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Abstract 

Colonoscopy is widely considered the gold standard for inspection of the 

colon. The procedure is however not without issue, current colonoscopes 

have seen little change or innovation throughout their 40 years of use with 

patient discomfort still limiting success. The aim of this PhD study was to 

develop a locomotion system for use on a robotic device that can traverse a 

liquid filled colon for atraumatic inspection and biopsy tasks. The PhD was 

undertaken as part of a larger two-centre EU project, which aimed to bring 

about a change in the way colonoscopy is done by moving to “robotic hydro-

colonoscopy”. 

In this thesis the initial development and testing of an amphibious locomotion 

concept for use in a procedure known as hydro-colonoscopy is described. 

The locomotion system is comprised of four Archimedes’ screws arranged in 

two counter-rotating pairs. These aim to provide propulsion through a fluid-

filled colon as well as provide locomotive traction against colonic tissue in 

partially fluid-filled or collapsed sections of the colon, such as the splenic 

flexure. 

Experimental studies were carried out on a single screw system in fluid and 

dual counter-rotating screws in contact conditions. These show the system’s 

ability to generate thrust in the two discrete modes of locomotion of the 

amphibious system. 

A 2:1 scale prototype of the proposed device was produced and features 

compliant screw threads to provide atraumatic locomotion. The scale 

prototype device was tested in ex-vivo porcine colon. The developed system 

was able to traverse through lumen to limited success, which demonstrated 

that this concept has the potential for use on an intra-luminal robotic device 

The key contributions of this research are: variable geometry locomotion 

system; amphibious locomotion using Archimedes’ screws; experimental 

assessment of the locomotion in fluid, contact and amphibious states; and 

analysis of the contact dynamics against tissue. 
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Chapter 1  

Introduction 

This thesis covers the development of an amphibious locomotion system for 

use in intra-luminal surgical procedures. The locomotion system must be 

able to allow a device to traverse the large intestine, or colon, of a human 

without causing damage while providing a stable platform for data collection 

(e.g. vision and biopsy) to allow clinicians to assess the state of the colon 

lining (mucosa). 

1.1 Background 

Colonoscopy is the gold standard for inspection of the colon (1-3). It is 

performed using a long flexible tube, which contains a fibre optic camera, 

passage for biopsy and a passage for fluid insertion or removal. 

 

Figure 1.1 3D reconstruction of a human colon, built using CT images 
acquired from the National Cancer Image Archive (4).To the left is the 
colon as viewed from the coronal (front) plane and to the right is the 
colon as viewed from the sagittal (side) plane. The colonic walls are 
shown in transparent purple with the centre line shown in red. The 
green circles denote changes in anatomical landmark colonic section; 
caecum, ascending, traverse, descending, sigmoid and rectum colon, 
as discussed further in Chapter 2. 3D reconstruction carried out by Dr 
A. Alazmani and Dr P. Culmer for the CoDIR project.  

The human colon is by no means straight, linear or regular (Figure 1.1) (1, 

5): each colon although having the same general anatomy, features unique 

bends, lengths and folds. Some of these folds can be caused by obtuse 

bends, which pose particular difficulty in navigation. The current 
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colonoscope is inserted per rectum and pushed along the colon with a rear 

driven locomotion method. To pass these obtuse bends the clinician must 

manipulate the colonoscope and its curvature. This can cause damage 

where the tip perforates the colon or the colonoscope damages the mucosa 

through abrasion between the surfaces (1), although the rates of damage 

are low. Eight cases from a study of 20,085 colonoscopies by Gavin et al. (6) 

resulted in perforation, while 763 were aborted due to discomfort or looping. 

Despite many years of development, the colonoscope still suffers from 

drawbacks, often resulting in patient discomfort and procedure difficulty as 

outlined above. The Colonic Disease Investigation through Robotic Hydro 

Colonoscopy (CoDIR) project1 aims to explore and develop a novel system 

to replace the colonoscope. The project focuses on using a fluid filled colon, 

a process known as hydro-colonoscopy that will both open the colon lumen 

and provide a medium through which a device could navigate. Through 

using a warm fluid medium to insufflate, distend and relax the colon. Clinical 

trials show this is more comfortable than traditional colonoscopy (7). Studies 

carried out by the CoDIR team2 using MRI scans show the bowel is 

successfully filled and opened up for assessment using this technique 

(Figure 1.2 and Figure 1.3). This new approach provides an opportunity for 

robotic systems that can traverse and inspect the colon, potentially 

improving assessment and ease of procedure for the clinician. 

This thesis covers the development of a locomotion system for the CoDIR 

device, which could also be applied to other intra-luminal devices. While the 

colon is to be filled with a fluid, the method of locomotion was set only one 

requirement: it must be able to traverse the colon in a controlled state in a 

similar time span to a traditional colonoscopy procedure while minimising 

discomfort to the patient. Discomfort can often be linked to tissue damage: 

the body’s natural defence against damaging actions is pain, such 

discomfort can be minimised through the use of atraumatic methods. 

                                            

1 The Colonic Disease Investigation through Robotic Hydro Colonoscopy 
(CoDIR) project is a joint venture between the University of Leeds and 
the University of Dundee, funded by a European Research Council 
grant. 

2 Clinical trial carried out by A. Hood as part of CoDIR. Trial consisted of 21 
recruits split into two groups randomly. Group A received CO2 then fluid 
insufflation, group B vice versa. Mean fluid volume: 1.6 litres, range: 1-2 
litres, 6 received 2 litre delivery. Figure 1.2 and Figure 1.3 show CT 
images taken during trial. Work currently unpublished by CoDIR. 
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Due to the tortuous and challenging nature of colonic anatomy, and the fact 

that no two colons are the same, the device’s locomotion system must be 

able to overcome fluid filled sections, partially fluid filled sections, fluid void 

sections and collapsed sections without causing trauma to the patient or 

becoming stuck and in need of surgical removal. The locomotion system 

must also be able to provide sufficient tractive force to traverse the colon 

carrying a payload such as surveillance equipment, e.g. a camera. 

 

Figure 1.2 CT images taken of a fluid insufflated colon showing fluid (PEG 
solution, Klean-Prep®) reaching the caecum (circled). Each image is of 
a separate patient. Images taken as part of a clinical trial carried out by 
CoDIR, work undertaken by A. Hood, currently unpublished. 

 

Figure 1.3 CT images taken of a CO2 insufflated colon after insufflation with 
fluid, showing the caecum circled. The colon is very clean and free from 
debris after being purged of PEG solution post insufflation, as seen by 
the high contract between colon volume and colon wall. Each image is 
of a separate patient. Images taken as part of a clinical trial carried out 
by CoDIR, work undertaken by A. Hood, currently unpublished. 
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The clinical trials carried out by A. Hood as part of CoDIR show a significant 

proportion of the colon to be fluid filled. In using a fluid medium for 

insufflation, any device deployed for investigation purposes will require the 

ability to swim: however, this cannot be the sole form of locomotion as air 

pockets remain and some sections do not open sufficiently to pass without 

contact. An amphibious system is best suited for a fluid-filled colon 

environment. 

1.2 Research Aim 

To develop an amphibious locomotion system appropriate for traversing the 

human colon in hydro-colonoscopy procedure. 

1.3 Research Objectives 

 Design a locomotion system that: 

o Is able to generate propulsive force in fluid and air filled 

sections or combinations of such 

o Minimises trauma to colonic tissue 

o Can accommodate the varying geometry of the colon 

 Evaluate the locomotion system in: 

o Fluid locomotion state (fluid filled colon sections) 

o Contact locomotion state (air filled colon sections) 

 Construct and evaluate a scale prototype of the full system using ex-

vivo porcine colon 

1.4 Contribution of this thesis 

The key contributions of this thesis are the development of a variable 

geometry locomotion system that utilises Archimedes’ screws to provide 

amphibious locomotion; theoretical and experimental assessment of the 

locomotion system in fluid, contact and amphibious states; and analysis of 

the contact dynamics of rotating screws against tissue. 

1.5 Scope of Thesis and Development Timeline 

This thesis covers the development of the locomotion system split into 

chapters covering the design, implementation, fluid testing, contact testing 

and complete physical prototype evaluation. The chapters cover the 

research tasks chronologically, although the process was iterative. The 

flowchart in Figure 1.4 shows the key design and experimental tasks 
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arranged chronologically from top to bottom. The arrows show the flow of 

information throughout the research. The flowchart is included to aid the 

reader in how the work across chapters is linked, for example, the results 

from experimental testing in Chapters 5 and 6 inform design changes in 

Chapter 3. 

Chapter 2 consists of an introduction, which sets the clinical context 

concerning the colon, ailments and current inspection means. The chapter 

also covers next generation colonic inspection devices alongside current 

inspection devices for medical and non-medical applications. 

Chapter 3 covers the clinical and technical design requirements, which 

influenced the design process, and the development of the locomotion 

system throughout the research. 

Chapter 4 discusses the tasks undertaken during the design and 

construction of the locomotion system, with the hardware choices made 

throughout the development process, which played a role in the final design. 

Chapter 5 evaluates the locomotion system in fluid based environments. A 

single screw was modelled theoretically and experimentally assessed the for 

thrust production capabilities of screws in fluid. 

Chapter 6 evaluates the locomotion system in contact-based scenarios, 

such as the device may experience when passing through air-filled sections 

of the colon. A dual counter-rotating screw system was assessed 

experimentally for the tractive capabilities of screws when in contact with 

colonic tissue. 

Chapter 7 evaluates a 2:1 scale prototype in a range of experimental and 

environmental conditions ranging from single mode of locomotion through to 

in-vivo testing of the system in a porcine colon. 

Chapter 8 discusses the developed locomotion system and contributions 

made by this work to exploratory robotic devices. Potential future 

modifications and improvements to the system are then considered. 

Chapter 9 concludes the thesis and summarises the research undertaken. 

Figure 1.4 shows the development of the prototype and associated testing 

apparatus. Green rectangles show development of the prototype device, 

including CAD design, fabrication and assembly (where applicable) and 

control software development (where applicable), as covered in Chapters 3 

and 4. Blue rectangles show the development of the testing apparatus and 

the associated control software, as covered in Chapters 5 and 6. Purple 
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rhombi show experimental data gathering, development of analysis methods 

and data analysis, as covered in Chapters 5, 6 and 7. The orange rectangle 

shows the analysis study carried out on the fluid flow as covered in Chapter 

3. Shape overlap vertically shows concurrent tasks. 

 

Project start

Initial design 
conception
(Chapter 3)

Design of device 
version 1

(Chapter 3)
Design of fluid test 

rig 1
(Chapter 5)

Initial fluid 
testing

(Chapter 5)

Design of device 
version 2

(Chapter 3) Design of fluid test 
rig 2

(Chapter 5)

Fluid testing
(Chapter 5)

Contact 
testing

(Chapter 5)

Prototype 
testing

(Chapter 7)

Design of device 
version 3

(Chapter 3)

Design of contact 
test rig

(Chapter 5)

Fluid flow 
analysis

(Chapter 5)

Contributions:
Theoretical and 

experimental analysis 
on screw based fluid-

propulsion

Contributions:
Theoretical and 

experimental analysis 
on screw-tissue contact 

mechanics

Contributions:
Detailed experimental 
study on screw-based 

amphibious locomotion 
for colonocopy

Contributions:
Variable geometry and 

amphibious screw-
based locomotion 

system

 

Figure 1.4 Development timeline of the research carried out as part of this 
thesis.  
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Chapter 2  

Review of Literature on Colon Anatomy, Colonoscopy, 

Robotic Colonoscopy Devices and Robotic Locomotion 

Methods 

A review of the current literature was conducted to understand the clinical 

context of this research, along with existing work undertaken to develop 

locomotion systems with similar goals. The review begins with the anatomy 

of the colon, to understand the environment in which the device will be 

deployed as well as the function of the colonic passage. Following this a 

brief overview of colonic ailments is covered, to aid understanding of why 

inspection of the colon is needed as well as the effects of these ailments on 

the passageway and the patient as a whole. Following this, a review of 

medical and non-medical inspection devices was carried out to establish the 

methods in which these robotic platforms traverse through their environment. 

Before a replacement method for colonoscopy can be developed; the current 

methods, their benefits and their flaws must be understood. A review was 

conducted covering the current practice methods for inspection of the colon 

and variations of such methods. Hydro-colonoscopy is cited an improved 

method for inspecting the colon; current evidence, publications and clinical 

trial data covering this method was reviewed to ascertain why. 

The review then considers methods of locomotion used in robotic 

applications, starting as a broad view then focusing on those applicable to 

and used on intra-luminal devices. Next-generation methods for performing 

colonoscopy and hydro-colonoscopy were reviewed with their locomotion 

methods compared across literature and against the methods discussed in 

the review of locomotion methods. 

2.1 The Anatomy of the Colon 

The colon, known also as the large intestine, is the last section of the 

passageway involved in the digestion of food, referred to as the 

gastrointestinal (GI) tract and typically 1.5m in length. A diagram of the 

upper and lower GI tract can be seen in Figure 2.1 with annotations to key 

organs. The main purpose of the colon is storage; such it has a poor blood 

supply. Throughout the colon are “haustrations”, inward foldings of the 

colonic wall. These never form a complete circumferential ring giving the 
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colon a triangular appearance when viewed from the inside, Figure 2.2. The 

surface is lined with a layer of mucosa, which protects the muscle wall. 

 

Figure 2.1 Upper and lower gastrointestinal tract diagram, Guyton and Hall 
P753 (8).  

The colon is arranged circumferentially around the abdomen; it begins with 

the caecum to the patient’s right, which is connected to the small intestine by 

the ileocaecal valve. The caecum is void of haustrations (Figure 2.2), has 

the thinnest wall of the colon and the most at risk from perforation. The 

caecum becomes the ascending colon as it passes vertically towards the 

upper body. Below the liver the colon turns left and traverses the abdomen, 

this section is known as the transverse colon with the bend known as the 

hepatic flexure. The transverse colon is typically mobile (able to move 

locally) and highly variable in length. As the colon approaches the far side of 

the abdomen, it turns downwards and becomes the descending colon. This 

bend is known as the splenic flexure as it is situated just below the spleen. 

As the descending colon enters the pelvic inlet it bends in an “S” shape, this 

is known as the sigmoid colon, which attaches to the rectum, (5). An 

illustration of the colon can be seen in Figure 2.3. 
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Figure 2.2 Haustrations seen in the colonic passage. a) haustrations along 
the colon wall b) caecum walls relatively void of haustrations. The 
photograph shows the triangular appearance to the colonic passage 
when viewed from inside. Meinhard P22, P147 (1). 

 

Figure 2.3 Schematic representation of the colon, Saunders et al. (9) The 
arrows represent the directions in which the bowel was displaced 
during the study on bowel length. 1) Maximum length of rectum and 
sigmoid colon. 2) Symphysis pubis-sigmoid/descending junction. 3) 
Maximum length of sigmoid mesocolon. 4) Length of descending colon. 
4) Maximum length of descending mesocolon. 6) Maximum length of 
transverse colon. 7) maximum length of transverse mesocolon. 8) 
Length of ascending colon and caecum. 9) Maximum length of 
ascending mesocolon. 

The colon becomes obstructed at the flexures with the soft tissue wall 

overlapping, blocking or partially blocking the passageway. In particular, the 

splenic flexure forms an acute angle as the end of the transverse colon 

overlaps the beginning of the descending colon, causing the flexure to 

“collapse” upon its self. These two colon sections may be attached making 

opening the flexure particularly challenging. The sigmoid colon may rise 

a b 
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above the pelvic inlet in some cases and typically remains folded with the 

start and end relatively fixed, (5). 

A study by Saunders et al. (9) assessed the degree in which patient’s colons 

were mobile through intraoperative measurements. A mobile colon is 

described at not being attached through tissue to the abdominal cavity wall, 

allowing the colon to move locally. 83% of patients had a mobile sigmoid 

colon, while 20% of patients had a mobile splenic flexure. The mean colonic 

length was 114.1cm with a range of 68 – 159cm. The length, position and 

size of the colon cannot be determined from outside the body without aids 

such as CT scans. Figure 2.4 shows the mean length and range of lengths 

for colon sections as measured by Saunders et al. (9), it can be seen that 

there is a large range in colonic geometry. Although larger (i.e. adult males 

vs females) people may have a larger colon, there is no evidence showing a 

strong correlation from which estimates could be built. The image in Figure 

2.4 shows a schematic of the colon with annotations for anatomical 

landmarks. The variance in the geometry of the colon provides a challenging 

environment to navigate. Sections may be fixed in place preventing ease of 

opening or mobile such that they move with any progression attempt; both of 

which can make inspection difficult. Inspection methods are discussed later 

in this chapter. 

 

Figure 2.4 Schematic showing the mean length of colon sections and length 
range in parentheses, as measured by Saunders et al. (9)  

Figure 2.5 shows the distribution and range of colonic radius as determined 

from CT images made available by the Cancer Image Archive (4). It can be 

seen that there is a normal distribution to the radius of the colon with 90% of 

measurements in the range of 10-25mm. 
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Figure 2.5 Spread of colonic radius a) and radius change along colon length 
b).Data extracted from CT scans made available from Cancer Image 
Archive (4), work carried out by Dr P Culmer and Dr A Alazmani as part 
of CoDIR. Work currently unpublished.  

2.2 Colonic Ailments 

The colon plays a vital role in the digestive process and ailments within it 

can have detrimental effects on the health and quality of life of the patient. 

While there are numerous issues which may arise with the colon, polyps are 

the most common, and often the precursor to cancers, (1). It is estimated 

that 31.9% of colonoscopies result in polyp removal (10). 

Colorectal polyps (Figure 2.6) are raised intrusions into the colonic passage 

on the mucosa lining. While they are mostly singular and isolated, some may 

become malignant. Polyps can be found in the bowel of patients of any age 

and are most numerous in adults over 50 years of age. Pre-cancerous 

lesions can be found in up to a third of all adults. It is estimated it can take 

10 years for a polyp of 10mm or larger to develop into an invasive cancer. 

The most common symptom of colorectal polyps is anaemia, caused by 

rectal bleeding (Figure 2.7) (1), which is easier to detect that visible 

bleeding. Screening looks for “occult” blood in the faeces to aid with 

diagnosis. 

 

a 

b 
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Figure 2.6 Polyp and haustrations of the colon Meinhard P602 (1).  

 

Figure 2.7 Small asymptomatic cancer in the large intestine. The most 
frequent symptom of bowel cancer is bleeding, as seen in the 
photograph. Meinhard P605 (1)  

While polyps may develop into cancers in any human, certain genetic traits 

may make specific patients more at risk to polyps and the development of 

such into malignant lesions. Colorectal cancer was the third biggest in terms 

of diagnosis of cancers in the US between 2006 and 2010, accounting for 

8% of cancers (11). Globally in 2008, colorectal cancer accounted for 9.7% 

of newly diagnosed cancer (12). First and second place were lung (12.7%) 

and breast (10.9%) cancer respectively. Worldwide colorectal cancer is the 

5th largest in terms of mortality, with an estimated 600,000 (8%) deaths in 

2008 (12). 

Diverticular disease is the presence of small hernias in the colon, which 

penetrate the mucosa (Figure 2.8, Figure 2.9). While it can be inherited, this 

is rare and most cases are acquired through low fibre diets. These hernias 

may cause pain and the feeling of being bloated and often result in 

thickening of the muscle wall around the affected area. In some cases, 

diverticulas may become infected with bacteria and become inflamed, known 

as diverticulitis. Diverticulitis can result in abscesses in the colon, fever, 

colonic bleeding and bowel perforation. Diverticulitis often starts as a single 

Haustrations 

Polyp 
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site and spreads to the adjoining colonic tissue. Due to the increased risk of 

bleeding and perforation, colonoscopy procedures are often aborted when it 

is detected, (1). 

 

Figure 2.8 Schematic showing diverticula, image: BUPA (13)  

 

Figure 2.9 Severe diverticulum. These can pose a difficult challenge to 
navigate a colonoscope along the passage. Meinhard p143 (1)  

Inflammatory bowel disease (IBD) is a term that covers two distinct 

disorders, ulcerative colitis and Crohn’s disease. Either disease can be 

diagnosed through visual inspection and biopsy, (1) 

Ulcerative colitis (UC) begins in the rectum and proceeds to spread along 

the colon. As the disease progresses the bowel mucosa becomes a single 

inflamed ulcer (Figure 2.10) which bleeds on contact with either stool or a 

colonoscope. The disease causes irritation to the bowel resulting in 

diarrhoea often containing blood and pus, and abdominal pain (1). 
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Figure 2.10 Inflamed mucosa of a colon with ulcerative colitis, Meinhard 
P622 (1).  

Crohn’s disease (CD) is most severe in the caecum and causes large 

lesions or ulcers to protrude from the mucosa, which resemble a “bear claw”. 

Unlike the other ailments mentioned Crohn’s disease may affect any part of 

the GI tract, (1). CD is most severe in the terminal ileum, caecum and 

ascending colon, where large ulcers form in bands separated by healthy 

tissue. These ulcers as they grow can adhere to form stellate ulcers, as seen 

in Figure 2.11. Advanced stages of the disease may result in sporadic 

haemorrhaging from ulcers and surrounding tissue, which can result in dark 

or black coloured stool. 

 

Figure 2.11 Crohn’s disease. Many ulcerations and sporadic haemorrhaging 
can be seen. Meinhard P624 (1)  

While the aforementioned is not a complete list of the aliments that affect the 

colon, they are the more common and clinically relevant issues. Due to the 

location of the colon within the body, the clinician requires specialised 

instruments to assess and threat the colon. 

2.3 Current Colonic Investigation Methods 

Modern colonoscopy dates back to 1964 when the first colonoscope was 

produced by Olympus Optical as a tool to visually inspect the inside of the 
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colon. Although the design is approximately the same, advancements have 

improved the camera field of view, currently 140°, and flexibility, 160-180° 

(1). 

The modern colonoscope, as seen in Figure 2.12, consists of a long flexible 

tube, approximately 1700mm long and 13-15mm diameter, with a fibre optic 

camera and light source mounted on a flexible tip (Figure 2.13). It has one or 

more accessory channels along the length for the insertion or removal of gas 

or fluids, and insertion of instruments for taking biopsies (tissue samples) for 

diagnosis. 

 

Figure 2.12 Typical modern colonoscope. Device shown is an Olympus 
EVIS EXERA II, © Olympus America Inc. Annotations show: 1) Camera 
interface connection. 2) Handheld operating controls and accessory 
channel inlets. 3) Flexible tube. 4) Controllable tip with camera. 

 

Figure 2.13 Maximum flexion in a modern gastroscope and endoscope (1)  

The colonoscopy procedure is performed by inserting the colonoscope into 

the colonic lumen per rectum and advanced along the colon to reach the 

caecum (Figure 2.14). The primary inspection of the colon mucosa is carried 

out during the removal of the colonoscope by pulling it backward through the 

colonic lumen. The procedure is widely regarded as the gold standard for 
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screening, surveillance and diagnosis of colorectal ailments such as cancer, 

(1-3, 14). Procedure length ranges between 30 to 60 minutes depending on 

the patient and the clinician. The most complicated, and time-consuming 

step is caecal intubation with the retraction and removal of the colonoscope 

taking around 6 minutes (1). 

 

Figure 2.14 Illustration of the colonoscopy procedure, showing patient on 
their left side as the clinician inserts the colonoscope. Image: Cancer 
Care Manitoba, cancercare.ns.ca  

Colonoscopy typically involves inflating the colon with carbon dioxide to 

allow clear imaging throughout. The colon does not have any structures to 

maintain a clear passage throughout, after removal of faeces the colon 

typically collapses. To allow the clinician to obtain clear images of the colon 

CO2 is passed into the colon via one of the passages on the colonoscope. 

CO2 is used over air as it is absorbed into the blood supply, whereas the N2 

in air (approximately 70%) is not absorbed. Gas remaining in the colon 

causes discomfort and is not easily passed, (1). 

There is insufficient data to be able to establish how many colonoscopies 

are performed globally each year, however a study by Blotiere et al. (15) 

states over 1.2 million are undertaken each year in France alone. With 

colonoscopy being the major form of diagnosis of colorectal cancer, and an 

estimated 1.2 million cases of colorectal cancer diagnosed world-wide in 

2008, (12), it can be safely assumed the number of colonoscopies 

performed globally each year far exceeds the millions mark. 

The UK Colonoscopy study by Gavin et al. (6) shows 822 (4.1%) cases of 

cancer diagnosis, 1445 (7.2%) patients with IBD and 2741 (13.6%) with 

diverticulosis. Colonoscopy plays a huge part in the detection of bowel 

disorders and the removal of polyps has been shown to reduce the chance 

of bowel cancer developing (16). From this, it can be understood why 

colonoscopy is widely regarded as the gold standard for surveillance and 

inspection of the colon for disease. 
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2.4 Complications with the Traditional Colonoscopy 

Procedure 

While the use of colonoscopy is well established in clinical practice, there 

are significant drawbacks. These include discomfort; the need to purge the 

bowel of its content prior to examination; the need for trained personnel; and 

the possibility of complications and failure to complete the procedure. A 

prospective study of colonoscopy provision in the UK reported the outcomes 

of 9223 procedures, Bowles et al. (17). It was revealed that in 23.1% of 

cases there was a failure to advance the colonoscope along the entire length 

of the colon. Where this occurred, the reasons given were: patient 

discomfort (35%); “looping” (30%); and poor bowel preparation (19%). 

Of the patients in the study by Bowles et al. (17), 1.2% were admitted to 

hospital within 30 days for reasons relating to colonoscopy such as 

abdominal pain; and 13 patients suffered from bleeding due to the 

procedure. While these figures are small, the tales of discomfort, lasting pain 

and bleeding may be a factor that influences people to skip appointments 

and miss procedures. As previously stated, in terms of detecting colorectal 

cancer, screening is required to assess polyps and perform biopsies if 

needed. 

A study was carried out on 20,085 colonoscopies performed in the UK (6), 

which reports the success rate to advance the colonoscope to the caecum 

(caecal intubation rate) at 92.3%. Of those which were not successful, 1553 

procedures were not completed due to looping or discomfort (49%); 

obstructions (25.9%); poor bowel preparation (22.2%); the remaining 

unsuccessful procedures were due to severe disease or other complications. 

52 of the procedures resulted in internal bleeding while a further 8 of the 

procedures resulted in perforation. A separate survey of 1351 colonoscopies 

(18) carried out looking at caecal intubation rate and reports 95% of all 

procedures resulted in reaching the caecum. 

In patients with IBD, there is an increased risk of perforation (19, 20). For the 

patients who suffered from perforation there was not an increased rate of 

mortality however they did undergo surgery with an increased rate of 

suffering from post-procedure complications.  

Looping is the term used when the colonoscope forms a loop or partial loop. 

It occurs when advancement of the colonoscope at the rectum results in no 

advancement at the tip, (1, 21, 22). Typically, this is because the tip is 

lodged in the colon, typically at an obstructive location such as the splenic 
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flexure. Simply pushing the colonoscope harder at the rectum may result in 

bowel perforation. Perforation may also occur due to rubbing of the 

colonoscope shaft against the mucosa, the friction between the two causing 

abrasive damage. In patients with a non-mobile sigmoid there is a much 

greater chance of perforation due to the complexities of navigating an S 

shaped bend through pushing at the anus alone, (1). 

Cheng et al. (23) discusses means of preventing loop formation though 

adaptations to the colonoscope. Shape locking sections have been used to 

allow the colonoscope to pass through the sigmoid once successfully 

navigated while reducing force on the sigmoid (Figure 2.15). This approach 

does not aid loop reduction once the sigmoid has been passed and requires 

extra time to set up. Computer controlled colonoscopes have been tried too, 

with little success. The authors conclude that future systems should be 

capsule based over modifications to the existing colonoscope. 

 

Figure 2.15 Shape locking guide (USGI Medical Inc.). Guide (seen in blue) 
can be used alongside a traditional colonoscope (shown in black) to 
allow easier passage through the sigmoid. Using a handle (shown 
bottom of photograph), the shape locking mechanism can be engaged 
once the guide is deployed in the desired position. 

2.5 Hydro-colonoscopy 

Hydro-colonoscopy is colonoscopy carried out using a fluid as an insufflation 

medium as opposed to a gas. A randomised trial carried out in the United 

States (24) shows that caecal intubation rates are higher in hydro-

colonoscopy procedures than standard gas inflated procedures. Similarly a 
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separate study (7) reports ease of caecal intubation when using warm fluid 

or corn seed oil. The oil provides lubrication as well as relaxing the bowel. 

Not only does relaxing the bowel aid caecal intubation (25), it was found that 

gas inflation extends the length of the bowel meaning a greater distance 

must be covered to reach the caecum (26). Fluid based insufflation methods 

do not have the same extension side effects, providing a shorter 

passageway to navigate.  

Through clinical trials carried out by the CoDIR team, it was found a warm 

isotonic fluid relaxed the bowel more so than CO2, while providing a high 

degree of colon distension. The colon is more used to being in contact with 

liquid mediums than gas and may decrease muscle spasms throughout the 

colonoscopy procedure. 

2.6 Colonic Damage 

The colon is a delicate organ and can be damaged easily, perforation of the 

colon can occur through colonoscopy procedures (1, 15, 19, 20, 27). A study 

carried out by Blotiere et al. (15) covering 947,061 colonoscopy procedures 

undertaken in France in 2010 reveals a perforation rate of 9.7 per 10,000. 

This is higher than the 8 cases out of 20,085 in the study carried out by 

Gavin et al. (6), however the occurrence is still rare at less than 0.01%. 

As previously stated, diseased colons are at a higher risk of perforation (19, 

20), Blotiere et al. states clinicians with limited practice at the procedure also 

increase the risk of a patient suffering a perforation during colonoscopy (15). 

This level of human error is something that a robotic system would aim to 

reduce. 

The contact pressures that result in damage to a colon are widely unknown 

due to lack of knowledge of the mechanical properties of human colonic 

tissue. A study carried out by Shiels et al. (10) examined the pressures 

involved in causing perforations in porcine colons. The authors noted that a 

pressure of 120 mm Hg (16kPa) of fluid resulted in a perforation of a porcine 

colon, compared with air where perforation occurred at 108 to 145 mm Hg 

(14.4 to 19.3 kPa) depending on the inflation method. The authors note that 

air inflation is safer than fluid due to the higher pressures tolerated and 

perforations being smaller and reduced faecal spillage. This contrasts with 

the evidence that fluid insufflation in colonoscopy aids the procedure (24-26) 

and is better tolerated. With lower fluid pressures needed to insufflate the 
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colon, these operational fluid pressures are further from critical pressures 

than with gas insufflation. 

The contact pressures required to puncture or perforate a colon will vary 

along the lumen as the wall thickness and muscle density changes. The 

caecum has the thinnest walls and is more susceptible to perforation (1). 

This would lead to expectation that the majority of perforations occur at this 

site; however this is not the case with perforations being most common at 

flexures (1). 

The pressures required to perforate the colon are dependent on the 

surrounding tissue and the support it gives. A taut colon is likely to be at 

greater risk of perforation from point loading than a relaxed colon, due to the 

ability to stretch. Coupled with the method of steering the colonoscope, this 

adds explanation to why flexure sites are most prone to perforation. Similarly 

sharp points are of higher chance of causing perforation than blunt objects. 

Taking the pressures reported by Shiels et al. (10) and assuming an even 

colonic wall thickness throughout and a linear pressure distribution, a 

minimum pressure to cause perforation was taken to be 14kN·m-2 (14kPa). 

Taking a colonoscope of 15mm diameter, this would calculate to be 2.5 N 

applied to the colonoscope in order for the tip, when rested flat against the 

colon, to perforate the colon. 

2.7 Locomotion Methods 

Before designing a locomotion system for a hydro-colonoscopy device it is 

important to understand the methods of locomotion established and used in 

vehicular and robotic applications. 

2.7.1 Bio-Inspired Locomotion Methods 

Nature provides a rich supply of developed and optimised locomotion 

systems. The most prevalent land type locomotion is crawling or walking, 

and for fluid based locomotion is swimming. 

Although from initial inspection marine animals appear to move in very 

similar methods, the range of mechanics involved in swimming ranges 

greatly. Sfakiotakis et al. (28) carried out a review of the numerous modes in 

which fish swim. Muller et al. (29) assessed the hydrodynamics of the 

swimming methods used by fish and effects of the body size upon the 

locomotion method. Adult fish are able to coast longer distances and use 

less relative energy than infants; similarly, larger species exert less energy 

than small species for the same distance travelled. The authors note that 
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Reynolds number plays a large role in the ability to coast. There are of 

course other methods used by marine life, such as the jet type swimming of 

squid. 

Typical fish-like swimming requires forward locomotion to turn; they are 

unable to turn on the spot, with few fish being able to reverse (28, 29). Fish 

inspired robots that have been used for inspection were typically designed 

as such for aesthetic purposes or the studying of fish themselves, Figure 

2.16, (30-32). 

Should a fish inspired locomotion system without reverse swimming abilities 

be deployed for colonic inspection there is a chance it may get stuck in a 

cavity formed at haustrations or diverticulas. Swimming strategies using fins 

or tails may also be unable to pass strictures, as these block the sideways 

motion required for generation of thrust; or pass non-fluid filled sections. 

 

Figure 2.16 Fish inspired robots. a) Mobile fish robot, Xiaobo et al; (30). b) 
Autonomous fish robot, Huosheng et al. (31); c) Sea bream robot, 
Terada et al. (32). 

Biologically inspired amphibious systems are numerous and many take the 

form of serpentine locomotion. Snake or serpentine-like locomotion systems 

are often used on robotic platforms for inspection purposes, as discussed by 

Hirose and Mori (33). While some are limited to a single medium for 

locomotion (34), other variations of the serpentine like locomotion system 

have been developed using wheeled body systems allowing full amphibious 

locomotion, such as those by Crespi et al. (35) and Shumei et al. (36) 

(Figure 2.17). These systems reduce the drag between the body sections 

and the surface along the length of the device using passive wheels. The 

coefficient of friction between the body sections perpendicular to the length 

of the device remains high, allowing the system to move. The passive 

wheels replicate the scales on a serpent’s body while allowing for both 

forward and backward locomotion; a serpent’s scales disallow backwards 

locomotion. 

a b c 
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Serpentine locomotion also works in swimming situations, allowing for 

amphibious locomotion using a single method of articulation. A commercial 

example of this is the ACM-R5H (37) from HiBot Corp. The device is formed 

from several sections containing motors and batteries, each 80mm diameter 

and 170mm length, which are sealed to prevent moisture and dust 

penetration. 

 

Figure 2.17 Serpentine robots. a) Lamprey based robot by Ayers (34); b) 
Passive wheeled system, Crespi et al. (35); c) Amphibious wheeled 
snake robot, Shumei et al. (36); d) ACM-R5H (37), HiBot Corp. 

Placing aside the mechanical constraints and limitations of fitting the 

required actuators within a serpentine system for use in colonoscopy, the 

locomotion system requires a large sideways sweep of the body to progress 

longitudinally. This lateral movement is greater than the mean colonic 

diameter of approximately 40mm, rendering the locomotion system 

infeasible. This sweeping motion of the chassis will cause any camera view 

to move; limiting the ability to move closer to an object of interest without 

losing sight of it. The confined environment of the colon would also impose 

difficulties on a serpentine like locomotion system, hindering its ability to 

progress and traverse the colon. 

2.7.2 Pipe Inspection Locomotion Systems 

The colon is more similar to a pipe than a flat surface and therefore a review 

of pipeline inspection locomotion systems was undertaken. Pipe and pipeline 

inspection robots fall into 6 major categories: pig, wheeled, tracked, 

crawling, inchworm and screw type, as defined by Roh et al. (38). Pipeline 

inspection gauge (PIG) devices move along a passage by forming a seal 

against the pipe surface and through a difference in pressures between the 

sides move along a pipe, Figure 2.18a. Wheeled (Figure 2.18b) and tracked 

(Figure 2.18c) devices move by traction between the surface and their 

associated rotating components, with motion perpendicular to the rotation of 

the wheel or track. Crawling devices use legs or appendages which form a 

static contact point against the surface allowing some form of leverage to 

move the device along, Figure 2.18d. Inchworm devices use a set of two or 

more independently gripping sections separated by a variable length 
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actuator, in alternating which side grips and controlling the length of the 

attachment the device moves, Figure 2.18e. Screw based devices contain a 

helical outer body which when rotated against the pipe surface causes it to 

move along the pipe, Figure 2.18f. 

The market is full of pipe inspection robots using wheels or tracks which 

operate within the pipe or grip to the pipe’s outer surface, as reviewed by 

Roman and Pellergino (39). Pipeline inspection robots are primarily 

designed to allow continuous operation of the pipeline: i.e. not blocking the 

flow of gas or fluid through the pipe. 

 

Figure 2.18 Pipe inspection robot locomotion types, adapted from Roh et al. 
(38) Showing: a) PIG; b) Wheeled; c) Tracked; d) Crawling; e) 
Inchworm; f) Screw. 

The pig (pipeline inspection gauge) locomotion system, involves a smooth 

sided device of equal outer diameter to the inner diameter of the pipe being 

inspected. A pressure difference between the sides drives the device along 

the pipe. 

Inchworm systems are typically used for pipe or shaft inspection and 

exploration, such as the device developed by Richardson et al. (40). The 

main advantage of an inchworm system is the point of contact between the 

device and the wall is static – leading to increased traction while reducing 

slippage. These systems typically have passive wheels which take the 

weight of the device, although not always. Choi et al. (41) developed an 

inchworm based system that traverses the outside of pipes, to allow 

surveying without disruption of the flow or pressure. 

 

The inchworm wall pressing technique can be combined with wheels or 

tracks to maintain constant traction, such as on the commercially available 

inspection robot, MrInspect (Figure 2.19), Roh et al. (38). The advantage of 
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such is they can deal with changes in diameter of the pipeline. The wall push 

system also allows the device to maintain a central position within the pipe, 

this can be ideal for steady, vibration free video feed as well as for 

navigating past obstacles. 

 

Figure 2.19 MrInspect IV, Intelligent Robotics & Mechanical System 
Laboratory School of Mechanical Engineering, Sungkyunkwan 
University, Korea.  

2.7.3 Hybrid Locomotion Systems 

A common requirement across all locomotion systems is the need to provide 

sufficient thrust or traction for controlled motion. Many specialised devices 

and locomotion systems are optimised for their designated environment and 

such become ineffective outside their designated environment. Amphibious 

devices are developed such that they can function in several environments. 

While adding wheels to a boat is a simple solution to producing an 

amphibious system, it is not elegant. One mode affects the other negatively: 

the wheels increase drag in fluid and the propeller provides limitations to the 

clearance on land. Jiancheng et al. (42) attempts to remove this limitation by 

combining the wheels on the developed device with propellers. Wheels with 

purpose shaped spokes can be rotated 90° such that they lay perpendicular 

to their original position allowing them to act as propellers moving the device 

in the same direction as on land when in fluid (Figure 2.20). 
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Figure 2.20 Wheel propeller hybrid device, Jiancheng et al. (42)  

While the concept developed by Jiancheng et al. (42) is able to use the 

same drivetrain to power both modes of locomotion, it requires discrete 

switching between modes; there is no middle ground. The Ice Challenger 

team (43) developed an amphibious craft that is able to use the same 

locomotion drivetrain for both land based and fluid based locomotion. The 

developed craft “Snowbird” uses two Archimedes’ screws located at either 

side of the vehicle, which span the entire length to provide locomotion 

(Figure 2.21). Screw based locomotion is not suited for use on hard surfaces 

or over long distances as noted by the team (43), and so caterpillar tracks 

were added to the underside of the vehicle to allow the device greater 

manoeuvrability over distances. 

 

Figure 2.21 Screw based locomotion: Snowbird 6, Ice Challenger team (43)  

Using a similar locomotion strategy to that used in Snowbird, an amphibious 

device was developed by Liang et al. (44) (Figure 2.22). The device was 

developed for surveying of water and would need to traverse loose or 

unsteady ground, which would make wheels impractical. The authors note 

that their original device was too long for use on uneven ground, as the 

screws would not have enough contact to provide useful locomotion: the 

craft could become grounded over concave sections of terrain, or steep 

changes in terrain elevation. 
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Figure 2.22 Screw based amphibious device, Liang et al. (44)  

A means of avoiding becoming grounded can be as simple as shortening the 

length of the screws. To be able to provide greater controllability, articulated 

sections can be added each with their own set of screws. Liedke et al. (45), 

developed a device which uses multiple modules: the system is able to 

reconfigure itself through attaching or detaching modules, as shown in 

Figure 2.23. Multiple modules can compensate for the smaller and weaker 

drivetrain each unit possesses. 

 

Figure 2.23 Modular screw drive device, Liedke et al. (45) showing screw 
based locomotion highlighted in red  

The benefits of screw based locomotion over wheel based locomotion on 

soft ground are discussed by Nagaoka et al. (46) (Figure 2.24). While a 

wheel once sunk past 1/2 of its diameter into a ground medium becomes 

stuck, an Archimedean screw can continue to operate while completely 

submerged in a ground medium. This is particularly important when the 

vehicle or device is operating on soft soil or sand where the chance of 

submerged locomotion units is high and manually retrieval is difficult. An 

example would be the Mars Exploration Rover Spirit (MAR-A) which became 

stuck in quicksand in 2009 (47) when its wheels sunk too far into the Martian 

soil. A screw based locomotion system would have been able to escape this 

fate by being able to continue locomotion through the quicksand. 
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Figure 2.24 Screw Drive Rover, Nagaoka et al. (46)  

Screw based locomotion for displaceable terrain can be traced back to the 

early 1900s though several patents on vehicular systems (United States 

patent numbers: US635501, US669210, US864106 and European patent 

number GB18674). These patents cover the use of Archimedes’ screws 

providing locomotion on mud and snow, typically for agricultural and forestry 

purposes. The large surface area between the screw and the terrain aids the 

spreading of weight reducing the displacement into the terrain. Coupled with 

a screw’s ability to provide locomotion even when entirely buried these 

vehicles were able to outperform wheel-based vehicles. However, their low 

efficiency on firm or solid ground has led to their overall demise with very 

few agricultural vehicles making use of Archimedean screws now. Large 

wheeled and tracked vehicles are now used in these situations and have a 

higher efficiency on solid ground. 

Figure 2.25 shows original diagrams submitted alongside patents US635501 

and US669210. It is interesting to note that the screw’s poor performance on 

solid terrain was noted through the designs with the inclusion of wheels. 

These wheels allow for locomotion on roads while the screws allow the 

devices to traverse otherwise impassable terrain, resulting in amphibious 

locomotion. 

During the 1960s and 1970s, several screw based amphibious vehicles were 

produced, such as The Marsh Screw Amphibian by Chrysler Corporation 

(Figure 2.26), for commercial and military purposes. The vehicles were able 

to traverse water expanses as well as marsh or bog land (48). Modern 

vehicles built for this terrain are often of the hovercraft nature; however, this 

mode of locomotion is not suitable for colonoscopy. Hovercraft vehicles are 

not able to operate while submerged and such are not suitable for use within 

hydro-colonoscopy. 
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Figure 2.25 Screw locomotion patents. a) Patent US635501. Jacob J A 
Morath, Oct 24, 1899. b) Patent US669210, Charles E S Burch, Mar 5, 
1901  

 

Figure 2.26 The Marsh Screw Amphibian by Chrysler Corporation 

2.8 Next Generation Colonoscopy Methods 

While there are no commercially available colonoscopy robots, there is 

research into such system by several researchers. In this section, 

locomotion systems of surgical devices will be assessed for their 

practicalities and merits for use on a colonic investigation device. To 

understand the current level of acceptance of robotic apparatus in surgical 

procedures a short review of commercially available robotic surgical units 
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was carried out. This can aid the critical assessment of proposed systems 

and later aid the development of new systems. 

2.8.1 Surgical Robots 

Robotically assisted and robot performed surgical procedures are becoming 

more commonplace within today’s healthcare systems. There are many 

tasks, which can be carried out by robots to a greater degree of accuracy 

than humans. The use of robotic devices can ease the procedure difficulty or 

reduce risks of complications. In understanding how robots have been 

accepted into surgery and the current view upon them can aid the 

development of future systems. 

Ortiz-Oshiro et al. (49) discusses the advantages of robotics in regards to 

laparoscopic surgery. While the field of surgery is different to colonoscopy, 

there are more widely developed robotic systems for this area, which can 

show an improvement to traditional methods. It is interesting to note that the 

acceptance of robotic systems, such as the da Vinci® Surgical System by 

Intuitive Surgical (Figure 2.27), and their reduction in training times for 

procedures is promising to the field of robotic surgical devices as a whole. 

Initially the costs may be higher but as the usage increases such robotic 

systems will reduce in price per operation as well as overall effectiveness of 

those using them will increase. 

Jayne et al. (50) discusses that while these robotic systems reduce trauma 

due to smaller access areas needed, the lack of haptic feedback to the 

clinician can be a strong disadvantage. Collisions between the robotic arms 

and those around them can cause other potential issues in the operating 

theatre. The operating clinician is not looking at the robot and does not know 

if their next movement will cause a collision between another member of 

staff in the room and the device. While collisions can be reduced through 

protocols and training for those working around the robotic device, the loss 

of depth perception and haptic feedback cannot be overcome so easily. 
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Figure 2.27 Da Vinci® surgical system, © 2015 Intuitive Surgical Inc.  

2.8.2 Passive Capsule Systems 

This section will cover devices aimed at replacing colonoscopy and provide 

rich data for clinicians in real-time. As a means of inspecting the lower GI 

tract there are several capsule devices that feature a single or dual cameras, 

such as PillCam® by Given Imaging (Figure 2.28), which stream back 

images at low rates: typically one image per 15 minutes. Capsule endoscopy 

carries a 1.5% risk of the capsule becoming stuck in the small intestine 

requiring removal either by surgery, colonoscopy or enteroscopy, Meinhard, 

P120 (1).  

 

Figure 2.28 PillCam®, Given Imaging. Images show: a) PillCam SB®, a 
single camera capsule for small bowel inspection. b) PillCam Colon®, a 
two-camera capsule for large bowel inspection. c) Photograph of 
PillCam SB® held showing size of capsule. 

A review of passive single capsule devices, such as PillCam® was carried 

out by Ciuti et al. (51). Non-drivable capsules are by design unable to control 

their view as they travel through the GI passage under natural peristalsis. 

Due to the high rate in which they pass certain parts of the GI passage, they 

require high frame rate video with a large depth of field to provide useful 
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images for a clinician. Although once the images have been obtained it can 

be difficult to accurately position each shot within the GI tract; leading to 

limited usage. The devices do have their uses though; they provide an easy 

way to assess the GI tract through a minimally invasive procedure. The 

patient does not even need to remain in the operating theatre or even the 

premises for the images to be collected. 

2.8.3 Active Capsule Systems 

While capsule systems are attractive due to their small size, their inability to 

control the direction of the camera and lack of tooling gives them only limited 

usability. Work has been carried out adding active systems to capsule based 

devices to allow for control over the camera direction and adding some 

tooling capability. 

Menciassi and Dario (52) discuss the viability of two different active single 

capsule based colonoscopy robots developed by the authors alongside other 

researchers. The first system discussed, developed by Quirini et al. (53), 

uses shaped legs to allow the device to crawl along a lumen, Figure 2.29. 

The legs feature a passively compliant section midway allowing the leg to 

bed during the forward stroke. This section then locks in the backward 

stroke, forming a rigid length, allowing contact pressure between the leg and 

the colon to increase. The implementation of the legs raises concerns over 

possible perforation of the bowel if the muscle spasms or contracts. In 

making the device tether-less a secondary capsule was added to the rear to 

house the relatively large battery required for the system to operate. The 

authors calculated each leg needed 0.25N of thrust to allow the device to 

traverse the colon, 1.0N in total across the 4 legs. The system was designed 

to use shape memory alloy (SMA) actuators to power each of the legs, 

however through testing it was found that the actuators did not react fast 

enough to provide useful locomotion (2.7 cycles min-1) and consumed a 

large amount of energy. The SMA approach was replaced with a 

conventional rotary motor and worm gear approach, however the power 

requirements were still too large to fit the power source within the main 

capsule and such a battery unit was added to the rear, as seen circled in 

Figure 2.29. 
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Figure 2.29 Legged based active capsule device developed by Quirini et al. 
(53) photographed next to €1 coin with battery unit circled in red.  

A second system developed by Tortora et al. (54) was discussed by 

Menciassi and Dario (52) which uses four rear mounted propellers for 

locomotion through a fluid filled lumen, Figure 2.30. A swimming approach is 

stated to require less tissue manipulation than a crawling approach as it is 

presumed the colon will be inflated to an extent. A swimming device can 

operate with lower power output from its propulsion systems to move 

compared to a crawling system, allowing for a much more feasible approach 

than crawling for a small self-contained battery powered system. The lower 

thrust output does however limit the device in terms of its ability to pass 

strictures and collapsed sections of a lumen. 

Tortora et al. (54) reported that the propeller device was able to propel 

through a PEG solution for 30 minutes averaging a velocity of 15mm·s-1. The 

device was controlled wirelessly using a commercial joystick attached to a 

computer, and deployed using a modified gastroscope, Figure 2.30b. The 

authors however do not state the thrust output of the device. 

 

Figure 2.30 Propeller based active capsule, Tortora et al. (54). Showing a) 
(left) device shown next to one Euro cent coin, b) (right) device and 
deployment tool. 

The feasibility of using multiple small capsule devices with one or two 

degrees of freedom which combine to form larger and more functionally 

complete robotic systems was discussed by Menciassi et al. (55). The 

previous two systems were covered alongside the means to attach modules 
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of different types together. While single module swallow-able devices can be 

used for diagnosis, the authors state that multi-module devices will be 

needed for more complex procedures if the overall platform should be small 

enough to swallow. 

Menciassi and Dario (52) discuss a further single capsule approach which 

uses an external robotically controlled magnet to guide the capsule robot 

around the colon. This approach removes the need for actuators and 

locomotion systems within the capsule allowing either greater space for 

instrumentation or reducing the size of the device. 

2.8.4 Robotically Controlled Colonoscope Systems 

Capsule based systems have limited ability to carry out biopsies, especially 

if samples need to be stored on the device. The traditional colonoscope has 

a strong advantage here as an unlimited number of biopsies could be 

theoretically carried out. This is due to the specifically designed channel 

allowing the biopsy tool to be withdrawn and sample removed without 

removing the colonoscope. Several researchers have added robotic 

actuation to the traditional colonoscope to retain this functionality (23, 56-

58), while increasing control over position and motion. 

Externally controlled systems pose a means of producing a very compact 

capsule for internal investigation while maintaining a high degree of 

controllability. Combining this actuation method with a colonoscope could 

provide a much more ideal advancement method over the rear pushed 

method currently used. Valdastri et al. (56) discussed using a modified 

colonoscope with a soft tip and passive tether which may be robotically 

manipulated along the colon using an external magnet, Figure 2.31. The 

system uses existing means for biopsy already used in colonoscopy, with 

the colon being inflated with CO2 as is typical with the current procedure. 

Arrezo et al. (58) carried out a study using this system and compared it to a 

traditional colonoscope. The authors set up ex-vivo porcine colons in a 

phantom model, with beads inserted to model polyps. Experts in 

colonoscopy and medical students with no previous skills in colonoscopy 

were given both the magnetic capsule and traditional colonoscope and 

instructed to explore the colon for polyps (coloured beads placed randomly 

for the trial). The operators was not given the position or number of polyps, 

which were randomised for each setup, and asked to locate as many as they 

could find. 
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Figure 2.31 Magnetically guided colonoscope, Valdastri et al. (56) Showing 
(left) device on bench with tool deployed and (right) device suspended 
in a Perspex tube by the external magnetic manipulator. 

For the colonoscopy experts the percentage of polyps found using the 

magnetic capsule was less than the traditional colonoscope, 74.2% 

compared to 83.9%. Interestingly the trainees attained the same detection 

rate for both the capsule and colonoscope, which is greater than the experts 

at 87.6%. The authors speculate that this may be because the experts 

performed the procedure quicker and may be prejudgmental of a robotic 

system. The artificially cleaned colon without peristalsis or patient comfort to 

consider may also attribute to why the trainees performed better. 

Despite the reduced polyp detection by experts using the magnetically 

controlled system, it can be seen that robotic systems are viable, and as 

noted by Arrezo et al. (58) are more accurate in their movements when 

compared to the traditional colonoscope. Through greater use, it may be 

possible for experts to exceed polyp detection of traditional methods with 

robotically controlled systems. 

2.8.5 Externally Actuated Robotic Systems 

The use of external magnets for swimming is not a new idea and has been 

suggested for medical robotic devices for some time, such as the system 

developed by Honda et al. (59) in 1996. The developed system uses a 

permanent magnet attached to a coiled length of wire, such that rotating the 

external magnet causes the device to move in a spiral path through a fluid 

medium. This approach only works at low Reynolds numbers, where viscous 

forces dominate and inertial forces are negligible. 
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A bullet shaped device with a threaded nose was proposed by Ishiyama et 

al. (60) which is rotated by an external magnet to move. Although the device 

was tested, it had no ability to steer or carry on-board equipment such as 

cameras.  

Sudo et al. (61) took the principle of using an external magnet and 

developed a system that oscillates as opposed to rotating (Figure 2.32). The 

developed system is formed by a small permanent magnet attached to a 

semi-flexible film, which acts as a tail. Through alternating the external 

magnetic field, the device swims with a basic fish-like motion. The original 

idea was to produce something to swim within blood vessels; however, the 

size of permanent magnets available restricts the system to sizes much 

greater than the majority of blood vessels within the human body. 

 

Figure 2.32 Oscillating magnetic device, Sudo et al. (61)  

A similar device developed by Guo et al. (62) was used to assess the ability 

of permanent magnet swimming devices for surgical purposes (Figure 2.33). 

Although it is able to swim, it has limited ability to control in which direction it 

swims. The ability to corner is somewhat reliant on wall contact and as yet is 

far too large for the proposed intra-blood vessel task. 

 

Figure 2.33 Oscillating magnetic device, Guo et al. (62)  

The size requirements of the colon compared to blood vessels are not as 

restrictive and such a system may be a possibility for a colonic investigation 

device. The obvious reason not to use a system that oscillates or rotates is 

control. Both systems would provide very unsteady camera footage and 

pose complications in providing a stable platform for on-board tools. 

A hybrid of the previously discussed external magnetic field controlled 

systems was developed by Qinxue et al. (63) (Figure 2.34). The system 

developed comprises of a helically rotating nose section with an oscillating 

tail section. Through positioning of several magnets, the system can rotate 

the nose section while oscillating the tail from the same alternating magnetic 

field. The screw-like nose is proposed to be able to overcome collapsed or 

blocked lumen while the tail can provide higher frequency fluid locomotion. 
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Figure 2.34 Hybrid magnetically powered device, Qinxue et al. (63)  

The previous five systems mentioned rely upon the alteration of a magnetic 

field to move. Due to the way the two oscillating tail devices move, they are 

unable to reverse should they get stuck nose first into a recess. While the 

screw based devices could reverse by flipping the direction the screw rotates 

in, the tail on the device discussed by Qinxue et al. (63) will still drive the 

device forward. None of them have the fine degree of control that can be 

administered by the magnetically dragged device by Valdastri et al. (56). 

Simply magnetically dragging the device allows for greater dexterity over 

using magnets to power an on-board locomotion system, albeit through the 

use of expensive and large external manipulators. 

Palagi et al. (64) took an oscillating tail fish-like concept and produced a 

paramagnetic soft-bodied micro system (Figure 2.35). Shaped like a 

teardrop, it moves in a similar method to small fish through shredding 

vortices at the tail. The soft-bodied nature allows the device to be more 

compliant and reduces the chances of tissue damage. By using a 

paramagnetic body, the device can be produced much smaller and with less 

mass than other approaches using permanent magnets. Whereas other 

swimming devices have to counter gravity to remain in the centre vertically, 

this system was produced using a buoyantly neutral material. 

 

Figure 2.35 Paramagnetic soft-bodied micro system, Palagi et al. (64)  

The control of soft bodied magnetic devices has been modelled by Abbott et 

al. (65). The authors present findings showing translation along x-axis, y-axis 

and z-axis to be not only possible but easy to perform however rotation 

about an axis is not possible on its own without some degree of translation. 

The speed of the translation can be altered by the relative strength of the 

magnetic field; however, without some feedback from the location of the 



- 37 - 

device closed loop control is not possible. In lab experiments, lasers were 

used on several of the magnetically controlled swimming devices to allow for 

closed loop control. This style of control would not be possible when the 

device was deployed within a human colonic lumen. 

Many of these devices are not actually robots in themselves. They are 

systems guided by a magnetic field. The control of the magnet or magnetic 

field may be realised with robotic arms. The devices by Honda et al., Sudo et 

al., Guo et al., Qinxue et al. and Palagi et al. lack the ability to carry a 

payload in a stable fashion. The magnetically guided approach by Valdastri 

et al. and Arrezo et al. allows a greater degree of control of position and 

stability, while carrying a payload compared to magnetically driven robotic 

devices. 

2.8.6 Helically Driven Swimming Systems 

Non-magnetically driven swimming devices have also seen development. 

Bai et al. (66) discusses the development of a spermatozoa inspired 

swimming device (Figure 2.36). It features a series of helical tails which are 

rotated to provide thrust, similar to the helical rotating tail on the magnetically 

driven device by Honda et al. (59). The spermatozoa device can steer 

through variation of the angular velocity of each helical tail. The concept 

relies on low Reynolds number situations to move effectively. 

 

Figure 2.36 Spermatozoa inspired swimming device, Bai et al. (66)  

Instead of trying to replicate bacterial style swimming locomotion in a robotic 

system, Andre et al. (67) produced a device which utilises bacteria for a 

propulsion. The aim was to produce a fleet of highly mobile devices to 

perform tasks; however, for use in hydro-colonoscopy the lack of ability to 

carry payloads such as a camera renders the method un-useful. 

The methods in which devices, bacteria and other single cellular organisms, 

move at low Reynolds numbers is very different to larger Reynolds numbers, 

Purcell (68). A singular cellular organism swimming through water can be 

likened to a human swimming in molasses. At low Reynolds numbers, 

inertial forces net to zero, Lauga et al. (69), thus certain methods of 
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swimming net no gained displacement. Any method, which relies upon 

inertial forces to move, does not work at low Reynolds numbers due to 

reversibility of flow: a forward and backward motion result in equivalent 

forces netting to 0. The diagram in Figure 2.37 shows oar swimming (like a 

submerged rowing boat) at high Reynolds (left) and low Reynolds (right) 

displayed in four distinct steps as detailed below (68). 

1. Ready for stroke. 

2. Forward stroke; fins/flippers move backwards quickly to propel the 

body forwards. 

3. Resting; for high Reynolds number the body glides (left) and for low 

Reynolds number the body remains stationary. 

4. Return or reverse stroke; fins or flippers return to the start location 

slowly. For low Reynolds number this causes the body to move in 

reverse – netting a total distance moved as zero. 

 

 

Figure 2.37 High Reynolds number versus low Reynolds number swimming, 
adapted from Purcell (68). Blue coloured arrows show direction of body 
with the colour intensity signifying velocity, deep blue relates to the 
highest velocity. Red coloured arrows show velocity of fins with colour 
intensity signifying velocity, deep red relates to the highest velocity. 

While oar style swimming at low Reynolds does not yield any useful 

translation, flexible oar or corkscrew style locomotion do, Purcell (68). The 

locomotion systems of the aforementioned devices by Sudo et al. and Guo 

et al. utilise the flexible oar method while the devices by Honda et al. and Bai 

et al. use the corkscrew method. Purcell (70) later assesses the efficiency of 

such corkscrew locomotion methods and concludes that the efficiency of 

Step 1 

Step 2 

Step 3 

Step 4 
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such systems is low. As the screw rotates, a section of the screw will impart 

a motion on the fluid in the opposite direction to a separate section of the 

screw π radians of a rotation from it, i.e. opposite sides. As these motions 

counteract each other, they do not contribute to the motion of the device and 

reduce the efficiency. Further sheering interactions between the screw 

surface and fluid across the entire screw length decreases the overall 

efficiency of the locomotion system.  

Zhang et al. (71) produced a swimming locomotion system at bacterial 

scales comprised of a magnet attached to a micro helical tail (Figure 2.38), 

similar to the device discussed by Honda et al. (59). The design is discussed 

by Abbott et al (72) and concluded that although simply pulling a micro robot 

using the magnetic field is more optimal in terms of speed, with decreasing 

field strength rotational devices are preferable in terms of movement and 

overall speed. A similar device using a magnetically driven system with 

flexible flagella was developed by Ye et al. (73) which at publication was not 

able to carry a payload. 

 

Figure 2.38 Artificial bacterial swimmer, Zhang et al. (71)  

The space available for a locomotion system to operate within is crucial to 

the design of the locomotion system. Colonic investigation devices do not 

need to be in the micro region and such, will unlikely experience low 

Reynolds number flows – unless a very vicious fluid is used. An appropriate 

locomotion system could still however use helical appendages as a form of 

locomotion. Ikeuchi et al. (74) investigated using a rotating helical ribbed 

device to traverse along a lumen through sheering force interaction with a 

mucus film. The authors developed a test rig for collection of experimental 

data on the performance of a single screw, which did not progress into a 

standalone device. The single helically grooved cylinder achieved up to 1N 

in thrust generation at 15rads-1, (the authors reported the cylinder rotated at 

0.6ms-1 with a radius of 20mm). The trend between rotational velocity and 

thrust is near linear, with halving the velocity producing just over half the 

thrust. Should the rotational velocity be limited to restrict tissue damage the 

maximum thrust will be reduced. 

Zhou et al. (75) developed the concept proposed by Ikeuchi et al. (74) into a 

two module device (Figure 2.39). It consists of two modules; each module is 
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5mm in diameter and 10mm long. The two modules each have a helically 

grooved outer face and house the required motors and electronics. The two 

sections are arranged longitudinally and counter rotate to remove the net 

torque on the system. The proposed system is designed to fit on the end of a 

traditional endoscope to provide some degree of forward driven control. 

However, the system cannot provide any steering capability and relies upon 

the lumen to steer the device though wall interaction. 

 

Figure 2.39 Counter rotating helical bodied device, Zhou et al. (75)  

A similar idea of using concentric counter rotating sections was built by 

Shikanai et al. (76) (Figure 2.40). This approach uses several flexible 

sections with helical fins. Each section can be inflated such that it maintains 

contact with the lumen allowing for traction. Unlike the approach of Zhou et 

al. (75), the diameter of the device is much greater, 30mm, such that it 

presses against the mucosa to gain traction. The fins act against the 

haustrations to “screw” the device along the passage. A main limitation of 

this method would appear to be changes in the colon’s diameter, limiting 

traction, and the angle of flexion at the joints between the multiple sections, 

limiting passage through flexures of the colon. The developed device is able 

to inflate each body section independently to maintain traction overcoming 

local variations in the diameter of the lumen. However due to the overall 

length of the device, 190mm, it is considerably long and cumbersome at 

flexures due to the small degree of flexion at each join. The authors note 

while the device can move smoothly in straight sections at bends it struggles 

to progress, becoming stuck during testing in an ex-vivo porcine colon. 

 

Figure 2.40 Concentric counter rotating section device, Shikanai et al. (76)  

A single rotating threaded device was developed by Kim et al. (77), with the 

motor housing ideally remaining stationary (Figure 2.41). The authors found 

that the chassis and screw appendage rotated in opposite directions, 

reducing the propulsive output. The length of the shaft between the chassis 
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and screw affected the twisting effect on the colon when tested ex-vivo; in 

extreme cases the colon was twisted to a high degree around the system 

which would cause considerable discomfort if not damage to a patient. The 

authors noted that they could apply fins to the chassis to aid propulsion, 

which would result in a device not too dissimilar to that developed by Zhou et 

al. (75). 

 

Figure 2.41 Threaded rotating device, Kim et al. (77)  

Helically grooved rotating sections have also been used as more traditional 

wheels, such as on the device analysed by Rentschler et al. (78) (Figure 

2.42). While not strictly an intra-luminal device, it is used for reduction in 

ports needed in laparoscopic surgery. The requirements of being atraumatic 

are still present in the design of the device, which was developed to provide 

biopsy capabilities from a single port surgical procedure. The device uses 

the elongated helically grooved wheels to traverse the abdominal cavity to 

reach the site required for the procedure. The abdominal cavity, when 

inflated, gives a large and reasonably flat surface making it easier for such a 

device to move. Inside the colon the environment is different, the varying 

diameter and tight flexures make a wheel driven system impractical, 

particularly systems with a flat chassis and wheels at the corners. 

 

Figure 2.42 Mobile in-vivo camera biopsy robot, Rentschler et al. (78)  

Combining the approach of using screw threads against the mucosa and an 

external magnet, Lee et al. (79) devised a system which is able to adapt the 

pitch of the screw to suit the environmental needs (Figure 2.43). The front 

end is able to rotate freely compared to the rear, with three flexible chains, at 

120° separation around the circumference, connecting the two sections. As 
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the front is rotated with an external magnetic field, if the rear is restrained by 

the lumen the system will twist with the chains forming a screw thread 

allowing the device to move through constricted areas. This single module 

approach while novel in locomotion system does not have a static section in 

relation to the colon; any camera footage from the device would continuously 

rotate. This may be disorientating for the surgeon and difficult to stabilise in 

terms of control. 

 

Figure 2.43 Chain drive device, Lee et al. (79)  

2.8.7 Bio-Inspired Colonic Devices 

More traditional modes of robotic locomotion in pipes are also present within 

colonic inspection robots. Naderi et al. (57) developed an inchworm type 

locomotion for a device used in colonoscopy (Figure 2.44). Using suction 

cups to dock against the colon the device can crawl along the lumen and is 

able to navigate bends due to the flexibility of the device. This locomotion 

system not only requires constant contact with the lumen, it also requires a 

firm connection to move. Geometric variations in the lumen, such as 

prominent haustrations, could pose impassable sections. If a suction cup 

cannot form an airtight seal with the lumen, the device will become stuck.  

 

Figure 2.44 Suction driven colonoscopy robot, Naderi et al. (57)  

A different approach using an inchworm locomotion system was proposed 

by Phee et al. (80), (Figure 2.45). The device comprises suction cups at 

each end to provide the gripping mechanism, connected by expandable 

bellows to allow translation. External pumps supplied the required pressure 

changes through a series of flexible pipes. The efficiency of the device was 

measured by the authors to be 76% when travelling along a straight 

unrestricted section of colon, which decreased to 0% when the device 
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attempted to navigate a flexion. The authors discuss the efficiency of the 

locomotion system, noting that due to the compliance of the colon the overall 

progress was hindered. When the device contracts or expands 

longitudinally, should the colon move with the device the net distance 

travelled may tend to zero. Due to the gripping mechanism requiring a 

negative pressure, should the pipes become kinked due to flexions in the 

colon there is also a chance that the pipes may collapse preventing the 

gripping mechanism from working; rendering the device immobile. Using 

stiffer pipes to reduce the chance of them collapsing or kinking would result 

in greater forces exerted on the colonic tissue and greater resistance to 

cornering. 

 

Figure 2.45 Bellow inchworm device, Phee et al. (80)  

A different inchworm approach was developed by Kim et al. (77) (Figure 

2.46) which does not rely upon active gripping for locomotion. The device 

uses angled wedge protrusions, which act like passive barbs to grip the 

mucosa. The midsection of the device can elongate allowing linear motion, 

with the entire body being covered in a compliant sheath, which protects the 

colon from becoming trapped and protects the components from 

contamination. The authors discuss that the elongation stroke when low 

limited the device’s ability to transverse the lumen: due to the colonic tissue 

stretching the device made net no gain in distance for an entire stroke as 

similarly noted by Phee et al. (80). Lengthening the stroke of the system to 

allow for progression hampers the corning ability of the system; with it 

becoming too long to pass the flexures within the colon. 

 

Figure 2.46 Passively gripping inchworm, Kim et al. (77)  

2.8.8 Power and Communication 

Many other projects have aimed to bring robotics into surgical procedures, in 

reviewing the methods used for communication better understanding of the 

technology available and its limitations can be gained. The ARAKNES 



- 44 - 

project aims to provide a platform of robots for natural orifice trans-luminal 

surgery. Poignet et al. (81) discusses control related issues with such a 

platform, some of which are relevant to a colonoscopy robot. Wireless 

devices pose an advantage in terms of less resistance due to tether fiction, 

fewer parts to spread infection and sterilise between usage, and no control 

issues due to tether manipulation. However, wireless systems require 

internal storage capacity for power for both locomotion and signal 

transmission. Radiation absorption of the human body degrades 

communication signals resulting in reduction of the signal bitrate and other 

issues. To overcome this greater signal broadcast power is required, putting 

greater strain on the limited power reserves. It has been shown that wireless 

systems expose the body to higher doses of radiation when the wireless 

signal strength between devices is poor (82, 83). It is imperative to maintain 

a strong active and continuous connection between any wireless device and 

the master computer when it is deployed within a patient and such the 

radiation exposure and battery drain will be high. 

A wired or tethered approach would negate these power issues at the 

expense of needing to tow a tether through the lumen. Although the motor 

power output would need to be greater, the tether would be able to provide 

greater power to the device to compensate. 

2.9 Critical Assessment of Locomotion Methods 

The foremost requirement of any colonoscopy device is that it is atraumatic. 

Damage to the lumen is not acceptable and can be particularly easy to 

cause when combined with colorectal diseases. As such, a locomotion 

system should apply a minimal amount of force on the colonic walls. Wall 

press dependant systems cause the highest amount of contact and thus are 

non-ideal. Though filling the colon with a fluid, hydro-colonoscopy provides a 

suspension medium for any device to propel itself through. Although contact 

with the colonic tissue cannot be avoided due to the anatomy of the lumen 

and so any locomotion system should be able to deal with such. Amphibious 

locomotion methods show the most promise in being able to provide a 

minimally contacting locomotion system while being able to deal with 

strictures and collapsed sections of the colon. 

Many systems used in medical situations and industrial situations use similar 

locomotion methods. There is a degree of cross over between the modes of 

operation, often with optimisations for their environment of operation. The 
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following summarises the major locomotion types and their suitability for a 

locomotion system for the CoDIR device.  

2.9.1 Passive 

The Pipeline Inspection Gauge, or PIG system shares its fundamental 

locomotion system with passive capsule devices, such as PillCam®. These 

systems do not have any means of locomotion and depend on the 

environment to move them. By using small and rounded devices the risk of 

patient damage is minimal. Trauma limitation is a large advantage to this 

locomotion system; however the inability to control the direction they face is 

a sever limitation. This disadvantage deems the system unsuitable for more 

advanced forms of observation and exploration of the colon. 

2.9.2 Bio-Inspired Locomotion Methods 

Crawling, inchworm, serpentine and fish locomotion systems are all bio-

inspired. They mimic modes of locomotion found in nature. 

Crawling systems can be very mechanically complex and difficult to 

miniaturise, coupled with the increased risk of perforation and increased 

power draw these systems have been shown to be incompatible with 

medical devices. These devices have been developed and tested however 

the drawbacks have halted further research. 

Inchworm systems have been deployed with varying degrees of success in 

colonic passages. The systems are inherently well suited to traveling in 

straight lines and become stuck in corners. Inchworm locomotion requires 

constant contact with the walls of the environment, depending on how this 

contact is achieved and maintained the risk of patient damage increases. 

Anything that uses rigid arms for maintaining contact carries the same risk of 

perforation as crawling systems. While inchworm systems provide a strong 

method of locomotion and steady base for camera footage and tool use, the 

colon is never a straight passage. Any system deployed within the colon 

would need to be able to pass the many bends and twists with ease and 

such inchworm systems are not suitable for this environment. 

Serpentine locomotion systems are well suited for amphibious operation, the 

same drivetrain can provide locomotion in land based and fluid based 

situations. These systems do however require a larger operational envelope 

due to the wave propagation along the body. The nature of the locomotion 

sweeps the head unit perpendicular to the intended direction of travel, which 

may cause disorientation. Industrial serpentine robots are often large in size 

and compensate for this motion through use of large field of view cameras 
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and slower articulation of the joins. A large field of view camera would have 

limited use within the colon, due to the confined space. This confined space 

would also limit the locomotion system’s ability to produce usable thrust. Any 

aggressive sideways sweeps used to generate thrust would carry a high risk 

of patient damage. Serpentine systems are not ideal for use within the colon 

for these reasons. 

Fish-like swimming can be very efficient on power usage, making use of 

gliding to minimise energy spend at high Reynolds number flows. While 

gliding is not feasible at low Reynolds number flows, the mode of operation 

is at higher Reynolds number flows allowing for coasting or gliding. Most fish 

have limited ability to reverse, more often than not flexing their body to allow 

for a forward stroke to move them away from an obstacle. This lack of 

reversing ability is due to their shape, a larger head tapering to the tail with a 

fin to provide a larger surface area for fluid movement. Should a fish-like 

swimming vessel become stuck nose first in a haustration, the inability to 

reverse would cause the device to become stuck requiring external help. 

Using a chassis, which is compliant and free of sharp appendages, would 

minimise risk of patient damage over other bio-inspired devices. 

Mechanical complexities, manufacturing scales and limited degrees of 

freedom in terms of locomotion all  form strong disadvantages for bio-

inspired locomotion strategies. Possible future development in artificial 

muscles may alleviate these, however for the time being, conventional mods 

of locomotion are more desirable. 

2.9.3 Magnetically Guided and Propelled 

Using external magnetic manipulators for movement is an interesting 

method of motion and in many cases efficient. In removing the need for 

miniaturising the locomotion system the device can be made smaller and 

have greater room for on-board equipment. Through several different studies 

by researchers, magnetically dragged systems have shown promise in both 

their dexterity and ability to carry a payload. Providing the end effector of the 

system is compliant and the maximum magnetic force is limited, the risk of 

patient damage is minimal. 

Systems which use rotating or oscillating magnetic fields to move permanent 

magnets attached to moving parts of the system to provide locomotion have 

the advantage over magnetically towed systems that expensive robotic arm 

manipulators may not be needed. Electro-magnetic coils are simply wrapped 

around the environment to provide the needed magnetic field. The ability to 
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carry a payload is reduced and the devices are often unable to remain 

stationary unless they are buoyantly neutral. Similarly to magnetically guided 

systems, maintaining a low magnetic force and using compliant materials 

can minimise patient damage. 

Both systems do however have the side effect of exposing the body to large 

amounts of radiation, albeit magnetic. These systems would be 

inappropriate for infirm patients with pacemakers for example, but pose no 

more significant risk than routine CT scans. 

Soft-bodied, paramagnetic devices may provide an atraumatic system, 

however magnetic devices may be unable to pass collapsed sections of 

colon and become trapped in recesses if magnetically towed. Magnetically 

driven devices may be more suited to operation in highly variable 

environment that is the human colon. 

2.9.4 Helical Based 

While some helical systems have also been driven through external 

magnets, those used in medical applications by researchers have used 

internal actuators to provide locomotion. Through rotating helically grooved 

sections, the locomotion system is able to provide locomotive properties in 

both contact and fluid filled situations. Should the rotating sections be 

separate from the main chassis, a relatively steady camera feed can be 

provided. Simply by reversing motor directions, the system is able to 

reverse. Through articulation between different sections or differentially 

driving the helical sections, steering of the device can be achieved. 

A helical system may pose a trauma risk if rigid materials or sharp edges are 

deployed. Such systems do have the advantage of providing amphibious 

locomotion, which will allow passage through sections of mixed insufflation 

medium. Depending on the drivetrain the system may have reduced 

mechanical complexity compared to other amphibious systems, resulting in 

easier fabrication and smaller operation area needed. 

2.9.5 Summary of Methods and Devices Assessed 

Table 2.1 summarises the systems covered in this review in terms of 

locomotion method and size. The size required by a locomotion system is 

important, if the system is unable to be produced or operate at an 

appropriate size for colonoscopy then it does not meet the requirements. 
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Table 2.1 Summary of devices and systems reviewed 

Device Locomotion method Size 

Mobile fish robot, Xiabo et 

al. (30) 

 

Bio-inspired swimming 

(fish) 

43 x 43 x 120mm 

Autonomous fish, 

Huosheng et al. (31) 

 

Bio-inspired swimming 

(fish) 

Length: 520mm 

Sea bream robot, Terada 

et al. (32) 

Bio-inspired swimming 

(fish) 

Length: 600mm 

Lamprey based robot, 

Ayers (34) 

 

Bio-inspired swimming 

(serpentine) 

Not stated, approx. 

1000mm 

Passive wheeled system, 

Crespi et al. (35) 

 

Bio-inspired swimming 

(serpentine) 

55 x 33 x 490mm 

Amphibious wheeled 

snake robot, Shumei et al. 

(36) 

Bio-inspired swimming 

(serpentine) 

Diameter: 75mm, length: 

1170mm 

ACM-R5H (37), HiBot 

Corp. 

Bio-inspired swimming 

(serpentine) 

Diameter: 80mm, length: 

1750mm 

MrInspect, Roh et al. (38). Wheeled wall press Diameter: 109mm, length: 

150mm length 

Wheel propeller hybrid 

device, Jiancheng et al. 

(42) 

Wheel-propeller hybrid 960x x 1000 x 200mm 

Snowbird 6, Ice 

Challenger team (43) 

 

Archimedean Screw Not stated, larger than 

1000mm 
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Table 2.1 cont… 

Device Locomotion method Size 

Screw based amphibious 

device, Liang et al. (44) 

 

Archimedean Screw 1110 x 420 x 464mm 

Modular device, Liedke et 

al. (45) 

 

Archimedean Screw Not stated: larger than 

90mm 

Screw Drive Rover, 

Nagaoka et al. (46) 

 

Archimedean Screw 160 x 350 x 120mm 

The Marsh Screw 

Amphibian by Chrysler 

Corporation 

Archimedean Screw Not stated, larger than 

1000mm 

PillCam ®, Given Imaging Passive, peristaltic Diameter: 11mm, length: 

26mm 

Crawling device, Quirini et 

al. (53) 

Leg based crawling Diameter: 12mm, length: 

40mm 

4 propeller device, Tortora 

et al. (54) 

Swimming (propeller) Diameter: 15mm, length: 

30mm 

Magnetically guided 

colonoscope, Valdastri et 

al. (56) 

External robotic 

manipulator 

Standard colonoscope 

driven by large external 

manipulator 

Suction driven 

colonoscopy robot, Naderi 

et al. (57) 

Suction driven articulation Diameter: 19mm, length: 

180mm 

Oscillating magnetic 

device, Sudo et al. (61) 

External magnetic field 4 x 5.5 x 19.25mm 

Oscillating magnetic 

device, Guo et al. (62) 

External magnetic field 15 x 40mm 
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Table 2.1 cont… 

Device Locomotion method Size 

Hybrid magnetically 

powered device, Qinxue 

et al. (63) 

External magnetic field Diameter: 10mm, length: 

100mm 

Paramagnetic soft-bodied 

micro system, Palagi et al. 

(64) 

External magnetic field Approx. 5mm 

Spermatozoa inspired 

swimmer, Bai et al. (66) 

External magnetic field Not stated 

Artificial bacterial 

swimmer, Zhang et al. 

(71) 

External magnetic field Approx. 25µm 

2 module helical bodied 

device, Zhou et al. (75) 

Archimedean Screw Diameter: 10mm, length: 

70mm 

Multi module, soft bodied 

device, Shikanai et al. 

(76) 

Archimedean Screw Diameter: 30mm, length 

190mm 

Single screw, Kim and 

Kim (77) 

Archimedean Screw Diameter: 15.6mm, 

length: 78mm 

Stretchable-Body Robot, 

Kim and Kim (77) 

Barbed inchworm Not stated. Approx. 

diameter: 30mm, length 

100mm 

Mobile in-vivo camera 

biopsy robot, Rentschler 

et al. (78) 

Screw tread wheel Diameter: 20mm, length: 

100mm 

Chain drive device, Lee et 

al. (79) 

External magnetic field Diameter: 18mm, length: 

32mm 

Bellow device, Phee et al. 

(80) 

Inchworm Diameter: 24mm, length: 

115mm 



- 51 - 

 

2.10 Summary of Literature 

The colon forms the last section of the GI tract (1, 5, 8), is located in the 

lower section of the abdomen (1, 5, 8), and is a highly deformable and 

variable organ (1, 5, 9). Although it has several “landmark” locations these 

vary greatly from patient to patient (1, 5, 8, 9). It plays a vital role in the 

digestion of food in humans and such is imperative to life compared to a 

limb. 

The colon is susceptible to many ailments, which impact negatively upon 

quality of life in humans, such as cancer, diverticulitis, inflammatory bowel 

disease, ulcerative colitis, and Crohn’s disease (1). To diagnose these, 

visual inspection is required with more often than not biopsies taken, 

however some ailments such as diverticula disease and ulcerative colitis, 

make colonoscopy a very difficult procedure to perform. 

The current means of inspection takes the form of a long flexible tube known 

as the colonoscope, a 1.5m long flexible tube of approximately 15mm 

diameter. The Colonoscope features a steerable tip with camera and light 

source, passageways for insertion and removal of air/fluid and a tool channel 

for taking biopsies. The procedure is often uncomfortable and the tortuous 

environment of the colon causes procedural difficulty to the performing 

clinician (1). The main difficulties as discussed are: risk of perforation or 

laceration due to steering of the colonoscope and looping; bowel blockages 

often due to poor preparation; severe disease preventing progression along 

the colon. 

Hydro-colonoscopy involves filling the colon with a warm fluid medium to 

perform the procedure, and may reduce patient trauma and increase ease of 

procedure for the clinician (7, 24-26). 

In replacing the colonoscope with a robotic system, it is hoped that many of 

the difficulties involved and associated discomfort, can be negated. The 

robotic system involved must be able to traverse through the colon while 

minimising trauma to the colonic tissue, as well as carrying the payload 

required for diagnosis of colonic ailments. Many researchers have carried 

out research in this area to mixed success. 

The chapter reviewed the work of other researchers in producing locomotion 

systems and platform for improving colonoscopy, as well as locomotion 

systems as a wider approach. Using external magnetic fields to provide a 
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locomotion means overcomes the difficulties imposed by miniaturisation of 

actuators, however imposes further restraints on the usage of such devices. 

The large and bulky external manipulators can be difficult to work around 

and deploy in surgical environments. 

Any locomotion system used on a colonoscopy device must be able to 

primarily traverse the colon. Locomotion systems, which require a large 

space envelope that available, are too mechanically complex to produce with 

current technology or are limited in their ability to provide a full range of 

motion are unsuitable. This reduces the methods available, which can be 

seen in the literature; intra-luminal devices use a small set of strategies 

compares to the wider field of exploration robots. While this does not directly 

mean new and un-used locomotion methods cannot be used, research must 

be carried out to show they are viable. 

A chosen locomotion system must also be atraumatic, movement must not 

cause harm to the tissue. Through locomotion system development, material 

selection and control strategy an amphibious and atraumatic device may be 

developed. Several researchers have utilised screws in providing locomotion 

for prospective colonoscopy devices, however these have been developed 

for air insufflated colonoscopy not hydro-colonoscopy. For a future 

colonoscopy device to succeed in replacing the conventional colonoscope, 

combining the benefits of hydro-colonoscopy and an amphibious locomotion 

system may show to be the key to success. 
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Chapter 3  

Design and Development of the Amphibious Locomotion 

System 

In the literature review, locomotion systems were assessed for their merits 

and applicability to an intra-luminal medical device. The review focused on 

locomotion systems used on current and experimental robotic systems, 

including but not limited to other medical devices and industrial pipe 

inspection devices. 

3.1 Requirements 

In understanding the anatomy of the colon and the purpose of the overall 

device, a series of requirements was identified to inform the design process. 

These requirements fall into two categories: clinical and technical. Through 

these requirements, a novel locomotion system was designed and built 

allowing testing of the locomotion system; this is examined in detail in 

Chapters 5 and 6 with a completed prototype system tested in Chapter 7. 

The clinical requirements cover the anatomy of the colon and the 

environmental conditions the device will be likely to be subjected to. The 

technical requirements cover the physical needs of the system such as 

payload and communications. 

3.1.1 Clinical Requirements 

 Atraumatic interaction with tissue 

o The device or locomotion system cannot damage the mucosa 

lining to a greater extent than current colonoscopy (1-3); 

preferably, no trauma will be sustained. 

o The mode of locomotion cannot cause risk of laceration or 

perforation of the colon wall, during normal operation nor 

should it fail to operate in the designated fashion. 

 Regions of colon with diverticular disease are of greater 

risk of perforation should part of the device become 

trapped in the recesses. 

 A minimum pressure to cause perforation is taken as 

14kPa, derived from work published by Shiels et al. 

(10), as discussed in Chapter 2. 

o For degenerative conditions where the mucosa may be 

inflamed, contact with the mucosa must be minimised to 

reduce damage and bleeding (1). 
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 Amphibious locomotion 

o Air pockets along the colon will present a challenge for any 

fluid-based locomotion system to traverse. 

o The colon diameter varies greatly along its length and some 

sections may be narrow (5, 9). Fluid locomotion will be 

restricted in these sections, which may require contact based 

locomotion to progress, particularly if the colon is folded such 

that the passage is blocked. 

 Appropriately scaled relative to a colonoscope 

o The colon can vary in diameter (5, 9); the device must be able 

to fit within the smaller colons. 

o The device is to be deployed via the anus and should be small 

enough to fit. Surgical opinion was consulted on what can be 

tolerated and 15-20mm diameter was suggested as an upper 

range. 

o The device must be short enough to turn the flexures without 

becoming wedged. In a 90° flexure, this can be approximated 

as the chord length formed across the lumen. 

3.1.2 System Specifications 

In order to develop a device that may operate within the colon, several 

requirements must be met. 

 Communication and power supply 

o While the research does not cover the design of these directly, 

the locomotion system must be able to operate in the colon 

environment while powered externally via a tether. 

 Generate appropriate propulsive thrust for movement 

o A preliminary experiment was carried out using an ex-vivo 

porcine colon to approximate the force needed to pull a tether 

through a colon3. The experiment yielded a force of 1N would 

be required to pull a multicore tether, similar to that which is 

expected to be used on the device, through a collapsed colon. 

Although a fluid filled, distended colon may require less force; 

this is a good measure of the device’s ability to produce 

locomotive force. 

 Payload capability 

                                            

3 Preliminary experiment to measure the force needed to pull a tether 
through a colon carried out by Dr Boyle and Dr Alazmani of the 
University of Leeds for the CoDIR project. Experiment involved a multi-
core tether supplied by Karl Storz and fresh ex-vivo porcine colon. 
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o The locomotion system must be able to accommodate a 

payload such as a camera, inertial measuring unit (IMU) or 

other sensing hardware. 

o The possibility for a biopsy tool to be added in future 

development . 

3.2 Stages of Design 

A systematic review of locomotion concepts was conducted from the 

literature review. A locomotion strategy was selected on its ability to meet 

the requirements detailed above. Through incremental testing and review of 

the concept was improved to provide a more robust and optimised 

locomotion system for a surgical device to be used within the colon. A 

summary of the locomotion strategies discussed is available in Table 3.1. 

Table 3.1 Locomotion strategy comparison matrix 

Locomotion 

strategy 

Amphibious 

locomotion 

Mechanical 

Complexity 

Atraumatic 

nature 

Comparison to 

colonoscopy 

procedure 

Inchworm No, contact 

only 

Low Constant 

contact 

needed 

Speed: Slow 

Scale: Large 

Fish-like 

swimming 

No, fluid only Low Yes Speed: Similar 

Scale: Large 

Serpentine Yes High Swimming 

may result 

in constant 

contact 

Speed: Similar 

Scale: Large 

Propeller No, fluid only Low Unenclosed 

propellers 

pose 

laceration 

risk 

Speed: Fast 

Scale: Similar 

Wheel-

propeller 

hybrid 

Yes High Low Speed: Similar 

Scale: Large 
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Table 3.1 cont… 

Locomotion 

strategy 

Amphibious 

locomotion 

Mechanical 

Complexity 

Atraumatic 

nature 

Comparison to 

colonoscopy 

procedure 

Archimedes’ 

screw 

Yes Moderate Low 

depending 

on screw 

material 

used 

Speed: Similar 

Scale: similar-

Large 

3.3 Design Considerations and Selection 

3.3.1 Inchworm 

Starting with adaptions to the current colonoscopes, inchworm locomotion is 

an obvious solution. Using a device with a diameter matching the smaller 

sections of the colon, an inchworm system would easily fit within the space 

requirements. However, the inchworm system requires a means of gripping 

the mucosa to traverse the colon. The gripping mechanism involves either 

pressing against the mucosa or sticking to the mucosa. In pressing against 

the colonic wall, there is a risk of perforation. Sticking, through friction or 

chemical adhesion requires a firm contact with the mucosa. Suction will 

require some form of on-board generation of a vacuum or connection to a 

vacuum supply. Chemical adhesion is likely to wear out or become less 

effective through continuous use; there would also need to be a way to 

reduce this to move the contact point. Barbs would also provide a means of 

gripping; however, the notion of barbs would likely bring fears of perforation. 

A system with barbs would need to reverse the direction of grip, otherwise, 

the system would become stuck once it reached the caecum. 

Through the literature review, the work of other researchers using an 

inchworm locomotion system was covered (77, 80). These were unable to 

pass tight flexures due to the device length; and the reliance upon gripping 

the colon to move became a disadvantage when the colon stretched with the 

device locomotion steps. Inchworm locomotion systems do not meet the 

requirement of minimising contact with the mucosa, which will be vital for 

acceptance and use in patients with degenerative bowel conditions. The 

inchworm locomotion system does not make use of the fluid in hydro-

colonoscopy; in this case, the fluid may negatively affect the progress of an 

inchworm system. 
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3.3.2 Swimming 

Fish-like swimming locomotion strategies have very limited use; they require 

continuous fluid and do not work as well in confined spaces that restrict the 

device-body motion. Should a fish-like swimming device come across a fluid 

void section it would become stuck. A fish-like locomotion system would 

provide propulsion through flicking of the tail from side to side (28). This 

produces a highly optimised locomotion system for forward travel and in 

many cases does not work in reverse: reversing the tail direction does not 

produce reverse thrust. To return along the colon lumen a device employing 

this style of locomotion system would need to turn around. A fish-like system 

would involve no gripping of the colon or rotating parts that may damage the 

lumen, producing an atraumatic approach. However, a locomotion system 

that is not able to traverse a fluid void section of the colon is unfavourable. 

3.3.3 Serpentine 

Devices, which employ a serpentine-like locomotion, are able to operate in 

both fluid and fluid void environments (36, 37). Reverse motion can be 

produced through altering the sinusoidal oscillation of the device body; this is 

dependent on the interaction between the device body and the medium it is 

in contact with. The mechanical complexities of serpentine-like systems 

have led to them being large in scale when produced and used within 

industry. The number of on-board actuators required for locomotion prevents 

them from being miniaturised with current technological limits. While small 

diameter systems are available, they require bulky external actuators to 

drive the wire tendons used for dexterity. A smaller diameter system that 

uses an external power system and wire tendons would be no different in 

principle to current computer guided colonoscopy techniques. 

3.3.4 Propeller Based 

For a mechanically simple system that utilises the fluid filled colon for 

locomotion, the propeller seems an obvious choice. Propellers operate 

through rotation at high speeds with sharp blade edges, these could 

potentially cause lacerations. Cowled or enclosed propellers would not pose 

the same risk as the contact between the rotating parts and the tissue is 

limited. However, sections without sufficient fluid depth could see the device 

grounded and unable to move: combining a propeller with land-based 

locomotion would be a means of solving this. A wheeled or tracked device 

could be coupled with propellers to allow for amphibious locomotion. The 
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wheels or tracks would be situated on the device such that at low fluid depth 

they rest upon the mucosa allowing locomotion to resume. 

3.3.5 Drivetrain 

To allow the device to operate both fluid and contact locomotion strategies, a 

single drivetrain could provide rotation to both the wheels or tracks and the 

propellers. However, these modes of locomotion are suited for different 

angular velocities, which would require multiple gearboxes to provide 

transmission at a suitable angular velocity. In sections of low diameter, it 

would be ideal to drive only the contact based locomotion: turning off the 

propellers would reduce risk of damage to the tissue. This would need a 

means of switching between locomotion modes. Combining wheels and 

propellers would compound the need to switch modes; both could not be 

operated at the same time resulting in situations where neither is optimal 

when used in separation. Any system used must be able to provide 

locomotion through both fluid filled areas and in contact without decisions 

being made by the clinician on which mode is appropriate. 

Using the same drivetrain for both fluid and contact locomotion reduces the 

number of gearboxes needed, and thus the mechanical losses, device mass, 

the size required and in some cases the number of actuators required. 

Mechanical complexity will play a role in the feasibility of any device; multiple 

gearboxes and switching mechanisms will increase the minimum size of the 

device. With any mechanical system, the more components there are; the 

more modes of failure the system has. Micro gears suffer from wear to a 

much greater extent compared to macro gears, simply because the same 

wear causes a higher percentage loss. Each gear used will decrease the 

mechanical efficiency of the system, increasing the load on the actuators 

and the power draw. Smaller motors in turn produce less torque and so 

larger more complex gearing systems have a detrimental effect. To keep the 

system small the mechanical design must be simple. 

3.3.6 Archimedes’ Screw 

The use of Archimedes’ screws has been seen in applications where the 

device is in need of amphibious locomotion from the same drivetrain and 

locomotive effectors (43, 44). Using a locomotion system based on 

Archimedes’ screws could simplify the control for the piloting clinician while 

simplifying the design of the mechanical system. The use of screws would 

provide an amphibious locomotion system, with a simplified drivetrain fitting 

it in the small workspace envelope needed, providing a novel locomotion 
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system. The method in which an Archimedes’ screw produces thrust in fluid 

and contact is covered in detail in Chapters 5 and 6. 

At a section of collapsed colon, possible due to a flexure, where the luminal 

walls of opposite sides are in contact, the device cannot avoid contact with 

the lumen. Luminal contact will be required to open the lumen as well as 

pass through the section. In these cases, the contact between the device 

and the lumen must be atraumatic; as the device passes through the 

collapsed section it must not damage the colon wall. When in contact with a 

surface a screw is required to slip in the direction of its rotation to produce 

thrust: this interaction could be atraumatic through material selection. This is 

examined in detail in Chapter 6. 

3.4 Amphibious Screw Concept 

Archimedes’ screws provide a locomotion strategy that is able to operate in 

an amphibious state without needing to swap between discrete states: the 

same drivetrain and locomotion effectors provide locomotion in all modes. 

This locomotion strategy has been utilised in both non-surgical (43-46) and 

surgical devices (75-77, 79). With evidence that Archimedes’ screws are 

able to provide a viable means of locomotion; this strategy was chosen for 

its mechanical simplicity and amphibious potential over the other strategies 

reviewed. The utilisation of such on an atraumatic intra-luminal device was 

explored. 

In rotating a shaft, the system experiences a torque opposing the rotation 

(Newton’s 3rd law). While in larger systems the mass difference between the 

shaft and the system can negate any adverse effects, net torque on the 

system for use in hydro-colonoscopy is likely to cause adverse effects: such 

as undesirable rotation of the device during locomotion in fluid. To combat 

this, counter rotating pairs can be utilised to reduce the net torque to zero: 

unless it is desired for control. 

Using counter rotating pairs the number of screws must be equal; thus, 4 

screws is the minimum needed for accurate control. As seen in Figure 3.1, a 

4-screw device will have 4 degrees of freedom (DoF). It will be able to 

translate along the X-axis and control rotation about all 3 axes. Any increase 

in screws will not increase the DoF of the system however reducing the 

system to 2 screws will reduce the DoF to 3: vertical arrangement would lose 

rotation about Y and horizontal would lose rotation about Z. The device must 

be able to drive in a forward and reverse direction while allowing for steering 
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in any direction about the axis of travel, the minimum number of screws 

required for this is 4. 

By arranging the counter rotating pairs such that no screw is next to a screw 

of the same rotation handedness, in contact conditions on a flat surface 

there will always be a pair of counter rotating screws in contact. In this 

condition, the system will have 3 DoF: translation along X and Z while being 

able to control rotation about Y, assuming the surface the device rests 

against is the X-Z plane. 

When providing locomotion to a system and steering it, the point of effect of 

these can affect the control. Rear driven systems are mechanically unstable, 

with the rear tending to move out of line from the front and desired direction 

of travel. This instability increases with the distance between the front and 

the point of effect and is notable on the conventional colonoscope: the 

driving force comes from the rear, which makes the direction of tip 

advancement difficult to control. The advantage of using a robotic system is 

that the distance between the point of locomotion and steering, and the front 

is shortened; this makes the system easier to control. 

 

Figure 3.1 Axis orientation. X-axis (red) designates forwards, Y-axis (green) 
designates up, Z-axis (blue) designates right. Final 4-screw device as 
developed in this thesis shown alongside axis system to aid orientation.  

To house 4 screws such that when resting on a flat surface two screws are 

in contact the chassis needs to take the form of a square based prism, with 

the screws located at the long edges, Figure 3.2. To remove the sharp 

edges, a rounded cuboid chassis was used as the basis for the design. 

Figure 3.3 shows a sketch of the initial idea for Quad Screw Device version 

Device rear 

Archimedes’ screws 

Device front 
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1. It features a rounded tip for safely passing through collapsed sections of 

the lumen; four edge mounted screws to provide locomotion; and a tapered 

tail section for attachment of a tether. The cut through section shows a 

single motor and gear arrangement, which powers all 4 screws at the same 

time. Although this reduced the degrees of freedom the system has, the 

initial design was kept simple to allow exploration of the concept without 

overcomplicating the design. 

 

Figure 3.2 Screw location about chassis 

 

Figure 3.3 Initial design sketch for Quad Screw Device, incorporating 
Archimedes' screws  

3.5 Design Prototype Version 1 

To develop and prototype the design a 3D computer aided design (CAD) 

package was used (SolidWorks, Dassault Systèmes SolidWorks Corp). The 

first iteration of the locomotion system design can be seen in Figure 3.4. The 

initial design sketches featured a single motor powering the 4 surrounding 

screws, as shown in Figure 3.3. This arrangement allows for only 1 DoF, 

translation along the X-axis. To increase the ability to control the system’s 

orientation, the system was designed such that each of the 4 screws was 

powered by a different motor, increasing the system’s degrees of freedom. 

Front view Side view 

Chassis 

Screws 

Surface 
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Figure 3.4 Quad Screw Device Version 1 locomotion system. Shown a) is a 
computer render of the device; b) is a rapid prototyped (SLS) solid, 
non-functioning scale model. Annotations show: 1) Archimedes’ 
Screws; 2) Chassis; 3) Front section in which a camera module would 
be housed. 

The central section of the chassis features mounting space for a camera and 

motor controllers. The front of the device is covered by a transparent 

rounded nosepiece to allow the camera to view the colon while providing a 

rounded face to push through collapsed sections of the colon. 

The screws are mounted at equidistant intervals around a cylinder with 

bearing mounts at either end supporting them. The screws are mounted 

such that they form the point of contact against a flat surface with the 

chassis clear of the surface. 

A solid non-functional 3D prototype was produced using a selective laser 

sintering (SLS) rapid prototyping unit, as shown in Figure 3.4. This model 

was used for discussions with clinicians on the device and their thoughts on 

the design; the major feedback element was concern over potential trauma 

caused by tissue becoming stuck in the screws. A single screw model was 

also produced to allow initial testing to the device in fluid, as discussed 

further in Chapter 5. 

A testing rig was designed such that a single screw, resembling a quarter of 

the overall system, was developed, as detailed in Chapter 5. Using this 

testing apparatus initial testing was carried out to ascertain the thrust 

potential of a single screw rotating in fluid. This revealed insignificant thrust 

generation from a single screw model; the data was barely distinguishable 

from signal noise and showed forces of less than 0.01N. Investigation into 

this revealed that the bearing housing at either side of the screw was 

blocking the fluid flow into the screw (Figure 3.5). As the screw rotated, the 

fluid at the end of the screw would not be able to continue in a direction 

parallel to the screws’ rotational axis and would be ejected in a direction 
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perpendicular to the screws’ rotational axis, as designated by the blue 

arrows in Figure 3.5. This introduces large losses to the system as the flow 

becomes turbulent. Similarly at the head of the screw, fluid could not enter 

the screw without a change in flow direction; resulting in greater losses in the 

system.  

 

Figure 3.5 Single screw system used during initial testing a) isometric view; 
b) front view,. All shown components are submerged during 
experimentation The blue arrows show the fluid flow path, as it is forced 
perpendicular to the screw due to the closed end. 

3.6 Computational Fluid Model 

To understand the fluid flow between the screw blades as the screw rotates, 

and allow the design of a system with greater thrust potential a 

computational model was built (Comsol Multiphysics).  

A cross sectional area of the fluid between two blades was created in the X-

Y plane, using the inner and outer screw diameters. This was extruded along 

the Z-axis with a rotation about the Z-axis such it formed a single rotation of 

the dual sweep screw. The volume was duplicated and rotated by π radians 

about the Z-axis. The open top and bottom faces in the X-Y plane had 

boundary conditions applied such that fluid would flow between them 

creating a theoretically infinitely long screw channel. The inner faces of the 

fluid (the fluid touching the screw) had boundary conditions applied such that 

the fluid layer was stationary (boundary layer theory (84) P266). The outer 

faces were displaced along the Z-axis and rotated about the Z-axis to 

resemble the screw rotating. 

 

Support bracket 

Cowling 

Screw 

Bearing 
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Figure 3.6 Fluid velocity (gradient) and streamlines (pink) of fluid flow within 
a screw during rotation of the system, generated in Comsol 
Multiphysics computational package. Units show ms-1. Discrete slices 
taken through the flow at 1mm increments.  

The simulation showed that the fluid swirls within the screw veins and does 

not travel along the threads as anticipated, as shown by the pink lines in 

Figure 3.6. This concludes that the fluid does not leave the screws at the 

ends and thrust that was being generated was simply shearing forces from 

the blade tips (shown by the bright coloured edges in Figure 3.6) and not 

from the volume of fluid being pushed. 

3.7 Design Prototype Version 2 

To overcome the fluid flow issue caused by the screw location a new 

approach was taken. The first approach at solving this involved using larger 

outer diameter screws. While leaving the mounting and axles the same, 

increasing the blade diameter would allow more fluid to escape, however 

due to the positioning of the screws only ¼ of the flow was exposed. 

Increasing the blade diameter also had the side effect of reducing the space 

within the chassis for other components. 

Instead of the screws being directly mounted on the chassis the design was 

adapted such that the screws could be located away from the body. This 

adaptation would allow greater than ¾ of the flow to be exposed, allowing for 

greater thrust potential. 

Blue coloured areas 

represent low fluid 

velocity. 

Bright coloured areas 

show high fluid velocity. 

Pink lines show fluid 
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While mounting the screws away from the chassis would allow for greater 

fluid propulsion, the maximum diameter of the system was increased. This 

could be used to an advantage: by controlling the diameter of the system, 

collapsed sections could be opened up allowing better visibility and access. 

The system was redesigned with 4 controllable arms, each with a screw 

mounted, as shown in Figure 3.7. Each of the arms are mounted on a 

chassis length axle, connecting the front and rear sections of the arms. Each 

of the axles are connected to an internal gearing system, which allows them 

to move together in unison from a single chassis mounted motor. As the 

arms interlock, moving each on their own would not be possible without high 

precision timing. Using a single motor reduces the complexity of control as 

well as allowing the use of a single motor to control the expansion. 

 

Figure 3.7 Computer model showing the locomotion system version 2, Quad 
screw device version 2. a) Isometric view of version 2; b) front view of 
version 1 (for comparison); c) front view of version 2 showing 
expansion. Annotations show: 1) Archimedes’ Screws; 2) Controllable 
arms; 3) Chassis; 4) Front section with location for camera module. 

In re-designing the chassis to incorporate the screws rather than adding 

screws to the chassis, the ends of the screws are exposed allowing fluid 

flow. The chassis has been designed such that while the screw arms are 
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retracted the screws nestle in designed channels along the chassis side, 

decreasing the minimum diameter of the system. This design allows a high 

proportion of the screw to be open to the fluid allowing for greater thrust as 

well as allowing greater contact on a surface increasing tractive capability. In 

Figure 3.7 the increase in exposed screw can be seen from the 1st (shown 

left) to 2nd (shown right) generation of the concept. 

A functional rapid prototyped scale model of quad screw device version 2 

was produced using SLS with each screw driven by 6mm diameter motors 

(Precision Microdrives model 206-101), as seen in Figure 3.8. The motors 

were selected based on their size and inclusion of a gearbox; although the 

torque output was not ideal, the low lead times and availability when 

compared to other motors meant they could be implemented for initial builds. 

The prototype was produced at 2:1 scale allowing use of commercially-

available gears and motors while allowing ease of assembly. 

 

Figure 3.8 Rapid prototyped functional scale model of Quad Screw Device 
Version 2 a) shown in open state; b) closed state. Annotations show: 1) 
Nose; 2) Screws; 3) Arms; 4) Tether. 

3.8 Design Limitations with Design Prototype Version 2 

While mounting the motors in the screws for direct drive allows a simple way 

to drive them, it does pose several issues with the design. With front 

mounted gearboxes on the motors, there is no way to access the 

transmission from the rear of the motor. This means that while the screw 

rear-sections would ideally be powered, with no transmission they will 

remain stationary. 
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The transmission between the mid-section of the screw and the front-section 

of the screws is solved using a short axle that passes through a bearing in 

the front arm. The rear of the screw is directly connected to the motor 

gearbox shaft with the motor being secured from the rear.  

The mounting of a geared motor should be by the designated mounting point 

located on the front of the gearbox. This prevents torque being transmitted 

through the gearbox and motor shaft, which can damage the unit. 

The front mounting section typically has a thread or tapped holes specifically 

for mounting which manufactures strongly advise should be used. The 

motors in quad screw device version 2 are secured using an adhesive at the 

rear of the motor chassis. The motor mounting is shown in Figure 3.9. 

 

Figure 3.9 Motor arrangement for the screw actuation motor in Quad Screw 
Device Version 2. Annotations show: 1) Front-section screw; 2) Front 
controllable arm section; 3) Mid-section screw; 4) Screw motor; 5) Rear 
controllable arm section; 6) Rear-section screw. 

Not only does the positioning of the motors risk adverse torque on the motor 

chassis, it also applies normal loading to the motor shaft when resting on a 

surface. Motor shafts are very sensitive to normal loading, which can 

misalign the inner gears, and wiring. As the screw mid-section rests against 

the motor chassis, this creates a wear surface and a means for which 

contaminates may enter the system. 

3.9 Exploration of Design Solutions 

To resolve these issues different motor types and mounting locations were 

explored. 

Outrunner motors, typically used in model aircraft and quadcopters, feature 

a stationary central axle with the chassis and electrical coils rotating about 

the axle. Through attaching the central axle to the arms either side of the 

screw, the screw sections could be attached to the motor chassis to provide 

rotation. While this method would be ideal for transferring locomotion from 
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the motor to the screw, there would be no simple way to transfer drive to the 

front-section and rear-section screws without multiple shafts and gearing. 

A second possible solution would be mounting the motors on the arms with a 

90° gear system allowing the transmission to the screw sections. This would 

allow all three sections to be actuated, at the cost of greater complexity of 

design. The length required for the motors and the length of the arms 

prohibits this solution. 

An adaptation to the arm mounted motors would be to mount the motors in 

the chassis and have a transmission system to power the screws. This could 

be done through the use of belts, chains or 90° gearing systems. However 

due to the sizes involved, this is an impracticality with current manufacturing 

methods available. 

A third possible solution would be to mount the motors on the rear arm. 

While this would remove the rear-section screw, this is an acceptable 

compromise as it allows direct drive of the other screw sections while 

allowing ease of assembly. 

3.10 Design Prototype Version 3 

The third mounting solution explored in the previous section was adopted for 

the next generation of the locomotion system. In mounting the motors on the 

rear of the arms, direct drive is possible from the motor’s inbuilt gearbox 

simplifying the mechanical design. The motors selected for this design are 

discussed further in Chapter 4. A computer model of the system can be seen 

in Figure 3.10. 

With the motors moved in their location, the rear-section screws were 

removed. In their place are streamlined pods, which house the motors, 

protecting them from the environment. Using a sealed unit for the motors 

protects from intrusion of substances aiding with prevention of cross-

contamination. Some motor manufacturers produce motors for medical 

applications, which may be sterilised in an autoclave, these may be utilised 

to aid with cross-contamination. A computer model of the new arrangement 

can be seen in Figure 3.11. 

The expansion of the system is key to its ability to provide stable contact 

with the lumen, open collapsed sections and reduce wall contact or pass 

through narrow regions. This is provided through inter-linking the four arms 

to a 5th internal motor – allowing synchronous movement of the arms, Figure 

3.12. Where contact locomotion is needed, the arms allow the system to 
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maintain constant contact with the lumen increasing the ability to provide 

thrust. In collapsed sections of the lumen, the device may fold into the 

closed state, enter the passage using contact-based locomotion and then 

unfold the arms opening the lumen. This allows for greater visibility 

increasing the inspectional outcomes. 

The series of computer models shown in Figure 3.12 illustrates how the 

mechanism for expanding the device works. Each of the arms is attached to 

the chassis by a separate axle, which runs parallel to the centre of the 

chassis. Viewing the device front on, as the arms rotate anti-clockwise, the 

screws travel away from the central chassis reaching their maximum 

displacement when the arm becomes parallel to an imaginary line 

connecting the screw centre and chassis centre. The orange marker denotes 

the same screw throughout the rotation, starting at the left of the figure. The 

rotation covers 150° and the distance between the screw centre and chassis 

centre increased by 10mm (14mm to 24mm). 

 

 

 

Figure 3.10 Computer model showing the locomotion system version 3, 
Quad Screw Device Version 3. Annotations show: 1) Front-section 
screw; 2) Controllable arm section; 3) Mid-section screw; 4) Screw 
motor housing; 5) Front chassis section with space for camera module; 
6) Central chassis section housing arm motor and gears; 7) Rear 
chassis section with space for motor controllers, communication 
electronics and tether mount.  
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Figure 3.11 Motor arrangement for the screw actuation motor in Quad 
Screw Device Version 3. Annotations show: 1) Front-section screw; 2) 
Front controllable arm section; 3) Mid-section screw; 4) Transmission 
shaft; 5) rear controllable arm section; 6) Screw motor; 7) Screw motor 
housing pod. 

 

Figure 3.12 Arm expansion of the locomotion system. The orange dot 
donates the same arm throughout the expansion to aid visualisation of 
the motion. In the collapsed state, (a: isometric view, c: front view), 
each of the 4 screws are nestled against the chassis. As the expansion 
occurs, the arms rotate about the body, reaching full expansion as 
shown right (c: isometric view, e: front view). 

3.11 Summary of Design Process 

The final iteration of the design comprised 4 independently driven 

Archimedes’ screws, each mounted at the end of a controllable arm. The 4 

arms are controlled by a single motor such that they move in unison. 

Throughout this chapter, several changes were made to the design to 

compensate for issues raised. This section addresses the requirements laid 

out for the design in section 3.1, and how the requirements are met. 
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3.11.1 Clinical Requirements 

The design meets the clinical requirements as set out at the start of this 

chapter. Further evidence for meeting the requirements can be found in 

Chapters 4-6. 

 Atraumatic tissue interaction 

o Through material selection and screw design, the system may 

be atraumatic, meeting the clinical requirement. This is 

discussed further in Chapter 4. 

 Amphibious locomotion 

o As discussed through the literature review in Chapter 2, 

Archimedes’ screws are able of providing amphibious 

locomotion using the same drive effectors, the screws 

themselves, in a wide range of environments. Further analysis 

of the developed locomotion system and experimental 

assessment is discussed in detail in Chapters 5 - 7. 

 Appropriately scaled relative to a colonoscope 

o Current technology in additive layer manufacturing and market 

available actuators can be used to produce the system at an 

appropriate scale for hydro-colonoscopy. This is assessed 

further in Chapter 4. 

3.11.2 Technical Requirements 

The technical requirements of the system have been met by the design 

process and further analysis and discussion can be found in Chapter 4. 

 Communication and power supply 

o The locomotion system can be used in either a tethered or 

tether-less approach. A tethered approach has been initially 

chosen based on recommendations in literature on power 

supply and data communication, as discussed in Chapters 

2 and 4. Should battery technology improve then the 

system is able to be adapted to make use of such 

improvements. 

 Generate appropriate propulsive thrust for movement 

o The 4 screws allow a high degree of freedom of the system 

giving it the possibility to traverse the colon. Further 

assessment is carried out in Chapters 4-7. 

 Payload capability 

o Through conscious design decisions, the locomotion 

system has a dedicated location for camera mounting with 

the possibility that other payload equipment may be 

attached. This is further assessed in addition to this chapter 

in Chapter 4. 
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Chapter 4  

Detailed Design and Implementation of the Concept 

Locomotion System 

To assess the prototype locomotion design for its ability to provide 

locomotive force and thus deem it fit for purpose, it must be realised into a 

functioning system. Throughout the process of analysis, several challenges 

were overcome involving the locomotion system and sub-systems. This 

chapter covers the processes involved in realising a functioning locomotion 

system. Theoretical study and experimental assessment of the locomotion 

system design in isolated fluid (Chapter 4) and contact (Chapter 5) states 

were carried out, the results of which have fed into the design stages, 

forming an iterative design process. This chapter focuses on the findings of 

the studies in following chapters and the implementation of the design 

changes, which results in the production of a 2:1 scale prototype, which is 

assessed later in this thesis in Chapter 7. 

4.1 Driving the screws 

As with any mechanical system, control plays a vital role in both its design 

and operation. Closed loop control allows the regulation of velocity through 

different regimes, and is preferable in any system. This requires feedback 

from the output to correct the input. One method of closed loop control is 

through the use of proportional-integral-derivative (PID) control: the 

locomotion system’s screws were controlled using this approach in 

conjunction with signal conditioning to reduce signal noise. PID control is 

widely used in industry due to the only input to the control system being the 

process variable; the controller does not need any knowledge of the 

underlying processes affecting the control variable. 

4.1.1 Motor Control 

The purpose of motor control is to maintain the output of a motor while the 

operating conditions change. Motor control should also be able to adapt to 

changes in the demand velocity, applying the appropriate change in motor 

output to change to and maintain the new output. 

For the designed system, the velocity of each motor relative to the other 

motors is more important than the accuracy of the individual motor. As the 

system is propelled by four independent motors, their combined output 
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affects the motion of the device. The control system should be able to 

compensate for a lower thrust than desired from a single or multiple motors 

and maintain desired end location over velocity. For the development of the 

overall control system, control of the individual motors will be focused on 

initially. This will allow more complex control systems to be built throughout 

the project. A responsive controller for each motor is more desirable than a 

highly accurate one, such that minor errors or overshoot can be dealt with 

providing the system responds quickly to inputs. 

Proportional-integral-derivative, PID, control is widely used in industry for 

closed loop systems (85, 86). The controller calculates the error between the 

desired set point and the current set point, adjusting the control signal 

accordingly (Figure 4.1). Three separate functions make up the controller, 

each of which are applied to an internal variable; the summation of these 

with the previous signal forms the control signal. The three functions apply a 

constant to a specific error type: Proportional, the current error; Integral, the 

sum of past errors; and Derivative, the rate of change of error, (85, 86). 

Each of the three separate functions effect the rise time, overshoot, settle-

time and steady state error of the control signal. Proportional and integral 

gain decrease rise time however both increase overshoot while the integral 

signal increases settle-time. The derivative signal decreases overshoot and 

settle-time however, it is sensitive to signal noise. 

In the terms of controlling the motor velocity, the derivative component of the 

PID controller is important as overshoot and settle-time can have an 

undesired effect on motor control. Signal noise in the process variable 

(position or velocity measurement) is amplified by differentiation, which can 

result in greater noise in the derivative component. A custom-built PID 

control algorithm was designed such that the derivative gain could be 

filtered. 

 

Figure 4.1 PID control diagram (85, 86)  

Demand PID Control 
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Figure 4.2 Motor control using a PID controller 

A PID controller takes the demand and actual velocities as input and 

generates an output signal. This output, typically a voltage, is sent to a motor 

driver, which amplifies the signal or generates a pulse width modulated 

(PWM) signal to drive the motor. The motor velocity, read through the 

encoder feedback can be then fed back to the PID controller (Figure 4.2). 

The PID system can be represented by the following equation. 

 𝐶𝑠

𝐸𝑠
= [𝑘𝑃] + [

𝑘𝑖

𝑆
] + [𝑘𝑑𝑆] 4.1 

Where 𝐶𝑠 and 𝐸𝑠 are the control and error signals, and 𝑘𝑃, 𝑘𝑖 and 𝑘𝑑 are 

constants for P, I and D. An analogue filter, also known as a continuous filter 

is in the 𝑆 domain, where 𝑆 is the Laplace operator; while a digital filter, or 

discrete filter, is in the 𝑧 domain. An analogue filter can be approximated in 

discrete time systems using the 𝑧 operator, given by the following equation. 

𝑇 is the time period and 𝑧−1 is the delay. 

 𝑆 =
1 − 𝑧−1

𝑇
 4.2 

To discretise the equation into a form that can be run continuously within 

computer code, equation 4.2 is substituted in equation 4.1 to give: 

 𝐶𝑧[1 − 𝑧−1] = 𝐸𝑧 [𝑘𝑃(1 − 𝑧−1) + 𝑘𝑖𝑇 +
𝑘𝑑

𝑇
(1 − 𝑧−1)2] 4.3 

Finally giving the discretised form: 

 𝐶𝑡 = 𝑘𝑝(𝑒𝑡 − 𝑒𝑡−1) + 𝑘𝑖𝑇𝑒𝑡 +
𝑘𝑑

𝑇
(𝑒𝑡−2 − 2𝑒𝑡−1 + 𝑒𝑡) + 𝐶𝑡−1 4.4 

This can be separated into three sub functions for use within a control 

system, with the values for the constants and the filtering options exposed 

as the input arguments. 

The PID control scheme in equation 4.4 can be realised into structured 

computer code. The following section of pseudo code shows a realisation 

specific to this implementation. Each time the loop runs, the errors 𝑒𝑡 and 

𝑒𝑡−1 must be passed along with the demand and actual set points. The code 

shifts the errors such that error 𝑒𝑡−1 of the last loop is error 𝑒𝑡−2 in the current 
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loop etc. The demand and actual set point values are used to calculate the 

new error, 𝑒𝑡. T is the loop time in seconds. The values for P, I and D may 

be returned at the end of the code execution to process the signals, i.e. 

apply filtering. 

e2=e1;   // error for t-2 is error t-1 from last loop 

e1=e0;   // error for t-1 is error t from last loop 

e0=demand-actual;// current error is difference between 

 //demand and actual 

P=kp*(e0-e1);  // calculation for P component 

I=ki*T*e0;   // calculation for I component 

D=(kd/T)*(e2-2*e1+e0) // calculation for D component 

4.1.2 Signal Filtering 

Signal conditioning allows for undesired frequencies to be attenuated from a 

signal while maintaining the desired frequencies (85). This can take the form 

of removing background noise from analogue channels while preserving the 

data contained within the signal. A common usage is removing mains noise 

(50Hz sine in the UK) which is imprinted on signals acquired from non-

battery powered equipment. 

Within a PID controller, the derivative component is very sensitive to signal 

noise from the current set point. Through use of a PWM signal to drive the 

motors, the set point signal can be noisy resulting in less than desired 

stability in the control signal. To overcome this, the derivative signal can be 

filtered to reduce the effect of noise without greatly decreasing the 

functionality of the controller. 

Low pass filters are used to attenuate high frequency noise from a signal 

(85). Each order of magnitude for a filter decreases the roll-off rate. For a 

Butterworth filter, this is 20dB/decade. Such that a 1st order filter has a roll-

off of -20dB/decade, 2nd order of -40dB/decade and 3rd order of -

60dB/decade and so forth. Each order increases the phase lag, due to more 

information being required for the process. In this respect, it is important to 

select an appropriate attenuation level while minimising the order or 

magnitude to decrease the response lag. 

In this specific case, the measured signal is of low frequency while the noise 

is high frequency. A second order low-pass Butterworth filter was used as it 

applies a high attenuation on frequencies greater than a cut off value while 

maintaining lower frequencies in the signal and can operate within the 

timescale required for the control (>10ms). This allows the higher frequency 

noise to be removed while preserving the lower frequency control signal. 
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The analogue prototype for a second order low pass Butterworth is as 

follows. 

 𝐻𝑎(𝑠) =  
1

(𝑆 + 𝑎) ∙ (𝑆 + 𝑎̅)
 4.5 

Where 𝐻𝑎(𝑠) is the transfer function in the s-domain. 

Using Euler’s identity, 𝑎 = 𝑒
𝑗𝜋

4 , the following is obtained from equation 4.5 

 𝐻𝑎(𝑠) =  
1

(𝑆 + 𝑒
𝑗𝜋
4 ) ∙ (𝑆 + 𝑒

−𝑗𝜋
4 )

=
1

𝑆2 + √2𝑆 + 1
 4.6 

 

To use the filter within a computer system the filter must be digitalised. An 

analogue filter, also known as a continuous filter is in the S domain; while a 

digital filter, or discrete filter, is in the Z domain. To convert from S to Z, a 

bilinear transform is used,  

 𝑆 = 𝑐 ∙ (
1 − 𝑍−1

1 + 𝑍−1
) 4.7 

This allows the difference equations to be obtained allowing operation within 

computer code. Where 𝑐 is a constant calculated from the cut off frequency, 

𝜔𝑐, 

 𝑐 = 𝜔𝑐𝑐𝑜𝑡 (
𝜔𝑐𝑇

𝑠
) 4.8 

Applying the bilinear transform to equation 4.6, 

 𝐻𝑑(𝑍) =
1

[𝑐 ∙ (
1 − 𝑍−1

1 + 𝑍−1)]
2

+ √2 [𝑐 ∙ (
1 − 𝑍−1

1 + 𝑍−1)] + 1

 4.9 

𝐻𝑑(𝑍) =
1

[𝑐 ∙ (
1 − 𝑍−1

1 + 𝑍−1)]
2

+ √2 [𝑐 ∙ (
1 − 𝑍−1

1 + 𝑍−1)] + 1

 

𝐻𝑑(𝑍) =
1

[𝑐 ∙ (1 − 𝑍−1)2]
(1 + 𝑍−1)2 +

√2 ∙ 𝑐 ∙ (1 − 𝑍−1)
(1 + 𝑍−1)

+ 1

 

𝐻𝑑(𝑍) =
(1 + 𝑍−1)2

[𝑐 ∙ (1 − 𝑍−1)2] + [√2 ∙ 𝑐 ∙ (1 − 𝑍−1) ∙ (1 + 𝑍−1)] + [(1 + 𝑍−1)2]
 

 

 𝐻𝑑(𝑍) =
(1 + 𝑍−1)2

(𝑐2 + 𝑐√2 + 1) ∙ 𝑍−2 + (2 − 2𝑐) ∙ 𝑍−1 + (𝑐2 + 𝑐√2 + 1)
 4.10 
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The digitalised filter (equation 4.10) can be used in an algorithm for signal 

processing. 

4.1.3 Control System Hardware and Software 

A digital control system was selected over an analogue due to the ability to 

reconfigure the system without rebuilding circuits. A digital control system 

can be run alongside data acquisition (DAQ) hardware, performing 

operations on the signals and providing output signals. A digital system is 

also able to log readings to file of input and output values to allow analysis 

on the data. In being able to adjust the code that runs on the digital system, 

modifications can be applied and features added. This re-configurability 

outweighs the cost increase over an analogue system. An analogue system 

is most suited for deployment but it cannot be easily altered and such a 

digital system was selected. 

The digital system selected must be able to handle analogue and digital 

input and output signals, as well as perform analysis on the signals such as 

PID control and signal filtering. Expandability is key to being able to adapt for 

unforeseen requirements and such any digital system selected must have 

the ability to alter the input and output system and code executed on-board. 

The DAQ system must have the ability to read 4 digital inputs (encoder 

channels) and a minimum of two analogue inputs for reading load cell 

values. Analogue outputs are required to send commands to motor drivers 

and other hardware. 

Initially a MyDAQ system was selected from National Instruments. The USB 

powered system has an array of analogue and digital input and output 

channels. The LabVIEW programming environment by National Instruments, 

which accompanies the hardware, is able to connect to, and utilise any ports 

on the hardware in a reconfigurable approach. The hardware features on-

board digital counter for encoder TTL signals. However, the MyDAQ was 

found to be unable to simultaneously read from multiple analogue input 

channels. Opening a second channel would leave the first open and such 

the reading would become a combination of the two inputs. For this reason, 

a second system was researched. 

National Instruments provide a compact reconfigurable input output system 

(cRIO) which features an embedded controller and a reconfigurable chassis 

with a Field Programmable Gate Array (FPGA) system on a chip (SoC) 

module. The chassis can be expanded through modules that can be plugged 
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in. These modules provide input or output capabilities for both analogue and 

digital signals.  

National Instruments’ LabVIEW integrated development environment (IDE) 

allows the design of skeuomorphic graphical user interfaces (GUIs) and 

development applications for a wide range of hardware targets. Using the 

same IDE to develop and deploy code for the embedded controller, FPGA 

SoC and host machine simultaneously allows for faster development of 

larger applications. The IDE also takes care of discovering the attached 

hardware and handing connections between the host machine and the cRIO. 

The extensive IDE decreases the time spent on development and debugging 

enabling greater time to be spent on the outcomes. 

The solution provided by National Instruments allows a reconfigurable digital 

system to be developed with scope to adapt and expand when needed. For 

this reason and the aforementioned, it was selected for use with the project. 

To build a control system for the motors and attach any measurement 

devices needed such as load cells and encoders, a cRIO was selected along 

with appropriate input and output modules. Simultaneous analogue reads 

are important for sequencing input data from several load cells, with other 

analogue channels available for less time-sensitive measurements etc. 

Analogue output is needed for motor control signals and communication with 

motor driver boards. Digital input is needed for reading encoder TTL signals 

to ascertain the velocity of a motor etc. The specification of the hardware set 

up is listed in Table 4.1. 

Table 4.1 National Instruments hardware 

Hardware item ID Features 

Real-time controller NI 9024 Embedded real-time controller, 

800MHz CPU, 512 MB DDR2 

memory, 4GB non-volatile storage. 

Chassis NI 9114 8 slot chassis, Xilinx Virtex-5 FPGA 

SoC. 

Analogue input module NI 9205 16 differential analogue channels, 16b 

resolution, 250kS/s. 

Analogue output module NI 9264 16 analogue channels, 16b resolution, 

25kS/s. 
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Table 4.1 cont… 

Hardware item ID Features 

Digital input and output 

module 

NI 9401 8 bidirectional channels, 100ns I/O. 

Analogue input module NI 9223 4 differential channels, 16b resolution, 

1MS/s, simultaneous reads. 

 

The custom PID controller and Butterworth filter were implemented using 

LabVIEW and deployed onto the embedded system FPGA for use in motor 

control. Hardware implementations of algorithms run with increased stability 

in loop timing. FPGA operations are inherently parallel; n-tasks can be run at 

the same time where n is defined by the programming structure. Running the 

control of several motors in parallel allowed for a higher stable control clock 

while allowing for reliable time steps between readings. Hardware run tasks 

run at higher cycle rates than their software cousins reducing load and 

resource usage on the host computer improving stability of the control 

system. 

Using the digital module in input mode, the FPGA SoC was used to read the 

motor encoder TTL signals and determine the motor velocity. This was used 

within embedded code as an input to the PID control algorithm to calculate 

the control signal, which is sent to the motor controller board from the 

analogue output module. 

The FPGA SoC was used to collect load cell data from the analogue 

channels with timestamp data and feed this to the embedded controller on 

the cRIO along with the motor velocities. This assured all readings were 

taken in parallel allowing direct comparisons to be made. 

The schematic in Figure 4.3 shows the arrangements of hardware and the 

connection types between them over which data is sent. The NI hardware is 

assembled and then connected to the host machine using an Ethernet 

connection. Data between the host machine and the NI hardware is 

packaged and sent every 10ms, this allows for transfer latency. The data 

read by the NI hardware is at the hardware’s clock speed of 40MHz although 

this volume of data is not required for analysis and such it is sampled at a 

lower rate which can be set by the user (typically 100Hz). 
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Figure 4.3 Hardware utilised and data flow between components 

4.2 Components 

While many of the components used within the locomotion system are 

specifically designed and custom produced, other components were sourced 

from commercially available sources: these include motors and bearings. 

4.2.1 Motor Criteria 

In selecting motors, several criteria had to be met as listed below.  

Motor criteria 

 The overall device must fit within the colon (diameter: 20-60mm), the 

motors therefore must be smaller. 

 Provide sufficient output rotational velocity to provide fluid locomotion 

(velocity required discussed as part of Chapter 5) 

 Provide sufficient torque to move the device when in contact 

(discussed in Chapter 6) 

 Sterile or possibility of sterile manufacture (important for medical 

applications) 

4.2.2 Motor Selection 

From the design of the locomotion system as per Chapter 3, a 6mm 

diameter motor is of ideal size. To fit within a colon of 20mm diameter, the 

motors must smaller than this. The concept design features five motors as 

discussed in Chapter 3 and illustrated in Figure 4.4. To fit within a diameter 

of 20mm, the maximum diameter a motor can be is 6.6mm. Motors of 6mm 
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diameter are readily available on the market, which makes them an ideal 

selection for the initial concept. 

 

Figure 4.4 Motor arrangement for minimum diameter 

Several manufacturers produce motors in this scale, Precision Microdrives, 

Maxon Motors and Faulhaber (Table 4.2). Each have a range of 6mm 

motors with integrated gearboxes with customisable gearing ratios. The 

motors supplied by Maxon have the highest stall torque and operational 

torque, which is ideal for high demand situations such as contact based 

location. While the Faulhaber motors have a higher maximum angular 

velocity, the larger gearing ratios needed for torque increases the size 

requirements. 

Table 4.2 Comparison of 6mm diameter motors 

 Precision 

microdrives 

Maxon Faulhaber 

Diameter 6mm 6mm 6mm 

Length 12.2 mm 15.6 mm 15 mm 

Stall torque Not stated 0.485 mN·m 0.22 mN·m 

Nominal torque 0.05 mN·m 0.324 mN·m Not stated 

Maximum 

velocity 

14000 rpm 18600 rpm 20200 rpm 

 

To rotate a screw in contact with a surface, the coefficient of friction in the 

parallel direction (CP) must be overcome. This is explored in greater depth in 

Chapter 6. As this coefficient of friction increases, the torque required to 

rotate the screw increases proportionally. The value of CP is dependent upon 

the materials in question and the contact mechanics; it will vary between 

fluid and contact states of locomotion. Fluid based locomotion requires a 

higher angular velocity and lower torque to generate thrust (87), as 

discussed further in Chapter 5. Thus in selecting a motor and gearbox 

Motors 

Minimum diameter 
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combination to suit both situations requires several trade-offs: ideally an 

adjustable or variable gearbox would be used.  

For the final locomotion system, Maxon motors were selected. Maxon are 

able to offer sterilisable systems for use in medical applications, which is of 

importance to any inter-luminal device. These motors are available on 

special order and were not used for the work detailed in this thesis. 

The motor selected for the locomotion system is a Maxon RE6 motor, (part 

number 349190). The motor is compatible with several planetary gearboxes 

and can be purchased as part of a motor-gearbox combination. 

The RE6 349190 motor has a peak torque of 0.324mN·m at 5670 rpm, 

running with a supply of 3v and 0.242A. The stalling torque for the motor is 

0.485mN·m (Table 4.2, Figure 4.5). Through mathematical analysis of the 

gearboxes available, the predicted max angular velocities and torque can be 

calculated. 

 

Figure 4.5 Operating range of selected Maxon motor. Red denotes 
continuous operation; grey denotes short-term operation in which the 
motor may be briefly overloaded (recurring). Graph taken from Maxon 
catalogue (EN) 2013/14. 

The information in Table 4.3 indicates the output shaft velocity and torque of 

three gearboxes at the motors maximum torque output. 

Table 4.3 Motor gearbox combination output angular velocity and torque at 
motor peak torque velocity 

Motor (RPM) 5670 5670 5670 

Gearbox ratio 15:1 57:1 221:1 

Output (RPM) 378 99.47 25.67 

Output (rad s-1) 39.58 10.42 2.69 

Maximum output torque (Nm) 0.01 0.02 0.06 
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The information in Table 4.4 indicates the performance of the same three 

gearboxes at the motor’s maximum velocity. 

Table 4.4 Motor gearbox combination output angular velocity and torque at 
motor peak velocity. 

Motor (RPM) 18600 18600 18600 

Gearbox ratio 15:1 57:1 221:1 

Output (RPM) 1240 326.32 84.16 

Output (rad s-1) 129.85 34.17 8.81 

Output torque (Nm) 0.005 0.01 0.03 

 

As it can be seen from Table 4.3 and Table 4.4 while the 221:1 gearbox 

produces the highest torque, as expected, the output velocity is relatively low 

at 84RPM. The 54:1 gearbox produces a third of the torque but is able to 

operate at a higher angular velocity, 3.8x that of the 221:1 gearbox. As 

expected the 15:1 gearbox runs the fastest but produces the least torque. 

The 15:1 gearbox provides a high angular velocity output, which is suited 

towards fluid based locomotion: however, the torque produced may not be 

great enough to overcome contact-based obstacles. The 57:1 gearbox can 

provide double the output torque at a quarter of the angular velocity, which 

may greater hinder the fluid based locomotion. 

For providing expansion of the arms, the process of selecting a motor and 

gearbox combination is much simpler: high output torque is needed. The 

221:1 is ideally suited at being able to provide toque to distend the bowel. 

Mathematical analysis was carried out to calculate the forces experienced by 

the system and the bowel during expansion of the arms. 
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Figure 4.6 Expansion of arms with angle subtended between chassis and 
arm 

Throughout the expansion of the arm mechanism, the normal force exerted 

upon the colon wall will vary. As the device moves from the closed state to 

the open state, it is predicted that the greatest force will occur at an arm 

angle of 𝜋 2⁄  radians. Equation 4.11 links the arm-tip force to the arm angle, 

and Figure 4.7 shows the derivation of the arm angle. When the arms reach 

the open state, where no further increase in device diameter is possible, the 

force exerted by the device will tend to zero, as no further displacement is 

possible. 

 𝐹𝑥 =
𝑚𝑜𝑡𝑜𝑟 𝑡𝑜𝑟𝑞𝑢𝑒

𝑎𝑟𝑚 𝑙𝑒𝑛𝑔𝑡ℎ
 ∙ sine (𝑎𝑟𝑚 𝑎𝑛𝑔𝑙𝑒) 4.11 

 

Figure 4.7 Angle formed as an arm moves from open to closed position. The 
black square denotes the chassis; the blue solid circle denotes the 
screw with the connecting blue line the arm. The dotted red lines shows 
the construction of the angle, the dotted blue line shows the path the 
screw may take about the chassis. 
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For each of the gearboxes the force was calculated through the arm 

expansion motion, the results can be seen in the graph in Figure 4.8. 

 

Figure 4.8 Force exerted at arm tip in the x-axis during arm expansion for 
varying motor gearbox combinations 

As expected the outwards force tends to zero as the arms reach their full 

expansion, with the greatest force being exerted part way through the 

operation. The highest ratio gearbox produces up to 1.36N per arm. Taking 

the contact surface area of an arm against tissue to be half the surface area 

of a screw, 301.6 mm-2, the pressure on the colonic wall imposed by each 

arm is calculated to be 4.5 kPa. This is less than the minimum force required 

to perforate colonic tissue of 14 kPa as established in Chapter 2, leading to 

safe operation of the system. 

4.3 Screw design 

The screw geometry defines the system’s ability to generate thrust. The 

thread depth, pitch and number of threads have effects on the thrust 

generation, as discussed further in Chapters 5 and 6. 

In locating the motors within the screws as initially designed, the thread 

depth is reduced due to a larger shaft diameter. Housing the motors on the 

rear of the device allows for a smaller shaft diameter, as discussed in 

Chapter 3. 

The screws were designed around the position of the motor and the sizes 

feasible using rapid prototyping, to have the largest outer diameter feasible 

in line with the chassis and arm configuration. The screw dimensions were 

selected to be 12mm outer diameter (blade tip to blade tip), 4.8mm inner 

diameter (base of threads), and a 3mm shaft diameter along the centre to 

allow attachment to an axle (Figure 4.9). The threads are 1.2mm thick at the 
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tip with a 1% chamfer towards the base. Two pitches were selected, 20mm 

(40° blade angle) and 40mm (60° blade angle), for use within the 

experiments. Each screw is 40mm in length. The surface area of a screw 

shaft, without threads, is 603.2 mm-2. The total contact area against tissue 

will be dependent on the compliance of the threads and tissue, and the 

loading applied. An increased loading will result in an increased surface area 

as the threads collapse and the tissue envelops the screw. 

An increased pitch will result in a larger displacement per rotation of a screw 

along the screw length. The increased displacement in turn requires a higher 

torque to rotate the screw. In contact, the ability to provide thrust comes from 

the difference in friction coefficients between the normal and parallel 

direction, this is explained in greater detail in Chapter 6. Pitches past a 

certain magnitude are unable to generate thrust due to the breakdown in the 

relationship of the coefficients: i.e. they contradict each other in terms of 

locomotion along the screw length. Maximum efficiency of helical paths in 

gears can be obtained between 40° and 45° (88) in terms of the ability to 

transmit locomotion. A screw pitch was chosen such that it provides 

maximum theoretical efficiency and the length of the screw chosen such that 

it contained an integer number of thread helices: 20mm pitch and 40mm 

length. A second pitched screw was chosen such that it contained half the 

number of helices to provide a comparison. 

To increase the blade contact without increasing the blade thickness a dual 

sweep screw was used. This allowed greater contact with the fluid and 

tissue for locomotion generation without increasing the dimensions of the 

individual blades. The dual sweep screws are also balanced in terms of 

rotating mass. For a single sweep screw, incomplete turns would result in an 

unbalanced rotating mass which would cause control and stability issues. 
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Figure 4.9 Computer image and line drawing of the screws used in fluid and 
contact testing. From left to right: a) computer image of the 20mm pitch 
screw; b) computer image of the 40mm pitch screw; c) line drawing of 
the 20mm pitch screw; d) line drawing of the 40mm pitch screw, e) 
annotated line drawing of 20mm pitch screw showing definitions of 
measurements given. 

 

Figure 4.10 Rapid prototyped screw sections. a) Shown left to right: two 
rigid single material 40mm pitch screws; two rigid single material 20mm 
pitch screws. b) Shown left to right: four compliant multi material 20mm 
pitch screws arranged in two pairs of opposite handed threads. Colours 
are for identification purposes only. 

Originally, the screws were produced using a single material, using rapid 

prototyping (Figure 4.10). In changing the build to include the use of a 

compliant material for the screw blades, the risk of trauma could be reduced. 

A digital material ‘DM9860’ was selected for use as the screw blades; the 

manufacturer states a digital material as a mixture of resins selected for 

rapid prototyping purposes. The material has a shore hardness of 60 and a 

tear resistance of 8N/mm. The material was experimentally assessed using 

a mechanical strain device and found to have a Young’s modulus of 

250kNm-2, which is comparable to that of colonic tissue, 212kNm-2. Although 

the compliant screw blades are stiffer than tissue, due to their thickness 

relative to tissue, it is hypothesised that they will yield before tissue damage. 
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Further testing of rigid and compliant threaded screws is discussed in 

Chapter 6. The effects of compliant screw threads on propulsion through a 

fluid medium is assessed during Chapter 7. Mechanical properties of tissue 

were measured by Miss Z Ehteshami, as part of the CoDIR project, work 

currently unpublished. 

4.4 System Concept Modelling 

A complete 3D computer model was built using a 3D CAD package 

(Solidworks, Solidworks Corp. Dassault Systèmes). This model was used to 

explore the mechanism in which the arms would fold allowing changes in 

diameter as well as fit the components. A complete breakdown of the final 

model is shown in Figure 4.11 through Figure 4.15. 

 

Figure 4.11 Computer model showing the final design of the locomotion 
system. Annotations show: 1) Front-section screw; 2) Controllable arm 
section; 3) Mid-section screw; 4) Screw motor housing; 5) Front chassis 
section with space for camera module; 6) Central chassis section 
housing arm motor and gears.  
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Figure 4.12 Computer model showing the shafts running along the screws 
connecting the motors at the back to the front screw sections.  
Annotations show: 1) Bearing housed within arm; 2) Shaft connecting 
motor output and screw sections; 3) Screw motor. 

 

Figure 4.13 A computer model showing the screw motors exposed at the 
rear and the screw shafts transmission powering the screws. In the 
centre of the system, the internal motors and gears can be seen. 
Annotations show: 1) Bearing housed within arm; 2) Shaft connecting 
motor output and screw sections; 3) Screw motor; 4) Arm expansion 
mechanism; 5) Central motor used for arm expansion. 

1 2 3 

1 2 3 

4 5 
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Figure 4.14 A computer model showing the screw motors and transmission 
exposed. The motor and gears that operate the expansion of the arms 
are also exposed in the centre. The central motor is connected to a 
gear, which turns the four surrounding gears, which in turn rotate the 
arm axles. The arms can be seen in their overlapping state. 
Annotations show: 1) Arm expansion gears; 2) Arm shaft connecting 
front and rear arms attached to gearing allowing for synchronous 
movement between arms; 3) Bearings to maintain alignment of arm 
shafts; 4) Central motor which drives movement of the arms. 

 

Figure 4.15 A computer model showing the shafts, gears and motors 
exposed. The central arm shafts have an edge keyway to locate the 
arms in their correct position and allow synchronous expansion. To the 
right the method in which the arm overlap to allow for the large 
percentage change in diameter can be seen. Each arm overlaps the 
one after it and is overlapped by the one before it. Annotations show: 1) 
Arm shaft gear; 2) Central motor gear. 

3 4 

1 2 

1 
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4.5 Manufacture 

Throughout the construction of the locomotion system, several new 

fabrication processes were utilised. 3D printing methods allows for complex 

geometry to be produced, which would be otherwise impossible with 

destructive methods.  

4.5.1 Technologies Used 

The process of additive layer manufacturing (ALM), also known as rapid 

prototyping and 3D printing, builds parts from fusing or setting a powder or 

liquid medium to form a solid component. The first machines which were 

able to produce parts using ALM techniques were developed in the 1980’s 

(89), however the use of such machines have only recently hit common 

knowledge through media coverage through their availability and sometimes 

controversial usage (90). 

The following four methods have been used throughout: 

 Selective layer sintering (SLS) uses a laser to melt and bind a 

powered material to form solid components. 

 Stereo lithography uses a light source to set a fluid medium to form 

solid components. 

 Fused deposition modelling (FDM) builds solid components by 

melting and extruding a thermoplastic filament. 

 Polyjet sprays tiny amounts of curable liquids onto the build tray and 

model to build the component. This process can build in multiple 

materials simultaneously including compliant materials such as 

rubber. 

Table 4.5 Comparison of strengths and weaknesses for ALM processes 
listing the components produced using each process. 

Process Strengths Weaknesses Used for 

SLS  High 
accuracy 

 Single 
material 

 Porous 

 Initial fluid 
testing rig. 

 Concept 
prototype 
versions 1 
and 2 

Stereo 

Lithography 

 Very high 
accuracy 

 Non-porous 

 Single 
material 

 Concept 
prototype 3 
chassis 
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Table 4.5 cont… 

Process Strengths Weaknesses Used for 

FDM  Quick to 
produce 

 Relatively 
cheap 

 Brittle 

 Low accuracy 

 Porous 

 Testing 
apparatus 
components 

Polyjet  High 
accuracy 

 Multi-material 

 Non-porous 

 Becomes 
weak with 
long exposure 
to water 

 Multi-material 
screw 
sections 

4.5.2 Limitations 

While ALM enables many designs that would be impossible using traditional 

tooled manufacturing, ALM is not without its own limitations. With destructive 

manufacturing, the material is always uniformly dense; ALM can produce 

non-liner densities throughout the material. This can be to do with the 

material supplied, the resolution of the production process and the design of 

the part. While this can be sometimes useful, it can inadvertently cause 

weak points within a structure leading to an unexpected failure. FDM is 

particularly susceptible to this, as the finished component can have weakly 

attached layers leading to planes of weakness. 

Support material is used in some processes to allow the main material to 

cure or set, the support material is removed after production and acts as a 

scaffold during fabrication. While functioning actuating parts can be 

produced, such as a wheel produced on axle, the support material used in 

ALM can be difficult to remove if the design does not allow for this. This can 

result in parts being produced in a jammed or fused configuration. During the 

design, if the gap between the fixed and moving parts is too small then they 

can be produced in a fused state. This is because the machine’s resolution 

does not allow it to distinguish between the separate parts and simply 

“prints” an approximation of each slice through the design. Should the gap 

be designed too large then the parts will not fit well resulting in unwanted 

local movement. For parts that have hollow sections, the machines fill these 

cavities with a support material to prevent the main section from collapsing4. 

This means it is not possible to produce a completely hollow and continuous 

                                            

4 Support material utilisation depends on technology used, machine vendor 
and print optimisation software. Water soluble support material is 
entering the market, however this still requires passageways for fluid 
ingress and waste extraction. 
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part: holes for removal of the support medium must be built into the design. 

To overcome these, the designs must be produced with the limitations in 

mind. 

The resolution of the machine and technique being used is critical to utilising 

the technology. For each technique and machine, there are two specific 

resolutions for effective use of the technology: layer thickness and printing 

resolution. The layer thickness is the distance between horizontal layers (in 

the upwards, or Z, axis). The “HP DesignJet Color 3D” printer (FDM), a 

consumer level machine, has a layer thickness of 0.33mm while the 

“Stratasys Object 1000” (Polyjet), an industry leading machine, has a layer 

thickness of 16µm. The former produces parts that the layers are clearly 

visible to the eye and can be felt; these pose a significant weakness in these 

planes, from experience often lead to sheering and failure of the part. Figure 

4.16 shows a side-by-side comparison of two different resolution techniques. 

The latter is able to produce a part with constant density throughout and no 

layer-based weaknesses, as claimed by the manufacturer. This layer-based 

weakness can be an issue with for example, wheels. When printed in the Z 

direction, the wheels can have a stepped edge leading to less than desired 

smoothness and plane based weaknesses in the spokes and across the 

wheel edge. The printing resolution defines the smallest change in a 

direction within the XY plane the device can produce. The aforementioned 

HP Designjet machine has a resolution of 0.91mm (28dpi), with this being 

the thinnest part it can produce. The Objet 1000 has a resolution of 

0.085mm (300dpi). The management software will round features to the 

nearest amount the machine can handle and such the designed part may 

not entirely resemble the produced part. 

While ALM may seem like a wonder-technology and a solve-all for 

designing, it requires knowledge of the techniques used to make the best of 

its features much like traditional manufacturing. 
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Figure 4.16 Two rapid prototyped dual sweep helical screws, photographed 
on a 2mm grid. Foreground screw produced using Polyjet 
manufacturing process; rear screw, produced using SLS, shows clear 
layer based stepping in the geometry along the screw length. 

4.6 Summary of Design and Implementation process 

The design of the final concept has been built around the expansion 

mechanism for the arms. Each of the arms overlaps the arm following it 

when in the closed state increasing the length of each arm while maintaining 

a small minimum diameter. To allow for use of off-the-shelf components and 

ease of assembly, the designed prototype has been produced at a scale of 

2:1. The ALM produced parts can readily be produced at a scale of 1:1 in 

future development to incorporate smaller gears and motors. Although the 

prototype does not feature on-board motor control or a camera, these have 

been taken into consideration with dedicated space for the additional 

hardware available. 

ALM has seen a large change in the way in which components can be 

produced, opening up new design possibilities, which would not have been 

possible with traditional destructive manufacturing. The combination of 

different materials in a single component has allowed the design of the 

prototype to include compliant screw blades with a rigid central structure. 

The prototype has been designed to take advantage of these new 

possibilities, allowing the production of small, high accuracy components 

featuring complex geometry. Components that house motors have built-in 

attachment threads allowing the motors to be screwed in and held securely 

without the need for adhesives. ALM allows these threaded sections to be 
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designed without the need to tap the hole after manufacture, removing the 

space and access requirements for tapping tools. 
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Chapter 5  

Fluid Locomotion – Theoretical and Experimental Analysis of 

the Locomotion System 

The prototype locomotion system, featuring 4 Archimedean screws, has 

been designed to produce amphibious locomotion through a flooded colon. 

In allowing for amphibious locomotion, the screws must function in both pure 

fluid and pure contact scenarios. This chapter covers the analysis of the 

performance and characteristics of the screws in a pure fluid state both 

theoretically and experimentally. A theoretical model of a single screw 

rotating in fluid was built in order to establish the effects of angular velocity 

and pitch upon thrust. This was used to aid development of a testing rig and 

allow characterisation of the effects upon thrust of the variable geometry and 

compliant screw blades that would be increasingly difficult to model. 

5.1 Screw Propulsion Background 

Although nature has produced many effective fluid based locomotion 

methods, the propeller remains the main form of locomotion for macro scale 

man-made aquatic based craft. The conventional propeller has been a 

wonder of the modern world in terms of transport and shipping; increasing 

the speed, efficiency and reliability of vessels over sail and oar based 

locomotion. In developing a model for fluid based locomotion, it is important 

to understand the origins of the much taken for granted propeller. 

The use of screw propellers is not a new concept, the first accounts date 

circa 250 BC when Archimedes devised the first recorded screw propeller, 

which to this day takes his name. The screw propeller consists of one or 

more veins or blades of constant cross-section, extruded helically along the 

rotational axis of the shaft. Figure 5.1 shows a two bladed screw propeller. 

The alternative to the screw propeller, the fan propeller, can be traced back 

to circa 1500 AD when it was depicted by Leonardo da Vinci in his sketches 

(87). The fan propeller, as designed by Leonardo da Vinci, consists of 

paddles or blades located at the end of radial arms with the blades being 

inclined with the plane of rotation (87), as seen in Figure 5.1. 

While propellers were known of for at least 2000 years, the paddle wheel 

remained the main form of powered locomotion for marine craft until the 19th 

century. In 1845 the famous tug of war trial lead by Isambard Kingdom 
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Brunel showed that the screw propeller was more efficient than the paddle 

wheel (91, 92). The higher efficiency allowed vessels to travel greater 

distances and at higher speeds than before, revolutionising the industry. 

This new technology saw a rapid increase in research into fluid based 

locomotion and through what could be attributed as a serendipitous moment, 

the paddle propeller was rediscovered after a screw propeller sheered 

partway along the shaft and the vessel’s speed increased (91). The screw 

propeller originally featured a single swept thread with one complete 

rotation; increasing the number of blades and decreasing the length was 

found to increase efficiency and decrease vibrations produced during 

locomotion. 

 

Figure 5.1 Screw propeller (a) and fan propeller (b), (J. Carlton, 2007). Blue 
arrow shows rotation of the propeller and orange arrow shows direction 
of thrust. 

The aerofoil propeller is an adaption of the fan propeller in which the flat 

propeller paddles are replaced with a curved blade with an aerofoil cross-

section (87). A typical marine propeller is shown in Figure 5.2, propellers 

feature between 3 and 5 blades depending on the size and output required. 

The aerofoil blade propeller uses differences in geometry to accelerate the 

fluid towards the back of the blade. The geometry causes a difference in flow 

speed between flows over the top and bottom of the blade, which results in a 

pressure difference (Figure 5.2). This pressure difference, accompanied by 

Bernoulli’s principle, result in lift generation (93). The blades of a propeller 

are aligned such that this lift force is parallel to the direction of travel, such 

that this lift force aids motion. To maintain a constant angle at which the tip 

approaches the flow, known as the attack angle, the blade twists, as can be 

seen in Figure 5.2. With decreasing scale of operation the thrust produced 

does not scale proportionally, to maintain thrust production the propeller 

would need to be driven at higher speeds. (93-95). 

In contrast with the conventional aerofoil propeller, the screw propeller 

produces thrust through a more simplistic mechanism. With each rotation, a 

Flat blades Flat blades a b 
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body of fluid is displaced along the length by the veins or blades. These 

blades are of constant cross section throughout the length of the screw and 

may form several rotations about the screw shaft. The blades do not 

accelerate the flow like the aerofoil propeller blades. Due to these 

differences in operation, there is a notably higher efficiency in thrust 

production from the aerofoil blade propeller. This is most noticeable in high 

Reynolds5 number flows, in the range of 106 and higher (87, 94), such as 

those associated with large ships (87).  

 

Figure 5.2 The aerofoil marine propeller, a) typical 5 blade propeller; b) 
aerofoil cross section showing streamlines, M. Belisle 2008.  

As screw propellers do not generate thrust in the same process as aerofoil 

propellers, the aerofoil theory cannot be applied. Archimedes’ screws are 

still in use within industry in extruder pumps. In this application, the screw is 

operated within a closed environment, running at low angular velocity and 

high toque to extrude very viscous media such as clay. This is significantly 

different to the approach taken by this research and such theory regarding 

these is not useful without major alterations.  

5.2 Development of a Theoretical Model 

Taking a simplified view, when a screw rotates within a fluid, the body of 

water constrained within the threads is pushed along the length of the shaft; 

thus the thrust would be directly proportional to the volume of fluid moved 

per time step. This is however, a simplistic model of thrust production, to 

expand upon this the interaction between the fluid and the screw must be 

understood. During operation, the fluid in the veins formed by the screw 

                                            

5 Reynolds number is a dimensionless quantity that describes the disorder or 
turbulence in a flow. Developed by Stokes in 1851 it is defined as the 
ratio of inertial forces to viscous forces (96. STOKES, G.G. On the Effect 
of the Internal Friction of Fluids on the Motion of Pendulums.  Pitt Press, 
1851.) 

Aerofoil 

a b 
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threads and central shaft will have an interaction similar to fluid in a pipe. 

The vein effectively forms an open top quadrilateral pipe. Consequently 

boundary layer theory (84, 97) provides a useful method of developing an 

appropriate thrust generation model. 

When a flow passes a body, the surface friction causes a thin layer of fluid to 

adhere to the body on the surface such that the fluid is stationary relative to 

the body. As the distance increases from the body, the fluid velocity 

increases until it matches the velocity of the unaffected fluid. As this 

graduation in fluid velocity increases towards the velocity of the unaffected 

fluid it reaches a point known as the boundary layer (97), as seen in Figure 

5.3. 

 

Figure 5.3 Boundary layer of an ideal fluid as it passes a body, Schlichting 
(97). Arrows represent fluid velocity, dashed line represents where the 
flow reaches maximum velocity of the flow known as the boundary 
layer. 

In the case of screw based fluid locomotion, the fluid is stationary and the 

screw body is moving. The fluid at the screw surface will be dragged along 

with the screw with decreasing fluid velocity with increasing distance from 

the screw body until the fluid becomes stationary at a distance from the 

screw. Thus, the fluid in the veins will move with the screw, this movement of 

fluid will form part of the thrust the system produces. 

The definition of thrust is the product of the mass flow rate of the exhaust 

and the velocity of this exhaust relative to the emitting body. The equation 

for this can be seen in equation 5.1. 

 

 𝑇 =
𝑑𝑚

𝑑𝑡
∙ 𝑣 5.1 

The mass flow rate of the exhaust, in this case the fluid, can be calculated 

from knowing the speed of the fluid as it exits the system, the density of the 

fluid and the cross sectional area, 𝐴, equation 5.2. 

 𝑑𝑚

𝑑𝑡
= 𝜌 ∙ 𝐴 ∙ 𝑣 5.2 

Fluid flow 

Body  

Boundary 

layer 
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Substituting equation 5.2 into the equation of thrust (equation 5.1), an 

equation for thrust from a screw in terms of the fluid properties and screw 

geometry is obtained, shown in equation 5.3 

 𝑇 = 𝜌 ∙ 𝐴 ∙ 𝑣2 
5.3 

To calculate the exit velocity of the fluid from the screw, a model of the fluid 

flow relative to the screw was established. Theoretically unfolding the screw 

produces a long channel with a static surface along the base and sides, the 

top of the channel is open to the fluid body. As the channel moves, the fluid 

in contact with the screw surface will move with the surface and an 

assumption is made that the fluid velocity will tend to zero as it approaches 

the open body. This is shown in Figure 5.4.  

The diagram shown in Figure 5.4 shows a 2D representation of the screw, 

which rotates about the central axis at an angular velocity of 𝑈. The angle 

between the blades and horizontal, 𝛼, is set by the pitch of the screw, where 

𝛼 = 𝑡𝑎𝑛−1 (
𝑃

2∙𝑑1
). Figure 5.4 shows the dimensions of the fluid channel and 

the velocity of the fluid along the channel correcting for the blade angle. A 

table detailing the symbols and units used within Figure 5.4 can be found in 

Table 5.1. 

The diagram shown in Figure 5.4 shows a 2D representation of the screw, 

which rotates about the central axis at an angular velocity of 𝑈. The angle 

between the blades and horizontal, 𝛼, is set by the pitch of the screw, where 

𝛼 = 𝑡𝑎𝑛−1 (
𝑃

2∙𝑑1
). Figure 5.4 shows the dimensions of the fluid channel and 

the velocity of the fluid along the channel correcting for the blade angle. A 

table detailing the symbols and units used within Figure 5.4 can be found in 

Table 5.1. 
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Figure 5.4 Modelling of fluid flow within the screw as the screw rotates 
Shown left a schematic of the screw propeller; Shown right a cross 
section of the vein formed between two screw threads. A screw of pitch 

P forms an angle 𝜶 between the screw blade and the x-axis and rotates 

at angular velocity of 𝑼 about the y-axis. 𝒍 and 𝒉 are the length and 
height of the screw vein respectively, in which the fluid has a velocity of 

𝒖 which varies with distance from the screw. Shading in the vein cut-out 
(right) denotes relative fluid velocity. 

Table 5.1 Symbols and units used within calculation of the fluid flow and 
diagrams in Figure 5.4 

𝐴 Cross sectional area of channel, ℎ ∙ 𝑦 

𝛼 Angle formed between blade and 𝑥 axis (horizontal) 

𝑑1 Diameter of screw shaft 

𝑑2 Diameter of screw blades 

ℎ Height of channel formed by screw threads 

𝑙 Width of channel formed by screw threads 

𝑃 Screw pitch 

𝜌 Density of fluid (taken as 1000𝑘𝑔𝑚−2) 

𝑇 Thrust 

𝑈 Angular velocity of screw about y-axis 

𝑢 Fluid velocity along the screw vein 

𝑣 Exit velocity of fluid from screw in y direction 

Pitch 

Cross 

Sectional 
Area 

Axis of rotation 

 

  

 
𝛼 

 
𝑈 

𝑥 

𝑦 

ℎ 

𝑢 = 𝑈 ∙ 𝑐𝑜𝑠(𝛼) 

𝑢 = 0 

𝑙 

a b 
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Using the boundary layer theory model for fluid flow within the screw veins 

and substituting into the equation for thrust (equation 5.3), an equation for 

thrust generated from the screw is obtained, 

 𝑇 =
5𝜌𝑈2ℎ𝑙

6
∙ 𝑣 5.4 

Equation 5.4 calculates the theoretical thrust generated from a single screw 

when rotated in a fluid. By varying the pitch of the screw, the effect upon the 

thrust can be calculated. Varying the screw pitch will result in the vein length 

(𝑙) and fluid exit velocity (𝑣) also varying while the remaining screw geometry 

is constant. It can be seen from equation 5.4 that an increase in pitch will 

result in an increase in thrust. This is illustrated by considering two screws of 

20mm and 40mm pitch (screw pitch selection discussed in Chapter 4.3), and 

calculating the thrust generated by each, as shown in Figure 5.5.  

It can be seen from Figure 5.5 a 2x increase in screw velocity results in a 

greater than 2x increase in thrust. This relationship is to be expected due to 

the squared term on the angular velocity of the screw. An increase in pitch 

also results in an increase in thrust. This is also to be expected due to the 

fluid exit velocity increasing with an increase in pitch. The 40mm pitch screw 

produces a greater thrust than the 20mm pitch because of this. 

 

Figure 5.5 Theoretical thrust produced from a single screw 

5.3 Development of the Testing Platform 

Development of a mathematical model allows for effects of parameters to be 

ascertained without large volumes of experimental testing: through this 
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simulation, time and resource usage can be reduced. However, it is 

important to validate any model against experimental data to ensure it is 

producing meaningful data and capture modelled aspects of the physical 

system. 

A rig was designed to allow the thrust developed by a single screw rotating 

in fluid to be measured. Through changing physical parameters such as the 

screw pitch and angular velocity, the mathematical model can be validated. 

The rig was also developed to allow exploration into the effects upon the 

thrust the variable geometry of the 4-screw prototype system would have, 

such as the arms being located in the open or closed position. 

To carry out the above requirements, the rig must include the following:  

 Motor velocity control 

 Adjustable components to model: 

o Changes in screw pitch 

o Changes in cowling coverage. 

Motor velocity control allows for the angular velocity of the screw to be 

adjusted, as well as recorded. The unloaded motor velocity can be modelled 

as proportional to input voltage, but with unknown loading feedback control 

was required to actively achieve and maintain a desired velocity. Screws of 

differing parameters were manufactured using rapid prototyping techniques. 

The rig must allow for the part mounted to be changed. Depending on the 

arm position, the screw may have part of the rotation covered; the rig must 

be able to simulate this through changeable or adjustable pieces. 

5.3.1 Rig Hardware Design 

The Fluid Propulsion Testing Rig was designed to provide experimental data 

on thrust production from a device submerged in a body of fluid. To provide 

a means of collecting this data, this rig may be suspended in a water tank 

from a beam load cell (Part No. 1004-00.3-JW00-RS, Tedea Huntleigh, as 

detailed in Table 5.2). In this case, a single screw assembly was attached to 

the load cell such that the screw was suspended in the fluid in a vertical 

position (Figure 5.6). Any reaction forces in the vertical direction generated 

by the screw would act against the load cell allowing the data on thrust to be 

acquired. 
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Table 5.2 Load cell specifications 

Load cell Excitation  Range Error Safety 

overload 

Output 

Tedea beam 

cell 

10v DC 0-300g ±0.0067% 150% 0.9±0.1mV/V 

 

 

Figure 5.6 Fluid Propulsion Testing Rig schematic showing key 
components.  

The screw sub assembly consists of a motor (24mm, 12v, Part No. 222049, 

Maxon Motors) with encoder (512 pulses/rotation, 2 channels, Part No. 

201937, Maxon Motors), connected to a shaft on which the screw pieces 

may be attached. The tail end of the shaft is housed in a radial bearing 

mounted in the mounting arm. The motor and shaft are arranged such that 

the axis of rotation passes through the load cells calibration point and the 

shaft is vertical. 

The load cell was connected to an amplification unit (DR7DC, RDP 

Electronics) which outputs a signal of ±10v. The unit was tuned such that at 

zero load it would output 0v and full load (beam cell limit: 300g) would output 

10v. The output from the amplification unit was connected to analogue input 

channels on data acquisition hardware (MyDAQ, National Instruments) 

allowing the data to be collected using a computer. Custom software 

(developed using LabVIEW) read the signals from the hardware, calibrated 

to voltage to SI force and saved this data to file alongside motor velocity and 

time stamp for sample point. 

1. Mounting point to frame 

2. Beam load cell 

3. Motor and motor housing 

4. Shaft for mounting screws  

5. Attachment arm 

6. Fluid level 

7. Screw section 

8. Cowling mounting location 

9. Inter-changeable cowling piece 

10.Shaft bearing and bearing mount 

1 

2 

3 

9 

4 

7 8 

10 

6 

5 
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The motor was controlled using a commercially available motor controller 

(TReX Jr, Pololu) which generated a PWD signal (10kHz) based on an 

analogue control signal. The analogue control signal was generated using 

signal generation hardware (MyDAQ, National Instruments), which was 

calculated by the host computer using PID control. The encoder was 

connected to the digital inputs on data acquisition hardware (MyDAQ, 

National Instruments) and using the in-built hardware counter the motor 

velocity was determined. This was used in the PID control of the motor. 

An outline of the electronic hardware arrangement for the Fluid Propulsion 

Testing rig can be seen in Figure 5.7, with the data flow direction shown by 

the arrows. 

Host PC

DAQ Hardware

Amplification unit Motor Driver

Load cell Motor

Digital

Analogue

Analogue

Motor Encoder

Analogue

DigitalAnalogue

Analogue

 

Figure 5.7 Arrangement of hardware and data types in the Fluid Propulsion 
Testing Rig. 

5.3.2 Screw configuration 

Screw sections were produced using rapid prototyping in two different pitch 

lengths, 20mm and 40mm (pitch discussion can be found in Chapter 4.3). 

The inner shaft diameter of these was equal to that of the shaft connected to 

the motor such that they could be mounted. The screws were secured to the 

shaft with an adhesive (Superglue, Loctite) to prevent local movement along 

the shaft during operation. The adhesive was broken and residue removed 

from the shaft using acetone after testing. 
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A schematic of the rig hardware can be seen in Figure 5.6; a computer 

image of the complete rig can be seen in Figure 5.8. 

 

Figure 5.8 Computer images of the complete Fluid Propulsion Testing Rig. 
a) full rig assembly; b) Section view of the rig assembly, showing the 
screw and cowling section suspended in the fluid. Annotations show: 1) 
Outer framing; 2) Adjustable accessory support structure; 3) Load cell 
attached to accessory support; 4) Motor and screw sub assembly; 5) 
Fluid tank. 

When the screws are next to the chassis, 90° (25%) of the screw is against a 

surface, referred to as cowled. This surface is curved to match the radius of 

the screw such throughout the curve it is equidistant from the screw, 1mm. 

When the arms expand, the screw is then situated in open fluid such that 0° 

(0%) of the screw is cowled. Two further cowling types were produced and 

experimented with to allow a trend to be established, 180° and 360° cowling. 

A computer image of the cowling pieces used can be seen in Figure 5.9. For 

the three pieces of cowling (360°, 180° and 90°), the holes shown to the left 

are used in mounting to the attachment arm using M3 bolts. When the screw 

is open fluid it does not have any surface close, there is no 0° cowling piece; 

for this, no piece is attached to the attachment arm. 

3 

2 

1 

4 

5 

a b 
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Figure 5.9 Computer model of the cowling pieces used, shown with a screw 
to show their relative location. a) 360° cowling; b) 180° cowling; c) 90° 
cowling; d) 0° cowling. Cowling of 90° resembles the device with the 
arms in the closed position, 0° resembles the arms in the open position. 

5.3.3 Motor Speed Control 

To control the angular velocity of the screw, speed control of the motor was 

utilised. Using NI DAQ hardware (MyDAQ) and NI LabVIEW the encoder 

TTL signals from the motor encoder were captured and compared to the 

desired number of pulses (based on the number of pulses per rotation and 

the desired angular velocity). The MyDAQ device features a built-in encoder 

counter (3 channel, 100MHz, 32-bit) which can be configured through user 

adjustable counts per rotation setting (configured to 512 pulses per rotation). 

This was used to provide the process variable for the PID control. A PID 

controller was used to generate an analogue signal, which was sent to a 

motor controller board to generate the PWD signal to drive the motor. The 

PID was experimentally tuned (85) through adjusting the parameters to 

achieve the desired velocity (proportional: 0.053, integral: 0.005, derivative 

0), effectively running as a PI controller. Software was used to measure the 

motor velocity during tuning and the parameters selected such that the 

measured velocity was within 5% of the desired. 

5.4 Experimental Method 

An experimental protocol was designed to investigate the thrust generated 

by a screw rotated in a fluid medium. To investigate the effects of angular 

velocity, the device’s screw would be rotated at a series of controlled 

velocities starting from the motor’s idle velocity up to the motor’s maximum 

stable velocity. Varying cowling pieces were produced to investigate the 

effects of cowling upon thrust. Although the screw would not experience 

complete enclosure during normal operation, these were included in the 

protocol to allow any trend to be established. Two different screw pitches 

were used, as discussed previously. Each of the combinations were 

assembled in turn and fixed into the test rig. The depth of the screw within 

the fluid was kept constant throughout the procedure, with the fluid level 

a b c d 
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when stationary reaching the bottom of the top mounting on the attachment 

arm, as seen in Figure 5.6. Each of the individual setups was repeated 6 

times using an automated system. The experimental variables can be seen 

in Table 5.3. 

For each of the screws the surface finish was left unaltered from the 

production process. The screws were produced using the same ALM 

process (polyjet, Chapter 4) to minimise the effects of differing surface 

finishes. Surface finish has an effect on the fluid thrust capabilities of 

conventional propellers however the effects on fluid thrust produced by 

screws was not investigated. Once the system has been developed for 

amphibious locomotion, further optimisation on the discrete modes can take 

place as future work. 

Table 5.3 Experimental variables for fluid based testing 

Screw material Rigid centre and blades 

Rigid centre and compliant blades (Shore: 60) 

Screw pitch 20mm, 40mm 

Screw cowling 360°, 180°, 90°, 0° (none) 

Angular velocity 20-90 RPS in 10 RPS steps 

Repeats 6 for each unique configuration 

 

For each of the experiments, data was collected at 100Hz for 50s and saved 

to data file for analysis. Data was collected over a period of 50s to allow 

averaging out of transient effects and identification of signal noise from 

useful data. The software logged the physical set up parameters in the file 

names with the angular velocity, load cell reading and time stamp saved in 

the data file. 

The control software was developed to enable the velocity to be adjusted for 

each combination of screws and cowling with repeats handled automatically. 

The velocity was set to the minimum value and the experiment run with data 

collected. The screw was halted and the internal value for velocity 

incremented by 10. A wait of 60s was built in to allow the water to settle. 

This was repeated until the velocity variable exceeded the maximum, when 

this occurred the repeat variable is incremented and the velocity set back to 

the minimum. Once the repeats had reached 6, the loop would end. At this 

point, the physical parameters such as screw and cowling piece were 
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changed before running the experiment again. A flow chart of the application 

loop can be seen in Figure 5.10. 
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Experiment 
repeats > 6
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Repeats = 0
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Figure 5.10 Program logic for the automatic velocity and repeat loop 
process. A control system was used to programmatically sweep 
through a range of velocities, conducting repeats of each based on 
setup parameters. 

5.4.1 Data Analysis 

Custom software was written to process and plot the data (Matlab, 

MathWorks). The software scanned a given directory for all data files and 

the file names loaded into memory. The file names were split based on the 

metadata parameters in the file name, such as screw type and cowling 

coverage. For each file, the data was loaded into a 3 dimensional matrix and 

the metadata stored in a separate 2 dimensional matrix. A flowchart of this 

process can be seen in Figure 5.11. The data matrix contains each of the 

values in the file, filling 2 dimensions and each separate file forming the third 

dimension. The metadata matrix contains the pitch, cowling and velocity for 

each of the entries in the data matrix. 

A second algorithm (developed in Matlab, MathWorks) scans the metadata 

matrix for unique combinations of pitch, cowling and velocity and collects 

each repeat of such. A mean of the load cell readings for all data points in 

the collected results is taken and saved in a third matrix, the results matrix. 

This matrix contains the unique parameters as internal metadata, which is 
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used for plotting. Once all the unique combinations have been scanned, a 

plot of the data is produced. A flow chart of this process can be seen in 

Figure 5.12. In selecting a directory to be scanned, different results sets, 

such as for rigid and compliant screws, can be analysed with the same 

algorithm with minimal adjustments. The algorithm was built such that any 

number of pitches, cowling coverage, angular velocities or repeats could be 

used without any hard coded changes needed. 

Signal noise was removed from the data using a 2nd order low pass 

Butterworth filter with cut off frequency of 10Hz. This was chosen as the 

response was expected to be low frequency (constant thrust) and any high 

frequency change would be primarily due to motor oscillation (velocity 

dependant), mains noise (50Hz) and other sources such as resonance 

within the rig. 
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data files

Load next data file

Analyse data 
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All files 
processed?
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End

 

Figure 5.11 Process of loading data from files produced by the Fluid 
Propulsion Testing rig. Each file contains meta data stored in the file 
name such as screw geometry, and data stored in the file contents 
such as screw velocity. This is collected and stored in a matrix for 
processing.  
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Figure 5.12 Data processing and plotting. A list of unique configurations is 
built, allowing repeats to be collected together for processing, once 
these have been joined, the results are processed and plotted.  

5.5 Results 

The data collected using the Fluid Propulsion Testing rig was analysed and 

the mean thrust value from the screw plotted against the angular velocity of 

the screw, with error bars showing standard deviation. This can be seen 

plotted in Figure 5.13 and Figure 5.14 for the rigid and compliant screws 

respectively.  

The angular velocity of the screw is proportional to the thrust produced with 

higher angular velocities producing greater thrusts. This is the case for both 

data sets (rigid and compliant), with a non-linear increase in thrust compared 

to screw velocity visible for the rigid screws. This non-linear increase 

resembles the trend seen in the theoretical model. 

For both data sets, the 40mm pitch screws produce greater thrust than the 

20mm pitch screws. This is a clear trend in both data sets, which 

corresponds to the theoretical model. 

With increased coverage (cowling angle), there is a decrease in thrust 

produced for rigid screws. The greatest thrust comes from screws which did 

not have any cowling (0° cowling) while the least thrust was generated from 

the screws with complete coverage (360° cowling). Cowling conditions 

between these states produce thrust that follows the same trend, increased 
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cowling results in less thrust. There is no clear trend between cowling and 

thrust for the compliant screws. 

The rigid screw data produces a series of smooth curves following the same 

exponential trend between angular velocity and thrust. The compliant screw 

data shows greater variance in results. The standard deviation for each sub-

set of data is greater which has an evident effect on the overall trends seen 

in the data. There is no clear trend between cowling coverage and thrust. 

The peak force generated by a 40mm pitch screw is 0.28N for a rigid screw 

and 0.25N for a compliant screw; for the 20mm pitch screws the peak force 

is 0.1N for rigid and 0.12N for a compliant screw. 

 

Figure 5.13 Thrust generated from a single rigid screw. Blue lines represent 
a 40mm pitch screw while red lines represent a 20mm pitch screw. 
Error bars show standard deviation. The degree of cowling can be 
identified by the line type, a solid line is shown for 360° cowling and 
dashed lines with decreasing width dashes for 180°, 90° and 0° 
cowling, as shown in the legend. A legend for each graph is present to 
aid identification. 
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Figure 5.14 Thrust generated from a single compliant blade screw. Blue 
lines represent a 40mm pitch screw while red lines represent a 20mm 
pitch screw. Error bars show standard deviation. The degree of cowling 
can be identified by the line type, a solid line is shown for 360° cowling 
and dashed lines with decreasing width dashes for 180°, 90° and 0° 
cowling, as shown in the legend. A legend for each graph is present to 
aid identification. 

5.6 Discussion 

The experimental data was analysed for the effects of pitch, cowling and 

compliance on the thrust produced. 

5.6.1 Effect Of Pitch 

From the datasets collected, it can be seen that the pitch of a screw has a 

clear effect upon the force produced. A 40mm pitch screw produces greater 

thrust than a 20mm pitch screw. The theoretical model predicted that a 

40mm pitch screw would produce approximately twice the force a 20mm 

pitch screw would produce. For both the rigid and compliant screws, this can 

be seen to hold true. The theoretical model predicts that increasing the pitch 

past 40mm will result in further increases in thrust, however this may not 

hold true for experimental data. As the threads tend to parallel to the axis of 

rotation the thrust will diminish as the fluid displaces around the system and 

not along the screw length. 
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5.6.2 Effect Of Cowling 

Within the datasets, the screws perform best in an open fluid, with 

decreasing thrust as a result of increasing cowling around the screw. It is 

predicted that some of the thrust generation of the screws comes from 

sheering of the fluid around the screw, the introduction of cowling around the 

screw would inhibit this; resulting in loss of thrust. The 360° cowling creates 

a full-enclosed screw; the developed locomotion system does not make use 

of a fully enclosed screw and so this does not resemble an applicable state 

for the prototype locomotion system. Using boundary layer theory, the 

cowling poses a static body that will retard the flow. While the screw imparts 

motion upon the fluid, the cowling will decrease the fluid velocity about the 

screw, diminishing the force produced. 

When the locomotion system is folded into its smallest state, the screws will 

effectively have 90° cowling. The data shows that when the device is in the 

closed position it will produce less thrust than in the open position. The fluid 

thrust potential of the device is not severely compromised by the adjustable 

geometry of the system; however, greater thrust will be produced in the open 

state. The arms do not need to be completely open, they only need to move 

sufficiently to move the screws away from the central chassis. Depending on 

the final scale of the device, it may be able to operate in a less than 

completely folded state allowing for the greater fluid thrust to be utilised. 

The effects of cowling were not modelled by the theoretical model, however 

it was predicted that greater thrust will be produced in a cowled state. This is 

true for propeller design with cowling designed with an aerofoil cross-section 

to increase the efficiency. Through experimental examination of the system, 

it was shown that enclosing the screws in cowling had an adverse effect on 

thrust, and so the screws should be operated with minimal cowling to aid 

thrust production. 

5.6.3 Effect Of Compliance 

Comparing the rigid and compliant screw thrust data; where the rigid data 

forms a clear correlation between angular velocity and thrust, the compliant 

screw data is of a variable response. The rigid screw data sets form smooth 

curves with a trend of 𝑇 ∝ 𝑢2. The compliant screws show a similar trend 

however there is much higher variation at each sample point. Due to the 

compliant nature of the material, it will behave differently in response to 

driving frequencies and will distort to a greater degree. This will introduce 

another noise source to the signal, increasing the signal noise as seen by 
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the larger error bars in Figure 5.14 compared to the rigid screws (Figure 

5.13). The response to driving frequencies for the screws has not been 

simulated or explored further. The scope of this work is to explore 

amphibious locomotion and optimisation of individual modes of locomotion 

will be carried out after the complete system has been analysed for overall 

performance. 

The screw blades, which are produced from a compliant material, may vary 

in geometry throughout the rotation, resulting in the higher noise seen in the 

data. This expected deflection of the material will be caused by both the 

centripetal forces acting on the screws and the response to the driving 

frequencies generated by the system noise. Further investigation into this 

has not taken place however it is expected that an increased distance 

between blade tip and cowling face would decrease some of the interaction 

and thus noise. From comparing the result between the rigid and compliant 

screw it can be seen that the peak thrust difference is in the order of 10%. 

A working hypothesis for the discrepancy between the thrust produced by 

the rigid and compliant screws is while rotating the compliant material screw 

threads have a frequency response in the range of driving frequencies that 

induces noise into the system. As the material is able to deflect to a greater 

extent than the rigid material, a combination of centripetal forces induced by 

the rotation and the frequency response from the material may be the source 

of the increased signal noise. If the threads do expand radially with rotation, 

this would explain the higher deviation seen in the data at higher 

frequencies. 

The overall thrust production for both rigid and compliant screws are similar, 

however there is greater variance in the thrust produced point to point for the 

compliant screws. While this may not have a large effect on the ability of the 

system to produce propulsive thrust, it may affect the control of the system. 

The data shows in some cases a decrease in angular velocity of the screw 

may result in an increase of thrust and vice versa. This will cause control 

complications in terms of producing a stable device. The device may 

experience greater system vibrations through the use of compliant screws, 

which may reduce the clarity of the proposed video feed, increasing 

procedure complexity for the piloting clinician. 

5.6.4 Theoretical Model 

The experimental data shows the same trend as the theoretical model, 

although the experimental data does not produce the same magnitude, 
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different by a factor of 2. This may be due to the theoretical model not taking 

into account other factors that influence the flow. The model assumes a 

constant gradient in fluid velocity through the height of the vein and does not 

take into account the sides of the vein. These will also have the same 

boundary layer effect upon the fluid flow and will alter the thrust produced. 

The model assumes all fluid leaves the screw parallel to the axis of rotation; 

however it is more likely that the exhaust forms a cone shaped dispersion 

with some of the thrust lost as flow perpendicular to the axis of rotation 

(Figure 5.15). This is not something that could be changed easily with the 

geometry, it can be seen that using cowling to channel the flow does not 

result in an increased force produced. 

 

Figure 5.15 Thrust dispersion of a screw rotated in fluid.  Orange arrow 
shows rotation, blue arrow shows thrust component parallel to 
rotational axis, green arrows show actual dispersion of thrust, red lines 
illustrate difference in parallel thrust component (illustrative only). 

A third assumption that the model makes is the fluid surrounding the screw 

is stationary. The thrust generated is proportional to the difference between 

the exhaust velocity and the velocity of the surrounding fluid, as the 

surrounding fluid moves this will reduce the step change between the 

exhaust flow and the environment. While the fluid was left to settle between 

repeats, the instant the screw begins to impart motion on the fluid the 

velocity of the exhaust relative to the surrounding fluid will decrease. 

The theoretical model aided the predictions that increased screw angular 

velocity and screw pitch would result in increased thrust, however the model 

was not used in the prediction of the effects of cowling and compliance. The 

experimental work complimented the model in the respect, allowing basic 

characterisation of the thrust potential and exploration of the un-modelled 

cowling and compliance. 

5.6.5 Thrust Predictions Of Four-Screw Locomotion System 

The peak thrust generated by a single rigid screw was recorded as 0.28N. 

The peak thrust generated by a compliant screw was recorded as 0.25N. 

A: Thrust leaving screw 

parallel to rotational axis 

(blue arrow) 

B: Thrust leaving screw in 

cone shaped dispersion 

(green arrows). Resolved 

thrust (blue arrow) is of less 

magnitude due to resolved 

parallel thrust component. 
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Both these thrusts was measured with a 40mm pitch screw, 0° cowling, and 

rotated at an angular velocity of 565 rad·s-1 (90Hz). Assuming there are no 

diminishing returns for addition of screws to a system, a four-screw system 

will be capable of producing 1.12N and 1.0N of thrust for rigid and compliant 

screws respectively. 

For 20mm pitch screws, the predicted maximum thrust generated by a four-

screw system is 0.4N for both rigid and compliant screws. 

It is expected that there will be some factor of diminishing returns for 

increasing number of screws added to the system, however the 40mm pitch 

screws are able to provide the predicted 1N of thrust in their current state: 

further optimisations may increase the total thrust output. 

5.7 Summary of Fluid Locomotion Analysis 

Both rigid and compliant screws have been shown to generate an 

appropriate level of thrust when rotated in a fluid. Both an increased pitch 

and decreased angle of cowling result in greater thrust, with the 40mm pitch 

screw producing the greater thrust when in an open state. Compliance does 

not show a great effect upon the thrust although it may have an effect on the 

control due to the increased chassis wide vibrations. Through adaption of 

the application of the materials, this may be reduced, allowing for a 

smoother performance. 

Overall, experimental data shows the screws are a viable means of 

providing locomotion through a fluid. As predicted in Chapter 3, the system 

would need to be able of providing a combined thrust of 1N to traverse the 

colon; scaling the experimental data for a single screw to a 4-screw system, 

this 1N of thrust is achievable. Although propellers are more efficient and 

replaced screw based systems in aquatic locomotion, the reason for using 

screws lays upon their ability to provide locomotion when in contact with the 

tissue. This is examined in the next chapter. Should screws provide 

sufficient tractive forces in contact then their amphibious properties should 

be utilised within the aim of providing a locomotion system for an intra-

luminal device. 
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Chapter 6  

Contact Locomotion – Theoretical and Experimental 

Analysis of the Locomotion System 

The amphibious prototype locomotion system, featuring 4 Archimedean 

screws, has been designed to produce amphibious locomotion through a 

flooded colon. To allow for amphibious locomotion the screws must function 

in both pure fluid and pure contact scenarios. This chapter covers the 

theoretical and experimental analysis of the performance and characteristics 

of the screws in a pure contact state. A theoretical model of how screws 

would generate thrust was built to understand their strengths and 

weaknesses in a contact state, allowing the experimental testing parameters 

to be established (6.1). A counter-rotating pair of oppositely handed screws 

was experimentally assessed against ex-vivo porcine colon for their ability to 

produce traction in non-rotating (static) and rotating (dynamic) configurations 

(6.3). Following on from the traction experiments, a parametric sweep was 

conducted to establish the effects of screw blade material compliance, 

normal loading and screw velocity on thrust (6.4). 

6.1 Development of a Theoretical Model 

A theoretical model provides a useful tool to understand a system. The 

model may inform further experimental testing and allow the design of 

procedures to capture the characteristics of a system. The theoretical model 

will also assist with understanding the results produced from the 

experimental testing. 

6.1.1 Theoretical Model Development 

The work by Nagaoka et al. (46) on screws moving against soft ground was 

analysed for its application against a deformable yet non-displaceable 

surface such as colonic tissue. While soil and sand can be permanently 

displaced, tissue cannot be permanently displaced without major 

consequences to the patient such as bowel perforation. A model developed 

for screws acting on soft ground has limited use in this situation. The motion 

that a serpentine-like system creates is similar to the motion of the 

Archimedean screw: contact points remain stationary relative to the ground 

and move relative to the body (98), Figure 6.1. 



- 119 - 

During the rotation of a screw against a plane, the points relative to the 

plane where contact is formed do not move, as shown in Figure 6.1 by the 

orange arrow. 

 

Figure 6.1 Contact point change relative to the surface and screw during 
rotation of the screw. At the start, the contact between the screw and 
surface is identified by the orange arrow. After one rotation, the contact 
point relative to the surface (orange arrow) has not moved although the 
initial contact point on the screw has (blue arrow). After two rotations, 
the original contact point on the screw has progressed further with the 
original surface contact point remaining stationary.  

For Archimedean screws, the contact point must move relative to the screw 

body for locomotion to occur in the desired direction. If the contact point 

remains stationary relative to both the screw and the surface, the screw will 

roll perpendicular to the desired direction. Thus when a screw rotates 

against a surface to generate thrust there must be a difference in the 

coefficients of friction in the normal (𝐶𝑁), and parallel (𝐶𝑃), directions relative 

to the surface of the screw thread (Figure 6.2). The ratio of these coefficients 

(𝐶𝐾), as shown in equation 6.1, can be used to describe the performance of 

the screw on a surface. Performance can be defined as the distance 

travelled along the axis of rotation, per rotation, compared to the pitch 

length. From this, it is apparent that the surface needs to deform to allow 

useful locomotion to be generated from a rotating screw. 

 

Figure 6.2 Normal and parallel directions to a screw thread 
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 𝐶𝐾 =
𝐶𝑁

𝐶𝑃
 6.1 

The traction between a screw and a surface is dependent on the coefficient 

𝐶𝐾. Perfect traction will result in the screw progressing by one pitch length in 

the axial direction per rotation, giving a performance of 1; this will occur 

when 𝐶𝑁 ≫  𝐶𝑃. Zero traction will result in no movement in the axial direction 

per rotation and will occur when 𝐶𝑁 ≪  𝐶𝑃. Traction can be summarised as a 

function of the inverse tangent of 𝐶𝐾, 

 
𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑓 (

tan−1 𝐶𝐾

𝜋
2

) 6.2 

 

Figure 6.3 Interaction between a screw and a deformable surface. Screw 
axes, deformation angle and loading shown in annotations.  

When a screw section is loaded in the normal direction to a deformable 

surface, the z-axis as seen in Figure 6.3, the tips of the screw blades deform 

the surface. The angle of this deformation, 𝜃, is a function of the force, 𝐹 and 

the stiffness of the surface, 𝐾, 

 𝜃 = 𝑓(𝐹, 𝐾) 
6.3 

The contact angle, in radians, has the natural limits: 0≤θ≤π/2. At either end 

of the limits are two distinct cases, non-deformable surface (θ=0) and 

perfectly-deforming (θ=π/2) with in-between values of 𝜃 producing a mixture 

of these cases. This analysis was developed as part of this thesis to further 

understand how screws act upon a surface that does not displace, and takes 

into account the surface deformation due to contact. 

6.1.2 Rotation Of A Screw On A Non-Deformable Surface 

On a non-deformable surface, the screw blades do not produce any 

deformation; the screw simply rests upon the surface thus 𝜃 = 0 (Figure 6.4). 
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Any friction between the blade tips and the material surface will be equal, 

and so the coefficients 𝐶𝑁 and 𝐶𝑃 are equal thus 𝐶𝐾 = 1. 

On a frictionless surface, as the screw rotates there will be no dominant 

direction of locomotion, 𝐶𝑁 = 𝐶𝑃 = 0, thus 𝐶𝐾 = 0 and so traction is 0. If all 

coefficients of friction between the screw and the surface are zero, there will 

be no traction in any direction. This can be likened to a screw resting on a 

polished glass surface. 

If there is friction between the blade tips and the surface, for example if the 

blades are made from rubber or there is some adhesion between the 

materials of the screw and surface; the screw will roll across the surface in a 

direction perpendicular to the rotational axis; along the Y-axis. 

 

Figure 6.4 Screw resting on a non-deforming surface, 𝜽 = 𝟎. In this 
configuration, a screw is not effective at generating thrust in the axial 
direction.  

6.1.3 Rotation Of A Screw On A Binary-Deforming Surface 

When the screw rests upon a binary-deformable surface, the blades will 

deform the surface giving a contact angle of 
𝜋

2
 (Figure 6.5). The deformation 

occurs in discrete blocks at point of contact, note this is a theoretical case 

and will not occur in continuous materials such as biological tissue. At this 

case, 𝐶𝑁 ≫  𝐶𝑃, thus 𝐶𝐾 → ∞ giving a value of traction as 1. The system will 

move one pitch length per rotation; this case is not too dissimilar to a bolt in 

a tapped hole. 

For cases where the friction between the screw and surface is 0, the screw 

will rotate unhindered. In the presence of friction, this will affect the speed of 

rotation without causing translation along the Y-axis. 
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Figure 6.5 Diagram showing a screw resting on a binary-deforming 

surface, 𝜽 = 𝜋 2⁄   

6.1.4 Rotation Of A Screw On An Idealistically-Deforming 

Surface 

The previous section described that in order for a screw to translate along its 

axis of rotation there must be some deformation of the surface upon which it 

is actuating. Greater deformability of a surface when in contact with the 

screw leads to an increase in traction. Reducing the friction between the 

screw and the material surface will reduce the energy needed to rotate the 

screw: increasing the efficiency. 

A contact angle of 
𝜋

2
 is highly unlikely to occur between a screw thread and 

tissue due to the mechanical properties of biological tissue. It is assumed, 

informed by laboratory experimentation with ex-vivo porcine colon tissue 

samples, that the tissue will locally deform to a lesser extent, enveloping the 

screws as shown in Figure 6.6. This however is exaggeration for display 

purposes and the depth of recession will likely be 𝑑 ≪
∅

2
, where 𝑑 is the 

recess depth and ∅ is the screw diameter. It is also estimated that 

relationship between recess depth and screw diameter will be inversely 

proportional; larger diameter screws will result in a lower percentage of 

screw recession into the tissue. 

 

Figure 6.6 Idealised contact between screw and tissue 
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A photograph taken during testing is shown in Figure 6.7, showing the tissue 

deforming about the screw threads. It is evident that this is close to the 

situation presented in Figure 6.6. The compliant screw blades deform slightly 

with the screw central shaft resting against the tissue. 

 

Figure 6.7 Biological tissue deforming about screw threads during testing 

6.1.5 Screw Locomotion Against Tissue 

A screw can be sunk past its entire height into a surface and still be able to 

provide useful locomotion. Although it is unexpected that this will occur 

during ordinary operation, should the screw sink its entire height into the 

mucosa during operation it will not prevent locomotion. The greatest 

recession of the screw into the tissue is predicted to be no greater than the 

radius of the screw. At this point, the visco-elastic nature of the tissue would 

suggest it would stretch about the full system and not form local recesses 

around the screws. 

To provide locomotion in contact, the locomotion system must overcome two 

key obstacles: insufficient traction due to a flooded environment and 

becoming encapsulated in a local recess. The screw system will overcome 

the first obstacle through means of fluid propulsion, and as screws can 

operate when fully enveloped in a local recess, the second obstacle will not 

prevent progress. 

During deployment in a fluid filled colon, the mucosa may provide a near 

frictionless surface. This will provide a challenging surface on which to 

provide locomotion. A screw can provide locomotion in a friction-free 

environment, providing the surface is deformable. 
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6.2 Development of the Testing Platform 

From theoretical analysis, the tissue deformation against the screw would 

appear to be key to the success in providing motion. While some 

deformation is needed, complete covering the screw may have adverse 

effects due to the increased resistance to rotation of the screws. The 

variable geometry of the 4-screw locomotion system allows control over the 

force applied to the screws pushing them into the tissue and such the 

deformation caused by the screw. A testing rig therefore must be able to 

alter the normal loading to simulate the effects of this and explore the results 

of changing tissue deformation caused by increased normal loading. 

If the tissue perfectly deforms around the screw, the screw moves by one 

pitch length per rotation. Thus increasing the angular velocity of the screw 

would increase the overall linear velocity of the system. While increasing the 

angular velocity of the screw in fluid has a direct link to increased thrust 

output, as discussed in Chapter 5; this may not be true for contact states. It 

is known that increased speed results in less torque and so the effects of 

angular velocity on tractive force will not be as pronounced: a minimum 

torque will be required in order to rotate the screws against tissue. It is 

estimated that an increased angular velocity will result in an increased thrust 

and such the testing apparatus must be able to vary this and measure the 

resultant thrust. The ability to generate tractive forces (referred to as 

dynamic traction) while the screws are rotating is crucial to the device’s 

ability to move; if no dynamic traction can be produced then the device will 

simply not move. 

The screws also need to provide traction when stationary, allowing the 

system to “dock” if required for medical procedures such as biopsy. For this, 

the test rig should be able to test the screws ability to provide traction as 

they are dragged or slip across the tissue surface without being rotated 

(referred to as static traction). While the screws are rotating against the 

tissue, there is a slipping contact point, as described in the previous section. 

In allowing the screws to be moved along the tissue without rotation, the 

tractive capabilities can be established in a simplified situation through 

removal of the rotational component. Thus, the rig should have the ability to 

test the screws in both terms of: 

 static contact (screws stationary and dragged) 

 dynamic contact (screws rotated) 
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Avoidance of tissue damage is a key requirement of the locomotion system. 

Although detailed clinical trials and tissue histology will need to be carried 

out before any system is released for public use, this testing will focus on 

visible damage as an indicator of trauma. Tissue trauma is evident at a 

cellular level through a number of indications such as inflammatory response 

and necrosis in living tissue. However, in these experiments, ex-vivo tissue 

samples will be used and therefore different indications of trauma are 

necessary. In this preliminary work, the tissue surfaces will be inspected for 

signs of wear to mucosa as an indication of trauma. 

Examining the testing platforms used by other researchers in the field can 

help ascertain limitations to be avoided and strengths to be incorporated 

while designing a testing platform. Kim and Kim (77) built a testing platform 

for measuring the thrust from a single rotating screw against tissue, Figure 

6.8. This rig features a tissue platform situated on a linear slide with the 

screw resting against the surface of the tissue. Dead weights are used to 

alter the normal loading and load cells used to measure the thrust output. 

While the testing platform has a large scope for adjustability, the single 

screw causes a net force perpendicular to the desired direction of thrust. A 

different screw based propulsion system as devised by Ikeuchi et al. (74) 

was tested on a custom built testing apparatus which consists of a screw 

mounted such that it is in contact with a sample bed attached to a linear 

slide, Figure 6.9. A load cell is connected to the linear slide to allow 

measurements of the forces generated by the screw to be measured. 

Similarly, here a single screw will produce a net thrust perpendicular to the 

desired direction of motion. 

 

Figure 6.8 Testing platforms used by Kim and Kim (77). Image of testing 
apparatus taken from referenced journal paper.  
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Figure 6.9 Testing platforms used by Ikeuchi et al. (74). Image of testing 
apparatus taken from referenced journal paper.  

Based upon these considerations, a testing rig to allow the experimental 

testing of the designed screw based locomotion system, a set of 

requirements was developed. 

 Utilise counter-rotating screw pair 

o Alter angular velocity of screws 

o Alter screw compliance of screws 

 Apply varying normal loading 

 Measure thrust produced in the axis of screw rotation 

6.2.1 Rig Hardware Design 

The Traction and Contact Testing rig consists of a tissue bed mounted on a 

horizontal linear slide at the centre of the rig (Figure 6.10, Figure 6.11). 

Above the tissue bed a beam load cell is attached to a vertical linear slide 

from which the screw sub assembly is attached. This allows a normal force 

to be applied and measured to the screw sub-assembly, which is in contact 

with the tissue sample. To allow measurement of the normal or reaction 

force, the sub-assembly unit is held static while the tissue is allowed to move 

from under the sub-assembly. 

The screw sub-assembly consists of two independently driven shafts which 

screw pieces can be attached. The shafts are held at a fixed 20mm centre-

to-centre distance and restrained by bearings at either end of the shafts. A 

motor (Maxon Motor, DCX22S GB KL 12v) is connected via a flexible 

coupling to each of the shafts, allowing individual control over the shaft 

velocity. The motors are fitted with two channel encoders (Maxon ENX16) 

which produce 1024 pulses per rotation allowing for fine control of velocity. 

The max velocity of the motor is 12400 RPM and produces 14.6 mNm of 

torque (stall torque of 108 mNm). These motors were chosen as they would 

allow many different drive motors and gearbox combinations to be simulated 

through the same hardware set up by limiting the supply current and voltage. 
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The encoder was selected to allow accurate control over the velocity at low 

rotational speed (5Rad/s) compared to the default 128 count unit. 

The tissue bed has two different connection options for measuring forces 

applied to the bed in the horizontal direction. The first option (static traction 

testing) has the load cell connected in series with a linear actuator and the 

tissue bed. The position and force applied to the tissue bed can be directly 

controlled while the resultant force between the tissue bed and the actuator 

being measured, this allows experimental data on static friction. The second 

option (dynamic traction testing) involves connecting the bed to a statically 

mounted load cell. Using this set up the forces imparted on the tissue bed in 

the horizontal direction can be measured, allowing experimental data to be 

gathered on dynamic friction. 

To allow the tissue bed to be moved in a controlled fashion, a linear actuator 

was selected (SMAC Moving Coil Actuator, LAL95-050-7), which is capable 

of producing 26N of force over a 50mm stroke while powered. The actuator 

was chosen to provide a stroke length greater than a single screw length to 

allow any trends caused by screw threads collapsing to be explored. When 

the device is unpowered it is fully back-drivable and passive, this allows 

positioning by hand of the system while it is completely powered down and 

safe to place hands inside the enclosure. The fully back-drivable nature also 

allows the system to be powered down should damage to the rig be 

imminent without need to drive the actuator into a safe position. The actuator 

can provide a constant force output throughout the range of the stroke, 

allowing for local adjustments of the tissue bed without compensating the 

actuator’s performance. The actuator has a built in encoder (200 counts per 

mm), integrated PID controller and configurable maximum acceleration and 

shaft velocity. 



- 128 - 

 

Figure 6.10 Traction and Contact Testing Rig schematic showing key 
components, screw sub assembly consists of parts 3, 4 and the 
connection chassis pieces shown in dark grey. 

 

Figure 6.11 Computer images of the complete Traction and Contact Testing 
rig. a) full rig assembly; b) zoomed in view of the screw sub assembly, 
tissue bed and load cells. Annotations same as Figure 6.10. 

1. Bed load cell with attachment bracket for static mounting or attachment to 

linear actuator 

2. Bed load cell and tissue bed connection rod 

3. Screw motor 

4. Counter rotating screw pair, rotation shown as orange curved arrow. 

5. Tissue bed, translation permissible along direction shown by orange arrow. 

6. Tissue bed linear slide 

7. Beam load cell 

8. Vertical linear slide, translation permissible along orange arrow. Counter 

weights may be attached via a pulley to the linear slide carriage allowing 

adjustable normal loading. 

1 2 3 4 5 6 7 8 3 

1 2 3 4 5 

6 

7 8 
a b 
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To provide force measurements, loading cells were utilised in the testing rig. 

The beam load cell (300g cell, 1004-00.3-JW00-RS, Tedea Huntleigh), 

which is connected to an amplifier (RD7DC, RDPE) allows normal loading 

measurements to be taken. The bed load cell (GSO 50g cell, GSO-50, 

Transducer Techniques) is connected to an amplifier (Transducer 

Techniques) allowing horizontal loading measurements to be taken. 

Specifications for the load cells are detailed in Table 6.1. 

Table 6.1 Load cell specifications 

Load cell Excitation  Range Error Safety 

overload 

Output 

Tedea beam 

cell 

10v DC 0-300g ±0.0067% 150% 0.9±0.1mV/V 

Transducer 

Techniques 

GSO 

10v DC 0-50g ±0.05% 150% 1mV/V 

The mass of the dual screw sub-assembly with motors and screws is 230g, 

to allow safe use with the system, a 300g load cell was chosen such that the 

dual screw sub-assembly could be safely attached. To reduce the normal 

loading applied to the tissue bed, a mass counter balance system was 

attached. A pulley was mounted above the vertical rail with a low mass 

strong (nylon) wire connecting the vertical slide (shown in blue in Figure 

6.11, label 8) and a weight basket (HDPE bag, >1g) hung over the pulley. 

This allows masses to be attached countering the mass on the carriage from 

the attached equipment. A series of precision masses could be placed in the 

basket. The additional mass alters the resultant normal loading experienced 

by the screws when in rest against the tissue bed. 

The normal loading predicted on the tissue by the screws is in the range of 

0.5-1.5N, Chapter 4. For a 4-screw system to pull the tether, 1N of thrust 

would be required as previously discussed. The 0.5N bed load cell was 

chosen for the increased accuracy across the lower loading conditions. The 

safety factor of 150% allows for unexpected impulse loading to be measured 

should the dual screw system fair better than predicted. Should the screws 

produce greater than the expected thrust the load cell may be changed to 

provide a greater measurement range. 
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6.2.2 Rig Electronic Hardware And Data Flow 

The Traction and Contact Testing rig features several different pieces of 

electronic hardware, which includes programmable and non-programmable 

hardware. 

An embedded real-time (RT) system was selected to form the main 

component for the control and operation of the rig, as detailed in the 

following section. The embedded RT system manages the control of the 

system, data acquisition and communication between the systems. A laptop 

computer (Latitude E6430 ATG, Dell), referred to as the host system, 

provides a graphical user interface (GUI) to allow settings to be adjusted and 

data to be viewed on screen; and data saving capabilities. The embedded 

RT and host system are connected via an Ethernet connection. Data from 

the host is transferred to the embedded RT system over Ethernet, which 

includes parameters for the motors such as a demand velocity or linear 

actuator demand position. Data acquired from the sensors is transferred via 

the same Ethernet connection to the host allowing the readings for motor 

velocity, linear actuator position and load cell readings to be displayed 

onscreen. The linear actuator is controlled via a dedicated hardware 

controller that interfaces over RS-323. A diagram showing the arrangement 

and connections can be seen in Figure 6.12. A detailed discussion of each 

of the electronic hardware items can be found in the next sections. 
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Figure 6.12 Traction and Contact Testing rig control system 

6.2.3 Rig Computational Hardware 

An embedded real-time system (Compact RIO, NI-9024, NI-9114, National 

Instruments, detailed in Chapter 4) was programmed to control and provide 

measuring capabilities to the Traction and Contact Testing rig. 

A laptop computer (referred to as host machine) was used to display a 

graphical user interface (GUI) allowing configuration of running and logging 

settings. The real-time system was used for time-critical operations such as 

running control of the rig and collecting data from the rig. Data is transferred 

between the RT system and the host via an Ethernet cable, in data packets 

that contained several samples. Transferring larger data packets between 

the systems at less regular intervals leads to a more sustainable system. 
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The graphs showing the data on the GUI do not need to be updated at high 

frequency and are less sensitive to minor lag compared to the control tasks. 

The embedded real-time system consists of two discrete subsystems, a real-

time (RT) processor and a field-programmable-gate-array (FPGA) system-

on-a-chip (SoC), as detailed in Chapter 4. The RT system is used for 

communication with the host and saving of data. The FPGA SoC is used for 

time critical control and data acquisition. 

Data logging is performed by the real-time system, allowing for high 

accuracy of sampling rate. Once the data has been collected, it is 

transferred to the host in a single large data transfer to be saved to disk. 

This minimises any disruption to the sampling period caused by file systems 

delays on the host. Data is continuously transferred at a reduced rate to the 

host to allow the GUI to be updated, in a separate task further reducing 

disruptions to the data logging process from network latency. 

The FPGA SoC can be loaded with different tasks at start-up depending on 

the mode of operation of the rig. For controlling the linear actuator, the 

FPGA provides a means of sampling the encoder pulses to acquire the real-

time displacement and log the load cell readings at a high frequency. This 

allows the exact force at a displacement value to be logged. In a second 

mode, the FPGA provides PID control for the motors and sampling of the 

encoder pulses to determine the instantaneous velocity of the motor and log 

the load cell readings. These link to the static and dynamic traction testing 

states respectively, as previously discussed in this chapter. 

6.2.4 Linear Actuator Control 

The linear actuator is controlled via a manufacturer supplied, dedicated 

hardware controller (LAC-10, SMAC). This interfaces over a serial data 

communication protocol (RS-232) which is connected to the host laptop via a 

USB to RS-232 bridge. The controller sends and receives commands in 

ASCII, which can be sent from a terminal or composed within LabVIEW. Due 

to the communication path between the host PC and the linear actuator 

controller, the latency for commands being received by the hardware and the 

response being read was between 800ms and 1000ms. Latency was timed 

using a simple timing application built in LabVIEW, which measured the time 

from sending a command and the reply from the hardware being read. The 

high latency and variability of the latency means this is not ideal for 

recording the real-time position of the tissue bed. To provide real-time 

position of the linear actuator, the lines feeding the encoder pulses between 
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the actuator and the controller were duplicated. This allowed the cRIO to 

read the pulses to establish the position while allowing the linear actuator 

controller to read the signals for its own control process. 

6.2.5 Control Systems Overview 

An overview of this control system can be seen in Figure 6.12. Each of the 

discrete computational sections are coloured separately and match the 

colour of their respective subsystem overview in Figure 6.13, Figure 6.14 

and Figure 6.15. 

Figure 6.13 shows the dataflow within the host program. The architecture 

features an event driven GUI that queues commands to different loops for 

processing. This architecture allows for a responsive UI that captures all 

user interactions and splits off longer tasks to separate threads within the 

CPU for background processing making use of the multi-core CPU within the 

host system. This architecture further allows for delays in hard drive 

read/writes without affecting other tasks carried out within the host system. 

The linear actuator is operated from the host control system with an event 

queue allowing many commands to be queued up and each processed in 

order with the appropriate delays for the SMAC control hardware to respond. 

The host control application is able to issue commands to the embedded 

systems for various control states as well as issue the shutdown sequence 

command. This ensures all the connected hardware items are powered 

down safely and channels are closed ready for power off. 

Figure 6.14 shows the dataflow within the “Compact-RIO” RT control 

system. The control program collects the settings from the host over 

Ethernet and pushes the data collected from the FPGA SoC back to the host 

over Ethernet. The RT performs processing on the data to convert to 

standard units, offloading processing from the host. This is performed on the 

RT to allow data logging to take place on RT due to the temporal precision of 

hardware-timed events. 

Figure 6.15 shows the dataflow within the FPGA SoC. Depending on the 

configuration (static or dynamic traction tests) one of two programs may be 

deployed in the FPGA. Both situations feature data acquisition from the load 

cells, with the static testing variation gathering data from the linear actuator 

encoder; and the dynamic testing variation acquiring encoder pulses from 

two motors to calculate velocity and providing PID control for the motors. 
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Figure 6.13 Traction and Contact Testing rig host machine control program. 
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Figure 6.14 Traction and Contact Testing rig cRIO real-time control 
program. 
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Figure 6.15 Traction and Contact Testing rig FPGA SoC control program. 
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6.3 Experimentally Assessing the Traction of Screws on 

Tissue 

To ascertain the ability of screws to generate traction against tissue two 

experimental procedures were devised to test the two traction cases; 

referred to as static and dynamic traction. While both use the same testing 

apparatus, Traction and Contact Testing rig, the utilisation is slightly different 

and yields different resulting data. This section covers the methods and 

results for both static and dynamic traction experimental procedures. 

6.3.1 Ex-vivo Porcine Colon Tissue Sample Preparation 

For each of the contact tests, a separate sample of ex-vivo porcine tissue 

was prepared. 

A section approximately 80mm in length was taken from an ex-vivo colon 

and cut along its length to form a rectangle; the size of which fits on the 

tissue bed allowing the screws to be in contact along their length. The 

faeces were removed using deionised water and the tissue mounted on the 

sample holder on the tissue bed. While porcine and human colons are not of 

the same geometry, their mucosa structure is similar and a widely accepted 

substitute (99). 

To ascertain the traction against a clean colon, the faeces were removed. 

However, during the removal the mucosa had to be left intact. For this 

reason, the sample was carefully cleansed of faeces by rinsing the surface 

with deionised water. The samples were left in a saline solution to prevent 

them drying out and prevent electrolyte loss which would occur if stored in a 

non-isotonic solution. This also helped preserve the tissue to produce 

reliable tests. The electrolyte and water content of the tissue will have an 

effect on the mechanical properties; this is not within the scope of this 

research and has not been researched. This method of preparation ensures 

the conditions inside a colon are as accurately resembled as feasible within 

the testing parameters. 

6.3.2 Experimental Method For Static Traction 

Two screws of opposite handed, equal length pitches were mounted on the 

shafts of the screw sub-assembly. This was then attached to the beam load 

cell, with the tissue bed attached to the linear actuator via the bed load cell. 

A tissue sample was placed on the tissue bed and the screws rested against 

the tissue, as shown in the schematic in Figure 6.16. 
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Figure 6.16 Static testing setup, orange shows direction of motion during 
testing  

The linear actuator was moved by a displacement of 5mm at a rate of 

0.25mms-1, this was selected through initial experimentation to allow 

detection of thread deformation with displacement. The displacement was 

selected such that the threads of the screws remained in constant contact 

with the tissue throughout the displacement and the contact area of each 

thread vein did not overlap. The displacement demand velocity was set to 

allow any point of slippage to be detected, i.e. not instant through shock 

loading which would result in ambiguous and unrealistic data and without 

generating excessively large data files through long sampling periods. The 

displacement of the bed was recorded along with the force exerted upon the 

tissue bed. Two different normal loads were applied through the screw sub-

assembly: 1N and 2N (to simulate expected contact pressures as detailed in 

Chapter 4); and two different screw types were used: stiff (material: vero-

white) and compliant blades (material: DM9860, shore hardness 60); 

produced using rapid prototyping (Objet 1000, Stratasys). Each set up was 

repeated 6 times on separate samples of tissue. A table showing the 

experimental variables is shown in Table 6.2. 

 

 

 

1 2 4 5 6 3 7 

1. Horizontal load cell attached to linear actuator 

2. Motor, unpowered throughout static testing 

3. Horizontal linear rail 

4. Tissue bed with tissue sample 

5. Dual counter rotating screws 

6. Vertical load cell 

7. Vertical linear slide 
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Table 6.2 Experimental variables for static contact testing 

Screw material Rigid, rigid + compliant 

Screw pitch 20mm 

Screw normal loading 1N, 2N 

Repeats 6 for each unique configuration 

 

Data were recorded at 100Hz for the course of the displacement and saved 

to CSV file for analysis. The file name included metadata on the screw type, 

normal loading and experimental method. 

The shore hardness for the compliant screws was selected based on a 

material of similar mechanical properties to colonic tissue (100). For initial 

comparison between compliant and rigid materials, a single compliant 

material was used. A parametric sweep of compliance is carried out later in 

this chapter. 

6.3.3 Experimental Method For Dynamic Traction 

For the dynamic testing, the Traction and Contact Testing rig was set up 

similar to method 1; this time the tissue bed was held in a static position via 

the bed load cell (Figure 6.17). Any horizontal forces imposed on the tissue 

bed along the direction of horizontal displacement would be measured but 

would result in no displacement. 
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Figure 6.17 Dynamic testing setup, orange shows screw rotation during 
testing  

The screws were rotated at a controlled velocity of 5 or 10 rads-1 with either 

1N or 2N normal loading applied, these values were selected from the 

calculations in Chapter 4 to model the likely forces applied to the colonic 

tissue. The forces imposed on the tissue bed by the screws were recorded 

along with the motor velocities. Each separate set up was repeated 6 times. 

Table 6.3 Experimental variables for dynamic contact testing 

Screw material Rigid, rigid + compliant 

Screw pitch 20mm 

Screw normal loading 1N, 2N 

Angular velocity 5 rads-1, 10 rads-1 

Repeats 6 for each unique configuration 

 

Data was logged at 100Hz for 60s and saved to CSV file for analysis. Meta 

data for the method, screw type and normal loading was saved in the file 

name. 

1. Horizontal load cell connected to fixing bracket 

2. Screw motors, energised throughout testing 

3. Horizontal linear slide 

4. Tissue bed with tissue sample 

5. Dual counter rotating screws 

6. Vertical load cell 

7. Vertical linear slide 

1 2 4 5 6 3 7 2 
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6.3.4 Data Analysis 

For both of the experimental methods (static and dynamic), the data was 

analysed using a custom written Matlab program. An overview of the 

program dataflow can be seen below in Figure 6.18. The program loads all 

data files within a set directory and builds a database of the testing 

parameters involved from the filename metadata. This allows repeats to be 

grouped together and data files from other tests to be ignored for each 

specific testing type. 

The data was filtered to remove noise using a 2nd order Low Pass 

Butterworth filter. A cut off frequency of 10Hz was selected as it was 

expected that the desired data would have low frequency change. Sources 

of noise such as screw rotation (motor velocity dependant) and mains power 

(50Hz) would have a frequency much greater than the cut off and would 

receive a high attenuation removing their effect from the results. A second 

order filter was selected due to the high attenuation applied to undesired 

frequencies with minimal phase lag to the desired signals. 

Start
Analyse file 
names for 
metadata

Scan 
directory for 

data files

Build 
metadata 

table

Load data 
file content

Process data

Collect data 
sets for like 

experimental 
setups

Process group data 
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mean, deviation etc

Filter data
(Low pass 

Butterworth)

ExitGraph data

 

Figure 6.18 Matlab program for analysing screw contact data files 

6.3.5 Static Traction Results and Discussion 

For the static traction results, the results show a period of rising force in the 

horizontal direction against displacement as seen in Figure 6.19. This can be 

attributed to the screws sticking against the tissue causing an increase in 

load with increasing displacement. When this loading becomes greater than 

the traction force between the screw and the tissue the sample moves 

beneath the screws, resulting in a near constant force for increased 

displacement, as seen in region B in Figure 6.19. At this point, the maximum 

traction force can be extrapolated. To find this point, software was used to 

calculate the moving average across n points and compare the difference in 
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each sample range. Once the difference in the values for the moving point 

mean were within a pre-defined range of 5% (allowing for signal noise) this 

was taken as the point of slip. A combined mean of all the data points after 

this was used in calculating the maximum traction force achievable. These 

parameters are displayed in Figure 6.20. 

Figure 6.19 shows a sample trace of recorded data through static traction 

testing. As seen by a typical example of static friction test result, the load 

upon the tissue sharply rises with initial displacements. The loading on the 

tissue reaches a maximum when the tissue begins to slip against the screws 

(region B), at this point the loading is greater than or equal to the traction 

force between the tissue and screws. 

 

 

Figure 6.19 Sample trace from a single experiment showing the output from 
static contact testing for compliant screws. Section marked ‘A’ shows 
the stick interaction with increasing force for increasing displacement. 
Section marked ‘B’ shows the slip interaction. Sections were 
determined computationally using software that detects a change in 
moving average of less than 5%. Orange line shows mean (0.252N) of 
region B. 

The bar chart seen in Figure 6.20 shows the mean maximum static traction 

between tissue and screws once slip has occurred, for all repeats for each 

particular unique hardware configuration. Slip was computationally 

determined using a moving average with a change less than 5% denoting 

slippage. The error bars show the standard deviation across all data points 

for all repeats with the same physical setup. It can be clearly seen that rigid 

screws produce higher traction than compliant screws against tissue in static 

A B 

0.252 N 
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testing. Table 6.4 shows the mean static tractive force and standard 

deviation for each result as shown in Figure 6.20. Results show normal 

loading does not have a significant effect on the tractive force compared to 

screw compliance. 

 

Figure 6.20 Mean static traction force between screws and tissue. Screw 
threads are compliant or rigid, loading applied normal to tissue surface. 
Tissue bed loading refers to the force required to remain stationary. 
Error bars show standard deviation. Discrete data sets were appended 
for like testing parameters, statistical techniques were applied to this 
total data set for each unique hardware parameter. 

Table 6.4 Mean static tractive forces measured for screws against tissue 

 1N loading 2N loading 

Rigid screws 0.78N (SD: 0.21) 0.92N (SD: 0.05) 

Compliant screws 0.32N (SD: 0.04) 0.36N (SD: 0.03) 

 

The traction seen here will be due to the tissue between the threads of the 

screw. As the screw is displaced, this tissue will be displaced to a limit with 

the threads. The compliant threads will not grip the tissue as aggressively as 

the rigid threads, resulting in less traction. This is the ideal scenario as 

displacing the tissue may result in damage such as tears in the mucosa. 

For each of the experiments carried out for static traction, there is a region of 

increased loading as the displacement of the bed increases, as show in 

Figure 6.19 region A. After a certain point, the loading flattens out into a 

continuous load for increased displacement, Figure 6.19 region B. This 

increase in loading can be attributed to the tissue properties. As the tissue is 

loaded, there is a degree of stretch in the tissue. After a maximum 

Required thrust (0.5N) 
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displacement (approximately 0.75mm), the tissue does not stretch and 

slipping will occur between the tissue and the stretching implement. Should 

no slip occur then tissue damage will occur; such as tears in the mucosa. As 

slip occurs the force stretching the tissue is sustained which can be seen by 

the relatively flat line between 1 and 4mm displacement as highlighted 

region in Figure 6.19 marked B and annotated horizontal line showing the 

mean force during section B. 

As tissue is not linear or constant in its properties, each sample will give 

variations in results not only across the repeats but also locally within the 

same sample, which can be seen by the micro stick-slip peaks in the trace 

seen in Figure 6.19. 

The traction seen here will be due to the tissue between the threads of the 

screw. As the screw is displaced, this tissue will be displaced to a limit with 

the threads. For the compliant threads, they will not grip the tissue as 

strongly as the rigid threads, resulting in less traction. This is the ideal 

scenario as displacing the tissue may result in damage such as tears in the 

mucosa. 

It can be seen that the rigid threaded screws produced the greatest traction; 

approximately twice that of the compliant threaded screws. The compliant 

threaded screws indented the tissue less; due to their compliant nature, they 

would deform. It was observed that the screw threads would buckle and 

collapse at 2N normal loading after some displacement. This resulted in the 

decrease in traction at 2N normal loading compared to 1N normal loading. 

Across both screw types, during slip the motion was not constant or linear. It 

is hypothesised that the minor variations in force are due to micro stick-slip 

interactions between the screw threads and the tissue. For the compliant 

screws, the standard deviation is smaller when compared to the rigid screw 

threads, Figure 6.20. This may be due to the higher peak forces building 

between the rigid screws and the tissue, whereas the compliant screws will 

dissipate some of the force due to bucking of the compliant threads. 

6.3.6 Dynamic Traction Results and Discussion 

The dynamic experimental testing does not produce a slip point as with the 

static testing and thus was analysed using a separate approach. Using the 

metadata database, repeats for each of the unique hardware configurations 

(screw type, motor demand velocity etc.) were collected. A mean across all 

samples within the repeats was calculated, with the standard deviation, and 

plotted on a single graph showing the different experimental configuration, 
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Figure 6.21. The bar chart (Figure 6.21) shows the mean traction force 

between two counter-rotating screws and a tissue sample, taken across all 

repeats.  

 

Figure 6.21 Mean dynamic traction force between screws and tissue. Error 
bars show standard deviation. The left most two pairs shows the results 
for the compliant screws while the right two pairs show the results for 
the rigid screws. Loading applied normal to tissue surface. Tissue bed 
loading refers to the force required to remain stationary. The blue bars 
show the results for a demand velocity of 5 rad s-1 while the green 
show the results for 10 rad s-1. The error bars show the standard 
deviation across all repeats. 

The high standard deviation seen in some of the data sets above can be 

attributed to “stick-slip” phenomena, which is explained later in this chapter. 

From the results seen in Figure 6.21 for dynamic traction, a higher angular 

velocity results in a higher tractive force. This increase tractive force could 

be attributed to the increased rate of thread displacement along the sample. 

For the compliant threaded screws, a greater tractive force was produced 

while the screws were rotating (dynamic) than when static. While this is true 

for the 1N normal loading case for the rigid threaded screw, the 2N loading 

case resulted in less tractive force being produced. It is proposed that this is 

due to the increased stick-slip interaction resulting in less traction. 

6.3.7 Tissue Trauma 

Throughout the experiments using ex-vivo tissue, samples were inspected 

for signs of wear to mucosa as an indication of trauma. The static traction 

experimentation resulted in no visible wear to the tissue sample, however 

the dynamic traction experimentation using rigid screws left visible indication 

of wear. To best demonstrate this, sample piece of tissue was prepared and 



- 146 - 

screws actuated against it under 2N normal loading at a demand velocity of 

10 rad s-1 for 60s with a rigid and compliant (shore 60) screw, replicating the 

worst-case scenario for tissue trauma from the dynamic traction 

experiments. This can be seen in Figure 6.22, with the areas of compliant 

and stiff screw articulation highlighted. The stiff screw section, highlighted in 

red, shows clearly a patch of thinned mucosa due to damage from the 

screw. The compliant screw section (blue box) when compared to the control 

section (green box) shows no visible tissue damage. It is worth noting that 

serious and major tissue trauma would have a visible aspect to it (for 

example perforation and laceration), it is encouraging to note that the screw 

system does not induce this level of damage onto the tissue. More detailed 

testing would be required in the future, for example using histological 

techniques to look at microscopic damage to the tissues. This is beyond the 

scope of this work. 

 

Figure 6.22 Demonstration of screw thread type against tissue 

6.4 Investigating the Effect of Screw Compliance on 

Traction 

The effect of compliance on traction cannot be summarised by a single 

compliant screw set, as the thrust produced showed high variability and no 

clear trend. 

 

Compliant thread screw section of 

tissue 

Control section of tissue 

Stiff thread screw section of tissue 
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Therefore, a further experiment was conducted to investigate the effect of 

compliance in detail. Due to the high degree of variation in the thrust 

produced, a further experiment was carried out. 

6.4.1 Experimental Method 

A larger study was conducted using the same testing apparatus (Traction 

and Contact Testing rig) as the dynamic traction experiment, with an 

increased range of normal loading conditions and screw compliances. 

Normal loading was applied to the screws in 4 discrete categories using 

weights attached to the dual screw assembly such that the normal load was 

either of 0.5N, 1.0N, 1.5N or 2.0N. Seven different pairs of opposite handed 

screws were used, each produced from the same material with varying 

compliance. The range of compliant screws were produced using a rapid 

prototyping machine (Object1000, Stratasys) in shore values of 30, 35, 40, 

50, 60, 70 and 85, shown in Figure 6.23. 

Fresh samples of ex-vivo porcine colonic tissue were prepared using the 

method as described in the previous section. These were stored in a saline 

solution to prevent dehydration until they were used. For each screw pair, 

the screws were actuated at a demand angular velocity of 5 and 10 rad s-1 

for all four normal loading conditions. Each unique setup was repeated 3 

times on the same tissue sample; the sample was removed from the tissue 

bed and allowed to relax before being replaced in a different position. This 

reduced the overall samples needed allowing the experiment to be carried 

out using a single porcine colon, while still allowing the high number of 

configurations to be tested. Each time the tissue was replaced it would be 

positioned such that the screws would actuate against a fresh section of 

tissue. Visual examination would take place at this point for signs of wear to 

the mucosa, any damage would be noted and a fresh section of tissue used. 

Table 6.5 Experimental variables for experimental parametric sweep of 
screw compliance  

Screw material shore values 30, 35, 40, 50, 60, 70, 85 

Screw pitch 20mm 

Screw normal loading 0.5N, 1.0N, 1.5N, 2.0N 

Screw demand angular velocity 5 rad s-1, 10 rad s-1 

Repeats 3 for each unique configuration 
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A total of 168 individual experiments were carried out, each for 60s with data 

recorded at 100Hz using the same system as detailed previously in this 

chapter. For each of the samples, the data file filename for the recorded data 

included the screw shore value, normal loading and unique test number. The 

other parameters can be obtained through analysing the file contents. 

 

Figure 6.23 Prepared counter rotating screw pairs, photographed on a 2mm 
grid for scale. Shown left to right in pairs with shore values of: 30, 35, 
40, 50, 60, 70 and 85. The screw body is rigid and has a darker colour, 
the more compliant the screw blade the lighter the colour. 

 

Figure 6.24 Tissue sample in the Traction and Contact Testing rig ready for 
testing. Annotations show; 1: beam load cell; 2: dual motor sub 
assembly; 3: motor; 4: screw pair; 5: tissue sample. 

Figure 6.24 shows a sample of tissue in the tissue bed of the Traction and 

Contact Testing rig with a pair of screws resting against the tissue. The 

screws shown are shore value 30 with 2N normal loading. From the 

photograph, it can be seen that both the tissue and screws are deformed by 

the normal loading. The tissue is visibly recessed at the threads with it 

protruding between the threads, as described in section 6.1.4. 

Figure 6.25 shows the same set up as above, screw pair of shore value 30 

with 2.0N normal loading, against the tissue sample holding plate. From this 

1 

2 

3 

4 

5 



- 149 - 

photograph, the deforming of the screw blades is evident, with the tips of the 

screw blades deflected to the left of the photograph. 

 

Figure 6.25 Screw pair resting against tissue sample holding plate of the 
tissue bed in the Traction and Contact Testing rig ready for testing. 
Annotations show; 1: beam load cell; 2: dual motor sub assembly; 3: 
motor; 4: screw pair; 5: tissue bed. 

6.4.2 Data Analysis 

Data files were analysed based on metadata in the file name. Using this, the 

shore value and loading condition for each data set was ascertained. The 

actual angular velocity of the screws differs from the demand due to loading 

conditions. This effect was used to quantify the stick-slip behaviour by 

defining the motion ratio, equation 6.4. 

The motion ratio (MR) is a fraction composed of the total number of rotations 

performed by a screw divided by the expected number of rotations. 

Rotations may be replaced with encoder counts, which results in the same 

value being produced. 

 𝑀𝑜𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
 6.4 

For example, if the screw performed 2 rotations with the expected as 5, the 

ratio is 0.4.  

To understand the grouping within the motion ratio of the screws, three 

groups were devised into which a dataset would fall. These groups are, Slip 

(<25% stall) (Figure 6.26), stick (>75% stall) (Figure 6.27) and stick-slip 

(~50% stall) (Figure 6.28). These bands were selected from analysing the 

data: the data sets band into the groups with few varying from the clusters. 

The percentage stall is arbitrary and selected as they provide a numerical 

description that bisects the distinct groups of data. The following three plots 

show datasets that show the characteristic velocity spread of the three 

motion ratio groups. 
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Figure 6.26 Slip case: histogram showing distribution of angular velocity, 
displayed in integer form. Data taken from results for Shore 60, 0.5N 
normal loading  

 

Figure 6.27 Stick case: histogram showing distribution of angular velocity, 
displayed in integer form. Data taken from results for Shore 85, 2.0N 
normal loading  

 

Figure 6.28 Stick-slip case: histogram showing distribution of angular 
velocity, displayed in integer form. Data taken from results for Shore 
30, 0.5N normal loading  
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6.4.3 Results 

To allow the data to be analysed for trends several plots have been 

produced with their significance discussed further in the discussion section 

to follow. 

The plot in Figure 6.29 shows all data sets within the parametric sweep. Two 

clusters of data points can be seen which form vertical clusters. The marker 

shape denotes the shore value of the screws used, as detailed in the legend 

alongside the figure. The colour of the marker denotes the loading condition 

upon the screw set, as detailed in the legend alongside the figure. 

For a screw to have a motion ratio of one, it must have rotated the same 

number of rotations as expected based on the desired velocity. This will 

occur when the screw has not experienced any retarding forces that have 

hindered the rotation. A screw, which does not encounter resistance against 

a surface during rotation, will result in a motion ratio of one. A line showing 

MR=1 can be seen in Figure 6.29. A high MR is defined as being between 

10-1 and 100. It can be seen that the majority of results, which fall into this 

region, are made up from normal loading cases of 0.5N and 1.0N. 

Low motion ratio occurs when a screw experiences a high resistance to 

motion. This may be caused by adhesion of the screw blades to the tissue or 

high resistance opposing rotation of the screw against the tissue. Defining a 

low MR as below 10-2, it can be seen in Figure 6.29 that all cases of 2.0N 

loading are in this region. With high loading, the screws recess further into 

the tissue increasing contact area. This may explain why with increased 

loading the MR decreases. 
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Figure 6.29 Motion ratio against thrust for all data sets. Marker shape shows 
screw blade compliance and colour shows loading condition, as 
detailed in the legend to the right of the plot.  

There is no clear correlation between MR and thrust, however Figure 6.29 

shows a correlation between loading and thrust. The highest thrust values 

are produced at a loading of 0.5N and 1.0N, with 2.0N producing the least 

thrust. There is also a correlation between screw blade compliance and 

thrust, the highest thrust values are produced from screws with a shore 

value of 60 or above.  

To investigate these traits in more detail a single compliance was analysed. 

Figure 6.30 shows the results from a single blade compliant screw (shore 

60) taken from the data set from Figure 6.29, which shows the relationship 

between loading and motion ratio and thrust production. A loading of 1.0N 

produces marginally greater thrust across the range of motion ratios than 

0.5N loading, with the least thrust generated with a loading of 2.0N. A 
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correlation between loading and motion ratio can be seen, increased loading 

reduces the MR. 

 

Figure 6.30 Motion ratio against thrust for experiments with screws of shore 
value 60. Marker colour shows loading condition, as detailed in the 
legend to the right of the plot. 

While the demand angular velocity is an input to the system, the motion ratio 

is an output and thus will be affected by the inputs. In this respect to 

understand how the screws perform the effect of compliance and loading on 

motion ratio must also be explored. 

6.4.4 Discussion 

The effects of stick-slip, normal loading and screw blade compliance are 

discussed for their individual effects upon the thrust generated in terms of 

motion ratio classification. 

6.4.4.1 Effects Of Stick-Slip 

During the experimental testing, it was evident that the screws did not 

always rotate at a constant velocity. While in some cases the screws would 

rotate, in other cases they would remain almost stationary (stalled) 

throughout. In some stall cases, the screws would temporarily overcome the 

friction against the tissue and rotate; this would often result in a high peak 

velocity while the average velocity remained low. Viewing the data in terms 

of velocity versus thrust does not give any clear trend. When the screw is 

stationary against the tissue with a torque applied to the screw there will be 

transmission of forces. A stalled screw does not necessarily mean there is 

zero net thrust and so the thrust is not directly proportional to the screw 
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velocity. To ascertain if high average velocity (close to the desired velocity) 

results in a greater thrust generated than low average velocity, such as a 

stalled or partially stalled screw, the motion ratio metric is used. 

The data collected throughout the experiments gives the instantaneous 

velocity of the screw at the sample time. Using this, the displacement may 

be obtained through integrating the velocity. 

Classifying the results in terms of motion ratio provides a means to identify 

trends between stalled and non-stalled screws. Figure 6.29 shows a scatter 

plot of all the data points collected. Initially ignoring the loading and shore 

hardness of the screws and examining the spread of data, as shown in 

Figure 6.29, two vertical clusters can be seen. These clusters show a range 

of thrusts with a motion ratio of range 10-4 to 10-3 (low MR), and around 100 

(high MR). As predicted by the theoretical model a stalled screw does not 

result in zero thrust, which is shown by thrust of similar proportions being 

generated in the two clusters. There is a difference between the two 

clusters, there are no cases of zero thrust in cases where the screw has a 

high motion ratio. This means that a high motion ratio results in thrust 

however thrust is not wholly dependent on a high motion ratio. 

6.4.4.2 Effects Of Loading 

Introducing loading into the analysis, from Figure 6.29 it can be seen that 

there is distinct banding. The high motion ratio cluster is formed entirely of 

normal loading cases 0.5N or 1.0N. The greatest thrusts are produced by 

these same loading cases. The 1.5N loading cases produced between 0.6N 

and 0.1N of thrust with the 2.0N loading case producing below 0.5N of 

thrust. This separation shows that normal loading has an effect on the thrust 

production. 

To assess the effect of normal loading upon thrust Figure 6.30 shows the 

data from a single compliance screw set (Shore 60) plotted on the same 

axes as Figure 6.29. A trend of decreasing motion ratio with increasing 

normal loading can be seen as well as decreasing thrust production with 

increasing loading. The normal loading would appear to have an effect on 

both the motion ratio and the thrust production. The two highest normal 

loading cases show a tighter cluster of data points compared to the lighter 

two loading cases; both these two cases (0.5N and 1.0N) have results from 

both the high and low MR range as indicated by the annotations in Figure 

6.29. 
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6.4.4.3 Effects Of Compliance 

Comparing the thrust produced for each of the different compliance screws, 

it can be seen that the highest thrust values are produced from screws with 

a shore value of 60 or above. Similar to previously discussed, the 1.5N and 

2.0N normal loading cases produce less thrust than the lighter loading 

cases. 

For the screws with Shore values 30, 35 and 40, the highest thrust 

production is generally for the lowest normal loading case and least for the 

largest loading case. While the largest loading case generally produces the 

least thrust in the other sets, the peak thrust comes from 1.0N normal 

loading (Shore 60, 70 and 85). 

It can be seen that compliance of the screw has an effect on the thrust 

production; it is not known if the compliance of the screws has an effect on 

the motion. There is no visible trend or correlation between the compliance 

and MR shown in the data presented in Figure 6.29. To establish the reason 

for the banding trend seen in the motion ratio, the motion of the screws must 

be further analysed. As previously mentioned, the screws fit into three 

separate categories: slip, stick and stick-slip. 

The first of these, slip, occurs when the screw is able to rotate, albeit with 

some resistance to motion. Throughout the sampled period, the screw 

moves at almost constant velocity matching that of the demand. This can be 

seen illustrated in Figure 6.26, which shows a data set that is representative 

of screws performing in the slip state. The data shown is for Shore 60, 0.5N 

normal loading. The stall time is calculated by the number of samples 

reporting 0 rad/s over the total number of samples. The mean velocity 

across the data of 4.9rad/s and has a motion ratio of 0.98. 

The stick case is where a screw spends the majority of the testing period 

stationary. This is due to the resistance against rotation being too high or the 

resistance to the blades slipping being too great. In order for the screw to 

rotate, slip condition, the blades must rotate against the tissue surface. This 

results in the contact point between the screw and the tissue moving along 

the screw’s axis of rotation. This has been discussed in detail earlier in this 

chapter, Figure 6.27 shows data from a set that is representative of the stick 

(data: Shore 85, Loading: 2.0N). The vast majority of sample time the screw 

is idle, 92.2%, resulting in a low mean velocity and motion ratio. 

The combination of the two aforementioned cases, stick-slip, occurs when 

the screw is able to momentarily overcome the frictional forces and rotate. 
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This results in a motion ratio, which is in the range of 10-2 to 10-1. Many of 

these cases saw the screw spending approximately equal time stalled and 

rotating, although not always rotating at the desired velocity. Figure 6.28 

shows a data set which is representative of stick-slip cases (Data: Shore: 30, 

Loading: 0.5N). A spread of velocities between stalled and the desired 

velocity occurs due to the acceleration and deceleration the screw 

experiences as it moves between stick and slip states. 

In Chapter 2 the minimum force required to perforate a colon was 

established through literature to be 14kN·mm-2. The outer surface area of 

each screw shaft, ignoring the thread is 603.2mm-2. Assuming the screw 

without thread sinks to half its diameter into the tissue, the contact area is 

301.6 mm-2. For two screws, the combined surface area of contact is 

603.2mm-2. For a pressure of 14kN·mm-2, this would resolve as a force of 

8.44N applied to the screws. This is much greater than the 2N applied 

throughout the testing. The exact surface area of contact between the tissue 

and screws is not known; this is because the contact dynamics are 

dependent on local variations in the tissue thickness and compliance, screw 

blade compliance and normal loading. This describes a worst case scenario 

and it is likely the forces applied by the screws will be lower than this and 

thus avoid loading the tissue traumatically. 

6.4.4.4 Tissue Damage Sustained Through Parametric Sweep 

The colon used through the parametric sweep experiments had a thick sub-

mucosa tissue layer to it, as seen in Figure 6.24 and has a different 

appearance to the tissue used in earlier experimentation, as seen in Figure 

6.22. After the parametric sweep experimentation had been carried out there 

were no signs of visible damage to the mucosa where the screws had 

actuated. 

6.5 Summary of Contact Locomotion Analysis 

It has been shown through the work detailed in this chapter that it is feasible 

to produce thrust from rotating screws against colon. The experimental data 

shows that the screws do provide a locomotion strategy capable of providing 

contact-based thrust against this highly deformable and changeable surface. 

A counter rotating screw pair is able to generate up to 1N of thrust when in 

contact with tissue. Should the full 4 screw device produce double this, i.e. 

2N of thrust, then it should be able to progress along the colon with minimal 

restriction from the tether. 
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The compliance of the screw material does not yield a major effect upon the 

thrust generation, allowing for a compliance to be selected which best suits 

the environment. The normal loading applied to the screws does however 

yield a clear trend; when deployed the device will have the ability to alter the 

loading applied to the screws using the arm expansion mechanism as 

detailed in Chapter 4, allowing for local adjustments to be made to increase 

traction and thrust. The compliance of the screw does however have a 

visible effect on the integrity of the tissue, a reduction in the shore value 

results in reduced visible tissue damage. 

Motor velocity does not play a large role in the thrust production as initially 

expected, loading and compliance are more significant factors. Motion ratio 

plays a limited role in thrust, which is as to be expected: while the screw has 

torque applied, it is still imposing a force upon the tissue. Normal loading 

does play a role, the highest thrusts are obtained from 0.5N and 1.0N loads. 

Friction against the screw core opposes rotation however, the threads need 

to be in contact with the tissue to produce thrust. This may explain why the 

higher normal loading cases produce less thrust: increased friction against 

the screw core will result in an increased resistance to motion.  

Screw-tissue interaction forms into three categories: Slip (<25% stall), stick 

(>75% stall) and stick-slip (~50% stall). From Figure 6.29, the spread of data 

shows there is no trend between the motion ratio and the thrust produced. It 

may be useful to reduce screw slippage against tissue when deployed; as 

the screw slipping against the mucosa will be highly likely to cause trauma of 

some type, and such for minimising trauma understanding the factors, which 

increase the likelihood of slippage, will be important. 

In Summary, the analysis of screw based locomotion shows: 

 Screw based contact locomotion is feasible 

 Screw blade compliance can be changed to reduce visible trauma 

 Screw-tissue interaction can be summarised into three categories: 

o Slip (<25% stall) 

o Stick (>75% stall) 

o Stick-slip (~50% stall) 

 The thrust generated is not reliant upon a single factor but several 

 Screw angular velocity does not have a direct effect on thrust 

 Normal loading applied by the screws on the tissue surface has an 

effect on thrust production 
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Chapter 7  

Prototype System Analysis – Experimental Testing in 

Phantom and Ex-vivo Porcine Tissue 

In Chapter 5 and Chapter 6, the screw locomotion system has been 

experimentally assessed in discrete modes of operation. This chapter covers 

the experimental assessment of a complete 2:1 scale prototype, to 

determine the system’s ability to propel itself in a more realistic and complex, 

fluid filled environment. To facilitate this, two functional scale prototypes 

were built, as discussed in this chapter and Chapter 4, and tested in a series 

of environments. 

7.1 Aims of Testing 

A functional four-screw scale prototype device was assessed to determine 

the effectiveness of the locomotion system as a whole. During the fluid 

testing of the device, a single screw was tested in isolation. In using a 

complete four-screw system, the effects of counter rotating screws can be 

examined. This will provide insight into the practical maximum thrust the 

four-screw system can generate. The contact based testing carried out on 

the system involved a statically held pair of screws. In utilising an 

unrestrained scale prototype, the traction and thrust generated by the 

locomotion system will be ascertained in terms of being able to move the 

device. The locomotion system will be tested for its ability to traverse tissue 

sections as well as navigate through a complex environment similar to that 

of final application. This analysis was conducted to provide a detailed 

experimental simulation of the device in action, to further substantiate the 

contributions to amphibious locomotion for intra-luminal medical devices. 

To assess the four-screw device, the following objectives were set. 

 Assess the ability to provide thrust in a pure fluid condition 

 Assess the ability to traverse on a flat tissue, in the following 

conditions 

o Non-flooded 

o Flooded 

 Assess the ability to traverse a tissue lumen, in the following 

conditions 

o Non-flooded, collapsed 

o Non-flooded, open 

o Flooded, open 
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7.2 Production of a Scale Prototype 

A 2:1 scale prototype was built with parts manufactured using an Additive 

Layer Manufacturing (ALM) machine and bought components, as discussed 

in Chapters 3 and 4. Following this, an open-loop control system was 

developed to allow the device to be controlled throughout the testing. 

7.2.1 Construction 

The assembled 2:1 scale functional prototype (referred to as the “four-screw 

device” hence forth) can be seen in Figure 7.1. It should be noted that two 

devices of identical geometry and motor-gearbox combinations were 

produced; only the colour of the rapid prototyped parts differs. Due to the 

porous nature of the plastic components from rapid prototyping, those, which 

were in contact with biological materials, were disposed of after use. 

 

Figure 7.1 Assembled 2:1 scale prototype for testing, photographed on a 
2mm grid. Device is shown in open state (a) and closed state (b) with 
the tether leaving the rear to the left. Annotations show: 1) Front-
section screw; 2) Controllable arm section; 3) Mid-section screw; 4) 
Screw motor housing; 5) Front chassis section with space for camera 
module; 6) Central chassis section housing arm motor and gears; 7) 
Communications tether. 
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Several of the components, such as the gears and shafts, needed to be 

connected in order for the device to function. These were attached using an 

adhesive agent (Superglu, Loctite) which could be removed to allow for 

deconstruction and re-use of components. As previously stated, while the 

porous plastic parts were disposed of after use the metal components were 

recovered and sterilised for further use. The adhesive used could be 

dissolved using an acetone solution and cleaned using a laboratory grade 

disinfectant “TriGene”. 

The motors were coated in a non-conducting grease (bearing grease, 

Castrol) to prevent moisture ingress and short-circuiting of electrical 

connections. Grease was applied to the openings of the motor housings and 

cable entry points to prevent ingress of moisture and seal the system. This 

can be seen in the photographs in Figure 7.1, by the yellow substance 

around the motor housings at the rear of the device. This allowed the device 

to operate in flooded conditions without the connections between rapid 

prototyped parts being watertight. 

7.2.2 Control Hardware 

To power and drive the four-screw prototype a tethered connection was 

chosen for convenience and simplicity. This allowed the motor control 

hardware to be located off-device with the tether directly linking the motors 

to the controlling hardware. The motor control hardware was situated away 

from the experimental area to prevent moisture contact. A two-meter multi-

core tether was used, allowing the device to be operated and progress along 

a section of colon unhindered by tether length constraints. The tether length 

was selected to match that which would be used when the device is 

deployed. The motor controller hardware was the same as in previous 

chapters, which was connected to signal generation hardware 

(CompactRIO, National instruments). Figure 7.2 shows a diagrammatic map 

of the hardware and connections between hardware devices as used during 

the testing. 

7.2.3 Control Software 

The computer interface (LabVIEW, National Instruments) allows each of the 

motors to be controlled in an automated state or a fly-by-wire approach 

through a human interface device (HID). Automated motor control allows for 

specific voltages to be applied to the motors to generate step or ramp 

increase/decrease to motor voltage to provide repeatable control signals to 

the prototype. The HID allows analogue input control over device velocity 
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and direction: this is interpreted by the software to generate motor-specific 

signals to allow steering. A Microsoft Xbox 360 pad was chosen as it 

provides a range of analogue and digital inputs with readily available driver 

support. The Microsoft Xbox 360 pad includes built-in analogue-digital-

converters (ADCs) removing the need for signal conditioning from the HID 

input. 

Through using the analogue input on the HID, the user can alter the demand 

power output and direction. The control program interprets these into 

specific signals for each motor to match the desired output vector. The 

demand power is used as the mean of the motor power outputs and the 

demand direction used to generate the power ratio between the motors. 

 

Figure 7.2 Prototype testing hardware configuration 

For the device to turn left, the right hand side needs to increase output 

relative to the left. This can be done through increasing the right output, 

decreasing the left output or a variation of the two. A steering algorithm was 

developed, detailed below, which adjusts the output of both screws to 

achieve a difference in thrust resulting in a turning motion. The algorithm 

takes the desired velocity and steering angle as inputs and returns the drive 

signal for each screw. 

To achieve a scaling factor for each screw drive signal, the developed 

steering algorithm utilises trigonometric relationships. Using a sine curve, 

motors opposite from each other will receive equal and opposite demand 

signals when multiplied by the sine of their position (equation 7.1). This 

approach was used to allow for change in position of the screws due to 
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expansion, as when the arms move from the closed position to the open 

position, the screws rotate about the body (Figure 7.3). 

 

Figure 7.3 Orientation of screws about the chassis in closed (a) and open 
(b) arm positions 

 𝑉𝑙𝑒𝑓𝑡 = 𝑠𝑖𝑛𝑒 (
3𝜋

2
) ∙ 𝑉𝑑,  𝑉𝑟𝑖𝑔ℎ𝑡 = 𝑠𝑖𝑛𝑒 (

𝜋

2
) ∙ 𝑉𝑑 7.1 

 

Table 7.1 Notation definition 

𝑉𝑑 Demand velocity 

𝑉𝑙𝑒𝑓𝑡 Velocity of left motor 

𝑉𝑟𝑖𝑔ℎ𝑡 Velocity of right motor 

 

When a left command is issued, the left motor has a negative control voltage 

and the right motor has a positive control voltage, resulting in a zero turning 

radius. To control how much the system turns, the demand velocity needs to 

be supplied as a function of direction. This will allow forward locomotion 

while turning, as a zero turning radius may not always be required. By 

knowing the motor position relative to the chassis, and the horizontal 

component of the velocity, the steering of the system can be controlled 

through equation 7.2 (see Table 7.1 for definitions): 

 𝑉𝑚 = 𝑉𝑑 − 𝑉𝑑 ∙ (𝑉𝑥 ∙ 𝑠𝑖𝑛𝑒(𝜃)) 
7.2 

At specific locations, the sine function will return a negative response, 

causing one motor to speed up while the other slows down. 

To decouple top/bottom motors from left/right, a sine and cosine function are 

used. For example, for a motor at position 𝜃 = 𝜋/2, ie to the right of the 

chassis, a horizontal component will result in a direct change in output, 

sine (
𝜋

2
) = 1 whereas a vertical component will result in zero change in 

output, 𝑐𝑜𝑠𝑖𝑛𝑒 (
𝜋

2
) = 0. The control function using this approach can be seen 

in equation 7.3 (see Table 7.2 for definitions). 
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 𝑉𝑚 = 𝑉𝑑 − 𝑉𝑑 ∙ (𝑉𝑥 ∙ 𝑠𝑖𝑛𝑒(𝜃) + 𝑉𝑦 ∙ 𝑐𝑜𝑠𝑖𝑛𝑒(𝜃)) 
7.3 

The function applicable to any number of motors spread equally about the 

chassis in any orientation about the device. Through altering the angle 𝜃 of 

each motor, the specific motor control voltage can be calculated. This 

approach does not require a motor to be in a set location, allowing adaption 

of the system as well as compensation for a non-responsive motor in the 

event a motor may fail during deployment. 

Table 7.2 Notation definitions 

𝑉𝑚 Motor velocity 

𝑉𝑑 Demand velocity 

𝑉𝑥 X component of the demand velocity 

𝑉𝑦 Y component of the demand velocity 

𝜃 Motor position in radians about the chassis centre. 

 

In each of the tissue or phantom based assessments the automated control 

system was used to assess the straight line performance of the device in a 

repeatable method. This setup was configured such that it increased the 

voltage from 0v to 1.25v (25%) in 0.0005v (0.01%) steps each 100ms, giving 

an acceleration time of 2.5s. The analogue control was used to assess the 

steering ability as well as the motors at full voltage (5v). Current was not 

actively limited and dependant on the loading of each motor. 

7.3 Methods of Assessment 

Experimental testing was divided into three separate strands: 

 Pure fluid locomotion 

 Amphibious locomotion in phantom lumen 

 Amphibious locomotion in ex-vivo porcine tissue 

The pure fluid locomotion was carried out to allow assessment of a full four-

screw system in comparison to earlier testing on a single screw in Chapter 5. 

The amphibious locomotion was carried out initially using a phantom lumen, 

before moving to an ex-vivo porcine colon sample. The phantom testing was 

carried out as this provided a repeatable means of testing the system in an 

environment free from bio-hazardous substances. Once the system had 

been tested in a repeatable means, the move to biological tissue was made 
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allowing a complete simulation of the device to be carried out 

experimentally. 

The thrust generated for each of the fluid assessment experiments were 

collected using a load cell allowing for quantitative data to be analysed. The 

phantom and ex-vivo tissue assessments did not use sensors to log data, 

however a video camera was used to record each experiment: still frames 

for each of the experiments are displayed in this chapter. 

7.3.1 Assessment Of The Device In Fluid 

In Chapter 5 it was hypothesized that a four-screw system would produce up 

to 4 times the thrust of a single screw. To test this hypothesis and ascertain 

the peak thrust in fluid that the device can generate an assessment of the 

system was carried out. To acquire data throughout this assessment, the 

Fluid Propulsion Testing Rig (Chapter 5) was modified to include a 6-axis 

load cell (Nano 17, ATI). A 6-axis load cell was selected to allow 

investigation of the turning torques as well as straight line thrust to be 

measured. In using a load cell with X, Y and Z axes along with roll, pitch and 

yaw; perpendicular force vectors can be excluded allowing the thrust along 

the device length to be measured. 

The 2:1 prototype was attached to the load cell via a modified nose section. 

The load cell was securely fastened to the metal struts in the rig. The cross 

beam was adjusted so the prototype was immersed in fluid with the 

supporting strut free from contact with the fluid tank and the load cell kept 

free of liquid contact. Figure 7.4a shows a diagram of the arrangement; 

Figure 7.4b shows a photograph of the assembled testing apparatus. 
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Figure 7.4 Prototype testing with the Fluid Propulsion Testing rig a) 
schematic of full prototype testing setup within the rig. b) photograph of 
assembled full prototype inside the rig. Annotations show 1: supporting 
cross beam in rig; 2: 6 axis load cell; 3: 4 screw prototype nose 
attachment piece; 4: fluid level; 5: 4 screw prototype. 

Each motor was supplied with a constant voltage, as the motors do not 

include encoders no control over velocity was applied and the system ran in 

an open loop. The arms were positioned in the open or closed position for 

testing and remained stationary throughout. Using modified software from 

the Fluid Propulsion Testing rig to record the readings from the 6-axis load 

cell data was logged at 100Hz for 60s. Each of the unique motor voltage and 

arm position setups were repeated 3 times. An experimental setup matrix 

can be seen in Table 7.3. 

The pitch of the screws was selected as a compromise between fluid and 

contact based locomotion. In fluid testing 40mm and 20mm pitch screws 

were used, however in contact conditions the 40mm pitch screws were 

unable to rotate and did not generate measurable thrust. The 20mm pitch 

screws were selected as they had a blade angle in the optimal range of 40° 

and 45° (88), and formed an integer number of rotations about the shaft. 

Smaller pitches are capable of generating greater torque, however from the 

calculations in Chapter 5 it can be seen that they will produce less thrust in 

fluid situations. Further optimisation into the blade angle/pitch may be 

carried out as future work to allow the system the largest thrust generation 

between contact and fluid states. 
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Table 7.3 Experimental variables for fluid testing of the complete prototype 

Screw pitch 20mm 

Arm position Closed (90° coverage), Open (0° coverage) 

Motor voltage 1.5v, 3v, 4.5v, 6v 

Repeats 3 for each unique configuration 

 

Two separate experiments were conducted using the fluid set up as 

described. The first experiment aimed to evaluate the systems straight line 

performance by supplying the same voltage to each screw. The second 

experiment aimed to evaluate the system’s ability to produce turning 

torques, which would be used in manoeuvring the device, through supplying 

separate voltages to each screw. 

After the data was collected, it was analysed. A second order Butterworth 

filter was applied with a cut off frequency of 1Hz. It is expected that noise will 

be introduced from the system though mains power (50Hz sine) and through 

oscillation of the screws due to minute off-centre mass being rotated, 

producing noise at a similar frequency to the motor angular velocity. As the 

system is held static and motors run continuously, any thrust generated 

should be a non-oscillatory response and any oscillatory responses will be 

an artefact of system noise. After the data was filtered, for each of the 

repeats with the same physical arrangements the recorded data sets were 

appended. The combined data set was used for the calculation of the mean 

thrust and the standard deviation. 

7.3.2 Assessment Of The Device In A Phantom Lumen 

Tissue phantoms provide a means to test on repeatable materials allowing 

greater control over the variables changed between experiments. A series of 

experiments were conducted on the four-screw system to test the 

locomotion system in contact-biased and fluid-biased situations. As the 

phantom tissue does not accurately resemble the surface properties of 

tissue it was used along-side tissue testing. Two different synthetic 

phantoms were used, each to test separate aspects of the locomotion 

system. A PVA based cyrogel “hydrogel” lumen was used to assess the 

contact based locomotion in a supported and unsupported lumen. A low 

density polyethylene (LDPE) lumen was used to create a flooded 

environment through which the prototype would swim. The LDPE lumen was 

transparent allowing full visuals of the device to be recorded as it progressed 
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along the lumen, the hydrogel lumen was translucent providing a partially 

obscured view. 

Hydrogel is a PVA based phantom that was produced to resemble tissue in 

terms of its mechanical properties, and was produced by a member of the 

CoDIR team. Hydrogel is widely used to resemble soft biological tissue (101-

103) in terms of bulk mechanical properties, however the global geometry 

and surface properties do not represent biological tissue. The surface is low 

friction with a film that is similar to the mucosa layer within a colon. The 

material is continuous in properties throughout and can be produced to the 

same properties each time. The advantage of this is that experiments can be 

carried out without changes in tissue sample introducing uncontrolled 

variables. 

A length of LDPE lumen was used to form a phantom colon in terms of 

length due to availability. The production of a hydrogel lumen is a complex 

process and at time of testing a length greater than 200mm was not 

available. The use of the secondary lumen allowed a longer testing 

environment to be simulated. 

Three experimental assessments were carried out using the hydrogel lumen, 

each designed to assess different aspects of the locomotive strengths of the 

four-screw system. For the first method the hydrogel lumen was attached to 

two solid pipe sections (40mm diameter, Figure 7.5 annotation 2) and 

suspended from a beam (Figure 7.5a). The purpose of this is to provide a 

fully unsupported lumen through which the device can be tested; any forces 

exerted on the lumen would not be restrained by the surrounding 

environment, allowing the lumen to stretch. This setup models a gas 

insufflated lumen without tissue surrounding the lumen preventing 

displacement. The device was inserted at an end such that the screws could 

obtain purchase on the lumen walls. Once inserted the device was driven 

with the HID. 

A second setup featured the lumen placed on a bench without any support in 

terms of holding the lumen open and the device inserted (Figure 7.5b). The 

end of the lumen was held shut to simulate approaching a collapsed lumen, 

although it would not be possible to open the lumen, due to it being held 

shut; the device may be able to stretch the lumen to aid opening the 

passageway. 

To assess the device in an open lumen, the hydrogel lumen was held open 

at the far end after the device had been inserted (Figure 7.5c). This allowed 
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the device to be tested in a way that resembles a traverse along a gas 

insufflated colon, such as an air pocket. 

A summary of these experimental procedures is outlined in Table 7.4. 

Table 7.4 Summary of phantom assessments 

Assessment Method Objectives 

Suspended 

hydrogel 

lumen 

A section of hydrogel 

lumen suspended in 

air to remove support. 

Assess the device in an air-filled 

lumen which does not have support 

to restrict stretching and 

deformation from the device under 

gravity and forces imposed by the 

device 

Supported 

collapsed 

hydrogel 

lumen 

A section of hydrogel 

lumen laid flat on a 

worktop and held 

closed. 

Assess the ability of the device to 

progress through a section of 

lumen which is collapsed 

Supported 

open 

hydrogel 

lumen 

A section of hydrogel 

lumen laid flat on a 

worktop and help open 

Assess the ability of the device to 

traverse an open and unblocked 

section of lumen 

Fluid-

insufflated 

LDPE lumen 

A section of LDPE 

lumen was prepared 

and fluid insulated to 

resemble the inflation 

of a colon within a 

hydro-colonoscopy 

procedure 

Assess the ability of the device to 

progress through a fluid filled and 

non-obstructed lumen, providing a 

best-case scenario for hydro-

colonoscopy 
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Figure 7.5 Contact-biased testing of the four-screw device using hydrogel 
phantom lumen a) unsupported lumen, b) supported closed lumen, c) 
supported open lumen. Annotations show 1) shows the device location 
as seen through the translucent lumen, 2) rigid end supports, 3) lumen 
held shut, 4) lumen held open. 

The fluid-biased testing of the system was carried out using a length of 

LDPE lumen, which was sealed at one end, filled with deionised water. This 

was placed in a hard plastic container in a shape approximately resembling 

a colon (Figure 7.6). The corners were positioned such that they would 

remain partially open throughout. The open end was supported above the 

container such that a head of pressure kept the lumen insufflated. The 

device was inserted at the open end and tether supplied to allow the device 

to move. Using the HID, the device would be driven along the lumen. 
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Figure 7.6 Fluid-biased testing of the four-screw device using a LDPE 
phantom lumen 

7.3.3 Assessment Of The Device With Ex-vivo Porcine Colon 

Tissue 

To produce quantifiable data on the movement of the device on tissue a 

series of experiments were designed to assess the locomotion system. A 

total of six different experimental procedures are carried out each assessing 

different environmental conditions the device may experience. 

For each of the six ex-vivo tissue experiments carried out, porcine colon was 

used. The porcine colon was emptied of faeces through applying pressure 

along the length of the colon, mimicking natural peristalsis, and then flushed 

with warm water until the effluent flow ran clear. The colon sections were 

then used immediately for testing purposes and disposed of after use. The 

process of emptying the colon was designed to reduce mechanical actions 

that may alter the properties of the tissue, such as scraping with instruments. 

For the experiments that featured flat tissue sections, automated velocity 

control was applied to the motors, as described earlier in this chapter. The 

experiments that involved a complete luminal section of colon saw the 

device controlled using the HID. 

The following sections detail the ex-vivo experiments with a summary of the 

testing methods and objectives can be seen in Table 7.5 

7.3.3.1 Ex-vivo Experimental Setup 1: Flat Non-Flooded Tissue Contact 

A section of ex-vivo porcine tissue was cut longitudinally and placed within a 

plastic container (Figure 7.7). The prototype system was placed on the 

tissue sample at one end with the direction of travel facing along the sample 

length. This resembled a large section of the colon which is gas insufflated 

Container 

LDPE lumen 

Four-screw 

device 

Tether 
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where the device would remain in contact with a single surface, the surface it 

rests upon under gravity. 

 

Figure 7.7 Four-screw device seen in contact with tissue sample in a non-
flooded environment 

7.3.3.2 Ex-vivo Experimental Setup 2: Flat Flooded Tissue Contact 

A section of tissue was prepared in line with setup 2; this time the plastic 

container was filled with water to submerge the prototype system (Figure 

7.8). The two screws not in contact with the tissue were disabled through the 

software control such that any locomotion developed would come from the 

screws interfacing with the tissue. This resembled a large section of the 

colon which is fluid insufflated where the device would remain in contact with 

a single surface. 

 

Figure 7.8 Four-screw device seen in contact with tissue sample in a 
flooded environment 

7.3.3.3 Ex-vivo Experimental Setup 3: Unsupported Non-Flooded 

Colonic Lumen Contact 

A section of intact colon lumen was prepared and placed within the container 

with the device inserted nose first into the lumen (Figure 7.9). This setup 

was designed to resemble a section of non-insufflated and non-fluid filled 

colon where the device would be in contact with the entire lumen, and there 

are no tissue structures outside the colon to maintain an open passageway. 

 

Figure 7.9 Four-screw inserted into a non-supported colon length 

Four-screw device 

Ex-vivo tissue sample 

Four-screw device 

Ex-vivo tissue sample 

Four-screw device 

Ex-vivo colon lumen 



- 172 - 

7.3.3.4 Ex-vivo Experimental Setup 4: Supported Non-Flooded Colonic 

Lumen Contact. 

A section of lumen was attached to two plastic pipe sections of 40mm 

diameter. These were suspended from a beam such that the length of lumen 

was supported between the plastic cylinders (Figure 7.10). The device was 

inserted into the lumen via one of the openings nose first. This experiment 

was designed to resemble a gas insufflated and non-fluid-filled section of the 

colon where there are tissue structures outside the colon to maintain rough 

position however, the colon is free to move (mobile colon). 

 

Figure 7.10 Four-screw device seen inserted into a length of ex-vivo colon, 
suspended between two rigid sections of pipe to allow the lumen to 
remain open. Gloved hand seen inserting the four-screw device into the 
lumen.  

7.3.3.5 Ex-vivo Experimental Setup 5: Unsupported Flooded Colonic 

Lumen Contact 

This set up resembles a similar environment to set up 4, however the lumen 

is fluid filled (Figure 7.11). The configuration from experimental setup 4 was 

submerged so the lumen was fluid filled and air removed, and the device 

deployed via an open end. 

 

Figure 7.11 Length of ex-vivo colon suspended in a fluid tank, suspended 
between two rigid sections of pipe to allow the lumen to remain open. 
The four-screw device has been inserted to the right. 

7.3.3.6 Ex-vivo Experimental Setup 6: Insufflated Complete Lumen 

A section of lumen was prepared and sealed at one end. The other end was 

attached to a section of plastic pipe of 40mm diameter (Figure 7.12). A 

length of flexible plastic piping was attached to the other end of the rigid 

pipe. Water was poured into the open end of the flexible pipe such that the 

Four-screw device 

Ex-vivo colon lumen 

suspended at each end 

Four-screw device 

Ex-vivo colon lumen 

suspended at each end, 

immersed in water 
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colon was filled and air removed. The open end of the flexible pipe was 

secured in an upright position such that it provided a head of water to 

maintain the insufflation of the colonic lumen, simulating the inflation 

pressure of a hydro-colonoscopy procedure. The device was inserted into 

the colon lumen via the open end. This experimental setup is designed to 

resemble a complete hydro-colonoscopy environment. 

 

Figure 7.12 Four-screw device next to a fluid insufflated ex-vivo colon, 
300mm rule shown for scale.   

Four-screw device 

Fluid insufflated ex-

vivo colon lumen 
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Table 7.5 Summary of ex-vivo porcine tissue tests 

Assessment Method Objectives 

1. Flat non-

flooded 

tissue 

contact 

A section of opened 

colon laid flat in a non-

flooded container 

To assess the ability of the screw 

locomotion method to provide 

sufficient traction to traverse a 

section of tissue in a non-flooded 

environment 

2. Flat 

flooded 

tissue 

contact 

A section of opened 

colon laid flat in a 

flooded container 

To assess the ability of the screw 

locomotion method to provide 

sufficient traction to traverse a 

section of tissue in a flooded 

environment 

3. 

Unsupported 

non-flooded 

lumen 

A section of colon lumen 

suspended in air to 

resemble no support 

from connecting tissue  

Assess the device in an air-filled 

colon which does not have support 

to restrict stretching and 

deformation from the device under 

gravity and forces imposed by the 

device 

4. Supported 

non-flooded 

lumen 

A section of colon lumen 

laid flat in a non-flooded 

container 

Assess the device in a fluid-void 

collapsed colon which is supported 

to restrict stretching and 

deformation from the device 

5. 

Unsupported 

flooded 

lumen 

A section of colon lumen 

suspended in fluid to 

resemble no support 

from connecting tissue 

Assess the device in a fluid-filled 

colon which does not have support 

to restrict stretching and 

deformation from the device under 

gravity and forces imposed by the 

device 

6. Fluid-

insufflated 

lumen 

A section of colon lumen 

fluid insulated to 

resemble the inflation of 

a colon within a hydro-

colonoscopy procedure 

Assess the ability of the device to 

progress through a fluid filled colon 

lumen, providing a realistic scenario 

for hydro-colonoscopy 
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7.4 Results 

The central motor was attached to the driving gear for the arm operation 

using an adhesive, Figure 7.13. The torque generated by the motor and the 

forces on the arms during expansion caused the adhesive bond to break. 

Future designs should include a keyway style interaction to overcome this. 

Testing throughout this chapter was carried out with the screws held in the 

closed position unless otherwise stated. 

 

Figure 7.13 Computer model showing arrangement of gears and shafts 
within the developed system 

7.4.1 Fluid Assessment Results 

In the fluid assessment, the device was assessed for thrust production with 

all motors running and turning torque production with motor velocities varied 

between motors. 

Figure 7.14 shows the results from the thrust generated by the four-screw 

system suspended in a tank of fluid. Across both the open and closed arm 

position data, the thrust is proportional to the motor supply voltage. Given 

the high standard deviation of the data, the open and closed states are not 

distinguishable. With an increase in the motor supply voltage there is an 

increase in signal noise, which is estimated to be caused by a higher motor 

rotation velocity resulting in greater vibrations. 

Across the higher voltages, the signal noise is greater for the closed position 

compared to the open position. Due to slight manufacturing or assembly 

defects resulting in an off-centre rotation, the screw-body separation would 

vary throughout the rotation. This is estimated as a source of the higher 

noise in the closed position due to the altering fluid flow; as well as the noise 

across the whole system generated by rotational masses. 

1 



- 176 - 

 

Figure 7.14 Thrust generated against motor voltage for the four-screw 
prototype in water. Error bars show standard deviation. Solid line at 1N 
shows the predicted thrust needed to traverse a colon. 

This 6-axis load cell used in the experiment was used to acquire the thrust 

produced in different axes. Figure 7.15 shows the range of forces produced 

by a single screw when driven at full voltage. The single screw generates 

approximately 0.2N of thrust. Due to a single screw rotating, a net torque is 

also applied to the system. 

A second set of data was collected for two counter rotating screws operated 

at full voltage, the results from which are shown in Figure 7.16. When a 

counter rotating pair of screws is actuated, the system produces 

approximately 0.5N of thrust. While the thrust output increases with the 

introduction of a screw, approximately doubling, the torque about the axis of 

thrust increases as well. This is unexpected as the counter rotating motions 

should reduce the torque. This increased torque in the Y-axis is intended to 

turn the device allowing fluid based navigation. 

The pair of screws produce a greater torque about X-axis than originally 

expected; if the screws are of equal mass and velocity, their moments 

should cancel out. As the motors were controlled using open-loop control, 

i.e. no velocity feedback, it is not possible to fully determine the cause of this 

torque other than it is likely to be caused by a combination of the screw 

mass and the motor velocity. 
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Figure 7.15 Output thrust and torque generated from a single screw of the 
4-screw prototype actuated at full voltage. Bars shows mean value, 
bars show standard deviation. Insert to right shows a schematic of the 
four-screw system with axis arrows to aid visualisation. 

 

Figure 7.16 Output thrust and torque generated from a screw pair of the 4-
screw prototype actuated at full voltage. Bars shows mean value, bars 
show standard deviation. Insert to right shows a schematic of the four-
screw system with axis arrows to aid visualisation. 

With a single screw producing approximately 0.2N of thrust (20mm pitch 

screw), this is greater than the thrusts recorded during the fluid assessment 
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(approximately 0.1N, Chapter 5). While the angular velocity of the screw is 

not known, and may be a reason why the thrust produced is greater; it may 

also be due to the conditions around the screw. The single screw experiment 

featured a bearing and bracket below the screw inline of the thrust, while the 

actual device does not. 

When comparing a single screw on the prototype to a pair of counter rotating 

screws the thrust increases from approximately 0.2N to approximately 0.5N. 

This increase of over 2x is expected to be caused by the interaction of the 

flows from the counter rotating screws decreasing the laminar flow of the 

surround fluid. When utilising all four of the screws (Figure 7.14), the thrust 

increases to approximately 2N, a four-fold increase from two screws. 

7.4.2 Phantom Assessment Results 

When the device was inserted into the suspended hydrogel lumen, it was 

able to traverse to the midpoint of the lumen’s length. Figure 7.17 shows 

frames taken sequentially at five-second intervals showing the traverse of 

the device through the suspended hydrogel lumen. When the four-screw 

device reached the midpoint of the lumen, the deflection caused by the mass 

of the device caused it to become stuck. The nose of the device angled into 

the luminal wall created an impassable situation, circled in Figure 7.17f. The 

base of the lumen has displaced by approximately 30mm at this point, from 

measurements taken from the grid behind the lumen: while the lumen 

diameter has remained close to constant. The low friction of the hydrogel 

lumen walls prevented the device from reversing and the screws spinning 

freely. This was observed across a number of repeats and not a product of 

poor steering. 

In the section of closed hydrogel lumen the device was able to traverse up 

until the diameter of the lumen restricted the progress. Figure 7.18 shows 

frames taken sequentially at five second intervals showing the traverse of 

the device through the closed hydrogel lumen. When the device reached a 

point where it would only be able to progress if the lumen was stretched, it 

was unable to progress any further. The screws continued to rotate however 

was insufficient thrust generated to produce forward motion. The device was 

however able to reverse along the lumen from this position. 

When the section of the hydrogel lumen was held open, the device was able 

to traverse the entire length of the lumen. Figure 7.19 shows frames taken 

sequentially at five second intervals showing the traverse of the device 

through the open hydrogel lumen. The device was able to traverse the 
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length in both forward and backward directions at the same rate. The length 

of lumen was approximately 200mm in length, with the device traversing 

approximately 60mm in 5 seconds as measured using the video frames. 

When the device was inserted into the insufflated flexible LDPE lumen and 

piloted, it was able to traverse the straight sections with relative ease, Figure 

7.20. Each frame was taken at 10-second intervals from the video of the 

experiment. As the device approached the corners, it became difficult to turn 

the device, owing to its large turning circle and relatively long body length. 

Due to the tether forming an S-bend on insertion, the device was hindered in 

terms of mobility on the initial straight section (Figure 7.20 annotation 2). The 

device was reversed and then run forward at full power to remove the tether 

bend, seen in Figure 7.20d to Figure 7.20g. As the device approached the 

second corner, seen top left (Figure 7.20 annotation 3), the folds in the 

plastic lumen covered the aperture making it impossible for the device to 

progress any further without external intervention (Figure 7.20I, annotation 

3). 
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Figure 7.17 Frames taken from video showing the device traversing along 
the unsupported hydrogel lumen. First frame shows initial setup at 0s; 
each sequential frame taken at 5s intervals showing the device’s 
progress. Grid shown in the background is 20mm spacing of darker 
lines. Annotations show 1) Four-screw device, 2) cylinder end supports 
3) lumen stretching about the screw nose with the device unable to 
progress any further along the lumen. 
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Figure 7.18 Frames taken from video showing the device in the hydrogel 
lumen on a desk with the far end held shut. First frame shows initial 
setup at 0s; each sequential frame taken at 5s intervals showing the 
device’s progress. Annotation 1 shows the four-screw device seen 
through the translucent lumen, dashed line shown to aid visualisation of 
device progress. 
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Figure 7.19 Frames taken from video showing the device in the hydrogel 
lumen on a desk with the far end held open. First frame shows initial 
setup at 0s; each sequential frame taken at 5s intervals showing the 
device’s progress. Annotation 1 shows the four-screw device seen 
through the translucent lumen, dashed lines shown to aid visualisation 
of device progress. 
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Figure 7.20 Frames taken from video showing the device in the flooded 
LDPE lumen. First frame shows initial setup at 0s; each sequential 
frame taken at 10s intervals showing the device’s progress. 
Annotations show: 1) Four-screw device; 2) Tether “S” bend preventing 
progress; 3) flexure in lumen preventing further progress. 
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7.4.3 Ex-vivo Tissue Assessment 

In the ex-vivo experimental setups 1 and 2 the device moved with ease in 

the environment, with the device beginning to move at 0.9v (18% power). At 

1.25v (25% power) the device would move at considerable (50mm·s-1) 

speed across the surface. Through using the HID the device could be 

steered across the surface however the turning circle was large. This posed 

difficultly in directing the device in the desired direction.  

Experimental setup 1 was carried out to assess if the device was able to 

generate tractive forces using the screws alone against planar tissue in a 

non-flooded environment. The four-screw device was placed on a length of 

tissue and the screws in contact with the tissue actuated. The device 

traversed the tissue length, as seen in the frames of Figure 7.21, at a high 

rate of progression, taking 2 seconds to cover the length.  

 

Figure 7.21 Frames taken from video showing the device against ex-vivo 
porcine tissue in a non-flooded environment. First frame shows initial 
setup at 0s; each sequential frame taken at 1s intervals showing the 
device’s progress. 

Experimental setup 2 involved testing the four-screw device in contact in a 

flooded condition. The device was able to traverse the length of tissue with 

considerable ease, although the rate of progression as determined thorough 

examination of the video frames is slower than in a non-flooded condition. 

Figure 7.22 shows still images taken from the video at 1s intervals showing 

the device traversing the tissue length. The tissue was held flat throughout to 

prevent it moving. The tether was left free and did not constrict movement of 

the device. 
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Figure 7.22 Frames taken from video showing the device against ex-vivo 
porcine tissue in a flooded environment. First frame shows initial setup 
at 0s; each sequential frame taken at 1s intervals showing the device’s 
progress. 

In the non-flooded colon lumen tests (ex-vivo experimental setups 3 and 4), 

the device was unable to progress along the lumen. Although the screws 

would spin, the traction generated was not enough to overcome the 

resistance to motion imposed by the lumen. Active control of the arms was 

not possible with the prototype, which may have affected the device’s ability 

to move. This was caused by the torque required to actuate the arms 

breaking the adhesive bond used to join the gear and motor shaft. Similar to 

the phantom assessment, when a screw end became lodged against a 

haustration or fold in the lumen, the device is unable to progress further. The 

photographs of the lumens seen in Figure 7.23 show a high amount of 

haustrations, which protrude when the lumen is not insufflated. While active 

control of the device diameter was not available, this high degree of 

haustrations would likely pose a difficult challenge regardless. When the 

lumen was flooded, ex-vivo setup 5, the device was unable to progress any 

further than during the non-flooded experiments. The flooding did not open 

the lumen, nor did it minimise the obstructions caused by the haustrations. 

The three non-insufflated lumen experiments show that the device is not 

able to successfully operate in a non-inflated lumen. The inflation of the 

lumen is required to unblock the passageway and remove obstructions 

caused by haustrations. 
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Figure 7.23 Still frames taken from video of the prototype testing. Showing 
a) unsupported non-flooded lumen; b) supported non-flooded lumen; c) 
supported flooded lumen. 

Ex-vivo experimental setup 6 involved a fluid insufflated colon that provided 

a less challenging environment and closer to the hydro-colonoscopy 

application. With the haustrations inflated, the device was able to move to a 

small degree. In the straighter sections, the device was able to move along 

the colon; however, it would become stuck in the haustrations and unable to 

progress further. With external manipulation, it was able to progress to the 

first pseudo flexure. 

Figure 7.24a shows a photograph of the device alongside the prepared 

colon ready for insertion. While the colon looks comparatively large 

compared to the device; the haustrations fold in almost the entire radius of 

the lumen creating a very narrow environment to operate in. Figure 7.24b 

shows a still frame taken from video shot of the testing with the device 

deployed in the colon. Due to the colon being opaque in nature, the progress 

of the device cannot be easily seen throughout the recorded video footage, 

and so still frames are not shown. 
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Figure 7.24 Photographs showing testing of the four-screw device in a fluid 
insufflated ex-vivo porcine colon. Showing a) photograph of the device 
alongside insufflated colon before deployment, 30cm rule is shown for 
scale; b) image taken from video during testing with the device inside 
the colon. 

Figure 7.25 shows an annotated photograph of the insufflated lumen 

showing the extent of the haustrations. It can be seen that the space within 

the colon is very tortuous and difficult to navigate. The image also includes 

blue rectangles showing the approximate locations where the device 

became stuck and required external manual adjustments to progress along 

the lumen. At these locations, a vision system on the device would enable 

better control of the position and allow it to drive towards an opening. The 

locations are approximate based on physical examination of the lumen 

during the experiment; actual locations are unknown due to the opaque 

nature of the colon.  
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Figure 7.25 Image of an insufflated colon used during testing with red lines 
showing haustrations and blue rectangles showing approximate 
locations of the device where it became partially stuck. Image seen 
shows a cropped section of Figure 7.24a  

7.5 Discussion 

The aim of experimentally assessing the four-screw locomotion system as a 

scale prototype was to demonstrate the system’s ability to traverse a lumen 

in realistic conditions. To assess the four-screw system in terms of the 

principle methods of locomotion and compare to previously carried out 

assessments, the assessment was carried out in three discrete sections, as 

detailed in the aims section of this chapter. 

7.5.1 Thrust Generation In Fluid 

The device, when tested in a fluid based environment was able to produce 

up to 2N of thrust with the arms in the open position and the motors at full 

voltage; and 1.5N with the arms in the closed position. In Chapter 5 it was 

predicted that the complete system would be able to produce up to 1N of 

thrust in a fluid situation, the thrust from a single screw (up to 0.3N, Chapter 

5) would not multiply directly for a four-screw system due to increased 

losses in the fluid. From the results in this chapter, the four screws are able 

to produce greater than four times the thrust of a single screw. 

The increase in thrust compared to the predicted thrust could simply be due 

to the screws rotating at a higher angular velocity. As the motors do not have 

any feedback to them, the exact velocity of each motor is not known. While 

the specifications for the motors state a maximum no-load velocity 

(discussed in Chapter 4), the loading due to the bearing resistance and 

resistance to motion from the fluid are unknowns and so the actual motor 

velocity is not predictable. Using the theoretical model in Chapter 5, the 

angular velocity required from each screw would be over 1000 rad·s-1, which 

exceeds the motor’s output by a large factor. Thus, an increase in screw 

angular velocity is not the major contributing factor to the increased thrust. 
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A single screw, when rotated in fluid, imparts motion upon the fluid. This 

motion, is in line with the direction of motion of the screw, and so the fluid 

will rotate about the screw’s axis of rotation in the direction the screw 

rotates. It was observed that after the single screw (Chapter 5) had been 

running for some time, the fluid would swirl about the tank in the same 

direction as the screw rotated. A counter rotating system imparts two 

contradictory motions on the fluid, which in a simplistic theoretical sense 

negate each other’s effect; a more practical explanation is the flows mix in a 

turbulent way and yield no net direction on the overall fluid body. The 

prototype has two of these pairs. This causes a more chaotic or turbulent 

motion in which the fluid motion decays without any net motion, which may 

attribute to the increased thrust seen. A diagram illustrating these can be 

seen in Figure 7.26. 

 

Figure 7.26 Illustrations showing fluid flow (blue arrow) about rotating 
screws (orange circles). Showing a) single screw when rotated causes 
a net flow in the fluid as indicated by the blue arrows encircling the 
screw. b): 4 counter rotating screws (orange circles) positioned about a 
chassis (green square) do not result in a net direction of fluid flow. 

Turbulent flow consists of irregular fluctuations and is not arranged in 

smooth paths or layers such as laminar flow. While the flow close to the 

screws may follow a constant path, further away from the screws where 

these opposing flows meet will result in a turbulent interaction. Further 

modelling of the fluid flow would be necessary to gain a detailed 

understanding of this phenomena but is beyond the scope of this work. 

Observations of the fluid tank confirms the flow is not laminar during 

actuation of the four screws, there was a high degree of surface motion 

during actuation, which decayed within 10s of the screws halting. In a 

complex environment such as the colon where the walls are not regular or 

consistent, the flow may be turbulent about the device to a greater extent 

due to the interactions between the flow and the colonic walls. As previously 

discussed in Chapter 5, the thrust is a product of imparting motion upon the 
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fluid from the screws. If the fluid moves in unison with the screws then little 

motion will be imparted, and so little thrust produced, a turbulent flow 

however will allow greater thrust to be generated by the screws. 

Similar to the results seen in Chapter 5, the system produces high thrust 

with the arms in an open state. This increase in thrust between the arm 

positions at higher motor velocities may be also a product of turbulent flow. 

The chassis of the device will block the propagation of fluid flow to a greater 

extent while the screws are closer. With the arms in the open position, the 

flows about the screws will have a larger area of interaction. It is speculated 

that this may explain the reason behind the trends seen. 

7.5.2 Moving Through A Lumen 

When the device was tested in terms of pure-contact locomotion in the 

hydrogel phantom lumen it was able to move providing the pathway was 

clear. In the unsupported lumen when the device stretched the lumen 

creating a localised recess, it became stuck and unable to progress further. 

Similarly in the hydrogel lumen when laid on the bench and held shut at the 

far end, the device was unable to push along the lumen once the diameter 

had restricted sufficiently enough not to fit the device without stretching the 

lumen. When the lumen was on the bench and held open, it was able to 

progress freely in both the forward and backward directions. 

These traits were also observed in the ex-vivo experiments. When the ex-

vivo colon was held open in an unsupported arrangement, similar to the 

hydrogel phantom lumen, the device was unable to progress due to the tip 

becoming stuck on a recess; however, for the ex-vivo lumen this was a 

natural haustration and not due to stretching the material. When the ex-vivo 

lumen was laid on a surface, the device was equally unable to progress. 

These cases are for a non-insufflated lumen, conditions that the device is 

unlikely to meet when deployed for hydro-colonoscopy. This highlights that 

the locomotion system is reliant upon the insufflation of the colon, something 

which conventional colonoscopes are reliant upon as well. 

When the four-screw locomotion system was deployed in an insufflated 

lumen, in both hydrogel and tissue models, it was able to traverse providing 

the passageway was clear. In the transparent LDPE lumen, it was possible 

to  steer past obstructions. When the device was deployed in the ex-vivo 

lumen, as biological tissue is opaque, navigation of the device was 

impractical without externally assessing the location of the device. With the 



- 191 - 

inclusion of video feed from the device, navigation would be easier; the final 

procedure would not be carried out without live video feed to aid navigation. 

When in a fluid environment, the device is capable of producing thrust 

beyond the predicted minimum required. With the two discrete modes (arm 

locations open and closed) showing promise, the four-screw locomotion 

system has potential to traverse a colonic lumen. The major blocking issue 

over the current prototype traversing a colon is navigation; with no ability to 

see where the device is facing, steering is impractical. With the inclusion of 

visual feedback through a camera, traversing a colon is a strong possibility 

for the four-screw system. 

7.6 Summary of Experimental Assessment of a Scale 

Prototype in Phantom and Ex-vivo Lumina 

This chapter covered the experimental assessment of a four-screw device to 

build upon the testing carried out in previous chapters on the propulsion from 

a single screw in fluid (Chapter 5) and trust from a counter rotating pair in 

contact (Chapter 6). The assembled four-screw system was then tested in a 

fluid insufflated ex-vivo porcine colon to resemble the environment the 

device will be operated in. 

7.6.1 Assessment Of The Device In Fluid Conditions 

The assessment of the device in a pure fluid environment showed that the 

locomotion system is able to generate greater than predicted thrusts. The 

counter rotating screws were able to reduce the losses due to fluid motion 

when compared to a single screw. Experimentation on measuring the turning 

torques generated by driving a single pair show that the device is able to 

generate torque which should allow steering capabilities. 

7.6.2 Assessment Of The Device In Contact Conditions 

When assessed on a flat section of tissue the device was able to 

successfully traverse in both non-flooded and flooded conditions. The screw 

when in contact with the tissue was able to generate enough traction to 

propel the device along the sample length. The resistance from the fluid in 

the flooded environment did not visually hinder the progress of the device 

when relying solely upon tissue contact for locomotion. 

During deployment in non-flooded phantom lumen, the device was able to 

progress providing the passageway was unobstructed; the screws were able 

to gain sufficient traction against the hydrogel surface to progress. When 
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deployed in a non-flooded ex-vivo porcine colon the device became stuck 

against haustrations and was not able to traverse. 

In conclusion, the current device shows an ability to traverse using contact-

based locomotion providing the pathway is clear. Similarly, the colonoscope 

suffers difficulty progressing through a colon with obstructions as noted in 

the literature (Chapter 2). This is not a failing of the device but down to the 

very tortuous environment. 

7.6.3 Assessment Of The Device In Amphibious Conditions 

When deployed in the fluid insufflated lumen, both phantom and ex-vivo 

porcine colon, the device was able to traverse through use of amphibious 

locomotion. The phantom lumen posed the lesser of the two challenges as 

the passageway was free from haustrations and there were no navigational 

complications. During the less tortuous sections of the ex-vivo porcine colon, 

the device was able to traverse, however due to navigational challenges it 

was not able to pass haustrations without external manipulation. 

When operated in a fluid-filled non-collapsed lumen, the device was able to 

traverse at a greater rate than in a fluid-void non-collapsed lumen. It is 

predicted that this is due to the combined thrust from contact-based and 

fluid-based locomotion. The fluid medium plays a role in thrust production, 

which compliments the medical advantages from hydro-colonoscopy (as 

discussed in Chapter 2). 

7.6.4 Assessment Of The Four-Screw Locomotion System 

The system has been designed to reduce luminal wall contact throughout 

the procedure. As the system operates best in open sections of the colon 

and using a fluid based locomotion strategy, this aim can be met without 

degrading the propulsive system to avoid contact. When deployed the 

system will not use contact-based locomotion in isolation, the fluid 

surrounding the screws will play a role in thrust production. The experiments 

using insufflated lumen show the locomotion system is able to perform in 

hybrid conditions where thrust is generated through a mixture of contact and 

non-contact locomotion strategies. In conclusion, the four-screw system has 

demonstrated it meets the aims defined in Chapter 3.1 of producing an 

amphibious locomotion system. 
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Chapter 8  

Discussions 

This thesis has presented the development of a novel robot for colonic 

inspection during a hydro-colonoscopy procedure. Central to this is the 

development of an amphibious locomotion system for use in an intra-luminal 

environment where the lumen is a soft, wet and highly deformable biological 

tissue. 

The previous chapters have presented the development and experimental 

testing of subsystems and the full robotic system in appropriate 

environments. For each testing phase, a situation-specific test rig has been 

required to be designed and built. This chapter considers the implications of 

this work as a whole and the contributions it brings to the field of medical 

robotics. 

8.1 Feasibility of the Hydro-colonoscopy Robotic Concept 

Understanding the process of colonic inspection, and the strengths and 

weaknesses of both traditional colonoscopy and hydro-colonoscopy, is 

crucial to the development of the robotic system. The feasibility of carrying 

out robotic hydro-colonoscopy is important upon the development of any 

robotic colonoscopy device. Technical and clinical restraints will have an 

impact on the feasibility for deploying a robotic system for hydro-

colonoscopy. There are no current market available robotic hydro-

colonoscopy devices, and development of such is still in the early stages.  

For a robotic system or platform to operate within the colon and carry out a 

colonoscopy procedure, the device must be able to compensate for a wide 

range of environmental geometries and conditions. These include restricted 

or collapsed sections, tight flexures and colonic ailments requiring reduction 

of contact; for example, diverticula disease can pose a problem for a 

colonoscopist, as the passage through the colon can be very unclear. 

The literature search on current “next generation” colonoscopy devices in 

Chapter 2 covered many different approaches and methods of providing 

locomotion. A summary of the devices covered can be seen in Table 8.1. 
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Table 8.1 Summary of “next generation” colonoscopy devices 

Device Locomotion 

method 

Strengths Weaknesses 

PillCam, Given 

Imaging 

Passive, 

peristaltic. Does 

not require 

insufflation. 

Minimal to no 

trauma, can be 

easily swallowed 

Unguided and 

un-steerable. 

Desired areas of 

the colon can 

receive limited or 

no imagery. 

Magnetically 

guided 

colonoscope, 

Valdastri et al. 

(56) 

External robotic 

manipulator 

drives soft-

tethered 

colonoscope. 

Utilises gas 

insufflation. 

External robotic 

arm does not 

have power and 

size limitations of 

internal devices 

Requires large 

external 

manipulator 

Crawling device, 

Quirini et al. (53) 

Leg based 

crawling. Utilises 

gas insufflation 

Opens lumen as 

it progresses 

High risk of 

perforation from 

legs 

4 propeller 

device, Tortora et 

al. (54) 

Swimming, 

utilises fluid 

insufflation 

Tether-less, self-

contained and 

small 

Limited battery 

life, can’t pass 

collapsed 

sections 

2 module helical 

bodied device, 

Zhou et al. (75) 

Counter rotating 

helically grooved 

body sections, 

utilises gas 

insufflation 

Same diameter 

as existing 

colonoscopes 

Unable to 

actively steer 

Multi module, 

soft bodied 

device, Shikanai 

et al. (76) 

Counter rotating 

helically grooved 

body sections, 

utilises gas 

insufflation 

Able to expand to 

match colon 

diameter 

Long body 

cannot pass tight 

bends or flexures 
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Table 8.1 cont… 

Device Locomotion 

method 

Strengths Weaknesses 

Single screw, 

Kim and Kim (77) 

Single rotating 

helically grooved 

body section, 

utilises gas 

insufflation 

Simple drive 

mechanism 

Reduced 

propulsive 

output, unable to 

steer, has a 

tendency to twist 

lumen 

Bellow device, 

Phee et al. (80) 

Inchworm, 

utilises gas 

insufflation 

Uses pressure to 

adhere to 

surface, no 

gripping trauma 

Colon stretches 

with device step 

netting zero 

movement 

Passive 

inchworm, Kim 

and Kim (77) 

Barbed 

inchworm, 

utilises gas 

insufflation 

Passive gripping 

of mucosa 

through soft 

barbs. 

Colon stretches 

with device 

netting zero 

movement. 

Unable to 

reverse 

 

Robotically assisted colonoscopy has been attempted by several 

researchers though the development of robotic platforms, as detailed in 

Table 8.1. These include systems which are both externally actuated and 

self-actuated, with all of the device reviewed using a single mode of 

locomotion. The addition of a fluid body to robotic colonoscopy has been 

proposed and assessed by other researchers, notable Tortora et al. (54). 

Using the strengths of other systems as a basis for the development and 

understanding the weaknesses of other systems, the four-screw system 

developed through this thesis utilises both fluid-based and contact-based 

locomotion strategies. 

It has been shown that a fluid fills the entire colon, allowing for an 

amphibious device to traverse the entire length. This reiterates the research 

of others (7, 24-26) that a fluid filled colon is opened to a greater extent 

without distortion of length compared to a gas-filled colon. 
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Through the work of other researchers and the experimentation carried out 

through Chapter 7 it can be seen that robotic hydro-colonoscopy is feasible, 

with several researchers developing such systems. A variety of locomotion 

systems have been used to varying degrees of success  with work within this 

thesis expending upon these in producing an amphibious locomotion 

system. 

8.2 Contributions Throughout the Research 

The research undertaken throughout this thesis has led to several 

contributions to the wider research community. These are discussed through 

this chapter as follows: 

 Variable geometry locomotion system 

 Amphibious locomotion using Archimedes’ screws 

 Development of a theoretical model and experimental analysis of 

screws in fluid-based locomotion 

 Development of a theoretical model and experimental analysis of 

screws in contact-based locomotion against colonic tissue 

 Tissue trauma from screw interaction 

 Development of testing environments for experimental assessment of 

the amphibious locomotion system 

8.2.1 Variable Geometry Locomotion System 

The developed locomotion system features the ability to adapt the device’s 

diameter by positioning the screws around the chassis. This allows a small 

minimum diameter for passing the more constricted sections of the colon. In 

using an overlapping arm technique, the system is able to achieve a large 

range of diameters (40 to 60mm) as seen in Figure 8.1 and discussed in 

Chapters 3 and 4. Across the field of intra-luminal locomotion and related 

areas of robotic locomotion, there is no known device that is able of 

providing a similar range of diameter adaption. The only device which is 

known to offer a variable geometry is that developed by Shikanai et al. (76), 

which has the ability to inflate independent screw sections to change the 

diameter (Figure 8.2). The authors however do not note the expansion 

range, other than the diameter of the system is 30mm. 

When a shaped balloon is inflated, such as on the device developed by 

Shikanai et al. (76), the features tend to become less distinct with increased 

inflation. The thread depth of a screw is important for generation of the 

thrust, both in contact and in fluid. Inflating a screw poses many problems in 
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designing the screw; the thread depth needs to be preserved throughout the 

inflation. Threads with a thicker cross section to the screw body membrane 

will require a greater force to stretch and thus inflate less; this will result in 

the thread depth effectively being reduced. The inflation of such screws will 

also require on-board pressure generation or a larger tether to deliver the 

pressure required. The approach utilised by the device in this thesis does 

not have these side effects while still exploiting the advantages of a variable 

geometry. 

 

Figure 8.1 Diagram showing the variable geometry range of the developed 
four-screw device 

 

Figure 8.2 Diagram showing the variable geometry of the device developed 
by Shikanai et al. (76)  

Using the variable geometry of the developed system, where the colon 

diameter permits, the device may move the arms to apply a bias towards a 

fluid or contact based locomotion strategy. Contact pressure between the 

screws and colon can alter the thrust capabilities and so for improved 

contact-based locomotion the contact pressure should be controlled. It can 

therefore be seen that through using variable geometry both the fluid and 

contact based locomotion modes can be optimised by adapting the position 

of the screws. 

This key novelty does not feature on any known intra-luminal device and 

poses great potential in not only increasing thrust output but increasing the 

viability and success of robotics in intra-luminal applications.  

a b 

a b 
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8.2.2 Amphibious Locomotion using Archimedes’ Screws 

The use of a fully amphibious locomotion system and single drivetrain 

simplifies the mechanical complexity of the developed system. This 

decreases the overall size of the system allowing it to be readily produced at 

a functional scale. 

To fully assess the amphibious performance of a system, it is important to 

understand the conditions in which it will operate. The modes of contact that 

an amphibious screw based systems will experience can be classified into 

the following states: 

1. Hard contact: non-deformable or displaceable surface 

2. Soft contact – deformable surface: e.g. tissue 

3. Soft contact – displaceable surface: e.g. sand 

4. No contact: pure fluid based locomotion 

The condition states that the developed device will encounter are 2 and 4 as 

outlined above. 

On deformable surfaces which do not displace (contact condition 2), for 

example biological tissue, screws are able to traverse as shown in detail in 

Chapters 6 and 7. The developed four-screw device was able to move 

across tissue samples in both dry and flooded states (Figure 8.3). When 

deployed in a lumen, the device was able to traverse a section of phantom 

tissue however, it would become stuck on the haustrations in an ex-vivo 

porcine colon sample (Figure 8.4). 

 

Figure 8.3 Four-screw device in contact with ex-vivo porcine colon in dry (a) 
and flooded (b) conditions  

 

Figure 8.4 Experimental testing of the four-screw device in lumens. 
Photographed in a phantom lumen (left) and ex-vivo porcine colon 
(right). The phantom lumen shown is opaque in nature, which obscures 
the view however, the pink screws are visible through the lumen.  

a b 

a b 
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In the research by Shikanai et al. (76) the developed multi-module device 

was deployed in an ex-vivo and in-vitro porcine colon to test the locomotion 

system (Figure 8.5). As previously mentioned it was unable to pass tight 

flexures however, it was able to traverse straight sections of the colon. Both 

cases feature a non-fluid filled colon resembling contact condition 2. 

 

Figure 8.5 Ex-vivo (left) and in-vitro (right) testing of the device developed 
by Shikanai et al. (76)  

Where no contact is available or desired, the developed four-screw system 

can generate thrust using the screws in a fluid filled environment (contact 

condition 4). Chapters 5 and 7 experimentally assessed and discussed the 

developed system’s ability to traverse a fluid filled lumen. Figure 8.6 shows 

the developed four-screw device swimming along a phantom lumen, which 

formed part of the prototype testing carried out in Chapter 7. 

 

Figure 8.6 The developed four-screw device swimming in a fluid filled 
phantom lumen 

As shown, screws can operate in all four of these situations (to limited 

success in some cases), whereas a wheeled or tracked vehicle cannot. A 

wheeled vehicle is susceptible to becoming stuck in displaceable terrain, 

example contact condition 3. Wheeled and tracked vehicles are unable to 

operate in open fluid (contact condition 4). Propeller driven vehicles are only 

able to operate in open fluid. 

Testing of screws in this thesis was carried out on a soft, non-displaceable 

surface (colonic tissue) and in open fluid, which compliments the research 

by Shikanai et al. (76) and Nagaoka et al. (46) on the ability of a screw to 

generate thrust in a wide range of environmental conditions. 

a b 
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The arrangement of four screws in counter rotating pairs allows the system 

to be non-dependant on orientation to provide contact or surface based 

locomotion (Figure 8.7). With no preference in orientation, complications in 

control are minimised. The clinician does not need to compensate for the 

device rolling longitudinally, such as providing different inputs. The control 

system does not need to adjust screw rotation either; rolling onto a side will 

not result in the device moving or turning erratically. 

 

Figure 8.7 Non-preferential orientation of the developed four-screw device. 
As the device is rotated along its length (orange arrow), two counter 
rotating screws remain in contact with the surface. 

Non-preferential orientation is a common theme within intra-luminal robotic 

devices. Many adopt a cylinder with rounded ends as a general shape, 

which allows ease of transition along the colon while not requiring a 

designated top (Figure 8.8). The system developed in this thesis includes a 

major advantage over those covered, it does not depend on a single medium 

for locomotion. 

The reviewed locomotion methods that operate within a fluid filled colon rely 

solely upon the fluid medium. Differences in anatomy, or even natural 

processes such as flatulence may create air pockets in some patients. It is 

these air pockets, or fluid-void sections, which will prevent progression of the 

swimming based devices. The amphibious locomotion of the system 

designed within this is thesis is a novel design; it is able to overcome 

obstacles that hinder the progress of the other systems reviewed. 

The reviewed contact based devices do not make use of the increased 

insufflation of using fluid over gas to open the colon, which may hinder 

progress due to the flexures remaining partially collapsed. The force 

required to traverse a collapsed section has been noted by several 

researchers as a major hurdle for medical devices and prevents further 

progress along the lumen. 

Chassis 

Screws 

Surface 
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Figure 8.8 Colonoscopy robots without orientation bias. Devices shown a) 
PillCam, Given Imaging; b) Bellow inchworm device, Phee et al. (80); c) 
Concentric counter rotating section device, Shikanai et al. (76); d) 
Propeller based active capsule, Tortora et al. (54) 

Through experimental testing of the developed system, it has been seen that 

the system performs best in fluid based situations. While it is able to traverse 

using contact-based locomotion, this is a slow rate of progress and will pose 

greater navigational challenges than swimming. Therefore, to allow for lower 

procedure times and reduced colon wall contact the swimming mode should 

be used where possible, with the contact mode being reserved for collapsed 

sections or those with fluid voids. 

8.2.3 Development of a Theoretical Model and Experimental 

Analysis of Screws in Fluid-Based Locomotion 

It was discussed in Chapter 5 that the thrust generated from a screw when 

rotated is explained by boundary layer theory. Extruder pumps and other 

industrial uses of screws operate the screw within an enclosed volume with 

often viscous fluids; their methods of moving the media along the shaft are 

substantially different to the application on the four-screw device. The 

research undertaken for this thesis explores new uses of screws that have 

not been fully realised. 

The theoretical model built for a single screw in an open fluid (Chapter 5) 

predicted twice the thrust of the physical set up. The model assumes a linear 

gradient of fluid velocity from the base of the channel to the top, and does 

not consider the sides for simplicity; which will account for some of the 

differences in thrust produced. The model also assumes the surrounding 

fluid is completely stationary throughout operation, giving the largest change 

in fluid velocity. As observed, the screw imparts motion on the fluid not only 

a 

b 

c 

d 
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in the axial direction but also in the direction of rotation. This will reduce the 

velocity change in the fluid and consequently reduce the thrust. The exit 

velocity is relative to the environment, which may be a cause in the 

difference between theoretical and experimental thrusts. 

The thrust from a multi-screw system was stipulated to be up to N times that 

of a single screw system (where N is the number of screws), such that a 

four-screw system would produce up to four times the thrust of a single 

screw. However, in Chapter 7 this was seen to not be the case. The four-

screw device was able to produce approximately 8 times the thrust of a 

single screw. With this knowledge, the reasons why the single-screw model 

and single-screw experimental results do not match can be re-assessed. 

With a four-screw system comprising of two counter-rotating pairs, the net 

rotational motion imparted on the fluid should be zero. The conflicting 

rotational flows of fluid should destructively interfere causing a turbulent but 

relatively stationary body of fluid. Noting this, it would appear that the reason 

why the single screw experimental results were less than expected is 

because the step change between the fluid body and screw was not as 

expected: the movement in the body of fluid was decreasing the efficiency of 

the screw. 

Screw propulsion has been shown as not only possible but also practical 

through the application of the scale four-screw device. Experimentally 

assessing the device in a fluid filled lumen showed it was capable of 

traversing using fluid-based thrust in combination with contact-based thrust.  

8.2.4 Development of a Theoretical Model and Experimental 

Analysis of Screws in Contact-Based Locomotion 

In the field of intra-luminal robotics there is a trade-off between the ability to 

generate thrust and reduction in trauma. The interaction between screws 

and a soft non-displaceable surface is not widely understood or researched. 

Research on intra-luminal devices, which utilise screw-based locomotion, 

have not included analysis on this interaction, with simplistic models 

assuming perfect traction being used. The research undertaken for this 

thesis improves upon this understanding and allows for greater advances to 

be made on screw-based locomotion systems in intra-luminal applications.  

The pitch of the screws was selected as a compromise between fluid and 

contact based locomotion. In fluid testing 40mm and 20mm pitch screws 

were used, however in contact conditions the 40mm pitch screws were 

unable to rotate and did not generate measurable thrust. The 20mm pitch 



- 203 - 

screws were selected as they had a blade angle in the optimal range of 40° 

and 45° (88), and formed an integer number of rotations about the shaft. 

Smaller pitches are capable of generating greater torque, however from the 

calculations in Chapter 5 it can be seen that they will produce less thrust in 

fluid situations. Further optimisation into the blade angle/pitch may be 

carried out as future work to allow the system the largest thrust generation 

between contact and fluid states. 

The interaction between a rotating screw and tissue can be divided into two 

components: sliding and rotating (Figure 8.9). These two contact states 

while easier to model in separation are dependent on each other and thus 

need to be analysed simultaneously. These require validation of the fiction 

coefficients in the parallel and normal direction to the thread (see chapter 

6.1.1). As experimental testing helps validate a theoretical model, full testing 

of the system was carried out to ascertain the key factors. The data gathered 

from this allowed exploration into the contact dynamics between tissue and 

screws. Further work on a mathematical model was not undertaken, as the 

aim of this thesis is to produce a locomotion system, not model the contact 

dynamics of screws on tissue, although the findings are an interesting 

outcome. 

 

Figure 8.9 Screw-tissue interaction actions. Orange arrows show movement 
of screw (green) against tissue.  

Tissue has a non-linear response to loading and so assumptions cannot be 

made on a constant response. Understanding of the interactions between 

screws and tissue, and tissue response changes with time, leads to the 

understanding that repetitive actions applied to a section of tissue will cause 

a different response and increase in trauma. 

As seen in the experimental data, when a torque is applied to a screw that is 

in contact with tissue, even without any rotation there is thrust generated by 

the system. A screw, when in contact with tissue can act in one of three 

states: 

Sliding action Rotating action 
Interaction between a screw 

and tissue is formed by two 

discreet actions; both are 

required for normal 

operation. 
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 Slip 

 Stick 

 stick-slip 

The three states have been shown through experimental testing to be 

capable of thrust production. 

The experimental data shows that the contact dynamics do not have a 

notable influence on thrust generation within the setup parameters used 

during testing. They are an output of the system and a result of different 

tissue samples behaving in different ways. The inputs to the system are 

normal loading and demand velocity. The demand velocity does not have a 

noticeable effect on the thrust, or discrete groups would be visible in terms of 

thrust produced. Normal loading on the other hand does appear to have a 

significant effect on the thrust production. 

While motor demand, normal loading and tissue properties affect the 

interaction case and thrust, the interaction case can be useful in optimising 

thrust output. Measurements of thrust on the device when deployed may be 

difficult to calculate, however the screw-tissue interaction states are easier to 

infer. 

There is no evidence found in the literature of exploration these contact 

dynamics, with other researchers who have used screws against tissue 

using simpler models for thrust generation. Shikanai et al. (76) calculated the 

horizontal component of thrust from a screw rotation to derive the thrust 

generated by a screw in contact and does not consider the contact dynamics 

between the screws and tissue. 

While the device by Shikanai et al. (76) does have the ability to change the 

normal loading on the luminal walls, the authors do not consider the effects 

this has on the thrust produced by the system. The results discussed in 

Chapter 6 show that increasing the normal loading can improve the ability to 

produce thrust from screws to an extent, greater loading past this point 

reduces the thrust capabilities. 

The research undertaken throughout this thesis has explored the contact 

dynamics between a rotating screw and tissue with the aim to better 

understand how thrust is generated and which input factors cause desirable 

changes on thrust. While changing the pitch of a screw has an obvious 

effect, normal loading of the system does not have a proportional correlation 

to thrust generation. Future work exploring this characteristic in more detail 
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will allow the variable geometry of the system to be exploited to increase the 

thrust production of a screw based locomotion system. 

8.2.5 Tissue Trauma from Screw Interaction 

During experimental testing of the device, the samples were visually 

assessed for signs of trauma compared to control samples. The 

experimentation with rigid screws revealed sections of obvious wear to the 

tissue, while the compliant screws did not. The trauma caused by the rigid 

screws was a result of the screw blades wearing against the tissue. From 

this observation, the slip case of screw-tissue interaction is estimated to be 

the largest source of tissue damage. Screw-tissue interaction should be 

actively managed as part of any control system to limit the screws from 

slipping. 

Trauma from screw-tissue interaction will occur from repetitive actions. 

These will occur the greatest when the device is not moving relative to the 

tissue and the screws are rotating, such as the slip case. Trauma is likely to 

also occur through compression of the tissue by the expanding mechanism, 

the screws have a larger contact area compared to a wheel that spreads out 

the loading applied to the tissue when expanding; this will reduce the 

possible trauma. However, a limit on the maximum expansion force is 

needed. 

Subjective analysis on tissue may be carried out using histological 

techniques to further quantify tissue damage. Histology focuses on looking 

at damage to cell structure as an indication of trauma. This approach may 

provide a more accurate indication of the cellular damage caused through 

screw-tissue interaction, however won’t provide data on inflammation based 

responses which screw-tissue interaction may cause in living tissue. Further 

testing on screw-interaction coupled with histological analysis on the 

samples will provide a greater understanding of the damage sustained. The 

mechanisms for damage may be linked the fluid being removed from local 

sections of tissue though the movement of screw threads against the tissue 

surface. Histology will reveal if micro-tears are caused in tissue as a result of 

the screw-tissue interaction, these micro-tears will cause tenderness and 

inflammation to the tissue post-procedure, increasing the recovery times. 
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8.2.6 Development Of Testing Environments for Experimental 

Assessment of the Amphibious Locomotion System 

Due to the new and relatively unexplored territory of a screw rotating against 

tissue there were no available rigs appropriate for conducting this research. 

This required the development of custom testing rigs and control software. 

The use of phantom tissue was explored throughout the research to provide 

a non-bio-hazardous and repeatable medium for testing upon. Tissue, being 

a biological material, is naturally non-standard and each sample will vary. 

Using phantom tissue would reduce the spread in results for repeats 

allowing trends to be explored. However, the use of screws on tissue is 

dependent on several mechanical aspects of the tissue-screw interface, all 

of which cannot be modelled by phantom tissue. 

While there are simulators for colonoscopy on the market, such as those 

offered by Buyamag (Figure 8.10), these are not often very realistic in terms 

of mechanical properties: they favour realistic geometry over material 

properties. The simulators include PVC based lumens with varying internal 

structures, which resemble haustrations, but unfortunately have different 

mechanical properties and surface properties to biological material. These 

simulators while useful for training the use of a colonoscope, do not model 

tissue accurately enough to acquire data on the performance of a system. 

The experimental testing of the device is dependent on the surface 

interaction and the mechanical properties of the tissue for thrust generation 

and trauma limitation; for these main reasons biological tissue was used 

over these simulators. 

Tissue trauma is difficult to quantify. While there are underlying indicators for 

trauma, such as pain and inflammation, it can be very subjective. These 

identifiers are unavailable in phantom tissue and ex-vivo tissue; limiting the 

quantification of trauma to mechanical damage. For this damage to be 

observed, the medium used must wear in a similar fashion and rate to 

mucosa and colonic tissue in general. While ex-vivo tissue will not have the 

same inflammatory response, it will wear to the same degree as live tissue, 

allowing the identification of abrasive and other mechanical wear damage. 
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Figure 8.10 Market available colonoscopy trainer, abdomen unit shown left 
and views inside phantom colon shown right featuring haustrations. 
Anatomical model available from Buyamag Inc.  

Two custom designed and built testing rigs were used through the 

experimental testing of the fluid and contact states in isolation. The contact 

specific rig, Traction and Contact Testing rig (Chapter 6), was developed 

specifically to allow the experimental testing of screws against biological 

tissue. Testing of the functional prototype was carried out using biological 

tissue as this resembles the final environment in terms of contact dynamics 

much greater than colonoscopy training aids. 

8.3 Development of the Four-Screw Prototype System 

The system as developed through this thesis has been designed for 

prototype. This uses high-cost production techniques such as “3D” printing 

which would not be used in a system that has been designed for 

manufacture. Where possible off-the-shelf components have been used, 

however the requirement for one-off bespoke components cannot be 

removed due to the nature of the application. 

The current scaled design has a number of pragmatic design choices that 

could be optimised in future prototypes. The design choices were made in 

order to allow a proof of concept system to be produced and tested. 

8.3.1 Prototype Scale 

The system was produced at a scale of 2:1 due to the availability of 

components, giving it a diameter of 40 to 60mm. A traditional colonoscope 

has a diameter of 13-15mm, which allows it to stretch the colon to a lesser 
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extent. A robotic approach would need to have a similar diameter such that it 

was able to compete with the traditional colonoscope. At a scale of 1:1, the 

device would have a diameter of 20-30mm. The minimum outer diameter of 

20mm includes the compliant screw blades, which when compressed will 

reduce the diameter, closing the gap between the diameter of a colonoscope 

and the device. 

The actuators in a system are the dominating factor on the overall size of the 

vehicle or device (Chapter 3). For a miniature robot, the actuators make up a 

large majority of the device volume, while allowing for transmission of power 

plays a large role in the arrangement of the locomotion effectors and the 

actuators. At small scales, using direct drives simplifies the design by 

removing the need for bulky and efficiency reducing transmission systems. 

Motors of less than 6mm diameter are not widely available. A decision was 

made to use available components for production of a prototype rather than 

research into fabrication of small scale components such as motors. 

Through further work, it is practically and technically feasible to produce the 

design at a scale of 1:1. 

8.3.2 Fabrication of the Prototype 

Some components required could not be purchased in a pre-assembled 

state and were required to be fabricated. The use of “3D printing” allowed 

greater flexibility in the design of the fabricated components. Large scale 

production methods such as injection moulding can produce parts with a 

high degree of accuracy that rival the latest 3D printing technology in a vast 

range of materials. 3D printing however has the advantage of being able to 

rapidly adapt to new designs, and allows for quick successive iterations of a 

design to be produced and tested, without design and production of moulds 

and dies. 

When selecting a fabrication method, the materials used also played a role. 

Materials must be non-water soluble and biocompatible. For any system that 

is to be deployed in a water-filled or water-based environment, the materials 

must be able to survive exposure. While the plastics used within ALM 

machines are not water soluble, they are often porous due to the layering 

process. The porous material will allow eventual fluid ingress resulting in 

possible short circuiting of electronic components, but will certainly be a 

source of contamination. The environment the device operates in is a 

biohazard by nature and so it is preferable that the inner components stay 

free from contamination, from this stand point non-porous materials are 

preferable. 
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8.3.3 Control Considerations 

The current system does not have feedback from the screw or arm 

expansion motors. Without feedback, the current method of control is 

through an open-loop system: these require greater skill to operate, with an 

increased risk of trauma and the device becoming stuck. A closed-loop 

control system requires motor feedback, which could be achieved through 

addition of motor velocity sensors and arm position sensors. 

Motor velocity sensors could be added through market available encoders, 

or through embedding magnets and Hall Effect sensors into the screws. In 

measuring the current draw from the motor, along with the feedback from the 

Hall Effect sensor, basic statistics from the screws could be ascertained. 

Using ALM techniques, load sensing could be built into the arms of the 

device allowing the loading on each arm to be calculated. Research carried 

out by Pang et al. (104) on flexible load cells which are able of measuring a 

variety of loading conditions (pressure, sheer, torque) may be utilised in the 

construction of the device components. The components could be produced 

with veins or channels for insertion of soft load cells with the build being 

resumed after their application; producing components with embedded load 

sensing capabilities. This would allow the control system to function in 

several states. It is envisioned that the following three states would be 

employed by a control system. 

To produce a device for initial testing feedback was overlooked for feasibility 

of construction and manufacture. These trade-offs meant that a closed-loop 

control system could not be used on the current generation although this 

does not man future generations will be without feedback allowing closed-

loop control. 
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Chapter 9  

Summary, Conclusions and Future Work 

The aim of this thesis was to produce an amphibious locomotion system 

appropriate for traversing the human colon. To achieve this aim, a number of 

research objectives were set. 

 Design a locomotion system that: 

o Is able to generate propulsive force in fluid and air filled 

sections or combinations of such 

o Minimises trauma to colonic tissue 

o Can accommodate the varying geometry of the colon 

 Evaluate the locomotion system in: 

o Fluid locomotion state (fluid filled colon sections) 

o Contact locomotion state (air filled colon sections) 

 Construct and evaluate a scale prototype of the full system using ex-

vivo porcine colon 

 

Figure 9.1 Computer model of the four-screw device, a) closed state in a fluid 
filled lumen; b) open state in a fluid-void colon  

9.1 Locomotion System Design 

The locomotion system developed in this work features four screws 

arranged equally spaced about a central chassis in two counter rotating 

pairs (Figure 9.1), as detailed in Chapters 3 and 4. 

Through experimentation carried out in Chapter 6, it was shown that the 

normal loading between the screw and tissue plays a role in the generation 

of propulsive thrust. There is a critical contact loading force at which the 

peak thrust is produced with diminishing thrust for loading conditions either 

side of this. The variable geometry system allows for the normal loading of 

the screws against the tissue to be adjusted to operate within this critical 

loading condition. 

a b 



- 211 - 

It is estimated that trauma is most likely to occur when the screw threads slip 

longitudinally against the mucosa (Chapter 6). In controlling the normal 

loading applied to the screws and the screw angular velocity, the trauma 

caused by the threads slipping longitudinally can be actively limited. The use 

of compliant materials for the screw threads provides a passive trauma 

limiting system, with the screw blades buckling to minimise potential tissue 

damage. While trauma may still occur from excessive slippage such as an 

uncontrolled movement of the device, the combination of passive and active 

trauma minimising systems gives the designed locomotion system a 

possible means to reduce trauma when compared to traditional colonoscopy 

methods. 

In using a common actuation effector for both fluid-based and contact-based 

locomotion, the system can operate in hybrid situations without mechanically 

switching between modes. This allows for increased dexterity and control in 

the high deformable and variable environment which is the colonic lumen. 

9.2 Experimental Assessment of the Locomotion System 

Custom testing apparatus was designed to assess the locomotion system in 

discrete modes of operation. The use of such apparatus allowed an 

incremental design process to be adopted allowing results from testing to 

feed directly into the development of each iteration of the locomotion system. 

In this thesis, the mechanics for thrust generation from a rotating screw in 

fluid has been discussed with the development of a theoretical model 

(Chapter 5). This model was complimented through experimental testing of a 

screw and analysed for its relevancy, Chapter 5, and shown to produce 

meaningful thrust. 

This thesis has covered research into the contact dynamics between rotating 

screws and biological tissue (Chapter 6), classifying the contact into three 

conditions: stick, slip and stick-slip. Thrust generated by a screw in contact 

with tissue is not a function of angular velocity as initially assumed, but a 

function of the normal loading (contact pressure). The screw blade material 

compliance has a weak proportional correlation against thrust, with an 

increase in Shore value resulting in an increased thrust. Future work will 

involve fine-tuning of the optimal normal loading for thrust generation and 

material compliance for maximum thrust and minimum trauma. 
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9.3 Experimental Assessment of a Functional Scale 

Prototype 

A functional scale four-screw prototype was built and experimentally tested 

in both phantom lumen and ex-vivo porcine colon environments. The four-

screw device demonstrated an ability to traverse through a fluid filled 

phantom lumen when the passageway was clear of blockages; the device 

was however unable to traverse a lumen where it was required to stretch or 

open the lumen. On straight, blockage-free sections of the lumen (phantom 

or biological), the device was able to generate sufficient thrust to traverse in 

an amphibious state. 

When experimentally assessed in a collapsed ex-vivo porcine colon the four-

screw prototype system was unable to neither open the lumen nor traverse 

along the length. The haustrations caused a significant obstruction, which 

prevented progress. In a fluid-insufflated ex-vivo porcine colon the device 

was able to traverse providing the lumen was unblocked. As the current 

prototype does not include a vision system and it is not possible to see 

through colonic tissue, navigation of the device was extremely challenging. 

Should the navigation issues be overlooked the device demonstrated an 

ability to traverse using amphibious locomotion in a fluid-insufflated lumen. 

Future work will see the inclusion of vision systems for navigation and 

inspection. 

Experimental testing of the system in an amphibious state (Chapter 7) 

demonstrated the designed locomotion system’s ability to produce 

propulsive thrust in an environment resembling the final application. 

Although testing in a collapsed lumen resulted in unsuccessful attempts to 

traverse in both fluid-filled and fluid-void lumen, reconstructions of fluid-filled 

colons from clinical trials carried out by the CoDIR team have shown that the 

colon does not contain collapsed sections when fluid-insufflated. This 

reduces the reliance on the ability to traverse a collapsed lumen. While the 

trials show complete distension, this cannot always be assumed and such 

improvements to the amphibious locomotion system will be carried out as 

part of future work. 

9.4 Contributions of the Research 

The researched carried out for this thesis has seen the development of a 

novel amphibious locomotion system, utilising Archimedes’ screws and a 

variable geometry chassis. 
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The key contributions towards research in medical robotics and the wider 

field of exploratory robotic devices are as follows: 

 Variable geometry locomotion system (Chapters 3 and 4) 

 Amphibious locomotion using Archimedes’ screws (Chapters 5-7) 

 Development of a theoretical model and experimental analysis of 

screws in fluid-based locomotion (Chapter 5) 

 Development of a theoretical model and experimental analysis of 

screws in contact-based locomotion against colonic tissue (Chapter 6) 

 Tissue trauma from screw interaction (Chapter 6) 

 Development of testing environments for experimental assessment of 

the amphibious locomotion system (Chapters 5-7) 

9.5 Future work 

Through experimental assessments carried out as part of this thesis a 

number of areas have been identified for further work, this section covers 

these in greater detail. 

The selection of locomotion strategy bias will likely be a function of a higher-

level control system, with possible selection from the clinician. Clinicians with 

a great deal of experience in performing similar procedures should be used 

to enhance the system, allowing such experience to aid the traversing of the 

colon. While the control system can make choices based on environmental 

data and pre-programmed decision-matrices, this should not prevent the 

clinician making overriding choices on the locomotion bias. 

 Miniaturisation 

The current scale prototype was designed based upon commercially 

available components. Further development on the design and inclusion of 

newer technology will allow the overall size of the device to be reduced. 

 Screw Control 

Each of the screws operate in contact with tissue, in fluid or a combination of 

both. The operational environment of one screw might not match that of the 

other screws on the device; and so the control of the screws must be 

independent for each screw. The use of velocity sensors and current 

sensing from the motors will allow the control system to determine 

programmatically if a screw is acting against tissue, in fluid or spinning freely 

in air, allowing the development of a more robust control system. 
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Further research into the contact dynamics between screws and tissue, and 

the actions that cause trauma will allow a control system to actively minimise 

trauma. 

 Arm Control 

The results from Chapter 6 show that contact force applied between the 

screws and the tissue affects the thrust output. The variable geometry of the 

system allows the contact force applied by the device to the colon to be 

controlled. This can be used advantageously to increase the thrust 

generated by the locomotion system. 

As detailed in Chapter 3, the arm expansion is controlled via a single internal 

motor and gearbox allowing all arms to move synchronously. By exploiting 

new capabilities of rapid prototyping techniques, load-sensing capabilities 

can be built into the arms allowing the forces applied to be measured in situ. 

 Device Control 

The control of the system will need to be simple in terms of interaction 

between the piloting clinician and the device. The human machine interface 

(HMI) will be comprised of two main elements, a visual display unit (VDU) 

and a human interface device (HID). The VDU will allow viewing of the 

camera feed and alerts from the control system such as peak force and 

screw slip state. The HID will allow the piloting clinician to issue commands 

to the device for navigation and operation. 

A PID control system could be used to calculate a device thrust vector from 

the current device position as relayed from an IMU and the desired position 

as provided by the clinician through the HID. From this thrust vector, the 

relative thrust from each of the screws can be calculated and relayed to the 

motor controllers. Through differentially driving the motors, translation and 

rotation of the device could be achieved. Through using the IMU data, the 

camera feed on screen and motor signals could be rotated so commands 

are relative to the view; for example up on the VDU and HID always 

translates to the device top in real world co-ordinates. 

The use of semi-autonomous systems is likely to become commonplace in 

the next 10 years. With increasing public trust in autonomous systems, there 

may be greater scope for robotic procedures. There will however be a strong 

onus on who is responsible in cases of failure and mal-treatment; will the 

engineer be held responsible for the machine they created?  
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