOSP ’09, pages 29–44, New York, NY, USA, 2009. ACM.

[18] Marc Baumslag and Fred Annexstein. A unified framework for off-line permutation rout-
ing in parallel networks. Theory of Computing Systems, 24 - 1:233–251, 1990.

[19] David Beazley. Ply (python-lex-yacc). http://www.dabeaz.com/ply/, Accessed Dec 2009.

[20] J. Becker, M. Hubner, K. D. Muller-Glaser, R. Constapel, J. Luka, and J. Eisenmann. Au-
tomotive control unit optimization perspectives: Body functions on-demand by dynamic
reconfiguration. In Design, Automation and Test Eur. Conf. Exhibition (DATE 2005),
2005.

[21] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In ATEC ’05: Proceed-
ings of the annual conference on USENIX Annual Technical Conference, pages 41–41,
Berkeley, CA, USA, 2005. USENIX Association.

[22] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy efficiency of embed-
ded systems by application-specific memory hierarchy generation. Design & Test of
Computers, IEEE, 17(2):74–85, Apr-Jun 2000.

[23] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design
in Haskell. In ICFP, pages 174–184, 1998.

[24] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David Padua,
Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen Weather-
ford. Polaris: The next generation in parallelizing compilers. Proceedings of the work-
shop on languages and compilers for parallel computing, pages 10–1, 1994.

[25] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide, Second Edition. Addison Wesley, 2005.

[26] M. Bowen. Handel-C Language Reference Manual, 2.1 edition. Embedded Solutions
Limited, 1998.

[27] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic. Field-
programmable gate arrays. Kluwer Academic Publishers, Norwell, MA, USA, 1992.

[28] R. Brukardt. The Ada95 language reference manual - Appendix
E, Distributed Systems (International Standard ISO/IEC 8652:1995).
http://www.adaic.org/standards/95lrm/html/RM-E.html.

297

[29] Alex Buckley. JSR 201: Extending the Java programming language with enumerations,
autoboxing, enhanced for loops and static import. http://jcp.org/en/jsr/detail?id=201, Sep
2004.

[30] Alan Burns, Brian Dobbing, and G. Romanski. The Ravenscar tasking profile for high
integrity real-time programs. In Ada-Europe ’98, pages 263–275. Springer-Verlag, 1998.

[31] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[32] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Turchetti. Transaction-
level models for AMBA bus architecture using SystemC 2.0. In DATE ’03: Proceedings
of the conference on Design, Automation and Test in Europe, page 20026, Washington,
DC, USA, 2003. IEEE Computer Society.

[33] Joco M. P. Cardoso and Horacio C. Neto. Macro-based hardware compilation of Java(tm)
bytecodes into a dynamic reconfigurable computing system. In FCCM ’99, Washington,
DC, USA, 1999. IEEE Computer Society.

[34] William W. Carlson, David E. Culler, and Eugene Brooks. Introduction to UPC and
language specification. CCS-TR-99-157, 1999.

[35] W. Cesario et al. Component-based design approach for multicore SoCs. DAC, 00:789,
2002.

[36] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-based
cache coherence in large-scale multiprocessors. Computer, 23(6):49–58, 1990.

[37] Sayantan Chakravorty, Celso Mendes, and Laxmikant Kal. Proactive fault tolerance
in MPI applications via task migration. In High Performance Computing - HiPC 2006,
volume 4297 of Lecture Notes in Computer Science, pages 485–496. Springer Berlin /
Heidelberg, 2006.

[38] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the Chapel
language. Int. J. High Perform. Comput. Appl., 21(3):291–312, 2007.

[39] Robit Chandra et al. Parallel programming in OpenMP. Morgan Kaufmann, 2001.

[40] Jyh-Biau Chang, Ce-Kuen Shieh, and Tyng-Yeu Liang. A transparent distributed shared
memory for clustered symmetric multiprocessors. The Journal of Supercomputing,
37(2):145–160, 2006.

[41] Daniel Marcos Chapiro. Globally-asynchronous locally-synchronous systems. PhD the-
sis, Stanford Univ., CA., 1984.

[42] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of OOPSLA ’05, pages
519–538, New York, NY, USA, 2005. ACM.

[43] Jr. Charles H. Roth. Digital systems design using VHDL. Pws Pub. Co., 1998.

[44] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield. The Amber system:
parallel programming on a network of multiprocessors. In SOSP ’89: Proceedings of the
twelfth ACM symposium on Operating systems principles, pages 147–158, New York,
NY, USA, 1989. ACM.

298

[45] Liqun Cheng, J.B. Carter, and Donglai Dai. An adaptive cache coherence protocol op-
timized for producer-consumer sharing. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on, pages 328–339, Feb. 2007.

[46] Shigeru Chiba. A metaobject protocol for C++. In ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’95), SIGPLAN Notices
30(10), pages 285–299, Austin, Texas, USA, October 1995.

[47] Kevin Chiew and Yingjiu Li. Multistage off-line permutation packet routing on a mesh: An
approach with elementary mathematics. Journal of Computer Science and Technology,
24 - 1:175–180, 2009.

[48] David Chisnall. The definitive guide to the Xen hypervisor. Prentice Hall Press, Upper
Saddle River, NJ, USA, 2007.

[49] Paul C. Clements. A survey of architecture description languages. In IWSSD ’96. IEEE
Computer Society, 1996.

[50] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of systems
and software. ACM Comput. Surv., 34(2):171–210, 2002.

[51] Katherine Compton, Zhiyuan Li, James Cooley, Stephen Knol, and Scott Hauck. Con-
figuration relocation and defragmentation for run-time reconfigurable computing. IEEE
Trans. Very Large Scale Integr. Syst., 10(3):209–220, 2002.

[52] Simone Corbetta, Massimo Morandi, Marco Novati, Marco Domenico Santambrogio,
Donatella Sciuto, and Paola Spoletini. Internal and external bitstream relocation for
partial dynamic reconfiguration. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 17-11:1650–1654, 2009.

[53] Microsoft Corporation. Windows Virtual PC. http://www.microsoft.com/windows/virtual-
pc/ - Accessed Dec 2009, 2009.

[54] CoWare, Inc. CoWare Virtual Platform - hardware/software integration and test-
ing...without hardware. http://www.coware.com/products/virtualplatform.php (Accessed
Aug 09).

[55] A.L. Cox and R.J. Fowler. Adaptive cache coherency for detecting migratory shared
data. In Computer Architecture, 1993., Proceedings of the 20th Annual International
Symposium on, pages 98–108, May 1993.

[56] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of Research
& Development, 25:483–490, 1981.

[57] Culler, Dusseau, Goldstein, Krishnamurthy, Lumetta, von Eicken, and Yelick. Parallel
programming in Split-C. In Proceedings of the 1993 ACM/IEEE conference on Super-
computing, volume 0, pages 262–273, Los Alamitos, CA, USA, 1993. IEEE Computer
Society.

[58] P. Cumming. The TI OMAP Platform Approach to SoC. Kluwer Academic Publ, Boston,
MA., 2003.

[59] William J. Dally and Brian Towles. Route packets, not wires: On-chip interconnection
networks. DAC, 2001.

299

[60] Francois-Nicola Demers and Jacques Malenfant. Reflection in logic, functional and
object-oriented programming: a short comparative study. In IJCAI’95 Workshop on Re-
flection and Metalevel Architectures and their Applications in AI, pages 29–38, 1995.

[61] P.C. Dibble and A.J. Wellings. JSR-282 status report. In Proceedings of the 7th Inter-
national Workshop on Java Technologies for Real-Time and Embedded Systems, ACM
International Conference Proceeding Series, pages 179–182, New York, NY, USA, 2009.
ACM.

[62] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1(1):269–271, December 1959.

[63] Alastair Donaldson, Colin Riley, Anton Lokhmotov, and Andrew Cook. Auto-
parallelisation of Sieve C++ programs. Lecture Notes in Computer Science,
4854/2008:18–27, 2008.

[64] Doulos. The designer’s guide to Verilog. Date retrieved: January, 2007.

[65] Bernd Dreier, Markus Zahn, and Theo Ungerer. The Rthreads distributed shared mem-
ory system. In 3rd Int. Conf. on Massively Parallel Computing Systems, 1998.

[66] Carl Ebeling, Darren C. Cronquist, and Paul Franklin. RaPiD - reconfigurable pipelined
datapath. In FPL ’96: Proceedings of the 6th International Workshop on Field-
Programmable Logic, Smart Applications, New Paradigms and Compilers, pages 126–
135, London, UK, 1996. Springer-Verlag.

[67] S. A. Edwards. Design and verification languages - tech. report CUCS-046-04. Technical
report, Dept. of Computer Science, Columbia University, 2004.

[68] Ásgeir Th. Eirı́ksson and Kenneth L. McMillan. Using formal verification/analysis meth-
ods on the critical path in system design: A case study. In Proceedings of the 7th
International Conference on Computer Aided Verification, pages 367–380, London, UK,
1995. Springer-Verlag.

[69] Electronic Industries Association. Electronic Design Interchange Format version 2.0.0 -
technical report ANSI/EIA-548-1988, 1988.

[70] Petru Eles, Zebo Peng, Krzysztof Kuchcinski, and Alexa Doboli. Hardware/software
partitioning with iterative improvement heuristics. In ISSS ’96: Proceedings of the 9th
international symposium on System synthesis, page 71, Washington, DC, USA, 1996.
IEEE Computer Society.

[71] Petru Eles, Zebo Peng, Krzysztof Kuchcinski, and Alexa Doboli. System level hardware/-
software partitioning based on simulated annealing and Tabu search. Design Automation
for Embedded Systems, 2:5–32, 1997.

[72] M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
1990.

[73] Natalie D. Enright Jerger, Li-Shiuan Peh, and Mikko H. Lipasti. Virtual tree coherence:
Leveraging regions and in-network multicast trees for scalable cache coherence. In
MICRO ’08: Proceedings of the 2008 41st IEEE/ACM International Symposium on Mi-
croarchitecture, pages 35–46, Washington, DC, USA, 2008. IEEE Computer Society.

300

[74] Cagkan Erbas, Selin C. Erbas, and Andy D. Pimentel. A multiobjective optimization
model for exploring multiprocessor mappings of process networks. In CODES+ISSS ’03:
Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 182–187, New York, NY, USA, 2003. ACM.

[75] Rolf Ernst, Jorg Henkel, and Thomas Benner. Hardware-software cosynthesis for mi-
crocontrollers. IEEE Des. Test, 10(4):64–75, 1993.

[76] Kayvon Fatahalian et al. Sequoia: programming the memory hierarchy. In SC ’06,
page 83, 2006.

[77] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal language
project. J. Parallel Distrib. Comput., 10(4):349–366, 1990.

[78] Joseph A. Fisher. Very Long Instruction Word architectures and the ELI-512. In ISCA
’83: Proceedings of the 10th annual international symposium on Computer architecture,
pages 140–150, New York, NY, USA, 1983. ACM.

[79] William Fornaciari and Vincenzo Piuri. Virtual FPGAs: Some steps behind the physical
barriers. Parallel and Distributed Processing, 1388:7–12, 1998.

[80] Burkhard Freitag, Heribert Schütz, and Günther Specht. Lola - a logic language for
deductive databases and its implementation. In Proceedings of the Second International
Symposium on Database Systems for Advanced Applications, pages 216–225. World
Scientific Press, 1992.

[81] Virginie Fresse, Olivier Déforges, and Jean-François Nezan. AVSynDEx: a rapid proto-
typing process dedicated to the implementation of digital image processing applications
on multi-DSP and FPGA architectures. EURASIP J. Appl. Signal Process., 2002(1):990–
1002, 2002.

[82] Roy Friedman, Maxim Goldin, Ayal Itzkovitz, and Assaf Schuster. MILLIPEDE: Easy
parallel programming in available distributed environments. In Software: Practice and
Experience, volume 27, pages 929–965. John Wiley & Sons, Ltd., 1997.

[83] Steve Furber. ARM System-on-Chip Architecture. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2000.

[84] D. D. Gajski, J. Zhu, R. Domer, A Gerstlauer, and S. Zhao. SpecC: Specification Lan-
guage and Design Methodology. Kluwer Academic Publishers, 2000.

[85] Laurent Gantel, Salah Layouni, Mohamed El Amine Benkhelifa, F. Verdier, and Stphanie
Chauvet. Multiprocessor task migration implementation in a reconfigurable platform. In
International conference on ReConFigurables Computing and FPGAs (ReConFig). IEEE
Computer Society, 2009.

[86] David Garlan, Robert Monroe, and David Wile. Acme: an architecture description in-
terchange language. Proceedings of the 1997 conference of the Centre for Advanced
Studies on Collaborative research, page 7, 1997.

[87] D. Geer. Chip makers turn to multicore processors. Computer, 38(5):11–13, May 2005.

[88] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidyalingam S. Sunderam. PVM: Parallel Virtual Machine. MIT Press, 1994.

301

[89] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski. Stream-oriented FPGA com-
puting in the Streams-C high level language. In FCCM ’00, 2000.

[90] Robert Goldberg. Survey of virtual machine research. Computer, 7 - 6:34–45, 1974.

[91] James Gosling and Greg Bollella. The Real-Time Specification for Java. Addison-
Wesley Longman Publishing Co., Inc., 2000.

[92] Ian Gray and Neil Audsley. Application-defined virtualisation for embedded real-time
software on complex architectures. 2nd Junior Researcher Workshop on Real-Time
Computing, pages 1–4, 2008.

[93] Ian Gray and Neil Audsley. Exposing non-standard architectures to embedded software
using Compile-Time Virtualisation. International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES ’09), 2009.

[94] Ian Gray and Neil Audsley. Supporting islands of coherency for highly-parallel embed-
ded architectures using Compile-Time Virtualisation. In 13th International Workshop on
Software and Compilers for Embedded Systems (SCOPES), 2010.

[95] Eike Grimpe and Frank Oppenheimer. Extending the SystemC synthesis subset by
object-oriented features. In CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis, pages
25–30, New York, NY, USA, 2003. ACM Press.

[96] W. W. Gropp and E. L. Lusk. A taxonomy of programming models for symmetric mul-
tiprocessors and SMP clusters. In PMMP ’95: Proceedings of the conference on Pro-
gramming Models for Massively Parallel Computers, page 2, Washington, DC, USA,
1995. IEEE Computer Society.

[97] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel pro-
gramming with the message-passing interface. MIT Press, Cambridge, MA, USA, 1994.

[98] J.E. Gunn, K.S. Barron, and W. Ruczczyk. A low-power DSP core-based software radio
architecture. IEEE, Selected Areas in Communications, 17(4):574–590, Apr 1999.

[99] Rajesh K. Gupta and Giovanni De Micheli. Hardware-software cosynthesis for digital
systems. IEEE Des. Test, 10(3):29–41, 1993.

[100] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: a high-level synthesis framework
for applying parallelizing compiler transformations. In VLSI Design, 2003. Proceedings.
16th International Conference on, pages 461–466, Jan. 2003.

[101] Reiner W. Hartenstein and Rainer Kress. A datapath synthesis system for the reconfig-
urable datapath architecture. In ASP-DAC ’95: Proceedings of the 1995 Asia and South
Pacific Design Automation Conference, page 77, New York, NY, USA, 1995. ACM.

[102] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The Chimaera reconfigurable functional
unit. 5th IEEE Symposium on FPGA-Based Custom Computing Machines (FCCM ’97),
00:87, 1997.

[103] J. R. Hauser and J. Wawrzynek. Garp: a MIPS processor with a reconfigurable copro-
cessor. 5th IEEE Symposium on FPGA-Based Custom Computing Machines (FCCM
’97), 00:12, 1997.

302

[104] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge. In
Lecture Notes in Computer Science, volume Volume 4085/2006, pages 1–15. Springer
Berlin / Heidelberg, 2006.

[105] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, 1991.

[106] Paul N. Hilfinger, Dan Bonachea, David Gay, Susan Graham, Ben Liblit, Geoff Pike, and
Katherine Yelick. Titanium language reference manual. Technical report, University of
California at Berkeley, Berkeley, CA, USA, 2001.

[107] C. A. R. Hoare. Monitors: an operating system structuring concept. Commun. ACM,
17(10):549–557, 1974.

[108] Chao Huang, Orion Lawlor, and L. V. Kal. Adaptive MPI. In In Proceedings of the 16th
International Workshop on Languages and Compilers for Parallel Computing (LCPC 03,
pages 306–322, 2003.

[109] He Huang, Nan Yuan, Wei Lin, Guoping Long, Fenglong Song, Lei Yu, Yuping Liu,
Lei Liu, Yongbin Zhou, Xiaochun Ye, Junchao Zhang, Dongrui Fan, and Zhimin Tang.
Architecture supported synchronization-based cache coherence protocol for many-core
processors. Chinese Journal of Computers, 8:1618–1630, 2009.

[110] Michael Huebner, Tobias Becker, and Juergen Becker. Real-time LUT-based network
topologies for dynamic and partial FPGA self-reconfiguration. In SBCCI ’04: Proceed-
ings of the 17th symposium on Integrated circuits and system design, pages 28–32,
New York, NY, USA, 2004. ACM Press.

[111] Ashley Hull. Nintendo DS memory layout. http://www.dev-
scene.com/NDS/Tutorials Day 2, 2008. Accessed 27/03/2008.

[112] IBM Corporation. CoreConnect bus architecture. https://www-
01.ibm.com/chips/techlib/techlib.nsf/productfamilies/CoreConnect Bus Architecture,
May 2010.

[113] Impulse Accelerated Technologies. http://www.impulsec.com, Accessed Jan 2008.

[114] Institute of Electrical and Electronics Engineers. POSIX.1b, real-time extensions (IEEE
Std 1003.1b-1993), 1995.

[115] Institute of Electrical and Electronics Engineers. POSIX.1c, threads extensions (IEEE
Std 1003.1c-1995), 1995.

[116] Institute of Electrical and Electronics Engineers. SystemC language reference manual
(IEEE std 1666-2005), 2005.

[117] International Telecommunication Union. X.200 : Information technology - open systems
interconnection - basic reference model: The basic model. ITU-T Recommendation
X.200, July 1994.

[118] ITRS. International technology roadmap for semiconductors, 2007 edition.
http://www.itrs.net/, 2007.

303

[119] Ayal Itzkovitz, Assaf Schuster, and Lea Shalev. Thread migration and its applications in
distributed shared memory systems. Journal of Systems and Software, 42(1):71 – 87,
1998.

[120] Geraint Jones. Programming in Occam. Prentice Hall International (UK) Ltd., Hertford-
shire, UK, UK, 1986.

[121] Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003.

[122] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Intro-
duction to the Cell multiprocessor. IBM J. Res. Dev., 49(4/5):589–604, 2005.

[123] G. Kahn. The semantics of a simple language for parallel programming. In Procceedings
of the IFIP Congress 74, 1974.

[124] A. Kalavade and E. A. Lee. The extended partitioning problem: hardware/software
mapping and implementation-bin selection. Design Automation for Embedded Systems,
2:12, 1995.

[125] Asawaree Kalavade and Edward A. Lee. A global criticality/local phase driven algorithm
for the constrained hardware/software partitioning problem. In CODES ’94: Proceedings
of the 3rd international workshop on Hardware/software co-design, pages 42–48, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[126] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: a portable concurrent object ori-
ented system based on c++. In OOPSLA ’93: Proceedings of the eighth annual con-
ference on Object-oriented programming systems, languages, and applications, pages
91–108, New York, NY, USA, 1993. ACM.

[127] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Competitive
snoopy caching. Algorithmica, 3:244–254, 1986.

[128] Torsten Kempf, Malte Doerper, R. Leupers, G. Ascheid, H. Meyr, Tim Kogel, and Bart
Vanthournout. A modular simulation framework for spatial and temporal task mapping
onto multi-processor SoC platforms. In DATE ’05: Proceedings of the conference on
Design, Automation and Test in Europe, pages 876–881, Washington, DC, USA, 2005.
IEEE Computer Society.

[129] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice Hall
Press, Upper Saddle River, NJ, USA, 1988.

[130] S. Khawam, I. Nousias, M. Milward, Ying Yi, M. Muir, and T. Arslan. The Reconfigurable
Instruction Cell Array. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 16 - 1:75–85, 2008.

[131] G. Kiczales. Aspect-Oriented Programming. ACM Comput. Surv., 28(4es):154, 1996.

[132] Gregor Kiczales, J. Michael Ashley, Luis Rodriguez, Amin Vahdat, and Daniel G. Bo-
brow. Metaobject Protocols: Why We Want Them and What Else They Can Do, pages
101–118. The MIT Press, Cambridge, MA, 1993.

[133] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA, 1991.

304

[134] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, Jonghee Yoon, and Yunheung Paek.
Memory-aware application mapping on Coarse-Grained Reconfigurable Arrays. Lecture
Notes in Computer Science, 5952/2010:171–185, 2010.

[135] Ray Klefstad, Mayur Deshpande, Carlos ORyan, Angelo Corsaro, Arvind S Krishna,
Sumita Rao, and Krishna Raman. The performance of ZEN: A real time CORBA ORB
using real time java. In Proceedings of Real-time and Embedded Distributed Object
Computing Workshop. OMG, September 2002.

[136] Ravi Konuru, Jeremy Casas, Steve Otto, Robert Prouty, and Jonathan Walpole. A user-
level process package for PVM. Technical report, Oregon Graduate Institute School of
Science & Engineering, 1994.

[137] Ravi B. Konuru, Steve W. Otto, and Jonathan Walpole. A migratable user-level process
package for PVM. J. Parallel Distrib. Comput., 40(1):81–102, 1997.

[138] Andreas Krall and Reinhard Grafl. CACAO - a 64 bit JavaVM Just-in-Time compiler. In
In Concurrency: Practice and Experience, pages 1017–1030. ACM, 1997.

[139] Shashi Kumar, Axel Jantsch, Mikael Millberg, Johny Oberg, Juha-Pekka Soininen, Martti
Forsell, Kari Tiensyrja, and Ahmed Hemani. A network on chip architecture and design
methodology. ISVLSI, 00:0117, 2002.

[140] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-Java: A high integrity profile
for Real-Time Java. In In Joint ACM Java Grande/ISCOPE Conference, pages 131–140.
ACM Press, 2002.

[141] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, Sept. 1987.

[142] Yann-Hang Lee and C.M. Krishna. Voltage-clock scaling for low energy consumption in
real-time embedded systems. Real-Time Computing Systems and Applications, Inter-
national Workshop on, 0:272, 1999.

[143] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop
Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. The Stanford Dash Multi-
processor. Computer, 25(3):63–79, 1992.

[144] Wen-Yew Liang, Chun-Ta King, and Feipei Lai. Adsmith: an efficient object-based dis-
tributed shared memory system on PVM. Parallel Architectures, Algorithms, and Net-
works, 1996. Proceedings. Second International Symposium on, pages 173–179, Jun
1996.

[145] J. Liedtke. On micro-kernel construction. SIGOPS Oper. Syst. Rev., 29(5):237–250,
1995.

[146] Calvin Lin and Lawrence Snyder. Zpl: An array sublanguage. In Proceedings of the
6th International Workshop on Languages and Compilers for Parallel Computing, pages
96–114, London, UK, 1994. Springer-Verlag.

[147] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[148] X. P. Ling and H. Amano. WASMII: a data driven computer on a virtual hardware. In
Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, 1993.

305

[149] Mirko Loghi, Massimo Poncino, and Luca Benini. Cache coherence tradeoffs in shared-
memory MPSoCs. ACM Trans. Embed. Comput. Syst., 5(2):383–407, 2006.

[150] Grant Edmund Martin Lou Scheffer, Luciano Lavagno. EDA for IC system design, verifi-
cation, and testing. CRC Press, Taylor and Francis Group, 2006.

[151] D.B. Loveman. High performance fortran. Parallel & Distributed Technology: Systems &
Applications, IEEE, 1(1):25–42, Feb 1993.

[152] Tom Lovett and Russell Clapp. STiNG: a CC-NUMA computer system for the commercial
marketplace. In ISCA ’96: Proceedings of the 23rd annual international symposium on
Computer architecture, pages 308–317, New York, NY, USA, 1996. ACM.

[153] D.C. Luckham and J. Vera. An event-based architecture definition language. Software
Engineering, IEEE Transactions on, 21(9):717–734, Sep 1995.

[154] Roman Lysecky, Greg Stitt, and Frank Vahid. Warp processors. In ACM Transactions on
Design Automation of Electronic Systems, volume 11, pages 659–681, New York, NY,
USA, 2006. ACM.

[155] Rafey Mahmud. An FPGA primer for ASIC designers. EETimes
(http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=18901725,
Accessed Dec 2009), 15th April 2004.

[156] F. Makedon and A. Symvonis. An efficient heuristic for permutation packet routing on
meshes with low buffer requirements. IEEE Transactions on Parallel and Distributed
Systems, 4:270–276, 1993.

[157] J. Malenfant, M. Jacques, and F. Demers. A tutorial on behavioral reflection and its
implementation. In Proceedings of Reflection 96, 1996.

[158] T. Marescaux, J. Mignolet, A. Bartic, W. Moffat, D. Verkest, S. Vernalde, and R. Lauw-
ereins. Networks on chip as hardware components of an OS for reconfigurable systems.
In Proceedings of the 13th International Conference on Field Programmable Logic and
Applications, Lisbon, 2003.

[159] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Upton. Hyper-Threading
technology architecture and microarchitecture. In Intel Technology Journal, volume 6,
pages 1–12, Feb 2002.

[160] P. Marwedel. Embedded System Design. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[161] Edward Mascarenhas and Vernon Rego. Ariadne: architecture of a portable threads
system supporting thread migration. In Software - Practice and Experience, volume 26,
pages 327–356, 1996.

[162] P. Mattson, U. Kapasi, J. Owens, and S. Rixner. Imagine programming system
user’s guide. http://cva.stanford.edu/classes/ee482s/docs/ips user.pdf, 2001. Accessed
23/07/2010.

[163] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwere-
ins. ADRES: An architecture with tightly coupled VLIW processor and coarse-grained
reconfigurable matrix. Lecture Notes in Computer Science, 2778/2003:61–70, 2003.

306

[164] Mentor Graphics. Modelsim. http://www.model.com/. Accessed Dec 2009.

[165] Mentor Graphics. Catapult-c synthesis. http://www.mentor.com/catapult, 2009.

[166] Andreas Merkel and Frank Bellosa. Balancing power consumption in multiprocessor
systems. SIGOPS Oper. Syst. Rev., 40(4):403–414, 2006.

[167] Takashi Miyamori and Kunle Olukotun. REMARC: Reconfigurable multimedia array co-
processor. IEICE Transactions on Information and Systems, pages 389–397, 1998.

[168] Anca Molnos, Aleksandar Milutinovic, Dongrui She, and Kees Goossens. Composable
processor virtualization for embedded systems. In In Proc. Workshop on Computer
Architecture and Operating System Co-Design (CAOS), January 2010.

[169] Aaftab Munshi, editor. The OpenCL Specification. Khronos OpenCL Working Group,
2008.

[170] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in direct
networks. Computer, 26:62–76, 1993.

[171] Ralf Niemann and Peter Marwedel. Hardware/software partitioning using integer pro-
gramming. In EDTC ’96: Proceedings of the 1996 European conference on Design and
Test, page 473, Washington, DC, USA, 1996. IEEE Computer Society.

[172] Ralf Niemann and Peter Marwedel. An algorithm for hardware/software partitioning
using mixed integer linear programming. Design Automation for Embedded Systems,
2:165–193, 1997.

[173] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen Hunt.
Helios: heterogeneous multiprocessing with satellite kernels. In SOSP ’09: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages 221–234,
New York, NY, USA, 2009. ACM.

[174] B. Nitzberg and V. Lo. Distributed shared memory: a survey of issues and algorithms.
Computer, 24(8):52 –60, Aug 1991.

[175] NVIDIA Corporation. CUDA programming guide ver 1.1. http://developer.nvidia.com,
2007. Accessed 23/07/2010.

[176] Flavio Oquendo. π-adl: An architecture description language based on the higher-order
typed π-calculus for specifying dynamic and mobile software architectures. ACM Soft-
ware Engineering Notes, 29-3, 2004.

[177] S. Pasricha. Transaction level modelling of SoC with SystemC 2.0. In Synopsys User
Group Conference, 2002.

[178] JoAnn M. Paul, Alex Bobrek, Jeffrey E. Nelson, Joshua J. Pieper, and Donald E.
Thomas. Schedulers as model-based design elements in programmable heterogeneous
multiprocessors. In DAC ’03: Proceedings of the 40th annual Design Automation Con-
ference, pages 408–411, New York, NY, USA, 2003. ACM.

[179] Pierre Paulin, Chuck Pilkington, and Essaid Bensoudane. StepNP: A system-level ex-
ploration platform for network processors. IEEE Des. Test, 19(6):17–26, 2002.

307

[180] D.C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Har-
vey, P.M. Harvey, H.P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masub-
uchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D.L. Stasiak, M. Suzuoki, O. Takahashi,
J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa. Overview of the architecture, circuit
design, and physical implementation of a first-generation Cell processor. Solid-State
Circuits, IEEE Journal of, 41(1):179 – 196, jan. 2006.

[181] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse, Pieter van der Wolf, and
Ed F. Deprettere. Exploring embedded-systems architectures with Artemis. Computer,
34(11):57–63, 2001.

[182] Monica Pinto, Lidia Fuentes, and Jose Maria Troya. DAOP-ADL: An architecture descrip-
tion. In In GPCE 03: Proceedings of the second international conference on Generative
programming and component engineering, pages 118–137. Springer Verlag, 2003.

[183] Alan LaMont Pope. The CORBA reference guide: understanding the Common Object
Request Broker Architecture. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1998.

[184] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third
generation architectures. Commun. ACM, 17(7):412–421, 1974.

[185] Balkrishna Ramkumar and Volker Strumpen. Portable checkpointing for heterogeneous
archtitectures. In FTCS ’97: Proceedings of the 27th International Symposium on Fault-
Tolerant Computing (FTCS ’97), page 58, Washington, DC, USA, 1997. IEEE Computer
Society.

[186] Lawrence Rauchwerger, Francisco Arzu, and Koji Ouchi. Standard templates adap-
tive parallel library (STAPL). In In Proc. of the 4th International Workshop on Lan-
guages, Compilers and Run-Time Systems for Scalable Computers (LCR, pages 402–
409. Springer-Verlag, 1998.

[187] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2007.

[188] Mehrdad Reshadi, Bita Gorjiara, and Daniel Gajski. NISC technology and preliminary
results - technical report CECS-05-11. Technical report, Center for Embedded Computer
Systems, University of California, Irvine, August 24, 2005.

[189] Fred Rivard. Smalltalk: A reflective language. In International Conference on Metalevel
Architectures and Reflection, 1996.

[190] J. Robelly, G. Cichon, H. Seidel, and G. Fettweis. A HW/SW design methodology for
embedded SIMD vector signal processors, 2005.

[191] A. Rose, S. Swan, J. Pierce, and Jean-Michel Fernandez. Transaction Level Modeling
in SystemC. In Open SystemC Initiative, 2005.

[192] Sumit Roy and Vipin Chaudhary. Strings: A high-performance distributed shared mem-
ory for symmetrical multiprocessor clusters. High-Performance Distributed Computing,
International Symposium on, 0:90, 1998.

308

[193] Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa. Bytecode transforma-
tion for portable thread migration in Java. In David Kotz and Friedemann Mattern, edi-
tors, Agent Systems, Mobile Agents, and Applications, volume 1882 of Lecture Notes in
Computer Science, pages 443–481. Springer Berlin / Heidelberg, 2000.

[194] Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David
Cunningham, David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier
Tardieu. The Asynchronous Partitioned Global Address Space model.
http://www.cs.rochester.edu/u/cding/amp/papers/full/
The%20Asynchronous%20Partitioned%20Global%20Address%20Space%20Model.pdf,
March 2010.

[195] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal Com-
munications, 8:10–17, 2001.

[196] Martin Schoeberl. JOP: A Java optimized processor for embedded real-time systems.
Master’s thesis, Technischen Universitat Wien, 2005.

[197] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght. Modular dynamic recon-
figuration in Virtex FPGAs. In IEE Proceedings of Computers and Digital Techniques,
volume 153-3, pages 157–164, 2006.

[198] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G. Zelesnik. Abstractions
for software architecture and tools to support them. Software Engineering, IEEE Trans-
actions on, 21(4):314–335, Apr 1995.

[199] Fridtjof Siebert. JEOPARD – Java environment for parallel real-time development.
Object-Oriented Real-Time Distributed Computing, IEEE International Symposium on,
0:28–36, 2009.

[200] Elias Teodoro Silva Jr., David Andrews, Carlos Eduardo Pereira, and Flávio Rech Wag-
ner. An infrastructure for hardware-software co-design of embedded Real-Time Java
applications. Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-
Time Distributed Computing, pages 273–280, 2008.

[201] Hartej Singh, Ming hau Lee, Guangming Lu, Fadi J. Kurdahi, Nader Bagherzadeh, and
Eliseu M. C. Filho. Morphosys: an integrated reconfigurable system for data-parallel
and computation-intensive applications. IEEE Transactions on Computers, 49:465–481,
2000.

[202] Top500 Supercomputer Sites. The 34th Top500 list.
http://www.top500.org/files/newsletter112009 tabloid v3.pdf, November 2009. Ac-
cessed November 2009.

[203] Brian Smith. Proceedural reflection in programming lanugages. Technical report, Mas-
sachusetts Institute of Technology, 1982.

[204] Michael John Sebastian Smith. Application-Specific Integrated Circuits. Addison-Wesley
Professional, 2008.

[205] Peter Smith and Norman C. Hutchinson. Heterogeneous process migration: The Tui
system. Technical report, Vancouver, BC, Canada, Canada, 1996.

309

[206] J. Sobel and D. Friedman. An introduction to reflection-oriented programming. In Re-
flection ’96, 1996.

[207] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data objects
to scratchpad for energy reduction. In DATE ’02: Proceedings of the conference on
Design, automation and test in Europe, page 409, Washington, DC, USA, 2002. IEEE
Computer Society.

[208] Per Stenström. A survey of cache coherence schemes for multiprocessors. Computer,
23(6):12–24, 1990.

[209] Leon Stok. Data path synthesis. Integration, the VLSI Journal, 18(1):1 – 71, 1994.

[210] Dag Stranneby. Digital Signal Processing, DSP & Applications. Newnes, Oxford, 2001.

[211] M. Stumm and S. Zhou. Algorithms implementing distributed shared memory. Computer,
23(5):54–64, May 1990.

[212] Sun Microsystems. Fortran 77 4.0 reference manual.
http://www.physics.ucdavis.edu/ vem/F77 Ref.pdf, November 1995. Accessed Dec
2009.

[213] Inc. Sun Microsystems. Virtualbox.org. http://www.virtualbox.org/ - Accessed Dec 2009,
2009.

[214] Stuart Sutherland, Simon Davidmann, Peter Flake, and P. Moorby. SystemVerilog for
Design: A Guide to Using SystemVerilog for Hardware Design and Modeling. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[215] Herb Sutter. A fundamental turn toward concurrency in software. Dr. Dobb’s Journal,
30, no. 3:16–20, 2005.

[216] Antonios Symvonis and Jonathon Tidswell. An empirical study of off-line permutation
packet routing on 2-dimensional meshes based on the multistage routing method. Tech-
nical report, IEEE Transactions on Computers, 1994.

[217] David Tennenhouse. Proactive computing. Commun. ACM, 43(5):43–50, 2000.

[218] Texas Instruments, Inc. The TTL Data Book for Design Engineers, volume ISBN:
0895121115. Dallas Texas Instruments, 1984.

[219] Texas Instruments Inc. OMAP3530/25 applications processor (Rev. F).
http://www.ti.com/lit/gpn/omap3530, Oct 2009.

[220] The Motor Industry Software Reliability Association. Guidelines for the Use of the C
Language in Critical Systems. MISRA Ltd., 2004.

[221] W. Thies et al. StreamIt: A compiler for streaming applications, December 2001. MIT-
LCS Technical Memo TM-622, Cambridge, MA.

[222] K. Thitikamol and P. Keleher. Thread migration and communication minimization in dsm
systems. Proceedings of the IEEE, 87(3):487 –497, mar 1999.

310

[223] Mark Thompson, Hristo Nikolov, Todor Stefanov, Andy D. Pimentel, Cagkan Erbas, Si-
mon Polstra, and Ed F. Deprettere. A framework for rapid system-level exploration, syn-
thesis, and programming of multimedia MP-SoCs. In CODES+ISSS ’07: Proceedings of
the 5th IEEE/ACM international conference on Hardware/software codesign and system
synthesis, pages 9–14, New York, NY, USA, 2007. ACM.

[224] Tuomo Tikkanen, Timo Lappänen, and Jorma Kivelä. Structured analysis and VHDL in
embedded ASIC design and verification. In EURO-DAC ’90: Proceedings of the confer-
ence on European design automation, pages 107–111, Los Alamitos, CA, USA, 1990.
IEEE Computer Society Press.

[225] Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen, and Pierre Ver-
baeten. Portable support for transparent thread migration in Java. In David Kotz and
Friedemann Mattern, editors, Agent Systems, Mobile Agents, and Applications, volume
1882 of Lecture Notes in Computer Science, pages 377–426. Springer Berlin / Heidel-
berg, 2000.

[226] M. Ullmann, M. Huebner, B. Grimm, and J. Becker. An FPGA run-time system for dy-
namical on-demand reconfiguration. In Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International, pages 135–, April 2004.

[227] Frank Vahid. Modifying min-cut for hardware and software functional partitioning. In
CODES ’97: Proceedings of the 5th International Workshop on Hardware/Software Co-
Design, page 43, Washington, DC, USA, 1997. IEEE Computer Society.

[228] Frank Vahid and Tony Givargis. Embedded System Design: A Unified Hardware/Soft-
ware Introduction. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[229] John D. Valois. Lock-free linked lists using compare-and-swap. In PODC ’95: Proceed-
ings of the fourteenth annual ACM symposium on Principles of distributed computing,
pages 214–222, New York, NY, USA, 1995. ACM.

[230] K. Van Rompaey, D. Verkest, I. Bolsens, and H. De Man. CoWare - a design environ-
ment for heterogeneous hardware/software systems. Proceedings of the conference on
European design automation, pages 252–257, Sep 1996.

[231] Xavier Vera, Björn Lisper, and Jingling Xue. Data cache locking for higher program pre-
dictability. In SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer systems, pages 272–282,
New York, NY, USA, 2003. ACM.

[232] VMware, Inc. VMware ESX and VMware ESXi - product datasheet. item no:
VMW 09Q3 DS ESX ESXi USLET EN P6 R4. http://www.vmware.com/products/esx/,
2009.

[233] VMware, Inc. VMware Server 2 - product datasheet.
item no: VMW 09Q3 DS SERVER USLET EN P2 R3.
http://www.vmware.com/products/server/, 2009.

[234] Carl A. Waldspurger. Memory resource management in VMware ESX server. SIGOPS
Oper. Syst. Rev., 36(SI):181–194, 2002.

[235] Michael Ward. Improving the Timing Analysis of Ravenscar / SPARK Ada by Direct
Compilation to Hardware. PhD thesis, York University Computer Science Dept., 2005.

311

[236] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput. Commun.
Rev., 3(3):3–11, 1999.

[237] AJ Wellings and A Burns. Beyond Ada 2005: Allocating tasks to processors in SMP
systems. Ada User Journal, 29-2:127–132, 2008.

[238] A. Whitaker, M. Shaw, and S. D. Gribble. Denali: Lightweight virtual machines for dis-
tributed and networked applications - technical report 02-02-01. Technical report, Univ.
of Washington, 2002.

[239] T. Wiangtong, P.Y.K. Cheung, and W. Luk. Hardware/software codesign: a system-
atic approach targeting data-intensive applications. Signal Processing Magazine, IEEE,
22(3):14–22, May 2005.

[240] Daniel Wiklund and Dake Liu. SoCBUS: Switched network on chip for hard real time
embedded systems. In IPDPS ’03, page 78.1, 2003.

[241] Maurice V. Wilkes. The memory gap and the future of high performance memories.
SIGARCH Comput. Archit. News, 29(1):2–7, 2001.

[242] Anthony Williams. The Boost.Thread library. http://www.boost.org, 2008. Accessed
August 2010.

[243] J. Williams, N. Heintze, and B. Ackland. Communication mechanisms for parallel DSP
systems on chip. Design, Automation and Test in Europe (DATE’02), 2002.

[244] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe,
Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W.
Hall, Monica S. Lam, and John L. Hennessy. SUIF: an infrastructure for research on
parallelizing and optimizing compilers. SIGPLAN Not., 29(12):31–37, 1994.

[245] M. J. Wirthlin and B. L. Hutchings. A dynamic instruction set computer. 3rd IEEE Sym-
posium on FPGA-Based Custom Computing Machines (FCCM ’95), 00:0099, 1995.

[246] Wayne Wolf. A decade of hardware/software codesign. Computer, 36:38–43, 2003.

[247] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever, I. Zykh, and R. Johnston.
Real-time CORBA. In RTAS ’97: Proceedings of the 3rd IEEE Real-Time Technology
and Applications Symposium (RTAS ’97), page 148, Washington, DC, USA, 1997. IEEE
Computer Society.

[248] David H. Wolpert and William G. Macready. No free lunch theorems for search. Technical
Report SFI-TR-95-02-010, IEEE Trans on Evolutionary Computation, Santa Fe, NM,
1995.

[249] David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[250] Weng-Fai Wong, R.S. Nikhil, D.L. Rosenband, and N. Dave. High-level synthesis: an
essential ingredient for designing complex ASICs. Computer-Aided Design, International
Conference on, 0:775–782, 2004.

[251] Xilinx. The Programmable Logic Data Book. Xilinx Inc., 1999.

312

[252] Xilinx Corporation. RocketIO transceiver user guide. Xilinx Application Notes, UG024,
2003.

[253] Xilinx Corporation. DS007: Spartan-IIe FPGA family: Complete data sheet.
www.xilinx.com/support/documentation/data sheets/ds007.pdf, July 2004.

[254] Xilinx Corporation. Online ABEL reference.
http://toolbox.xilinx.com/docsan/xilinx7/help/iseguide/mergedProjects/abelref/abelref.htm,
2005.

[255] Xilinx Corporation. Virtex-5 FPGA configuration user guide. Xilinx User Guides, UG191,
2006.

[256] Xilinx Corporation. Xilkernel.
http://www.xilinx.com/ise/embedded/edk91i docs/
xilkernel v3 00 a.pdf, December 2006.

[257] Xilinx Corporation. Virtex-4 user guide. Xilinx User Guides, UG070, 2007.

[258] Xilinx Corporation. Microblaze processor reference guide. UG081 v9.0, 2008.

[259] Xilinx Corporation. DS265: LogiCORE IP CAN v3.2: Data sheet.
www.xilinx.com/support/documentation/ip documentation/can ds265.pdf, August
2009.

[260] Xilinx Corporation. DS312: Spartan-3e FPGA family: Data sheet.
www.xilinx.com/support/documentation/data sheets/ds312.pdf, August 2009.

[261] Xilinx Corporation. DS579: XPS central DMA controller v2.01.b: Data sheet.
http://www.xilinx.com/support/documentation/ip documentation/xps central dma.pdf,
September 2009.

[262] Xilinx Corporation. DS632: XPS mailbox v2.00.b: Data sheet.
http://www.xilinx.com/support/documentation/ip documentation/xps mailbox.pdf, De-
cember 2009.

[263] Xilinx Corporation. Embedded system tools reference guide - EDK 11.3.1. Xilinx Appli-
cation Notes, UG111, 2009.

[264] Xilinx Corporation. UG642: Platform specification format reference manual.
http://www.xilinx.com/support/documentation/
sw manuals/xilinx11/psf rm.pdf, September 2009.

[265] Xilinx Corporation. DS643: Multi-port memory controller (MPMC) v6.01.a: Data sheet.
http://www.xilinx.com/support/documentation/ip documentation/mpmc.pdf, July 2010.

[266] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park, Junpyo Lee, SeungIl Lee, Jinpyo
Park, Yoo C. Chung, Suhyun Kim, Kemal Ebcioglu, and Erik Altman. LaTTe: A Java VM
Just-in-Time compiler with fast and efficient register allocation. Parallel Architectures
and Compilation Techniques, International Conference on, 0:128, 1999.

[267] Andrew Chi-Chih Yao. New algorithms for bin packing. J. ACM, 27(2):207–227, 1980.

[268] Cesar Albenes Zeferino and Altamiro Amadeu Susin. SoCIN: A parametric and scalable
network-on-chip. In SBCCI ’03, page 169, Washington, DC, USA, 2003. IEEE Computer
Society.

313

[269] Wenzhang Zhu, Cho-Li Wang, and F.C.M. Lau. JESSICA2: a distributed Java Virtual
Machine with transparent thread migration support. pages 381 – 388, 2002.

314

	 Abstract
	 Table of Contents
	 List of Figures
	 Acknowledgements
	 Declaration
	1 Introduction
	1.1 Characterising embedded architectures
	1.2 Programming embedded architectures
	1.3 Architecture support in modern languages
	1.3.1 Parallelism
	1.3.2 Memory
	1.3.3 Unique hardware elements and custom hardware

	1.4 Thesis Aims
	1.5 Hypothesis
	1.6 Thesis Structure

	2 Literature
	2.1 Architecture-oriented languages
	2.1.1 Parallelism
	2.1.2 General-purpose programming on GPUs
	2.1.3 Non-uniform memory architectures
	2.1.4 Partitioned Global Address Space languages
	2.1.5 Data streaming architectures
	2.1.6 Datapath architectures
	2.1.7 Architecture description languages

	2.2 Other architecture-aware techniques
	2.2.1 OS services in dedicated hardware
	2.2.2 Architecture-aware application mapping

	2.3 Virtualisation and Virtual Platforms
	2.3.1 Virtual machines
	2.3.2 Virtualisation in the OS
	2.3.3 Virtual machines for software languages
	2.3.4 Virtual platforms for verification
	2.3.5 Other virtualisation-based techniques

	2.4 Generating hardware from software-style descriptions
	2.4.1 Hardware description languages
	2.4.2 High-level synthesis languages
	2.4.3 System design languages
	2.4.4 Hardware / software co-design
	2.4.5 Problems with co-design

	2.5 Implementation fabrics for embedded systems
	2.5.1 Application-Specific Integrated Circuits (ASICs)
	2.5.2 Field-Programmable Gate Arrays (FPGAs)
	2.5.3 Advanced FPGA architectures
	2.5.4 The FPGA design process
	2.5.5 Coarse-Grained Reconfigurable Arrays (CGRAs)
	2.5.6 Partial Dynamic Reconfiguration (PDR)

	2.6 Problems with existing research
	2.6.1 Inappropriate abstraction models
	2.6.2 Limitations of high-level synthesis
	2.6.3 Poor support for dynamic systems and architectures
	2.6.4 Practical issues

	3 Compile-Time Virtualisation
	3.1 Overview
	3.2 Clustering
	3.3 Clustering model motivation
	3.4 System model
	3.4.1 System model layers
	3.4.2 Program layer
	3.4.3 Logical layer
	3.4.4 Target layer
	3.4.5 Expressing existing languages
	3.4.6 Expressing C with the system model
	3.4.7 Expressing Ada with the system model
	3.4.8 Expressing Java with the system model

	3.5 Compile-Time Virtualisation and the Virtual Platform
	3.5.1 Moving from run-time to compile-time

	3.6 The CTV system model
	3.6.1 Model overview and rationale
	3.6.2 VP requirements

	3.7 The Object Manager model
	3.7.1 OM specification

	3.8 Conclusion

	4 Anvil: An Implementation of CTV
	4.1 Implementation overview
	4.2 AnvilADL - Virtual Platform description
	4.2.1 AnvilADL - syntax
	4.2.2 Processors and memory
	4.2.3 Communication topology
	4.2.4 Custom hardware items
	4.2.5 DMA controllers
	4.2.6 The logical layer - clusters and hardware mapping
	4.2.7 Mapping features directly
	4.2.8 Object managers

	4.3 Refactoring overview
	4.4 Refactoring: Parse input program
	4.4.1 Identify thread bodies
	4.4.2 Generate call graphs
	4.4.3 Determine shared data items
	4.4.4 AnvilADL consistency checks

	4.5 Refactoring: Code splitting
	4.6 Refactoring: Build architecture-specific libraries
	4.7 Communications layer
	4.7.1 Implementing inter-processor communications
	4.7.2 Resolving software elements to host processors

	4.8 Shared memory system
	4.8.1 Library interface
	4.8.2 Refactoring for remote shared data
	4.8.3 Associating mutexes with shared data
	4.8.4 Pointers
	4.8.5 Link scripts
	4.8.6 Other comments on shared memory
	4.8.7 Cache coherency

	4.9 Embedded pthreads library
	4.9.1 Service level functions
	4.9.2 Architecture level functions
	4.9.3 Code refactoring for embedded pthreads

	4.10 Custom hardware drivers
	4.11 Compilation
	4.12 Distributed dynamic memory allocation
	4.12.1 User-defined shared objects (UDSOs)
	4.12.2 Describing UDSOs using AnvilADL
	4.12.3 UDSO example

	4.13 Implementing migration
	4.13.1 Migrating OMs
	4.13.2 Migrating shared data
	4.13.3 Migrating threads
	4.13.4 Causes of migration

	4.14 Traceability
	4.15 Restrictions on input code
	4.16 Conclusion

	5 Evaluation
	5.1 Targeting architectures with CTV and Anvil
	5.1.1 Capability-centric descriptions
	5.1.2 Heterogeneous architectures
	5.1.3 Non-uniform memory
	5.1.4 IBM Cell
	5.1.5 FPGA-based Cell-like system
	5.1.6 IO and custom hardware
	5.1.7 Texas Instruments OMAP family
	5.1.8 Summary

	5.2 Overheads
	5.2.1 Sources of overhead
	5.2.2 Reduction of overheads due to CTV
	5.2.3 Object managers
	5.2.4 Shared memory
	5.2.5 Cache coherency
	5.2.6 Compilation times
	5.2.7 Summary

	5.3 Clustering
	5.3.1 Clustering experiments
	5.3.2 Clustering simulations
	5.3.3 Migration times
	5.3.4 Updating the communications layer
	5.3.5 Summary

	5.4 Conclusion

	6 Conclusions
	6.1 Summary of findings
	6.2 Future work
	6.2.1 More expressive source languages
	6.2.2 CTV and hardware development
	6.2.3 Hierarchical Virtual Platforms
	6.2.4 Implications on WCET analysis
	6.2.5 Anvil improvements

	6.3 Conclusion

	A Object Manager message protocol
	A.0.1 Thread operations
	A.0.2 Mutex operations
	A.0.3 Condition Variable operations
	A.0.4 Shared variable operations
	A.0.5 Protected object operations
	A.0.6 Miscellaneous operations
	A.0.7 Migration operations

	B Experimental data
	B.1 Effect of undirected migration
	B.2 Transfer efficiency timings
	B.3 Simulation results: varying execution time
	B.4 Simulation results: varying data access frequency
	B.5 Simulation results: varying migration frequency

	C Hardware generation from Anvil
	C.1 Hardware generation example

	D Anvil Example
	D.1 Input application
	D.1.1 mappings.anv
	D.1.2 main.c
	D.1.3 sobel.h
	D.1.4 sobel.c

	D.2 Anvil output
	D.2.1 _anvil_settings_cpu0.h
	D.2.2 _anvil_settings_cpu1.h
	D.2.3 _anvil_specific_cpu0.c
	D.2.4 linkscript.ld
	D.2.5 microblaze_0.c
	D.2.6 microblaze_1.c

	E Anvil UDSO Example
	E.1 udsoexample.anv
	E.2 main.c
	E.3 queues.h
	E.4 queues.c
	E.5 cpu1.c
	E.6 cpu2.c

	F 3-DES Example
	F.1 Input application
	F.1.1 mappings.anv
	F.1.2 main.c
	F.1.3 des.h
	F.1.4 des.c

	F.2 Output application
	F.2.1 _anvil_settings_cpu0.h
	F.2.2 _anvil_settings_cpu1.h
	F.2.3 _anvil_settings_cpu2.h
	F.2.4 _anvil_specific_cpu0.c
	F.2.5 _anvil_specific_cpu1.c
	F.2.6 _anvil_specific_cpu2.c
	F.2.7 linkscript.ld
	F.2.8 microblaze_0.c
	F.2.9 microblaze_1.c
	F.2.10 microblaze_2.c

	 Bibliography

