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ABSTRACT 

Angioplasty with stenting re-opens stenosed arteries, but in-stent restenosis remains a 

common negative outcome.  Correlations between local mechanical stimuli and ISR 

have been reported, explained by mechanotransduction mechanisms that influence 

cell behaviour.  This thesis investigates the loads imposed on the coronary artery 

following stent implantation. 

The changes in mechanical stimuli in a vessel following stent deployment 

were initially considered using a simple MATLAB model, followed by analysis of a 

2D cross-section model to represent variation of stress with stent strut distribution.  

This model revealed the distribution of the stress through the thickness and around 

the circumference varied significantly for high expansion ratios and uneven strut 

distributions.  

A 3D continuum model of stent geometry post-expansion, obtained from 

micro-CT images, was used to analyse stent interaction with an idealised vessel 

geometry.  The structural stress at the level of individual struts was compared to 

histological data and to fluid dynamic simulations of the same stent/vessel geometry.  

When structural and fluid dynamic stimuli were considered together, correlations 

with the amount of neointimal growth became more significant than when they were 

considered individually.  This suggests that both stimuli contribute to the 

development of neointimal growth and their combination may accelerate the 

progression of ISR. 
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Finally, the thesis describes a model of the evolution of in-stent restenosis. A 

cellular model of growth was developed to include feedback from a finite element 

model of the vessel and neointima.  Change in the lumen geometry was captured 

with neointimal growth, an updated geometry was passed to the finite element model 

to compute the subsequent change of stress direction on cells during their growth. 

The results show encouraging resemblance with histological images of ISR, 

especially for the early phases of growth.  The thesis concludes with a summary of 

the modelling results and a review of opportunities for further research. 
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 –   INTRODUCTION TO 

ISR 

INTRODUCTION 

Ischemic heart disease represents the most common cause of death and disability in 

the world, and one of its manifestations is obstructive coronary artery disease (CAD), 

which causes over 4 million deaths in Europe each year, that corresponds to 45% of 

deaths in Europe (Townsend, Nichols et al. 2015).  

Atherosclerosis is the primary cause of coronary artery disease  (Libby and 

Theroux 2005).  Atherosclerotic disease is mostly treated with percutaneous coronary 

interventional procedures, stenting operations in particular. One of the main 

disadvantages of this technique is in-stent restenosis (ISR), which occurs a few 

months after this intervention (Gunn and Cumberland 1999) in 20% of all bare metal 

stent cases (Kim and Dean 2011).  

Considerable effort has been made by the scientific community to solve or 

diminish the problem through various strategies: through product design, attempting 

to produce new more biocompatible stents, or based on gaining a better 

understanding of the mechanisms associated with in-stent restenosis, using in vivo 

and in vitro models.  It is essential to improve knowledge about not only how this 

phenomenon starts, but also about both its development over time and how it stops.  



CHAPTER I – INTRODUCTION TO ISR 

 

2 

 

This Chapter provides an overview of the problem of in-stent restenosis from 

the clinical point of view.  Section 1 gives a brief description of the anatomy of the 

coronary arteries and Section 2 illustrates the process of development of 

atherosclerotic disease that might eventually lead to stenosis and require 

revascularisation via stenting.  Section 3 summarises the historical evolution of 

revascularisation from angioplasty to the most modern concept of stents and the 

issues encountered with each new technology.  An analysis of the desirable 

characteristics of a stent is presented and the influence of stent design and material 

properties on the ability to meet these needs is discussed.  Section 4 describes the 

problem of in-stent restenosis, its incidence, evolution and possible interventions.  

Section 5 provides an overview of how the presence of a stent and its alteration of 

the mechanical environment can stimulate a local biological reaction in the vessel 

wall through a brief description of mechanotransduction mechanisms at the cellular 

level.  Finally, Section 6 provides a review of strategies reported in the literature to 

model the interaction between the stent and vessel wall immediately after stenting.  
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1.1 CORONARY ARTERIES  

Coronary arteries are the vessels responsible for supply of oxygen to the heart 

muscle.  Figure I.1 shows the two main coronary arteries which originate from the 

beginning of the aorta, above the aortic valve.  Their typical branching is described 

below but anatomical variations between individuals are common.  

 The right coronary artery (RCA): provides blood to the right atrium, the right 

ventricle, the posterior portion of the left ventricle and the interventricular septum.  

 The left coronary artery (LCA): typically runs for 1 to 25 mm and then bifurcates 

into the Left Anterior Descending (LAD) artery, that supplies blood to the left atrium 

and the lateral and posterior of the left ventricle, and the Left Circumflex Artery 

(LCX), that supplies blood to the anterior and inferior of the left ventricle and front 

of the septum (Figure I.1) (Ramanathan and Skinner 2005).  Stents are typically 

implanted in vessels 2-4 mm in diameter (Morlacchi and Migliavacca 2013). 

 

Figure I.1 – Anterior view of the heart showing coronary arteries. Figure reproduced with permission 

under CC BY-SA 3.0 via Wikimedia Commons - By BruceBlaus (Own work)  
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Figure I.2 shows the complex structure of a normal artery wall which is composed of 

a number of different layers, each of which has a different role and contributes 

differently to the vessel properties: 

 The tunica intima is composed of a single layer of endothelial cells (ECs), a 

selectively permeable barrier between blood and tissues, over a basement membrane 

composed of collagen IV, fibronectin, laminin, and the internal elastic lamina (IEL), 

a fenestrated sheet of elastic fibers (Lusis 2000).  It has an important physiological 

role, but it contributes negligibly to the mechanical properties. 

 The tunica media is mainly composed of layers of nearly circumferentially oriented 

smooth muscle cells (SMCs): this layer represents the greatest volume of the artery 

wall.  It is responsible for most of mechanical properties of the vessel, and can also 

relax or contract.  It is composed of SMCs, elastin, collagen I, III, V and 

proteoglycans.  

 The tunica adventitia contains many blood vessels to provide oxygen to the cells of 

the vessel wall, and is composed mainly of fibroblasts.  The other components are 

collagen I, nerves and some elastin fibres (Evans, Lawford et al. 2008). 

 

Figure I.2 - Structure of a general artery. Reproduced with permission from (Lusis 2000). 
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The description above relates to the anatomy and structure of normal, healthy 

coronary arteries; the changes which occur in these vessels during development of 

atherosclerotic disease are described in the following section. 

1.2 ATHEROSCLEROSIS AND ARTERIAL STENOSIS 

Atherosclerosis is a progressive disease of medium and large arteries that, through 

initial development of fatty streaks and changes in vessel wall stiffness, leads to 

more complex lesions which can result in reduction of the vessel lumen in the form 

of a local stenosis  (Crowther 2005). 

The earliest visible atherosclerosis lesions consist of an accumulation of 

‘foam cells’ (cholesterol-engorged macrophages) in the intimal layer of the vessel.  

These ‘fatty streaks’ can be found even in the first decade of life, usually localised in 

the aorta, while in the second decade they tend to develop in the coronary arteries 

and in the cerebral arteries in the third or fourth decade (Lusis 2000).   

More advanced lesions are characterised by a lipid-rich necrotic core and a 

fibrous cap, which is the distinctive sign of established atherosclerosis composed of 

smooth muscle cells (SMCs) and extra-cellular matrix (ECM) (Crowther 2005).  

Plaque composition can change over time with the development of calcification, 

growth of new vessels into the new tissue and subsequent ulceration and 

haemorrhage.  Unstable plaques can break and detach, and the formation of the 

consequent thrombus provokes an acute occlusion: this may result in myocardial 

infarction or stroke (Lusis 2000). 

Atherosclerosis is considered to be a mostly inflammatory process that starts 

decades before the formation of an established lesion.  The first event is thought to 
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be a perturbation in the function of the endothelial barrier and a subsequent increase 

of cellular adhesion and permeability of macromolecules such as LDL, which diffuse 

passively though the endothelium and accumulate in the vessel wall (Lusis 2000, 

Crowther 2005).  LDL molecules are therefore exposed to the oxidative waste of the 

surrounding cells and can become oxidised, making them particularly atherogenic.  

In this form, these modified molecules attract macrophages to the site, which, taking 

up the oxidised-LDL, lose mobility and become foam cells.  These cells send 

inflammatory signals, provoking recruitment and proliferation of SMCs and 

enhancing the processes leading to the formation of new foam cells.  The presence of 

SMCs and their production of connective tissue leads to the formation of the fibrous 

cap (Lusis 2000, Crowther 2005). 

 

Figure I.3 - Atherosclerotic plaque that narrows the artery and reduces the blood flow.  On the left: 

normal artery with normal blood flow. On the right: artery with plaque build-up. (Figure adapted with 

permission under CC BY-SA 3.0 via Wikimedia Commons - from Blausen.com staff. "Blausen gallery 

2014". Wikiversity Journal of Medicine. DOI:10.15347/wjm/2014.010. ISSN 20018762) 

In the advanced stages of atherosclerosis, the plaques that form in the vessel wall 

reduce the lumen of the artery, leading to a focal narrowing, or stenosis, which may 
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be either concentric or asymmetric.  This narrowing of the artery may occlude blood 

flow within the vessel and deprive downstream tissues of oxygen (Figure I.3), while 

rupture of the plaque and subsequent thrombosis can lead to myocardial infarction or 

stroke.  However, the risk of thrombosis depends more on the composition and 

vulnerability of the plaque rather than the severity of the stenosis (Lusis 2000). 

The factors that have been associated with the risk of atherosclerosis are: high 

cholesterol, elevated blood pressure, cigarette smoking, obesity, lack of exercise, 

age, family history, diabetes and male sex (Lusis 2000). 

The “gold standard” to evaluate coronary artery disease (CAD) is an 

angiographic assessment, which only gives information about the vessel lumen.  

Some information about the plaque anatomy can be obtained from other techniques 

such as coronary computed tomography angiography (CTA) or magnetic resonance 

imaging (MRI), while functional testing such as exercise ECG can give a support to 

the diagnosis of stable CAD, helping to find its correlation with the occurrence of the 

symptoms (Members, Montalescot et al. 2013).   

The decision to treat the patient is aimed at reducing the symptoms and at 

preventing events such as myocardial infarction (Members, Montalescot et al. 2013).  

Following the decision to treat an atherosclerotic lesion, a number of clinical 

approaches are available; these are described in the following section. 
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1.3 HISTORY OF STENTS AND TYPES 

Treatments: from open surgery to bioresorbable scaffolds 

Prior to the development of minimally-invasive procedures, treatment of coronary 

artery lesions was based on open surgery, such as coronary artery bypass grafting 

(CABG).  In the 1960s the development of catheter-based therapies introduced the 

concept of minimally-invasive procedures (Duraiswamy, Schoephoerster et al. 2007).  

In 1977 percutaneous transluminal coronary angioplasty (PTCA) was introduced: 

catheters were used to open stenoses by means of a balloon expanded with saline 

solution.  The main issue with this intervention was acute occlusion: the change in 

vessel diameter caused by inflation of the balloon was not maintained following 

removal of the balloon due to the elasticity of vessel wall and of some atherosclerotic 

plaque components (Serruys, Garcia-Garcia et al. 2012).  

During the same period coronary stents were also under development, with 

the first implantation in a human performed by Sigwart et al. in 1986 (Sigwart, Puel 

et al. 1987); but the first balloon-mounted vascular stent approved by the United 

States FDA was the Palmaz-Schatz® stent (Johnson & Johnson) in 1987 (Iqbal, Gunn 

et al. 2013).  Since then, stents have gradually become the percutaneous coronary 

interventional procedure of choice, with both angioplasty and stenting used in the 

vast majority of interventional cases (Iqbal, Gunn et al. 2013). 

A stent is a small tube-like structure that surrounds the deflated balloon and 

expands during balloon inflation, undergoing plastic deformation (Figure I.4).  It 

expands into the artery wall, dilates the narrowed lumen and maintains an open 

configuration, improving blood flow (Duraiswamy, Schoephoerster et al. 2007).  The 
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presence of the metallic cage avoids recoil and constrictive remodelling, as observed 

with balloon angioplasty alone.  However, the phenomenon of in-stent restenosis 

(ISR), due to proliferation and migration of vascular smooth muscle cells (VSMCs), 

was observed in 20-30% of cases of BMS during clinical medium and longer term 

follow-up of stented patients (Iqbal, Gunn et al. 2013).  ISR is a biological response 

to stent implantation, described in detail later this Chapter, which represents a 

clinically significant and unsolved issue, involving the development of a neointima 

within the stent.  The amount of neointima generated after stent implantation is 

greater than that provoked by angioplasty alone.  In addition, the presence of the 

metallic stent material leads to an increased risk of subacute and late stent thrombosis 

(Serruys, Garcia-Garcia et al. 2012) (Top part of Figure I.5). 

 

Figure I.4 – The catheter with the stent crimped on the balloon is positioned in the narrowed artery; the 

balloon is inflated, generating stent plastic deformation; the expanded stent maintains the vessel open, 

improving blood flow. Used with permission from Morris P, Warriner D, Morton A. Eureka 

Cardiovascular Medicine. London: JP Medical Ltd, 2015. 

The next technological evolution in the field involved the idea of covering the stent 

with cytostatic and cytotoxic drugs, with the aim of reducing the ISR response.  This 

new generation of stents consists of a bare-metal stent coated with a polymer that 

continuously releases a drug to reduce new tissue growth and prevent significant 

stenosis development (Serruys, Garcia-Garcia et al. 2012, Bangalore, Toklu et al. 
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2013).  These devices are referred to as Drug Eluting Stents (DES).  The downside of 

this approach was the increased risk of late and very late stent thrombosis, which has 

been associated with late persistent or acquired malapposition of the stent struts to 

the vessel wall.  The latter might be caused by the weakening effect of the drugs on 

the vessel wall in contact with the stent struts, which provokes a retraction of the 

tissue (Serruys, Garcia-Garcia et al. 2012, Bangalore, Toklu et al. 2013).  Another 

provoking factor is considered to be the delay in re-endothelialisation due to the anti-

proliferative drugs (van Beusekom and Serruys 2010) (Bottom part of Figure I.5). 

 

Figure I.5 - Scheme of the possible outcomes of the current forms of intervention. Reproduced with 

permission from (Iqbal, Gunn et al. 2013). 

To avoid the chronic effects associated with stent implantation, recent research has 

developed the concept of designing a device that would disappear once its structural 

function was not needed anymore.  This has included experimentation with polymer 

stents, starting with implantation of biostable polymeric stents in pigs in the early 

1990s, progressing to commercially available bioresorbable scaffolds (BRS).  There 
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are 20 stents currently undergoing pre-clinical or clinical testing and 3 have been 

already approved with a CE mark (Iqbal, Onuma et al. 2014).  The challenge with 

use of such stents arises due to their poor expansion properties, concerning in 

particular polymeric scaffolds, resulting in a higher risk of stent fracture (Serruys, 

Garcia-Garcia et al. 2012). 

The following section describes the characteristics of an ideal stent and 

discusses how stent geometry design and material properties influence the ability to 

meet these needs.   

Stent classifications 

Coronary artery stents have been developed with various materials, technologies and 

geometric designs to be able to meet some fundamental guidelines to obtain an easily 

usable device, able to sustain its function but with the lowest possible impact on the 

biological environment of the vessel.  These can be summarised by the points in 

Table I.1 (Butany, Carmichael et al. 2005): 

Table I.1 - Desirable stent characteristics. Reproduced with permission from (Butany, Carmichael et al. 

2005) 

Low crossing profile 

High flexibility 

High stent/host biocompatibility 

High radial strength 

Low metallic surface area 

Favourable radiographic properties 

Good trackability (ability to conform to tortuous vessel) 

Easy deployment 

Stents can be divided into different categories based on the design choices.  The main 

design categories are (Butany, Carmichael et al. 2005); 

 a coil shape formed by wires; 
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 a tubular mesh formed by wires wound together; 

 a slotted tube, obtained by laser-cutting a metal tube 

Other categories are based on the nature of expansion, dividing stents between self-

expanding or balloon expandable (Butany, Carmichael et al. 2005), and the cell 

configuration, which can be open-cell and closed-cell.  Closed-cell stents are 

preferred for DES for a more homogeneous release of the drug to the vessel thanks to 

the small changes of cell geometry even when bent (Hara, Nakamura et al. 2006).  

Stent strut thickness has been shown to influence the biocompatibility of the stent, 

with thinner struts reducing neointimal hyperplasia as they create less vascular 

injury.  Thicker struts, on the other hand, offer more radiopacity and radial force, 

hence better arterial support (Hara, Nakamura et al. 2006). 

The choice of stent material has an impact on the design, as novel material 

types have provided more radial resistance with thinner struts.  This is the case with 

the use of cobalt-chromium alloy instead of 316L stainless steel for BMS (Figure 

I.6.a), which was initially chosen for being biologically inert.  The newest material 

developed for commercially available BMS is a platinum-chromium alloy, which 

also has higher radiopacity and conformability (Iqbal, Gunn et al. 2013).  Attempts to 

cover stents with materials such as polytetrafluoro-ethylene (PTFE) to increase 

biocompatibility have not shown any improvement in ISR rates, but as changes in the 

surface can affect biological reactions such as cell adhesion, treatments such as 

electropolishing can improve the response for steel stents; coatings such as gold, 

silicon carbonide, heparin or phosphoricholine have been attempted with the same 

aim, but the same improvement has not been reached (Hara, Nakamura et al. 2006).  
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In case of DES, the most commonly used drugs whose release can help 

reducing ISR are sirolimus, everolimus (Figure I.6.b) and paclitaxel.  Finally, a new 

generation of stents is currently under development for clinical use, the Bio-

Resorbable Stent (BRS).  The first BRS design implanted in humans during a 

preliminary study in 1998 (Tamai, Igaki et al. 2000) was made of poly-L-lactic acid 

(PLLA), with no coating; current designs are made of either a metallic alloy, usually 

based on iron or magnesium, or a polymer, usually PLLA and poly-DL-lactic acid 

(PDLLA) (Figure I.6.c) (Iqbal, Onuma et al. 2014).   

a. b. c. 

Figure I.6 – Examples of different types of commercial stents a. BMS: Direct-Stent Cobalt Chromium 

(InSitu Technologies) b. DES: PROMUS Element™ Plus Platinum Chromium Everolimus-Eluting Stent 

System (Boston Scientific); c. BRS: Absorb Bioresorbable Vascular Scaffold, everolimus-eluting BRS 

composed of PLLA and PDLLA (Abbott) 

Section 4 describes more in depth in-stent restenosis: what it is, how it evolves and 

why it is clinically important.   

1.4 EVOLUTION OF IN-STENT RESTENOSIS 

Restenosis is the arterial healing response that limited the success of PTCA, creating 

the need for a device that would have a better long-term outcome, maintaining the 

new lumen provided by angioplasty, the stent (Schiele 2005). 

Since their first introduction in the 1980s, stents have been applied with 

increasing enthusiasm, with 3 million stents implanted every year in the world (van 

Beusekom and Serruys 2010), thanks to their efficacy in restoring an adequate blood 
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flow in arteries occluded by an atherosclerotic lesion.  Unfortunately, stented lesions 

can experience an inflammatory and reparative reaction which leads to in-stent 

restenosis (ISR) within a few months (Gunn and Cumberland 1999).  As introduced 

in the previous section, the extent of this phenomenon is considerable, with ISR 

occurring in 20% of cases of bare metal stent implantation (Kim and Dean 2011); 

this outcome is reduced to less than 10% in case of DES (Stettler, Wandel et al. 

2007).  This prompts the need for further studies of the causes of the phenomenon, of 

its evolution and of the possible factors able to limit its onset and development.  

In some cases the risk of ISR becomes even higher, with up to 50% incidence 

in diabetic patients, totally occluded vessels or if the implanted stents are small (< 3 

mm in diameter), long, overlapping or multiple (Moore and Berry 2002). 

The main difference between restenosis following balloon angioplasty and 

ISR is observed in the type of response to the treatment.  Restenosis following 

angioplasty is caused mainly by early elastic recoil and negative remodelling, while 

in ISR neointimal hyperplasia plays the main role (Schiele 2005). 
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Figure I.7 – Distinct components of the biological response to stent implantation vs time. For the 

inflammatory response, the two peaks represent the heightened activity level of two different types of 

monocytes. Reproduced from (Duraiswamy, Schoephoerster et al. 2007), permission was not required. 

In-stent restenosis is caused by neointimal hyperplasia (NIH) and develops over a 

period of several months.  The reaction to stenting is complex with many 

participating factors, but it has been described in four main phases (Figure I.7): 

thrombosis, inflammation, proliferation, and remodelling (Edelman and Rogers 

1998).   

 Thrombosis: this acute reaction, occurring within the first few days, begins 

with the adhesion of platelets transported to the stent location by the blood 

flow (Duraiswamy, Schoephoerster et al. 2007).  This does not contribute to 
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significant lumen loss, but the extent of this response has been shown to be 

affected by the amount of vessel injury (Edelman and Rogers 1998). 

 Inflammation: within the first few days inflammatory cells are recruited and 

deposited on the stent and between the stent struts.  Specifically, surface-

adherent monocytes (SAMs) and tissue-infiltrating monocytes (TIMs) are 

delivered by the blood flow (Duraiswamy, Schoephoerster et al. 2007).  The 

adhesion of SAMs decreases 3-7 days after stenting, with increased adhesion 

of TIMs (Edelman and Rogers 1998). 

 Proliferation: both smooth muscle cells (SMCs) migrating from the intima 

towards the lumen and inflammatory cells contribute to the build-up of 

neointima (Duraiswamy, Schoephoerster et al. 2007).  The stimulus for tissue 

growth in this phase has been associated with the high stresses on the wall 

provoked by the presence of the stent, but also with cellular reactions 

provoked by low wall shear stress (Duraiswamy, Schoephoerster et al. 2007).  

SMCs are responsible for the production of proteins of the extra-cellular 

matrix (ECM), which constitutes a considerable volume of the neointimal 

tissue.  

 Remodelling: this phase starts about 3 weeks after stenting.  Collagen is 

deposited in the adventitia and media (Moore and Berry 2002) as part of the 

adaptation to the new environment post-stenting, changing the vascular 

geometry and material properties (Duraiswamy, Schoephoerster et al. 2007).  

In the later stages of the process ISR formation is characterised by ECM 

formation, rather than cell proliferation (Schiele 2005). 

Since neointimal growth is the main contributor to ISR and it consists of cell 

migration, proliferation and ECM production, it is important to understand how these 
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processes occur within the cell cycle of SMCs.  In fact, the phase of the cycle the cell 

is in and which phenotype is expressed will influence intracellular signal 

transduction, which effects on all sort of processes, like proliferation and migration 

(Schiele 2005).  Figure I.8 illustrates the phases of the cell cycle: SMCs in a mature 

and healthy blood vessel are in their resting state, in which the differentiated 

phenotype is expressed.  The cell exhibits contractile behaviour and does not divide: 

this state is called quiescent, G0 (Rzucidlo, Martin et al. 2007).  Stimuli like vessel 

damage, provoked by events such as angioplasty, can provoke a de-differentiation of 

the cell, which switches to the synthetic phenotype, characterised by events such as 

proliferation, migration and ECM production (Beamish, He et al. 2010).  In this case, 

the cell re-enters the first gap phase of the cell cycle, G1, which is a growth phase.  S 

is the synthetic phase, in which the DNA is duplicated, and G2 is the second gap 

phase, where the cell growth continues until it doubles in size. G1/S/G2 are all part of 

the interphase.  The final stage, M, is the mitotic state, where a mother cell divides 

into two daughter cells (Jones and Chapman 2012). Migration is possible during the 

transition to G1 and S (Schiele 2005).  The knowledge of the cell cycle and the cell 

signalling process allows development of drugs which intervene in the most effective 

way on the proliferation of the SMCs.  
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Figure I.8 - Diagram of the phases of the cell cycle (Figure used with permission under CC BY-SA 3.0 via 

Wikimedia Commons - from “Cell_Cycle_2.png”: Zephyris at en.wikipedia derivative work: Beao 

derivative work: Histidine (Cell_Cycle_2.svg)) 

The types of ISR have been classified into the following categories, based on the 

length of the stenosed region and the pattern of growth, which are not only 

descriptive, but also used to define the clinical prognosis (Schiele 2005): 

I. Focal: ISR ≤ 10 mm length 

II. Diffuse: ISR > 10 mm length within the stent 

III. Proliferative: ISR > 10 mm exceeding the length of the stent 

IV. Occlusive. 

This classification has been proposed for bare metal stents, while the outcome of 

DES implantation is mainly focal restenosis (Ong, Aoki et al. 2004).  

The treatment of ISR consists in single or combined techniques which aim to 

re-open the vessel (repeat balloon angioplasty, repeat stenting, drug-eluting stents), 

to act on the plaque (directional coronary atherectomy, rotational coronary 
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atherectomy, brachytherapy) or both at the same time (cutting balloon angioplasty) 

(Ong, Aoki et al. 2004).  The use of systemic drug therapy or mechanical treatments 

of ISR has been shown to be ineffective, while better results have been obtained 

mainly through vascular brachytherapy and repeat stenting with DES (Schiele 2005).  

The latter is the current standard treatment for ISR due to BMS, while the best 

approach for restenosis after DES implant is less clear (Kim and Dean 2011). 

The differences in biological response observed between stent designs 

suggest a relationship between the magnitude of the ISR response and local 

alterations to the mechanical environment of the vessel wall, arising from stent 

implantation (Gunn and Cumberland 1999).  Examination of these effects using 

numerical models of stent/vessel interactions is reviewed in Section 6.  The 

following section describes the mechanotransduction mechanisms which have been 

identified in vascular cells and the relevance of these mechanisms to the 

development of ISR. 

1.5 MECHANOTRANSDUCTION MECHANISMS 

The translation of mechanical forces acting on cells into chemical signals is called 

“mechanotransduction” (Serruys, Garcia-Garcia et al. 2012).  

Blood vessel cells are constantly subjected to mechanical forces in the form 

of stretch, cyclic mechanical strain and shear stress.  These mechanical stimuli 

influence particular cells to maintain tissue homeostasis, regulating cell function such 

as gene activation, protein synthesis, cell growth, death and differentiation (Wang 

and Thampatty 2006).  

Alterations in stretch or shear stress have been shown to provoke a reaction in 

the vessel leading to an adaptation to the new mechanical conditions. Stent 
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implantation is an example of such an alteration in loading as it generates high 

concentrations of stress behind the stent struts (Lehoux and Tedgui 2003). 

 

Figure I.9 - Schematic representation of receptors involved in initiating cascades in vascular cells 

stimulated by pressure (stretch) or shear stress, in particular in smooth muscle cells and endothelial cells. 

Reproduced with permission from (Lehoux and Tedgui 2003). 

The extra-cellular matrix (ECM), which provides structural support to the tissue and 

an adhesive surface to the cells, is also responsible for the transmission of the 

mechanical stimuli to the cells (Gupta and Grande-Allen 2006).   

As shown in Figure I.9, in arterial vessels the cells that respond most 

significantly to mechanotransduction effects are smooth muscle cells (SMCs), which 

respond to changes in transmural pressure, and endothelial cells (ECs), which 

respond to changes in shear stress.  

Below the level of a single cell, the individual cellular components involved 

in mechanotransduction mechanisms are as follows: 

 The cytoskeleton is a network of microfilaments, microtubules and intermediate 

filaments that determines the mechanical properties of the cell, connects nearly all 
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cellular structures and, through changes in its structure, transduces mechanical loads 

into biological signals (Wang and Thampatty 2006). 

 Integrins (represented as α and β in Figure I.9) are cell surface protein receptors that 

act as an interface between the extracellular matrix and the cytoskeleton of the cell. 

The mechanotransduction role of integrins is specific to the individual integrin-

extracellular matrix interaction (Lehoux and Tedgui 2003). 

 Heterodimeric G proteins are another type of membrane proteins: composed of three 

subunits (α, β, γ in Figure I.9), they couple membrane receptors to the intracellular 

signalling cascade. Shear forces deform the cytoskeleton acting on integrins, in turn 

activating a G protein, which activates further downstream signalling cascades 

(Lehoux and Tedgui 2003).  

 Receptor tyrosine kinases are membrane proteins that work as secondary messengers, 

activated by G proteins, whose major role is in integrin-mediated signalling; it also 

induces the activation of mitogen-activated protein kinases (MAPK) (Wang and 

Thampatty 2006). 

 Mitogen-activated protein kinases (MAPK) is an important pathway that leads from 

mechanical forces to gene expression and protein synthesis (Lehoux and Tedgui 

2003). 

 Stretch-activated ion channels, whose activation allows the movement of ions such 

as Ca2+, Na+ and K+ inside the cell.  For instance, the level of Ca2+ in a cell regulates 

processes such as cell growth, cell motility, contraction, apoptosis (programmed cell 

death), differentiation (Wang and Thampatty 2006). 

The response of vascular cells to mechanical stimuli, in particular, is the 

modulation of the synthesis of the majority of the ECM components, like collagen, 
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elastin, enzymes such as matrix metalloproteinases (MMPs) and growth factors 

(Gupta and Grande-Allen 2006). 

The sequence of events that lead to vascular remodelling as a result of these 

stimuli is shown in Figure I.10. 

 

Figure I.10 – Sequential events that, from increased transmural pressure or shear stress, lead to vascular 

remodelling. Reproduced with permission from (Lehoux and Tedgui 2003). 

Wang et al. (Wang and Thampatty 2006) provide an extensive review of the main 

mechanotransduction effects for different cell types.  In particular, results of 

experimental studies on endothelial cells and SMCs subjected to static and cyclical 

stretches and strains were reported. 

Cyclic mechanical stretching on endothelial cells have been shown to 

provoke cell reorientation, actin cytoskeleton remodelling and affect the productions 

of MMPs and DNA; cyclic stretches on SMCs would increase the production of 

collagen, proteins in general and proteoglycans, and regulate MMPs and mRNA 

(Wang and Thampatty 2006). 



CHAPTER I – INTRODUCTION TO ISR 

 

23 

 

In order to examine the relationship between cellular mechanotransduction 

effects and stent design it is necessary to describe the changes which occur in the 

mechanical environment of the vessel due to stent implantation.  The final section of 

this review provides an overview of the application of numerical modelling to 

examine the links between stent design, structural and fluid dynamic stresses and 

biological response. 

1.6 MODELS OF STENT-VESSEL INTERACTION 

Considering ISR as an excessive healing response to the injury of the vessel during 

stent implantation, the study of the mechanical interaction between the stent and the 

vessel can give a useful insight to the focal mechanical environment where the 

neointimal growth takes place.  In particular, numerical modelling techniques allow 

study of the behaviour of the device and the loads it needs to bare during and after its 

deployment, giving an indication on the properties it needs to have for it purpose.  

Modelling techniques can also predict changes in the solid mechanics and fluid 

dynamics induced by the presence of the stent and therefore the creation of a 

situation prone to ISR.  Specific features include the magnitude of the stresses in the 

vessel due to its radial compression by the stent struts and its circumferential 

stretching (Timmins, Miller et al. 2011) and the change in the dynamics of the blood 

flow (Chiu, Chen et al. 2004).  However, as for any model, assumptions and 

simplifications are required according to the final aim of the simulation.  Therefore, 

model validation is essential in order to be able to interpret the results (Morlacchi 

and Migliavacca 2013).   

Stent/vessel interaction models have been used to examine structural 

mechanics, fluid dynamics and drug elution.  Many commercial and non-commercial 
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software packages allow simulation of the mechanical behaviour of structures under 

a specific load and the flow in defined geometries with specified boundary 

conditions, though the use of finite element analysis (FEA or FEM, finite element 

method).  This method has been used to explore the disturbance of physiologic blood 

flow by the stent and the influence of stent design on their expansion, either freely or 

in a more or less complex model of a vessel. 

The following section describes particular strategies to represent vessel/stent 

interaction in different studies, according to the final aim of the simulation.     

- Stent only 

Some studies aim to evaluate the best methodology to create stent models, to reduce 

computational resource requirements and still obtain valuable results.  De Beule et 

al. explored different model implementations for the study of free stent expansion, 

deploying a stent through three different scenarios: applying an increasing pressure 

directly on the inner surface of the stent; through a radial displacement-controlled 

expansion of a cylindrical balloon; through a trifolded balloon expanded with an 

increasing pressure.  The aim of this study was to evaluate how changes in the final 

expansion are due to the various simplifications such as the final expanded shape of 

the stent, the ability to capture features such as the typical transient dog-boning effect 

given by the pattern of the balloon expansion and the pressure needed for the 

deployment.  The result is that, while the first scenario results in an unrealistic 

fusiform expanded shape of the stent, the second scenario provides an accurate 

representation of the final expanded shape of the vessel; the third is also able to 

capture features such as the typical transient dog-boning effect given by the pattern 

of the balloon expansion and provides data on the pressure needed for the 
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deployment, at the cost of considerable computational power (De Beule, Mortier et 

al. 2008). 

However, most of the computational studies with stents aim to improve the 

understanding of ISR causes and mechanisms; consequently, the simulations need to 

include the vessel, either with an idealised or complex model, in order to evaluate 

stent and vessel interaction. 

- Idealised artery, simplified stent design 

To investigate specific issues relating to stent performance, a simplified and 

controllable environment in which to expand the stent model aids interpretation of 

the results.  Whilst such models will not represent the complexity of the nature of 

individual atherosclerotic lesions, the use of an idealised artery allows clear 

comparison of the effects of two different stent designs. 

Timmins et al. created a model of a thick straight cylinder to represent a 

healthy porcine artery, in order to compare the effect of a high-stress and a low-stress 

stent.  These represent two commercial stents for which the design was imported 

from CAD data and computationally implanted by applying a pressure in the artery 

and subsequently releasing it onto the expanded stent (Bedoya, Meyer et al. 2006).  

This allowed comparison of the stress imposed by the two designs with the restenosis 

observed in an in vivo porcine model of restenosis where the corresponding stents 

had been implanted.  The results show that a higher amount of hyperplasia has been 

generated by the implantation of the high-stress stent (Timmins, Miller et al. 2011).   

A similar approach has been used in a study by Chen et al. to analyse the 

effect of mis-sizing the stent on the fluid dynamics, the consequent wall shear stress 

and circumferential wall stress.  A straight cylinder was used to represent the artery, 
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while the stent was reconstructed from a pattern that is typical of some commercial 

stents (J&J Cordis Bx Velocity and Guidant-Boston Scientific Multi-link Penta).  

Model results were then compared with data obtained from stented pig models.  

Correlation has been found between both fluid and structural stress and neointimal 

growth, but more significant relation has been found between the combinations of 

some of these values, like the ratio of circumferential wall stress and wall shear 

stress, and neointimal growth: this suggests that the variation of fluid dynamics and 

the stresses imposed on the wall by the presence of the stent have a simultaneous 

effect of the ISR (Chen, Sinha et al. 2011).    

The use of an idealised artery geometry corresponds to representing a healthy 

vessel: this is not only simpler to model, but also allows a closer comparison of the 

results with experimental studies, where stents are implanted into healthy porcine 

arteries, so they do not contain atherosclerotic disease prior to stent implantation.    

- Idealised artery with presence of a plaque, idealised stent  

In some studies the complexity of the model is increased by refining either the stent 

or the vessel model.  Takashima et al. report model refinement aimed at a more 

accurate evaluation of the contact area between the struts and the vessel.  This was 

addressed within their model as the presence of a plaque was also taken in 

consideration, although plaque and vessel geometry was still idealised in order to be 

reproducible both experimentally and computationally.  More specifically, the 

objective was to evaluate the influence of stent design, particularly between high or 

low number of cells and links.  The results show that a higher number of cells and 

links increases the contact area and consequently decreases the stress concentration, 

and could decrease the stimulus for ISR (Takashima, Kitou et al. 2007).  
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- Realistic arterial geometry from image data, idealised stent 

The use of a realistic arterial geometry model could be particularly useful to evaluate 

the effect of a specific treatment on a specific patient.  This scenario was considered 

by Gijsen et al. through the use of biplane angiography and intravascular ultrasound 

to reconstruct the geometry of a mildly stenosed coronary artery and obtain a 3D 

model of the vessel wall.  Models of a commercially-available unexpanded stent with 

various strut thicknesses were deployed in the artery in order to evaluate the 

deformation patterns and stress distribution in the artery of the specific patient.  The 

peak stresses in the arterial wall were found in the locations behind the stent strut and 

where the wall was thinner (Figure I.11); the peak stresses for the stents were found 

close to the connectors between the struts (Gijsen, Migliavacca et al. 2008). 

 

Figure I.11 - Simulation of stent-vessel interaction: von Mises stress in the vessel model. Adapted with 

permission under Creative Commons Attribution Licence from (Gijsen, Migliavacca et al. 2008). 

- Ideal artery, realistic stent  

A feature that is really difficult to capture by computational simulation of stent 

deployment is the real deployed geometry of the stent.  Under ideal conditions, 
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within a straight cylinder and a uniformly distributed expansion pressure, the 

deployed stent has an even symmetric cylindrical shape.  Stent expansion in a real 

vessel leads to uneven, asymmetric final geometry, with a transient dog-boning effect 

(Wang, Liang et al. 2006), prolapse of the vessel (Prendergast, Lally et al. 2003) and 

changes in local blood flow, like spatial WSS distribution (Morlacchi, Keller et al. 

2011).  In a study by Morlacchi et al., a realistic 3D model of a stent implanted in an 

in vivo porcine model was reconstructed from micro-CT images.  A FEM simulation 

was used to create the final vessel geometry using an idealised initial vessel 

geometry to obtain the vessel lumen geometry for a computational fluid dynamics 

(CFD) simulation.  This allowed a comparison between the fluid dynamics post 

stenting and the biological response through examine of the correlation between low 

wall shear stress values and the magnitude of ISR (Morlacchi, Keller et al. 2011).  
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SUMMARY 

Whilst angioplasty with stenting aims to re-open a stenosed artery and restore 

sufficient blood flow to the downstream tissues (the heart, in case of coronary 

arteries), in-stent restenosis remains a common negative outcome. 

 Over the last decades evolution in stent design, materials and drugs has 

attempted to improve outcomes for patients, but in some cases, where the rate of 

restenosis is reduced, thrombosis constitutes another problem. 

 Evidence of a correlation between the change in the local mechanical 

environment and the incidence of ISR has been found and is explained by the 

mechanotransduction mechanisms that govern the cell cycle, the synthetic 

capabilities and the signalling functions of cells.  Many studies attempt to analyse the 

magnitude of these changes through finite element modelling (from both a structural 

and fluid dynamic point of view) in an attempt to describe the situation immediately 

after stenting.  In some cases the outcomes of modelling studies have been directly 

compared with results from experimental and in vivo models. 

 The next Chapter will analyse the physiological mechanical stimuli that a 

healthy vessel has to sustain and how these change in the presence of a stent with the 

aid of a simple MATLAB model.  Chapter 2 also provides an overview of the small 

number of recent computational models in literature that attempt to describe the 

evolution of ISR under the influence of these structural and fluid dynamics stimuli.  
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 –   INTRODUCTION TO 

ISR MODELLING 

INTRODUCTION 

In Chapter 1 the stenting procedure and the consequent problem of in-stent restenosis 

have been introduced, with the subsequent importance of having a better 

understanding of the factors contributing to this phenomenon.  The brief review of 

mechanotransduction mechanisms provided in Chapter 1 shows the complexity of 

these effects and the need to approach the study of ISR from multiple points of view, 

including both mechanical and biological aspects.  Finally, some examples of stent-

vessel interaction models were presented to provide an overview of the literature 

related to this problem. 

This Chapter focusses on the problem of modelling the relationship between 

the mechanical stimuli and the biological growth in ISR.  In Section 1 the 

physiologic mechanical stimuli in a healthy vessel and the changes following stent 

implantation are described, to show how such changes might contribute to the 

regulation of neointimal growth.  In Section 2 the problem of how to represent the 

mechanical properties of arteries is discussed and two examples of models 

commonly used to describe their behaviour, linear elastic and hyperelastic, are 

presented.  Section 3 provides an estimate of the significance of the change in the 

mechanical environment of the vessel after a stent expansion through a simple 

mathematical model.  This simple model will be refined in the following Chapters 
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for a detailed analysis of structural effects of stenting on ISR.  Finally, in Section 4 a 

review of existing models of the evolution of tissue growth during ISR identifies how 

the various stimuli described in Section 1 have been represented by other authors, to 

explore specific hypotheses. 
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2.1 MECHANICAL ENVIRONMENT OF HEALTHY AND STENTED 

VESSELS 

This thesis will not consider the influence of vessel disease on the interactions 

between the stent and the vessel.  The motivation of this study is to inform numerical 

models of ISR using data from an in vivo porcine model of ISR (Gunn, Arnold et al. 

2002, Dean, Morton et al. 2005).  In this porcine model the ISR, response is 

generated by inducing a more or less severe injury in a healthy coronary artery by 

intentionally over-sizing the stent; at a chosen time-point after stenting, the animal is 

sacrificed in order to remove the stented vessel and analyse the eventual ISR with 

various techniques such as histology (Malik, Gunn et al. 1998).   

Porcine models are commonly used to study human diseases of the 

cardiovascular system, in particular for coronary arteries.  The suitability of this 

animal model has been established due to the similarity between the two systems in 

terms of anatomy, branching and blood supply of coronary arteries (Sahni, Kaur et 

al. 2008).  In particular, porcine coronary stenting is considered the model of choice 

for the study of ISR because of the close resemblance with human restenosis.  This 

has allowed detailed study of the early reactions to stenting, in particular the events 

occurring between the first 24 hours and 1 month (Schiele 2005).  Experimental 

porcine studies (Gunn, Arnold et al. 2002) provide more controlled data and extra 

possibilities for measurement of vessel anatomy and the neointimal growth over a 

series of time-points.   

The advantage of investigating the biological response to stent implantation 

with such an approach is that the data can provide a better understanding of the 

contribution of mechanical stimuli without the additional variability introduced by 
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the pre-stenting disease of the vessel.  Such data provide a powerful validation tool 

for computational studies (Tahir, Hoekstra et al. 2011, Timmins, Miller et al. 2011). 

What happens in clinical reality is much more complicated, as the vessel is 

not healthy but atherosclerotic, with the presence of a plaque obstructing the blood 

flow and with mechanical properties dependent on its components.   

Modelling the experimental studies of ISR on pigs introduces less 

complexities and unknown variables: the animal is healthy and a stent is inserted and 

over-expanded with the aim of creating a damage that could be associated with the 

damage provoked in the clinical case (Gunn, Arnold et al. 2002). 

The introduction in Chapter 1 to mechanotransduction mechanisms occurring 

in a vessel to maintain its physiologic functions shows how both structural and fluid 

dynamic stimuli generate a reaction from the vascular cells.  This section aims to 

provide a description of the main mechanical loads healthy vessels are subjected to, 

and how these change with the presence of a deployed stent.  As previously 

described, changes in mechanical loads from typical physiological values can trigger 

compensatory biological responses, which, through receptors on the surface of 

cardiovascular cells, induce them to adapt their synthesis of ECM molecules, 

resulting in ECM remodelling (Gupta and Grande-Allen 2006).   

Healthy vessel, pre-stenting 

Coronary arteries are constantly subject to mechanical forces, even in their normal 

healthy state, due to their function of supplying the heart muscle with oxygenated 

blood.  These mechanical forces can be summarised as follows: 

 Cyclic changes in pressure 



CHAPTER II – INTRODUCTION TO ISR MODELLING 

 

34 

 

The blood, whilst flowing through the artery, exerts a pressure in the radial direction, 

perpendicular to the vessel wall, which tends to distend the vessel. The 

circumferential tension is borne across the vessel thickness (Lehoux and Tedgui 

2003).  The mainly affected cells are SMCs, which undergo cyclic tensile strain due 

to the hoop strain of the vessel and compressive strain due to the thinning of the wall 

in the radial direction (Gupta and Grande-Allen 2006).  Changes in pressure have 

been shown to increase SMC size and collagen and elastin production (Lehoux and 

Tedgui 2003).  All the cells within the vessel wall undergo these cyclic strains at 

each heartbeat at a pulsatile frequency of around 1 Hz in humans (Gupta and Grande-

Allen 2006).  In the porcine case the heart rate is higher, almost double at 112±35 

beats per minute (bpm) (Stankovicova, Szilard et al. 2000)  

 Pulsatile changes in shear stress 

The friction of the blood on the endothelium results in a stress that is parallel to the 

direction of the flow, the shear stress (τ), which is dependent on the blood viscosity 

and velocity gradient at the wall (Lehoux and Tedgui 2003).  Shear stress is mainly 

experienced by ECs (Gupta and Grande-Allen 2006).  Physiologic values of wall 

shear stress (WSS) vary within the circulatory system, with an average around 0.1-

0.6 Pa in the venous system and values around 1-1.5 Pa or higher in the arteries 

(Mongrain and Rodes-Cabau 2006).  Endothelial cells have been shown to react 

differently to different ranges of WSS, with a protective effect in the presence of 

normal or high values of WSS (Mongrain and Rodes-Cabau 2006). 

 Blood flow in arteries is often computed using Poiseuille’s law, which 

describes the pressure drop for a constant laminar flow of a Newtonian fluid, through 

a pipe of constant circular cross-section and a length considerably higher than the 
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diameter.  The equation, ∆𝑃 =
8𝜇𝐿𝑄

𝜋𝑟4
, can be used for flows whose variation in time is 

slow enough to be assumed steady state. In other cases, the Womersley number is 

used to evaluate the relative effect of transient inertial force and viscous force: 𝑊0 =

𝑅0√
𝜌𝜔

𝜇
= 𝑅0√

𝜔

𝜈
=

𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
.  With a very small Womersley number 

(<1), the inertial force is negligible and the velocity profile is approximately 

parabolic, while for higher numbers the inertia of the fluid generates a delay between 

the phase of the pressure gradient and the oscillation of the velocity profile, which 

has a significant influence on the shape of the velocity profile. 

 Axial pre-stretch and circumferential residual stretch 

The vessel is subject to an in-vivo axial pre-strain of around 40-60% (Dobrin 1990, 

Cardamone 2009).  The result of a physiological axial strain is the presence of a 

pressure-invariant axial force, which means that the axial force needed to maintain 

the axial stretch constant is independent of the internal pressure (van den Broek, van 

der Horst et al. 2011).  

The presence of a circumferential residual stretch of the vessel is observable 

in its load-free state by cutting the vessel in the longitudinal direction.  Following the 

cut, the vessel will assume an open configuration, with the opening angle used to 

describe the undeformed reference configuration of the artery.  This residual stress 

results in an homogenization of the stress through the thickness and an increased 

arterial compliance (Driessen, Bouten et al. 2005).  

Axial pre-stretch and circumferential residual stretch combine to determine 

the mechanical behaviour of the coronary artery, as illustrated in Figure II.1.   
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Figure II.1 – Arterial ring in the (stress-free) reference configuration Ω0, the load-free configuration Ωres 

and the current configuration Ω. Reproduced with permission from (Holzapfel, Gasser et al. 2000). 

For the purpose of this thesis, the effects of axial pre-stretch and circumferential 

residual stretch are neglected: the models used in the following Chapters are kept 

simpler, as the focus is more on the local effects of stent/vessel interaction.  

Stented vessel 

Following stent implantation, the presence of the stent struts disrupts the mechanical 

environment of the arterial wall more than the angioplasty alone, with the 

introduction of a permanent structure interacting with the vessel (Moore and Berry 

2002).  Once a stent is deployed, a series of changes in the mechanical loads 

immediately affect the vessel, demonstrated schematically in Figure II.2 where the 

pre-stented vessel is shown as a uniform cylinder; these are discussed in more detail 

below. 
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Figure II.2 - Schematic representation of the effect of stenting: the stent struts push the tissue radially, 

creating local compressive stress at the struts, tensile stress between the struts and changing the shear 

stress acting on the vessel wall.   

 Radial forces due to angioplasty and stent implantation 

In order to deploy the stent, push any coronary plaques against the vessel wall and 

obtain plastic deformation of the stent struts, the balloon is inflated inside the 

coronary artery at pressures up to 15 atm (more than 100 times the average blood 

pressure of 100 mmHg).  After this, the balloon is removed and the stent imposes a 

contact stress on the vessel wall at the stent struts.  This stress acts to prevent recoil 

of the vessel wall, with the purpose of maintaining the lumen aperture reached during 

angioplasty (Moore and Berry 2002).  As a consequence, a high compressive stress is 

localised in the region behind the stent struts (Boyle, Lennon et al. 2011). 

 Circumferential stretch  

The aim of stent implantation is to restore physiological blood flow by obtaining an 

expansion of the artery, which results in considerable circumferential tension in the 

vessel wall.  This high hoop stress has been shown to be the highest in magnitude, 
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usually representing the first principal stresses of a stented artery (Timmins, Miller et 

al. 2011).    

 Variation in shear stress 

The presence of an expanded stent in a vessel has an effect on the blood flow, not 

only in the region local to individual stent struts, but also in the overall fluid 

dynamics (Moore and Berry 2002).  The change in fluid dynamics following stent 

deployment results in a variation in the wall shear stress sensed by the vascular cells.  

As introduced in Chapter 1 changes in wall shear stress have been shown to 

influence the regulation of cellular activity.  In particular, an inverse correlation has 

been observed between neointimal proliferation, leading to ISR, and WSS (Mongrain 

and Rodes-Cabau 2006). 

 Compliance mismatch 

Introducing a metallic cylindrical structure into the artery creates an interaction 

between two entities with very different material properties.  In particular, 

compliance mismatch between the non-stented artery and the stented region has been 

shown to result in changes to blood flow dynamics and generate a considerable stress 

concentration at the ends of the stent (Berry, Manoach et al. 2002).   

2.2 VESSEL MATERIAL MODELS 

Arteries have a long history of study, from a variety of perspectives: morphology, 

physiology, anatomy, mechanical properties (Ozolanta, Tetere et al. 1998).  Initially, 

studies used animal models and then progressed to humans.  With the introduction of 

computational models, the analytical description of the behaviour of vascular tissue 

has become of increasing importance. As introduced in Chapter 1, the evolution of 



CHAPTER II – INTRODUCTION TO ISR MODELLING 

 

39 

 

computational power provides increased potential for the definition of more accurate 

and more complex models.  If a computational model is well validated, it constitutes 

a powerful tool to better understand complex phenomena and to compare the use of 

various devices in a controlled environment, providing savings in material costs and 

time compared with in vivo and in vitro experimental tests.  

The constitutive equation used to describe material behaviour represents the 

relationship between an imposed stress and its response in terms of the resulting 

strain.  The mechanical behaviour of a blood vessel can be described in more or less 

detail appropriate to the focus of the study, and may include heterogeneity, 

incompressibility, residual stresses, smooth muscle contractility and pressure-related 

dynamic wall motion (Vito and Dixon 2003).   

An important choice when dealing with a blood vessel is whether to treat it as 

homogeneous, for which locally averaged properties can be assumed, or 

heterogeneous, with the introduction of the influence of the different components to 

the resulting material properties, which constitute a network of SMCs, elastin and 

collagen fibres.  For example, describing a material as isotropic means assuming that 

its response to a load will be the same no matter which direction the load acts, while 

taking into consideration the orientation of the fibres of a vessel means recognising 

its anisotropy (Holzapfel and Ogden 2010).   

A feature that is very typical of soft biological tissues is their hyperelastic 

behaviour; the remainder of this section outlines the distinction between elastic and 

hyperelastic constitutive models. 
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Linear elastic model 

The simplest constitutive law to describe the behaviour of a material is with a 

constant elastic Young’s modulus or modulus of elasticity, defined as the slope of the 

stress-strain curve in the elastic region.  The elastic Young’s modulus describes 

elastic deformation of the material along an axis when a force is applied along the 

same axis x: 

𝐸 =
𝜎𝑥𝑥
𝜀𝑥𝑥

 

where E is Young’s modulus, σxx is the stress and εxx is the strain, for an uniaxial 

load.  As arterial composition and structure is different at each level of the arterial 

tree, experimental data for elastic moduli specific to the coronary arteries are 

required to produce a model of these vessels.   

Even with such data, the elastic properties of the vessels are observed to 

change during the lifespan of a person, becoming more rigid with time, even in 

absence of any specific disease.  This evolution in vascular properties with time was 

studied by Ozolanta et al. (Ozolanta, Tetere et al. 1998) who reported changes in 

mechanical properties, biomechanical constituents and wall structure of the human 

coronary arteries with age and sex, in subjects without any reported pathology.  

Stretching tests were performed on cylindrical sections of the left (LCA) and right 

(RCA) coronary artery of groups of people of different ages.  The tangential elastic 

modulus varied from 1.06 MPa for the right artery of neonates (<1 year old) to 4.11 

MPa for the left artery of the oldest group (> 60 years old).  Table II.1 summarises 

the results of these tests, divided by age group and coronary artery section. 
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Table II.1 - Tangential elastic moduli [MPa] of left and right coronary arteries of six groups of people of 

different ages. Data adapted with permission from (Ozolanta, Tetere et al. 1998). 

Age groups <1 1-7 8-19 20-39 40-59 60-80 

LCA 1.17±0.41 1.12±0.26 0.9±0.48 1.57±0.58 2.19±0.74 4.11±0.89 

RCA 1.06±0.24 1.64±0.28 1.22±0.68 2±0.78 2.08±0.64 2.85±0.76 

 

Hyperelastic models 

The mechanical behaviour of coronary arteries is more complex than a linear 

stress/strain relationship.  This is caused by the inherent complexity of the vessel 

wall which is comprised of many different constituents.  These can be divided into a 

cellular component responsible for the active properties, mostly smooth muscle cells 

(SMCs), and the extracellular matrix (ECM) whose major components are elastin 

and collagen.  The elastin and collagen are both proteins synthesised by SMCs and 

have a predominant role in determining the passive mechanical properties of the 

artery (Roy, Boss et al. 2010).   

Elastin has rubber-like characteristics with a low elastic modulus of around 

0.4 MPa (Dobrin 1978) and the ability to sustain large deformations (Kalita and 

Schaefer 2008).  Its fibres are organised into concentric sheets that constitute layers 

of the media; this structure provides the compliance necessary to bear load at low 

pressures, including the physiologic cyclic blood pressure (Roy, Boss et al. 2010). 

Collagen is the responsible for the non-linear elastic behaviour of blood 

vessels, with an elastic modulus that increases with strain and varies between around 

10 and hundreds of MPa (Kalita and Schaefer 2008).  Its elementary units, 

procollagen fibres, are organised in wavy bundles distributed in the media.  When 

physiological pressures are applied to the artery, most of the load is borne by the 
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elastin while the collagen straightens and incrementally takes up load, increasing the 

total mechanical properties of the artery, as shown in Figure II.3.b (Roy, Boss et al. 

2010).   

Smooth muscle cells are oriented in the circumferential direction of the artery 

and play a role in the constriction of vessels under physiologic conditions, called 

vasomotion (Kalita and Schaefer 2008).  This effect acts to either reduce the vessel 

lumen or to prevent excessive dilation, but their presence contributes little to the 

passive material properties of the vessel wall when inactive (Dobrin 1978). 

Figure II.3.a is a schematic representation of these three components, while 

Figure II.3.b plots results of experimental tests and a fitting model showing the 

change of stiffness of the artery wall with increasing strain, due to the reaction of 

first elastin and then collagen. 

 

Figure II.3 – (a) Schematic representation of the parallel arrangement of collagen and elastin. Vascular 

smooth muscle is neglected in the passive state. Reproduced with permission from (Roy, Boss et al. 2010). 

(b) Curve describing the behaviour of arteries, through experimental data (dots, rat small arteries) and a 

fitting model: the first reaction is due to load bearing by the elastin, giving a less stiff response; when the 

collagen is recruited, the stiffness increases. Adapted from (VanBavel, Siersma et al. 2003), permission was 

not required. 

In order to represent this arterial strain-stiffening non-linearity, a Strain Energy 

Density Function (SEDF) approach is commonly used to relate the strain energy of 

the vessel to its deformation.  SEDF are commonly used for biological tissues: they 
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can be used for materials that exhibit hyperelasticity and path independence between 

the initial and final states.  A benefit of this approach is the ease of writing the stress-

strain law as a single scalar function (Vito and Dixon 2003). 

A typical Strain Energy Density Function is given by Equation 1 in terms of 

the strain invariants for an isotropic hyperelastic material: 

𝑾( 𝑰𝟏, 𝑰𝟐, 𝑰𝟑) = ∑ 𝒂𝒊𝒋𝒌 ∙ (𝑰𝟏 − 𝟑)
𝒎(𝑰𝟐 − 𝟑)

𝒏(𝑰𝟑 − 𝟑)
𝒐∞

𝒊,𝒋,𝒌=𝟎    

𝑎000 = 0, 𝑎𝑖𝑗𝑘 are the hyperelastic constants and 𝐼1, 𝐼2, 𝐼3 are the strain invariants, 

which can be defined as: 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2;    𝐼2 = 𝜆1

2𝜆2
2 + 𝜆1

2𝜆3
2 + 𝜆2

2𝜆3
2;  𝐼3 = 𝜆1

2𝜆2
2𝜆3
2 

where λ1, λ2 and λ3 are the principal stretches of the material (Maurel 1998).  An 

example of values that have been used in previous studies for coronary arteries is 

𝑈 =  0.04 · (𝐼1 − 3) +  0.003 · (𝐼2 −  3)
2 +  0.085 · (𝐼2 −  3)

3 

which generates a stress-elongation curve that is similar to curves obtained by 

experimental tests on arterial tissue (Gijsen, Migliavacca et al. 2008).   

This section has introduced both linear elastic and hyperelastic models for arterial 

behaviour.  In the following section a simple model of stenting is introduced which 

uses a linear approximation to estimate changes in the mechanical environment of 

the artery following stent deployment, with data based on experimental tests found in 

literature.  Hyperelastic models of the artery are discussed in further detail in later 

Chapters. 

Due to the structure of the arteries, with collagen fibres helically wound in their 

circumferential direction, blood vessel tissues can show anisotropic behaviour, with 
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different reactions for loads in different directions (Holzapfel, Gasser et al. 2000).  A 

number of material models have been developed to include the anisotropic behaviour 

(Vito and Dixon 2003); however, this aspect has been not been considered in this 

thesis. 

2.3 A SIMPLIFIED REPRESENTATION OF CHANGES IN MECHANICAL 

STIMULI IN CORONARY ARTERIES FOLLOWING STENT DEPLOYMENT  

From a purely mechanical point of view, the effect of a stenting procedure can be 

described as an increase in the radius of a section of a vessel.  Even small changes in 

the geometry of the vessel can provoke a considerable difference in the stimuli that 

are sensed by the cells.  Although this simplification does not take in account the 

complex phenomena occurring at the areas at the ends of the stent, where the 

diameter of the vessel suddenly changes, it can represent the mechanical behaviour in 

a more central area of the stented vessel, as illustrated schematically in Figure II.4.  

In this region the flow is expected to be more developed and the influence of the 

structural bending effects on the vessel wall due to the end of the stent will be less 

significant.  

This section describes a simple MATLAB model which was developed to 

provide a gross estimate of the magnitude of these effects, including the variation of 

both the fluid dynamic and structural environment through changes in the velocity 

profile and resulting shear stress at the wall and structural stress and strain in the 

circumferential, radial and axial direction within a thin-walled cylinder. 
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Figure II.4 - Representation of the vessel before (a) and after (b) stenting. The zoomed area shows the area 

considered in the model. Ri and Rs indicate the initial radius and the post stenting radius, t is the thickness 

of the vessel.  

Methods 

Deformation caused by stent deployment:  The initial vessel geometry (Figure II.4.a) 

and a set of pressure and flow conditions are used to compute the fluid dynamic and 

structural stimuli acting on the vessel wall prior to stent deployment.  The stent 

deployment is assumed to increase the vessel radius from Ri to Rs by an expansion 

ratio defined by Rs/Ri:1.  The change in geometry shown in Figure II.4.b is used to 

compute the change in fluid dynamic and structural stimuli following stenting.  The 

detail of the fluid dynamic and structural mechanics equations, and associated 

assumptions, is provided in the following sections. 

An initial vessel radius of 1.4 mm is assumed, measured as the value of the 

lumen of a right porcine coronary artery in vivo from pre-stenting angiography 

images, while the thickness was imposed to be of 0.1 mm  (Keller, Amatruda et al. 
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2014).  An expansion of 1.4:1 was assumed, to provide results representative of the 

porcine stent expansion experiment (Morlacchi, Keller et al. 2011).   

Fluid Dynamics:  The velocity profile and wall shear stress in a straight vessel can be 

calculated for varying radius.  The value of radius following stent deployment, Rs, 

can be altered to represent different stent expansion ratios.  The value of flow is 

assumed to remain constant after stent expansion, which is consistent with what 

happens in vivo due to the vaso-regulation of the blood vessels (Tahir, Bona-Casas et 

al. 2013).  The blood can be treated as a Newtonian fluid for tubes with diameter 

bigger than 1 mm, which is the case for the vessels taken in consideration (Huo, 

Choy et al. 2009).   

Blood at 37° normally has a viscosity, 𝜇, of 3-4 centipoise (cP), which 

corresponds to 3-4×10−3 Pa·s: for this model blood viscosity was assumed to be 𝜇 = 

4e-3 Pa·s (Cheng, Lai et al. 2004).  The blood is incompressible (Poisson’s ratio: ν = 

0.5), the flow is laminar and is represented in a straight tube with constant radius; for 

this geometry Womersley number is equal to 0.72 (<1), so for simplicity Poiseuille 

flow was assumed.   

The velocity is considered constant in time and a no-slip condition for the 

blood in contact with the wall means that the velocity in that point is zero, generating 

a parabolic velocity profile, with the peak velocity at the centre of the lumen.  This 

can be described as 𝑣𝑟 = 𝑣𝑚𝑎𝑥 (1 −
𝑟2

𝑅2
).  The velocity is calculated from a value of 

flow in coronary arteries of 50 ml/min typical of values reported in the literature 

(Huo, Choy et al. 2009). 

The shear stress 𝜏 is computed from the velocity profile as 𝜏 = 𝜇 ∙
𝑑𝑣

𝑑𝑦
.  
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Structural Mechanics: Prior to stent deployment the vessel experiences a physiologic 

pulsatile tensile stress, which can be calculated assuming the coronary artery is 

represented by a thin wall cylinder.  The thin-walled assumption is commonly used 

for structures where the wall thickness is less than one-tenth of the radius.  A linear 

elastic material model is used to compute the relationship between stress and strain 

through 𝜀𝜗 =
𝜎𝜗

𝐸
(1 − 𝜈2); in this case a Young’s modulus of 1 MPa was chosen 

(Ozolanta, Tetere et al. 1998).  

During the cardiac cycle the blood pressure is assumed to vary between 80 

and 120 mmHg. Given that the vessel wall is assumed to be thin, the corresponding 

hoop stress is assumed to be constant across the vessel wall and can be calculated as 

𝜎𝜗 =
𝑃𝑅𝑖
𝑡

, where P is the pressure, Ri the radius of the unpressured vessel and t the 

thickness.  The hoop strain is 𝜀𝜗 =
𝜎𝜗

𝐸
(1 − 𝜈2), where  ν = 0.5 as the vessel is 

assumed to be incompressible.  Ri was calculated to make sure that the radius of the 

artery would be Ro = 1.4 mm with the imposition of an average blood pressure of 100 

mmHg.  A plane strain condition, 𝜀𝑧 = 0, is considered, which means that the vessel 

is constrained at its ends;  the axial stress is calculated as 𝜎𝑧 = 𝑃𝑅𝑖 2𝑡⁄ . The radial 

stress corresponds to 𝜎𝑟 = −𝑃/2 on the centreline of the vessel and the radial strain 

is calculated through 𝜀𝑟 =
1

𝐸
(𝜎𝑟 − 𝜈(𝜎𝜗 + 𝜎𝑧)) = −

1

𝐸
𝜈(𝜎𝜗 + 𝜈𝜎𝜗) = −𝜈

𝜎𝜗

𝐸
(1 + 𝜈), 

as the radial stress is assumed to be small compared to the other two components. 

During stent expansion a high pressure is exerted by the inflating balloon 

onto the stent in order to generate plastic deformation of the stent struts and increase 

the lumen radius.  The resulting stress acting on the coronary artery will depend on 

the cyclic pressure variations over the cardiac cycle before stent expansion and on 

the reaction force between the stent and the vessel after the expansion.  In this case it 
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is assumed that that the cyclic pressure does not change the stress between the vessel 

and the stent, as the stent effectively shields the vessel from changes in pressure.  

This simple model assumes that stent expansion is a displacement-driven process, 

which means that the final expansion radius is defined.  The final expansion radius is 

used to compute the final hoop strain of the vessel, through 𝜀𝜗 =
𝑅𝑠−𝑅𝑖

𝑅𝑖
 and 

consequently the hoop stress is 𝜎𝜗 = 𝜀𝜗 ∙ 𝐸/(1 − 𝜈
2).      

Results 

Fluid Dynamics:Figure II.5.a shows the velocity profiles for an expansion ratio from 

1 to 1.4. The green line represents a ratio of 1 (unstented vessel) and the red line 

represents a ratio of 1.4.  The results demonstrate how small changes in vessel radius 

have a strong impact on the velocity of the blood, with 50% reduction in peak 

velocity for a 40% increase in radius.   

Figure II.5.b shows the results of the shear stress along the normalised radius 

(r/R) as it varies with the expansion rates. The peak value is at the vessel wall and 

this value decreases significantly with a small change in the radius of the vessel. The 

wall shear stress varies considerably with a 40% increase of radius, with peak values, 

which correspond to the area in contact to the surface of the inner vessel, that reduce 

by more than 50%. 

Structural Mechanics: Figure II.6 shows the stresses and strains generated by the 

cardiac cycle and after the stent expansion.  Being an expansion of a cylinder, it is 

expected that the highest stress generated is hoop stress, which comes from the 

resistance of the vessel to the stretching of the tissue in the circumferential 

dimension.  The axial stress is generated by the reaction to the shortening of the 

vessel, as it is constrained at its ends; the radial stress is small compared to the other 
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two components, constituting less than 5% and 10% of hoop and axial stress 

respectively: these proportions are valid also after expansion.  The deployment of the 

stent in the vessel at time 5 s, modelled as the equivalent increase in radius, generates 

stresses that are 4.6 times higher than during the cardiac cycle, with a value of hoop 

stress that is around 766 kPa.  The radial strain is the same magnitude as the hoop 

strain, but with opposite sign: this is because ν = 0.5, 𝜀𝑟 = −𝜈
𝜎𝜗

𝐸
(1 + 𝜈) = −

3

4

𝜎𝜗

𝐸
, 

and 𝜀𝜗 =
𝜎𝜗

𝐸
(1 − 𝜈2) =

3

4

𝜎𝜗

𝐸
.  With the expansion, the strain goes from 12.5% to 

57.4% accordingly to their sign. 

    

Figure II.5 – a. Velocity profile for various lumen expansions. The green line represents the unstented 

vessel, the red line represents a stenting with a ratio of 1.4:1. b. Shear stress for different lumen 

expansions. The green line represents the unstented vessel, the red line represents a stenting with a ration 

1.4:1. 

 
Figure II.6 – Hoop (red), radial (green) and axial (blue) stress (left) and strain (right) in a vessel before and 

after the stent expansion, which occurs at time 5 s. 
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Discussion 

This simple MATLAB model is able to capture some features of the variation of 

mechanical stimuli acting on a vessel before and immediately after stent 

implantation.  As discussed earlier in this Chapter, this study will focus on the 

changes due to stent implantation within a healthy vessel, appropriate for model 

validation with data from porcine models of ISR.  A computational simulation of this 

kind of test allows investigating more accurately the influence of a single parameter, 

like the effect of expanding the same stent to different final radiuses, as reported in 

this model.   

As previously reported, the cells are particularly sensitive to change of loads, 

both in form of WSS and structural stress, generating a series of 

mechanotransduction mechanisms. 

This simple model will be used for two purposes in this thesis: 

i) To clarify the nature of the stimuli that have been considered by other 

authors when considering the evolution of ISR. 

ii) To provide a reference framework to examine more complex 

structural effects resulting from stent/artery interactions and how these 

might change during the development of ISR, as explored in Chapter 

3, 4 and 5. 

More detailed reports of the variation of structural and fluid dynamics post-stenting 

have been reported in the literature, as described in Chapter 1.  In this Chapter, the 

assumptions used to compute WSS magnitude do not capture the complexity of a 

stented vessel; a more detailed investigation of fluid and structural mechanics within 

a 3D geometry immediately post-stent implantation is reported in Chapter 4 of this 
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thesis.  Chapter 3 and 5 of this thesis focus on the development of 2D models to 

describe local stress concentrations in the region of the stent struts and the evolution 

of the structural environment of the vessel during the development of ISR. 

Development of models of ISR has been the focus of a number of recent 

studies, which aim to model not only the immediate effect of stenting, but also the 

evolution of ISR based on mechanical stimuli. The final section of this Chapter 

provides an overview of these studies with reference to the concepts explored in the 

simple MATLAB model.  

2.4 MODELS OF EVOLUTION OF ISR 

Several recent studies have developed models of ISR evolution using one or more of 

the mechanical stimuli described in the previous section.  In addition to mechanical 

effects, biological parameters also inform such models including features such as the 

cell cycle.  As described at the end of Chapter 1, the use of computational models 

provides a detailed description of the mechanical environment the artery is subject to, 

which, with appropriate assumptions, allows estimation of the level of injury to the 

vascular tissue (Gijsen, Migliavacca et al. 2008).  Moreover, the computational 

power can be essential to predict the response of the tissue to these stimuli: in fact, 

ISR is a very complex phenomenon that occurs on multiple scales.  The spatial scale 

ranges from the smooth muscle cell dimension, which can be as small as 

approximately 30 µm in diameter, to the vessel dimension, which is typically around 

1.5 mm of radius for a coronary artery; for the temporal scale, the orders of 

magnitude vary from seconds for stent deployment to hours for cell division to weeks 

for ISR development (Evans, Lawford et al. 2008).  As such, multi-scale models are 

essentials to represent even just a part of such complexity.  
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To represent the behaviour of the biological components and the mechanics 

of the system a number of modelling approaches have been employed in literature.  

For the cellular components of the system the most commonly used technique 

involves the development of a discrete approach, such as an agent-based model 

(ABM) (Evans, Lawford et al. 2008, Tahir, Bona-Casas et al. 2013) or a lattice-based 

approach (Boyle, Lennon et al. 2013).  For the macroscopic tissue-level properties a 

continuum approach, such as the finite element method (FEM), is often used to study 

the grade of injury as a result of tissue stress and strain (Zahedmanesh and Lally 

2012, Boyle, Lennon et al. 2013).   Exchange of information between the cell-level 

and tissue-level representations, based on rule sets derived from 

mechanotransduction hypotheses, is employed to link these representations to 

provide a model for cellular evolution. 

The review that follows details how previous studies have broken down the 

complexity of problem and modelled components of the system with different 

techniques, through the use of appropriate hypotheses.  In fact, a representation 

including all components of the system in detail and all biological and physical 

variables would not only be extremely computational expensive, but would also 

introduce uncertainty in the initial conditions for the model and make interpretation 

of the results challenging.  To avoid this, previous studies tend to focus on specific 

stimuli, to improve their representation in the model and aid the interpretation of the 

results.  

The main aspects taken into consideration in this review are: 

- Source of the mechanical stimuli considered: 

Structural (e.g. von Mises stress), Fluid dynamic (e.g. wall shear stress) 
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- Dimension of the model domain (e.g. 2D / 3D) 

- Biological components described (e.g.  VSMCs / ECM / IEL) 

- Types of computational models (e.g. Continuum / ABM / lattice-Boltzmann) 

- Focus of investigation (e.g. effect of strut thickness on neointimal growth) 

A recent paper by Boyle et al. (Boyle, Lennon et al. 2013) describes the 

application of an ISR model to the evaluation of clinically used stents within an 

idealised 3D artery.  The stimulus taken into consideration is structural, specifically, 

the von Mises stress of the vessel is used to calculate fatigue-induced damage to the 

tissue; fluid dynamic effects were not considered in this study.  The stents are an 

idealised 3D representation of three commercially available stent designs, which are 

deployed into the vessel model.  The constituents of the vessel represented are 

smooth muscle cells (SMCs) and extracellular matrix (ECM). 

The models interacting in this study are: 

1. Injury model: a 3D finite element analysis performed using ABAQUS 

(SIMULIA) is used to compute the vessel stresses following stent 

deployment, using a hyperelastic isotropic model for the arterial tissue.  The 

resulting stresses are used to calculate the damage accumulation in the artery, 

relating the rate of damage formation, dD/dt, to the von Mises stresses using 

constants σ0 and σf, which represent the boundaries of stress below which no 

damage accumulation occurs and above which the failure strength is reached, 

respectively. 

2. Inflammation model: ordinary differential equations are used to model the 

response to injury in terms of tissue degradation, through matrix degrading 

factors whose production is dependent on the amount of injury, and growth 
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factor production, that is linearly related to the damage and decays 

exponentially with time. 

3. SMCs activity model: cells occupy a lattice-based structure and phenotype 

regulation, proliferation, migration and ECM production are included.  The 

cell phenotype is defined using a score that represents the status between 

fully contractile and fully synthetic; this score is dependent on the local 

concentration of ECM.  Proliferation is regulated by contact-inhibition and 

the local presence of growth factors. 

 

Figure II.7 - A plot of 1/8 of the lattice models at the end point of the simulation. Adapted with permission 

from (Boyle, Lennon et al. 2013). 

The resulting neointimal growth predicted by this model for the three types of stent is 

shown in Figure II.7.  The differences between the ISR generated by the three 

different types of stent are similar to what was observed in vivo.  The sensitivity of 

the model to stent design was found to be influenced by the value chosen for the 

inflammatory response parameter, which relates the amount of the matrix degrading 

factor produced to the injury level. 
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Zahedmanesh et al. (Zahedmanesh, Van Oosterwyck et al. 2012) developed a 

model of ISR with the aim of evaluating the influence of the expansion ratio and of 

stent strut thickness to the neointimal formation process.  The model is 2D 

axisymmetric and comprises a continuum FEM developed in ABAQUS to determine 

the injury of the vessel immediately after stenting and an ABM for the SMCs which 

includes an algorithm for ECM degradation and production.  The biological response 

is compared between two different stent designs, with thin and thick struts, and for 

three expansion ratios of a single stent design. 

The models interacting in this study are: 

1. Injury model: the stent is simulated as a rectangular rigid stent strut displaced 

into the vessel, which is modelled with homogeneous hyperelastic material 

properties, within a FE analysis.  The post-stenting damage is calculated from 

the von Mises stress as a value between 0 and 1 with a sigmoid function, 

where 0 is assigned to stresses lower than the physiological blood pressure 

(120 mmHg) and 1 is assigned for stresses higher than the ultimate tensile 

strength of the medial layer (252 kPa).  The damage value is calculated at the 

centroid of each finite element and reported in a matrix that corresponds to 

coordinate points for the cellular model. 

2. ABM lattice-free model: the biological components represented include SMC 

migration and proliferation, ECM concentration, represented by its 

collagenous constituent, and EC proliferation.  The model defines 

relationships between the values of the damage matrix and the behaviour of 

the SMC at each coordinate point.  High damage stimulates matrix-degrading 

metalloproteinases (MMPs) synthesis, which cause ECM degradation and 

reduction of the damage value at the following model iteration.  SMCs are 
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initially in a contractile phenotype, but they switch to synthetic if collagen 

density in ECM is below normal; migration and proliferation have random 

directions and contact inhibition is set to avoid superimposition.  A SMCs 

switches back to contractile if either, it finds itself close to ECs, the local 

ECM value becomes normal again or maximum VSMC density is reached. 

 

Figure II.8 – The evolution of the model for different stent expansion ratios. Reproduced from 

(Zahedmanesh, Van Oosterwyck et al. 2012), permission was not required. 

Figure II.8 shows results from the study which compare the different expansion 

ratios for a single stent strut geometry.  The influence of the factors considered on 

the development of ISR was evaluated in terms of the total final SMC count and re-

endothelialisation time.  Increasing the expansion ratio from 1.1 to 1.3 produced a 

non-linear increase in maximum von Mises stress, the final SMC count rose up to 

40% more than the initial state and the time for complete re-endothelialisation 

increased from 3 to 6 weeks.  Increase in strut thickness resulted in an increase in 

final SMC count; as a result, this factor was identified as a possible independent 

predictor of ISR.  
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Tahir et al. (Tahir, Bona-Casas et al. 2013) report a multi-scale model of ISR 

which uses contact inhibition between SMCs and WSS thresholds as the main 

regulators of the biological response.  The model is applied to investigate the 

influence of the presence or absence of a functional endothelial layer on the 

evolution of neointima.  The fluid dynamics are represented as they evolve with 

tissue growth through the tracking of the vessel lumen.  The vessel is not modelled 

using a continuum approach, but is composes of layers of densely packed agents, 

representing smooth muscle cells.  The structural forces are calculated by means of 

potential functions (Caiazzo, Evans et al. 2009) and there is no extra-cellular matrix.  

The model domain is described in two dimensions, specifically the longitudinal 

section of the system, and the stent is represented by a square strut displaced into the 

agents which form the vessel wall. 

The models interacting in this study are: 

1 ABM lattice-free model:  The vessel wall (SMCs and IEL) deformation is 

modelled using agent-agent potentials.  The deployment of the stent is simulated 

by pushing two square struts into the vessel; the endothelium is assumed to be 

completely removed by the balloon angioplasty, while IEL rupture represents an 

index of the injury of the wall and is dependent on strut penetration.  The 

position of the cells at each time-step is computed from equilibrium between 

cell-cell attractive and repulsive forces and the frictional force of the blood flow. 

2 Lattice-Boltzmann flow simulation: steady state flow in the domain is simulated, 

assuming that the blood volume flow remains constant throughout the 

development of ISR, due to vaso-regulatory effects.  The flow simulation is used 

to compute the magnitude of wall shear stress acting on each agent in contact 

with the blood flow. 
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3 Cell-cycle model for SMCs: cells behave according to their state, which can be 

quiescent, growth or mitotic and depends on their cycle and a set of conditions 

such as wall shear stress and contact inhibition.  At the end of each cell state 

update, information about the new domain is sent to the flow processor for a new 

simulation.   

4 Re-endothelialisation: different initial percentages of coverage of ECs are 

chosen to represent different levels of injury and a probability function of EC 

migration and proliferation based on data found in literature establishes its 

expansion.  The ECs are not directly included in the ABM as it is assumed that 

the thin endothelial layer does not influence the WSS, which is directly sensed 

by the first layer of SMCs.  The WSS on the ECs regulates the production of 

nitric oxide (NO), which can affect the SMC cell cycle leading towards 

quiescent state: an increase in shear stress corresponds with a higher 

concentration of NO.  

 

Figure II.9 - Evolution of ISR 50 days post stenting with 4 different hypotheses about NO release and re-

endothelialisation: both fully effective within 15 days (A), NO fully effective within 23 days (B), full re-

endothelialisation within 23 days (C) and old model where these effects were not considered (D). Adapted 

with permission under Creative Commons Attribution Licence from (Tahir, Bona-Casas et al. 2013), 

formatted horizontally for better representation. 

The results of the simulations 50 days after stenting relative to four different 

hypotheses about NO release and re-endothelialisation are represented in Figure II.9.  

A positive correlation was found between stent penetration depth into the vessel and 
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the amount of ISR.  In the cases where endothelial coverage is assumed to occur in 

the early stages (Figure II.9(A) and Figure II.9(C)), lower amounts of ISR were 

observed. 

Discussion 

Table II.2 summarises and compares the main characteristics of the studies presented 

in this section.  One of main model features compared is the type of stimuli used to 

determine the neointimal growth, which can be distinguished between primarily 

structural mechanics (von Mises stress) in the case of Boyle et al. and Zahedmanesh 

et al. and primarily fluid dynamics (wall shear stress) in the case of Tahir et al.  The 

structural stimulus captures the vessel stress immediately after stenting, whereas the 

fluid stimulus considers evolution of the wall shear stress with the ISR growth.   

Table II.2 – Main characteristics of the reviewed ISR models.  Glossary: SMCs = Smooth Muscle Cells, 

ECM = Extra-Cellular Matrix, FEM = Finite Element Model, ODE = Ordinary Differential Equations, 

ABM = agent-based model, LBM = lattice-Boltzmann method 

 Stimuli Elements Models Dim Investigation 

Boyle Post-stenting 

von Mises 

stress 

SMCs, 

ECM 

FEM, ODE, 

lattice-based  

3D Comparison between stent 

types 

Zahedmanesh Post-stenting 

von Mises 

stress 

SMCs, 

ECM, ECs 

FEM, ABM 

lattice-free  

2D Influence of deployment 

diameter, strut thickness, 

re-endothelialisation  

Tahir Evolution of 

wall shear 

stress 

SMCs, 

IEL, ECs 

ABM, LBM 2D Effects of re-

endothelialisation and 

nitric oxide release 

Another important distinction between these models is which constituents of the wall 

and the neointima they comprehend.  Whilst all models consider the contribution of 

smooth muscle cells, not all studies include the influence of ECM and ECs on the 

evolution of restenosis.  As introduced in Chapter 1, ISR is mainly due to the 

neointimal growth process, which consists of SMC migration, proliferation and ECM 

production.  However, the presence of ECM contributes to the mechanical properties 
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of the neointima, which has an effect on the stimulus that was chosen in these two 

studies to model the restenosis process; however, in none of the two cases the 

production of new ECM is taken into account by updating the computation of the 

structural stimulus based on the regions of new tissue.  This underlines the 

importance of continuing investigating through continuum models.  Moreover, the 

constitution of a mature ECM might be essential to the stopping mechanism of ISR 

(Zahedmanesh, Van Oosterwyck et al. 2012), which is not yet completely 

understood.   

The studies have been developed in both 2D and 3D, according to the 

complexity of the models developed and the focus of each study; while it was 

essential to have a 3D representation of the stent to compare different commercial 

stents (Boyle, Lennon et al. 2013), a comparison of the influence of stent strut shape 

can be analysed with a 2D model in the first instance (Zahedmanesh, Van 

Oosterwyck et al. 2012). 

It should be noted that these models use a continuum model purely to inform 

the starting point for neointimal growth post-stenting.  Once cells start proliferating, 

new extra-cellular matrix is produced and the neointima starts invading the lumen.  

The structure of the vessel undergoes a considerable change which may affect the 

resulting stresses.  Although stress is considered to be a stimulus for tissue growth in 

these models, they are not able to follow evolution in structural stresses throughout 

the growth process. 

This overview of ISR models shows the complexity of representing all 

phenomena occurring after a stent has been implanted, even considering the 

“simpler” case of ISR in a controlled animal model without the presence of disease.  
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In order to be able to analyse the outcomes of such studies the problem is broken 

down into smaller contributing elements and simplifications are necessary.   
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SUMMARY 

Arteries constantly bear various loading conditions throughout a person’s life, even 

in the absence of significant disease.  Through systems of regulation, such as cell 

orientation and proliferation, arterial loads play a role in maintaining normal 

function.  The presence of a stent dramatically changes the magnitude and 

distribution of stress imposed on the vessel; some studies which attempt to quantify 

these changes have been presented in Chapter 1.   

One of the issues to face while attempting to model such a system is how to 

simplify the problem in order to obtain a stable, interpretable model whose outcomes 

are reliable.  The choice of how to accurately represent the complex material 

properties of the arterial wall is related to the nature of the research question.  The 

computational representation of experimental animal models offers a chance to 

reproduce the response of a healthy artery rather than a diseased one.  The properties 

of diseased vessels are extremely variable and less well-known, and an easier 

validation of the results obtained on healthy animal models is reproducible or 

available in the literature. 

The modelling of in-stent restenosis is inherently complex, as shown in the 

review of ISR models present in literature.  It is accepted that both the change in wall 

shear stress and the structural damage provoked by the high wall stresses generated 

by the deployment of the stent play a role in the evolution of the neointimal growth, 

but the representation of all these factors in the same model remains challenging.  

The problem has been broken down in previous studies in order to consider specific 

factors, as yet these models do not describe the neointima using both “discrete” and 

“continuum” methods, which may be appropriate to consider cell and extracellular 
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matrix behaviour respectively.  This problem will influence the structural stimulus 

considered in the evolution of the model: if structural stresses are believed to regulate 

the evolution of ISR, then the evolution of the geometry of the structure should be 

considered throughout the process, as it will influence the structural stress itself. 

The aim of the next two Chapters is to build a structural model which is able 

to capture this evolution: Chapter 3 presents an explorative study of a 2D model of 

stent-vessel interaction, Chapter 4 studies the interaction through a 3D model while 

Chapter 5 describes a model to link stress distribution within the neointima with 

tissue growth.     
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 –   2D STENT/VESSEL 

MODEL 

INTRODUCTION 

In Chapter 2 a simple model of stent expansion in a vessel, represented by an even 

pressure in a cylinder, was presented.  In this Chapter, the model is refined in order 

to represent the effect of the presence of the stent struts, both as local compression 

and as change in hoop stress.  The first section of this Chapter considers the variation 

in loading following symmetric deployment of the stent struts into the vessel wall.  

To provide an estimation of the change in stress with the number of struts present in 

each section of the vessel, a 2D model of a transverse section is first developed 

analytically.  The results of the analytical model are compared with a 2D finite 

element model which captures the detail of local stress concentration in the region of 

the strut itself, providing the distribution of the compressive stress under the strut.  

The second section of this Chapter develops a more realistic representation of a 

stented vessel section which considers an uneven distribution of stent struts.  The 

strut distribution used for this model is based on observations from histological 

images of explanted coronary arteries.  The Chapter concludes with a discussion of 

these results in the context of vascular injury due to stent implantation and the 

implications of this as a stimulus for neointimal growth. 
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3.1 DEVELOPMENT OF A SYMMETRIC MODEL OF STENT DEPLOYMENT 

In the previous Chapter, a simple model of stent and vessel interaction was 

considered, with stent expansion represented by a pressure applied on the inner 

surface of the artery.  Despite this considerable simplification, this model provides an 

estimate of the magnitudes of stresses acting on the vessel following stent 

deployment.   

This 2D model can be improved by considering the presence of the stent 

struts rather than representing the expansion by a uniform pressure.  The difference 

between the two models is represented in Figure III.1: a discrete number of struts are 

assumed to distend the vessel creating a polygonal shape, where the tissue between 

two struts becomes straight.  It is expected that the two models will produce similar 

results as the number of stent struts increases and the polygonal shape approaches the 

circular shape resulting from expansion by a uniform pressure.  

 

Figure III.1 - Different models of stent expansion, represented as a uniform pressure (a) and as a discrete 

number of stent struts pushing the vessel wall (b). 

This discrete strut model can be represented using an analytical approach, allowing a 

large number of calculations to be performed to evaluate the influence of a particular 
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parameter on the results, for example, how the hoop stress changes as the number of 

stent struts varies.  However, a finite element analysis provides a more detailed 

description of the stress variation, allowing inclusion of the effect of geometric and 

material non-linearity and capturing the detail of the distribution of the stresses along 

the circumference and through the thickness of the vessel. 

This model is relatively simple compared to all the possible refinements of 

the representations of stent and vessel seen in Chapter 1, which report use of realistic 

3D geometry, obtained through analysis of balloon unfolding (De Beule, Mortier et 

al. 2008) or from imaging data of either the vessel (Gijsen, Migliavacca et al. 2008) 

or the stent expanded in a vessel (Morlacchi, Keller et al. 2011).  However, this 

model is similar in complexity to those used by several other authors to study the 

evolution of ISR from a multi-scale perspective, as discussed in Chapter 2 

(Zahedmanesh, Van Oosterwyck et al. 2012, Tahir, Bona-Casas et al. 2013).  As 

most of these models assume symmetric stent deployment, this section considers the 

variation of vessel stress under these conditions.   

The following section describes the development of an analytical model 

within Matlab and a finite element model through ANSYS. 

Methods 

Matlab model: This model represents the cross-section of an artery, with the same 

properties as described in Chapter 2.  The symmetric expansion is represented by a 

varying number of stent struts in order to analyse the effect of the transition from a 

homogeneous expansion, given by a pressure, to a discrete expansion.  The initial 

vessel radius is Ri, and the stent struts are all displaced to a final radius of Rs; the 

expansion ratio is defined by Rs/Ri:1.  The initial radius is 1.4 mm, the thickness of 
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the vessel, t, is 0.1 mm and the elastic modulus, E, is assumed to be 1 MPa.  The 

Poisson’s ratio is ν = 0.5, assuming incompressible behaviour of the tissue. 

  

Figure III.2 – 1/4 scheme of the stent/vessel model developed in Matlab. a. Geometry of the model: ϑ 

represents the angle between two neighbouring stent struts, s is the segment connecting two stent struts; 

the dimension of the contact, Lstrut, correspondent to the radius of the strut. b. Direction of the main 

loads: the hoop stress acts along the vessel wall, while the reaction force to the strut is directed to the 

centre of the vessel.  

The configuration of the vessel following stent strut contact is shown in Figure 

III.2.a: ϑ represents the angle between two neighbouring stent struts, s is the segment 

between them and Lstrut represents the dimension of the contact between the strut 

and vessel wall, assumed, for this model, to correspond to the radius of the strut.  The 

expanded circumference of the vessel is given by the sum of the segments of vessel 

between the stent struts, where each segment length is given by 𝑠 = 2𝑅𝑠 sin (𝜗/2) as 

represented in Figure III.2.  

For this model, the strain values will not be calculated as engineering strain, 

which corresponds to 𝜀 = ∆𝐿/𝐿0, but as logarithmic strain, which is commonly used 

for analysis of large deformations, given by 𝜀𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 = log (1 − 𝜀).  This 

convention allows direct comparison with the ANSYS results, where logarithmic 

strain is used.  

Figure III.2.b represents the main loads acting on the system: the hoop strain 

is calculated as 𝜀𝜗 = log (1 −
𝐶𝑓𝑖𝑛−𝐶𝑖𝑛

𝐶𝑖𝑛
), while the hoop stress is given by 𝜎𝜗 = 𝜀𝜗 ∙
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𝐸/(1 − 𝜈2), and it acts along the vessel wall.  The reaction force per unit axial length 

on the stent struts is directed toward the centre of the vessel; it can be calculated as 

the projection of half of the hoop stress on the two segments that are adjacent to the 

strut multiplied by the thickness of the wall: 𝐹𝑠𝑡𝑟𝑢𝑡 =
1

2
𝜎𝜗(sin(𝜗/2) + sin(𝜗/2))𝑡 =

𝜎𝜗 sin(𝜗/2) 𝑡.  The radial stress given by the contact of the stent strut can be 

calculated from 𝜎𝑠𝑡𝑟𝑢𝑡 = 𝐹𝑠𝑡𝑟𝑢𝑡/𝐿𝑠𝑡𝑟𝑢𝑡, where Lstrut corresponds to the contact region 

between the strut and the wall; in this case, it is assumed to be the radius of the strut, 

equal to 0.045 mm.  A non-frictional contact is assumed between strut and wall. 

ANSYS model: The geometry used for the Matlab model was generated in ANSYS 

Mechanical APDL version 14.0 (ANSYS Inc.) in order to explore different variables 

and parameters of a controlled simulation of stent expansion using a finite element 

approach, for comparison with the results of the analytical model.  Vessel parameters 

were the same as for the Matlab model, with an initial radius of 1.4 mm and a 

thickness of 0.1 mm. 

The vessel was again represented in cross-section and an assumption of 

symmetry was made.  This allows only a fraction of the vessel to be modelled, 

according to the number of stent struts considered, n.  Each fraction contains one 

stent strut and the angular extent of the model is given by 360/n.  Figure III.3 

represents an illustration of a model with 6 stent struts: the mesh represented has a 

lower number of elements for clarity purposes. 
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Figure III.3 – Scheme of a 2D finite element model of a section of a vessel and a stent with 6 evenly 

distributed stent struts. Symmetry is assumed and only a 1/6 section is simulated. The stent strut is a target 

element that gets in contact with the inner layer of the artery; the wall is composed of 2D plane elements. 

The figure only represents the type of elements used for the mesh, not the density used in the model. 

To evaluate the influence of the vessel wall material model, the same simulations 

were performed with both a linear elastic and a hyperelastic material model.  It is 

useful to understand how well the simple linear elastic approximation captures the 

variation in stresses during stent expansion to allow the results of the analytical 

model to be considered in the context of the more complex finite models described in 

the following Chapters.  The linear elastic model has the same Young’s modulus of 1 

MPa as the Matlab model and Poisson’s ratio of ν = 0.499.  The hyperelastic material 

model, described by a strain energy density function, was chosen based on previous 

computational studies (Gijsen, Migliavacca et al. 2008): 

U = 0.04∙(I1 - 3) + 0.003∙(I2 - 3)2 + 0.085∙(I2 - 3)3  [MPa] 

where I1 and I2 represent the first and second invariants of the Cauchy-Green tensor; 

the coefficients are in MPa.   
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The stent was represented as a target element with a circular geometry with contact 

defined between this element and the inner layer of the vessel.  The stent expansion 

was simulated by radial displacement of the stent strut towards the vessel, with 

vessel expansion occurring following initial contact between the stent strut and the 

vessel.  For the comparison described in this section, four models were developed, 

constituted by a 1/6, 1/8, 1/10 and 1/12 symmetry, representing a cross-section with 

6, 8, 10 and 12 struts, respectively (Figure III.4).  

 

Figure III.4 - Expansions of symmetric models with 6,8,10 and 12 stent struts through finite element 

simulations. 

The stent strut was assumed to have a radius of 45 µm, similar to the dimension of 

some clinically used stents, in particular the Biodivisio stent, which will be described 

in more detail in the next section and in Chapter 4.   

For the vessel, 2D 4-Node Structural Solid (PLANE 182) plane elements 

were used, 32 through the thickness and 4 elements/degree along the circumference, 

resulting in 240, 180, 144 and 120 elements along the inner surface of the vessel with 

a total of 7680, 5760, 3840 and 2880 elements for the 1/6, 1/8, 1/10 and 1/12 

symmetry models respectively.  The stent strut was a circular 2D Target Element 

(TARGE169), which corresponds to a rigid body, while the corresponding contact at 

the inner surface of the vessel was modelled using 2D 2-Node Surface-to-Surface 

Contact elements (CONTA171).  The mesh density was chosen after performing 

different sensitivity tests relative to the number of elements on the two directions of 
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the vessel, based on the strut stress detected through the thickness underneath the 

location of the stent strut.  The 1/6 symmetry model was used, for a test-expansion 

similar to the one applied in this study.  The number of elements was increased from 

8 to 32 through the thickness and from 120 to 480 for the circumferential direction.  

The change in stress found at the node underneath the stent strut is 5% varying 

between 16 and 32 elements though the thickness, so the latter was chosen.  For the 

circumference sensitivity, while the increase in stress is significant doubling the 

elements from 120 to 240, it becomes lower than 2% with further refinements, so 

240 elements were chosen for the 1/6 symmetry model and the same proportion was 

kept for the other models. 

Results 

Matlab model: the results of the model are presented in Figure III.5.  The first two 

plots (Figure III.5.a) represent hoop stress and strut stress for symmetric models with 

increasing number of stent struts, from 2 to 20, for four different expansion ratios, 

from 1.1:1 to 1.4:1.  These show clearly how the number of struts has a significant 

effect on the reported stresses at the beginning of the curve, from 2 to 10, and how 

this effect is greater for bigger expansion ratios.  The stresses are zero in cases where 

the deployed circumference, calculated as the sum of the segments between the stent 

struts, is not bigger than the initial circumference.  The hoop stress ramps up quickly 

for the first part of the curve, but approaches a plateau with more than 10 struts.  The 

strut stress value increases significantly up to 7 stent struts, reaching a peak, and then 

starts decreasing.  The third and fourth plot (Figure III.5.b) show how the results 

approach those predicted for a uniform pressure expansion, represented by the 

straight line, as the number of stent struts approaches 200.  The comparison for the 

hoop stress is made with the hoop stress calculated for a homogeneous pressure and 
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the same expansion ratio, from 𝜎𝜗 = 𝜀𝜗 ∙ 𝐸/(1 − 𝜈
2), with 𝜀𝜗 = log(1 −

𝑅𝑠−𝑅𝑖

𝑅𝑖
).  The 

strut stress is compared to the radial stress on the vessel wall, 𝜎𝑟 = −𝑃.  

 

Figure III.5 - Hoop stress and strut stress calculated with increasing number of struts using the analytical 

model, presented for four different expansion ratios, from 1.1:1 to 1.4:1.  a. Plots of hoop and strut stress 

for struts increasing up to 20. b. Plots of hoop and strut stress for struts increasing up to 200, compared 

with the pressure results (straight line).  
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Figure III.6 – Different behaviour during expansion for the two materials chosen for the finite element 

models: hoop stress during the expansion for the linear elastic models (Lin: blue lines) and for the 

hyperelastic models (Hyp: green lines). The number in the legend indicates the number of stent struts for 

each model.  

ANSYS model: Figure III.6 represents the results from the ANSYS solution for 

increasing expansion ratio.  In particular, only the hoop stress was reported to 

illustrate the differences of behaviour of the two material models, linear elastic (blue 

lines) and hyperelastic (green lines).  The results refer to a node on the inner surface 

located half way between two stents struts.  It is noted that, due to convergence 

problems, only results for expansion ratios up to 1:1.3 are reported for the linear 

elastic finite element model. 

Comparison between the analytical and finite element results:  Results from the 

analytical model developed in Matlab and the finite element models developed in 

ANSYS are compared in Figure III.7, which reports the evolution of hoop stress and 

strut stress for increasing expansion ratio.  Figure III.8 and Figure III.9 represent the 

change in hoop and strut stresses with increase in the number of stent struts, 

respectively.  To provide a better comparison of the area where the biggest changes 

in the trend of the lines occurred for the analytical model, further simulations were 
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performed, using a linear elastic material and 15 struts and two hyperelastic models, 

with 4 and 15 struts. 

 

Figure III.7 - Evolution of hoop stress (a) and strut stress (b) during the expansion time for the analytical 

model developed in Matlab (red lines), for the finite element models, linear elastic (Lin: blue lines) and 

hyperelastic (Hyp: green lines). The number in the legend indicates the number of stent struts for each 

model.  

 

Figure III.8 - Hoop stress with increasing number of struts for the analytical model (left), hyperelastic 

(centre) and linear elastic (right) finite element models. The colour of the lines indicate the expansion ratio. 
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Figure III.9 - Strut stress with increasing number of struts for the analytical model (left), hyperelastic 

(centre) and linear elastic (right) finite element models. The colour of the lines indicate the expansion ratio. 

Discussion 

The results reported the outcomes of the analytical model and the finite element 

model of a vessel with evenly distributed stent struts, first separately and then 

compared.   

Matlab model: the results with a smaller variation in number of stent struts (Figure 

III.5.a) allows a deeper understanding of the quick change in the stresses on the 

stented vessel with a little change in number of strut, in the first part of the curve.  

The results with the higher variation in number of struts (Figure III.5.b) gives some 

confidence on the model, as the stress results get closer to the uniform pressure ones 

with a larger number of stent struts.  It has to be taken in consideration that an 

increase of stent struts for this comparison only has meaning until the struts start 

overlapping; in other words, when the number of struts multiplied by the contact 

length equals the circumference of the vessel.  For the parameters reported here this 

occurs at a value between 200 and 300 struts, according to the expansion (275 for the 

1.4:1 rate). 
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ANSYS model: linear elastic and hyperelastic model results show noticeably different 

behaviours for increasing expansion ratio, although both with increasing hoop stress 

(Figure III.6).  It can be noticed how the results for the hyperelastic model better 

represent the non-linear behaviour of arteries described in Chapter 2.  

Comparison between the Matlab and ANSYS results: Comparing results between the 

analytical and finite element approaches for increasing expansion ratio (Figure III.7) 

demonstrates that, whilst for all the models the stress increases with the expansion 

rate for a given number of struts, the gradient is positive for the hyperelastic model 

and negative for the linear elastic model, while the analytical model reports a linear 

stress increase.  The nonlinearity of the linear elastic finite element model results 

from the non-linear geometry effects included in the ANSYS simulation: it has to be 

noted that the linear elastic model has been used outside its range of validity, which 

is only up to a circumferential strain of 5-10% (van Andel, Pistecky et al. 2003, 

Holzapfel 2006). 

Comparing the results with increasing number of struts for both the hoop and 

strut stress, it appears that all the models follow the same trends (Figure III.8 and 

Figure III.9), although, due to convergence issues, limited data can be obtained for 

the linear elastic model for smaller numbers of struts and at larger expansion ratios.  

For the hoop stress, the values of the linear elastic model are quite similar to the 

analytical model, while for strut stress they appear to be much higher.  This might be 

due to the difference in contact area: the hoop stress for the analytical model is 

calculated with the assumption of a constant contact area, while in the finite element 

model it changes and the stress reported is only the peak stress, rather than the 

average of the distribution on the strut.  Another difference that needs to be taken in 

consideration is the non-linear geometry assumption for the ANSYS model. 
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This section showed how very different types of model can give the same 

trends of results for a simple symmetric model of stent expansion.  The next session 

explores the variation in results for a more realistic model of a stented vessel, with an 

uneven distribution of stent struts in the cross-section. 

3.2  DEVELOPMENT OF A MODEL WITH UNEVEN STRUT DISTRIBUTION 

When considering a 2D model of a cross-section of a stented vessel, a discrete 

representation of the expansion with stent struts is more realistic than a uniform 

pressure.  But analysing histological images of explanted animal models (Gunn, 

Arnold et al. 2002), it is also observed that in most cases the distribution of the struts 

is not even in a cross-section. 

Figure III.10 shows an example of a 3D stent geometry obtained from uCT 

data from a porcine model of stent expansion; further details of the methods used to 

obtain this geometry are provided in Chapter 4.  From analysis of cross-sections of 

the stent geometry it is clear that some sections contain a fairly even distribution of 

struts, as highlighted in the red cross-section, while some show a more uneven 

distribution, as shown in the green cross-section, despite being taken from the same 

stent deployment. 

The aim of the second section of this Chapter is to analyse the impact of an 

uneven strut distribution on the magnitude and distribution of the stresses in the 

vessel.  The implications of the results of both sections are then discussed as this 

forms the basis for the stimuli considered to drive the evolution of ISR in the next 

Chapters.  
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Figure III.10 – 3D geometry of a Biodivisio stent obtained through uCT imaging. The two cross-sections 

show even (red) and uneven (green) distributions of stent struts within the same stent.  

  

Methods 

This section is based on the approach presented in the previous section, but with a 

variation in the inter-strut angle rather than an equal spacing.  In order to choose the 

distribution of the stent struts, histological images (courtesy of Dr. Julian Gunn) 

obtained as described in Chapter 4, were analysed to provide realistic stent strut 

distributions (Figure III.11).  These images come from the same porcine restenosis 

model used to obtain the 3D geometry of the stent in Figure III.10, which will be 

used in Chapter 4 for the development of a 3D stent/vessel interaction model.  Use of 

this data to inform the 2D model presented here allows later comparison between 2D 

and 3D results. 
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Figure III.11 – On the left, histological cross-section of a stented vessel with neointimal growth (courtesy of 

Dr. Julian Gunn) which was used as an example to design the finite element model of a stent/vessel cross-

section on the right.  

Given the nature of the BioDivysio stent design, the models that will be compared 

are composed of 12 struts each.  A comparison between the analytical model 

developed in Matlab and the finite element model developed in ANSYS is again 

undertaken, also to provide a comparison between even and uneven distribution of 

the struts with both models.  Within the ANSYS model, only the hyperelastic 

material model was considered, as the difference in behaviour between the two 

materials was explored in the previous section and the linear elastic model shows 

instability for high expansion ratios. 

Matlab model: the model is similar to the one described in the previous 

section.  It represents the cross-section of an artery, with initial vessel radius Ri = 1.4 

mm, thickness t = 0.1 mm, elastic modulus E = 1 MPa and Poisson’s ratio ν = 0.5.  

The symmetric expansion for comparison is defined by a constant angle between the 

struts 𝜗𝑖 = 360/𝑁𝑠𝑡𝑟𝑢𝑡𝑠 = 360/12 = 30° (Figure III.12.a).  For the uneven model, 

the position of the stent struts are defined with varying inter-strut angle, 𝜗𝑖 (Figure 
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III.12.b), but they are each displaced to the final radius Rs through the same 

expansion ratio Rs/Ri:1 of 1.4:1. 

The hoop strain is calculated as 𝜀𝜗 = log (1 −
𝐶𝑓𝑖𝑛−𝐶𝑖𝑛

𝐶𝑖𝑛
), with 𝐶𝑓𝑖𝑛 being the 

sum of the segments of vessel between the stent struts, which in this case are not of 

constant length and are given by 𝑠𝑖 = 2𝑅𝑠 sin (𝜗𝑖/2).  The hoop stress is 𝜎𝜗 = 𝜀𝜗 ∙

𝐸/(1 − 𝜈2).   

 

Figure III.12 - Two stent/vessel analytical models with even (a) and uneven (b) distribution of 12 stent 

struts. 

The reaction force per unit axial length on the stent struts changes slightly, as the 

angles that divide each strut to the two neighbouring ones are not constant, so it 

becomes: 𝐹𝑠𝑡𝑟𝑢𝑡𝑖 =
1

2
𝜎𝜗(sin(𝜗𝑖/2) + sin(𝜗𝑖+1/2))𝑡.  The strut stress is 𝜎𝑠𝑡𝑟𝑢𝑡 =

𝐹𝑠𝑡𝑟𝑢𝑡/𝐿𝑠𝑡𝑟𝑢𝑡, where Lstrut is 0.045 mm, corresponding to the radius of the stent 

strut. 

ANSYS model: ANSYS Mechanical APDL version 14.0 (ANSYS Inc.) was 

used to generate the same 2D geometries that were explored through the analytical 

model (Figure III.13).  The model is similar to the ANSYS model in the previous 

section, but, in order to generate the cross-section with uneven distribution of struts, 
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the symmetry was reduced to ½.  A hyperelastic material model was used as 

described previously, where U = 0.04∙(I1 - 3) + 0.003∙(I2 - 3)2 + 0.085∙(I2 - 3)3.  Initial 

vessel radius and thickness are 1.4 mm and 0.1 mm respectively.   

 

Figure III.13 – The two stent/vessel finite element models with even (a) and uneven (b) distribution of 12 

stent struts.  

The six stent struts for each ½ symmetry have a radius of 45 µm and are modelled 

using circular 2D target elements (TARGE169) with 2D contact elements 

(CONTA171) defined on the inner vessel wall.  For the vessel, 23040 2D solid 

elements (PLANE 182) were used, with 32 elements through thickness and 720 

elements along the circumference. 

Results 

Matlab model: the results of the analytical model are reported in Figure III.14.  

Specifically, Figure III.14.a shows the results for the symmetric model, with evenly 

distributed stent struts: the hoop stress for expansion ratio and the strut stress for 

each strut.  Figure III.14.b shows the same information for the model with uneven 

strut distribution with inter-strut angles chosen to match the finite element model.  

For both models, the different lines represent the results for different expansion 

ratios, from 1.1:1 to 1.4:1.    
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Figure III.14 – Variation in hoop stress and strut stress with expansion ratio for each strut for the even (a) 

and uneven (b) strut distribution models (red = 1:1.1, green = 1:1.2, blue = 1:1.3, magenta=1:1.4).  

ANSYS model: the results for the models with even and uneven stent strut distribution 

have been plotted and reported in Figure III.15.  The distribution across the thickness 

of the strut stress, which is negative because it is a compressive stress, is similar in 

the two models, but the peak stress is higher for the 1/12 symmetry model, while the 

distribution along the circumferential direction shows some variation in the 

asymmetric model.   

Due to the relatively small variation in the magnitude of the peak stress a 

more detailed analysis is provided in Figure III.16 and Figure III.17, which report 

the 3rd Principal stress results at all the nodes of the inner layer of both models. 
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Figure III.15 - Plot of the distribution of the 3rd Principal stress for the models with even and uneven stent 

strut distribution in ANSYS, with a zoom-in of some strut areas. 

 

Figure III.16 - Strut stress at the inner nodes of the symmetric model and more detailed plot of the stress 

for one of the struts 

 

Figure III.17 - Strut stress at the inner nodes of the asymmetric model and more detailed plot of the stress 

for two of the struts, number 5 and 6, including the one that presents the peak stress. 
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Comparison between the Matlab and ANSYS results:  Figure III.18 reports a 

comparison of the strut stress results at the strut locations for the asymmetric case 

between the analytical and the finite element model.  The differences in the values 

are due to the use of different material models, but the two follow the same trend, 

with higher values for the same struts.  Specifically, these are found for the struts 

observed above, number 4 and number 5, separated by an inter-strut angle of 70°, 

these peaks represent an increase of 31% and 16.4% above the average strut stress 

for the Matlab model and ANSYS model respectively.  

 

Figure III.18 - Comparison between the strut stress results at the strut locations for each strut between the 

analytical and the finite element model, for the asymmetric case. 

Discussion 

In the results section, the outcomes obtained for a model of a stented vessel with 

uneven distribution of stent struts through the analytical model and the finite element 

model are presented, in terms of hoop stress and strut stress, first separately and then 

compared.   
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Matlab model: the results (left plot of Figure III.14.a and Figure III.14.b) show 

the hoop stress for the uneven strut distribution is lower than for the even one, which 

follows the trend seen moving from a uniform pressure to a discrete distribution of 

struts.  The effect is due to the fact that, given the same number of stent struts, the 

even, symmetric distribution generates an expanded shape that is the closer to a 

circle, corresponding to a higher hoop strain.  Specifically, for a 1.4:1 expansion, the 

hoop stress decreases from 488 kPa to 456 kPa.  The strut stress (right plot of Figure 

III.14.a) is constant for all the struts in the symmetric model due to the symmetry 

condition; in the uneven model, on the other hand, the stress varies from strut to 

strut, and this variation becomes more substantial as the expansion ratio increases 

(right plot of Figure III.14.b).  As a result the stress for a given strut can be 

considerably higher or lower than the corresponding strut stress for the symmetric 

model at the same expansion ratio.   

The hoop stress is higher for the symmetric than for the asymmetric model at 

all expansion ratios, the percentage difference decreases from 19% to 6.5% from a 

ratio of 1.1:1 to 1.4:1.  Consequently, the percentage difference of the average strut 

stress between the two models decreases with the expansion ratio, from 21% to 8%.  

The percentage difference between the strut stress for the symmetric model and the 

peak strut stress, observed under struts 4 and 5, for the asymmetric model increases 

with the expansion ratio from 3% for 1.1:1 ratio to 19% for 1.4:1 ratio.  

ANSYS model: the results plotted in Figure III.15 show similar peak strut 

stress magnitudes for symmetric and asymmetric model; the plots of stress 

distribution (Figure III.16 and Figure III.17) confirm that the peak stresses do not 

vary by large amounts between the models, but they are slightly higher for the 

symmetric model, 290.5 kPa at each strut compared with a peak value of 267.9 kPa 
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for the asymmetric model.  This is explained by the decreased hoop stress found for 

the asymmetric model, as discussed earlier in this Chapter, which contributes to the 

reaction force between the vessel and the stent strut.  It is clear that the stress is 

distributed over an area, which suggests that the response of the vascular tissue may 

not be determined solely by the value of stress at the single node at which the 

stresses are reported in Figure III.18.  This effect is more noticeable in the model 

with uneven distribution of struts.  It should also be noted that, in this case, the 

expansion of the struts involves sliding between the strut and the inner layer of the 

vessel which changes the location of the peak stress as the stent deploys.  An 

important observation for the asymmetric model is that higher stresses are found in 

regions where struts are separated by a larger distance, as is the case for stent struts 4 

and 5, where values of 267.5 and 267.9 kPa are reported.  To put these magnitudes of 

stress in context, in the literature a value of 35 kPa for compressive stress under the 

struts has been used as a threshold for vessel injury (Boyle, Lennon et al. 2010).  

This value corresponds to a pressure of 263 mmHg, far from the physiologic values 

and therefore not normally experienced by an unstented vessel.  For all the models 

reported here, this threshold is exceeded only in the location of the stent struts, as can 

be seen from Figure III.15.   

Comparison between the Matlab and ANSYS results:  Both the analytical and 

finite element models report differences in the distribution of stress concentration in 

the more realistic case of a cross-section with an uneven distribution of stent struts.  

The significance of this distribution of stress as a stimulus for tissue growth will be 

explored further in Chapter 4.  

The considerations reported above about the locations where the peak strut 

stress is found are valid for both models, as shown in Figure III.18.  Whilst results 
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from the analytical and finite element model demonstrate similar trends, the finite 

element model allows the use of a more sophisticated material model which better 

represents the properties of arterial tissue: the hyperelastic model used in this 

Chapter allows to capture the distribution of the stresses that is closer to the reality of 

a biological vessel, in particular for higher expansion ratios.  Furthermore, the finite 

element model allows the study of distribution of the stress values through the 

thickness and along the circumference, the local changes in hoop stress and the effect 

of local bending of the vessel, which can be more severe for high expansion ratios 

and particularly uneven strut distributions.  

This section has reported how an asymmetric distribution of stent struts is a 

more realistic representation of a cross-section of a stented vessel.  The results from 

the analytical and finite element models both show little difference in peak strut 

stress between the two models.  This happens because an increase in asymmetry with 

the same number of struts results in higher local bending but a lower global hoop 

stress, which determines the reaction force between vessel and stent.  However, the 

distribution of stresses between struts can differ significantly within the asymmetric 

model, resulting in higher values for stent struts with greater inter-strut distance.   
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SUMMARY 

The choice of how to represent stent/vessel interaction within a 2D model can 

influence the stresses predicted by the model approximations.  This may result in 

different predictions of development of ISR if the cellular model is based on the 

magnitude of these stresses.  As it was observed from studies of in vivo stent 

deployment, the distribution of stent struts within each section of the stented vessel is 

not usually uniform, resulting in areas of focal bending and concentration of strut 

stress.  The 2D representation is not able to capture out-of-plane effects, which might 

change the nature of the stent induced stresses significantly, particularly at the 

extremes of the stent.  This effect is examined using a 3D model in Chapter 4. 

The results reported in this Chapter, describing changes in hoop stress and 

strut stress with strut distribution and inter-strut distance, are useful to consider how 

such stress acts as a stimulus for growth at the level of an individual cross-section.  

Chapter 5 extends this analysis to include in the model introduced in this Chapter the 

evolution of the neointimal tissue resulting from the stress stimulus, including the 

influence of cellular level effects.  
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 –  3D STENT/VESSEL 

MODEL 

INTRODUCTION 

In Chapter 3 a 2D model of stent/vessel interaction, represented by the vessel cross-

section, was presented with the aim of exploring the variation of stress associated 

with stent expansion in a coronary artery, in terms of the number of stent struts and 

their distribution, through analytical and finite element methods.  A 2D 

representation is a simplification of the model, which might not include important 

factors such as out-of-plane effects.  

This Chapter describes a 3D model developed to gain better knowledge of the 

distribution of stresses in a vessel from the presence of a realistically deployed stent, 

as part of a framework developed across different research centres.  The aim of the 

framework is to use data from the same in vivo model of ISR to develop various 

computational simulations and to compare their results.  The focus of this Chapter 

will be on the structural mechanics, investigated through a finite element model 

formed by an idealised vessel and a realistic stent geometry post-expansion: this was 

obtained using detailed 3D geometric data from micro-CT images of a porcine ISR 

model.  This method allowed to explore the differences in stress distribution at the 

level of individual struts and to compare the results to histological data from the 

same model and to the results obtained from a fluid dynamic simulation of the same 

stent/vessel geometry performed in another research centre.  Finally, the results and 
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their correlation are discussed in the optic of a concurrence of the two stimuli to the 

development of neointimal growth.   
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4.1 DEVELOPMENT OF A FRAMEWORK ACROSS RESEARCH CENTRES 

In the previous Chapters it was shown that several mechanical stimuli may contribute 

to the mechanobiology of the cells of an artery and influence the development of 

ISR.  Any computational study designed to study the magnitude of these stimuli or 

any model that uses this information to predict cellular growth needs some 

experimental data for validation purposes.  In order to study ISR in vivo studies are 

essential, although these are expensive and take a long time, so the ideal is to plan 

them carefully in order to provide data that can be used to inform as many 

computational studies as possible.  This approach also allows comparison between 

computational studies that consider different types of mechanical stimuli with the 

same validation data, which opens the door to the evaluation of the combined effect 

of different stimuli and their relative influence on biological outcomes. 

This Chapter introduces previous studies that have reported similar methods; 

it then describes a framework where various computational simulations were 

undertaken in different research centres, all using data obtained from a single 

experimental model (Amatruda, Bona Casas et al. 2014).  Finally, it describes the 

results of one of these studies more in detail, with focus on the computation of the 

structural mechanics.      

A number of previous studies have compared the findings of computational 

simulations with histology data in order to evaluate the effect of the considered 

stimulus with the in vivo growth of neointima (Chen, Sinha et al. 2011, Timmins, 

Miller et al. 2011).   

An example that deals with structural stress is a study by Timmins et al. 

(Timmins, Miller et al. 2011): in this work, the hypothesis that a stent which 
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generates higher stress in the vessel wall will generate a more aggressive biological 

response was investigated.  Two stent designs were implanted into healthy porcine 

coronary arteries with a expansion ratio of 1.4:1.0 and the neointimal growth was 

evaluated 28 days after, through histology, morphometric analysis and 

histopathologic analysis; the interaction of these two stent designs with an idealised 

model of the arterial wall was modelled using the finite element approach and the 

difference in stress distribution generated by the two stent designs was compared 

with the biological outcomes.  In this study the circumferential stress was considered 

and the models of the struts were idealised, especially regarding the geometry of the 

expanded stent: these give a good measure of the difference of potential injury 

between two stent designs, but the method does not capture the realistic variability in 

local strut stress, as the peak stresses are homogenously distributed along the strut 

profiles.  

Other studies have reported multiple contributions to neointimal growth by 

comparing simulations of different mechanical stimuli with experimental evidence.  

For example, Chen et al. (Chen, Sinha et al. 2011) compared experimental and 

computational data to test the effect of stent sizing on the development of ISR.  

Stents were implanted in 10 swine with various sizing ratios and restenosis was 

evaluated 1 month after using IVUS and, in some cases, histology.  Finite element 

models reproduced the expansion of idealised stents at the same sizing ratios, 

followed by a fluid dynamic simulation of the stented vessel.  Variations in the 

mechanical conditions (wall shear stress, WSS, and WSS gradient, oscillatory shear 

index and circumferential wall stress) were evaluated as possible promoters of 

neointimal hyperplasia and the strength of correlations between these values and the 

magnitude of restenosis over the range of deployment ratios were reported.   
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The methods used by Chen et al. provide a means for comparison between 

the mechanical environment and neointimal growth at the scale of the whole stent, 

but as the expansion of the stent is idealised, it is less likely to provide accurate 

information about the local mechanical stimulus at the individual strut level for 

balloon expanded stents.   

The following section describes a framework that makes use of detailed 3D 

geometric data from experimental models of ISR to develop computational models of 

the local mechanical stimuli following stent deployment.  The results of these 

simulations are compared with the levels of neointima observed in the region of 

individual stent struts.  In a similar manner as the studies described above, the 

histology images are used for a comparison with the computational results; the main 

difference stands in the fact that, in this case, the experimental data are also used to 

obtain a realistic stent geometry for the computational models through the use of 

micro-CT images: this allows to capture a realistic variability in local strut stress. 

Description of the framework 

The description of the framework presented in this section and of the individual 

studies it refers to can be found in several publications (Morlacchi, Keller et al. 2011, 

Tahir, Hoekstra et al. 2011, Tahir, Bona-Casas et al. 2013, Amatruda, Bona Casas et 

al. 2014, Keller, Amatruda et al. 2014).  This framework results from collaboration 

between three institutions: University of Sheffield, Politecnico di Milano and 

University of Amsterdam.  After a brief overview of the whole framework, detailed 

reporting of the computational simulations performed at the University of Sheffield 

will be provided.  
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The method presented allows the use of multiple in silico models, developed 

in different research centres and validated though the same set of data coming from 

an in vivo porcine model, in an effort to better understand the dynamics of ISR, from 

the point of view of the influence of mechanical stimuli on the neointimal growth.   

Figure IV.1 shows an overview of the approach used: micro-CT images and 

histology of the experimental model of ISR allow both monitoring of the growth and 

basis for the construction of the models.  The experimental studies were performed at 

the University of Sheffield, where an in vivo porcine model of in-stent restenosis was 

developed (Morlacchi, Keller et al. 2011) (Figure IV.1.a).  Micro-CT images provide 

the basis for reconstruction of the full geometry of a stent expanded in a vessel 

without the assumption of idealised expanded geometry.  These data offer valuable 

support for the creation of a computational model of stent-vessel interactions, which 

was developed for structural analysis in University of Sheffield, Medical Physics 

group, and for a fluid dynamic analysis in Politecnico di Milano, LaBS (Figure 

IV.1.b).  The results were post-processed to compare with histology data from the 

explanted stented vessel following the development of a neointima, in order to obtain 

an estimation of the influence, at the level of individual stent struts, of the structural 

and fluid dynamic environment on the local neointimal growth.  The University of 

Amsterdam have developed a multi-scale model of ISR based on cellular growth 

over time, in 2D and 3D, with the inclusion of the effect of fluid dynamics, and the 

growth pattern was compared to the development of restenosis over time in the 

porcine study (Figure IV.1.c). 
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Figure IV.1 - Overview of the workflow developed across research centres: the in vivo porcine model of 

restenosis provides data to generate computational models (solid arrows) and to validate results (dashed 

arrows). (a) Micro-CT data allowed to obtain a 3D stent geometry; histology data were used to inform the 

growth model with growth evaluation over time and as a post-processing mean to evaluate results. (b) 

Structural and fluid dynamic analysis were developed from the stent geometry and the results were 

evaluated as local-to-strut stimuli post-stenting. (c) Multi-scale ISR model of cellular development over 

time. Reproduced with permission from (Amatruda, Bona Casas et al. 2014). 

For the purpose of this thesis, the focus of this Chapter will mainly be on the 

methods, various approaches for data processing and results interpretation associated 

with the structural analysis.  As one of the aims of this work was to understand the 

combined effect of spatial localization of structural and fluid dynamic stimuli on ISR 

immediately after stenting, the results are compared with the results of CFD 

simulations, produced by Politecnico di Milano, along with the histology data.  A 

brief description of the CFD methodology is included to make the comparison more 

understandable to the reader. 

The next section describes the method used to evaluate changes in solid and 

fluid mechanics following stent implantation, through the use of a common 3D stent 
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geometry obtained from micro-CT data and a set of histology images for comparison 

between stresses obtained and neointimal growth at stent strut locations.  

Methods 

This section refers to the study reported in Keller et al. (Keller, Amatruda et al. 

2014), reported here in more detail, in particular regarding the structural simulations.  

In the following sections, “Histology Data” describes the porcine model of restenosis 

and the imaging techniques used to obtain data from it.  “Structural Analysis” 

introduces the methods concerning the finite element model, from import of the 

realistic stent geometry to the inclusion of an idealised vessel; “Fluid Dynamic 

Analysis” provides a brief overview of the methods used for CFD analysis, as the 

outcomes of the three methods will be compared in the last part of the Results 

section. 

Histology Data:  

An in vivo model of ISR, obtained through overexpansion of stents in healthy 

coronary arteries in order to observe the amount of neointimal growth at a set of 

time-points, was developed (Morlacchi, Keller et al. 2011) involving stent 

implantation in healthy Yorkshire white pigs.  Typically, two stents were deployed in 

each animal, in both the right coronary artery (RCA) and left anterior descending 

artery (LAD).  The procedure was performed in agreement with UK Animals 

(Scientific Procedures) Act, 1986; a more detailed description can be found in Malik 

et al. (Malik, Gunn et al. 1998).  

For this study the stent used for implantation was the BiodivYsio® 

(Biocompatibles International Plc, Farnham, UK), a balloon expandable stent made 
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of 316L stainless steel.  The expansion ratio used for this model is 1.4:1, so that there 

was enough overexpansion to observe a neointimal growth, but without provoking a 

considerable damage to the vessel.  As already reported in the previous Chapters, the 

gold standard amount of expansion in clinical use is about 1.1:1 – 1.2:1.  

The animals were sacrificed at different time points in order to determine the 

variation over time of the magnitude of restenosis, using stents with the same design 

and with the same degree of over-expansion in healthy arteries.  The chosen time-

points were 6 hours, 4, 7, 14, 21 and 28 days post-implantation. 

For the study described in this Chapter, one data set was considered where the 

stent was implanted into an RCA and the stented vessel was excised for analysis 14 

days after stenting.  This specific specimen was chosen as the stent maintained its 

integrity, allowing an easier reconstruction of the geometry, did not provoke 

excessive damage to the vessel, and demonstrated sufficient levels of ISR to be 

suitable for histological assessment.  After being embedded in a methacrylate resin, 

the vessel was scanned using ultra-high resolution micro-Computed Tomography 

(micro-CT) (Skyscan, Belgium): this allowed 3D reconstruction of the expanded 

stent (Figure IV.2).   

 

Figure IV.2 - From (a) embedded stented vessel projection image from micro-CT scan to (b) reconstructed 

3D geometry of the expanded stent. 

For the following histomorphometric inspection, the vessel was cut into 10-µm thick 

transverse sections using a high-speed precision saw. These were numbered and a 

subset were chosen for further analysis and quantitative measurements.  
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Matching between the locations of the 3D geometry of the stent and the 

histology images was achieved by comparing the longitudinal distance between the 

cross sections with the position of the stent struts in cross-section of both the 

reconstructed 3D stent geometry and the histology sections.  The correspondence 

between the seven histology sections chosen for further analysis and the 3D 

reconstructed stent geometry is shown in Figure IV.3. 

 

Figure IV.3 – The seven histology images (upper pane) correspond to seven cross-sections in the proximal, 

medial and distal areas of the stented vessel, as represented in the image of the micro-CT reconstruction of 

the stent geometry (lower pane). Reproduced with permission from (Keller, Amatruda et al. 2014). 

The histology images were analysed to obtain a quantitative measure of the 

neointimal growth to be compared at the level of individual struts with the results 

obtained from the computational models.  Seven of the cross sections were chosen, in 

order to provide data throughout the proximal, medial and distal areas of the stented 

vessel (Figure IV.3). 

Observing the histological images, as shown in Figure IV.4, it is possible to 

notice that the stent struts are immediately recognisable. In most of the images it is 

also possible to trace the internal elastic lamina (IEL) which runs from one stent strut 

to the next one: it is then possible to evaluate the amount of neointimal growth as the 

area included between the IEL and the new lumen.  In order to compare mechanical 
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stimuli and ISR at the individual stent strut location, the growth was quantified 

locally as neointimal thickness (NIT), the radial distance between the stent strut and 

the lumen (Figure IV.4).  

The volumetric micro-CT data were segmented to define the 3D surface 

geometry of the expanded stent, which was then used to define a contact surface for 

analysis of the interaction of the stent with an idealised model of the vessel, a 

cylinder with constant radius and wall thickness, in order to perform solid and fluid 

mechanics simulations. 

 

Figure IV.4 – Example of histology image. The stent struts are visible in black; the lumen area is contained 

by the coarse dashed line, while the fine dashed line follows the internal elastic lamina (IEL): the area 

included between these two lines is constituted by neointima. Neointimal thickness (NIT) is calculated strut 

by strut as the distance between the strut and the vessel lumen. Reproduced with permission from (Keller, 

Amatruda et al. 2014). 

Structural Analysis:  

As described in the previous paragraph, the 3D geometry of a realistic expanded 

stent was obtained by an imaging process that involves micro-CT scanning of stents 

explanted from a porcine model of ISR.  In order to study the mechanical 

environment of the stented vessel, this stent geometry was imported into ANSYS 

Mechanical APDL (v14.0) (Ansys, Canonsburg, PA, USA).  The model of the 
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coronary artery, on the other hand, was idealised and consisted of a straight cylinder.  

The dimensions were chosen to attempt to match as much as possible the in vivo 

vessel dimensions: the initial inner radius, r = 1.4 mm, was the lumen measured from 

the RCA of the in vivo model through angiography, before stenting and with 

physiological pressure applied, while the thickness, h = 0.1 mm, could not be 

measured, so it was estimated from the literature, through h/2r = 0.04 (Nichols, 

O'Rourke et al. 2005). 

The aim of the model was to provide a quantitative evaluation of the 

mechanical load in the local regions of stent struts to be compared with the seven 

histology images shown in Figure IV.3.  For this reason, more accurate stress results 

were desired in the neighbourhood of the location of each histology image.  This was 

achieved by creating seven shorter individual models of vessel, matching their 

central axial location with the position of the histology in the geometry and 

consequently the NIT measurements.  This sampling method, compared to a full 3D 

model, provided the opportunity to increase the mesh refinement in the region of the 

cross-section.  To obtain the desired accuracy in the central region whilst reducing 

the influence of the boundary conditions at the end sections of these short vessels, a 

length of 7.5 mm was chosen (Figure IV.5).  

 

Figure IV.5 - One of the vessel sections, of a length of 7.5 mm, over the whole stent length. 
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The material model for the vessel was chosen according to what has been used in 

other models in literature (Gijsen, Migliavacca et al. 2008), as already introduced in 

Chapter 3.  The hyperelastic properties of the vessel are described with a third-order 

strain energy density function: 

U = 0.04∙(I1 - 3) + 0.003∙(I2 - 3)2 + 0.085∙(I2 - 3)3 

where I1 and I2 represent the first and second invariants of the Cauchy-Green tensor; 

the constants are in MPa. 

Meshing 

For the meshing, solid elements SOLID185 were chosen for the vessel, designed for 

the three-dimensional modelling of solid structures.  This element has 8 nodes each 

with 3 degrees of freedom each.  Following mesh sensitivity tests, described in more 

detail below, the division of the solid vessel region into elements was chosen in the 

following way: 160 elements along the circumference, 3 through the thickness and 

40 along the axial direction.  The dimension of these elements is not constant, as a 

ratio between the dimension of the elements in the central region and the edges was 

specified, as shown in Figure IV.7.a.  Elements were evenly distributed along the 

circumference, a ratio of 2 through the thickness produced thinner elements close to 

the edges, and a ratio of 0.5 along the axial direction created a finer mesh in the 

central area of the vessel.  

Table IV.1 - Type and number of elements for the different parts of the finite element model 

 Type Number 

Vessel SOLID185 19200 

- Circumference  - 160 

- Thickness  - 3, ratio 2 

- Length  - 40, ratio 0.5 

Inner layer CONTA173 6400 

Stent TARGE170 98102 
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To capture the interaction between the stent and the inner layer of the vessel within 

the finite element analysis, contact and target elements need to be defined.  The 

element type assigned to the stent was TARGE170, which is used to define 3D target 

surfaces, with a total number of 98102 elements, while a set of 6400 contact 

elements CONTA173, used for deformable surfaces, overlay the inner surface of the 

vessel (Figure IV.7.a).  A list of the type and number of elements can be found in 

Table IV.1. 

The choice of mesh density was made following sensitivity tests to verify the 

independence of the outcomes of the model from refinements of the mesh in any 

direction.  The values that will be evaluated from these simulations are the 

compressive stress and, at a later stage, the compressive force (CF), an integration of 

the compressive stress over a small region that includes the contact area of the stent 

strut with the vessel wall; this process will be described later in further detail. 

With the chosen meshing, decreasing the size of the elements by half in each 

direction resulted in changes in compressive force of less than 2, 8 and around 2% of 

the maximum value of the model for the circumferential, axial and radial directions 

respectively.  Moreover, the resulting element shape had a good element aspect ratio, 

improving the conditions to obtain convergence for all the simulations.      

Further evaluations included the verification of the influence of model length 

on the results on the central section of the models and of the element type.  By 

doubling the length of the vessel section and by substituting SOLID185 with 

SOLID186, a higher order element type, the change in compressive force resulted in 

the same order of magnitude changes as those reported for the mesh density tests.   
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The reported changes in value are low and do not noticeably affect the 

distribution of the values of interest over the artery (compressive stress, compressive 

force), which is the object of investigation in relation with the biological response.  

Boundary conditions 

The stent was assumed to be a rigid body fixed in all degrees of freedom; the 

longitudinal axes of vessel and stent were positioned in correspondence with each 

other.  The constraints on the vessel were chosen so that it could expand and contract 

radially according to the applied loads without any rigid body motion and preserving 

the total length.  The constraints in the z direction at the ends impede the axial 

displacement (Figure IV.6.a), while constraining motion in x direction at x = 0 and in 

y direction at y = 0 at the ends of the vessel (Figure IV.6.b). 

 

Figure IV.6 - Boundary conditions of the vessel: a. Constraints in z direction avoid axial motion, yet 

allowing free radial expansion; b. Constraint in x direction for x = 0 and in y direction for y = 0 avoid free 

body motion, allowing free radial expansion. 

Loading conditions and solution 

The dimension of the stress-free vessel model corresponds to the estimated 

dimensions of the real porcine vessel pre-stenting, under physiological pressure.  

Therefore, any pressure applied to the finite element analysis represents pressure 

above the mean physiological pressure.  Due to the over-expansion of the stent the 
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initial radius of the vessel is smaller than the expanded stent radius.  Representing the 

expansion of this stent to the final geometry could be inaccurate, computationally 

expensive and complicated and so a technique similar to the one used by Morlacchi 

et al. was used for this study (Morlacchi, Keller et al. 2011):  

- any possible contact/target interaction is switched off between the 

stent/lumen;  

- the vessel is radially over-expanded with an inner pressure load similar to the 

one used during angioplasty, 40 kPa, so that the vessel diameter is bigger than 

the stent at every point;  

- the contact/target interaction between stent and lumen is re-established; 

- the pressure load is gradually removed completely, so that the vessel deflates, 

interacting with the stent where it comes into contact, which keeps it 

expanded as observed in the in vivo model. (Figure IV.7.b).  

The simulations were performed on a 64-bit desktop computer equipped with a 

3.20 GHz quad-core processor and 16 GB RAM. 

 

Figure IV.7 - Representation of one of the finite element analyses of stent/vessel interaction. a. Initial 

configuration of stent and vessel before vessel expansion; element types are indicated. b. Cut-through of 

the model after vessel radial expansion and release on the stent. c. Cut-through of the vessel with a plot of 

the compressive stress (3rd Principal Stress).  
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Fluid Dynamic Analysis:  

The aim of this study was to compare different types of mechanical stimuli with local 

magnitude of ISR, to understand if there is any correlation between them and if any 

show particular significance.  In order to obtain this comparison, fluid dynamic 

simulations were performed using the same stent geometry as starting point; the 

vessel was assumed to have the same radius (1.4 mm) and thickness (0.1 mm) as the 

structural analysis, with a length of 36 mm and a radius of curvature of 28 mm 

(Keller, Amatruda et al. 2014).  This part of the study concerning the fluid dynamics 

immediately after stenting was performed by Brandis Keller at LaBS (Laboratory of 

Biological Structure Mechanics, Politecnico di Milano).  Figure IV.8.a represents the 

boundary of the fluid domain, composed of the stent and vessel, which was obtained 

through an explicit dynamics approach (ABAQUS Explicit v6.10, Dassault Systems 

Simulia Corp., RI,USA) (Morlacchi, Keller et al. 2011).  ANSYS CFX v.13.0 (Ansys 

Inc., Canonsburg, PA, USA) was then used for the fluid dynamics simulations.  A 

hybrid meshing of the fluid domain was chosen (Figure IV.8.b).  The assumptions 

used were: time-dependent simulation; blood considered as an incompressible fluid; 

the near-wall behaviour described by the Bird-Carreau constitutive law (Seo, 

Schachter et al. 2005); fully-developed parabolic flow waveform at the inlet and zero 

relative pressure at the outlet; no-slip condition with vessel/stent boundaries. 
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Figure IV.8 – a. Geometry of the boundary condition used for CFD simulations. b. Cross-section of the 

hybrid meshing for CFD. Adapted with permission from (Keller, Amatruda et al. 2014). 

Results 

The results of the fluid dynamics and solid mechanics models based on the 3D uCT 

data models are presented in Figure IV.9: here both FEM and CFD contour plots are 

presented to show the correspondence between the 3D uCT data (Figure IV.9.a), the 

structural analysis (Figure IV.9.b) and the fluid dynamics simulation (Figure IV.9.c).  

This allows comparison of localization of fluid and structural stress concentrations 

with the results of the NIT distribution obtained from the histological images (Figure 

IV.3). 
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Figure IV.9 – 3D stent geometry (a), compressive stress contour plot from structural simulation (b) and 

wall shear stress contour plots from fluid dynamics simulation (c). Adapted with permission from 

(Amatruda, Bona Casas et al. 2014). 

The results presented in this section will focus mainly on the structural results, first 

analysing the distribution of the compressive stress in comparison with histology, 

then describing a different method to post-process data (calculating the compressive 

force in the area of the stent strut) and finally comparing these results with both 

histology and with results obtained from post-processing of the fluid dynamic 

simulation.  

Structural analysis 

Seven simulations of vessel sections at different axial locations were performed to 

obtain stress data around the circumference of each cross-section, these axial 

locations correspond to the location of each of the histological images in Figure IV.3.  

The assumption for this model is that the injury provoked to the vessel wall by the 

expansion of a stent is related to the local compression in certain areas, specifically 
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behind the stent struts.  For this reason, the measure that was chosen for analysis is 

the compressive stress, to determine the injury caused by the expanding stent, in the 

form of 3rd Principal Stress, as introduced in Chapter 3. 

One of the first observations arises from comparison between the 2D model 

presented in Chapter 3 and the 3D model of this Chapter as shown in Figure IV.10. 

 

Figure IV.10 – Comparison between the 2D model of Chapter 2 and a cross-section of one of the 3D 

models. 

Although the two models share the same vessel geometry, material model, similar 

expansion ratio, stent strut dimensions and distribution, the post-stenting vessel 

morphology presents a noticeably different appearance.  The final shape of the 3D 

model shows a much more circular section, with much lower focal bending effects 

than its 2D counterpart.  The reason can be found in the presence of struts in the out-

of-plane regions of the 3D model, which influence the behaviour of the wall in the 

adjacent regions.  The result of this is an increase of hoop strain over the whole 

geometry, and reduced regions of focal bending observed in Chapter 3.  This first 

result already shows the importance of considering the full 3D geometry when 

recovery of a realistic distribution of stresses is required to assess the cellular 

response.  
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Compressive stress results 

Contours of the compressive stress results are shown in Figure IV.9.b.  This figure 

was obtained by combining the 3rd Principal Stress plots of the seven models: the 

agreement in stress results in the overlapping sections of the plots provides further 

reassurance of the low impact of the boundary conditions on the results in the central 

sections of the model.  Arguably the concentration of the stress contours plot follows 

the pattern of the stent struts. 

 

Figure IV.11 – Comparison between histological image and compressive stress plot on the cross-section of 

the relative model at the corresponding location. Arrows indicate the stent struts with the highest value of 

NIT on the left and with the highest values of compression on the right.  

A more detailed analysis of the stress results was performed for each histology slide, 

comparing the stress distribution at the centre of each axial model location with the 

corresponding histological image.  An example is reported in Figure IV.11, which 

shows the most proximal slide from Figure IV.3.  The arrows on the left indicate the 

struts which correspond to the highest values of NIT and the arrows on the right 

indicate the struts where the highest values of compressive stress was reported.   

The observation of contour plots is not the optimal way to establish how 

stresses vary from one location to the other, as each contour indicates a range of 

values.  For more quantitative comparison, nodal results of the 3rd Principal stress 
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were exported for these cross-sections, selecting the inner nodes at the vessel lumen, 

for plotting against NIT values.  These data are reported in Figure IV.12 for the same 

slide shown in Figure IV.11.   

 

Figure IV.12 – Comparison between NIT and compressive stress values for one of the slides, reported 

through cylindrical coordinates, which corresponds to the histologic image shown on the right. 

The numbers in the squares indicate the sequential numbering of the struts, where 1 

is the top one and with clock-wise progression; the plot on the right follows the polar 

coordinates of the model, starting from the position at -180° (left) going anti-

clockwise to 180°.  Stress and NIT are reported on the same plot, the stress values are 

negative for convention reasons; from the plot peaks in stress can be clearly 

observed, corresponding to the stent strut locations.  For this slide, there is clear 

correspondence between the highest values of NIT and the areas of highest stress, 

highlighted by the blue box, but this is not the case for all the slides, where values of 

NIT are lower.   

In general, higher compressive stress values were found towards both ends of 

the stented region.  The compressive stress values in areas between stent struts were 

found to be all around zero, and the peak value was evaluated for each stent strut.  

For the example represented in Figure IV.12, the compressive stress for strut number 

8 is 32 kPa.  The average value of these peaks amounts to 18 kPa, and the highest 
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values were found in the distal area, with a peak of 43 kPa, and in the proximal area, 

with a peak of 32 kPa.  The most significant biological reaction was observed in the 

proximal area, whilst the amount of neointima was reduced in the middle and distal 

regions of the stented vessel. 

The correspondence between areas of higher compressive stress and greater 

biological response in some regions of the stented vessel is consistent with the 

hypothesis that the injury provoked by the stent struts in the area of contact with the 

vessel wall influences neointimal growth (Boyle, Lennon et al. 2010).  However, it is 

likely that the variation of stress in the region of each strut is influenced by the 

accuracy of the 3D stented geometry obtained from the micro-CT data.  To reduce 

the influence of this effect results were obtained using a method which considers the 

effect of the whole contact area between each stent strut and the vessel, taking into 

account the full effect of the indentation of the strut, rather than considering the peak 

stress at a single point of the contact.  For this reason, a method to integrate the stress 

related to a stent strut was developed, explained in more detailed in the next section.    

Compressive force 

To evaluate the structural stimulus for ISR development, the compressive stress was 

taken in consideration, but as it is possible to notice from Figure IV.12, there is not a 

single value of stress corresponding to a stent strut, but a distribution of values. 

In addition, the process of identifying correspondence between histology 

images and the location of the struts in the finite element model may introduce 

uncertainties.  The 3D geometry was reconstructed from the micro-CT of the stented 

vessel as a whole and the process of cutting slices to obtain the histological images 

may introduce small deformations of the stent struts (Figure IV.13).   
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Figure IV.13 - Comparison between FEM images and correspondent histological images: it is easy to find 

the matching of the position of the stent struts, but in some cases there is a slight displacement. 

Therefore, the use of the peak stress value to assess the structural stimulus can 

generate problems when there are several struts in a small area and can be very 

dependent on the accuracy of the segmentation of the stent geometry and on the 

smoothness of the meshing of the 3D stent geometry. 

To provide a more accurate estimation of the local effect of each strut on the 

vessel wall, considering the total contact area, the contact force, CF, of each strut 

was computed.  The 3rd Principal Stress, which in this case corresponds to the radial 

compression, was integrated over the region local to the stent strut position.  The 

axial length of this region was chosen to be constant for all sections and strut 

locations.  Following sensitivity tests, a local region of 0.15 mm about the central 

location were considered (Figure IV.14). 
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Figure IV.14 - Calculation of the compressive force: the third principal stress was integrated over the 

contact area of the strut, taking in consideration a thin strip of 0.15 mm in the axial direction and the 

contact area of the considered strut in the circumferential direction. Adapted with permission from 

(Keller, Amatruda et al. 2014). 

The circumferential extent, on the other hand, was specific to the stent strut and was 

chosen so that the contribution of each strut to the compression of the vessel wall 

was considered. 

Fluid dynamic analysis 

Two indices were evaluated from the fluid dynamic simulation, at the locations of 

the histological images, time-averaged wall shear stress WSS and oscillatory shear 

index OSI.  The latter is a measure of how, during pulsatile flow, the WSS deviates 

from its average direction and is given by equation 1. 

𝑂𝑆𝐼 =
1

2
(1 −

|∫ 𝜏⃗ 𝑤𝑑𝑡
𝑇
0

|
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)              [1] 
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To obtain an evaluation of these quantities for each stent strut, they were averaged in 

the region of each strut, considering the circumferential area of the contact and its 

neighbourhood, to the midpoint between the considered strut and its neighbour.  The 

size of this region varies, given the asymmetry of the stent strut distribution.  These 

two quantities were then compared with the NIT measurements for each stent strut 

location (Keller, Amatruda et al. 2014). 

Statistical Analysis:   

The three computational parameters (CF, WSS, OSI) were compared with the NIT 

values obtained from histology stent strut by stent strut.  Linear regression was used 

for this purpose, and the coefficient of determination R2 was obtained. 

As a further examination, combinations of these indices were evaluated 

against NIT, in particular, CF/WSS and CF x OSI were analysed, as the current 

hypotheses are that high values of CF and OSI and low values of WSS could 

stimulate the growth.  The use of similar combined indices has been found in 

literature, in particular from Chen et al. (Chen, Sinha et al. 2011). 

In this way, it is possible to analyse the correlation of each these indices on 

their own and the correlation of multiple local stimuli with the level of neointimal 

growth, in the proximity of each stent strut.  

Comparison between FEM and CFD results with NIT values:   

The study was designed to obtain results for each stent strut in each of the seven 

histological images, resulting in 57 data points in total distributed along the axial and 

circumferential direction.  For each strut location, four different types of data were 

considered: one measure of the amount of ISR, in the form of NIT, from the 
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histological images, and three measures of the mechanical stimuli on the vessel wall, 

both structural (CF) and fluid dynamic (WSS and OSI) obtained from computational 

simulations.  Figure IV.15 shows the distribution of these results strut by strut at 

three of the seven histology locations. 

 

Figure IV.15 - Comparison of histological and computational results (d, e, f) obtained from the analysis of 

three locations (a, b, c) in different areas of the stented vessel: proximal region (a, d), middle region (b, e) 

and distal region (c, f). All the parameters have been normalised relative to their maximum value over the 

entire set of data along the whole model. Adapted with permission from (Keller, Amatruda et al. 2014). 

These three locations correspond to the histological images 1, 4 and 7 of Figure IV.3, 

chosen to represent how the NIT changes from the proximal to middle and then distal 

regions.  The percent restenosis by area at these locations is 41.8, 20.4, and 23.7%, 

respectively, with markedly higher growth in the proximal area.   

In panels a, b and c of Figure IV.15 the angular convention to locate the 

results shown in panels d, e and f is reported on the histological images. Panel d, e 

and f report variation in NIT, CF and time averaged WSS strut by strut with values 

normalised to the highest value of each parameter within the whole model.  The x 
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axis of these plots represents α, the angular position of each strut in polar 

coordinates, which allows histology results to be compared directly with the 

computational results.    

The complete set of results for all 57 data points at every strut location was 

analysed through linear regression and is reported in Figure IV.16. 

 

Figure IV.16 - Linear regression plots between for the neointimal thickness NIT against the mechanical 

stimuli, in terms of compressive force CF (a), wall shear stress WSS (b), oscillatory shear index OSI (c), 

and combinations of these: CF/WSS (d), CF*OSI (e) and OSI/WSS (f). Reproduced with permission from 

(Keller, Amatruda et al. 2014). 

The first row of plots show each of the stimuli obtained computationally plotted 

against neointimal growth, with structural stimulus CF in Figure IV.16.a and the 

haemodynamic parameters, WSS in Figure IV.16.b and OSI in Figure IV.16.c.  The 

second row of plots show three different combinations of stimuli plotted against 

neointimal growth CF / WSS (Figure IV.16.d), CF x OSI (Figure IV.16.e) and OSI / 

WSS (Figure IV.16.f).  The choice of these combinations comes from the hypotheses 
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that high values of compression provoke a higher injury to the wall, while lower 

values of wall shear stress and higher values of OSI would increase cellular activity.  

The use of combining indices by multiplying or dividing them in order to evaluate 

their cooperation to the final outcome, specifically ISR, has been used by other 

authors at the level of individual cross-sections of the stented vessel (Chen, Sinha et 

al. 2011).  The linear regression values for the plots presented in Figure IV.16 are 

reported in Table IV.2: m represents the slope, b the intercept and R2 the correlation 

coefficient. 

Table IV.2 - Linear regression for each of the values against NIT, correspondent to plots shown in Figure 

IV.16. Reproduced with permission from (Keller, Amatruda et al. 2014). 

 CF (N) WSS (Pa) OSI (%) CF/WSS CF*OSI OSI/WSS 

m 0.004 -0.53 0.15 0.22 0.001 6.58 

b 0.003 0.44 0.001 -0.02 -9e-5 -0.79 

R2 0.19 0.25 0.28 0.64 0.52 0.47 

 

Discussion 

In the previous section, the data processing for an in silico model of stent-vessel 

derived from an in vivo animal model was presented, including: topologic 

correspondence of mechanical stimuli with the histological images; visual 

observations of the morphology of the post-stenting wall and neointimal growth; 

post-processing of the results obtained using the finite element method, from analysis 

of the compressive stress to the calculation of compressive force and its correlation 

with neointimal growth, including the concomitant effect of the change in fluid 

dynamics. 

Obtaining a 3D geometry of the stent through micro-CT provided data to 

ensure an accurate matching not only between the axial locations of the cross-
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sections in the two computational models and the relative histological images, but 

also of the stent strut locations in these cross-sections.  The 3D stent geometry data 

are also essential to undertake analyses of the post-stenting mechanics, without 

assumptions relating to the stent/balloon interactions during deployment. 

Comparing the cross-sections of the 3D analysis with the results obtained for 

the 2D models from Chapter 3, a difference in morphology is noticeable, with a 

rounder shape for the 3D model: this is due to the out-of-plane effects and the 

influence of neighbouring struts.  These results demonstrate how a realistic 

interaction between the stent and the vessel results in less accentuated local bending 

of the vessel wall in region of each strut, and higher hoop strains. 

The development of in-stent restenosis is not included in the finite element 

model at this stage and the vessel is assumed to be healthy, representing the stress 

distribution in the vessel wall immediately after stenting in the porcine model of ISR.  

Based on the localisation of biological response in the early stages after stent 

implantation in the region of the stent struts (Malik, Gunn et al. 1998), the radial 

compressive component of stress was considered as a potential stimulus for the 

development of ISR. 

The 3rd Principal Stress, which corresponds to compressive stress, was 

analysed along the circumference in the axial locations corresponding to each 

histological image location.  This analysis provides an insight of the influence of the 

strut distribution in determining the stress distribution in the cross-section.  The 

stress peaks match the strut locations, while values around zero are found in area 

without struts.  Higher stresses were found at the ends of the stent, which agrees with 

the location of ISR observed in clinical studies (Moore and Berry 2002).  However, 
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the method to evaluate the load due to the stent on the vessel is not very accurate: on 

the one hand, the load is not imparted from the strut to the vessel on one single point 

but on an area; on the other hand, the results might be influenced by a slight 

deformation of the struts during the slice cutting process and the accuracy of the 

segmentation.  Therefore, the integration of the stress over the area of contact 

between stent and vessel is proposed. 

Compressive force (CF) has therefore been calculated for the same locations, 

i.e. for each strut in all seven cross-sections, over the circumferential extent of the 

contact for each strut and a constant axial distance.  The compressive force results 

again show higher values at the ends of the stented vessel, but for these results the 

values in the proximal area were markedly higher, which corresponds to the region 

where the most significant neointimal growth was found. 

The data obtained from the two computational models and the histology 

processing were compared using statistical analysis, discussion of the CF results and 

their correlation with WSS, OSI and NIT is provided below. 

The CF is higher at the proximal and distal ends of the stented vessel than in 

than middle region, as shown in Figure IV.15.  The greatest values can be found in 

the proximal region, in correspondence with high values of NIT (Figure IV.15.d), 

while this correspondence is not so strong in the distal area of the stented region 

(Figure IV.15.f).  The correlation between CF and NIT was higher for the proximal 

area, which includes slides 1 and 2, with a value of R2 = 0.51, while when the whole 

model is taken into consideration, only a value of R2 = 0.19 is reported. 

As previous described, the compressive force was preferred over compressive 

stress as it considers the contact of the whole strut rather than a single point of the 
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area: this avoids slight inconsistencies between the stent strut locations between the 

structural model and the histologic images and it overcomes the sensitivity to the 

smoothness of the meshing of the stent, dependent on the accuracy of the micro-CT 

data segmentation.  

Similar studies from other groups have also investigated the correlation 

between structural stimuli and biological response (Chen, Sinha et al. 2011). In these 

studies the circumferential stress was considered for stented and non-stented regions 

of the vessel, averaged over each cross-section, using an idealised stent geometry 

deployed at a number of expansion ratios.  The difference with this study is in the 

averaging process: in the work reported in this Chapter the aim is to evaluate 

stimulus and reaction locally at individual stent struts.  The circumferential stress 

was analysed, but the local variations of this value are not as significant as the 

compressive stress.    

The CFD results show a similar trend to the compressive force values.  The 

values considered to stimulate neointimal growth are WSS < 0.4 Pa and OSI > 0.2: 

the correlation between these values and high NIT is predominant in the proximal 

region of the model, where the highest values of NIT were observed.  In fact, at the 

entrance of the stented vessel, the physiological curvature of the vessel induces 

higher blood velocities in the upper area (top cross-section of Figure IV.8.a), which 

results in recirculation areas in the lower area (bottom cross-section of Figure IV.8.a) 

and therefore low values of WSS: a similar profile was indicated in other studies 

(LaDisa, Olson et al. 2005), and such flow features have been linked to increases in 

both platelet and inflammatory cell activation (Kroll, Hellums et al. 1996, 

Duraiswamy, Jayachandran et al. 2005).  This supports the correspondence of this 
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area with the highest values of NIT.  However, also in this case the correlation of 

each of the two quantities with the NIT values is not particularly high when the 

whole model is considered, with R2 = 0.25 for WSS against NIT and R2 = 0.28 for 

OSI against NIT (Table IV.2).   

The correlation of each of the stimuli with the biological reaction, at each 

individual strut, was found to be higher in the proximal region of the stented vessel, 

in correspondence of the most noticeable neointimal thickening.  This relationship 

becomes weaker when the whole length of the stent is considered, resulting in low R2 

values.  However, when structural and fluid dynamic indexes are combined, the 

correlation becomes more substantial, as can be seen from Figure IV.16, where R2 = 

0.64 for CF/WSS, R2 = 0.52 for CF*OSI and R2 = 0.47 for OSI/WSS as reported in 

Table IV.2.  Values of CF at the level of the strut are higher at both ends of the stent 

because of the sudden change of mechanical properties between stented and non-

stented vessel regions (Moore and Berry 2002), while the abrupt change in WSS due 

to the skewing of the velocity profile happens mainly at the proximal end, and the 

effect decreases along the longitudinal length of the stent: the combination of the two 

effects is a possible explanation for noticeably higher values of NIT found in the 

proximal end of the stented vessel.  

These results are consistent with findings reported by Chen et al. (Chen, 

Sinha et al. 2011): these suggest that mechanical stimuli contribute to the 

development of neointimal growth in each of the two forms, structural and fluid 

mechanical, and that the combination of the two may amplify the tissue healing 

process, promoting the progression of ISR.   
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This study shows how utilising a realistic 3D deployed stent geometry it is 

possible to gain information about both structural and fluid mechanics in the 

neighbourhood of the stent struts following stent deployment, and to compare the 

results directly to the biological response for each location through 2D histological 

sections, giving the chance to evaluate the influence of the loads to the neointimal 

growth, taken singularly or combined. 

The analysis of fluid dynamics immediately after stenting and its correlation 

with neointimal growth was performed on patient-specific post implantation 

geometry from Sanmartín et al. (Sanmartin, Goicolea et al. 2006), and a similar 

negative correlation between WSS and NIT was found: however, the values of the 

correlation found are not particularly high, indicating that other factors might 

contribute to the ISR process.  The influence of the stent geometry has not been 

reported.    

The influence of the mechanical stress was analysed and compared with in 

vivo ISR data from animal models in a study from Timmins et al. (Timmins, Miller 

et al. 2011).  In this case, circumferential wall stress was analysed to compare the 

potential of two different stent designs to damage the internal elastic lamina.  As the 

expanded stent model is idealised, the values reported are peak values and no 

analysis at the strut level is performed.   

A study from Chen et al. (Chen, Sinha et al. 2011) merges all these elements, 

in vivo measurements on animal models, structural (circumferential stress) and fluid 

dynamic values (WSS, WSS gradient, OSI) from computational studies.  The values 

are averaged at each cross-section considered, as the aim is to compare various 
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expansion ratios, the strut level is not considered in this work.  Moreover, the stent 

employed is an idealised stent, rather than a realistic expanded geometry.   

The aim of this work is not to compare different stent geometries, but to 

propose a method to study the influence of various mechanical stimuli on the process 

of in-stent restenosis immediately after stenting.  As it was observed that the growth, 

in its initial phases, appears to be confined in the neighbourhood of the stent struts 

(Malik, Gunn et al. 1998), the focus was to evaluate what happens locally to each 

strut.  Therefore, the use of in vivo 3D micro-CT to capture the realistic expanded 

stent geometry, including asymmetry and irregularities, provides a more accurate 

estimate of the variation of these values in stents implanted in vivo.  Furthermore, the 

availability of histological images 14 days post-implantation from the same in vivo 

model allows a numerical interpretation of the computational results, through 

statistical comparisons, not only of each stimulus on its own, but of a combination of 

solid and fluid components simultaneously, for each stent strut over every cross-

sections.  

As this work only proposes a method, further work needs to be done in order 

to validate the findings described here, by applying the same methods over several 

data sets from the porcine restenosis model and by comparing the results with 

observations of clinical ISR. 

Follow-up studies and development of such data-driven computational 

methods could improve the knowledge and therefore the possible treatments of ISR, 

possibly encouraging the study of patient-specific cases. 

A time-point of 14 days was chosen to allow significant ISR to be measured, 

avoiding the effect of vessel remodelling which may be observed at later time-points, 
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as described in Chapter 1.  As the models reported here consider only the mechanics 

immediately post-stenting, comparison with early time-points may be more 

appropriate, as computational simulation based on the geometry of a healthy vessel 

just stented might not be able to be related to the effects of later evolution of 

neointimal growth.   

The evolution of ISR has been modelled by Tahir et al. (Tahir, Bona-Casas et 

al. 2013) who proposed a simulation of neointimal growth based on a cellular model 

which captures the evolution of fluid dynamics stimuli and uses this as a stopping 

criteria for ISR, as described in more detail in Chapter 2.  Other studies use the 

structural stimulus to initiate growth, like Boyle et al. (Boyle, Lennon et al. 2013), 

also described in Chapter 2, but the evolution of the stress is not considered and the 

both cell migration and stopping criteria for growth are driven by cellular rules alone.   

The exact correlation between vessel stresses following stenting and cellular 

reactions is not completely understood due to the complexity of the phenomenon, 

which requires detailed models of the vascular wall which include the evolution of 

the wall geometry itself, through cellular growth, and the consequent variations in 

the vascular stress.  A preliminary 2D model of ISR that represents the structural 

stress of the vessel wall and its evolution within the neointima is proposed in the next 

Chapter.   

The work reported in this Chapter has shown the benefit of combining results 

from multiple simulations using the same reference geometry, such as an increased 

chance of validation and of evaluation of the combined action of multiple stimuli on 

the same phenomenon.  This also applies to the whole framework described at the 

beginning of the Chapter and illustrated in Figure IV.1, the combination of all data 
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from several simulations based on a common experimental framework enhances the 

impact of the findings, compared to individual modelling approaches, when 

attempting to understand the dynamics of ISR.  

The study described in this Chapter has some limitations: in particular these 

results are based on data derived from a single stent deployment in a single animal, 

which does not account for variability between animals and stent implantations.  The 

advantage of the method is that it considers the stimuli at each individual stent strut, 

providing a sufficient number of data points to investigate variation of these 

parameters within a single experiment.  The method may also capture variability due 

to the detail of stent deployment that is lost using approaches which average stimuli 

at each axial location (cross-section).  The method proposed in this study could be 

used to guide the design of future animal studies to examine the progression of ISR 

at various time-points post-stenting and at more expansion ratios corresponding to 

different injury levels.   

The material model used to describe the properties of the coronary artery in 

this study was isotropic.  Other studies report the use of more refined models, which 

represent the characteristics of each single layer of the vessel wall (Conway, Sharif et 

al. 2012).  Nonetheless, it is possible to assume that a change in properties through 

the thickness will have an influence mainly in the distribution of the stress in the 

radial direction, rather than a significant influence on the variation of stress in the 

circumferential direction, which is the main interest in this study.  

Some studies have considered more detailed geometrical features of arteries, 

such as their tapering from proximal to distal areas (Timmins, Meyer et al. 2008).  

The effect of the tapering of the vessel has not been considered in this study.  This 
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effect is more pronounced in arteries such as carotid artery and femoral arteries, 

where the change of diameter is noticeable over the length of a stent.  However, a 

degree of tapering is also found in coronary arteries and should be considered to 

provide a complete description of the stress distribution in a stented vessel.  The 

degree of tapering of the in vivo model is not known, consequently tapering was not 

considered to keep the model simple and remove dependence on the choice of an 

additional parameter.  Tapering towards the distal end of the vessel would tend to 

increase the values of compressive stress at the distal end of the vessel relative to 

those at the proximal end, but would have little influence on the fluid dynamics 

results. 

The process of statistic evaluation of the results could be improved by 

normalisation of the values, as CF and WSS have units while OSI is dimensionless: 

this would allow a better comparison of the values.  However, this method was used 

here in order to allow direct comparison with another study found in the literature 

(Chen, Sinha et al. 2011). 

This study does not require the full process of stent deployment to be 

simulated as the use of the 3D micro-CT geometry defined the stent geometry as a 

rigid contact surface, without considering its stress state, which is not the focus of 

this study.  In the method described, the locations of the 2D histological images are 

manually matched to their position in the 3D geometry.  A more robust method 

would include the development of imaging techniques to provide the 3D geometry 

and volumetric distribution of ISR.  However, the study uses histological data 

provided by a different group from different studies; the more robust method 

described is suggested as a possible improvement of the study.   
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As the study considers both structural and fluid effects combining the 

simulation methods to consider fluid-structure interaction analysis would provide 

more detailed understanding of the mechanical environment.  However, such an 

approach would require careful consideration of the assumptions relating to model 

boundary conditions and would result in significant increase in computational cost.   
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SUMMARY 

This Chapter presents a method proposed to investigate both structural and fluid 

dynamic loads after stenting and their influence on ISR at the level of individual 

struts, as they have been both recognised to be contributing factors to this 

phenomenon.   

The main issue related to the study of ISR that emerged in this Chapters is 

how it is dependent on multiple factors.  Taking in consideration the mechanical 

stimuli only, on the one hand it is needed to understand how they change the local 

conditions immediately after stenting, in order to have an insight of the initial 

triggers of neointimal growth; on the other hand, it is important to keep track of how 

they change with time, in order to elaborate models and gain some understanding of 

how these stimuli affect the growth, its shape and the way it stops, by comparing the 

results with histological images of ISR.  This approach is proposed in the next 

Chapter, where a model of evolution of ISR is proposed by combining a continuum 

model to detect the structural mechanics of the vessel, which is used as stimulus for a 

cellular model of neointimal growth; the change of the lumen geometry has an effect 

on the structural stimulus, so the stresses are investigated again through the 

continuum model and new information is sent as a feedback to the cellular model.   
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 –   MODELLING ISR 

INTRODUCTION 

The previous Chapters of this thesis introduced the problem of in-stent restenosis and 

prior work that has been made to understand this phenomenon.  All simulations in 

previous Chapters represent the structural environment of the vessel immediately 

after stenting.  In this Chapter, a model of in-stent restenosis evolution is presented.  

First a cellular model of growth is developed, based on a geometry similar to that of 

the 2D finite element model presented in Chapter 3 and using the stress data to 

inform the initial stimulus for cellular growth.  The results of this cellular model are 

then critically analysed in comparison with histological images of neointima 

development within a porcine model.  Second, a refinement of the evolution of 

cellular growth is proposed, which includes feedback between the cellular model and 

the finite element model.  An update of the geometry of the neointimal region is 

passed to the finite element model to compute the subsequent change of load on the 

neointima, and therefore on the cells, during the growth phase. 
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5.1 DEVELOPMENT OF A CELLULAR MODEL OF ISR 

As described in preceding Chapters, interest in the investigation of in-stent restenosis 

(ISR) does not only relate to the burden of ISR on health systems.  The fact that the 

factors triggering the phenomenon, its initiation, its evolution and particularly its 

end, are not yet completely understood creates a need for deeper understanding of the 

fundamental biological processes which drive the process.  This could help in the 

development of more effective treatment approaches and more advanced stent 

designs.   

Evidence has been provided of links between mechanical stimuli and changes 

in cell behaviour, influencing cell phenotype: various studies suggest that, when 

smooth muscle cells experience mechanical stimuli within the physiological range, 

the contractile phenotype is maintained, with promotion of a synthetic phenotype as 

cells are exposed to stimuli outside this range (Rensen, Doevendans et al. 2007).  

Particular mechanical stimuli include the influence of wall shear stress on endothelial 

cells and the effect of structural compressive stress on smooth muscle cells (SMCs).  

This thesis focusses on the first principal stress in the neointima, due to stretching of 

the ECM under pulsatile pressure.  This stimulus has been shown to direct cellular 

motion (Tambe, Hardin et al. 2011) and its use to direct neointimal growth represents 

the novel aspect of the current study.  In common with other authors (Zahedmanesh, 

Van Oosterwyck et al. 2012, Boyle, Lennon et al. 2013), the contribution of 

compressive stress in the artery wall due to compression by the struts provides initial 

stimulus for tissue growth. 

ISR Cellular models reported in the literature are developed using either a 

lattice or a non-lattice approach.  The lattice approach is computationally less 
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expensive, dividing the spatial domain into a grid and allowing limitation of the 

number of variables to the number of lattice points (Boyle, Lennon et al. 2010); with 

a non-lattice method the spatial domain is continuous, the cells have a volume, and 

the algorithms required are more computationally demanding (Zahedmanesh, Van 

Oosterwyck et al. 2012, Tahir, Bona-Casas et al. 2013).  

As introduced in Chapter 1, adult SMCs can be found in one of two 

phenotypes, contractile or synthetic, according to the environmental stimuli, as they 

are not terminally differentiated; in reality, there is a spectrum of transition from one 

phenotype to another, with many intermediate phenotypes (Rensen, Doevendans et 

al. 2007).  Most ISR models, though, simplify the cell functions through the two 

phenotypes as non-active (contractile) or active (synthetic) (Boyle, Lennon et al. 

2011, Zahedmanesh, Van Oosterwyck et al. 2012, Tahir, Bona-Casas et al. 2013).  

For the scope of this model, the cell will be simply represented as either contractile 

or synthetic. 

In the section below a model of in-stent restenosis is set-up using an initial 

geometry and a stress stimulus based on the results of the 2D FEM simulations 

reported in Chapter 2, without update of the stress stimulus.  The local stress 

concentration beneath the stent strut provides a stimulus for a model of cellular 

evolution which includes proliferation and migration of SMCs and ECM synthesis.   

An initial investigation of the influence of various parameters on the 

behaviour of the cellular model was performed in order to establish an initial set-up 

of the full model within the 2D stent/vessel geometry.  The description used for this 

model is mainly phenomenological, as mechanistic modelling of cellular evolution 

requires consideration of a considerable number of processes over a range of scales, 
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which lie outside the scope of this study.  The primary aim of the model is to 

understand the typical pattern of growth generated using a cellular model alone and 

how this compares with results obtained from in vivo biological models.  Comparison 

of these results with those presented in the second section of this Chapter suggest 

how the evolution of cellular growth might be influenced by changes in the stress 

acting on the cells over time.    

Methods 

Cellular model: The cellular model of smooth muscle cells (SMCs) populating the 

coronary artery was developed in Matlab.  A Cartesian lattice divides the space 

corresponding to the geometry of the vessel and lumen, into discrete points, which 

can contain a single SMC and a certain amount of extra-cellular matrix (ECM).  The 

spatial domain represents a 1/12 symmetry of a stented vessel cross-section, with a 

dimension of about 2 mm2. 

A set of matrices are used to store variables at each lattice point of the grid.  

For example, geometry data are mapped through the use of Cartesian coordinates x 

and y and polar coordinates r and ϑ which are stored in four matrices.  Another set of 

matrices describe the “content” of each lattice point, such as the presence of ECM 

(fraction between 0 and 1), the presence of SMCs (0 or 1), and whether this discrete 

part of the space is part of the vessel region, lumen or the boundaries of the model. 
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Figure V.1 - Flowchart representing the algorithm. The main phases are represented on the right-hand 

panel, as follows: 1. Creation of the geometry and the lattice. 2. Iteration to research the SMCs in 

contractile state. 3 and 4. Migration or proliferation of SMCs into vacant locations with sufficient ECM. 5. 

Deposition of ECM.  
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At each time-step the algorithm operates over all lattice points scanning through all 

locations to create a list of those that respect a certain rule, i.e. they are “stressed”.  

For each location, it explores the state of its neighbourhood, in order to detect empty 

lattice points with sufficient ECM to host a new cell; then it checks whether a cell 

can proliferate, migrate or produce ECM both at the specific lattice point and for the 

surrounding ones.  The cell is therefore moved, divides or is just left where it is.  

After this the cell produces ECM and the model goes on to analyse the next cell in 

the list. The flowchart in Figure V.1 shows the algorithm step by step. 

The components of the model are described in the next section which also 

explains the rules and the choice of parameters in further detail. 

Components:  

Lattice - the lattice is a grid that divides the considered 2D space into elements 

which each represent a lattice point.  In this Chapter, the model represents a region of 

a 2D cross-section of the stented vessel, similar to the FEM representation presented 

in Chapter 3.  The area occupied by the grid is rectangular rather than circular and 

includes: space outside the vessel, represented by inactive lattice points; vessel wall, 

populated by SMCs and ECM; the area occupied by the stent strut, which is also 

inactive, and the lumen, which initially contains empty lattice points.   

SMCs - SMCs represent the cellular components of the model: each SMC occupies 

one lattice point, so their location in space is determined by the layout of the lattice.  

SMCs can be one of two different phenotypes: contractile (cSMC) or synthetic 

(sSMC) (Boyle, Lennon et al. 2010, Tahir, Bona-Casas et al. 2013).  As described in 

Chapter 1, under normal physiological conditions, the cells of a coronary artery wall 

tend to be in a quiescent, contractile state, through which the cell contributes to the 
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circulation through vasodilation and vasoconstriction.  Cells switch to a synthetic 

state if the environment requires a “reparation” (Thyberg, Hedin et al. 1990), as in 

the case of excessive compressive stress, which can lead to vascular injury (Linder-

Ganz, Engelberg et al. 2006): this induces a change in the characteristics of the 

SMCs with their shape changing from spindle-shaped to rhomboid and increases in 

proliferation and migration rates.  At the same time mechanical forces enhance the 

production of ECM to repair the damaged tissue (Rensen, Doevendans et al. 2007).  

It has been reported in Chapter 1 that cyclic stretch also plays a role in 

mechanotransduction mechanisms.  Its cessation in the vessel wall post-stenting has 

not been considered, while its presence in the neointima has been included in the 

model described in the second section of this Chapter.  For the model developed in 

this Chapter, when a lattice point experiences a compressive stress higher than a 

certain threshold (σmin) cells move from the quiescent, contractile state to the 

synthetic state.   

ECM - Each lattice point also contains a certain amount of ECM, which is 

represented in this model as a value between 0 and 1, where 0 represents no ECM 

content, i.e. a space that is not part of the vessel, such as the lumen, and 1 represents 

a lattice point full of ECM.  A certain minimum amount of ECM at a lattice point, 

called base, is required for a SMC to be able to migrate or proliferate to that location. 

Cellular rules: 

The model is constructed in Matlab R2014b.  As mentioned previously, the model is 

represented by a set of matrices; at every time iteration, all SMCs are scanned in 

order to identify the subgroup of SMCs that are in the synthetic phenotype: if the 

group is not empty, the algorithm checks for each of these SMCs whether there are 
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neighbouring lattice points that are empty of cells but have enough ECM to host a 

cell (over the base value).  When cells are in the synthetic state, they are allowed to 

proliferate, migrate and produce extra-cellular matrix.   

In this initial model the migration or proliferation of an SMC has no 

directional preference between the available lattice points in the surroundings, all 

adjacent lattice points that do not contain an SMC and whose ECM content is equal 

or higher than the base value are considered suitable.  Migrating or new SMCs 

maintain their synthetic status.  For a given time-step synthetic SMCs can either 

proliferate or migrate, but cannot do both.  The activity is dictated by a random 

number, P, and the specific probabilities are:  

P ≤ PProb = cell proliferation;  

PProb < P ≤ PMigr+PProb = cell migrates;  

P > PMigr+PProb = cell does nothing. 

After checking the presence of suitable neighbouring lattice points and potential 

migration or proliferation, the cell can produce ECM.  Whilst in the synthetic 

phenotype SMCs are assumed to produce an amount of ECM that is distributed 

within the surrounding space in an amount that depends on the distance of the centre 

of the lattice point from the centre of the SMC.  For this reason, two values for ECM 

deposition for each time-step are used, depending on the relative location. 

The model matrices are updated to reflect the creation of new cells, cell 

migration and the addition of ECM for the neighbouring lattice points and the 

algorithm considers the next SMC from the group of active ones; once this process 

has been completed for all cells, the new lumen area is calculated.  This is then used 

to estimate the value of WSS, and a new time-step is started.  
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WSS calculation:  

At the end of each time-step, the new lumen area is computed by detecting the 

number of all lattice points that have no ECM content nLum and multiplying it by the 

size of each lattice point dx: 𝐴𝐿𝑢𝑚 = 𝑛𝐿𝑢𝑚 ∗ 𝑑𝑥2.  Whilst a more accurate measure 

of WSS could be obtained from a 3D model, such as that described in Chapter 4, the 

aim of this computation is to provide an estimate of changes in magnitude of WSS 

following cellular growth.  The shape of the lumen is assumed to correspond to a 

circular section based on the computed area to calculate the new inner radius of the 

vessel through 𝑟𝐿𝑢𝑚 = √𝐴𝐿𝑢𝑚/𝜋.  An average constant flow 𝑄𝑚𝑒𝑎𝑛 of 50 ml/min 

was assumed.  This value was chosen from observation of the plot of the flow 

waveform over a cardiac cycle obtained from a porcine coronary artery found in 

literature (Huo, Choy et al. 2009, Keller, Amatruda et al. 2014).  A Poiseuille 

assumption was used assuming a parabolic velocity profile with the mean value 

𝑣𝑚𝑒𝑎𝑛 = 𝑄𝑚𝑒𝑎𝑛/𝐴𝐿𝑢𝑚 and the shear stress was calculated as 𝜏 = 𝜇 ∗ 𝑑𝑣/𝑑𝑟. 

The process stops if the total time of the model is reached or if the group of 

active cells is empty.  The WSS is calculated in parallel.  

 

Figure V.2 – Algorithm steps: search for SMCs that are in the synthetic state (green dots) and have 

neighbouring lattice cells without a SMC and with enough ECM, represented by the grid colour (for this 

example, 0.75). Random choice of proliferation or migration with a specified probability, and ECM 

production. 
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Parameters - The duration of a single time-step was chosen as 24 hours.  This is the 

same order of magnitude as a single cell cycle leading to SMC division which has 

been found to be around 32h for cultured porcine aortic SMCs (Le Breton, Plow et 

al. 1996).  These timescales are consistent with those of ECM production, for 

although the first evidence of collagen production can be seen within a few hours, the 

creation of a pericellular network takes around 24h (Li, Van Den Diepstraten et al. 

2003).  

As already mentioned, SMCs change shape according to their state: this also 

changes the way they are distributed in space.  Whilst contractile SMCs have a 

spindle shape and are organised around the circumference of the vessel, synthetic 

SMCs are smaller and their shape is more polygonal (Rensen, Doevendans et al. 

2007); the dimensions change from the order of 100 µm in length and in the order of 

5 µm in width for the contractile SMCs (Axel, Kunert et al. 1997) to a diameter of 

around 50 µm for synthetic SMCs.  The lattice dimension has been chosen to be dx = 

18.25 µm, consistent with other models found in literature (Boyle, Lennon et al. 

2010), and of the same order of magnitude as the diameter of a synthetic SMC, so it 

is assumed that a single cell can occupy a single lattice point. 

A set of tests has been performed in order to evaluate how much the choice of 

some of the parameters influences the outcome of the model.  This is important as 

measurement of some values in vivo and in vitro may not directly translate to model 

parameters due to the influence of discretisation of the model.   

The values that have been taken in consideration are:  
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- base, the minimum amount of ECM that has to be present at a lattice point in 

order to be occupied by a SMC.  The effects of a low and high value of this 

parameter (0.2 and 0.5) will be explored;  

- the relative probability of migration and proliferation for a synthetic SMC, 

expressed by variation of the parameter, PProb, between 5 and 60%.   

In order to do this, a simple, square, 2D geometry was created, with 50 lattice points 

per side and an initial number of 4 SMCs, occupying the bottom left corner of the 

lattice and all of which are in the synthetic phenotype.  Those lattice points which 

had SMCs had an ECM content equal to 1, whereas the rest of the space was 

composed of empty lattice points, representing the lumen.  

 

Figure V.3 - Results of the parametric analysis for the probability of proliferation over migration PProb 

(columns) and of the minimum amount of ECM needed for a cell to be able to occupy a lattice point base 

(rows) on a 50x50 lattice points square space (dx = 0.01825 mm, see Table V.1) . 

The results of the parametric analysis are reported in Figure V.3.  The variation in 

results demonstrates how influential the choice of these parameters is on the shape of 

the advancing front.  In particular, the result corresponding to PProb = 60% and base 

= 0.2 (Figure V.3, top left) demonstrates development of the neointima that is 
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strongly aligned to the lattice geometry, with little evidence of the random direction 

of migration and proliferation.  In general, for a higher base value (in this example, 

0.5) the result has a predominantly rounded shape, which does not appear to vary 

much by decreasing the proliferation rate and increasing migration rate.  The result 

on the top right, on the other hand, shows a growth that is more sensitive to the 

random choices of directions of the algorithm; as the aim of the model is to detect a 

difference in growth pattern introducing a direction preference given by the 

mechanical stimulus,  the parameters combination of PProb = 5% and base = 0.2 is 

chosen.   

The list of the chosen parameters for this cellular model is reported in Table 

V.1, together with the references to the literature for the choice of the other 

parameters.  

Table V.1 – Parameters used in the cellular model 

Quantity Parameter Value 

Minimum content of ECM for a SMC 

to occupy a cell 
base 0.2 

Amount of ECM produced per time-

step 
 0.1 - 0.2a 

Stress threshold that activates cells σmin 35 kPAa,b 

Time-step duration t ̴  24h 

Proliferation/migration probability PProb 5% 

Lattice point size dx 0.01825 mma,c 

a - (Boyle, Lennon et al. 2010) 

b - (Linder-Ganz, Engelberg et al. 2006) 

c - (Schwartz, Chu et al. 1996) 

Once these parameters had been chosen, an initial, simple, cellular model of ISR was 

developed, using a geometry similar to that employed for the 2D model described in 

Chapter 3.  

Geometry: to explore the behaviour of the cellular model, a simple model has been 

developed based on a simplification of the final geometry of the stented vessel 
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reported by the finite element analysis in Chapter 3, as shown in Figure V.4.  A 

vessel with six, evenly-distributed, stent struts was considered using 1/12 symmetry 

in order to decrease computational time and memory requirements, reducing the 

dimension of the matrices to be updated at each time-step.  The geometric parameters 

are the same as in the models of the previous Chapters and the dimensions are 

reported in Table V.2.  

Table V.2 - Model dimensions 

Vessel initial radius 1.4 mm 

Stent expansion ratio 1:1.4 

Vessel thickness 0.1 mm 

Stent radius 0.045 mm 

The boundary conditions were set up by excluding any possible cell activity for the 

lattice points lying outside the symmetry model, outside the vessel and under the 

strut (lattice points with a yellow cross in Figure V.4).  The vessel wall region is 

initially fully occupied by both ECM and SMCs (green circles) which are initially all 

in a contractile state.  An area above the stent strut was chosen to “activate” the cells.  

These then change into the synthetic phenotype at the start of the simulation (red 

circles).  The colour of the background shows the amount of ECM, in a scale from 

blue (ECM = 0, lumen) to yellow (ECM = 1, fully formed ECM).  For simplicity, a 

full ECM was also set up for all boundary lattice cells.  

The model was run for a varying number of time-steps, to determine the 

variability of cellular evolution and report the evolution of WSS over each 

simulation.  The results are reported below.  
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Figure V.4 - Schema of the setup of the model.  The lattice points with crosses define the boundaries, the 

blue area is the lumen; the green circles are cells; if the circle is filled with red, the cell is in its synthetic 

state. The stent strut is on the top left: it is computed as “boundaries” to stop cells from occupying the 

corresponding lattice points. 

Results 

The results reported in Figure V.5 compare two approaches to perform update of the 

SMCs at each time-step.  On the left (Figure V.5.a), the cells are processed within 

the algorithm in an order determined by their index in the Matlab array.  This drives 

growth towards the centre of the lumen, with a flattened region.  On the right (Figure 

V.5.b), the stored cells are processed from the algorithm in a random order, which 

avoids this bias in evolution of the neointima.  The difference in results is noticeable 

for all the time-steps after the first 10 and shows how processing the cells in their 
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index order affects the direction of the growth.  Therefore, from this point, only 

results with the second method of selection of the “next cell” to process are shown. 

 

Figure V.5 - Results at 100 time-steps with two different methods to select the "next cell" to process 

through the algorithm for migration, proliferation, ECM production. a. The cells are processed in the 

order they appear in the Matlab array. b. The cells are processed in random order. 

The results of the simulations are reported in the following figures for various time-

points.  In particular, Figure V.6 represents a close-up of the evolution of the model 

at 10, 25 and 50 days after stenting and for the whole model at 75 and 150 days after 

stenting.  It can be seen that the growth has a rounded shape from its early stages, 

moving from the corner between the strut and the vessel and eventually surrounding 

the stent strut.  It proceeds with this rounded shape, occupying an increasing area of 

the lumen, until it reaches the boundaries of the model after around 180 time-points 

(not shown).  For this model, different runs produce very similar results, as resulting 

neointimal shapes and their progress in time; therefore, only one set of results is 

presented. 

Figure V.7.a shows the change in neointimal area in the first 200 time-steps 

after stenting, while Figure V.7.b shows the evolution of wall shear stress.  The plots 

show how the increase of neointimal area has a positive gradient up to 180 time-

steps, where it changes to a negative one: this corresponds to the moment the 

neointima reaches the boundary of the model.  As expected, the wall shear stress 
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increases with the evolution of neointima, but the increase becomes steeper after 150 

days.  To place these results in context, WSS = 1.5 Pa is considered to be the 

physiological value for a vessel of this radius prior to stenting, as explained in 

Chapter 2: this value is reached in this simulation after 157 days. 

 

 

Figure V.6 - Evolution in time of the model at the following time-steps: 10 days, 25 days, 50 days, 75 days 

and 150 days. 
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Figure V.7 - Evolution of the neointimal area (a) and of wall shear stress (b) at 200 days after stenting, the 

red dashed line indicates the pre-stenting WSS value of 1.5 Pa.  

Discussion 

The results of the cellular model have been reported in the form of images of the 

neointimal tissue region at particular time-points and plots of the variation in 

neointimal area and wall shear stress over time.   

Comparison of these results with the development of ISR in a porcine in vivo 

model (Morlacchi, Keller et al. 2011) is summarised below.  In this study 

histological sections were analysed from a porcine model of ISR processed at a 

different time-points, specifically 6 hours and 4, 7, 14, 21 and 28 days post stenting 

(Figure V.8).  The porcine implantation work uses the methodology described by 

Malik et al. (Malik, Gunn et al. 1998).  As introduced in Chapter 1, the evolution of 

human ISR is characterised by four phases, thrombosis, inflammation, proliferation 

and remodelling.  This description is also valid for porcine ISR: various studies have 

examined neointimal formation in porcine coronary models of ISR, obtained by 

deploying an oversized stent (Miller, Karim et al. 1996, Christen, Verin et al. 2001) 

and reporting similar behaviour, with thrombotic and inflammatory reactions 

observed in the early stage post-stenting (4-8 days), a predominance of SMCs and 

proliferation within the neointima alone by day 14 and a distinct accumulation of 
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neointimal collagen at 14-28 days post-stenting, in particular in proximity of the stent 

strut locations of the neointima.  This evolution of neointima over time is also visible 

in Figure V.8 below: the presence of significant neointimal thickness is only visible 

from day 14 onwards.  However, histology images at day 7 show that the initiation of 

neointimal growth occurs in the neighbourhood of the stent struts (Figure V.9), 

tending to reduce the acute angle created between the strut and the vessel.  These 

images highlight the first limitation of the cellular model presented here as the 

evolution of the distribution of neointima differs significantly from these images, 

evolving to produce “lumps” of neointima around each stent strut.  This difference 

follows the same trend as the analysis time proceeds.  A similar response has been 

observed as a limitation of ISR models in other studies (Boyle, Lennon et al. 2010, 

Zahedmanesh, Van Oosterwyck et al. 2012). 

 

Figure V.8 - ISR at different time-points in the right coronary artery of porcine models (courtesy of Julian 

Gunn). 



CHAPTER V – MODELLING ISR 

 

 

147 

 

  

Figure V.9 - 1 week after stenting the right coronary artery of a porcine model, detail (courtesy of Julian 

Gunn). 

Previous studies have analysed ISR development over time from porcine data, 

measured as neointimal thickness at the stent strut location for different levels of 

injury, to be used as a reference for the results of a cellular ISR model (Tahir, 

Hoekstra et al. 2011, Amatruda, Bona Casas et al. 2014).  Figure V.10.b reports these 

neointimal thickness measures.  The Gunn Injury Score is an indicator of the degree 

of injury imposed on the vessel (Gunn, Arnold et al. 2002), while Figure V.10.a 

reports the thickness of the growth at the strut location for the model described in this 

Chapter.  The plots for the in vivo model all present a linear relationship for the first 

period, as observed in this cellular model, but, in common with the other plots shown 

for this model, the timescales are noticeably different. 
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Figure V.10 – a. Evolution of the neointimal thickness for the cellular model b. Evolution of neointimal 

area in porcine models of ISR obtained by Tahir et al., reproduced with permission from (Amatruda, Bona 

Casas et al. 2014).  

Using the same assumptions as for Chapter 2 the model predicts a value of just over 

0.5 Pa for a stent expansion ratio of 1.4:1 with a vessel radius of 1.4 mm.  For this 

model, the wall shear stress increases up to the “pre-stenting” value of 1.5 Pa at only 

around 160 days after stenting, as indicated from the red dashed line in Figure V.11. 

 

Figure V.11 - Evolution of WSS in the cellular model up to 200 days following stent expansion, where the 

red dashed line indicates the pre-stenting WSS value of 1.5 Pa.  
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The ISR modelling presented by Tahir et al., introduced in Chapter 2 (Tahir, 

Hoekstra et al. 2011), predicts the evolution in neointimal area reported in Figure 

V.12.b, compared with the results of the cellular model developed here (Figure 

V.12.a).  Whilst the timescale of neointimal growth is quite different, with 1 mm2 of 

neointima already present after around 14 days for Tahir’s model and more at 30 

days for the current model, the shape of the curve follows a similar trend.  As 

described previously, in this model the change in response at around 180 days occurs 

when neointimal growth starting from two neighbouring stent struts develops along 

the circumferential direction to reach the symmetry boundary.   

The timescale of the model introduced in this Chapter is not accurately 

defined yet, as it depends on several factors such as the definition of time compared 

to the algorithm time, the effect of some parameters such as PProb and other 

implementation choices.  For this reason, it is hard to define the length in time of a 

time-step; this is explored in more detail in Chapter VI (pag.188). 

 

Figure V.12 – a. Evolution of the neointimal area for the cellular model of the present study b. Evolution of 

neointimal area for the cellular model of Tahir et al. for two deployment depths (90 μm in black, 130 μm in 

grey) and two re-endothelialisation rates (faster for dashed lines, slower for solid line), reproduced with 

permission from (Amatruda, Bona Casas et al. 2014).  

The present cellular model represents a first attempt to represent the evolution of ISR 

through very simple rules: it represents the starting phase of ISR, as it only considers 
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the stress underneath the stress struts and it does not update the stress stimulus in the 

neointima.  The next section of this Chapter proposes a refinement of the cellular 

model to represent the variation in stress stimulus over time as a result of the change 

in geometry of the neointima, to allow better understanding of the evolution in the 

neointimal growth at later time-points.   

5.2  DEVELOPMENT OF A FRAMEWORK WITH CELLULAR AND 

CONTINUUM MODELS OF ISR  

The previous section presented a 2D model of cellular growth of a section of a 

stented artery: this was idealised in many aspects, some of which are addressed in 

this section of the Chapter, whilst others will need to be addressed in future work.  

These simplifications are as follows: the post-expansion geometry of the vessel is 

still represented as a circle; the distribution of the stress in the vessel was chosen 

with reference to FEM models but was not directly exported from these and, in 

particular, cell growth is based simply on their internal rules and not on the stress, or 

change of stress, in the new vessel geometry, in particular of the neointima, as this 

changes consistently with the cellular growth itself. 

This section proposes a method of driving cellular growth on the basis of a 

mechanical stimulus obtained from a continuum model that can be updated during 

cellular evolution.  

Methods 

The cellular model (CM) presented in the first part of this Chapter is a preliminary 

attempt to describe the neointimal growth in the initial post-stenting phase without 
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including the influence of evolution of stress with the change of geometry on cell 

behaviour.   

It has been shown that the stresses acting on groups of cells can influence the 

direction of cell migration, which tends to follow the local orientation of maximal 

principal stress (Tambe, Hardin et al. 2011).  To explore these effects in the context 

of ISR, this section describes refinement of the CM aimed at capturing the 

contribution of stresses within the neointima to the evolution of cellular growth, by 

coupling the CM to a finite element model which includes the geometry of the vessel 

wall and computes the evolution of the stress direction within the neointima during 

cell growth.  For the remainder of this Chapter, this model is referred to as the 

Coupled Cellular Model (CCM). 

The following sections describe the CCM workflow, which is also 

represented in Figure V.13, dividing it between an initial set-up, CM Matlab model 

and ANSYS finite element model.  

Workflow: the workflow in Figure V.13 defines the nature of the coupling between 

the two models, the frequency at which this takes place, and under what criteria.  The 

workflow is controlled by Matlab, which uses batch files to load ANSYS simulations 

and waits for ANSYS to complete before moving to the next set of commands; the 

exchange of information between the two models is achieved using structured text 

files.  
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Figure V.13 – Workflow scheme, with an initial phase to set up the problem (orange blocks) and a loop 

phase with the coupling iterations (yellow blocks).  

INITIAL STEPS: PROBLEM SET-UP.  A first run of the two models is necessary to 

set up the coupling, to establish the correspondence between the nodes of the finite 

element model and the lattice points of the CM.  During this first coupling, ANSYS 

performs the stent deployment of a 2D model of a cross-section of a vessel, similar to 

that described in the previous Chapters, loaded with physiological pressure (100 

mmHg) to obtain the final position of the stent strut and the vessel (step 1).  This 

model is described in further detail in the section “Ansys model”.   

The final x and y positions of the nodes are then imported into Matlab (step 2) 

to create a mapping between the ANSYS nodes and the x and y coordinates of the 
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CM lattice points.  In this way, the lattice area is divided into “vessel wall”, “lumen”, 

“stent strut” and “boundaries”.  The points corresponding to the wall were filled with 

100% content of ECM and with contractile SMCs (step 3).  At this first iteration the 

finite element model also provides the distribution of compressive stress (S3) in the 

vessel wall; a threshold was chosen according to values already used in literature, 

i.e., a compressive stress of 35 kPa (Linder-Ganz, Engelberg et al. 2006, Boyle, 

Lennon et al. 2010).  In locations where the compressive stress is higher than this 

threshold, corresponding to the “stressed area”, a reaction from the cells is assumed 

and their state is changed to synthetic.  The cellular model is set-up and its first run is 

started.  This corresponds to step 4 for the first run of the flowchart; the information 

about stressed cells is passed on the next phases though the cellular model, and in 

step 4 of the following iterations the stress data passed from ANSYS to Matlab 

includes the first principal stress direction within the neointima generated by the 

cyclic changes in blood pressure acting on the vessel wall.  

Matlab cellular model (CM): The rules of the CM are similar to those described in 

the previous section, in particular for the first run, with the difference that the 

geometry is imported directly from the ANSYS model as well as the information 

about which lattice points correspond to the section of the wall where the stress 

threshold is exceeded.  From the second run, new information is provided to the CM 

from the finite element model to describe the direction of the principal stress in the 

neointima that grew during the previous iteration, as represented in Figure V.14.  

This information is imported into Matlab in the form of stress in x, y and xy direction 

and converted to the direction of the first principal stress (step 4 of the flowchart in 

Figure V.13).  This direction is then used to inform the preferential direction of 
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growth for cells that will either migrate or proliferate to a neighbouring lattice point, 

as illustrated in Figure V.16.  

 

Figure V.14 – Representation of the neointima generated through the cellular model in Matlab, with the stress 

distribution obtained through the simulation with ANSYS.  

The matrix that stores the directional information obtained through the ANSYS 

simulation for each lattice point is called THETA and contains the angle, relative to 

the reference system of the CM, of the first principal stress for each node of the 

ANSYS model.  It has the same dimension as the other matrices used to describe the 

components of the CM, such as SMC and ECM; as there are multiple nodes that 

correspond to the location of one lattice point, the angle of the first principal stress is 

averaged over all nodes within a single lattice square.   
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Figure V.15 – Correspondence between lattice points, node locations and stress information. a. Theta 

angles before the random choice of direction. The grid represents the lattice points of the cellular model: 

there are many dots, the nodes of the finite element, for each of them. The arrows represent the angles of 

the principal stresses; the first principal stress angle is reported at the centre of the lattice point (black 

lines) and their average is calculated (red line). b. Theta angles after the random choice of the direction. 

This process is shown in Figure V.15, the grid represents the lattice squares of the 

CM, while the arrows show the direction of the first (blue) and second (green) 

principal stress of each node of the FEM model.  The average direction for each 

lattice square is calculated and the resulting angle theta, represented by a red line, is 

reported at the centre of each lattice square (black lines) and stored in the THETA 

matrix (Figure V.15.a).  It is assumed that cells can move in either of the two 

directions defined by the first principal stress (theta angle and theta+180°).  A 

detailed description of the implementation options considered for the application of 

preferential direction to cellular growth is given at the end of this methods section.  

Figure V.15.b shows the case where cells are randomly assigned a value of either, 

theta or theta+180°: the solid red line shows the assigned direction and the green 

dashed line represents the opposite direction.   

Following the definition of angle at each lattice point, all the information 

derived from the last ANSYS solution has been processed and the next iteration of 

the CM takes place. 
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Within the CM, synthetic SMCs are first identified.  The algorithm scans 

through each of these, identifying cells which can migrate, proliferate and deposit 

ECM.  This happens in a similar way to that described in the first section of this 

Chapter, but with extra regulation based on the direction of the stress in the 

neointimal tissue.  This happens for each synthetic SMC; the process is then repeated 

until one of the exit criteria is met.  Figure V.16 represents, schematically, the 

process which occurs at each iteration for every cell, for a cell in the neointima.    

 

Figure V.16 – Example of the method to select the next lattice point where a cell can migrate or proliferate. 

a. Representation of the content (SMCs and ECM) of the lattice points neighbouring the SMC C. b. 

Representation of the probabilities of moving in one of the eligible neighbouring points. The arrows 

represent the direction of the principal stress in the neointima.  

The algorithm determines the lattice points where a migrating cell can move or 

where a proliferating cell can replicate.  The cell under consideration is represented 

by the symbol C, and the grids represent its neighbourhood.  For each cell the 

algorithm scans the neighbourhood conditions (Figure V.16.a) to check if there is 

any lattice points where a cell could migrate or proliferate.  The C in a lattice points 

means that it is occupied by a SMC, while the number represents the content of 

ECM.  In this example an ECM threshold of 0.2 is used, meaning that 4 lattice points 

can be occupied, as these do not contain an SMC and there is enough ECM content 



CHAPTER V – MODELLING ISR 

 

 

157 

 

(green lattice points in Figure V.16.b).  If the number of eligible lattice points is zero, 

the algorithm skips the next step of the process and simply produces new ECM in its 

neighbourhood, as explained in the first section of this Chapter and represented in 

Figure V.2.  If any eligible position is found, the algorithm determines whether the 

synthetic SMC is in a proliferative or migrating state, according to the respective 

probabilities, as described previously.  The grid on the right represents this phase of 

the iteration: the cell is unable to migrate or proliferate to any of the crossed lattice 

points, because of the presence of another SMC or insufficient ECM content.  If the 

cell proliferates, the new cell will occupy any of the green lattice points, chosen 

randomly.  If the cell migrates, the algorithm uses the principal stress direction in the 

neointima corresponding to the lattice point of the current SMC, stored in the THETA 

matrix: the arrows represent the direction of the principal stress in the neointima.  

This is the case for most implementations of the model; however, in some cases it 

has been chosen to make also the proliferation dependent on theta. 

Cell movement is determined by a probability distribution determined by the 

principal stress direction.  Figure V.17 shows the probability distribution for a theta 

value of 210°; the probability distribution is centred on this angle using a the 

function given in Equation 1 (dashed red line) and then discretised to each lattice 

position to provide probability values which sum to 100% (blue line, green dots). 

  𝑃 =
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The resulting probability values for this example are represented using numbers on 

the grid of Figure V.16.b. 
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Figure V.17 – Example of probability distribution of the new lattice point for a migrating cell based on the 

theta value: in this case, theta = 210° (red dashed line) and the probability values obtained are, starting 

from the lattice point on the right (position 0°) in anticlockwise direction: 0, 0, 0, 0.3, 37.5, 58, 4.2, 0. 

A random process of selection subsequently picks one of the lattice points 

accordingly to their probability: if the chosen location is already occupied by another 

cell, like the lattice points with the 0.3% and 4.2% probability in this example, the 

SMC will not be able to migrate for the current iteration.  When a cell migrates, if the 

THETA value of the new lattice point is not already specified, for instance in cases 

where the ECM content of that section has been created after the last ANSYS run, 

the new lattice point takes the same value of THETA.  At the end of this phase, new 

ECM is produced.  

The algorithm then moves to the next cell of the stressed SMCs list, until the 

list has been completed.  In that case, the algorithm checks whether any of the exit 

criteria to solve the ANSYS model are met: if not, it increases the time count and re-

calculates the list of stressed SMCs to perform a new iteration of the CM. 

The criteria to exit the CM iterations have been chosen so that the coupling 

with the ANSYS model happens when neointimal growth is sufficient to change the 

stresses in the neointima: through time (number of days) and through amount of 
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growth (number of cells).  Once one of the coupling criterions is met, a new mapping 

is set up, this time between the neointima lattice points and the nodes of a pre-

existing mask of a mesh of the neointimal area in ANSYS; this is used to define the 

geometry of the ANSYS model, as described in the next section. 

ANSYS model: for the continuum model, ANSYS Mechanical APDL version 

14.0 (ANSYS Inc.) is used.  The geometry of the vessel and of the stent strut, the 

amount of deployment and the material properties of the model are the same as 

described in Chapter 3 and are reported in Table V.1.  A set-up iteration is performed 

at the very beginning of the process (step 1 of the flowchart in Figure V.13), where 

the stent is expanded in the vessel, similar to the symmetric models in Chapter 3 

(Figure V.18.a).  All the iterations of the model are based on the final result of the 

set-up iteration.  In order to establish the spatial relationship between the ANSYS 

model and the CM, in a second iteration the lumen area that might be occupied by 

neointima is meshed based on the expanded geometry (Figure V.18.b); the upper part 

of the neointima mesh is defined using the nodal coordinates of the deformed inner 

lumen of the vessel, but the mesh density in the neointima is independent of the mesh 

density on the vessel wall.  A bonded contact condition is defined between the nodes 

on the neointima and the nodes on the vessel lumen to connect the meshes.  The 

neointima elements are deactivated so they do not influence the stress results on the 

vessel.   
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Figure V.18 – Representation of the two iterations which correspond to the two initial steps of the 

workflow. a. Creation of the initial 2d symmetric geometry and stent expansion. b. Meshing of the part of 

the lumen that is likely to be occupied by neointima in the following iterations on the basis of the expanded 

geometry, with subsequent de-activation of the corresponding elements. 

At the end of these two iterations, represented in Figure V.18 as “stent expansion” 

and “neointima meshing”, information about the type and location of all the nodes is 

reported in tables that are then read in Matlab, distinguishing for instance between 

stent strut location, vessel nodes, stressed vessel nodes (the ones where the 3rd 

Principal stress, which corresponds to the compressive stress, is above 35 kPa); 

lattice points above the vessel wall and the boundary conditions are turned off and do 

not participate in the cellular iterations.  This corresponds to the steps 2 and 3 of the 

flowchart (Figure V.13). 

The following table reviews the geometry and the material properties for the 

first iteration of the simulations. 

 



CHAPTER V – MODELLING ISR 

 

 

161 

 

Table V.3 - Parameters for the ANSYS model 

Vessel thickness 0.1 mm 

Vessel radius (pre-pressure) 1 mm 

Vessel radius (100 mmHg) 1.4 mm 

Strut radius 4.5e-2 mm 

Vessel material model (MPa) U = 0.04∙(I1 - 3) + 0.003∙(I2 - 3)2 + 0.085∙(I2 - 3)3 

Displacement ratio 1:1.4 

Neointima material model E = 0.1 MPa; ν = 0.49 

During the second iteration, the nodes of the ANSYS model which correspond to 

regions of the CM which are occupied by neointima are identified and these elements 

are activated.  The neointima is assumed to behave as a linear elastic material.  The 

material properties of the neointima are not as well-known as those of the coronary 

artery wall, and as the main feature that is captured from the simulation is the 

direction of the first principal stress, this is assumed to not change significantly for 

any isotropic material: so a simple model has been chosen, especially considering 

that this material will experience only small deformations due to the cyclic blood 

pressure change.  As these elements are initially turned off, they do not contribute to 

the stress state of the ANSYS model until activated from the update of the CM. 

Once these two iterations are completed and the nodes data have been sent to 

Matlab (step 1 and 2 of the flowchart in Figure V.13), the CM is created (step 3), the 

stressed SMCs are turned into synthetic (step 4) and the first cellular iteration starts 

(step 5).  From this moment on, all the following ANSYS iterations are similar: 

neointimal growth is simulated by the CM, which changes the geometry of the 

stented vessel model.  Once one of the coupling criteria of the workflow is met, the 

CM performs a new mapping of the neointimal area (Figure V.19.a and b), updating 

the correspondence between lattice points and elements (Figure V.19.c); the growth 
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information is therefore passed from the CM to ANSYS in form of a list of elements 

of this mesh (step 7 of the flowchart in Figure V.13).  These are the new neointimal 

elements, and they are activated while the vessel is at its diastolic pressure (Figure 

V.19.d).   

 

Figure V.19 – Representation of the process selection of the new nodes to be activated into the ANSYS 

model when a coupling criterion is met. a. and b. show the selection of lattice points that contain ECM (to 

make the process easier, these include the strut location). c. The algorithm searches through matching 

locations between cellular model and FEM to find what nodes correspond to the selected lattice points. d. 

Activation of the selected nodes in the finite element model. 

The unstressed geometry of the neointima is defined at the diastolic pressure, Pdias; 

the difference between diastolic and systolic pressure, dP = Psys-Pdias, is then 

applied in the ANSYS model as an additional load on the new lumen defined by the 

vessel wall and the neointima.  When the ANSYS solution is obtained at Psys, the 



CHAPTER V – MODELLING ISR 

 

 

163 

 

ANSYS iteration is completed and information about the stress state of the 

neointimal area is passed back to the CM.  This approach is based on the hypothesis 

that the neointima is laid down in a “stress-free state” at the diastolic pressure.  

Regions of the vessel wall without a neointima experience the full systolic pressure 

and the neointima is loaded with the difference between diastolic and systolic 

pressure as shown in Figure V.20. This corresponds to step 7 of the flowchart in 

Figure V.13. 

 

Figure V.20 - Pressure distribution during systole after neointima formation. 

At the end of the simulation, the new set of data that is passed from ANSYS to the 

CM is the stress in x, y and xy direction, as previously explained, in order to obtain 

the direction of the principal stress in the neointima (step 4 of the flowchart in Figure 

V.13). 

EXIT FROM THE WORKFLOW 

The whole workflow is terminated (“stop” in the flowchart in Figure V.13) when it 

encounters either of these two conditions: 
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- When the value of WSS, which is calculated at the end of each CM iteration, 

exceeds the value of 1.6, corresponding to what the initial value would be 

before stent expansion, as calculated in Chapter 2.  The rationale behind this 

choice is the assumption that the neointimal growth could stop when the 

physiological value of WSS is restored. 

- When the total time of the workflow, calculated as the sum of the total 

number of time-steps of all the iterations, reaches a defined threshold (i.e. 

1000).  This allows the simulation to stop in case the neointimal growth is not 

evolving for some reason, i.e. too strict direction conditions or mistakes in the 

implementation.  

Implementation of cellular direction 

The main aim of this work is to test the hypothesis that the structural stress in the 

growing neointima might affect the pattern of the growth itself.  The basic idea 

behind the proposed workflow is to capture the evolution of the stress during the ISR 

process, simulated through a 2D cellular model, and using such information to 

regulate the neointimal growth: this is achieved by performing frequent 2D finite 

element simulations with the most updated geometry of stented vessel and neointima. 

The hypothesis taken into consideration is that the major stress affecting the 

neointima is the pulsatile pressure in the vessel due to the blood flow, so this has 

been captured in terms of first principal stress direction and imported into the CM as 

indication for the growth direction.  As this is a novel approach, a number of tests 

have been undertaken to evaluate how the cellular growth predicted by the CCM is 

influenced by the implementation of cellular direction within the model.  These 

approaches are summarised in Table V.4 and described in the following section. 
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Table V.4 - Methods to implement cellular direction 

Assignment of theta Process controlled by theta 

Initial tests 

No Theta N/A 

Arbitrary Theta Cell Migration only 

Single principal direction Cell Migration only 

CCM setup tests with Dual Principal Direction 

Cellular Randomisation Cell Migration only 

Cellular Randomisation Cell Migration and Proliferation 

Total Randomisation Cell Migration only 

Total Randomisation Cell Migration and Proliferation 

The full model with the complete sequence of procedures (import set of data, process 

it and transform it into information for the next iterations) includes a number of steps 

that increase the randomness of the CM.  In order to investigate the influence of the 

stress in the neointima for the whole CCM, some of these steps are introduced 

gradually, with the aim to have a better understanding of which factors significantly 

influence the results.   

No Theta and Arbitrary Theta – The No Theta model is similar to what has 

been introduced in the previous section but with the updated geometry.  The 

Arbitrary Theta model applies a fixed value of theta to all lattice cells of the 

neointima without an update obtained from the ANSYS model.  The set of 

parameters is the same, so the difference in results is only based on the influence of 

theta. 

Single principal direction – As a first attempt to introduce the theta values 

from the ANSYS model into the CM, any randomisation of stress direction was 

switched off.  In this case the cells will migrate only following the angle assigned by 

the THETA matrix, as represented in Figure V.15.a, with no possibility of moving in 

the opposite direction (theta+180°) along the principal stress direction.   
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Dual principal direction – Under the hypothesis considered, which states that 

the cells follow the direction of the maximum principle stress, cell migration in the 

directions theta and theta+180° is equally likely.  Two methods to assign the 

direction randomly have been implemented: with CellRand the direction of theta is 

randomly chosen lattice point by lattice point at the beginning of each CM to be 

either theta or theta+180°, as shown in Figure V.15.b; with TotalRand, at the 

beginning of each time iteration of the CM, the algorithm chooses randomly between 

the use of the matrix THETA or THETA+180° applied to every lattice point.  

Influence of theta on migration/proliferation – For most tests (Normal) the 

effect of theta is imparted only to the SMCs that are in their migrating state.  As this 

method might create a situation where the effect of theta is dependent on respective 

proliferation and migration rates, comparative simulations were run where the effect 

of theta is also imparted on the SMCs that are in their proliferating state (thetaP).  As 

for random proliferation, if the identified lattice point is already occupied or does not 

have enough ECM, the proliferation does not happen. 

Influence of other CCM parameters 

As for the study of the CM in the first section of this Chapter, some other parameter 

tests were been performed, as follows. 

Influence of base and PProb parameters – Tests varying the values of base 

(0.2 and 0.5) and PProb (5% and 10%) were undertaken to check the assumptions 

made during their choice by comparing the result with the outcomes observed using 

the CM only. 
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Variable PProb – An additional test was set up to explore potential variability 

in the SMC response based on changes in the local environment of the cell.  In this 

case a new condition changes the probability of proliferation for a specific SMC 

during one time-step in case it is surrounded by ECM: PProb = 45*(x/8)5 + 5, where 

x is the number of eligible neighbouring lattice points, not occupied by another SMC 

and with enough ECM (Figure V.21).  This maintains the value of PProb close to 5% 

for most of the cases and only increases if there is a lot of “free space” around it.  

 
Figure V.21 - Variable PProb: the proliferation probability varies with the number of eligible lattice points 

around the SMC. 

 

Results 

The results are reported in the order they have been described in Table V.4, 

introducing increasing complexity to the model. 

Figure V.22 compares results obtained in two extreme cases, the model with 

No Theta applied and the model with one Arbitrary Theta direction (7/4π) assigned 

to every single lattice point of the CM. 
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Figure V.22 - Comparison of results of the model without the influence of a theta value (No Theta, left 

panel) and a theta value that has been fixed for all the lattice points (Arbitrary Theta, right panel).  

In both cases the workflow is followed until step 5, but then the coupling with 

ANSYS is switched off: in this way the vessel/stent geometry is the same as the 

complete CCM in both cases.  In the first case, the result is similar to that shown in 

Figure V.6, with a neointima that grows in a rounded manner around the stent strut, 

whilst, in the second case, the neointima distinctly follows the direction of theta in its 

growth.  This represents an “extreme” test case to validate that the presence of a very 

directional stress input has a noticeable effect on the neointimal growth; in the next 

steps the stress information coming from the ANSYS model is introduced. 

Initially, the direction of cellular growth is determined using a Single 

Principal direction: Figure V.23 represents the stresses resulting from the ANSYS 

model.  The black arrows represent the orientation of the first principal stress in early 

iterations; the stresses are captured at the end of the systole, and it is noticeable how 

they are generally directed from the stent strut to the vessel wall. 
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Figure V.23 - Principal stress directions in the neointima for the first ANSYS iteration for the Single 

Principal Direction model, with theta not randomised. 

As it has been already shown how the introduction of a strict, arbitrary theta visibly 

changes the shape and direction of the growth of new tissue, it is expected that a 

model that constrains the migrating cells to move following these directions would 

show a growth that is more biased along the lumen, rather than outward from the 

strut region.   

 

Figure V.24 – CM results of the neointimal growth for the Single Principal Direction model, at different 

time-steps, indicated in the right top corner.  

Figure V.24 represents the results of this test at different time-points: it is visible how 

the shape of the neointima follows the direction imparted by the stress update, which 

is quite different from the results obtained through the stress-free model of the first 

section (No Theta, left panel of Figure V.22).  In fact, the cells tend to invade the 

space between the strut and the vessel in a more “horizontal” shape, with the border 

forming a straight line between the strut and the vessel.  This feature is maintained 



CHAPTER V – MODELLING ISR 

 

 

170 

 

throughout the whole simulation, even after the symmetry boundary of the model is 

reached and the strands of neointima join (Figure V.25.a).  The CCM was run until 

the exit condition based on the WSS was met (Figure V.25.b), with a WSS value 

greater than 1.6: it is noticeable how by this point the shape of the neointima is 

rounded, similar to observed histology in the later stages of ISR (Figure V.25.c and 

bottom panels of Figure V.8).  Running the same test model several times gave 

similar results. 

 

Figure V.25 – Symmetric expansion of the ANSYS results for the Single Principal Direction model, after 22 

iterations (a) and 37 iterations, which correspond to the final situation when the exit condition is met (b), in 

comparison with a histologic image of a fully developed ISR, 28 day after stenting (c). 

Finally, the full CCM model with Dual Principal direction was tested with the 

various settings introduced in the Methods section.  These settings were combined 

and the results reported for different phases of the simulations: early, middle and late 

phases. 

Early phase 

The early results of the models with the settings described are reported in Figure 

V.26.  This includes, on the left, the image of the model with No Theta and the detail 

of a histology image from the in vivo porcine model one week after stenting (as 

reported in Figure V.9).  The figures have been chosen based on the amount of 
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neointima produced, rather than a specific time-step, to make the images more 

comparable. 

 

Figure V.26 - Results of the CCMs in the early phase of neointimal growth, compared to the model without 

the influence of theta on the top left and to a detail of one of the histological images of an in vivo ISR model, 

7 days after stenting, on the bottom left.   

At this early stage of growth, whilst there is some variation in the ratio of SMC/ECM 

and the shape of the ECM, all the models where theta is applied show a certain trend.  

The neointima tends to develop “horizontally”, following lines between the stent 

strut and the vessel, which correspond to the direction of the first principal stress 

output from the ANSYS model.  This looks similar to what is observed in histology 

(bottom left panel), and is not captured with the same model if the influence of theta 

is switched off (top left panel).  
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Middle phase 

Results during the middle phase of the neointimal growth are reported in Figure V.27 

with images at two time-points for each run of the CCM, to give a better idea of its 

evolution in time. 

 

Figure V.27 - Results of the CCMs in the middle phase of neointimal growth: two time-steps are reported 

for each model. 

At this stage, the differences between the models are more visible.  In general, it is 

possible to notice how, extending the influence of theta also to the proliferating cells 

(thetaP, on the right), the tendency to follow the neointimal stresses is maintained in 

a more consistent way throughout the simulation.  The “Cell Rand – Normal” model 

starts showing more isotropic growth quite early, while the “Tot Rand – Normal” 

model maintains a more directional growth for longer, gradually becoming more 

isotropic. 

Both the thetaP models also show a lower ratio of SMC/ECM, which is likely 

to allow the influence of the stress direction to be more pronounced.  The most 

promising results have been observed from the “Cell Rand – thetaP” model, although 

this formulation shows poor repeatability.   



CHAPTER V – MODELLING ISR 

 

 

173 

 

Both models that employ the “Cell Rand” approach often demonstrate the 

effect of some “shooting SMCs” occurring in some of the simulations. This 

“Shooting SMC” effect happens over a few iterations of the CM after the last 

ANSYS solve.  The cell creates ECM around itself, moves to one of the new lattice 

points with enough ECM and transports the theta value of the former position, as the 

new one was not part of the neointima at the last ANSYS iteration and does not have 

a theta value yet.  From there, the SMC produces more ECM in its neighbourhood 

and keeps on moving in the same direction, determined by the theta value of its first 

position, or follows the theta direction of the lattice point if that part of neointima 

had a value assigned already. An example of such behaviour is provided in Figure 

V.28.  This effect occurs much less, or never occurs, for the “Tot Rand” models. 

 

Figure V.28 - Example of the "shooting SMC" effect 

Late phase 

In almost all the CCMs where theta is randomised, with whatever combination of 

parameters and set ups, the growing neointima has not reached the opposite 

symmetry boundary (Figure V.29) when the exit condition is met (WSS > 1.6). 
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Figure V.29 - Results of the CCMs in the latest phase of neointimal growth, when the exit condition of the 

workflow determined by the WSS stops the simulation. 

In some cases the shape of the neointima is flatter and in others more “rounded”; in 

some cases it is still possible to notice a directional growth and in other cases it 

appears more isotropic.  This variability demonstrates how the implementation, and 

certain parameters, can affect the influence of theta on the overall growth (especially 

for the thetaP models).  In all cases the effect of the stress direction on the cellular 

behaviour is not sufficiently dominant to produce a circular intima as observed for 

the model with a Single Principal direction shown in Figure V.25. 

Finally, some additional tests were performed: a set to test the influence of 

base and PProb parameters and a set to test the Variable PProb were performed.  

For higher values of base and PProb, the ratio of SMC/ECM is smaller, and the 

models tend to give a more controlled but rounded and isotropic behaviour, similar to 

the no theta models reported for the CM in the first section of this Chapter.  The 
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Variable PProb setting, on the other hand, has been tested with a few of the settings 

proposed above: on one hand, the results appear to be less dependent on the 

“shooting SMCs” effect, but on the other hand, it seems to increase the SMC/ECM 

ratio, with more isotropic growth, especially in the middle and late phases. 

Discussion 

The model of in-stent restenosis introduced in the second part of this Chapter is 

based on the idea of providing information about the mechanical stimuli and its 

evolution during the process of the neointimal growth, influencing the cellular 

process.  This is achieved through a frequent feedback between cellular model (CM) 

and ANSYS model.  The passage of information between the two types of models 

occurs through a geometric correspondence.  The CM is constructed using the 

geometry provided by the 2D FEM of stent expansion in a vessel, and the matching 

between ANSYS node position and lattice point locations is stored and used for all 

feedback.  

This method generates the first issues with the CCM.  The dimension of the 

lattice determines how smooth the profile of the neointima will be.  A smoothing 

process would give a more realistic shape of neointima and it could address possible 

issues with the computational model.  In fact, the creation of unnatural sharp edges in 

the ANSYS model might generate convergence problems. Whilst this was not seen in 

the current study, the possibility should be taken in consideration, especially if a less 

refined lattice is chosen. 

This model has been developed as a means to test hypotheses about the 

process of ISR within a framework that can be adapted in terms of model set-up 

(dimension of lattice grid, frequency of feedback between CM and ANSYS, choice 
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of how to apply the stress to the CM) and in terms of the biological assumptions of 

the model (proliferation/migration rate, migration time).  The results reported in this 

Chapter are a first attempt to test the potential of this CCM. 

First, the ability to introduce a stress stimulus into the workflow has been 

tested through an Arbitrary Theta value that has been assigned to all the lattice points 

of the CM, without any update from ANSYS.  The difference between the Arbitrary 

Theta and No Theta models is clearly visible as the growth follows the direction 

imposed through this fictitious stress.  This ensures that the model works correctly 

before analysis of the full CCM where observations of isotropic growth could be due 

to either mistakes in the setting or too many random factors “covering” the effect of 

theta. 

Subsequently, the complete workflow was run, first switching off the random 

choice for cells to follow either theta or theta+180°.  This test with a Single 

Principal direction was meant to evaluate the function of the model with the simplest 

implementation.  It is interesting that the images of these results show a shape of 

neointimal growth with greater similarity to observations from histology (Figure V.9) 

than any of the results reported from previous models of ISR, which show a more 

rounded growth around the stent strut (Figure II.9 in Chapter 2) (Zahedmanesh, Van 

Oosterwyck et al. 2012).  This is quite encouraging, as not only the initial phases of 

the growth, but also its evolution, especially the final neointimal shape when the exit 

criterion is met, look similar to the histological images from in vivo models, obtained 

from healthy animals, which is what this model attempts to replicate.   

Finally, the full CCM with the Dual Principal direction method has been tested 

to determine what accentuates certain effects (for example, the “shooting SMCs” or 
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the tendency of the growth to become too isotropic).  Various implementations were 

described in the Methods section and their results compared to provide understanding 

of the potential and flaws of the current CCM.   

From analysis of the early stage of growth, all implementations of the model 

which include application of theta produce promising results.  Both the difference 

with the more “rounded” results obtained from the No Theta model and the similarity 

with the shape and direction observed in histology are noticeable.  For these models, 

the neointima tends to first occupy the space between the stent strut and the vessel 

following the line of the stresses produced by the pulsatility of the blood pressure.  It 

is possible that the influence of the stress direction is particularly relevant in the early 

stages of ISR.  The fact that this behaviour is observed with every model 

implementation supports the suggestion that the neointimal stress is influential in this 

early phase.  However, it has to be noted that to obtain a more accurate 

representation of this phase of ISR, thrombosis should be included in a refinement of 

the model.   

However, observing the evolution of later stages of growth it is visible how, 

whilst in some cases the first part of the middle phase has some similarity with the 

“Single Principal direction” model, the second part already has quite a “bulky” shape 

that looks increasingly different from what is observed in the histology images.  With 

the current implementation, the regulation of cell growth based on the stress 

experienced by the neointima appears to have a significant effect only up to a certain 

time-step.  At this point the “packing” of SMCs allows freedom only to a thin strip of 

SMC, which combines with the constraints of the lattice construction, making the 
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growth more isotropic, like in the simple test studies of the first section of the 

Chapter (Figure V.3), and the stress parameter has only a localised effect.  

It is also noticeable that models with parameters that produce a low SMC/ECM 

ratio show more significant influence of theta.  This was explored in the first section 

of the Chapter, with variation of PProl (probability of proliferation over migration) 

and base (the minimum amount of ECM required in a lattice point to allow a cell to 

occupy it), where high values of PProl and base resulted in “packing” of SMCs and 

a more consistent geometry of growth (Figure V.3).  Lower values of these two 

parameters were chosen for the CCM to examine whether this results in greater 

sensitivity to the addition of the new parameter, theta.  The tests performed on the 

CCM confirm this hypothesis, the higher the ratio of SMC/ECM, the more similar 

the results are to the original CM, with a more rounded shape of neointimal growth.  

However, with parameters that result in less “packing” of cells the results are more 

sensitive to random “shooting SMCs”, as described in the Results.  An approach to 

limit this effect was attempted with the Variable PProb method, assuming that cells 

that are more isolated are more likely to proliferate.  These results showed control of 

this phenomenon, but produced more isotropic growth patterns.   Lack of smoothness 

in neointimal boundaries is evident also in previous studies by other authors (Boyle, 

Lennon et al. 2011). 

It is worth noting that all implementations where the influence of theta was 

applied to both migrating and proliferating SMCs (thetaP) demonstrate more 

distinctively the influence of stress on the ISR.  In these cases growth “stretches” 

more towards the vessel than the “Normal” set up at the same phase of growth 

(middle phase, Figure V.27) and maintains this behaviour for longer (late phase, 
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Figure V.29).  The set up that gave results closest to those of the Single Principal 

direction model was the “CellRand – thetaP” model, but these results were less 

repeatable than the “TotRand – thetaP” model because the “shooting SMCs” effect 

occurred more frequently.  When running several simulations for all models, the 

“CellRand” approach demonstrated less control than “TotRand” over these random 

effects, which probably occur more easily when the choice between theta and 

theta+180° occurs cell by cell.  The “CellRand” method may create impediments to 

cellular movement in cases where SMCs at adjacent lattice points are orientated in 

opposite directions.   

As the application of a preferential direction for cell growth is novel and has not 

been addressed in previous studies of ISR, there is no definitive approach.  A series 

of assumptions have been made in these implementations and compared in order to 

explore this new aspect of modelling the evolution of ISR. 

The greater similarity between the form of ISR observed in histology and the 

Single Principle direction model opens some questions about the assumptions.  

There may be effects that were not taken into consideration in this form of the model, 

such as cellular signalling phenomena that might give preference to the direction that 

takes the cell further from the site of initial injury.  Experimental tests would be 

required to explore this hypothesis in more detail. 

In Chapter 2 a comparison between models found in literature of ISR evolution 

was presented, including studies from Boyle et al. (Boyle, Lennon et al. 2013), 

Zahedmanesh et al. (Zahedmanesh, Van Oosterwyck et al. 2012) and Tahir et al. 

(Tahir, Bona-Casas et al. 2013).  This model is similar to these previous studies, 

particularly the approach of Boyle et al., due to the lattice definition for vessel and 



CHAPTER V – MODELLING ISR 

 

 

180 

 

lumen geometry.  Most importantly, the stimulus considered the starting driver of the 

ISR process is the structural stress immediately after stenting, as reported by Boyle et 

al. and Zahedmanesh et al.  In these previous studies this is investigated through 

FEM simulations, to provide initial conditions for the cellular model.  Another 

similarity is that ECM is considered to play a role in SMC migration and 

proliferation.  Whilst all these studies consider the main cellular component to be the 

SMC, Tahir et al. also considers the role of endothelial cells in the regulation of ISR: 

this cellular component has not been considered in this study.  Also, the latter is the 

only model where the main mechanical stimulus, the wall shear stress in this case, is 

taken in consideration during its evolution along with the neointimal growth.   

This study presents a few limitations, some of which have been discussed 

already.  Whilst the method is novel, certain model implementations show 

unexpected results, for example the “shooting SMCs”, and the reason is not always 

obvious.  Some approaches have been proposed to limit these effects, but extra 

investigations would be required to gain a better understanding of what provokes 

them, in order to generate a better implementation of the model. 

Another limitation of the model is the lattice nature of the CM, resulting in a 

finite element geometry that is similarly structured, with SMCs only able to move in 

eight possible directions.  However, while it could be useful to improve the cellular 

rules, so they would resemble more what happens in vivo or in vitro, maintaining a 

lattice structure is also very useful for this type of CCM, as it creates the possibility 

of a simple location-based feedback between CM and ANSYS model and it is easy to 

control.  
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Evidence from Chapter 4 and from previous studies reviewed in Chapter 1 

suggests that the local distribution of fluid shear stress participates in the process of 

ISR.  In the CCM the impact of WSS is only used as a stopping condition of the 

entire algorithm.  Observing the evolution of the neointimal growth, it is noticeable 

how, whilst results in the early phase resemble the histological images of in vivo 

models of ISR, this is less noticeable in later phases of the evolution, where the 

growth progresses outward from the stent strut location.  Even if there is a tendency 

for growth toward the edges of the model, there is also considerable growth 

perpendicular to the lumen in all Dual Principal direction models, creating a “gap” 

in the area between two stent struts.  With the hypothesis that areas of recirculation 

and low WSS experience an increase of cellular growth, the inclusion of the fluid 

shear stress to the CM would tend to flatten out this growth, promoting a more 

circular profile of the new lumen, more similar to in vivo ISR.  However, as the fluid 

shear stress itself is dependent on the geometry the results of this study suggest that 

both neointimal stress and fluid stress may play a role in the evolution of ISR. 

Finally, a simple isotropic elastic material model has been chosen for the 

neointima as the deformations it experiences are small.  An aspect that could 

influence the results and has not been taken in consideration is the stress relaxation 

of the vessel wall over time due to the change in the wall constituents: this has been 

included in previous studies for arteries for different scopes, such as aneurysm 

development (Watton, Selimovic et al. 2011), and should be included in a future 

refinement of this model.  The influence of fibre alignment with the stress direction 

could be also considered through definition of anisotropic material properties.   
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SUMMARY 

This Chapter proposes the combined use of two models, a cellular one and a finite 

element one, to develop a more complete model of ISR which aims to capture the 

influence of the evolution of the stress in the neointima on tissue growth.  

The main objective of this work is to propose a framework that allows testing 

of hypotheses related to ISR.  Several implementations have been explored, 

increasing progressively the complexity of the framework from a purely cellular 

model in the first section, to the inclusion of the stress in the neointima with various 

strategies. 

The most interesting results, which are consistent for most implementations, 

concern the early phases of the growth where the shape of the neointima presents 

noticeable similarities with what is observed in the histological images of 

experimental models of ISR.  This is a novel result compared to what has been 

reported in previous studies.  

However, as observed from the results of Chapter 4, the local fluid wall shear 

stress plays an important role in ISR, and further development of this model with the 

inclusion of the fluid effects on the growth might improve the understanding of the 

evolution of neointimal formation as a whole. 

The cellular behaviour is complex and hard to represent in full; the 

implementation of the cell behaviour could be improved by means of in vitro testing 

which could allow validation of specific rules for the CCM.  Some improvements to 

the model are suggested in the next Chapter.  
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 –  CONCLUSIONS AND 

FUTURE WORK 

6.1  CONCLUSIONS  

This thesis explores the problem of in-stent restenosis using modelling approaches as 

a tool to gain a deeper understanding of the phenomenon, with particular focus on the 

influence of mechanical stimuli on neointimal growth. 

Many previous studies have evaluated the mechanical environment of the 

vessel immediately after stenting, from both a structural and fluid dynamic 

perspective, using models of various degrees of sophistication (Chapter 1).  A 

smaller number of studies have attempted to model the development of ISR, based 

on either structural or fluid stimuli (Chapter 2).  Whilst some contributing factors 

have been identified, the biological processes which regulate the initiation and 

evolution of ISR remain rather unclear. 

 This thesis explores the role of structural stresses in the development of ISR 

through incremental phases: 

1. Development of a simple analytical model to understand the order of magnitude 

of stresses and strains in a stented vessel, replicating the stenting of a healthy 

porcine coronary artery;      

2. Analysis of a 2D cross-section of a stented vessel to evaluate the structural 

stress, considered in this thesis to be a significant factor in the process of ISR; 
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3. Extension from 2D to a 3D model with realistic expanded stent geometry to 

investigate the correspondence between stent strut location and compressive 

forces.  Comparison of structural results with fluid dynamic results obtained with 

the same geometry to describe the complete mechanical environment after 

stenting, investigation of the correlation between mechanical stimuli and 

measurements of ISR from histology in corresponding stent strut locations; 

4. Development of a complex 2D model to study the evolution of ISR over time 

and the response to changes in structural stimuli.  The model involves frequent 

feedback between a cellular model and a finite element model, in order to 

capture not only the cellular growth, but also the evolution of the stimulus with 

time. 

The first phase, introduced in Chapter 2, is a simple analytical model which has been 

set up to explore how the expansion of a stent in a healthy vessel alters the 

mechanical environment from the physiological situation, from both a structural and 

fluid dynamic perspective.  The importance of these changes arises from the fact that 

whilst vascular cells are constantly subject to mechanical forces, variation in the 

magnitude and direction of these loads can lead to a change in their behaviour 

through mechanotransduction mechanisms.  Whilst this analysis is simple and 

represents the stenting process through uniform stent deployment, it allows the 

investigation of the influence of single parameters, such as expansion to various 

final radii, and provides a reference framework for the following, more complex 

models. 

The extension of this work consists in phase 2 (Chapter 3), where the 

presence of the single stent struts is represented in a 2D model, developed both 

analytically and using the finite element method, with a focus on the structural 
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loads.  Symmetric models with increasing numbers of stent struts and asymmetric 

models with uneven distributions of stent struts were explored to replicate typical 

strut distributions observed from histology of an in vivo porcine model.  These 

results highlight how both the analytical and finite element models show the same 

trends for the symmetric models and the same variation in distribution of the stresses 

for the asymmetric case.  However, the finite element model also captures the 

variation in stress across the thickness of the vessel and around its circumferential 

direction, which is essential for the development of a model that uses this 

information to drive cellular growth.  In general, higher compressive stresses are 

found where the distance between two struts is greater. 

The 2D model cannot consider out-of-plane effects.  For this reason, the third 

phase for this research developed a full 3D model of a realistic stented vessel, 

reported in Chapter 4.  The geometry of a real stent expanded into a porcine 

coronary artery was reconstructed and combined with an idealised cylindrical model 

of a vessel, allowing the evaluation of realistic stress distributions.  The same stent-

vessel model was used to examine the fluid dynamics within the stented vessel in a 

different research centre in Sheffield.  Moreover, local histology data from the same 

study was available, permitting a comparison of the local compressive stress, wall 

shear stress and oscillatory shear index (to describe local variations in the 

mechanical environment immediately after stenting) with neointimal thickness 

observed in the in vivo model in the region of each stent strut.  Although previous 

studies have tackled the combination of FEM, CFD and in vivo data, the results are 

averaged by section or use idealised stent geometry without a realistic expansion.  

The novelty of this work is the investigation of mechanical loads and relative 

neointimal growth localised to each stent strut.  The results show how the correlation 



CHAPTER VI – CONCLUSIONS AND FUTURE WORK 

 

186 

 

between stimuli and ISR is stronger when the effect of structural and fluid dynamics 

are considered in combination, suggesting they both contribute to the phenomenon.   

In order to achieve fully the aim of the thesis and examine the evolution of 

ISR in response to changes in structural stimuli, the 2D model developed in Chapter 

3 was combined with a cellular model to create the coupled model described in 

Chapter 5.  As in the previous models, the structural stress was considered as the 

primary stimulus.  In this case the timeframe considered in the analysis is not just 

the acute response seen immediately after stenting, but it also includes the evolution 

of both the tissue growth and the mechanical stimulus over time.  Structural stimuli 

considered included the compressive stress applied to the vessel wall directly 

underneath the stent strut (initial injury) and also the direction of first principal 

stress which directs the cellular growth within the neointima.  The novelty of this 

study lies in the continuous feedback between the cellular model and the ANSYS 

model, allowing frequent update of the geometry of the finite element model during 

neointimal growth.  Therefore, there is a regular update of the stress information that 

regulates the cellular processes.  The model was used to investigate various 

implementation options and the influence of specific model parameters.  Analysis of 

the results highlighted aspects of the biological response captured by this novel 

approach, but also demonstrated the need for future refinement of the method.  The 

outcomes obtained show promising results for the early phases of neointimal 

growth, where the distribution of new tissue agrees the observations from histology 

filling the gap between the strut and the vessel, following the direction of the 

circumference of the vessel.  In later phases, this tendency is progressively lost and a 

more isotropic response is observed. 
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6.1 FUTURE WORK 

As described above, this thesis reports a series of models of increasing complexity 

which builds up to the results presented in Chapters 4 and 5 for a 3D realistic stented 

vessel and the 2D coupled cellular model (CCM) of ISR.  However, these models are 

subject to some limitations, providing opportunities for further improvement and 

refinement. 

The 3D model allows data to be obtained throughout the stented region from 

many different locations to allow analysis of the response over many stent struts.  

However, full validation of the relationship between stimuli and biological response 

requires such an analysis to be repeated for several stent expansions in different 

animals, to take into account potential differences in the response between 

experiments. 

The vessel geometry assumed for the 3D model is idealised and does not 

include the natural tapering of the vessel, which will have an impact on the resulting 

stresses, with higher stresses reported for sections of the vessel with a smaller initial 

radius.  The material model used for this 3D model was taken from the literature and 

represents a SEDF for human tissue.  Further work could include the use of material 

properties for porcine tissue and the extension of the model to include variation in 

response of the layers of the vessel wall. 

Due to the complexity of the CCM, assumptions are required in the setup, 

which present some limitations of the approach.  First of all, this setup does not take 

in consideration all the steps of neointima formation: as introduced in Chapter 1, the 

very first reaction to stent implantation, occurring within the first few days, is the 

formation of the thrombus, due to the deposition of platelets from the circulating 
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blood.  This thin layer of blood clot is believed to be the first element filling the 

space between the stent strut and the vessel: for this reason, although it has been 

shown that SMCs play a dominant role in neointima formation, the thrombosis has to 

be included in a refinement of the ISR model in order to obtain more reliable 

representation of the reaction to stenting.  

Additionally, the cellular ruleset assumed for this model is quite simple and 

neglects some effects such as apoptosis and extracellular matrix degradation.  These 

simple rules attempt to capture the detail of complex biological processes including 

cellular proliferation and ECM production but could be developed further to include 

more realistic rules relating to cell signalling, variation in ECM production over time 

and variable distances of cell migration within a time-step.  The definition of time 

within the CCM is dependent on assumptions incorporated within the cellular ruleset 

and, as a result, it is challenging to relate a “time-step” of the model to a defined 

increment of real time. This aspect needs to be considered in future development of 

the model.  Refinement of these rules would require specific focus on the biological 

processes and should be developed in collaboration with experts in this field. In 

particular, such rules might be informed by controlled in vitro experiments to 

quantify specific aspects of cellular behaviour. 

From the 2D model in Chapter 3 it has been observed how an uneven 

distribution of stent struts in the cross-section can affect magnitude and distribution 

of the compressive stress. Simulation of the CCM over the entire cross-section would 

establish whether variation in the initial stress distribution is significant enough to 

result in a noticeable difference in neointimal growth.  Comparison of the 2D model 

of Chapter 3 and the 3D model of Chapter 4 demonstrates that out-of-plane effects 

play a role in determining the magnitude of the mechanical load underneath a stent 
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strut.  Extension of the CCM framework to a 3D simulation would capture these 

effects, but would require a considerable amount of computational power and 

memory.  Prior to extension to 3D strategies to reduce the computational cost of the 

process should be considered, such as testing the minimum feedback frequency 

required between the CM and the ANSYS model without decreasing the validity of 

the model.  In addition, extension to 3D could be attempted combining the 

framework from Chapter 5 with the approach use in Chapter 4, using the same 

realistic expanded stent geometry and allowing comparison between neointimal 

growth from the CCM with histology measurements from the porcine model. 

A consideration emerging from the results of the 3D model is the need to 

consider both structural mechanics and fluid dynamics.  The inclusion of local 

variations in fluid wall stress would be a valuable addition to the CCM and might 

help better predict the outcome of stenting.  An example of this is the later phases of 

growth, where cells in the neointima between stent struts might experience lower 

WSS, which may promote more even growth along the circumference, resulting in 

the development of a circular luminal profile.   

An important aspect that concerns the representation of the stress in the vessel 

wall regards the effect of stress relaxation; ISR is a phenomenon that occurs in a 

time-scale between weeks and months, and the remodelling of this tissue over time 

might reduce stress in the wall.  This has not been included in this work, but it is 

important to consider, as this may influence stresses in the neointima; it could be 

included computationally through a viscoelastic material model, but there is no 

certain data about the parameters to choose, so more research would be needed in 

order to refine the present model of ISR. 
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Some studies have suggested that endothelial cells may play a role in 

stopping the neointimal growth. Although this cell type is not currently included in 

the CCM, the framework has the potential to represent endothelial cell behaviour, 

providing appropriate rules could be defined. 

Finally, in addition to the results presented within this thesis, the work in 

Chapter 5 provides a framework for further investigation of the interaction between 

mechanical stimuli and the biological response during ISR.  This framework is also 

compatible with the approach taken in Chapter 4, allowing extension to 3D and 

complex geometries, and can also be extended to incorporate more complex 

biological rules.  The novelty of this thesis is the coupling between the cellular and 

finite element models of ISR and the demonstration that cellular growth driven by 

variations in stress direction captures aspects of the biological response.   
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