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Abstract

The use of computational tools and techniques has opened up new

possibilities in architectural form generation. In parallel there have

also been developments in structural engineering analysis and design

methods, with the primary focuses being on accurate modelling of

material behaviour and structural stability, and on ensuring economy.

Having accepted that form and structure are mutually concomitant,

something that is particularly important when considering freeform

architecture, there are two distinct design approaches: (i) shape-

driven architectural forms and adoption of creative integrated post-

rationalisation for a predefined freeform, and (ii) form-structure inte-

gration from conception, manifested by a growing number of methods

for use at various stages in the design process.

In this regard, a truss layout optimisation technique is proposed as

a versatile design tool. This has a potential role in both these ap-

proaches to form generation at the conceptual design stage. A series

of design studies are employed for this purpose, and generated forms

are discussed. Additionally, further form generation possibilities are

explored, using an extended version of the aforementioned technique.

As a representative example, ‘tensegrity’ forms are studied in greater

detail. The generated forms are extensively tested using a commercial

structural analysis package, in order to verify the correctness of the

conclusions drawn.
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Chapter 1

Introduction

1.1 Research Overview

In the latter half of the 19th century, Viollet-le-Duc described the state of French

architecture as being “plagued with the regressive Neoclassical architecture”, such

that the only original works in architecture belonged to engineers. He criticised

the architects of his time for their obsession with the aesthetics of classical forms,

and for their lack of interest in newly introduced materials and construction tech-

niques. He also asserted that academic training should cease to focus wholly on

the aesthetic side of architecture and instead should also seek to address the tech-

nological concerns of engineers [4].

This polemic, although referring to the state of architectural practice of over a

century ago, could also be considered to be relevant to the computer-aided archi-

tectural design practice of the recent past, since the possibilities of freeform (e.g.

via the use of relevant techniques such as NURB1-derived forms or parametric

modelling techniques) have been made available, in which the focus was on visual

expression, shape-driven geometric pattern generation and sculptural quality of

form. Indeed, whilst being inspiring methods of satisfying aesthetic criteria in

design, many of the computer-aided form-generation methods of this period did

little to take into consideration the complex physical behaviours of the forms,

1Non-Uniform Rational B-spline.
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nor did they attempt to model structural aspects realistically. It is not untrue

to say that the scope for application of computer technology beyond geometric

manipulation was being overlooked to a large extent, although separate tools

were employed to render digitally generated forms structurally possible, thereby

partially compensating for their initial lack of adequate structural justification.

Concurrently, there has been extensive development of engineering design and

analysis methods, such as the Finite Element Method (FEM) and computational

analysis methods and both linear and nonlinear optimisation techniques, primar-

ily concerned with accurate modelling of material behaviour, structural stability

and economy (and to a lesser extent in relation to this thesis, Computer Nu-

merical Control (CNC) fabricators in manufacturing). In particular relation to

the presented thesis, structural optimisation is a technique which makes use of

appropriate physical laws in order to automatically synthesise structurally effi-

cient forms. It is a process in which form-generation and analysis are effectively

integrated. A number of computational tools for structural optimisation exist.

One such tool is the structural layout optimisation software being developed at

the University of Sheffield. However, such tools have hitherto been developed

without taking aesthetic design considerations into account.

Perhaps due to the aforementioned trend of envisioning form ahead of a sup-

porting structural solution, on the one hand it posed much greater engineering

(and manufacturing) design challenges, and hence required advancement of post-

rationalised design solutions, whilst on the other hand, it served as a beneficial

catalyst for the advent of a new breed of integrative design solutions, whether

reflected in the organisational structure of multidisciplinary teams and design

processes, and/or in design methodologies and technologies.

Presently, in the field of building form design, and particularly in the subcate-

gory of form-generation, having learnt that form and structure are inseparable,

especially considering the aforementioned freeform type, there are a variety of

post-rationalising methods which integratively respond to shape-driven architec-

tural form design, and also there are a growing number of methods which attempt
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1.1 Research Overview

to integrate at various stages of design, form and structure, some of which have

also been developed and realised in built form. Respectively, these are (i) meth-

ods which use discretisation of initial form (e.g. grid-shell design), which is a

practical structural design response for a given predefined form (either freeform

or ‘form-found surface’), which imposes little on the initially conceived external

envelope and thus allows much of the freedom frequently desired by architects for

roofs etc., and (ii) methods which derive form from resultant material response

to gravitational force, such as form-finding techniques.

Additionally, there are methods which employ discrete (static) structural optimi-

sation as a definitive source of form generation, a significant differentiating feature

being that response of discretised structural members to gravity and applied load

cases is the predominant source of inspiration for form1. This principle of form

generation has advantages over the two methods mentioned previously. Its ad-

vantage over form-finding approaches is that, as the scale of a building becomes

larger, a continuous external envelope become less viable as a design option (i.e.

discretised grid or grid-like systems are likely to be lighter). Its advantage over

the grid or grid-like systems for a predefined surface is that its optimality need

not be restricted by the geometry of the predefined surface.

Although some optimisation-driven methods have hitherto been reasonably suc-

cessful in generating intriguing forms, unfortunately many optimisation-driven

methods tend to be capable of either generating small scale building parts or

treating ‘academic’ problems only, and fail to tackle the issue of integration in-

herent in large-scale form generation studies (due to prohibitively large numbers

of problem variables and/or inefficient formulations, which make run-time long).

It is this field that will be the focus of attention in this thesis.

Thus this thesis proposes that a specific type of structural optimisation, namely

(discretised)truss layout optimisation, employing Linear Programming (LP) to

1c.f. methods such as form-finding (a process of determining form based on the response of

material to gravitational force). Also compare with retrofit discretisation of predefined surface

into ‘optimised’ grids.
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obtain a solution, be employed as a potentially integrative and versatile means

of performing generation of early design-stage forms of ‘conventional’ structural

configuration, which are comparable to those generated by currently existing

methods. The approach will be used to perform form-finding of continuous sur-

faces and to identify discrete networks of structural members for a predefined

envelope1.

In addition to these conventional structural configurations, as a demonstration of

versatility of the optimisation technique employed, an investigation will be under-

taken to establish whether the approach can be extended to treat unconventional

structural configurations, which most existing form generation techniques cannot

address; as an example, ‘tensegrity’ forms will be considered.

A tensegrity is a special class of structural configuration, which has fascinated

architects and engineers for over half a century. Although its definition varies

from one researcher to another, it is generally agreed that a tensegrity structure

requires that compressive members be discontinuous, that there be no transfer

of moment at joints and that the structure is pre-stressable. In this highly spe-

cialised field, numerous computational approaches exist, which are used for form-

finding of the overall geometry of a preconfigured layout of members, typically

arranged within a convex polyhedron. However, few methods exist to automat-

ically identify new tensegrity geometries. It is envisaged that the optimisation

approach presented in the thesis will be able to achieve this, thereby extending

the scope of integrated form-structure conceptual design, while also contributing

to our current understanding of tensegrity structures.

1.2 Scope of Research

Section 1.1 includes broad consideration of the scope of the research. However,

for sake of clarity, this section presents this in distilled form, also providing fur-

1Rectilinear envelopes will be employed for ease of demonstration. However, the method

can be generalised to treat more complex surface definitions.

4



1.3 Aims

ther explanation where necessary.

The scope of this thesis lies within the field of architectural design, focussing

on the use of computer-aided form generation at the conceptual design stage.

Building designs of all scales are considered (Type 1-4 in Fig. 1.1), although the

main focus is on the design of buildings of a ‘substantial’ scale and magnitude,

i.e. large enough to warrant the assistance of computer-aided design techniques

(predominantly Type 1-2 in Fig. 1.1).

It should be noted that whilst the intention is to take an integrative approach

to design, this thesis will not include an investigation of a fully holistic design

paradigm, which may for example utilise multidisciplinary optimisation in which

multiple design parameters (e.g. services and utilities, spatial layout arrange-

ment) are simultaneously considered, nor will the focus be on refining the design

for ease of construction, as has been the focus of some recent studies. Rather,

the thesis is concerned with initial stage form conception within the overall de-

sign process, which will serve as a guide and inspiration for further development

during subsequent phases of the design process. In doing so it is hoped that the

study will, albeit in a small way, contribute towards narrowing the gap between

the two disciplines of architecture and structural engineering, in the context of

conceptual form design.

1.3 Aims

Section 1.1 includes a broad statement of the aims of the thesis. However, for

sake of clarity these are presented in distilled form in this section.

The overall aim of this thesis is to investigate the feasibility of applying an exist-

ing engineering optimisation (design) tool during the initial1 conceptual design

1The focus was on the early stage of design, as early stage decisions tend to have a high

impact on the final design adopted in later stages.
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stage, utilising it as an architectural form generation tool. Firstly, larger scale

architectural forms with conventional structural configurations are considered,

and secondly, a form with unconventional structural configuration, i.e. tensegrity

is considered.

To achieve this, the first objective is to generate architectural forms with ‘conven-

tional’1 structural configurations, comparable to those generated using currently

available methods (form-finding of surfaces and discretisation of structural mem-

bers for a predefined envelope).

The second objective is to extend the capability and versatility of the tool to

include form generation of a less conventional structural configuration, specifi-

cally tensegrity structures. Existing form generation techniques are not capable

of treating such a configuration (notwithstanding specialist tools for tensegrity),

despite the significant interest in the field of form design.

1.4 Methodology

In order to achieve the first objective, a particular type of structural optimisation

has been chosen: discrete layout optimisation of truss structures. This can involve

a linear formulation2 and involves the use of mathematical programming solvers3

to obtain solutions. This will be employed as a potentially versatile, integrative,

means of generating early design-stage forms of ‘conventional’ structural config-

uration which are comparable to those generated by currently existing methods.

1Conventional in contrast with more niche forms which are less widely constructed in prac-

tice, e.g. tensegrity structures or reciprocal frames.
2The software under development at the University of Sheffield currently optimises 2D/3D

frame structures of scale sufficiently large to be useful to structural engineers. Whilst many

other structural optimisation algorithms have been designed to identify mathematically ‘opti-

mum’ solutions, the current Linear Programming (LP) formulations have focused on practicality

of the structures generated, with little post-optimisation refinement required.
3Suitability of this decision is discussed in the Literature Review chapters
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The approach adopted has been to use conceptual design studies as a vehicle

to investigate the applicability of the adopted methodology to different types of

construction. This involves the use of differing design constraints, and permits

discussion of the generated forms and their validity in the context of other exist-

ing form generation methods. The results are presented in Part II.

The second objective was achieved by extending the truss layout optimisation

design tool to include integer constraints to allow more fine-grained control over

the generated structures (leading to a Mixed Integer Linear Programming (MILP)

formulation). Parametric studies were then performed to help understand the be-

haviour of the extended formulation, which was then further extended to permit

identification of ‘para-tensegrity’ structures. The resulting para-tensegrity forms

were subsequently converted to full tensegrity forms and were extensively anal-

ysed in order to check the validity of the generated forms and the findings. The

results are presented in Part III.

1.5 Structure of the Thesis

The thesis is arranged into four main Parts. It commences with Part I, which

comprises a literature review, divided into three topics relevant to this thesis.

The first chapter of Part I provides a critical review of the current techniques

and methods used for form generation (and, to a lesser extent, optimisation) in

architectural design practice. The second chapter serves as an introduction to

structural optimisation techniques and presents a concise review of the different

techniques available, presenting a justification for using structural layout opti-

misation and Linear Programming (LP). The third chapter of Part I introduces

‘tensegrity’ structures, and provides a critical review of recently developed form-

finding techniques for such structures.

The remainder of the thesis is split into three parts; the first two remaining parts,

Part II and III focus respectively on form-structure generation techniques for con-
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ventional and unconventional structural configurations.

Part II identifies current issues in computer-aided architectural conceptual de-

sign, and critically examines the form-structure relationship. It describes prelim-

inary results obtained using structural layout optimisation technique as a form-

generation tool, and proposes ways in which this, originally structurally-oriented,

tool can be used as an integrative structure-form design tool, for use at the ini-

tial concept design stage. This part also presents the specifications required to

accommodate computer-generated conceptual forms for incorporation in design

solutions, whilst also listing areas where further work is required.

Part III: Chapter 6 introduces an extension of the same optimisation algorithm

employed in Part II, in response to the complexity of the ‘optimised’ structures

obtained, and presents a method by which the final output of optimised struc-

tured can be controlled. In order to control the level of complexity, a mixed

integer linear programming (MILP) formulation is presented. As a result, the

total number of members in the final optimum structure can be constrained, pro-

viding end-users with greater control. Parametric studies are also undertaken to

investigate the efficacy of the procedure. This algorithm is then further extended

to include a novel method which makes use of MILP to generate para-tensegrity

structures, as described in Part III: Chapter 7.

Tensegrity structures have attracted the attention of architects (and also engi-

neers) since the 1950s. However, the lack of suitable design tools may have lim-

ited development and application of tensegrity structures in architecture, which

have to date remained little more than the object of architects’ fascination. De-

ployable structures are one area of potential application. Unlike the structures

commonly used in permanent buildings, where cost-minimisation is typically con-

sidered more important than weight-minimisation, in deployable structures (such

as foldable radars and emergency shelters) weight-minimisation is typically the

governing design consideration. Parametric studies are conducted in order to

properly characterise the behaviour of the formulation used. Lastly a discussion
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of the optimality of tensegrity structures is presented.

Part IV comprises two chapters which bring together the two strands of work pre-

sented in the thesis. The relevance of the findings obtained is considered and the

extent to which the original aims and objectives have been achieved is assessed.

In Chapter 8 the scope and context of the investigations undertaken are reviewed,

and the implications of the findings are critically appraised; also limitations of

the investigations are highlighted. The second chapter within this part, entitled

Conclusions and Recommendations for Further Work, then summarises the find-

ings and contributions and finally concludes by identifying recommendations for

future work.

Appendix A contains complimentary information for Part II. Appendix B provides

additional data omitted for brevity (e.g. zero-area members present in generated

solutions). Appendix C contains the MATLAB script, which was used to gen-

erate the simplified MILP structures in Part III: Chapter 6. Finally, Appendix

D provides an additional explanation for the outcomes obtained in Chapter 7

(graphical representation of the effect of additional constraints on the optimality

of the generated structures).
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Literature Review
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Preface

The first chapter in this part, Chapter 2 consists of a critical review of notable

computer-aided architectural design and form-generation techniques, with an em-

phasis on those which endeavour to synthesise forms for visual expression, shape-

driven and sculptural quality and a recent development of techniques which inte-

grate at various stages of design, form and structure. This provides the context

for the research contained within this thesis.

The second chapter, Chapter 3 introduces various types of structural optimisa-

tion and their solution techniques and, presents an argument for the use of one

particular method of practical structural optimisation in order to incorporate a

higher degree of realism into form-generation; plastic layout truss optimisation

employing linear programming (LP) and an associated technique, mixed integer

linear programming (MILP), in comparison with other available methods.

The third chapter, Chapter 4 introduces architectural form with unconventional

structural configuration; a special type of structure, called tensegrity. Its devel-

opment history is reviewed in order to draw attention to the overall theme of

the development of geometry manipulation techniques in architecture, employed

independently from that of numerical techniques in engineering despite their mu-

tuality and interdependence, and need for form-structure integration.

A brief history of tensegrity, differing versions of its definitions, common ty-

pologies of regular tensegrity and the mainstream researches in a critical area of

form-finding are summarised, leading to the most recent development of methods

12



for automatic design or generation of tensegrity.

The structure of the literature review is reflected later, in that of the core parts of

the thesis; Part II presents form-generation with conventional structural configu-

ration, Part III: Chapter 6, proposes further development of the same algorithm,

leading to inclusion of form-generation with unconventional structural configura-

tion in Part III: Chapter 7.
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Chapter 2

Computer-aided Architectural

Design and Form-generation

2.1 Computer-aided Design Approaches

Firstly, it should be noted that the term, ‘computer aided design’ in this chapter

does not adhere to the conventional usage in design practice as meaning ‘graphi-

cal representative techniques by use of computer’ typical in architectural design.

Rather, it refers to general involvement of use of computer in generation of forms,

mostly in the context of building envelope design1.

Computer-aided architectural design practice of the last two decades has seen the

possibilities of application of freeform via the use of relevant computational tools

and techniques such as NURB2-derived forms or parametric modelling techniques.

With the advent of these possibilities, there was a period of vigorous experimen-

tation with new techniques, tools and generated forms in the industry, experi-

menting with shape-driven geometric pattern generation and sculptural quality

of form, popularly named; ‘blob’ or curvilinear architecture. Representative ex-

ample of these include buildings such as Dancing House, Prague (Architect: F.

Gehry. Engineer: V. Milunić, 1992-1996), Kunsthaus, Graz (Architects: P. Cook

1The generation component of design rather than representation [5].
2Non-Uniform Rational B-spline.
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and C. Fournier, 2003), The Sage Gateshead, Gateshead (Architects: Foster and

Partners. Engineer: Buro Happold, 2004) and Burnham Pavillion, Chicago (Ar-

chitects: Zaha Hadid Architects, 2009).

Whilst being inspiring methods of satisfying aesthetic criteria in design, upon

close observation, it is readily noticeable that, for many of the computer-aided

form-generation methods of this paradigm, consideration of the complex physical

behaviours of forms was neither simultaneous nor highly prioritised. It is hence

not untrue to state that the scope for application of computer technology be-

yond geometric manipulation whether 2D or 3D, was overlooked to a large extent

although separate tools were employed to render digitally generated forms struc-

turally possible, thereby partially compensating for their initial lack of adequate

structural justification. Often this would mean frequent iteration of design and

redesign.

Concurrently, there has been extensive, parallel development in engineering de-

sign and analysis methods, such as FEM computational analysis methods, both

linear and nonlinear optimisation techniques and powerful computational numer-

ical solvers, primarily concerned with accurate modelling of material physical

behaviour, structural stability and economy (and to a lesser extent in relation to

this thesis, Computer Numerical Control fabricators in manufacturing).

Influenced by this trend of envisioning form ahead of integrated structural so-

lution to support them, on one hand it posed greater engineering design chal-

lenges and propelled the advancement of post-rationalised design solutions (e.g.

discipline-specific simulation tools), whilst on the other hand, it served as a ben-

eficial catalyst for engendering a new breed of integrative design solutions; the

solutions came in different ways; some were less direct and further away from

the immediate issues of form themselves e.g. implementation of more efficient

organisational structure or design process within a multidisciplinary design envi-

ronment whilst other solutions were more direct i.e. improvement or invention of

associated form-structure design methodologies and technologies.
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Having accepted that form and structure are mutually concomitant1, the impor-

tance of which is more acutely experienced when considering the freeform type,

currently in the field of form design and form-generation, there are two result-

ing attitudes. One is shape-driven architectural forms and adoption of creative

integrated post-rationalisation (e.g. Helmut Pottman’s ‘architectural geometry’

and discrete meshing). The other is form-structure integration from conception,

manifested by a growing number of methods which attempt to integrate at vari-

ous stages of design, form and structure, some of which have also been developed

and realised in built form.

This chapter, hence reviews computer aided design techniques in two main cate-

gories. Firstly, predominantly rule or algorithm based pattern or form-generation,

i.e. shape-driven techniques, are introduced and remedial yet integrative post-

rationalisation techniques (e.g. grid-shell design), which respond to freeform; this

is a practical structural design response to predefined freeform, which imposes

little on the initially conceived external envelope and thus allows much freedom

often desired by architects. Secondly, even more integrated methods of form-

structure generation will be introduced. The first subcategory is form-finding,

which derives form from resultant material response to gravitational force. In the

second subcategory, methods which employ structural optimisation as a definitive

source of form-generation, are reviewed.

2.2 Shape-driven Form-generation Techniques

A shape-driven2 design approach in computer-aided design, as the name suggests,

prioritises the design process according to the chosen aesthetic criteria. It thus

1There are numerous architectural research projects conducted in consideration of materi-

ality (e.g.[6]), physical constraints (e.g. [1]) and practical fabrication issues (e.g. [7])
2A shape-driven design approach is also referred to as form-led or ‘generative’ design ap-

proach. This term is widely used in the algorithm based geometry generation and is found to

be derived from the term, ‘generative specification’ as appeared in[8], which was intended for

shape generation through shape grammars.
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involves a prescribed set of rules or algorithms through which various potential

design solutions can be generated. This type of approach typically relies on

variation (e.g. distortion) and repetition of a small number of basic elements.

The following subsections will introduce certain rule-based or shape-driven design

methods. Note that the presented list of methods is not intended to be exhaustive.

2.2.1 Pattern Generation - Nature Imitation

A typical ‘natural pattern’ generation method employs mathematically expressed,

generative algorithms to mimic a physical phenomenon or biological growth pat-

tern.

Cellular Automaton

Cellular Automaton (or CA) is a discrete model of self-replication originally de-

signed to simulate biological growth, by John Von Neumann in the late 1940’s [9].

CA consist of a grid of cells, each of which can be in one of a finite number of

states, typically ‘on’ or ‘off’. Each cell is updated by prescribed local interaction

rules and the states of its adjacent cells. Architectural designers have taken an

interest in CA due to its ability to generate forms (or patterns) from relatively

simple rules (c.f. complexity of genetic algorithms).

Its application can range from ornamentation to modelling of spatial structure of

urban land use [10]. However due to its discrete nature, application in building

form-generation has been limited although recently there have been attempts in

complex continuous surface form-generation using this system (e.g. [11] [12]. (See

also Fig. 2.1). The possibility of interaction between forms generated by CA and

any supporting structural form is unlikely due to the said discrete nature.

Lindenmayer System

Lindenmayer System (or L-system) is a ‘parallel rewriting’ system and has its

origin as a system of modelling plant growth [13]. The system is expressed as a

formal grammar G [14];

G = (V, S, ω, P ) (2.1)
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cess [16].

Figure 2.2: Lindenmayer system-generated free form [17]

Voronoi Diagrams and Weaire-Phelan Geometry

A Voronoi diagram is a ‘decomposition method’ by which a space is decomposed

into sub-regions by distances to a discrete number of points. Voronoi diagrams

are named after the mathematician Georgy Voronoi, based on his work [18] in

1907 on a class of patterns called Dirichlet tessellations [19]. All regions in a

Voronoi diagram are convex polygons, each of which has only one ‘generating

point’. Application of these diagrams are found in many disciplines including;

architecture, urban planning, computational geometry and geophysics. Repre-

sentative designers in architecture include Chris Lasch [20].

Similarly the Weaire-Phelan structure is a three-dimensional complex structure

based on irregular polyhedral geometry simulating the structure of soap bubbles.

Most prominently the Beijing National Aquatics Centre designed by PTW Archi-

tects and Arup [21] has used irregular Weaire-Phelan geometry as its inspiration

(See Fig. 2.3).

2.2.2 Pattern Generation - Abstraction

This type of pattern generation differs from ‘natural pattern’ generation, as it

derives its rules for pattern generation from abstract concepts and the associated
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Figure 2.3: Beijing National Aquatics Center: Weaire-Phelan geometry. c© Arup

+ Ben McMillan [22]

forms are sometimes characterised by ‘emergent’1 qualities due to its abstract

nature.

Research work of Philippe Block is typical of geometry-focused method of form-

generation, that

Parametric Modelling

Parametric modelling is a representative and widely used example of a shape-

driven design technique. The history of parametric modelling can be traced back

to the work of Lin et al. [24], on variational geometry2. This particular work is

considered an important achievement in the development of parametric modelling

because it allowed generalisation of models by implicit geometrical representations

with mathematical rules [26].

Parametric modelling is a geometric modelling (form-generation) technique where

the geometry of a model is not explicitly defined but instead is determined by

rules and constraints, which define aspects of the building and their relationships

1The term ‘emergent’ refers to “the spontaneous occurrence of an organisation or a be-

haviour that is greater than the sum of its parts” [23]
2Lin et al. in fact cite [24] and [25] as the basis of their own work. However, these papers

serve as analyses and proposals rather than direct development work in parametric modelling
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to each other. Establishment and modification of these relationships is an essen-

tial part of the parametric modelling process. Changing a rule or constraint, or

modifying a part of the model, usually carries implications for the entire model.

In parametric models, the rules are explicit and the geometry is implicit while

in conventional building modelling, the geometry is explicit and the rules are

implicit. This gives parametric modelling a huge advantage over conventional

building modelling, where every aspect of the model must be defined, without

referring to other parts of the model.

Examples of parametric modelling tools for architectural design, include; Digital

Project, an application based on Catia by Dassault Systems, Generative Com-

ponents by Bentley Systems [27] Grasshopper and, ParaCloud. Fig. 2.4 shows

Kartal Pendik Masterplan, an urban design example by Zaha Hadid Architects.

These tools and methods typically reflect precise definition of form as their highest

priority; however, there have been a growing number of more integrative meth-

ods employed in more recent examples and efforts e.g. [28] [29] [30] although

an important distinction should be made; these methods employ, albeit efficient,

essentially a ‘design-anlysis feedback loop’ between the two separate tasks of form-

generation and engineering analysis, rather than an integrative, novel approach

to form-generation.

A recent example of freeform design through use of parametric modelling is

Metropol Parasol, Seville (2004-2010) [32] designed by Jürgen Mayer H. and Ove

Arup and Partners. It is essentially a large-scale, mushroom-shaped canopy, con-

structed in a timber lattice-frame structure with joints connected with specialist

glue. The geometric configuration of lattice is strictly orthogonal, which alludes

to the fact that the aesthetic criteria of form design were prioritised over influence

or consideration of engineering solutions during its design process. See Fig. 2.5.

Another notable example, is Centre Pompidou, Metz, France, (2005-2010) by

Shigeru Ban. As the main inspiration for the design of the roof was of a straw

hat, the outer geometry was of the utmost priority [33]. It is this priority, which

21



2.2 Shape-driven Form-generation Techniques

Figure 2.4: Zaha Hadid Architects, Kartal-Pendik Masterplan, Istanbul, Turkey,

2006 as in [31]

Figure 2.5: Metropol Parasol, Seville. Source:[32]
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Figure 2.6: Centre Pompidou, Metz, France. Source:[33]

in effect justifies the use of a post-rationalised engineering approach which follows

the predefined form. A lattice consisting of triangles and hexagons was projected

onto the freeform surface with every curve designed carefully not to be repeated;

it was essentially a geometric construct and the structure was post-rationalised

at a later stage of design. See Fig. 2.6.

Shape Grammar

Inspired by grammatical rules of language, in 1971, George Stiny and James Gips

introduced a rule-based method of form-generation using shape grammars [8].

The definition of shape grammar (SG) is expressed as a tuple [8]:

SG = (V T, V M,R, I) (2.2)

where,

V T = a finite set of shapes

V M = a finite set of shapes (such that V T∗ ⋂

V M=φ) 1

R = a finite set of ordered pairs (u,v)2.

1where φ is an empty set.
2such that u is a shape consisting of an element of V T∗ combined with an element of V M

and v is a shape consisting of (A) the element of V T∗ contained in u or (B) the element of

V T∗ contained in u combined with an element of V M or (C) the element of V T∗ contained in
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I = a shape consisting of elements of V T∗ and V M

Shape grammars generate n-dimensional shapes. In order to generate a shape

from a shape grammar, the prescribed shape rules are recursively applied to an

initial shape, which determine which shape is to be replaced and how the replace-

ment process (according to geometric transformations, i.e. translation, scale, ro-

tation and mirroring) will be carried out. The generation process is terminated

when no rule in the grammar can be applied. Once the process is terminated,

another shape is generated, which consists of the given shape with the right hand

side of the rule substituted in the shape for an occurrence of the left hand side of

the rule.

When using a shape grammar as a form-generation tool, a finite number of rules

can generate an infinite number of shapes. The uniqueness and popularity of

this particular method of form-generation can be attributed to this potential to

generate unexpected ‘emergent’1 shapes. Applications of this method are found

in art [35], architecture [36], either as a form decomposition or form-generation

tool, and also in structural engineering as part of structural algorithms [37].

Algorithmic Design

Algorithmic design is an approach which involves the “designation of computer

programs for form-generation from the rule-based logic inherent in architectural

programs, typologies, and building design standards” [38]. It employs scripting

languages accessible in many available three-dimensional, geometry manipula-

tion packages to ‘code in’ design intentions [38] [39]. However, it carries the

disadvantage of technical difficulty because it requires the user to have a level

of competence in computer programming although not to the same degree, com-

pared to direct programming.

u combined with an additional element of V T∗ and an element of V M
1The term ‘emergent’ refers to ‘not predefined’ or ‘unexpected’ [34]
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While sharing similarities with traditional algorithm-based approaches such as

Cellular Automata or L-Systems in that the method of form-generation is based

on rule-based logic, this particular design approach draws a distinction; this ap-

proach extends beyond the designer-users’ passive use of algorithms in a restric-

tive way and actively engages users to program custom-scripts into the existing

programs for form-generations.

2.2.3 Discretisation over Predefined Surface Form

This approach does not replace but compliments freeform (or form-found geome-

try). It is a practical structural design response to predefined form, which imposes

little on the initially conceived external envelope and thus allows much freedom

often desired by architects. It is probably this freedom afforded by this approach,

which makes it the most commonly found, which provides post-rationalised sup-

porting structures for forms generated using the tools which exclusively manipu-

late geometric configuration of forms.

Many methods are geometry-focussed, and due to the fact that discretisation

is further along the form design process, following the definition of the outer

envelope, some methods tend to be more related to detailing. A noteworthy

discretisation method by Cutler and Whiting [40] devised a method of planar re-

meshing, in which curvilinear freeform is automatically transformed into a series

of planar polyhedral panel geometries, rendering the form more economical from

the construction standpoint.

A similar method is proposed also by Helmut Pottmann [41], one of the author-

ities in the research of combining geometry, structure and manufacturing. He

explores a research area he calls ‘Architectural Geometry at the boundary be-

tween applied geometry and architecture’. His approach is comprehensive in that

it considers from the initial form-definition to construction. In one of his pa-

pers [42], he makes a series of propositions regarding strategies of detailing and

discretisation (or geometry processing) using planar polyhedral surfaces whilst
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stressing the aesthetic values of mesh configuration.

A recent structure-integrated example is the research by Dimcic [43], which re-

sponds to the stringent geometric requirements of freeform with grid shell con-

figuration; it is one of the prevalent methods of configuration and optimisation

of the internal members. He makes use of Genetic Algorithms for optimisation

with the goal of redistributing stress-concentrated areas.

2.3 Integrated Design

The computer-aided form-generation methods, reviewed in the last section, sat-

isfy sufficiently, aesthetic criteria in design. However, some of these are almost

exclusively for geometric form-generation or manipulation, and consideration of

the complex physical behaviours of forms do not feature.

This trend of envisioning form ahead of simultaneous, integrated structural so-

lutions, engendered two notable categories of effective methods of integrative

engineering form-structure generation, relevant to the thesis. The first is com-

putational form-finding, a numerical process which mimics physical form-finding,

i.e. derivation of form from resultant material response to gravitational force.

The second subcategory is one which follows the shape-driven form-generation

strategy by providing a supporting structure by use of regularised discretisation

(e.g. grid-shell design). The third subcategory, is a group of methods which em-

ploy structural optimisation as a definitive source of form-generation.

This section introduces these three notable subcategories of integrated design ap-

proaches; computational form-finding, regularised discretisation of shape-driven

freeform surface, and (structural) optimisation-driven approaches.
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2.3.1 Computational Form-finding: from continuous to

discrete

Form-finding is a process of deriving a form (or geometry) for a structure which

(among other requirements), will need to resist the particular loading to which

it will be subjected. Ideally, the process of form finding should identify a ge-

ometry that is by some definition, structurally efficient. This approach has a

long and distinguished heritage, with, for example, the definition of the form

of a cable suspended under its own self-weight being addressed by the likes of

Johann Bernoulli, Gottfried Leibniz, and Christiaan Huygens, and the demon-

stration that the ‘catenary’ was the correct form being one of the early triumphs

of differential calculus [44]. It is worthwhile to follow the use of this result into

modern form-finding.

At the beginning of 20th century, this catenary shape was extensively explored

and creatively exploited by Antonio Gaudi in his architecture, many in 2D pla-

nar solid arch designs through a series of complex, direct physical modelling of

hanging chains loaded with weights and their inverted forms. See Fig. 2.7

Figure 2.7: Antonio Gaudi’s Sagrada Familia: interior view. Source: [45]

In the more recent past, the mostly 2D usage of catenaries was extended and

developed by Heinz Isler into 3D thin membrane shell structures, through phys-

ical modelling and rigorous material calibration, which resulted in various novel
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forms of concrete shell structures. Whilst such engineers as P. L. Nervi and Ed-

uardo Torroja successfully designed and implemented thin membrane shell forms

through their use of spherical dome segments, it was Isler, who in the year of

1959, presented possibilities form-finding of 3D shells, a radically different form-

finding method at the time [46]. See Fig. 2.8.

His method, whilst being an undoubtedly innovative and conceptually simple,

direct modelling technique, the modelling process was complex and hence difficult

to be generalised[47], especially without a parallel numerical modelling technique,

which could take advantage of modern computing technology.

Figure 2.8: Heinz Isler’s inverted hanging cloth cast form. Source: [47]

Similar to H. Isler’s method, in the design process of Mannheim Multihalle (1975),

Frei Otto and his design team made extensive use of hanging models for geome-

try definition of the double curvature timber roof. The real break-through came,

however when for Frei Otto’s design of Munich Olympic Park cable-net struc-

tures, a novel numerical modelling technique was developed in 1971, namely,

force density method, by Schek (and Linkwitz) [48]. It is primarily a search tool

for minimal surface solution in cable-net and membrane structures. The strength

of the method lies in the assumption that the ratio of tensile force to length of

each cable is constant, which makes a set of non-linear equations into a set of

linear equations, rendering it directly solvable.
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Originally a technique, force-density method which was used for form-finding of

tensile nets, with introduction of varied tension factor, Relaxation found its usage

in freeform roof definition, one of the most recent examples of which is, MyZiel

mall, Frankfurt, jointly designed by Massimiliano Fuksas and Knippers Helbig.

In this example, a surface geometry was triangulated in order to form a trian-

gulated mesh and then, the mesh relaxation technique was applied to refine the

overall geometry, resulting in a more optimised grid. Still further in development

of this technique, was seen the design of Sun Valleys, EXPO Axis Shanghai, by

Knippers Helbig; 41.5m high funnel structures of triangulated grid shell configu-

ration [49]. The relaxation technique was applied to refine the triangulate grid;

this time additional adjustments were made at the connections which required a

higher density of triangulation, due to higher tension forces, through manipula-

tion of tension factors.

Figure 2.9: Sun Valleys, EXPO Axis Shanghai. Engineered by Knippers Helbig.

Source: [49]

A parallel development occurred, in 1970, when Alistair Day formalised a math-

ematical technique, called Dynamic Relaxation, which he and Bunce applied to

analysis of cable network structures[50]. This method could model the behaviour

of nonlinear structures by assuming that a structure with a given initial configura-

tion is subject to external forces; its equilibrium can be calculated by integrating

a fictitious dynamic equation. In any current configuration of the structure, nodal

equations of equilibrium are used to compute out-of-balance forces. In turn, these

forces are used in order to obtain the current acceleration. The resulting uncou-

pled equilibrium equations can then be integrated (see for further explanation).
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Later, this was extended to modelling of non-tensile structures to meshed, grid

shell geometry. Two representative building examples are; the roof grid-shell

form-structure over the great court of the British Museum (Architects: Foster

+ Partners. Engineers: Buro Happold), which employed the process of finding

the final geometry through dynamic relaxation from a pure geometric shape [51],

and Smithsonian Institution, Washington DC (Architects: Foster + Partners.

Engineers: Buro Happold, 2004-2007), which explored the same form-finding

technique but with a regularised mesh of quadrangles (Fig. 2.10).

Figure 2.10: Smithsonian Institution, Foster + Partners and Buro Hap-

pold. Source: http://www.fosterandpartners.com/Projects/1276/Default.aspx

Accessed: 20/12/2012

Indeed there are a great number of methods being devised in numerical form-

finding besides these. One such example is the work of Xie et al. [52], which at-

tempts to replicate, by employing an evolutionary structural optimisation method,

Gaud́ı’s experimental design method of employing hanging chains and weights.

Also In his work, Kilian [53], uses particle-spring systems, replicating the hang-

ing nets, to regenerate structures comparable to the hanging nets used by Heinz

Isler. More recently, the same method which uses particle-spring systems, was
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employed in form-finding of Trada plywood double-curvature Shell design Ram-

boll Computational Design team (Fig. 2.12). It was then discretised into flat

panels using a discretisation method (constrained planar re-meshing) used by

Culter [40]. Another example which attempts to replicate Isler’s form-finding

approach is found in [54], which employs a computational model of freeform shell

and mathematical programming combined with the finite element technique. See

Fig. 2.11

Figure 2.11: Hexagonal freeform shell with six supports. Source: [54]

Figure 2.12: Trada plywood shell by Ramboll Computational Design

Most recently, Philippe Block’s research group at ETH Zurich, devised a novel

optimisation-based form-finding approach called ‘Thrust Network Analysis’ (or

TNA), which aims to find the ‘best fit’, compression-only solution to an arbitrary

input surface for given network topologies, i.e. form-finding of 3D freeform fu-

nicular structures. [55]. Their method also employs the established form-finding
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technique called Force Density Method in order to ensure unique solutions be-

cause, since the assigned force densities can be explicitly controlled, the final

shape can be explicitly influenced through ‘reciprocal force diagrams’ (which re-

late form and forces), with the resulting forms extending far beyond forms gen-

erated from inverted hanging nets, Fig. 2.13. See also Vouga’s work for related

development [56].

Figure 2.13: An example freeform masonry shell. Phillipe Block et al.

Source: http://block.arch.ethz.ch/projects/freeform-masonry-shells Accessed:

30/11/2012

There are two notable observations, worth mentioning regarding this form-generation

approach. The first is that the final outcomes or forms cannot easily be steered

toward desired ends without experience; this could be a disadvantage if the design

parameters are stringent and the final form needs to be (at least approximately)

close to a prescribed shape boundary. On the other hand, it could also be an

advantage as this could potentially bear ‘emergent forms’. The second is that

currently the approach is rather material-specific as it is confined to homogenous

compression only shells and masonry structures, rendering it difficult to apply to

common, materials such as steel which have tensile and compressive strength and

where flexure as well as compression may therefore be accommodated.
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Although there is a wide variety of methods of form-finding with different strengths

and weaknesses between them (see [57] for reviews and comparisons), the overall

approach of numerical form finding has several advantages. Whether the approach

is for continuous surface definition or grid-shell, the resulting form-structure is a

very efficient way of resisting load as it tries to eliminate or reduce moments under

self-loading (A minor observation worth mentioning is that resulting structures

tend to emphasise horizontality rather than verticality). Specifically, for contin-

uous surface definition, the span of the shell is more likely to be subjected to

material limitations than grid shells. In the case of discretised surface, grid shell

structures, one very important feature is the regularisation of polygon grids; this

is its biggest strength for its consideration of manufacturing and constructibil-

ity, but it can be its limitation as its structural optimality is constrained by the

grid, offering little flexibility outside the grid. Furthermore, when the prescribed

geometry is required to be exact, as its highest priority, the method becomes

less relevant. In summary, for discrete shell structures (e.g. grid shells), there is

a compromise between ‘buildability’ which pushes the designer towards regular

polygonal grids, and ‘structural efficiency’ which may lead to a more free-form

and less regular discrete structure.

2.3.2 Optimisation-driven approaches

In this subcategory, methods which employ structural optimisation as a defini-

tive source of form-generation, are reviewed. Note that this method does overlap

with some methods of form-finding, where optimisation algorithms are exten-

sively used.

Form designers (and/or design tool developers) have been making steady efforts to

integrate and co-operate at early project stages and there has been development

of more optimisation-driven integrated design tools and methods; for example,

a popular graphical manipulation software Rhino 3D1 has a number of plug-in

1http://www.rhino3d.com/ Accessed on 10/11/2009
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software e.g. MPanel Design1 and ForTen 3000 2, for tensile/membrane structure

designs, i.e. form-finding design tools which take physical behaviour of designs

into consideration.

EifForm, a stochastic optimisation tool has been developed by Kristina Shea [37]

and been used for generation of the form used in the construction of a simple

canopy [58] (see also 2.14 as in [59]). It generates the overall form of framed

structures. The central idea is optimisation of structural efficiency whilst also

considering aesthetic criteria, as it combines generative Shape Grammar (or SG)

and Simulated Annealing (or SA)3, a heuristic optimisation algorithm. SA was

first introduced by Kirkpatrick [60] and developed into a shape generation method

by Cagan and Mitchell [61].

EifForm first generates a structural configuration based on SG rules. The perfor-

mance of this configuration is then tested, after which the most optimal alterna-

tive is chosen according to SA. However, it must also be noted that the optimality

of designs generated by EifForm is debatable when compared with known opti-

misation benchmarks.

Figure 2.14: The Hylomorphic Project in the central court of the Schindler House.

After [59]

1http://www.meliar.com/MPanel.htm Accessed on 10/11/2009
2http://www.forten32.com/ Accessed on 10/12/2009
3See Section 3.3.6 for a description in engineering development.
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Dominique Perrault’s design for the underground station, Piazza Garibaldi, in

Naples involved use of Genetic Algorithms1 in generating possible structural

forms; entire populations of structures were evolved and individual structures

were selected through predefined architectural and structural fitness criteria [62].

In order to provide a more efficient roof structure, a genetic algorithm was used

to assign each node a random z-coordinate. The z-coordinates of all nodes were

encoded into a genome, allowing crossover and mutation in the algorithm, and it

was found that the performance2 of the structure could be improved over the run

of 200 generations with 40 individual structures each (See Fig. 2.15).

Figure 2.15: Underground Station Roof Structure, Piazza Garibaldi, Naples. Af-

ter [62]

Many recent examples which employ various levels of optimisation approaches

are found in architectural form design field: e.g. application of topology opti-

misation of building components in prestressed concrete [1], genetic algorithm-

based optimisation in conjunction with parametric modelling [63] and evolution-

ary algorithm-based optimisation of fabric-formed beams and trusses [64]. How-

ever, it must be noted that, whilst many of these methods are successful in gen-

erating small scale building components and altering initially predefined forms,

there are few methods which generate the overall definition of forms using struc-

tural optimisation as a main source of inspiration.

Another noteworthy approach is one by Buro Happold SMART design team, who

developed a comprehensive optimisation tool, called SMART Sizer. it uses a com-

1See Section 3.3.4 in Chapter 3 for a more thorough description of Genetic Algorithms.
2This refers to the load-bearing capacity of structure per given weight.
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Figure 2.16: Optimised loft slab [1]. Source: [1]

bination of of direct and iterative algorithms (virtual work, genetic algorithms

and topology optimisation), capable of optimising complex 3D forms from con-

cept form designs to detailed sizing of structural members. It has found its use

in such projects as Louvre Abu Dhabi for its roof optimisation. In fact, SMART

is one among the general optimisation trend (e.g. Arup’s in-house optimisation

tool [65][66], Abaqus iSight and Bentley Systems SACS Redesign/optimisation

feature) in structural design that, regardless of variations in employed algorithms,

because of the nature of the engineering design to a regulatory code, whether to

British Standards or to Eurocodes, the true optimum generation does not and

indeed should not extend further than concept design stage. What they do, how-

ever, is that architects/engineers devise a design, which then employs an iterative

procedure of input-and-output mostly for code-checking and individual member

sizing optimisation. They come with a huge choice of powerful (fast solution con-

vergence rate), proved-and-tested algorithms (e.g. Simplex, Genetic Algorithms,

Simulated Annealing etc). Again, the time constraint is the key in any optimisa-

tion tool; a real design case will contain a great number of members and complex

load combinations and the run-time could be a prohibiting issue in any of these

tools.

2.4 Summarising Remarks

In the early stages of the use of CAD in architectural design, the focus was more

on shape-driven, form-led approaches, rather than the inclusion of performance-
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based drivers. This is perhaps understandable given the historical centrality of

form in architectural theories and practice.

The use of CAD in architecture had initially enabled the accuracy of drawings,

both two-dimensional and three-dimensional visualisation of initial ideas, effi-

cient exchange of information [67] and relatively easy generation of novel geome-

try. However, these approaches with their focus on visual form but little practical

consideration, have been changing dramatically in the very recent past to adopt a

more practical, constructible and ‘possible’ methods of design integration through

such means as post-rationalisation, computational form-finding and optimisation.

The attempts to design in a more integrative manner and the associated attempts

to devise integrative design systems1 have been reviewed in this chapter

Nevertheless, it notable that, whilst integration of form and structure (and other

performative aspects) has become almost standard through weight-minimisation

optimisation and form-finding approaches (e.g. the automotive industry over the

last decade or so), the similar development in architectural design has somewhat

lagged in its application of similar approaches to form-finding for architectural

structures and there is still much to be explored.

This is to some extent due to the scale of the structures; automotive components

are typically on the scale of a few centimetres , whereas architectural structures

are orders of magnitude larger. This produces challenges for the computational

efficiency of structural optimisation approaches; additionally, the often discrete

nature of architectural structural forms at the largest scale (thin compression

arches/domes or truss structures) means that non-linear aspects such as Euler

buckling may become important.

1Kolarevic suggests that a single modelling system or internalizing the information can be a

remedy for some of the present redundancies and inefficiencies in the design industry and, that

in order to make possible the transition to digital modes of practice, the technologies based on

existing modes of practice should be replaced by tools suitable for new modes of production [68].
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In the subsequent chapter, it will show that these non-linear approaches gener-

ally find locally optimal solutions which may be far from the globally optimal

form. Perhaps as a consequence, in the limited number of cases of structural

optimisation being applied to form-finding of architectural structures the result-

ing structures have been (from an optimality point of view) disappointing, with

the ‘optimised’ forms bearing little resemblance to benchmark optimal structures.

In the light of this, the next two chapters will comprise an investigation of the

types of structural optimisation approaches available, setting out their strengths

and weaknesses for form-finding of architectural structures, leaving open, a small

window of opportunity for truss layout optimisation in a similar effort to generate

form by use of computation with considerations to physical reality.
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Chapter 3

Structural Optimisation

Structural optimisation is concerned with a search for the optimal configuration

of a structure that best satisfies some criterion or criteria of optimality. Pioneer-

ing work on this subject was conducted by Maxwell [69] and Michell [70], who

set out the basic theoretical framework by which structures of least weight could

be found to carry a given system of forces. These approaches typically produce

structural forms which are highly complex, almost certainly not practically build-

able and often in the form of unstable equilibrium. However, if these practical

aspects are set aside momentarily, these they do definitively identify the absolute

minimum weight of structure for a given force system, and as such have great

potential value in both establishing a benchmark, and giving insights into the

features of optimal forms.

In the latter half of the 20th century, computational methods of structural op-

timisation were developed which could either automate the search for so-called

‘Michell structures’ or take into account more practical issues in the search for

an optimal form, such as requiring that the structures should be made from

standardised components, that buckling stability be taken into account and that

fabrication costs be included.

The field of structural optimisation has thus cleaved to some extent into two

groups; a small one developing classical approaches, usually employing linear al-

gorithms to enable identification of Michell structures and a much larger one

39



3.1 Mathematical Optimisation: Terminology

using heuristic, non-linear computational approaches in an attempt to find more

realistic structural forms. We may define these approaches as ‘theoretical’ and

‘practical’

This chapter will firstly present a typical mathematical optimisation problem in

order to introduce frequently used terms in optimisation theory. Secondly, it

will review various types of optimisation and approaches to the solution of op-

timisation problems. Thirdly, it will identify limitations of current optimisation

methods with emphasis on capability to control over the final form of the opti-

mised structures.

3.1 Mathematical Optimisation: Terminology

A mathematical optimisation problem can be expressed as follows [71]:

Minimise or maximise f(x) (3.1)

subject to: gj(x) ≤ bj where j = 1, . . . ,m (3.2)

li ≤ xi ≤ ui where i = 1, . . . , n (3.3)

3.1.1 Objective Function

In Eqn 3.1, the function f(x) : Rn → R is the objective function. This represents

a numerical value, or specifically a structural characteristic to be optimised. An

optimisation problem may either be a single-objective or multi-objective, where

multi-objective problem has more than one objective function. For example, the

objective function in single-objective structural optimisation might be the total

weight of constituent structural members whereas in multi-objective optimisation

the objective might be the total weight and total number of members.
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3.1.2 Variables

x = (x1, ..., xn) is a vector containing the variables of the optimisation problem.

The values of these vectors are to be determined in order to ‘optimise’ (i.e. min-

imise or maximise) the value of the objective function f(x). Each variable, xi is

restricted to remain within a range of values between lower bound, li and upper

bound, ui. Specifically in structural optimisation, the variables represent char-

acteristics of individual elements within the structural framework (e.g. member

cross-sectional area or axial forces). Objective functions and constraint functions

are expressed in terms of these variables.

Variables can also be either discrete or continuous [72]; for example, if a variable

representing the cross-sectional area of a structural member, is allowed to take

any positive value less than the upper bound, then the problem is a continuous

optimisation problem. On the other hand, if the variable may only represent

the area of a steel section chosen from a predefined set of available sections from

manufacturers, the problem is a discrete optimisation problem.

When determining the optimum positions of nodes, the optimisation problem may

be either continuous if the nodal positions are to be determined freely within the

design domain, or discrete if the positions are to be determined from a predefined

grid of nodes. If integer variables are used, the optimisation problem is called an

Integer Programming problem and if both integer and continuous variables are

used, the problem is called Mixed Integer Linear Programming problem. Refer

to Fig. 3.1.

It must be noted that restricting values to discrete (or integer) variables in

the problem formulation can be useful in controlling the complexity of the overall

structural layout, e.g. the total number of members in the final optimum solution.

However, there are two main disadvantages with discrete problems. Firstly, the

optimal discrete solution depends on the predefined discrete layout, which could

result in a solution which can only optimise the structure within the constraints

of the pre-defined (and probably non-optimal) geometry. Secondly, discrete typ-

ically problems require considerably more computation time to solve, compared
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Figure 3.1: Classification of optimisation. After [73]

to continuous problems.

Due to these known disadvantages of including discrete variables, variables are

often assumed to be continuous in truss optimisation. In practice, the final so-

lution value from continuous truss optimisation, can be used as a guide when

choosing member from a set of readily available specifications of sections.

The use of continuous variables also has a known disadvantage; all potential mem-

bers may be present in the final optimal form albeit with zero cross-sectional area,

i.e. there is no method within the optimisation algorithm itself, of differentiating

between members with positive area and members with zero area as the algo-

rithm treats positive and zero area members identically, whereas ‘real’ designers

know that an area of zero is a special case i.e., the member does not exist. This

can be addressed by the use of binary ‘flag’ variables that take the value 0 if the

member has zero area and 1 otherwise.

3.1.3 Constraints

The function(s) inEqn 3.2, gi(x) : Rn → R, i = 1, ...,m is(are) the constraint

function(s) and bj are the (lower or upper) limits, which are also called bounds

of the constraints.
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In structural optimisation, constraints define the allowable limit(s) on physical

behaviour of structures. The inequality governing the maximum stress of an

element, A = F/σ1 is an example of a constraint in structural optimisation.

3.1.4 Feasible Set and Global Optimum

The term feasible set describes a set of solutions where the determined variables

satisfy all of the stated constraint functions. In global optimisation, algorithms

do not immediately produce ‘the’ most optimum solution called global optimum;

it first produces a number of feasible solutions and then they converge toward

the global optimum. In this type of optimisation a global solution will be reached

although the efficiency of the search routine can be a problem [71].

3.1.5 Convexity and Local Optima

Optimum solution search algorithms may converge toward local optima. Referring

to Fig. 3.2, xl1 and xl2 , i.e. xl1 is the local optimum in the sub-domain between

xl − δ1 and xl + δ1, and xl2 , the local optimum in the sub-domain between xl − δ2

and xl + δ2, despite the global being xg. Notice the true minimum or global

optimum for function f(x) is xg for all li ≤ x ≤ ui.

Figure 3.2: Global and local optima. After [73]

1where A is the cross sectional area of the element of the material stress, σ, to which the

force, F is applied.
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An optimisation problem (or, the feasible set, objective function or constraints)

is said to be convex if any one point can be connected to any other point by a

straight line that stays entirely within the solution region, or non-convex if this

is not the case when plotted. Linear Programming problems are convex by def-

inition while Non-Linear Programming problems may contain both convex and

non-convex functions [71].

x x

f!x" f!x"

Figure 3.3: Non-convex and convex optimisation: non-convex on left and convex

on right

The objective of a local optimisation (cf. global optimisation) is to find the

best solution in a specified range within the feasible set. However, this search

process is initiated with arbitrarily chosen values of variables to produce an initial

feasible solution. The major disadvantage of this type of optimisation is that

the successful search for an optimum solution is reliant on the accuracy of the

arbitrarily chosen initial values. This point is illustrated in Fig. 3.3; the downward

arrows represent the initial arbitrary values. In the figure on the left, there are

clearly three separate distinct optimum solutions, which depends on the initial

arbitrary values while the figure on the right shows the successful search for the

global optimum does not depend on the initial arbitrary values.

3.2 Types of Structural Optimisation

There are a number of different approaches to solving structural optimisation

problems. This section introduces a variety of approaches currently used for

structural optimisation.
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3.2.1 Topology Optimisation

Topology optimisation is concerned with identification of the topology of a struc-

ture by optimising (a) specified parameter(s); in truss optimisation, optimising

the spatial arrangement of members and nodes. The objective of this type of

structural optimisation is to find an optimal distribution of materials to with-

stand the applied force constraint with the given support constraint, within the

design domain. An example topology optimisation problem is shown in Fig. 3.4.

Figure 3.4: Topology optimisation, after [74]. The dotted box denotes design

domain

A wide range of applications are found especially in automotive and aeronautical

engineering e.g. [75] [76] [77], and [78].

Topology optimisation methods can be subdivided into three approaches; ground

structure [79]), homogenisation (e.g. Solid Isotropic Micro-structure with Penal-

isation - see Section 3.3.2), fully-stressed design techniques (e.g. Evolutionary

Structural Optimisation [80]). The two main disadvantages of topology opti-

misation are, over-reliance on arbitrarily chosen refinement values, for optimum

solution and, practicality for construction of the solution structures 1.

3.2.2 Size Optimisation

In size optimisation, the size of elements in a pre-defined structural layout, is

optimised, where the problem variables are the member cross-section properties.

1due to the large number of nodes and discrete nature of the structural elements employed

in large structural frames.
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3.2.4 Shape Optimisation

This type of optimisation is similar to size optimisation, in that the initial lay-

out of the structure is known prior to optimisation. In shape optimisation, the

objective is to change the boundary of the material by redistributing the mate-

rial to reduce high levels of stress and improve the performance of the structure.

Until relatively recently, applications with regard to architectural form finding

or generation, were rarely found while some use was found at smaller scales e.g.

optimisation of individual structural member shapes.

Most recently, Philippe Block’s research group at ETH Zurich, devised a novel

optimisation-based form-finding approach called ‘Thrust Network Analysis’ (or

TNA), to find the ‘best fit’, compression-only solution to an arbitrary input sur-

face for given network topologies, i.e. form-finding of 3D freeform funicular struc-

tures. [55] with promising results. However, this too is an unsuitable method for

discretised truss optimisation, which is to be achieved by this thesis.

3.2.5 Material Optimisation

In material optimisation elements are assumed to be composed of layers of fibre-

reinforced materials. The objective is to determine the layer thicknesses and fibre

orientation in order to maximise stiffness.

Similar to shape optimisation, it is more suitable for optimisation of small-scale

individual members rather than truss designs or practical form-generation for

architectural usage.

3.2.6 Layout Optimisation

As in the case of size and topology optimisations, definitions of different types of

optimisation, under certain circumstances, can overlap each other. For example,

in size optimisation, if only positive finite member constraints are included, and

these constraints have a lower limit of zero then members are allowed to van-

ish, and the size optimisation problem can be considered a topology optimisation
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problem [85].

Layout optimisation is an example of combinatorial optimisation; the term first

appeared in [86], which was later formally defined by Rozvany et al. in [85]. This

type of optimisation is concerned with simultaneous determination of member

cross-sections (i.e. size optimisation), nodal coordinates (i.e. geometry optimisa-

tion) and topology.

With regard to combinatorial optimisation, the terms ‘layout optimisation’ and

‘topology optimisation’ may be used without distinction if the problem consists

of a sufficiently dense grid of elements in the initial ground structure, such that

selection of nodes ‘simulates’ determination of nodal coordinates. On the other

hand, if the grid is not sufficiently dense, then the topology and geometry are

solved iteratively [87]. This iterative form of combinatorial optimisation tends to

be highly non-linear1.

Ground Structures

Michell type structures [70] are effectively continuum structures, with truss-like

micro-structures that, in the limit, typically comprise an infinite number of in-

finitesimal members. This prohibits the application of Michell’s approach to

practical structural design, although it gives rigorous benchmarks of optimality

for a number of classic problems. An additional problem with the Michell ap-

proach is that only a very small class of problems have ever been shown to be

tractable by this approach [88].

Consequently, efforts were made to resolve these issues through an approximate

formulation of discretisation or use of ground structure [79] [89]. The ground

structure comprises a grid of nodes, with some initial inter-connectivity by truss

members which are candidates for inclusion in the final, “optimal” design. The

denser the grid, and the more complete the initial inter-connectivity, the closer

the optimal form may approach the ideal optimum for the problem at hand.

1thus, computationally costly and it may converge toward local optima
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Equally however, a denser grid and high initial connectivity greatly increases the

computational effort required to identify the optimal form. See Fig. 3.7 for a

basic ground structure.

Figure 3.7: Ground structure

The relationship between the number of all potential members m and the total

number of nodes n, is expressed as:

m = n(n − 1)/2 (3.4)

It is note-worthy that variables representing the cross-sectional areas of members

can take zero values1. This can be problematic as members of insignificant, near-

zero values, which carry near-zero load, can exist in the final solution.

It is possible that no unique optimal form exists for a given problem; several differ-

ent forms may exist that satisfy all the constraints of the problem and have equal

structural volume but different topologies [90]. The ground structure approach

produces approximations of analytical optimum solutions of Michell’s theoretical

optimum as the ground structure is a finite set of potential members and unable

to accommodate curved members.

The more dense the ground structure (thus the number of variables), the more

computationally expensive the search for an optimum solution while this im-

plies the more accurate approximation to the true optima. The high number of

1c.f. size optimisation formulations
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problem variables associated with this approach is a major drawback. It is also

observed that there is lack of justification for removal of (and/or prohibition of

reintroduction of) arbitrarily chosen members in certain ‘ground structure’ ap-

proaches, and that there is lack of rigorous method of introducing new members

and nodes during optimisation [90].

As a remedy to this problem, Adaptive Member Adding approach or AMA [91]

has been formulated. Unlike the ground structure with full connectivity such as

the one shown in Fig. 3.7, the AMA approach employs a reduced ground structure

with only adjacent connectivity. During the optimisation process, new members

are then introduced to this initial structure according to the pre-set criteria in

subsequent iterations. This formulation changes the nonlinear relationship be-

tween m and n in Eqn. 3.4 and greatly reduce the number of initial variables.

Optimisation with Elastic theory

Methods based on elastic theory and those based on plastic theory were devel-

oped separately. Currently, analysis methods using the plastic theory are less

prevalent as those using elastic theory, with the exception of recent development

of optimisation methods which combine elastic and plastic constraints [92].

For the past few decades, the research in structural optimisation has been fo-

cused on elastic design and plastic methods are not common in design practices1.

Optimisation with elastic theory enables (nonlinear) problems to include such

parameters as nodal stability [93], and Euler buckling [94].

However, the basic assumption of elastic theory, that a structure behaves in an

elastic manner and fails at the critical stress of materials, is only valid regard-

ing statically determinate structures or structures in brittle materials. In other

words, in majority of cases, this assumption fails to be valid as stress redistri-

bution allows the structure to withstand beyond the assumed elastic failure i.e.

1partly due to the versatility of FEA based methods.
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they fail when a sufficient number of ‘plastic hinges’ are formed [95].

Additionally, elastic structure optimisation is generally more complex than plas-

tic structure optimisation [96], as the elastic relationship between specific stiffness

and mass, and between bending and torsion, are highly nonlinear and complex.

The high computational expense of non-linear methods and lack of certainty in

reaching the global optimum due to non-convexity, also contribute to impracti-

cality, especially in large scale or three dimensions.

Optimisation with Plastic Theory

Michell in his paper in 1904 [70] first established a set of optimality criteria for

framework structures. Although this set of optimality criteria preceded the devel-

opment of plastic analysis theory, Michell’s theory is effectively based on plastic

design theory.

Many techniques employing the plastic theory was carried out by Prager [97] and

Shield, establishing ‘Prager-Shield’ optimality criteria [98].

Later Dorn and Hemp researched plastic stress constraint layout optimisation

problems [79] [99]. Hemp also extended the formulation to include member self-

weight and multiple load cases, establishing optimality criteria, known as ‘Hemp

optimality criteria’.

The basic truss optimisation algorithm, formulated as a linear programming prob-

lem, using the plastic design theory and ground structure approach is relatively

simple [99]. Rozvany [85] distinguished two different approaches; practical en-

gineering approach i.e. the force equilibrium or lower-bound formulation and

mathematical approach i.e. the work or upper-bound formulation.

Although the problem formulation, which combines linear programming with

plastic layout optimisation, may appear simplistic because it does not allow more

realistic highly non-linear efforts (e.g. buckling) to be considered, one advantage

is the possibility of inclusion of multiple load cases [88].
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3.3 Types of Solution Methodologies

3.3.1 Mathematical Programming: Linear and Nonlinear

Programming

This is one of the oldest forms of optimisation [100]. An optimisation problem is

said to be a linear program if the objective and constraint functions (or f(x) and

gj(x)) are linear. In other words if the following is satisfied:

gj(αx + βy) = αgj(x) + βgj(y) (3.5)

x, y ∈ Rnand α, β ∈ R (3.6)

If the optimisation problem satisfies the following inequality:

gj(αx + βy) 6 αgj(x) + βgj(y) (3.7)

x, y ∈ Rn and α, β ∈ R (3.8)

α + β = 1 (3.9)

α > 0, β > 0 (3.10)

then the objective and constraint functions are said to be convex and the opti-

misation problem is also said to be a convex optimisation problem [71]. Thus,

convexity is more general than linearity i.e. any linear program is a convex prob-

lem. This point is illustrated in Fig. 3.81 Classical optimisation methods can be

categorised into two types, according to their search strategies: direct search and

gradient-based methods [101]. The direct search methods employ only the objec-

tive function and constraint values in the search process i.e. lack of gradient [102].

These methods require a number of evaluations of the function before obtaining

a solution, making the search process relatively slow. However, one advantage

of direct search methods is that generalisation is straightforward and thus its

application to other classes of problems is possible with minor modification, due

to lack of function derivatives.

1On the other hand nonlinear program may either be a convex or non-convex problem with

no certainty of the solution being the global optimum.
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(a)                                   (b)                                        (c) 

Objective
function 

Constraints Local optima 

Global optima 

Figure 3.8: Different types of optimisation constraints: (a) Linear, (b) Convex

non-linear (c) Non-convex, non-linear.

In contrast, the gradient-based methods [102], employ at least the first-order

derivatives and in some cases, also second-order derivatives of the objective func-

tion and/or constraints in the search process. The obvious advantage of gradient-

based methods is their tendency for quick convergence toward a solution while the

disadvantage is the difficulty of applicability for discontinuous problems or the

problems where derivatives are not available.The two different groups of methods

also share disadvantages. Firstly, the convergence towards an optimal solution

depends on the initial solution. The algorithms for most traditional methods

tend to converge to local optima in the case of non-convex problems. In addition,

the algorithms tend to be problem-specific 1 and most of these algorithms are not

efficient for discrete variable problems.

In practice, direct search methods are more widely used. However, constraints

are sometimes approximated to linear expressions because the nonlinearity of

constraints may result in higher complexity and poor convergence and, in the

case of non-convexity, the final solution may be a local optimum.

1i.e. an efficient algorithm for one type of problem may not have the same level of efficiency

in solving a different type of problem.
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Linear Plastic Optimisation

Considering a structure containing m members and n nodes and subject to a

single load case, the linear programming formulation of the plastic equilibrium

approach to truss optimisation can be described as follows:

Minimise V = lTa objective function (3.11)

subject to: Bq = f equilibrium constraint (3.12)

− σ−i ai ≤ qi ≤ +σ+

i ai stress constraint (3.13)

ai > 0 area constraint (3.14)

for i = 1, ...,m (3.15)

where V is the total volume of the structure, l is a vector of individual member

lengths (li is the length of member i), a is a vector of member cross-sectional area

(ai is the area of member i), B is the direction matrix of members, q is a vector

of internal member forces (qi is the force in member i), f is a vector of externally

applied nodal forces and finally, σ+

i , σ−i are the tensile and compressive stresses

in member i, respectively.

In this case, the LP problem variables are the internal member forces. These

equations are called ‘lower-bound’ or‘primal’ formulation, in other words, min-

imisation. Following is the work formulation, where the virtual work is max-

imised:

Maximise W = fTu objective function (3.16)

subject to: BTu ≤ c strain (or compatibility) constraint (3.17)

(3.18)

where W is the total virtual work dissipated by the specified loads, u is a vector

of virtual nodal displacements, which are small, and

c = {l1/σ+

1 ,−l1/σ
−

1 , l2/σ
+

2 ,−l2/σ
−

2 , ..., li/σ
+

i ,−li/σ
−

i }T .
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This formulation has the virtual displacements of nodes as its variables. As it

is concerned with maximisation of external work, it is called the ‘upper-bound’

or ‘dual’ formulation. The optimum solutions to both formulations for the same

problem, should be the same. This is known as duality and is a useful tool in

optimisation as problems may be expressed in one form and duality allows an

alternative formulation to be found. This permits different sets of data to be

determined from one problem (e.g. in this case member forces in the primal and

virtual displacements in the dual). Modern LP solvers are capable of simultane-

ously solving both problems, even if only one formulation has been supplied.

3.3.2 Homogenisation

Homogenisation is a technique in structural optimisation, which originated as

a computational analysis tool for analysis of composite materials [103]. In ho-

mogenisation, variables relating to the highly heterogeneous parent media are

replaced by those of an equivalent, but simplified material model and, the unit

‘cell’ of this new material is analysed in order to determine its properties before

the entire structure is examined and the boundary value problem is solved [104]

Bensøe and Kikuchi [105] made use of the FEA based homogenisation method

for structural optimisation. Instead of material inclusions in the matrix, the

design domain is assumed to comprise of a medium containing a large number

of voids [106]. The material properties of each cell are changed by variation of

the void dimensions and element orientation. Consequently, elements can then

be categorised as being ‘solid’, ‘empty’ or ‘porous’, depending on the size of

the void. The optimisation problem becomes a matter of determination of the

best material distribution in order to achieve the optimal value of the objective

function. Hence, this type of optimisation can be seen as a size optimisation,

which can be solved using any (nonlinear) mathematical programming technique.

However, as the discretisation of the design domain has a major influence in the

proximity of the solution to the absolute optimum, it is desirable to provide a fine

grid of elements in the initial problem formulation. With the increased degree

of discretisation, mathematical programming methods become computationally
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expensive as a result. In many practical cases, the homogenisation method is

used in conjunction with optimality criteria solution methods due to the high

computational cost and the need for repeated calculations of the objective and

constraint functions.

Solid Isotropic Micro-structure with Penalisation (SIMP)

SIMP is a type of homogenisation and a FEA-based numerical method used in

topology optimisation [107]. In SIMP, the design domain is discretised into a

set of ground elements. The element thickness to be optimised determines the

design, where 0 thickness denotes absence of material, and 1, solid material and

the majority of the thicknesses of the elements will be between these two values,

resulting in ‘grey’ elements. Such elements are penalised according to a power

law proposed in [108], or ρ = s1/p where s is the normalised stiffness and p is a

tuning parameter, this penalisation reduces the number of grey elements in each

iteration to determine clearer designs, using 0 and 1 thickness.

3.3.3 Evolutionary Structural Optimisation

Evolutionary Structural Optimisation (or ESO) is a heuristic method developed

in the 1990s [109], concurrently with homogenisation. It has been used in engi-

neering practice where combinatorial optimisations were sought; e.g. shape and

topology optimisations [110], size and topology optimisation [111].

This method seeks to remove material that retains a Von Mises stress below

a certain ‘cut-off’ ratio, re-analyse and repeat until a steady state is achieved.

Following this, the cut-off level is increased by a set value and the iteration is

repeated. With removal of elements, the corresponding number of iterations re-

quired to reach a steady state decreases and steps are quickened. The number

of iterations required in each step and the number of steps required to reach the

optimum, depends on the problems.

One advantage of this approach is that Finite Element Analysis (or FEA) soft-

ware can be used and it only requires addition of element rejection criteria for
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optimisation. The disadvantages of ESO is that the stresses within the con-

stituent elements may change as a result of members being removed from the

structure. In some cases this means the previously removed elements will require

reintroduction as to obtain an optimum solution. However, in the primary ESO,

this is not possible, leading to higher compliance values than the optimum i.e.

non-optimum. Bi-directional ESO (or BESO) [112] improves this as the issue

of re-introduction of elements is resolved such that the optimisation needs to be

started with a minimum amount of material within the design domain i.e. that

needs to carry the applied loads directly to the supports. Optimum topologies

‘grow’ toward the optimum rather than revealing themselves from within an ar-

tificially oversized initial design domain. The FE analysis stage thus is shorter

and and a more realistic optimum solution can be found, although BESO can

still provide non-optimal solutions [113].

3.3.4 Genetic Algorithms

The term, Genetic Algorithms (or GA) describes a group of methods, a special

class of evolutionary algorithms, for optimisation of complex problems [114]. GAs

are stochastic optimisation algorithms and, have been employed in many struc-

tural optimisation applications for both discrete and continuous problems [115].

Techniques follow the evolutionary principle of ‘survival of the fittest’ i.e. once

the initial population is created, it evolves over a number of generations, indi-

viduals’ characteristics, advantageous for survival and breeding pass on to the

following generations. Thus, in GA, the operations mimic the principles of sur-

vival in evolutionary biology e.g. fitness function for defining efficacy of a solution

regarding the objective, crossover for gathering best genes and mutation for pre-

venting premature termination [116]

Initially, in a process called initialisation, a population of strings, representing

solutions to a specified problem, are generated and ranked according to their close-

ness to termination condition. Then, reproduction occurs where new populations
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are created by selection of the fittest1 strings and through genetic operations such

as crossover or mutation2, to produce new strings. The reproduced population

should be closer to the optimum solution than the previous one.3 This process is

then repeated until solutions are reached.

Like many other stochastic methods, GAs can be used to solve problems with

both discrete and continuous domain because GAs use encodings of the design

variables (cf. variables themselves) and, where the objective function or the con-

straints lack regularity. GAs does not require the derivatives of objective function.

In comparison to the standard deterministic methods, GAs produce populations

of solutions as opposed to a single solution, which does not eliminate but re-

duces the risk of local optima. and problems with multiple objectives can be

solved [118]. The known disadvantages of GAs include; first, their high computa-

tional cost renders it unlikely to be practical in optimisation of realistic structural

design with the currently available computational capabilities [119], and second,

in non-specific problems, an optimum structure is not guaranteed [120].

3.3.5 Dynamic Programming

DP refers to a class of algorithms based on simplification of complex problems

into incremental steps of subproblems [121]. It is a strategy suitable for optimi-

sation of multistage decision problems [122] or serial structures 4 in structural

optimisation.

In DP, optimal solutions for individual subproblems can be known at any given

stage. When applicable, this condition can be extended incrementally, without

altering previous optimal solutions to subproblems. The solution to the initial

1According to Schema theory [117], in order to ensure ‘population diversity’, less fit strings

are sometimes allowed to remain
2This introduces random dataset to prevent idling.
3exceptions exist
4the output of one stage is the input of the successive stage
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problem is achieved when the condition applies to all of data and nothing re-

mains untreated [122]. DP is useful where the decision sequence is long, and the

number of decisions to be considered is large. Some structural optimisation prob-

lems can be solved by this approach. However, it should be noted that whether

plastic or elastic design, usually only statically determinate structures can be

formulated as serial structures. Although for some applications, analytical solu-

tions are possible, in general the solution must be found numerically, leading to

high computation time and storage requirements due to what is known as ‘curse

of dimensionality’. Hence, conventional DP cannot be used to obtain practical

solutions numerically.

3.3.6 Simulated Annealing and Particle Swarm Optimisa-

tion

Simulated Annealing (or SA) is a type of optimisation, analogous with annealing

process1 of metal. SA was first introduced by Kirkpatrick [60] and developed

into a shape generation method by Cagan and Mitchell [61]. This methods was

developed in the 1950s [60]. It is a stochastic optimisation procedure, which

seeks global optimum solutions by starting with randomised initial solutions. It

is suitable for use in all types of optimisation problem including structural topol-

ogy optimisation. The solution strategy can avoid convergence to local optima

by allowing random increase or decrease in values of the variables in each itera-

tion. Consequently, this characteristic makes the procedure slow, especially when

restarting from a previous solution [123].

PSO is a similar type of optimisation more efficient than SA, and it can avoid

local optima [124]. However, compared to LP, its efficiency is limited in terms of

the manageable number of variables.

1A process for metal to cool into a minimum energy structure.
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3.3.7 Tabu Search and Ant Colony Optimisation

Tabu Search refers to a local search technique of heuristic optimisation developed

by Glover [125] with the ability to eliminate local minima in nonlinear optimisa-

tion problems in search of a global optimum. It typically consists of dynamically

generated constraints or tabus to guide the search towards an optimum solu-

tion, an evaluation function (through the use of memory structures) to determine

whether the solution could be improved by a small change in variables at each

iteration. It uses a local search procedure to move from one solution to another.

It alters the local structure of each solution throughout the search procedure and,

each move and the effect it has upon the solution, is stored in tabu list. When

the moves result in a more optimal solution, a certain termination condition is

satisfied. Regarding truss optimisation, nonlinear, Tabu Search based methods

capable of considering multiple load cases, stress, displacement and buckling con-

straints and multiple objective functions, have been presented [126] [127].

Ant Colony Optimisation is a heuristic optimisation algorithm with a stochastic

search procedure that incorporates positive feedback of accumulated informa-

tion and avoids local optima, developed first by Marco Dorigo [128].There is a

method that combines Ant Colony Optimisation and Tabu Search for truss op-

timisation [129]. The combined algorithm is used to minimise the weight of a

space truss. Though it presents an optimal design the method carries a high

computational cost.
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3.4 Chapter Conclusion

In search of the most suitable choice of optimisation, various optimal solution

search methods and types of optimisation have been reviewed in the previous

sections of this chapter. This section provides justification (with comparisons)

for the particular choice of the method to be employed for the stated aims and

objectives of this thesis.

3.4.1 Justification for Use of Linear Programming: linear

vs non-linear approaches

There is a compromise to be made in the choice of structural optimisation ap-

proaches, between highly efficient linear approaches, which require some degree

of simplification of the problem to retain the linearity, and non-linear methods

which are computationally expensive, but which can in principle address non-

linear behaviour such as strut buckling. The choice is one of philosophy and

practicality; whether to accept the simplification required to enable us to solve

large problems, and use a post-optimisation rationalisation of the solution to

produce a real design, or to include more realistic problem definitions, but then

accept a limitation on the scale of the problem that can be addressed, and to

have no certainty that the resulting solution is globally optimal.

In this work, it was decided to use a basically linear approach, primarily because

of the certainty of being able to establish globally optimal results albeit for sim-

plified problems, and partly due to the availability at University of Sheffield of

world-leading linear programming optimisation software.

3.4.2 Justification for Use of Layout Truss Optimisation

The optimisation method of choice for use in this thesis is layout optimisation; a

method which simultaneously optimises member lengths, nodal locations, mem-

ber cross-sections and members’ spatial arrangement i.e. simultaneous size, ge-

ometry and topology optimisation, suitable for truss optimisation problems. It
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should be noted that shape optimisation and material optimisation are most

suitable for optimisation of small-scale individual members or continuous surface

structures such as continuous shells, rather than truss designs or practical form-

structure generation for large span surface definition, which this thesis aims to

achieve.

In addition to the advantage of being able to optimise several aspects of structural

members simultaneously, truss optimisation historically has had strong links with

linear optimisation techniques, which are, as explained throughout this chapter,

computationally very efficient in their search for optimum solution, compared to

other search techniques and without the risk of local optima (commonly experi-

enced by nonlinear techniques). Further more trusses find their applications in

many large scale and long span roofs and they make an ideal and efficient mode of

supporting predefined surface or freeform as well as structural aesthetics, sought

after in this thesis.

3.4.3 Limitations of LP plastic layout optimisation

The following subsections introduce common practical issues and limitations of

plastic layout optimisation in application in structural engineering and prospects

of application as a form-generation method.

Nodal Stability and Euler Buckling

A frequently encountered problem in structural optimisation is that of stability

of the optimal form. Stability issues fall into two main areas; member stability

(Euler buckling) and overall stability of the structure. A particular form of the

latter, overall stability problem can arise where the ground structure comprises

pin-jointed nodes. Here, that the optimal ‘structure’ may actually be in unstable

equilibrium, and become a mechanism if it is only slightly perturbed. A simple

example of this is shown in Fig. 3.9 [130]. This highlights one of the drawbacks of

simple optimisation approaches; the algorithm is only as sophisticated as the rules

incorporated in it. So, whilst a human engineer would immediately recognise that
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the ‘structure’ in Fig. 3.9 is unstable (and therefore not actually a structure at

all, but a mechanism) the optimisation algorithm cannot ‘recognise’ this unless

it is specifically instructed to do so.

Figure 3.9: Instability of a node within a compression chain, after [130].

Both Euler buckling and overall stability are strictly non-linear problems, the

former because the critical buckling stress is a function of the magnitude of the

compression force in a member rather than a constant as required for linear-

ity, the latter because overall elastic stiffness of the structure is key in assessing

overall stability. This has led to a vigorous area of research in developing non-

linear optimisation strategies (e.g. [131] [132] [133]). However, Tyas et. al. [130]

demonstrated that these issues could be incorporated into an LP approach, using

lateral disturbing forces to obviate unstable nodes and iteratively changing allow-

able compression stresses if Euler buckling were shown to be a problem. Whilst

the iterative nature of the analysis meant that the resulting structures could not

be proven to be globally optimal, it was shown in [130] that a structurally stable

solution could be found that was significantly more efficient than the best form

found by non-linear optimisation approaches for a benchmark problem. This sug-

gests that a pragmatic LP approach that uses simplified linear approximations

to essentially non-linear phenomena may be a better strategy than an approach

that seeks to more correctly model the non-linearity of the problem.
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Control Issues and Mixed Integer Linear Programming

In structural engineering, the overcomplexity1 of optimised structures is a well-

known problem [134] and there are a significant number of solution strategies

for filtering or standardising the originally optimised forms. The most common

approach to achieve this, is to standardise the member cross sections by choosing

from a pre-defined set of tabulated data. In particular, an iterative LP method

was used [135], in which the problem was defined in terms of existing available

steel sections. At each iteration, the stress level in each compression member in

the solution is checked against the permissible level of stress as recommended by

the design code; if any stress exceeds its permissible level, another value is used

for the stress in the member and the iteration continues. When the same section

type is chosen for all members in two successive iterations, the search process

terminates.

While successfully achieving a degree of realism, the most notable disadvantage

of this particular method is that the use of discrete members and cross-reference

at each iteration leads to inefficiency, rendering it unlikely to manage the high

number of variables in design of realistic structures. Not only is it inefficient but

also, in relation to conceptual form-generation, this degree of realism, is less than

useful as form-generation concerns user controllability over the general form of

the structure not individual member sections.

Another viable option of control could involve the process of initial optimisation

and post-adjustment of arrangement of structural elements. However, this must

be also followed by re-optimisation or analysis, as the adjusted arrangement of

structural members in the initial solution may no longer be structurally sound.

The issue of control still remains to be resolved.

This could be resolved with incorporation of an additional constraint function

into the existing LP formulation, which would give the user an additional input

variable. The obvious disadvantage of this is however, that the increased number

1i.e. a high number of nodes and members.

64



3.4 Chapter Conclusion

of additional constraints may lead to high computational cost. On the other

hand, because it concerns simplification of entire form MILP would, in this case

be more suitable.

3.4.4 Concluding remarks

After the discussion on the suitability of a particular choice of optimisation

method and its solution search technique, general discussion on the suitability

of use of optimisation in the context of architectural form-generation would be

appropriate.

The term, structural optimisation in a classical sense is associated with either

weight minimisation or virtual work maximisation toward mathematical or nu-

merical optima e.g. minimum numerical value that represents weight. This can

be classified as ‘theoretical optimisation’. However, the class of structural opti-

misation to be employed toward the aims of this thesis, should be distinguished

from purely theoretical optimisation as it considers practical issues such as joint

costs, design (or solution) run-time, nodal stability and final output control issues

(see 3.4.3); hence it is practical optimisation.

Unlike theoretical optimisation which presumes no limitation on the performance

characteristics, the aim of (any) practical optimisation approach is to achieve

restrained economy, which can be interpreted by designers, as construction cost

minimisation, minimisation of materials, or minimisation of resources, or max-

imisation of the limited resources for given tasks, coordinated and compromised

between different aspects of design, other than structures.

It must be noted, however, concerning form-generation, optimisation and aes-

thetics of the generated form, terms such as ‘structural efficiency’, ‘structural

economy’ and ‘true optimum’ bear minor significance as the outcome of ‘form’

cannot be measured against set numerical values but designers’ subjective judg-

ment of its aesthetic criteria. Thus, in conceptual design practice, the practicality

of the optimised structures should be measured in terms of its ability to ‘guide’
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the form design process. In this regard, the proposed method is deemed appro-

priate as it considers physical reality and provides a sound structural basis for

form at a conceptual stage whilst allowing flexibility for inevitable later changes

without premature imposition of detailed design of individual members.
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Chapter 4

Tensegrity

4.1 Introduction

“There is a common belief among researchers (and others) - and a
belief is all it is, as I have never seen it substantiated - that “’tenseg-
rity” structures are lightweight. This is often an argument presented
in support of their intended application. In fact, I have seen papers
where this claim is made, in conflict with the actual results pre-
sented. This is a misconception!” - Ariel Hanaor [136].

Since their beginning as sculptural pieces [137] [138], tensegrity structures have

intrigued, both architects and engineers for over half a century. In its very essence,

there is a structural principle, which makes this structure able to stand up with a

high degree of rigidity. Indeed this structural principle, has engendered research

in various fields including, various branches of engineering, robotics, art, archi-

tecture, biology and medicine [139] [140].

The discovery began in a period prior to proliferation of computational technol-

ogy; with the primary emphasis on structural engineering and art/architecture,

the two disciplines separately conducted research and developed into various ex-

pressions of the same principle. Following this period of preliminary inquiry, great

efforts have been made recently to provide feasible form-finding/ form-generation
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tools1 for tensegrity, which would enable tensegrity structures to be computa-

tionally configured for physical construction. However, available design tools for

automatic topological configuration of internal members within a tensegrity are

scare, and perhaps due to this fact (and others), our precise understanding of

tensegrity structures and their behaviour, is still to be established [136].

This chapter reviews the history of tensegrity since its ‘invention’, various clas-

sifications, and its different definitions. It also introduces different existing tech-

niques for form-finding of tensegrity and finally critically reviews selected existing

methods for automatic design or topological configuration for tensegrity struc-

tures, highlighting a niche for a novel method for such design, which would help

establish a better understanding of tensegrity as a structural principle.

4.2 ‘Invention’ of Tensegrity

Though the word ‘tensegrity’ - a contraction of ‘tensile-integrity’ was coined by

a polymath, Buckminster Fuller [141], there has been contestation regarding this

discovery or ‘invention’ of tensegrity systems, and it is difficult to attribute to

any one person.

Despite the discrepancies and omissions amongst authors, claims for the original

discovery of tensegrity-principled structures usually involve the following four as

far as documented graphic evidences are concerned: Karl Ioganson, Buckminster

Fuller, Kenneth Snelson and David G. Emmerich.

It is also interesting to note that Maxwell was also aware of structures, very

similar to tensegrity when devising the famous ‘Maxwell’s Rule’. Talking about

exceptions to his rule: “In those cases where stiffness can be produced with a

smaller number of lines, certain conditions must be fulfilled, rendering the case

one of a maximum or minimum value of one or more of its lines. The stiffness

of the frame is of an inferior order, as a small disturbing force may produce a

1See Section 4.6.
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displacement infinite in comparison with itself”. [69] as in [142].

Thorough examinations of photographs of Karl Ioganson’s sculptural exhibits in

Moscow in 1920-21, by Gough, reveal that there was a sculptural object, which

appears very similar to a tensegrity prism [137]. Unfortunately the sculptures

themselves were destroyed and have had to be reconstructed. Marks [143] at-

tributes it to Fuller’s 4D House, which first appeared in 1928, as its structural

design tentatively adheres to a tensegrity principle of separation between tension

and compression. However, the formalisation of the constructional principles of

tensegrity and the term itself come much later in the form of a patent, submitted

in 1959 and published in 1962. There is no mention or evidence to suggest that

this is in any way conceptually related to the 4D House.

On Snelson’s own website 1, he explains the influence of “Russian Construc-

tivists” and “the larger world of geometrical art”, prior to his encounter with

Fuller, though neither Karl Ioganson nor his sculpture is specifically mentioned.

It is now a familiar story that in 1948, Snelson as student and Fuller as substitute

professor had an encounter at Black Mountain College in North Carolina. The

following year Snelson constructed his X-Piece sculpture [138], which in its struc-

tural principle was a tensegrity structure. This was then borrowed by Fuller and

presumably influenced Fuller’s later formalisation of its principle for his patents.

Independently, Emmerich was exploring ‘structures tendues et autotendantes’

(tensile and self-tensioned structures), which were of tensegrity principles, and

the patent he submitted to the Institut National de la Propriete Indusrielle in

1959 shows of these structures [144] as in [145].

Emmerich cites a structure by Ioganson as a precedent to his own work [146].

The following paragraph by Emmerich has been pointed out by Burkhardt [147]:

“Cette curieuse structure, assemblée de trois barres et de sept tirants, était manip-

ulable à l’aide d’un huitième tirant detendu, l’ensemble étant déformable. Cette

1http://www.kennethsnelson.net/icons/bio.htm
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configuration labile est très proche de la protoforme autotendante à trois barres

et neuf tirants de notre invention.”, which translates to:

“This curious structure, assembly of three bars and seven ties, was easy to handle

using an eighth slackened tie, the unit being deformable. This unstable configu-

ration is very close to the self-tensioning of proto-form with three bars and nine

ties of our invention.”

In this, Burkhardt wrongly states the original text “apparently means” Emmerich

does not recognise Ioganson’s invention of the tensegrity prism. However, this

text clearly shows Emmerich did recognise the acute similarity between the two

concerned models. Fig. 10 on page 104 of the paper by Gough [137] shows three

structures, one of which is recognisably the same as a typical tensegrity prism.

It is worth pointing out that the three, Emmerich, Fuller and Snelson made indi-

vidual patent claims on various aspects of the principles. The efforts were varied.

Fuller’s interest was in line with his lifelong mission of improvement of ‘human-

ity’s conditions’; in this case, concerning himself with adaptation of this structural

principle for the construction of spherical structures for potential uses in hous-

ing solutions. It is also possible that he saw tensegrity as an extension of his

work on geodesic domes, which for him meant structural optimality. Emmerich

had less emphasis on its application than the tensegrity principles and geomet-

ric characteristics. Snelson, on the other hand was a purist as he preferred to

view tensegrity structures as a use-absent sculptures with structural beauty [138].

In fact, however independent their efforts were, their patents were concerned

with the same structural principle of self-stress and tension-compression separa-

tion. This inchoate period of development is characterised by physical modelling

and experiments by trial and error.
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4.3 Definitions

It must be noted that systematic research in tensegrity are on-going and the def-

initions of tensegrity structures vary from researcher to researcher. Presented in

this section is a summary of the various definitions of tensegrity.

Fuller is credited with the portmanteau word, tensegrity by contraction of ‘ten-

sile’ (or tensional) ‘integrity’, which is stated here:

“Tensegrity describes a structural relationship principle in which structural shape

is guaranteed by the finitely closed, comprehensively continuous, tensional behav-

iors of the system and not by the discontinuous and exclusively local compressional

member behaviors. Tensegrity provides the ability to yield increasingly without ul-

timately breaking or coming asunder.” [148]

In the same book, he also claims that tensegrity is inherently an ‘efficient struc-

tural system’.

Emmerich on the other hand failed to give this ‘curious’ structural principle any

new name as he simply described it ‘tensile and self-tensioned structures’.

Snelson, being a former-student of Fuller, seems to have tried to differentiate

his work from Fuller’s [138] by coining deliberately a different term, to describe

the same structural principle by calling it a “ continuous tension, discontinu-

ous compression structure”, which he defined as, “a structural framework whose

constituent members are separately placed either in tension or in compression,

in which compression members are separated from each other and the tension

members are interconnected to form a continuous tension network.”[149]

In his comprehensive book [145], Motro amalgamates and formalises the above

three definitions as follows:
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“Tensegrity systems are spatial reticulate systems in a state of self-stress. All

their elements have a straight middle fibre and are of equivalent size. Tensioned

elements have no rigidity in compression and constitute a continuous set. Com-

pressed elements constitute a discontinuous set. Each node receives one and only

compressed element.” He calls this version the “Patent Definition” as it is de-

rived collectively from the three patents.

The essential conditions in this definition are:

1. No bending elements i.e. separate compression and tension elements

2. Discontinuous compression with one compression member at a node at most

and continuous tension members

3. Self-stress provides rigidity for kinematically indeterminate systems and

strength for determinate systems

4. Closed and self-supporting system

Pugh on the other hand, gives a different definition yet:

“A tensegrity system is established when a set of discontinuous compression

components interacts with a set of continuous tensile components to define a sta-

ble volume in space.” [150].

It is worth noting that this definition does not adhere to the first three in that

the second and fourth conditions in the previous definition have been eliminated,

i.e. more than one compression member meet at a node and/or i.e. external sup-

ports can be provided. Motro takes this definition further by calling it “Extended

Definition”, of which his own version reads:

“A tensegrity system is a system in a stable self-equilibrated state compressing

a discontinuous set of compressed components inside a continuum of tensioned

components.” [145]
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Note the difference between discontinuous compression element or member and

‘a discontinuous set of compression members’.

Now, compare these i.e. both of Motro’s ‘Patent’ and ‘Extended’ definitions,

to those of Skelton et al.., which classify tensegrity structures into two distinct

classes according to only the maximum number of compression members at a

node i.e. Class 1 and Class 2 tensegrity systems [151].

“A given configuration of a structure is in a stable equilibrium if, in the absence of

external forces, an arbitrarily small initial deformation returns to the given con-

figuration. A tensegrity structure is a stable system of axially loaded-members.

A stable structure is said to be a “Class 1 tensegrity structure if the members in

tension form a continuous network, and the members in compression form a dis-

continuous set of members. A stable structure is said to be a “Class 2 tensegrity

structure if the members in tension form a continuous set of members, and there

are at most two members in compression connected to each node. [151]

Note also that there is no mention of ‘closed continuum’ of tension members,

self-supporting ability or presence/absence of external supports. Skelton et al.

also gave a definition to another distinct class of tensegrity structures as “Class

1 Tensegrity Shell”. These are presented below [151]:

“Class 1 Tensegrity Shell is a 3-dimensional structure in which there exists a

set of tensions in all tendons such that the structure is in a stable equilibrium.

See Fig. 4.1 It is essentially a ‘tensegrity grid’ as designed by Motro et al. In

Figure 4.1: Class 1 shell tensegrity, after [151]
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summary, most of these definitions coincide and centre around; absence of bending

from absolute separation between compression and tension members, varying

degrees of separation between each of compression members, and pre/self-stressed

equilibrium.

4.4 Recent Development in Tensegrity Research

in Engineering

Since the early days of discovery of tensegrity, researchers have carried out exten-

sive analyses of various classes of tensegrity structures in various aspects. In the

realm of mathematical and empirical analyses of tensegrity (studying its struc-

tural behaviours), Pugh and Kenner presented a practical manual for building

tensegrity structures with help of mathematical expressions [150] [152]. Roth

and Whiteley [153] established mathematical definitions of rigidity and flexibility

for tensegrity frameworks. One crucial aspect of tensegrity, prestress, was exten-

sively defined in varying degrees in [154].

Static and dynamic analyses of tensegrity structures, were covered by Murakami [155].

Tensegrity as part of a general analysis of prestressed mechanisms has been

treated by Pellegrino [156].

There have also been developments in modelling methods for tensegrity. For

example, a method for modelling and controlling of tensegrity structures [157]

was developed using method of constrained particle dynamics, as the basis for

the design of a feedback control system which adjusts the lengths of the bars to

regulate the shape of the structure with respect to a given equilibrium shape;

Nishimura revisited Snelson’s cyclic frustum tensegrity modules while consider-

ing initial shape-finding and modal analyses of cyclic frustum tensegrity modules;

Oppenheim analysed dynamic behaviour of an elastic tensegrity structure and ob-

servations of its damping behaviour [158].

74



4.5 Classification of Regular Tensegrity

A different branch of tensegrity research is application of tensegrity, especially

in deployability of tensegrity structures. For example, Sultan and Skelton have

proposed a continuous time deployment control strategy for tensegrity structures,

based on the existence of an equilibrium manifold [159]; Pinaud [160] presents

hardware implementation of a symmetric Class 2 tensegrity structure, analyti-

cal geometric reconfiguration and, design and physical construction of tensegrity

structures. Research on different classes of tensegrity has also been carried out,

e.g. domes [161], tensegrity towers [162] and double layer tensegrity grids [163]

4.5 Classification of Regular Tensegrity

There are three notable researchers regarding typologies of tensegrity; Fuller,

Pugh and Motro. Fuller proposed prestressed tensegrity with tensile stress or

isometric tension and, geodesic tensegrity with anchorage and triangulation along

shortest spherical paths. Pugh [150] provides a series of tensegrity systems, most

exclusively of polyhedra; basic 2D and 3D structures are described with the po-

sitions of tensile members relative to the centre point of the structure and the

complexity of compression members, and the number of layers. He also cate-

gorises three basic patterns of tensegrity as diamond, circuit and zig-zag as bases

with which to build larger sets of spherical or cylindrical tensegrity structures.

Motro’s contribution to typologies is the proposal and construction of the double-

layer assemblies in single and double curvature.

The following subsections mostly summarises Pugh’s [150] and Motro’s [145] com-

prehensive treatment of topological typologies and classification of regular tenseg-

rity structures, inasmuch as it provides visual reference to those not familiar with

tensegrity structures.

4.5.1 Spherical Cells

‘Spherical cells’ as described by Pugh have the following topology; tensile mem-

bers are mapped on a sphere without intersections between them except the nodes

of the system; the tensile members are homeomorphic to a sphere and struts are
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contained within the sphere. This category includes ‘diamond-pattern’, ‘circuit

cells’, ‘geodesic tensegrity’ and ‘zigzag-pattern’.

The simplest example of ‘diamond-pattern’ tensegrity is a rotated tensegrity

prism with a triangular bases called ‘Simplex’ 4.2. Tensegrity prisms have n-

gonal bases with rotational angles between the top and bottom bases.

Circuit cells can be identified by presence of polygonal circuits of compression

Figure 4.2: Tensegrity:‘Simplex’ configuration in isometric and plan views, af-

ter [164]

struts. Circuit cells do not satisfy the ‘patent definition’ as there are two struts

at each node. Circuit cells can be derived from tensegrity prisms by completely

closing the diamond of cables i.e. the ends of two struts are joined, according

to the shortest diagonal of the diamond. Thus, circuit cell tensegrity structures

can be a sub-category of Class 2 tensegrity as the strut circuits satisfy Skelton’s

definition of Class 2 tensegrity.

Certain regular and semi-regular polyhedra can serve as a geometrical basis to

constitute circuit tensegrity systems.

The tensegrity chapter in Fuller’s work, entitled Synergetics [148] as well as his

patent [165], mostly present geodesic tensegrity dome structures. Configuration

of this type of structures relies on the frequency of triangulation of faces (or less

commonly, square faces) of the polyhedra which are chosen to generate the dome.
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The nodes of the chosen polyhedron are projected onto the circumscribed sphere.

The description of ‘zigzag-tensegrity’ is derived from that of Pugh’s [150]. A

‘Zigzag’-tensegrity is characterised by three non-aligned cables, which ‘zigzag’

between the two ends of each strut. See Fig. 4.3.

Figure 4.3: Zigzag tensegrity [150].

4.5.2 Star Cell Type

The description of this tensegrity type has been extracted from Motro’s publica-

tion [145] on tensegrity as the original publication by Raducanu [166] could not

be obtained.

The Star cell type tensegrity structures are derived from the spherical cell type.

Raducanu’s designs are extended from four-strut prismatic tensegrity cells. Their

diagonals replace upper and/or lower cable squares, without jeopardising equilib-

rium conditions. Refer to Fig.s 4.4 for the three combinations.

These are structurally stable without one of the requirements of ‘patent defini-

tion’ that three cables are required at each node. Motro (after Raducanu) [145]

makes a slightly controversial claim that tensegrity structures can be constructed

with some ‘nodes without struts’. However, this is ‘technical heresy’ because the

intermediate nodes between two cables are unnecessary as shown in Fig. 4.24 on

p.70 in [145].
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Figure 4.4: Three Star cell tensegrity configurations

4.5.3 Assemblies

The previously introduced basic tensegrity types can be arranged into larger as-

semblies of varying degrees. These arrangements can be subcategorised according

to the degree of dimensions of assemblage and/or the degree of dimensions of cur-

vature i.e. 1D single-axis assembly, 2D planar assembly of double-layer of either

no curvature, single or double curvature. In general, basic tensegrity types are

composed of struts which all share the same length and cables which all share

another length. This basic regularity enables them to join into larger systems. In

some cases, several lengths of struts and cables may be used. However, ‘topolog-

ical regularity’ of the basic cells remains unchanged.

4.6 Form-finding and Control of Tensegrity

In (regular) tensegrity systems, form-finding is a process of determining the ratio

between the uniform length of compression elements, ls and and that of tension

elements, lc in order to ensure rigidity for structural equilibrium. In regular or

irregular tensegrity, form-finding is a process of determination of geometrical con-

figuration.

In form-finding of tensegrity, the term ‘initial state’ refers to a self-equilibrium

state, with unilateral rigidity in the tension members and no ‘rigidity’ in com-
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pression members 1. The initial stresses are defined by two parameters: form (i.e.

geometry of the members and topology) and force. Shape and geometry are both

essential to its structural stability.

Researchers in the field of structural engineering have concentrated their effort

on numerical form-finding methods of tensegrity [167] [168] [169], which are es-

sential in designing of tensegrity after defining the structure’s topology in order

to determine nodal geometries and internal forces. Many of these methods, how-

ever, ensure stability provided by self-stress (thus rigidity) but do not propose

automatic generation of topologies of tensegric forms.

4.6.1 Experimental Form-finding based on Polyhedral Ge-

ometries

Although the term, form-finding is implicitly associated with numerical form-

finding, The early works by Emmerich, Fuller, Snelson and Pugh were form-

finding 2.

This type of work is primarily concerned with construction of irregular tensegrity

structures or regular polyhedra, where structural stability of tensegrity is achieved

by heuristic methods based on experimentation. Hence, a general case of mechan-

ical or structural characteristics cannot be derived despite being systematic. A

representative example of this approach is Snelson’s method of heuristic exper-

imentation. All his works ensure pre-stressibility. Another notable example is

Emmerich’s geometry-based approach, where he used geometries of polyhedra

for configuration of tensegrity [170]; the apices of polyhedra would become nodes

of a tensegrity structure. With this approach, static equilibrium was resolved

later and the system would have at least one stable self-stress.

1Motro studied the initial state of tensegrity, the sizing and sensitivity problems and finally

mechanical behaviour both static and dynamic.
2This is given the term form-controlled approach [145]. However, formal classification of

this as an approach may be misleading and misconstrued as a numerical approach.
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4.6 Form-finding and Control of Tensegrity

It is worth noting that the shape of the tensegrity corresponding to a particular

basis polyhedron is different from that of the polyhedron [171] and, that some of

configurations were incorrect; e.g. some of Emmerich’s tensegrity configurations

are geometrical configurations without necessary self-stress to ensure structural

stability [145]. It is emphasised here that much like Emmerich’s examples, in ar-

chitectural form-generation exists a gap between purely geometrical configuration

on-paper or on-screen, and physically realisable or realised work.

4.6.2 Numerical Approaches

These approaches aim to ensure the mechanical requirements using a theoretical

form-finding process. These models take into account, both geometry and internal

forces (or pre-stress). As results tend to be general, typically a general case can

be derived. According to the review of form-finding methods by Pellegrino and

Tibert [171], numerical methods of form-finding of tensegrity can be classified

into two main categories; kinematical methods and static methods.

Kinematical Methods

The term, kinematical method refers to a method of form-finding which deter-

mines the geometry of a given tensegrity structure by increasing the lengths of the

compression members while the given lengths of the tension members are kept

constant. Alternatively, the lengths of the tension members may be decreased

to a minimum while the lengths of compression members are kept constant. In

effect these methods process an initially mechanical system into a rigid structure.

Considering a regular tensegrity prism (See Fig. 4.5(a) for base-prism), analyt-

ical approach seeks the ratio, r = ls/lc, where ls is the strut length and lc is

the cable length and, expresses the ratio r in terms of angle θ. This angle, θ

describes the relative rotation between the two parallel equilateral triangles and,

v the number of vertices of the base polygon, connecting struts to correspond-

ing top polygon (Refer to Fig. 4.5(b)). It was first introduced by Connelly and

Terrell [172] [171]. As it concerns regular tensegrity structures, their symmetry

simplifies the analysis.
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(a) Example base-prism

lc

ls

(b) General polygon-based tensegrity.

Note that j is an integer smaller than v

Figure 4.5: General polygon-based tensegrity, after [171].
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4.6 Form-finding and Control of Tensegrity

For the given value of lc, the value of ls is maximised for θ = π(1

2
− j). For

irregular or asymmetric tensegrity systems, the analytical solutions are infeasible

due to the large number of variables required to describe a general configuration.

Dynamic relaxation had been used for form-finding of tensile structures such

as membrane and cable-net structures [173] [174]. The use of dynamic relaxation

(with or without kinetic damping technique) for form-finding of tensegrity was

developed by Motro and Belkacem [171].

Assuming a structure with a given initial configuration is subject to external

forces, its equilibrium can be calculated by integrating a fictitious dynamic equa-

tion.In any current configuration of the structure, nodal equations of equilibrium

are used to compute out-of-balance forces. In turn, these forces are used in order

to obtain the current acceleration. The resulting uncoupled equilibrium equations

can then be integrated.

The same value is usually given to all coefficients of the damping matrix, chosen

for quick convergence to the equilibrium state. Detection of a local peak in the

total kinetic energy of the structure resets all components in velocity matrix to

zero. This process is then repeated, starting from the current configuration, until

the peak kinetic energy becomes sufficiently small [173].

Non-linear programming or optimisation approach has been used in for

form-finding of tensegrity structures in [175]. The process of form-finding of

tensegrity is essentially treated as a constrained optimisation problem. Initially,

the connectivity (or element topology) and nodal coordinates are known. Then

the length of one or more of the struts is increased, while the ratio, r is fixed,

until a configuration is achieved to a maximum. For general expression for a

constrained optimisation, refer to Chapter 3.

Referring to the triangular tensegrity prism in Fig. 4.6, initially, the cable length,

lc is set at 1, and it is assumed that the either the top or bottom base i.e. three

of its six nodes are fixed. The optimisation expression is in the following form:
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4.6 Form-finding and Control of Tensegrity

Figure 4.6: Simple tensegrity prism

minimise − l2s1
= 0 (4.1)
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l2c 1
− 1 = 0

l2c 2
− 1 = 0

l2c 3
− 1 = 0

l2c 4
− 1 = 0

l2c 5
− 1 = 0

l2c 6
− 1 = 0

l2s3
− l2s1

= 0

l2s3
− l2s1

= 0

(4.2)

cn where n = (1, ..., 6), denotes the six cables and sm, where (m = 1, 2, 3) the

struts. In this particular case, the ‘optimum’ length of the struts is 1.468 (c.f.

the analytical value,
√

1 + 2/
√

3 or approximately, 1.468).

A notable advantage of the non-linear optimisation approach is that it builds

upon its available optimisation technology, while its distinct disadvantages are

that, with the increase in the number of variables in constraints, this approach

becomes infeasible for larger systems, and that the state of prestress cannot be ex-

plicitly controlled, although different geometric configurations of structures with
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4.6 Form-finding and Control of Tensegrity

the same topology can be found by varying the ratio between the lengths of struts.

Other more recently developed methods are: genetic algorithms [176] [177], and

MILP kanno2011topology for regular tensegrity.

Zhang and Ohsaki [178] presented three optimisation approaches for both shape

design and force design. These adapted, for form-finding, the existing energy

approach, direct approach and force density approach i.e. minimisation of differ-

ence between strain energy in cables and in struts, minimisation of deviation of

force components from their target values for the structures modelled as directed

graphs in order to determine configurations and member forces at the state of

self-equilibrium and, maximisation of stiffness (or minimisation of deviation of

member forces from their target values) through optimal distribution of member

forces, where configuration of the structure is fixed. In all three approaches, the

topology is assumed to be known prior to form-finding.

Similarly Masic et al. [179] proposed a method of optimising mass-to-stiffness

ratio of both symmetric and asymmetric tensegrity structures. Starting from an

initial layout that defines the largest set of allowed element connections, the pro-

cedure seeks the topology, geometry and pre-stress of the structure that yields

optimal designs for different loading scenarios. The design constraints include

strength constraints for all elements of the structure, buckling constraints for

bars, and shape constraints. The problem formulation accommodates different

symmetry constraints for structure parameters and shape. The static response of

the structure is computed by using the nonlinear large displacement model. The

problem is solved as a nonlinear program. See Section 4.7 for a more indepth

review of his work.

Statical Equilibrium Approach

The term statical equilibrium approach refers to methods of form-finding which

determines the possible equilibrium configurations of a tensegrity structure with
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4.6 Form-finding and Control of Tensegrity

pre-determined topology1. The equilibrium conditions for one node determine

the resulting shape.

In an Analytical method, Kenner [152] used node equilibrium (and symmetry)

to determine the configuration of the expandable (regular) octahedron [171].

A different equilibrium approach was used by Connelly and Terrell [172] to find

the prestress stable form of ‘rotationally symmetric’ tensegrity structures. A set

of linear equilibrium equations were established by use of force density 2, as vari-

able for each member.

Williamson et al. [180] used the static equilibrium conditions to derive analytical

expressions for the equilibrium condition of a tensegrity structure in terms of

force density and member connectivity. The novelty of this method is the use

of vectors to describe each element, which eliminates the need to use direction

cosines and the subsequent functions and that the reduction of the study of a sig-

nificant portion of the tensegrity equilibria to a series of linear algebra problems.

A formulation of loaded tensegrity is also developed.

Force-density method was first proposed by Schek [48] for prestressed net

structures. This method is useful because it turns the non-linear equilibrium

equations of the nodes into a set of linear equations by introducing the force

density for each member. In a purely cable structure, all tension coefficients are

positive, and thus a unique solution is guaranteed in the form-finding problem.

A similar principle can be applied to the form-finding of tensegrity, but the self-

stressed state of tensegrity structures necessitate neither nodes at support nor

external loads, unlike the cable structures.

1The number of nodes and connecting elements between them are pre-determined prior to

form-finding
2force divided by length
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As this method was originally used for cable nets where all members were un-

der tension. i.e. all coefficients had the same sign, for tensegrity, each element

must be defined to be either tension or compression. The advantage of force

density method is its generality and possibility to obtain results for irregular sys-

tems [145]. There are mainly two methods involving the force-density approach;

the iterative method is where self-stress coefficients are evaluated by an increment

till the rank of connectivity matrices reaches the required order, requiring much

computational power; the analytical method is where matrices are analysed in

their symbolic form in order to find the self-stress coefficients that satisfy the

required rank condition (i.e. self-stress coefficients are not chosen).

More recently Zhang and Ohsaki [181] presented an extended force density method

by using singular value decomposition of the equilibrium matrix with respect to

nodal coordinates to find the feasible set of force densities for satisfying the non-

degeneracy condition of the structure. A unique configuration of the structure can

be obtained by specifying an independent set of nodal coordinates. Estrada [169]

proposed a form-finding method that requires only a minimal knowledge of the

structure; it only requires the type of each member, i.e. either compression or

tension, and the connectivity of the nodes to be known. Then both equilibrium

geometry and force densities are iteratively calculated. A condition of a maximal

rank of the force density matrix and minimal member length, were included in the

form-finding procedure to guide the search of a state of self-stress with minimal

elastic potential energy. It is indeed able to calculate novel configurations, with

no assumptions on cable lengths or cable-to-strut ratios. This method is purely

linear but still starts with known connectivity.

Connelly’s Energy method [171] shares similarities with force density method

in its formulation.

The energy method defines three different types of members within a tensegrity

framework; cables, struts and bars 1. A self-stress state is ensured if the sum of

1Cables cannot increase in length, struts cannot decrease in length and bars cannot change

length
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the product of self-stress states and member length (i.e. internal forces) at each

node is zero, assuming positive stresses for cable and negative for struts while no

condition is set for bars. Besides this equilibrium condition a further condition is

required to establish a stable equilibrium configuration; the total potential energy

function should be at a local minimum.

A most recent example which introduces multiple self-stress states is found in [182].

4.7 Automatic Generation of Tensegrity

Automatic generation of tensegrity differs from pure ‘form-finding’ in that form-

finding requires the topology and designation of compression and tension mem-

bers to be prescribed prior to the search for equilibrium and stability, as many

researchers have developed such as Tran and Lee [183], Pagitz and Tur [184],

Estrada [169], and Zhang and Ohsaki [181] amongst others.

Most of the currently available methods of form-finding are limited to the use

of heuristic experimentation, hierarchical design based on known components, or

mathematical methods for mostly regular tensegrity.

On the other hand, automatic generation of tensegrity requires no such topo-

logical configuration as identification of the structure’s topology is one of the

objectives. Due to lack of mathematical formulation or computational modelling

tools to determine the connectivity pattern of tensegrity structures, Fuller, Em-

merich and Snelson all relied on models and experimental constructions for design

of their structures, which were largely limited to regular or polyhedral tensegrity

structures.

Hence regularised or patterning work were prevalent; there are a number of re-

searchers who proposed different methods of designing tensegrity; e.g. Fu studied

the structural behaviour and structural types of tensegrity domes through use

of a non-linear software and proposes methods of designing tensegrity geometric

grids [185].
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Figure 4.7: Initial and optimised tensegrity beam design, showing deformation

under load - green or inconsistent dashes(slack strings), red(compressed bars),

blue or consistent dashes (stretched strings). [179]

Relatively recently, Masic et al. [179] proposed a method of optimising mass-to-

stiffness ratio of both symmetric and asymmetric tensegrity structures. Starting

from an initial layout that defines the largest set of allowed element connections,

the procedure seeks the topology, geometry and pre-stress of the structure that

yields optimal designs for different loading scenarios. The design constraints in-

clude strength constraints for all elements of the structure, buckling constraints

for bars, and shape constraints. The problem formulation accommodates different

symmetry constraints for structure parameters and shape. The static response of

the structure is computed by using the nonlinear large displacement model. The

problem is solved as a nonlinear program.

Masic’s work is significant in that this methodology does not only find feasible

tensegrity geometries, but it provides a systematic procedure for analysis and

designing of optimal tensegrity structures e.g. inclusion of yield and buckling

constraints of structural members. However, two notable facts are drawn to at-

tention. The first is that there is no guarantee of global optimal solutions because

of the non-convex nature of the non-linear optimisation formulation used. The

second should be referred to Fig. 4.7; the optimised tensegrity on the right appears

not to have a compressed member connected to the node located at [x,y]=[6,0].

This is because there is a compressed bar connected to the node located at [6,0]

and to the node at [3.5, 1.5] that overlaps with the visible string depicted in blue
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4.7 Automatic Generation of Tensegrity

along its entire length. This is because the nodes in the original configuration,

located at [4, 0.6] and [5, 0.5] in the optimal configuration have ‘nearly merged

but not merged’, i.e. the string connecting them became very short. Also, the

nodes in the original configuration, located at [3.9 -0.4] and [4.9, -0.5] coincide

in the optimised configuration. In summary, this method has generated in this

particular instance at least, tensegrity structures only theoretically without pre-

serving essential structural characteristics of tensegrity. This subsequently also

incidentally alludes to a possibility of tensegrity not being optimal in agreement

with Hanaor’s assertion 1 against tensegrity’s optimality, as the optimised tenseg-

rity in this example converged toward a conventional LP structure by eliminating

a tensile member.

Masic’s work on optimisation of tensegrity structures is similar to conventional

form-finding methods in that the form-finding begins with pre-determined con-

nectivity. However, the notable difference is the use of geometry optimisation,

which can allow struts to be reduced and nodes to be merged and, thus can permit

change in the initial connectivity, although the instance of this in [179] are not

necessarily favourable examples (See the critique on this non-linear optimisation

method in 4.6.2).

Paul et al. [186] and Rieffel et al. [187] used an evolutionary algorithm for gener-

ation of irregular tensegrity structures at both small and large scales, which are

difficult to design using other methods. In particular, Rieffel et al. used an evo-

lutionary algorithm, a generative and grammatical graph-based approach to gen-

erate irregular tensegrity structures [187]. Similar to Masic’s work, this method

differs from the conventional approaches to tensegrity form-finding which tend to

be limited to small scale regular tensegrities, in that it is demonstrably capable

1‘ ‘The main source of structural inefficiency of strut-tendon systems subjected to flexure is,

reduced structural depth, when pretensioned tendons serve as compressive chords. In a cross-

section subjected to bending action, the applied bending moment is resisted by an internal

couple. In a bar structure (e.g. truss) the internal couple consists primarily of compression in

the compression chord and tension in the tension chord.” [136].
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of form-finding of large-scale tensegrity structures as well as non-polyhedral ir-

regular tensegrity structures.

The most notable work to date is by Kanno, who formulated form-finding of

tensegrity in MILP [188]. His method requires no topological information in

order to generate tensegrity structures and his method is generally successful.

However, the generated topologies only resemble layer-based polyhedral topolo-

gies. See. Fig. 4.8.

Figure 4.8: Optimised 3D tensegrities. Kanno [188].

4.8 Concluding Remarks

In order to identify new tensegrity forms researchers have applied various meth-

ods in both statical and kinematical approaches, as summarised in the previous

sections. Regardless of approaches or methods, one important condition prior

to any form-finding procedure, is that the connectivity of struts and cables be

defined, most of which are based on geometry of chosen polyhedra.

Though the task of form-finding is by no means trivial, the regularity of these

connectivities based on the known geometry of polyhedra and their derivatives

are too restrictive in their approach to design 1.

1An exception to this is where the regularity of members provide an advantage.
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Hence, instead of mere geometry-configuration for stability of tensegrity (form-

finding), which is only one aspect of tensegrity design, a more comprehensive

approach to design would be to automate the configuration of connectivity in

addition to geometry configuration, for structural stability.

This issue has been addressed, though recently; there have been efforts to gen-

erate both regular and irregular tensegrity members without pre-defined connec-

tivity [187] or those which allow change in reconfiguration of the initial connec-

tivity [179] with some success. The most recent example topologies generated

by the MILP formulation by Kanno resemble layer-based polyhedral topologies.

These methods are still at an inchoate stage of development and variety of tech-

niques for tensegrity form-generation remains to be experimented, including the

relatively simple efficient LP layout optimisation techniques.

The task is thus clear; a method of form-generation for non-polyhedra-based

tensegrity (in addition to regular tensegrity), should be incorporated into the ex-

isting LP layout optimisation formulation.

Part III: Chapter 7 will present a simple mixed integer linear programming

(MILP) layout optimisation formulation, which can limit (to one) the number of

compressive elements terminating at joints in the structure is described, thereby

allowing tensegrity-type structures to be synthesised1.

1A relaxed version of the patent-based definition (or Class 1 of Skelton’s) will be used as

opposed to Motro’s extended definition (or Class 2) [145] [189]. Also it is worth noting that

the formulation will generate tensegrity-type systems with reactions to external loads with

supports as opposed to self-stress unlike the patent-based definition (or Class 1) tensegrity

principle assumes.

91



Part II

Generation of Conceptual Form

of Conventional Structural

Configuration
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Preface

This part comprises essentially two components. The first, and main, component

presents an analysis of currently prevalent shape-driven, form-rich architectural

designs, a critical appraisal of computer as a design tool and structural layout

optimisation techniques, placed in the context of design tools, in addition to de-

sign examples. It is based on the manuscript for a paper entitled “Potential use

of structural layout optimisation at the conceptual design stage”, published in the

International Journal of Architectural Computing in March 2012 [190]. However,

the work presented here is the candidate’s work in its entirety, and has additional

elements and a revised format for presentation here. The précis of this chapter is

as follows:

1 A review of the relevant literature appears to indicate that the ocularcentric

view of the computer simply as a geometry generator by many architectural

design professionals may be the root cause of the polarised development that

existed between the visual and technical aspects of design in the recent past.

2 The role of the computer in the design process is critically appraised.

3 The relationship between ‘form’ and ‘structure’ in design is then explored,

suggesting the possibility of reducing the degree of polarisation by use of

techniques which facilitate a greater degree of form-structure integration.

4 There is evidence that design time pressures are leading to traditional early-

stage conceptual design activities (e.g. sketching via pencil and paper)

being sidelined, or even being actively discouraged. However, while early-

stage computer-based conceptual design tools are available, those which

consider structural design parameters are scarce. Given that early-stage

form-structure integration is likely to be beneficial to a large extent, there

would appear to be a need for new computer-based conceptual design tools

which also consider structural aspects.
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5 As a potential solution, the use of a structural optimisation-driven form-generation

technique is proposed. Several conceptual design studies are presented to

evaluate the efficacy of this approach in both 3D and 2D.

6 Finally, the feasibility of adopting such an approach in mainstream architec-

tural design practice is critically evaluated (in the light of the numerous

computer-aided, rule-based geometry and parametric modelling techniques

which have been developed in recent years). Results from simple concep-

tual design studies are discussed, potential usage patterns are proposed and

areas where improvements are requited are highlighted.

The second component of Part II is presented in the form of postscript which

contains a discussion on the subject of the role of the graphical user interface, in

order to provide the reader with a fuller appreciation of the research area.
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Chapter 5

Potential Use of Structural

Layout Optimisation at the

Conceptual Design Stage

Abstract

Despite the recent advancement in computer-aided design in architecture, in ar-

eas of form generation techniques, (engineering) performance-based design tools

and integrative design tools, there still exists some gap to be closed between the

‘visual’ and the ‘technical’ elements of design. Two causes of this are discussed:

long-standing tradition within the discipline and perception of design as a purely

visual exercise. Structural layout optimisation is a technique which enables au-

tomatic identification of optimal arrangements of structural elements in frames

with potential form-generation capabilities. As the technique appears to have

the potential to help alleviate the said gap between the visual and the technical

aspects of design, it can be considered as an ‘integrative’ form generation tool.

Applications of the technique are considered via a set of three-dimensional design

studies and an additional set of two-dimensional studies, demonstrating both its

potential and areas where refinement is required before it is suitable for applica-

tion in practice.
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5.1 Introduction

Distinct paradigms in architectural design history can be identified according to

distinct eras of design and construction tools and materials as much as by the

design theories and ideas of those eras [191]. Typically ‘technical’ and ‘visual’

aspects were considered in relative isolation in the recent past, and the limited

number of publications in the literature on the interdisciplinary nature of archi-

tecture and engineering was further evidence that there are still remnants of a

systematic, institutionalised, divide between the ’visual’ and ’technical’ aspects of

design. This situation is thought to be largely due to the sheer scale, nature and

complexity of modern building projects, with the divide apparently concretised

by the difference in the very nature of the design tools used by architects and

engineers1.

In this light, recent developments in computer-based tools and techniques (e.g.

traditional CAD software) should ideally be ‘integrative’, in the sense that they

should help to narrow the divide between the ’visual’ and ’technical’ aspects of

design. In the recent past, there has been much development in this effort toward

integration. However, there is still much to be explored.

While the application of computer-based technology has made numerous large-

scale projects possible, it is also true to say that it has led to dendritic sacs of

specialist areas of knowledge within the building design sphere. Thus on the one

hand there are groups working with highly advanced visual techniques (e.g. form

finding and form generation techniques), and on the other hand groups working

with highly advanced physical modelling tools (e.g. finite element based tools

and other performance-based design approaches). This has arguably resulted in

an over-emphasis on certain aspects of the design process, depending on whether

the design process has been initiated as a visual or performance-driven exercise.

1Notwithstanding the apparent ‘integrative’ nature of for example modern ‘Building Infor-

mation Models’ (BIM) and the most recent, emerging efforts for form-structure integration.
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This polarisation, which began from intentional division for design convenience,

appears now to be counterproductive and, given the level of development of the

seemingly disparate technologies being applied, it seemed anomalous, in the past

that few steps appeared to be being taken to provide a bridge between them.

However, in the light of a surge of recent advancement with numerous integrated

design approaches, his chapter seeks to explore and examine the role of structure

in architectural form conceptualisation, and considering the potential role of the

structural truss layout optimisation technique in the early design process, and

the extent to which this can help bridge the aforementioned divide.

5.2 Form-generation Methods in Context

5.2.1 Background

Form generation involves definition or conception of the external shape of an ob-

ject or arrangement of its constituent elements. In recent years various methods

have been applied to generate highly irregular and/or curvilinear forms (cf. build-

ings based on simple geometrical shapes, which were common prior to the ubiq-

uitous use of CAD). Ample evidence of this exists in the portfolios of prominent

architecture studios (e.g. Gehry & Partners; Future Systems; Foster & Partners),

and in the entries to influential architecture competitions (e.g. RIBA Stirling

prize; Emporis Skyscrapers Award; AIA Progressive Architecture Award).

Though form may be considered as just one facet of architectural design, it is

undeniably a highly important one. Entirely manual form generation techniques

can be applied, though computational form generation techniques are likely to

find increased use in the future, including [192]:

1. Parametric modelling techniques (using non-Euclidean geometries, NURBS

etc)

2. Metamorphosis & evolutionary architecture techniques

3. Performance-based methods (e.g. based on mathematical layout & topology

97



5.2 Form-generation Methods in Context

optimisation techniques. See Section 5.2.4 for a more in-depth consideration)

Alternatively, irrespective of whether manual or computational methods are be-

ing applied, a number of categories of form generation can be identified: imi-

tation; controlled randomisation; repetition (including mirroring, alignment and

segmentation); variation (including misalignment); geometricism (use of simple

geometric shapes as primary elements); use of relevant physical principles (other

than purely geometric or visual principles); 2D-to-3D extrusion. All the afore-

mentioned can be influenced by internal usage or arrangement requirements, and

also by inherent limitations of the available tools and/or structural principles.

Among contemporary design projects (e.g. Fig. 5.1-5.2; References [193], [38]),

the form generation methods used typically assume that the structure functions

purely according to some visual or ‘geometric’ principles. i.e. a visual represen-

tation of ‘form’ is prescribed, with spatial and aesthetic considerations taken into

account, but with physical principles largely ignored1. These physical principles,

together with other primarily ‘functional’ or ‘technical’ subsidiary aspects, are

usually only accounted for at the subsequent detailed design stage, thus finally

allowing the form to be realised ‘off’ the computer screen.

5.2.2 Division between the ‘Visual’ and ‘Technical’ Ele-

ments of Design

It is sometimes suggested that the division between the ‘visual’ and ‘technical’ el-

ements of design is a necessary consequence of the dramatic increase in the scale

and complexity of modern projects. However, the division can also be partly

attributed to long-standing tradition, with historical roots dating back to the

time of Bacon [194]. It is also generally accepted that in the 1800s a clear divi-

sion arose between proponents of the Enlightenment ideology (viewing science as

1For example, in the case of experimental folding forms (e.g. Fig. 5.1) initial concept models

may be constructed using a material very different to that which can feasibly be used in practice,

frequently leading to forms which are in practice unrealisable.
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Figure 5.1: Garibaldi Exhibition Centre, Grimshaw-Architects, Milan 2006

Figure 5.2: Brian Boyer non-structurally initiated
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Figure 5.3: Guggenheim Museum Bilbao, Gehry & Partners
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the truth) and proponents of the then emerging Romanticism ideology (viewing

science as dehumanising, and leading to the destruction of beauty) [195], [196].

These struggles were later reflected in theories of architecture, and subsequently

in buildings [197], and continue to influence design practice to the present day.

However it is relevant to consider the following questions: why did a functional,

efficient and rational design like the Eiffel Tower not become a definitive aesthetic,

considering its harmonious combination of structural efficiency and aesthetic ele-

gance? Why is structural efficiency not viewed as synonymous with beauty? And

why are such harmonious combinations not more often the norm in modern-day

buildings?

Many prominent contemporary large-scale building designs are ‘form-oriented’ or

‘form-driven’ (that is to say the iconoclastic external envelope or overall form is

sought with high priority, at the expense of other aspects of building). Inevitably,

this begs the question: what is form in architecture, and why does form seem

to govern the design of a building to such a large extent? Loosely ‘form’ can

be defined as ‘a visually perceivable pattern or structure with spatial attributes’,

and for an object to really take ‘form’, it has to physically exist (i.e. to be ‘realis-

able’ in practice). However, it is perhaps of more interest to establish the nature

of the relationship between form and structure than to identify a single precise

definition of form; this inter-relationship will therefore be studied further.

5.2.3 Inter-relationship between Form and Structure

Fig. 5.3 shows The Guggenheim Museum, Bilbao, designed by Gehry & Partners,

with truss structures covered in a mesh-type envelope. Fig. 5.4 shows a section

through a generic free-form building of a similar type. Fig. 5.4(a) highlights

elements that are conventionally perceived to constitute ‘form’ (i.e. surface),

whereas Fig. 5.4(b) highlights those that are conventionally perceived to consti-

tute ‘structure’. Fig. 5.4(c) shows both sets of elements. The drawings in Fig. 5.5
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clearly highlight ambiguity in the conventional design definitions of ‘form’ and

‘structure’.

Fig. 5.5(a) highlights a part of the building that can be considered to define both

‘form’ and ‘structure’, while Fig. 5.5(b) highlights the structural skeleton taking

what appears to be a ‘form’. Unsurprisingly this ambiguity leads us to question

the clear-cut division between the two aspects of a building, devised originally for

the convenience of designers, fabricators etc. Indeed, the illustrated ambiguity

highlights the inevitable interaction between ‘form’ and ‘structure’. Neverthe-

less, this separation, which was initially developed for practical convenience, is

still widely accepted in standard design practice, and dictates the way many

designers think and work. How did this happen? Is it because we ultimately

perceive design as a primarily visual exercise, with modern computer software

applications only serving to reinforce this perception?

(a) ‘form’? (b) ‘structure’? (c) ?

Figure 5.4: Ambiguity in definitions of ‘form’ vs. ‘structure’.

5.2.4 A Critical Appraisal of the Role of Computers in

the Design Process

The numerous methods in which a ‘form’ can be generated have been briefly

outlined in the previous section. However, given its ever-increasing role in the

design process, it is useful in particular to critically appraise the role played by
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(a)

(b)

Figure 5.5: Ambiguity between ‘form’ and ‘structure’: (a) a triangular structural

element that can be considered to define both form and structure is highlighted;

(b) the envelope of elements considered as constituting ‘structure’ is highlighted,

showing that this also defines ‘form’.
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the computer.

Firstly it can be observed that most common computer interface components

are actually unidirectional (there are exceptions e.g. touch screens used in 3D

sketching [198]). This necessarily limits the degree of interaction between de-

signer and computer. The most effective machine-to-human interface is currently

the computer monitor, where all inputs and outputs are visualised. With the

contemporary method of ‘monitor and mouse’ almost all information has to be

visually communicated between the media and the designer. This is in common

with the conventional method of ‘pen and paper’, indicating that visual com-

munication of information obviously predates computer aided design processes.

However, the particular and narrow mode of operation to which designers have

become committed when using a computer can be highly restrictive.

Of course if ideas to be communicated are essentially of a visual nature this does

not pose a problem. However, upon analysing any building, not even the simplest

of objects (e.g. a humble doorknob) is in reality a mere visual entity. For exam-

ple, surface texture, weight, structure and temperature are other aspects which

are essentially filtered out through a simple visual representation. It should also

be pointed out that a visual ‘form is still an idea, and visual existence of a design

object is virtual; a design object has to be more fully justified in order to physi-

cally exist. Transformation of ideas into reality is (or should be) at the heart of

the architectural design process.

Nevertheless, designers continue to consider visual representation as the primary

means of communication, symptomatic of the current ocular-centric culture in

which we live, and which extends into the sphere of computer-aided design process

in architecture [199]. This means that simulations, or other means of supporting

more abstract ideas or principles (e.g. level of comfort or physical stability), tend

to be filtered out through the use of computer visualization, and collation of other

information is still separately required. This appears to be a significant missed

opportunity, and an aim of the present study is to evaluate the potential for such
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simulations to be placed closer to the heart of the conceptual design process.

5.2.5 The Computer as a Truly Integrative Design Tool

Although the computer can never model a building in its complete entirety, it

is clearly capable of modelling much more than purely visual aspects. It can

be argued that the proliferation of visualization techniques has not necessarily

‘improved or expanded the boundaries of what architecture can be; indeed over-

emphasis on the visual can reduce architecture to a mere visual sensation or, in

more practical terms, can simply waste time. Although other performance-related

aspects of a building can be used to initiate the concept design phase, this is un-

fortunately not commonplace in standard design practice. This is regrettable as

ideally designers should have the freedom to explore other, non ‘visual, aspects

of design, be it to identify a physical solution to a social problem or to synthesise

a functional sculpture.

Indeed, given the immense capabilities of a modern desktop computer, it should

be feasible to ensure that the physical behaviour of any form being designed can

be taken into account at the initial conceptual design stage. Incorporation of

structural considerations via the use of mathematical optimisation techniques is

potentially a step towards achieving this, and hence also to achieving a less mis-

leading representation of reality. With this firmly in mind, a software application

originally developed for use by structural engineers to identify the optimal ar-

rangement of structural members in frameworks has recently been re-evaluated

by the present authors with a view to using it in the architectural design process.

The software is based on the structural layout optimisation technique which will

now be briefly described.

The structural layout optimisation technique was first developed in the 1960s in

order to automatically identify the optimal arrangement of members in either 2D

or 3D frameworks, satisfying predefined constraints and a predefined optimality

criteria [79]. Recent advances have meant that very large scale design problems
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can now be tackled [91]. An advantage of using the original layout optimisa-

tion formulation, in which all members in the optimal minimum volume (weight)

structure are fully stressed, is that highly-developed mathematical optimisation

solvers can be used to identify optimal solutions in a short space of time (see

Appendix for details of the basic formulation).

Sample 2D and 3D output is shown in Fig. 5.6; note that in order to generate

structurally sound concept designs boundary conditions and applied loading must

initially be specified.

Although obtained by specifying relatively simple loading and support condi-

tions, these optimal forms might be considered to exhibit aesthetic characteristics

reminiscent of ‘emergent forms (the term ‘emergent’ refers to “the spontaneous

occurrence of an organisation or a behaviour that is greater than the sum of its

parts” [23]). This type of optimisation tool would therefore appear to have the po-

tential to appeal to a wide range of users, including architects and mega-sculptors.

Considering a potential use of the structural layout optimisation technique in an

architectural design environment, various questions arise, one of which is, for ex-

ample, whether the least weight structure would be any appropriate to be sought,

unless the weight is of critical importance, as the idea of weight minimisation as

a core design concept or motivation in architectural design scenarios is likely be

perceived absurd (if not offensive). Furthermore, surely such a technique has the

potential to adversely impinge on the creative process at the form conceptuali-

sation stage1? Whilst both these questions, and no doubt many others, deserve

answers in due course, this chapter seeks instead to address a rather simpler

question, namely is there potentially a place for structural layout optimisation

techniques in the architectural design process?

It is also worth pointing out that we are in a sense here just as interested in the

nature of the forms generated (together with the process of identifying them, and

1Issues of form conception in various branches of architecture-related disciplines have been

the subject of much debate, e.g. [192], [193] and [201].
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how this process can be changed to manipulate the forms generated), than in the

fact that the forms are structurally ‘optimum. This clearly brings us outside the

traditional domain of engineering, where the goal is generally to single-mindedly

seek out the most efficient (cost-effective) structural solutions.

Finally, it should be noted that application of optimisation technology in design

is by no means new; it is widely used in the automotive and aerospace industries,

though has to date found comparatively little application in the construction in-

dustry. However, recently some buildings have been designed with the help of this

technology (e.g. [201]), and tools such as the EifForm design software developed

by Shea [202] have attracted significant interest.

5.3 3D Design Examples

It is now useful to consider a number of examples which illustrate how structural

layout optimisation technology might be applied in a realistic design environ-

ment. These examples offer a range of opportunities for the software to help

designers to identify possible solutions, ranging from an initial relatively unre-

stricted, unconstrained example (‘Thinking pods’) to a much more highly con-

strained multi-storey building example with supports prescribed to coincide with

existing building frame geometry, and with realistic design loading conditions.

5.3.1 Thinking Pods

Here the brief was to design a multitude of elevated ‘lounge’ spaces for relax-

ation and cogitation, supported high above the ground on stilts in a wooded area

of a University campus. Initial concept design was carried out in collaboration

with a student of architecture studying on the campus, with the most promising

manually identified design concept shown in Fig. 5.7 It shows individual cuboid-

chambers (typical size: 4 x 5 x 5 m) supported on a web of interconnected space
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trusses. Though the geometries of these space trusses were not explicitly defined,

the plan areas and overall elevations of the chambers were fixed.

(a) (b)

(c)

Figure 5.7: Conceptual design of thinking pods: manually derived.

The same overall design constraints were then fed into the structural layout op-

timisation tool; the solution obtained is shown in Fig. 5.8 (using simultaneous

vertical and horizontal loading as the design load case).
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(a)

(b)

Figure 5.8: Conceptual design of thinking pods: obtained using structural layout

optimisation.
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While the manually derived concept model featured pods supported by trusses

which were for reasons of efficiency interlinked (see Fig. 5.7(c)), the design ob-

tained using structural layout optimisation techniques, shown on Fig. 5.8, did

not. This was to ensure a rapid run-time, rather than due to an intrinsic short-

coming of the layout optimisation technique itself.

However, the proliferation of structural elements converging on the supports at

the base (see Fig. 5.8) does highlight the need to incorporate adequate user-

controls when developing a practical software tool based on this approach. For

instance, in a real design setting, the ability to specify limits on the number of

members converging on a joint, or the positions of individual joints would often

be highly desirable. In some case this would necessitate use of a more complex

mathematical formulation than the linear formulation used here (e.g. see Ap-

pendix A.3 for brief details of a potential MILP-based approach).

In further discussion of the generated form, it is noted that its unrestricted, initial

design domain created straight paths for load transfer, resulting in long, straight

constituent forms, suggesting use of a more stringent design domain in order to

engender less of a generic ‘structure’ but more of a distinct, perceptible aesthetic

overall form.

5.3.2 Exhibition Space

A design brief for this project has been arbitrarily devised to demonstrate the

capabilities of the software. The conceptual form design guidelines and logical

starting point for this conceptual design, are as follows:

• The design is to house an outdoor exhibition space; it aims to provide three

separate areas for distinctly different uses.

• These three separate areas should be expressed visually in the resulting

external design form.

• The design requires two openings, for the entrance and exit.
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scheme.

In this particular design scenario, a uniformly distributed load (or UDL) was

applied over the horizontal length of the permissible design region, which had

varying height. The UDL was in fact applied as a ‘transmissible’ load, i.e. a load

of given magnitude and direction to be applied at any potential node along the

same line of action of the load - see Appendix A.4.

Referring to Fig. 5.11, the resulting optimised structures are the dark blue-grey,

vertical catenary arch structures (Fig. 5.11(a)). In conjunction with the opti-

mised arches, bracing elements (light blue) were retrospectively added for lateral

stability (Fig. 5.11(b)). Note that these bracing elements were added manually

for demonstration purposes, and would need to be checked later in the design

process. The significance of this particular design example lies in the fact that it

explores a scenario where an initial form is derived by optimisation, and further,

conventionally derived, design elements are added subsequently, by conjunction.

The use of catenary shapes in architectural design, either in 2D or 3D is not new,

as they can be seen in arch designs of many of Antonio Gaudi’s buildings and

Heinz Isler’s thin concrete shell shelters, derived from inverted hanging chains

and hanging nets, respectively [203]. This perhaps calls into question the nov-

elty of these forms and the method used to generate them. However, as it is

known, physical modelling entails a very complex process (e.g. issues with scal-

able dimensions and unscalable material properties) and empirically found forms

are difficult to replicate as scale modelling effects and loading conditions will be

different in each case. This is one of the reasons why, for example, despite the

novelty of his forms, Heinz Isler’s method of physical hanging nets modelling

did not become more widespread [204] - computational optimisation is less time-

consuming and more comprehensive than physical modelling, with a capability

to handle much more complex load cases than uniformly distributed loads and

with higher precision1.

1It must also be noted that, although for ease of reference the word ‘catenary’ was chosen

to describe the form of the arches used in this study, the actual shapes depend on the support
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Additionally, discretisation or segmentation of the catenary (or other shapes) into

individual members of non-uniform length (as shown in this study) or uniform

length (grid structures), is not trivial, and is the subject of much research effort

(e.g. 3D freeform discretisation [43][206]).

5.3.3 Pharaonic Village Project

Here the brief was to design a children’s games area, covering an area of 20m by

20m located on an Egyptian-themed restaurant complex in the Middle East.

Figure 5.14: Conceptual design of glass pyramid, obtained using structural layout

optimisation.

conditions etc. Also the catenary is not an absolute optimum shape of an inverted tensile

material when this gains thickness. Further optimised shapes are possible, as shown in Darwich’s

work [205].
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To be in keeping with the Egyptian theme, the requirement was to create a glass-

clad pyramid, with its sides inclined at 45-degrees. i.e. the external envelope was

prescribed at the start of the design process, but the means of supporting this was

left unspecified. It was also required that each face of the pyramid should have

a central opening at ground level. To identify a suitable supporting structure

the structural layout optimisation tool was used. Assuming symmetrical loading

(vertical and horizontal) and geometry, only one eighth of the structure needed

to be modelled. Point supports were specified at the corners of the pyramid and

to each side of the ground level openings. The permissible design domain was

limited to ensure that structural members would not intrude excessively into the

internal usable space. Initial results are shown in Fig.s 5.15 and 5.16.

It appears that the structural solution obtained using the layout optimisation

tool is over-complex, especially considering that at the initial stage it is basic

design concepts that are usually being sought. However, essential features or

design principle of the solution can be extracted for use in later stages of the

design process. For example, Fig. 5.16 shows a simplified version of the same

basic design (simplification was achieved via a semi-automatic procedure which

involved firstly filtering out very small members, then manually removing selected

members in congested areas). The simplified version clearly reveals the essential,

and apparently novel, structural principle at work (i.e. an elevated central node

from which many members radiate), and provides a solution with uninterrupted

floor space as required.

5.3.4 Canopy for Roof Terrace in Multi-storey Building

This scenario involves redesign of a sloping canopy roof for a multi-storey office

building to be constructed in central London (size: 35 x 40 m in plan). There

existed sufficient justification for a redesign of the glass-clad roof terrace canopy

on the premise that transparency of glass-cladding should be seen as an opportu-

nity to transfigure the supporting structures into elements which go beyond their

designated structural functions, thus, into elements of aesthetic purpose.
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In this example real design load data was used, thereby in principle allowing the

solution generated to be compared against the more conventional beam-grid de-

sign which was arrived in practice; see Fig. 5.17 for the original final design.

The design solution is shown in Fig. 5.18, Fig. 5.19 and Fig. 5.20. The solution has

significantly more visual interest than a conventional beam-grid design, provides

an uninterrupted floor space and also appears much more structurally efficient

(< 10% of the weight 1 of the adopted beam-grid design), though care must be

taken in comparing the result from a relatively simplistic optimisation with the

real design which will inevitably have rationalised the number of different mem-

bers and required them to fit a more regular grid to simplify glazing details, and

in which all members will have been designed to meet the requirements of build-

ing codes with adequate factors of safety. Nevertheless, the very large potential

weight saving is noteworthy and perhaps gives an indication of how economy of

material use is currently highly subordinate to simplicity of construction).

1The original structure consists of approximately 130 structural members, which measure

16.18m3 in volume, whereas the optimised redesigned form consists of approximately 560 mem-

bers, measuring only 1.037m3. However, it is imperative to note that while the design through

optimisation considered design load cases of operational live loads, dead loads, environmental

loads, and contingencies, the structural design to a regulatory code is much more thorough as

it design, to ensure safety, against every imaginable scenario, e.g. joint fatigue design, extreme

weather conditions, thermal loading, fire, seismic activities.
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Figure 5.17: Original canopy for roof terrace: in context of the main building

framing elements
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5.3.5 Roof Vault

This example is not unlike the catenary arches used in the Exhibition Space ex-

ample in Section 5.3.2 in that it uses uniformly distributed transmissible loads,

although in this example in 3D. Other design constraints are pinned supports at

the four corners of the vault and an elevated pinned support at the centre of the

vault; see Fig. 5.21 - 5.24

Fig. 5.21 shows a ‘quarter model’, to better show the form. The shape is a dis-

cretised near-catenary, reminiscent of Heinz Isler’s concrete shell shelters, derived

from inverted hanging nets; note that the flat shape at the top is the result of

coarse nodal discretisation employed. This example demonstrates two capabili-

ties of truss layout optimisation, which could be of interest to architectural form

designers: form-finding capability and simultaneous discretisation of surface into

a visually expressive grid. It is worth noting, however, that the generated grid

pattern is different from other methods which generate architectural geometries

or which refine a grid mesh (e.g. Helmut Pottmann or Culter’s work).

Figure 5.21: Roof vault design - a quarter model in a discretised, near catenary

shape.
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Figure 5.22: Roof vault design: top view in parallel projection

Figure 5.23: Roof vault design: elevation view in parallel projection
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Figure 5.24: Roof vault design: isometric view.
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5.4 2D usage Design Examples

5.4.1 Bicycle Canopy

The brief for this project required design of a bicycle-canopy on a site measur-

ing approximately 23m × 13m, surrounded by university engineering buildings.

Although there was already an existing bicycle parking facility on the site, there

were no obvious visual indications that the facility existed and it lacked contex-

tual identity. Thus the aim was to design a canopy with a distinctive structural

aesthetic, appropriate for a site surrounded by engineering buildings.

Figure 5.25: 2D original optimised structure with two fixed pinned supports:

green arrows represent applied forces, tensile members are denoted in red and

compressive members in blue.

Fig. 5.25 shows the complex truss form generated by the structural layout optimi-

sation procedure. This 2D structure was generated by taking into consideration

the supports and appropriate vertical roof loads, together with an effectively un-

restricted design domain and sparse distribution of potential nodes. In Fig. 5.26,

the structure is duplicated along an axis to form a 3D frame; supplementary ele-

ments could be added between them to ensure lateral stability.
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practical when designing architectural forms/structures. Unfortunately the use

of sparse grids can also result in failure to produce viable solutions, and thus this

is not really a practical remedy for over-complexity i.e. there is clearly a need for

a more systematic method of simplifying over-complex ‘optimum’ forms.

5.4.3 Window Frame Design

This particular example is not architectural/structural design in the conventional

sense. However, it is provided here in order to demonstrate the feasibility of the

engineering tool and its rationale behind it, as a form generation tool in a smaller

scale - although the enlargement of design domain and force considerations would

easily be applied to such as courtyard roofs. Fig. 5.29 shows the design domain

and loads with nodal arrangement for nodal density target number of 100 as an

example.

Figs. 5.30 shows 4 window frame patterns, optimised for the same arbitrarily

given loads. The final results differ because of the variation in input nodal den-

sity. Whilst these solutions are products of a simplified load case considering only

uniformly distributed loads and not the products of a detailed structural design

code, they present a very useful starting point for form design, especially, if a

high degree of integration is sought between structural principles and satisfac-

tory aesthetics in the final product.

A contemporary, existing design, comparable to the generated forms, is the re-

cently constructed Dutch Maritime Museum (designed by Ney and Partners),

whose irregular mesh steel-glass structure covering the square courtyard was

inspired by a loxidrome map with 16 wind roses before a dynamic relaxation

technique was applied to project the 2D mesh onto a 3D shell to find catenary

shapes [2]. See Fig. 5.31. A noticeable, aesthetic similarity exists between the

roof structure and Fig. 5.31 and Fig. 5.30(a).

131





5.5 Discussion

(a) Window frame, generated with

target nodal density of 14 nodes

(b) Window frame, generated with

target nodal density of 44 nodes

(c) Window frame, generated with

target nodal density of 68 nodes

(d) Window frame, generated with

target nodal density of 100 nodes

Figure 5.30: Window frame patterns, optimised for given loads, differing in their

nodal density

5.5 Discussion

The design examples considered have revealed at least two useful usage patterns

for conceptual form generation. The structural layout optimisation tool described

could for example be used in the following modes:

• ‘Full Automatic’: In this mode the user specifies the bare minimum of
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Figure 5.31: The Dutch Maritime Museum: courtyard roof form-structure [2].

Design: Ney and Partners

design constraints prior to carrying out an optimisation. This has the po-

tential to yield interesting, possibly ‘emergent’, forms, with no predefined

geometry to restrict either the outer envelope or the internal arrangement

of the truss members of the final form.

• ‘Optimisation with Prescribed Outer Geometry’: In this mode the

geometry of the outer envelope is fully or partially prescribed by the user

prior to carrying out an optimisation. A possible application includes ratio-

nalisation of the layout and sizes of internal structural members in a design

solution where the outer geometry has already been finalised. Areas where

members must avoid can also be specified if required.

It should be noted that the design study described in Sections 5.3.1 (‘Think-

ing Pods’) and 5.3.5 are essentially an example of the ‘Full Automatic’ method

whereas that described in Section 5.3.3 (‘Pharaonic Village Project’) is an ex-

ample of ‘Optimisation with Prescribed Outer Geometry’. The design study

described in Section 5.3.4 (Canopy for roof terrace in multi-storey building) is

also an example of ‘Optimisation with Prescribed Outer Geometry’, although the

original geometry was adjusted slightly in order to achieve the desired effect. The

Exhibition Space in Section 5.3.2 is a combination of the two usage modes, where
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the horizontal geometry in plan is prescribed, but definition of the vertical geom-

etry of the space in elevation is left for the computational optimisation process

to determine.

A question may be raised with regard to novelty of some of the generated forms,

particularly those considered in Section 5.3.2 which are in essence a series of sim-

ple catenary arches, whose form could be determined by simple inversion of cable

elements. Thus on the one hand, it could be stated that the results obtained are

merely ‘encouraging’. On the other hand, it could be concluded that the power

of a novel method has been demonstrated in this section, which stands as strong

as methods which attempt to replicate (or replace) any former iterative physi-

cal experimental approaches. One such example is the work of Xie et al. [52],

which attempts to replicate, by employing an evolutionary structural optimisa-

tion method, Gaud́ı’s experimental design method of employing hanging chains

and weights, see Fig. 5.32. This is also analogous to a number of form-finding

methods which simulate gravitational response of fabric or cables such as dynamic

relaxation and in Kilian’s case [53], particle-spring systems, replicating the said

response, to regenerate structures comparable to the hanging nets used by Heinz

Isler, see Fig. 5.33.

(a) Inverted image of Gaud́ı’s physical

model. Source: math.upenn.edu. Ac-

cessed: 10/11/2012

(b) Computer-based replication. Source: [52]

Figure 5.32: Hanging chain models
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(a) Physical model. Source:[203] (b) Computer-based replication.

Source:[53]

Figure 5.33: Hanging net models
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5.6 Conclusions

1. The longstanding divide between the technical and visual aspects of ar-

chitecture does not appear to be being bridged by current and emerging

computer-based design tools, notwithstanding the apparent integrative na-

ture of some tools (e.g. Building Information Models). Furthermore, be-

cause of the visual nature of the interaction between a computer and user,

it may be argued that such computer-based tools are even strengthening

this divide.

2. Structural layout optimisation is a technology which has the potential to

provide the architect with the ability to rapidly identify concept designs

which are intrinsically structurally sound. This technology has demon-

strated its capability of conceptual form generation, form-finding and si-

multaneous meshing and therefore has the potential to play a small part

in integration between the technical and visual aspects of architecture in

design process.

3. In this chapter the structural layout optimisation technique has been ap-

plied to a number of conceptual design problems, allowing several potential

usage patterns to be identified. For example, when minimal design con-

straints are imposed the technique can yield interesting emergent forms;

when the technology is applied to design problems where the outer enve-

lope has already been fixed, the technique can be used to identify efficient

locations for supporting framing elements.

4. Example design studies have highlighted that further work is required to

increase the power and flexibility of the structural layout optimisation tool

used in this study. Specifically, the issue of impracticality due to complex-

ity is highlighted, to ensure design relevance of the tool in architectural

form design. Additionally, whilst the optimisation algorithm is capable of

conceptual form generation of conventional structural configuration, form

generation of unconventional structural configuration is yet to be investi-

gated. This is fully explored in Part III.
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Postscript

This subsection includes a brief discussion on the role of the Graphical User In-

terface (or GUI), a topic beyond the main scope of work in this thesis, though is

of interest in relation to the work carried out in this chapter.

5.6.1 Graphical User Interface

One of the findings of this chapter was that the process of form-generation using

the particular optimisation formulation employed can be prohibitively stringent,

i.e. form-generation was essentially a one-step process from input to output,

offering little controllability to designers. Hence, addition of form modification

functions is suggested as an area requiring further development.

An optimisation-driven synthesis tool can potentially be a useful tool for archi-

tects, who wish to synthesise reference forms which are potentially structurally op-

timal or guaranteed to be structurally sound and, most likely to be constructible.

Upon further analysis of the existing tool1, it was judged that its user-interface

lacked the features which were intuitive to mouse-accustomed users.

Interactive functions such as form modification or generation function, should be

incorporated. The findings in the design process of the three projects in Part II

clearly show the need for more flexible manipulation of initially generated forms.

Fig. 5.34 and 5.35 are simple illustrations of a process in which variations of an

initially optimised form can be generated. The four main stages are named as:

Optimised,Extruded, Distorted and Re-facilitated.

• Stage 1: Optimised form represents the initial optimised form, auto-

matically synthesised with given load and support conditions.

1The existing tool refers to a structural optimisation tool being developed at the University

of Sheffield
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5.6 Conclusions

Figure 5.36: ‘Metamorphosis’: a modification process of a truss structure.
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Part III

Generation of Conceptual Form

of an Unconventional Structural

Configuration: Tensegrity
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Preface

The issues found when using form-led design approaches for geometry-generation

in architectural design have been critically reviewed in Part II. One of the princi-

pal issues was the acceptance of ‘geometry-generation’ as ‘form-generation’ whilst

overlooking the importance of structural considerations.

Having recognised structure as an inherently integrative aspect of building de-

sign, a structural optimisation technique has been proposed to address the issues,

amidst a growing development of integrative design methodologies of the recent

past. The investigation led to application of the existing linear programming

(LP) formulation at an early conceptual, preliminary, phase of design, to con-

ceptual form generation of conventional structural configuration and the results

have been presented in Part II.

It was found, however, that the forms generated using LP (and hence, use of

engineering rationale for conceptual form generation), with such structural aes-

thetics, exhibited evidence of impracticality and the need for improvement with

regard to their complex layout of internal truss members.

The issue of complexity of optimum structures generated using LP, is, in fact, a

known issue in engineering applications, for which there are remedial strategies.

However, when this issue was identified in engineering, the problems considered,

typically included either small-scale simple grillage structures or unrealistic, the-

oretical loading conditions1, in contrast to the realistic conditions used for the

forms in Part II. Moreover, most remedial strategies focused on reduction of

complexity through standardisation of individual members from a given set of

available members, rather than concerning methods of simplification for general

form.

In contrast, the use of mixed integer linear programming (or MILP) can be used

to affect the general form by applying a constraint on the total number of mem-

1e.g. single point load at one node in Michell structure
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bers in the final structure.

Hence, the first chapter of Part III, Chapter 6, presents, a simple implementation

of an additional, mixed integer linear programming (MILP) constraint to the ex-

isting LP formulation1. This additional constraint provides an effective method

of resolving the issue of over-complex optimal structures in the existing formula-

tion. This same algorithm extends to include a related capability of conceptual

form generation of unconventional structural configuration, namely tensegrity in

the latter half of this part.

1which were employed to generate the forms as shown in Part II
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Chapter 6

Obtaining More Practical

Solutions using Mixed Integer

Linear Programming

6.1 Abstract

Over-complexity1 of optimum structures generated using LP, has been a known is-

sue in engineering applications, for which there are remedial strategies. However,

most strategies focus on reducing the level of complexity through standardisation

of individual members, by selecting from a given set of readily available sections,

rather than, on devising methods of simplifying the general form.

In this study, a method of reducing the level of complexity in the final optimum

structures is explored using mixed integer linear programming (or MILP)

A simple incorporation of MILP formulation into the existing LP layout optimisa-

tion formulation, is presented with a view to providing designers with a capability

to control the outcome of final structure. In addition, parametric studies are con-

ducted in order to understand the behaviour of the formulation.

1i.e. a high number of active nodes and subsequent number of members in the final optimum

structure
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6.2 Introduction

6.2 Introduction

Optimum form such as Michell structures [70] and their derivatives [99] are only

optimal in terms of their total weight or structural volume. In practice, many of

this class of structures comprise very many, extremely small structural members.

Indeed, in many cases, Michell structures contain regions that have an infinitely

rich microstructure; effectively an infinite number of infinitesimally small ele-

ments. Clearly, in addition to being practically impossible to construct, such

structures would not be remotely ‘optimal’ in terms of overall cost.

This over-complexity in structural optimisation is a well-known problem [134]

and there are a significant number of resolution strategies, the most common of

which is to standardise the member cross sections by selecting from a pre-defined

set of tabulated data. For example, an iterative LP method was used in [135],

in which the problem was defined in terms of existing available steel sections.

At each iteration, the stress level in each compression member in the solution

is checked against the permissible level of stress as recommended by the design

code; if any stress exceeds its permissible level, another value is used for the

stress in the member and the iteration continues. When the same section type is

chosen for all members in two successive iterations, the search process terminates.

Olhoff and Tayor [212] considered a general post-optimisation strategy for modifi-

cation of design called, ‘structural remodelling’, where the objective is to provide

an appropriate modification to a given initial design. Structural remodelling is

categorised into either ‘reinforcement only’, where the initial design stays the

same and ‘compound remodelling’, where members may be added to or taken

away from the initial design with a specified total cost.

In a more recent example [213] an FEA-based ESO was used with direct discrete

design variables in element size optimisation problems, where solutions were ob-

tained by simple repetitions of analysis and element reduction; element thickness

was reduced gradually to the next lower values from the given sets, using ‘sensitiv-

ity numbers’. However, the degree of realism achieved for individual members in
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6.2 Introduction

the above optimisation methods, is less relevant in relation to conceptual form-

generation as the identified issue in architectural concept design concerns user

controllability over the general form of the structure as opposed to individual

member sections.

Another common approach involves the inclusion of ‘penalty’ variables in the

objective function. For example, Parkes [134] introduced the concept of ‘joint

cost’. The approach defines the material penalty involved in fabrication of joints

of frame structures. By assuming the material cost of transferring a force from

a member to a connection is proportional to the transferred force and, that the

force in a member is proportional to its cross-sectional area, it essentially adds a

constant length j (joint cost) to each member at a joint. Similarly, Prager [214]

included in the objective function, the weight of joints in addition to that of

structural members, thereby restricting the level of complexity of general form of

optimised structures.

Because of the known issues when using discrete integer variables1 and due to the

computational complexity, (i.e. harder to solve) [216], mixed integer linear pro-

gramming (or MILP) formulations or ‘member reduction’ approaches using MILP

have been used to a lesser degree, than the previously described approaches.

Tyas [217] suggests a number of ways in which integer variables might be used to

allow constraints restricting the number of allowable ‘active members’ either in a

given region of the structure, or in the structure as a whole. The classical ‘ground-

structure’ truss layout optimisation formulation has traditionally been formulated

as a size optimisation problem, which can then be conveniently solved using lin-

ear programming (LP) algorithms. However, in a conventional size optimisation

problem no distinction is made between truss bars with positive area and those

with zero area. (i.e. all bars in the original ground structure will be present in

the final optimal solution, though some - usually the vast majority will simply

1, i.e. considerable increase in the solution runtime, and some undesired inevitable weight-

increases [215]
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6.2 Introduction

have zero area). The traditional LP approach cannot differentiate between ac-

tive members that are actually present in the final optimum form, and members

with zero cross-sectional area, carrying zero ‘load’. Put another way, in an LP

formulation, an area of zero carries no special significance, whilst, obviously to a

human designer, a member with a cross-sectional area of zero is qualitatively dif-

ferent one with non-zero area. The basic LP formulation is therefore unsuitable

when constraints on the numbers of active bars (i.e. bars with non-zero area)

in the final structure need to be imposed. Tyas’s suggestion was to introduce a

binary variable for each member, to act as a signifier or ‘flag’ as to whether the

member had zero (0) or non-zero(1) cross-sectional area. Constraints could then

be imposed on the total sum of all these ‘flag’ values in the entire structure, or

within a sub-set of the structure.

To the same intention, Ohsaki and Katoh [218] formulated a method of a MILP

lower bound and a non-convex non-linear programming (NLP) upper bound, con-

sidering member intersection and nodal stability. However, the extent to which

MILP variables affect the solution runtime, has not been fully investigated in the

context of simplification of overcomplex structures. Most recently, Hagishita and

Ohsaki [219] have used a heuristic method called Topology Mining1 for topology

optimisation of framed structures, where the problem is formulated using binary

mixed integer non-linear programming.

The following presented work builds on the formulation of restriction of the total

number of members in [217], by writing a computer code and conducting para-

metric studies, to test and observe the ‘behaviour’ of the formulation, and in

turn, to provide the user the option of determining the upper limit2 to the max-

imum ‘desired’ number of members in the final structure for simplification and

ultimately better constructibility, with the use of MILP.

1TM is explicitly integrated with non-linear programming and uses a technique of data

mining to extract the sets of members that frequently appear in superior solutions and pass

them on to generate candidate sets for the next iteration [219].
2inequality constraints
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6.3 Formulation

6.3 Formulation

Linear programming (or LP) is concerned with optimisation, where the variables

in the objective function and the constraints can be defined linear. However, the

optimisation problem is called a mixed integer linear programming (or MILP)

problem if some of the unknown variables are required to be integers alongside

the non-integer linear variables. Binary mixed integer programming is a special

case of MILP where the integer variables are required to be either 0 or 1. The

equilibrium LP plastic design formulation to solve for the minimum volume [220]

for a ground structure subjected to a single load case and containing m members

and n nodes are stated as follows:

Minimise,

V = qTc (6.1)

subject to:

Bq = f (6.2)

q+

i , q-
i,≥ 0, i=1,...,m (6.3)

where V is the total volume of the structure, B is a suitable (2n×2m) equilibrium

matrix, qT = {q+

1 ,−q−1 , q+

2 ,−q−2 , ..., q+
m,−q−m},

cT = {l1/σ+

1 ,−l1/σ
−

1 , l2/σ
+

2 ,−l2/σ
−

2 , ..., lm/σ+
m,−lm/σ−m},

fT = {fx
1 , f y

1 , fx
2 , f y

2 , ..., fx
n , f y

n}; li, q
+

i , q−i , σ+

i , σ−i represent the length, tensile and

compressive member forces and stresses in the ith member, respectively. And

lastly fx
i , f y

i are the x and y direction live load components applied to node j.

6.3.1 Introduction of Binary Variables

The continuous LP problem variables are the member forces, q+

i , q−i and the addi-

tional constraints are ki, a binary variable for every member i either in tension or

compression, which indicates whether one of the m number of potential members
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6.3 Formulation

in the ground structure, is added in the solution [217] [218].

Ai

R
≥ ki , ki = 1or0 (6.4)

Ai is the area of member i and R is the reduction factor; a constant value chosen

arbitrarily to be greater than the maximum expected value of Ai.

Relation 6.4 requires that ki, the binary flag for member i be > 0 if Ai > 0. But

the requirement that ki take only binary values immediately requires that ki = 1

if Ai > 0. Thus, we now have a flag that will take the value 1 if the member ac-

tually exists with positive cross-sectional area. There is no explicit requirement

that the flag take the value 0 if the corresponding cross-sectional area is zero.

However, if the value of the objective function will be improved by taking these

values to be zero, the optimisation process will be expected to automatically take

this option. It is clearly vital that R be sufficiently large in magnitude that the

value of Ai/R will always be ≥ 1, otherwise the constraint in Relation 6.4 cannot

be satisfied.

On the other hand, using an unnecessarily large value for R will make the value

of Ai/R ≤ 1. This may lead to problems with the stability and efficiency of

the MILP solver. This is because MILP solution strategies generally progress

by initially ignoring the integer or binary constraints, solving the relaxed LP

problem, then progressively investigating the consequences of forcing the requisite

variables to their integer/binary values. Therefore, if Ai/R is non-zero, but very

close to zero, the MILP approach may either assume that the value actually is

zero (due to numerical round-off) or have difficulty in forcing the variable to

the (required) value of 1. Choosing a suitable value of R is therefore of great

importance in any given problem context.

Relation 6.4 can be rewritten as:

1

R
· q ≥ kTσ (6.5)
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6.4 Effects of Integer Constraints

where σT = {σ+

1 ,−σ−1 , σ+

2 ,−σ−2 , ..., σ+
m,−σ−m} and

kT = {k+

1 ,−k−1 , k+

2 ,−k−2 , ..., k+
m,−k−m}.

Eqn. 6.6 describes the constraint, which restricts the number of members in the

final structure to a predefined maximum value, NUB, the upper bound for the

desired number of members in the final structure. The reason for the inequality

constraint rather than an equality constraint for an exact number of members is

that an exact number of members in the final structure cannot be realistically

specified as certain layouts comprising of certain specified numbers of members

may not be structurally feasible.

Ntotal
∑

i=1

kn ≤ NUB (6.6)

where Ntotal is the total number of members in the ground structure and, Nfinal,

the total number of members in the final structure, for ease of reference.

6.4 Effects of Integer Constraints

The examples that follow, are presented to demonstrate that the MATLAB script

which was derived from the formulation behaves in a predictable manner. and

that the suitable value of for R in each study case is identified, for parametric

studies. The results of the parametric studies are presented later, in Section 6.5.

6.4.1 3 x 3 Grid Example

Fixed supports in both x and y directions are placed at Nodes No. 1 and 71 or

as shown in Fig. 6.1. The allowable tensile σ+ and compressive σ− stresses are,

respectively, unit-less 10 and 1. A single point load of 3.0000 in magnitude is

placed at Node No. 6 in positive x-direction horizontally as shown in the same

1The node numbering convention starts from bottom to top and, from left to right
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6.4 Effects of Integer Constraints

figure.The number of initial potential members in ground structure is 36.

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9Force฀=฀3.00

L

L

Figure 6.1: Potential members in ground structure and the load. L = 1, F = 3.00

Without Integer Constraints

A preliminary operation of the existing LP formulation (i.e. without the MILP

constraints), is run for two purposes; to study the effect of MILP constraints

on CPU time in comparison with the LP formulation and, more importantly

to determine the minimum value of the constant, R to be used in the MILP

formulation.

Fig. 6.2 shows a final optimised structure without the integer constraints.

The total volume optimised by LP is denoted by VLP , and is in this case, 8.0000.

The MATLAB script was run 10 times and the average solution CPU time over

these runs was 0.092 second ranging from 0.011 to 0.43. Nfinal, the total number

of elements in the final structure, is 4.
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6.4 Effects of Integer Constraints

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9

Figure 6.2: Optimised structure without integer constraints - solid red lines rep-

resent compression members, and Dashed blue lines, tension members

The maximum force among the members is in the one connecting Nodes No. 7

and No. 8 ; q−34= 3.0000 in compression. Thus, Amax, the maximum area in this

layout is 3.0000.

This value stipulates that, with the integer constraints, the value of constant, R

to be chosen must be at least 3.0000, such that members whose Ai is smaller than

Amax, is eliminated from being selected for the final solution, thereby achieving

the ‘simplifying effect’ of MILP. In fact, the maximum area, Amax amongst all

possible layouts under the given conditions will be in the only compressive mem-

ber in the simplest structure with the fewest number of members; in this case it

is a structure with only two members present and Amax is 3.3541. This is the

reduction factor used for the following example.

With Integer Constraints

The following examples are presented to demonstrate the effects of variables,

value of constant, R and, the maximum desired number of members, NUB.

Fig. 6.3(a) and (b) show reduced optimised structures with the constant R set at
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6.4 Effects of Integer Constraints

(a) NUB = 2

CPU time = under 1 second (range

from 0.04 to 0.19)

V = 8.2500

Nfinal = 2

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9

(b) NUB = 4

CPU time = under 1 second (range

from 0.02 to 0.06)

V = 8.0000

Nfinal = 4

Figure 6.3: Optimised structures with integer constraints

3.3541 (R > Amax in LP).

If the value of the constant, R is equal to the maximum area Amax in normal LP

formulation, then the only MILP solution available will be identical, i.e. Nfinal

= 4.

One anomaly worth noting is the presence of a member with zero-area when

the maximum desired number of members, NUB is 5 (or more). See Fig. 6.4(a).

It produces results essentially the same as Fig. 6.3(b) except that there are 5

members which appear to be present in the final solution, with one of them be-

ing a ‘zero area’ member, such that the MILP formulation satisfies the integer

constraint, numerically (refer to Appendix B for the full description of different

arrangements and structures showing zero-area members).

In order to further demonstrate the effect of R, the value is deliberately chosen

to be less than that of Amax; in this case, Amax (in LP) = 3.0000 and R=2.0000.
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6.4 Effects of Integer Constraints

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9

(a) NUB = 5, V = 8.0000

Nfinal = 5 (4 real members and 1

zero area member)

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9

(b) NUB = 6, V = 8.0000

Nfinal = 6 (4 real members and 2

zero area members)

Figure 6.4: Optimised structures with integer constraints

Fig. 6.5 shows optimised structures with the constant R set at 2.0000.

The member with maximum area in this example, is the one connecting Nodes

No. 7 and No. 8, with the member force, q−34 = 2.0000 in compression and the

maximum area, Amax of 2.0000. The maximum desired number of members, NUB

up to 4, offers no feasible solutions and NUB = 5, produces the same results as

in Fig. 6.5. The same exception of zero area members, which satisfies the integer

constraint, only numerically, is observed when NUB = 6. See Fig. 6.4(b)

By having R set to be less than Amax, it has been observed that the layout of

members were configured to include more members in the final structure, than in

the LP solution, as only those which have areas smaller than Amax (in LP), were

admitted into the solution.
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6.4 Effects of Integer Constraints

Figure 6.5: Optimised structure with integer constraints, R=2

NUB = 5

CPU time = under 1 second (range from 0.08 to 0.15)

V = 8.0833

Nfinal = 5

6.4.2 5 x 3 Truss

Refer to Fig. 6.6 for the problem set-up. The number of initial elements in ground

structure is 105. The allowable tensile σ+ and compressive σ− stresses are for

this case, both unit-less 1. A single point load of 3.0000 in magnitude is placed

in negative y-direction horizontally as shown in the same figure.

As in the 3 x 3 truss, the conventional LP solution was found; the structure is

shown in Fig. 6.7. The total volume optimised by LP, VLP , in this case, is 18.00.

The average solution CPU time over these runs was 0.045 second ranging from

0.031 to 0.078. Nfinal, the total number of elements in the final structure, is 22.

The maximum force among the members is in the one connecting Nodes No. 1

and No. 5 (or Nodes No. 11 and No.13 ); q−4 = 0.9079 in tension. Thus, initially

Amax, the maximum area in this layout is 0.9079.Through preliminary integer

runs, it was found that the maximum area, Amax amongst all possible layouts un-

der the given conditions will be in the simplest structure with the fewest number
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6.4 Effects of Integer Constraints

Figure 6.6: Potential members in ground structure and the load. F = 3.00

Figure 6.7: Optimised structure without integer constraints - solid red lines rep-

resent compression members, and dashed blue lines, tension members
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6.4 Effects of Integer Constraints

of members; hence, the new Amax is 3.3541. This is the reduction factor used

for the parametric studies.

6.4.3 5 x 3 Michell Cantilever

Refer to Fig. 6.8 for the problem set-up. The number of initial elements in ground

structure is 105. The allowable tensile σ+ and compressive σ− stresses are for

this case, both unit-less 1. A single point load of 3.0000 in magnitude is placed

in negative y-direction horizontally as shown in the same figure.

Figure 6.8: Potential members in ground structure and the load. F = 3.00

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9

Node฀10

Node฀11

Node฀12

Node฀13

Node฀14

Node฀15

Figure 6.9: Optimised structure without integer constraints - solid red lines rep-

resent compression members, and dashed blue lines, tension members

As in the 3 x 3 truss, the conventional LP solution was found; the structure is

shown in Fig. 6.9. The total volume optimised by LP, VLP , in this case, is 45.00.
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6.5 Parametric Studies

The average solution CPU time over these runs was 0.543 second ranging from

0.5000 to 0.72. Nfinal, the total number of elements in the final structure, is 28.

Within the same figure, clarification is required for Node No. 4, which appears

to be an unrestrained node connecting two compression members i.e. Member

1-4 and Member 4-7. However, Node 4 is in fact an unused node (as per Nodes

No. 13 and No. 15 in the same figure), and the member in presence is between

Nodes No. 1 and No. 7, going ‘through’ Node No. 4.

The maximum force among the members is in the one connecting Nodes No. 7

and No. 14 (or Nodes No. 9 and No.14 ); q76
−= 1.9496 in compression. Thus,

initially Amax, the maximum area in this layout is 1.9496.Through preliminary

integer runs, it was found that the maximum area, Amax amongst all possible lay-

outs under the given conditions will be in the simplest structure with the fewest

number of members; hence, the new Amax is 6.1847. This is the reduction factor

used for the parametric studies.

6.5 Parametric Studies

A study was conducted involving parametric analyses with variations in two pa-

rameters, in order to find out their effects on the solution CPU time; reduction

factor, R and the maximum desired number of members, NUB.

The effects of the variant, R on CPU time is observed over a range of values of

NUB while the values of all other variables remain unchanged. In order to ob-

tain a simple set of data, three well-known benchmark type problems with simple

loading and support conditions, are chosen. All values of R in each case are above

the maximum area, Amax found in preliminary operations of LP formulation. Ob-

servations are presented in the following subsections. Simplex algorithm is used

for the linear variables and the Branch-and-Bound algorithm is used to handle

the integer variables. The solver in MATLAB m-script file (lp_solve.m),was

acquired through a non-commercial public source.

All operations of MILP optimisation were conducted from a fully connected
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6.5 Parametric Studies

ground structure. All studies presented in this section were solved on the fol-

lowing specifications:

O/S: Microsoft Windows Vista (TM) RC 1 (Build 5600)

Intel Pentium 4 CPU at 2.80GHz with 1GB RAM

Platform: MATLAB Version 7.0.1.24704(R14) Service Pack 1

MIP solver: lp_solve.m

The three benchmark type problems and the tested, comparable ranges of values

for NUB and R, are described in Table 6.1.

6.5.1 NUB and Total Volume in Final Structure

It is well-known but noteworthy that this reduction in the number of members,

produces either the same or higher volume (or weight) in the final structure,

caused by changes in topology [215].

The effects of NUB are presented in Table 6.2. The general trend has been ob-

served that the reduction in the number of members causes the volume increase,

as in the case of 3 x 3 grid and 5 x 3 Michell cantilever structure. However, in

the case of 5 x 3 half wheel over the range of R between 1 and 108, the number

of members present in the final structure does not appear to have any effect on

the volume; different layouts can result in the same volume as in the case of 3

members in the final structure and 5 members in the final structure. Refer to

Fig. 6.10. Additionally, in the case where Nfinal = 10, the resulting structure is

identical as Fig. 6.10(b) albeit with 5 additional zero-area members, which meet

the conditions of the MILP constraint, numerically.

6.5.2 Effects of Reduction Factor on CPU time

Fig. 6.11, Fig. 6.13 with 6.12 and, Fig. 6.14 present respectively for the 3 x 3

grid, 5 x 3 half wheel truss, and 5 x 3 Michell cantilever, the average CPU time
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6.5 Parametric Studies

Initial connectivity Tested range of values Amax (LP)

NUB R or min. R m

(a) 3 x 3 Truss

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9Force฀=฀3.00

L

L

2 to 7 4 to 108 3.3541 36

Results less

meaningful

above this

range

(b) 5 x 3 Truss 3 to 25 1 to 108 3.3541 105

(Results less

meaningful

above this

range

(c) 5 x 3 Michell Cantilever 2 to 18 7 to 1013 6.1847 105

(Results,

less mean-

ingful

above this

range) NUB

has been

tried up to

105

Table 6.1: Ground structures (support conditions and loading positions) and

parametric input data
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Ground structure R NUB Nfinal V ol. V ol./V ol.LP

(a) 3 x

3 Truss

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9Force฀=฀3.00

L

L

3.3541 2 2 8.25 1.03125

3.3541 4 4 8.00 1

3.3541 5 4 (1) 8.00 1

3.3541 6 4 (2) 8.00 1

(b) 5 x 3 Truss 10.00 3 3 18.00 1

10.00 5 5 18.00 1

10.00 10 5 18.00 1

1.000 10 10 18.00 1

1.000 11 11 (1) 18.00 1

1.000 12 12 18.00 1

1.000 13 13 (1) 18.00 1

1.000 14 14 (3) 18.00 1

1.000 15 15(5) 18.00 1

1.000 16 16(5) 18.00 1

1.000 17 17(6) 18.00 1

1.000 18 18(8) 18.00 1

1.000 19 19(6) 18.00 1

1.000 20 20(8) 18.00 1

1.000 21 21(6) 18.00 1

1.000 22 22(6) 18.00 1

(c) 5 x 3 Michell

Cantilever

10.00 2 2 51 1.13333

10.00 4 4 47.000 1.04444

10.00 6 6 45.000 1

10.00 7 7 45.000 1

10.00 8 8 45.000 1

10.00 9 9 45.000 1

10.00 10 10 45 1

2.000 11 11 48.253 1.07228

2.000 12 12 47.667 1.05927

2.000 13 13 46.089 1.02420

2.000 14 14 45.000 1

2.000 15 15 45.000 1

2.000 16 15 (1) 45.000 1

Table 6.2: Increase in volume caused by changes in topology. Values in () brackets,

indicate the number of zero-area members - see Appendix B for further details.
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6.5 Parametric Studies

(a) NUB = 3,V = 18.00,Nfinal = 3 (b) NUB = 5,V = 18.00,Nfinal = 5

Figure 6.10: Identical volume with 3 members and 5 members in the final struc-

tures. (R=10)

taken for optimisation in seconds, versus the input value of NUB, desired number

of members, varied within the specified range of reduction factors, R. Also the

layouts of members in the finalised structures are shown for each value of R.

Fig. 6.11 shows the results for 3 x 3 grid, expectedly that all CPU times with

integer constraints are higher than the CPU time without (as it has an extra

process of admitting less than or equal to a specified number of members). The

notable items are that all constants produced very similar CPU times with each

other, not escaping the range between 0.01 and 0.1 and that there appears to be

no logical correlation between CPU times and the desired number of members,

NUB or the value of R. However, the size of this particular problem is such that

the produced CPU times are not suitable for comparative analysis, which leads

us to the 5 x 3 half wheel truss.

Fig. 6.13 (5 x 3 half wheel) shows the tendency of CPU time increasing with the

increase in the value of the constant, R until R reaches108, (CPU time under 1

second), at which point all values of NUB produce the same layout for the final

structure.

This is because, when a ‘large value’1 is chosen for R, the numerical round-off to

one of the binary values, implies that Ai/R is treated as being effectively zero

1relative to the vale of Ai of members
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6.5 Parametric Studies

by the optimisation algorithm, regardless of the actual value of Ai. The distinct

exceptions to this tendency are the plots with the values of the constant R =

102 and 107. This irregularity in the tendency is caused by the different layout

of members for these particular values of R despite the same number of members

in the final structures. (Refer to the diagrams at top, Fig. 6.13)

Following this, are the results for 5 x 3 Michell cantilever truss as in Fig. 6.14,

which shows a similar tendency but without the mentioned exceptions as only

one layout is available for a given number of members in the final structure.

In summary, the CPU time increases with the increase in the value of reduc-

tion factor, R up to a problem-specific ‘threshold value’ of R, after which point

it ceases to produce any meaningful results as the mathematical solver breaks

down. Additionally, it must also be noted that the reduction of the number of

members in the final structure may not increase the total volume of the structure

after a certain point; the LP optimised configuration of 5 x 3 Michell cantilever

structure is comprised of 28 members with the total volume of 45.00 while the

MILP optimised configurations of the same ground structure, may be comprised

of from 6 to 10 members with the same volume of 45.00. Although it remains

to be further investigated whether the same holds for large-scale structures, the

MILP formulation may be used for simplifying effect without compromising the

total volume.

6.5.3 Effects of Desired Number of Members on CPU

time

Due to the size of the problem layout, all 3 x 3 grid problems were solved under

0.1 second, rendering any comparison of solution CPU times insignificant, regard-

ing the effects of NUB. The effects of NUB on CPU time are better illustrated in

the cases of 5 x 3 half wheel and 5 x 3 Michell cantilever structure.

Fig. 6.12 shows fluctuating CPU times for various values of NUB for a single

value of R = 1. However, there is an observable tendency; CPU time decreases
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6.5 Parametric Studies

with higher values of NUB, with intermittent values of NUB arriving at optimum

solutions below 2 seconds, at NUB = 14, 17-20 and 22 onwards.

Referring to Fig. 6.13, the peak values of CPU time are all at NUB = 3, with

the exception of constant R=5 and R=102, the peak values of which are at NUB

= 4 for both cases. The results can be summarised that in general, CPU time

decreases with the increase in NUB toward the number of members in the final

optimum structure using the LP formulation without the integer constraints.

A similar trend can be observed in the case of 5 x 3 Michell cantilever structure

although Fig. 6.14 shows a more disparate set of results with peak CPU times at

various values of NUB; two peak values at NUB=7, two peak values at NUB=6,

one at NUB=5 and one at NUB=4. Ignoring NUB=4 as marginal, the peak CPU

values are between NUB=5 and NUB=7.

The general trend observed in both cases, is that the CPU time peaks at a value

of, or in a small range of values of NUB, which appears to be dependent on the

problem.
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6.5 Parametric Studies

Figure 6.12: Effects of R and NUB on CPU time: 5 x 3 Half Wheel - R=1166
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6.6 Discussion and Conclusions

6.6 Discussion and Conclusions

It has been demonstrated that the MILP formulation is capable of achieving re-

duction of members, which may be desirable for improving the constructibility

of the generated optimum structures. Hence, the MILP formulation promises to

be a suitable method for reducing the said over-complexity with an appropriate

level of realism.

A crucial observation is made, regarding the values of R; Nfinal, the number of

members in the final optimum depends on R, as well as on NUB, i.e. different

values of R may generate different sets of combinations of members and, even if

the desired number of members is identical, the actual number of members in the

final structure, Nfinal may vary according to the value of R.

It is also observed that there is a specific and narrow range of values of NUB, to

which R corresponds, e.g. R = 1 for NUB between 10 and 16 and, R = 10 for

NUB between 3 and 5.

For example, in the case of 5 x 3 ‘half wheel’ structure, the MILP formulation

with R = 1, yields no result when the input value for NUB is below 9, and it only

yields results for NUB = 10 or above (even if the minimum required number of

members, topologically possible is clearly 3 (See Fig. 6.12). Similarly, when R

= 10, the formulation only yields meaningful results with NUB up to the value of 5.

This is because the value of R corresponds to the value of Amax; as the presented

MILP formulation is design to admit only those members with Ai > Amax. Thus,

the higher the value of R, the lower the Nfinal and the simpler the final structure.

Expectedly the introduction of an additional constraint to the original formula-

tion has increased the CPU time for solving the problems. It was also found that

the difference in CPU time between the optimisation procedure with the integer

constraint and the one without the constraint widens considerably as the number

of members in the initial ground structure becomes larger. Hence a much more
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6.6 Discussion and Conclusions

efficient formulation would be required in order to render MILP practical. Adap-

tation of Member Adding approach developed by Gilbert and Tyas [91], which

improves the efficiency of classic LP formulation may present an opportunity for

improvement in the efficiency of the MILP formulation. However, in its present

form it is unlikely to be compatible with MILP because the constraint, NUB is

too stringent to find a feasible solution in a reduced ground structure which is

used in Member Adding approach.

One simple strategy to alleviate the computational inefficiency would be to intro-

duce a load tolerance level. As discussed in Section 6.3.1, if the cross-sectional

area of a potential member is very close to zero but not zero, the binary constraint

may either assume that the value actually is zero (due to numerical round-off)

or have difficulty in forcing the variable to the (required) value of 1. Thus, if a

potential member with small cross-sectional area is filtered out at a predefined

‘load tolerance’ value, before the MILP formulation assigns it 0 or 1, then it would

reduce the number of members to be considered by MILP and consequently the

computation time would decrease.

Another strategy may be to introduce a minimum desired number of members,

NDesiredLB such that the number of members (or variables) is reduced to a smaller

set between the two values.

Another factor contributing to increase in the CPU time is the value of the con-

stant, R; it generally tends to increase with the increase in the value of the

constant, until the constant reaches the value which MATLAB considers as a

‘large number (approximately 108 with the particular solver and platform in con-

cern and above) .

The last notable finding is that, when NUB, the desired number of members is

increased beyond the number of members found in the true optimum without the

integer constraint, the CPU time decreases to a minimal level regardless of the

chosen value of R.
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6.6 Discussion and Conclusions

This leaves much work and further investigation e.g. (1) inclusion of the integer

formulation in conjunction with Member Adding Method or introduction of NLB

for increased efficiency, (2) further investigation regarding the ‘large number and

the exact workings of the formulation and, (3) ways of controlling the final output

structure. Furthermore, the use of MILP constraint can lead to a number of other

highly useful features and options to the potential users. For example, constraints

could be added that would allow the analysis to:

• Place a limit on total number of members in the structure

• Place a limit on total number of members at a given node

• Introduce a penalty based on small angles between members at a node

• Introduce a penalty based on total number of members at a node

• Introduce a penalty to reduce parallel overlapping members
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Preface to Chapter 7

In Chapter 6, it was found that the mixed integer linear programming (or MILP)

formulation can reduce the level of complexity in the optimum structure effec-

tively, by limiting the total number of members in the final structure and, the

behaviour of the formulation is now better understood.

However, the dramatic increase in the run-time of the additional MILP constraint

formulation, presents an enormous drawback and suggests further work, required

to improve the efficiency1.

Following the literature survey to form an overview of tensegrity research, two

issues were identified; one was that the problem of form-finding of tensegrity,

based on polyhedral geometry, had been rigorously researched while neither the

area of automatic generation of tensegrity topology or connectivity nor irregu-

lar tensegrity, had received equal attention and, the other was that among the

differing definitions of tensegrity, one description in particular warranted further

employment of a MILP formulation:

“A given configuration of a structure is in a stable equilibrium if, in the absence of

external forces, an arbitrarily small initial deformation returns to the given con-

figuration. A tensegrity structure is a stable system of axially loaded-members.

A stable structure is said to be a “Class 1 tensegrity structure if the members in

1Despite the need for improvement, it was decided that, in order to explore the fundamental

theme of the thesis, it would be more appropriate to investigate further, the same capability of

MILP in a smaller, ‘confined’ subtopic, instead of subsequent work of incremental improvement

in computational efficiency of the formulation
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tension form a continuous network, and the members in compression form a dis-

continuous set of members. A stable structure is said to be a “Class 2 tensegrity

structure if the members in tension form a continuous set of members, and there

are at most two members in compression connected to each node. [151]

This description of tensegrity classifies tensegrity structures into two distinct

classes according to only the maximum number of compression members at a

node i.e. Class 1 and Class 2 tensegrity systems. It was then conceivable that

the ability of a MILP constraint, to turn members ‘on’ or ‘off’, can be introduced

to the existing LP formulation in order to control the permitted number of com-

pression members at each node, similar to placing a limit on the total number of

members in Chapter 6.

As a topic, tensegrity is employed here as a representative example of form genera-

tion of unconventional structural configuration; the tensegrity structure began its

initial development in the domain of architects’ interest and architectural struc-

tures and, are a classic interdisciplinary synthesis of structure and architecture

with their essentially indivisible structural aesthetic effecting an architectonic

quality. Thus the study of tensegrity is pertinent to the overall investigation,

where an engineering tool can produce (or enhance) aesthetics of form, to an

architectural intention. The second chapter, Chapter 7 in Part III presents this

investigation.
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Chapter 7

Layout Optimisation of

Tensegrity Structures

7.1 Abstract

Tensegrity structures have intrigued and excited engineers for over half a cen-

tury. In order to identify new tensegrity forms researchers have applied various

methods, but perhaps surprisingly layout (or ‘topology’ ) optimisation techniques

appear not to have been employed. In this study a simple mixed integer lin-

ear programming (or MILP) layout optimisation formulation which can limit (to

one) the number of compressive elements terminating at joints in the structure

is described, thereby allowing Class 1 tensegrity type structures to be synthe-

sised. The formulation is first applied to two well-known 2D layout optimisation

benchmark problems, demonstrating its efficacy. It is however clear that the

volume of a tensegrity type structure identified using the method must always

be greater than (or equal to) that of an equivalent structure identified without

tensegrity constraints. It is also found that as the numerical discretisation is

refined the characteristic features of a tensegrity structure diminish, arguably

calling into question Buckminster Fuller’s assertion that tensegrity structures are

‘lightweight’ and inherently ‘optimal’.

Work is then extended by modifying an MILP-generated tensegrity type structure

to a true tensegrity structure, which is modelled both physically and computa-
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7.2 Introduction

tionally, in order to verify the veracity of the generated structure and to further

the understanding of its behaviour and structural response to external loading

with supports.

7.2 Introduction

A tensegrity is a prestressable structure which consists of only two types of struc-

tural members, tensile and compressive, pin-jointed in 2D (or ball-jointed in 3D)

at connecting nodes. In particular, a Class 1 tensegrity structure1 is one in which

no two compressive elements are adjacently connected i.e. compressive elements

are connected only to tensile elements [151].

Since its formal documented conception and coinage of the word in 1962 [141],

tensegrities have attracted attention not only from structural engineers but also

from artists and architects and from as far a field as medical research [221][222].

In structural engineering, previously researchers have carried out extensive anal-

yses of various classes of tensegrity structures, mostly on static properties of

tensegrity [223] [224] [145] [142] [151] [150] [225] but also on dynamic properties

[155] [151].

Many other researchers, however, focus their effort on form-finding methods of

tensegrity [226] [167] [168] [169], which aim to determine nodal geometries and

internal forces once the structure’s topology has been (typically) manually de-

fined. Whilst these methods successfully deal with determination of self-stress

states of tensegrity, they either rely on regular geometries of known polyhedra

or assume configured connectivities of compression and tension members prior to

form-finding of tensegrity. They therefore do not propose automatic generation

or ‘design’ of topologies of tensegric forms, which is essential in enabling a wider

1Researches in tensegrity are on-going and definitions of tensegrity structures vary from

researcher to researcher. A comprehensive review of definitions can be found in [145]
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participation of design in tensegrity.

Recently a geometry optimisation technique in the form of non-linear program-

ming, has been applied to optimise the stiffness of tensegrity structures [179]. The

significance of this work is that it provides a procedure for designing of optimal

tensegrity structures by beginning with pre-determined connectivity but allowing

struts to be reduced and nodes to be merged and, so to permit change in the

initial connectivity. However, the instance of this in [179] does not necessarily

support the effectiveness of this method (see Section 4.6.2 for detailed discussion).

More recently another approach, using evolutionary algorithm has been applied

to discover non-load-bearing irregular tensegrities [187]. However, with these

few exceptions, most research focuses on the problem of form-finding of tenseg-

rity based on restrictive, regular polyhedral geometry, while the area of automatic

generation of tensegrity topology or connectivity of irregular tensegrity has drawn

less attention.

Furthermore, in his recent paper, Ariel Hanaor, a renowned researcher in tenseg-

rity, prompted to challenge the notion of the perceived optimality of tensegrity as

an unsubstantiated belief [136]. Additionally, although not written as a compar-

ative analysis paper, recent work by Gómez-Jáuregui et al. regarding generation

of double-layer tensegrity grids [227], presents examples of tensegrity grid dome

(named ‘floating compression domes’), which are benchmarked against a geodesic

dome of conventional configuration. In this example, an inadvertent but useful

conclusion is drawn; “...the floating compression domes designed here resulted

heavier than the benchmark structure...”.

The main objective of this study is thus twofold: firstly to present the novel lay-

out optimisation method to automatically generate irregular 2D tensegrity type

structures and, secondly to investigate into the notion of optimality of the load-

carrying capacity of these structures.
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Thus, in this study a formulation capable of successfully identifying Class 1

tensegrity forms involving conventional loads and supports is developed, and the

efficiency of the structures identified is critically assessed through comparison

with structures identified using the standard linear programming layout optimi-

sation formulation.

7.3 MILP Formulation for Tensegrity Structures

7.3.1 Background

The classical ‘ground-structure’ truss layout optimisation formulation has tra-

ditionally been formulated as a size optimisation problem, which can then be

conveniently solved using linear programming (or LP) algorithms. However, in a

conventional size optimisation problem no distinction is made between truss bars

with positive area and those with zero area. (i.e. all bars in the original ground

structure will be present in the final optimal solution, though some - usually

the vast majority - will simply have a zero area). This formulation is therefore

unsuitable when constraints on the numbers of active bars (i.e. bars with a non-

zero area) in the final structure need to be imposed. However, constraints of this

type are inevitably required when identifying the form of tensegrity structures.

Class 1 tensegrity structures are defined as structures in which the endpoints of

compressive elements are only connected to tension members [189]. Thus, when

layout optimisation techniques are used to determine efficient tensegrity forms,

there is a requirement that the number of struts in compression terminating at

any given joint is limited to one.

In order to identify efficient tensegrity forms, here, a variant on the classical LP

truss layout optimisation formulation is adopted, in which simple binary variables

are added to represent the presence (or otherwise) of particular bars, and addi-

tional constraints are added to limit the number of struts at each node point. The

resulting mixed integer-linear programming (or MILP) problem can be solved us-
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7.3 MILP Formulation for Tensegrity Structures

ing a variety of mathematical programming techniques1.

The following formulations are divided into two parts; the existing linear pro-

gramming formulation and additional binary mixed integer formulation.

7.3.2 Plastic LP Layout Optimisation Formulation

The equilibrium LP plastic design formulation to solve for the minimum vol-

ume [91] for a ground structure subjected to a single load case and containing m

members and n nodes are stated as follows:

Minimise,

V = qTc (7.1)

subject to:

Bq = f (7.2)

q+

i , q-
i,≥ 0, i=1,...,m (7.3)

where V is the total volume of the structure, B is a suitable (2n×2m) equilibrium

matrix, qT = {q+

1 ,−q−1 , q+

2 ,−q−2 , ..., q+
m,−q−m},

cT = {l1/σ+

1 ,−l1/σ
−

1 , l2/σ
+

2 ,−l2/σ
−

2 , ..., lm/σ+
m,−lm/σ−m},

fT = {fx
1 , f y

1 , fx
2 , f y

2 , ..., fx
n , f y

n}; li, q
+

i , q−i , σ+

i , σ−i represent the length, tensile and

compressive member forces and stresses in the ith member, respectively. And

lastly fx
i , f y

i are the x and y direction live load components applied to node j.

7.3.3 Introduction of Binary Variables

The LP problem variables are the member forces, q+

i , q−i and the additional vari-

ables are ki, a binary variable (Eqn 7.4) for every member i, either in tension or

1This study employed Xpress, a commercial mathematical programming solver
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compression, which indicates whether a potential member in the ground struc-

ture, m is added in the solution [217] [218].

Ai

R
≥ ki , ki = 1or0 (7.4)

Ai is the area of member i and R is the reduction factor; a constant value chosen

arbitrarily to be greater than the area of the member with the greatest value of

qi, Amax
1. The above equation can be rewritten as:

1

R
· q ≥ kTσ (7.5)

where σT = {σ+

1 ,−σ−1 , σ+

2 ,−σ−2 , ..., σ+
m,−σ−m} and

kT = {k+

1 ,−k−1 , k+

2 ,−k−2 , ..., k+
m,−k−m}.

Eqn 7.6 describes the constraint, which restricts the number of members at node j

to a predefined maximum value of integer, Niatj. As this study is only concerned

with Class 1 tensegrity type structures, this value is set at 1. However, for a

possible future work, structures may require that this number be set at different

numbers e.g. Niatj 6 2 for Class 2 tensegrity structures.

N
iatj ,q−
∑

i=1

k−i ,Niatj ,q− 6 1 (7.6)

where Niatj is the total number of members at node j.

7.4 Michell Structure Problems

It is hypothesised that the tensegrity constraint in Eqn 7.6 in the formulation

would force the nodes to accommodate not more than one compressive member

1The value of Amax is empirically obtained from a standard operation of LP optimisation

(see Subsection 6.4.1).
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(and any number of tensile members), and thus ‘redirect’ any other adjacent com-

pressive members, by combinations of tensile and compressive members. How-

ever, this tensegric property would gradually diminish and the identified minimum

volume would converge to the LP solution (or true optimum), if nodal density

in the initial design domain is increased. This section presents the investigation

of this hypothesis, by employing two well known problems with exact analytical

solutions.

7.4.1 Central Point Load between Pin and Pin/Roller Sup-

ports

A well-known LP benchmark problem with a known exact analytical solution of

π1, given that F , the external point load, the distance between the applied load

and suports, L, material tensile strength, σT and compressive strength σC all

equal 1, a type first studied by Michell [70], is presented here. With one support

translationally fixed in x- and y- directions at lower left-hand corner and a roller,

fixed in y-direction but free to move in x-direction at lower right-hand corner, the

design domain in x-y ratio of 2:1 rectangle is set up, within which a unit-less point

load of 1, is applied vertically downward at the coordinates (1, 0). See Fig. 7.1.

A structure, optimised very close to the theoretical optimum is shown in Fig. 7.2;

this is the structure against which the generated tensegrity type structures are

compared.

These conditions remain constant as described, with the exception of the nodal

density, i.e. the number of nodes within the design domain.

The nodal density is described in terms of either target node number, which is

the number of initial connectivity nodes or scale factor, a value corresponding to

1The general exact analytical is min. V = FLπ
2 ( 1

σT
+ 1

σC
), after [70]. In this particular

case, F = 1, L = 1, and σC = σT = 1.
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7.4 Michell Structure Problems

Figure 7.1: Design domain with supports and a central load; L=1, Fy=-1

Figure 7.2: Optimised structure: close to Michell’s theoretical optimum ‘half-

wheel’ structure; final volume=3.14784, 0.2% heavier than the exact analytical

solution of π.
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the target node number. It must be noted that nodal density within the design

domain is not arranged on a uniform grid. Instead, the target node number (or

scale factor) determines the arrangement of the nodes in order to exploit the de-

sign domain fully whilst enabling the given standard PC’s computational power

to identify solutions1.

The results and corresponding figures are presented in Table 7.1. Note that red

denotes that a member is in compression, and blue, that a member is in tension.

In Table 7.1, it is immediately noticeable that the geometric constraints govern

the final topology of tensegrity type structures and hence its volume2. There is

also another noticeable and more significant trend in these figures; as the nodal

density within the same design domain increases, the nodal distance between the

compression members becomes smaller, with their topology increasingly resem-

bling the conventional LP solution. This trend becomes more apparent when the

tensegrity type structures in figures (a)-(d) in Table 7.1 are compared against the

LP optimised structures in figures (a)-(d) in Table 7.2, which are of the same lay-

out and parameters except the absence of additional constraints in Eqns 7.4-7.6

do not apply, i.e. The MILP tensegrity type structures increasingly resemble the

corresponding LP optimum solution and/or numerically converging closer to LP

volume.

In figures (a)-(d) in Table 7.2 the first observation previously made, concerning

the tensegrity structures in figures (a)-(d) in Table 7.1, is also present; the in-

crease in nodal density expectedly reduces the overall volume. What is more

significant is the volume difference ratio of tensegrity to LP structures. Refer-

ring, to Table 7.3, there is an observable trend of the ratio between the two types

of structure reducing with the increase of nodal density in the design domain,

implying possible convergence. This is more clearly illustrated in Fig. 7.3.

1The regular design space based on a uniform grid does not support this particular case.
2VLP denotes the volume of LP structure and, VTen, that of tensegrity type structure.
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Table 7.1: Optimised tensegrity structures using MILP formulation

Tensegrity

Structure

(a) (b) (c) (d)

Target

Node No.

6 12 22 46

Scale

Factor

0.1 0.6 1.2 2.44

VTen 10.00 5.556 4.644 3.796

Table 7.2: Optimised structures using normal LP formulation

Optimised

Structure

(a) (b) (c) (d)

Target

Node No.

6 12 22 46

Scale

Factor

0.1 0.6 1.2 2.44

VLP 4.000 3.333 3.286 3.229

This is because generation of these tensegrity type structures required an intro-

duction of an additional constraint, as a simple introduction of a new constraint

in LP usually results in reduced capacity of the classic optimum solutions though

it allows more parameter-control mechanisms [228].

183
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Table 7.4: Optimised tensegrity structures using MILP formulation for pin-pin

supports

Tensegrity

Structure

(a) (b) (c) (d)

Target

Node No.

6 12 22 46

Scale

Factor

0.1 0.6 1.2 2.44

VTen 8.00 4.222 3.680 3.196

Table 7.5: Optimised structures using normal LP formulation

Optimised

Structure

(a) (b) (c) (d)

Target

Node No.

6 12 22 46

Scale

Factor

0.1 0.6 1.2 2.44

VLP 4.000 2.889 2.880 2.794

7.5 Effects of material properties: tensile and

compressive strengths

This section explores the effects of tensile strength, σ+ and compressive strength,

σ− (or more precisely the different ratios between σ+ and σ−) on the generated

MILP and LP optimisation solutions, in an effort to investigate whether a higher

values of tensile strength would render MILP tensegrity structure more optimal,

in line with the commonly assumed light weight of tensegrity.
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The results and comparative analyses between LP and MILP structures from

the previous section have strongly suggested that tensegrity-type structures, gen-

erated using MILP formulation are heavier and thus only converge toward the

known analytical optimal LP solutions as the nodal density becomes higher and

they cannot be more optimal than conventional LP optimised structures. How-

ever, due to the ‘potential of optimality’ from use of more tension members,

(nominal and design strengths of which are more favourable in structural steel

than those of compression members), a doubt may remain and thus render the

conclusion of non-optimality of MILP tensegrity, premature, with presented re-

sults so far optimised with the σ+:σ− ratio of 1:1 for simplicity. Presented in

this section are, hence, comparisons between MILP and LP structures in their

volumes with varied σ+:σ− ratios.

Table 7.7: LP structures with varying σ+:σ− ratios. (σ−, fixed at 1)

(a) (b) (c) (d)

σ+:σ−

ratio

1:1 2:1 5:1 10:1

VLP 872.5 630.9 484.7 436

Referring to Table 7.7 - in this series of figures, there are two noticeable effects

of different σ+:σ− ratios on the optimised structures; firstly, the expectedly de-

creasing volumes of the final structures with the increasing strength of σ+, and

secondly (and more significantly), the final configurations or layouts. This sec-

ond effect on the final configuration is also observable in the MILP structures in

Table 7.8 albeit to a lesser extent.

It is shown in Table 7.7, whilst the structure (a) has the equal number of compres-

sion and tension members as expected (7 each) and the volumes of compression
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Table 7.8: MILP tensegrity type structures with varying σ+:σ− ratios. (σ−, fixed

at 1)

(a) (b) (c) (d)

σ+:σ−

ratio

1:1 2:1 5:1 10:1

VTen 1128 820.6 636.5 575.1

and tension members when σ+:σ− ratio is 1:1, when σ+ is incremented to 2, there

is a noticeable change at the bottom of the structure (b), where the algorithm has

attempted to utilise fewer and shorter compression members and more tension

members (which is also reflected in the tensegrity structures between (b) and (c)

in Table 7.8 but to a lesser and less clear extent). However, there is no change

in topological configuration of members in the final solution between (b) and (c)

in Table 7.7 with only the volume change (similarly in Table 7.8, there is no

topological change between (c) and (d)).

This can be explained by the ‘ratio threshold’ value, above which the final layout

would not be affected, firstly due to a low initial nodal density, and secondly and

more importantly, because as the σ+ value becomes much higher than σ−, tension

members are no longer required to extend further for optimality by changing

the layout and thirdly due to the initial design domain, loading and support

conditions, which would require a minimum number of compression members

to transfer the load from the point of load application to the supports. Hence,

it follows that, assigning higher values of σ+ than σ−, will not result in MILP

tensegrity being more optimal than a corresponding LP structure, as shown in

this case.
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7.6 Tensegrity Columns

The symmetrically loaded tensegrity type structures presented in this section,

are without supports and in a stressed condition with the axial loads holding the

structure together. These examples also suggest the development to be followed;

introduction of self-stressable member-node connectivity.

This section has two motives; one is to further investigate an example tenseg-

rity structure and its structural behaviour, and the other is to investigate the

veracity of the (apparently generally accepted) claims for tensegrity’s inherent

efficiency regarding its load-bearing capacity, and enable discussion of such as-

pects of tensegrity. As before, red denotes a member is in compression and blue

denotes a member is in tension.

7.6.1 Tensegrity ‘Stayed Column’

Table 7.9 shows: (a) the design domain, (b) the tensegrity type structure and,

(c) the corresponding LP structure, optimised using the same design domain and

under the same loads as (b) but without the MILP constraint.

Since the structure is loaded along one vertical axis with top and bottom loads

of 50 (each), a simple one element structure is obtained when using LP optimi-

sation, with volume, VLP of 50. In comparison, the volume of the tensegrity type

structure, VTen is 700, 14 times the volume of VLP .

The final solution for the design domain and load condition as shown in Ta-

ble 7.9(a) and (b). Note that this is a ‘para-tensegrity’ structure, which maintains

its stability under a very specific loading condition and is neither stable with the

load removed nor laterally stable should any joint deflect, not to mention if a

lateral load is applied. Hence, for the purpose of this investigation, new mem-

bers are introduced to the existing para-tensegrity, to triangulate the structure

so as to prevent the structure from behaving as a mechanism under certain load

conditions, e.g. horizontal point loads. Note that stability was not expressly
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7.6 Tensegrity Columns

Table 7.9: 2D tensegrity structures without supports: axial load along single axis

Design domain Tensegrity LP

(a) (b)
(c)

Data

Target Node No.=21 VTen VLP

Scale Factor=0.001 700 50

Load=50 (each)
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included as a constraint in the initial problem formulation for the purpose of this

investigation, i.e. comparative analyses, not practical, detailed design of ether

tensegrity nor conventional structures; hence the emergence of an unstable solu-

tion is neither fundamental nor an unexpected outcome as stability requirements

by the method of adding ‘perturbing forces’ at the nodes [130], can remedy this

but such requirements were excluded to maintain simplicity and low computa-

tional cost.

Fig. 7.7(a) shows the original, existing structure and new members to be added;

Fig. 7.7(b)) shows the new structure with each joint attached to at least three

members, one of which is a compression member.

7.6.2 Investigation of Structure and Internal Loads

Two efforts were made in order to verify the structural veracity of this modified

structure: construction of a physical model, and a structural analysis, using the

commercially available structural analysis software, SACS 1.

Firstly, a physical model of the same structure has been constructed as shown

in Fig. 7.8. This physical model is identical in its connectivity, and works, in

its topological essence, in the same principle as the structures shown in Fig. 7.7,

with the same node-to-member connectivity (see Chapter 8 for further discussion

of details of the model with regard to its topology and form-finding).

Secondly, once the physical integrity of the true tensegrity structure, had been

verified, the structure was analysed, using SACS under the same joint and load

condition. The internal forces resulting from this analysis are displayed in Fig. 7.9

and the internal forces data resulting from the optimisation run for the original

1SACS by Bentley Systems is an “integrated finite element structural analysis suite of pro-

grammes for the design of offshore structures”. SACS is the industry standard in offshore

engineering as almost all of the world’s energy companies specify SACS software for use by

their engineering firms across the lifecycle of offshore platforms [229]
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(a)

Figure 7.8: A physical model of 2D tensegrity structure, based on MILP auto-

matically generated structures in Fig. 8.1
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para-tensegrity, are presented in Table E.3. Take note of the fact that they are

identical and that the new members in the true tensegrity structure, which were

later added to the original para-tensegrity structure, are unloaded under this spe-

cific load condition.

(a) (b)

Figure 7.9: Internal member forces, based on SACS analysis; (a) compressive

forces; (b) tensile forces

The values in Table E.3 clarifies how the internal loads are distributed within this

structure; the equal and opposite external loads are applied vertically at Nodes A

and J , putting Members AD and GJ in compression. At Nodes D and G, how-

ever, the constraints of tensegrity criteria and domain, force another load path,

in order to circumvent any direct route between Nodes D and G. This was done

by creating tensile members BD, DC,BC, CF and EF (and IG, HG, HI, and

EH), which creates alternative load paths with vertical and horizontal internal

forces.
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• Young’s Modulus, E = 205000N/mm2

• Yield Stress, Fy = 355N/mm2

• Shear Modulus, G = 80000N/mm2

• Density, ρ = 7.850×10−6kg/mm3 (but self-weight is ignored for force anal-

ysis)

Given these properties, Fig. 7.11 shows the expected internal force of -50kN and

more interestingly, the utilisation ratio1, Uc of 0.40 according to Eurocode 3 (EC3,

hereafter). The maximum allowable axial load according to EC3 is 25.20N/mm2

with the actual value being 10.00N/mm2. As the member is not slender, the

failure mode is unlikely to be by buckling; the Uc is 0.31 with the max allowable

Euler buckling strength at 32.19N/mm22, i.e. higher than the maximum design

axial load capacity. Based on this maximum axial load capacity and the member

cross-section area, the maximum compressive load capacity of this bar, is 125kN

(or 0.637kN per kg of weight)

Given the same properties and load conditions, Table 7.11 shows the tensegrity

structure with its individual member utilisation ratios. The highest utilisation ra-

tio, hence the most critical case, belongs to Member HC, for which the maximum

allowable axial stress is 66.41N/mm2, and the maximum allowable buckling stress

is 84.62N/mm2. Based on this maximum axial load capacity and the member

cross-section area, the maximum compressive load capacity of this critical mem-

ber, and hence the whole tensegrity column, is 347.9kN (or 0.127kN per kg of

weight, excluding unloaded members). This is much higher than that of the con-

ventional bar, by a factor of 2.78, as a whole. However, the maximum compressive

1A ratio of 0 denotes no utilisation of the member’s structural capacity and the ratio of 1

denotes full utilisation of the structural capacity, where the most critical criterion is presented,

e.g. as it is often the case, if the most critical criterion is a combination of axial loading and

bending, then the Uc will reflect this as a single value. In the above example, it is a single axial

load case which will cause a possible failure
2This is calculated, using; FEuler = π2EI

(KL)2 ; Leffective = L0 for simply supported columns;

Ixx = Iyy = πd4

64 = πr4

4 for solid circular sections.
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(a) (b)

Figure 7.11: One-bar ‘structure’: internal member force and utilisation ratio, Uc

based on SACS analysis
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load capacity per kg of weight is much lower than that of the one-bar structure;

0.127kN compared to 0.637kN/kg, which gives the ratio of 0.199.

The second noteworthy result is that the Uc for all other compressive members is

very low, in comparison to that of the conventional one-bar ‘structure’.

The third noteworthy result is that the Uc for tensile members is particularly low;

this is due to the fact that the ultimate tensile strength of steel is higher than

the compressive yield strength, according to EC3 (and other design codes).

Unsurprisingly, the utilisation ratios for constituent members in the tensegrity

column are low because the ‘tensegrity column’ is composed of a multitude of

shorter compressive members; the design compression resistance is dependent on

the partial safety factor, which is dependent on the length/cross-section ratio of

the member.

In conclusion, it is an interesting finding that, when given realistic steel properties

and design criteria, the modified tensegrity structure performs better than the

one-bar ‘structure’. However, it is very clear the maximum compressive capacity

of the tensegrity structure per weight is much lower by a factor of 5.03, which rein-

forces the original hypothesis that tensegrity is inherently a non-optimal structure

as it contains structural redundancies.
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Table 7.11: Tensegrity structure: internal member force utilisation ratios, Uc

based on SACS analysis

Member q max. σaxial max. σEuler Uc,Axial Uc,Euler

(kN) (N/mm2) (N/mm2)

(a)

AD -50.000 156.20 201.22 0.05 0.06

BD 27.9508 308.70 N/A 0.03 N/A

BC 4.16667 308.70 N/A 0.03 N/A

CD See BD

EF 16.6667 308.70 N/A 0.03 N/A

BF -30.0463 116.52 148.89 0.09 0.07

HC -52.7046 66.41 84.615 0.15 0.12

HG See CD

IG See BD

JG See AD

HI See BC

EI See BF

CF 25.000 308.70 N/A 0.03 N/A

EH See CF
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7.6.4 Tensegrity ‘XIX’ Column

The tensegrity type structure generated in this section is named for ease of ref-

erence Tensegrity ‘XIX’ Column, which owes it name to the layout of the com-

pression members.

Table 7.12: ‘XIX’ Tensegrity Column:2D tensegrity structure with axial load

along two parallel axes

Design domain Tensegrity LP

(a) (b) (c)

Data

Target Node No.=21 VTen VLP

Scale Factor=0.001 1148 490

Load=50 (each)

Internal forces and member sizes from optimisation runs are shown in Table 7.13

for Tensegrity ‘XIX’ Column and in Table 7.14 for the corresponding LP structure.

As with the design of true tensegrity structure, additional members have been
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Table 7.13: MILP ‘XIX’ Para-tensegrity column: internal loads

Member q qx qy radius vol.

(a)

AB 33.3333 33.3333 0.00 3.25735 33.3333

AE -60.0925 -33.3333 -50.00 4.37356 108.333

BE 33.3333 0.00 33.3333 3.25735 50.00

BF -89.7527 -33.3333 -83.3333 5.34502 241.667

CD 27.4055 18.3333 20.3704 2.95355 18.4352

CE 24.7768 18.3333 16.6667 2.80833 18.4167

CH -37.037 0.00 -37.037 3.43355 74.0741

DE 15.00 15.00 0.00 2.1851 15.00

DF 103.704 0.00 103.704 5.74543 103.704

DJ See BF

FG See DE

FH See DC

GI See AE

GJ See BE

HG See CE

IJ See AB
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Table 7.14: LP ‘XIX’ Column: internal loads

Member q qx qy radius vol.

(a)

2032o

AB 22.50 22.50 0.00 2.67619 22.5

AC -54.8293 -22.5 0 -50.00 4.17764 60.125

BC -39.5055 -19.0385 -34.6154 3.54613 45.0865

BD -15.7692 -3.46154 -15.3846 2.24042 32.3269

CD -34.788 -3.46154 -34.6154 3.32767 34.9615

CE -50.00 0.00 -50.00 3.98942 100.00

DG See BD

ED See CD

EF See AC

EG See BC

FG See AB

introduced to the original MILP tensegrity type structure, rendering it prestress-

able. See Fig. 7.12 for the final layout and dimensions.

This section contains the same vertical force analysis as in the previous section to

reinforce further the results presented in the previous section. All material prop-

erties remain the same as in Section 7.6.3. However, it is emphasised here that

circular hollow sections (or CHS) are used for compression members to introduce

further realism.

Vertical Load: ‘XIX’ Tensegrity and LP columns

In order to understand the tensegrity column, and its behaviours with a partic-

ular emphasis on buckling, compared to those of the conventional LP structure,

CHSs are employed for compression members as are realistic steel properties

(and dimensional units) whilst maintaining the cross-sectional areas of the origi-

nal members from optimisation. These are found in Table 7.16 for the tensegrity
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C D

E

J

F G

H I

K L

Figure 7.12: Tensegrity ‘XIX’ column with additional members

2032o

Figure 7.13: LP structure corresponding to Tensegrity ‘XIX’ Column
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structure and in Table 7.15 for the corresponding LP structure. Horizontal and

vertical pinned supports are located at the bottom two nodes in both the ‘XIX’

Column and the corresponding LP structure; in Nodes I and J for ‘XIX’ Column

and in Nodes F and G for the corresponding LP structure. Two external loads

of equal magnitude are applied in the negative y-direction (vertically), to Nodes

A and B in both ‘XIX’ Column and in the corresponding LP structure. These

loads are incremented until the most critical member in the structures reaches its

full load bearing capacity.

Table 7.15: LP Structure (corresponding to ‘XIX’): CHS sizes

Member Original Area cm2 Diameter cm Thickness cm Actual Area cm2

AB 33.33

AD 33.33

AE -60.09 16.83 1.25 61.18

BE See AD

BF -89.75 19.37 1.60 89.33

CD 27.41

CE 24.78

CH -37.04 13.97 1.00 40.75

DE 15.00

DF 103.70

DJ See BF

EG See DF

FG See DE

FH See DC

FI See BE

GI See AE

GJ See BE

HG See CE

IJ See AB

In Fig. 7.14, the most critical member is BD; its maximum allowable axial load

(i.e. Uc=1.00) according to EC3 is 200.25N/mm2 with the actual value being
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199.93N/mm2. As the member is not slender, the failure mode is unlikely to be

by buckling; the Uc is 0.71 with the max allowable Euler buckling strength at

282.95N/mm2, i.e. higher than the maximum design axial load capacity. Based

on this maximum axial load capacity and the member cross-section area, the

maximum compressive load capacity of this member, is 2170kN for a self-weight

of 402kg (or 5.40kN per kg of weight)

(a) (b)

Figure 7.14: LP structure (corresponding to ‘XIX’): internal member forces and

utilisation ratios, Uc

Given the same properties and load conditions, Fig. 7.15, shows the tensegrity

structure with its individual member utilisation ratios and internal forces. The

highest utilisation ratio, and hence the most critical case, belongs to Member

BF , for which the maximum allowable axial stress is 281.06N/mm2, and the

maximum allowable buckling stress is 1110.48N/mm2. Based on this maximum

axial load capacity and the member cross-section area, the maximum compressive

load capacity of this critical member, and hence the whole tensegrity column, is
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Table 7.16: MILP ‘XIX’ column: CHS sizes

Member Original Area cm
2 Diameter cm Thickness cm Actual Area cm

2

AB 22.50 (cable)

AC 54.8293 16.83 1.20 58.92

BC 39.5055 13.97 1.00 40.75

BD 15.7692 7.61 0.80 17.12

CD 34.788 11.43 1.2 0 38.57

CE 50.00 17.78 1.00 52.71

DG See BD

ED See CD

EF See AC

EG See BC

FG See AB

2770kN with a self-weight of 1051kg (or 2.63kN per kg of weight). This is higher

than that of the conventional LP structure, by a factor of 1.28, as a whole. How-

ever, the maximum compressive load capacity per kg of weight is lower than that

of the one-bar structure; 2.63kN/kg compared to 5.40kN/kg, which gives the

ratio of 0.49.

Unsurprisingly, that the utilisation ratios for constituent members in tensegrity

column is low, is because the ‘tensegrity column’ is composed of a multitude of

shorter compressive members; the design compression resistance is dependent on

the partial safety factor, which is dependent on the length/cross-section ratio of

the member.

In conclusion, this serves as further evidence that, even when given realistic steel

properties and design criteria, the modified, tensegrity structure performs bet-

ter than the corresponding LP structure, purely considering the load resistance.

However, it is clear that the maximum compressive capacity of the tensegrity

structure per given weight is lower by a factor of 0.49, which reinforces the original

hypothesis that tensegrity is inherently a non-optimal structure and it contains
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(a) (b)

Figure 7.15: LP structure: internal member forces and utilisation ratios, Uc

structural redundancies as in the previous section.
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7.6.5 Tensegrity ‘XIIX’ Column

The same vertical force analysis as in the previous section is repeated here. In

addition a horizontal analysis is provided.

Table 7.17: 2D tensegrity structures without supports: horizontal and vertical

axial loads

Design domain Tensegrity LP

(a) (b) (c)

Data

Target Node No.=21 VTen VLP

Scale Factor=0.001 1350 600

Load=50 (each)

210



7.6 Tensegrity Columns

Table 7.18: MILP ‘XIIX’ Para-tensegrity Column: internal loads

Member q qx qy radius vol.

(a)

AC 25.00 0.00 25.00 2.82095 12.50

AH -90.1388 -50.00 -75.00 5.3565 162.50

BD 25.00 0.00 25.00 2.82095 12.5

BG -90.1388 -50.00 -75.00 5.3565 162.5

CD -12.5 -12.5 0 0.00 1.99471 12.5

CE 27.9508 12.50 25.00 2.98279 15.625

DF See CE

EF 25.00 25.00 0.00 2.82095 12.50

EG 69.8771 31.25 62.50 4.7162 39.0625

EH 22.5347 18.75 12.50 2.67825 20.3125

EK -50.00 0.00 -50.00 3.98942 150.00

FG See EH

FH 69.8771 31.25 62.50 4.7162 39.0625

IK See EG

IL See FG

IP See AH

JK See FG

JO See AH

JL See EG

KL See EF

KM See CE

LN See CE

MN See CD

MO See AC

NP See AC

OP See AB
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Table 7.19: LP ‘XIIX’ Column: internal loads

Member q qx qy radius vol.

(a)

AB -33.4384 -33.4384 0.00 3.26248 33.4384

AC -43.1655 -10.4692 -41.8767 3.70675 44.494

AD -10.1541 -6.09245 -8.12327 1.79782 12.6926

CD -0.707044 -0.707044 0.00 0.474404 0.35352

CE -27.9819 0.00 -27.9819 2.98444 83.9456

CF -22.3218 -3.66969 -22.0181 2.66557 67.8892

DE See CF

DF See CE

EF See CD

EG See AC

EH See AD

FG See AD

FH See AC

GH See AB
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Figure 7.16: Tensegrity ‘XIIX’ column with additional members

Figure 7.17: LP Structure corresponding to Tensegrity ‘XIIX’ column
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Vertical Load: ‘XIIX’ Column and LP structure

In order to understand the tensegrity ‘column’ structure, its behaviours with a

particular emphasis on buckling, are compared to those of the conventional LP

structure, utilising commercially available CHSs for compression members and

realistic steel properties (and dimensional units) whilst maintaining the section

area of the original sections from optimisation. These are found inTable E.5 for

the tensegrity structure and in Table E.4 for the corresponding LP structure.

Horizontal and vertical pinned supports are located at the bottom two nodes in

both ‘XIIX’ Column and the corresponding LP structure; in Nodes O and P for

‘XIIX’ Column and in Nodes G and H for the corresponding LP structure. Two

external loads of equal magnitude are applied in negative y-direction (vertically),

to Nodes A and B in both ‘XIIX’ Column and the corresponding LP structure.

These loads are incremented until the most critical member in the structures,

reaches its full load carrying capacity. For concision, a summary of results for

comparison between tensegrity and corresponding LP structures is provided in

Table E.6. For full description of results, see Appendix E.

Horizontal Load: ‘XIIX’ and LP Columns

Maintaining the CHS of the member cross-sections and realistic steel proper-

ties, this time, initially a small horizontal load is applied to Node B in negative

x-direction in both ‘XIIX’ tensegrity structure and the corresponding LP struc-

ture. This load is incrementally increased until the Uc in the most critical member

reaches 1.00 (or 0.99). For concision, a summary of results for comparison be-

tween tensegrity and corresponding LP structures is provided in Table E.6. For

full description of results, see Appendix E.

Table E.6 is the summary of maximum resisted load per weight comparisons

between tensegrity and LP structures in the above analyses.
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Table 7.20: LP ‘XIIX’ structure: CHS sizes

Member Original Area Diameter (cm) Thickness (cm) Actual Area (cm2)

AB 33.44 13.97 0.80 33.10

AC 43.17 13.97 1.20 48.14

AD 10.15 7.61 0.50 11.17

CD 0.71 2.13 0.20 1.21

CE 27.98 10.16 1.00 28.78

CF 22.32 10.16 0.80 23.52

DE See CF

DF See CE

EF See CD

EG See AC

EH See AD

FG See AD

FH See AC

GH See AB

(a) (b)

Figure 7.18: LP structure: internal member forces and utilisation ratios, Uc
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Table 7.21: MILP ‘XIIX’ column: CHS sizes

Member Original Area Diameter (cm) Thickness (cm) Actual Area (cm2)

AB 33.44 6.525 3.260 33.44

AC 25.00 5.642 2.820 24.99

AH 90.14 24.45 1.25 91.11

BD 25.00 5.642 2.820 24.99

BG 90.14 24.45 1.25 91.11

CD 12.50 7.61 0.60 13.21

CE 27.95

DF See CE

EF 25.00 5.642 2.820 24.99

EG 69.88

EH 22.53

EK 50.00 17.78 1.00 52.71

FG See EH

FH 69.877

GJ See AC

HI See AC

IK See EG

IL See FG

IP See AH

JK See FG

JO See AH

JL See EG

KL See EF

KM See CE

LN See CE

MN See CD

MO See AC

NP See AC

OP See AB
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(a) (b)

Figure 7.19: MILP-derived ‘XIIX’ tensegrity structure: internal member forces

and utilisation ratios, Uc
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(a) (b)

Figure 7.20: LP structure: internal member forces and utilisation ratios, Uc

Table 7.22: Summary of maximum resisted load per weight comparisons between

tensegrity and LP structures

Tensegrity Max.

Force

(kN)

Weight

(kg)

(kN/kg) Corresponding

LP

Max.

Force

(kN)

Weight

(kg)

(kN/kg)

Stayed

Column

347.9 2739 0.127 LP 125 196 0.637

‘XIX’

Column

2770 1051 2.63 LP 2170 402 5.40

‘XIIX’

Column

(vertical)

2840 1298 2.19 LP (vertical) 1480 490 3.02

‘XIIX’

Column

(horizon-

tal)

67 1298 0.052 LP(horizontal) 103 490 0.210
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7.6 Tensegrity Columns

(a) (b)

Figure 7.21: MILP structure: internal member forces and utilisation ratios, Uc
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7.7 Other Tensegrity-type Structures

7.7 Other Tensegrity-type Structures

This section has one motive; to further demonstrate the capability of the MILP

formulation by generating other 2D tensegrity type structures, i.e without sup-

ports (c.f. Michell structures with supports in Table 7.1). Two further example

structures are presented here.

Table 7.23: 2D tensegrity structures without supports: axial load along two

orthogonal axes

Design domain Tensegrity LP

(a) (b)
(c)

Data

Target Node No.= 38 VTen VLP

Scale Factor= 0.5207 1027 300

Load=50 (each)

First, Table 7.23 shows, a set of structures; (a) the design domain, (b) tensegrity

type structure and, (c) an LP structure, optimised without the MILP constraint.

Because of the shape of the design domain, and the fact that the structure is

symmetrically loaded about both vertical and horizontal axes with the loads of

50 (each), the resulting tensegrity type form is reminiscent of a related, reticulate

system known as ‘reciprocal frames’ 1. Note that the volume ratio between VTen

1The term ‘reciprocal frame’ was coined by Graham Brown who applied for a patent regard-

ing this system. It describes a 3D grillage structure constructed of a closed circuit of mutually
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7.7 Other Tensegrity-type Structures

and VLP is 1027:300 or 1:3.423.

Another interesting example of a para-tensegrity structure and a correspond-

ing LP structure, which were generated with a diagonal load being exerted at a

node, are presented in Table 7.24. A notable observation is made regarding the

deployability of both the para-tensegrity and LP structures (one of the widely ac-

cepted advantages of tensegrity structures is their guaranteed deployability due

to their reliance on tension members for overall rigidity). Whilst this reliance is a

contributing factor to tensegrity’s degree of deployability, the corresponding LP

structure highlights that it is in fact, regularisation into unit members (in this

case aided by design domain), which effects deployability.

supporting beams [230], where “each beam in the grillage is placed tangentially around a central

closed curve so that it rests upon the preceding beam and this procedure is continued until the

ring is complete. An enclosed polygon is, formed with a set of radiating beams equal in number

to the sides of the polygon. The outer end of each beam rests on a perimeter support, such as

column or wall, and the inner end rests on the following adjacent beam whilst in turn supporting

the inner end of the preceding beam.” [231]
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7.7 Other Tensegrity-type Structures

Table 7.24: 2D Tensegrity Tower

Design domain Tensegrity LP

(a) (b) (c)

Data

Target Node No.=21 VTen VLP

Scale Factor=0.001 8.928 × 104 2.306 × 104

Load=100 (each)
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7.8 Discussion

7.8 Discussion

A simple additional formulation on the existing full ground-structure LP formu-

lations, has been devised, in order to generate tensegrity type structures. As

illustrated, what would normally be a simple node at which two or more struts

coincide are forced to accommodate only one straight strut, creating an indirect

path between the two adjacent ends of two struts meeting at a node. In this

sense tensegrity can be described as indirect-path-creating method of transfer-

ring a force from one end to another, implying its structural inefficiency insofar

as its capacity to withstand external loads is concerned.

With regard to the generated forms, it must be stated that whilst fulfilling the

main conditions of tensegrity, they do not meet the strictest definition of tenseg-

rity as they have supports and are not self-stressable; thus these may be classified

as ‘tensegrity type’ or ‘para-tensegrity’ structures. However, these serve two pur-

poses: firstly, they provide a novel method of configuring connectivity, either

regular or irregular, an major initial step in identifying/designing of tensegrity,

enabling less restricted and irregular tensegrity topologies and secondly, they pro-

vide sufficient evidence to raise questions on the optimality of tensegrity.

As the results show, there is strong evidence that a para-tensegrity structure un-

der a given load is, regardless of topology heavier than the structures identified

using LP . It is a notable fact that, since the tensegrity formulation requires

definition of an additional constraint in conjunction with LP constraints, it will

never be more optimal in terms of weight, for a given applied load.

In order to ensure the relevance of this initial finding of the inefficiency of para-

tensegrity structures, the investigation was extended to true tensegrity structures,

using modified MILP-generated para-tensegrity structures. Both vertical and hor-

izontal forces were applied, respectively to the structures, and the correspond-

ing results further reinforced that tensegrity structures at least in the presented

studies, are inefficient, compared to conventional LP structures, in terms of load
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7.9 Conclusions

carrying capacity.

One very important topic, which deserves further discussion in relation to the

presented results, is that of Euler buckling. In the analyses of tensegrity struc-

tures with CHSs, i.e. ‘XIX’ Tensegrity Column and ‘XIIX’ Tensegrity Column

(and the respective, corresponding LP structures), it has become apparent that

the maximum allowable axial stress was reached, where the most critical mem-

bers were compressively loaded, before the maximum permissible buckling stress

could be reached1.

This is in line with the finding of Tyas [3], who noticed that commercially avail-

able CHSs, behave in a very linear manner, in that unless compressive CHS

members are very lightly loaded there is an almost linear correlation between the

cross-sectional area of a CHS member and its capacity to resist axial loads and

that such nonlinear problems as buckling need not be considered (see Fig. 7.22).

7.9 Conclusions

1. Simple MILP formulations were devised to generate 2D tensegrity type

structures, in both regular and irregular patterns, away from polyhedral

templates.

2. Generating a tensegrity type structure requires the addition of a constraint

to the existing LP formulation, which means a tensegrity structure cannot

ever be lighter than an LP structure.

3. As the number of nodes is increased, the LP and tensegrity solutions tend

to converges to LP solutions with the increase in nodal refinement.

1Euler buckling is a phenomenon in which “a compressively loaded member fails by lateral

instability at some load below the plastic crush capacity of the cross-section”[3].
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7.9 Conclusions

Figure 7.22: Cross-sectional area vs Compressive capacity, for CHS sections avail-

able in UK; (a)1m, (b)5m, (c)10m. Source:[3]
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7.9 Conclusions

4. The example tensegrity structures, have been analysed extensively, regard-

ing their load carrying capacity and structural response to different load

conditions, to further reinforce that tensegrity structures may be struc-

turally inefficient, compared to conventional LP optimum structures in

terms of the load which they are capable of resisting per given weight,

given realistic design properties of both solid and tubular steel sections.

5. The evidence presented in this chapter is an appropriate start to under-

standing load-carrying capacity and structural efficiency of tensegrity (or

‘strutendon’) in comparison to those of conventional LP structures, indicat-

ing that further investigation of Fuller’s suggestion with regard to optimality

of tensegrity, is warranted.
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Postscript

This part explored the two different but related capabilities of MILP in the con-

text of use of computation-based form-generation methods in architecture de-

sign. The first chapter explored its capability to control the level of complexity

of structures optimised by LP formulation for potential usage in conceptual form

generation. More significantly, in the second chapter, tensegrity and tensegrity

type structures, demonstration of generation of form of unconventional structural

configuration, have been explored using a novel MILP formulation and it has also

proven effective in generating tensegrity type structures dissociated from polyhe-

dral geometry.

In discussion of the latter, it was found that tensegrity type structures are at

least structurally less than optimal in comparison to the conventional LP struc-

tures, as the crucial requirement for separation between compressive and ten-

sile members, necessitate extra lengths (or weight) of both types of members.

Maintaining this logic stance, it was hypothesised that tensegrity structures with

self-stress could also be less than optimal. This study has in effect proven its

non-optimality with its comparative analyses of tensegrity type and conventional

LP-structures as well as extensive tensegrity column analysis. Thus, this also

offers a criticism of architectural designers who accept Fuller’s assertion that

tensegrity structures are ‘lightweight’ or optimal. The merit in application of

tensegrity to foldable/deployable structures, hence, may not be due to tenseg-

rity’s lightweight but in its prestress state in relation to foldability. However,

further work is required to consolidate proof of this non-optimality.

This analysis of tensegrity structures and development of a synthesis tool which

can quickly and accurately generate valid tensegrity-type forms is an example of

an integrative method of form design and a contribution toward integration of

structural efficiency with architectural merit, which are mutually supportive of

each other.
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Part IV

Discussion, Contributions,
Conclusions and

Recommendations for Future
Work
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Preface to Part IV

The overall aim of this thesis was to investigate the feasibility of applying an ex-

isting engineering optimisation (design) tool during the initial conceptual design

stage, utilising it as an architectural form-finding tool.

In Part II, the approach adopted was to use conceptual design studies as a vehi-

cle to investigate the applicability of a layout optimisation design tool, applying

this to different types of construction. In Part III, the same design tool was aug-

mented with MILP constraints to provide greater user-control, which, following

testing, was further extended to permit tensegrity form generation.

This Part is designed to bring together the two strands of work described in

the thesis, and to consider their relevance in the context of the original aim.

The Part comprises two chapters; the first, Chapter 8 reviews the scope and

context of the investigations undertaken, and critically appraises the implications

of the findings whilst also discussing limitations of the investigations. The second

chapter then summarises the findings and contributions and finally concludes with

recommendation for future work.
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Chapter 8

Discussion of Research Findings

Numerous design examples were used to assess the feasibility of adopting layout

optimisation as a tool for early stage conceptual form-generation. These exam-

ples presented in Part II revealed various limitations of the numerical technique,

one of which was addressed in Part III

An essentially ‘one-step’ process of ‘set up and click-solve’ form-generation, with

no intermediate designer-computer interaction, presented a major challenge for

this particular approach to form-generation.

Three modes of usage were identified: ‘Full Automatic’, ‘Optimisation with Pre-

scribed Outer Geometry’ modes in 3D, and ‘Planar Optimisation and Replication’

mode in 2D. However, all three modes of usage highlighted the need for an inte-

grative (computer-aided) framework of design and subsequent manipulation.

Design of any object, regardless of the field, is essentially an iterative process,

which requires constant adjustments and manipulation of parameters, and the

final decision concerning the form should be placed with the human designer.

Hence, any conceptual design tool envisaged to be useful should be, above all

else, flexible. In this light, the lack of flexible readjustment or intermediate ma-

nipulation features seriously impair the feasibility of this approach.
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The need for form-generation of a globally optimised building form is useful as a

design guide. However, it may be unrealistic in some cases as the actual design

elements (and activities) in practice are currently highly modularised.

Most notably, although the forms generated by the structural optimisation ap-

proach would serve as a good guide to form design, in comparison to the ‘free-

flowing’ forms generated by form-led approaches, e.g. [31][27], the forms presented

in this thesis tend to be visually less ‘adventurous’.

Many of the generated forms exhibited a high level of (over)complexity, to the

point of impracticality, which led to the next phase of research in Part III. How-

ever, there is an alternative view on this issue. In response to the appraisal of the

LP-generated forms as being ‘less adventurous’, there is a paradox relating to the

complexity of the LP-generated forms: the parameters used for form-generation

could be chosen to ensure the generated arrangement of structural members is yet

more complex, to form an enveloping surface or thick web of overlapping mem-

bers, to be used for surface definition. This ‘super-complexity’ may present visual

impact of the sort eagerly sought by architects, whilst still providing structural

integrity.

Since the research began and thesis started taking shape, a 2D evolutionary

structural optimisation approach has been used to define an exterior of a build-

ing [232]. This was achieved by ‘creatively’ manipulating support conditions along

the length of the building design, and thereby resulting in optimised structural

sections.

Similarly, as a potential followup to the work described in this this thesis, at-

tempts could be made to apply structural optimisation techniques to 3D surface

definition problems (via the use of ‘super-complex’ structural forms).

On the other hand, considering the immediate task of improving the practicality

of the design solutions obtained using the LP-based formulation, this thesis has
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concentrated on the issue of practicality of the generated forms. This crucial

issue warranted further investigation, leading to the development of a mixed in-

teger linear programming (MILP) formulation (Part III: Chapter 6); a MATLAB

script was written in order to investigate the effects and behaviour pattern of the

formulation.

It was found that the script was successful in limiting the total number of members

in the final optimised structure, demonstrating its capacity to reduce complexity

in final optimised design and, more importantly, the behaviour of the MILP for-

mulation is now better understood.

Whilst the member-reduction strategy used in this thesis has proved effective in

dealing with the identified issue of over-complexity, the introduction of an ad-

ditional constraint to the LP formulation has increased the solution CPU time

considerably.

This is because the member reduction strategy using the MILP formulation pre-

sented in this thesis uses a number of binary variables in the mathematical pro-

gramming matrix, and MILP is classified as ‘NP-hard’ in computational complex-

ity theory (see [233] for explanation - i.e. computationally very hard to solve).

Thus, its success mostly depends on the efficiency of the mathematical program-

ming solver.

lp_solve1, the LP (and MILP) solver used for the parametric studies in Chap-

ter 6, is perhaps the most widely used open-source2 LP solver, first developed by

Michel Berkelaar at Eindhoven University of Technology [234].

Whilst there is no comprehensive academic publication of benchmarks of various

available mathematical programming solvers of both commercial and open-source

1http://lpsolve.sourceforge.net/5.5/

2Lesser General Public License
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nature, a recent preliminary study by Hans Mittelmann of Arizona State Univer-

sity1 has published some benchmark results. This study compares 10 widely used

mathematical solvers, including lp_solve. In this study it was revealed that,

compared with commercial solvers (e.g. CPLEX), the performance of lp_solve

was weak (in terms of the CPU run time to arrive at solutions).

Having said that, MOSEK, the commercial optimiser used in Chapter 7 for solv-

ing for tensegrity type structures with a similar number of binary variables, also

struggled to tackle problems bigger than the ones presented in Chapter 7. For

example, a problem with a design domain with the target number of nodes of

45 or above, struggled to yield a meaningful result, suggesting that even some

commercial solvers struggle to solve even medium scale MILP problems.

Hence a much more efficient engineering strategy is required for practical usage

of MILP in form design. In this effort2, adaptation of ‘Member Adding’ approach

developed by Gilbert and Tyas [91], which greatly improves the efficiency of clas-

sic LP formulation may present an opportunity for improvement in the efficiency

of the MILP formulation. However, in its present form it is unlikely to be com-

patible with MILP because the binary constraint (i.e. Ai/R ≥ ki) used in both

Chapter 6 and 7 means that the ‘dual problem’ used by the ‘Member Adding’ is

no longer present.

However, rather than focussing on incrementally improving the computational

efficiency of the formulation, it was decided that it would be of more interest to

investigate application of MILP to tensegrity design problems. This is in keeping

with the fundamental theme of the thesis: versatile use of an engineering tool to

1http://plato.asu.edu/ftp/milpf.html

2On a different note, in light of the relatively recent development of the ‘3D printing’ or rapid

prototyping, the overcomplexity of the structures generated by the normal LP formulations may

not be an issue at all. In fact, given that the complex structures can be rapidly ‘prototyped’, the

‘true’ optimum structures containing numerous nodes and members may even be an advantage

as they will use the least amount of material.
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provide solutions in the domain of architectural design.

Tensegrity design can also be viewed as a representative example of form gener-

ation of unconventional structural configuration. The tensegrity form began its

development in the field of architecture and is a classic interdisciplinary synthesis

of structure and form, with its essentially indivisible structural aesthetic effecting

an architectonic quality. Hence the study of tensegrity is highly relevant to the

overall investigation, where an engineering tool can produce (or enhance) aes-

thetics of form, with an architectural intention.

The most definitive characteristics of tensegrity are separation between com-

pressive and tensile members, complete absence of bending elements, self-stress

(with continuous tensile members), and individually isolated compressive mem-

bers. The existing LP formulation was already capable of generating optimum

structures which would present the first two characteristics. Additionally, litera-

ture reviews in the field of tensegrity indicated that many researchers had focused

on various form-finding methods, often using topological configurations derived

from known polyhedra. Thus, the research led to a means of identifying topo-

logical configuration of compressive and tensile members in tensegrity structures;

Part III: Chapter 7 demonstrated successfully that MILP is capable of generating

tensegrity-type structures with correctly configured tensegrity connectivity.

In that same investigation, it was found that tensegrity type structures are struc-

turally less efficient than structures identified using LP. This is because the crucial

requirement for separation between compressive and tensile members, necessitates

needless extra lengths (or weight) of members. Further work in this study, on

the load capacity of a tensegrity confirmed that self-stressable, ‘true’ tensegrity

structures would also be less optimal.

This finding contrasts with Fuller’s early statements about the efficacy of tenseg-

rity structures. Prior to his ‘invention’ of tensegrity, Fuller presented in his 1954

patent [235], novel methods of constructing geodesic structures based on polyhe-

dral geometry; these were to some extent predecessors of his tensegrity structures.
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Having judged structural performance by weight per sheltering square foot, his in-

vention of geodesic structures seemed optimal as it provided more square-footage

of coverage per given weight than the conventional wall and roof design, while

also providing sufficient wind load resistance. In 1962, another of Fuller’s patents,

entitled, ‘Tensile-Integrity Structures’ [141], he introduced tensegrity domes de-

rived from his geodesic polyhedral domes and makes a clear suggestion that his

newly invented structural form is structurally optimal [141].

It is possible to hypothesise that Fuller assumed structural optimality in tenseg-

rity on two grounds: one is its capacity for large coverage with apparently little

weight when closely following the geodesic construction method, and the other

(perhaps more compelling) reason is the apparent replacement of compression

members with tensile members when converting geodesic structures to tensegrity

structures.

However, it is perhaps too early to refute Fuller’s claims completely, as the fo-

cus of the studies described herein was on ‘tensegrity type’ structures, without

self-stress. Self-stress should be included in future work in order to make direct

comparisons possible.

Whilst the presented work may lead to criticism of architectural designers who

accept Fuller’s assertion that tensegrity structures are ‘lightweight’ or optimal,

the method developed also offers a rare computational tool for designing irregular

tensegrity structures. The following example illustrates this method.

Designing tensegrity structures using the provided MILP formulation can be

initiated by introducing additional tensile members between appropriate nodes

as shown in Fig. 8.1. There are six additional tensile members in the design.

Fig. 8.1(a) shows the original optimised tensegrity type structure with additional

tensile members to be incorporated, and Fig. 8.1(b) shows the post-optimisation,

conjectured design of tensegrity with the additional members incorporated into

the original structure.
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Then, self-stress can be achieved by redistributing any given load1 amongst all

tensile and compressive members including the additional members.

This redistribution of internal forces may be achieved by a number of form-finding

methods available (e.g. [167] [168] [169]), although implementation of self-stress

into the current MILP formulations should follow.

In the meantime, Fig. 8.2 shows a physical model of 2D tensegrity structure,

constructed, with reference to the MILP automatically generated structures in

Fig. 8.1. This physical model works in the same way as the structures shown

in Fig. 8.1; it should be assumed that any interaction or exertion of forces be-

tween the overlapping members are negligible and are thought to pass across each

other. It is also worth mentioning that the physical model has the same topology

as the generated and designed tensegrity structure in Fig. 8.1(b), but a different

geometry. This is because topology is determined by the spatial arrangement of

members whilst geometry is determined by the internal member forces, and the

introduction of new tensile members in the process of transforming the structure

into a true tensegrity structure inevitably altered the shape of the structure with-

out altering its topology.

Whilst the MILP formulation is capable of generating regular and irregular

tensegrity type structures, and of configuring the topological connectivity of mem-

bers, it serves only as an initial building block for tensegrity structure design, and

a further form-finding process is needed to comply with the strictest definition

tensegrity, where self-stress is involved.

1providing that the load does not exceed the material strengths of the members.
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Chapter 9

Contributions and
Recommendations for Future
Work

9.1 Contributions

1. A linear programming layout optimisation formulation has been applied to

the form-generation of conventional structural configurations, with a focus

on obtaining qualitative output for use in early stage concept design. Its

feasibility has been tested and appropriate modes of usage of the current

technology have been classified and discussed, showing the potential for

such an engineering optimisation tool to be used in architectural concept

design, subject to a number of improvements being made.

2. In response to the apparently impractical, complex, solutions frequently

encountered when using layout optimisation, a simple mixed integer linear

programming formulation has been devised in order to reduce the total

number of members present in the solution, thereby simplifying the form of

the output.

3. It has been demonstrated that, in addition to reducing the complexity of

the solutions obtained, the inclusion of an additional MILP constraint in
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9.1 Contributions

the layout optimisation formulation also offers the user/designer a higher

degree of controllability.

4. Parametric studies have been used to help obtain a better understanding

of the behaviour of the MILP formulation, and to further demonstrate the

capability of the MILP formulation to reduce the degree of complexity in

optimised structures if so required.

5. The same extended MILP formulation has successfully been used to gener-

ate an unconventional structural configuration, namely an irregular tenseg-

rity (or para-tensegrity) type structure, with special member connectivity

configurations.

6. A design method for irregular tensegrity has been developed in which no

prior knowledge of nodal connectivity is required, thereby allowing designers

to move beyond conventional form-finding or empirical methods, which rely

heavily on polyhedral templates.

7. Example tensegrity structures have been analysed extensively, using realis-

tic material and section properties. Specifically, their load carrying capacity

and responses to different load conditions have been carefully scrutinised.

This served to further reinforce that tensegrity structures may be less struc-

turally efficient than conventional LP generated structures in terms of load

resistance for a given weight. The results may call into question Fuller’s

assertion of tensegrity’s intrinsic light weight and inherent ‘optimality’.

8. The analyses of tensegrity structures presented have contributed to our

overall understanding of this interesting structural form.

9. By extending the layout optimisation tool to provide a method of design

for tensegrity structures, the versatility of engineering optimisation as a

tool for conventional and unconventional form-generation has been further

demonstrated.
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9.2 Recommendations for Future Work

9.2 Recommendations for Future Work

9.2.1 Form-generation and Integrated Design Approach

Although the generated forms and designs presented in this thesis were promis-

ing, the results obtained in Part II indicate the need for two developments.

First is regularisation of the structural member segments, particularly in the

form-finding example as fabrication of a multitude of unique individual members

is likely to be impractical in present circumstance, although considering the rapid

advancement in such technologies as CNC or 3D printing, some practical issues

are likely to be alleviated or eliminated.

Second is provision of a robust computer framework or methodology through

which both initial form-generation and subsequent design manipulation can be

considered and integrated1.

Improvements in this area may lie not in technical engineering enhancements to

be able to model or generate physically viable forms. Rather, a solution may

be in the domain of the interface design and organisation of computer design

platform, i.e. an overall integrative design platform onto which various aspects

of building design can be integrated. There are a number of commercial BIM

platforms available. However, provision of an integrated design platform, which

incorporates structural optimisation, is rare, although those which incorporate

structural analysis capabilities are more common2.

Further research should also be undertaken in a more practical environment, with

team collaborations involving professionals in various design fields, not necessar-

1This initial, integrated form (structure) generation/design framework is not to be confused

with the likes of Building Information Modelling, which already deal with multiple parameters

of building design.

2Some as plug-ins to a major software platforms.
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ily confined to consideration of the integration of form and structure but also in

manufacturing and fabrication. This would be an addition which could render

the tool used in this thesis much more effective and economic. Much work in this

area, of holistic approach, from form conception to fabrication is actively being

investigated (e.g. [236]).

9.2.2 Structural Optimisation

Due to the mathematical complexity of Michell’s optimality theory, until rel-

atively recently, most structural optimisation research dealt mostly with exact

solutions and isolated problems with typically simple loading and support con-

ditions. The current capabilities of the optimisation technology developed at

the University of Sheffield include the ability to identify optimum solutions with

multiple load cases and considerations of buckling, self-weight of members, trans-

missible loading and joint costs with good computational efficiency.

However, there are a number of issues yet to be resolved. There are two areas of

further research required in order to achieve practicality: (i) enhancement in the

modelling capability to better represent reality, and (ii) control issues. The work

in this thesis briefly explored control issues.

The tested MILP formulation, while having the desired capability to control the

final form of the optimised solutions, can be prohibitively slow to solve. The

MILP constraints are undoubtedly useful with regard to controllability of the

optimised structures. The capability of the MILP formulation may extend to:

limiting the number of nodes or the number of members arriving at a node, in-

troduction of penalties on close members at a node and including only members

from tabulated sets of commercially available structural member sections. Al-

though this thesis focused on the dichotomous relationship between architecture

and engineering, redirecting the thesis from exploring MILP further as a purely

engineering investigation, application of MILP to solve larger problems, presents
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a compelling area of further research.

9.2.3 Tensegrity

Although it has been possible to prescribe the specialised member connectivity

associated with tensegrity type structures, one crucial characteristic of tensegrity,

namely self-stress, was not included in the final resulting structures. In order to

comply with the orthodox definition of tensegrity no external applied loads should

be present, self-stress should be involved and there should be complete separation

between compressive and tensile elements. Also, in most tensegrity structures of

orthodox definition, tensile members are of one cross-sectional area, whereas the

structures generated by the MILP formulation comprise tensile members of vari-

ous cross-sections. From the perspective of fabricators, this is less than ideal and

is an issue which needs to be resolved in order to develop a more versatile design

tool.

Lastly the computational efficiency of the MILP formulation needs much improve-

ment if larger scale tensegrity structures are to be generated.
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Appendix A

Structural Layout Optimization

A.1 Description of structural layout optimiza-

tion process

The structural layout optimization process involves several steps: (i) the designer

defines the extent of the design domain, and also the support and load con-

ditions; (ii) the design domain is populated with n nodes, typically uniformly

spaced, which represent the potential end-points of structural members; (iii) the

n nodes are inter-connected with m potential structural members, forming a so-

called ground structure; (iv) optimization techniques (e.g. linear programming,

LP [79]) are used to identify the subset of members present in the structure that

best fulfils the required design criteria (e.g. to find the structure which uses the

minimum volume of material).
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A.2 Linear programming (LP) structural layout optimization
formulation

A.2 Linear programming (LP) structural layout

optimization formulation

The equilibrium LP plastic design formulation for a 2D ground structure sub-

jected to a single load case and containing m members and n nodes where the

design objective is to find the minimum structural volume can be stated as fol-

lows [91]:

minimise,

V = qTc (A.1)

subject to:

Bq = f (A.2)

q+

i , q-
i,≥ 0, i=1,...,m (A.3)

where V is the total volume of the structure, qT = {q+

1 ,−q−1 , q+

2 ,−q−2 , ..., q+
m,−q−m},

cT = {l1/σ+

1 ,−l1/σ
−

1 , l2/σ
+

2 ,−l2/σ
−

2 , ..., lm/σ+
m,−lm/σ−m}, B is a suitable (2n×2m)

equilibrium matrix, fT = {fx
1 , f y

1 , fx
2 , f y

2 , ..., fx
n , f y

n} and where li, q
+

i , q−i , σ+

i , σ−i
represent the length, tensile and compressive member forces and stresses in mem-

ber i, respectively. Finally, fx
i , f y

i are the x and y direction live load components

applied to node j. The LP variables are the tensile and compressive member

forces in q.

A.3 Mixed integer linear programming (MILP)

structural layout optimization formulation

As a variation on the formulation given in Eqns (A.1-A.3), it is possible to in-

troduce additional binary and integer variables to indicate for example whether

a given member is ‘on’ (present) or ‘off’ (absent) in the final structural solution,
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A.4 Transmissible Load

giving rise in mathematical terms to a ‘mixed integer linear programming (MILP)

formulation. Such variables make it possible to for example specify the maximum

number of members converging on a given joint, increasing the power of layout

optimization as far as the designer is concerned, albeit at the expense of compu-

tational efficiency. It is also possible to develop MILP formulations which allow

more accurate modelling of the behaviour of compression members, which will in

reality buckle if overly slender. The usefulness of various MILP formulations are

currently being investigated by the authors.

A.4 Transmissible Load

This is a simple illustration of a transmissible load being applied prior to the

optimization process, which resulted in the example of Catenary Arches. The

load can be applied anywhere along the line of action of the force i.e. either Node

A or B as shown in Fig. A.1.

Figure A.1: Illustration of Transmissible Load (after Darwich [237]).
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Appendix B

MILP zero area members

In all figures, compression members are represented by red (or solid) lines, tension

members, by blue (or regular dashed) lines, and zero-area members, by green (or

irregular dashed) lines.

B.0.1 3 x 3 Grid Example

Fig. B.1 shows structures optimized with integer constraints from 3 x 3 grid,

which contain zero-area members.

B.0.2 5 x 3 Truss

Figs. B.2 - B.3 show various structures optimized with integer constraints from 5

x 3 truss, which contain zero-area members; its NUB ranges from 11 to 22.

B.0.3 5 x 3 Michell Cantilever

Fig. B.4 shows a structure optimized with integer constraints from 5 x 3 Michell

cantilever, which contains a zero-area member.
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Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9

(a) NUB = 5, V = 8.0000

Nfinal = 5 (4 real members and 1

zero area member)

Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9

(b) NUB = 6, V = 8.0000

Nfinal = 6 (4 real members and 2

zero area members)

Figure B.1: 3 x 3 Grid - optimized structures with integer constraints and zero

area members
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Node฀1

Node฀2

Node฀3

Node฀4

Node฀5

Node฀6

Node฀7

Node฀8

Node฀9

Node฀10

Node฀11

Node฀12

Node฀13

Node฀14

Node฀15

(a) NUB = 11, V = 18.000

Nfinal =11 (10 real members and 1

zero area member)

(b) NUB = 13, V = 18.000

Nfinal = 13 (12 real members and

1 zero area member)

(c) NUB = 14, V = 18.000

Nfinal = 14 (11 real members and

3 zero area members)

(d) NUB = 15, V = 18.000

Nfinal = 15 (10 real members and

5 zero area members)

(e) NUB = 16, V = 18.000

Nfinal = 16 (11 real members and

5 zero area members)

(f) NUB = 17, V = 18.000

Nfinal = 17 (11 real members and

6 zero area members)

Figure B.2: 5 x 3 Truss - optimized structures with integer constraints and zero

area members
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(a) NUB = 18, V = 18.000

Nfinal = 18 (10 real members and

8 zero area members)

(b) NUB = 19, V = 18.000

Nfinal = 19 (13 real members and

6 zero area members)

(c) NUB = 20, V = 18.000

Nfinal = 20 (12 real members and

8 zero area members)

(d) NUB = 21, V = 18.000

Nfinal = 21 (15 real members and

6 zero area members)

(e) NUB = 22, V = 18.000

Nfinal =22 (16 real members and 6

zero area members)

Figure B.3: 5 x 3 Truss - optimized structures with integer constraints and zero

area members

273



(a) NUB = 16, V = 45.000

Nfinal = 16 (15 real members and 1 zero area

member)

Figure B.4: 5 x 3 Michell Cantilever - optimized structure with integer constraints

and zero area member
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Appendix C

MatLab code for MILP

001 %% Topology Optimisation - single load case with MILP constraint %%

002 function integer_12_lp_solve, clear

003 %%%%%%%%%%% variables %%%%%%%%%%%%

004 t0=cputime;

005 Nx=3; Ny=3; N = Nx*Ny ;% No. of nodes in X and Y; %N=total No. of nodes

006 M=N*(N-1)/2; % M = total number of elements

007 Desired_M_LB=1; Desired_M_UB=10; const=1; % Part of Integer Programming

008 supportX=[1 7]; supportY=[1 7]; % supports [X1 X2 ..] % supports [Y1 Y2 ..] in node No.

009 SIG=[10 1]; % allowable stress [tension compresion]

010 load_X=[6 3]; load_Y=[1 0]; % load X[node number; value]; %load Y[node number; value]; [1 0] if no load

011 load_tol=10^-2; % load tolerance

012 [nodes] = create_nodes(Nx,Ny,supportX,supportY,load_X,load_Y); % create nodes

013 [elements] = create_elements(nodes,N,SIG); % create elements

014 [minVol,q] = Execute(N,M,elements,supportX,supportY,load_X,

load_Y,load_tol,const,Desired_M_LB,Desired_M_UB);

015 [CPU_TIME] = CALC_CPUTIME(t0);

016 Results(minVol,q,nodes,elements,N,M,load_tol,CPU_TIME);

017 display(minVol); % plot and display

018 disp(’No. of initial elements in ground structure’),disp(size(elements,1))

019 %%%% nodes = [X Y supportX supportY load_X load_Y] %%%%

020 function [nodes]=create_nodes(Nx,Ny,supportX,supportY,load_X,load_Y)

021 X=zeros(Ny,Nx);Y=X;
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022 for i=1:Ny, X(i,:)=[0:(Nx-1)] ; end %X-coord’s starting from origin

023 for j=1:Nx, Y(:,j)=[0:(Ny-1)]’; end %Y-coord’s

024 nodes(:,1)=X(:); nodes(:,2)=Y(:); nodes(supportX,3)=1;nodes(supportY,4)=1;

025 nodes(load_X(1),5)=load_X(2); nodes(load_Y(1),6)=load_Y(2);

026 %%% elements = [Node_a Node_b X_length Y_length L Theta SIG+ SIG- ]%%%

027 function [elements]=create_elements(nodes,N,SIG)

028 elemN=0; warning off

029 for node_a=1:N-1

030 for node_b=node_a+1:N

031 elemN=elemN+1;

032 elements(elemN,1)=node_a; % a ------ b

033 elements(elemN,2)=node_b;

034 elements(elemN,3)=nodes(node_b,1)-nodes(node_a,1);% Mem_length in X

035 elements(elemN,4)=nodes(node_b,2)-nodes(node_a,2);% Mem_length in Y

036 elements(elemN,5)=(elements(elemN,3)^2+elements(elemN,4)^2)^.5; % L

037 elements(elemN,6)=atan(elements(elemN,4)/elements(elemN,3)); % Theta

038 end,end, warning on

039 elements(:,7)=SIG(1); elements(:,8)=SIG(2);

040 %%%%%%%%%%%%% V, feq, Beq matrix set-up %%%%%%%%%%%%%%%%

041 function [minVol,q]=Execute

042(N,M,elements,supportX,supportY,load_X,load_Y,load_tol,const,Desired_M_LB,Desired_M_UB)

043 V=zeros(1,(M*2+M)); % Part of Integer Programming %

044 V(1:M*2)=[(elements(:,5))./elements(:,7) (elements(:,5))./elements(:,8)]; % V=l/SIG+ and l/SIG-

045 feq=zeros((N*2+N*2+M*2+2),1); % PoIP %

046 feq(load_X(1))= load_X(2); % placing load in X-direction

047 feq(load_Y(1)+N)= load_Y(2); % placing load in Y-direction

048 feq(load_X(1)+N*2)= -load_X(2); % PoIP %

049 feq(load_Y(1)+N*2+N)= -load_Y(2); % PoIP %

050 feq((N*2+N*2+M*2+2),1)=-Desired_M_LB; % PoIP %

051 feq((N*2+N*2+M*2+1),1)= Desired_M_UB; % PoIP %

052 feq(supportY+N+N*2,:)=[]; feq(supportX+N*2,:)=[]; % PoIP %

053 feq(supportY+N,:)=[]; feq(supportX,:)=[]; % removing 0 force at support

054 Beq=zeros(N*2+N*2+M*2+2,M*2+M); % PoIP %

055 for elemN=1:M

056 c=cos(elements(elemN,6)); s=sin(elements(elemN,6));

057 Beq(elements(elemN,1),elemN)= -c; % Beq(node_a,elemN) = in X

058 Beq(elements(elemN,2),elemN)= c; % Beq(Node_b,elemN) = "
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059 Beq(elements(elemN,1),M+elemN)= c; % Beq(Node_a,elemN) = "

060 Beq(elements(elemN,2),M+elemN)= -c; % Beq(Node_b,elemN) = "

061 Beq(elements(elemN,1)+N,elemN)= -s; % Beq(Node_a,elemN) = in Y

062 Beq(elements(elemN,2)+N,elemN)= s; % Beq(Node_b,elemN) = "

063 Beq(elements(elemN,1)+N,M+elemN)= s; % Beq(Node_a,elemN) = "

064 Beq(elements(elemN,2)+N,M+elemN)= -s; % Beq(Node_b,elemN) = "

065 Beq((elements(elemN,1)+N*2),elemN) = c; % PoIP %

066 Beq((elements(elemN,2)+N*2),elemN) = -c; % PoIP %

067 Beq((elements(elemN,1)+N*2),M+elemN)= -c; % PoIP %

068 Beq((elements(elemN,2)+N*2),M+elemN)= c; % PoIP %

069 Beq(elements(elemN,1)+N+N*2,elemN)= s; % PoIP %

070 Beq(elements(elemN,2)+N+N*2,elemN)= -s; % PoIP %

071 Beq(elements(elemN,1)+N+N*2,M+elemN)= -s; % PoIP %

072 Beq(elements(elemN,2)+N+N*2,M+elemN)= s; % PoIP %

073 K_t=(elements(1,7))*const; % PoIP %

074 K_c=(elements(1,8))*const; % PoIP %

075 Beq(elemN+N*2+N*2,elemN)= 1/K_t; % PoIP %

076 Beq(elemN+M+N*2+N*2,elemN+M)=1/K_c; % PoIP %

077 Beq(elemN+N*2+N*2,elemN+M*2)=-1; % PoIP %

078 Beq(elemN+M+N*2+N*2,elemN+M*2)=-1;

079 Beq(N*2+N*2+M*2+2,M*2+elemN)=-1; % PoIP %

080 Beq(N*2+N*2+M*2+1,M*2+elemN)= 1; % PoIP %

081 end

082 Beq((N*2+N+supportY),:)=[]; Beq((N*2+supportX),:)=[]; % PoIP %

083 Beq(N+supportY,:)=[]; Beq(supportX,:)=[];

084 lb=zeros((M*2+M),1);

085 ub=zeros((M*2+M),1);

086 for elemN=1:M; % PoIP %

087 ub(elemN,1)=inf; % PoIP %

088 ub(elemN+M,1)=inf; % PoIP %

089 ub(M*2+elemN,1)=1; % PoIP %

090 end

091 for elemN=1:M; % PoIP %

092 ub(elemN,1)=inf; % PoIP %

093 ub(elemN+M,1)=inf; % PoIP %

094 ub(M*2+elemN,1)=1; % PoIP %

095 end
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096 e=-1;

097 xint=[M*2+1:M*2+M]; options = optimset(’largescale’,’on’);

098 [minVol,q] = lp_solve(V’,Beq,feq,e,lb,ub,xint);Beq;feq;

099 %[q,minVol,exitflag]=linprog(V’,[],[],Beq,feq,lb,ub);

100 %%%%%%%%%% counting the number of final elements %%%%%%%%

101 element_numbers=[1:M 1:M 1:M]’;

102 Q=[element_numbers q];

103 disp(Q)

104 counter=0;

105 for i=1:M

106 if Q((i+2*M),2)< 0.01

107 counter=counter+1; % in order to count the final elements

108 end

109 end

110 disp(’No. of elements in the final structure’), disp(M-counter)

111 function [CPU_TIME] = CALC_CPUTIME(t0)

112 t_fin=cputime;

113 CPU_TIME=t_fin-t0; a=’CPU TIME=’;

114 disp(a), disp(CPU_TIME)

115 %%%%%%%%%%%%%%%%%%% plot and result%%%%%%%%%%%%%%%%%

116 function Results(minVol,q,nodes,elements,N,M,load_tol, CPU_TIME),

clf, hold on,axis equal

117 title([’minVol: ’ num2str(minVol)])

118 xlabel([’CPU TIME: ’ num2str(CPU_TIME)])

119 for node=1:N

120 plot([nodes(node,1) nodes(node,1)],[nodes(node,2) nodes(node,2)],’k.’) % nodes

121 h=text(nodes(node,1),nodes(node,2),num2str(node));set(h,’fontsize’,8) % node numbers

122 if nodes(node,3)==1, plot([nodes(node,1) nodes(node,1)],[nodes(node,2) nodes(node,2)],’m>’),end %supportX

123 if nodes(node,4)==1, plot([nodes(node,1) nodes(node,1)],[nodes(node,2) nodes(node,2)],’m^’),end %supportY

124 if nodes(node,5)~=0 | nodes(node,6)~=0 % load

125 plot([nodes(node,1) nodes(node,1)+nodes(node,5)],[nodes(node,2) nodes(node,2)+nodes(node,6)],’c--’) %barXY

126 plot(nodes(node,1),nodes(node,2),’co’),end % loaded node

127 end

128 for elemN=1:M

129 node_a=elements(elemN,1); node_b=elements(elemN,2);

130 if q(elemN)>load_tol % final tens elements (red)

131 h=text((nodes(node_a,1)+nodes(node_b,1))/2,(nodes(node_a,2)+nodes(node_b,2))/2,num2str(elemN)); %numbers
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132 set(h,’fontsize’,7,’color’,[1 0 0])

133 plot([nodes(node_a,1) nodes(node_b,1)],[nodes(node_a,2) nodes(node_b,2)],’r’ ),end %members

134 if q(elemN+M)>load_tol % final comp elements (blue)

135 h=text((nodes(node_a,1)+nodes(node_b,1))/2,(nodes(node_a,2)+nodes(node_b,2))/2,num2str(elemN)); %numbers

136 set(h,’fontsize’,7,’color’,[0 0 1])

137 plot([nodes(node_a,1) nodes(node_b,1)],[nodes(node_a,2) nodes(node_b,2)],’b’ ), end %members

138 end
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Appendix D

Further Explanation of Effect of

Additional Constraints on

Optimality

This section provides graphical representation and accompanying explanation,

with regard to the effectiveness (or ineffectiveness) of additional constraints in

obtaining more optimal solutions to the objective function in linear optimization.

It should also be noted that the same principle applies to any nonlinear optmiza-

tion methods.

Let us consider a constrained optimization problem and say that the objective is,

to minimize a simple function, f(x, y) = (y+x). This objective function is subject

to three constraints; x < 2, y < 2, and x+y > 2. These are shown in Fig. D.1. In

the same figure, the shaded area, enclosed by the constraints, represents the do-

main of feasible solutions, within which are solutions that should satisfy all three

constraints. Since the objective is to minimize f(x, y) = (y + x), non-unique

minimum values will be found immediately above the constraint x + y > 2.
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z>4

Figure D.1: Original solution domain: enclosed by three constraints

Fig. D.2(a) shows a modified feasible solution domain enclosed by the original

three constraints and an additional constraint, x < 1. Although the set of avail-

able solutions has changed (or reduced in number), it is easy to see that minimum

values for x and y, still lie immediately above the constraint, y+x > 2. Similarly,

Fig. D.2(b) shows a further modification (or reduction) of feasible solution set;

whilst this has changed the feasible solution set, the possible minimum values for

the objective function remains unchanged, rendering the additional constraint

y + x < 3 ineffective.

This in effect explains the reason why introduction of additional constraints can-

not make the solution more optimal than the original optimization problem, in

its definition.
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(a) Modified solution domain: enclosed by

an additional constraint
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(b) Ineffective constraint

Figure D.2: Introduction of additional constraints
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Appendix E

Comparisons between Tensegrity

and Corresponding LP structures

E.0.4 Tensegrity ‘XIIX’ Column

The same vertical force analysis as in the previous section is repeated here. In

addition a horizontal analysis is provided.

Vertical Load: ‘XIIX’ Column and LP structure

In order to understand the tensegrity ‘column’ structure, its behaviours with a

particular emphasis on buckling, are compared to those of the conventional LP

structure, utilising commercially available CHSs for compression members and

realistic steel properties (and dimensional units) whilst maintaining the section

area of the original sections from optimisation. These are found inTable E.5 for

the tensegrity structure and in Table E.4 for the corresponding LP structure.

Horizontal and vertical pinned supports are located at the bottom two nodes in

both ‘XIIX’ Column and the corresponding LP structure; in Nodes O and P for

‘XIIX’ Column and in Nodes G and H for the corresponding LP structure. Two

external loads of equal magnitude are applied in negative y-direction (vertically),
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Table E.1: 2D tensegrity structures without supports: horizontal and vertical

axial loads

Design domain Tensegrity LP

(a) (b) (c)

Data

Target Node No.=21 VTen VLP

Scale Factor=0.001 1350 600

Load=50 (each)
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Table E.2: MILP ‘XIIX’ Para-tensegrity Column: internal loads

Member q qx qy radius vol.

(a)

AC 25.00 0.00 25.00 2.82095 12.50

AH -90.1388 -50.00 -75.00 5.3565 162.50

BD 25.00 0.00 25.00 2.82095 12.5

BG -90.1388 -50.00 -75.00 5.3565 162.5

CD -12.5 -12.5 0 0.00 1.99471 12.5

CE 27.9508 12.50 25.00 2.98279 15.625

DF See CE

EF 25.00 25.00 0.00 2.82095 12.50

EG 69.8771 31.25 62.50 4.7162 39.0625

EH 22.5347 18.75 12.50 2.67825 20.3125

EK -50.00 0.00 -50.00 3.98942 150.00

FG See EH

FH 69.8771 31.25 62.50 4.7162 39.0625

IK See EG

IL See FG

IP See AH

JK See FG

JO See AH

JL See EG

KL See EF

KM See CE

LN See CE

MN See CD

MO See AC

NP See AC

OP See AB
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Table E.3: LP ‘XIIX’ Column: internal loads

Member q qx qy radius vol.

(a)

AB -33.4384 -33.4384 0.00 3.26248 33.4384

AC -43.1655 -10.4692 -41.8767 3.70675 44.494

AD -10.1541 -6.09245 -8.12327 1.79782 12.6926

CD -0.707044 -0.707044 0.00 0.474404 0.35352

CE -27.9819 0.00 -27.9819 2.98444 83.9456

CF -22.3218 -3.66969 -22.0181 2.66557 67.8892

DE See CF

DF See CE

EF See CD

EG See AC

EH See AD

FG See AD

FH See AC

GH See AB
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Figure E.1: Tensegrity ‘XIIX’ column with additional members
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Figure E.2: LP Structure corresponding to Tensegrity ‘XIIX’ column
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to Nodes A and B in both ‘XIIX’ Column and the corresponding LP structure.

These loads are incremented until the most critical member in the structures,

reaches its full load bearing capacity.

Table E.4: LP ‘XIIX’ structure: CHS sizes

Member Original Area Diameter (cm) Thickness (cm) Actual Area (cm2)

AB 33.44 13.97 0.80 33.10

AC 43.17 13.97 1.20 48.14

AD 10.15 7.61 0.50 11.17

CD 0.71 2.13 0.20 1.21

CE 27.98 10.16 1.00 28.78

CF 22.32 10.16 0.80 23.52

DE See CF

DF See CE

EF See CD

EG See AC

EH See AD

FG See AD

FH See AC

GH See AB

Fig. E.3, shows the results of the analysis for the LP structure, in which the

most critical member is CD; its maximum allowable axial load (i.e. Uc=1.00)

according to EC3 is 228.13N/mm2 with the actual value being 227.92N/mm2.

As the member is not slender, the failure mode is unlikely to be by buckling;

the max allowable Euler buckling strength at 380.87N/mm2, i.e. higher than the

maximum design axial load capacity. Based on this maximum axial load capacity

and the member cross-section area, the maximum compressive load capacity of
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this member, is 1480kN for self-weight of 490kg (or 3.02kN per kg of weight)

(a) (b)

Figure E.3: LP structure: internal member forces and utilisation ratios, Uc

Given the same properties and conditions, Fig. E.4, shows the tensegrity structure

with its individual member utilisation ratios and internal forces. The highest util-

isation ratio, hence the most critical case, belongs to Member EK, for which the

maximum allowable axial stress is 270.05N/mm2 (actual:269.37N/mm2), and the

maximum allowable buckling stress is 794.05N/mm2. Based on this maximum

axial load capacity and the member cross-section area, the maximum compressive

load capacity of this critical member, and hence the whole tensegrity structure, is

2840kN with 1298kg of self-weight (or 2.19kN per kg of weight). This is higher

than that of the conventional LP structure, by a factor of 1.92, as a whole. How-

ever, the maximum compressive load capacity per kg of weight is lower than that

of the LP structure; 2.19kN/kg compared to 3.02kN/kg, which gives the ratio of

0.73.
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Table E.5: MILP ‘XIIX’ column: CHS sizes

Member Original Area Diameter (cm) Thickness (cm) Actual Area (cm2)

AB 33.44 6.525 3.260 33.44

AC 25.00 5.642 2.820 24.99

AH 90.14 24.45 1.25 91.11

BD 25.00 5.642 2.820 24.99

BG 90.14 24.45 1.25 91.11

CD 12.50 7.61 0.60 13.21

CE 27.95

DF See CE

EF 25.00 5.642 2.820 24.99

EG 69.88

EH 22.53

EK 50.00 17.78 1.00 52.71

FG See EH

FH 69.877

GJ See AC

HI See AC

IK See EG

IL See FG

IP See AH

JK See FG

JO See AH

JL See EG

KL See EF

KM See CE

LN See CE

MN See CD

MO See AC

NP See AC

OP See AB
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(a) (b)

Figure E.4: MILP-derived ‘XIIX’ tensegrity structure: internal member forces

and utilisation ratios, Uc
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As before, the utilisation ratios for constituent members in tensegrity column

are low; this is because the tensegrity structure is composed of a multitude of

shorter compressive members; the design compression resistance is dependent on

the partial safety factor, which is dependent on the length/cross-section ratio of

the member.

In conclusion, this serves as further evidence that, when given realistic steel prop-

erties and design criteria, the modified, tensegrity structure performs better than

what it was optimised to perform, i.e. to be able to resist the external force only

as much as the conventional LP structure. However, it is very clear that the

maximum compressive capacity of the tensegrity structure per given weight is

lower by a factor of 0.73, which reinforces the original hypothesis that tensegrity

is inherently a non-optimal structure due to its structural redundancies.

Horizontal Load: ‘XIIX’ and LP Columns

Maintaining the CHS of the member cross-sections and realistic steel proper-

ties, this time, initially a small horizontal load is applied to Node B in negative

x-direction in both ‘XIIX’ tensegrity structure and the corresponding LP struc-

ture. This load is incrementally increased until the Uc in the most critical member

reaches 1.00 (or 0.99)

The maximum applicable horizontal load, permissible for the LP structure was

found to be 103kN with Member CE as the critical member. The maximum

allowable axial stress for the structure, is 180.09N/mm2 and the maximum al-

lowable buckling stress 238.59N/mm2. The maximum load capacity per weight

is 0.210kN/kg. Refer to Fig. E.5

Similarly, the maximum applicable horizontal load, permissible for the ‘XIIX’

tensegrity structure was found to be 67kN with a tension member, Member NP

as the critical member. The maximum allowable axial stress for the structure, is

308.70N/mm2. The maximum load capacity per weight is 0.052kN/kg. Refer to

293



(a) (b)

Figure E.5: LP structure: internal member forces and utilisation ratios, Uc
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Fig. E.6

(a) (b)

Figure E.6: MILP structure: internal member forces and utilisation ratios, Uc

Referring to Fig. E.6(a), which shows individual member internal axial loads

for the tensegrity column. Note that the new, later-added tension members are

utilised, except Member IM , in response to a different loading condition.

As the previous vertical force comparative analysis, the tensegrity structure per-

forms poorly in terms of its maximum load resistance capacity per given weight;

0.210kN per kg for the LP structure vs 0.052N per kg for tensegrity. Along with

the results presented in the vertical analysis subsection, this further reinforces the

original hypothesis that tensegrity is inherently a non-optimal structure due to

its structural redundancies (although these redundancies can be big advantages

in responding to various load cases in real life design (e.g. effective internal dis-

tribution of external forces within the structure).
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Table E.6 is the summary of maximum resisted load per weight comparisons

between tensegrity and LP structures in the above analyses.

Table E.6: Summary of maximum resisted load per weight comparisons between

tensegrity and LP structures

Tensegrity Max.

Force

(kN)

Weight

(kg)

(kN/kg) Corresponding

LP

Max.

Force

(kN)

Weight

(kg)

(kN/kg)

Stayed

Column

347.9 2739 0.127 LP 125 196 0.637

‘XIX’

Column

2770 1051 2.63 LP 2170 402 5.40

‘XIIX’

Column

(vertical)

2840 1298 2.19 LP (vertical) 1480 490 3.02

‘XIIX’

Column

(horizon-

tal)

67 1298 0.052 LP(horizontal) 103 490 0.210
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