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Abstract 

The terahertz (THz) region of the electromagnetic spectrum lies between the more 

established bands of microwave and infrared radiation. In the past few decades, this 

region has seen huge growth in the development of both THz sources and detectors 

for a growing number of potential applications including security, wireless 

communications, medical diagnostics and astronomy. This thesis makes use of three 

different methods of generation of THz radiation, these being, THz quantum cascade 

lasers (QCLs), THz time-domain spectroscopy (TDS) and terahertz photomixing. 

In the first set of experiments, diffuse reflectance imaging of a range of 

powered samples has been demonstrated using a THz QCL. Imaging was done at 

four discrete frequencies in the range of 3–3.35 THz by electrically tuning the 

emission wavelength of the laser. Absorption coefficients of the samples was inferred 

using Kubelka–Munk model and was found to be in good agreement with the Beer–

Lambert absorption coefficient obtained from broadband (0.3–6 THz) THz-TDS 

measurements. 

In the second part of the work, photomixers were designed and fabricated on 

low-temperature-grown (LTG) GaAs substrates. Ex-situ annealing temperature of 

LTG GaAs was optimised for maximum bandwidth of the photomixers and the 

impact on recombination lifetime and resistivity of LTG GaAs was also studied.  

The final set of experiments examined locking a THz QCL to an external 

stable source. This would allow access to both amplitude and phase information of 

the laser emission, which in turn would significantly improve the quality of the data 

obtained from QCL based imaging techniques, making them useful in many different 

applications. After investigates of various techniques to achieve this, photomixers 

driven at telecommunications wavelengths (~1550 nm) were successfully used to 

obtain injection locking a THz QCL.
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Introduction 

1.1 Background 

The terahertz (THz) frequency region in the electromagnetic region is uniquely 

placed between the two very well developed microwave and the infrared bands. 

However, as the THz region is less developed than its neighbouring bands, it is often 

referred to as the ‘Terahertz Gap’ [1-3]. It can be defined as lying between 0.3–10 THz 

in frequency or ~1000–30 μm in wavelength [2], although historically, the precise 

range differs between authors. This technology gap; in the far-infrared range, was 

recognised back in 1897 by H. Rubens and E. F. Nichols who stated [4, 5]: 

“Since we have become accustomed to think of waves of electrical energy and light waves as 

forming component parts of a common spectrum, the attempt has often been made to extend 

our knowledge over the wide region which has separated the two phenomena, and to bring 

them closer together, …”–H. Rubens & E. F. Nichols, Phy. Rev. 4, 314 (1897). 
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Figure 1.1: Electromagnetic spectrum highlighting the position of the terahertz region. 

Image taken from Ref. [6]. 

Initially, the terahertz region attracted astronomers and meteorologists due 

to the presence of unique spectral signatures from molecular rotations and 

excitations. Many cosmic emissions, such as those from cold interstellar clouds, the 

formation of stars, galactic evolution and even the Big Bang, are within the THz 

region [5, 7]. In fact, the whole universe is covered with plethora of (virtually 

invisible) THz radiation. 

As THz radiation interacts with intermolecular vibrational modes, it can be 

used to detect chemical as well as structural information of different compounds [8]. 

THz radiation is also non-ionising due to its low photon energy and has the 

capability to penetrate optically opaque materials such as paper, clothes and plastics. 

It can traverse a few millimetres of biological tissue, but gets significantly absorbed 

by water molecules. Considering all of this, prospective applications for THz 

radiation have been identified in the fields of security and non-destructive 

imaging [9], pharmaceutical testing [10], spectroscopy [8, 11], investigation of 

condensed matter systems [12] and genetic sequencing [13]. As it can also penetrate 

through silicon, THz radiation can be used to investigate packaged integrated 

circuits [14]. Furthermore, there have been significant advances in non-invasive 

medical imaging and diagnostics such as detection ex vivo [15], and ex vivo and in 

vivo [16] of basal cell carcinoma, human breast tumours [17] and dental caries [18]. 

Due to significantly large bandwidth of the THz radiation, it can be used in high 
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speed wireless communications [19, 20]. The potential of THz frequencies for 

studying space is enormous and has been comprehensively reported in Ref. [21]. As 

the field has matured with time, several extensive written books [22-32] and reviews 

on the development of the terahertz field [2, 5-7, 33-44] can also be found. 

1.2 Terahertz sources 

There are range of naturally available THz sources including cosmic radiations, the 

sun, and black-body radiation [36]. But these sources are very weak, incoherent and 

broadband. Hence, development of THz sources suitable for research and industrial 

applications has been necessary, and a comprehensive review of many THz sources 

can be found in Ref. [36]. 

Although the first successful demonstration of THz generation based on 

Hertzian oscillators, dates back to the 1920s [45], the region still lacks compact, room 

temperature, sources and detectors [2, 5, 37]. Frequency up-conversion from the 

electronics side of the spectrum, leads to a large roll-off in output power due to transit 

time and resistance–capacitance effects at such high frequencies [2]. For example, 

resonant tunnelling diodes (RTDs) have been reported at room temperature to 

operate up to 1.46 THz, but with only 0.36 μW output power [46] and planar Gunn 

diodes operating up to ~300 GHz have only 28 μW output power [47]. Similarly, 

frequency down-conversion from the optical side of the spectrum is challenging due 

to absence of semiconductor materials with such small band gap that can be 

processed into semiconductor devices. In the early 1980s, frequencies as low as 

~6.5 THz were achieved using semiconductor heterojunction lasers based on 

PbSnTeSe solid solutions [48]. 

Alternative optical techniques have also been explored to generate THz 

radiation. THz radiation has been generated by using optical lasers to excite 
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photomixers [49, 50], photoconductive antennas [51, 52], non-linear crystals for 

difference-frequency generation [53-55], THz parametric oscillators [56] and optical 

rectifiers [57, 58]. 

It should also be noted that there are higher power sources such as free 

electron lasers (FELs) [59] and optically pumped gas lasers [60, 61] available. Even 

though FELs provide kilowatts of power and tunability, they are extremely 

expensive, large, requires cryogenics and have high electrical power consumption, 

making them useful only for very limited scientific applications [62]. Gas lasers are 

also complex, expensive and bulky, and therefore not an attractive source for many 

industrial applications [62]. 

Semiconductor solid state lasers including THz quantum cascade lasers 

(QCLs) [63] and the p-doped germanium lasers [64] have also been developed. Both 

of these lasers are compact and cost effective but p-Ge lasers work at liquid helium 

temperatures, and THz QCLs have a maximum operating temperature of 

199.5 K [65]. 

Three different approaches were used to generate terahertz radiation in this 

thesis. Pulsed THz radiation was generated using photoconductive switches 

(Chapter 3), continuous-wave THz radiation was generated using photomixing 

techniques (Chapter 4 and Chapter 5) and finally, THz radiation was generated both 

in pulsed and continuous-wave mode using THz QCLs (Chapter 2, Chapter 3 and 

Chapter 5). These techniques are now described further in this chapter. 
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1.3 Pulsed terahertz systems 

Picosecond transient pulses can be generated by excitation of a photoconductive 

semiconductor material, and these pulses have a frequency bandwidth in the THz 

range. The generation and detection of picosecond pulses was first demonstrated 

using silicon-on-sapphire ultrafast photoconductive material, by D. H. Auston using 

a photoconductive switch, now commonly known as an Auston switch [66-68]. With 

the introduction of < 100 fs pulses from self-mode locked Ti:sapphire lasers [69], and 

improved photoconductive materials such as low-temperature-grown (LTG) GaAs 

and InGaAs, considerable work has been done to increase the output power and 

bandwidth of such systems [8]. 

THz pulses have also been generated in other ways such as using 

semiconductor surface fields [70], non-linear crystals [71], DAST [72, 73], the 

photo-Dember effect [74], semiconductor quantum structures [75], Bloch oscillations 

in a semiconductor superlattice [76], and coherent phonons in a semiconductor [77]. 

 

Figure 1.2: Femtosecond pulses focussed on a biased photoconductive gap 

(photoconductive switch) are used to generate pulsed THz radiation. Image 

taken from Ref. [78]. 

Photoconductive emitters (the Auston switch) are, however, by far the most 

efficient method of generating pulsed THz radiation using femtosecond lasers [8]. 

Figure 1.2 diagrammatically illustrates photoconductive generation of pulsed THz 
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radiation using this technique. An antenna structure, such as bow-tie or dipole 

design, is fabricated on an ultrafast photoconductive semiconductor surface with a 

bias applied across the photoconductive gap. Femtosecond pulses generated from a 

mode-locked laser, which are above the bandgap of the semiconductor material, are 

focussed on the photoconductive gap. This generates photo-induced electron-hole 

pairs. These photo-excited carriers are accelerated under the influence of the applied 

electric field, resulting in the generation of transient current pulse. If the transients 

vary on a subpicosecond timescale then the emitted radiation will be in the THz 

region. The electric field intensity of the emitted THz radiation ETHz is proportional 

to the time derivative of the transient current density JTHz. The current density can 

be expressed using the well-established expression JTHz = ne , where n, e and  are 

the carrier density, charge of an electron and drift velocity, respectively. The time 

derivative of the current density can be expressed as follows [78]: 

For optimum THz emission, the photoconductive material should have a 

short electron-hole recombination time (carrier lifetime), allowing fast variation of 

current density. Also, the mobility of carrier should be high. High dark resistivity 

would also allow higher applied bias and hence increase of the emitted THz signal 

amplitude.  

Intrinsic semiconductors such as GaAs do not have all the required properties 

to be an ideal candidate for THz generation, in particular the carrier lifetime is too 

large. Reduction of carrier lifetime can be achieved by introducing defects in the 

material. But this leads to lower mobility. Hence, however, a compromise is needed 

between requirements for short carrier lifetime, high resistivity and high mobility. 

 
dJTHz

dt
= ne

d

dt
+

dn

dt
e  1.1 
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Conventionally GaAs is grown using molecular beam epitaxy (MBE) at 

~600° C. Point defects are introduced by reducing the growth temperature to ~200–

300° C in the presence of excess arsenic pressure. This creates donor sites close to the 

conduction band edge of the GaAs, resulting in a reduction of the electron-hole 

recombination time. Lifetimes as low as 90 fs have been reported [79]. Although 

point defects reduce the lifetime, they increase the availability of free carrier even 

without any optical illumination. To increase the dark resistivity, post-growth 

annealing of LTG GaAs at temperatures ~600° C has been found to reduce the defect 

densities by forming arsenic precipitates and hence increase the dark resistivity [80]. 

LTG GaAs have been shown to be the most promising candidate for THz generation 

at ~800 nm excitation wavelength. At telecommunications wavelength, cold 

Fe-implantion of InGaAs has been demonstrated to generate good THz signals [78]. 

Pulsed THz radiation can be detected using photoconductive switches [81] 

and also using the technique of electro-optic sampling [82, 83]. Photoconductive 

detection can be thought to operate along similar principles to photoconductive 

generation. A part of the femtosecond beam is time-delayed and focussed on the 

switch, generating photo-excited carriers. The THz radiation is also focussed onto 

the switch in the same region, creating transient currents. Thus, the THz field can be 

detected using a conventional lock-in detection technique to measure the transit 

current, and by time-delaying the femtosecond beam to sample the THz pulse 

completely. Obviously, the optical pulse duration must be much smaller than the 

THz pulse in order to sample the THz pulse correctly and this is the case why < 100 fs 

laser pulses are used. Also, the photoconductive material should have sufficiently 

low carrier lifetime to avoid saturation of the detector. 

In this thesis, pulsed THz radiation, from photoconductive switches has been 

used in the well-developed terahertz time-domain spectroscopy (THz TDS) 

technique to measure spectroscopic signatures of various samples. The technique of 
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THz TDS along with electro-optic (EO) sampling is discussed in the following 

section. 

1.3.1 Terahertz time-domain spectroscopy 

The pulsed generation and detection of THz radiation can be used to obtain 

spectroscopic signatures of samples using techniques such as terahertz attenuated 

total reflection (ATR) or time domain spectroscopy. Here, the technique of THz TDS 

is explained in further details as this has been used further into the thesis. In this 

technique, a THz pulse is detected in the time domain after reflection from or 

transmission through the sample. This pulse is compared to a reference pulse 

(without any sample). Generally, compared with the reference, the signal passing 

through the sample is reduced in amplitude and delayed slightly in time. The THz 

pulses are mapped out in the time domain with subpicosecond resolution, and 

Fourier transformed to obtain the frequency response of the reference and the signal. 

As it is a coherent detection technique, the electric field amplitude and phase 

information are readily available, enabling direct analysis of the frequency spectra to 

obtain spectroscopic information such as the frequency-dependent absorption 

coefficient and refractive index of the sample, without applying Kramer–Kronig 

analysis [8]. 

THz TDS has a major advantage over the well-established Fourier transform 

infrared spectroscopy as the former can provide both amplitude and phase 

information and operates in room temperature, but the latter is principally based on 

intensity detection and requires cryogenically cooled bolometric detection. Also, 

THz TDS has better signal-to-noise ratio as it is not sensitive to thermal background 

radiation noise [8]. THz TDS can be performed under normal atmospheric 

conditions, but as the THz power is small and THz radiation gets strongly absorbed 

by the water content in the atmosphere, systems are generally purged to remove any 
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water vapour. THz TDS does require expensive femtosecond source to generate 

broadband THz radiation. 

1.3.1.1 Experimental configuration 

The experimental configuration used for THz TDS measurements in this work is 

shown in Figure 1.3. To generate ultrashort femtosecond pulses, a Femtosource 

Compact titanium-sapphire femtosecond laser was pumped with 5.60 W optical 

power at 532 nm wavelength using a Spectra Physics Millenia XS diode laser. At a 

repetition rate of 80 MHz, pulses had a 12 fs pulse width, 800 nm centre wavelength 

with a full-width-half-maximum (FWHM) span of 109 nm, and 650 mW average 

output power. Two chirped mirrors were used for dispersion compensation, 

countering pulse broadening when it travels through the setup, before the beam is 

split into pump (90%) and probe (10%) beams. The pump beam was time delayed 

using a mechanical translational stage and then focussed onto a ~400 μm gap bow-tie 

antenna. The antenna was fabricated on LTG GaAs using optical photolithography 

and thermal or electron-beam evaporation. The THz radiation emitted from the 

surface of the emitter was collected [84] to obtain improved bandwidth, using a 

gold-coated parabolic mirror with a centred hole allowing the focused optical pump 

beam to pass though (see Figure 1.3). Radiation was collimated, focused through the 

sample plane, collimated again and focused on a ~150 μm thick gallium phosphide 

(GaP) crystal using parabolic mirrors. The THz beam was focused collinear with the 

probe beam on the crystal enabling coherent detection using EO sampling. The probe 

beam path length was calculated such that the optical pulse arrived around the same 

time as the THz pulse. The time delay between the two was then varied using a 

mechanical stage on the pump beam path.  
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Figure 1.3: Illustration of a broadband terahertz time-domain spectroscopy system. BS, M# 

and L# represents beam-splitter, mirror and lens respectively. The purple 

coloured double headed arrow signifies the mechanical translational stage. 

Image has been taken from [85]. 

In EO detection, the THz beam causes an instantaneous birefringence as it 

slightly changes the refractive index of one crystal axis. A linearly polarised probe 

beam passing through the crystal then becomes slightly elliptically polarised, 

dependent on the incident THz field strength. The probe beam then passes through 

a quarter-wave plate, used to balance the photodiode output in the absence of the 

THz field, before being split into two orthogonal components after passing through 

a Wollaston Prism. Balanced photodiodes were used to measure the difference of the 

two components, which is proportional to the instantaneous amplitude of the THz 

field [86]. The complete time-varying amplitude of the THz pulse is mapped by 

time-delaying the pump beam, effectively delaying the incident THz pulse on the EO 

crystal. The signal from the photodiode was measured using lock-in detection 

technique with a 10 kHz modulation frequency. 10 kHz was chosen as it was the 
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maximum operating frequency of the biasing source. EO sampling is 

diagrammatically represented in Figure 1.4. 

 
(a) 

 
(b) 

Figure 1.4: (a) Illustration of electro-optic detection of THz radiation. Image reproduced 

from Ref. [87]. (b) Diagram representing time-delay sampling of the THz 

electric field with a probe beam. Image taken from Ref. [86] 

To avoid any reflected pump beam interacting with the EO crystal (GaP), a 

high resistivity silicon wafer was placed in the THz beam path, as shown in 

Figure 1.3. The optical paths from the emitter to the EO crystal were kept under a dry 

air purged environment to avoid any attenuation due to water absorption. Optical 

beams travelled in and out of the purge box through silica glass windows. 



Chapter 1: Introduction 

12 

1.4 Continuous-wave terahertz systems 

There has been a growing demand for continuous-wave (CW) tuneable THz sources 

for applications such as high resolution spectroscopy [88], and as local oscillators in 

heterodyne receivers for applications based on communications and astronomy [89]. 

CW THz generation have been demonstrated using backward wave oscillators [90], 

molecular transition based gas lasers [91, 92], RTDs [93], Schottky diode frequency 

multipliers [94], THz QCLs [95] and terahertz parametric oscillators [96]. Apart from 

their own sets of advantages, the disadvantages are combinations of being bulky, 

expensive, high electrical power consuming, cryogenically cooled and limited 

tuneability. 

 

Figure 1.5: Two continuous-wave lasers, set at slightly different frequencies 𝜈1 and 𝜈2, are 

focussed on a photoconductive material with interdigitated electrodes and a 

biased antenna to generate continuous-wave THz radiation at the difference 

frequency 𝜈3 = |𝜈1 − 𝜈2|. Image taken from Ref. [78]. 

An alternative and preferred method of generating narrowband tuneable CW 

THz radiation is using the concept of photomixing as it is cheap, compact, low power 

consuming, continuously tuneable with narrow spectral bandwidth, room 

temperature operational and coherently detectable source [97]. Photomixing is 

frequency down-conversion from the optical region. Two CW lasers with a frequency 

difference in the THz range are focussed onto a photoconductive material such as 

LTG-GaAs, the photoconductance of which is modulated at the difference frequency 
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(beat frequency). The photo-excited carriers accelerated by an applied bias then 

generate current oscillations at the beat frequency, which are then emitted as CW 

THz radiation using an antenna structure. Figure 1.5 illustrates diagrammatically 

CW THz generation using the concept of photomixing. 

The major disadvantage of photomixing is the low output power due to poor 

efficiency of optical-to-electrical conversion, but extensive research is being done to 

improve its performance [98-101]. 

CW THz radiation can be incoherently detected using detectors such as a 

bolometer [102] or coherently detected using another photomixer as a receiver [97]. 

Photomixing has been considered for industrialisation as it enables a cheap and 

compact high resolution THz system, compared to pulsed THz approaches [22]. This 

technique will be further discussed in detail in Chapter 4. 

1.5 Terahertz quantum cascade lasers 

In conventional semiconductor lasers, radiation is generated by radiative 

recombination of electrons and holes between the conduction and valence bands, 

respectively. The laser frequency is dependent directly on the bandgap energy. These 

kinds of lasers are generally referred to as interband lasers and have been used for 

visible and near-infrared frequency region. However, due to unavailability of 

materials with smaller bandgap energies corresponding to emission in the 

mid-infrared or far-infrared region, utilising conventional methods is not 

possible [6]. 

As an alternative approach, in 1971 Kazarinov and Suris proposed the 

concept of light generation and amplification due to intersubband transitions of 

electrons within quantised energy levels in a quantum well [103]. This work was 

proposed shortly after work on superlattices reported by Esaki and Tsu [104]. The 
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concept was only realised over two decades later in 1994 by Faist et al [105], who 

demonstrated the first quantum cascade (QC) laser. The emission wavelength of 

~4.2 μm (~71 THz) was in the mid-infrared (MIR) region with peak power more than 

8 mW in pulsed mode at 10 K. 

QCLs are unipolar electrically pumped semiconductor lasers with photon 

generation entirely based on electron, i.e. transitions in the conduction band of 

multiple-quantum well structures. Chains of quantum wells stacked together form a 

superlattice with minibands of energy levels overlapping the upper and lower lasing 

energy levels in a quantum well. These minibands helps to achieve population 

inversion by fast scattering of electrons from the lower lasing level of a quantum well 

(extractor) to the upper lasing level of the following quantum well (injector). In 

principal, each electron pumped into the structure emits multiple photons as it 

travels through the entire ‘cascaded’ or ‘stepped waterfall-like’ active region. 

 

 

(a) (b) 

Figure 1.6: Illustration of photon generation using (a) a conventional interband laser and 

(b) an intersubband cascaded heterostructure. 

The major difference between conventional interband lasers and 
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intersubband lasers is that the former is bipolar (electron and holes) and the emission 

frequency is dependent upon the bandgap of the material whereas the latter is 

unipolar (electrons only) and the emission frequency can be tailored using the same 

semiconductor material by changing the quantum well layer thickness. A schematic 

of photon generation in interband and intersubband lasers is shown in Figure 1.6. 

Following the development of the first MIR QCL, continuous-wave operation 

was soon demonstrated in 1995 [106] and room temperature operation was reported 

in 1996 [107]. Since then research in this field has been very actively pursued to 

improve parameters such as the output power, efficiency, and tunability. These 

developments have been extensively reviewed in Refs. [33, 108, 109]. 

Designing QCLs to operate below 10 THz was, however, a challenge in a 

number of ways. Unlike the MIR, where the required photon energies are much 

higher than the longitudinal optical (LO) phonon energy (36 meV or ~8.7 THz in 

GaAs), the THz regime is below this energy level (4–20 meV) [2]. Hence a different 

active region design is required to achieve population inversion and extraction of 

electrons between the closely spaced energy levels in THz QCLs. Another hurdle was 

to overcome the increase of free carrier losses in semiconductors which was 

approximately proportional to the wavelength squared. Finally, the thickness of 

conventionally used dielectric confinement layers was impractical to grow using 

MBE owing to the long terahertz wavelength (~100 μm in free space) [6]. 

Overcoming all these challenges, the first QCL operating at ~4.4 THz was 

demonstrated in 2002 [63] using an MBE grown GaAs/AlGaAs structure. The active 

region, shown in Figure 1.7, was based on a chirped superlattice design in a single 

plasmon waveguide geometry. The laser operated in pulsed mode with a peak 

output power of ~2 mW at 8 K and maximum operating temperature of 50 K. 
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Figure 1.7: Design of the first THz QCL active region based on a chirped superlattice 

structure. Image taken from Ref. [63] 

Soon after the demonstration of first THz QCL which operated in pulsed 

mode, CW operation of a THz QCL was reported with 410 μW peak power at a 10 K 

heatsink temperature [110]. Since then efforts have been made to enhance the 

performance of THz QCLs. Currently THz QCLs have collectively demonstrated a 

spectral coverage from 1.2 THz [111] to more than 5 THz [112] without the influence 

of external magnetic fields. Maximum operating temperature of 199.5 K [65] in 

pulsed mode and 129 K [113] in CW mode has been achieved. The maximum peak 

powers recorded pulsed and CW mode are > 1 W [114] and 138 mW [115], 

respectively. With an applied magnetic field as high as 31 T, lasing action has been 

observed using a THz QCL, over a frequency range of 0.68–3.33 THz and a maximum 

operating temperature of 225 K obtained [116]. 

Apart from improvements in the GaAs/AlGaAs QCL performance, QCLs at 

3.1 THz with a maximum temperature operation of 122 K have been successfully 

demonstrated using InGaAs/InAlAs on InP substrates [117]. THz QCLs fabricated 

using GaInAs/GaAsSb lattice matched to InP have been reported up to a 142 K 

maximum temperature, with a broad spectral coverage of 3.3–4 THz [118]. THz QCL 

heterostructures based on InGaAs/AlInGaAs have showed operations up to 148 K 

without magnetic field, and 195 K under 12 T magnetic field [119]. Furthermore, an 
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electroluminescence peak at 4 THz has been measured from an InAs/AlSb quantum 

cascade structure [120]. 

 

Figure 1.8: Temperature performance of quantum cascade lasers over a range of 

frequencies from the MIR to THz region. Image taken from Ref. [33] 

Amongst various options to generate THz radiation, THz QCLs are one of the 

most promising candidate as they are compact and generates relatively high THz 

powers. The drawback are their need for cryogenic operating conditions. As MIR 

QCLs have been operating at room temperature for some time, they have been used 

to demonstrate intracavity frequency difference generation in the THz range using a 

dual colour MIR QCL cavity [121, 122]. 

Temperature performance as a function of wavelength/frequency of current 

MIR and THz QCLs is shown in Figure 1.8. Recently, the performance and 

applications of MIR/THz QCLs have been extensively reviewed in Ref. [33-35]. 
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1.6 Summary 

This chapter has presented a general introduction to the THz region of 

electromagnetic spectrum and its potential applications. Various THz approaches, 

including broadband THz TDS, narrowband THz photomixing and semiconductor 

solid state THz QCL have been discussed. These sources were used in this thesis. 

Chapter 2 describes in detail, the fabrication of semi-insulating surface 

plasmon (SISP) terahertz quantum cascade lasers. Characterisation of a fabricated 

device is explained. 

Chapter 3 demonstrates diffuse reflectance imaging with an electrically, 

frequency-tuneable THz QCL, a potential terahertz spectroscopic technique taking 

advantage of the high power of THz QCLs. A Kubelka–Munk model is applied to 

calculate absorption coefficients from the reflectance signal, and results are 

compared with those from conventional THz TDS. 

Chapter 4 presents the fabrication and characterisation of photomixers, an 

alternative approach to generate THz radiation. They offer wide frequency tunability 

without cryogenic cooling. The effect of annealing temperature and material 

resistivity on the bandwidth of photomixers is studied. Also, state-of-the-art 

photomixers from TOPTICA Photonics are characterised and their bandwidth 

compared with the fabricated photomixers. 

Chapter 5 reports a new technique for CW injection locking of a THz QCL 

using THz radiation generated from photomixers and locking of a THz QCL is 

demonstrated. 

Chapter 6 concludes the work carried out in this thesis, and discusses possible 

directions for further investigation and improvement of the work
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Chapter 2 

 

 

 

Fabrication and characterisation of THz 

QCLs with a SISP waveguides 

2.1 Introduction 

The fabrication and characterisation of solid-state devices such as THz QCLs, 

photoconductive antennas and photomixers were carried out substantially during 

the course of this degree. The fabrication and characterisation of photomixers will be 

explained in Chapter 4. 

Additionally, a sample was also fabricated for experiments based on coherent 

three-dimensional imaging using self-mixing in THz QCLs. It consisted of a three-

stepped structure, fabricated on a GaAs substrate using a wet chemical etching 

process, and the top half of the sample was subsequently coated with gold (see 

Figure 2.1). The work based on this stepped sample has been reported in Refs. [34, 

123-126]. During the course of this degree, THz QCLs were also characterised with 

superconducting detectors made from either NbN or YBa2Cu3O7−8 (YBCO) and has 
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been reported in Refs. [127-132]. The transient characteristics of a THz QCL was 

studied, which included ultrafast detection of nanosecond pulses from a THz QCL, 

the transient intrapulse response and interpulse heating effects. These works were 

not the prime objectives of this thesis and hence have not been further mentioned. 

 

Figure 2.1: Illustration of stepped sample fabricated for self-mixing experiments. 

This chapter discusses in detail the fabrication methodology used to process 

terahertz quantum cascade laser with a semi-insulating surface plasmon (SISP) 

waveguide. The experimental setup used to characterise the light-current-voltage 

(LIV) and emission spectra of a standard THz QCL is also described along with the 

characterisation results from a typical THz QCL device. 

2.2 Fabrication of semi-insulating surface plasmon 

waveguide terahertz quantum cascade laser 

Typically, a THz QCL wafer was grown on a semi-insulating (SI) GaAs substrate 
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using molecular beam epitaxy (MBE). A sample with dimensions of 6 mm x 8 mm 

was then processed into a THz QCL chip. The MBE growth was carried out by 

Dr Lianhe H. Li. 

All of the processing steps were undertaken at the nanotechnology cleanroom 

facility in the university. An overview of the processing steps is diagrammatically 

illustrated in Figure 2.2 and can be categorised as: 

1. Dicing, cleaning and edge bead removal. 

2. Wet chemical etching to define the laser ridge. 

3. Bottom contact metallisation and annealing. 

4. Top contact metallisation. 

5. Over-layer metallisation. 

6. Substrate thinning and metallisation. 

7. Top contact sintering. 

8. Cleaning, mounting and wire bonding. 

Details of each stage of the fabrication procedure are explained in the 

following subsections. The protocol to fabricate THz QCLs with semi-insulating 

surface plasmon waveguides was provided by Dr Iman Kundu and similar 

processing techniques have also been described in Refs. [133-135]. Intrinsic details of 

micro and nanofabrication techniques are beyond the scope of this thesis and can be 

found in Refs. [136, 137]. 
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Resist Spin Photolithography Mesa etching Laser ridge 

(a) Wet chemical etching to define laser ridge 

    
Resist Spin Photolithography AuGeNi deposition Lift-off & anneal 

(b) Bottom contact metallisation 

    

Resist Spin Photolithography AuGeNi deposition Lift-off 

(c) Top contact metallisation 

    
Resist Spin Photolithography Ti/Au deposition Lift-off 

(d) Over-layer metallisation 

  
Substrate etching Backside Ti/Au deposition 

(e) Substrate thinning and metallisation 

Figure 2.2: Overview of steps involved in fabrication of THz QCL with a SISP waveguide. 
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2.2.1 Cleaving, cleaning and edge bead removal 

A sample with dimension of 6 × 8 mm was diced from of the MBE grown wafer. This 

was the optimum dimension as the mask sets used was designed to fabricate three 

laser ridges (each ~6 mm long) on each sample simultaneously. Images shown (top 

view) in the following subsections are from one of the fabricated ridges. 

Cleaning the sample was the first step before any photolithographic 

procedure and was done a number of times throughout the fabrication process. The 

sample was immersed in an acetone based ultrasonic bath with ~10% power for a 

minute to remove any unwanted contaminants and organic deposits from its surface. 

It was then rinsed with isopropyl alcohol (IPA) and blow dried using dry N2 stream. 

A thorough clean was done by placing the sample in an Emitech K1050X Plasma 

Asher for five minutes at 85 W. 

The cleaned sample was spin coated with a positive photoresist (Shipley 

Microposit S1813) at 5000 rpm for 30 seconds. This resulted in a typical resist 

thickness ~1.2 μm [138]. Resist coated sample was soft baked to evaporate any excess 

solvent, using a hotplate at 115° C for one minute. Spin coating of resist leads to 

uneven resist build up around the sample edges and its corners. These edge beads 

could potentially impact the quality of any consequent patterning using optical 

photolithography technique. Hence, a chrome-on-glass photolithographic mask set 

was specifically designed to expose the resists around the edges. Using this mask, 

the sample was exposed with 310 nm UV radiation at 10 mW/cm2 for 10 seconds and 

the resist was developed for two minutes in Shipley Microposit MF319. The sample 

was rinsed with De-ionised (DI) water to inhibit further development and was blow 

dried using dry  N2 stream. 

Generally, in a photolithographic step the sample was spin coated with resist, 

exposed with UV under a suitable mask for three seconds, developed in MF319 and 
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rinsed with DI water. At the end of each fabrication step sample was cleaned with 

acetone and IPA and blow dried with dry  N2 stream unless otherwise stated. A 

longer duration of UV exposure for edge bead resist was necessary because of the 

thick resist at the edges. 

2.2.2 Wet chemical etching to define laser ridge 

The active region of the THz QCL was sandwiched between two highly doped n+ 

layers. An etching process is necessary in order to expose the highly n+ doped layer 

beneath the active region. The n+ layer on the surface of the sample (top contact) and 

the post-etch exposed n+ layer (bottom contact) would form the electrical contacts of 

the active region with the outside world. This section describes the process used to 

etch the mesa and to form a laser ridge, as shown in Figure 2.2 (a).  

After edge bead removal, the sample was exposed with UV radiation under 

a chrome mask, developed for 90 seconds, rinsed with DI water and blow dried to 

define the ridge across the sample surface. Figure 2.3 (a) shows an optical microscopy 

image of resist (dark brown) patterned on the sample surface to define the laser ridge. 

Wet chemical etching technique was used to etch the mesa and define the 

laser ridge. A solution of H2SO4, H2O2 and H2O mixed in the ratio of 1:8:40 by volume 

was used as an etchant [139]. As the prepared etchant was exothermic in nature, it 

was allowed to cool down for ~15 minutes to room temperature. The sample was 

carefully etched through the active region, exposing the bottom contacts. The etch 

depth was defined by the active region thickness, typically in the range of~12-15 μm. 

An excessive etching would result in the complete removal of the bottom contact 

layer (500–600 nm), preventing proper electrical contact and would render the 

sample useless. In order to ensure a correct etching depth was reached, the etch depth 

(ridge height including the resist thickness) was measured using an Alpha step 

surface profiler during the etching process. After etching, resist was stripped off 
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using acetone and the sample was cleaned. Figure 2.3 (b) shows a ridge defined on 

the sample after etching. 

  
(a) (b) 

Figure 2.3: Microscope image of sample after (a) photolithography and (b) wet chemical 

etching to define the laser ridge. 

2.2.3 Bottom contact metallisation and annealing 

This section describes the processes followed to form an electrical connection to the 

buried contact layer under the active region of the device and is illustrated in 

Figure 2.2 (b). Positive resist was spun, pre-baked at 90° C and exposed with UV 

radiation under a mask suitable to pattern the bottom contact layer region. Generally, 

it is essential to have an undercut profile in the developed resist for a good lift-off of 

the deposited metals. In order to achieve this, the UV exposed sample was soaked in 

chlorobenzene for 2 minutes, blow-dried, developed for 70 second, rinsed and blow-

dried. Chlorobenzene soak results in a differential rate of development of the 

exposed resist, creating an overhang feature [140]. The sample was subsequently 

cleaned in an oxygen plasma asher for 70 seconds at 25 W before loading it inside a 

thermal evaporator for metal deposition. Figure 2.4 (a) shows a sample prepared for 

metallisation of the bottom contact, after development of the photoresist. 

An eutectic alloy of AuGeNi was deposited to a thickness of ~250–300 nm at 

an evaporation rate of ~2 Å/sec under vacuum (~2 × 10−6 mbar). AuGeNi alloy is 
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commonly used to form a low resistivity ohmic contact for GaAs/AlGaAs 

heterostructures and n-type GaAs [141, 142]. The metal evaporated sample was 

immersed in acetone for lift-off. This dissolved the unexposed (remaining) 

photoresist from the sample, effectively removing the unwanted metals from the 

sample. The sample was then cleaned, and blow-dried. Figure 2.4 (b) shows 

metallised bottom contacts on both sides of the laser ridge. 

  
(a) (b) 

 
(c) 

Figure 2.4: Microscope image after (a) photolithography, (b) bottom contact metallisation 

(AuGeNi) and (c) annealing of the device. 

The sample was annealed at 430° C for one minute using an AnnealSys rapid 

thermal annealer. Annealing of the deposited alloy was essential to decreases contact 

resistivity [142, 143] to as low as ~10−6 Ω/cm2. Annealing at such temperatures 

allows Ge atoms to diffuse into the underlying GaAs and increasing its effective 

doping concentration [141, 144, 145]. Figure 2.4 (c) shows a microscope image of a 

sample after annealing. The change in metallised bottom contact appearance is 

evident due to the effects of annealing. 
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To check the quality of the electrical contact, the resistance between the 

bottom contacts was measured, using a multimeter and a probe station. The 

resistance between the contacts typically ranges between 5–10 Ω. A higher resistance 

could potentially arise due to fabrication issues such as an over-etched mesa or poor 

metallisation of bottom contacts, and could possibly result in poor thermal 

performance of the device. As such, it was not advisable to continue fabrication of 

such a sample. 

2.2.4 Top contact metallisation 

This section describes the deposition of thin metallic ohmic contact rails on top of the 

laser ridge to serve as the second electrical terminal on top of the laser ridge (top 

contact) and is illustrated in Figure 2.2 (c). To reduce waveguide losses, only two 

10 μm-wide rails of ohmic contact was metallised along the length of the ridge on top 

of the laser [146]. However, annealing of this ohmic contact, similar to the annealing 

of the bottom contact, was not carried out after deposition to avoid diffusion of Ge 

atoms into the active region of the device. 

The fabrication steps used to deposit the top electrical contact is similar to 

those used to form the bottom contact metallisation, as mentioned in the previous 

section and is briefly described here. After annealing of the bottom contact, the 

sample was cleaned, spin coated with photoresist, pre-baked, exposed to UV 

radiation under a suitable mask for top contact lithography, soaked in 

chlorobenzene, developed, rinsed and blow-dried. Figure 2.5 (a) shows a microscope 

image of the sample with two exposed thin rails on top of the laser ridge formed after 

the development of the resist. Further processing steps included cleaning of the 

exposed sample surface in oxygen plasma asher, thermal evaporation of 100–130 nm-

thick AuGeNi alloy and lift-off in acetone. Figure 2.5 (b) shows a microscope image 

of a sample with metallised top contact. 
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(a) (b) 

Figure 2.5: Microscope image of sample after (a) photolithography and (b) top contact 

metallisation (AuGeNi) on top of the laser ridge. 

2.2.5 Over-layer metallisation 

This section describes the deposition of a thin layer of Ti/Au on top of the laser ridge 

and the bottom contacts, and is illustrated in Figure 2.2 (d). The deposition was 

necessary to confine the THz radiation inside the laser cavity and to facilitate wire 

bonding of the contacts as explained later in Section 2.2.8. Cr or Ti has been widely 

used as an adhesive layer for Au. 

  
(a) (b) 

Figure 2.6: Microscope image of the sample after (a) photolithography and (b) over-layer 

metal deposition over the bottom contacts and laser ridge. 

The fabrication steps followed during this stage were similar to both the 

bottom and the top contact metallisation, as mentioned previously. Figure 2.6 (a) 
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shows a microscope image of a sample with exposed bottom contacts and the top of 

the ridge after photoresist development. Similarly, Figure 2.6 (b) shows a microscope 

image of a sample after thermal evaporation of Ti/Au (20 nm/200 nm) and lift-off. 

2.2.6 Substrate thinning and metallisation 

This section describes the etching of the substrate and metallisation of the backside 

with Ti/Au and is illustrated in Figure 2.2 (e). Reducing the SI-GaAs substrate 

thickness allows better heat dissipation and hence improves thermal performance of 

the device [63]. Metallisation of the backside allows improved adhesion to the 

indium on copper block during mounting, mentioned later in Section 2.2.8. 

The sample was placed with the laser ridge side immersed in molten wax on 

a glass slide. It was important for the wax to cover and protect the ridges while 

etching the 500 μm substrate. The sample stuck to the glass slide was immersed in 

an etchant solution of H2SO4, H2O2 and H2O mixed in 1:8:1 proportion by volume, 

with a much higher etching rate than the solution prepared to define the laser ridge 

(see Section 2.2.2). The etchant was heated at 50° C and an etch rate of approximately 

20 μm/min was measured. A Tesatronic micrometer was used to regularly monitor 

the etch depth. Approximately 300 μm of the substrate was etched. The sample was 

then rinsed and blow-dried to stop any further etching. The sample on glass slide 

was then heated to carefully remove the chip from the molten wax. The sample was 

then immersed in trichloroethylene to remove any residual wax, cleaned in acetone 

and IPA and blow-dried. 

After thinning of the substrate, the sample was very fragile to handle and 

extra care was taken in all subsequent processing steps. The sample was cleaned in 

oxygen plasma asher for 70 seconds at 25 W power. Thermal deposition of Ti/Au 

(20 nm/150 nm) was done on the backside of the sample. 
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2.2.7 Top contact sintering 

The sample was then sintered at 270° C for four minutes in a rapid thermal annealer. 

A similar soft annealing, especially for the top contact, has also been reported in 

Ref. [110]. Sintering at such temperature prevents unwanted penetration of Ge atoms 

into the active region. Although this step could have been performed before 

over-layer metallisation, performing it at this point has been reported to improve 

overall adhesion of deposited metals [135]. 

At this point, the laser ridge was ready to be cleaved into laser ridges of the 

desired length, packaged onto a copper block and wire bonded for electrical 

connections.  

2.2.8 Cleaving, mounting and wire bonding 

As mentioned earlier, each fabricated sample had three sets of laser ridges (each 

~6 mm long) processed on the same chip. The ridges were separated by scribing with 

a JFP S-100 scriber and manually applying force to cleave through the scribed region. 

Each laser ridge could then be precisely scribed to a desired Fabry–Pérot cavity 

length by using the same scriber. Scribed ridges were then carefully cleaved to obtain 

a mirror–like facet on either side of the device. Facets were inspected under an optical 

microscope for any cracks or visible damage, as these could potentially increase 

mirror losses. Alternatively, scribing was also performed manually using a scalpel 

knife by gently scratching the edge of the sample in the direction of cleaving. This 

technique was impractical to produce devices of precise cavity length and had low 

yield due to manual handling and the resulting damage.  

Two scribed laser ridges were packaged on a copper block for 

characterisation. A copper block with a single polished side was cleaned using an 

ultrasonic bath in acetone and IPA. The polished surface was subsequently coated 
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with thermally evaporated Ti/Au (20 nm/150 nm). Gold-coated ceramic pads were 

glued into the copper block using Ge and would serve as the physical terminals of 

the mounted laser after wire bonding.  

Indium foil was melted on the gold-coated surface of the Cu block at a 

temperature of ~145° C. The temperature was subsequently reduced to 130° C, below 

the melting point of indium. Each of the two laser ridges were then carefully position 

and pinned down on the indium foil. The temperature of the hotplate was then 

increased above the melting point of indium. The indium improved the adhesion of 

the substrate with the copper block and consequently improved the thermal contact 

between device substrate and copper block. Ridges and their respective bottom 

contacts were then wire-bonded to the ceramic pads using a Kulicke & Soffa 4524 

Ball Bonder at a reduced heatsink temperature of 80–100° C.  

 

 

(a) (b) 

Figure 2.7: (a) Microscopy image of a wire-bonded device. (b) Optical image of two devices 

packaged on a copper block. 

Figure 2.7 (a) shows a microscope image of wire bonded laser ridge and its 

bottom contact. Figure 2.7 (b) shows a diagrammatic representation of a completely 

packaged copper block along with two wire-bonded laser ridges and ceramic pads. 

The packaged devices were subsequently characterised, as discussed next. 
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2.3 Characterisation of THz QCLs with a SISP 

waveguide 

The power-current-voltage (LIV) characteristics and spectral emission of THz QCLs 

were characterised post-fabrication. A detailed explanation of experimental setup 

and results from an exemplar device fabricated from a wafer labelled L-786 are 

discussed in the following sections. 

2.3.1 Experimental configuration 

 

Figure 2.8: Schematic of the LIV characterisation setup of a standard THz QCL. 

The experimental configuration for characterising the LIV relations of a THz QCL is 

diagrammatically represented in Figure 2.8. The packaged device(s) was placed on 

the cold finger of a Janis ST-100 continuous flow cryostat. The cryostat itself was 

mounted on a XYZ manual translation stage to precisely control the device position 

with respect to other optical components, and was pumped down to a vacuum 

pressure of ~8 × 10−6 mbar using a turbo vacuum pump, and subsequently cooled 
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using liquid helium. The radiation from the laser traversed through the polyethylene 

window of the cryostat and was collected, collimated and focussed onto a He-cooled 

bolometer with the help of two off-axis gold-coated parabolic mirrors. The 

environment was purged with N2 to reduce the effect of water vapour absorption of 

the emitted THz radiation. The absolute power of the device was measured using a 

pre-calibrated Thomas Keating Absolute Terahertz Power Meter. 

 

Figure 2.9: Schematic of the experimental setup used for spectral characterisation of a 

standard THz QCL. 

The experimental configuration for characterising the spectral response is 

diagrammatically represented in Figure 2.9. Two off-axis parabolic mirrors were 

used to collect and direct the radiation inside a Bruker Optics IFS66/V Fourier 

transform infrared (FTIR) spectrometer (7.5 GHz resolution bandwidth). Bolometric 

detection was used to record the interference signal from the spectrometer and also 

align the laser for better signal-to-noise ratio. 

The THz QCL was biased using an Agilent 8114A High Power Pulse 

Generator, with a 10 kHz pulse train, maximum operational frequency of the 

generator, at 2% duty cycle and this signal was modulated for lock-in detection at 

167 Hz (30 Hz) to match the bolometer’s (absolute power meter) peak responsivity 
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for better signal sensitivity. The optimised modulation frequency for bolometer and 

absolute power meter was provided by their respective manufacturers. An inductive 

loop current probe with 1:1 current-to-voltage representation was used to measure 

the output current from the pulse generator feeding the device. The output of the 

loop was terminated with a 50 Ω load on one channel of an oscilloscope to record the 

current through the device. The heatsink temperature was controlled and monitored 

through a temperature controller. A semi-automated measurement environment was 

created using a LabVIEW program, courtesy of Dr A. Valavanis. For spectral 

characterisation, the output of the bolometer was connected to the FTIR spectrometer 

and a computer software package was used to calculate the spectra. 

2.3.2 Results 

Characterisation results from a 2.54 mm-long, 12 μm-high and 150 μm-wide THz 

QCL with a bound-to-continuum active region design (wafer L-786) has been 

presented in this section. LIV characterisation was carried out in pulsed mode at a 

range of heatsink temperatures from 4–60 K and is shown in Figure 2.10 (a). Peak 

emission was measured to be 0.18 mW with the absolute power meter at a heatsink 

temperature of 4K. The maximum operating temperature was observed to be 72.5 K 

beyond which no lasing was observed. 

Spectral characterisation of the device was performed with a range of applied 

biases from 3.50–5.50 V at a heatsink temperature of ~4K. The spectra obtained have 

been stacked together in Figure 2.10 (b). A multimode emission with a Fabry–Pérot 

longitudinal mode spacing of ~17.8 GHz centred at 2.81 THz was observed. Emission 

spectra with approximately 8–9 Fabry–Pérot modes were observed at higher 

electrical bias. 
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(a) (b) 

  
(c) (c) 

Figure 2.10: (a) LIV from a fabricated THz QCL (wafer L-786) at various heatsink 

temperatures. (b) Spectral emission at a range of applied drive biases at a 

heatsink temperature of 4 K. (c) Threshold current density and (d) peak power 

as a function of heatsink temperature (black dots) with exponential and 

Boltzman fit (red line) respectively. 

LIV characterisation data was analysed further and the threshold current 

density is plotted as a function of heatsink temperature [Figure 2.10 (c)]. The increase 

of threshold current density agrees well with an exponential fit (red solid line) and 

this result is in agreement with that observed in other quantum cascade lasers and 

other laser types as reported in Ref. [109]. The exponential relationship can be 

expressed in a general form as Jth(T) = J0 exp (
T

T0
) + J1, where J0 and J1 are the 

constants, Jth, T0 and T are the threshold current density, characteristic temperature 

and absolute temperature, respectively. For this particular device, T0 obtained from 
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the exponential fit was 20 ± 2.7 K. This characteristic temperature is a measure of 

temperature sensitivity of a device. A higher characteristics temperature implies 

improved temperature performance of the device [147]. Typically, characteristic 

temperature values vary from 100–200 K for MIR QCLs and is typically below 100 K 

for other semiconductor laser types [109]. The lower value of T0 in THz QCLs can be 

attributed to the thermal backfilling and thermally activated LO phonon 

scattering [148]. Thermal backfilling refers to backfilling of electrons in lower lasing 

state due to increase in their thermal excitation or “reabsorption of non-equilibrium 

LO-phonons” [2]. Thermally activated LO phonon scattering refers to the process 

when electrons in the upper lasing state gains enough energy to depopulate by 

emission of non-radiative phonon and reach the lower lasing state [2]. Both processes 

causes reduction in population inversion and hence performance of the laser. T0 in 

THz QCLs have been reported as high as 69.9 K [148]. 

Finally, the estimated peak power was plotted as a function of the heatsink 

temperature as shown in Figure 2.10 (d). It agrees well with a Boltzmann fit (red line) 

and is consistent with previously reported results in Refs. [133, 149]. 

2.4 Summary 

In this chapter, the processing steps to fabricate terahertz quantum cascade laser with 

a semi-insulating surface plasmon waveguide was described in detail. The 

processing steps involved etching, photolithography, metallisation, annealing, 

manual cleaving and wire bonding.  

The characterisation apparatus to measure light-current-voltage 

relationships and emission spectrum was explained. Results obtained from a 

semi-insulating surface plasmon waveguide THz QCL fabricated on a home-grown 

wafer were discussed.  
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THz QCLs fabricated following a similar methodology as discussed in this 

chapter were used in a range of applications including diffuse reflectance 

spectroscopy and continuous-wave injection locking, which are discussed in Chapter 

3 and Chapter 5 respectively.
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Chapter 3 

 

 

 

Diffuse reflectance spectroscopy at terahertz 

frequencies 

3.1 Background 

Under ideal conditions, a perfectly non-absorbing medium would reflect an incident 

THz beam in two limiting ways depending on its surface. A perfectly smooth surface 

gives rise to mirror-like specular reflections; as stated in Fresnel’s law of reflection, 

the angle of incidence is equal to the angle of reflection. A completely scattering 

(rough) surface, i.e. a Lambertian surface, would uniformly reflect light in all 

direction; this is known as diffuse reflection. As real-world objects are far from ideal, 

incident light is not either specularly or diffusely reflected, but a portion of it is 

absorbed or is transmitted through the medium. These material-specific transmission 

and reflection properties can be utilised to image objects, and acquire spectroscopic 

signatures. 

Demonstration of terahertz imaging can be traced way back to 1960s in the 
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field of astronomy [26]. Transmission imaging at these frequencies have been 

reported as early as 1970s [150, 151]. Various terahertz imaging systems have been 

reported using either a transmission [9, 11, 14, 16, 32, 152-157] or reflection 

geometry [8, 158-165]. In transmission mode, a THz beam is focused at the sample 

plane and detected using either near-field [166, 167] or far-field [8, 11, 157] imaging 

configurations. This allows access to material specific parameters such as absorption 

coefficients and refractive index over a broad spectrum of frequencies, as large as 

100 THz [168]. 

Most of the experimental configurations have used the concept of terahertz 

time-domain spectroscopy (THz TDS), which has been described in Section 1.3.1. 

These terahertz pulsed imaging (TPI) systems rely on expensive near-infrared/visible 

extremely short pulse (~fs) laser, and an extremely low THz power (~μW) is 

generated from emitters fabricated on photoconductive semiconductor 

substrates [44] with a maximum frequency resolution of ~5 GHz [34]. Hence only 

very thin samples, typically    1 mm, with relatively low absorption at THz 

frequencies can be used for imaging purposes to prevent complete absorption of the 

radiation [162, 165]. 

For real-world applications a reflection geometry is more desirable as 

spectroscopic imaging of bulky and highly absorbing samples is possible even with 

low THz incident power [8]. Under a reflection geometry, the interaction of incident 

radiation with a rough surface can include directional specular reflection, 

non-directional diffuse Fresnel reflection [160] and absorption of radiation [162]. 

Diffuse reflections generally provide a more practically useful way of 

imaging objects than specular. Indeed, most of the images perceived by the eye are 

formed due to diffuse reflections from rough surfaces, with the exceptions such as 

smooth or polished metals, shiny objects, glass, and luminous objects. A few of the 
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very many potential applications of diffuse reflectance are detection of cancerous 

tissues [169] and explosives [160], characterisation of powdered materials [162, 165], 

in the field of pharmaceuticals [43], dentistry [170], biomedical [171], acoustics [172], 

astronomy [173], geology [174], dark field microscopy [175] and Diffuse Reflectance 

Infrared Fourier Transform Spectroscopy (DRIFTS) [176]. 

Diffuse Reflection Imaging (DRI) techniques sense scattered radiation from 

the surface of an object and have their own set of advantages over transmission or 

specular reflection imaging. Diffuse reflections depends on the scattering 

cross-section and bulk-absorption properties of rough surfaces or powdered 

samples [177] and can provide more detailed signatures of the sample such as 

particle size, packing density, distribution of particle sizes and shape as compared to 

specular reflection. Unlike transmission or specular reflection geometries, DRI allows 

real-life stand-off imaging of objects where precise alignment of collection optics is 

not possible [160] in applications such as security imaging, imaging of surfaces of 

planets using satellites [173], identification of mineral composition of soil [178], and 

segregation of pharmaceutical particles [179]. Objects concealed in smooth surfaced 

packaging materials or those having strong sub-surface scattering such as powders, 

would be challenging to identify using specular reflection imaging techniques. As 

the collection optics of DRI are aligned away from the specular reflection path, 

reflections from smooth packaging would not contribute in the measurements, 

enabling imaging of concealed items [162]. The intensity of diffuse reflections 

depends on the particle size with respect the incident radiation wavelength and also 

the complex refractive index of the material, which determines the amount of 

radiation absorbed while traversing through the particles [162]. 

DRI at terahertz frequencies has been previously reported using a THz TDS 

system [160]. Phase information of the signal was not available using this technique 

due to the difference in the radiation scattering position of the sample and the 
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reference. Absorbance values were calculated for an explosive compound commonly 

known as RDX (hexahydro-1,3,5-trinitro-1,3,5,-triazine) using a Kramers–Kronig 

transformation. These results were in good agreement with the absorption coefficient 

obtained from conventional THz TDS in a transmission geometry. DRI was also 

performed with RDX concealed in materials including paper, polyethylene, leather 

and polyester, and showed an acceptable match in spectral signatures of RDX in each 

case. 

As diffusely reflected signal amplitudes are very low, high intensity sources 

such as THz QCLs would be ideal for DRI. QCLs have been reported previously as 

sources for imaging in transmission geometries [180, 181] because of their high 

emission powers and very narrow linewidths. They are also a good alternative 

source for DRI and have been used for analysis of powdered samples at a single THz 

frequency [162, 165, 182]. 

  

 

(a) (b) (c) 

Figure 3.1: (a) Optical image of admixtures of polymethyl methacrylate (PMMA) and 

polystyrene in a polystyrene sample holder without any lid. PMMA 

mass-concentration has been labelled. (b) Specular and (c) diffuse reflection 

images of sample with lid on. Image taken from [34, 162]. 

Diffuse reflection imaging of various concentration (wt%) of PMMA diluted 
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with weakly absorbing powdered polystyrene was performed at 2.8 THz. Figure 3.1 

shows (a) optical image of the content (without lid), (b) specular THz (with lid on) 

and (c) diffuse reflection images of samples in a polystyrene sample holder. Diffuse 

reflection imaging was able to reveal the concealed powders, whereas the specular 

image comprised predominately of specular reflection of the incident beam off the 

polystyrene lid on the sample holder. Varied diffuse reflectance intensities were 

observed with respect to sample concentration, as seen in Figure 3.1 (c). This 

work [162] provided the first demonstration of a calculation of absorption coefficient 

from diffuse reflectance using THz QCL. 

 
 

(a) (b) 

Figure 3.2: (a) Diffuse reflection image at 2.8 THz of 100% purity powdered sample (from 

left: sucrose, lactose monohydrate, glucose monohydrate and polyethylene) in 

a polystyrene sample holder. (b) Absorption coefficients 𝛼 inferred from 

quasi-crystalline approximation plotted against Beer–Lambert absorption 

coefficient 𝛼𝑇𝐷𝑆 obtained from THz TDS measurements for number of different 

samples. 100% purity samples have been marked with squares, 40% and 15% 

diluted samples in triangles and circles respectively. Samples were diluted 

with polyethylene powder. The dashed line represents the identity line. The 

solid line represents a line of best fit. Images taken from [165]. 

Another work reported DRI of a range of powdered materials at a single THz 

QCL frequency, and the absorption coefficients of the samples were determined 
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using a quasi-crystalline approximation (QCA) in a T-matrix formation, using an 

assumed Percus–Yevick pair distribution of particles [165]. Figure 3.2 (a) shows a 

diffuse image at 2.8 THz of samples in a polystyrene container (from left: sucrose, 

lactose monohydrate, glucose monohydrate and polyethylene). A plot of absorption 

coefficients inferred from the QCA versus those obtained from THz TDS for a 

number of different samples is shown in Figure 3.2 (b). The calculated absorption 

coefficient is in a good agreement with the absorption coefficient obtained from THz 

TDS over a wide range of effective absorption coefficient. 

This chapter discusses the optical and electronic configuration for DRI 

measurements using an electrically tunable multi-frequency THz QCL, including the 

characterisation of the source, the THz spot-size, and the signal-to-noise ratio (SNR) 

of the system. Powdered samples packed in plastic cuvettes with strong specular 

reflection are imaged at four different THz QCL emission frequencies. The 

absorption coefficient is extracted using simplistic models such as an 

effective-optical-path-length and the Kubelka–Munk theory. Inferred absorption 

coefficients are then compared with the Beer–Lambert absorption coefficient 

obtained using more established THz TDS measurements. 

3.2 Experimental configuration 

The THz source used in this work was a THz QCL with a heterogeneous active 

region, as already described in Ref. [183]. The active region was carefully engineered 

to allow tuning of the lasing frequency by changing the applied electric field and was 

based on three-well resonant-phonon depopulation design as mentioned in 

Ref. [184]. Molecular beam epitaxy (MBE) was used to grow the heterogeneous 

structure. The growth rate of Ga was ramped in a periodic manner over 23 modules 

each with 10 repeated periods to form the active region. The wafer was then 

fabricated into a single-metal surface-plasmon waveguide [185] with ridge 
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dimensions of ~1.5 mm long and ~140 μm wide. The device was packaged on a Cu 

block and mounted on the cold finger of a closed cycle pulse-tube helium refrigerator 

(CRYOMECH PT403-2440320). The emission window was made of polyethylene. 

The cryostat was pumped with a turbo vacuum pump below 1 × 10−5 mbar before 

turning on the cryo-cooler. 

The device was cryogenically cooled to ~6 K, monitored on a temperature 

controller connected to the cold-finger, and biased using an Agilent 8114A pulse 

generator and a current doubling transformer, with a 10 kHz pulse train at 2% duty 

cycle. The detector used was a helium cooled silicon bolometer. The THz QCL bias 

was modulated using a function generator for lock-in detection at a frequency of 

167 Hz, which was chosen to match the bolometer’s peak responsivity for better 

detection sensitivity. 

The schematic diagram of the experimental apparatus, with its optical path 

and electrical connections, is shown in Figure 3.3. A similar experimental 

configuration has been reported elsewhere [162, 165]. The incident optics (𝑀1, 𝑀2) 

collected, collimated and focused the diverging radiation from the QCL onto the 

sample plane at an incident angle of 30° using two gold plated parabolic reflectors. 

The first parabolic reflector (𝑀1 in Figure 3.3) had a 3-inch diameter, 90°off-axis with 

focal length to diameter ratio of f/1.7, and the second parabolic reflector (𝑀2 in 

Figure 3.3) had a focal length of 33 cm and f/4.3. A 2-inch-diameter, 90° off-axis f/2 

parabolic reflector (𝑀3 in Figure 3.3) was placed normally to the sample plane for the 

purpose of collecting diffusely scattered and non-directional reflected radiation. 

Collimated radiation was reflected using a planar gold-coated mirror (𝑀4 in 

Figure 3.3) onto a final 90° off-axis parabolic reflector (M5 in Figure 3.3) and focused 

into the helium-cooled silicon bolometer. The off-axis alignment of the collection 

optics ensured that no contribution of the specular reflected radiation coupled into 

the detector. The total optical path length between sample and detector was ~30 cm. 
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Figure 3.3: Schematic diagram of diffuse reflectance imaging setup. The detector marked 

with ‘D’ was a helium-cooled silicon bolometer. Image courtesy of 

Dr A. Valavanis and also presented in Ref. [186, 187]. 

The emission frequency of the THz QCL was determined as a function of 

drive current using a Fourier-transform infrared (FTIR) spectrometer as discussed in 

Section 2.3. A discrete blueshift in peak emission frequency was observed with 

increase in drive current as shown in Figure 3.4, with a discrete tuning range of 

~290 GHz. The threshold current density was 1150 Acm−2, with maximum operating 

temperature of ~70 K and peak optical output power of ~8 mW. The four primary 

quasi-single-mode emission frequencies were determined to be 3.06, 3.21, 3.28 and 

3.35 THz. The mid-value of the drive current range for each frequency was chosen as 

its operating current level to maximise output power. 3.13 THz was avoided for 

imaging purposes because emission was not single mode. As a result, it would add 

complications to the experimental data analysis. Hence, the operating currents for 

the 3.06, 3.21, 3.28 and 3.35 THz emission frequency lines were 2.72, 3.24, 3.60, 3.80 A, 

respectively. 
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Figure 3.4: Peak emission frequency at various drive current levels. Spectral intensities 

below 20 dB of peak emission have been neglected. Data courtesy of 

Dr A. Valavanis and have been presented in Ref. [187]. 

Imaging was carried out by mounting either two or three samples on a 

two-axis translational stage and raster scanning them across the focal plane of the 

incident THz radiation with a step size of 250 μm. A time-averaged lock-in signal 

was measured with a time constant of 10 ms for each point. A 120 × 120 pixel image 

was acquired for each frequency point, totalling to ~20 minutes of scan time for all 

four frequency points. All the measurements were carried out under normal 

atmospheric conditions (i.e. not in a purged environment), thereby demonstrating 

real-world application of this technique. 

3.3 System characterisation 

The THz radiation spot size on the sample plane was measured using a ‘knife-edge’ 

measurement technique. A gold-coated ISO P120 sandpaper, with an average 

particle size of 120 μm, was placed on a smooth microscope glass coverslip. It was 

mounted on the sample holder of the translational stage, scanned in the x-direction 

through the radiation spot (as shown in Figure 3.3) and the DR power at 3.28 THz 

was measured close to the edge of the gold-coated sandpaper. The translational stage 
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was moved in the z-direction to optimise the focal spot size. An image of the 

gold-coated sandpaper during one of the scans at 3.28 THz is shown in Figure 3.5 (a). 

The measured DR power across the edge of the gold-coated sandpaper followed a 

Gauss error function with a half-width at half-maximum ω = ~1.5 mm as shown in 

Figure 3.5 (b). The measurement was carried out by Dr A. Valavanis. Note that a 

smaller spot size of ~300 μm with the same system has been reported earlier using a 

2.8 THz QCL [162]. Since this work has been carried out with a THz QCL operating 

at higher frequency, better system resolution can be achieved. An optimised spot size 

was not a necessity as a number of independent measurements of the sample could 

be performed with the spot size obtained. A tightly focussed spot was not required 

as obtaining powder distribution was not of interest in the current work. Besides, a 

relatively big spot helped in averaging out variations in the powder. Since the 

powder grain size used for this work was ~10–15 μm, it can be considered as a 

quasi-homogeneous scattering media within the frequency domain of interest. 

The contrast performance of the imaging system was characterised by 

modulation transfer function (MTF) technique. This method is used to measure how 

accurately does the imaging system image an object. Ideally, a sinusoidal varying 

pattern has to be scanned across the sample plane to obtain a sine-wave-like 

response, but fabricating such a test pattern is difficult. Hence, a bar pattern of 

gold-on-glass was used as a resolution target to scan across the sample plane in both 

horizontal (𝑥) and vertical (𝑦) directions. The MTF of the system shown in 

Figure 3.5 (c) was obtained by measuring the square-wave modulation and applying 

a first-order Coltman expansion [188]. The MTF was fairly constant until a spatial 

frequency of 0.6 mm−1, which corresponds to spatial distance of approximately 

1.7 mm. This estimate of the spot size was close to the result from ‘knife-edge’ 

measurement. The method has also been explained in Ref. [162]. This measurement 

was courtesy of D. R. Bacon and Dr A. Valavanis. 



Chapter 3: Diffuse reflectance spectroscopy at terahertz frequencies 

48 

  
(a) (b) 

  
(c) (d) 

Figure 3.5: (a) Diffuse reflection image obtained of gold-coated sandpaper (bright area) on 

a glass coverslip (dark area) at 3.28 THz. (b) Measured THz power as scanned 

across the edge of gold-coated sandpaper at 3.28 THz. A fitted Gauss error 

function is represented by the solid line. (c) MTF scans performed in both 

horizontal (𝑥) and vertical (𝑦) directions with error bars signifying the range 

of values obtained from three individual scans. (d) Diffuse reflection image of 

a two pence coin taken at 3.28 THz. Data shown in (b) and (c) courtesy of 

Dr A. Valavanis and D. R. Bacon. 

To demonstrate the quality of the imaging system, a two-pence coin was 

mounted on a microscope coverslip and placed on the sample holder. It was cleaned 

with citric acid and a mixture of acetone and methanol to remove any inorganic and 

organic contaminations from its surface. A two-dimensional image was acquired at 

3.28 THz with a step size of 0.25 mm as shown in Figure 3.5 (d). The strong reflections 

on the right and left edges of the coin were actually the specular off-axis reflections 
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from the edge of the glass coverslips. Areas with no textures or writing appear very 

dark as they are smooth surfaces and diffuse reflections are minimal. With this 

resolution small features on the coin were visible. 

An arbitrary spot on the gold-coated sandpaper was used to approximate a 

perfectly diffuse reflecting sample. The maximum SNR of the system was estimated 

as the ratio of the mean to the standard deviation of the signal obtained from the 

lock-in amplifier at a 10 ms and 1 s time-constant for each of the emission frequencies 

as shown in Table 3.1. The SNR achieved with a 10 ms time-constant was between 

~15–20 dB but was improved by ~20 dB when the lock-in time-constant was increased 

to 1 s. 

The bolometer was the only optical component that could be displaced easily 

on an everyday basis when it was topped up with liquid nitrogen or helium. 

Everything else was bolted down to the optical bench. To realign the bolometer, the 

gold-coated sandpaper was placed on the sample mount of the translational stage. 

The stage was positioned so that the THz beam spot was on the gold-coated 

sandpaper. The bolometer was manually positioned to improve the DR signal 

measured on the lock-in amplifier. 

Frequency (THz) SNR (10 ms) SNR (1 s) 

3.06 20.5 40.9 

3.21 15.1 36.0 

3.28 23.1 42.8 

3.35 15.2 39.0 

Table 3.1: SNR in decibels for each emission frequencies. Data courtesy of Dr A Valavanis and 

has been presented in Ref. [187]. 

3.4 THz TDS reference measurement 

THz TDS was performed on the samples used for diffuse reflectance measurements. 
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These measurements were done to provide a reference value of absorption 

coefficients obtained from a conventional technique to be compared with the 

absorption coefficients inferred from DRI measurements. The THz TDS apparatus 

has already been explained in 1.3.1.1. As the THz TDS technique employed here is a 

transmission measurement, the THz pulse had to pass through the sample to be 

measured. Most of the signal would have been lost due to scattering by loosely 

packed powdered particles. Hence samples were prepared in the form of pressed 

pellets for THz TDS as explained below. Conversely, samples for diffuse reflectance 

imaging measurements were prepared in powdered form, as explained in 

Section 3.5. Pellets with almost smooth surfaces would have very weak diffuse 

reflection and hence would be unsuitable for DRI because specular reflection would 

be more prominent. 

All the samples prepared and measured using THz TDS have been listed 

in Table 3.2. A total powder admixture of 40 mg was weighed precisely using an 

OHAUS Adventurer Balance AR0640. It was then placed within a thin copper O-ring 

and a mechanical force of 8–8.5 tons was applied for 5 minutes using a SPECAC 

Manual Hydraulic Press. The powdered admixture was pressed into a circular pellet 

of 8 mm diameter and 0.3-0.4 mm thickness as shown in Figure 3.6. 

 

Figure 3.6: Optical image of a sample pressed into a pellet for THz TDS measurement. 
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Sample Sample 

PTFE 55 μm Granulated Sugar 

Glucose Monohydrate Sucrose 

Glucose Monohydrate Caffeine 

Lactose Monohydrate Lydocaine 

Glucose Anhydrous Benzocaine 

Lactose Anhydrous Cellulose micro-granular 

Ammonium Nitrate  

Table 3.2: Samples prepared for THz TDS and DR imaging measurement 

A reference time-delayed THz pulse scan was taken without any sample 

placed in the system. Pellets were then placed in the sample holder. For each pellet, 

ten scans were performed at a single position on the sample surface and averaged in 

order to reduce any pulse amplitude error due to fluctuation of laser intensity, or 

optical, electronic and mechanical errors. Nine different positions were scanned and 

averaged to minimize error due to inhomogeneity of the sample. The obtained 

electric fields of the reference signal and from the sample were terminated after ~5 ps 

in order to eliminate the effect of any reflected THz radiation from the electro-optic 

crystal. Signals were then padded to a total length of 15 ps in time with the last 

known amplitude. A fast Fourier transform (FFT) was performed on the reference 

and sample signals. Padding of the signal helped to achieve interpolation between 

specific frequencies, and hence smoothing of data points. Due to termination of the 

time-domain signal, the spectral resolution was ~175 GHz before padding of the 

signal. A typical reference time-domain THz pulse and THz pulses through pressed 

pellet of 100% sucrose, 100% caffeine and 100% cellulose microgranular are shown 

in Figure 3.7. Most noticeably signals detected through samples show a decrease in 

amplitude and a phase lag as compared to the reference signal. 
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Figure 3.7: Time-domain THz reference pulse (black line) and pulses through 100% 

sucrose, 100% caffeine and 100% cellulose microgranular samples (red, blue 

and green lines respectively). 

The frequency domain signal was further processed mathematically to obtain 

the refractive index, absorption coefficient of the sample under consideration and 

maximum measureable absorption coefficient. The pellet was assumed to be 

quasi-uniform and therefore the effect of radiation scattering was considered 

negligible. The measurement technique and the following analysis have already been 

reported in Ref. [165]. 

The refractive index of the sample under consideration, nsam(𝑣), Fresnel 

reflection coefficient, R(𝑣) and absorption coefficient, αTDS(𝑣) can be expressed as: 

 nsam(𝑣) = 1 +
𝑐

2𝜋𝑑𝑣
[φsam(𝑣) − φref(𝑣)] 3.1 

 R(𝑣) = |
nsam(𝑣) − nair

nsam(𝑣) + nair
|

2

 3.2 



Chapter 3: Diffuse reflectance spectroscopy at terahertz frequencies 

53 

 𝛼𝑇𝐷𝑆(𝑣) = −
2

𝑑
ln {

Asam(𝑣)

Aref(𝑣)(1 − R(𝑣))
} 3.3 

where c is the speed of light, d is the thickness of sample, 𝑣 is frequency, [φsam(𝑣), 

Asam(𝑣)] and [φref(𝑣), Aref(𝑣)] are the phase and amplitude of the sample and 

reference in frequency domain, respectively, and nair is the refractive index of the air, 

assumed as 1 [157]. 

 

Figure 3.8: Fast Fourier Transform of the reference signal with the noise floor marked in 

red. 

The absorption coefficient calculated using THz TDS has certain limitations 

which has been qualitatively explained in Ref. [189]. The maximum measureable 

absorption coefficient of a system largely depends on the noise floor (NF) of the 

system. A signal level just above the maximum bandwidth of the reference scan was 

estimated as noise floor of the system, as shown in Figure 3.8. The dynamic range 

(DR) can be expressed as DR = (A_ref (𝑣)) ⁄ NF and the maximum measureable 

absorption coefficient   αMAX, of the system was calculated using the following 

equations: [189] 
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Figure 3.9: Absorption coefficient αTDS (black line), maximum measureable absorption 

coefficient    αMAX (red line) and refractive index nsam (blue line) calculated 

from the time-domain THz pulses for various pure samples.  

Figure 3.9 shows exemplar traces of the absorption coefficient, maximum 

measureable absorption coefficient and refractive index of 100% sucrose, 

100% caffeine and 100% cellulose microgranular samples. Similar calculations were 

carried out for all the measured samples in Table 3.2. Each sample shows a unique 

spectral fingerprint. The absorption coefficient values are unreliable once it exceeds 

the maximum measureable absorption coefficient. [189, 190]. But this does not limit 

the measured refractive index [189]. 

 αMAX =
2

𝑑
ln [DR 

4nsam(𝑣)

(nsam(𝑣) + 1)2] 3.4 
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3.5 Diffuse reflectance sample preparation 

Crystalline and polycrystalline samples with broad absorption features between 3 

and 3.4 THz were chosen for this multi-frequency imaging purpose. They were 

dehydrated in an oven at 40 °C for 48 hours to remove any moisture content. Each of 

the powdered solids was then ground for five minutes using a pestle and mortar to 

break them up into smaller particles. Amongst all the selected compounds, 

polytetrafluoroethylene (PTFE) powder was not ground as it aggregated and formed 

clusters. Instead, PTFE powder was commercially sourced with particle diameter of 

55 μm. This was used as a fixed reference sample as it has a low absorption coefficient 

over the THz frequency range under consideration, and does not exhibit any spectral 

absorption peaks in this range. 

Most of the samples (listed in Table 3.2) were blended with PTFE, by weight, 

in order to dilute the absorption features of these highly absorbing materials. The 

admixture was gently stirred for 5 minutes using a thin sample spatula before being 

loosely packed in flat-sided 10 ml polystyrene cuvettes and mounted on the sample 

holder of the two-axis translational stage as shown in Figure 3.10. 

 

Figure 3.10: Optical image of powdered samples filled into plastic cuvettes. (left) PTFE as 

a reference and (right) 60% glucose monohydrate sample. Image presented 

in [186]. 
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3.6 Diffuse reflectance imaging of powdered samples 

Data processing was performed offline using commercially available software 

(MATLAB). Each sample powder mentioned in Table 3.2 was scanned at four-

different frequencies along with the fixed PTFE reference. Image of PTFE and 

60% glucose monohydrate at four different frequencies are shown in Figure 3.11 (a). 

A relatively high diffusely reflected signal is observed in the areas around the edges 

of cuvette. This is due to strong off-axis specular reflections. 

  
(a) (b) 

Figure 3.11: (a) Four colour diffuse reflection images at (I) 3.06 THz, (II) 3.21 THz, 

(III) 3.28 THz, and (IV) 3.35 THz of powdered 55 μm PTFE (left cuvette) and 

60% glucose monohydrate (right cuvette). The red dotted line in (b) shows the 

enclosed powder area used for data analysis. 

Due to the uneven distribution of particle sizes, measurement of such 

samples causes significant variation in the recorded data, leading to a substantial 

standard deviation. In order to improve accuracy, a large number of independent 

points have been scanned across the sample surface and their intensity averaged. For 

any given image, the region surrounded by red dotted lines as shown in 

Figure 3.11 (b), both for reference and sample, was used for calculating the number 
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of pixels enclosed Npx, mean intensity μp , and its standard deviation σp. To improve 

accuracy, pixels on the edge of the cuvettes were avoided in calculations, as their 

intensity was influenced by the strong off-axis specular reflections from the edges of 

the container. Typically ~1000 pixels were obtained, with a pixel size of Apx = 0.25 ×

0.25 mm2. The relative reflectance of each sample with respect to the PTFE 

powder, Rrel, was calculated by dividing the mean intensity of the sample, μsample, 

with that of the PTFE, μref, as Rrel = μsample μref⁄ .  

Since the THz spot size was bigger than the pixel size, an approximation of 

the number of independent sample points, N, per powder scan was obtained by 

dividing the total image area (NpxApx) by the THz beam spot area (πω2). It can be 

represented as 𝑁 = 𝑁𝑝𝑥𝐴𝑝𝑥 𝜋𝜔2⁄ . Typically N~20 for any given image. 

As the powders were inhomogeneous, the standard deviation of the reflected 

radiation would only represent the intrinsic inconsistency within the sample rather 

than the image. Hence, the standard relative uncertainty, υp, in the mean value of the 

powder’s DR would take into account the independent sample points, N. It can be 

represented as υp = 𝜎p (𝜇p√N⁄ ). 

Therefore, the standard relative uncertainty in the relative diffuse reflectance 

of a sample, υR could be calculated as the root-sum-square of the standard relative 

uncertainty in the mean value of the reference and the sample, and can be expressed 

as υR = (υP,sample
2 +  υP,ref

2 )
1 2⁄

. The absolute standard uncertainty in mean value of 

relative diffuse reflectance, Rerr, can be calculated as: 

 Rerr = υR × Rrel 3.5 
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Figure 3.12: Illustration of diffuse reflection from (a) non-absorbing, (b) weakly absorbing 

and (c) highly absorbing samples. The graph shows a rough trend of diffuse 

reflectance as function of absorption. 

Diffuse reflectance of fine-grained powder samples can be broadly divided 

into three different types as shown in Figure 3.12. For a completely non-absorbing 

sample very high diffuse reflectance is expected as there is no radiation loss due to 

absorption when the signal is scattered by the material (Type ‘a’). Samples which are 

mildly/weakly absorbing, the diffuse reflectance signal drops with increase in 

absorption (Type ‘b’). The radiation travels through the particles with finite 

absorption and gets scattered. On the other hand, samples that are very strongly 

absorbing, also have very high Fresnel surface reflectivity, and do not allow radiation 

to pass through it. Most of the signal reflects from the surface of the particles and 

hence diffuse reflectance signal also increases with increase in absorption (Type ‘c’). 

The relationship of diffuse reflectance as a function of absorption is schematically 

illustrated in the graph shown in Figure 3.12. These diffuse reflectance behaviours 

have further been explained in Ref. [191]. 
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(a) (b) 

  
(c) (d) 

Figure 3.13: Absorption coefficient obtained from THz TDS (black dotted lines) and relative 

diffuse reflectance (red scattered plot) (a) 15% Benzocaine, (b) 40% lactose 

anhydrous, (c) 15% lydocaine and (d) 15% ammonium nitrate. The error bars 

indicate the absolute standard-uncertainty 𝜐𝑅 in the mean of relative diffuse 

reflectance. 

As most of the samples used for this work were weakly absorbing (Type ‘b’), 

there should be an inverse relationship between absorption and relative reflectance. 

An increase in absorption would lead to lower relative reflectance value and 

vice-versa. Figure 3.13 shows exemplar plots of absorption coefficient calculated 

from the THz TDS measurements and relative reflectance with Rerr as error bars for 

various diluted samples. For benzocaine, the absorption coefficient increases with 

frequency whereas the relative diffuse reflectance drops. The complete reverse was 

observed for the lydocaine sample. The inverse relationship between absorption 
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coefficient and relative reflectance also agrees well for the lactose anhydrous sample. 

The relationship between the absorption coefficient and relative diffuse reflectance 

agreed with these findings in all the finely powdered samples measured. This is 

because they do not have very high absorption coefficient and the majority of the 

diffuse reflections arises from the subsurface grains rather than from the surface of 

randomly oriented particles.  

Ammonium nitrate is a very highly absorbing material [8] and acts more like 

Type ‘c’ materials as explained earlier. Hence the relative diffuse reflectance of 

ammonium nitrate does not follow the trend of Type ‘b’ materials. Most of the 

radiation is reflected from the arbitrarily positioned particles at the surface of the 

material [191], causing high Fresnel reflections, and therefore an increase of diffuse 

reflectance with an increase in absorption coefficient is expected. Considering this, 

the relative diffuse reflectance follows the trend of the measured Beer–Lambert 

absorption coefficient (see Figure 3.13 (d)). As THz TDS measurements were 

performed in a transmission geometry, there is a limit to the maximum sample 

concentration that can be measured within the dynamic range of the system. 

Therefore, higher concentration samples were not studied further in this work. But 

the diffuse reflectance measurement technique is not limited by this factor and 

potentially higher concentration samples could be studied in future. 

Imaging of 5–100% concentration of cellulose microgranular and lactose 

monohydrate admixture with PTFE were carried out at the four imaging frequencies. 

The relative diffuse reflectance of the samples at the four imaging frequencies as a 

function of the sample concentration is shown in Figure 3.14. As the concentration 

approaches zero, the relative diffuse reflectance value tends to 1, an obvious result 

as the sample and the reference material were both essentially PTFE powder. From 

Figure 3.14, it can be observed that relative diffuse reflectance of cellulose increases 

with frequency, signifying a decrease in absorption coefficient. Hence the data 
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reveals some spectroscopic information about the samples imaged. Further analysis 

of the data has been explained in the next section. 

 

Figure 3.14: Relative diffuse reflectance of cellulose microgranular as a function of 

admixture concentration with PTFE at the four different emission frequencies. 

The dotted lines shows the fitting of equation 3.13 with γ=1.03. Data courtesy 

Dr A. Valavanis and A. R. Clarkson. Image replotted from Ref. [187]. 

For real world applications such as security screening of explosives and other 

hazardous materials, a large working distance is desirable for an imaging system. 

The optical path length between the sample and detector was ~30 cm. To test the 

robustness of the diffuse imaging system, the distance was increased to ~1.5 m by 

reflecting the collected radiation from the sample through a number of plane mirrors 

and focusing onto the detector. A range of samples was rescanned with the extended 

system to confirm repeatability of relative diffuse reflectance measurements, as 

carried out with the short working distance setup. The extended optical path 

between the sample and detector is illustrated in Figure 3.15 (b). The relative diffuse 

reflectance values for various samples scanned in each system configuration is 

shown in Figure 3.15 (c) and (d). The error bars show the absolute uncertainty in the  
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mean value and are calculated using Equation 3.5. A linear correlation between the 

 
 

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3.15: Schematic of optical path of the collection optics of the DRI system between 

sample and detector for (a) ~30 cm and (b) ~1.5 m working distance. 

Comparison of relative reflectance for various samples at (c) ~30 cm and (d) 

~1.5 m working distance. (e) Linear correlation between the data sets. Identity 

line shown as red line. Data shown in (c) courtesy of Dr A. Valavanis. 
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relative diffuse reflectance values demonstrates agreement between both 

configurations as shown in Figure 3.15 (e). The red solid line represents the line of 

equality. 

3.7 Extraction of absorption coefficient 

Imaging of samples in spectroscopic systems such as THz TDS allows access to 

material specific spectral signatures of absorption coefficient and refractive index. 

Previously, scattering models such as the effective field approximation (EFA) [162], 

quasi-crystalline approximation (QCA) [162], QCA along with the Percus–Yevick 

pair distribution function [165], and the Kubelka–Munk (KM) theory [162] have been 

used to derive Beer–Lambert absorption coefficient using data obtained from diffuse 

reflectance imaging. The QCA model assumes scattering media to be perfectly 

spherical monodisperse particles and also takes into account correlation between 

particle positions. For very dilute samples, particle positions can be neglected 

(assumed as independent) and the model reduces to a much simpler version known 

as EFA. Further, Percus–Yevick pair distribution of polydispersive randomly sized 

scattering particles have been applied along the QCA model to calculate effective 

absorption coefficient of samples. Although the QCA approach requires prior 

knowledge of various particle parameters such as particle size, volume fraction and 

refractive index, it provides accurate reproduction of absorption coefficients [34]. 

Despite its advantages, it is numerically intensive and results can be unreliable over 

a wide range of frequencies [187]. 

The KM model previously reported obtained absorption coefficient values at 

single frequency whereas this work reports calculation of KM absorption coefficient 

using multi-frequency THz source and has been further detailed in Section 3.7.2. 

In this work, a new, numerically simple effective-optical-path-length model 
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has been developed and the well-established KM theory has been used to infer 

absorption coefficient from diffuse reflectance data of the samples measured. 

Analysis has been done for all four frequency points and compared with Beer–

Lambert absorption coefficients obtained from a more established THz TDS 

technique. 

3.7.1 Effective optical path length 

 

Figure 3.16: Illustration of effective optical path length model. 

A simple effective-optical-path-length (EOPL) technique has been hypothesised to 

calculate absorption coefficient from DR measurements. In a crude approximation, 

THz radiation has been considered to behave as ray of light. Radiation incident on a 

powdered sample gets partly absorbed and reflected after traversing an effective 

length of 𝐿eff through the material (see Figure 3.16). Using the Beer–Lambert law, the 

intensity of incident (Iinc) and reflected (Irefl) radiation can be related to the 

absorption coefficient (α) of the material via Irefl = Iince−α𝐿eff. The reflectance is r =

Irefl Iinc =⁄ e−α𝐿eff. The relative reflectance of the sample with respect to a reference 

material can be expressed as 𝑅 𝑅0 = e(−αLeff) e(−αrefLeff,ref)⁄⁄ , where 𝑅0 and αref are the 

reflectance and absorption coefficient of reference sample, respectively. The effective 

length traversed by the radiation through the reference material has been 

represented by Leff,ref. The natural logarithm of the previous equation can be 
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expressed as: 

As the reference (PTFE) has low absorption over the frequency range of interest, 

αrefLeff,ref can be assumed to be negligible compared with α𝐿𝑒𝑓𝑓. The effective path 

length 𝐿𝑒𝑓𝑓 is assumed to be a multiple (𝑏) of the free-space wavelength (λ) of the 

incident radiation. Therefore the effective optical path length can be expressed as 

𝐿𝑒𝑓𝑓 = 𝑏λ and the Beer-Lambert absorption coefficient can be inferred using the 

following equation [34, 192]: 

The frequency independent dimensionless parameter 𝑏 was calculated by 

linear regression of the measured data of various concentrations of granulated sugar. 

It was found to be 0.60 ± 0.06. Using this value, 𝛼 was calculated for 15% and 100% 

granulated sugar-PTFE admixture samples at all four emission frequencies. 

Figure 3.17 shows the absorption coefficient obtained from THz TDS (solid lines) and 

inferred absorption coefficient from relative reflectance (square boxes) at the four 

emission frequencies. The absorption coefficient calculated with the error limit of 

relative reflectance has been shown as error bars. 

 ln (
𝑅

𝑅0
) = αrefLeff,ref − α𝐿eff 3.6 

 α = −
1

𝑏λ
ln (

𝑅

𝑅0
) 3.7 
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Figure 3.17: Comparison of absorption coefficient obtained from THz TDS (solid lines) and 

using EOPL model (square boxes) on relative diffuse reflectance data of 15% 

and 100% concentration of granulated sugar admixture with PTFE by weight, 

at the four imaging frequencies. Image presented in Ref. [34, 192].  

As the terahertz wavelength is much bigger than the particle size, the 

radiation cannot be assumed to behave like a ray of light reflecting/refracting from 

the surface of the powdered particles. Realistically, it needs to be considered as a field 

incident on the particles and then remitting out in scattered directions. Although the 

approximation used for the model is flawed and the technique also neglects the 

particle geometry or the polarisation of incident radiation, it does produce 

reasonable agreement with Beer-Lambert absorption coefficient values obtained 

from THz TDS measurements [34, 192]  

3.7.2 Kubelka–Munk theory 

KM theory, another relatively simple analytical model was used to predict 

the Beer–Lambert absorption coefficient. Unlike the QCA model, it does not predict 

the absolute Beer–Lambert absorption coefficient but does reproduce the relative 

value reasonably accurately. The model used for this work has been validated at a 
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single THz QCL frequency previously [162]. 

 

Figure 3.18: Kubelka–Munk remission function as a function of cellulose 

mass-concentration in admixture with PTFE. The dotted line is a linear fit to 

the data and error bars are the standard uncertainty. Data courtesy of 

Dr A. Valavanis and A. R. Clarkson. Data replotted from Ref. [187]. 

The diffuse reflectance of a sample, is described in KM theory using the 

following equation [193]: 

where the KM remission function F(R∞) is the ratio of the KM absorption coefficient, 

K, and the scattering coefficient, S. It further relates the relative diffuse reflectance R∞ 

of an infinitely thick absorbing powdered sample to a purely diffusing and 

non-absorbing ideal reference sample. However, the real reference sample (PTFE) 

cannot be assumed as ideal as it is very weakly absorbing and R∞ can be replaced 

by R∞ =  𝛾Rrel, in order to match the reflectance of PTFE to an ideal sample using a 

fitting constant 𝛾 [162, 187]. The reflectance relationship between PTFE and an ideal 

 F(R∞) =
K

S
=

(1 − R∞)2

2R∞
 3.8 
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sample can be assumed to be proportional as the absorption coefficient and scattering 

parameter of PTFE are fairly constant over the frequency range. The KM absorption 

coefficient is assumed to be proportional to the Beer–Lambert absorption coefficient 

and therefore varies linearly with sample mass-concentration c. Thus, K can be 

represented as K = 𝛽α(c) = 𝛽α0c where 𝛽 is a sample-specific proportionality 

constant (related to its refractive index) and α0 is the absorption coefficient of the 

undiluted sample [194]. Equation 3.8 may be further written as follows: 

The natural logarithm of the above equation can be represented as: 

where, 𝛽 and 𝛾 are the two unknown constants and the scattering coefficient 𝑆 is 

considered a constant independent of frequency and concentration. The above 

equation is linear in the form 𝑦 = 𝑚𝑥 + 𝐶 with slope 𝑚 = 1 and 𝑦-intercept 𝐶 =

ln (
𝛼0𝛽

𝑆
). Linear regression of ln[𝐹(𝛾𝑅rel)] vs ln(𝑐) would result in 𝛾 = 1.03 and 

ln (
𝛼0𝛽

𝑆
) = 1.22 for the cellulose microgranular sample. The KM remission function 

as a function of concentration is plotted in Figure 3.18 for the cellulose microgranular 

sample. The dotted line represents a linear fit as function of concentration. The 

experimental data is thus in good agreement with the analytical KM model. The error 

bars represents the standard uncertainty in the KM remission function υF(γRrel) and 

have been calculated using [195]: 

 𝐹(𝛾𝑅rel) =
𝛽𝛼(𝑐)

𝑆
= 𝑐

𝛼0𝛽

𝑆
=

(1 − 𝛾𝑅rel)
2

2𝛾𝑅rel
 3.9 

 ln[𝐹(𝛾𝑅rel)] = ln(𝑐) + ln (
𝛼0𝛽

𝑆
) 3.10 



Chapter 3: Diffuse reflectance spectroscopy at terahertz frequencies 

69 

Equation 3.9 can be rearranged so that it forms a quadratic equation in terms 

of Rrel 

As relative reflectance is known to decrease with increase in sample 

concentration, the negative branch of the solution to the quadratic equation is used 

as a fitting function in Figure 3.14, yielding very good agreement with the 

experimental data. The solution can be expressed as: 

Having obtained the remission function values, the KM absorption coefficient 

can be calculated by rearranging equation 3.9 as 𝛼(𝑐) =
𝑆

𝛽
𝐹(𝛾𝑅rel). It can be assumed 

that the scattering coefficient and refractive index of the material are independent of 

sample concentration and fairly constant over the THz QCL emission frequency 

range of ~290 GHz, from 3.06 THz to 3.35 THz. Hence the scaling factor 𝑆 𝛽⁄  remains 

constant for any given sample irrespective of the frequency and concentration. The 

KM remission function has been assumed to vary linearly with the Beer–Lambert 

absorption coefficient 𝛼TDS obtained from THz TDS measurements. The scaling 

factor S β =⁄ 5.23 ± 0.17 mm−1 was determined from the gradient of a linear fit of 

 𝛼TDS against 𝐹(𝛾𝑅rel) in Figure 3.18 (a) for 5%, 15% and 100% cellulose concentration 

at each frequency point. The inferred KM absorption coefficient is compared with the 

 υF(γRrel) ≈
d[F(γRrel)]

d(γRrel)
Rerr 3.11 

 𝛾𝑅rel
2 + 𝑅rel [−2𝛾 (𝑐

𝛼0𝛽

𝑆
− 1)] + 1 = 0 3.12 

 
𝑅rel =

1 + 𝑐
𝛼0𝛽

𝑆 −  √𝑐
𝛼0𝛽

𝑆 (2 +  𝑐
𝛼0𝛽

𝑆 )

𝛾
 

3.13 



Chapter 3: Diffuse reflectance spectroscopy at terahertz frequencies 

70 

measured Beer–Lambert absorption coefficient in Figure 3.19. 

The KM absorption coefficient has fairly good agreement with  αTDS over the 

range of sample concentrations, but the absorption coefficient values were most 

accurately calculated for 15% concentration. The calculated KM absorption 

coefficient deviates from  αTDS for very high and very low concentration 

samples [193]. The model breaks down at low concentrations, as the absorption 

coefficient of the weakly absorbing matrix material cannot be neglected in 

comparison with the absorption coefficient of the diluted sample. The model tends 

to break at high concentration values, as the concentration dependence of the 

scattering coefficient cannot be ignored. 

 

Figure 3.19: Comparison of absorption coefficients obtained from THz TDS (solid lines) 

and analytically calculated from Kubelka-Munk theory (symbols) using 

diffuse reflectance measurement for 5%, 15% and 100% cellulose 

microgranular. Data reproduced from Ref. [187]. 

The scaled-up KM remission function provided the absolute value of the 

absorption coefficient. The remission function itself conserves the spectral features of 
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the Beer–Lambert absorption coefficient and the absolute value is not necessary in 

spectral identification techniques such as principle component analysis [11]. It is 

hypothesised that the calculated 𝛾 = 1.03 from the cellulose samples of various 

concentration would serve as a global constant for all other materials having PTFE 

as diluting matrix material as γ relates the reflectance of the reference PTFE material 

to a non-absorbing completely diffusing ideal reference sample. Having determined 

the only unknown parameter, γ, the KM remission function and absorption 

coefficients could be directly calculated for range of samples diluted with PTFE.  

 

Figure 3.20: Comparison of absorption coefficients obtained from THz TDS (solid lines) 

and those inferred from diffuse reflectance imaging at the four emission 

frequencies using Kubelka–Munk theory (symbols) for caffeine (black circle), 

sucrose (red star), cellulose microgranular (green diamond), granulated sugar 

(blue triangle), lidocaine (pink cross) and benzocaine (brown square). 15% 

mass-concentration for all the samples admixture with PTFE. Data reproduced 

from Ref. [187]. 

The KM remission function was calculated for range of 15% 

mass-concentration samples using 𝛾 = 1.03. The scaling factor was obtained for each 
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sample using linear regression as already explained for cellulose samples, and are 

given in Table 3.3. Figure 3.20 compares the Beer–Lambert absorption coefficients 

from the THz TDS and analytically calculated KM absorption coefficient on the same 

axes for various samples. The range of the Beer–Lambert absorption coefficient for 

all the samples considered were within 2–10 mm-1 with the scaling factor between 4–

40 mm-1. For these low-concentration samples a good agreement in terms of retracing 

the spectral features has been achieved between Beer–Lambert absorption 

coefficients and those calculated using the KM model. Due to the low sample 

concentration, the refractive index of all the samples studied here could be 

considered to be very close to that of PTFE, but the scattering coefficient differs with 

material leading to a different scaling factor. The model breaks down for high 

concentration of samples because the radiation scattering is dominated by the sample 

particles rather than the matrix material. Since the matrix material has a finite 

absorption and is not perfectly non-absorbing, the model breaks down for very low 

concentration of samples as well. 

Materials Scaling factor S/β (mm-1) 

Caffeine 4.04 ± 0.05 

Sucrose 26.4 ± 0.5 

Cellulose 5.68 ± 0.09 

Granulated Sugar 37.5 ± 0.6 

Lydocaine 19.9 ± 0.3 

Benzocaine 27.2 ± 0.3 

Table 3.3: Scaling factor 𝑆 𝛽⁄  (mm-1) for 15% mass-concentration of various samples used in 

calculation of Kubelka-Munk remission function and absorption coefficient. 

Table reproduced from  [187]. 

3.8 Summary 

Diffuse reflection imaging of a range of powdered samples was performed using an 

electrically frequency-tuneable THz QCL as a radiation source emitting at 3.06, 3.21, 
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3.28, and 3.35 THz. Absorption coefficient values were inferred from relative 

reflectance measurements using two relatively simple analytical models: a new 

effective-optical-path-length model, and the well-established Kubelka–Munk theory. 

The absorption coefficients were compared with the Beer–Lambert absorption 

coefficients derived from complementary terahertz time-domain spectroscopy 

techniques. 

These models did not reproduce absolute value of Beer–Lambert absorption 

coefficient but showed a scalable trend over the frequency range of the THz QCL 

(~290 GHz). To obtain accurate values of Beer–Lambert absorption coefficient, more 

complex analytical models such as a quasi-crystalline approximation can be used. 

The Kubelka–Munk model broke down for both very low and very high 

concentration samples but was shown to reproduce spectral features accurately for 

samples having absorption coefficient within the range of 2–10 mm−1. 

In this work, the diffusely reflected radiation off various powdered samples 

was measured using an incoherent bolometric detection technique. Imaging using 

coherent detection of signal has its own sets of advantages as this enables access to 

both the signal amplitude and phase information. This allows much more accurate 

determination of spectroscopic signatures such as refractive index and absorption 

coefficients. In order to obtain phase and amplitude information of THz QCLs, they 

should be phase locked to a known stable reference. Later in this thesis, the concept 

of photomixing [196] has been used to phase lock a THz QCL working under 

continuous-wave operation.
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Chapter 4 

 

 

 

Terahertz Photomixing 

4.1 Background 

 

Figure 4.1: Basic schematic of a terahertz photomixing apparatus. 

Terahertz photomixing refers to an optical heterodyning technique used to generate 

narrowband continuous-wave (CW) radiation in the terahertz range. By mixing two 

laser modes detuned at the intended terahertz frequency in a suitable material, its 

carriers are modulated at the beatnote (difference) frequency of the two laser modes, 

generating heterodyne emission. The output emission frequency can be tuned by 

changing the beat frequency between the two laser modes [197]. 
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A basic photomixing schematic with all fibre coupled heterodyne source and 

photomixers (emitter and receiver) is illustrated in Figure 4.1. Optical radiation 

focused onto a biased photoconductive gap or the active region of a photomixer 

generates photocurrent. This is modulated at the beat frequency and coupled into an 

antenna structure for the emission of the electromagnetic radiation. A high resistivity 

hyper-hemispherical silicon lens can be placed behind the antenna to improve 

collection and collimation of the radiation. For detection, the incident THz radiation 

creates a bias across the metal-semiconductor-metal interfaces of the device. Free 

carriers generated by the incident THz radiation are thus modulated by the incident 

heterodyne beam. The photocurrent generated by separation of these carriers in the 

presence of the bias is then measured. Time delaying either the incident THz 

radiation or the optical envelope on the receiver can be used to map out the phase 

and amplitude of the THz field [97]. It is useful to have zero path delay between the 

detector optical beam and incident THz radiation from the emitter on the receiver, 

since this enables frequency-independent detection of the signal amplitude; due to 

finite linewidth of lasers, any jitter in frequency would translate to noise in amplitude 

for a non-zero path delay system. The signal detected on the receiver Idet at a finite 

path difference 𝛥𝑑 is proportional to the incident THz field ETHz and optical beam on 

the detector Popt, and can be expressed as shown in Equation 4.1 where νTHz is the 

heterodyne frequency and c is the speed of light [196]. 

Key limiting factors for high frequency operation of photomixers include the 

carrier lifetime, the transit time of carriers and the RC roll-off. The latter is due to the 

radiation impedance (R) of the antenna and the capacitance (C) of the 

metal-semiconductor-metal (MSM) interface in the active area of the device. These 

limiting factors have been explained in great detail in Ref. [197].  A sub-picosecond 

 Idet ∝ Popt ETHz cos (
νTHz

c
𝛥𝑑) 4.1 
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carrier lifetime of the material is essential as the photo-generated carriers are 

required to recombine quickly before the next cycle of the CW excitation. The 

transient time of the carriers to their respective electrodes is decreased by having 

gaps as small as possible between the electrodes, typically < 2 μm. However, too 

much reduction in the gap size would cause a reduction in the number of generated 

carriers and hence an overall loss in output power. As the time period between each 

cycle reduces with an increase in frequency, fewer carriers contribute towards 

generation of the beat frequency. This is due to the finite recombination time of 

carriers and the trade-off between a reduction of transit distance and the number of 

photo-generated carriers is therefore required [198]. 

RC roll off serves as another important limitation on the performance of these 

photomixers. The radiation impedance of the integrated antenna and the device 

capacitance are in parallel with the applied bias. For broadband antennas such as a 

log-spiral design, the radiation impedance is close to ~72 Ω across the working 

frequency range [197]. The capacitance of the device needs to be low enough to 

reduce the effect of RC roll off on the frequency response of the photomixer. A 

reduction in capacitance can be achieved by increasing the distance between the 

electrodes, or by reducing the overall active area of the device. However increasing 

the electrode separation would also increase the transit time of the carriers. 

Furthermore, reduction of the active area implies dissipation of higher optical 

powers in a smaller area, which could lead to problems such as thermal breakdown 

of the device [197]. Hence a compromise between the RC roll-off, thermal heating 

(Pjoule) and transit time of the carrier (τ) has to be met. The following equation can 

be used to estimate the capacitance of the MSM structure analytically [199]: 

 C ≈
π(1 + ϵ)ϵ0A

2(w + g) log[2(1 + √κ)/(1 − √κ)]  
 4.2 
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where 

and, ϵ, A, w, and g are the relative permittivity, the active area of the device, the width 

of each finger and the gap, respectively. 

The following equations can be used to calculate Pjoule, and the maximum 

THz emission power PTHz
max(ω) at any given frequency [200]: 

where η, μ, e, hν and 𝑉𝐵 are the external quantum efficiency, effective carrier mobility, 

charge of an electron, photon energy and DC bias, respectively, and, P1, P2 are the 

optical laser powers and  ω = 2π(ν1 − ν2), ν being one of the optical frequency. 

The generation of CW radiation in the THz frequency range using the concept 

of photomixing was first reported in 1993 [201] on a LTG-GaAs substrate with 

bolometric detection. Subsequently, improved designs were reported with 

bandwidths up to 3.8 THz and higher output powers [49, 102, 202]. The first 

demonstration of simultaneous coherent generation and detection of CW-THz 

radiation was demonstrated in 1998 using two CW Ti:sapphire lasers and 

photomixers fabricated on LTG-GaAs substrate [97]. LTG-GaAs has always been the 

favoured material for photomixing due to its inherent properties such as high 

resistivity, high mobility and short carrier lifetime. ErAs:GaAs material has also 

 κ = (1 − tan4 [
πw

4(w + g)
])

1 2⁄

 4.3 

 Pjoule = [
ημeτ

ghν
]

VB
2

√A
(P1 + P2) 4.4 

 PTHz
max(ω) =

2RPjoule

√A
[
ημeτ

ghν

mP1P2

(P1 + P2)
] [

τ

[1 + (𝜔τ)2][1 + (𝜔RC)2]
] 4.5 
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shown an improved photomixing response [203, 204]. 

Initially photomixing at THz frequencies was done using wavelengths 

between 780–850 nm but attempts have been made to push it towards the more 

developed telecommunications wavelength range (1.3–1.55 μm). Performance of 

GaAs and InGaAs photoconductive materials as both a photoconductive switch and 

a photomixer have recently been reviewed in Ref. [78]. The first successful 

demonstration of photomixing with lasers working at telecommunications 

wavelengths was reported using the LTG-InGaAs as photoconductive material [205]. 

The material suffered from very high dark current leading to high background noise 

in the measurement. Many different techniques have been implemented to improve 

the photoconductive response of the material such as Fe-implanted InGaAs [206], 

ErAs:InGaAs [207], Br-irradiated InGaAs [208], Be-doped LTG InGaAs/InAlAs [209], 

Fe-doped InGaAs [210] and Cold Fe-implanted InGaAsP [211]. 

Apart from improving the photoconductive material characteristics for 

photomixing, enhancement of planar antennas and the MSM electrode designs also 

improves the out coupling of the generated electromagnetic radiation. Most of the 

developed photomixers have either resonant antenna designs [202, 212] or 

broadband antenna structures such as bow-tie [200], log-periodic [213] or 

log-spiral [203, 214] integrated with very closely spaced electrodes forming the active 

area of the device. The resonant antenna design has been proved to provide the 

highest output power, while the majority of reported photomixer active region 

designs have interdigitated electrode structures. Recently however, nano-gap 

electrodes with meander micro-antennas have been reported, claiming output 

emission powers two orders of magnitude higher than interdigitated structures with 

similar dimensions [98]. As well as that, plasmonic nanostructure electrode designs 

have also been demonstrated to have at least one order of magnitude higher THz 

output power efficiency, as compared to conventional interdigitated electrodes [99]. 
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Conventional THz-TDS configurations are based expensive femtosecond 

Ti:sapphire lasers. Although the cost of these lasers have significantly dropped over 

time, THz photomixers provide an ideal alternative as they are not only cheap and 

ultra-compact but compared to other coherent THz sources, photomixers are the 

most widely tuneable [42]. The THz linewidth from photomixers depends directly 

on the linewidth of the optical excitation. Hence THz radiation with extremely high 

spectral purity and resolution can be achieved. This allows access to hyperfine 

spectroscopic features of samples which is not possible with conventional THz-TDS 

systems. Nevertheless, tuneablity of photomixers comes at the cost of relatively low 

output power compared to other THz sources.  

This chapter discusses detailed design, fabrication and characterisation 

techniques for photomixer emitters employing a broadband log-spiral antenna and 

interdigitated electrode structure on a LTG-GaAs substrate. System dependencies 

such as the combined linewidth, frequency stability and piezoelectric transducer 

tuning of the two excitation diode lasers are characterised. A technique used to find 

the zero path delay of the system, along with a knife-edge measurement of optical 

beam spot used to excite emitters are also explained. Then an annealing temperature 

study of LTG-GaAs photomixers is described, in order to optimise the emission 

bandwidth of the photomixers. Furthermore, the carrier-lifetime of the emitters is 

also determined using a photocurrent correlation technique. The effect that the 

annealing temperature, the carrier lifetime and material resistance has on the 

frequency bandwidth of the emitters is explained and summarised. In addition, 

state-of-the-art photomixers (emitter and receiver) were bought from TOPTICA 

Photonics and their bandwidth is characterised. Finally, the TOPTICA emitter and 

receiver were used for the continuous-wave transmission spectroscopy of a LiYF4-Ho 

crystal, which is used to demonstrate measurement of hyperfine features in the 

spectra. 
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4.2 Photomixer Design 

 
(a) 

 
(b) 

Figure 4.2: (a) Design of three-turn self-complimentary log-spiral antenna. (b) The central 

active area was 11.3 μm X 11.3 μm and consisted of three pair of interdigitated 

electrodes each 0.2 μm wide with 1.6 μm gap. 

For this work, the design of photomixer emitter was an interdigitated electrode 

geometry centred in a three-turn self-complimentary broadband log-spiral antenna. 

The antenna was designed using ANSYS® HFSS software package. It was a 

planar self-complimentary antenna design with logarithmic spiral arms with three 

complete turns. Log-spiral antenna design was chosen as the commercially 

purchased photomixer receiver also had log-spiral antenna structure. The spiral arms 
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was designed using the equation 𝑟 = 𝑟0𝑒𝑎𝜑, where 𝑟0 is the inner radius, 𝜑 is the 

angular position and 𝑎 is the growth rate of the spiral arms. The growth rate can be 

represented as 𝑎 = ln(𝛼) /2𝜋 where. 𝛼 is the expansion ratio. For the antenna design 

used in this work, 𝑟0 = 8 𝜇𝑚 and 𝛼 = 5. The log-spiral designed had a central 

square-shaped ‘active area’ of 11.3 μm in length and outer radius of 1 mm. The 

antenna design has been shown in Figure 4.2 (a). Unfortunately, the whole 

photomixer structure could not be simulated as the resources required was more 

than 32 GB of computational memory (RAM). There was no standalone computer 

available with more than 32 GB memory. ANSYS® HFSS does allow high 

performance computing (HPC) using multiple computing nodes, but due to lack of 

technical support from ANSYS® to implement HPC, further simulation and 

optimisation of the antenna was not done. 

 

Figure 4.3: Estimated THz output power as a function of frequency for three different 

active area dimensions with each electrode geometry of 200 nm wide and 

1.6 μm gap. 

The ‘active area’ consisted of three pairs of interdigitated electrodes. Each 
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electrode was 8.8 μm long and 200 nm wide. The spacing between each electrode was 

1.6 μm. The electrode spacing used was close to the already optimised spacing (1.6–

1.7 μm) for CW photomixers as reported in Ref. [199, 200]. In order to calculate the 

emitter THz power, Equation 4.5 suggests to minimise the width of the 

photoconductive gap and the active area for improved emission power. This holds 

true as long as the active area is similar to the laser spot size and can efficiently handle 

the thermal heating. Hence, the equation was used to calculate the frequency roll-off 

for devices of different active areas. Figure 4.3 shows the frequency roll-off for three 

different active areas. Theoretically, a -12 dB roll-off at frequencies >1 THz is expected 

using Equation 4.5. Although the 5 μm2 active area has greater output power, the 

11.3 μm2 active area was used in the photomixer design as the minimum laser spot 

diameter was ~12 μm. The measurement of the laser spot size has been explained 

later in this chapter in Section 4.5.5. 

Using Equation 4.2, the capacitance of the 5 μm2, 11.3 μm2 and 20 μm2 active 

areas with electrode geometry of 200 nm wide and 1.6 μm gap was found to be 

0.49 fF, 2.5 fF and 7.8 fF, respectively, using the relative permittivity of GaAs ϵ = 12.8. 

4.3 Fabrication of photomixers 

Layer Material Thickness (μm) 

1 SI-GaAs 500 

2 Al0.75Ga0.25As 0.4 

3 LTG-GaAs 2 

Table 4.1: MBE layer structure of wafer L1148. 

Photomixer emitters were fabricated using the same nanotechnology cleanroom 

facilities as mentioned in Chapter 2. The LTG-GaAs used in this work was grown on 

a 500 μm semi-insulating (SI) GaAs substrate, using the molecular beam epitaxy 

(MBE) technique. All the wafers were grown by Dr Lianhe H Li. The MBE layer 



Chapter 4: Terahertz Photomixing 

83 

growth structure of a typical wafer (L1148) used for this work has been provided by 

Dr Lianhe H. Li and is shown in Table 4.1. 

LTG-GaAs was annealed ex-situ at temperatures ranging between 300–

625° C. Broadband log-spiral antennas along with the interdigitated fingers were 

patterned using electron-beam lithography (EBL) and 5/100 nm Ti/Au was deposited 

using electron-beam evaporation. Optical lithography and e-beam evaporation was 

used to fabricate the contact pads. Finally the device was mounted on a printed 

circuit board (PCB) using silver conductive paint. A detailed explanation of the 

fabrication steps is described in the following sub-sections. 

4.3.1 Sample cleaning and annealing 

The maximum area covered by each log-spiral antenna was 2 mm x 1.7 mm. The 

LTG-GaAs wafer was diced into smaller substrate dimensions, depending upon the 

EBL window size used for patterning and the number devices patterned on a single 

substrate. The surface of the substrate was cleaned of contaminants and organic 

deposits by immersing it in a beaker of acetone placed in an ultra-sonic bath at 10% 

power for 10 minutes. It was then rinsed with IPA and blow dried using dry N2 gas, 

followed by cleaning in a UV-ozone chamber for 10 minutes. After cleaning, the 

substrate was annealed at a desired temperature for 15 minutes using an AnnealSys 

rapid thermal annealer (RTA). 

4.3.2 Electron-beam lithography and evaporation 

After annealing, the substrate was once again cleaned of contaminants using acetone 

and IPA. The photomixer design was patterned using a JEOL JBX 6300FS EBL system. 

All processing extending from the pre-EBL sample preparation, to the post-EBL 

development of the sample was completed by Dr Mark C. Rosamond. Before loading 

the sample for EBL, it was coated with ZEP520A EB resist, spun at 4500 rpm for 40 
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seconds yielding a resist thickness of ~150 nm. It was then baked at 180° C for 

two minutes on a hotplate. The EBL for each sample took approximately ~40 minutes. 

After the EBL process, the sample was developed for one minute using ZED-N50 EB 

resist developer, rinsed with IPA and blow dried with dry N2 gas. An optical 

microscope image of a sample after EBL and development is shown in Figure 4.4 (a). 

The orange-yellow coloured areas are resist covered, whereas the white area is the 

exposed substrate for metallisation. 

  
(a) (b) 

Figure 4.4: Microscopy image of the sample after (a) e-beam lithography and development 

(orange area is unexposed resist) and (b) e-beam evaporation and lift-off 

(yellow is the metallised surface, LTG-GaAs substrate in dark-blueish colour). 

The sample was metallised using an E-Beam evaporator to deposit 5 nm Ti 

and 100 nm Au. For lift-off, the sample was treated with Microposit remover 1165 

heated at 75° C. Figure 4.4 (b) shows an optical microscopy image of a sample after 

lift-off. 

4.3.3 Contact pad lithography and evaporation 

After metallisation of the antenna and interdigitated fingers, the sample was cleaned 

using acetone in an ultra-sonic bath for one minute, rinsed with IPA and blow-dried 

using dry N2 stream. The sample was coated with SHIPLEY® Microposit® S1813, a 
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positive photoresist, spun at 5000 rpm for 30 seconds to obtain a resist thickness of 

~1.2 μm and soft-baked at 115° C for one minute to evaporate excess solvents and 

harden the resist. The sample was exposed to UV radiation at 10 mW/cm2 for three 

seconds using an optical mask aligner with a chrome-on-glass mask. It was then 

developed with SHIPLEY® Microposit® MF-319 for two minutes to define the contact 

pad region. E-beam evaporation was then used to deposit 5 nm Ti and 100 nm Au. 

The sample was then treated with acetone for lift-off. An optical image of sample is 

shown in Figure 4.5. 

 

Figure 4.5: Optical image of the device with contact pads. 

4.3.4 Mounting 

 

Figure 4.6: Optical image of a device mounted on a PCB with SMA connector. 

The sample was cleaned with acetone and IPA before mounting face down on a PCB 

with copper tracks leading to an SMA connector and a 3 mm through-hole for optical 

illumination of the active area of the device. The contact pads were glued to the 



Chapter 4: Terahertz Photomixing 

86 

copper tracks using RS Silver Conductive Paint Adhesive. An optical image of a 

sample mounted on a PCB is shown in Figure 4.6. 

4.4 Experimental configuration 

State-of-the-art photomixers (emitters and receivers) based on GaAs were 

commercially purchased from TOPTICA Photonics. Response of emitters fabricated 

in-house was compared to the state-of-the-art TOPTICA emitter. The TOPTICA 

receiver was used throughout for coherent detection of signal. The experimental 

configuration used to characterise the in-house emitters were slightly different to the 

TOPTICA emitter as former was excited with free-space coupling of the radiation 

and latter was packaged as pigtailed fibre. The apparatus used in each case has been 

explained next. 

 

Figure 4.7: Schematic of TOPTICA photomixer characterisation apparatus. CW–

continuous-wave, and AWG–arbitrary waveform generator. PM mating 

sleeves have been diagrammatically represented as two small parallel lines 

connecting fibres. 

A schematic of the basic experimental configuration for characterisation of 

TOPTICA photomixers is shown in Figure 4.7. Two independent state of the art NEW 

FOCUS TLB-6700 Velocity continuous-wave external-cavity diode lasers (ECDLs), 
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operating at a wavelength of ~780 nm were used as an optical excitation source. Each 

laser could be continuously tuned using a built-in DC motor and piezo-electric 

transducer within a range of ~16 nm. The DC motor allows course control of the 

emission wavelength, whereas the piezoelectric element was used for fine-tuning. 

Single mode (SM) Polarisation-Maintaining (PM) fibre was coupled to the laser 

output. Optical isolators and angled physical contact (APC) fibre connectors were 

built-in to avoid reflections into the laser cavity. The output power from the fibre 

connectors was measured using a THORLABS Fibre Optic Power Meter PM20CH. 

The optical power coupled out of the fibre was ~30 mW for each laser and linearly 

polarised. 

The TOPTICA photomixers were designed for 780 nm excitation wavelength. 

They were packaged with a Si lens and FC/APC SM/PM pigtailed fibre. Radiation 

from both the ECDLs were mixed using a PM 2x2 fibre coupler with 50/50 output 

power ratio and the output ends, namely excitation and probe beams, were 

connected to the emitter and receiver respectively. The total optical power of each 

beam was ~20 mW. A pair of 3-inch-diameter gold-coated 90° off-axis parabolic 

mirrors were used for the collection, collimation and focusing of the generated 

CW-THz radiation from the emitter onto the receiver. The emitter was biased with a 

±10 V 50% duty cycle square-wave modulated at 7.6 kHz using an Arbitrary 

Waveform Generator (AWG). As the commercial emitter was characterised by the 

manufacturer at 7.6 kHz, the same modulation frequency was chosen throughout all 

the experiments related with photomixers in this thesis. The output current from the 

TOPTICA receiver was amplified using an Electro-Optical Components, Inc. FEMTO 

DHPCA-100 variable gain high speed current amplifier. The output voltage signal 

was detected using a lock-in amplifier referenced at the emitter modulation 

frequency. The sinusoidal THz signal was sampled on the receiver by altering the 

time delay of the automated translation stage, effectively time delaying the incident 
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THz signal on the receiver relative to the probe beam. The unit of delay stage 

positions has been referred in terms of time rather than distance. This is the 

convention for TDS based systems. In CW systems, this simply sweeps the phase 

difference between the paths. The motion of the translation stage and data 

acquisition from the lock-in amplifier was controlled using a LabVIEW program 

courtesy of Dr Joshua. R. Freeman. 

 

Figure 4.8: Modified photomixer characterisation apparatus used with the free-space 

‘in-house’ emitters. 𝜆/2–half-wave plate. 

In the case of characterisation of the in-house photomixers, the experimental 

configuration was modified as shown in Figure 4.8. Unlike the fibre coupled 

TOPTICA emitter, the photomixers fabricated in-house were excited by optical beam 

in free-space. The TOPTICA emitter was replaced with the ‘in-house’ emitter, which 

was mounted on a PCB as explained in the previous section. The excitation beam was 

coupled through a 1 m PM PC/APC fibre optic patch cable designed for a centre 

wavelength of 780 nm. It was then connected to a THORLABS F220APC-780 fibre 

collimation package. The collimated excitation beam was focused onto the device 

active area using a 10x microscope objective lens with 0.25 numerical aperture, 

mounted on a translation stage to adjust the focal spot position. A half-wave plate 

was introduced in the path of the collimated beam to optimise its linear polarisation 
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angle with respect to the device’s active area geometry. Optimisation of incident 

beam polarisation has been mentioned further into this chapter in Section 4.6.1.2. The 

polarisation along the direction of electric field between the interdigitated fingers 

was found to generate maximum photocurrent and output signal amplitude. A CCD 

camera was used to align the focused optical beam onto the active area of the device. 

For this purpose, a cover slip was positioned at approximately 45° angle (see 

Figure 4.8) after the half-wave plate to allow the reflection from the device to be seen 

by the CCD sensor. An empty lens tube was mounted onto the camera to avoid 

ambient light saturating the sensor. An image of the device on the CCD camera is 

shown in Figure 4.9. A high resistivity hyper-hemispherical Si lens mounted on a two 

dimensional translating lens mount was placed behind the emitter to couple the 

generated radiation on the collection optics [196] and avoided total internal reflection 

of the emitted radiation from the semiconductor-air interface [197]. Both the 

parabolic mirrors, the probe beam and TOPTICA receiver, automated translation 

stage and the data acquisition electronics were the same as explained before. 

 

Figure 4.9: CCD image of the device. 

The TOPTICA emitter was simpler to align in comparison to ‘in-house’ 

emitters, as the fibre coupled excitation and Si lens positioning was already 

optimised within the package. Alignment of these photomixers was very 
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time-consuming and tedious. In addition to the CCD device used for alignment, a 

Keithley 2400 series SourceMeter® unit (SMU) was used to apply a small DC bias 

and measure the photocurrent. The photocurrent was maximised by optimising the 

objective lens position and half-wave plate angle with respect to the device; the 

position of maximum photocurrent corresponded to optimum alignment with 

respect to the excitation beam. The device was connected to the AWG and the 

detected radiation amplitude was optimised by alignment of the 

hyper-hemispherical Si lens, sample position and receiver position. The Si lens was 

positioned to align its centre with the active area, enabling optimum out-coupling of 

the generated THz radiation. The sample was positioned as close to the focal spot of 

the parabolic mirror as possible to improve beam collimation. The receiver’s position 

(including a built-in Si lens) was then finely adjusted to improve detection of the THz 

radiation. Initial alignment of the THz radiation was done at lower frequencies such 

as 100 GHz, before the frequency was gradually increased to optimize alignment for 

high frequencies. Optimisation was done by tweaking the emitter position in all the 

three dimensions and also fine adjusting the silicon lens for improved signal 

detection. Relatively high power and broad beam at lower frequencies eases the 

initial alignment the device. As the output beam get more directional at higher 

frequencies, fine tuning alignment is necessary for optimised detection of high 

frequency signals. The alignment procedure had to be repeated every time a device 

was placed in the system. All the characterisation measurements mentioned in this 

chapter, using either the TOPTICA emitter or in-house emitter, has been done under 

normal atmospheric conditions. 

Small gaps in the active area design of the photomixers make them vulnerable 

to even the slightest amount of electrostatic discharge (ESD) across the terminals. 

Great care was therefore taken to avoid ESD while making electrical connections to 

the photomixers. Grounding straps were always worn before any physical contact 
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was made with the device. For TOPTICA photomixers, the optical fibre connections 

were done before connecting them electrically. The reverse of the procedure was 

followed to disconnect the device. In this case, the electrical connection was replaced 

by a 50 Ω termination and then the optical fibre was disconnected. As mentioned 

earlier, these precautions were taken to avoid damage of the active area due to ESD. 

4.5 Experimental considerations 

Before characterising the photomixers, basic system parameters such as the laser’s 

linewidth and frequency drift needed determining. In addition, the effect of the 

piezoelectric transducers on the emission wavelength of the combined diode laser 

radiation was measured. Measurements were also performed to help control the THz 

path length, in order to achieve zero path delay between the incident THz signal from 

the emitter and the optical beating on the receiver. For the in-house free-space 

photomixers, the spot-size of the optical beam was also characterised using a 

knife-edge technique. 

4.5.1 Combined laser linewidth 

As two independently running lasers were used to excite the photomixers, 

characterisation of their combined linewidth and frequency drift was important. Any 

frequency drift/jitter of the lasers would be directly reflected as drift in the frequency 

difference and therefore result in a change in the emission frequency of the emitter 

during measurements. 

The experimental configuration used to characterise frequency drift in the 

lasers is shown in Figure 4.10 (a). A 2x2 fibre coupler was used to combine the 

CW-radiation from both diode lasers. Radiation was collimated through a fibre optic 

collimator (FOC) and was directed towards a THORLABS Si based photodiode using 

a microscope objective. The other unused output arm of the 2x2 fibre coupler was 
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connected to a fibre optic light trap for safety and also to reduce any back reflections. 

The output from the photodiode was measured using an electrical spectrum analyser 

(ESA). A short 50 Ω coaxial cable was used to connect to the ESA along with a 50 Ω 

termination at the ESA input, as recommended by the manufacturer.  

 
(a) 

 
(b) 

Figure 4.10: (a) Schematic of experimental apparatus to measure the combined linewidth 

of the two ~780 nm diode lasers. (b) Linewidth obtained by beating of the two 

laser diodes on a photodiode. Linewidth obtained using max-hold operation 

of the spectrum analyser for a duration of ~3 minutes shown in red (RBW: 

6.5 MHz). A high resolution instantaneous linewidth shown in black (RBW: 

430kHz). (Inset) Instantaneous linewidth with magnified frequency axis. 



Chapter 4: Terahertz Photomixing 

93 

The bandwidth of the photodiode was 5 GHz but the measurement was 

limited by the 3 GHz bandwidth of the ESA. The difference in the laser frequency 

was carefully tuned close to 1.5 GHz, the full range centre frequency of the ESA. The 

recorded spectra was normalised and is shown in Figure 4.10 (b). Spectra obtained 

using the max-hold function of the ESA for approximately 3 minutes are shown in 

red, measured with a resolution bandwidth (RBW) of 6.5 MHz. A gradual drift of 

~1.5 GHz was observed over a time duration of 3 minutes. This was due to the 

combined frequency drift of the lasers used. The frequency drift manifested in the 

lasers could be originating due to many reasons such as thermal or vibrational noise. 

The origin of oscillations in amplitude of the red curve is unknown and requires 

further investigation for precise determination. A high resolution (RBW: 430 kHz) 

instantaneous shot of the spectra is shown in black. The inset shows the 

instantaneous spectra enlarged. In this case, the FWHM of the instantaneous spectra 

was found to be 2.75±0.97 MHz. The instantaneous measurement was directly 

dependent on the linewidth of the individual lasers and hence provided much 

smaller frequency jitter. 

As the lasers were used for emitter bandwidth characterisation, the frequency 

drift was not of a major concern as short scan duration (~1 minute) per frequency 

point was used with frequency steps as large as ~25 GHz. 

4.5.2 Zero path delay 

The combined path length of the excitation beam and the generated THz beam must 

be equal to that of the probe beam on the receiver, in order to achieve a zero phase 

difference between them. Since the detection system behaves like an interferometer, 

a finite path difference would cause quasi-sinusoidal oscillations of the signal 

amplitude on the receiver, as the heterodyne frequency changes [196] 

(see Equation 4.1). 
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To achieve a zero path delay, the heterodyne frequency was arbitrarily 

chosen away from the water absorption lines, and tuned from 500–520 GHz using 

the piezo-electric transducer of a laser and the signal from the lock-in amplifier was 

recorded. This was done at each delay stage position. The signal recorded as a 

function of heterodyne frequency at various delay positions is shown in Figure 4.11. 

The path difference can be calculated from the period of the oscillations shown in the 

frequency domain in Figure 4.11 [196]. The period of the oscillations increases as zero 

path difference is achieved (see blue curve in Figure 4.11). 

 

Figure 4.11: Detected signal against heterodyne frequency at different path delays. Zero 

path delay has been represented by 0 ps (blue line). 

The lasers used in this work have finite linewidth and significant frequency 

noise. Hence having a non-zero path delay would directly translate the frequency 

jitter into amplitude noise detected on the receiver (see, for example, the oscillations 

in Figure 4.11 at non-zero path delay). Zero path delay was found in a similar way 

for all experiments mentioned in this thesis which used both emitter and receiver 

photomixers. 
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4.5.3 Laser stability scan 

 
(a) 

 
(b) 

Figure 4.12: (a) FFT of ~500 ps long scan at ~1 THz heterodyne frequency (black), Gaussian 

fit to the FFT (red) has a FWHM of ~13.7 GHz. (Inset-right) Time domain scan 

of the THz emission over a range of 500 ps. (Inset left) A small section of the 

time-domain scan showing detected sinusoidal fringes. (b) Fitted frequency of 

1 minute and 6 minutes slices of the 42 minutes long scan plotted against time. 
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Another experiment was performed using the TOPTICA emitter and receiver to 

measure the frequency drift of the diode lasers, achieved by mapping the emitted 

CW-THz for a significant period of time. For this experiment the heterodyne 

frequency was arbitrarily chosen close to 1 THz. The delay stage was scanned at a 

step of 100 fs over a range of 500 ps and the lock-in signal was recorded at each step, 

as shown in the right inset of Figure 4.12 (a). The total time taken for this scan was 

~42 minutes. Figure 4.12 (a) shows the Fast Fourier Transform (FFT) of the signal. 

The peak of the FFT was close to 1 THz and a Gaussian fit (solid red line) had a 

FWHM of 13.7 GHz. This represented the frequency drift of the lasers over the time 

span of ~42 minutes. The continuous-wave emission detected over a shorter time 

duration is shown in the left inset of Figure 4.12 (a). 

The 42 minutes long scan was sectioned into durations of 1 minute and 

6 minutes. MATLAB was used to perform a single frequency sine fitting to each 

section. The fitted frequency as a function of time for both 1 minute (dark yellow) 

and 6 minute (magenta) sections is plotted in Figure 4.12 (b). The error bars represent 

95% confidence bound of the fitted frequency. Slow drift in the heterodyne frequency 

of ~20 GHz can be observed over 42 minutes which agrees well with the combined 

laser frequency jitter of ~1.5 GHz over 3 minutes (see Section 4.5.1). 

Such high combined laser frequency jitter would be a problem if reliable 

measurements were to be performed for longer time durations. For emitter 

bandwidth characterisation, ~25 GHz heterodyne frequency steps were used with 

short scanning range to minimise effect of the frequency jitter. 

4.5.4 Piezo-electric voltage characterisation 

A full range scan of the piezoelectric transducer was performed to characterise the 

fine frequency tuning range, using both the TOPTICA emitter and receiver. Since the 

measurement was done in an unpurged environment, the fine tuning range was 
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determined by scanning across a known waterline as a reference. The dip in signal 

amplitude would correspond to the water absorption and the frequency tuning range 

of transducers could then be determined. 

 

Figure 4.13: Fitted amplitude as function of piezo-electric scan has been shown as red line. 

Waterline at ~1.41 THz shown as blue line with scaled amplitude. 

The heterodyne frequency was coarsely set close to a waterline at ~1.41 THz. 

The piezoelectric transducer was stepped at 0.7% of the full tuning range. At each 

step, the delay stage was scanned with a small range of ± 2.5 ps from the zero path 

delay position to sample the CW signal. This was done to minimise any effect of 

frequency drift due to instability of lasers as mentioned earlier. The fitted signal 

amplitude, plotted as a function of the piezoelectric scan (top axis), is shown as the 

solid red line in Figure 4.13. As two piezo-electric transducers were scanned across 

their full range, the piezo-electric axis is shown as 0–200%. The reference water 

absorption line has been marked in blue and its amplitude has been arbitrarily scaled 

to fit on the same amplitude axis. The water absorption data was taken from an 

online database HITRAN [215] and calculated by Dr Joshua. R. Freeman. To obtain 
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the absolute heterodyne frequency for each step in full piezoelectric scan, the fitted 

frequency was determined for the first and last piezo-electric settings. The frequency 

axis was then scaled to fit the whole scan range and also to match the measured 

absorption dip to the waterline.  

Almost 160 GHz of frequency tuning was possible from both the piezoelectric 

transducers of the two diode lasers. This was close to the expected tuning range as 

per the ECDL manufacture specifications. Scanning of waterlines around 2 THz also 

produced agreeable results.  

4.5.5 Knife-edge measurement 

 

Figure 4.14: Schematic of focused beam waist measurement using knife-edge technique. 

The focused spot size of the excitation beam was measured before characterising the 

free-space in-house photomixers. Focussing the optical radiation into the active area 

of the device would generate more photocarriers and hence higher output signal 

amplitude. Therefore, measurement of the optical spot size was necessary to make 

sure the spot is small to cover the active area. As mentioned earlier, a 10x microscope 

objective with a 0.25 numerical aperture was used to focus the collimated beam from 

the FOC. A surgical scalpel blade was used as a knife-edge and was mounted on a 

XYZ manual translation stage. A compact motorised actuator was used to scan 
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through the beam at a step size of 30 μm. A power meter was placed directly behind 

the knife-edge to record the power at each actuator position. The experimental 

configuration is shown in Figure 4.14. In this case the probe arm was attenuated 

using a fibre optic light trap. 

For a Gaussian shaped beam, a plot of measured power against knife-edge 

position would result in a curve known as Gauss error function [216]. A 

complimentary error function [217, 218], 𝑃(𝑥) =
𝑃0

2
{1 − 𝑒𝑟𝑓 [

√2(𝑥−𝑥0)

𝑤𝑥
]} can be used to 

fit the measured data, in which 𝑃0, 𝑥0 and 𝑤𝑥 are the total absolute power, centre 

coordinate and 1/𝑒2 half-widths of the beam respectively. The knife-edge position 

has been represented as 𝑥. A more rigorous mathematical derivation has been 

explained in Ref. [217]. Through fitting measured data to this function, the minimum 

spot size 𝑤𝑥 can be determined by performing a knife-edge measurement at different 

z-positions. 

  
(a) (b) 

Figure 4.15: (a) Normalised intensity profile of knife-edge measurement (dots) and fitted 

complimentary error function (red solid line) (b) Calculated 1/𝑒2 half-width 

𝑤𝑥 against distance from the focal spot z. Error in fitting value 𝑤𝑥 has been 

represented by error bars. 

The total power of the beam 𝑃0 was measured on the power meter by 
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unblocking the beam completely. The normalised power measured as a function of 

knife-edge position along the x-direction, for one specific z-position, is shown in 

Figure 4.15 (a). Fitting of an adapted complimentary error function is shown as the 

solid red line. Parameters 𝑥0 and 𝑤𝑥 were obtained from the fit. A constant 𝐶 was 

introduced to account for the non-zero measured power when the beam was 

completely blocked. The modified equation can be expressed as 

 𝑃(𝑥) =
𝑃0

2
{1 − 𝑒𝑟𝑓 [

√2(𝑥−𝑥0)

𝑤𝑥
]} + 𝐶. 

The knife-edge measurements were then repeated at a step of 0.1 mm along 

the z-direction to find the minimum spot size. The minimum spot size of the 

excitation beam in the x-direction was found to be wx=5.4±1.3 μm as shown in 

Figure 4.15 (b). A similar measurement was carried out to determine the minimum 

spot size along the y-direction and it was found to be wy=6.63±1.1 μm. The 

characterisation of beam spot sizes has been done several times within this thesis. A 

similar technique as mentioned here has been followed. 

4.6 Study of annealing temperature 

In low temperature growth of GaAs, excess arsenic causes formation of point defects. 

These point defects act as trap centres of conduction band electrons and causes 

reduction in carrier lifetime of the material to as low as 90 fs [79, 200]. This also causes 

low resistivity of the materials due to “hopping conduction” between the trap 

centres [219]. The growth temperature cannot be lowered invariably as too low 

temperature or too high arsenic pressure can cause stacking faults and pyramidal 

defects due to excess strain on the crystal lattice [220]. 

For too short carrier lifetimes, modulation of conductivity will not be possible 

due to low carrier density. Annealing of LTG-GaAs provides the thermal activation 

energy for reduction of point defects by forming metallic precipitates. This causes 
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not only increase in carrier lifetime but also material resistivity. Increase in material 

resistivity allows higher bias voltage to be applied and hence increase in the output 

radiation from emitters. For a given annealing temperature, a thermal equilibrium is 

reached in defect concentration with time [200]. Annealing studies of LTG-GaAs 

have previously been reported to optimise the resistance and carrier-lifetime for 

photomixers [200, 219]. It should be noted that too high carrier lifetime (longer than 

beat period) is also not desirable as it was cause unnecessary heating of the device 

due to accumulation of electrons and hence huge drop in output power [200]. 

As annealing of LT-GaAs changes critical material parameters such as 

carrier-lifetime and resistivity, it eventually affects the bandwidth of the 

photomixers. In this section, material parameters such as dark resistance, 

photocurrent and photomixer bandwidth is studied for ex-situ annealing 

temperatures in the range of 500–625° C. At the annealing temperature optimised for 

highest bandwidth, photomixer frequency response was measured from three near 

identical LTG-GaAs wafers. The material with highest bandwidth is compared with 

the state-of-the-art emitter from TOPTICA Photonics. 

4.6.1 In-house emitters 

In the annealing study, samples from same LTG-GaAs wafer (wafer number L1148) 

were used to fabricate identical photomixer design. As already mentioned in the 

Section 4.3, the samples were first annealed at the desired temperature for 15 minutes 

under a nitrogen purged environment before carrying out further processing steps 

to fabricate the photomixer emitter. 

4.6.1.1 Dark resistance and photocurrent 

Initial characterisation of all the in-house fabricated photomixing emitters included 

measurements of current, with and without optical illumination, known as photo 
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and dark current, respectively. The SMU was used to bias and measure the current 

flowing through the in-house emitters. They were not biased more than 5 V as it 

risked damaging the device. 

Attempts made to measure resistance directly from a standard multimeter 

were unsuccessful as the process damaged the active area of the device. Most likely 

this was due to the high amount of current injected into the device from the 

multimeter terminals causing it to blow up. Dark currents from samples annealed at 

different temperatures were measured using SMU at a constant bias of 2 V. 

Therefore, the dark resistance was calculated and is shown as a function of annealing 

temperature in Figure 4.16 (a). As expected, the dark resistance increases with 

annealing temperature due to precipitation of the excess arsenic trapping centres. 

Devices annealed higher than 575° C does not show significant variation in the dark 

resistance as such high temperatures removes the point defects completely. In 

Ref. [200], similar observation of saturation in dark resistance was made but at a 

slightly lower annealing temperature of 550° C. The temperature difference could be 

due to the calibration issue of the RTA used for annealing. 

  
(a) (b) 

Figure 4.16: (a) Dark resistance and (b) photocurrent-voltage sweeps of emitters at different 

ex-situ annealing temperature. 
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For photocurrent measurement, the optical excitation beam was aligned to 

the active area of the in-house emitters as already mentioned in Section4.4 (see 

experimental configuration in Figure 4.8). Under illumination, the photocurrent 

generated was dependent on the polarisation of the incident excitation beam. 

Polarisation dependence is further explained in the following subsection (see 

Section 4.6.1.2). For each device the photocurrent was maximised by optimising the 

polarisation angle of the excitation beam. The focus of the microscope objective was 

also tweaked to improve photocurrent. The total incident optical power was 

~18.5 mW. 

As samples annealed at 300° and 400° C had typically very low dark 

resistance, there wasn’t significant difference between the measured dark and 

photocurrent values. Hence optimising the alignment of the excitation beam to the 

active area was very difficult. Attempts were made to align these samples by 

optimising the signal detected at low heterodyne frequency such as 100 GHz, but the 

signal was very noisy (0.1 mV). It was just above the noise floor of the system 

(~0.04 mV). No emission was observed at frequencies above 130 GHz. As a result, 

these samples were excluded from any further measurements due to very high 

background noise caused by the low material resistivity at such low annealing 

temperatures. Photocurrent-voltage sweeps for samples annealed between 500–

625° C have been shown in Figure 4.16 (b). The decrease of photocurrent with an 

increase in annealing temperature is due to the increase in material resistance. 

The active area of the photomixer was pairs of interdigitated fingers spaced 

at 1.6 μm having a width of 0.2 μm. Two iterations of the active area were fabricated, 

one with two pairs and the other with three pairs of interdigitated fingers with the 

same antenna design as shown in Figure 4.17 (a) and (b) respectively. Emitters with 

three pairs of electrodes performed better in terms of signal amplitude, bandwidth 

and photocurrent. The comparison of photocurrent and bandwidth from both two 
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pairs (black line) and three pairs (blue line) electrode designs on LTG-GaAs wafer 

L1092 are shown in Figure 4.17 (c) and (d) respectively. Method used to measure 

bandwidth of the emitters has been explained later in Section 4.6.1.3. As a result the 

three pair electrode design was used for all the following measurements reported in 

this chapter using in-house emitters. For the dark resistance and photocurrent 

measurements shown previously in Figure 4.16, the three pair interdigitated 

photomixer design was used. 

  
(a) (b) 

  
(c) (d) 

Figure 4.17: Microscope image of the active area of the photomixers fabricated with (a) two 

pair and (b) three pair of interdigitated electrodes and their (c) photocurrent 

and (d) bandwidth comparison. 
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4.6.1.2 Polarisation dependence 

The measured photocurrent and emitted signal were dependent on the incident 

polarisation angle of the excitation light with respect to the electrode geometry. A 

half-wave plate was used to change the polarisation angle of the linearly polarised 

excitation beam. 

  
(a) (b) 

Figure 4.18: (a) DC photocurrent measured at 5 V emitter bias as a function of half-wave 

plate angle. (b) Peak detected signal on the lock-in amplifier at 500 GHz as a 

function of half-wave plate angle. Polarisation of excitation beam parallel and 

orthogonal to electrode geometry has been represented as 0° and 90°, 

respectively. Sinusoidal fit has been represented as red line. 

Polarisation dependence measurements were done at an arbitrarily chosen 

heterodyne frequency of 500 GHz using a three-pair electrode emitter fabricated on 

wafer L1092. Figure 4.18 (a) shows the change in photocurrent as the polarisation 

angle of the incident optical beam is changed in steps of 15° (black dots). To achieve 

this, the half-wave plate was turned with a step size of ~7.5°, which was equivalent 

to the 15° change in the polarisation angle. Polarisation parallel and normal to the 

electrode geometry has been marked as 0° and 90°, respectively. Figure 4.18 (b) 

shows the change in signal amplitude as a function of polarisation angle. The signal 
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amplitude showed a similar dependence on polarisation angle as the photocurrent. 

In both cases, data was in good agreement with a sinusoidal fit (shown as red lines 

in Figure 4.18). The optical radiation is coupled more efficiently into the 

photoconductive material using perpendicular polarisation as compared to parallel 

polarisation. The dependence of polarisation on metal-semiconductor-metal 

structures have been reported in Ref. [221]. With the electrode finger dimensions 

comparable to optical wavelength, there exists resonance between the orthogonally 

polarised optical radiation and the MSM geometry. As a result of improved coupling 

and higher quantum efficiency, higher photocurrent and THz signal was measured 

for perpendicular polarised excitation radiation. 

4.6.1.3 Bandwidth measurements 

The experimental configuration used for measuring the bandwidth from the 

in-house emitters is already shown in Figure 4.8. For each measurement the 

heterodyne frequency was tuned in steps of 25 GHz unless otherwise stated. The 

TOPTICA receiver was used for coherent detection of the emission frequency. An 

automated translation stage was scanned close to the zero path delay at a step size 

of between 0.01–0.5 ps, depending upon the heterodyne frequency. The detected 

signal was amplified at a transimpedance gain of 107 𝑉 𝐴⁄  with 1.8 MHz amplifier 

bandwidth. A 100 ms time constant within the lock-in amplifier was used to measure 

the signal at each translation stage position. Sine curve fitting was performed on the 

detected sinusoidal waveform using MATLAB. The frequency and amplitude were 

extracted as fitted parameters. Emitters were characterised in terms of their total 

bandwidth. The bandwidth was defined as the frequency at which the measured 

signal is just above the noise floor (NF) of the system. Emitters were biased with a 

50% duty cycle square wave modulated at 7.6 kHz using the AWG. 
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(a) (b) 

Figure 4.19: (a) Comparison of fitted amplitude as a function of heterodyne frequency for 

500° and 575° C annealed devices. Noise floor marked in red and maximum 

measured frequency marked with a green arrow. (b) Comparison of maximum 

bandwidth obtained at ex-situ annealing temperature ranging from 500–

625° C. Image adapted from Ref. [222]. 

The emission bandwidth of the emitters at each annealing temperature was 

measured at a bias of 5 V. Exemplary frequency spectra from 500° and 575° C 

annealed emitters are shown in Figure 4.19 (a). The noise floor of the system was 

determined by measuring the lock-in value when the emitter was turned off. It was 

due to the noise from the receiver and was typically ~0.05 mV. For signals measured 

above the stated maximum bandwidth (green arrows mark the maximum 

bandwidth), the fitted frequencies were unrealistic values. In addition the FFT of 

those signals did not suggest the presence of any heterodyne frequency. The 

maximum measured bandwidth is plotted against annealing temperature in 

Figure 4.19 (b). As can be seen, devices annealed at 575° C exhibited the maximum 

bandwidth. With increase in annealing temperature, the material becomes more 

resistive and hence reduces the dark current. This effectively reduces the background 

noise which improves the photomixer performance. On the other hand, increase in 

annealing temperature also increases carrier lifetime of the material, leading to poor 
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performance at higher frequencies. Hence, a ‘sweet spot’ on this curve was present 

due to a compromise between low background noise (dark current) and 

carrier-lifetime of the material. The measurement of carrier-lifetimes is explained in 

Section 4.7. Since these measurements were done at a constant 5 V bias, devices 

annealed at 600° and 625° C had photocurrents lower than that of 575° C, due to have 

greater resistivity. Therefore, the bandwidth of 600° and 625° C devices were also 

measured at same photocurrent value as that of the 575° C device at 5 V bias. 

However, there was no significant improvement in bandwidth.  

  
(a) (b) 

Figure 4.20: (a) Comparison of photocurrent sweeps for wafers L1092, L1141 and L1148 

annealed at 575° C under similar incident optical power of 18.5 mW. (b) 

Bandwidth comparison different materials. 

Having optimised the ex-situ annealing temperature at 575° C, emitters were 

fabricated on nominally identical LTG-GaAs wafers grown using MBE and annealed 

at 575° C. Measured photocurrent as a function of applied bias for emitters fabricated 

on wafers L1141, L1148 and L1092 are shown in Figure 4.20 (a). L1148 was the wafer 

used for the annealing temperature study discussed above. Figure 4.20 (b) shows the 

maximum measured bandwidth against measured dark resistance for the emitters 

fabricated on different materials. The applied bias was kept constant at 5 V for all 

emitters. Clearly, wafer L1092 has better performance as compared to the others in 
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terms of both photocurrent and bandwidth. It also has significantly higher dark 

resistance which leads to low background noise and hence improved bandwidth. 

The visible difference in these wafers was that L1141 and L1148 were grown on a 

double side polished SI-GaAs substrate whereas L1092 was grown on a single side 

polished SI-GaAs substrate. Therefore, there could be a significant temperature 

difference during the MBE growth of LTG-GaAs epilayers on the two different kind 

of substrates. 

4.6.2 State-of-the-art TOPTICA emitter and comparison with in-

house emitter 

 

Figure 4.21: Fitted amplitude as a function of frequency for TOPTICA emitter biased at 

±10 V and 20 mW optical excitation power. Noise floor shown in red. (Inset) 

Coherently detected time-domain photomixer response at 1 THz heterodyne 

frequency (black dots). Single frequency sinusoidal fit has been represented by 

blue line. Amplitude and frequency obtained as free fitting parameters. 

The experimental configuration used to measure bandwidth from the TOPTICA 

emitter is already shown in Figure 4.7. The TOPTICA emitter was biased at ±10 V 



Chapter 4: Terahertz Photomixing 

110 

with an excitation beam power of ~20 mW. The measured sinusoidal waveform at a 

frequency of 1 THz is plotted as a function of delayed THz beam (black dots) in the 

inset of Figure 4.21. The fitted sine wave is shown in blue. The dependence of the 

fitted amplitude on measured frequency is plotted in Figure 4.21 as a solid black line. 

The NF of the system has been marked as a red line and was defined as the maximum 

lock-in signal with heterodyne frequency >6 THz. There was no significant change in 

the NF when measured with the emitter bias turned off. Any dips in the amplitude 

are a result of water absorption lines. Not all water lines were resolved, as the 

frequency was scanned in steps of 25 GHz. Also scanning a waterline with coarse 

frequency tuning was not possible due to the slow drift in the heterodyne frequency. 

The bandwidth of the TOPTICA emitter was found to be > 3 THz and is consistent 

with the manufacturer’s specifications. 

 

Figure 4.22: Bandwidth of TOPTICA emitter and L1092 emitter. 

The frequency response of the emitter purchased from TOPTICA and the 

in-house emitter fabricated on L1092 has been compared. L1092 was chosen for 

comparison as it had better bandwidth as compared to devices fabricated on other 

materials. The fitted amplitude as a function of fitted frequency for the TOPTICA 
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emitter (black line) and the L1092 in-house emitter (red line) are shown in Figure 4.22. 

A conservative bias of 5 V was applied to the in-house emitter for characterisation, 

whereas the TOPTICA emitter was biased at ±10 V. The photocurrents or dark 

currents cannot be directly compared as applying DC bias to the TOPTICA emitter 

was not recommended by the manufacturer. Under similar optical illumination 

power of ~18.5–20 mW, the emission bandwidth of the TOPTICA emitter was >3 THz, 

whereas the maximum bandwidth achieved for the in-house emitters was ~2.4 THz. 

The difference in amplitude was at least one order of magnitude for any given 

emission frequency. 

Part of the motivation for optimising the photomixers was to use them as a 

source of CW-THz to injection lock a single mode THz-QCL operating in continuous-

wave mode close to 2 THz. However, clearly the state-of-the-art photomixer from 

TOPTICA Photonics has a much higher overall signal. Eventually both the emitter 

and receiver from TOPTICA Photonics were used for spectroscopy measurement 

(see Section 4.8) and injection locking of THz QCLs (see Chapter 5) as explained later 

in the thesis. 

4.7 Carrier-lifetime measurement 

Photocurrent correlation technique was used to measure carrier lifetime [223]. The 

total photocurrent generated upon illumination of two consecutive high powered 

pulses would be lower than the pulses being illuminated separately. This is due to 

the sublinear characteristic of a photoconductor at high intensity illumination [223]. 

Hence by time delaying the second pulse, effect on the photoexcited carriers from the 

first pulse can be measured. The rate of decay of the measured photocurrent pulse 

can provide information on the carrier lifetime of the material [224]. 

The carrier lifetime of the photomixer devices fabricated on wafers L1141, 
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L1148 and L1092 reported in the previous section was measured. Results based on 

the annealing temperature, the material resistance and maximum measured 

bandwidth are discussed, and related to the carrier lifetime obtained from these 

photocurrent correlation measurements. 

4.7.1 Experimental configuration 

 

Figure 4.23: Schematic representation of experimental apparatus for photocurrent 

correlation measurement. 

An illustration of the experimental configuration for photocurrent correlation 

measurement is shown in Figure 4.23. Femtosecond pulses with a centre wavelength 

of 800 nm, a 110 fs pulse width and a repetition rate of 80 MHz were generated by 

pumping a Spectra Physics Tsunami titanium-sapphire laser with a solid state diode 

laser Spectra Physics Millennia XS operating at 532 nm wavelength. The optical beam 

was split into pump and probe beams using a beam splitter. The beams were 

reflected through several fixed mirrors and focused using a 10 cm focal length lens 

onto the sample at the same spot. The probe beam was time delayed using a 

mechanical translation stage and optically chopped at 2.8 kHz for conventional 

lock-in detection, before being focused onto the sample. The power in each beam was 
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attenuated to an average of 10 mW using neutral density filters. Half-wave plates 

were placed to control the polarisation of each beam individually. 

The device was biased using the SMU. A lock-in amplifier was connected to 

monitor the SMU modulated at the chopper frequency. A high pass filter was placed 

between the lock-in and the device to filter out any DC offset. This was also important 

as the signal channel on the lock-in amplifier had a current limit of 3 μA. The probe 

beam was delayed with respect to the pump beam using the translation stage with a 

step size of 0.01 ps, while the signal was recorded at each step using a LabVIEW 

programme courtesy of Dr Nicholas Hunter and Dr Christopher Wood. Any offset 

in the signal was balanced by the auto offset function of the lock-in to avoid 

saturation in the measured photocurrent correlation pulse. The recorded signal was 

an average of four repeated scans. This was done to improve the signal-to-noise ratio 

(SNR) of the measurement.  

4.7.2 Polarisation dependence 

Measurement of the photocurrent correlation pulses were dependent on the relative 

polarisation between the pump and probe beam. Figure 4.24 (a) shows a 

photocurrent correlation pulse recorded for the two beams in both parallel (black) 

and orthogonal (blue) polarisations with respect to each other. This is plotted against 

time delay between them. The amplitude of each signal has been normalised to its 

peak in order to show the difference between the two signals clearly. For parallel 

polarisation, coherent interaction between the two beams causes a sharp spike at zero 

time delay. The hump at the bottom was due to carrier trapping. This phenomenon 

has previously been reported in Refs. [225-227]. It has been attributed to the “short 

carrier–carrier scattering time present at high carrier concentration”. Figure 4.24 (b) 

shows just the spike due to the coherent interaction (black dots), in which the 

amplitude has been normalised. The coherence time was expected to last the 
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duration of the laser pulse [225]. A Gaussian fit (red line) to the coherence peak has 

a FWHM of 111.9 ± 1.6 𝑓𝑠 and this agrees with the FWHM of the laser pulses. The 

coherent interaction of the laser pulses were avoided as they were not a feature due 

to the carrier lifetime. Hence, the two beams were orthogonally polarised to reduce 

the effect of this coherent interaction as shown by the blue line in Figure 4.24 (a). 

  
(a) (b) 

Figure 4.24: (a) Photocurrent measurement at 5 V bias with parallel (black) and orthogonal 

(blue) polarised pump and probe beam with 10 mW optical power on each. (b) 

Gaussian fit to spike of photocurrent correlation measurement with parallel 

polarisation has FWHM of 111.9 ± 1.6 𝑓𝑠. 

4.7.3 Results 

Orthogonally polarised pump and probe beams with 10 mW average power, as 

measured on a power meter, were used to obtain the results presented in this section. 

Photocurrent correlation peaks, obtained with biases between 1–5 V are shown in 

Figure 4.25 (a). For each photocurrent correlation measurement an exponential curve 

was fitted to the data using the equation 𝐽(𝑡) = 𝛿𝑒(−|𝑡 𝜏𝑐
⁄ |) + (1 − 𝛿)𝑒(−𝑡2 ln 2/𝑇𝐺

2), to 

obtain the carrier capture time (𝜏𝑐) where 𝑡 represents real time, 𝐽(𝑡) is the 

photocurrent, 𝛿 the ratio coefficient and 𝑇𝐺the FWHM of the femtosecond laser pulse. 

The equation has been modelled using Frenkel–Poole effect and field enhanced 
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thermal ionisation as reported in Ref. [227]. An exponential fit corresponding to the 

first term of the equation (red line) was used to fit the data (black line) as shown in 

Figure 4.25 (b). Since the two beams were orthogonally polarised, the second term in 

the equation was avoided as it represented the coherent interaction of the two beams. 

  
(a) (b) 

Figure 4.25: (a) Photocurrent correlation measurement at 10 mW orthogonal polarised 

pump and probe beam for 1–5 V bias. (b) Exponential fit (red line) to a 

photocurrent correlation pulse (black line) to obtain photo-correlation lifetime. 

(Inset) Photo-correlation lifetime as a function of applied bias (black dots). 

Linear fit to the data has been represented as red line. 

The inset in Figure 4.25 (b) shows the linear dependence of photocurrent correlation 

lifetime on the applied bias where black dots and red line represents 𝜏𝑐 values for the 

range of applied bias and a linear fit respectively. Similar bias dependence has also 

been observed in Ref. [227, 228]. The photocurrent correlation lifetime increased with 

electric field due to combined outcome of the Frenkel–Poole effect and 

field-enhanced thermal ionization [227, 229-231]. The reduction in the required 

energy for an electron to jump into the conduction band under the influence of a high 

electric field is known as Frenkel–Pool effect. This reduces the carrier capture cross 

section and effectively increases the lifetime. The field-enhanced thermal ionization 

can be described as an increased probability of collision ionization due to increased 
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electron momentum from the applied electric field. This energy gets transferred to 

increase the electron density in the conduction band and hence increase the overall 

photocurrent correlation lifetime of the material. 

 

Figure 4.26: Photo-correlation lifetime (red dots) and bandwidth (blue dots) as a function 

of ex-situ annealing temperatures. (Inset) Photocurrent correlation pulse from 

devices annealed at 500° and 575° C. Image adapted from Ref. [222]. 

The carrier lifetime at 5 V bias was measured for devices used in the 

annealing temperature study in the previous section. The measured values for 𝜏𝑐 as 

a function of annealing temperature (red dots) are shown in Figure 4.26 along with 

bandwidth dependence (blue dots) shown previously in Figure 4.19 (c). The 

measured lifetime does not change significantly between 500–575° C, while the 

increase in bandwidth in the same range can be safely assumed to be due to increase 

in material resistance, leading to reduction in background noise. As the measured 

lifetime rises sharply after 575° C, the maximum measured bandwidth reduces, as 

would be expected. There was not a significant increase in material resistance at 

temperatures above 575° C (see Figure 4.16). The inset in Figure 4.26 shows 

photocurrent correlation pulses for 500 and 575° C annealed devices. 
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Figure 4.27: Photo-correlation lifetime (red dots) and bandwidth (blue dots) as a function 

of material dark resistance at 575 °C ex-situ annealing temperature. Wafer 

numbers have been labelled next to the data point. Image adapted from 

Ref. [222]. 

The lifetime was also measured for devices fabricated from wafer L1141 and 

L1092, both annealed at 575° C. Figure 4.27 compares the lifetime (red dots) of L1141, 

L1148 and L1092 wafers against their respective dark resistance. The maximum 

measured bandwidth of the materials (blue dots) as shown previously in 

Figure 4.20 (b) has also been included in the plot. Wafer L1092 has much lower 

carrier lifetime as compared with the other two materials, as well as possessing 

higher resistance. As a result, a significantly improved bandwidth was measured. 

Conversely the device from wafer L1141 not only had higher carrier lifetime but also 

lower resistance as compared to L1148, overall resulting in reduced bandwidth. 

Overall it can be concluded that although optimising the annealing 

temperature does improve the bandwidth of the material, a bigger difference in 

bandwidth was achieved by improved material growth. Under similar annealing 

conditions, significant improvement in bandwidth was measured from materials 

having higher dark resistance and a much lower photocurrent correlation lifetime. 
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4.8 Continuous-wave (CW) terahertz spectroscopy 

The TOPTICA emitter and receiver were used to measure high resolution absorption 

features of a LiYF4-Ho crystal, using CW terahertz transmission spectroscopy. The 

sample was provided by Dr Joshua Freeman. 

4.8.1 Reference time-domain spectroscopy measurements 

 

Figure 4.28: Time domain spectra of the LiYF4-Ho sample. Image courtesy of 

Dr Joshua R. Freeman. 

The transmission measurement of a LiYF4-Ho sample was done using THz-TDS. The 

measurement was carried out with the sample cooled to 4 K using a continuous flow 

liquid helium cryostat. A THz-TDS transmission spectrum of the crystal is shown in 

Figure 4.28 and was done by Dr Joshua. R. Freeman. Eight hyperfine absorption 

features equally spaced at 4 GHz were observed with a frequency resolution limited 

to 0.5 GHz due to the finite travel length of the translation stage in this measurement. 

This spectra was used as a reference to measure the same spectral signatures with 

higher resolution using CW-spectroscopy. 
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4.8.2 Experimental configuration 

The configuration of the CW-THz spectroscopy system is illustrated in Figure 4.29. 

The TOPTICA emitter and receiver were used and their optical connections were 

similar to the characterisation apparatus mentioned in Section 4.4. The CW-THz free 

space optics was changed from two parabolics to four parabolic mirrors. An 

additional 0.3 m fibre was added on the probe beam arm to compensate for the 

resulting increase in THz path length.  

 

Figure 4.29: Schematic representation of the experimental apparatus of continuous-wave 

terahertz spectroscopy using TOPTICA emitter and receiver. 

The sample was mounted on the cold finger of Oxford Instruments 

MicrostatHe and placed in the focal spot between the second and third parabolic 

mirrors. The cryostat was pumped down to pressure < 5x10-6 mbar and cooled using 

a continuous flow of liquid helium. The heatsink temperature was monitored and 

controlled using a temperature controller. The zero delay path difference was found 

in exactly the same way as already explained in Section 4.5.2, but with the THz 

radiation transmitted through the sample. 

The emitter was biased at ±10 V with a 7.6 kHz square-wave, while the output 

of the receiver was connected to a lock-in amplifier, referenced at the emitter 
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modulation frequency through a 107 gain transimpedance amplifier. The full range 

of the piezoelectric transducers were modulated using a triangular-wave generated 

from a second AWG. These were then connected to the frequency modulation input 

of laser controller connected to ‘Laser2’. The frequency modulation input for ‘Laser1’ 

was terminated using a 50 Ω termination. The data recorded from the lock-in 

amplifier was connected to the input of a basic Data Acquisition (DAQ) board from 

National Instruments. A TTL signal from the second AWG served as reference for 

the DAQ board. The data was processed in near real-time using a LabVIEW script 

written by Dr Joshua. R. Freeman. This way the heterodyne frequency could be 

modulated over the range of a single piezoelectric transducer scan while the 

transmission spectra of the samples could be displayed on the computer monitor in 

near real-time. The entire apparatus from emitter to receiver was purged with dry 

air below 5% humidity to minimise the effects of water absorption. 

 

Figure 4.30: 1/e2 half-width of the radiation spot from the TOPTICA 780 nm emitter as a 

function of distance from the focal spot. 

The THz beam spot size at the sample position was characterised using the 

‘knife-edge’ measurement technique already mentioned in Section 4.5.5. Figure 4.30 
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shows the 1/e2 half-width of the spot size as a function of the distance from the focal 

position at z=30mm. The minimum measured THz beam spot size was 1.83±0.17 mm 

at the emission frequency of 1 THz. The same emitter has been reported to have a 

produce a shallow beam focus of size ~2.5 mm, measured at 300 GHz emission 

frequency and at a distance of approximately 40 mm from the emitter [232]. A 

‘Knife-edge’ close to the emitter measured a THz beam spot size of 1.41±0.13 mm at 

1 THz emission frequency, which agrees with the reported spot size. 

4.8.3 Results and comparison with THz TDS 

 

Figure 4.31: Continuous-wave spectra of LiYF4-Ho sample at 6 K (black) and 70 K (red) 

heatsink temperature. 

The heterodyne frequency was tuned to 700 GHz, the sample was cooled to 6 K 

heatsink temperature and transmission scans were taken by modulating the 

piezoelectric transducers with a 5 V peak-to-peak ramp at 0.2 Hz modulation 

frequency with 1 ms lock-in time constant. The effective frequency resolution of the 

system was ~38 MHz over a ~66 GHz frequency span. Each scan time was ~5 seconds. 

20 scans were averaged to improve the SNR. 
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(a) (b) 

Figure 4.32: Transmission features of LiYF4-Ho sample at 6 K heatsink temperature and 

around 700 GHz using (a) THz-TDS and (b) CW-THz spectroscopy techniques 

(marked with red arrows). 

With the THz-TDS measurement it was observed that the hyperfine features 

disappeared above 70 K heatsink temperature (later referred to as a reference). 

Figure 4.31 shows a CW-transmission measurement through the sample at 6 K 

heatsink temperature (black line). The raw plot at 6 K does not reveal the expected 

hyperfine features as a lot of oscillations were present in the spectra. Certain dips 

from the spectra were observed to disappear gradually as the heatsink temperature 

increased to 70 K. Other oscillations in the spectra were still present. As these 

oscillations are temperature independent and are seen at different heterodyne 

frequencies, they can be assumed to be artefacts from the emitter-receiver cavity, the 

system in general or the lasers. Investigation of these features were beyond the scope 

of this work. This effect could be seen in real-time due to the fast and high resolution 

frequency scanning technique used. A spectra obtained at 70 K heatsink temperature 

(red line) is shown in Figure 4.31. To minimise the other oscillations present in the 

scans, the 6 K scan spectra was divided by the 70 K scan spectra (assumed as 

reference). The resultant transmission spectrum is shown in Figure 4.32 (b). The eight 

hyperfine features equally spaced at ~4 GHz were distinguishable (marked with red 
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arrows) and in good agreement with the THz-TDS scans shown again in 

Figure 4.32 (a). The FWHM of Gaussian fit to the hyperfine features was 1.0±0.3 GHz. 

4.9 Summary 

In this chapter the basic concepts of THz photomixing were introduced. The steps 

used for fabrication of a THz photomixer emitter with broadband log-spiral antenna 

centred with interdigitated fingers on LTG-GaAs substrate was discussed. Epilayers 

of LTG-GaAs were grown using MBE. Fabrication steps included annealing, 

electron-beam lithography and evaporation. 

The experimental configuration used for characterisation of state-of-the-art 

photomixers from TOPTICA Photonics and in-house photomixers was explained. 

Experimental considerations such as zero path delay, characterisation of the ECDLs 

including frequency stability and tuning range of the piezoelectric transducers, and 

the knife-edge measurement of the excitation beam spot for in-house emitters was 

also presented. 

The effect of annealing temperature on the emission bandwidth of emitters 

was studied. The annealing temperature influences material parameters such as dark 

resistance and carrier lifetime. These parameters were measured and found to be 

increasing with annealing temperature. Device bandwidth improves by increasing 

the material’s dark resistance but an increase in carrier lifetime deteriorates the 

bandwidth. An annealing temperature of 575° C was found to provide optimised 

bandwidth performance of ~1.95 THz. Apart from the annealing temperature, the 

growth quality of materials plays a more significant role in the bandwidth of devices. 

Three materials grown nominally under identical conditions showed bandwidths 

ranging from ~1.75–2.4 THz at identical ex-situ annealing conditions. Materials with 

the highest bandwidth not only had highest dark resistance but also had lowest 
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measured photocorrelation carrier lifetime. 

A state-of-the-art TOPTICA emitter was found to have better frequency 

response than all the emitters measured, and was therefore used for subsequent 

continuous-wave spectroscopy measurements of a LiYF4-Ho crystal. Eight hyperfine 

features around 700 GHz, which were already observed in THz-TDS measurements, 

were resolved with a higher frequency resolution of 38 MHz over a 66 GHz 

frequency span in almost real-time.
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Chapter 5 

 

 

 

Injection locking of continuous-wave 

terahertz quantum cascade laser 

5.1 Background 

There are numerous potential applications of terahertz sources. THz QCLs are solid 

state high power (tens of milliwatts) compact sources, and gaining access to their 

frequency and phase information simultaneously can unlock further potential 

applications in fields such as molecular gas spectroscopy [32], far-infrared 

astronomy [233], atmospheric sensing, coherent imaging and wireless 

communications [39, 234]. A THz QCL can have an intrinsic quantum-limited 

linewidth as low as 110 Hz [235], but a free running THz QCL’s linewidth is 

broadened due to extrinsic noise factors such as temperature, bias current noise and 

mechanical oscillations [235]. Hence, there is a need to stabilise frequency and phase 

by reducing the effects of these noise. 

Frequency locking refers to stabilising the jitter in the frequency of a laser to 



Chapter 5: Injection locking of continuous-wave terahertz quantum cascade laser 

126 

that of a stable external source. This does not guarantee identical phase between the 

two sources. On the other hand, phase locking refers to synchronisation of phase of 

the free running laser to that of an external stable reference. Phase locking ensures 

frequency lock but the converse may not be true. 

So far various approaches have been explored to stabilise the phase or 

frequency of THz QCLs and the measured jitter in most configurations is limited by 

the experimental apparatus. An overview of different locking techniques 

implemented to date are described in the following subsections. A review of some of 

the locking techniques used so far to lock THz QCLs have been discussed in detail in 

Ref. [236].  

5.1.1 Locking of Fabry–Pérot spectrum 

Locking of the beat frequency between two Fabry–Pérot modes of a THz QCL is 

fundamentally different than locking the frequency to a stable external source. In 

beat frequency locking, the frequency difference between the modes is locked to an 

external stable source. This does not stabilise the overall drift/jitter in frequency  

Although locking the beat frequency of two Fabry–Pérot modes to an external 

source does not stabilise the frequency drift of the laser, it does enable a measurement 

of the individual linewidths of the modes. In one demonstration, two lateral modes 

of a ~2.7 THz QCL were mixed on a hot electron bolometer (HEB) and the beat 

frequency was stabilised to an external microwave source using conventional phase-

lock loop [237]. In a separate work, a microwave-synthesiser was used to injection 

lock a multi-mode 2.3 THz QCL operating in CW regime [238]. The device was 

electrically injected with an RF signal close to Fabry–Pérot mode spacing with varied 

amplitude to achieve mode pulling and locking. The locking range of the oscillators 

was ~225 MHz, determined using Adler’s equation [239]. 
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5.1.2 Locking to a stable THz source 

THz QCLs have been phase locked to many different stable frequency sources. In 

2005 the first ever frequency and phase locking of a THz QCL was reported using a 

far-infrared gas laser line at 3.105 THz as a stable reference source [240]. The 

frequency was stabilized indefinitely using conventional phase lock loop. The beat 

signal had a full-width-half-maximum (FWHM) of 65 kHz, which was larger than 

the linewidth of the gas laser. The beat signal stability was further improved to 3–

4 kHz using a similar concept [241]. Frequency locking of a THz QCL has also been 

done by locking to a commercial stable solid state frequency multiplier [242]; and 

harmonic of a microwave synthesiser source [243]. In these experiments, 

superconducting HEBs were used as mixers to generate intermediate frequency (IF). 

Although very stable IF FWHM were achieved, cryogens were required not only to 

cool the THz QCL but also the HEBs. In most of the locking configurations, frequency 

multiplier sources (used as local oscillators) were used and they intrinsically suffer 

from extremely low power outputs at high frequencies. THz QCL frequency has also 

been locked using a room temperature operating Schottky diode balanced mixer and 

microwave synthesiser [244]. 

5.1.3 Locking to a molecular absorption lines 

For all the frequency locking of THz QCLs using molecular transition lines reported 

so far, methanol gas has been used. In 2010, the first demonstration of locking a THz 

QCL to a 2.55 THz absorption line was reported [245] and the frequency jitter was 

further stabilised to 18 kHz using third-order distributed feedback single mode THz 

QCLs lasing at 3.5 THz [246]. The same group reported an additional amplitude 

stabilisation of the same THz QCL using swing-arm voice coil actuator, along with 

frequency stabilisation using the same technique [247]. Gas absorption linewidths 

are intrinsically in the MHz range, and thus achieving relatively narrow (in 10’s of 
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kHz) IF FWHM requires use of cryogenically cooled HEBs as they are very sensitive 

and fast response detectors [244]. Apart from using cryogens for detectors, this 

technique requires the frequency of the lasing source to match an absorption line, 

restricting any frequency tunability. It also makes phase locking the source 

impossible. 

5.1.4 Locking to a femtosecond laser 

A 2.7 THz QCL was completely phase-locked to a harmonic of 90 MHz repetition rate 

of a mode-locked erbium-doped fibre laser [248]. The beat signal generated by 

mixing the THz QCL and the fibre laser on a ZnTe crystal, achieved a very high SNR 

of 80 dB with 1.5 MHz bandwidth. A THz QCL operating at 2.32 THz was also 

reported to be phase-locked to a frequency comb generated using a photomixer and 

a femtosecond fibre laser [249]. Although these techniques allows phase-locking of 

THz QCLs within the bandwidth of the femtosecond lasers and does not require 

cryogenically cooled HEBs, its application is limited by use of expensive and bulky 

femtosecond lasers. 

5.1.5 Injection seeding 

Injection locking and injection seeding are two different phenomenon. The former 

refers to an injection of a weak monochromatic signal into a free running oscillator 

within its locking range. The injected signal then dictates the oscillator’s output [250]. 

Injection seeding or pulsed injection locking is more commonly termed when a weak 

signal, also known as ‘seed’, is injected into a pulsed oscillator operating at higher 

output power during its turn on period. The injected signal might not necessarily be 

within the locking range of pulsed oscillator or too weak to lock the oscillator output 

but it does influence the initial cavity conditions before lasing. Hence, the seed has 

some control of the lasing action initiated after the injection [250]. 
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Phase-locking of a THz QCL has been reported by seeding the laser cavity 

with a THz pulses of fixed phase [251]. This work demonstrated injection seeding of 

THz QCL in pulsed mode. Instead of QCL emission phase being dominated by a 

random spontaneous emission, it was fixed to the phase of the injected THz seed 

electric field generated from a photoconductive material. Hence, it allowed detection 

of the electric field of THz pulses from the QCL using electro optic detection 

technique. 

Although the injection seeding technique demonstrated does not require any 

frequency stabilisation or active feedback electronics to maintain phase 

synchronisation, they still use bulky and expensive femtosecond pulse sources 

and/or complicated and bulky RF electronics. 

5.2 Outlook 

The prime objective of this chapter is to demonstrate injection-locking of a 2 THz 

QCL using state-of-the-art photomixers and diode lasers. These components are 

commercially available, relatively cheap and portable. Although photomixers suffer 

from low emission power at high frequencies, coherent detection of signal achieves 

high SNR. 

The first part of this chapter discusses the attempts to injection lock CW-THz 

QCLs using the 780 nm TOPTICA photomixers. Experiments were also done to 

directly mix the optical beams on the THz QCL to detect locked signal. 

Measurements to record beating of the THz QCL on the photomixer receiver was 

also carried out. Overall results at ~780 nm photomixers were not successful and the 

system was changed to the telecommunications wavelength region of 1550 nm. In 

addition to this, a narrowband free-space injection seeding measurement of a THz 

QCL was also undertaken in a collaborative work at Ruhr-Universität Bochum, 
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Germany. 

In the second half, the wavelength was changed to 1550 nm and TOPTICA 

1550 nm emitters and receivers, and lasers from RIO and SANTEC were used to try 

and injection lock THz QCL in continuous wave mode. Experimental configuration 

and results from the first successful CW-injection locking of a CW-THz QCL are 

described. Finally, an attempt was made to measure spectra of the injection locked 

THz QCL. 

5.3 Injection locking with 780 nm photomixers 

5.3.1 Experimental configuration 

 

Figure 5.1: Schematic of injection locking of THz QCL using 780 nm ECDLs and TOPTICA 

emitter and receiver. 

The experimental setup used was very similar to the one explained in Section 4.8.2 

for CW-THz spectroscopy. LiYF4-Ho sample was replaced with a THz QCL mounted 

on a cold finger of a Janis ST-100 continuous flow cryostat. Cryostat was mounted on 

a XYZ manual translation stage and the device was cooled using liquid helium. The 

heatsink temperature was controlled at ~15 K throughout the measurement. 

Emission from the emitter was focused onto the front facet of the THz QCL. A small 
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aperture ~1 mm in diameter was carefully glued with Ge varnish in front of the front 

facet of the THz QCL. It helped in the alignment of the THz beam from the emitter 

onto the QCL facet. Radiation from the other facet was collimated and focused onto 

the receiver. The system was boxed and purged with dry air. The experimental 

configuration is illustrated in Figure 5.1. Electrical and optical connections to the 

emitter and receiver, and the detection technique with modulation of the 

piezoelectric transducer of ‘Laser2’ were unchanged. 

5.3.2 THz QCL characterisation 

  
(a) (b) 

Figure 5.2: (a) LIV obtained from the THz QCL at range of heatsink temperature in CW 

mode. Data courtesy of Reshma A. Mohandas. (b) Spectra of the THz QCL 

operating at 750 mA DC current and 15 K heatsink temperature (resolution 

~280 MHz). 

The THz QCL used for this work was grown by Dr Lianhe H. Li, wafer number 

L1071, fabricated and characterised by Miss Reshma A. Mohandas. The laser was a 

bound-to-continuum design, semi-insulating surface plasmon waveguide with 

2.5 mm long, 200 μm wide and 14.6 μm high ridge. The LIV performance at a range 

of heat sink temperature with device operating at constant current mode is shown in 

Figure 5.2 (a). The device was essentially lasing in single mode at 2.015 THz under 
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constant current of 750 mA and 15 K heat sink temperature, and the spectra is shown 

in Figure 5.2 (b). The frequency resolution of the spectra was ~280 MHz. The 

expected Fabry–Pérot mode spacing for this device is close to ~16 GHz. 

5.3.3 Initial results and discussion 

The THz QCL operating at 750 mA of constant current was close to its peak emission 

power. The minimum spot size of the THz radiation focused on to the QCL facet 

from the photomixer was ~1.41 mm (see Section 4.8.2). Even after the QCL was 

positioned at the focus along with the ~1 mm aperture in front of it, some signal was 

going around the QCL and could be detected on the emitter. To get close to the focal 

point, the signal on the receiver was maximized by changing the device position 

along the beam path direction. 

The heterodyne frequency was set close to 2.015 THz, the operating frequency 

of the THz QCL. Translation stage was scanned across a long range and the 

sinusoidal fringes were measured. The FFT of the detected signal and also a 

sinusoidal curve fitting confirmed the emission frequency was within 10 GHz of the 

required frequency. The translation stage was positioned at zero path delay position. 

The piezoelectric transducers were modulated using a triangular-wave and signal 

was recorded in the same way as done for CW-spectroscopy in Section 4.8. If the THz 

QCL was injection locked to the emitter radiation, a peak was expected at the 

operating frequency of the THz QCL when the piezoelectric transducer was swept. 

The increase in detected amplitude would be due to the radiation from the QCL 

being phase synchronised with the injected CW-THz and detected on the receiver. 

Unfortunately, there was no sign of injection locked signal from the THz QCL in the 

frequency scans performed. The scan resolutions tried were as high as 0.5 MHz over 

a range of 13 GHz by decreasing the modulating frequency and voltage to the 

piezoelectric transducer. All attempts to detect any injection locked signal of the THz 
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QCL was unsuccessful. 

Assuming the spot to be perfectly circular with a radius of 1.41 mm and its 

perfect alignment to the THz QCL, only ~0.03% of the radiation was coupled into the 

active area of the laser. It was concluded that not enough signal from the emitter was 

getting coupled into THz QCL due to significantly large spot size of the THz 

radiation. 

5.3.4 Other configurations 

5.3.4.1 Narrowband optical injection 

 

Figure 5.3: Experimental setup for mixing of two 780 nm lasers onto the QCL facet. 

So far radiation generated by mixing two ECDLs on photomixer was used to try and 

injection lock a THz QCL. An attempt was made to directly mix of the two optical 

beams from the ECDLs on the facet of the THz QCL. It was expected that the THz 

emission from the QCL would be phase matched with the injected beat frequency of 

the optical beams. The experimental setup used is shown in Figure 5.3. The 20 mW 

output of the excitation beam was coupled into free space using fibre collimation 

package. It was focused onto the QCL facet using MITUTOYO 10X NIR 0.26 

numerical aperture microscope objective mounted on a manual translation stage to 

adjust the focal position. The minimum spot size was measured to be ~20 μm using 



Chapter 5: Injection locking of continuous-wave terahertz quantum cascade laser 

134 

‘knife-edge’ technique. 

Similar to the previous experiment, a 15 K heatsink temperature was set, the 

THz QCL was biased with 750 mA of DC current and the setup was purged with dry 

air. Output from the other facet of the THz QCL was coupled into the receiver using 

two parabolic mirrors. Signal from the receiver was amplified by transimpedance 

amplifier. Excitation beam was mechanically chopped at 1.3 kHz for conventional 

lock-in detection technique. The resistance of THz QCL dropped by ~10% with the 

optical beam focused onto the facet. Unfortunately, no signal from the THz QCL was 

observed on the receiver photomixer with the frequency scan technique mentioned 

earlier. The noise level detected on the lock-in amplifier was ~6 mV. 

5.3.4.2 Beating on photomixer receiver 

 

Figure 5.4: Experimental setup of beating of free running QCL on the emitter. 

Another experiment was carried out by directly beating the THz QCL emission on 

the receiver and measuring it on an electrical spectrum analyser (ESA). The 

experimental setup is shown in Figure 5.4. THz QCL was biased at peak emission 

power and operation was not perturbed by any external means. Similar to the 

previous experiments, the output of the THz QCL was directly coupled into the 
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receiver using two parabolic mirrors. The output of the receiver was connected to 

ESA via a transimpedance amplifier. 

The heterodyne frequency was set close to 2.015 THz. Bandwidth of the ESA 

was 3 GHz. At the usual 107 low noise gain the bandwidth of transimpedance 

amplifier was just 220 kHz. Instead, the transimpedance amplifier bandwidth was 

switched to its maximum (200 MHz) with a low noise gain of 102. Number of steps 

to cover the full frequency tuning range (~80 GHz with ±3 V bias) of the piezo electric 

transducer was 80/0.2 ≈ 400 steps. The piezoelectric was biased at a step size of 6/400 

≈ 0.015 V and the frequency response on the ESA was saved. Any signal within 

200 MHz of the heterodyne frequency could be detected. Unfortunately, no signal on 

the ESA was detected. 

The noise floor of the ESA was −80 dBm at low noise gain of 102. The peak 

power measured using helium cooled Si-bolometer from the TOPTICA emitter at 

2 THz emission frequency and from the THz QCL used was 10 nW and 1 mW 

respectively. Peak amplitude of the 2 THz emission from the TOPTICA emitter 

detected by the receiver was 1 mV on the lock-in amplifier with a transimpedance 

gain of 107. Hence the expected signal from the THz QCL at 102 gain would be ~3 μV 

(-100 dBm) on the lock-in amplifier, which is well below the noise floor of the ESA. 

This could explain why no signal was detected. The piezo was rescanned with 103 

gain on the transimpedance amplifier. Yet again no signal was detected on the ESA. 

At these setting the noise floor of the ESA was increased to −60 dBm and the expected 

signal was still below the noise floor at −80 dBm.  

5.3.4.3 Narrowband free-space injection seeding 

An attempt was made to injection seed a THz QCL with a narrowband free-space 

optical beat from a tuneable CW dual mode external cavity diode laser (DM-ECDL) 

operating at ~800 nm. The optical beat frequency close to the THz QCL Fabry–Pérot 
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mode was generated by tuning the two modes of the DM-ECDL and was used as a 

seed for the THz QCL cavity. It is believed that, with the gain of the THz QCL 

switched by RF pulses, the lasing action would be dominated by the seed since the 

electric field of the seed should be greater than the spontaneous emission. This uses 

a similar arrangement to the phase-seeding of a THz QCL with broadband THz 

pulses as reported in Ref. [251]. The injection seeding was monitored by changing 

the seed frequency to match modes of the THz QCL and recording spectra of the 

output modes. 

The work described in this subsection was carried out during a three week 

research visit to the Lehrstuhl Für Angewandte Festkörperphysik, Ruhr-Universität 

Bochum, Germany and led by Prof. Andreas D. Wieck and Dr Nathan Jukam. The 

THz QCL used for this work was grown by Dr Lianhe Li, fabricated by 

Miss Reshma A. Mohandas (University of Leeds) and packaged by Dr Hanond Nong 

(Ruhr-Universität Bochum). The DM-ECDL was provided by the Engineering 

Department in Ruhr-Universität Bochum. The work was carried out with 

collaborated efforts of Dr Nathan Jukam, Dr Shuvon Pal and Miss Hekmat Negar 

from Ruhr-Universität Bochum, and Mr. David Bacon from University of Leeds. 

5.3.4.3.1 Experimental configuration 

The experimental configuration used is shown in Figure 5.5. A tuneable CW 

DM-ECDL with peak output power > 1 W used as a source to generate the seed 

signal. The seed signal intensity was attenuated to ~20 mW. The free space output 

from the back facet was aligned to the external cavity of the laser. The two diffraction 

gratings were used to change the optical feedback into the laser cavity and hence 

tune the emission lines. The two emission lines used in this work were ~808 nm and 

~815 nm. These wavelengths were chosen due to their close proximity to the effective 

bandgap (~812 nm) of the GaAs/AlGaAs THz QCL. Ref. [252] reports a resonant 
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nonlinearity close to the effective bandgap in a similar THz QCL device. This allowed 

a higher conversion efficiency of ~0.13% for the mixing between the NIR and THz 

fields. A small part of the DM-ECDL output emission was split and coupled into a 

multimode fibre connected to a compact spectrometer. The emission lines were 

measured using a software package provided with the spectrometer. Mounting of 

the THz QCL on the cryostat, cooling down and temperature control was done in a 

similar way as already mentioned for experimental configuration in Section 5.3.1. 

The heatsink temperature was controlled at 20 K throughout the measurements. 

Optical radiation was focussed onto one of the QCL facet using couple of cylindrical 

lens. This was done to control the beam shape in both X-Y directions which allowed 

the beam to be focused in a rectangular shape, similar to the QCL facet shape. It was 

thought to improve the coupling. The FWHM of the spot was measured to be 240 μm 

by 260 μm. Output from the other facet was directed towards a Michelson 

Interferometer and measured using pyroelectric detector.  

 

Figure 5.5: Experimental configuration for free-space injection seeding. 

A bias-tee was used to bias the THz QCL below threshold using quasi DC 

signal of a 10% duty cycle square-wave modulated at 10 kHz and RF voltage pulses. 
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These pulses were generated by illuminating a fast photodiode with femtosecond 

laser source with a repetition rate of 80 MHz. Each pulse duration was 2 ns and was 

amplified to ~200 mV. The RF pulses were generated in a similar way to that reported 

in Ref. [251]. The optical beam was mechanically chopped at 10 Hz for lock-in 

detection. This modulation frequency was limited by the response speed of the 

pyroelectric detector. 

5.3.4.3.2 THz QCL characterisation 

 

Figure 5.6: THz QCL L-J measured without RF and seed (solid black), only RF (dotted 

black), both RF and seed (dotted red) and only seed (solid red). The current 

density only measures the quasi-DC current, not the current from the RF pulse. 

The THz QCL used was a bound-to-continuum active region design with 

semi-insulating surface plasmon waveguide, fabricated from wafer L1152. The laser 

ridge was 2.15 mm long, 150 μm wide and 14 μm high. The light-current density (L-J) 

measurement of the THz QCL with various combinations of RF pulses and optical 

seed signal is shown in Figure 5.6. In these measurements, L-J was not measured 

throughout the dynamic range of the THz QCL as threshold region was of interest to 

observe a local minima when RF pulses are applied. The solid black line shows the 
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L-J of the THz QCL without any RF pulse. As soon as the RF pulses are applied, a 

local maxima is observed below the lasing threshold as shown by dotted black line. 

The RF pulses turns on the THz QCL even when the DC offset is below threshold 

(the current in Figure 5.6 only measures the quasi-DC current). Similar L-J were 

measured with and without RF pulses in the presence of the optical seed signal 

focussed onto the THz QCL facet and is shown as dotted red line and solid red line, 

respectively. In the presence of the optical radiation, the threshold current density 

shifts higher. This possibly suggests thermal heating of the QCL due to the optical 

radiation. 

5.3.4.3.3 Results 

The output spectra of the THz QCL without the optical seed signal measured at a 

quasi-DC bias set at the peak of local maxima (black dotted line in Figure 5.6) is 

shown in Figure 5.7 as black solid line. The laser was multimode laser with ~3.4 THz 

having the highest intensity. The spectra represented by a solid red line was taken 

with beat frequency of the optical seed very close to ~3.4 THz. Unfortunately, the 

spectra obtained in presence of optical seed was not dependent on the beat frequency 

of the optical seed; emission of the Fabry–Pérot mode corresponding to the beat 

frequency of seed signal and the suppression of other modes was not observed. To 

study the effect of optical injection but without a beat frequency, the feedback of 

~815 nm emission wavelength was blocked in the external cavity of the DM-ECDL 

so that only ~808 nm wavelength is present. The spectra with only ~808 nm optical 

radiation focussed on the facet of the THz QCL is shown as solid blue line in 

Figure 5.7. This spectra is also similar to the spectra with beat frequency of the optical 

signal close to ~3.4 THz, again suggesting that the change was due to the presence of 

optical radiation rather than the resonant beat frequency. Although the spectral 

resolution is 7.5 GHz, different modes of the THz QCL were not resolved properly. 

This is due to a combination of the noise in the pyroelectric detector and also poor 
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alignment of the interferometer. 

It is possible that the seeded electric field was not large enough to dominate 

the spontaneous emission. For this reason spectra was also taken with increased 

incident optical power of ~150 mW, but the results qualitatively the same. As the DC 

offset was fixed, heating of the THz QCL due to the presence of optical radiation 

caused the threshold to increase as already shown in Figure 5.6 (compare black and 

red dotted lines). Therefore, the peak amplitude in the presence of optical seed is 

lower.  

Another possibility for the failure of this experiment could be instabilities in 

the ECDL. It is possible that the ECDL was switching between the lasing modes faster 

than the spectrometer could respond. Unfortunately, due to lack of time in Germany 

further investigations could not be carried out. 

 

Figure 5.7: THz QCL spectra without CW seeding in black and with CW seeding at 

different beat frequencies.at 7.5 GHz spectral resolution. 
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5.4 1550 nm photomixers 

The excitation wavelength was changed from 780 nm to the more developed 

telecoms wavelength region of 1550 nm. Photomixers (both emitter and receiver) 

operating at 1550 nm were purchased from TOPTICA Photonics. These photomixers 

were designed on InGaAs substrate with bow-tie antenna structure. They were 

packaged with an integrated Si lens and pigtailed PM fibre. A second attempt was 

made to injection lock the THz QCL. 

5.4.1 Experimental configuration 

The experimental apparatus used is illustrated in Figure 5.8. The detection technique 

was similar to the one used in photomixer characterisation (see Section 4.4). The 

TOPTICA 780 nm photomixers were replaced with TOPTICA 1550 nm photomixers. 

A RIO Orion Laser Module and a SANTEC TSL-710 lasers were used as the optical 

source for the photomixers. The wavelength and output power of the RIO laser was 

fixed to 1554.969 nm and 10 mW respectively. The external cavity SANTEC laser was 

tuned close to the RIO laser wavelength to achieve desirable heterodyne frequency 

with maximum variable output power of 20 mW. Polarisation of the each laser 

output was controlled with manual fibre polarisation controller (PC). Erbium-doped 

fibre amplifier (EDFA) was used to amplify the combined output of the two lasers 

and excite each photomixer with 30 mW optical power using 2X2 fibre optic coupler 

designed for 1550 nm centre wavelength. Optical spectrum analyser (OSA) was used 

to monitor the wavelength and amplitude from the two CW-lasers. A set of PCs were 

placed before emitter and receiver to control the polarisation of the incident light, 

improving the emission/detection power of the system. 

The emitter was biased at −2 V–0.5 V square-wave modulated at 7.6 kHz 

using an AWG. The THz QCL used for this work was the same device which was 
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used for the 780 nm injection locking measurement (see section 5.3.2) and was 

positioned in the same place as before. The device was biased using a SMU with a 

constant current of 750 mA at 15 K heatsink temperature. A second lock-in amplifier 

was connected to monitor the SMU at emitter modulation frequency. It helped in 

aligning the THz spot onto the QCL’s facet and has been further explained in 

Section 5.4.3. 

 

Figure 5.8: Schematic of injection locking of THz QCL with 1550 nm diode lasers and 

TOPTICA emitter and receiver operating at 1550 nm. 

5.4.2 System characterisation 

System characterisations done at 780 nm excitation wavelength (see Section 4.5) were 

again carried out for the 1550 nm experimental setup. Combined linewidth of the 

lasers, measurements of the spot size of the incident emission from the emitter onto 

the THz QCL and bandwidth of the TOPTICA 1550 nm emitter and receiver were 

measured in similar way as already mentioned in the previous chapter. 

5.4.2.1 Combined laser linewidth 

The setup was almost identical to Figure 4.10 (a). The combined output of both the 

lasers were coupled into an InGaAs based photodiode instead of a Si based 
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photodiode. Output of the photodiode was measured on ESA. Figure 5.9 shows the 

instantaneous screen capture (black line) and the linewidth measured using max-

hold function of the ESA over a time of 3 minutes. The combined linewidth of the 

1550 nm lasers were much more stable than the 780 nm ECDLs measured earlier. The 

drift in beat frequency over time was within a very narrow range of not more than 

25 MHz as compared to almost 1.5 GHz for 780 nm ECDLs (see Figure 4.10 (b)). 

 

Figure 5.9: Instantaneous linewidth of beating the 1550 nm lasers on InGaAs based 

photodiode shown in black (RBW: 110 kHz). Linewidth measured over a time 

of 3 minutes using max-hold function of the ESA shown in red (RBW: 

220 kHz). 

5.4.2.2 Knife-edge measurement of THz spot size 

Spot size of the radiation from the emitter focused onto the THz QCL was measured 

using the ‘knife-edge’ technique. The heterodyne frequency was set to 1 THz. 

Figure 5.10 shows the measured spot size as a function of distance from the focal 

point. The minimum 1/e2 half-width size obtained was 0.24±0.01 mm. The spot size 

was significantly smaller than 1.41±0.13 mm obtained with the TOPTICA emitter 
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designed for 780 nm excitation at the same heterodyne frequency. The same 

parabolic mirrors were used in both setups to focus the THz radiation generated 

from the emitters. The decrease in spot size in the 1550 nm setup was likely due to 

the difference in the Si lens integrated with the emitters. 

 

Figure 5.10: 1/e2 half-width of the radiation spot from the TOPTICA 1550 nm emitter as a 

function of distance from the focal point. 

5.4.2.3 Bandwidth measurement 

The experimental apparatus shown in Figure 5.8 (but without the THz QCL), was 

used to measure the frequency response of the 1550 nm TOPTICA emitter and 

receiver. The system was purged with dry air to a humidity level < 5% to remove any 

artefacts due to water absorption. The heterodyne frequency was tuned from 50 GHz 

to 2.5 THz at a step size of 10 GHz. Frequency and amplitude was obtained from sine 

function fitting of the lock-in amplifier detected signal. Figure 5.11 (a) shows the 

fitted amplitude as a function of the heterodyne frequency for 1550 nm TOPTICA 

emitter and receiver. Figure 5.11 (b) shows the time-domain CW signal detected at 

2 THz heterodyne frequency as black dots. Red solid line represents sinusoidal fit to 
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the data. Detected signal amplitude close to 2 THz was similar for both 780 nm and 

1550 nm photomixers. 

  
(a) (b) 

Figure 5.11: (a) The dependence of fitted amplitude on the heterodyne frequency of 

1550 nm TOPTICA emitter and receiver. (b) Coherently detected time-domain 

response at 2 THz heterodyne frequency (black dots). Single frequency 

sinusoidal fit shown as solid red line. 

5.4.3 Results 

In the 780 nm experimental apparatus, the spot size of the focussed CW-THz 

radiation from the emitter was much bigger than the aperture in front of the THz 

QCL. The smaller spot size measured here is close to the mode size of the QCL and 

should result in much better coupling. 

5.4.3.1 QCL voltage modulation due to emitter 

The voltage of the QCL was measured using a lock-in amplifier with the SMU in 

constant current mode. The modulation frequency was that of the emitter. Any 

perturbation in the device bias due to the emitter could be measured and would be 

helpful in aligning the facet to the incident radiation. In order to align the device, first 

the radiation going through the aperture and detected by the receiver was maximised 
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by aligning the cryostat in XYZ direction using manual micrometers. This ensured 

that the device was close to focal plane. The cryostat was then very careful aligned 

to focus the CW-THz radiation from the emitter onto the THz QCL facet. A strong 

signal on the lock-in amplifier connected to the QCL power supply was detected. 

QCL position was adjusted to maximise this signal on the lock-in amplifier. 

As this signal was modulated at the emitter modulation frequency, it has been 

referred to as the QCL voltage modulation signal. This signal was very sensitive to 

the alignment between the THz QCL and the emitter. It is believed that the THz QCL 

emission gets reflected from the emitter and perturbs the laser cavity causing effects 

similar to self-mixing in THz QCLs [253, 254]. In self-mixing the laser light reflected 

back into the laser cavity from an object causes perturbation in its threshold gain, 

power, voltage and spectrum. It is hypothesised that the reflected THz QCL emission 

was modulated due to change in surface reflectivity of the emitter. Aligning the THz 

QCL to the voltage modulation signal was effectively aligning the emitter radiation 

spot onto the facet of the THz QCL. 

Although the voltage modulation signal was independent of the heterodyne 

frequency, it was strongly dependent on the emitter modulation frequency. The 

amplitude of the QCL voltage modulation increased with decrease in the emitter 

modulation frequency as reflected signal perturbed the laser cavity for longer time 

period. Figure 5.12 shows the QCL voltage modulation signal measured as the 

emitter modulation frequency was changed. The error bar represents the fluctuations 

in the measured signal. This strong dependence of signal on modulation frequency 

suggests that the effect may be thermal in origin. The instability of the voltage 

modulation signal increased at lower emitter modulation frequencies. 7.6 kHz 

emitter modulation frequency was used to carry out all further measurements. 
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Figure 5.12: Voltage modulation of the THz QCL as function of emitter modulation 

frequency. Fluctuations in the lock-in signal represented as error bars. 

5.4.3.2 Coherent detection with TOPTICA receiver 

  
(a) (b) 

Figure 5.13: (a) Injection locked peak amplitude as function of heterodyne frequency. 

(Inset) Coherently detected time-domain signal at 2.013 THz heterodyne 

frequency with the QCL switched on. (b) Fabry–Pérot modes of the THz QCL 

detected by changing the frequency of the injected CW radiation. 

Having aligned the THz QCL to the focussed emitter radiation, the heterodyne 
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frequency was stepped at 10 MHz close to the THz QCL’s primary emission 

frequency and the signal on the receiver was monitored. THz QCL emission line was 

detected similar to the one shown in Figure 5.13 (a). The detected signal amplitude 

was improved by further fine aligning the THz QCL. At this point, it is worth 

mentioning that the signal amplitude was very sensitive to even a gentle touch on 

the micrometers of the QCL cryostat stage. The receiver was then translated for a 

short distance close to the zero path delay position to obtain fringes at each step of 

heterodyne frequency. The peak amplitude detected at each heterodyne frequency 

step with the THz QCL biased with 750 mA of constant current is shown in 

Figure 5.13 (a). The inset in the figure shows the time-domain trace of the signal 

detected on the receiver at 2.013 THz heterodyne frequency with the QCL switched 

on. The time-domain signal with QCL switched on is much larger in amplitude as 

compared to the time-domain signal without the QCL as already shown in 

Figure 5.11 (b). The signal disappeared when the emitter bias was turned off or the 

emitter radiation was blocked. Hence, the sharp peak close to the THz QCL emission 

line shows that the device was injection locked to the phase of the emitter radiation. 

The peak signal detected on the lock-in amplifier was >150 mV. The absolute value 

of the heterodyne frequency might deviate by couple of GHz as the measured centre 

frequency of the free running THz QCL was close to 2.015 THz (see Figure 5.2 (b)) as 

compared to the peak at 2.01302 THz heterodyne frequency (see Figure 5.13 (a)). The 

frequency difference could also be due to slight change in ambient air temperature. 

To estimate the fraction of QCL power locked, the QCL and the TOPTICA 

emitter (at 2 THz) power measured directly on a helium cooled bolometer was 8.97 V 

and 1.63 mV respectively. The ratio of powers is close to 5053. Therefore ratio of 

expected electric field would be √5053 ≈ 71. The emitter field measured on the 

receiver was 2 mV, hence the expected field measured from the QCL would be 

71*2=142 mV approximately. This value was in agreement to the field measured from 
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the injection locked THz QCL as shown in Figure 5.13 (a). 

The heterodyne frequency was swept from 1.963 THz to 2.050 THz in steps of 

10 MHz (minimum tuning step of SANTEC laser) and the signal on the receiver was 

monitored. The plot of the detected signal with heterodyne frequency is shown in 

Figure 5.13 (b). Six Fabry–Pérot modes of the THz QCL spaced at ~16 GHz was 

observed. The mode spacing is in good agreement with the calculated value. It does 

suggest that injected radiation at Fabry–Pérot mode spacing initiated lasing phase 

locked to the incident CW radiation. In this scan the amplitude of the primary mode 

was less than 150 mV because of the phase of the CW signal being detected. 

Translating the delay stage with heterodyne frequency at the primary QCL mode 

confirmed higher detected amplitude. 

 

Figure 5.14: Amplitude and phase obtained at each Fabry–Pérot modes from injection 

locked THz QCL. 

A phase-resolved scan of each of the Fabry–Pérot modes was performed to 

obtain the CW sinusoidal fringes. The heterodyne frequency was scanned over a 

close range encompassing each mode at a step of 10 MHz. At each heterodyne 

frequency step, the emitter was translated over a short distance, signal was recorded 
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and Fast Fourier Transformed. Amplitude and phase of the FFT at the six different 

modes is plotted in Figure 5.14. For each mode the signal phase changes significantly 

as the heterodyne frequency sweeps across it. 

The QCL voltage modulation signal was also measured close to the primary 

emission mode. The heterodyne frequency was tuned across primary mode of the 

THz QCL in a range of 1 GHz at step of 10 MHz. Three identical scans of the QCL 

voltage modulation was performed and is shown in Figure 5.15. As the heterodyne 

frequency hits the QCL emission frequency there is a sharp change in the modulation 

voltage. At this point, the voltage modulation was no longer independent of the 

heterodyne frequency as the incident radiation from the emitter interacted with the 

laser dynamics. Away from the mode, voltage modulation was independent of the 

heterodyne frequency as already mentioned earlier. 

 

Figure 5.15: Three repeated scans of QCL voltage modulation signal measured with 

heterodyne frequency scanned close to the primary lasing mode. 

5.4.4 Discussion 

For a completely injection locked laser, the output power is fixed to the overall gain 
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of the laser cavity and laser frequency (𝜔0) is dominated by the injected signal 

frequency (𝜔1) within the ‘locking-range’ of the injection locked laser [250]. This is 

true for an injected signal weaker than the laser output. Hence, in a plot of locked 

output power as a function of frequency, a ‘flat top’ is expected when 𝜔1 is detuned 

with the locking range of the injection locked laser and is illustrated as solid blue 

lines in Figure 5.16. Injected signal frequency outside the locking range does not 

interact the laser cavity and the output is that of the free running laser as shown by 

solid pink lines in Figure 5.16. 

In this work, locking range of the THz QCL could not be determined as the 

coherently detected signals had a sharp peak (see Figure 5.13 (a) and (b), and 

Figure 5.14). It is believed that inability to determine locking range is due to the 

~25 MHz frequency jitter in the combined output of the 1550 nm lasers used (see 

Figure 5.9). As the locking range cannot be determined, THz QCL cannot be assumed 

to be fully locked to the injected signal from the photomixer. As previously 

mentioned, the calculations of expected THz QCL signal on the receiver shows that 

almost all the power was being detected. Hence, the frequency jitter could be close 

to the locking range of the THz QCL used. To map out the ‘flat top’ within the locking 

range, there is a need to reduce the frequency jitter from the source. In the next 

chapter, this has been proposed as the future work of this project. Finally, the locking 

range (𝜔𝑟𝑎𝑛𝑔𝑒) could be increased by increasing the injected power (𝑃𝑖𝑛𝑗) as 

suggested by Alder’s equation [250]: 𝜔𝑟𝑎𝑛𝑔𝑒 ∝ √
𝑃𝑖𝑛𝑗

𝑃𝑜𝑠𝑐
, where 𝑃𝑜𝑠𝑐 is the THz QCL 

output power. 

Within the locking range regime, the injection locked laser’s output frequency 

will follow any frequency change in the injected signal. In doing so, the output phase 

of the cavity changes with respect to the injected signal phase, to compensate for the 

change in lasing frequency. The phase change accommodated by the cavity across 
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the locking range is 𝜋 radians [250]. In an ideal injection locked oscillator, the phase 

response (𝜙(𝜔1)) by detuning the injection frequency across the locking range is 

expected to follow an arcsine function as described by the equation [250] 𝜙(𝜔1) =

sin−1 (
𝜔0−𝜔1

𝜔𝑚
), where 𝜔𝑚 is the half locking range. This is shown as solid red line in 

Figure 5.16. This condition is valid for weak injection signals. 

 

Figure 5.16: Response of injection locked laser within and outside its locking range. Image 

modified from Ref. [250]. 

The phase response measured in this work has already been shown in 

Figure 5.14. As the injected signal could not sample enough points across the locking 

range, the expected phase characteristics could not be measured. But a sudden 

change in phase of the laser cavity when the injected frequency was locked is evident 

from the plot for each of the Fabry–Pérot modes coherently detected. 

5.4.5 Spectra under THz injection-locking 

The results so far do not reveal the entire spectra of the device when injection locked 

to one of the modes because only those phase-locked are detectable. The 

experimental configuration was modified to include a Michelson Interferometer to 

measure the output spectra of the device. Radiation from the TOPTICA emitter was 

injected onto a facet of the THz QCL and the output from the other facet was detected 
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through the interferometer using a helium cooled Si bolometer. The experimental 

setup is shown in Figure 5.17.  

 

Figure 5.17: Schematic of injection locked THz QCL to measure spectra. 

The THz QCL biased at 750 mA of constant current was first aligned to the 

interferometer. The radiation from TOPTICA emitter was then focussed onto the 

other facet and aligned by maximising the QCL voltage modulation signal as done 

previously. The interferogram was obtained by translating the moving mirror in the 

interferometer over a long distance (1.08 m, ~3600 ps) and recording the output from 

the bolometer. The FFT frequency resolution of the interferogram was ~280 MHz. 

With the emitter turned off, the centre frequency of the free running THz QCL 

was measured to be 2.01504 THz. With the emitter turned on, the heterodyne 

frequency was scanned across a Fabry–Pérot mode ~16 GHz lower than primary 

mode of the laser. The scan range was from 1996.8 GHz to 1997.4 GHz in steps of 

10 MHz. The range was determined from the injection locking scan done previously 

(see Figure 5.13 (b)). At each heterodyne frequency the interferogram was recorded. 

A number of spectra at various heterodyne frequency within the given scan range is 

shown in Figure 5.18. The laser’s primary lasing mode switched to the lower Fabry–

Pérot mode and then reverted back. The FFT scans suggests that the cavity was 

successfully locked to the lower Fabry–Pérot lasing mode (1.99921 THz) over a range 
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of ~150 MHz. 

Unfortunately, these scans were not very repeatable. Similar effects could not 

always be observed in heterodyne scans of other Fabry–Pérot modes. It is most likely 

due to the very challenging alignment of the injected CW-THz from the emitter to 

the facet of the THz QCL. Previously, the presence of the receiver allowed alignment 

through coherent detection of injection locked signal. In this setup, there was no way 

to measure and improve the alignment of injection locked signal. 

 

Figure 5.18: Hopping of the THz QCL emission frequency as it injection locks to a Fabry–

Pérot mode. 

5.5 Summary 

CW-injection locking of a bound-to-continuum THz QCL was attempted using the 

TOPTICA 780 nm photomixers. Locking was unsuccessful due to large spot size of 

the incident CW-THz radiation from the emitter onto the facet of the THz QCL and 

the large jitter of the 780 nm lasers. The two 780 nm optical beams were directly 

mixed onto the facet of the laser but locking could not be achieved. Free running THz 

QCL was focused onto the receiver and beating was monitored on an electrical 

spectrum analyser. Again, no signal could be detected on the ESA. Unfortunately, 
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the noise of the system was too high to detect any signal from the THz QCL. 

Narrowband CW optical injection seeding was also performed at Ruhr-Universität 

Bochum, Germany. Although heating effects of the optical radiation could be 

observed, emission frequency of the THz QCL could not be tuned with seed 

frequency. 

Finally, photomixers and optical lasers at 780 nm were replaced with the ones 

operating at 1550 nm. The focussed CW-THz spot size and the combined linewidth 

of the diode lasers was much smaller than the 780 nm setup. A voltage across the 

THz QCL modulated at the emitter bias frequency was detected while aligning the 

laser to the focus of CW-THz radiation from the emitter. It was due to the effect 

similar to self-mixing in THz QCLs. The heterodyne frequency scan close to the THz 

QCL emission mode resulted in detection of Fabry–Pérot modes of the laser. A 

Change in detected signal phase and QCL voltage modulation signal at the injection 

locked modes was observed. Output frequency spectra of CW-injection locked THz 

QCL was measured. Although mode hoping from primary lasing mode to a Fabry–

Pérot mode was measured, but the scans were not repeatable possibly due to poor 

alignment of the CW-injected radiation. 
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Chapter 6 

 

 

 

Conclusions and future work 

6.1 Conclusions 

In this thesis, it was shown that THz QCLs can be used to construct a diffuse 

reflectance imaging system using bolometric detection (Section 6.1.1). Unfortunately 

this incoherent detection scheme does not enable the direct recovery of amplitude 

and phase information. Hence, an alternative approach was investigated in which 

the generation of continuous-wave THz radiation using photomixing was optimized 

(Section 6.1.2), and then used to injection lock a THz QCL (Section 6.1.3). This opens 

up the possibility of coherent detection of radiation from a THz QCL, and the chapter 

concludes by considering future prospects for this injection locked system 

(Section 6.2). 

6.1.1 Diffuse reflectance imaging 

An electrically, frequency-tuneable, THz QCL was used as a source to measure 

diffuse reflectance from a range of powdered samples, with a helium-cooled Si 
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bolometer being used as the detector. A new ‘effective-optical-path-length (EOPL)’, 

and the well-known Kubelka–Munk (KM), model were used to infer absorption 

coefficients from the relative strengths of the diffuse reflectance data. The inferred 

absorption coefficients were then compared with the Beer–Lambert absorption 

coefficients of the samples obtained from the well-established technique of THz 

time-domain spectroscopy (TDS). Although the basic assumptions of the EOPL 

model could arguably be considered as flawed, as it doesn’t consider the THz 

radiation as a field incident on the powdered sample, but as a ray of light 

reflection/refracting from surface, the trends were consistent with those expected 

from a Beer–Lambert model of the absorption coefficient. The KM model gave good 

agreement with the Beer–Lambert absorption coefficient within a range of 2–

10 mm−1 through using a scaling factor associated with each specific material. 

This work could be extended in the future to determine the effect of 

parameters such as the polarisation and incident angle of the THz radiation on the 

relative diffuse reflectance of the samples. It should be noted that measurements of 

very highly absorbing samples cannot be achieved using THz TDS in a transmission 

geometry. However, diffuse reflectance imaging can be used to measure the 

reflectance signature of these samples (as demonstrated in this thesis for ammonium 

nitrate). 

The system could also be optimised for an improved focus of the THz 

radiation, enabling determination of powder distribution and segregation within a 

sample. THz QCLs based on discrete Vernier tuning [255], external cavities [256] or 

aperiodic gratings [257] would also enable tuning of the frequency for the diffuse 

reflectance imaging system over a far greater range. However, the technique of 

self-mixing using THz QCL was demonstrated in 2011 [254], and was subsequently 

shown to allow three-dimensional imaging of samples [123]. Here, the THz QCL not 

only acts like a source but also a very sensitive (coherent) detector, and it seems likely 



Chapter 6: Conclusions and future work 

158 

that future reflection imaging work with QCLs will focus on using this approach.  

6.1.2 Photomixing 

Continuous-wave THz radiation was generated and detected using commercially-

purchased external cavity diode lasers, and photomixers operating at ~780 nm. A 

maximum emission bandwidth of >3 THz was obtained when using TOPTICA 

photomixers as the source and detector. Log-spiral antennas with interdigitated 

electrodes were also designed and fabricated in-house on an LTG-GaAs substrate, 

and used as photomixers. The effect on bandwidth of the emitter for a range of ex-situ 

annealing temperatures was studied, and photocurrent correlation technique used 

to measure carrier lifetimes. The same photomixer design was also fabricated on near 

identical LTG-GaAs wafers grown under similar MBE conditions but at different 

times. The quality of growth was found to have a much more significant impact on 

the material’s bandwidth and carrier lifetime than the annealing temperature. The 

hyperfine absorption features of LiYF4-Ho crystal were then measured around 

700 GHz using, for the first time, a photomixing approach. 

Apart from optimising further the electrode and antenna designs, transfer of 

the photoconductive material (LTG-GaAs in this case) onto a quartz substrate could 

significantly reduce the dark current. This reduction would lead to low background 

noise and potentially allow higher bias to be applied. This could enable an increase 

in the emitted THz power and overall bandwidth of the system. 

6.1.3 Injection locking of a THz QCL 

Having investigated imaging and spectroscopy systems based on THz QCLs and 

photomixing, research then focused on injection-locking a THz QCL with CW THz 

radiation. Initially, the 780 nm TOPTICA photomixers were used with a 

semi-insulating surface plasmon (SISP) waveguide THz QCL operating single mode 
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at ~2 THz. No injection locking was seen, probably because the 1/e2 half-width of the 

focussed THz spot size was ~1.83 mm compared to the 14 μm x 150 μm facet of the 

QCL. The 780 nm experimental configuration was replaced with apparatus operating 

at a 1550 nm telecommunications wavelength. The frequency jitter in the lasers were 

found to be much less than the 780 nm lasers, and the focused THz spot size was also 

~0.24 mm. The same THz QCL was used, and an injection locked signal was detected. 

Six different Fabry–Pérot modes of the THz QCL were coherently detected by tuning 

the beat frequency. It was calculated that close to 100% of the THz QCL emission was 

injection locked to the radiation from the emitter. An attempt was also made to 

understand the spectral characteristics of the THz QCL during injection locking. The 

CW THz signal was injected in one facet, and radiation from the other facet was 

monitored using an FTIR system. Unfortunately, the results were not conclusive. 

This probably arose from the difficulty of aligning the THz spot on the facet of the 

QCL, and into the FTIR. 

The future possibilities for improving and further developing the injection 

locking of THz QCLs is discussed in the next section. 

6.2 Further work on injection locking of THz QCLs 

Although, in the work described in this thesis, 5–6 injection locked Fabry–Pérot 

modes were coherently detected, the study could not confirm the spectra of the THz 

QCL when it was injection locked to a particular mode. Spectra taken so far 

demonstrate hopping of the primary emission mode to an injection locked Fabry–

Pérot mode, but these results were not fully repeatable and similar hopping could 

not be verified for other injection locked modes. A specific problem was that the 

experimental configuration used did not allow simultaneous coherent detection of 

the THz QCL signal as there was no photoconductive receiver in the system (see 

Figure 5.17). As a result, the injected THz beam could only be aligned using the self-
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mixed THz QCL voltage modulation signal and further fine alignment using the 

coherently-detected injection-locked signal was not possible. The configuration can, 

however, be modified to include the TOPTICA photomixer receiver for coherent 

detection as shown in Figure 6.1. The THz QCL radiation directed towards the FTIR 

section is split and focused onto the photomixer receiver. Thus, the signal from THz 

QCL can be coherently detected for alignment, and precise measurement of the 

output spectra can be performed. This forms the immediate next step in studying 

this injection-locking approach. 

 

Figure 6.1: Schematic showing measurement of the spectra from an injection-locked THz 

QCL, including coherent detection using a photomixer receiver. 

A further difficulty with the work to date has been that two free running 

diode lasers operating at ~1550 nm have been used. The combined frequency jitter 

was ~25 MHz (see Figure 6.2 (a)). Reducing this jitter would stabilise locking and 

increase the spectral resolution for spectroscopy applications Optical frequency 

comb generation techniques are one route to reducing this frequency jitter [258]. 
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(a) (b) 

Figure 6.2: (a) Instantaneous linewidth of beating the 1550 nm lasers on InGaAs based 

photodiode shown in black (RBW: 110 kHz). Linewidth measured over a time 

of 3 minutes using max-hold function of the ESA shown in red (RBW: 

220 kHz). Replicated from Figure 5.9. (b) Fabry–Pérot modes of the THz QCL 

detected by changing the frequency of the injected CW radiation. Replicated 

from Figure 5.13 (b). 

In terms of applications, it would be desirable to have THz QCLs with a 

higher operating temperature, and a broader frequency tuning range. Operating 

temperature above 77 K (the liquid nitrogen boiling point) would reduce the 

system’s operational cost, but at present the CW output powers >77 K are typically 

too low for practical use, especially when utilising single-plasmon waveguides, and 

this is an important area for future development. 

An increased frequency tuning range is extremely beneficial for achieving 

spectroscopy over a broad range of materials. The THz QCL used in this work could 

be discretely injection locked over a frequency range of approximately 80 GHz (see 

Figure 6.2 (b)). This was intrinsically limited by the gain bandwidth of the THz QCL, 

which used a SISP waveguide. Double metal THz QCL waveguide geometries not 

only offer the best temperature performance [2], but also offer ultra-broadband 

emission frequency, with > ~1 THz demonstrated in both continuous-wave and 
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pulsed mode. [259]. By incorporating a double-metal waveguide QCL into the 

injection-locking system, a greatly improved performance would be expected, albeit 

with greater difficulty in achieving alignment. However, in Ref. [260], the authors 

integrated a terahertz seeding section within the THz QCL cavity. Femtosecond laser 

pulses focussed on the seeding section generated THz pulses which injection seeded 

the THz QCL active region. This method avoids alignment of THz pulses from a 

photoconductive switch onto the facet of THz QCL for injection seeding [251], and 

would be highly desirable, provided highly-efficient photomixing could be obtained 

on the facet. In a similar way, a THz QCL integrated with a fiber coupled 

photomixing section would make the injection locking setup more robust. Combined 

with a double-metal waveguide geometry, integrated injection locked THz QCLs 

could then be developed with improved temperature and emission bandwidth. 

 

Figure 6.3: Schematic showing an integrated injection locked THz QCL being used for 

spectroscopy, and locked to a frequency comb. 
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