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Summary. 
Atherosclerosis, complex chronic inflammatory disease, has a heterogonous 

aetiology. Endothelium is critically involved in the pathogenesis of atherosclerosis by 

producing proinflammatory cytokines, including interleukin-1 beta (IL-1β). However, 

the mechanism by which IL-1β is released is unknown. Neutrophil elastase (NE; a 

potent serine protease) has been shown to cleave proIL-1β in vitro. Therefore, I 

hypothesised that NE induces IL-1β secretion from endothelial cells (ECs).  

 

I found that NE cleaves proIL-1β in ECs and causes significant secretion of mature 

IL-1β into supernatant. The release is via extracellular vesicles (EVs), associated 

with a transient increase in intracellular Ca2+. The released IL-1β is significantly 

attenuated by inhibition of NE, but not caspase-1. Intracellularly, IL-1β is detected 

within LAMP-1 positive organelles only after NE treatment. Two distinct populations 

of vesicles, containing IL-1β are found: at early time points, intracellular vesicles 

(100-200µm), associated with detection of MV shedding enriched of IL-1β; however, 

at later time points, IL-1β was detected inside ECs in (>200µm) multivesicular bodies 

(MVBs) containing exosomes.  

 

In a second study, in experimental atherosclerosis, I attempted to manipulate 

inflammation using omega-3 fatty acids (n3FAs). I hypothesised that 

docosahexaenoic acid (DHA), the main n3FAs in fish oil, would inhibit inflammation 

by an IL-1β driven mechanism. I found that DHA significantly decreased high blood 

pressure and left ventricular mass induced by high fat diet in ApoE-/- mice. 

Interestingly, this is associated with a reduction in distal vessel atheroma and plasma 

proinflammatory markers. Locally, DHA also significantly attenuates eNOS and 

endothelial IL-1β expressions. 

 

This study reveals a hitherto unexplained mechanistic link between NE expression in 

atherosclerotic plaques and concomitant bioactive IL-1β secretion from ECs, 

highlighting the possibility of targeting NE to control IL-1β-induced atherosclerosis. It 

also sheds a light, for the first time, on how DHA can act as an anti-atherogenic 

agent through its effects upon IL-1 system. 
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LVFS Left ventricular fractioning shortening. 

LVH Left ventricular hypertrophy. 

LVM Left ventricular mass. 

LPS Lipopolysaccharide.  

MVBs Multivesicular bodies. 

min. Minute. 

MVs Microvesicles. 

MCP-1 Monocytes chemoattractant protein 1. 

µg Microgram. 

µl Microliter. 

mL Millilitre. 

MI Myocardial infarction. 

MBP Mean blood pressure. 

NE Neutrophil elastase. 

NF-κB Nuclear factor κ-light-chain-enhancer of 

activated. B cells. 

NEIII Neutrophil elastase type III inhibitor. 

n3FAs Omega-3 fatty acids. 

NO Nitric oxide. 

NOX NADPH oxidase. 

Ox-LDL Oxidised LDL. 



 xvii	
  

OSI Oscillatory shear index. 

ORS Oil red O stain. 

PS phosphatidyl serine. 

PBS Phosphate-buffered saline. 

PFA Paraformaldehyde. 

SEM Standard error of the mean. 

SFM Serum free media. 

SBP Systolic blood pressure. 

SMC Smooth muscle cell. 

TLR Toll like receptor. 

TLR4 Toll like receptor type 4.  

TNF-α Tumor necrosis factor-α. 

TG Triglycerides. 

TC Total cholesterols. 

TE Transthoracic echocardiogram. 

YVAD-CHO Caspase-1 inhibitor. 

v/v Volume/volume. 

VSMC Vascular smooth muscle cells. 

w/v Weight/volume. 

WSS Wall shear stress. 

Note: abbreviations that are mentioned in this thesis more than three times are fully defined here.  
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1.1. Overview of General Introduction: 
Cardiovascular disease (CVD) is the leading cause of death worldwide (Kovacic and 

Fuster, 2011), particularly for those under the age of 60 years (Nowbar et al., 2014). 

The vast majority of these deaths are attributed to coronary artery disease (CAD). 

CAD, is one of the clinically diagnosed CVD, is worrisome as it is both prevalent and 

has a poor prognosis (Kovacic and Fuster, 2011). The main underlying process that 

contributes to CAD is atherosclerosis, a narrowing or hardening of large and 

medium-sized arteries, which leads to ischemia or infarction either in the heart or the 

brain (Fauci, 2008). 

 

Despite advances in disease management, therapies are still insufficient to mitigate 

atherosclerosis and, consequently, CAD risk and mortality (Van Tassell et al., 2013). 

The growing epidemic in metabolic risk factors (e.g. diabetes, hyperlipidaemia and 

obesity), smoking and hypertension have led to increase incidence of acute and 

recurrent ischemic heart disease (IHD) (Libby, 2015). IHD was classically attributed 

to occur as a result of metabolic, rather than an inflammatory, disturbance, 

particularly in glucose and lipid metabolism and that was linked to progression of the 

disease and its complications. However, reports of inflammatory responses have 

begun to emerge since the 1970s (Kushner et al., 1978, Ross, 1999). Subsequently, 

several observational studies have documented an increase in plasma pro-

inflammatory mediators, including C-reactive protein (CRP), a surrogate marker for 

interleukin-1 (IL-1), a major inflammatory culprit in atherosclerosis, in patients with 

acute coronary events (Libby, 2002).  

 

In atherosclerosis, endothelial dysfunction and low-density lipoprotein cholesterol 

(LDL-C) sub-endothelial precipitation are the earliest changes in the vasculature 

(Palinski et al., 1989, Glass and Witztum, 2001). As a result, a cascade of 

inflammatory changes, starting with inflammatory cell recruitment and release of 

cytokines and chemokines occurs (Libby, 2003).  

Interleukin-1 beta (IL-1β) is among the cytokines that have been studied in both 

humans and animals in order to ameliorate atherosclerosis (Chamberlain et al., 

2006, Galea et al., 1996). This cytokine plays a pivotal role in the process of 

atherosclerosis from the enhancement of monocyte recruitment (Rollins et al., 1990, 
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Kirii et al., 2003) to smooth muscle cell proliferation (Nathe et al., 2002) and plaque 

instability (Monaco et al., 2009). As a consequence of this, IL-1β has been targeted 

in many studies (Dinarello, 2005, Kirii et al., 2003) in an attempt to discover a novel 

therapy that might be helpful in the management of atherosclerosis and CAD.  

 

In inflammation, IL-1β is considered as a ‘dangerous’ cytokine and in order to keep 

its levels negligible, in a disease free state, production of the pro-inflammatory 

cytokine IL-1β is controlled by an auto-regulatory mechanism. A natural competitive 

inhibitor, IL-1 receptor antagonist (IL-1ra) competes with IL-1β binding at the 

receptor level without downstream signalling effects (Dinarello, 1996). Additionally, a 

decoy receptor, IL-1 Receptor II (IL-1RII), binds to IL-1β without any signalling 

impact (Dinarello, 2005, Colotta et al., 1994). The role of IL-1ra as an anti-

atherogenic drug has been studied in myocardial infarction (MI) (Abbate et al., 2008) 

and hypertension (Mauno et al., 2008), although its use has not yet entered in wider 

cardiologic practice. Unresolved questions remain regarding the complex physiology 

of IL-1β and its cellular of origin in atheromatous plaques.   

 

Epidemiological, population-based and clinical studies highlight the effectiveness of 

prevention (primary or secondary) of IHD risk factors in controlling of the disease.  

One of the effective preventive strategies is the introduction of omega-3 fatty acids 

(n3FAs). These fatty acids show a considerable cardio- protective role, particularly in 

patients with a high risk of IHD and atherosclerosis (Mozaffarian and Wu, 2011). 

Omega-3 FAs are a part of the polyunsaturated fatty acid (PUFA) family obtained 

from the diet. Although free fatty acids like these have never been used as a therapy 

for an already established atherosclerotic lesion, they are used as supplements for 

high-risk patients (Yates et al., 2014). However, the mechanism of action of these 

free fatty acids has not been fully elucidated.  

 

The next sections of this chapter will discuss different aspects raised in the literature 

concerning the potential roles of IL-1β in atherosclerosis and hypertension. 

Additionally, it will examine the possible relationship between n3FAs, inflammation 

due to IL-1β, and atherosclerosis. Finally, it will draw relevant conclusions leading to 

a hypothesis and objectives for this thesis.  
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1.2. Atherogenesis and Inflammation: 
Atherosclerosis develops in approximately (approx.) 1% of the worldwide population 

and presents as an abnormal occlusion of arteries, that leads to life threatening 

complications, including myocardial (MI) and cerebral infarction (Libby, 2003). The 

disease develops due to endothelial dysfunction, and an excessive accumulation of 

macrophages and lipid laden cells, as a result of a maladaptive body response to 

high plasma cholesterol and its derivatives, in the subendothelial space (Hansson, 

2005).  

 

Although atherosclerosis is a multifactorial disease, it is currently appreciated that 

hyperlipidaemia and hypertension are the main causative factors (Hansson and 

Hermansson, 2011). However, substantial evidence has suggested that, in 

atherosclerotic plaques, mixed patterns of inflammatory cells have been identified 

(Weber and Noels, 2011). Furthermore, bacterial infection can induce 

atherosclerosis in susceptible mouse strains (Chi et al., 2004). Moreover, even with 

lipid lowering therapy and changing life-style patterns, the risk of death from 

atherosclerosis and CAD remains relatively high (Grundy et al., 2004, Nowbar et al., 

2014). This strongly suggests that inflammation can be considered as an additional 

targetable process in atherogenesis.  

 

In response to atherogenic stimuli, inflammatory cells adhere and migrate to the 

subendothelial space, mainly at the sites of bifurcation with disturbed blood flow 

(Libby et al., 2014). Strong evidence demonstrates that oxidised LDL-C (ox-LDL-C) 

is a major contributory factor for atherogenesis (Nievelstein et al., 1991, Tabas et al., 

2007) and many studies have shown that ox-LDL-C is taken up by macrophages and 

vascular smooth muscle cells (VSMCs) in the arterial wall via scavenger receptors, 

such as CD36, and scavenger receptors type A & B (SRA & SRB), leading to 

accumulation of cholesterol esters and subsequent formation of foam cells, the 

hallmark of the fatty streak stage (Ward et al., 2009b, Libby, 2002, Glass and 

Witztum, 2001, Moore et al., 2013).  

 

Previous studies have demonstrated that the endothelium of diseased vessels also 

expresses adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) 



 

 5	
  

and vascular cell adhesion molecule 1 (VCAM-1), that play a fundamental role in the 

rolling and thus migration of circulating cells into the vessel walls (McEver, 2015). 

Moreover, monocytic chemoattractant protein; MCP-1, the major chemoattractant 

protein, produced by various inflammatory cells in plaques, including endothelium, 

VSMCs, and macrophages, in response to IL-1 (Kirii et al., 2003).  

The process of atherogenesis is shown diagrammatically in figure (1.1). 

 

 

Figure 1.1 Atherosclerosis, lesion formation and plaque rupture. Oxidised LDL-C enhances the 
expression of adhesion molecules on the surface of endothelial cells. The circulatory monocytes 
adhere and roll on the endothelium before their migration into the sub-endothelial layer. The process 
of migration is fostered by chemo-attractants released by inflammatory and endothelial cells; 
macrophage chemo-attractant protein-1 (MCP-1). In the sub-intimal space, the monocytes 
differentiate into macrophages, which express their scavenger receptors. Scavenger receptors, 
particularly scavenger receptor type A (SR-A) and CD36 mediate the engulfment of oxidised LDL-C 
into macrophages, resulting in foam cells. Cytokines released by foam cells and VSMCs stimulate 
macrophages to release matrix metalloproteases, which dissolve the cap. Furthermore, an increase in 
the size of necrotic core, which consists of apoptotic foam and VSMCs, leads to rupture of the plaque. 
Platelets adhere to the erosion sites at the shoulders and thrombin is precipitated at the site. 
 

 

      1.2.1. Fate of Atheroma: 

After migration of smooth muscle cells (SMCs) from the media into the sub-intimal 

space in response to cytokine activation, they proliferate and release extracellular 
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matrix (ECM) proteins (Libby, 2002). The resulting lesion is usually complex and 

bulky with some backward extension into the lumen. This arterial remodelling is due 

to the elasticity of the external elastic lamina (Tabas et al., 2015), which appears as 

a “bulge” in coronary angiograms (Glass and Witztum, 2001). However, at this stage, 

the disease is difficult to diagnose, as the majority of patients are asymptomatic 

(Tabas et al., 2015).  

 

The growth and progression of the fibrous cap lesion takes decades before the 

symptoms of ischemia appear as a result of obstruction (Libby et al., 2014). 

Alternatively, the plaque might rupture with subsequent platelet activation and 

thrombus formation (Hansson, 2005). It is generally accepted that plaque stability is 

a determinant for the clinical complications and MI manifestations (Tabas et al., 

2015).  

Plaque instability is usually characterised by a large lipid core (>20-30% of plaque 

area) (Davies, 1996). Two additional factors that may predispose plaque rupture are 

a thin fibrous cap (Virmani et al., 2006) and released proteases that are secreted by 

inflammatory cells and these dissolve parts of the cap, especially the shoulder region 

(Glass and Witztum, 2001, Galis et al., 1994). Cytokines play a significant role at this 

stage by stimulating macrophages to release matrix metalloproteases (MMPs) and 

neutrophil elastase (NE) (Galis et al., 1994, Dollery et al., 2003).  

A third factor that enhances plaque instability is an increasing number of apoptotic 

cells (mainly derived from foam cells and VSMCs) (Tabas et al., 2015), which is also 

thought to be mediated by cytokines and IL-1 (Geng et al., 1996). 

 

The resulting thrombosis or calcification at the sites of ruptured plaque (Insull, 2009) 

leads to narrowing or complete obstruction of the vascular lumen (Libby and 

Pasterkamp., 2015). If this obstruction/narrowing occurs at the coronary arteries, 

symptoms of myocardial infarction or ischemia appear (Seropian et al., 2014).  
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1.3. The central role of the endothelium in atherogenesis vascular 
disease: 

      1.3.1. Endothelial cell dysfunction and atherogenesis: 

Mechanical or functional disruption of the endothelial layer is an additional 

observation in unstable plaques (Virmani et al., 2000). In addition, dysfunctional 

endothelium has been considered as the one of the earliest (Casino et al., 1993) and 

persistent vascular changes in atherosclerosis (Suwaidi et al., 2000).  

 

Although macrophages, SMCs and platelets are important in atherosclerotic plaque 

formation, endothelial cells (ECs) also play a central role. ECs in healthy vessels 

play a protective role by maintaining the vascular tone and secretion of anti-

inflammatory mediators such as nitric oxide (NO) (Aird, 2008). However, in a disease 

prone state, the endothelium enhances atheroma formation by several mechanisms 

(Bonetti et al., 2003). Endothelial dysfunction allows precipitation of LDL-C into the 

subintimal space (Libby, 2003). The endothelium also produces and expresses 

adhesion molecules to promote inflammatory cell migration into the subintima 

(Bombeli et al., 1999). Experimental studies have shown that inflamed ECs, when 

stimulated, produce considerably large amounts of proinflammatory cytokines, 

including interleukin (IL)-6 (Jirik et al., 1989) and IL-8 (Bonetti et al., 2003).  

 

      1.3.2. NO, NOS, and NADPH oxidase and their roles in atherogenesis: 

NO is an important vasodilator that is secreted by the healthy endothelium and 

maintains vascular tone (Forgione et al., 2000). Recent evidence shows that 

deficiency of NO impairs vasodilatation and thus increases vascular resistance and 

risk of hypertension (Fauci, 2008). 

 

NO is synthesised by converting L-arginine to L-citrulline in the presence of 

endothelial nitric oxide synthase (eNOS) and a cofactor tetrahydrobiopterin (BH4) 

(Tayeh and Marletta, 1989, Rabelink and Luscher, 2006). Among the three isolated 

isoforms of nitric oxide synthase (NOS), eNOS and neutral NOS (nNOS) are the 

primary forms in a healthy endothelium (Kawashima and Yokoyama, 2004) whereas 

iNOS (inducible NOS) is the predominant form in  hypertension and  atherosclerotic 

lesions (Behr-Roussel et al., 2000, Kawashima and Yokoyama, 2004, Werner et al., 
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2003). The mechanism by which iNOS is increased in hypertension and 

atherosclerosis is unknown. One explanation is that, in response to inflammation, 

eNOS induces expression of iNOS and this, in turn, inhibits eNOS activity and 

impairs the endothelial function (Connelly et al., 2005). 

 

A diminishment in the amount of eNOS substrates (either L-arginine or BH4) results 

in the formation of oxygen free radicals. The process of producing superoxide 

radicals (SOR) by eNOS is commonly known as uncoupling (Werner et al., 2003; 

Clapp et al., 2004; Li et al., 2006). In other words, the uncoupling of eNOS is an 

important source of SOR and endothelial dysfunction in hypertension. This effect can 

be reversed by the addition of BH4, hence restoring the endothelium dependent 

vasodilatation (Setoguchi et al., 2001). Alternatively, SOR can be produced by 

NADPH oxidase (NOX). There are at least 5 isoforms of NOX. Among them, NOX1, 

NOX2 (Cave, 2009) and NOX4 (Ellmark et al., 2005) are the most commonly 

isolated isoforms in cardiovascular diseases and atherosclerosis.  

 

1.4. The interleukin-1 signalling pathway and its roles in 
atherosclerosis: 

In addition to NO/eNOS system, studies on atherosclerotic plaques identified a 

myriad of proinflammatory cytokines that orchestrate the process of inflammation 

and atherogenesis. The IL-1 family has received a great deal of attention due to 

identification of IL-1 system in different stages of atheromatous human lesions (Ray, 

2014, Satterthwaite et al., 2005), and studies on mouse models of atherosclerosis 

suggest a particular role for IL-1 signalling pathway in the disease (Chamberlain et 

al., 2006, Kirii et al., 2003).  

 

The IL-1 family consists of 11 members whose production is closely linked to 

inflammation, and pioneering work by Dinarello and colleagues identified IL-1 as a 

biomarker of chronic inflammation (Dinarello, 2009). In inflammatory cells, closely 

related genes code two functionally different proteins, including IL-1β and L-1α. 

However, both cytokines bind to the same receptors, including interleukin- 1 receptor 

type I (IL-1RI) and IL-1RII (Dinarello, 2009).  
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IL-1α is produced in an active form that binds to the plasma membrane, acts locally 

and is released upon cell death (Dinarello, 1996). Therefor, IL-1α has been more 

linked with local inflammation and it participates less in systemic inflammation. On 

the other hand, IL-1β is the main circulating isoform of IL-1 (Dinarello, 1991), 

produced as an inactive form (proIL-1β) that requires enzymatic activation and 

cleavage, for example, by caspase-1 (Brough and Rothwell, 2007) or serine 

proteases (Black et al., 1991) to generate the active mature form (IL-1β).  

 

The main focus of this thesis is on IL-1β due to its broadly circulating effects. 

However, the roles of IL-1α as endogenous priming for inflammation are discussed 

briefly throughout the work. 

The synthesis, processing and release of IL-1β are tightly controlled by several 

mechanisms. The plausible roles of IL-1β as an atherogenic and hypertensive 

mediator, and its signalling and secretion mechanisms are discussed in detail in the 

sections that follow.  

 

      1.4.1. IL-1β is a key player in atherosclerosis: 

1.4.1.1. Role of IL-1β in early lesions: 

IL-1β appears to be crucial in the formation of fatty streaks and atherosclerotic 

plaques. Recent research using atherogenic mouse strains highlights the importance 

of IL-1β in early atherosclerosis. For instance, the fatty streak lesions in Apo-

lipoprotein E knockout mice (ApoE-/-) show significant regression after interleukin-1 

receptor antagonist (IL-1ra) injection (Elhage et al., 1998). This contrasts with 

another study involving ApoE-/-/IL-1ra-/- mice, which demonstrated no significant 

changes in the size of the foam cell lesion of the proximal aorta (Devlin et al., 2002).  

 

However, the role of IL-1β in fatty streaks cannot be excluded. Evidence to support 

this is that the lack of IL-1β in ApoE-/-/IL-1β-/- mice results in a considerable reduction 

in the lesion size, and this is associated with a lowering of adhesion molecules such 

as ICAM-1 and VCAM-1 expressions and MCP-1 levels (Kirii et al., 2003). Thus, IL-

1β plays a key role in the expression of these endothelial adhesion molecules 

(Tamaru et al., 1998). IL-1β also enhances VSMC migration and proliferation (Nathe 

et al., 2002). Collectively, these effects are fundamental in triggering and 

development of atherosclerosis. 
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1.4.1.2 IL-1β and plaque instability: 

The role of IL-1β in advanced atherosclerosis has been conflicting in many 

laboratory studies. High levels of IL-1β have been linked with an increase in the 

number of infiltrating macrophages (Isoda et al., 2004, Merhi-Soussi et al., 2005). As 

previously mentioned in section (1.2.1), this increase is associated with plaque 

instability and rupture, as these cells are more likely to undergo apoptosis (Libby and 

Pasterkamp., 2015).  

 

In addition, IL-1β promotes the release of MMP-1, which has been shown to play a 

role in dissolving the cap (Monaco et al., 2009). In contrast, and controversially, 

Alexander and colleagues have postulated that advanced atherosclerosis in mice 

lacking IL-1RI are more prone to rupture. They report that this effect is associated 

with reduced MMP3 expression (Alexander et al., 2012). However, Chamberlain et 

al. have found that IL-1 plays a significant role in the formation of advanced lesions 

in response to high fat feeding (Chamberlain et al., 2009). Thus, although IL-1β is a 

key parameter in advanced atherosclerosis, the suppressive or the promoting role of 

IL-1β needs to be further elucidated.  

 

      1.4.2. The hypertensive effects of IL-1β: 

Despite extensive clinical and experimental studies, the role of IL-1β in high blood 

pressure and hypertension is not completely understood. A prospective population-

based study in Finland has found that IL-1β levels are elevated in hypertensive, and 

reduced in normotensive, individuals (Mauno et al., 2008). Conversely, another 

prospective study conducted on postmenopausal women in the USA has shown no 

variations in the levels of IL-1β in both hypertensive and normotensive participants 

(Wang et al., 2011b).  

However, it could be argued that, in the first study, the elevated levels of IL-1β are 

probably due to the presence of an underlying pathology like atherosclerosis in those 

high risk individuals whereas the absence of such finding in the second study may 

be a result of measurements of IL-1β only once during the period of study. This is 

supported by a study by (Peeters et al., 2001) that tested blood samples of 23 

essential hypertensive patients and showed that the levels of IL-1β significantly 

increased only after in vitro stimulation of circulating monocytes with 

lipopolysaccharide (LPS).  
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Some laboratory-based animal studies have been carried out to discover the 

molecular basis by which IL-1β induces its hypertensive effects. An important finding 

is that ApoE-/- / IL-RI-/- mice on a high fat diet had a lower blood pressure than ApoE-

/- strains. The attenuated effect of blood pressure is associated with an increase in 

NO bioavailability and a decrease in SOR levels and NOX4 expression (Chamberlain 

et al., 2009). Surprisingly, in another study, NOX4 expression is suppressed by IL-1β 

in C57BL6/J mice and caused a transient reduction in the levels of SOR (Ellmark et 

al., 2005). 

Similar to the human studies, the suppressive effect of IL-1β in C57BL6/J mice on 

NOX4 and SOR could be due to the absence of atherogenesis in these mouse 

strains. Also, it could be argued that the suppression of IL-1β is enhanced in the 

presence of the high fat in the diets, which fits with the clinical implications of the risk 

development of hypertension in patients consuming high fat in their diet (Fauci, 

2008, Krauss et al., 2000).  

 
      1.4.3. The IL-1 system: 

The IL-1 system is complex and in-line with its pleiotropic effects, three main levels 

of control have been shown to reduce the potent proinflammatory effects of IL-1β: (i) 

Control of IL-1 receptor activation (Dinarello, 2005); (ii) Downstream activation, 

controlling signal transduction effects; and (iii) Control of IL-1β synthesis and release 

(Keller et al., 2008, Kahlenberg and Dubyak, 2004, Wewers, 2004). Figure (1.2) 

shows the full details of control.  

 

(i) Control of IL-1 receptor activation: 

IL-1β signals via ubiquitously expressed cell surface receptors known as interleukin-

1 receptor type I (IL-1RI) (Figure 1.2, step 1) (O'Neill and Dinarello, 2000, Cohen, 

2014). The cytosolic segment of these sets of the receptors contains a Toll-like 

domain that functions in the innate body responses (Dunn et al., 2001).  

The main expressed types of Toll-like receptors (TLRs) in atherosclerosis are TLR2 

and TLR4 (Edfeldt et al., 2002, Schoneveld et al., 2008). These receptors have been 

shown to be activated by a variety of ligands such as LPS (Andersson et al., 1992, 

Kaspar and Gehrke, 1994), and ox-LDL (Xu et al., 2001).  
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As a results of IL-1/IL-1RI complex, IL-1 receptor accessory protein (IL-1RAcP), an 

intracellular co-receptor protein, is activated and induces downstream signal 

transduction (Weber et al., 2010).  

 

A natural competitive inhibitor, IL-1ra, binds to IL-1RI (same affinity as that of IL-1β) 

but it does not induce any downstream signalling effects (Dinarello, 2009, Dunn et 

al., 2001, Schreuder et al., 1997). Animal based studies have suggested that IL-1ra, 

secreted predominately by the endothelium (Dewberry et al., 2000) and monocytes 

(Andersson et al., 1992), binds tightly to, and blocks, IL-1RI from signalling 

(Dinarello, 2009). 

As a result, the synthetic form of IL-1ra, Anakinra, has been introduced in clinical 

trials as an anti-cytokine drug in septic shock (Eichacker et al., 2002). Subsequently, 

attention has been paid on using of IL-1ra in multiple chronic inflammatory diseases, 

including rheumatoid arthritis (RA) (Dinarello, 2005), type 2 diabetes mellitus (DM) 

(Larsen et al., 2007) and more recently in post MI patients (Ridker PM., 2011). 

 

IL-1β suppression can also be achieved by IL-1 binding to interleukin-1 receptor type 

II (IL-1RII). This is a decoy receptor and, when bound to IL-1β, detach into the 

circulation without any inflammatory effects (O'Neill and Dinarello, 2000). 

Consequently, IL-1ra and IL-1RII (and soluble IL-1RI, IL-1RAcP) can provide 

negative feedback regulators to IL-1 signalling whose abundance (controlled at 

transcriptional levels) may prevent the unfavourable responses of IL-1 (Dinarello et 

al., 2012).  

 

(ii) Downstream activation, controlling signal transduction effects:  

After binding of the IL-1 ligand to its receptors, a complex of IL-1RI and IL-1RAcP, 

results in a downstream activation and assembly of two intracellular proteins, 

including myeloid differentiation primary response gene 88 (MYD88) (Figure 1.2, 

step 1) and interleukin-1 receptor–activated protein kinases (IRAKs) (Brikos et al., 

2007). Mice lacking in MYD88 or IRAKs, especially IRAK4 showed defective IL-1 

signalling (Suzuki et al., 2002). As a result of (auto)phosphorylation of IRAKs, a 

series of intracellular phosphorylation and activation takes place as illustrated in 

figure (1.2, step 2) (Kawagoe et al., 2008, Cao et al., 1996). Subsequently, nuclear 

factor-kappa B (NF-κB), a cytoplasmic transcriptional factor, is activated (Figure 1.2, 
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step 3) (Walsh et al., 2008) and is responsible for the synthesis of the IL-1β 

precursor (proIL-1β). NF-κB activation requires phosphorylation of the inhibitor of 

nuclear factor B (IκB) kinase (IKK) (Li et al., 1999), which subsequently 

phosphorylates and thus promotes IκB destruction (Zandi et al., 1998).  

 

As a result of IκB degradation, the two subunits of NF-κB are released and 

translocate to the nucleus (Figure 1.2, step 4), which is a central step in NF-κB 

activation (Weber et al., 2010).  

 

 

Figure 1.2. The molecular mechanism of IL-1β, steps of IL-1β processing and release. Step (1): 
IL-1β binds to IL-1RI. Step (2): This results in a cascade of activation and phosphorylation. Step (3): 
NF-kB is activated by degradation of IkB. Step (4): NF-kB translocation into the nucleus and 
subsequent transcription and mRNA IL-1β formation and proIL-1β generation. Step (5): After IL-1β 
precursor transcription and translation, the inflammasome is assembled and procaspase-1 is 
activated. Caspase-1 cleaves proIL-1β and subsequently activeIL-1β is released.  

 



14 Chapter (1) General Introduction. 
	
  

	
   14 

(iii) Control of IL-1 activation and release: 

As a result of NF-kB activation, proIL-1β accumulates in the cytoplasm in response 

to various ligand binding, by activation of TLRs/IL-1RI (Takeuchi and Akira, 2010). In 

immune cells, the biologically inactive proIL-1β (31kDa) is converted by a proteolytic 

cleavage via caspase-1 into active/mature IL-1β (17kDa) (Thornberry et al., 1992), 

which itself is regulated by an assembly of a multi-protein complex; an 

inflammasome (Figure 1.2, step 5) (Dinarello, 2007, Brough and Rothwell, 2007).  

 

In vitro studies suggested that activation of the inflammasome complex requires a 

second stimulus (Schroder and Tschopp, 2010) and, in monocytic-derived cells, 

adenosine 5′-triphosphate (ATP) has been demonstrated to increase IL-1β secretion 

by activating the plasma membrane receptors, P2x7 (Netea et al., 2009). However, 

in ECs, P2x7 receptors are expressed in substantially low levels and subsequently 

the release of IL-1β in response to ATP activation is relatively inefficient (Wilson et 

al., 2007), suggesting that ECs may secrete IL-1β by an alternative yet unknown 

mechanism(s).  

Moreover, in vivo models of inflammation demonstrated that IL-1β is detected in 

plasma and other body fluids of caspase-1-/- animals (Stehlik, 2009, Joosten LA, 

2009, Couillin et al., 2009), raising a controversy to the in vitro findings and 

suggesting an alternative IL-1β secretory mechanism without the need to caspase-

1/inflammasome activation.  

 

In addition to caspase-1, other cysteine proteases such as caspase-4 and caspase-5 

have been implicated in IL-1 secretion. For instance, transgenic expression of 

human caspase-4 in mice supported caspase-1 activation and enhanced IL-1 and IL-

18 release in response to LPS (Kajiwara et al., 2014). However, and recently, Vigano 

et al have identified caspase 4 and caspase-5 as being crucial downstream targets 

of LPS activation in human monocytes, without the need to activate caspase-1 

(Vigano et al., 2015). 

Additionally, Murine caspase-11 (a member of caspase-1 subfamily and is most 

homologus to human caspase-4) has been shown to be induced by LPS activation 

(Wang et al., 1998). Caspase-11 does not directly process proIL-1 but 

overexpression of caspase-11 stimulates proIL-1 processing by caspase-1 (Kang et 
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al., 2002). On the other hand, Fas receptor signalling activates caspase-8 in 

macrophages and dendritic cells, leading to maturation of IL-1 by a caspase-

1/caspase-11 independent mechanism (Bossaller et al., 2012). Further studies are 

needed to dissect the exclusive and overlapping roles between these proteases as 

well as their involvement in the canonical caspase-1/inflammasome pathway. 

Moreover, in ECs the role of the caspases is still unclear and it would be interesting 

to investigate the possible contribution of the inflammatory caspases in IL-1 

secretion. 

      1.4.4. The mystery of IL-1β secretion: 

Despite the exquisite biological control mechanisms, the mechanism of IL-1β 

trafficking outside the cells into the extracellular environment remains poorly 

understood. It is generally agreed that the leaderless IL-1β is secreted by a non-

classical pathway of protein secretion. This means that IL-1β lacks a signal peptide, 

which is responsible for directing secretory proteins through an endoplasmic 

reticulum (ER)-Golgi pathway of protein secretion (i.e. classical pathway of protein 

secretion) (Rubartelli et al., 1990).  

 

Most secretory proteins, such as tumour necrosis factor-alpha (TNF-α) and IL-6, 

have a leader or a signal sequence of 13-30 amino acids in close proximity to their 

N-terminus that directs the proteins a cross-translation to the ER membrane (Milstein 

et al., 1974). The secretory proteins then translocate to the Golgi apparatus to 

undergo a further glycosylation and are subsequently packaged into secretory 

vesicles that fuse to the plasma membrane and release their contents outside the 

cells (Kaiser and Schekman, 1990).  

IL-1β, however, is one among handful proteins that lacks the typical signalling 

sequence (Auron et al., 1984) and data shows that inhibiting the process of the 

transfer to the ER using chemicals, for example, does not ameliorate IL-1β secretion 

(Andrei et al., 1999, Nickel and Rabouille, 2009, Rubartelli et al., 1990). This raises 

the question of how IL-1β is released into the extracellular environment.  

 

Moreover, in patient plasma IL-1β is known to have a short half-life of approximately 

6-8 minutes (Ray, 2014), despite the sustained IL-1 dependent inflammation in 

chronic inflammatory diseases (Dinarello, 2007). The sustained effect may suggest 
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that IL-1β is transported and protected from degradation by packaging, possibly in 

vesicles to exert its distal endocrine effects.  

As a result, in the literature, different mechanisms for IL-1β secretion have been 

proposed that do not suggest a unified mechanism for IL-1β release but rather 

suggest that the secretion is different in different cell types and is stimulus specific 

(Lopez-Castejon and Brough, 2011).  

 

The proposed mechanisms by which IL-1β is released, such as lysosome-regulated 

secretory routes (Rajamaki et al., 2010), microvesicle (MV) shedding (MacKenzie A, 

2001) and exosomal mediated release (Rabouille et al., 2012) are summarised in the 

following sections. Understanding the mechanism by which the bioactive IL-1β is 

secreted may help in identifying new anti-IL-1β therapies and help in understanding 

how the inflammatory process develops during vascular disease.  

 

1.4.4.1. Release of IL-1 by lysosomal exocytosis: 

In vitro, several mechanisms by which IL-1β may make its cellular exit have been 

proposed. The first and the oldest mode of IL-1β secretion was thought to be 

following cell death (Wewers, 2004). However, IL-1β secretion seems to be more 

complicated than a result of simple cell lysis. An interesting proposal by Andrei et al 

(1999) is that IL-1β is released by lysosomal exocytosis. Lysosomes are small 

intracellular organelles that are usually surrounded by a single layer of plasma 

membrane and contain hydrolases that are maintained in their active state to digest 

engulfed pathogens or autophaged molecules (Rauova and Cines, 2013).  

 

However, lysosmal exocytosis and release of their contents have been described in 

multiple secretory cells, including activated platelets and macrophages (Mullins and 

Bonifacino, 2001). Thus, in essence, lysosomes can act as secretory rather than 

terminal digestive compartments, within secretory cells. 

The secretory lysosomes have features of both digestive lysosomes and secretory 

organelles (Nickel and Rabouille, 2009). However, secretory lysosomes are 

distinguished from the conventional lysosomes in that they undergo a regulated 

secretion (Blott and Griffiths, 2002).  
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In monocytes, secretory lysosomes are well appreciated in the secretory pathway of 

IL-1β (Andrei et al., 2004). Following caspase-1 activation, secretory lysosomes fuse 

to the plasma membrane and release their IL-1β contents by a process of exocytosis 

(Keller et al., 2008). The most commonly studied stimuli in immune cells that release 

IL-1β by this pathway are ATP (Qu et al., 2007) or cholesterol crystals (Rajamaki et 

al., 2010).  

This mechanism is partially understood, yet it seems to be linked to a signal 

recognition peptide that directs the lysosomes to the plasma membrane to undergo 

exocytosis (Ghossoub et al., 2014, Andrews, 2000). 

  

1.4.4.2. IL-1β secretion by microvesicle shedding: 

Microvesicle (MV) shedding from the plasma membrane as a tool of non-

conventional protein secretion was firstly proposed by Chargaff and West in 1946 

(Gyoergy et al., 2011). The release of MVs as they bud off from the plasma 

membrane is induced by an increase in cytosolic calcium [Ca2+]i levels. MV release 

is enhanced by calcium ionophore in platelets and monocytes, and decreased by the 

Ca2+ chelating ethylene glycol tetraacetic acid (EGTA) (Gyoergy et al., 2011).  

 

MV shedding, containing active IL-1β, was firstly observed by (MacKenzie A, 2001) 

in THP-1 monocytes treated with ATP. The shedding was preceded by flipping of the 

inner layer of the plasma membrane, phosphatidyl serine (PS), into the outer layer 

following P2x7 activation (MacKenzie A, 2001). MV shedding as a route of IL-1β 

secretion was also proposed in other cell types such as dendritic cells (Pizzirani et 

al., 2007) and macrophages (Asgari et al., 2013). However, how IL-1β is released 

from the MVs in order to bind to its receptors is yet to be described.  

Data suggests that ATP stimulated MVs are able to secrete their contents, including 

IL-1β, once they are in contact with their target sites (Pizzirani et al., 2007), and this 

may provide evidence on how the protected IL-1β may be released at its sites of 

action. However, whether this is applicable to ECs is yet to be elucidated.  

 

1.4.4.3. Exosomes are an additional secretory route for IL-1: 

Inside cells, proIL-1β has been detected in the cytosol. However, the mature form 

was isolated from vesicles that are endolysosomal in nature (Andrei et al., 2004, 
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Lopez-Castejon and Brough, 2011). As a result, a fundamental question on how 

cytosolic IL-1β gets into the endolysosomes is raised, along with how these 

endosomes could be involved in IL-1β secretion. An intracellular compartment, within 

endolysosomes, that has been linked to IL-1 secretion, is multivesicular bodies 

(MVBs) (Qu et al., 2007).  

 

MVB genesis and their functions are relatively unclear. Studies show that growth 

factor stimulation can increase their membrane inward invagination and formation of 

intraluminal vesicles (ILVs) (White et al., 2006). In addition, MVBs are detected in 

certain cell types where they may bind to lysosomes and thus act as degradation 

compartments (Stoorvogel et al., 2002). Alternatively, in secretory cells, they may act 

as temporary storage compartments and release ILVs outside of the cells as a type 

of exosome (Piper and Katzmann, 2007).  

 

Proteins such as endothelial growth factor (EGF) (Felder et al., 1990) and 

tetraspanins (Heijnen et al., 1998) are released by exocytosis of MVBs and exosome 

release (Denzer et al., 2000). The detection of mature IL-1 within these 

compartments in monocytes (Andrei et al., 1999), may suggest that, inside the cells, 

IL-1 is sorted by intermediate vesicles prior to the formation of MVBs and exosomal 

release.  

Endothelial IL-1 production and release is partially understood and little has been 

done to evaluate which of the above-mentioned pathways are involved. ECs can 

produce IL-1 in large amounts (Wilson et al., 2007) and whether lysosomal or 

endolysosomal pathways are predominant in ECs is relatively unknown. Moreover, 

the trigger for the secretory process of IL-1 from ECs remains unclear.  

 

1.5. Neutrophil elastase as a possible inflammatory trigger to 
endothelial IL-1 secretion: 

In atherosclerosis, remodeling of the ECM has long been known to occur (Virmani et 

al., 2000), but the multitude of the cell types and the molecular mechanisms involved 

has only recently emerged (Kashiyama et al., 2011). The proinflammatory mediators 

that are released by infiltrating cells create environmental changes and ECM 

degradation, within the lesion and thus promote plaque instability (Libby, 2009, 
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Dollery and Libby, 2006). One study has implicated a plausible role for the potent 

serine protease, NE in that process and lesion instability (Dollery et al., 2003).  

 

NE despite its name, has been detected in different cell types, including SMCs (Kim 

et al., 2011), monocytes (Campbell et al., 1989) and macrophages (Dollery et al., 

2003). In addition, NE can act as a signalling mediator that drives inflammation in 

ways other than its known proteolytic functions (Korkmaz et al., 2010). NE is a 

proteolytic enzyme that cleaves different components of the ECM (Pham, 2008). It 

also has been shown to play a crucial role in the innate body defense in response to 

pathogens. For example, mice lacking in NE have defective microbicidal activities 

with susceptibility to infection, especially to gram-ve bacteria (Belaaouaj et al., 1998).  

 

Tissues are protected from the excessive destructive/inflammatory nature of NE by 

expressing natural inhibitors. NE inhibitors are either produced locally at the site of 

inflammation, such as elafin, or systemically by the liver, such as α-1-antitrypsin 

(Williams et al., 2006). α-1-antitrypsin, detected with high blood levels, inhibitory 

activity are decreased in chronic inflammation where it can be cleaved and 

deactivated by matrix metalloproteases (Shapiro, 2002) and oxidative stress 

(Taggart et al., 2000), leaving NE activity unchecked in chronic inflammatory 

diseases.  

The next section will focus on the possible roles that NE may play in atherosclerosis 

and provides evidence on how NE can be a direct mediator for IL-1 dependent 

inflammation.  

      1.5.1. NE and its cellular of origin: 

NE is a proteinase stored in the azurophil granules of neutrophils (Pham, 2008, 

Chua and Laurent, 2006) and unlike other proteases, has broad biological functions. 

Although proteases were identified in the early 20th century, NE was not discovered 

until 1968 by Janoff and Scherer (Takahashi et al., 1988a). The name was given due 

to its ability to release soluble substances from the insoluble elastin, yet recent 

studies show that its function is extended to dissolve other components of ECM such 

as collagen, fibrin, and cadherin (Lee, 2001).  

 

The NE gene is located on the short arm of chromosome 19 and is not expressed in 

mature neutrophils, but only in the myelomonocytic cell lineage (Takahashi et al., 
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1988b), which may explain why NE has also been identified in macrophages (Dollery 

et al., 2003).  

Serine proteases, including NE, CG, and proteinase 3 (PR3) were detected at 

different levels and functions in the granules of monocytes and neutrophils 

(Henriksen and Sallenave, 2008, Pham, 2008). Despite this extensive knowledge, 

however, it is still difficult to define the biological activities of NE.  

 
      1.5.2. Emerging roles for NE in inflammation: 

An unresolved issue in understanding the mechanism of action of NE is its wide 

range of activities. Besides its ECM degrading roles, NE has been reported to 

enhance the production of the chemokine IL-8 in HEK293, via TLR4 (Devaney et al., 

2003), suggesting an alternative mechanism of action. Similarly, in human umbilical 

cord endothelial cells (HUVECs), the levels of IL-8 inside the cells were significantly 

increased following NE treatment (Henriksen et al., 2004).  
 

Although in vitro studies have revealed the involvement of TLR4 in NE signalling, 

animal studies have suggested that elastase causes cytokine release in a TLR-

independent manner. It is postulated that NE activates the ASC-inflammasome 

complex and thus induces production of pro-inflammatory mediators (Couillin et al., 

2009). Emerging evidence suggests that NE is also involved in the synthesis and 

release of the growth factor, TGF-β (transforming growth factor-beta), in human 

bronchial smooth muscle cells, associated with NF-κB activation (Lee et al., 2006). 

Furthermore, it has been widely accepted that NE can enhance production of IL-6 

(Lee, 2001), CCL15, CXCR4 and CXCL2 (Pham, 2008) and thus can promote 

inflammation by maintaining chemotaxis and migration of inflammatory cells. By 

contrast to its secretagogic effects, the intracellular signals for this enzyme are 

unclear. 

 

      1.5.3. NE effects may be mediated by IL-1β: 

Like other inflammatory mediators, NE may enhance IL-1 production in many 

inflammatory conditions; however, this has not yet been directly studied in 

atherosclerosis.  
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Although the underlying mechanism remains incompletely understood, caspase-1 

deficient mice showed no impairment in IL-1 levels in synovial fluids (Guma et al., 

2009), emphasising the presence of an alternative mechanism by which IL-1 is 

produced.  

 

Likewise, caspase-1 deficient mice have no significant reduction in IL-1β mediated 

arthritis, but pro-IL-1β is attenuated after the cells from these mice are incubated with 

NE and this was associated with an increase in levels of IL-1β which, in turn, was 

improved after NE inhibitors were added (Joosten LA, 2009).  

Recently, Schreiber et al., have shown a significant reduction in IL-1β production in 

the kidneys of NE-/- mice (2012). A more recent study by Warnatsch and collagues 

has suggested a significant reduction in atheroma formation in NE-/-/PRO3-/- mice 

with a reduction in plasma and plaque IL-1β expression (2015).  

Collectively, this suggests that NE may play a role in enhancing IL-1β mediated 

inflammatory effects in animal models, yet precise details in IL-1β mediated 

endothelial and vascular injury have not been fully elucidated.  

 

      1.5.4. NE as an atherogenic mediator and its roles in IHD: 

Different families of proteases, including NE, MMPs and cathepsins have been 

suggested to modulate ECM in atherogenesis (Henriksen and Sallenave, 2008). 

Indeed, there is substantial overlap in the substrates among these three families. 

However, NE is distinct in having broad functions and being released in active form 

from cells in large amounts either by cell degranulation (Pham, 2008) or within 

neutrophil extracellular traps (NETs) (Warnatsch et al., 2015) at the site of 

inflammation. On the other hand, MMPs and cathepsins require activation by a 

cascade of proteolysis that is regulated by gene expression (Klein and Bischoff, 

2011). It has been shown that NE plays a key role in this process, thus modulating 

the function of the other proteases that are well characterised in plaque instability 

such as MMPs (Dollery and Libby, 2006).  

 

Growing evidence suggests that neutrophils from patients with IHD show signs of 

activation and degranulation (Goldmann et al., 2009), with abundant NE detected in 

ruptured coronary lesions of patients who died from acute MI (Naruko et al., 2002). 

In addition, serum NE antigen levels were relatively high in patients with unstable 
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angina (UA) and these levels were predictive of future MI (Smith et al., 2000). It is 

also interesting to note that levels of NE increase with the major coronary risk factors 

in experimental animals (Garcia-Touchard et al., 2005), suggesting a direct role for 

NE as an important trigger in atherosclerosis. However, future work to confirm this is 

required.  

 

1.6. CAD prevention and control: 
Inflammation and atherosclerosis is an on-going disease process manifested in 

elderly patients with dreadful complications. As part of interventional strategies, 

preventive medicine is a growing alternative to control the disease. The second part 

of this thesis and, therefore, this introduction, focuses on the roles and the 

mechanism of actions of various types of PUFAs in atherosclerosis and their 

protective roles.  

 

      1.6.1. Dietary control: 

It is well appreciated that hyperlipidaemia, namely hypercholesterolemia, is one of 

the main causative factors of CAD. In addition to dietary cholesterol, the risk of 

hypercholesterolemia and thus CAD is increased with high consumption of dietary 

saturated fatty acids (Kinsell et al., 1952).  

 

Therefore, the current approach to control CAD is to reduce the high fat diet intake, 

and an efficient strategy for that is to replace dietary saturated fat with PUFAs. Fish 

oil (FO) and the bioactive fatty acids found within, mainly docosahexaenoic acid 

(DHA; 22:6 n-3), are suggested to benefit CAD risk in clinical trials (Dyerberg and 

Bang, 1979).  

 

      1.6.2. Omega-3 FAs: Nomenclature: 

Fatty acids (FAs), carboxylic acids, have variable numbers of carbon (C) atoms: from 

two to more than thirty. They are either saturated or unsaturated depending upon the 

presence of double bond (=) between the carbon atoms. Saturated FAs have no 

double bonds whereas monosaturated FAs have a single double bond. PUFAs, more 

than one (=), are either omega-3 or omega-6.  

 



 

 23	
  

PUFAs are also commonly referred using systematic and common names. For 

example, DHA is described as 22:6 n-3 where 22 is the total number of C in the 

chain, 6 is the number of the (=), and n-3 (the first double bond is located at the third 

carbon atom from the methyl terminal). This nomenclature helps in differentiating 

between different types of PUFAs within the family. For instance, in omega-3 FAs, 

the first double bond (=) is located at C3 (referred as n-3) whereas omega-6, the first 

(=) is at C6 (n-6) in the molecule (Yates et al., 2014).  

 

      1.6.3. Omega-3 FAs: Types and dietary sources: 

N3FAs, naturally occurring PUFAs, cannot be produced within the human body and, 

thus, must be provided in diet. These essential FAs are present in different 

quantities, in different types of fish (Calder, 2004). Table (1) shows the different 

types of n3FA and their oily fish sources. 

 

Depending on the dietary habits and the availability of the fish derived food, it is 

estimated that daily intake of n3FAs in the UK is <250mg/day (Buttriss, 1992, Calder, 

2002). In the absence of fish derived food, α-Linolenic acid (ALA) is considered as a 

source of n3FAs in the human diet. 

ALA can be enzymatically converted in human tissues into EPA and DHA (Calder, 

2004). However, recent studies revealed that this endogenous conversion is no 

longer efficient due to enzymatic deficiency, especially in males (Burdge et al., 

2002), and thus ALA cannot replace the other types of n3FAs in the diet. Therefore, 

it is crucial to consume other types of n3FAs to increase their amount in human 

tissues and achieve the benefits they provide.  
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Table 1, Omega-3 Fatty Acids: Types and dietary origin: 
Types Dietary source Amount: g/100g Nomenclature 

ALA Flaxseed oil. 53.3 18:3* 

    

DHA Salmon, farmed 
Sardines, Atlantic 
Tuna, White 
Tuna, light. 

1,104 
509 
629 
237 

22:6 

    
EPA Herring, Atlantic 

Sardines, Atlantic 
Tuna, White 
Tuna, light. 

909 
473 
233 
91 

20:5 

    
DPA Salmon, farmed 

Sardines, Atlantic 
Tuna, White 
Tuna, light. 

393 
0 
18 
17 

22:5 

 
Abbreviations: ALA; α-Linolenic acid, DHA; docosahexaenoic acid, EPA; eicosapeantoic acid, DPA; 
docosapentaenoic acid. *18:3; 18 carbon atoms with three double bonds. Adapted and permitted from 
(Mozaffarian and Wu, 2011). 
 

 

      1.6.4. N3FAs and Cardiovascular disease; risk control and research evidence: 

The interest in n3FAs has substantially grown since 1970s, when a study on the 

population of Inuit, Greenland, showed a marked reduction in CAD risk with an 

average of 10% reduction of the predicted risk despite their high fat intake (Dyerberg 

and Bang, 1979). Furthermore, the Japanese are known to consume high quantities 

of n3FAs (DHA and EPA) in their sea-derived food and thus exhibit the lowest risk to 

develop CAD (Yano et al., 1988). Subsequently, clinical trials have been conducted, 

but have shown mixed findings.  

 

1.6.4.1 Clinical trials: 

Accumulating evidence from secondary preventive trials has shown that n3FA 

consumption, either in fish or as supplements, may have a substantial impact on 

cardiovascular mortality due to coronary events (Mozaffarian and Wu, 2011). 

Although not all studies have confirmed this effect, recent studies have suggested 

that high n3FA supplementation in recent MI patients markedly reduces the all cause 

mortality.  
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For instance, the DART study (Diet And Reinfarction Trial) conducted on 2033 

surviving MI male patients showed a 29% reduction in all cause mortality among 

patients advised to increase their daily intake of FO (Mozaffarian and Wu, 2011). 

Moreover, the Japanese EPA (eicosapeantoic acid) lipid intervention study (JELIS) 

showed a 19% reduction in the incidence of CAD, including MI and UA in patients 

that received EPA (1.8g/day) over a duration of 5 years (Yokoyama et al., 2007).  

 

Conversely, the Alpha Omega trial, studying 4837 patients with a previous history of 

MI given n3FA supplementation did not show any significant benefit in the group 

received n3FAs (Kromhout et al., 2010). It could, however, be argued that, in this 

study, the patients received relatively low amounts of n3FAs (400mg EPA/DHA per 

day) and that the benefit cannot be achieved in patients with established coronary 

lesions.  

 

Collectively, several studies document clinically that n3FA supplementation may 

have a significant benefit on CAD. All these studies tested the effects of n3FAs on 

major CV risks. However, relatively little is known on the individual (purified) types of 

n3FAs such as DHA and ALA on the coronary events and atherosclerosis.  

Furthermore, these studies were carried out without a clear understanding of the 

molecular mechanism(s) by which n3FAs exert their cardio-protective roles.  

 

1.6.4.2. Animal studies: 

Although recent clinical studies revealed a wide gap in understanding the molecular 

mechanisms of different types of n3FAs and their cardio-protective roles, animal 

studies using genetically susceptible species have shown their global anti-

inflammatory effects, detailed below: 

 

1.6.4.2.1. Omega-3 fatty acids and dyslipidemia: 

Dyslipidemia (high LDL-C and triglycerides and low high density lipoprotein 

cholesterol (HDL-C)) is one of the best known precipitating factors for 

atherosclerosis and hypertension (Libby, 2002). The lipid lowering effects of n3FAs 

have been controversial in many studies, mainly those on mice.  

Currently, mice are the most studied species for atherosclerosis as they can be 

genetically manipulated to induce atherosclerosis. Two genotypes of mice, low 
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density lipoprotein receptor knock out mice (LDLr-/-) and apolipoprotein E knock out 

mice (ApoE-/-) are commonly used to study atherosclerosis by inducing 

hyperlipidaemia (Zhang et al., 1992). 

  

N3-FAs are known to play a fundamental role in the lowering of plasma triglyceride 

(TG) levels and this has been well tested in animals (Chang et al., 2010, Frenoux et 

al., 2001). The mechanism by which n3FAs could lower plasma TG has been 

attributed to the suppressive effect of n3-FAs on the hepatic triglycerides and very 

low-density lipoprotein synthesis (Mozaffarian and Wu, 2011). However, the LDL-C 

lowering effects of n3FA have been less clear.  

 

1.6.4.2.2 Omega-3 fatty acids and changes in plaque composition: 

It is debated whether n3-FAs may potentially affect atherosclerotic plaque 

composition and stability. Growing evidence indicates that coronary vascular lesions 

are associated with low plasma EPA and DPA (docosapentaenoic acid) levels and 

more lipid accumulation (Amano et al., 2011). Moreover, n3-FAs may reduce the 

arterial uptake of LDL-C (Chang et al., 2010) and oxidation (Frenoux et al., 2001). 

The inhibitory effect of n3-FAs on LDL-C uptake has been attributed to their NF-κB 

suppressive activity (De Pascale et al., 2009).  

 

Although Sacks and his colleagues reported in 1995 that fish oil had no impact on 

advanced atherosclerosis (Sacks et al., 1995), recent studies suggest that these 

fatty acids do have a potential role. This is due to their ability to be incorporated into 

the plaque (Cawood et al., 2010, Chang et al., 2010, Thies et al., 2003) and thus 

change its structure. When n3-FAs are incorporated into the plaque, they replace the 

arachidonic acid (A.A), a precursor to inflammatory mediators known as eicosanoids, 

with its enzymes. Eicosanoids, such as leukotriene B4 (LTB4) and thromboxane A2 

(TXA2), are potent vasoconstrictor and thrombogenic agents (Calder, 2002).  

 

In addition, these free fatty acids reduce the number of macrophages (Chang et al., 

2010, Thies et al., 2003) and increase the number of lymphocytes (Cawood et al., 

2010) at the sites of lesions. The reduction plaque macrophages is attributed to their 

ability to suppress chemoattractant production (Endres et al., 1995). Furthermore, 

they attenuate the levels of adhesion molecules and thus decrease inflammatory cell 
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migration (Verschuren et al., 2011, Cawood et al., 2010, Chen et al., 2003) and 

MMPs (Cawood et al., 2010). They also inhibit VSMC proliferation in vitro (Terano et 

al., 1999). As a consequence of all these effects, it could be concluded that n3-FAs 

might maintain the stability of plaque and reduce the chance of rupture. However, 

the molecular basis of these changes, particularly in atherosclerosis needs further 

elucidation. 

 

1.6.5. Omega-3 fatty acids and IL-1β:  

Omega-3 fatty acids may have an IL-1β suppressive effect. A randomised trial has 

shown that high intracellular ALA and EPA is associated with a reduction in serum 

IL-1β levels (Caughey et al., 1996). Another randomised study has indicated that 

high plasma DHA levels are correlated with IL-1β inhibition, and that this suppression 

is at its maximum after LPS stimulation (Vedin et al., 2008). A recent study tested 

mice fed a n3-FA rich diet with LPS and reported that IL-1β levels decreased 

significantly and that this decline was mediated by TLR4 stimulation (Vijay-Kumar et 

al., 2011). A further mechanism by which n3-FAs have an IL-1β suppressive effect 

may be at a nuclear level, by inhibition of NF-кB (Boudreau et al., 2001). 

 

1.6.6. Omega-3 fatty acids have anti-hypertensive effects: 

In contrast to their anti-atherogenic roles, the anti-hypertensive roles of n3-FAs are 

thought to be multifactorial. A randomised controlled study carried out on middle-

aged men showed that, despite the lowering effect of fish oil on blood pressure, this 

effect was insignificant (Vandongen et al., 1993). However, the most recent   

randomised controlled study conducted on women aged more than 39 years has 

proposed that the risk of hypertension significantly decreased with the intake of n3-

FAs (Wang et al., 2010). 

 

Despite this, the molecular basis of the anti-hypertensive effect of n3-FAs is 

relatively unknown. One possible explanation for their effect on blood pressure is 

cyclooxygenase-2 (COX-2) suppression (Massaro et al., 2006, Matsumoto et al., 

2009). Cyclooxygenase has two isoforms; one is cyclooxygenase-1 which is 

expressed normally by the endothelium and has no pathological role. However, 

COX-2 is an enzyme that catalyses A.A into prostaglandin-E2 (a potent 

vasoconstrictor parameter) and is expressed only in inflammatory cells (Calder, 
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2002). Alternatively, the ability of n3-FAs to restore NO production and endothelial 

function and decrease SOR production (Richard et al., 2009) could account for the 

anti-hypertensive effect.  

 

Table (2) shows the most recent clinical/animal based research conducted on the 

n3-FAs and cardiovascular disease.  

 

Table 2. N3-FAs and CAD: a summary of the relevant studies on CAD. 

Reference Type of study Population Results Interpretation 
(Amano et al., 
2011) 

Observational. 368 patients ACS, 
males& females, 
8 months. 
 

ACS associated 
with low levels 
of, DPA& EPA 
but not DHA. 
High % LV& low 
FV%. 

N3 -FAs have a 
cardio-
protective 
effect. Also can 
modify AS in 
the foam cell 
stage. 

     
(Verschuren et 
al., 2011) 

Animal. Two groups, one   
transgenic mice 
(n=7) and the 
other; ApoE-
Leiden mice. Fish 
oil and placebo 
(16 months). 

CRP levels 
dropped after 
IL-1β 
stimulation. 
ICAM-1& E-
Selectin levels 
were lower in 
fish oil group. 

N3-FAs might 
have an anti-IL-
1β effect shown 
by lowering IL-
1β mediators 
(CRP, ICAM-1& 
E-Selectin). 

     
(Vijay-Kumar et 
al., 2011) 

Animal. Two groups 
(n=10). One fed 
fish oil, the other 
group fed sat-fats 
for 60 days, tested 
LPS stimulation. 

In fish oil group, 
levels of IL-1β 
declined after 
LPS challenge. 
N3-FAs 
mediate IL-1β 
inhibition 
through TLR4. 

An in vivo study 
showing an IL-
1β suppressive 
effect of n3-
FAs. However, 
receptor 
expression 
needs to be 
tested to 
validate. 

     
(Cawood et al., 
2010) 
 

Observational, 
RCT. 

61 patients with 
carotid AS. 
Omacor (DHA& 
EPA) for 102 
days. 

The plaque 
morphology 
changed with 
100%, 13% 
incorporation of 
EPA, DHA, 
respectively. 
There was 
significant 
reduction in the 
number of foam 
cells and an 

It is clear that 
n3-FAs 
maintain the 
stability of 
already 
developed 
lesions by 
lowering the 
number of 
inflammatory 
cells and thus 
decreasing the 
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increase in the 
number of 
lymphocytes. 
ICAM-1& MMP-
1 levels were 
decreased. 

chance to 
rupture. 

     
(Chang et al., 
2010) 

Animal. Diabetic mice 
strains L1 (n=12) 
fed chow, SAT, 
omega-3 rich diets 
for 12 weeks. 

Reduction in 
TG, LDL-C 
levels in n3-FA 
group. 
Reduction in 
the arterial 
uptake of LDL-
C. Suppression 
of macrophage 
infiltration. 

N3-FAs play an 
important role in 
the earliest 
stages of AS by 
limiting the LDL-
C uptake and 
macrophage 
infiltration. 
However, the 
mechanism by 
which doing so 
is not illustrated 
in this study. 

     
(Kromhout et 
al., 2010) 

The Alpha 
Omega Trial: 
Double-blind, 
placebo-
controlled trial. 

4837 patients with 
MI for 3.5 years. 
Males& females 
(60-80 years). 
April 2002- 
December 2006. 

DHA& EPA in 
combination 
showed no 
significant 
impact on the 
coronary 
vascular event, 
neither the lipid 
profiles of those 
patients. 

The patients 
were not 
followed 
regularly. Also, 
they were on 
anti-
hyperlipidemic 
medications, so 
the lipid profile 
cannot be 
interpreted 
accurately. 

     
(Matsumoto et 
al., 2009) 

Animal. 5 weeks rats 
exhibited type-2 
DM with 
endothelial 
dysfunction fed 
EPA (100/ 
300mg/kg/d) for 4 
weeks. 

Isolated 
mesenteric 
artery showed 
no significant 
changes with 
100mg EPA. 
However, with 
300mg dose 
these rats 
exhibited 
significant 
reduction in 
their blood 
pressure and 
improvement in 
HDL-C. 
Enhancement 
in Ach-induced 
NO relaxation, 
decreased 
COX-2 and NF-

N3-FAs might 
improve the 
blood pressure 
by lowering 
COX2 levels 
and its 
metabolites. 
Furthermore, 
the 
improvement in 
the level of NO 
and the 
vasodilator 
effect might be 
considered as a 
potential impact 
of n3-FAs on 
blood pressure. 
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κB expressions. 
     
(Vedin et al., 
2008) 

The OmegAD 
study. Double-
blind, placebo-
controlled 
study. 

204 patients with 
CAD ingested fish 
oil for 6 months. 

Significant drop 
in IL-1β only 
after LPS 
stimulation. IL-
1β reduction 
correlated with 
plasma levels of 
DHA, not EPA. 

It seems that 
n3-FAs lower 
IL-1β by a TLR-
based 
mechanism. 
However, the 
preferential 
effect needs 
further studies. 

     
(Yokoyama et 
al., 2007) 

JELIS study, 
Prospective, 
randomised 
Cohort study. 

18645 
Hypercholestermic 
patients on 
statins. Men & 
women (75 years). 
4.6 years. EPA-
1800mg a day. 

EPA reduced 
the non-fatal 
coronary events 
with 19%. 

The study has 
been carried out 
in Japan. N3-FA 
levels are 
already high in 
Japanese 
patients. 

     
(Massaro et al., 
2006) 

In vitro study. Human 
saphenous vein 
endothelial cells 
were treated by 
DHA and IL-1α. 

A decrease in 
the followings, 
after DHA pre-
treatment 24 
hours to IL-1α 
stimulated cells: 
COX2, NADPH 
oxidase & NF-
κB. 

The 
suppressive 
effect of DHA 
was enhanced 
in the presence 
of IL-1. 

 
Abbreviations: ACS; acute coronary syndrome, CAD; coronary artery disease, % LV& FV; percentage of lipid 
volume and fibrous volume respectively, CRP; C-reactive protein, Sat-fats; saturated fats, RCT; randomised 
control trial, AS; atherosclerosis, TG; triglycerides, MI; myocardial infarction, LPS; lipopolysaccharides, TLR4; 
toll-like receptor type 4, HDL-C; high density lipoprotein cholesterol, LCL-C; low density lipoprotein cholesterol, 
DM; diabetes mellitus, DHA; docosahexaenoic acid, EPA; eicosapeantoic acid, DPA; docosapentaenoic acid, 
n3FAs; omega-3 fatty acids, ICAM-1; intercellular Adhesion Molecule 1, MMP-1; matrix metalloproteinase-1, Ach; 
acetylcholine, NO; nitric oxide, COX2; cyclooxygenase-2.  
 

 

1.7. Hypothesis: 
IL-1 has gathered substantial interest over recent years because experimental 

atherosclerosis responds specifically to IL-1 blockade using either soluble IL-1ra or 

monoclonal blocking antibodies. Although agents able to impair IL-1β effects have 

been considered to have a highly therapeutic impact, the mechanism of IL-1β 

secretion is still obscure.  

 

In the backgrounds (introduction chapter 1), I began by discussing the possible 

mechanisms that underlie IL-1β modulation in atherosclerosis. I then addressed the 

emerging role of NE as a possible unconventional IL-1β secretion. Finally, I 
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highlighted possible roles of n3FAs as anti-atherogenic agents. This led me to two 

hypotheses.  

 

Hypothesis (1):  
NE enhances IL-1β secretion from vascular endothelium in vitro by a vesicular 

related mechanism.  

 

Hypothesis (2):  
DHA and ALA reduce atherogenesis in ApoE-/- mice fed a high fat diet via an IL-1 

related mechanism. 

 

1.8. Aims and Objectives: 
 

The aims for this thesis were to: 
1. Determine whether IL-1β release from endothelial cells could be induced by 

neutrophil elastase in vitro. 

2. Investigate whether ALA and DHA might modulate IL-1β effects on 

experimental atherosclerosis in mice.  

 

The objectives were: 
a) To use an in vitro model, HCAECs (human coronary artery endothelial cells), 

to test the release of IL-1β following incubation with NE using ELISA. 

b) Using this model to detect released forms of IL-1β using Western blots. 

c) Ascertain if the released IL-1β was biologically active. 

d) Begin to suggest mechanisms that might underpin the release of IL-1. 

e) Test NE inhibitors in the in vitro system. 

f) Measure the effects of DHA and ALA supplementation on experimental 

atherosclerosis and IL-1 expression in mice.  
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Chapter (2) General Materials and 
Methods. 
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2.1. Overview of the general materials and methods: 
The experimental work conducted in this thesis is divided into two main parts. The in 

vitro, cell culture, work was performed to test whether NE induces IL-1β secretion 

from ECs and explore the underlying mechanism(s). The in vivo experiments were 

carried out to investigate the molecular mechanism of action of the two main types of 

n3FAs, particularly DHA and ALA in atherogenesis.  

 

2.2. Materials and reagents: 
Full details of reagents and antibodies used with their stock concentrations, working 

concentrations/doses, and their sources are shown in appendices (I & II).  

 

2.3. Detailed Methods: 
2.3.1. Cell culture: 
All cell experiments were conducted in a laminar flow hood and cells incubated at 

37ᵒC with 5% (v/v) CO2 unless otherwise stated. To reduce the chance of infection, 

which may interfere with the interpretation of the results, strict sterile procedures 

were used at all times. 

  

      2.3.1.1. Human umbilical vein endothelial cells (HUVECs): 

One of the aims of this project was to induce maximal IL-1β production within ECs 

using different combinations of cytokines, before testing for release. HUVECs are a 

commonly obtained type of ECs used frequently in research, as they are easily 

available with low costs. Cells were obtained from freshly collected cords of newly 

delivered mothers, with the collaboration of the maternity unit of Sheffield Teaching 

Hospital (STH), Sheffield, UK under an ethical approval (STH15599, REC ref 

10/H1308/25, for details please see page 256). Additional cells were purchased from 

PromoCell (UK), pooled from several donors with their special media. These cells 

were supplied in a cryo-preservative vial and stored in liquid nitrogen at -154ᵒC until 

cultured. 

 

2.3.1.1(A) Isolation of HUVECs from umbilical vein: 

Freshly obtained cords were stored at +4ᵒC for at least 24h in minimum essential 

media (MEM) (see appendix III, section 1 for the preparation and the chemical 
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combinations of MEM). Cords that were at least 10 centimetre (cm) long, with no 

clamp marks, were used for the isolations. All other cords were discarded.   

 

Following an established protocol (Jaffe et al., 1973), the umbilical vein was 

cannulated with a 14G plastic cannula and perfused with pre-warmed M199 (basic 

media, Gibco) media to remove all traces of blood. The other end of the cord was 

then ligated and the vein inflated with 0.1% (w/v) type VI collagenase (Sigma-

Aldrich) in M199. Cells detached by the collagenase action were gently collected into 

a sterile universal tube and the cord was then flushed with 20ml pre-warmed M199 

to collect the remaining ECs. The tube containing cells was centrifuged at 300g for 5 

minutes at 24ᵒC, yielding a small pellet that was then re-suspended in 1ml complete 

growth media (CGM details in appendix III).  

The cells were transferred into a T25 flask (25cm²) pre-coated with 1% (w/v) gelatin/ 

distilled water (DW) (Sigma-Aldrich) and left overnight in the incubator. The media 

was then changed, after washing the cells with sterile phosphate buffered saline 

(PBS, pH 7.4) to remove unattached cells. 

 

After the isolation process, the HUVECs initially showed small epithelioid clusters, 

however, after 2-3 days, these spread to the typical cobblestone monolayer 

appearance. The cells used in this study were collected from at least 20 different 

cords.  

 

      2.3.1.2. Human Coronary Artery Endothelial cells (HCAECs): 

HCAECs from single donors were purchased from PromoCell and cultured in their 

supplemented media (details in appendix III), according to the supplier’s instructions. 

The cells were stored in liquid nitrogen until used.  

Following thawing, the cells were cultured in four T25 flasks and sub-cultured as 

described below. HCAECs were supplied at passage 2, therefore, the cells were 

cultured and sub-cultured until passage 3, and then they were either used 

experimentally or frozen and kept in liquid nitrogen until needed.  

 

      2.3.1.3. Sub-culturing protocol: 

When the cells were at 80-90% confluence, they were passaged 1:3 to maintain a 

continuous growth. Over-confluent cells easily detach from the flask and die due to 
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exhausting the media and the nutrients. Furthermore, if the cells become over-

confluent, there is a high possibility of them stopping IL-1β production and thus 

giving false results in this study.  

 

The cells were washed once with PBS (pH 7.4) after the removal of the media. Pre-

warmed trypsin solution (0.2% v/v in PBS and Ethylenediaminetetraacetic acid; 

EDTA) was then added to the cells (1ml for T25, 2ml for T75) and the cells were 

detached at room temperature. The trypsin solution was used to dissolve the 

junctions between the cells, but lengthy exposure can dissolve the lipid bilayer of the 

cells. Therefore, immediately after detaching the cells, the trypsin was diluted with 10 

ml of PBS (pH 7.4) and the content was transferred to a universal tube and 

centrifuged at 300g at 24ᵒC for 5 minutes. The supernatants were then discarded 

and the pellet was re-suspended in 1ml CGM. 

The final required amount of the media was calculated depending on the number of 

flasks needed; for instance, for three T75, 45ml of media was added to the cell 

solution and then 15ml of the solution containing cells was added to each flask. The 

flasks containing cells were placed in the incubator and the media changed every 

two days until the cells became confluent. 

 

At a high passage number, ECs are known to lose their surface markers and have 

slower growth rates (King et al., 2003) and a lesser response to stimulation. 

Therefore, ECs at passage 2-4 were used for all experiments.  

 

      2.3.1.4. Dual-Step activation protocol: 

CGM for each specific cell type was used in the stimulation experiments, except for 

NE stimulations, where serum free medium (SFM) was used. 

The cells were seeded in 6-well plates at a density of 2x104 cells/well 48 hours (h) 

before starting stimulation. A single T75 flask containing confluent cells was 

trypsinised and centrifuged to produce a pellet which was re-suspended in 1ml 

media and the cells were counted using a haemocytometer. The calculated density 

of cells was added to 1% (w/v) gelatin/DW pre-coated 6-well plates and 

supplemented further with 2ml of media/well. The cells were allowed to grow and 

reach 60-70% confluence (48h after plating). After changing the media and washing 



36 Chapter (2) General Materials and Methods. 
	
  

	
   36 

the cells once with PBS (pH 7.4), the stimulating solution (2ml/well; detailed below) 

was added. 

2.3.1.4A) Step (1) activation: 

To up-regulate endogenous proIL-1β production by the cells, different combinations 

of pro-inflammatory cytokines were used for incubation times, as follows: 

• TNF-α (10ng/ml) /interferon-gamma (INF-ɣ) (100ng/ml) for 48h then LPS 

(1µg/ml) was added for 24h. 

• LPS (1µg/ml) /IL-1β (10ng/ml) for 48h. 

• TNF-α/IL-1β (10ng/ml each) or 

• TNF-α/IL-1α (10ng/ml each) for 48h. 

Further details of the pro-inflammatory cytokines used to stimulate IL-1β synthesis 

and release are given in appendix (I). 

After the given incubation periods, the media was discarded and the cells were 

washed three times with sterile PBS (pH 7.4), to remove the remaining IL-1β and/or 

serum in the media. The last wash was kept to be analysed by ELISA to check the 

competency of the washing.  

 

2.3.1.4B) Step (2) activation: 

To test IL-1β release, a freshly made mixture solution of NE (concentrations: 0.5, 1, 

2µg/ml) in SFM was added for 30 minutes, 2h and 6h. Serum deprivation is known to 

cause caspase activation and apoptosis in ECs (Hogg et al., 1999), thus, stimulation 

for longer than 6h was not considered, to prevent apoptosis masking any release by 

other mechanisms.  

In parallel experiments, cells were pre-incubated with neutrophil elastase type III 

inhibitor (NEIII; 500µM) (Karmaker M., 2012), caspase-1 inhibitor I (YVAD-CHO; 

50µM) (Ward et al., 2010, Schumann et al., 1998), or bafilomycin A1 (BAF1; 50nM) 

(Gupta et al., 2012) for 30 minutes before the addition of NE.  

At the end of the incubations, supernatants were harvested and centrifuged at 300g 

for 5 minutes to remove the cellular debris, then placed in eppendorf tubes, 

1tube/well. Instant freezing with dry ice was used with the samples before being 

stored at -80ᵒC until analysis.  
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After washing (once) with ice cold PBS (pH 7.4), the cells were lysed with a lysis 

buffer (1% (v/v) triton-x100/PBS) by re-suspension and the adherent cells were 

scraped off the plates. The triton-x 100 was used as a detergent to detach and gently 

lyse the cells. The cells were collected in eppendorf tubes one tube/well and frozen 

in dry ice to prevent IL-1 degradation and stored at -80ᵒC until analysis was 

conducted. 

 

       2.3.1.5. IL-1β/ProIL-1β quantification using ELISA: 

To directly measure the levels of IL-1, a quantitative sandwich enzyme-linked 

immunoassay (ELISA) was used. IL-1β and proIL-1β in the total supernatants or the 

cell lysates were detected using an IL-1β ELISA kit (DLB50) and proIL-1β ELISA kit 

(DLBP00), respectively (R&D Systems, UK), following the manufacturer’s protocol. 

 

Briefly, IL-1β standards were prepared at concentrations of 3.9, 7.8, 15.6, 31.2, 62.5, 

125, and 250pg/ml to generate a standard curve. ProIL-1β standards were 

generated at concentrations: 10000, 1500, 750, 375, 187.5, 93.8, 46.9, 23.4pg/ml. 

200µl of standard, controls or samples were added to a 96 well plate and incubated 

for 2h at room temperature. The plate was washed three times with washing buffer 

before addition of IL-1β or proIL-1β conjugated antibody (200µl/well) for an hour. 

After further washing, substrate solution was added to the wells and protected from 

light. The samples were left for 20 minutes before stop solution was added and the 

absorbance read at 450nm. The average concentrations of the samples in pg/ml 

were then calculated from the standard curves.  

 

In proIL-1β ELISA, the capture antibody coated to the microplate is a specific for the 

first 116 residues in the precursor of IL-1β whereas the detection antibody is a 

specific for the mature form. Therefore, the assay did not detect the mature form 

alone but instead it is specific for the intact proform.  

 

      2.3.1.6. Measurement of NE activity:  

To assess the proteolytic activity of NE and test whether NE remains active over the 

duration of 6 hours, a chromogenic substrate that is specifically cleaved by NE and 

generates photometric products was used (Figure 2.1).  
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NE activity was assessed spectrophotometrically using a highly specific synthetic 

substrate (324696 Elastase Substrate I, MeOSuc-Ala-Pro-Val-pNA; 100µM) as 

previously described (Lee et al., 2006).  

In Brief, samples (supernatant and lysate) were added to the assay buffer (0.45 Tris-

Base and 2M NaCl; pH. 8.0) containing Elastase Substrate I for 6h. The rate of the 

substrate cleavage was measured using a plate reader (ThermoScientific) at 410nm. 

The bioactivity of NE in the samples was then compared to a standard curve of 

substrate hydrolysed by a commercially provided NE (0, 0.39, 0.78, 1.56, 3.12, 6.25, 

12.5, 25µg/ml).  

 

The rate of the substrate cleavage was expressed as µg/µM where the stated µg of 

NE leads to 1µM of substrate cleavage. Figure 2.1 illustrates the mechanism by 

which NE cleaves the substrate as proposed by Schechter and Berger in 1967 

(Korkmaz et al., 2010).  

 

 

Figure 2.1. Schematic diagram illustrates the mechanism by which NE specifically cleaves the 
chromogenic substrate to measure its activity. The linear interaction between NE and the 
substrate demonstrates that each of the subset (S residual) on the elastase is binding to the upstream 
residual of the chromogenic substrate. Subsequent products elaborate colour changes that can be 
measured at 410nm absorbance (Permitted and adapted by (Korkmaz et al., 2010)) . 
 

 

      2.3.1.7. Cell Viability assays: 

2.3.1.7A) Trypan Blue dye Exclusion: 

ECs are highly susceptible to apoptosis and detach easily (Winn and Harlan, 2005). 

To rule out the possibility that NE may affect cell viability and cause EC death, trypan 
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blue dye exclusion was performed. This is a dye for dead cell identification and a 

quick way to differentiate between viable and dead cells.  

 

The basic principle is that dead cells easily take up the dye, thus they appear dark 

blue whereas viable cells resist and hence appear colourless and refractive, under 

light microscopy. 50µl of 0.4% (v/v) trypan blue was mixed with 50µl of cell 

suspension. After mixing the solution, 20µl of trypan blue/cell suspension was 

pipetted into one of the two chambers of a haemocytometer. Accordingly, % of cell 

viability = number of unstained cells (viable) x 100 /total number of cells. 

 

2.3.1.7B) Cytotoxicity assay: 

Lactate dehydrogenase (LDH) is an intracellular enzyme found in all cell types and 

mediates the enzymatic oxidation of lactate to pyruvate. However, once the cells are 

damaged by stress, injury or chemicals, the intracellular enzyme is rapidly released 

outside the cells. Therefore, LDH quantification is a method that has frequently been 

used as an indication for cell death (Abe and Matsuki, 2000).To test whether LDH is 

released and the process of the cell death occurred as a result of NE actions, cell 

cytotoxicity was assessed using a LDH cytotoxicity assay (Promega, USA) according 

to manufacturer’s instructions.  

 

The percentage (%) of LDH released into the conditioned media was measured in 

freshly isolated supernatants after different time points as described (Wilson et al., 

2007).  

Briefly, in a 96 well-flat-bottom plate, 50µl of samples (supernatants) were mixed with 

50µl of substrate. The mixture was protected from the light and left at room 

temperature for 30 minutes. Stop solution (50µl) was then added to stop the reaction 

and the absorbance was recorded at 490nm within 1h.  

 

      2.3.1.8. Cell apoptotic assay: 

Many different approaches are used to study programmed cell death or apoptosis. 

Apoptosis is distinctive from cell necrosis or death in that the cells tend to change 

their morphology and shrinkage, with fragmentations in their nuclei and subsequent 

release of apoptotic bodies (Majno and Joris, 1995). As with cell viability, no 

definitive approach is used to define the cellular apoptosis and therefore many 
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techniques are used. In this thesis, I used caspase-3/7 activity assay as an indicator 

of apoptosis.  

 

Caspase-3 is a single effector in the apoptotic pathway and it mediates activation of 

all other caspases in the pathway (Sebbagh et al., 2001). Apoptosis, detected via 

caspase-3/7 activity, was analysed by Caspase-Glo® 3/7 assay (Promega, USA), 

according to supplier’s instructions.  

 

In brief, HCAECs in 96 well plates were seeded at a seeding density of 6x103 and 

grown until they reached 70% confluence. They were then stimulated with the 

above-mentioned conditions (see dual-step activation). Camptothecin (CPT) 1µM 

(Sigma-Aldrich, UK) (Jansen et al., 2012) was used to induce apoptosis in ECs as a 

positive control. At the end of the stimulations, the 96 well plates containing cells 

were removed from the 5% (v/v) CO2 incubator to allow the plates to adjust to room 

temperature.  

Caspase-Glo 3/7 Reagent (100µl) was then added to 100 µl of media containing 

cells, protected from the light, and left for 2h at room temperature. 50µl of the mixture 

from each well was then transferred to a corresponding well of a white 96 well plate. 

The luminescence of each sample and control was measured in a plate reading 

illuminometer according to manufacture’s instructions (ThermoScientific). 

 

      2.3.1.9. Western blot analysis for IL-1β processing and release. 

2.3.1.9A) Protein assay: 

Quantification of the amount of protein in each sample is an important step before 

conducting immunoblotting, to ensure equal loading. I used a colorimetric detection, 

Bicinchoninic Acid (BCA)-based, protein assay (ThermoScientific), following the 

manufacturer’s instructions.  

Briefly, equal volumes of samples (supernatants and lysates) were added to a 

working solution provided by the kit, in a 96-well plate. After 30-minute incubation at 

37ᵒC, the plate was allowed to cool at room temperature and the resultant purple 

colour measured at 562nm. The absorbance of known protein (bovine serum 

albumin, BSA, standard curve), with known concentrations at a minimal detection 

level of 5µg/ml was used to calculate the concentrations of unknown proteins. 
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 2.3.1.9B) Immunoblotting: 

Western blotting, otherwise known as immunoblotting, is a basic technique used to 

separate proteins based on the differences in their molecular weights. The term 

“blotting” refers to transfer of samples from a gel to a membrane with a subsequent 

detection on the membrane surface, whereas “Western” or immunoblotting refers to 

detection of a specific antigen, using an antibody binding. 

 

Samples (supernatants, concentrated using 10k Amicon filter devices 

(ThermoScientific), and lysates) at equal amounts of protein (15-20µg per lane) were 

separated on Novex 4-12% Tris-glycine gels (Invitrogen, Paisley, UK) at 200 voltage 

(V), prior to transfer onto nitrocellulose membranes. The membranes were blocked 

with 5% (w/v) non-fat milk in 0.1% (v/v) PBS/Tween-20 (VWR International Ltd, 

Lutterworth, UK) for 1h to prevent any nonspecific binding of the antibodies to the 

surface of the membranes. The membranes were then incubated with primary 

antibodies, overnight at 4ᵒC, against IL-1β (mouse monoclonal, MAB201, 1µg/ml, 

R&D Systems), caspase-1 (rabbit polyclonal, ab17820, 1µg/ml, abcam, UK), α-

tubulin (mouse monoclonal, 0.3 µg/ml, Sigma), NLRP3 (mouse monoclonal, 1µg/ml, 

ENZO, UK) or Lysosomal associated membrane protein-1 (LAMP-1, 0.1µg/ml, cell 

signalling, UK).  

 

After washing 4 times for 5 minutes with washing buffer (PBS containing 0.1% (v/v) 

Tween-20) to remove unbound primary antibodies and reduce background staining, 

the membranes were incubated with secondary antibodies for 1h at room 

temperature (fluorescently labelled, 1:15000 dilution; Invitrogen, UK). The 

membranes were then again washed 4 times with the washing buffer to remove any 

unbound secondary antibodies and subsequently scanned with Odyssey according 

to the manufacturer’s recommendation (LI-COR; Cambridge, UK).  

 

All western blotting reagents were obtained from Life Technology, unless otherwise 

stated. Densitometry using LI-COR software was performed on at least 3 separate 

blots from three different experiments.  
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      2.3.1.10. Direct (cell-free) effects of NE on recombinant IL-1β/proIL-1β: 
NE is known to undergo spontaneous autolysis (Liu et al., 1999) and has a 

proteolytic activity against many cytokines such as TNF-α (Henriksen and Sallenave, 

2008). For this reason, I tested the effect of NE (at the concentration used in 

stimulation experiments) on both mature IL-1β and proIL-1β standards. IL-1β 

standard (R&D Systems, UK) at a concentration of 125pg/ml and proIL-1β standard 

(R&D Systems, UK) at a concentration of 10000pg/ml were mixed with NE (1µg/ml) 

incubated for 30 minutes, 2h and 6h, at 37ᵒC. The samples were then stored at -

80ᵒC prior to testing for NE cleavage, by ELISA and Western blot.  

 

      2.3.1.11. Luciferase assay and determination of IL-1β biological activity: 
The bioactivity of the secreted IL-1β by HCAECs following NE stimulation was 

assessed using an IL-8 luciferase reporter assay as previously described (Kiss-Toth 

et al., 2000). Hela cells (Sigma-Aldrich, UK) were cultured in their supplemented 

media (DMEM, Appendix III) and were transfected using PolyFect transfection regent 

(Qiagen) according to the supplier’s recommendations.  

Briefly, Hela cells were plated in 96-well plates at 5x103; around 60% confluence. 

Transfection efficiency was calculated using EGFP (Green fluorescent protein) and 

measuring the activity of renilla in the assay. Cells with approx. >70% of estimated 

efficiencies were used in the bioactivity assay.  

 

Hela cells were transfected with a total of 100ng DNA/well; including 60ng pIL-8-

luciferase (luc) as a reporter and 40ng renilla (pRL-TK) as an internal control in the 

assay. After 24h, cells were stimulated with 0.1nM of rIL-1β as a control, or freshly 

harvested supernatants from HCAECs stimulated with NE for 6h. IL-1 beta 

neutralising antibody (1µg/ml, MAB201, R&D Systems) was used in some wells, to 

prove specificity.  

After 6h incubation, cells were lysed with passive lysis buffer and kept at -20ᵒC 

overnight to ensure the complete lysis of the cells. On the second day, lysed cells 

were transferred to a white-bottomed plate (15µL) to be assayed using LARII and 

Stop and Glo reagents and luminescence intensity was measured using a plate 

reader (ThermoScientific). 
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Luciferase activity was calculated by normalising to the renilla luminescence 

measured in each well. Ratio was taken for each individual experiment and the 

activity of rIL-1β stimulated cells were used as a 100% and activities in NE 

supernatant were expressed as a percentage of this. 

 

      2.3.1.12. Annexin V binding to the cells and detection of MV shedding: 

HCAECs (3x104) were plated in LabTek (Fisher) 8-well chamber slides and 

subjected to the above-mentioned stimulation conditions (Dual-step activation). 

AnnexinV-Alexa Fluor® 488 (Invitrogen) was then added to the cells at 5µl/well. MV 

shedding was visualised using image acquisition software (Inverted widefield 

fluorescence microscope Leica AF6000 Time Lapse) after the addition of NE in a 

5%CO2/ 37ᵒC (v/v) heated chamber. The images were captured after 10 minutes, 30 

minutes, 2h and 6h and analysed using Image J software. EVs (0.1-1µm) were 

quantified per random field of cells.  

 

      2.3.1.13. Electron Microscopy (EM) for MV shedding and exosome release: 

Electron microscopy is a type of microscopy that uses electrons to generate an 

image of a specimen. It has a higher resolution and magnification than the light 

microscopy and thus allows visualisation of smaller objects in a fine detail. Thus to 

observe MV morphology and shedding and exosome release from EC plasma 

membranes, EM was used. 

 

HCAECs were treated, or left untreated, with NE for 30 minutes, 1h, and 2h. The cell 

pellet was prepared as described above (Section 2.3.1.4B) and fixed in 2% (w/v) 

paraformaldehyde (PFA) and 1.25% (w/v) glutaraldehyde in sodium cacodylate (w/v) 

overnight. Following washing in 0.1% (w/v) sodium cacodylate, the samples were 

dehydrated in a series of graded ethanol (70%, 80%, 90%, 100%, dry 100%) v/v and 

infiltrated in 50:50 London resin (LR) White/100% Ethanol LR (v/v) White over night. 

LR white was changed twice over a period of 8h and tissue polymerised in fresh LR 

White at 50ᵒC overnight before cutting into ultrathin sections.  

 

Blocks were sectioned using a Reichart Ultramicrotome, generating 85nm thick 

sections, mounted on nickel grids. Sections were stained with saturated uranyl 

acetate w/v (30 minutes), washed in DW, stained with Reynold’s Lead Citrate (5 
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minutes) and washed again in DW. Grids were viewed using an FEI tecnai TEM at 

80Kv operating voltage. Images were recorded using a Gatan multiscan digital 

camera and analysed using Gatan digital micrograph software.  

All reagents were kindly provided by Dr. Christopher J Hill (Department of 

Biomedical Science, University of Sheffield, Sheffield, UK).  
 

      2.3.1.14. Microvesicle (MV) isolation: 

MV isolation was conducted as described (Jansen et al., 2012, Wang et al., 2011a). 

Briefly, to pellet MVs, supernatants were centrifuged at 20,000g for 15 minutes at 

4ᵒC. MV pellets were washed twice with PBS and stored at -80ᵒC until analysis was 

conducted. The MV concentrations were quantified by total protein measurement 

using BCA protein assay (Pierce; Leicestershire, UK) according to manufacturer’s 

instructions and as described in section 2.3.1.9. 

 

      2.3.1.15. Flow cytometry gating strategy for MV population: 

A pellet of MVs (an average of 20µg from 2x104 cells), resuspended in annexin V-

binding buffer, was stained with annexin V PE-Cy7 fluorescence according to the 

manufacturer’s recommendations (eBioscience, UK). LSR II flow cytometer (BD 

Biosciences) was used to quantify MVs. The upper size limit of MVs was defined in a 

logarithmic forward scatter/side scatter dot plot histogram using 0.9-2µm calibrated 

latex beads (FC Size Calibration Beads; Sigma-Aldrich).  

 

The MV gate was defined by drawing around the 2µm bead population and excluding 

the first channel of forward and side scatter. Endothelial MVs were defined as events 

of size <2µm expressing Annexin V. Background fluorescence within the MVs gate 

was established by incubating labelled control antibodies with MVs. Each sample 

was run until 10,000 calibration beads were counted in the 2.5mm gate.  

Data were acquired and analysed by Flow Jo software (TreeStar, Inc, Ashland, 

USA). Positive events in the gated area of interest were multiplied by a concentration 

factor to determine the number of the MVs per 2x104 cells. 

 

      2.3.1.16. Measurement of intracellular free calcium mobilisation during NE 

stimulation: 

Intracellular calcium in ECs [Ca2+]i was measured as previously described (Storey et 
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al., 2000), using Fluo-4 Direct™ Calcium Assay Kit (Invitrogen), according to 

manufacturer’s recommendations.  

A HCAEC monolayer, in 96 well plates at 5x103 cells/well, was stimulated with 

cytokines for 48h, or left untreated, then the media was disposed and cells were 

washed with PBS (pH 7.4, calcium free, Gibco). The cells were then coated with 

Fluo-4 in the dark for 30 minutes in 1% (w/v) Ca2+ free media (Gibco).  

The cells were then washed and the media was replaced with serum free / calcium 

deprived media containing stimulants as described in section 2.3.1.4B. Calcium 

responses to NE were read spectroflurometrically using a plate reader at excitation 

494nm and emission 516 nm. Ethyleneglycoltetraacetic acid (EGTA; 6mM, Sigma) 

and Ionophore A3784 (10µM, Sigma) were used as negative and positive controls, 

respectively.  

 

      2.3.1.17. Immunofluorescence staining: 

Confluent layers of ECs were grown on fibronectin (Sigma) coated Lab II-Tek 

chamber slides (ThermoScientific) and incubated with NE for (30 minutes to 2h), or 

left untreated. The cells were then fixed in 4% (w/v) PFA at room temperature for 10 

minutes. Excess PFA was removed by washing the cells with PBS (3x, pH 7.4) to 

and permeabilised using 0.3% (v/v) triton-X100/PBS for 10 minutes.  

 

Antibody nonspecific binding was prevented by incubating the cells with a blocking 

buffer (PBS containing 1% (w/v) BSA) for 30 minutes before the addition of primary 

antibodies (anti-IL-1β, antiLAMP-1, or anti-NE; see appendix II for antibody 

concentrations and their sources), in a diluent of 0.3% (v/v) donkey serum/PBS for 

1h. After washing with PBS and subsequent incubation with the appropriate 

fluorescently labelled secondary antibody (donkey anti-rabbit 448, donkey anti-

mouse 555, and donkey anti-goat 640, Invitrogen), the cells were mounted in a 4’,6-

diamidino-2-phenylindole (DAPI) containing mounting media and analysed using 

confocal microscopy (Zeiss). Colocalisation analysis was performed using image J 

software.  

 

      2.3.1.18. Immunolabelling of NE: 

Immunolabelling of NE was conducted as previously described (Houghton et al., 

2010) using a Microscale Protein Labelling kit (Molecular Probes) according to 
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manufacturer’s instructions. 50µg NE was used for the reaction. Final concentration 

of Alexa 647-NE was 0.1 mg/ml in a volume of 100 µl. NE inside ECs was observed 

using confocal microscopy and analysed using image j software.  

 

      2.3.1.19. Immunogold staining: 

Sections were mounted on inert grids such as nickel or gold described in section       

2.3.1.13. The grids (nickel) were washed in DW for 10 minutes. After washing, 

sections were incubated in TBS (tris buffered saline), pH 7.4 containing 10% (v/v) 

normal serum (from the same species as the secondary antibodies) for 1h. Samples 

were then stained with the appropriate specific primary antibody diluted 1:50 with 

TBS, pH 7.4, including 0.2% (w/v) BSA, for 2 hours.  

 

The grids were washed in two changes of TBS (pH 7.6) for 5 minutes each, and then 

two changes of TBS (pH 8.2) for 5 minutes each. The immunogold conjugated 

secondary antibody was then added (diluted 1:200 with TBS, pH 8.2, including 0.8% 

(v/v) BSA) for 2 hours. After subsequent washing of the grids in TBS, pH 8.2, twice, 

for 5 minutes, the grids were stained with saturated uranyl acetate 1% (w/v) for 30 

minutes, washed in DW, then stained with Reynold’s Lead Citrate (5 minutes) and 

washed in DW. 

Imaging was conducted using using a FEI tecnai TEM at 80Kv operating voltage.  

Images were recorded using a Gatan multiscan digital camera and analysed using 

Gatan digital micrograph software. 

Reagents were kindly supplied by Dr. Christopher J Hill (Department of Biomedical 

Science, University of Sheffield, Sheffield, UK).  
 

2.3.2. Animal experimental design: 
Male ApoE-/- mice were bred in-house at the University of Sheffield. Food and water 

were given ad libitum under a controlled environment (Temperature; 22-25ᵒC, 

humidity; 55 ± 5 and 12h light cycle). At 8 weeks of age, the mice were housed 

individually and randomly separated into one of three groups: 

• 12 mice fed high fat diet (HFD) with jelly alone. 

• 12 mice fed HFD and ALA mixed with jelly. 

• 12 mice fed HFD and DHA mixed with jelly. 



 

 47	
  

      2.3.2.1 Animal feeding: 

2.3.2.1A) High fat diet: 

The mice were fed a Western-type diet, high fat diet (HFD), containing 21% (w/w) 

fat, 0.15% (w/w) cholesterol and 0.296% (w/w) sodium (Special Diet Services, 

Witham, UK) over a 12-week duration. This HFD was used specifically to study the 

diet effects on atherosclerosis and hypertension as described (Chamberlain et al., 

2009).  

 

2.3.2.1B) Jelly feeding and drug delivery: 

In order to dissolve the fatty acids efficiently and provide a constant daily intake, 99% 

purified fatty acids (Sigma-Aldrich, UK) were mixed with jelly. The jelly (blackcurrant) 

was purchased from a local supermarket in a concentrated form and before starting 

the experiment; the mice were trained on the jelly at least 1 week before adding the 

FAs. One cube of jelly was dissolved in 25ml boiling water and poured into 4 sterile 

plastic moulds. 180µl of FAs (equivalent to 300mg) were then mixed gently with the 

jelly and left at -20ᵒC for 1h. The set jelly was cut into equal pieces and kept at -20ᵒC 

for individual mouse feeding. The omega-3 FAs (DHA or ALA) were given at a final 

concentration of 300mg/kg/day as previously reported (Matsumoto et al., 2009). 

 

      2.3.2.2 Ethical issues: 

All animal care and procedures were closely conducted under ASPA 1986, UK. The 

work was performed under personal licence PIL40/10381 and project licence 

PPL70/7992 (previously PPL40/3307).  

 

      2.3.2.3. Food intake and body weight monitoring: 

The mice were monitored daily for their intake of jelly containing fatty acids. On a 

weekly basis, body weights were measured among the three studied groups. 

Measurements were taken to the nearest 0.1g and recorded from week 0, before 

starting the study, to week 12. Average body weights for mice per group were plotted 

per individual week for 12 weeks.  

 

      2.3.2.4. Blood pressure monitoring: 

Systolic and diastolic blood pressure was measured in the mice using a tail-cuff 

(Visitech Systems, NJ, USA) as previously described (Chamberlain et al., 2009). 
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Briefly, the mice were subjected to a one-week of training before starting 

measurements in order to minimise stress levels. Blood pressure was measured in 4 

mice per group, and 10 measurements per mouse per day were recorded on four 

different days per week for 12 weeks. The data were rejected if the systolic blood 

pressure was more than 200mmHg, less than 40mmHg, outside 2 standard deviation 

(SD) of the mean or had fewer than 4 valid readings. Per week measurements were 

also rejected if they had fewer than 3 valid readings.  

 

      2.3.2.5. Echocardiogram: 

Echocardiogram is an ultrasonographic technique that has become a dominant 

cardiac imaging technique in day-to-day clinical practice. Quantification of cardiac 

chamber size and ventricular function assessment are the most frequently tasks 

performed by echocardiogram (Lang et al., 2006). Therefore, to assess the cardiac 

function of the mice during the duration of the study, transthoracic echocardiogram 

(TE) was conducted as previously described (Hameed et al., 2013). In brief, the mice 

were anesthetised using isoflurane delivered in oxygen in an isolator before placing 

the mice in a supine position. To minimise excessive heat loss, which may affect the 

measurements, the mice were placed on a heated platform and continuous rectal 

temperature was monitored.  

 

During recording, the mice were maintained on approximately 0.5-1.5% (v/v) 

isoflurane in oxygen, delivered via a nasal cone. The level of anaesthesia was 

adjusted to achieve a heart rate of 500 ± 125 beats per minute (bpm).  

Left ventricular (LV) function was recorded in 2D- short axis view at the level of left 

ventricular outflow tract (LVOT), whereas M-mode measurements were made for LV 

wall and cavity dimension (LVIDd). LV fractional shortening (LVFS) and ejection 

fraction (LVEF) and corrected LV mass (LVM) were assessed using automated 

analysis. Pulse wave Doppler was used to determine the cardiac output (COP), and 

aortic blood velocity. 

 

The measurements were taken twice, at the beginning of the study (baseline) and 

just prior to the termination of the study, using an ultrasound imaging system (Vevo 

770®, Visual Sonics, Toronto, Canada) and a RMV707B scan head was used. 
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2.3.3. End of study:  
The mice were euthanased with an overdose of phenobarbital (200mg/kg, 

intraperitoneal (ip) injection). Blood was collected by cardiac puncture following the 

loss of the carpopedal reflex and before the complete cessation of breathing.  

For plasma isolation, blood was collected using a 1mL heparinised syringe (1:100 in 

blood). At room temperature, blood was centrifuged at 3000g for 5 minutes using a 

microfuge R (Beckman Coulter, UK).  
 

After the cessation of breathing, the chest wall was opened and the heart, the 

brachiocephalic artery and the whole aortae were harvested for histological analysis 

following 1mL perfusion of the right ventricle with PBS (pH 7.4) then 10% (v/v) 

formalin buffered saline (Appendix III, section 2).  

 

2.3.4. Preparation of samples for erythrocyte fatty acid analysis: 
Freshly collected blood, by cardiac puncture, was stored in 4ml EDTA collecting 

tubes (4 pooled samples of red blood cells (RBCs) from 4 different mice per group 

with a minimum volume of 1mL). The samples of blood were centrifuged at 3000g for 

5 minutes and the plasma and buffy coat were aspirated and discarded.  

The tubes containing red cell fractions were then labelled and stored at -80ᵒC until 

sent to BioLab, London, UK for analysis.  

 

 2.3.5. Plasma lipid & glucose measurements: 
Plasma analysis for TG, total cholesterol (TC), HDL-C, LDL-C and glucose was 

performed at the Department of Clinical Chemistry (Royal Hallamshire Hospital, 

Sheffield, UK).  

 

2.3.6. Plasma cytokine measurement: 
The levels of plasma proinflammatory cytokines (TNF-α, IL-6, IL-8, IL-1β, IL-1α, 

MCP-1, RANTES; pg/ml) were measured using a BD™ Cytometric Bead Array 

(CBA, BD Biosciences; UK), according to manufacturer’s recommendations. The 

analysis was performed by Ms Kay Hopkinson in the medical care facility, Medical 

School, Sheffield, UK.  
 



50 Chapter (2) General Materials and Methods. 
	
  

	
   50 

2.3.7. Assessment of atherosclerotic lesions: 
2.3.7A) Whole-mount atherosclerotic lesion analysis (Aorta): 

The extent of atherosclerosis was assessed in the whole aortae by an en face 

method (Freigang et al., 2011). In brief, the aortae were perfused firstly with PBS 

and then 10% (v/v) formalin. After exposure of the whole aortae and removal of the 

adherent fats and intercostal vessels, the aortae were dissected from its origin in the 

heart to the aortic orifice of the diaphragm, under a dissecting microscope.  

Aortae were fixed in 10% (v/v) formalin overnight at 4ᵒC then stored in PBS at 4ᵒC 

until pinning was conducted.  

 

The aortae were opened longitudinally and stained with oil red O stain (ORS): the 

aortae were first rinsed in 60% (v/v) isopropanol and then stained with 0.3% (w/v) 

ORS (Sigma) in PBS. After 30 minutes of staining, the aortae were destained for 20 

minutes in 60% (v/v) isopropanol and then further washing in DW was performed. 

The stained aortae were pinned, the lumen upwards, on a wax filled petri dish 

(15cm) using micro-needles (Fine Science Tools, Heidelberg, Germany). Using a 

digital camera connected to light microscope at 15x magnification, images were 

acquired. Lesion areas were analysed using NIS-elements analysis software (Nikon, 

UK). Atherosclerotic lesion in the whole aortae, arch and descending parts were 

quantified as % of the total surface area. 

 

2.3.7B) Atherosclerotic lesion analysis in aortic root and brachiocephalic artery: 

A second assessment of atherosclerosis was conducted in cross-sectional aortic 

sinuses and brachiocephalic sections as described (Daugherty and Whitman, 2003). 

Briefly, the hearts and brachiocephalic arteries (BCA) (the first branch of the aortic 

arch) were collected and stored in 10% (v/v) formalin overnight at 4ᵒC and then in 

PBS (4ᵒC) until they were embedded in paraffin wax.  

The paraffin-embedded hearts (at the level of aortic valves) and brachiocephalic 

arteries were serially sectioned using a Leica RM2135 microtome (Leica 

Microsystems, Wetzlar, Germany). Sections (5µm thickness) were collected and 

stained with Alcian Blue & Elastic Van Gieson (AB/EVG) as described in detail 

below.  
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Mean lesion size was calculated from measurements of five serial sinus sections 

starting from the three cusp area. Analysis was conducted blinded per individual 

animal and the average of all sections (5) per mouse, used as n=1. The individual 

mouse analysis was discounted if there were fewer than 3 sections of 

brachiocephalic artery with atherosclerotic lesions or fewer than 4 sections with three 

leaflets for aortic valves. The % of atherosclerotic lesion to the total surface area was 

evaluated using NIS-elements software.  

 

      2.3.7B (i) Alcian Blue, elastic Van Gieson (AB/EVG) Staining: 

The lesion area and plaque compositions (aortic and brachiocephalic sections) were 

assessed morphologically in histologically stained sections.  

Briefly, the sections were dewaxed in xylene and rehydrated through graded 

alcohols: 100%, 90%, 70% and 50% (v/v) ethanol, and then rinsed in tape water. 

Sections were then oxidised with potassium permanganate (0.25% w/v) for 30 

minutes. The sections were rinsed in tape water and bleached in 1% (w/v) oxalic 

acid. Following 3min, the nuclei were counterstained with Carazzi’s haematoxylin for 

2 minutes and differentiated for a few seconds in acid alcohol: 1% (v/v) hydrochloric 

acid (HCl) in 70% (v/v) ethanol. The sections were then exposed to hot running tape 

water for 5 minutes.  

 

The slides were stained with 1% (w/v) Alcian Blue in 3% (v/v) aqueous acetic acid, 

pH 2.5, for 5 minutes and the stain was washed with tape running water. The slides 

were initially rinsed in 95% (v/v) ethanol before subsequent staining with Miller’s 

Elastin for 30 minutes. After that, the slides were rinsed and differentiated in 95% 

(v/v) ethanol and distilled water before incubation in a Curtis Modified Van Gieson 

stain for 6 minutes.  

Before mounting using DPX resin, the tissues were rehydrated in 100% (v/v) ethanol, 

then two changes of 100% (v/v) xylene.  

  

2.3.7C) Analysis of Collagen content: 

Collagen content in aortic and brachiocephalic sections were measured in martius 

scarlet blue (MSB) positive stained areas as described (West et al., 2014) and 

expressed as a % to the total surface area.  
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Briefly, the tissues were dewaxed and rehydrated in xylene and graded alcohols as 

described above. The tissues were then stained with 1% (w/v) Celestine blue for 5 

minutes, drained, and counterstained with Harris’ haematoxylin for 5 minutes.  

After rinsing in tape water and differentiating in acid alcohol for few seconds, for 

5min, the tissues were exposed to hot running tape water and then shortly rinsed in 

95% (v/v) ethanol. Subsequent staining with 0.5% (w/v) martius yellow and 2% (w/v) 

phosphotungstic acid in 90% (v/v) ethanol was carried out for 2 min.  

 

Ponceau de xylene solution (1% (w/v) ponceau de xylene / 2% (v/v) glacial acetic 

acid) was applied to stain the sections for duration of 10 minutes. The stain was 

differentiated using 1% (w/v) phosphotungstic acid for 5 minutes. After draining of 

the stained sections, the tissues were stained with methyl blue (5% (w/v) methyl blue 

in 10% (v/v) glacial acetic acid) for 10 minutes. The stain was washed off by rinsing 

of the slides in 1% (v/v) acetic acid for 10 minutes. The tissues were rehydrated 

through graded alcohol and two changes of xylene and then mounted using DPX 

mounting media. Analysis was performed using NIS-Elements software. 

 

Alcohols and xylene were purchased from ThermoScientific whereas all stains and 

DPX resin were provided from VWR International Ltd (Lutterworth, UK) unless 

otherwise stated. 

  

2.3.8. Immunohistochemistry: 
Sections were used for immunohistochemistry as previously described (Chamberlain 

et al., 1999). Aortic sinuses were stained to assess IL-1β, IL-1α, IL-1ra, the anti-

macrophage surface glycoprotein Mac-3, TLR-4, SMCs (α-smooth muscle actin; 

SMA), eNOS, von willebrand factor (vWF) and NE.  

Briefly, formalin-fixed, paraffin-embedded samples were deparaffinised and 

rehydrated through decreasing concentrations of ethanol (as described above). 

Endogenous peroxidases were blocked with 3% (v/v) hydrogen peroxide/PBS. 

Sections were either treated or left untreated with a heat mediated antigen retrieval 

stage. 

 

Heat-induced antigen retrieval was conducted in sodium citrate solution (10 mM, pH 
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6.0, Alfa Aesar, Ward Hill, MA) for 20 minutes in a water bath (95ᵒC). Slides were 

washed in PBS and incubated with 5% (w/v) BSA or 1% (w/v) non-fat milk in PBS for 

30 minutes to block nonspecific immunological binding. Primary antibodies were 

diluted to the required concentrations (see appendix II for the individual antibody 

concentrations) and then either applied for 1h at room temperature (for SMA and 

vWF) or overnight incubation at 4ᵒC (for IL-1α, IL-1ra, IL-1β, NE, Mac-3, eNOS and 

TLR4).  

 

Secondary antibody incubation was conducted for 30 minutes at room temperature 

using either fluorochrome-labelled antibodies for fluorescence microscopy or 

biotinylated antibodies (appendix II), followed by a 30 minute incubation with an 

avidin-biotin complex (Vectastatin Elite ABC kit (Vector Laboratories Inc)) and DAB 

to visualise the antigen, for light microscopy.  

Nuclei were counterstained with Carazzi’s haematoxylin. Negative (PBS instead of 

the primary antibodies) and positive controls (Lungs, kidneys and splenic tissues 

from male ApoE-/- mice fed HFD for 12 weeks) were used for individual staining 

conditions.  

 

Analysis of all immunostaining was conduced using NIS-elements software (Nikon 

Instruments, Kingston upon Thames, UK). 

 

2.3.9. Statistical analysis: 
Data are expressed as mean ± standard error of the mean (SEM) and analysed 

using prism software (Version 6, GraphPad, San Diego, CA). For multiple 

comparison tests, one way analysis of variance (ANOVA) followed by Tukey’s test 

was performed. For a comparison of two experimental groups, data were analysed 

by unpaired student’s t test for normally distributed data. Blood pressure data were 

analysed by 2-way ANOVA followed by Tukey’s post-test. Statistical significance was 

achieved when p<0.05.  
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3.1. Overview: Secretion of the leadeless IL-1 is NE mediated: 
IL-1β has been implicated in several aspects of vascular inflammation (Dinarello, 

2011b) and neointima formation (Chamberlain et al., 2006). It generally was 

assumed that IL-1β is produced predominantly by immune derived cells (Dinarello, 

2009). However, work by Galea and colleagues shows that in IHD patients, 

atherosclerotic coronary arteries express IL-1β, predominantly within the 

endothelium (Galea et al., 1996). Therefore, IL-1 release from EC may play an 

important role. Moreover, experimental studies have indicated that cultured ECs 

synthesise considerably large amounts of IL-1β in response to different cytokine 

stimulations (Wilson et al., 2007, Libby et al., 1986a). However, IL-1β release from 

these cells is relatively inefficient.  

 

IL-1β production is a two-step controlled process, requiring an initial stimulus for NF-

κB activation and transcription of proIL-1β (31kDa) which, in turn, is cleaved by an 

inflammasome-activated caspase-1 (Schumann et al., 1998, Hogquist et al., 1991) 

into a biologically active isoform (17kDa) in response to a second hit stimulus before 

secretion (Dinarello, 2007). The cleavage of proIL-1β is a crucial step in the 

secretion process (Ward et al., 2010) and studies on monocytes show that caspase-

1 (a cysteine protease) is a cardinal enzyme in this process (Keller et al., 2008).  

 

There are other potential enzymes that cleave proIL-1β into the mature form, 

including serine proteases (neutrophil elastase, cathepsin G and proteinase 3) 

(Stehlik, 2009). It has previously been indicated that serine proteases cleave purified 

proIL-1β into a biologically active IL-1β in vitro at distinct sites to that of caspase-1, 

with production of 18kDa and 20kDa isoforms of IL-1β (Black et al., 1988, Hazuda et 

al., 1990, Stehlik, 2009). However, whether, and to what extent, these proteases 

could contribute to IL-1β release in live cells, including ECs is relatively unknown. 

 

In this chapter, I sought to determine whether NE activates IL-1β secretion from 

vascular endothelium and study the underlying mechanism(s).  

 

3.2. Brief Methods: 
The methods used in this chapter are described in detail in chapter (2), briefly: 
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ECs were primed with different combinations of cytokines to induce IL-1 production 

followed by NE (1µg/ml) at different time points (30min, 2h and 6h), levels of 

released IL-1β were measured using ELISA. IL-1β processing and secretion were 

further confirmed using immunoblotting. Cell death during NE incubation was ruled 

out using LDH cytotoxicity and trypan blue assays. NE activity was measured 

spectrophotometrically using a highly specific synthetic substrate. Statistical analysis 

was performed on at least n=3 repeat experiments and data are expressed as mean 

± SEM.  

 

3.3. Interleukin-1 generation from vascular endothelium: 
Circulating levels of IL-1β have been detected in patients with CAD and correlated 

with the severity of atherosclerosis (Van Tassell et al., 2013). Previous cell culture 

studies show that IL-1β is produced in ECs following incubation with pro-

inflammatory cytokines (Wilson et al., 2007). I, therefore, sought to determine 

whether IL-1β is produced in un-stimulated HUVECs and whether the levels are 

different with different inflammatory stimuli.  

 

Using ELISA, I showed that un-stimulated HUVECs did not produce any significant 

levels of IL-1β inside cells. However, intracellular levels of IL-1β were significantly 

increased following TNF-α/IL-1α stimulation (500 ± 121pg/ml) and IL-1β/LPS (430 ± 

170pg/ml) compared to un-stimulated cells (0pg/ml) (Figure 3.1).  

Treatment of ECs with a combination of TNF-α/INF-ɣ/LPS did not significantly 

stimulate any IL-1β production. 

 

Subsequent experiments, therefore, used a combination of TNF-α/IL-1α as it gave 

the highest IL-1β generation within ECs.  
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Figure 3.1. Generation of IL-1β within endothelial cells. Human umbilical vein endothelial cells 
(HUVECs) in 6-well plates were primed with different combinations of cytokines to up-regulate 
endogenous levels of proIL-1β. Levels of IL-1β were assessed by ELISA. Data are expressed as 
mean ± SEM, n=3. Data are analysed by One-way ANOVA followed by Tukey’s test, *p<0.05, 
**p<0.01. 
 

 

3.4. IL-1 stimulated secretion from HCAECs, by NE, is dose dependent: 
To assess the contribution of NE in IL-1β secretion, cytokine-primed ECs (TNFα/IL-

1α; 10ng/ml each; to up-regulate endogenous pro-IL-1β) were treated with varying 

concentrations of NE in serum free media for several incubation lengths (detailed in 

Chapter 2).  

NE at 1µg/ml caused a significant (10 fold) increase in the release of IL-1β from 

cytokine-primed cells (198 ± 24.85pg/ml, p<0.0001, n=3) compared to primed cells 

without NE (12.1 ± 4.81pg/ml), after 2h of stimulation (Figure 3.2). In contrast, the 

release was not as great with higher concentrations of NE (2µg/ml) due to cell death 

(data not shown).  

 

Subsequent experiments, therefore, used NE at 1µg/ml to give the highest amount of 

IL-1β release without a significant increase in cell death.  
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Figure 3.2. NE enhances IL-1 secretion in a dose dependent fashion. IL-1β released by HCAECs 
after 48h stimulation with cytokines (TNF-α/IL-1α; 10ng/ml) followed by NE activation for 2h, was 
assessed by ELISA. Cytokine-stimulated cells alone (0µg/ml) were used as controls. NE 
concentrations ranged from 0.5µg/ml to 2µg/ml. Data are mean ± SEM, analysed by One way ANOVA 
and Tukey’s post-test, ****p<0.0001, n=3.  
 

 

3.5. NE stimulated IL-1 secretion from HCAECs is time dependent: 
To investigate the time effect on IL-1β release by NE, levels of IL-1β released into 

the supernatants were measured over 6h incubations with NE. The levels were 

measured using ELISA. IL-1β was detected in the media at all time-points tested. 

However, the released IL-1β was significantly increased at 6h, compared to 2h, 

incubation with 1µg/ml NE (272.8 ± 47.06 vs.103.8 ± 12.13pg/ml, p<0.001, n=3) 

(Figure 3.3A).  

 

These levels equate to approximately 37% of the total intracellular IL-1β being 

released at 6 hours after NE stimulation compared to cytokine-primed cells alone (37 

± 2.018% vs. 3.3 ± 0.321%, respectively, p<0.0001, n=3) (Figure 3.3B) (section 3.6, 

figure 3.4B for intracellular levels).  
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Figure 3.3. IL-1β stimulated secretion by NE is time dependent. A) Kinetics of IL-1β secretion by 
activated ECs plus NE treatment for increasing incubation times. Data represents mean ± SEM, n=3. 
Data are analysed by One way ANOVA and Tukey’s post-test, **p<0.01, ***p<0.001. B) Percentage 
of the released IL-1β at 6h of NE stimulation (level of IL-1β in the supernatants divided by the total 
concentration of IL-1β (in the supernatants and lysates together) X 100). Data are from three 
independent experiments, n=3, mean ± SEM and analysed by One way ANOVA followed by Tukey’s 
test, ****p<0.0001. 
 

 

3.6. Interleukin-1 secretion by the endothelium is NE mediated and 
caspase-1 independent: 

Although in unstimulated ECs no IL-1β was measured in the media, a small amount 

of IL-1β was released into the serum free media of cytokine-primed cells (Figure 

3.4A). However, a 6h incubation with NE caused a significant increase in IL-1β 

secretion compared to cytokine stimulation alone (272.8 ± 50pg/ml vs. 55.5 ± 

17.3pg/ml, p<0.001, n=5) (Figure 3.4A).  
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To confirm that this release was due to direct NE action, the cells were pre-treated 

with the potent, specific, irreversible, neutrophil elastase inhibitor (NEIII, Ki=10µM), 

resulting in a significant attenuation of IL-1β secretion compared to NE treated cells 

without the inhibitor (64.64 ± 47.73pg/ml vs. 272.8 ± 50pg/ml, p<0.01, n=5) (Figure 

3.4A).  

 

Caspase-1 is the cardinal enzyme for IL-1β secretion in immune derived cells (Keller 

et al., 2008). Therefore, to determine the involvement of caspase-1 in this system, 

cytokine-primed ECs were pre-treated with the caspase-1 inhibitor, YVAD-CHO and 

then with NE. No significant changes in the secreted levels of IL-1β were seen 

compared to NE alone (Figure 3.4A). Thus, NE-mediated IL-1β secretion in ECs 

appears to be independent of caspase-1 in this system and at the time-points 

studied.  

 

In unstimulated EC lysates, and as expected, I could not detect IL-1β using ELISA. 

However, there was a significant IL-1β production following treatment with the 

proinflammatory cytokines (Figure 3.4B). The IL-1β levels in the lysates were not 

significantly altered following incubation with NE, or inhibitors, with an approximate 

average of 304 ± 37.6pg/ml (Figure 3.4B). Thus, NE treatment alone did not provoke 

IL-1β production in the cells, suggesting no direct effects of NE on IL-1β generation. 

There was also no effect seen on IL-1β production in cell lysates by NEIII or 

caspase-1 inhibitors (Figure 3.4B).  
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Figure 3.4. NE enhances IL-1 secretion by ECs by a caspase-1 independent mechanism. A) IL-
1β release in HCAECs (primed for 48h with or without cytokines and incubated for 6h in serum free 
media alone or with NE (1µg/ml), measured in the presence or absence of inhibitors (NEIII; 500µM or 
YVAD; 50µM). B) Levels of IL-1β in the cell lysates. (A-B) measured by ELISA. Data are mean ± 
SEM, and analysed by One way ANOVA and Tukey’s post-test, **p<0.01, ***p<0.001, n=5. 
 

 

3.7. NE effects on proIL-1 in ECs: 
To investigate whether NE has an impact on the levels of the IL-1β precursor either 

in the supernatants or cell lysates, a proIL-1β ELISA was used. Consistent with the 

previous findings, in the lysates, unstimulated ECs did not produce any proIL-1β 

(Figure 3.5A). However, following cytokine-treatment, a large amount of proIL-1β is 

produced, with an average of 4946 ± 340.2pg/ml (Figure 3.5A). Despite a slight 

decrease in levels of proIL-1β at a 6h stimulation with NE, this is not significantly 
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different to that of cytokine-primed cells (4058 ± 886.6 vs. 4946 ± 340.2pg/ml, n=3, 

figure 3.5A). Incubation of ECs treated with NE with NEIII or YVAD had no significant 

effect on proIL-1β levels (Figure 3.5A).  

 

Without cytokine stimulation, no proIL-1β was detected in the supernatants (Figure 

3.5B). However, cytokine-primed cells released a small amount of proIL-1β (139.2 ± 

39.19pg/ml, figure 3.5B), which may suggest that the released IL-1β detected 

following cytokine stimulation (figure 3.4) was the pro-form. Following NE activation, 

very little proIL-1β was detected (Figure 3.5B), suggesting that either NE releases 

the mature or other isoforms of IL-1β but not the full-length proIL-1β.  

 

In the supernatants from EC-primed with cytokines where cells were pretreated with 

specific NEIII before NE application, levels of proIL-1β increased compared to NE 

treated cells (234.1 ± 195.8 vs. 0pg/ml, n=3, figure 3.5B), although this was not 

significant. YVAD-CHO pretreatment showed a similar result to that of NE treated 

cells (with negligible levels of proIL-1β, figure 3.5B).  

 

The levels of pro-IL-1β measured after shorter incubations with NE did not show any 

difference to those seen at 6h. 
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Figure 3.5. NE effects on proIL-1β in ECs. Levels of proIL-1β in EC lysates (A) and supernatants 
(B) after cytokines (IL-1α/TNF-α; 10ng/ml) and NE (1µg/ml, for 6h) treatment and/or NEIII (500µM) or 
YVAD-CHO (50µM), measured by ELISA. Data are mean ± SEM, n=3.  
 

 

3.8. NE remains bioactive for the duration of the experimental 
procedures: 

NE may undergo autolysis with prolonged incubation times (Korkmaz et al., 2010). 

Therefore, to confirm that NE remains bioactive during IL-1 secretion from ECs, the 

enzymatic activity of NE in the EC lysates and supernatants was measured using the 

rate of cleavage of a specific NE substrate (MeOSucc-Ala-Pro-Val-AFC) as an 

indicator of NE bioactivity.  

 

NE activity was detected in both the supernatants and lysates at 6h of NE 

incubation. NE in the conditioned media of NE-treated ECs had a significantly higher 

bioactivity compared to cells without NE: cytokine-primed and unstimulated ECs 
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(5.416 ± 0.37552 vs. 0.0375 ± 0.0123µg of NE per µM of substrate, p<0.0001, n=3). 

NE activity was 7-10 fold less in the presence of NEIII, confirming the sensitivity of 

the assay (Figure 3.6A).  

 

Interestingly, in the harvested lysates from ECs treated with NE, there was a 

significant increase in NE activity compared to controls (5.632 ± 0.713 vs. 0.180 ± 

0.062 µg/µM, p<0.0001, n=3) (Figure 3.6B). This activity was decreased in the 

presence of NEIII (Figure 3.6B). 

 

 

 
Figure 3.6. NE is bioactive for the duration of the study. Graphs showing increased NE activity in 
EC supernatants (A) and lysates (B) treated with NE for 6h compared to unstimulated cells. Data are 
analysed by One way ANOVA and Tukey’s post-test, ****p<0.0001, n=3.  
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3.9. NE-mediated IL-1β secretion is not via cell death: 
Cell death is another mechanism by which IL-1β is released from cells (Auron et al., 

1987). Therefore, to rule out cell lysis as a possible mechanism for IL-1β release 

from ECs by NE effects, I first performed trypan blue dye exclusion to measure cell 

viability.  

There was no significant difference in the percentage of viable cells following NE 

incubation at 6h compared to cytokine-primed cells or unstimulated ECs (83.3 ± 3.24 

vs. 73.60 ± 2.30% in cytokine primed cells or 93.5 ± 4.44% in unstimulated ECs, 

respectively, n=3) (Figure 3.7A).  

 

The cytosolic enzyme LDH leaks out of cells at an early stage of death (Abe and 

Matsuki, 2000). Therefore, I also sought to test whether there is an early release to 

LDH following NE incubation. Using a cytotoxicity assay to measure the cytosolic 

enzyme in the conditioned media, no significant increase in LDH levels were seen 

after NE treatment for 6h (Figure 3.7B).  

 



66 Chapter (3) Secretion of IL-1 is NE Mediated. 
	
  

	
   66 

 
Figure 3.7. NE-mediated IL-1β secretion is not via cell death. A) Cell viability (%) was measured 
using trypan blue dye exclusion. Percentages of viable ECs were calculated as the number of 
unstained cells/total number of cells (stained + unstained) X 100. B) Lactate dehydrogenase (LDH) 
levels were measured in conditioned media in the presence or absence of NE for 6h. The detected 
LDH in cell lysates was used as an indicator to the total LDH inside the cells (positive control). Data 
are expressed as mean ± SEM, n=3, analysed by One-Way ANOVA followed by Tukey’s test.  
 
 

3.10. Apoptosis is not an alternative mechanism for IL-1 secretion: 
Another alternative pathway for IL-1β secretion is by induction of apoptosis (Lopez-

Castejon and Brough, 2011). To further confirm that IL-1β is released by a direct 

action of NE, and to also ask whether NE may have some role in the apoptotic 

signalling pathway, caspase-3/7 activity was tested in ECs.  
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Apoptosis was induced in ECs by treating with campthothecin (CPT) (1µM, for 6h, 

positive control). There was a significant increase in caspase-3/7 activation following 

CPT stimulation (106712 ± 15707 RLU), confirming the sensitivity of the assay 

(Figure 3.8). 

 

Using this assay, it was clear that caspase-3/7 activation in NE treated cells was not 

significantly different from that in unstimulated ECs (46749 ± 7398 vs. 19368 ± 8489 

RLU, respectively, n=3) (Figure 3.8). 

 

 

 
Figure 3.8. Analysis of caspase-3/7 activity in HCAECs. HCAECs in 96 well plates (2x104) were 
treated or left untreated with cytokines (TNF-α/IL-1α; 10ng/ml each) for 48h then subjected to NE 
(1µg/ml) in serum free media for 6h. Campthothecin (1µM, over 6h) was used to induce apoptosis as 
a positive control. Data are expressed as mean ± SEM and analysed by One-way ANOVA with 
Tukey’s multiple comparison test, **p<0.01, n=3. 
 

 

3.11. Neutrophil elastase cleaves proIL-1β in ECs in a time dependent 
manner, independent of caspase-1: 

In vitro, some proteases, including NE, have been shown to process proIL-1β into 

different cleaved products of IL-1β (Black et al., 1988, Hazuda et al., 1990). The 

above shown ELISA results suggest that NE causes release IL-1β, but did not 

distinguish between the cleaved products of the active IL-1β. Thus, I investigated 
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which IL-1β cleaved products were present in cell lysates and supernatants by 

immunoblotting.  

Unstimulated HCAEC lysates did not contain any detectable IL-1β, although full-

length proIL-1β (31kDa) was seen in cytokine-primed cell lysates (Figure 3.9A). NE 

cleaved proIL-1β (31kDa), at all time points tested, with increased cleavage at 6h, 

evidenced by the appearance of bands for IL-1β at 20kDa and faint bands at 18 and 

15kDa (Figure 3.9A). No IL-1β at 17kDa was detected in the lysates, suggesting 

either that the 17kDa is released immediately after cleavage or NE cleaves proIL-1β 

at a site distinct than that of caspase-1 and thus different cleaved products for IL-1β 

are generated.  

 

Figure 3.9B shows a representative immunoblot for EC lysates incubated for 6h with 

or without NE in the present or absence of NEIII or YVAD-CHO. As expected, proIL-

1β cleavage by NE is inhibited by NE inhibition, and caspase-1 inhibition had no 

effect on NE action. Densitometric analysis confirmed these findings and 

demonstrated a significant reduction in proIL-1β (31kDa) levels, normalised to α-

tubulin, within the EC lysates treated with NE alone or NE+YVAD compared to the 

levels in cytokine primed ECs (1.605 ± 0.6050 vs. 4.479 ± 0.4606, p<0.05, n=3) 

(Figure 3.9C).  
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Figure 3.9 Neutrophil elastase cleaves proIL-1β in ECs in a time dependent manner, and is 
independent of caspase-1. A) HCAEC lysates from primed EC +/- NE for 30 minutes, 2h or 6h, 
assessed for IL-1β. B) IL-1β expression in EC lysates pre-treated with cytokines (TNF-α/IL-1α; 
10ng/ml each) followed by NE (1µg/ml) for 6h in the presence or absence of inhibitors (NEIII; 500µM/ 
YVAD-CHO; 50µM). The blots are representative of three independent experiments with α-tubulin was 
used as a loading control. Recombinant IL-1β (rIL-1β; 20µg, 17kDa) was loaded as a positive control 
and represents the commonly detected isoform of the mature form, whereas proIL-1β (31kDa) 
indicates the inactive pro-form. C) Densitometry from three independent experiments. Data are mean 
± SEM, analysed by One-way ANOVA and Tukey’s post-test, *p<0.05. 
 

 

In addition, NE induced maturation of IL-1β was not associated with procaspase-1 

cleavage/activation or any changes in NLRP-3 levels in lysates as detected by 

Western blot (Figure 3.10 A&B). Taken together, these data clearly suggest that NE 

co-activation increases cytokine-induced IL-1β secretion in ECs by an 

inflammasome-caspase-1 independent pathway. 
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Figure 3.10. NE effects on caspase-1 and NLRP3 in ECs. Western blot analysis of cell lysates from 
primed EC +/- NE, assessed for Caspase-1 (A) & NLRP-3 (B). Equal protein loading was confirmed 
using α-Tubulin (a loading control) and loading 20µg of protein per lane. The representative blots are 
from three independent experiments.  
 

 

In cell supernatants, Western blots confirmed the presence of proIL-1β following 

cytokine treatment, consistent with the proIL-1β ELISA data (see figure 3.5), 

however, after the addition of NE, three cleaved products of IL-1β: 20, 18 and 

15kDa, were clearly detected at 6h (Figure 3.11). These isoforms disappeared when 

NEIII was added to NE treated cells (Figure 3.11), but were still present after YVAD 

treatment. The IL-1β release into surrounding media was associated with a 

significant decrease in the 31kDa proIL-1β in cell lysates (see figure 3.9), suggesting 

processing of IL-1 by NE.  

 
 

 
Figure 3.11. Neutrophil elastase causes the release of different isoforms of IL-1β. Supernatants 
from cells +/- NE for 6 hours were analysed for IL-1β isoforms using immunoblotting. Equal protein 
concentrations were loaded per lane (15µg/ml), and the representative blot is from three independent 
experiments.  
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3.12. Neutrophil elastase selectively cleaves rproIL-1β but not rIL-1β in 
vitro:  

To confirm the direct effects of NE on the IL-1β precursor (31kDa) and rule out that 

NE cleaves the mature IL-1β (17kDa), recombinant (r) IL-1β (rIL-1β, 17kDa) and 

rproIL-1β (31kDa) were mixed with NE in vitro for 30 minutes, 2h and 6h at 37ᵒC. IL-

1β and proIL-1β were then assessed using ELISA and immunoblotting.  

 

There was no significant difference in the levels of rIL-1β measured by ELISA in the 

presence or absence of NE in the studied time-points (Figure 3.12A). Immunoblotting 

analysis confirmed the absence of cleavage of rIL-1β by NE (Figure 3.12B).  

However, rproIL-1β (31kDa) was cleaved by NE and the cleavage increased with 

longer time incubations (Figure 3.12C). These findings suggest that NE cleaves 

proIL-1β but has no effect on the mature form of IL-1β.  

 

 

 
 
Figure 3.12. Pro-IL-1β is sensitive to neutrophil elastase in vitro but mature recombinant IL-1β 
is resistant to NE effects. A) ELISA and (B) Western blot for rIL-1β (125pg/ml) in the presence or 
absence of NE. Data are mean ± SEM, n=3. C) Recombinant proIL-1β (rProIL-1β; 10000pg/ml) was 
incubated at 37ᵒC (in 5% CO2; v/v) alone or in the presence of NE (1µg/ml) for 30 minutes, 2h, and 6h 
prior to detection of cleavage by immunoblotting. Representative western blots are from three 
independent experiments.  
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3.13. IL-1 released by NE stimulation is bioactive: 
Having shown that NE causes the release of different isoforms of IL-1β, I then asked 

whether this processed IL-1β released into cell supernatants in response to NE 

activation was bioactive. I collected supernatants from NE-treated or untreated cells 

(6h treatment), applied them to HeLa cells expressing an IL-1RI responsive IL-8 

reporter, and measured subsequent IL-8 release.  

 

I compared the reporter assay output (IL-8) from media obtained from unstimulated 

or cytokine-primed EC +/- NE with a positive control (0.1nM recombinant IL-1β) and 

with interleukin-1 beta neutralising antibody (NAB). Supernatants isolated from NE 

activated ECs contain significantly increased IL-8 levels compared to unstimulated 

and cytokine-primed cells without NE, and this was completely abrogated by IL-1 

NAB (Figure 3.13).  

In order to confirm that the bioactivity was due to released IL-1β and not a result of 

direct NE effects on HeLa cells, NE (1µg/ml) was added to HeLa cells (as a spike) 

and this showed no significant IL-8 generation. These data indicate that the released 

IL-1β is indeed bioactive.  

 

 

 
Figure 3.13. IL- 1β bioactivity measured by a luciferase reporter assay. HeLa cells with an IL-1 
sensitive IL-8 reporter were exposed to harvested media from cytokines primed cells (TNF- α/IL-1α; 
10ng/ml each) +/- NE (1µg/ml) for 6h or rIL-1β (0.1nM) in the presence or absence of IL-1β 
neutralising antibody (1µg/ml). Specificity for IL-1β is shown by reduction of IL-8 luciferase following 
incubation with IL-1 β neutralising antibody. Data are expressed as mean ± SEM and are analysed by 
One way ANOVA followed by Tukey’s test, ****p<0.0001, n=3. 
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3.14. Summary: 
In this chapter, I describe, for the first time, how coronary artery ECs release IL-1β, 

which has been a ‘holy grail’ of endothelial biology for many years. I report that a 

considerable amount of IL-1β is released from ECs in response to NE via a caspase-

1 independent mechanism. Several lines of evidence support this: 

 

1. IL-1β is only released from HCAECs after the addition of NE. 

2. The release is dose and time dependent, with maximum release of IL-1β 

detected with 1µg/ml of NE at 6h. 

3. The release is completely attenuated when a specific NE inhibitor (NEIII) is 

added to the cells, thus confirming that the secretion is by direct NE activity. 

4. The specific caspase-1 inhibitor, YVAD-CHO (50µM), has no affect on IL-1 

secreted into the supernatants after NE treatment. 

5. Cell death as a possible cause of IL-1 release is ruled out in this system.  

6. NE induces IL-1 secretion by cell activation is without the involvement of the 

apoptotic pathway as indicated by the findings of caspase-3/7assay. 

7. Western blot for caspase-1 expression in the lysates revealed the absence of 

caspase-1 activation. 

8. The absence of inflammasome activation is also confirmed using 

immunoblotting.  

9. NE selectively cleaved proIL-1β in the cell lysates and in vitro whereas mature 

IL-1β is resistant to NE proteolytic activity. 

10. There is an enhanced IL-1β biological activity in supernatants from cells 

incubated with NE, as confirmed by an IL-8 luciferase reporter assay. 
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3.15. Discussion: 
The endothelium is fundamental in atherosclerotic plaque development, not only 

during early lesion development but also later by controlling plaque instability (Aird, 

2008). In atherosclerosis, crosstalk between circulating cells, including monocytes, 

neutrophils and the endothelium can cause ECs to liberate soluble agents which, 

together with oxidised lipids (Ray, 2014) perpetuate the cycle of inflammation. 

Several lines of evidence suggest that IL-1β is an apical cytokine in this process 

(Morton et al., 2005, Dewberry et al., 2008, Rogus et al., 2008), yet its mechanism of 

release from ECs is largely unknown. Furthermore, the biological pattern of the 

crosstalk is not completely defined.  

 

NE is secreted by inflammatory cells in atheroma (Dollery and Libby, 2006); 

however, its precise role in the development of atherosclerosis has yet to be proven. 

It was originally believed that NE has a limited function by just degrading ECM 

components, including elastin (Takahashi et al., 1988a). Current thinking, however, 

links NE to atherosclerosis and plaque instability (Leclercq et al., 2007, Dollery and 

Libby, 2006, Warnatsch et al., 2015), yet the way in which this occurs and the 

mechanism of action remain to be elucidated.  

 

My hypothesis was that NE, released by circulating inflammatory cells, modulates IL-

1β release by the endothelium and that this is important in the development of 

atherosclerosis. The presented data show that IL-1β can be released in significant 

quantities from the endothelium following stimulatory treatment with NE. This is the 

first study describing the involvement of NE in IL-1β release from the vascular cell 

wall. 

 

Atherosclerosis is a chronic inflammatory condition; therefore, it was important to 

differentiate between IL-1 production in healthy (un-stimulated) endothelium and 

atherogenic (subjected to cytokines) endothelium. My data demonstrate that IL-1β in 

un-stimulated HUVECs is negligible, suggesting crucial roles of the prototypic 

cytokine in inflammation contrasting with a disease free state where the endothelium 

does not produce IL-1. This finding is also consistent with all previous studies 

(Marceau et al., 1992). 
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The main focus of this study was to maximise IL-1β synthesis by using a range of 

proinflammatory mediators in an EC culture model before looking for IL-1β release. 

The chosen cytokines were the commonly isolated mediators in atherosclerosis and 

its complications, namely TNF-α, INF-ɣ, LPS and IL-1α in differing combinations 

(Wilson et al., 2007). Interestingly, the greatest induction of IL-1β synthesis was in 

the combinations in which IL-1 was used to stimulate its own production. The ability 

of IL-1 to induce its own precursor is well known in previous publications (Schindler 

et al., 1990). This finding is also in agreement with Wilson and colleagues where 

they showed maximum IL-1 induction with a TNF-α /IL-1 combinations (Wilson et al., 

2007).  

 

The cytokines TNF-α plus IL-1α had the greatest impact on IL-1 production; 

therefore, these were used for the release study. As it is important to distinguish 

between the IL-1 added to the cells and the released cytokine, the cells were 

washed three times as per the assay and serial ELISA assays were conducted on 

the washings, showing no detectable levels of IL-1 in the wash, confirming that any 

IL-1 detected in the supernatants is in deed the released IL-1β. 

 

Lee and colleagues in 2006 showed that NE induces secretion of TGF-β from 

bronchial SMCs by a dose-effect response (Lee et al., 2006). Therefore, I 

investigated IL-1β release in response to different concentrations of NE (0.5, 1, 

2µg/ml). Interestingly, at 1µg/ml NE caused a significant increase in IL-1β secretion 

but higher doses of NE induced less secretion of IL-1β. The reduction in IL-1β 

release was associated with more cell detachment and enhanced cell death. This 

was confirmed by trypan blue dye exclusion. This is in agreement with (Lee et al., 

2006, Smedly et al., 1986).  

In contrast to my work, Gresnigt et al., 2012 showed that NE at 10µg/ml (5x the dose 

I used) decreased IL-1β levels in peripheral blood mononuclear cell (PBMC) 

supernatants. It could be argued that NE at lower doses has signalling triggering 

roles, and at higher concentrations it acts predominantly as a proteolytic enzyme. NE 

signalling effects at lower doses have been supported by (Schreiber et al., 2012, 

Devaney et al., 2003, Karmaker M., 2012). However, the nature of the dual functions 

of this enzyme and how significant this could be in vivo and in atherogenesis is yet to 

be examined.  
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I also showed in this chapter that NE enhances IL-1β secretion in a time dependent 

fashion, reaching a maximum at 6h incubation. Interestingly at 6h stimulation of NE, 

approximately 37% of the produced IL-1β is secreted. However, in immune derived 

cells it has been postulated that IL-1 is released as early as 30min following ATP 

activation and the longer the incubation the less release, with more cell death 

(MacKenzie A, 2001, Netea et al., 2009, Ward et al., 2010). This does not seem to 

be the case with NE as stimulant.  

 

In my work, to rule out cell death as a mechanism of release IL-1β by ECs, 

especially at 6h, I measured the levels of the cytosolic enzyme LDH in the 

supernatants, and confirmed that the cells were still viable at the studied time. In 

addition, apoptosis as a possible pathway for IL-1β was ruled out by measuring 

caspase-3/7 activity assay in ECs in the presence of NE, suggesting that IL-1β is 

secreted by active ECs. 

 

Of major interest, there was a significant increase in IL-1β secretion by cytokine-

primed ECs at 6h after addition of NE. Since caspase-1 has been identified as the 

main proteolytic enzyme to play a role in proIL-1β cleavage and secretion in 

monocytes and macrophages (Dinarello, 2007), I used a specific caspase-1 inhibitor 

(YVAD-CHO) as a potential means of augmenting IL-1β release. My data shows that 

caspase-1 appears to be non-essential in ECs for IL-1β cleavage and release by NE. 

This is at odds with other in vitro studies in monocytes (Ward et al., 2010), but in 

agreement with more recent data from other cell types (Cassel et al., 2014) and in 

vivo models. My findings are also supported by the findings of Guma et al., that 

suggests the presence of IL-1β in the synovial fluid of caspase-1-/- mice (Guma et al., 

2009). Moreover, my data may explain why caspase-1 suppression did not show 

promise in vascular healing (Chamberlain et al., 2006) or atherosclerosis 

progression (Menu et al., 2011).  

 

In cell lysates, using immunoblotting, I confirmed that NE efficiently cleaved proIL-1β, 

which was attenuated in the presence of NEIII but not affected by YVAD-CHO. 

Cleavage was, therefore, independent of caspase-1, which was confirmed by the 

absence of caspase-1/inflammasome activation. This finding was at odd from 

Duewell et al who suggested the fundamental role for caspase-1 and NLRP3 
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inflammasome for IL-1 secretion in macrophages following cholesterol crystals 

stimulation (Duewell et al., 2010). NE seems to induce the secretion without the 

need to activate this pathway.  

 

In supernatants harvested at 6h of NE treatment, the prominent isoforms of IL-1β 

both released and present inside cells were 20kDa, 18kDa and 15kDa in size. The 

literature states that the inactive IL-1β precursor (31kDa) is cleaved upon secretion 

to generate the mature carboxyl terminal 17kDa isoform (Hazuda et al., 1990, 

Dinarello et al., 2012). However, The other cleaved products were detected 

previously in vitro (cell-free) where it has been shown that NE cleaves the purified 

precursor of IL-1β to generate multiple forms, which are 5-10 fold less bioactive (as 

confirmed by the luciferase assay) than the 17kDa but are active enough for IL-1 to 

bind to its receptors and initiate the signalling cascade (Black et al., 1988, Hazuda et 

al., 1990, Black et al., 1991, Hazuda et al., 1991, Stehlik, 2009). This study is the 

first to show in intact cells that NE is capable of cleaving proIL-1β at multiple sites. 

Figure 3.14 shows two cleaving sites for NE distinct than that of caspase-1 and 

generation of the 20kDa and 18kDa bands as been suggested by the literature.  

It remains to be seen whether, individually these bands are bioactive intermediate 

‘products’ in IL-1β processing or if they are distinct isoforms that also occur in vivo.  
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Figure 3.14. Schematic diagram illustrating the site of proIL-1 β cleavage by NE. IL-1 cleavage 
products were characterised by their sizes using immunoblotting. Mature IL-1β (17kDa) is generated 
by caspase-1 action at residue 117. NE also cleaves proIL-1 at two main sites distinct than that of 
caspase-1 to generate 20kDa and 18kDa IL-1β. Permission from (Stehlik, 2009) .  
 
 
To assess whether the IL-1β released from ECs by NE was bioactive, I used IL-1RI 

expressing cells (Hela cells) as a system to indirectly measure IL-1β bioactivity in the 

harvested supernatants from ECs exposed to NE (Kiss-Toth et al., 2000, Wilson et 

al., 2004, Zheng et al., 2013). I examined the IL-1β bioactivity in EC supernatants 

using a novel IL-8-luciferase reporter assay (Wilson et al., 2004) and showed that IL-

1β in the total supernatants is indeed bioactive to the level of 70% of the assay 

control (0.1nM IL-1β).  

 

This chapter describes a possible mechanistic role for NE in IL-1β secretion by ECs. 

These data also suggest that the secretion process in ECs is completely different 

than other cell types in both the kinetics and the secreted isoforms of IL-1β. 

Furthermore, caspase-1 and the inflammasome do not seem crucial in this system. 

This raises the question of how IL-1β is released and whether the secretory pathway 

is different in ECs from other immune derived cells. In the following chapter I go on 

to investigate the IL-1 secretory mechanism using flow cytometry, immunoblotting, 

time lapse, confocal and electron microscopy. 
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4.1. Overview of Mechanism of IL-1 Secretion from ECs: 
The leaderless IL-1β is proposed to be released by the non-classical pathway of 

protein secretion (Rubartelli et al., 1990). As a result, several mechanisms for the 

trafficking of IL-1β into the extracellular space have been suggested, including IL-1β 

containing microvesicle shedding from monocytic-like cells and exocytosis of 

secretory lysosomes (Andrei et al., 2004, MacKenzie A, 2001).  

However, the mechanism by which ECs secrete IL-1β is enigmatic. Moreover, the 

site of IL-1 processing inside cells needs further elucidation. 

 

It is crucial to understand the mechanism(s) of release of IL-1β from ECs especially 

since IL-1β acts at a distance rather than just locally in the vessel wall (Dinarello, 

2007). In chapter 3, I presented data on cleavage and release of IL-1 by NE effects 

and here in chapter 4 I sought to investigate whether NE releases IL-1 from the 

endothelium via a vesicular mediated mechanism.  

 

4.2. Brief Methods: 
In this chapter I study vesicular IL-1 release from ECs treated by NE and I 

characterise extracellular vesicles (EVs) by flow cytometry, immunoblotting and EM. 

The site of IL-1 processing was defined using EM and immunofluorescence. 

Full detailed methodology used is described in chapter (2).  

 

4.3. NE enhances shedding of MV containing bioactive IL-1: 
I sought to determine whether MV shedding occurs in response to NE and whether 

this is associated with the IL-1β release mechanism in HCAECs. 

 

4.3.1. Microvesicular shedding in response to NE: 
Phosphatidylserine (PS) exposure has been associated with MV shedding in 

monocytes (MacKenzie A, 2001), therefore I used annexin V binding (annexin V-

Alexa Fluor 488) as a tool to visualise MV shedding events in live HCAECs.  

Small particles (0.1-1µm in diameter, analysed using image J software) were 

observed separating from the cells in real time using time lapse imaging over the 

duration of 6h (Figure 4.1A). EC membrane blebbing and MV shedding started as 

early as 10 minutes of NE incubation and continued to 6h (Figure 4.1A). 
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To define the size of these MVs and confirm the shedding process, electron 

microscopic (EM) analysis was performed with ECs treated with NE. This showed 

that the membrane blebbing and (0.1-1µm) membrane-bound MVs bud outward and 

shed off the cells treated with NE compared to untreated cells (Figure 4.1B).  

 

 

 
Figure 4.1. Neutrophil elastase activates microvesicle shedding from endothelial cells. 
HCAECs were left untreated, or treated with cytokines for 48h (IL-1α/TNF-α; 10ng/ml each), and then 
labelled with annexin-V AlexaFluor®488. Cells were visualised after the addition of 1µg/ml of NE in a 
heated chamber (5% CO2 v/v) using time-lapse fluorescent microscope to detect MV release. A) 
Images were captured at 10 minutes, 30 minutes, 2 hours and 6 hours. Arrowheads indicate green 
fluorescent MVs. Scale bars=50µm. The representative images are from three independent 
experiments. B) Electron micrographs representing images from n=3, confirming the shedding of MVs 
(yellow arrows) from ECs after NE (+NE) treatment compared to non-NE treated (-NE) cells. Scale 
bars=200nm. PL indicates plasma membrane (arrowheads).  
 

A

B

PL

+NE -NE

 10min 30min

 6h  2h
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I then isolated the MVs using a centrifugation gradient (Gyoergy et al., 2011, Jansen 

et al., 2012) and analysed these using flow cytometry. The flow cytometer was 

calibrated using a previously published method (Nolan et al., 2008). As a control, I 

used a population of lysed MVs and gated MVs using a live and dead dye (Figure 

4.2A). 

 

I found that there was a significant increase in the number of MVs isolated from ECs 

following NE treatment compared to controls. The MVs appeared as early as 10 

minutes, but the number was significantly increased after 2h of NE stimulation 

compared to non-NE treated cells (366.3 ± 81.68 vs. 40.67 ± 18.71, respectively, 

p<0.01, n=3) (Figure 4.2B). Small numbers of MVs were detected in the media in NE 

untreated cells (cytokine primed ECs without NE stimulation) at 6h. However, the 

number was significantly increased following NE treatment (542 ± 97.93 vs. 193 ± 

60.79, p<0.05, n=3). NE inhibition, using NEIII, effectively attenuated this MV 

formation and shedding, whereas caspase-1 inhibition had no significant effect 

(Figure 4.2C).  
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Figure 4.2. Characterisation of MV released in response to NE, using flow cytometry. A) MVs 
were isolated and stained with annexin V PE-CY7 as described in Chapter 2. A population of MVs 
were gated using a live and dead dye and analysis of MVs (red) using Accu Count Beads (SPHERO, 
2µm) (blue) shows they are within the 2µm size limits. B) Graph illustrating increasing numbers of 
MVs over time, following NE treatment. Data are mean ± SEM, n=3, **p<0.01. C) Graph showing a 
significant increase in MV number in NE treated cells compared to untreated controls. MV shedding is 
reduced following NE inhibition, but not after caspase-1 inhibition. Analysis was performed by Flow Jo 
software from three independent experiments, expressed as mean ± SEM. Statistical significance was 
tested using One-way ANOVA followed by Tukey’s post- test, *p<0.05, **p<0.01. 
 

 

4.3.2. Microvesicle contents:  
Having identified NE as 1) an effective stimulus for IL-1β release and 2) causing MV 

release from HCAECs, I next investigated whether the released MVs contain IL-1β. 

MV shedding was tested using immunogold EM. In addition, isolated MVs (by 

centrifugation from freshly collected EC supernatants) were analysed for their IL-1β 

content using immunoblotting. 

 

Using immunogold EM, I detected immunogold labelled (20nm gold particles) IL-1β 

in MVs (0.1-0.2µm diameter), in NE treated cells (Figure 4.3A, +NE). No IL-1β was 

detected in ECs that were not treated with NE (Figure 4.3A, -NE). 
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MVs were collected at 30 minutes, 2h and 6h of NE treatment to study the kinetics of 

IL-1β content within them (Figure 4.3B). MVs from unstimulated cells contained no 

IL-1β, contrasting with MVs from cytokine-primed cells, which contained proIL-1β 

(31kDa) at all time-points (Figure 4.3B).  

However, in MVs isolated from the supernatants of NE treated cells, cleavage of the 

31kDa IL-1β isoform to approximately 20kDa-19kDa was observed as early as 30 

minutes (Figure 4.3B, upper blot) with further cleavage to the 18 and 15kDa isoforms 

at 6h (Figure 4.3B, lower blot). 

 

Treatment of cells with NEIII, but not YVAD-CHO, abolished the cleavage of proIL-1β 

in these MVs, confirming that these bands are the result of direct NE activity.  

MVs were also assessed for caspase-1 and NRLP3 content. Active caspase-1 

p20/p10 and NLRP-3 were not detected in MVs isolated from cells treated with either 

NE or NE and YVAD-CHO together (data not shown), indicating that intra-vesicular 

cleavage of proIL-1β is independent of caspase-1 activation.  

 

Investigation of the supernatant of ECs after removal of the MVs showed very little 

IL-1β is present in the supernatant alone (at the 6h time point), under each 

experimental condition (Figure 4.3C). These findings suggest that IL-1β is released 

by a MV mechanism specifically and that either NE cleaves the released proIL-1β 

inside MVs or NE treated cells continually generate more MVs containing IL-1β as a 

route of secretion.  
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Figure 4.3. MVs containing IL-1β are shed from HCAECs after cytokine priming and NE 
treatment. A) Immunoelectron microscopical analysis of IL-1β in ECs with or without NE treatment. 
Anti-IL-1β conjugated immunogold (20-nm gold particles, arrowhead, the area within the box) confirm 
the presence of IL-1β in the MVs (0.2µm, arrow) released from the plasma membrane (PL) of ECs. 
Scale bar=0.2µm. B) Detection of IL-1β in MVs but not in supernatants without MVs (C) by 
immunoblotting. Fresh supernatants were harvested from cytokine-primed HCAECs and incubated 
with NE (1µg/ml) or NE and NEIII (500µM) or YVAD-CHO (50µM) for 30min, 2h and 6h. MVs were 
isolated from supernatants by centrifugation at 20,000g after pelleting the cellular debri and lysing 
them using 1% v/v Triton-X100/PBS. Equal protein concentrations (15-20µg) were loaded in each 
lane. Recombinant IL-1β (rIL-1β; 20µg) was used as a positive control (17kDa). Data are 
representative of n=4. C) Supernatants, with MVs removed, loaded under the same conditions, 
showing the absence of IL-1β in the supernatants. 
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4.3.3. Microvesicle shedding is preceded by cytosolic Ca2+ changes: 
In secretory cells, MV shedding has been linked with a transient increase in 

intracellular calcium [Ca2+]i (Rodriguez et al., 1997) and this increase in the cytosolic 

Ca2+ has been linked to IL-1β MV secretion in monocytes (Andrei et al., 1999). 

Therefore, to look in further detail into the mechanism by which NE induces MV 

shedding from ECs, I studied cytosolic calcium changes in relation to NE activation. 

Using a Ca2+ sensitive fluorometric dye, I sought to assess the role of [Ca2+]i in MV 

formation and release in response to NE, performing experiments in the presence or 

absence of exogenous calcium.  

 

In this experiment, [Ca2+]i is released from intracellular stores during an initial 

stimulation/treatment in Ca2+ free media, and application of CaCl2 during the second 

phase, allows Ca2+ influx into ECs. In Ca2+-free media, there is a slight but non-

significant increase in cytosolic Ca2+ levels in NE treated cells compared to untreated 

cells after NE stimulation (Figure 4.4A). However, [Ca2+]i was significantly increased 

in NE stimulated cells after the addition of CaCl2 compared to unstimulated and 

cytokine-primed cells (Figure 4.4B). This finding suggests that NE treatment 

increases free [Ca2+]i by promoting Ca2+ influx into ECs.  
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Figure 4.4. NE effects on endothelial [Ca2+]i. HCAECs were assayed for changes in cytosolic-free 
Ca2+ in response to the indicated conditions. A) No significant change in cytosolic Ca2+ -free media. B) 
The fluorescent intensity in intracellular calcium changes after 5 minutes of NE stimulation, in the 
presence of 1mM of CaCl2. Ionophore A2347; 10µM and EGTA; 6mM were used as positive and 
negative controls, respectively. Data are from six independent experiments, mean ± SEM, analysed 
by One-way ANOVA and Tukey’s post-test, *p<0.05, ***p<0.001. 
 

 

4.4. Released exosomes and their roles in IL-1 secretion:  
Having identified MVs as a secretory route for IL-1β from ECs due to the actions of 

NE, I sought to determine if there were any additional routes for the leaderless 

cytokine. In the literature, and as discussed in chapter 1, section 1.4.4, different 

mechanisms can be proposed in the same cell type. For example, in platelets, it has 

been suggested two populations of EVs are released, including MVs and exosomes 

containing vWF (Heijnen et al., 1998). 
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In my first experiments, I examined the location of IL-1β in ECs using EM. ECs were 

treated with NE or left untreated for 2h and then cells were immunogold labelled with 

anti-IL-1β (20nm conjugated gold particles). The cells were then observed using EM 

to detect if there was any IL-1β outside MVs. 

ECs, after 2h of NE treatment, released 100nm average sized exosomes from their 

plasma membrane (Figure 4.5, left panel) and these exosomes were rich in IL-1β as 

evident by detection of 20nm-conjugated gold particles labelled IL-1β (Figure 4.5, 

right panel).  

 

 
Figure 4.5. Released exosomes as an additional secretory route for IL-1β. Immunoelectrographs 
showing exosome release (arrow) from the plasma membrane (PL) of ECs activated by NE for 2h. 
The exosomes are positively immunolabelled with anti-IL-1β (red arrowhead; 20-nm gold particles).  
 

 

4.5. Extracellular vesicles (EV) express LAMP-1: 
The EM clearly suggested that some exosomes contained high levels of IL-1β. To 

confirm the potential role of the endolysosomes (a possible source of exosomes) in 

IL-1β secretion by NE, EVs were also tested for the presence or absence of LAMP-1 

protein using western blot. LAMP-1 is a commonly used marker to identify 

endolysosomes within cells. 
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EVs isolated from NE-treated cells using centrifugation gradient expressed LAMP-1 

and this was attenuated in the presence of NEIII (Figure 4.6A). However, there were 

no significant changes in LAMP-1 expression in the cell lysates (Figure 4.6B). These 

data suggest that EVs are derived from endolysosmes and may be released via an 

endolysosomal mediated mechanism.  
 

 
Figure 4.6. NE induces IL-1β release by an endolysosomal mechanism. HCAECs, treated for 48h 
with cytokines or left untreated were incubated with NE for 6h then EVs (A) and cell lysates (B) were 
analysed using Western blotting for LAMP-1. 12-20µg proteins were loaded per lane and α-tubulin 
was used as a loading control. The blot represents three independently performed experiments. 
 

 

4.6. The cellular distribution of IL-1β and mechanism of secretion: 
Inside cells, the site of IL-1β processing is still an area of controversy. In many cell 

types, it is postulated that IL-1β might be processed in an endolysosomal 

compartment (Andrei et al 2004). However, how IL-1β is sequestered into 

compartments and whether it is processed in ECs in endolysosomes is relatively 

unclear.  

 

4.6.1. IL-1β colocalisation with LAMP-1: 
Having shown that EVs released from ECs express LAMP-1, I next asked if IL-1β is 

processed within endolysosomes. For further elucidation of the mechanisms of IL-1β 
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release by EVs, ECs +/- NE treatment were immunofluorescently stained for LAMP-1 

(a late endolysosomal marker) and IL-1β, detected by confocal microscopy.  

 

No staining was detected for IL-1β in unstimulated ECs (data not shown). Cytokine-

primed ECs showed both IL-1β and LAMP-1 positive staining, but without co-

localisation, suggesting a wide distribution of IL-1β throughout the cytoplasm (Figure 

4.7A).  
However, in ECs incubated with NE for increasing times, IL-1β clearly co-localised 

with LAMP-1. Indeed, following a 2h stimulation of EC with NE, the majority of IL-1β 

was co-localised with LAMP-1 (Figure 4.7A, B).  
 
These results suggest a direct role of endolysosomes in IL-1β processing and 

secretion induced by NE. 
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Figure 4.7. Cellular distribution of IL-1β in ECs after NE stimulation. HCAECs in 8-chamber 
slides were treated or left untreated with cytokines (TNF-α/IL-1α; 10ng/ml each) then the media was 
replaced with NE (1µg/ml) containing serum free media over 2h. Cells were then immunostained for 
IL-1β (red) and LAMP-1 (green). A) High resolution images of cytokine-primed cells, without NE (-
NE), or treated with NE (+NE) for 2hr. Scale bars=10µm. Data are analysed by fluorescent confocal 
microscopy. The presented images are representative of fluorescent images from four independent 
experiments. B) A Scatter plot representing a high colocalisation between IL-1β and LAMP-1 in ECs 
after NE activation at the 2 h time-point. 
 

 

4.6.2. Subcellular distribution and localisation of IL-1: 
To study further the ultrastructure of the endolysosomes, I used EM to examine ECs 

treated with NE and compared to untreated cells.  

 

In unstimulated ECs, no observed MVBs were detected (Figure 4.8A, -NE). 

However, after 2h, MVBs (>200µm in size) were detected primarily in a close 

proximity to the plasma membrane in NE-activated ECs compared to unstimulated 

ECs (Figure 4.8B, arrow, +NE). The MVBs were classically filled with intraluminal 

vesicles (ILV) or exosomes (30-100nm) (Figure 4.8B, arrowhead, +NE).  
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Figure 4.8. NE enhances MVB formation inside ECs. ECs +/- NE analysed using TEM. A) 
Electromicrographs of NE untreated ECs (-NE) and (B) NE-treated cells (+NE) showing multivesicular 
bodies (MVBs, arrow) compared to NE-untreated controls (-NE). In NE-treated ECs, the MVBs (arrow) 
are filled with exosomes (30-100nm; arrowhead) in close proximity of the plasma membrane. The 
images are representative from three independent experiments. Scale bar=0.5µm. 
 

 

Next I wanted to ask the question of whether MVBs contain IL-1β and thus 

confirming the previous immunofluorescent findings and suggesting that the MVBs 

are the site of IL-1 processing. To do this, EM sections from ECs-primed first with 

cytokines, and then stimulated with NE for 30-2h, were immuno-labelled with IL-1β 

conjugated gold particles (20nm).  

Interestingly, inside ECs, IL-1β conjugated gold particles were detected within two 

distinct sets of intracellular vesicles at different incubation time-points with NE.  

 

At 30min of NE incubation, IL-1 was primarily detected within membrane bound 

vesicles with an average size of less than 200nm (Figure 4.9, left panel). That was 

associated with membrane blebbing and MV shedding containing IL-1 (Figure 4.9, 

right panel). 
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Figure 4.9 Sites of early IL-1 processing. Immunogold EM images for 30min NE treated ECs 
showing IL-1 (arrowhead) within 200nm vesicles inside ECs (arrow, dotted circle, left panel). Right 
panel electron micrograph showing membrane blebs (red arrow) containing IL-1 (20nm gold particles; 
arrowhead). The representative images are from three independent experiments. Scale bar=0.2µm. 
 

 

However, after 2h incubation with NE, EC IL-1 was only observed within the MVBs 

(Figure 4.10). 

 

 

 
Figure 4.10. IL-1 is detected in the preterminal endolysosomes. Electron micrograph representing 
3 independent experiments of ECs treated with NE for 2h and immunogold labelled for IL-1β (20nm-
conjugated gold particles). Arrow indicates IL-1 labelled gold particles whereas the arrowhead 
represents MVBs.  

Neutrophil elastase promotes endothelial IL-1 secretion. 
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To confirm the endolysosomal nature of these MVBs, EC-activated by NE were also 

stained for LAMP-1. Unsurprisingly, a sequence of MVBs within the ECs starting 

from the perinuclear area to the plasma membrane was clearly detected and they 

were positive for LAMP-1 (10nm-conjugated gold particles) (Figure 4.11).  

 

  

 
Figure 4.11. Immunoelectron analysis of LAMP-1 in ECs after NE treatment for 2h. The MVBs 
(dotted circles) are positively immunolabelled with anti-LAMP-1 (yellow arrowheads; 10-nm gold 
particles). Scale bar=0.2µm. Arrow indicates the direction of MVBs starting from perinuclear area 
toward cell surface. The electron micrograph is a representative of three independent experiments.  
 

 

4.7.  NE is detected inside ECs and colocalised with LAMP-1: 
To follow the fate of NE in activated ECs, I used Alexa-Fluor 647-labelled NE and 

performed immunofluorescence staining. After permeabilisation, I also labelled the 

internal endolysosomes with LAMP-1. 

 

NE was detected inside cells and co-localised with LAMP-1, confirming that NE 
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inside ECs may directly cleave IL-1 within MVBs (Figure 4.12A).  

 

 
Figure 4.12. NE is detected inside ECs. Confocal images showing LAMP-1 and NE in primed ECs 
after NE treatment. HCAECs were incubated +/- Alexa Fluor 647-labelled (1µg/ml) NE for 2h in serum 
free media before washing in PBS and colocalisation performed using an antibody against LAMP-1. 
Confocal images were analysed using Zeiss image and image j software, scale bars=10µm. 
 

 

4.8. Formation of endosomes is important for IL-1 secretion: 
To confirm that the released IL-1β in EVs was indeed mediated by an endolysosomal 

mechanism, I evaluated the effect of bafilomycin A1 (BAF1), a lysosomal V/ATPase 

inhibitor (Drose and Altendorf, 1997), on IL-1β secretion by NE using ELISA and 

immunoblotting. 

 
As shown in figure 4.13A, treatment of ECs with BAF1 (50nM) before the addition of 

NE for 6 hours largely decreased IL-1β levels in the supernatants compared to NE 

treated cells without BAF1 (56.44 ± 20.2 vs. 131.8 ± 23.97pg/ml, respectively, 

p<0.05, n=4). In cell lysates, the cleavage of proIL-1β by NE was attenuated in the 

presence of BAF1 (Figure 4.13B), confirming that the endolysosomes are essential 

for IL-1 processing by NE in ECs.  
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Figure 4.13. Formation of endosomes is an important for endothelial IL-1 secretion. A) ELISA 
measuring IL-1β released in conditioned media of HCAECs primed with cytokines (TNF-α/IL-1α; 
10ng/ml) ± NE (1µg/ml)/ ± BAF1 (50nM) after 6h of stimulation. Experiments are n=3 and data are 
mean ± SEM. Data are analysed by One-way ANOVA followed by Tukey’s post-test, *p<0.05. B) 
Western blot analysis of lysates harvested from primed HCAECs activated with NE ± BAF1 (50nM) for 
6h, 20µg protein loaded per lane and α-tubulin was used as a loading control. The blot is 
representative of three independent experiments. 
 

 

4.9. Detection of NE with IL-1β in the endothelium of mature atherosclerotic 
plaques: 

Finally, I asked whether NE could be detected in atherosclerotic plaques in mice to 

ascertain if NE could contribute to local IL-1β generation.  

Using immunostaining, only in well-developed atheromatous lesions of ApoE-/- mice 

fed a high fat for 12 weeks, IL-1β was detected, predominantly in ECs (Figure 4.14A, 

left panel).  
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Interestingly, in these lesions, NE also appeared to be expressed in the luminal 

endothelium (Figure 4.14B) and in the same location as that of vWF-positive stained 

ECs (Figure 4.14C). 

 
 

 

Figure 4.14. NE is detected with IL-1β in serial atherosclerotic sections in the endothelium. A) 
and B) Immunohistochemical detection of NE and IL-1β in the luminal endothelium of mouse 
atherosclerotic plaques. Paraffin embedded aortic sinuses from ApoE-/-

 
mice fed high fat diet for 12 

weeks were stained with primary antibodies as indicated. Specificity of staining is confirmed by no 
primary negative control (primary antibodies were replaced by PBS). Scale bars=200µm. C) vWF is 
detected  in a sequential section of aortic atherosclerosis. NE positivity was detected predominantly in 
the endothelium (top panel; arrows). IL-1β positive endothelium (top left panel) was also detected. 
The bottom panels show vWF stained endothelium. Middle panels are positive control tissues, 
including lung, spleen and myocardium for their respective antibodies. Images are representative of 
histology data obtained from a total of 6 animals. Scale bars=100-200µm.  
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4.10. Summary: 
The data in this chapter demonstrate that ECs release MVs/exosomes in response 

to NE. The data also lead to a range of mechanisms by which EVs are released, as 

summarised below: 
 

1. MV shedding from ECs treated with NE is time dependent and independent of 

caspase-1 activation.  

2. The MVs are only secreted from ECs activated by NE, and contain IL-1β. 

3. The shedding process is preceded by a transient, yet significant, increase in 

cytosolic calcium levels. 

4. Within ECs, IL-1β is diffusely distributed in cytokine-primed ECs. However, 

following NE treatment, the majority of IL-1β is clearly co-localised with LAMP-

1. 

5. The co-localisation between LAMP-1 and IL-1β increases with increasing time 

incubation with NE. 

6. Immunoblotting analysis of EVs isolated from NE treated cells shows 

expression of LAMP-1. 

7. The secretion of IL-1β is significantly attenuated in ECs pretreated with BAF1 

and followed by NE. 

8. MVBs were only detected in ECs treated with NE, and exosome release was 

observed using EM. 

9. The MVBs express LAMP-1, and contain IL-1β. 

10. The endothelium also releases exosomes containing IL-1 after a 2h 

incubation with NE. 

11. NE was detected within the vascular endothelium of matured plaque and 

appears to colocalise with IL-1β. 
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4.11. Discussion: 
The mechanism of IL-1β secretion by the endothelium is still an enigma and the 

mysteries of its secretion have long intrigued scientists. In the previous chapter, I 

showed that ECs release IL-1β after NE activation and that the secretion is time and 

dose dependent. NE selectively cleaves proIL-1β and this is independent of 

caspase-1. However, relatively little is known about the mechanism for the trafficking 

of IL-1β into the extracellular environment.  

 

The release of extracellular vesicles has increasingly been recognised as an avenue 

for delivering various cellular signals or bioactive factors (Bianco et al., 2005). 

Virtually all cells are able to release microvesicles from their plasma membranes 

(MacKenzie A, 2001) or exosomes from exocytosis of multivesicular bodies 

(Ghossoub et al., 2014). Therefore, I investigated MV/exosome release in response 

to NE.  

 

Using time-lapse microscopy, I found that HCAECs generate Annexin V+ MVs in 

response to NE. The generation was monitored for 6h and showed that the shedding 

process starts early after NE application (within 5-10 minutes post-NE activation). 

Membrane flipping and PS exposure were only observed in the MVs. This finding is 

in agreement with MacKenzie and collaegues who have described this phenomenon 

in monocytes (MacKenzie A, 2001).  

PS exposure also occurs as a result of apoptosis (Naito et al., 1997) but in the 

previous chapter, I showed that caspase-3/7 activity used as a tool to measure 

apoptosis (Sebbagh et al., 2001) did not increase with NE treatment (section3.1.5). 

Moreover, in apoptosis, the PS flipping is a generalised process along all of the outer 

surface of the plasma membrane (Majno and Joris, 1995, Winn and Harlan, 2005), 

yet in NE treated cells, I observed the PS flipping only prior to the shedding and 

localised to MVs.  

 

There is no general consensus on the method of MVs isolation and using a 

centrifugation gradient to separate MVs from exosomes (van der Pol et al., 2012)  

relies on the differences in sizes only (within the 200nm range) and one cannot avoid 

contamination and degradation of vesicles. The gold standard technique, therefore, 
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to describe MV size and characterisation is still via electron microscopy. As a result, I 

examined ECs treated with NE using EM and showed membrane tethering and 0.1-

1µm MVs separated from ECs, confirming my earlier light microscopy data.  

 

To study the kinetics and the number of the MVs released in a greater detail, I used 

a standardised MV isolation and quantification technique (Robert et al., 2009), and I 

showed a significant increase in MVs isolated from NE-treated ECs. To confirm that 

the MV shedding is a direct action of NE rather than indirect may be via an 

intermediate product, NE inhibitor was added and the shedding was indeed 

attenuated. Strikingly, this NE induced MV shedding was independent of caspase-1. 

This was most clearly seen when YVAD-CHO was added to HCAECs followed by 

NE treatment, a protocol that caused markedly greater generation of Annexin V+ 

MVs. This finding contrasts with previous investigations on immune cells in terms of 

their caspase-1 dependency of MVs shedding (Keller et al., 2008). However, to date, 

there have been no other investigations on caspae-1 dependency of MV shedding in 

ECs. MV shedding from ECs has been recently proposed as a mechanism for other 

non-classical protein secretion (Betapudi et al., 2013).  

 

My data showed that IL-1β is present in the MVs but not in MV-free supernatants, 

confirming that IL-1β is released only in MVs. This is in line with the Mackenzie et al 

study demonstrating that monocytes secrete IL-1β by MV shedding (2001). The 

immunogold EM further confirms this finding by the detection of IL-1β immunogold 

labelled particles within the MVs. To my knowledge, in ECs, this is the first study to 

detect IL-1 using immunogold EM within MVs.  

 

Interestingly, MVs did not contain caspase-1 or any components of the 

inflammasome, suggesting that caspase-1 activation is not fundamental in this 

setting. The processing of proIL-1β has long been linked with caspase-1 activation in 

immune cells (Netea et al., 2009). A controversy, however, has arisen more recently 

in other cell types such as RAW264.7 macrophages where caspase-1 does not 

seem to be crucial (Pelegrin et al., 2008).   

Although a few studies have begun to investigate NE-mediated IL-1β secretion in 

renal (Schreiber et al., 2012) and pulmonary (Couillin et al., 2009) inflammatory 
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diseases, my data are the first to propose a direct effect of NE on IL-1β release and 

to link this to a MV shedding mechanism.  

MVs have previously been shown to express a number of cell surface markers such 

as MHC-II (Qu et al., 2009), but due to time constraints, I was not able to carry out a 

detailed biochemical analysis to fully characterise other microvesicle surface 

markers.  

 

The mechanism by which MVs are released is poorly understood. Several studies 

indicate that cytokine-containing MV shedding and membrane tethering occurs by a 

calcium dependent mechanism. Removal of extracellular calcium has been shown to 

decrease the shedding of the MVs by microglia (Bianco et al., 2005) and THP-1 

monocytes (MacKenzie A, 2001). Moreover, a common biogenesis has linked 

endolysosomes with Ca2+ regulated vesicle secretion with an increase in intracellular 

calcium associated with IL-1β secretion (Qu et al., 2007).  

 

I demonstrated that NE transiently increased [Ca2+]i to a maximum after the addition 

of exogenous Ca2+. Furthermore, it has been shown that removal of extracellular 

calcium ameliorated IL-1 secretion (Rodriguez et al., 1997), suggesting that NE 

mobilised [Ca2+]i mainly by influx of extracellular Ca2+ and thus it may enhance IL-1β 

secretion. This is in agreement with recent studies demonstrating that extracellular 

Ca2+ is required for IL-1β secretion (Wang et al., 2011a). However, how cytosolic 

calcium changes induce an assembly of IL-1 and MV shedding are still to be fully 

clarified.  

 

The site of IL-1β processing in ECs is relatively unknown. Although the processing 

and the release of IL-1β occur rapidly and possibly concurrently, it has been 

previously postulated that the cleavage of proIL-1β and mature IL-1β secretion are 

relatively unrelated (Galliher-Beckley et al., 2013, Netea et al., 2009). However, this 

speculation remains hypothetical because, due to the technical limitations, the 

presence of IL-1β in different compartments within the cells coupled with mature IL-

1β secretion had not been documented prior to my work.  

 

This chapter investigated the cellular distribution of IL-1β and whether the subcellular 

location of IL-1β changed following NE incubation and related the location to a late 
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endolysosomal marker; LAMP-1. Recent immunofluorescence staining data in 

murine macrophages has shown that IL-1β does not co-localise with LAMP-1 in 

macrophages (Brough and Rothwell, 2007). This finding is consistent with my data in 

ECs prior to NE treatment (cytokine-primed cells) where IL-1β appears to be 

diffusely distributed within the cytoplasm. Most interestingly, 2h after NE treatment, 

IL-1β is co-localised with LAMP-1, strongly suggesting that IL-1β 

compartmentalisation may be acutely induced by this stimulus and destined for 

maturation by a regulated transport.  

 

Another important outcome of this study is the proposed mechanism of the role of 

the endolysosomes in IL-1β release from ECs. Endolysosomal markers were evident 

in EVs isolated from NE-treated ECs and the detection of IL-1β in LAMP-1 positive 

EVs after 2h is a novel finding.  

The co-localisation of IL-1β and LAMP-1 and the unique appearance of LAMP-1+ve 

EVs after NE stimulation of primed EC, suggests that NE may trigger a signalling 

pathway that allows processing to occur in secretory endolysosomes. It is possible 

that proIL-1β travels to a endolysosomes (Andrei et al., 1999) to be processed to the 

mature form before being packaged into extracellular vesicles expressing LAMP-1 

for the secretion.  

 

Additionally, I showed that release of IL-1β is significantly attenuated by BAF1. BAF1 

is known to inhibit endolysosome formation by preventing fusion of the late 

endosomes to lysosomes, in addition to inhibiting vacuolar H+/ATPase (Yamamoto 

et al., 1998). An interesting finding by (Rubartelli et al., 1990) suggests that IL-1β 

secretion is ameliorated by agents that prevent endocytosis, confirming that 

endosomes may play a key role in the secretion of IL-1β. My work is supportive of 

this concept. Since MVBs were detected only following NE treatment of ECs, this 

suggests that the MVBs are a part of the secretory pathway of IL-1β. However, how 

IL-1β is recognised and gets into these vesicles compared with the entry of other 

cytosolic proteins, is still to be investigated.  

 

The EM data also confirmed the presence of another population of extracellular 

vesicles with 30-100nm in size, fitting the classical morphological features of 

exosomes. Interestingly, exosome release was only observed at later time points, 
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alongside shedding of MVs, suggesting a continuum mechanism by which ECs 

release their IL-1β contents.  

The secretory pathway described here (early MV shedding and then late exosome 

release) has been used to describe the secretion of other non-classical proteins such 

as epidermal growth factor (EGF) (White et al., 2006). Since a motif common among 

those proteins has not yet been identified, it is possible that they undergo some sort 

of posttranslational modifications in an ‘assemblosome’ directing those proteins for 

their selective export. Other possible roles, involving heat shock proteins, have also 

not yet been completely defined (Piper and Katzmann, 2007), and their expression in 

exosomes could also be postulated.  

 

Given the continued prominence and topicality of IL-1 in the progression of 

atherosclerosis (Seropian et al., 2014), I studied the expression of NE in vivo in a 

recognised atherosclerosis preparation: aortic root plaques taken from ApoE-/- mice 

fed a high fat diet for 12 weeks. Although previous work has detected NE in aortic 

aneurysms (Rao et al., 1996) and in carotid plaques (Dollery et al., 2003), my study 

is the very first to investigate NE distribution in experimental atherosclerosis.  

 

Significantly, NE was detected in the endothelium and sub-endothelial cells of 

atherosclerotic plaques, and was detected alongside IL-1β. The antibody used for 

these studies recognises both proIL-1β and mature forms, and I show some cellular 

localisation with NE, in support of my data that NE activates and promotes secretion 

of IL-1β. The detection of NE within the endothelium has been demonstrated in 

carotid atherosclerosis (Dollery et al., 2003), however, no other publications linked 

endothelial IL-1 expression with NE.  

 

The mechanism of IL-1β secretion from ECs has been an intriguing and unresolved 

question in IL-1β bio-physiology over decades. Using different experimental systems 

in this study, I provide, for the first time, direct evidence for the involvement of NE in 

MV/exosome release from ECs containing mature IL-1β. The proposed mechanism 

of IL-1β secretion from ECs by NE is summarised in figure 4.15.  
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Figure 4.15. Schematic of mechanism of IL-1β secretion from ECs by NE. (i) NE is released by 
circulating cells at the site of atheroma and transported by endocytosis inside the diseased 
endothelium (primed by inflammation). (ii) An increase in intracellular calcium due to NE effects leads 
to remodelling of cell membrane and vesiculation (iii) which, in turn, facilitates shedding of MVs 
containing IL-1β. (iv) Inside ECs, NE enters secretory endolysosomes (multivesicular bodies; MVBs) 
and cleaves proIL-1β within. MVBs also fuse to plasma membrane and released exosomes containing 
IL-1 (v). 
 

 

In conclusion, I have significantly added to and cemented the emerging role of NE in 

IL-1 induced inflammation. I suggest a novel mechanism for NE-mediated IL-1 

secretion by ECs, namely pro-IL-1 processing in the secretory endolysosomes and 

packaging of mature IL-1 within MVs/exosomes for release into the extracellular 

environment. NE and IL-1β are detected in vivo in the setting of atherosclerosis 

within endothelium in atheromatous plaques.  

My findings have a wider application for a better understanding of the role of other 

important proteases with prominent non-proteolytic and possibly signalling roles, 

such as azurocidin, proteinase 3 and Cathepsin G, and provide other avenues for 

therapeutic targets to limit the influence of interleukin-1.  

Future perspectives for that with possible therapeutic implications are discussed in 

depth in the general discussion chapter (8) of this thesis. 
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5.1. Overview of n3FA effects in Experimental Atherosclerosis: 
A strong body of evidence has demonstrated that hypertension and dyslipidaemia 

are the underlying risk factors for atherosclerosis (Drazner, 2011). Hypertension is a 

major health care concern due to its prevalence among the population and its 

devastating complications; namely stroke and IHD (Lewington et al., 2002). 

Despite major advances in the disease management, substantially high-risk IHD 

patients are fuelling intensive investigation into pharmaco-modulation of the 

underlying disease and hypertension (Wang et al., 2011b, Vasan et al., 2001). In the 

search for a novel therapeutic intervention, the rising importance of inflammatory 

biomarkers and immune body system involvement in the disease is of major 

importance. 

 

Dietary control for atherosclerosis and hypertension has also been a focus of 

intensive investigation (Burr et al., 1989). Epidemiological and prospective clinical 

studies have suggested remarkable effects of n3FAs in the reduction of 

cardiovascular mortality rates among IHD patients (Yates et al., 2014). These effects 

have been ascribed to the improvement of the cardiovascular risk profiles, resulting 

in disease prevention (Marchioli et al., 2002).  

 

N3FAs, especially DHA and ALA are shown to be anti-atherogenic (Hall, 2009), with 

multiple underlying mechanisms (Thies et al., 2003, Cawood et al., 2010). Recent 

evidence indicates that n3FAs may have anti-inflammatory (Calder, 2012, Yates et 

al., 2011), anti-lipidemic (Mozaffarian and Wu, 2011), anti-arrhythmic (Yates et al., 

2014) and blood pressure lowering effects (Miller et al., 2014). Moreover, strong 

evidence suggests that n3FAs are a positive dietary intervention in various 

inflammatory diseases such as RA and inflammatory bowel disease (IBD) (Goldberg 

and Katz, 2007). However, the data in IHD and hypertension are less robust.  

 

Clinical trials in post-MI patients have suggested that n3FA may exert a possible 

therapeutic effect, particularly on sudden cardiac death and the risk of re-infarction 

(Vedin et al., 2008), although this effect has not been shown unequivocally nor has 

any link been demonstrated with atherosclerotic plaque stabilisation. Moreover, 

recent meta-analysis studies did not support the protective roles of n3FAs on 
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cardiovascular mortality (Rizos et al., 2012, Kwak et al., 2012). In addition, there is 

limited information from large randomised studies on n3FA effects, particularly in 

atherosclerosis and patients without MI.  

 

Some uncertainty also exists regarding the optimum dose required to provide the 

maximum beneficial effects of n3FAs (Saravanan et al., 2010). Although some 

population-based studies have suggested that a low dose of n3FAs (<1g/day) is 

enough to provide favourable impacts of n3FAs on IHD (Marchioli et al., 2002), the 

most recent case-control study has demonstrated the opposite (Rauch et al., 2010). 

This area of uncertainty needs further investigation. Moreover, the underlying 

molecular mechanism of action of n3FAs has yet to be extensively studied.  

I hypothesised that omega-3 fatty acids; ALA and DHA, preferentially decrease high 

fat diet induced atherosclerosis and high blood pressure in ApoE-/- mice. 

 

5.2. Brief Methods: 
The detailed methods for this section are described in chapter 2. Briefly: 

Male ApoE-/- mice (8 weeks of age) were divided into one of three groups: control 

group fed Western diet alone, DHA treated group fed DHA (300mg/kg/day) with 

Western diet, and ALA group fed ALA (300mg/kg/day) with Western diet. All groups 

were fed for 12 weeks. During the study, the mice were monitored daily for their food 

intake and wellbeing, blood pressure and weekly for their body weight changes. 

Echocardiogram was performed on mice at baseline and again just before the 

termination of the study. By the end of study, the freshly collected blood by cardiac 

puncture was analysed for red blood cell (RBC) indices and plasma lipid profiles  

The extent of atherosclerosis was assessed in the whole aortae, cross-sectional 

aortic sinus and brachiocephalic sections.  

Data are expressed as mean ± SEM and analysed using prism software (Version 6, 

GraphPad, San Diego, CA). Blood pressure and body weight data were analysed by 

Two-way ANOVA followed by Tukey’s post-test as described by (Hoorn et al., 2011). 

For two-group comparisons, data were analysed by an unpaired Student’s t test for 

normally distributed data whereas for multiple comparisons, data were analysed by 

One-way ANOVA and Tukey’s post-test. A level of p<0.05 indicated statistical 

significance.  
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5.3. DHA but not ALA Reduces High fat-diet Induced Hypertension and 
high Left Ventricular Mass (LVM) in ApoE-/- mice: 

Given that DHA is the major type of PUFAs in fish and fish oil, and ALA is the 

predominant type of omega-3 fatty acid in vegetable oil and plant derived food 

(Mozaffarian and Wu, 2011), I investigated the differential effects of these two main 

types of fatty acids on atherosclerosis and hypertension in an experimental model.  

 

This section outlines the observed effects of ALA or DHA feeding on high blood 

pressure and left ventricular function in ApoE-/- mice.  

 

5.3.1. Food intake and body weight changes: 
In order to study the effects of n3FA supplementation, atherosclerosis was 

augmented in ApoE-/- mice using the HFD (21% fat w/w). 

To ensure that the mice fed n3FAs received the same concentration of ALA or DHA 

on each individual day of feeding, the free fatty acids were mixed with jelly at equal 

and final concentrations of 300mg/kg/day, and the mice were monitored daily to 

make sure they consumed all the n3FAs. 

The method of using jelly to deliver drugs to mice was published recently by (West et 

al., 2014) and has shown to be an efficient way to deliver drugs to mice at the 

required concentrations.  

The mice were trained for at least one week to eat jelly alone, and then the jelly 

containing free fatty acids (DHA or ALA) was given to the mice along with the HFD. 

For the duration of the study, all the mice ate the jelly containing DHA or ALA without 

missing a single dose, and throughout the period of the feeding, there was no 

significant difference in the jelly containing fatty acid intake among the studied 

groups. Importantly, both ALA and DHA were well tolerated, and no major side 

effects were observed.  

 

In addition to their daily intake, the mice were monitored weekly for body weight 

changes. There was no significant change in the body weights between the ApoE-/- 

mice receiving HFD (control) and the ApoE-/- mice on HFD supplemented with ALA 

(Figure 5.1). However, in the DHA fed group, there was a slight, yet non-significant, 

slower body weight gain throughout the duration of the study. By the end of the 



 

 109	
  

study, these DHA-receiving mice showed a statistically significant reduction in their 

body weight compared to the ALA fed group (29.88 ± 1.89 in DHA group vs. 33.79 ± 

5.038g in the ALA group, p<0.05, at week 12) (Figure 5.1).  

 

 

 

Figure 5.1. Body weight changes in response to n3FA feeding. Male ApoE-/- mice were fed HFD 
(Western-type diet) alone or HFD and docosahexaenoic acid (DHA) or α-linolenic acid (ALA) 
(300mg/kg/day) (n=12/group) and body weight in grams were recorded weekly. Graph shows a 
significant reduction in the body weight among the DHA group compared to ALA group at week 12. 
Data are mean ± SEM, analysed by 2-way ANOVA followed by Tukey’s test, *p<0.05. 
 

 

5.3.2. Blood pressure changes in response to fatty acid feeding: 
To study the anti-hypertensive properties of DHA and ALA in the atherosclerotic 

mouse model, the three groups of mice were monitored for changes in their blood 

pressure weekly for the duration of the study.  

 

The mean values of systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure 

(BP) in each group at the baseline (before initiating feeding), and weekly for 12 

weeks, are shown in figure 5.2A-C. The mean individual blood pressure in the mice 

fluctuated from week to week. However, overall trends among the studied groups 

showed that the DHA group had a significant drop in their blood pressure (SBP, DBP 

and MBP) compared to the control and the ALA groups.  
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Between the control and ALA groups, the SBP, DBP and MBP showed an 

incremental, yet non-significant, difference in blood pressure at any given week. At 

baseline, the SBP between the two groups was 115.3 ± 3.21mmHg in the control 

group and 110.1 ± 7.849mmHg in the ALA supplemented mice. Subsequently the 

SBP rose to reach 159.7 ± 2.842mmHg vs. 157.8 ± 7.274mmHg, in control and ALA 

groups, respectively, at week 12 (Figure 5.2A). The DBP and the MBP in the two 

groups follow the same trend (Figure 5.2B & C).  

 

By comparison to controls, the SBP, DBP and MBP were remarkably lower in the 

DHA fed mice. At baseline, the SBP in both groups (control vs. DHA) was 115.3 ± 

3.21 vs.109.3 ± 8.88mmHg, p=ns. Subsequently, there was a rise in the SBP 

between the two groups until the mice reached week 5 of feeding, when the SBP 

significantly declined in DHA fed mice compared to the control group (132.3 ± 9.18 

vs. 146.6 ± 3.563mmHg, respectively, p<0.05). The SBP continued to drop in the 

DHA fed group until the study ended. At week 12, the SBP reached an average of 

119.5 ± 7.33mmHg in the DHA group compared to 159.7 ± 2.482mmHg, p<0.001 in 

the control mice (Figure 5.2B).  

 

The DBP in the DHA fed mice compared to the control group also significantly 

decreased in the former compared to the latter group (75 ± 14.65 vs. 100.5 ± 7.549, 

respectively, p<0.01) (Figure 5.2B & C). 
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Figure 5.2. DHA but not ALA attenuates HFD induced hypertension in ApoE-/-mice. A) Systolic 
(SBP), (B) diastolic (DBP) and (C) Mean (MBP) blood pressure were measured in ApoE-/- mice fed 
either HFD alone (control) or HFD and DHA (DHA treated) or ALA (ALA treated) for 12 weeks 
(n=4/group) using a tail cuff (see methods for details). All data are expressed as mean ± SEM, 
analysed by 2-way ANOVA and Tukey’s post-test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
 
 

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

Week of Diet

SB
P 

(m
m

H
g)

* ** ****

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

Week of diet

D
B

P 
(m

m
H

g) *****

A

B

C

Control
ALA treated
DHA treated

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

Week of Diet

M
B

P 
(m

m
H

g) * *
***



112 Chapter (5) Effects of n3FAs in Experimental Atherosclerosis. 
	
  

	
   112 

5.3.3. Left ventricular mass and function in response to fatty acid feeding: 
Despite aggressive medical treatments, the majority of IHD patients develop left 

ventricular (LV) dysfunction and heart failure (HF) (Nichols et al., 2014). In addition 

to myocardial ischemia and infarction, pressure overload and systemic hypertension 

are contributing factors for LV dysfunction (Carabello et al., 1992).  

 

The changes in blood pressure of mice in response to fatty acid feeding led me to 

investigate the possibility that there would be consequent changes in cardiac 

function. 

Because no significant differences in the ALA fed animals were seen, in terms of 

their blood pressure response compared to controls, changes in LV wall thickness 

and function were only recorded in the DHA and the control groups. 

Echocardiographic measurements were analysed at week 0 (baseline) and at week 

12 (+12 weeks) in these two groups. 

 

Echocardiographic findings showed changes in LV fractional shortening (LVFS) and 

ejection fraction (LVEF) in the DHA mice compared to control animals after 12 

weeks. At baseline, the average %LVFS in the control group was 43.83 ± 3.180%, 

n=4 which was reduced after 12 weeks of high fat diet feeding (35.41 ± 3.129%, 

n=4), although this was not significant (Figure 5.3A). 

In the DHA fed animals, LVFS was significantly increased after 12 weeks compared 

to the basal levels (45.90 ± 6.05 vs. 28.42 ± 6.25%, p<0.05, respectively) (Figure 

5.3A). 

The %LVEF follows a similar trend to that of LVFS in the control group after 12 

weeks of feeding (Figure 5.3B). In the DHA fed group, %LVEF increases after 12 

weeks of DHA feeding, although this was not statistically significant compared to the 

baseline levels (74.98 ± 6.091% after 12 weeks vs. 54.74 ± 10.38% at baseline) 

(Figure 5.3B).  

 

In comparison to the basal levels, the cardiac output (COP) did not show any 

significant differences between the control and DHA groups after 12 weeks of 

feeding (22.24 ± 4.912 in the control group vs. 27.56 ± 10.58 ml/min in the DHA fed 

mice, figure 5.3C).  
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Figure 5.3. Left ventricular function in response to n3FAs. Effect of 12 weeks of feeding of HFD 
alone (control) or HFD and DHA (300mg/kg/day) on (A) Left ventricular fractional shortening 
(%LVFS), (B) left ventricular ejection fraction (%LVEF) and (C) cardiac out put (COP). Data were 
measured in anaesthetised mice with the help of Mrs Nadine Arnold. Data are presented as mean ± 
SEM, (n=4/group), analysed by unpaired Student’s t test, *p<0.05. 
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Cardiac enlargement and LV hypertrophy (LVH) is one of the observed features 

among hypertensive patients and is considered an alarming sign among poorly 

controlled hypertension in IHD patients (Drazner, 2011). Therefore, in my study, I 

sought to determine if there is a LVH in response to HFD feeding, and if there is any 

improvement in the LVH, correlated with the observed reduction in BP, in DHA fed 

animals. 

 

LVH was assessed using echocardiography by direct measurements of LV cavity 

diameter (internal diameter during diastole; LVIDd) and corrected LV mass (LVM), 

both at baseline and after 12 weeks of dietary supplementation with DHA (see 

chapter 2 for the detailed methods).  

 

In the control group, there was no significant reduction in LVIDd after 12 weeks of 

HFD feeding compared to the baseline diameter (2.963 ± 0.158 vs. 3.195 ± 

0.235mm, respectively, n=4) (Figure 5.4A). Likewise, in the DHA supplemented 

group, there was no significant difference in the LVIDd after 12 weeks of the 

supplementation compared to the baseline (2.703 ± 3.978 vs. 2.963 ± 0.1481mm, 

respectively, n=4, Figure 5.4A), nor was there a significant difference or to the 

control group (2.703 ± 0.3978 vs. 2.963 ± 0.1583, n=4, respectively) (Figure 5.4A).  

 

Within the control group, LVM significantly increased after 12 weeks of HFD 

compared to the baseline levels (191.2 ± 23.63 vs. 114.1 ± 22.02mg, respectively, 

n=4, p<0.05) (Figure 5.4B), suggesting LV hypertrophy in response to HFD feeding.  

In the DHA fed mice, there were no significant differences in the LVM at week 12 

compared to baseline measurements (114.5 ± 6.655mg vs. 108.3 ± 2.208mg) 

(Figure 5.4B). However, in comparison to the control group, LVM significantly 

decreased in the DHA group after 12 weeks (191.2 ± 23.63mg vs. 114.5 ± 6.655mg, 

n=4, p<0.05) (Figure 5.4C).  

 

Collectively, these data suggest that DHA supplementation protects against LVH 

induced by HFD feeding in ApoE-/- mice, secondary to the high blood pressure.  
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Figure 5.4. DHA decreased LVH induced by HFD. Effect of 12 week feeding of HFD alone (control) 
or HFD and DHA (300mg/kg/day) on: A) LV wall and cavity dimensions (LVIDd, mm) and (B & C) 
corrected Left ventricular mass (LVM) calculated by echocardiography. Measurements were 
performed by the help of Mrs Nadine Arnold. Data are mean ± SEM, n=4 mice/group, and analysed 
by unpaired Student’s t test (*p<0.05).   
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5.4. Erythrocyte membrane and fatty acid changes in response to DHA 
and ALA feeding: 

The fatty acid intake into the body by the mice was further confirmed by the changes 

in the fatty acid composition in the red blood cell (RBC) membranes. RBC omega-3 

compositions and indices were measured by BioLab, London, UK, in pooled blood 

samples (pooled samples from 4 mice per group) (detailed methods in chapter 2). 

 

As expected, the amount of DHA in the DHA fed mice was increased (average of 

38µmol/L), with no changes in the other fatty acids levels, compared to control or 

ALA fed mice (Figure 5.5A). Surprisingly, however, consumption of ALA did not 

increase ALA levels in the RBCs of ALA-fed mice compared to control and DHA fed 

mice. However, there was a slight increase in eicosapentaenoic acid (20:5n-3, EPA) 

concentration (approximately 12µmol/L) compared to the control and DHA fed mice 

(3µmol/L and 10µmol/L, respectively). Changes in eicosatetraenoic acid (20:4n-3, 

ETA) levels were not different between the three groups.  

 

The red blood cell omega-3 index has been linked in previous clinical studies with MI 

risks in IHD patients (Salisbury et al., 2012). High omega-3 index ((DHA+EPA / Total 

RBC fatty acids) X 100) has also been considered as an independent risk factor for 

plaque stability (Harris, 2007).  

 

Therefore, I measured the omega-3 index (%) in the RBCs isolated from the three 

groups of mice. Interestingly, the RBC omega-3 index in DHA fed mice increased 

with an average of 1.3% compared to the ALA fed mice (0.7%). In the control mice, 

the detected index was 1% (Figure 5.5B). 
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Figure 5.5. Fatty acid composition in RBCs of ApoE-/- mice fed HFD alone or HFD and ALA or 
DHA for 12 weeks. A) Fatty acid composition (µmol/L) in the RBC membrane (pooled blood from 4 
mice per group). B) RBC omega-3 index (%) among the studied groups from pooled blood (4 mice 
per group). ALA indicates alpha-linolenic acid (18:3n-3), DHA; docosahexaenoic acid (22:6n-3), ETA; 
eicosatetraenoic acid (20:4n-3), EPA; eicosapentaenoic acid (20:5n-3). 
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5.5.1. Proximal aortic atherosclerotic development in response to fatty acid 
feeding: 
There was no significant difference in atherosclerotic lesion burden in the aortic 

sinuses among the three experimental groups after 12 weeks of diet consumption 

(Figure 5.6A & B).  

 

Of note, using histological staining, the lesion in the proximal aortae after 12 weeks 

of feeding the mice HFD alone did not seem different than that in ALA mice (Figure 

5.6A). However, aortic lesions in DHA fed mice showed, by eyes, phenotypic 

changes that were different than those in the controls e.g. the lesions seem to be 

less cellular than that of the controls (Figure 5.6A), even though quantitative analysis 

demonstrated similar results in atherosclerotic disease burden among all studied 

groups (Figure 5.6B).  
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Figure 5.6. DHA & ALA supplementation has no effect on HFD induced atherosclerosis in the 
aortic roots of ApoE-/- mice. Starting at the age of 8 weeks, male mice were fed a Western diet  
(HFD) alone (control) or HFD and jelly containing ALA (ALA treated) or DHA (DHA treated) 
(300mg/kg/day each), daily over a 12-week duration. A) Representative stained aortic roots with 
alcian blue & elastic van Gieson (AB/EVG) of ApoE-/- fed HFD alone or HFD and DHA, or ALA over 12 
weeks (n=12/group). Scale bars=100µm. B) Data analysed using NIS-Elements microscopy (Nikon, 
USA) representing mean ± SEM from 12 mice per group (n=10-11), analysed by One-way ANOVA, 
followed by Tukey’s multiple comparison test.  
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5.5.2. Distal vessel atherosclerotic lesion formation in response to fatty acid 
feeding: 
 
5.5.2A) Brachiocephalic atheromatous lesions: 

Lesions in brachiocephalic arteries are usually small in size and show early 

phenotypic changes that are different from the complex lesions seen in the aortic 

sinuses. In addition, the lesions tend to be segmental and tend to occur at the areas 

of disturbed blood flow (Peng et al., 2009). Therefore, I was interested to examine 

this vascular bed and compare the effects of the two types of free fatty acids on 

brachiocephalic atheroma.  

 

The atherosclerotic lesions in brachiocephalic vessels was analysed histologically 

and showed less atheromatous lesions in the DHA, compared to the ALA and the 

control, groups (Figure 5.7A). 

 

Atherosclerotic plaque in the brachiocephalic arteries was quantified by measuring 

the ratio between the lesions to the total surface areas, and showed no significant 

difference between the control and ALA fed mice (0.303 ± 0.034 vs. 0.289 ± 

0.01839, respectively). However, the lesion ratio was significantly lower in the DHA 

fed mice compared to the controls (0.1295 ± 0.01664 vs. 0.303 ± 0.034, respectively, 

p<0.001) (Figure 5.7B).  
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Figure 5.7. Atherosclerosis is ameliorated in the distal vessels by DHA supplementation but 
not ALA. Male ApoE-/- mice fed HFD alone or HFD plus ALA or DHA (300mg/kg/day each) daily for 
12 weeks. At the end of the study brachiocephalic arteries were harvested and stained for alcian 
blue/elastic van Gieson stain. A) Representative photomicrographs (scale bars=100µm). B) Lesion 
areas analysed using NIS Elements software and calculated as mean lesion area to total cross 
sectional area (CSA). Data are expressed as mean ± SEM, and analysed by One-way ANOVA and 
Tukey’s post-test, n=9-10/group, ***p<0.001.  
 

 

5.5.2B) Whole & differential aortic atheroma: 

To further investigate the differential response to DHA in the different vascular beds, 

I examined the atheromatous plaques in the whole aortae (from the aortic 
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infundibulum of the heart to the aortic orifice of the diaphragm) and the different 

segments (aortic arch and descending parts) of the aorta.  

 

The atherosclerosis in the whole aortae of the studied groups was calculated as % of 

lesion area to the total aortic surface area.  

 

ALA had no effect on atherosclerotic area, with no significant difference to that of the 

control group (4.931 ± 0.3662 vs. 6.373 ± 0.637%, respectively) (Figure 5.8 A & B). 

However, in DHA fed mice, there was approx. 30-40% decrease in the total aortic 

atherosclerotic area (p<0.001) (Figure 5.8 A & B). On examination of the different 

areas of aortae, this DHA effect was found to be concentrated in the descending 

aortic plaque: no effect of DHA supplementation was observed in the proximal aorta 

(aortic arch) (Figure 5.8C). However, DHA significantly attenuated the descending 

aortic plaque area by an average of 30% (p<0.05) (Figure 5.8D). 
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Figure 5.8. Differential effects of DHA feeding on different lesion areas of aortae. A) 
Representative en face morphometric images of the total aortic lesion area and (B) calculated whole 
aortic atherosclerosis (% of the total surface area), showing significant reduction in the total lesion 
formation in the DHA group compared to the control group. Data are mean ± SEM, analysed by One-
way ANOVA and Tukey’s post-test, ***p<0.001, n=11-12/group. C) & (D) Lesion areas in aortic arch 
and descending parts of aorta, respectively, in ApoE-/- mice receiving HFD alone or HFD and DHA 
over a 12 weeks duration and showing a significant reduction in atheroma in the distal part of aorta, 
n=10 per group. Data are mean ± SEM, analysed by unpaired Student’s t test, *p<0.05. 
 

 

5.6. DHA effects on atherosclerotic plaque composition: 
Since no significant difference in atherosclerosis of mice fed ALA, subsequent 

studies will focus entirely upon DHA effects in the DHA treated mice and compare 

that with the control mice.  

 

To elucidate the differences in the composition of the atheroma in response to DHA 

feeding, I investigated collagen and smooth muscle content in the plaques. The 

aortic root and brachiocephalic atheroma was stained for collagen using martius 

scarlet blue (MSB) and for smooth muscle actin using immunohistochemistry (IHC-

P).  
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5.6.1. Collagen content: 

Aortic roots from the two groups (control vs. DHA fed mice) were analysed for their 

collagen content. Collagen in aortic roots and is shown as a bright blue stain using 

MSB stain (Figure 5.9 A).  

 

High power magnification showed lesions from both DHA and control groups had 

widely distributed collagen fibres in the intimal area, predominately located in the cap 

and the shoulders of the lesions (Figure 5.9A).  

DHA-fed mice appeared to have less collagen in the atheromatous cap compared to 

controls. Quantification of the percentage of total collagen in both groups, however, 

did not show any significant difference (0.4096 ± 0.2226% in control vs. 0.4211 ± 

0.03956% in DHA) (Figure 5.9B).  

 

 

 
Figure 5.9. Collagen content in aortic root of studied groups. Representative photomicrographs 
of aortic roots (A) of ApoE-/- mice fed with HFD alone or HFD and DHA for 12 weeks, stained for 
martius scarlet blue. Collagen stains as a bright blue. Scale bars=100µm and 50µm, arrowheads 
indicate the cap. B) Quantification of collagen content between the two studied groups within the 
aortic roots, measured as % of the total lesion area. Data are shown as mean ± SEM, n=7/group, 
analysed by unpaired Student’s t test, p=ns. 
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The collagen content in the lesions of the brachiocephalic arteries followed similar 

trends, also without any significant difference (Figure 5.10 A & B). 

 

 

 
Figure 5.10. Collagen content in brachiocephalic arteries of studied groups. Representative 
photomicrographs of brachiocephalic (BCA) (A) of ApoE-/- mice fed with HFD alone or HFD and DHA 
for 12 weeks, stained for martius scarlet blue. Collagen stains as a bright blue. Scale bars=100µm. B) 
Quantification of collagen content between the two studied groups within BCA measured as % of the 
total lesion area. Data are shown as mean ± SEM, n=7/group, analysed by unpaired Student’s t test, 
p=ns. 
 

 

5.6.2. Smooth muscle actin content: 

Since no observed effects for DHA feeding on the collagen content, I next asked 

whether DHA alters SMA content in the plaques and thus would explain the 

atheroprotective effects of DHA. Using immunohistochemical staining, α-smooth 

muscle actin (SMA) was quantified in the lesions of the aortic roots. 

 

Positive (Brown) staining was observed in atheromatous plaque of both control and 

DHA-fed groups (Figure 5.11A). SMA was detected in the media and in very small 

amounts in the cap of the lesions  (Figure 5.11A).  

There was no significant change in the SMA content of the lesion between the two 

groups (11.36 ± 2.949% in control vs. 20.39 ± 2.704% in DHA) (Figure 5.11B).  

 

SMA protein was also examined in the whole aortae using immunoblotting. There 

was no significant difference between the two groups in the whole aortic SMA 

(Figure 5.11C), confirming the aortic root findings and suggesting that DHA has no 

effect on SMA content in different aortic atherosclerotic parts.  
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Figure 5.11. Smooth muscle actin distribution in aortic atherosclerotic plaques of ApoE-/- mice 
in response to DHA feeding. Male ApoE-/- mice were fed HFD alone or HFD and DHA 
(300mg/kg/day) for 12 weeks. A) α-Smooth muscle actin (SMA) content, identified using 
immunohistochemistry (brown stain, arrowheads), within the plaques. Scale bar=50µm. B) Graph 
showing percentage of positive SMA area to the total lesion area, n=8/group. Data are shown as 
mean ± SEM and analysed by unpaired Student’s t test. C) A representative immunoblot from 
n=4/group mouse aortae showing no differences in SMA protein expression between the groups, 
protein concentration=34µg/ lane.  
 

 

5.7. DHA effects on plasma dyslipidaemia: 
Having identified that DHA has no effects on atherosclerotic collagen and SMA, I 

wanted to investigate whether DHA decreases atherosclerosis by an anti-lipidemic 

effect.  

The mean values for plasma lipid and lipoprotein levels at the end of the study (week 
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there was no statistical difference in TC (28.39 ± 1.751mmol/L in DHA-fed vs. 26.62 

± 1.299 mmol/L in control) (Figure 5.12A).  
 
Plasma TG levels, however, were significantly higher in the DHA fed animals 
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two groups (control vs. DHA; 20.89 ± 1.359 vs. 23.33 ± 1.794mmol/L, respectively) 

(Figure 5.12C); however, the HDL/cholesterol ratio significantly increased in the DHA 

supplemented mice compared to control mice (10.77 ± 1.858 vs. 6.63 ± 

1.0247mmol/L, respectively, p<0.05) (Figure 5.12D).  

 

DHA has been shown to have a blood glucose lowering effect (Woodman et al., 

2002), therefore, I measured the plasma glucose levels between the studied mice. 

There was no significant difference in the glucose levels between the control and the 

DHA groups (10.61 ± 1.410 vs. 11.2 ± 1.531mmol/L, respectively) (Figure 5.12E). 
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Figure 5.12. DHA supplementation improves diet-induced dyslipidaemia. Male ApoE-/- mice (8 
weeks of age) were fed either HFD alone or HFD and DHA (300mg/kg/day) daily for 12 weeks. 
Plasma samples were collected after 12 weeks by cardiac puncture. A) Plasma total cholesterol (TC), 
(B) total triglycerides (TG), (C) Low density lipoprotein cholesterol (LDL-C) (mmol/L), (D) high density 
lipoprotein/total cholesterol (HDL/CHOL) ratio, and (E) plasma glucose levels (mmol/L) were 
measured at the Department of Clinical Chemistry (Royal Hallamshire Hospital, Sheffield, UK), 
n=10/group. Data are shown as mean ± SEM, analysed by unpaired Student’s t test, *p<0.05, 
**p<0.01.  
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5.8. Summary: 
The work presented in this chapter sheds light on the defined DHA effects as being 

anti-atherogenic and anti-hypertensive in ApoE-/- mice. Results were obtained 

following 12 weeks of feeding and are summarised below: 

 

1. DHA feeding attenuates blood pressure, mainly systolic, in ApoE-/- mice fed a 

HFD. 

2. ALA supplementation did not show any significant effects on blood pressure 

or atherosclerosis in ApoE-/- mice fed HFD.  

3. DHA supplementation in ApoE-/- mice was associated with an increase in RBC 

omega-3 index and DHA compositions in the RBC membranes. 

4. DHA fed mice had a significant attenuation in atheroma formation, 

predominantly in the distal parts of aorta, but not in the proximal aorta. 

5. In addition, lesion area was significantly reduced in brachiocephalic vessels in 

the DHA supplemented mice but not the ALA fed mice. 

6. The aortic root lesion of the DHA fed mice showed no significant difference in 

the total amount of collagen content, but the distribution of collagen showed 

there was less in the cap.  

7. SMA content in the aortic roots showed no significant difference between the 

DHA fed and the control mice.  

8. DHA fed mice had a significant increase in their plasma TG and HDL/TC ratio 

compared to the control mice, but no significant change in the plasma TC, 

LDL, and glucose levels.  
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5.9. Discussion: 
Omega-3 fatty acids, particularly docosahexaenoic acid (the major type of n3FA in 

fish oil) and α-linolenic acid (the most common land-based type of n3FAs), are 

mostly studied in research and have been shown to play an important role in 

preventive medicine (Winnik et al., 2011, Vedtofte et al., 2011).  

To date, studies have reported that diet supplemented with n3FAs lead to increased 

incorporation of the n3FAs in the plasma lipoproteins with an elevation in plasma 

ALA, DHA and EPA (Leeson et al., 2002), that is associated with lower rates of 

plaque vulnerability (Kashiyama et al., 2011, Deckelbaum, 2010, Cawood et al., 

2010). In clinical studies, DHA itself has been mostly mixed with EPA or given as fish 

oil, and thus its individual effects remain obscured. ALA may have a cardio-

protective role, yet the overall evidence is mixed and remains inconclusive (Brouwer 

et al., 2004, Kromhout et al., 2010, Baylin et al., 2003).  

 

Therefore, the atheroprotective roles of DHA and ALA have been questioned for a 

long time, yet not extensively studied. Several animal models of atherosclerosis have 

investigated the anti-atherogenic effects of n3FAs (Brown et al., 2012), but these 

studies did not directly define the differential effects of DHA and ALA on 

atherosclerosis. In addition, little information is known, especially on whether n3FAs 

can correct or modulate the progression of atherosclerosis.  

 

I elected to study DHA over EPA as DHA is more commonly investigated for its 

antihypertensive effects (Stanley et al., 2013) and there is an endogenous 

conversion for DHA to EPA occurring mainly in the liver (Mozaffarian and Wu, 2011).  

To my knowledge, this is the first study seeking to define the anti-atherogenic and 

antihypertensive effects of the two main types of n3FAs in experimental models of 

atherosclerosis.  

This study is also the first to show different vascular bed responses to n3FA 

supplementation, and to link this to blood pressure modulation and inflammation. 

The consistency of the findings across the previous publications (Miller et al., 2014) 

enhances the generality of my findings and suggest a novel explanation of why, in 

clinical trials, n3FAs shown mixed results. 
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My primary hypothesis was that consumption of high concentrations of DHA and 

ALA are inversely associated with high fat diet induced atherosclerosis and 

hypertension.   

 

To study the effects of DHA and ALA on atherosclerosis, I chose ApoE-/- mice, as 

these are one of the most routinely used animal models (Jawien et al., 2004). 

Apolipoprotein E is a gene responsible for the metabolic clearance of triglyceride rich 

lipoproteins from the circulation (Mahley and Ji, 1999) and the genetic deletion of this 

gene leads to elevation of the plasma levels of the triglycerides (Zhang et al., 1992). 

A high fat diet enriched in cholesterol was also used in this study to augment 

atherosclerosis and induce hypertension in these mice.  

It has been shown that feeding of ApoE-/- mice for 12 weeks with a Western-type diet 

provides a complex lesion of atherosclerosis with different stages of atheroma similar 

to that detected in humans with an elevation of the systemic blood pressure (Getz 

and Reardon, 2006, Chamberlain et al., 2009). Therefore, to study the 

antihypertensive mechanism of action of DHA and ALA and investigate the 

vasculature for atherosclerosis, I fed these mice a Western-type high fat diet for 12 

weeks.  

 

In my study, body weight gain remained unaffected in the three groups of mice 

throughout the period of the study; however, the body weight was significantly 

attenuated at the end of the study in the DHA supplemented mice. This correlates 

with clinical findings that suggests a significant weight reduction in obese patients 

supplemented with FO (Kris-Etherton et al., 2002) and supports the importance of 

the chronic supplementation of DHA. Likewise, the finding that ALA has no effect on 

body weight gain in experimental animals is also consistent with previous studies 

(Petrik et al., 2000).  

 

Previous evidence indicates that n3FAs have a blood pressure lowering effect in 

both normotensive (Sanders et al., 1981, Ayer et al., 2009) and hypertensive 

individuals (Wang et al., 2010). Additionally, studies using different animal models 

have shown that fish oil have indisputably a generalised blood pressure lowering 

effect (Chen et al., 1996). However, the individual anti-hypertensive effects of DHA 
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and ALA have been less studied in mice. In addition, it’s unclear which type of n3FA 

in the fish oil has the prominent hypotensive properties. 

 

My data suggest that DHA profoundly decreased systolic blood pressure, with a 

significant attenuation in the diastolic and thus, the mean blood pressure. My finding 

reinforces all the previous interventional studies (Sagara et al., 2011, Miller et al., 

2014) and is in agreement with (Mori TA, 1999) who reported that DHA 

supplementation significantly attenuated 24h ambulatory blood pressure in 

hypercholesterolemic patients. Moreover, in animal based studies, it has been 

demonstrated that DHA reduces SBP in spontaneous hypertensive rats (Engler et 

al., 2003, Encarnacion et al., 2008) and aldosterone induced hypertension in dogs 

(Stanley et al., 2013). However, my study is the first to elucidate the hypotensive 

effects of DHA in experimental mouse model of atherosclerosis.  

 

By contrast, ALA supplementation did not show any significant impact on blood 

pressure in ApoE-/- mice. ALA as an anti-hypertensive agent has been studied in a 

limited number of studies (Paschos et al., 2007). My finding is at odds with previous 

clinical studies that demonstrate the hypotensive effects of ALA in hypertensive 

individuals (Wang et al., 2010). A possible explanation is that mice may respond 

differently to ALA than humans. That is, mice are deficient in the enzyme that is 

responsible for the endogenous metabolism of ALA (Barcelo-Coblijn and Murphy, 

2009). 

 

A recent study has shown an independent clear association between LVM and 

atherosclerotic coronary disease in IHD patients (Kishi et al 2013). Moreover, 

previous publications have suggested similar findings in different subsets of patients 

and they support the potential role of higher LVM (an indicator for LVH) as a possible 

predictor of adverse coronary events in atherosclerosis and, thus, IHD (Kishi et al., 

2013). In the present study, therefore, I studied the effects of DHA supplementation 

on HFD-induced LVH. Interestingly, DHA supplementation significantly attenuated 

LVM after 12 weeks of HFD feeding. My finding has recently supported by Morin and 

colleagues who have revealed a significant amelioration in LVM in rats fed HFD for 8 

weeks, supplemented with DHA (Morin et al., 2015), suggesting a potential role for 

DHA in preventing LVH. However, the underlying mechanism is relatively unclear.  
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I used red blood cell omega-3 fatty acid compositions as an indicator of a successful 

feeding of fatty acids in the mice. Although no dietary correlation between omega-3 

RBCs and n3FAs intake has been reported, the omega-3 contents in the RBC 

membranes are strongly correlated with the dietary feeding. In previous publications, 

it has been reported that in patients with MI who frequently consumed marine-

derived food or on n3FA supplements had significantly higher levels of omega-3 

levels in RBC membranes (Salisbury et al., 2011). 

 

Consistent with all previous publications (Friesen and Innis, 2010, Sands et al., 

2005, Brown et al., 1991), I showed that DHA fed mice had higher levels of DHA 

content in RBC membranes. By contrast, ALA fed mice did not show any significant 

increase in ALA or DHA content in RBCs. ALA, an essential fatty acid, needs to be 

converted in the body tissues by a desaturase enzyme into DHA and EPA (Gerster, 

1998). It is possible that the mice are either deficient in this enzyme (Salem et al., 

1996) or that the desaturation process of ALA in the mice is less efficient than that in 

the humans (Demar et al., 2008).  

That may explain why in this study, feeding mice ALA did not offer any 

atheroprotection. This finding is at odds with a study by Winnik and colleagues 

(Winnik et al., 2011), where a reduction in atherosclerosis in ApoE-/- mice fed 

flaxseed oil containing ALA for 16 weeks was seen, especially at aortic roots.  

 

In patients, the omega-3 index is used as a surrogate marker for prognosis of CAD, 

where patients with lower index <4% have a poor prognosis, 4-8% an intermediate 

and >8% a good prognosis (Harris et al., 2013). However, my work is the first to 

measure the index in mice on HFD for 12 weeks. In addition, in mice the cut off 

values for omega-3 indices (as those defined in humans) have not yet been studied. 

 

A novel finding of the present study is that DHA supplementation significantly 

ameliorated atherosclerosis, mainly in the distal parts of the aorta and 

brachiocephalic arteries. The differential atherosclerotic responses for DHA between 

the aortic sinus and brachiocephalic vessels has been studied before by (Peng et al., 

2009) who showed a reduction in the brachiocephalic lesions without effect on aortic 

atherosclerosis in LDLR-/- mice, but they did not propose any mechanism for such 

observations. 
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The finding of significant attenuation of total aortic lesion by DHA effects has not 

been published before. However, Wan et al., 2010 have suggested a significant 

reduction in aortic atherosclerosis of mice that have high plasma levels of n3FAs. 

Unravelling the mechanism(s) by which DHA decreases distal vessel atheroma and 

whether this reduction also applies to the hypotensive effects will require further 

elucidation. Possibilities include flow-mediated effects (i.e. disturbed blood flow in the 

proximal vessels may mask DHA effects on atherosclerosis); dysregulated signalling, 

or perhaps because DHA acts effectively on the early stages of atherosclerosis 

(distal segments harbour early atheroma than the complex lesion in the proximal 

segments).  

 

The local anti-inflammatory effect of DHA has been associated with a thickening in 

the fibrous cap and thus more stable plaque formation (Libby et al., 2014). However, 

this was not the case in my study, especially in the aortic sinus lesions and I showed 

that DHA had no effect on SMA or collagen content. In light of previous work 

demonstrating that DHA suppresses SMC proliferation (Pakala et al., 1999, Yates et 

al., 2014), the mechanism of atheroprotection mediated by DHA may be quite 

complicated.  

 

Much of the focus in clinical studies was on the lipid lowering effects of n3FAs 

(Harris, 1996, Kris-Etherton et al., 2002); however, in animal based research the 

data are controversial (Chang et al., 2010). For example, Brown and colleagues 

have demonstrated that n3FAs did not decrease plasma cholesterol in ApoE-/- mice 

(Brown et al., 2012). By contrast, a recent study has documented the lipid lowering 

effect of DHA in rats (Morin et al., 2015). Therefore, I sought to determine whether 

DHA reduces the plasma lipid profiles, namely TC, LDL and HDL in ApoE-/- mice. 

 

Interestingly, DHA supplementation increased triglycerides and the HDL/cholesterol 

ratio without any significant impact on the total cholesterol or LDL-C levels. The 

finding of high levels of triglycerides in DHA fed mice was striking, and opposite to 

the clinical studies that showed that DHA decreases, instead of increases, TG 

(Mozaffarian and Wu, 2011). One explanation for this is that apolipoprotein E may be 

crucial for the triglyceride lowering effect of DHA and thus in ApoE-/- mice that lack 

apolipoprotein E, this leads to an increase rather than decrease in TG (Wan et al., 
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2010). This explanation has been put forward by Brown et al., (2012) where they 

showed a remarkable reduction in TG levels upon DHA feeding in LDLR-/-mice but 

not ApoE-/- mice. 

 

Additionally, the hypertriglyceridemia detected in the DHA fed mice may intervene 

upon the response of aortic sinus atherosclerosis to DHA. That is, high TG may 

contribute to atherosclerosis and this may explain my findings of a lack of response 

observed in the proximal lesions, although I did not find any evidence to support this. 

Additional investigations are needed to determine the mechanism(s) of these 

observations and if similar responses are seen with patients.  

 

Overall my data supports the notion of the atheroprotective effects of DHA. I 

speculate that DHA decreases the main mediators (pro-inflammatory cytokines) that 

orchestrate inflammation in atherosclerosis and thus reduces the recruitment of the 

inflammatory cells into the plaque, which subsequently attenuates plaque formation. 

Consequently, the attenuated lesion formation, with less inflammatory burden and 

consequent reduced vascular reactivity, could explain the mechanism of action of 

DHA in this setting, which is discussed in the next chapters.  
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Chapter (6) Biomechanical factors 
and DHA athero-protective effects. 
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6.1. Overview of Biomechanical factors and DHA atheroprotection: 
Plaques prone to rupture is the underlying pathology observed in CAD (Falk et al., 

1995). While it is accepted that the fate of the complex atherosclerosis is influenced 

by the size of the necrotic core and fibrous cap’s thickness (Reininger et al., 2010, 

Schaar et al., 2004), it also depends on different haemodynamic parameters, 

including shear stress (Richardson, 2002, Tabas et al., 2015).  

Although the risk factors for atherosclerosis, including hypertension and DM are 

systemic in nature (Fauci, 2008), the localised nature of atheromatous plaque has 

been appreciated since the earliest days of cardiovascular research. The predilection 

sites of the lesions are normally branching arteries where the blood flows slowly and 

in a nonlinear fashion, resulting in low or oscillatory shear stress (Caro et al., 1971).  

 

Wall shear stress (WSS), a biomechanical fractional force induced by blood flow, is 

an important determinant of endothelial function (Cunningham and Gotlieb, 2005). 

Endothelial cells sense the changes in the WSS using mechanoreceptors (Tzima et 

al., 2005) and thus trigger release of multiple inflammatory mediators, including IL-1, 

that perpetrate inflammation and atherosclerosis (Wentzel et al., 2012). 

 

Although no general consensus has been reached, it is accepted that the fast flow of 

blood in straight vessels generates protective high shear stress (HSS). Slow flowing 

blood in the inner curvature of the arch of aorta or upstream of stenotic 

atheromatous plaque is usually unidirectional and the shear levels are in a low 

amplitude (low shear stress; LSS) (Giannoglou et al., 2010). Emerging evidence has 

linked LSS with vulnerable plaque and MI (Cheng et al., 2006). Moreover, oscillatory 

shear stress, or index (OSI), involves changes in both amplitude and direction of 

blood flow, and is usually at the sites of bifurcation and downstream of stenosis, with 

high OSI also being associated with plaque instability (Giannoglou et al., 2010).  

 

In the previous chapter, I demonstrated that DHA selectively decreases distal 

atherosclerosis in ApoE-/- mice and that this was associated with a remarkable 

reduction in arterial blood pressure. Recent evidence has suggested a close link 

between the rise in arterial blood pressure and aortic stiffness (Bryant et al., 2015), 

resulting in changes of aortic blood flow, direction and pattern (Hashimoto and Ito, 

2015). However, the possibility of a change in the flow patterns being a mechanism 



138 Chapter (6) Biomechanical factors and DHA atheroprotection. 
	
  

	
   138 

of the DHA protective effects is still obscure. Therefore, I hypothesise that the 

observed favourable changes in the ApoE-/- mice fed DHA are attributable to altered 

WSS in the distal vasculature.  

My aim was to investigate the distal athero-protective effects of DHA and link these 

with altered WSS patterns.  

 

6.2. Brief Methods: 
Detailed Methods are discussed in chapter 2. In briefly: 

To investigate effects of DHA on WSS, aortic blood flow mean velocity was 

assessed using pulsed wave doppler (PWD).  

Computational fluid dynamics (CFD) was used to map wall shear stress (WSS) and 

oscillatory blood flow in different parts of aorta (Time averaged WSS over the cardiac 

cycle). The analysis was performed by Dr. Torsten Schenkel; Department of 

Engineering & Mathematics, Sheffield Hallam University, UK.   

 

6.3. DHA effects on shear stress: 

Changes in WSS magnitude and direction were calculated using changes in the 

diameter of the vessel wall and the blood flow velocity using doppler sonography 

(Figure 6.1A). To compute WSS geometry and examine the differences in WSS 

patterns, the velocity profiles over the cardiac cycle at the aortic roots were 

investigated.  

 

6.3.1. DHA effects on aortic blood flow: 

After 12 weeks of feeding, the mean velocity of aortic blood flow was assessed in the 

two experimental groups (Figure 6.1A & B). In the control group, there was an 

increase in % of the mean velocity at the aortic roots with an average increase of 20 

± 5%, n=4, compared to baseline (before start of high fat diet). However, following 

DHA feeding, there was a significant reduction in the mean aortic velocity by 15 ± 

9% compared to controls at 12 weeks (p<0.05, n=4/group) (Figure 6.1B). 

 



 

 139	
  

 
Figure 6.1. DHA significantly prevents the rise in aortic blood mean velocity. Male ApoE-/- mice 
were fed HFD alone or HFD plus DHA (300mg/kg/day each) daily for 12 weeks. At the end of the 
study pulse wave doppler was recorded in anaesthetised animals. A) Apical long axis view showing 
left ventricular outflow tract (LVOT) where blood velocity was measured over the cardiac cycle. LV & 
RV indicates left and right ventricles, respectively whereas LA indicates left atrium. The analysis was 
performed using ultrasound-imaging system (Vevo 770®, Visual Sonics, Toronto, Canada) where 
doppler shift frequencies were translated into velocities plotted as white points (red arrow) and 
generated a flow profile. The x-axis demonstrates the time (ms) whereas the y-axis indicates velocity 
in m/s. B) Echocardiographic analysis showing that exposure to high fat diet for 12 weeks increased 
flow velocity in aortic roots (average increase was 20 ± 5%) whereas exposure to a high fat, DHA rich 
diet led to a reduction in flow velocity (average decrease was -15 ± 9%). Data are mean ± SEM, 
n=4/group, analysed by unpaired Student’s t test, *p<0.05. 
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6.3.2. DHA effects on amplitudes of shear stress in the aortic arch: 

Computed WSS patterns were plotted in the inner and outer curvatures of the aortic 

arch.  

CFD simulations were performed using time-varying waveforms from control versus 

DHA treated mice as inlet boundary conditions and using a single representative 

geometry as described by (Van Doormaal et al., 2012). The kinetic changes in the 

WSS magnitude were plotted over the cardiac cycle and for distinct anatomical 

positions.  

 

Figure 6.2 (top panel) shows the kinetics data on WSS as plotted over a 0.25s period 

of the cardiac cycle. At baseline, the magnitude of WSS reached a transit peak, 

which was around (30 Pa). After 12 weeks of feeding with DHA, this magnitude was 

slightly raised, approximately (33 Pa), before it rapidly declined (Figure 6.2). By 

contrast, in controls, the WSS magnitude was relatively higher than in the DHA 

treated group, with a transit peak of 40 Pa before it rapidly declined (Figure 6.2).  

 

Figure 6.2 (lower panel) shows in graphical form the WSS maps in each of the 

experimental conditions (control vs. DHA treated animals). It can be seen that, in the 

inner curvature, the shear stress is relatively low in the DHA treated group compared 

to controls, yet not considerably different to the shear levels at baselines.  
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Figure 6.2. DHA effects on WSS amplitude in the inner curvature of the aortic arch. Starting at 
the age of 8 weeks, male mice were fed Western diet (HFD) alone (control) or HFD and DHA (DHA 
treated) (300mg/kg/day each), daily over a 12-week duration. Relative WSS distribution in the inner 
curvature of the arch of aorta was analysed using CFD at baseline and after 12 weeks of feeding, and 
show relatively lower shear stress in DHA treated mice compared to controls (n=4/group).  
 

 

In the outer aortic curvature, the trends in the two experimental groups were similar 

(Figure 6.3). The peak WSS was relatively higher in the controls compared to the 

DHA and the baseline levels (Figure 6.3).  

 

Additionally, the peak WSS was relatively higher in the inner (Figure 6.2) compared 

to the outer curvature for most of the cardiac cycle (Figure 6.3).  

These observations were also clearly seen in the mapping time averaged WSS 

(Figure 6.3, lower panel).  
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Figure 6.3. DHA effects on WSS amplitude in the outer curvature of the aortic arch. Starting at 
the age of 8 weeks, male mice were fed Western diet (HFD) alone (control) or HFD and DHA (DHA 
treated) (300mg/kg/day each), daily over a 12-week duration. Relative WSS distribution in the outer 
curvature of the arch of aorta was analysed using CFD at baseline and after 12 weeks of feeding, and 
show relatively lower shear stress in DHA treated mice compared to controls (n=4/group).  
 

 

6.4. DHA lowers oscillatory shear stress associated with decreased 
atherosclerosis: 

OSI distribution under the applied flow and boundary conditions within the aorta 

between the control and DHA treated groups was also assessed using CFD. The 

oscillation in the flow at the inner and outer curvatures of the aortic arch is shown in 

figure (6.4).   

 

In the controls, OSI was slightly higher, predominantly in the outer aortic curvature, 

compared to baseline (Figure 6.4). By contrast, DHA fed animals showed a no 

obvious difference in OSI compared to both controls and baseline (Figure 6.4).  
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Generally, OSI in the aortic arch follows the same trend as that of WSS magnitude, 

and was higher in the inner curvature compared to the outer aortic curvature.  

 

 

	
  
Figure 6.4. DHA effects on WSS direction and oscillation in the aortic arch. Starting at the age of 
8 weeks, male mice were fed Western diet (HFD) alone (control) or HFD and DHA (DHA treated) 
(300mg/kg/day each), daily over a 12-week duration. Relative oscillatory shear index (OSI) in the 
outer and inner curvatures of the arch of aorta was analysed using CFD at baseline and after 12 
weeks of feeding, and show relatively lower OSI in DHA treated mice compared to controls 
(n=4/group).  
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OSI was also assessed in the distal aorta between the control and the DHA fed 

groups. In the descending aorta, the OSI remarkably decreased in the DHA fed mice 

compared to controls, predominantly at the sites of the aortic branches (Figure 6.5, 

arrows).  
 
 

 

Figure 6.5. DHA effects on WSS direction and oscillation in the descending aorta. Starting at the 
age of 8 weeks, male mice were fed Western diet (HFD) alone (control) or HFD and DHA (DHA 
treated) (300mg/kg/day each), daily over a 12-week duration. Relative oscillatory shear index (OSI) in 
the descending part of aorta was analysed using CFD at baseline and after 12 weeks of feeding, and 
show relatively lower OSI in DHA treated mice compared to controls (n=4/group), particularly at aortic 
branches (OSI hot spot, arrow).  

Control DHA treated

OSI h ot  spot

Lo
w

er
 fr

on
 v

ie
w

Lo
w

e r
 b

a c
k 

vi
ew



 

 145	
  

6.5. Summary: 
The mechanical changes described herein have provided a key new insight into the 

mechanism of action of DHA. The novelty of the work showed in this chapter lies in 

investigating, for the first time, in vivo, the relationship between WSS and DHA using 

the applied CFD technique. The important findings are summarised below: 

 

1. High fat diet feeding results in a significant increase in the aortic mean 

velocity of blood flow after 12 weeks. 

2. DHA significantly decreases blood flow aortic mean velocity and prevents the 

rise in the velocity induced by HFD. 

3. The changes in the aortic mean velocity of blood flow were applied as 

boundary conditions to map WSS using CFD and existing anatomical 

geometries in the public domain. 

4. The peak in the WSS magnitude is higher in the inner compared to the outer 

curvatures of the aortic arch. 

5. In the controls, the peak WSS is relatively higher after 12 weeks compared to 

baseline at both curvatures of the aortic arch. 

6. DHA decreases the peak in WSS in the proximal aorta. 

7. However, in the distal aorta, OSI significantly decreases, predominantly at the 

aortic hot spot (the site of aortic branches).  
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6.6. Discussion: 
WSS is thought to be the main physical cause of endothelial dysfunction that 

contributes to pathophysiological states, including atherosclerosis and plaque 

instability (Cheng et al., 2006). The possible role that WSS may play in endothelial 

dysfunction was first postulated when observing the occurrence of the earliest 

lesions in a non-random pattern, characteristically at certain regions of the vascular 

wall, closely linked to the local changes in the haemodynamic forces (Ku et al., 

1985).  

In chapter 5, I showed that DHA decreased distal atherosclerosis without any 

significant effect on the proximal lesions. Therefore, in this, I sought to determine 

whether DHA altered fluid flow e.g. WSS magnitude and blood flow direction in the 

distal aorta, thus protecting it against distal atherosclerosis. My study demonstrated 

that DHA significantly altered distal aortic blood flow by decreasing flow velocity and 

reducing OSI with minimal effects upon the magnitude of WSS.  

 

Using simulation techniques, WSS patterns in the proximal and the distal aortae 

were compared. Previous studies have used idealised changes in the velocities at 

the aortic roots to generate aortic arch geometry (Van Doormaal et al., 2012). 

Therefore, these geometries were used to detect the changes in the mean aortic 

velocity, comparing the effect following high fat feeding in the presence or absence 

of DHA.  

 

Interestingly, HFD feeding induced a remarkable increase in the aortic blood velocity. 

This rise in the blood velocity profile was prevented by the feeding of DHA. The 

changes in the aortic mean velocity in response to DHA are novel and have not been 

published before, however, these may be linked to my previous findings on LV 

function, notably the reduction in blood pressure and LVM that occur with DHA 

supplementation (Chapter 5).  

There are a number of possible explanations. It could be that HFD induces LVH 

secondary to an increase in systemic vascular resistance and hypertension. 

Therefore, and secondary to, stretching in the ventricular wall (Costanzo, 2007), the 

LV contracts forcibly to increase blood flow and hence aortic blood velocity 

(Devereux et al., 1983).  

Perhaps, following DHA feeding, DHA prevents the rise in the blood pressure 
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induced by HFD and protects against LVH and, therefore, blood flow and the aortic 

velocity were maintained at low levels compared to animals fed HFD alone. 

 

The changes in the flow and aortic velocities were applied as boundary conditions to 

map WSS at the aorta (Hartley et al., 1997). This was to study the observed 

differential effects of DHA on atherosclerosis in different parts of the aorta (the main 

finding of the previous chapter). There are natural sites for shear stress induced 

atherogenesis in the vasculature (Curfs et al., 2004), and in experimental studies, 

the aortic arch has received particular attention (Van Doormaal et al., 2012). 

Therefore, in this thesis, WSS magnitude and direction were examined at the inner 

and outer curvatures of the aorta.  

 

To my surprise, HFD feeding alone increased WSS magnitude mainly at the inner 

curvature of the aortic arch whereas DHA had a minimal effect. The protective nature 

of the HSS has been demonstrated in human and animal based studies (Buchanan 

et al., 1999, Pedersen et al., 1999). In deed, previous reports have stated that 

atherosclerosis preferentially develops at the LSS areas (Pedersen et al., 1999, 

Davies et al., 2002). My data suggest that DHA may not have a large effect on WSS 

magnitude in the proximal aorta. This may help to explain the finding that DHA did 

not decrease the atheroma at the aortic arch (as discussed in chapter 5).  

 

Alternatively, several observational studies have suggested that the patterns in the 

increase or the decrease in the WSS, rather than the individual amplitude, that is 

critical. That is, there is a compensated vascular wall remodeling secondary to shear 

levels that occurs in atheroma. For example, surgical ligation of the left common 

carotid artery in rabbits induced HSS initially and then, 12 weeks post-surgery, there 

was a compensated expansion in the arterial wall that militates the HSS (Di Stefano 

et al., 1998). Therefore, it is possible that compensated vascular remodeling is 

impaired after 12 weeks of feeding with the HFD (control), and this is why the WSS 

magnitude remained relatively high at the end of this study. However, in the DHA 

group, the compensated mechanism is maintained, resulting, in a drop in blood 

pressure that was associated with lower shear levels.  

 

The underlying mechanism for such adaptive remodelling secondary to the shear 
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levels is relatively unknown. However, studies show that a number of anti-

inflammatory triggers may play a role here, including an increase in NO 

bioavailability and enhanced eNOS expression (Yu et al., 2006). Although all 

vascular wall cells play a role in maintaining the arterial remodelling, healthy 

endothelium seems to play a prominent role. The endothelial surface is consistently 

exposed to various physical and proinflammatory factors and thus has the ability to 

sense and express various vasoactive/vasodilators that regulate the vascular tone 

and vascular remodelling (Gibbons and Dzau, 1994). The possible molecular 

mechanism by which DHA may act is discussed in the next chapter.  

 

Importantly, and by comparing the direction of WSS in the DHA versus the control 

groups (as shown in the flow maps), distal oscillatory shear stress is considerably 

low. The direction of blood flow is an important determinant of the vascular function 

and the degree of flow oscillation (OSI) is typically enhanced at atheroprone 

compared to atheroprotected sites (Ku et al., 1985, Zhang et al., 2012). One new 

hypothesis is emerging from my work is that DHA may decrease the oscillation in the 

flow, predominantly at the sites of distal aortic branches and, hence, prevent the 

formation of atheroma at those regions (Figure 6.6).  
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Figure 6.6. Schematic drawing illustrates a longitudinal section of the aorta. Atherosclerosis 
(yellow shadows) preferentially develops at the aortic curvatures and the sites of intercostal branches 
(ostia). The role of DHA as an atheroprotective agent typically plays out at the distal vasculature. DHA 
feeding has no effect on atherosclerosis at the aortic curvatures. However, after 12 weeks of feeding, 
it induces local changes in the formation of atherosclerosis mainly at the site of the intercostal 
branches of the descending aorta. This modulation results in low OSI at the ostia.  
 

 

In conclusion, large vessels of ApoE-/- mice have been extensively studied in 

atherosclerosis, notably the proximal aorta and WSS changes (Van Doormaal et al., 

2012). However, the changes in WSS direction in the distal aorta and in conjunction 

with atherosclerosis progression have not been well characterised in this animal 

model.  

Therefore, this chapter has provided new proposed insights for the pattern of WSS in 

the distal aorta and has linked that with the athero-protective roles of DHA. 
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7.1. Overview of the Mechanism of action of DHA in Experimental 
Atherosclerosis: 

Patients with MI (the disease manifestation of atherosclerosis) are usually prescribed 

a various combination of drugs that have different functions to control the complex 

pathophysiology of the disease (Libby et al., 2014, Greenland et al., 2003).  

Dietary interventions and increased fish derived food intake have been increasingly 

proposed as an attractive strategy for preventing most aspects of the acute 

syndrome, including obesity (Lorente-Cebrian et al., 2013), hypertension (Mori TA, 

1999, Sagara et al., 2011, Vandongen et al., 1993), and type 2 DM (Woodman et al., 

2002). Nevertheless, research studies on n3FAs did not specify the exact role these 

free fatty acids could play on atherosclerosis, nor did they specify the underlying 

mechanism.  

 

In the previous chapters (5 and 6), I showed that DHA significantly decreases distal 

atherosclerosis and that this effect is associated with a significant drop in blood 

pressure and an increase in the HDL/TC ratio. In addition, I demonstrated that DHA 

acts locally at the vessel wall and alters WSS oscillation.  

 

Arterial inflammation has been demonstrated in patients with hypertension (Payne et 

al., 2010). Therefore, in this current chapter, I aim to explore whether DHA exerts its 

distal local effects by modulating local vascular inflammation.  

I aimed to elucidate whether DHA could modulate vascular contractility via an IL-1β 

mediated mechanism, thus contributing to blood pressure regulation and WSS 

modulation in experimental atherosclerosis. 

This chapter also sheds a new light into the molecular mechanism of DHA in HFD-

induced hypertension and links that to the observed haemodynamic modulation and 

plaque stabilisation.   

 

7.2. Brief Methods. 
For full details on the experimental animals, immunostaining, and immunoblotting 

techniques used in this chapter, an expanded method section is shown in chapter 2.  
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7.3. Effect of DHA on plasma proinflammatory mediators: 
In vitro studies have suggested that DHA decreases a number of proinflammatory 

mediators, including IL-8 (Wann et al., 2011). To study the anti-inflammatory effects 

of DHA and to investigate the mechanism by which that DHA decreases distal 

atherosclerosis, I measured plasma levels of different proinflammatory cytokines, 

including TNF-α, IL-1α, IL-1β, MCP-1, IL-8, and RANTES using a CBA.  

 

Between the two experimental groups, there was no significant difference in TNF-α 

levels. Plasma levels of TNF-α in the control group were 25.86 ± 2.481pg/ml 

whereas the levels in the DHA treated animals were 26.63 ± 3.107pg/ml, p=ns, 

n=8/group (Figure 7.1A).  

 

An original hypothesis of this thesis was that DHA induces its anti-atherosclerotic 

effects via an IL-1 dependent mechanism. Therefore, plasma levels of IL-1α and IL-

1β were assessed. An unexpected finding is that, in the DHA treated group, levels of 

IL-1α (17.31 ± 1.446pg/ml) (Figure 7.1B) and IL-1β (13.72 ± 1.572pg/ml) (Figure 

7.1C) were not significantly affected by DHA supplementation compared to the 

control group (15.41 ± 2.666pg/ml for IL-1α (Figure 7.1B) and 14.10 ± 2.210pg/ml for 

IL-1β (Figure 7.1C), n=8, p=ns). 

 

However, mice that were fed DHA had lower plasma levels of IL-8 than the controls 

(18.57 ± 1.319 vs. 44.03 ± 5.652pg/ml, respectively, p<0.01, n=8) (Figure 7.1D). 

Likewise, levels of MCP-1 (79.28 ± 7.020 vs. 164.7 ± 36.31pg/ml, respectively, 

p<0.05, n=8) (Figure 7.1E) and RANTES (118.6 ± 6.114 vs. 146.0 ± 5.265pg/ml, 

respectively, p<0.01,n=8) (Figure 7.1F), were significantly lower in the DHA fed mice 

than the controls, suggesting that the anti-atherogenic effects of DHA may not 

directly be mediated by (soluble) IL-1 but instead by decreasing other plasma 

proinflammatory mediators.  
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Figure 7.1. DHA supplementation attenuates plasma proinflammatory profiles. Starting at the 
age of 8 weeks, male ApoE-/- mice were fed either HFD alone or HFD and DHA (300mg/kg/day) daily. 
Following 12 weeks of diet, freshly isolated plasma was analysed using CBA for TNF-α (A), IL-1α (B), 
IL-1β (C), IL-8 (D), MCP-1 (E) and RANTES (F) in pg/ml, (n=8-10 per group). Data are expressed as 
mean ± SEM, analysed by unpaired Student’s t test, *p<0.05, **p<0.01.  
 

 

7.4. Local anti-inflammatory/ anti-atheromatous effects of DHA: 
I then wished to evaluate the DHA protective effect that attenuating local vascular 

inflammation had on atherosclerosis. To study the local signalling pathway of DHA, 

aortic roots from the DHA supplemented mice and the controls were immunostained 

for IL-1α, IL-1β, IL-1ra and TLR4.  

 

7.4.1. The effect of DHA on IL-1α expression in aortic atherosclerosis: 

Positive staining for IL-1α was detected in the plaque area (brown stained cells), 

predominantly at the intimal-medial junction (Figure 7.2A).  

To ensure staining was specific for IL-1α, several additional control experiments 

were conducted (positive and negative controls). I used lung sections from male 

ApoE-/- mice fed HFD for 12 weeks as a positive control to confirm the specificity of 

the binding of the antibody to IL-1α antigen (Figure 7.2A). To further confirm the 

specificity of antibody binding in the atherosclerotic lesions, a negative control 

(replacing the primary antibody with PBS) was used. This did not show any positive 

staining, indicating that my staining for IL-1α was indeed specific (Figure 7.2A).  
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Consistent with the plasma CBA findings, semi-quantification for the IL-1α+ve cells in 

aortic plaques showed no statistical significant difference between the two 

experimental groups (Figure 7.2B).  

 
 

 

Figure 7.2. The effect of DHA on IL-1α distribution in aortic atherosclerosis. Male ApoE-/- mice (8 
weeks of age) were fed HFD alone (control) or HFD and DHA (300mg/kg/day) daily for 12 weeks 
(DHA treated). A) Aortic roots from control or DHA fed animals were stained for IL-1α (red arrows). 
Lung sections were also stained at the same time for IL-1α and used as a positive control (red arrow, 
IL-1α positive cells). Negative control sections were assessed by replacing of the primary antibody 
with PBS. B) Semi-quantification of IL-1α positive cells in the plaque area showing no significant 
difference between the two experimental groups. Data are expressed as mean ± SEM, analysed by 
unpaired Student’s t test, n=6/group. Scale bars=20µm.  
 

 

7.4.2. The effect of DHA on IL-1β expression in aortic atherosclerosis: 

Similar to IL-1α, positive IL-1β staining was also detected in aortic atherosclerosis in 

both groups (control and DHA supplemented) (Figure 7.3). However, the staining 

pattern differed to staining for IL-1α in that IL-1β positive cells were predominantly 

observed in the endothelium and the neointima (Figure 7.3A).  

 

Positive and negative controls were again used to confirm the specificity of the 

antibody (Figure 7.3A). Importantly, semi-quantification of the IL-1β positive area (% 
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of the total lesion area) showed no significant difference between the two groups 

(Figure 7.3B). However, there was a significant reduction in endothelial IL-1β 

expression in the DHA fed mice compared to controls (8.87 ± 3.76 vs. 37.33 ± 

4.48%, p<0.05, n=8, respectively) (Figure 7.3C).  

 

 

 
Figure 7.3. Interleukin-1β distribution in aortic atherosclerosis in response to DHA feeding. A) 
Representative images showing the distribution of IL-1β positive staining in the lesion area of aortic 
sinuses of male ApoE-/- mice fed HFD alone or HFD and DHA (300mg/kg/day) over 12 weeks. Arrows 
indicate IL-1β positive cells. B) Graphical representation of the total IL-1β distribution within the aortic 
roots as a % of lesion area and (C) of IL-1β positive endothelial cells (ECs) between the two groups 
(control vs. DHA supplemented groups). Image analysis was performed using NIS-Elements software 
and data are represented as mean ± SEM, n=8/group, Student’s t tests indicate a significant 
difference with **p<0.01. Scale bars=20-50µm.  
 

 

To ensure that the IL-1α and IL-1β antibodies did not cross-react, I performed 

immunoblotting for the respective recombinant proteins. Blots loaded with 20µg/mL 

of both recombinant IL-1β (rIL-1β) and recombinant IL-1α (rIL-1α) were probed with 

each antibody (Figure 7.4). The IL-1β antibody detected 17kDa rIL-1β, as expected, 

but no band was observed for rIL-1α (Figure 7.4A). In contrast, when the membrane 

was incubated with the anti-IL-1α antibody, the only detected band was observed at 
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18kDa for IL-1α; no bands for IL-1β protein were detected (Figure 7.4B), confirming 

the specificity of the two antibodies used in this study.  

 
 

 

Figure 7.4. Western blot illustrating the specificity of IL-1α and IL-1β antibodies. Recombinant 
IL-1β (rIL-1β) and IL-1α (rIL-1α) were loaded at equal concentrations (20µg/ml each) and 
immunoblotted for IL-1β and IL-1α. A) A representative blot from n=3 experiments showing 17kDa IL-
1β band when anti-IL1β antibody was used. B) A representative immunoblot for IL-1α from n=3 
independent experiments. 
 

 

7.4.3. The effect of DHA on IL-1ra expression in aortic atherosclerosis: 

Aortic atherosclerotic sections from mice treated with DHA or controls were 

assessed for IL-1ra using immunohistochemistry (Figure 7.5). IL-1ra (brown stain) 

was detected in both groups predominantly in the endothelium, subendothelial cells 

and few scattered cells in the adventitia (Figure 7.5A).  

 

Renal sections from male ApoE-/- mice fed HFD for 12 weeks were immunostained 

as positive controls, and show positive staining in the renal glomerular cells, as 

expected. Aortic sections used as negative controls by replacing the primary 

antibody with PBS, did not show any positive staining (Figure 7.5A).   

 

Semi-quantification of the total IL-1ra in the plaque area did not show any significant 

difference between the two groups (Figure 7.5B). However, there was a significant 

increase in IL-1ra expression in the endothelium in the DHA treated compared to 

control groups (9.75 ± 1.315 vs. 3.5 ± 1.041%, respectively, p<0.01, n=6) (Figure 

7.5C).  
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Figure 7.5. Interleukin-1ra distribution in aortic atherosclerosis in response to DHA feeding. A) 
Representative images showing the distribution of IL-1ra positive staining in aortic sinuses of ApoE-/- 

mice fed HFD alone or HFD and DHA (300mg/kg/day) over 12 weeks. Arrows indicate of IL-1ra 
positive stains. B) Graphical representation of the amount of IL-1ra within the aortic roots and (C) 
number of EC expressing IL-1ra, measured semi-quantitatively as a % of total number of cells.  
Analysis were performed using NIS-Elements software and data are represented as mean ± SEM, 
n=6, Student’s t-tests indicate a significant difference with **p<0.01. Scale bars=20µm.  
 

 

7.4.4. The effect of DHA on TLR4 expression in aortic atherosclerosis: 

Having shown that DHA decreased expression of endothelial IL-1β ad increased IL-

1ra, I sought to investigate the effects of DHA on TLR4 expression.  

TLR4 protein was assessed in the two experimental groups using both 

immunohistochemistry and immunoblotting (Figure 7.6).  

In the aortic roots, TLR4 was widely expressed in the plaque area, predominantly in 

the endothelium (Figure 7.6A). Semi-quantification showed a slight yet a non-

significant reduction in TLR4 expression in the plaque area of DHA treated (10.5 ± 

0.56%) compared to control groups (12.5 ± 1.61%, n=6) (Figure 7.6B).  

 

However, immunoblotting confirmed that DHA feeding significantly decreased TLR4 

levels in the whole aortae compared to controls (0.39 ± 0.050 vs. 0.628 ± 0.014, n=4, 

p<0.01) (Figure 7.6C & D).  
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Figure 7.6. TLR4 distribution in aortic atherosclerosis in response to DHA feeding. A) 
Representative images showing TLR4 expression in aortic sinuses of ApoE-/- mice fed HFD alone or 
HFD and DHA (300mg/kg/day) over 12 weeks. Arrows indicate TLR4 positive staining. B) Graphical 
representation of semi-quantitative analysis of the amount of TLR4 as a % of total number of cells. 
Analysis was performed using NIS-Elements software. C) Representative Immunoblot of TLR4 protein 
(95kDa) in the whole aorta of both groups of mice after 12 weeks of feeding, α-tubulin was used as a 
loading control. D) Densitometric analysis of TLR4 in the whole aortae (n=4). Data are represented as 
mean ± SEM, Student’s t-test, **p<0.01. Scale bars=20µm.  
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7.5. Local effects of DHA on mac-3 expression: 
Having established that DHA feeding decreases plasma levels of MCP-1 and IL-8, I 

sought to explore whether there are any changes in inflammatory cell infiltration into 

the atheromatous plaque.  

 

I previously showed that DHA supplementation reduced plaque size (approx. 30-

40% in the whole aortae, Chapter 5). Therefore, this immunohistochemical analysis 

aimed to provide further insights on the impact of DHA on plaque composition in 

terms of macrophage infiltration.  

 

The biomarker mac-3 was selected to identify mac-3+ve macrophages. Mac-3 

positive staining was calculated relative to % of total lesion surface area.  

 

Mac-3 positive cells were predominantly detected into the sub-endothelial area of the 

lesion of both groups of mice (Figure 7.7A).  

However, there is a significant amelioration in mac-3+ve macrophages in aortic root 

lesions of DHA treated group compared to controls (46.98 ± 11.3 vs. 15.53 ± 

5.142%, p<0.05, n=6/group) (Figure 7.7B), which is consistent with the lower plasma 

biomarkers and the lesion burden in the DHA treated group.  
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Figure 7.7. Mac-3 distribution in aortic atherosclerosis in response to DHA feeding. A) 
Representative images of the distribution of mac-3 positive staining in the aortic sinuses of ApoE-/- 

mice fed HFD alone or HFD and DHA (300mg/kg/day) over 12 weeks. Splenic sections from ApoE-/- 
fed HFD for 12 weeks were used as a positive control, and aortic sections stained with no primary 
antibody were used as negative controls. B) Graphical representation of the mac-3+ve area as a % of 
total lesion area. Analysis was performed using NIS-Elements software and data are represented as 
mean ± SEM, n=6, Student’s t-test, *p<0.05. Scale bars=20µm.  
 

 

7.6. The local effects of DHA on eNOS expression: 
WSS at physiological levels is one of the most powerful stimulants for NO production 

in the healthy endothelium, which is regulated by eNOS (Lam et al., 2006).   

In the previous chapter (6), I showed that DHA decreased OSI in the distal aorta; 

therefore, in this current chapter I sought to determine whether this effect is 

mediated by eNOS.  

 

The relative expression of eNOS in aortic atherosclerosis of DHA fed-mice versus 

controls was evaluated using immunohistochemistry and immunoblotting (Figure 

7.8). Sections of spleen were used as positive controls (Figure 7.8A, left lower 

panel), and aortic root sections of male ApoE-/- mice fed HFD for 12 weeks, omitting 

the primary antibody during staining, were used as negative controls, to ensure 

specificity of staining (Figure 7.8A, right lower panel).  
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eNOS was primarily detected in the atheromatous plaque of mice fed with DHA, in 

the endothelium and some inflammatory cells (Figure 7.8A, upper panels). There 

was a significant increase in eNOS expression in the DHA treated group compared 

to controls (0.098 ± 0.02 vs. 0.004 ± 0.003, respectively, p<0.05, n=6) (Figure 7.8B).  

 

Immunoblotting confirmed these immunohistochemistry findings with a substantial 

up-regulation of 140kDa eNOS in the DHA treated group compared to controls (HFD 

controls) (Figure 7.8C).  

 
 

 

Figure 7.8. eNOS distribution in aortic atherosclerosis in response to DHA feeding. A) 
Representative images of the distribution of eNOS positive staining in aortic sinuses of ApoE-/- mice 
fed HFD alone or HFD and DHA (300mg/kg/day) over 12 weeks. Red arrows indicate eNOS positive 
staining. B) Quantification of the relative eNOS expression in control (HFD control) and DHA treated 
animals, to total lesion area. Data are represented as mean ± SEM, n=6, Student’s t-test, *p<0.05, 
indicates a significant difference. Scale bars=100µm. C) Representative immunoblotting image of 
eNOS protein (140kDa) in the whole aortae of each group of mice (n=4/group), fed for 12 weeks, 
using α-tubulin as a loading control.  
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7.7. Summary: 
This chapter suggests a molecular mechanism of action of DHA in experimental 

atherosclerosis. To my knowledge, this is the first study to report the protective 

effects of DHA in relation to HFD induced atherosclerosis in ApoE-/- mice and a local 

IL-1 induced pathology. 

The presented data are summarised below: 

 

1. DHA supplementation has no effect on plasma levels of TNF-α. 

2. Although no significant effect was observed on soluble plasma levels of IL-1α 

and IL-1β, a significant reduction in plasma levels of IL-8, MCP-1 and 

RANTES following DHA feeding in the mice after 12 weeks was seen. 

3. Additionally, DHA significantly decreases mac-3 positive cells in the 

atheromatous plaque.  

4. DHA-fed animals had no significant difference in IL-1α expression in aortic 

root atherosclerosis compared to controls. 

5. However, endothelial IL-1β was significantly reduced in DHA supplemented 

mice and compared to controls. 

6. DHA-fed animals had a significant increase in IL-1ra expression in the 

endothelium of aortic atherosclerosis. 

7. DHA feeding had no effect on TLR4 expression in the proximal aorta but it 

significantly decreased TLR4 levels in the whole aortae compared to controls.  

8. In aortic atherosclerosis, eNOS is significantly increased in the DHA fed mice 

compared to controls.  
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7.8. Discussion: 
One of the objectives of any future atherosclerotic therapy is to stop progression of 

any pre-existing lesions and stabilise the atheromatous plaque by changing its lipid 

and cellular compositions (Libby et al., 2014). IL-1β, produced by the dysfunctional 

endothelium (Gutierrez et al., 2013), plays a crucial role in the development of 

atherosclerosis (Insull, 2009, Tamaru et al., 1998). Therefore, the current trend is to 

therapeutically control the disease by manipulation of local IL-1 production 

(Dinarello, 2005). 

This current chapter investigated the possible anti-inflammatory effects of DHA upon 

endothelial IL-1 production in vivo.  

 

To study the anti-inflammatory effects of DHA, plasma levels of different cytokines 

were assessed in DHA treated and control groups of mice. Surprisingly, DHA 

supplementation in mice had no effect on the plasma levels of IL-1 and TNF-α. My 

finding is at odds with previous in vitro studies (Lo et al., 1999). Human based 

studies have suggested that supplementing the diet of young male volunteers with 

1.85g of DHA in fish oil significantly ameliorated IL-1β production in LPS-stimulated 

monocytes (Endres et al., 1989). Additionally, Vijay-Kumar et al have reported that 

monocytes harvested from mice fed fish oil containing DHA produced less IL-1β 

compared to controls (Vijay-Kumar et al., 2011).  

The discrepancy between my data and these published results could be due to the 

possibility that DHA may have no effect on the plasma levels of the soluble IL-1 but 

instead it may decrease local production of IL-1β in inflammatory cells. This is 

supported by (Denes A., 2012) who suggested that administration of an anti-IL-1β 

antibody to ApoE-/- mice decreased tissue IL-1β expression but it had no effect on 

plasma IL-1 β levels.  

 

Another explanation derives from chapter 4 of this thesis where I showed that IL-1β, 

especially when endothelial cell derived, is released via protected vesicles. The 

assay used in this chapter (CBA) may not be sensitive enough to measure the 

vesicular IL-1β in mouse plasma. The gold standard technique used to isolate and 

quantify EVs is flow cytometry (Robert et al., 2009). However, there is no general 

agreement on the markers that could be used to detect EVs in mouse plasma, 
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especially those derived from ECs (Dignat-George and Boulanger, 2011). Therefore, 

due to these technical limitations, detection of EVs containing IL-1β in mouse plasma 

was not performed. 

 

Interestingly, DHA-fed mice had a significant reduction in the other plasma 

biomarkers that act as chemoattractants, including IL-8, MCP-1 and RANTES 

compared to controls whose production can be induced by IL-1 (Libby et al., 2009). 

Previous animal based studies reported no significant correlation between DHA and 

these plasma cytokines (Calder, 2006). However, most of these studies were small 

and entirely focused on EPA (the other prominent n3FAs in the FO), with little 

attention was given to DHA effects. I was able to demonstrate that DHA 

supplementation led to a reduction in these plasma proinflammatory mediators in 

experimental atherosclerosis. My findings agree well with data from in vitro studies, 

particularly from cultured cells, such as monocytes and ECs (Kelley et al., 1999, 

Wann et al., 2011). Based on these findings, I conclude that the atheroprotective 

effect of DHA might be due to reduced levels of these plasma chemoattractants. 

 

The cellular mechanism of action by which DHA decreases these markers remains 

speculative. Evidence has suggested that endothelial cells treated with n3FAs, 

notably DHA, inhibits expression of a number of IL-1 induced cytokines such as IL-8 

and MCP-1 (De Caterina and Massaro, 2005, De Caterina R, 1994). With this in 

mind, I hypothesise that DHA exerts the protective effects by a local suppression of 

IL-1.  

 

While a role of IL-1R signalling has already been established in experimental studies 

of atherosclerosis (Chamberlain et al., 2009, Devlin et al., 2002), the important role 

by which the IL-1 cytokines (IL-1α or IL-1β) may play in atherosclerosis in vivo is 

somewhat contradictory. Some authors stated that IL-1α rather than IL-1β plays a 

key role in inflammation in response to local lipid overload (Freigang et al, 2013). 

Moreover, a recent work by Lugrin and colleagues has demonstrated that IL-1α-/- 

mice have less post-ischaemic inflammation, leading to their conclusion that IL-1β 

has no role in this process (Lugrin et al., 2015). However, other studies have 

demonstrated that IL-1β is main culprit in atherosclerosis (Dinarello, 2011a). 

Therefore, I sought to explore whether expression of one or both these cytokines (IL-
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1α and IL-1β) is affected by DHA feeding and thus whether they are involved in the 

DHA signalling pathway.  

 

In atheromatous plaques and in both experimental groups, IL-1α protein was mainly 

expressed in cells that present at the junction between the media and the intima. 

Unexpectedly, mice fed DHA had no significant difference in IL-1α expression in their 

aortic plaque compared to controls, implicating the participation of an alternative IL-

1α independent pathway in the observed effects of DHA.  

 

These findings prompted me to evaluate whether IL-1β, instead of IL-1α was the 

molecular target of DHA in this model. Recent studies support a direct involvement 

of the leaderless cytokine IL-1β in hypertension (Boesen et al., 2008, Chamberlain et 

al., 2009), post-MI LV remodelling (Abbate et al., 2010) and atherosclerosis (Kirii et 

al., 2003). Therefore, I examined IL-1β distribution in aortic plaque using 

immunohistochemistry.  

In contrast to IL-1α positive cells, IL-1β protein was strongly expressed in the 

endothelium, whereas it was not detected in the media and was only weakly 

detected in the shoulders of the plaques of both groups. In atherosclerosis, the 

relative expression of the two cytokines within different population of cells is 

relatively unknown. Therefore, my findings suggest that IL-1α and IL-1β may play 

different roles in the pathogenesis of the disease.  

 

Despite no changes in the plasma levels of IL-1β, I observed a clear decrease in 

endothelial IL-1β expression in aortic atherosclerosis of DHA fed animals, suggesting 

an instrumental role for DHA in the IL-1β mediated process, consistent with previous 

findings implicating DHA in IL-1β inflammation (Vijay-Kumar et al., 2011). The 

primary cellular of origin of IL-1β in atherosclerosis is unclear. However, Galea and 

colleagues have shown that in coronary atherosclerotic plaques of IHD patients, IL-

1β is predominantly expressed in relatively large amounts in the endothelium (Galea 

et al., 1996). Therefore, my results of selective inhibition of endothelial IL-1β by 

dietary supplementation with DHA make ECs a possible therapeutic target for 

modulating IL-1β in atherogenesis.  
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Animal based studies suggest that levels of IL-1β in atherosclerosis (Galea et al., 

1996, Dewberry et al., 2008, Chamberlain et al., 2009) and in hypertension (Dalekos 

GN, 1997) are increased with a down-regulation of IL-1ra. Therefore, in the present 

study, I sought to determine whether DHA has any effects on IL-1ra levels and 

whether TLR4 is involved in this pathway.  

 

The anti-inflammatory effects of n3FAs, including DHA has long been documented 

(Calder, 2009, Richard et al., 2009, Lu et al., 2011), however, this study is the first 

that links DHA feeding in mice with the increase in IL-1ra expression in 

atheromatous plaque. IL-1ra has been given as a treatment to ApoE-/- mice where it 

effectively inhibited fatty streak formation (Elhage et al., 1998). Moreover, IL-1ra has 

been introduced in clinical trials as a possible therapeutic intervention in MI patients 

with established atherosclerosis and hypertension (Morton AC, 2014). However, 

limitations of its long term use, secondary to the compliance of the patients, has long 

been a big issue in the field (Dinarello, 2005). IL-1ra is known to be expressed by the 

endothelium of the coronary vessels (Dewberry et al., 2000). Furthermore, 

compelling evidence suggests that the balance between IL-1 and IL-1ra determines 

the fate of the overall inflammatory conditions (Arend, 2002). Therefore, my findings 

of the up-regulation of IL-1ra and the down-regulation of IL-1β in the endothelium 

suggest a dual plausible therapeutic role for DHA in modulating vascular disease.  

 

The molecular signalling pathway(s) by which DHA decreases endothelial IL-1β is 

relatively unclear. I elected to study local TLR4 expression since TLR4 is one of the 

main pathways by which IL-1 is produced/released by inflammatory cells (Xu et al., 

2001). Additionally, enhanced expression of TLR4 has recently been demonstrated 

in accelerated atherosclerosis (Edfeldt et al., 2002, Higashimori et al., 2011) and 

hypertensive vascular disease (Sollinger et al., 2014). To my surprise, DHA had no 

significant effect on TLR4 distribution/expression in proximal aorta of mice fed DHA 

for 12 weeks compared to controls. However, in the whole aortae, levels of TLR4 

were significantly ameliorated in the DHA compared to control groups. This is in 

agreement with a recent study reporting the inhibition of TLR4 in fish oil (FO) fed 

mice, predominately in peritoneal macrophages challenged with LPS (Vijay-Kumar et 

al., 2011) and confirms TLR4 as a molecular target of DHA.  
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To further explore the anti-inflammatory roles of DHA, I investigated macrophage 

distribution in the presence or absence of DHA. Macrophages represent 

approximately of 30-40% of the atherosclerotic mass (Weber and Noels, 2011). 

Therefore, the importance of macrophage modulation in atherosclerosis is now well 

appreciated in order to reduce atherosclerosis (Mantovani et al., 2009). The finding 

of macrophage reduction in aortic plaques of mice supplemented with DHA is in line 

with a recent study by Gladine and colleagues who demonstrated a decrease in 

mac-3+ve cells in aortic sinuses of LDLR-/- mice fed DHA (Gladine et al., 2014). My 

finding may suggest that DHA decreases atherosclerosis by decreasing macrophage 

infiltration, which, in part, may be due to the reduction in the production of plasma 

chemoattractants.  

 

Endothelial cells express various atheroprotective molecules, including eNOS and 

enhanced NO bioavailability in response to HSS (Chatzizisis et al., 2007). A 

published study by Chamberlain et al 2009, has suggested that IL-1 suppression in 

ApoE-/- mice fed HFD enhanced NO bioavailability by an eNOS dependent 

mechanism. Therefore, I hypothesised that DHA mediates the WSS effects by 

enhancing expression of eNOS in the endothelium. Significantly, I found that mice 

fed DHA express much higher eNOS levels in the endothelium of atheromatous 

plaque and compared to controls. The increase in expression of eNOS with DHA 

supplementation has been studied in various in vitro and in vivo studies (Yates et al., 

2014). However, the novelty of my results lies in the detection of eNOS within the 

endothelium of atherosclerotic plaque of experimental atherosclerosis in particular.  

 

In conclusion, this chapter provides with evidence that regular supplementation of 

DHA in the diet of mice decreases local IL-1β production and that is associated with 

distal athero-modulation and local flow changes. While there is enough evidence that 

DHA is atheroprotective in CAD (Virtanen et al., 2014), understanding the underlying 

mechanism in even more detail may lead to a novel therapy. 
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8.1. Overview of General Discussion and Future Perspectives: 
In this thesis, IL-1α and IL-1β received particular attention, because of their critical 

roles in the processes of inflammation and lipid accumulation (Tsimikas et al., 2014). 

The complexity of IL-1β action has been extensively studied and has led to 

surprising discoveries that help in our understanding, especially in the field of the cell 

biology and the drug therapy. Subsequently, blocking of IL-1 activity has been 

studied in order to control a number of chronic inflammatory diseases, including MI 

(Ikonomidis et al., 2014). Consequently, after almost two decades of pre-clinical 

studies, an on-going phase 3 clinical trial, Cankinumab Anti-inflammatory 

Thrombosis Outcomes Study (CANTOS), is testing whether specifically blocking IL-

1β will reduce the incidence of thrombotic events in patients after MI that remain at 

high risk due to the underlying inflammation (Ridker PM., 2011). However, an 

important question regarding the mechanism by which IL-1 is having an effect, and 

its cellular origin in atherosclerosis has yet to be clear.  

 

An alternative strategy to control atherosclerosis using PUFAs such as n3FA has 

also been extensively investigated (Adolfo Reza-Albarran, 2013). Recent data 

suggest that DHA supplementation has the potential to reduce blood pressure in 

hypertensive animal models (Morin et al., 2015), yet the precise molecular 

mechanism of action of DHA remains elusive. DHA has broad anti-inflammatory 

effects, and whether it may also have some inhibitory effects on IL-1 dependent 

inflammation needs further elucidation.  

 

This chapter summarises the main findings of the in vitro and in vivo experiments 

that were conducted in this thesis, to test the hypotheses that IL-1 release from 

endothelial cells is mediated by NE and that DHA acts via an IL-1 related 

mechanism. The plausible limitations and the future clinical perspectives of this 

research are also discussed, before drawing relevant conclusions. 

 

8.2. The mechanism of IL-1 secretion by NE action: 
IL-1β is produced as an active isoform in response to inflammation (Church et al., 

2008), yet the site of bioactive IL-1β processing within the cell and the mechanism of 

secretion have been an area of uncertainty.  
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IL-1 processing is a rate-limiting step that differs in different cell types. For example, 

in monocytes, only approx. 20-25% of proIL-1β is processed and secreted, a process 

tightly controlled by an activation caspase-1/inflammasome complex (Asgari et al., 

2013). By contrast, the majority of the processed IL-1 within pulmonary derived 

monocytes infected with chlamydia was released by a caspase-1 independent 

mechanism (Laudisi F., 2013). In ECs, whether IL-1 is secreted by either a caspase-

1 dependent or independent pathway has yet to be studied.  

 

Another issue is that the different kinetics of IL-1β secretion in different cells. While 

THP-1 monocytes require only a one “hit” stimulus such as LPS for both IL-1β 

production and release (Martinon et al., 2004), other cell types, including blood 

monocytes and alveolar macrophages, need an additional “hit” stimulus, eg. ATP, to 

induce the secretion process (Wewers and Herzyk, 1989). 

In contrast, ECs have completely different kinetics for IL-1β secretion, and ATP 

seems to play no obvious role. Previous work by Ward et al has shown that IL-1β is 

released from activated co-cultures of ECs and monocytes, at greater levels than 

from monocytes or ECs alone, and that an unidentified monocyte-derived mediator 

significantly contributed to this response (Ward et al., 2009a). 

Therefore, significant attention has been paid to how IL-1β is released from ECs 

(Warner et al., 1987, Libby et al., 1985, Schonbeck et al., 1997), although no 

consistent results have been published.  

 

8.2.1. Summary of the findings of the in vitro study: 

In this thesis, I showed that ECs only secrete bioactive IL-1β after NE activation. NE 

cleaved proIL-1β within ECs and released IL-1β without caspase-1 activation. NE 

also entered ECs within LAMP-1+ve MVBs and enhanced EV release containing 

active IL-1. 

Thus, I propose a new mechanistic role for NE, by which approximately 30% of the 

processed IL-1β is secreted from ECs, entirely dependent upon NE activation and 

independent of caspase-1 (Chapter 3). I postulate that NE is the mediator released 

from monocytes described by Ward et al (2009), and would be the natural source of 

NE in vivo, although future work to confirm this is warranted. 
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NE is present in aortic aneurysms (Rao et al., 1996) and carotid plaques (Dollery et 

al., 2003) and plays a direct role in IL-1β processing in vitro (Black et al., 1991). 

However, its effects on IL-1β secretion from cultured ECs are relatively unknown. 

Therefore, my finding, together with the pre-existing literature, offers a novel role for 

NE in the pathogenesis of endothelial IL-1 dependent inflammation. It also suggests, 

for the first time, that inflamed ECs can indeed release remarkably high levels of IL-

1, which thus further supports the findings of Galea et al 1996 in that the 

endothelium of coronary arteries can be considered a major source for IL-1.  

 

The mechanism by which IL-1β is exported outside cells has so far proven to be 

inconclusive. In this thesis (Chapter 4) I demonstrated that ECs release two distinct 

populations of EVs in response to NE activation (a population derived from the 

plasma membrane; microvesicles (0.1-1µm) and a population derived from internal 

vesicles; exosomes (30-100nm)).  

The detection of bioactive IL-1β within these vesicles offers a novel explanation for 

the distal endocrine actions of IL-1. In addition, several lines of evidence have 

indicated that endothelial derived EVs may be implicated in the pathogenesis of 

atherosclerosis (Dignat-George and Boulanger, 2011, Combes et al., 1999, Jansen 

et al., 2013, Jimenez et al., 2003, Leroyer et al., 2007). However, the precise 

mechanism remains unknown. Therefore, it is tempting to speculate that my finding 

could explain, in part, the involvement of endothelial derived EVs in atherogenesis by 

releasing IL-1 at the vascular wall and, thus, may offer a future novel therapeutic 

target.   

 

Intracellularly, the site of IL-1 processing is still unclear. ProIL-1β is detected within 

the cytosol of monocytes. However, mature IL-1β was only isolated from vesicles 

resistant to trypsin degradation and not the cytosol (Rubartelli et al 1990). The 

integrity and characteristics of these vesicles are relatively unknown. In 1990, Andrei 

et al were the first to detect the mature form of IL-1β within LAMP-1+ve vesicles, in 

LPS activated monocytes. Subsequent studies using different experimental models 

have suggested a diversity of proposals to investigate the nature of these organelles 

(Rabouille et al., 2012). In addition, a body of evidence has indicated that 

translocation of proIL-1β from the nucleus to the cytoplasm may involve intravesiclar 

compartments such as MVBs (Andrei et al., 1999).  
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I was able to detect MVBs containing IL-1β in ECs only following NE treatment 

(Chapter 4). Since these MVBs were not detected in cells that did not produce IL-1β 

(Qu et al., 2007), this confirms that MVBs are a part of the secretory pathway of IL-

1β. Future studies, including the mechanism by which MVBs are formed, which may 

help in understanding the complexity of the secretory system of IL-1, are required. 

 

In the present study, NE was detected inside the cells within LAMP-1+ve 

compartments and appeared to colocalise with IL-1β within the endothelium of 

atherosclerotic plaques (Chapter 4). Therefore in atherosclerosis, I proposed that 

circulating NE, released from inflammatory cells (Korkmaz et al., 2007), is 

assimilated into atherosclerotic plaque during their passage either through the 

vascular lumen or via the vasa vasorum (Leclercq et al., 2007), and NE directly 

cleaves IL-1 within the endothelium. This proposal remains to be clarified, and a 

causal connection between IL-1β and NE needs to be confirmed. 

 

8.2.2. Proposed mechanism of action of NE in atherogenesis: 

This study has provided important insights into the mechanisms leading to NE/IL-1 

inflammatory effects in atherosclerosis. In summary (Figure 8.1), my data suggest 

the following sequence of events: Following recruitment of inflammatory cells to the 

site of atherosclerosis (i), these cells release NE and possibly other signalling 

proteases such as CG and PPR-3 (ii). These proteases initiate a cascade of 

changes in the inflamed endothelium, including membrane vesiculation and MV 

shedding (iii). MVs containing bioactive IL-1 pinch off from the ECs and activate 

other ECs and possibly inflammatory cells in the area (iv). With the persistence of 

chronic inflammation and thus the exposure of ECs to NE, NE enters ECs and 

evokes exosomal release enriched in IL-1 (v).  

In a broader sense, these findings offer important implications for targeting NE to 

control IL-1 secretion and thus eliminate IL-1 responses in its local environment. 
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Figure.8.1. Schematic diagram illustrating the mechanism of NE as an important mediator for 
IL-1 induced injury in atherosclerotic plaque. Dysfunctional endothelium expresses a number of 
adhesion molecules, enhancing inflammatory cell migration and degranulation, resulting in NE 
secretion. Subsequently, NE stimulates local IL-1 secretion directly from EC. 
 

 

8.2.3. Limitations of the in vitro study: 

The in vitro study has several limitations. The use of cultured ECs offers some 

technical limitations to the conclusions that may be drawn from data obtained, 

including the present work. There are many arguments, both against and supporting 

the use of cultured cells to address any pathologically related hypothesis. 

In atherosclerosis, ECs have long been known to interact with a multitude of cell 

types, but the molecular mechanisms involved has not been explored (Muller, 2015, 

Tabas et al., 2015). The loss of this kind of interaction between different types of 

cells within the heterogeneous lesion is considered as one of the greatest challenges 

of any in vitro study. For example, in culture, unstimulated ECs do not tend to 

produce any IL-1, but when incubated with different combinations of cytokines (that 

may be secreted by different inflammatory cells in the plaques) the cells became 

inflamed and endogenously express IL-1. However whether the cells react similarly 

in atheromatous plaque and whether they are exposed to the same types of 

cytokines could not be answered.  
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In addition, it is unknown whether the response of the vascular wall endothelium to 

NE would be the same as that observed in ECs cultured in dishes.  

The time duration and concentrations of NE that were tested in the present study are 

another limitation. Under physiological conditions and within the vascular wall, the 

endothelium may be exposed to NE, but whether this exposure would be in the same 

concentrations as those tested in vitro needs further elucidation. In addition, taking 

into the account the chronicity of the disease, 6h stimulation of ECs with NE may not 

mimic the duration that vascular ECs may be exposed to NE. NE was detected ex 

vivo within the shoulders of carotid atheroma (Dollery et al., 2003); therefore, it is 

inevitable that the endothelium is in contact with NE for longer time periods.  

 

In vitro, NE is very unstable and can be deactivated by the presence of NE inhibitors 

in the serum (Henriksen and Sallenave, 2008), therefore, the study was conducted 

using serum free media. Since ECs in vitro could not survive in the serum free 

conditions (King et al., 2003), longer incubations were not considered.  

Therefore, when interpreting my findings, it is crucial to take into account that this 

research has been conducted in vitro and so any conclusions drawn may be not 

directly translated into the human lesions. However, given the challenges posed by 

culturing ECs and the co-incubation with NE, the advantages of cell culture in 

defining the role of NE in IL-1 production far outweighs any potential drawbacks, 

without the need to conduct the research on living animals. For example, culturing of 

ECs enables the involvement of NE in shedding and secretion of different 

populations of IL-1-containing EVs to be detected, and the kinetics of the secretion 

defined, something that cannot be explained by conducting in vivo studies.  

 

The use of purified NE (commercially provided) may offer some pathophysiological 

limitations and thus be another limitation of the project. That is, NE is detected in 

variable amounts in neutrophils and monocytes (Takahashi et al., 1988b). This 

current research did not address which type of these cells is the primary source of 

NE in the plaque area. Thus, the pattern of endothelial IL-1 secretion in the plaque 

area may be more complex than it has been observed in this study.  

 

Another limitation in this study is the bioactivity assay used to measure the activity of 

the released IL-1 into the supernatants of ECs. This assay did not recognise which of 
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the secreted intermediate products of IL-1β (15, 18 and 20kDa) is the bioactive 

isoform. Although the bioactivity of these cleaved products has been tested before in 

vitro (Hazuda et al., 1990, Black et al., 1991), measuring the activity of individual 

cleaved products within the supernatants could be of great interest as it may provide 

a further insight into the biological importance of different isoforms of IL-1. Since the 

scope of the project is on measuring whether NE induces bioactive IL-1 secretion, I 

chose not to pursue this area any further.  

 

Flow cytometry is a technique commonly used for in research EV characterisation 

and quantification (van der Pol et al., 2012). However, this technique is not sensitive 

enough to differentiate exosomes from MVs. The separation of MVs from exosomes 

using a centrifugation gradient is also inefficient, with a high possibility of having a 

population of exosomes within the MV fraction. In addition, degradation of EVs as a 

result of the sequence of centrifugations cannot be avoided.  

Another additional problem with flow cytometry is that the markers used to 

characterise endothelial derived EVs are not specific to endothelial cells. Annexin V 

is used as a standard marker for EVs it has also been detected in MVs isolated from 

other cellular types, such as monocytes (MacKenzie A, 2001). Unfortunately, other 

than E-selectin and vascular endothelial cadherin, which are not widely expressed in 

endothelial EVs, most of the markers used to identify endothelial derived MVs are 

not exclusively expressed by the endothelium. For example, CD31 is present on 

activated platelets, platelets derived MVs, and some subsets of leukocytes (Gyoergy 

et al., 2011). However, I cultured only ECs and so any released MVs were quantified 

and expected to be released by ECs.  

 

8.2.4. Future roles for NE in IL-1 dependent inflammation: 

The findings that are presented in chapters 3 & 4 of this thesis have raised many 

future opportunities. The continuation of this research would not only increase in our 

understanding of IL-1 biology but will also open the door for a new usage for NE in 

cardiovascular disease.  

 

In immune derived cells, IL-1β precursor is produced in an inactive form that is 

cleaved upon secretion to generate the mature 17kDa isoform of IL-1β (Thornberry 

et al., 1992). The lack of activity of proIL-1β was attributed to its inability to bind to 
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and activate its own receptors. By contrast, the mature IL-1β (17kDa) binds to its 

receptors with a high affinity in order to trigger a downstream signalling pathway and 

thus perpetuates inflammation (O'Neill and Dinarello, 2000). However, there are 

intermediate fragments generated as a result of the proteolytic activity of a number of 

serine proteases on proIL-1β, including NE, CG, and PR3, and these may have 

differential activities with different affinities toward IL-1RI (Black et al., 1988). 

In this thesis, I showed that NE processes proIL-1β within ECs and this results in the 

secretion of different isoforms of IL-1β, including the15kDa, 18kDa and 21kDa but 

not the 17kDa isoform. It is still unproven whether these cleaved intermediate 

products are identified in patient’s blood or whether they have the same affinity to 

bind to IL-1RI.  

 

Circulating monocytes interact with dysregulated endothelial cells initiating the 

inflammatory response to injury (Ley, 2015, McEver, 2015), which in the presence of 

high lipid (Kovacic, 2014) leads to the initiation of atherosclerosis and plaque 

development within the arterial wall (Bentzon et al., 2014). Ward et al., 2009, have 

used EC and monocyte co-cultures to investigate the intercellular signalling between 

these two cell-types and have shown that endothelial cells regulate the production of 

IL-1β from monocytes, via an unidentified soluble factor, which is not the damage 

signal, ATP. This production of IL-1β results in a synergistic increase in the 

production of IL-6 in the endothelial-monocyte co-culture. 

In this thesis, I identified NE as a mediator of IL-1β production and processing in 

human endothelial cells, with evidence that NE is expressed in the endothelium of 

mouse diseased arteries. Therefore, testing whether the soluble factor released from 

endothelial cells that regulates IL-1β production in co-cultured monocytes is NE 

would be very interesting and one of the main research directions in the future.  

 

EVs have been identified to play a key role in intercellular communication and 

crosstalk between cells in atheromatous plaque (Buendia et al., 2015, Burnier et al., 

2009). Although no general agreement has been paid, EVs have different names 

and types depending on their cellular origin and the differences in their sizes 

(Gyoergy et al., 2011). In contrast to MVs which are derived from budding of the 

plasma membrane (0.1-1µm), exosomes (30-100nm) are released by an 

endolysosomal pathway (Loyer et al., 2014, Sluijter et al., 2014). Therefore, although 
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both exosomes and MVs have different pathways, they have been increasingly 

implicated in secretion of different proteins from the same cells, including platelets 

(Heijnen et al., 1999, Heijnen et al., 1998) and monocytes (van der Pol et al., 2012).  

In chapter 4, I showed that NE enhances secretion of different types of EVs (MVs 

and exosomes) specifically derived from ECs. Both contained IL-1 and released it in 

a time dependent fashion. Because of their different origins and the specific protein 

compositions (MVs vs. exosomes), these extracellular vesicles may have other 

functions beside IL-1 secretion. Other complementary cytokines that drive 

inflammation could be released by a similar pathway from ECs, although this has yet 

to be proven.  

 

Moreover, in human plasma, different EVs of different cellular origins, predominantly 

platelet and leukocyte derived, have been isolated and linked to the atherogenesis 

(Owens and Mackman, 2011, Rautou et al., 2011), whereas endothelial derived EVs 

are much less studied. Considering the important and versatile roles that the 

vascular endothelium plays in the disease, isolation and characterisation of 

endothelial derived EVs in the plasma of patients with MI and linking these with the 

disease progression may have future prognostic and therapeutic implications. In 

particular, exosomes may be an attractive therapeutic tool. In cancer therapy, for 

example, the discovery of exosomes has helped in developing new types for 

chemotherapy (Grabbe et al., 1991). In atherosclerosis, this new area of interest has 

been less explored (Sahoo and Losordo, 2014).  

 

Additionally, full characterisation of the prominent type of extracellular vesicles that 

contain IL-1 in patient plasma, and how these EVs react with their receptors, deserve 

further investigations. There are several ways that the exosomes/MVs may interact 

with their cellular targets, for instance, by binding to the plasma membrane, fusion or 

they may be taken up by cells using the endocytic pathway (Stoorvogel et al., 2002). 

Therefore, future work on how these vesicles interact with their targets to induce the 

IL-1 signalling pathway and their other possible physiological targets is required.  

 

I also showed that NE enters ECs in LAMP-1 positive MVBs. Endocytosis and 

incorporation of NE into the MVBs may require surface binding, internalisation and 

intracellular signalling. In cancer cells, NE has been shown to get into the cells by 
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clathrin-dependent endocytosis (Houghton et al., 2010, Gregory et al., 2012). 

However, little is known about the intracellular trafficking of NE into ECs, especially 

with the regard to the intracellular routing of NE after its internalisation and delivery 

to the MVBs.  

 

In addition, the nature of the MVBs inside ECs remains to be established. MVBs 

formed in certain types of cells play an important role in sorting internalised materials 

and are thus considered as a part of the endocytic pathway (Piper and Katzmann, 

2007). Therefore, it is possible that after internalisation of NE by ECs, NE gets into 

the MVBs where it cleaves proIL-1β. Further investigations into the mechanism of IL-

1 secretion using inhibitors for the endocytic pathway would be of great interest, 

particularly in defining whether the formation of MVBs is a part of trafficking NE 

inside the cells. 

 

In the current study and using EM, I observed in NE treated ECs that there are other 

vesicles containing IL-1 besides the MVBs, mainly in the perinuclear area. This 

finding has been published before in different IL-1 producing cells (Pond and Watts, 

1997; Pond and Watts, 1999; Liu et al., 1998; Turley et al., 2000). Therefore, it is 

possible that the intracellular trafficking of IL-1 from the perinuclear area to the 

plasma membrane involve vesicular transport steps, yet the exact characteristics of 

the intermediate vesicles have yet to be identified.  

 

MVB release their contents by exocytosis (vidal et al 1999) and thus their fusion with 

the cell surface is likely to be regulated, as shown by platelets and immune derived 

cells (Nickel and Rabouille, 2009). Exocytosis of exosomes is calcium dependent 

(Piper and Katzmann, 2007) and may be preceded by changes in syntexins 

(Ghossoub et al., 2014). It is tempting to speculate that NE causes cytosolic calcium 

changes and subsequent phosphorylation that triggers syntexin activation. 

Recent work by Ghossoub et al has suggested that MVB formation and exocytosis of 

exosomes is mediated by activation of the GTPase ADP ribosylation factor 6 (ARF6), 

which subsequently increases syntenin exosomal secretion. In light of this, an 

interesting finding by Zhu and colleagues has suggested that in ECs, calcium 

dependent ARF6 signalling is implicated in IL-1 mediated responses (Zhu et al., 
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2012). Therefore, studying the role of ARF6/syntexin pathway in IL-1 secretion by 

NE effects is warranted.  

 

NE potentially plays a major role in inflammation, yet its roles in atherogenesis have 

only been partially understood (Chua and Laurent, 2006). The findings of this current 

research shed new light on the pathophysiological importance of NE in 

atherosclerosis. In deed, controlling the activity of NE might help to mitigate IL-1 

mediated inflammation, which might slow down the disease progression. NE 

inhibitors have already been tested in different animal models of pulmonary related 

diseases (O'Blenes et al., 2000, Zaidi et al., 2002, Zaidi et al., 1999, Sallenave, 

2000), although there is a discrepancy between the findings in animal and clinical 

based research (Alam et al., 2012). 

  

The endogenous inhibitor of NE, elafin, has been detected in coronary 

atherosclerotic plaques (Alam et al., 2012). In different animal models, elafin has 

been suggested to attenuate chronic inflammatory progression of several diseases, 

including atherosclerosis (Henriksen, 2014) and pulmonary hypertension (Zaidi et al., 

2002). In addition, it has been shown to have survival benefits in patients with viral 

myocarditis (Zaidi et al., 1999). Recombinant elafin has low toxicity and it has 

demonstrated a very good response in different animal studies. By contrast, in 

clinical studies, due to its short half-life it has been given by continuous intravenous 

infusion and, thus, this has become one of the biggest limitations to translate NE 

inhibition by elafin administration into the clinic (Alam et al., 2012).  

 

More recently, a novel oral NE inhibitor AZD9668 “Avelestat” has been introduced 

and tested in different animal models, including NE-induced lung injury (Stevens et 

al., 2011). Interestingly, it has been demonstrated that this inhibitor reduced different 

inflammatory responses in bronchial fluids, including interleukin-1β levels (Stevens et 

al., 2011).  

The safety and tolerability of AZD9668 has already been established in two different 

healthy volunteer studies (Gunawardena et al., 2013). Subsequently, on-going 

clinical studies will test the effect of the inhibitor on inflammatory lung diseases 

(Stockley et al., 2013, Kuna et al., 2012). However, direct evidence from the effect of 

AZD9668 on vascular wall inflammation and atherosclerosis is relatively lacking. 
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Continuation of my work by testing the effect of this inhibitor in vivo using an 

experimental model of atherosclerosis would be of particular interest and may help to 

address the hypothesis of whether inhibition of NE mitigates IL-1 induced 

atherosclerosis. Studying plaque size and compositions in animals treated by the 

inhibitor could be performed and thus it may give an insight, for the first time, on the 

mechanism of action of the inhibitor in cardiovascular medicine.  

 

8.3. The anti-atherosclerotic mechanism of action of DHA: 
DHA has mostly been investigated in combination with EPA and using only an 

exclusive targeted approach, focusing on a particular pathway (Stanley et al., 2013, 

Matsumoto et al., 2009). The use of such experimental design is, therefore, flawed 

when interpreting the broad spectrum of actions of DHA (Mozaffarian and Wu, 2011).  

 

8.3.1. Summary of findings of the DHA study: 

In this thesis, I showed that DHA decreased distal atherosclerosis and improved 

plasma dyslipidemia.  

It has been postulated that HDL-C prevents LDL-C precipitation into the sub-

endothelial space and thus protects against atheroma formation (Martin et al., 2015).  

Therefore, my findings of increased levels of HDL-C compared to all other 

cholesterol fractions in the plasma of DHA-fed mice, associated with less 

atherosclerosis (Chapter 5), suggest the importance of DHA in preventing 

cholesterol accumulation and plaque formation (Figure 8.2).  

 

In chapter 5, I also investigated the ability of DHA to directly prevent hypertension 

and LVH induced by feeding a high fat diet. Chronic supplementation with DHA for 

12 weeks (human equivalent of 3g/day (Morin et al., 2015)) was found to decrease 

arterial blood pressure and LVM.  

I also observed that DHA feeding had no effect on aortic root atheroma but it 

preferentially decreased atherosclerosis in the brachiocephalic arteries and the distal 

aortae. The selective effects of DHA on atherosclerosis formation in different 

vascular beds suggest that DHA may act through a mechanism separate from the 

changes in the plasma cholesterol. My findings corroborate observations in patients 

that lesions tend to occur at certain sites of the vasculature.  
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That led me to the hypothesis that DHA may decrease distal atherosclerosis by flow-

mediated mechanism(s). In Chapter 6, I studied the differences in WSS amplitude 

and direction in different parts of the aortic wall. Interestingly, in the proximal aorta, 

WSS was not significantly affected by DHA supplementation. However, DHA 

decreased OSI in the descending aortae. My finding is the first to associate the 

differential effects of DHA on atherosclerosis with the changes in WSS oscillation.  

 

De Caterina et al have demonstrated a reduction in E-selectin and VCAM-1 

expression induced by IL-1 in ECs treated with 25µM of DHA (1998). In addition, a 

recent study by Moron et al suggests a reduction in IL-1β levels in plasma of rats 

supplemented with DHA and HFD over 8 weeks (2015).  

However, only a casual connection between the anti-inflammatory effects of DHA 

and IL-1 expression in the plaque area was made. In Chapter 7, I showed that DHA 

decreases endothelial IL-1β in aortic atheroma. Chapter 7 also addressed the 

mechanism by which DHA decreases IL-1β expression in aortic atherosclerosis. I 

showed that supplementation with DHA significantly decreases TLR4 expression. 

Activation of the TLR4 has been implicated in various chronic inflammatory diseases, 

including hypertension (Liang et al., 2013) and atherosclerosis (Xu et al., 2001), 

through downstream induction of many inflammatory cytokines, including IL-1 

(Schoneveld et al., 2005, O'Neill and Dinarello, 2000).  

 

I also demonstrated that DHA decreases mac-3 positive macrophages in aortic 

plaques (Chapter 7). The recruitment of inflammatory cells and their subsequent 

accumulation into the plaque area is critical in atherosclerosis development (Ley, 

2015). Therefore, the predicted results of lower macrophage numbers in the aortic 

plaque would explain, in part, the reduced atheroma formation in mice fed DHA. 

However, this dose not explain the changes in blood pressure and the 

haemodynamic responses that I observed in the mice supplemented with DHA.  

 

NO is produced by eNOS that has multiple atheroprotective and vasodilator effects 

(Li and Forstermann, 2000). Li et al has postulated that up-regulation of eNOS in the 

aortae of spontaneous hypertensive rats mediate blood pressure reduction (2006). 

Moreover, changes in WSS have been demonstrated to regulate eNOS expression 

in atheromatous plaque (Davis et al., 2004).  
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In Chapter 7, I tested the hypothesis that DHA supplementation could alter WSS by 

eNOS mechanism(s). Interestingly, the finding of eNOS up-regulation in DHA fed 

animals (Figure 8.2) suggests a novel explanation for the local haemodynamic 

changes observed in the vasculature of these animals. 

 

 

 
Figure 8.2. Modulation of the TLR4 signalling pathway by DHA in endothelial cells. TLR4 
activation triggers a downstream phosphorylation and activation that generates NF-κB translocation 
into the nucleus, with enhanced production of multiple of proinflammatory mediators, including MCP-
1, IL-1, and IL-8. IL-1 also enhances NADPH activation and reactive oxygen species (ROS), which 
down-regulate eNOS and thus decreases NO bioavailability. However, DHA intervenes with this 
pathway by decreasing the expression of TLR4 and enhancing eNOS up-regulation.  
 

 

8.3.2. A proposed mechanism of action of DHA: 

In summary, the atheroprotective effects of DHA observed in the ApoE-/- 

atherosclerotic mouse model may be via either DHA influencing lipoprotein 

haemostasis or through an anti-inflammatory mechanism(s) or both at the vessel 

wall. Following development of atherosclerosis, DHA fed mice have pronounced 

blood pressure protection and shear stress modulation. 
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My results highlight the importance of choosing the end point to observe the 

favourable responses of DHA and I believe they provide potential major clinical and 

therapeutic significance for the role of DHA as anti-atherogenic and/or anti-

hypertensive agent. 

  

In a larger context, my results lead me to speculate that DHA selectively decreases 

distal atherosclerosis by increasing plasma HDL-C, which in turn prevents LDL-C 

precipitation into the sub-endothelial space. DHA may also directly maintain 

endothelial function and decrease a number of IL-1β mediated effects. 

Subsequently, DHA enhances eNOS expression and NO dependent vascular 

remodelling. Local mechanical forces are then maintained, and the rise in blood flow 

is prevented with lowering of OSI, which further stabilises the endothelium and 

reduces plaque formation (Figure 8.3).  
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Figure.8.3. The potential therapeutic effects of DHA on vascular wall inflammation and 
hypertension. (i) Dietary DHA leads to disruption of sub-intimal cholesterol precipitation by 
increasing HDL. These processes contribute to small atheroma formation and maintain plaque 
stabilisation. (ii) DHA modulates IL-1 expression and, subsequently (iii) enhances eNOS activity and 
NO bioavailability. (iv) DHA also lowers arterial blood pressure secondary to vasodilation and (v) 
prevents the increase in LVM induced by HFD. Finally (vi) DHA promotes cardiac contractility and 
aortic blood flow that decreases the oscillation in shear stress and promotes the stability of the 
atherosclerotic plaque. 
 

 

8.3.3. Limitations of the DHA study: 

The presented DHA study has strengths as well as some limitations. Firstly, I 

performed the experiment on ApoE-/- mice to study DHA effects on atherosclerosis 

and hypertension. However, the use of mice to study human pathology has some 

inherant limitations, which should be considered before any conclusions can be 

drawn.  

There is an argument against using a murine model to study human diseases, 

including atherosclerosis. Mice do not usually develop atherosclerosis, due to the 

high protective HDL-C in their plasma. However, by knocking down ApoE receptors, 

and feeding the mice HFD for 12 weeks, they develop lesions in the vasculature, 

phenotypically similar to that in humans (Jawien et al., 2004). This fundamental 
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difference in the instigation of atherosclerosis means that interpreting the findings in 

this research must be carefully considered, since it was conducted on a nonhuman 

species and may not directly translate into the clinic. 

Despite this, the advantages of using a mouse model, including the ease of genetic 

manipulation and the ability to perform ex vivo assays, far outweigh their potential 

limitations. Additionally, this mouse model provides a new mechanism of action of 

DHA in living animals, which could not be offered by in vitro studies alone.  

 

Secondly, in this study I measured only one time point (12 weeks) to investigate the 

anti-hypertensive and anti-atherogenic effects of DHA that may not represent the 

expected changes that could be seen with chronic supplementation of DHA in 

patients. Indeed, people may have the disease for a long time and giving DHA 

supplementation may be required for a significantly long period before observing any 

changes in the vasculature. To control for this, the animals in my experimental study 

could be supplemented for longer periods with DHA.  

Generally, the findings may not be directly linked to those in IHD patients, but it may 

help in providing impetus for future clinical studies.  

 

Thirdly, I evaluated the DHA response and did not choose to also evaluate EPA. 

Previous investigations suggest anti-hypertensive effects are strongly associated 

with the extent of dietary consumption of DHA and EPA (Wann et al., 2011, 

Woodman et al., 2002, Vandongen et al., 1993). Therefore, EPA supplementation 

may be beneficial to atherosclerosis in mice, and this may be by a similar or an 

alternative systemic anti-inflammatory mechanism(s). Clinically, it is advisable to 

consume DHA with EPA as both FAs are present in large quantities in FO and both 

have shown a significant reduction in CVD mortality (Krauss et al., 2000). However, 

with the time constraints of this project, the high cost of obtaining EPA, and given the 

knowledge that DHA had been extensively studied in hypertensive patients (Engler 

et al., 2003) and animal based research (Frenoux et al., 2001, Morin et al., 2015, 

Stanley et al., 2013), I chose to concentrate this study on investigating DHA. Had 

cost and time not been a consideration, I would have tested the EPA effects using 

this model.  
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Finally, the techniques used in this study may harbour an additional limitation. For 

example, en tail cuff is a standard technique to measure changes in blood pressure 

in mice. However, this method measures blood pressure in a relatively crude way 

and the reading in blood pressure of these mice may change from day to day, 

affected by the condition of the mice, the consistency of handling, time of day when 

the pressure reading was taken, and general stress level of the mouse at time of 

reading. To minimise the variations in blood pressure, the mice were trained for a 

week to familiarise them with the equipment and procedure, kept in a warm, dark 

constrainer during BP reading, were handled by only one person, and BP readings 

were taken at the same time every day (within a 2 hour range).  

 

I used en face oil red O staining to quantify atherosclerotic burden in the different 

aortic regions. However, this is a technique used to measure lipid content and may 

not be sensitive enough to detect the entire size of the lesion, nor give an indication 

on their composition. The accuracy of the measurements may be limited by any 

residual fats on the outer surface of the aorta. However, a significant effort was 

made to remove the residual fats under a dissecting microscope, thus any 

contaminating positive stain from this is expected to be minimal and would not affect 

the total quantification. Alternatively, quantification of lesion area using histological 

analysis of cross sections of the vessels can be used, and are more accurate. 

However, in a large artery like the aorta where atherosclerosis is usually segmental, 

the potential of missing an important lesion of interest is possible with cross sectional 

analysis.  

 

The estimation of the magnitude and direction of WSS is based on 

echocardiographic data and the change in the velocity profiles of the aorta. One 

limitation of this is the geometrical variation. The presence of bends or branch points 

may induce big changes in the WSS pattern and give false results. Therefore, the 

observational nature of this analysis does not allow us to make definitive conclusions 

regarding the beneficial effect of DHA on OSI, but it does give an indication on the 

changes in OSI, which can be linked with anatomical areas where atherosclerosis 

tends to develop.  
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8.3.4. The future implications of DHA as an IL-1 suppressor: 

The finding of suppression of endothelial IL-1, linked with the atheroprotective and 

anti-hypertensive roles of DHA, is  novel and could be taken further.  

An outline of different areas that could be possibly covered in future research is 

summarised below:  

 

Having shown that DHA mediates a reduction in high blood pressure induced by fat 

feeding in mice, it would be of great interest to investigate the anti-hypertensive 

effects of DHA using pharmacologically, more relevant large animal models of 

hypertension that recapitulate the complex aspects of the disease, before translating 

the findings into clinical studies. In addition, n3FAs are mostly studied in patients 

with already established IHD treated with primary PCI (Mozaffarian and Wu, 2011). 

Therefore, it would be interesting to test its effects directly in a relevant injury model. 

Murine stenting is an established model of PCI in mice (Chamberlain et al., 2010), 

and this model could be utilised to investigate whether DHA plays any role in 

preventing restenosis, which will broaden its application in the cardiovascular field.  

 

Since bioactive IL-1β is found intact within EVs of endothelial, rather than of 

circulating origin, the decrease in endothelial IL-1 expression during chronic DHA 

supplementation suggests that DHA suppresses endothelial IL-1 production in mice. 

Therefore, further studies could be directed at elucidating whether the selective 

inhibition of endothelial IL-1β has any future therapeutic implications. It has also 

been suggested that IL-1β-/- mice have reduced atherosclerosis, although whether 

endothelial IL-1β-/- would decrease blood pressure and atherosclerosis is yet to be 

investigated. DHA could be used in the endothelial IL-1β-/- model to see if this effect 

is solely mediated by IL-1β.  

 

In vitro, I showed that NE enhances IL-1β secretion from endothelial cells and, in 

vivo, I demonstrated a reduction of endothelial IL-1β expression with DHA 

supplementation. A study by (Bates E, 1993) suggested that treatment of HUVECs 

with DHA prevented neutrophil elastase mediated injury. Therefore, future studies to 

investigate whether DHA interacts with NE or downstream effects, including IL-1 

secretion from the endothelium are warranted.   
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The regional differences in the lesion in response to DHA feeding were postulated to 

be secondary to lowering the OSI in distal vasculature. In vitro flow models have 

been used to investigate the effects of WSS on ECs (Huang et al., 2013). Therefore, 

further confirmation for DHA modulatory effects on WSS in cultured ECs is 

warranted. Explanted atherosclerotic plaques from different aortic regions, that have 

been shown to be WSS sensitive (by staining for specific markers) would shed 

further insights on the mechanism of action of action of DHA.  

 

In patients with IHD, the physiological significance of controlling IL-1beta production 

in the endothelium versus the neointima is relatively unknown. Although my data 

support some contributions for DHA in the IL-1 signalling pathway, at least in the 

vascular endothelium, DHA has been shown to have broad anti-inflammatory roles, 

including inhibition of TXA2 and PGE2 in vitro (Calder, 2006). It is also possible that 

DHA may mediate the inhibition of endothelial IL-1beta via different molecular 

pathways. Future studies are needed to fully elucidate the molecular mechanism of 

action of DHA using different cell types and different modulations.  

 

This thesis has demonstrated, for the first time, that ECs can secrete a large amount 

of IL-1 in response to NE stimulation. In atherosclerosis, IL-1 is produced by different 

types of cells, including SMC, macrophages and ECs, and the dominant source for 

IL-1 production in the plaque area is yet to be elucidated. Whether controlling IL-1 

production in these cells would then have an effect on IL-1 production by the other 

cells is also unknown. Therefore, one of the future directions of this research is to 

locally suppress IL-1 in ECs and measure IL-1 expression in atherosclerosis.  
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9.1. Conclusion: 
Owing to the complexity in the pattern of the disease, modification of atherosclerosis 

by a single therapeutic agent has so far proven to be impossible. Even if available, 

life long medications are cost-intensive and may expose patients to serious side 

effects that may interfere with their compliance. Hence, in addition to lifestyle 

modifications that should be enforced early, possible curatives for the disease are 

usually prescribed only when the lesion reaches the later stages of disease. Thus, 

investigating the mechanism(s) that cause lesion instability and production of 

mediators that dissolve plaque deserves more future attention.  

 

IL-1 with a wide range of proinflammatory activities has been shown to play different 

roles in the early and advanced atherosclerosis. Therefore, the finding of NE as a 

key regulator in IL-1 secretion by ECs and the detection of NE within the 

atheromatous plaque may help to understand and thus modulate local IL-1 

production. Selective inhibition of NE, without affecting other IL-1 favourable 

responses in the immunity may offer future therapeutic implications.  

 

On the other hand, the finding of reduction of atherosclerosis and hypertension 

induced in mice fed a HFD, containing DHA, and the suppression of IL-1 selectively 

in the endothelium offers a novel role for DHA. That may provide an explanation for 

the observed beneficial effects of n3FAs, notably that DHA contributes to decrease 

the risk of atherosclerotic changes. 
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Appendix (I) Chemical Reagent, Company sources and Concentrations	
  

Chemical Company Catalogue 
number 

Concentrations 

Recombinant 
Human IL-1α/IL-1F1 

R&D Systems, Inc. 200-LA-002 10ng/ml 

Elastase  Sigma Aldrich E8140 1ug/ml 

Tumour Necrosis 
factor-alpha (TNF-
α). 

Calbiochem 654205 10ng/ml 

Interferon gamma 
(INF-ɣ) 

Calbiochem IF005 100ng/ml 

Lipopolysaccharide 
(LPs) from E.coli  

Sigma O55:B5 1µg/ml 

Goat anti-Rabbit 
IgG (H&L), 
DyLightR 550 
Conjugate 

Immunoreagents, 
Inc 

GtxRb-003-
D550NSX 

1:200 

Cathepsin G from 
human leukocytes 

Sigma C4428 1ug/ml 

Caspase-1 inhibitor 
I 

(Ac-Tyr-Val-Ala-
Asp-CHO) 

Calbiochem 400010 50uM 

DyLight TM 488 
Goat anti-rat IgG 

BioLegend 405409 1:200 

Calcium Ionophore 
A23187 

Sigma C7522 

 

10µM 

Bafilomycin A1 
from Streptomyces 
griseus 

Sigma B1793 

 

50nM 

Calpain inhibitors; 
PD150606 

Santa Cruz SC-222133 1nM 

Calpain inhibitors 
negative control; 

Santa Cruz SC-222131 1nM 
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  PD 145305 

Active human 
Neutrophil Elastase 
full length protein 

abcam Ab91099 1µg/ml 

Elastase Inhibitor 
III 

Calbiochem 324745 500uM 

Glibynclamide Sigma G0639  

(S)-(+)-
Campthothecin 

Sigma C9911 10µg/ml 

Fibronectin from 
bovin plasma 
Albumin 

Sigma  5µg/ml 

Elastase Substrate 
I 

MeOSuc-Ala-Ala-
Pro-Val-pNA 

Calbiochem 324696 100uM 

SIGMAFASTTM 3,3’-
Diaminobenzidine 

Sigma D4293 - 

Recombinant 
Human IL-1b/IL-1F2 

R&D SYSTEMS 201-LB-005 10ng/ml 

P38 inhibitors Promega SB 203580 1:1000 

Albumin from 
bovine serum 

Sigma A3803-50G 1%. 

Sodium 
pentobarbital 

J M Loveridge Ltd  200mg/kg/ip 

Hirudin (900 anti-IIa 
units/mL 

Canyon 
PharmaceuticalsTM 

 5ug/mL 

PBS Oxoid   

Fixative reagents VWR International 
Ltd 

// // 
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Appendix (II)  Antibodies used in this study. 
	
  

Name Catalogue 
number or 
clone 

Type Cell identified Company Working 
Dilutions 

TLR4 Ab13556 Rabbit 
PAb 

Monocytes, 
macrophages, 
dendritic cells, 
some Tcells 

abcam 1:50 IHC-
P 

1:1000 
WB 

IL-1β MAB201 Mouse 
Mab 

// R&D Systems 1:1000 

IL-1β/IL-1F2 AB-201-NA Goat 
Pab 

// R&D Systems 1:100 

LAMP-1  D2D11 Rabbit  

mAb 

Lysosomes 
Marker 

Cell signalling 1:100 IF 

1:10,000 
WB 

LAMP-1 Ab24170 Rabbit 
Pab 

Lysosome 
Marker. 

Abcam 1:1000 

IL-1 alpha Ab7632 Rabbit 
Pab 

Monocytes  abcam 1:200 WB, 
1:40 IHC-
P 

Mac-3 550292 Rat IgG1 M3/84 
expressing 
cells 

BD 
Pharmingen 

1:100 

Caspase-1 Ab17820 Rabbit 
Pab 

Detect p20, 
p45 subunits 

abcam 1:250 

PAR2 
(SAM11) 

sc-13504 Mouse 
Mab 

ECs Santa Cruz 1:1000 

Cathepsin B Ab33538 Rabbit 
Pab 

Lysosomes abcam 1:250 

 

Hsp90 alpha Ab2928 Rabbit 
Pab 

Abundant 
cellular protein 

abcam 1:1000 

Antineutrophil 
Elastase 
antibody 

Ab68672 Rabbit 
Pab 

PMNs Abcam 1:500 
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Antineutrophil 
elastase 

M 0752 Mouse 
Mab 

NE  Dako 1:50 

Biotinylated 
antimouse 
IgG (H+L) 

Vector 
Laboratories 

BA-9200    

Anti-IL1RA  Ab124962 Rabbit 
Mab 

 abcam 1:100 IHC-
P 

Smooth 
muscle actin  

M0851 Mouse 
Mab 

 Dako 1:100 

Alpha-Tubulin T9026 Mouse 
Mab 

Intracellular 
tubulin 

Sigma 1:1000 

NLRP3/NALP3 ALX-804-
819 

Mouse 
Mab 

Inflammasome ENZO  

 

Anti-eNOS Ab5589 Rabbit 
Pab 

Endothelial 
plasma 
membrane 

abcam 1:150 IHC-
P 

1:500 WB 

Anti-ARF6 Ab77581 Rabbit 
Pab 

Golgi 
apparatus, cell 
membrane, 
endosomes 

abcam 1:50 IMG 

Anti-
gp91(phox) 

611414 Mouse 
Mab 

Macrophages, 
granulocytes 

BD 
Transduction 
Laboratories 

1:500 WB 

I:100 IHC-
P 

Anti-NADPH 
oxidase 4 
(UOTR1B493) 

Ab133303 Rabbit 
Mab 

Endothelial 
cells 

abcam 1:500 WB 

1:100 IHC-
P 

Anti-EEA1 610456 Mouse 
Mab 

Early 
endosmes 

BD 
Transduction 
Laboratories 

1:100 ICC 

Anti-CD63 Ab118307 Rabbit 
Pab 

Exosomes abcam 1:100 ICC 

1:50 IMG 

1:500 WB 

Anti-iNOS Ab3523 Rabbit 
Pab 

Endothelial,  
monocytes, 
epithelial and 

abcam 1:100 IHC-
P 
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alveoli 1:500 WB 

Anti-arginase-
I 

Sc-20150 Rabbit 
Pab 

Monocytes 
and 
macrophages 

Santa Cruz 
Biotechnology 

1:100 IHC-
P 

1:500 WB 

Abcam, (Cambridge; UK), ENZO Life Sciences (Switzerland). Dako,(Ely, UK), Life technologies 
(Paisley, UK). Sigma-Aldrach (Poole, UK), BD Biosciences (Oxford, UK). PAb; polyclonal 
antibody, MAb; monoclonal antibody, WB; western blot, IHC-P; immunohistochemistry, IF; 
immunofluorescence, ICC; immunocytochemistry.  
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Appendix (III) Solutions.  

Section (1) Media preparation and their supplements: 
Materials Concentration Source 

CGM   

L-Glutamine 2mM Gibco 

Penicillin 

Streptomycin 

100U/ml 

100µl/ml 

Gibco 

ECGF 10µg/ml Tebu-bio 

Heparin 90µg/ml Sigma 

FBS 

NBCS 

10% 

10% 

Gibco 

Gibco 

M199 (endotoxin 
tested) 

1% Gibco 

MV2 Media   

FCS 0.02µl/µl PromoCell 

ECGF 0.004µl/µl PromoCell 

Epidermal growth factor 
(recombinant human) 

0.1ng/ml PromoCell 

Heparin 90µg/ml PromoCell 

Basic fibroblast growth 
factor (recombinant 
human)  

1ng/ml PromoCell  

Hydrocortisone 1µg/ml PromoCell 

MEM Media   

EMEM 500mL Gibco 

Penicillin 

Streptomycin 

100U/ml 

100µl/ml 

Gibco 
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Abbreviations: CGM; Complete growth media, ECGF; Endothelial cell growth factor, 
FBS; Fetal bovine serum, NBCS; New born calf serum, FCS; Fetal calf serum.   

  

Amphotercin B 10µg/ml Tebu-bio 

HEPES 10mLl Sigma 

Sodium Bicarb 7.5% Sigma 

DMEM Media   

DMEM 500mL Gibco 

Penicillin 100U/ml Gibco 

Streptomycin 100µg/ml Gibco 

FBS (heat inactivated) 10% (v/v) Gibco 

L-Glutamine  2mM Gibco 
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Section (2) Reagent Stocks: 
10% Formal Buffered Saline, pH 6.8 

Reagents:     

• Sodium phosphate, monobasic                   4.0gm              (Sigma-S5011, 
119.98g/mol). 

• Sodium phosphate, dibasic                              7.1gm                (BDH 301584L, 
141.96g/mol). 

• Formaldehyde                                                    37%           (VWR International 
Ltd, 100mL) 

• Distilled water                                                   900mL 

4% w/v Paraformaldehyde solution, pH.7.0 

Reagents: 

• Paraformaldehyde (PFA)                                 4.0gm                (BDH 294474L) 
• PBS                                                                  100mL 
• NaOH (20 drops to dissolve the PFA). 

Oil red O solution. 

Reagents: 

• Oil red O                                                             0.5gm                      (Sigma) 
• 1% Isopropanol (v/v)                                          100mL                      (VWR) 
• Distilled water                                                     400mL 

NE solution. 

Reagents: 

• NE was prepared as a 1.2mg/ml stock solution in PBS containing 50% 

glycerol (v/v) and 20mM sodium acetate (w/v) to prevent spontaneous 

degradation of the enzyme (Kuwahara et al., 2006).  PBS control containing 

50% glycerol and 20mM Na acetate was used alongside of the stimulation.
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Neutrophil Elastase promotes Interleukin-1β secretion from 
Human Coronary Endothelium 
Mabruka Alfaidi, Heather Wilson, Marc Daigneault, Amanda Burnett, Victoria Ridger, 
Janet Chamberlain, Sheila Francis1  

Department of Cardiovascular Science, Medical School, University of Sheffield, UK 
Running title: Neutrophil elastase promotes endothelial IL-1 secretion.  
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Department of Cardiovascular Science, Medical School, University of Sheffield, 
Beech Hill Road, Sheffield, UK S10 2RX. Phone: +44 114 226 1432; Fax: +44 114 
271 1862; Email: s.francis@sheffield.ac.uk  

Keywords: Interleukin-1β, neutrophil elastase, endothelium, extracellular vesicles, 
inflammation, atherosclerosis.  

Background: The mechanism of IL-1 release from endothelial cells is not fully 
known. Results: Neutrophil elastase causes secretion of bioactive IL-1 from 
endothelial cells via microvesicles.  

Conclusion: A mechanistic link between IL-1 secretion from endothelial cells and 
neutrophil elastase in atherosclerotic plaques is revealed. Significance: Neutrophil 
elastase could be a potential target for preventing atherosclerosis.  

 

ABSTRACT  
 
The endothelium is critically involved in the pathogenesis of atherosclerosis 
by producing proinflammatory mediators, including interleukin-1 beta (IL-1β). 
Coronary arteries from patients with ischaemic heart disease express large 
amounts of IL-1β in endothelium. However, the mechanism by which 
endothelial cells (ECs) release IL-1β remains to be elucidated. We investigated 
neutrophil elastase (NE), a potent serine protease detected in vulnerable areas 
of human carotid plaques, as a potential ‘trigger’ for IL- 1β processing and 
release. This study tested the hypothesis that NE potentiates the processing 
and release of IL-1β from human coronary endothelium. We found that NE 
cleaves the pro-isoform of IL-1β in ECs and causes significant secretion of 
bioactive IL-1β via extracellular vesicles. This release was significantly 
attenuated by inhibition of neutrophil elastase, but not caspase-1. Transient 
increases in intracellular Ca2+ levels were observed prior to secretion. Inside 
ECs, and after NE treatment only, IL-1β was detected within LAMP-1 positive 
multivesicular bodies (MVBs). The released vesicles contained bioactive IL-1β. 
In vivo, in experimental atherosclerosis, NE was detected in mature 
atherosclerotic plaques, predominantly in the endothelium, alongside IL-1β. 
This study reveals a novel mechanistic link between NE expression in 
atherosclerotic plaques and concomitant pro-inflammatory bioactive IL-1β 
secretion from ECs; this could reveal additional potential anti-IL-1β therapeutic 
targets and provide further insight into the inflammatory process by which 
vascular disease develops.  
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Atherosclerosis is a complex chronic inflammatory disease that involves 
inflammatory cell recruitment and release of pro-inflammatory cytokines (1). 
Interleukin (IL)-1β has been implicated in several aspects of vascular inflammation 
and neointima formation (2). Endothelial cell dysfunction, promoted by IL-1, also 
plays a central role in atherogenesis, by expression of adhesion molecules and 
cytokine secretion (3), facilitating leukocyte recruitment and plaque development. 
The culmination of two decades of pre clinical experimental studies in the IL-1 field 
has led to the ongoing phase 3 clinical trial Cankinumab Anti-inflammatory 
Thrombosis Outcomes Study (CANTOS) which will test whether blocking IL-1β only 
will reduce incidence of thrombotic events in patients after myocardial infarction that 
remain at high risk due to ongoing inflammation (4).  
 
It has generally been assumed that IL-1β is produced predominantly by immune 
derived cells (5). However, we showed in ischemic heart disease (IHD) patients that 
atherosclerotic coronary arteries synthesise and express significant IL-1β within the 
endothelium (6) compared to controls. Experimental studies have also indicated that 
cultured endothelial cells (ECs) synthesize IL-1β in response to different cytokine 
stimulations, but that the released IL-1β is low and relatively inefficient (7). It is 
crucial therefore to understand the mechanism(s) of release of IL-1β from ECs 
especially since IL-1β acts at a distance rather than just locally in the vessel wall.  
IL-1β production is a two-step controlled process, requiring an ‘initial’ stimulus for 
transcription/translation of proIL-1β (31kDa) which, in turn, is cleaved by an 
inflammasome- activated caspase-1 (8) (‘a second hit’) into a biologically active 
isoform (17KDa), before secretion. The cleavage of proIL-1β is a crucial step and 
studies in monocytes show that caspase-1 (a cysteine protease) is a cardinal 
enzyme in this process (9). There is a spectrum of proposed cellular mechanisms 
responsible for IL-1 secretion in monocytic cells – including rescue from autophagy 
and subsequent release, release via microvesicles or multivesicular bodies and 
terminal release (via pores), dependent on cell type and stimulus intensity (10).  
 
In vivo studies have postulated that IL-1β can also be released in the absence of 
caspase-1 (11) suggesting an alternative, and yet unknown, mechanism by which 
‘leaderless’ IL-1β is secreted. There are other potential enzymes that cleave proIL-
1β into its mature form, including the serine proteases (neutrophil elastase, 
cathepsin G and proteinase 3, (12,13). It is known that in cell- free systems, these 
serine proteases cleave purified proIL-1β into a biologically active IL-1β in vitro at 
distinct sites to caspase-1 with production of 18kDa and 20kDa isoforms of IL-1β. 
However, whether, and to what extent, these proteases could contribute to IL-1β 
release in cells such as ECs is relatively unknown.  
Neutrophil elastase (NE) is a potent serine protease that has wide substrate 
specificity (14, 15). Experimental studies have potentially focused on the destructive 
nature of NE, but interesting recent data show that NE can provoke a variety of pro-
inflammatory responses such as IL-8 release from bronchial epithelium and TGF-β 
production in bronchial smooth muscle cells (14). Moreover, deletion of NE in mice 
leads to reduction of serum inflammatory biomarkers such as TNF-α, MCP-1, and IL-
1 (16). One study has also demonstrated NE in macrophage rich human 
atherosclerotic plaque shoulders (17) and it also appears critical in caspase-1 
independent IL-1β generation in NE- induced lung (18) and renal injury (19). In this 
study, we sought to determine whether NE promotes biologically active IL-1β 
secretion from vascular endothelium. We show that NE stimulation leads to pro-IL-1β 
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cleavage and increases IL-1β release from coronary artery ECs via a caspase-1 
independent, vesicular-release mediated process. Furthermore, we demonstrate that 
IL-1β is colocalized with NE predominantly in the endothelium in experimental 
atherosclerosis. This very first demonstration and explanation of active IL-1β release 
from endothelium potentially provides novel additional strategies for inhibition of IL-
1β activity in inflammatory cardiovascular disease.  
 
EXPERIMENTAL PROCEDURES  
Human coronary artery endothelial (HCAECs) were purchased from PromoCell 
(Heidelberg, supplemented cells Germany) and cultured in media according to the 
manufacturer’s recommendations. The cells, at passage 2-5, were seeded into 6 well 
plates (2x104 cells/well) and grown at 37oC/ 5% CO2 (v/v) until 70% confluent. The 
first step of stimulation was to up-regulate proIL-1β production by adding cytokines 
(TNF-α/IL-1α; 10ng/ml each) for 48h as previously described (7). Cells were then 
washed to remove all traces of stimulating cytokines before the media was replaced 
with serum free media containing NE (1µg/ml; equating to 60IU). To ensure the 
stimulating cytokines were completely removed, the final cell wash was tested for 
presence of IL-1 via ELISA. No cytokines were detected in these washes (data not 
shown). In some experiments, cells were pre-incubated with NEIII (500µM) (20), 
caspase-1 inhibitor I (YVAD; 50µM) (21) (8); or BAF1 (50nM) (22) for at least 30 
minutes before the addition of NE. At the end of incubations, supernatants were 
collected and the cells were lysed in ice-cold 1% (v/v) Triton-X100 lysis buffer. Both 
supernatant and cell lysates were stored at -80oC until analysis was conducted.  
 
Determination of cell viability: Cell viability was evaluated by Trypan blue dye 
exclusion and by measurement of lactate dehydrogenase (LDH) levels in conditioned 
media. LDH detected in cell lysates was used as a positive control for total LDH. 
Levels of LDH were analysed using CytoTox 96 Non-Radioactive cytotoxicity kit 
(Promega, USA) according to the manufacturer’s instructions.  
 
NE activity: NE activity was measured spectrophotometrically using a highly specific 
synthetic substrate (Elastase Substrate I, MeOSuc- Ala-Pro-Val-pNA; 100µM) as 
described in detail (14, 23). Briefly, samples (supernatant and lysate) were added to 
assay buffer (0.45 Tris-Base and 2M NaCl; pH. 8.0) containing Elastase Substrate I 
for 6h. The rate of the substrate cleavage was measured using a plate reader 
(Thermo Scientific) at 410nm.  
 
ELISA for IL-1β: The concentrations of IL-1β (pg/ml) in the supernatants and lysates 
were quantified by ELISA Quantikine kits (R&D systems) according to 
manufacturer’s recommendations.  
 
Apoptosis: Apoptosis, detected via caspase-3/7 activity, was analysed by Caspase- 
Glo® 3/7 assay (Promega) according to manufacturer’s recommendations.  
Western blot analysis for IL-1β processing and release: Samples (lysates and 
concentrated supernatants using 10k Amicon filter devices (ThermoScientific)) were 
subjected to Western blotting.  
 
Microvesicle isolation: MV isolation was conducted as described (24). Freshly 
prepared MVs were used for analysis, to avoid false- positive effects caused by 
leakage of contents from MVs damaged by freeze-thawing.  
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Flow cytometry measurement of extracellular vesicles (ECV): A pellet of ECV was 
resuspended in annexinV-binding buffer and labelled with annexin V PE-Cy7 
fluorescence according to the manufacturer’s instructions (eBioscience, UK). Events 
were acquired using LSR II flow cytometer (BD Biosciences) and annexin-V positive 
ECV were enumerated using Accu Count Beads (SPHERO, 0.2-0.9µm) and 
analysed using FlowJo software (TreeStar).  
 
Measurements of Intracellular Calcium concentration: HCAECs in 96 well plates at a 
seeding density of 5x103 were treated with cytokines or left untreated for 48h. Fura-4 
was then added to the cells according to manufacturer’s instructions (Invitrogen). 
After washing off the dye, the cells were incubated with or without NE and changes 
in cytosolic Ca2+ were recorded using a plate reader (Thermo Scientific) according to 
manufacturer’s recommendations. EGTA (6mM) and Ionophore A3784 (10µM) were 
used as controls as previously described (25).  
 
Direct effects of NE on rIL-1β /ProIL-1β:  
NE is known to undergo spontaneous autolysis (26) and has a proteolytic activity 
against many cytokines such as TNF-α (27). For this reason, we tested the effect of 
NE with the studied concentration on IL-1β/proIL-1β itself. IL-1β standard (R&D) at a 
concentration of 125pg/ml and proIL-1β standard (R&D) at a concentration of 
10000pg/ml were separately mixed with NE (1µg/ml) and kept in the incubator for 30 
min, 2h and 6h. The samples were stored at -80oC and tested by ELISA and western 
blot.  
 
Detection of extracellular vesicular shedding: HCAECs (2x104) were plated in 
LabTek (Fisher) 8-well chamber slides and subjected to the above-mentioned 
stimulation conditions. AnnexinV-Alexa Fluor 488 (Invitrogen) was then added to the 
cells at 5µl/well. MV shedding was visualised using image acquisition software 
(Inverted widefield fluorescence microscope Leica AF6000 Time Lapse) after the 
addition of NE in a 5% CO2/ 37oC (v/v) heated chamber. The images were captured 
after 15, 30min, 2h and 6h and analysed using Image J software (NIH). MVs (0.1-
1µm) were quantified in blinded samples in a random field of cells.  
 
Immunofluorescence: Cells were fixed with 4% w/v paraformaldehyde and 
permeabilized in 0.3% v/v Triton-X 100. Non-specific binding was blocked for 30min 
with 5% v/v goat or rabbit serum in 1% w/v BSA prior to sequential incubation of the 
cells with primary antibodies: anti-goat IL-1β and anti-rabbit LAMP-1 (1:100 
dilutions). Alexa fluor 647 and 488 conjugated secondary antibodies were used in 
1% w/v BSA (1:200 dilution). The coverslips were washed with PBS and mounted 
onto glass slides using media containing DAPI. The labelling of NE was conducted 
as previously described (28) using a Microscale Protein Labelling kit (Molecular 
Probes) according to manufacturer’s instructions. 50µg NE was used for the 
reaction. Final concentration of Alexa647-NE was 0.1 mg/ml in a volume of 100µl.  
 
Determination of IL-1β biological activity:  
The bioactivity of the secreted IL-1β by HCAECs following NE stimulation was 
assessed using an IL-8 luciferase reporter assay, sensitive to picomolar 
concentrations of IL-1, as previously described (9); (29); (30). Briefly, HeLa cells 
(5x103) were grown to 70% confluence in 96 well plates and transfected with a total 
of 100ng DNA/well; including 60ng pIL-8-luc (reporter) and 40ng pRL-TK (internal 
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control). After 24h, transfection efficiency was assessed and cells were then 
stimulated for 6h with 0.1nM of IL-1β as a control or with harvested supernatants 
from HCAEC stimulated with NE. IL-1 beta neutralising antibody (1ug/ml, MAB201, 
R&D Systems) was used in some wells, to prove specificity. Cells were then lysed 
with passive lysis buffer (Promega) and transferred to white well plates to assay for 
luminescence intensity using LARII and Stop and Glo reagents (Promega). 
Luciferase activity was calculated by normalising to the Renilla luminescence 
measured in each well according to manufacturer’s recommendations (Promega).  
 
Conventional and Immunogold Labelling Electron Microscopy: EC pellets (NE or 
untreated controls) were processed as previously described (31). Thin sections were 
immunogold labelled with primary antibodies: anti-goat IL-1β and anti- rabbit LAMP-1 
(1:50 dilutions each) for 2h at room temperature. After washing the grids, the 
sections were incubated with immunogold conjugated secondary antibodies (20nm& 
10nm gold particles, Agar Scientific, UK) for 2h. Control experiments were performed 
by using PBS instead of the primary antibodies and all sections were then post-
stained with uranyl acetate and lead citrate.  
 
Mice and diets: ApoE-/- male mice were bred in-house at the University of Sheffield. 
Food and water were given ad libitum under a controlled environment (Temp. 22-
25oC, humidity 55±5 and 12h light cycle). At 8-10 weeks of age, the mice were 
housed individually and fed a high fat, Western-type diet (HFD) containing 21% fat, 
0.15% cholesterol and 0.296% sodium over a 12- week duration. Special Diet 
Services, Witham, UK, supplied the diets. This HFD was used specifically to study 
the diet effects on atherosclerosis as described (32). All animal care and procedures 
were closely conducted under ASPA 1986, UK and ethically approved by The 
University of Sheffield Ethics Committee. At the end of the study, the mice were 
euthanized and proximal aortae were harvested.  
 
Immunohistochemistry: Sections were used for immunohistochemistry as previously 
described (33).  
 
Statistical analyses: Results are shown as mean ± standard error of the mean 
(SEM). Analyses were performed using Graphpad Prism version 6.04 (Graphpad). 
For multiple comparison tests, one way analysis of variance (ANOVA) followed by 
Tukey’s test was performed. Statistical significance was achieved when the p value 
was less than 0.05.  
 
RESULTS  
NE promotes IL-1 release in HCAEC: To assess the contribution of NE to IL-1β 
secretion, cytokine-primed ECs were treated with varying concentrations of NE in 
serum free media for different time points. As shown in Figure 1A, after 2h of 
stimulation, NE at 1µg/ml caused significant (10x) release of IL-1β from cytokine-
primed cells (198±24.85pg/ml, p<0.0001) compared to primed cells without NE 
(12.1±4.81pg/ml). This release significantly decreased with higher concentrations of 
NE (2µg/ml) due to a decrease in cell viability (50±10%). Subsequent experiments, 
therefore, used NE at 1µg/ml to give the highest amount of IL-1β release without a 
significant increase in cell death (Figure 1B).  
After 6h of stimulation, NE caused a significant increase in IL-1β secretion (Figure 
1C) compared to cytokine stimulation alone (272.8±50pg/ml vs. 55.5±17.3pg/ml, 
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p<0.001). No IL-1β was detected in the media of unstimulated cells (Figure 1C).  
To specifically confirm that the release was due to NE, the cells were pre-treated 
with the specific neutrophil elastase inhibitor (NEIII), resulting in a significant 
attenuation of IL-1β secretion. To determine the involvement of caspase-1, cytokine-
primed ECs were pre-treated with YVAD-CHO and then with NE. No significant 
changes in the secreted levels of IL-1β were seen compared to NE alone (Figure 
1C). Thus, NE-mediated IL-1β release in endothelial cells was independent of 
caspase-1.  
In unstimulated EC lysates, we did not detect any IL-1β. However, there was a 
significant IL-1β production inside cells following treatment with proinflammatory 
cytokines (Figure 1D). The IL-1β levels in the lysates were not significantly different 
amongst the groups (Figure. 1D). In addition, NE treatment alone did not provoke IL- 
1β production in the cells (Figure 1D), suggesting no direct effects of NE on IL-1β 
generation inside the cells. There was also no effect seen on IL-1β production in cell 
lysates by NE III or caspase-1 inhibitors (Figure 1D).  
To confirm that NE was active over the duration of the study, we measured NE 
activity using quantitative cleavage of a chromogenic specific substrate and 
interestingly in the lysates harvested from NE-treated cells this was significantly 
increased (Figure 1E).  
Cell lysis as a mechanism of IL-1β secretion was ruled out by the absence of 
cytosolic enzyme lactate dehydrogenase (LDH) levels in cell supernatants. There 
were no significant changes in LDH levels following NE stimulation at 2 and 6h 
compared to control (Figure 1F). Since IL-1 release could be a feature of cell 
apoptosis, we investigated caspase-3/7 activation in ECs under our stimulation 
conditions and showed no significant increase in NE treated cells compared to 
unstimulated ECs, cytokine stimulated cells, or cells in which NE effects are 
attenuated using NEIII (Figure 1G). In addition, we used propidium iodide (PI) in 
conjunction with annexin V (PI/AV) to determine if EC were viable, apoptotic, or 
necrotic at any timepoint used in this study. We did not detect any significant 
increase in PI/AV staining in NE treated cells compared to untreated controls (data 
not shown).  
In vitro, some proteases, including NE, have been shown to process proIL-1β into 
mature IL-1β (13). Thus, as the ELISA does not distinguish between pro- and 
mature- IL-â, we determined which IL-1β isoforms were present, and their relative 
respective levels, in cell lysates by immunoblotting. Unsurprisingly, unstimulated 
HCAEC lysates did not contain any detectable IL- 1β but full-length proIL-1β (31kDa) 
was seen in cytokine-primed cell lysates (Figure 2Ai). However, after the addition of 
NE, there was cleavage of the 31kDa pro-form associated with a decrease in the 
31kDa proIL-1β in cell lysates (Figure 2Ai) that was NE specific as evidenced by 
inhibition by NEIII but not YVAD. On addition of NE, 20kD and 17kD IL-1â forms 
were detected (Figure 2Ai). Again, this was NE specific (Figure 2B). Interestingly, NE 
induced maturation of IL- 1β that was not associated with procaspase-1 cleavage or 
alterations in NLRP-3 levels in lysates as detected by Western blot (Figure 2Aii, iii). 
Nor did we detect p20 (the product of active caspase-1) in cell media, indicating that 
cleavage and secretion had not occurred. NE is known for its proteolytic properties, 
therefore, to confirm that NE cleaved the pro-form, but not the mature form of IL-1, 
recombinant proIL-1β and recombinant mature IL-1β were incubated with NE in a 
cell- free system. NE cleaved the pro-form of IL-1 in vitro (Figure 2C) but not the 
mature form (Figure 2D, 2E), supporting the hypothesis that NE specifically cleaves 
the pro-form of IL-1β only. Taken together, these data clearly suggest that NE 



	
  

	
   238 

increases cytokine-induced IL-1β secretion in ECs via an inflammasome/caspase-1 
independent pathway. 
 
NE induced secretion of extracellular vesicles containing bioactive IL-1 from 
HCAECs: In immune derived cells, protected release of IL-1β (microvesicles, 
multivesicular bodies (MVB), exosomes) has been proposed as a mechanism for IL-
1β trafficking to the extracellular environment (9,34,35). Therefore, we sought to 
determine whether there was extra-vesicular shedding occurring in response to NE 
and whether this is associated with IL-1β processing in HCAECs.  
Since phosphatidylserine (PS) exposure has been associated with MV shedding in 
monocytes (9) and EC (24), we used annexin V binding (annexin V-Alexa Fluor 488) 
as a tool to visualise events in live HCAECs. Small particles (0.1-1µm in diameter) 
were observed separating from the cells in real time using time lapse imaging over 
duration of 6h (see video, supplemental material). The first MV generation was at 10 
min, with membrane alterations at 30 minutes after NE stimulation with large 
numbers of MVs observed at later time points (Figure 3). The number of MVs was 
quantified using flow cytometry and gating for annexin V (Figure 4A). Interestingly, 
there was a significant increase in the number of MVs isolated from ECs following 
NE treatment (two to threefold) compared to controls. Importantly, NE inhibition 
effectively attenuated MV formation and shedding induced by NE and caspase-1 
inhibition had no significant effect (Figure 4B).  
We next investigated which IL-1β isoforms were inside MVs using immunoblotting. 
MVs from unstimulated cells contained no IL-1β, and in MVs from cytokine-primed 
cells (6h), prominent proIL-1β (31kDa) forms were detected (Figure 4C). In MVs 
isolated from the supernatants of NE treated cells, cleavage of the 31kDa IL-1β 
isoform to approximately 20kDa- 19kDa was observed from as early as 30 minutes 
(Figure 4D) with further cleavage to the 18 and 15kDa isoforms after 6h (Figure 4C). 
Treatment of cells with NEIII abolished any cleavage of proIL- 1β in these MVs, 
confirming that these bands are the result of direct NE activity. Cleavage of proIL- 1β 
continued even in the presence of YVAD with more prominent isoforms detected 
(Figure 4C). MVs were assessed for caspase-1 and NRLP3 content and, 
interestingly, active caspase-1 p20 and NLRP3 were not detected in MVs isolated 
from cells treated with NE or NE and YVAD together (data not shown), indicating that 
intra- vesicle cleavage of proIL-1β is independent of caspase-1 activation. These 
findings suggest that either NE cleaves the released proIL-1β inside MVs or that NE 
treated cells continually generate more MVs containing IL-1β as a route of secretion.  
We next asked whether the processed IL- 1β released into cell supernatants in 
vesicles as a result of NE activation, was bioactive. We collected total supernatants 
(containing MVs) from NE-treated or untreated cells for 6h and applied them to HeLa 
cells expressing an IL-1RI responsive reporter, and measured IL-8 activity. We 
compared reporter assay output (IL-8) to media obtained from unstimulated or 
cytokine- primed EC +/- NE with a positive control (0.1nM recombinant IL-1β) or with 
an IL-1β neutralising antibody. As shown in figure 4E, supernatants isolated from NE 
activated ECs significantly increased IL-8 activity compared to unstimulated and 
cytokine-primed cells and this was completely abrogated by the neutralising 
antibody. In order to confirm that the bioactivity was due to released IL- 1β and not a 
result of direct NE effects on HeLa cells, NE (1µg/ml) was added to HeLa cells (as a 
spike) and this showed no significant IL-8 activation. These data indicate that the IL-
1β in the MVs is bioactive.  
MVs containing IL-1β were confirmed using immunogold TEM and we detected 
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0.2µm diameter MVs containing immunogold labelled IL-1β only in NE treated cells 
(Figure 4F).  
 
Mechanisms of IL-1β release in endothelial HCAEC: To study early MV shedding by 
NE, intracellular calcium changes were assessed. MV release has been linked with 
transient changes in intracellular calcium (Ca2+)i in specialised secretory cells (36) 
and IL-1β secretion in macrophages (34). Using a Ca2+ sensitive fluorometric dye, 
we assessed the role of (Ca2+)i in MV formation and release in response to NE and 
performed experiments in the presence or absence of exogenous Ca2+. In this 
experiment, (Ca2+)i is released from intracellular stores during an initial 
stimulation/treatment in Ca2+free media and application of CaCl2 during the second 
phase of the protocol, allows Ca2+ influx inside ECs. In Ca2+ free media, there was a 
small non-significant increase in cytosolic Ca2+ levels in NE treated cells compared to 
untreated cells after NE stimulation (Figure 5A). However, (Ca2+)i was significantly 
increased in NE stimulated cells after the addition of CaCl2 compared with 
unstimulated and cytokine-primed cells (Figure 5B). This finding suggests that NE 
treatment of EC increases free (Ca2+)i by promoting Ca2+ influx into EC and that this 
calcium influx is associated with MV release.  
We detected small MV (approx. 200nm) in response to NE (assessed by flow and 
electron microscopy), characteristic of exosomes secreted from multivesicular bodies 
(MVBs) and this led us to study the compartmentalisation of IL-1β in EC (31). 
HCAECs +/- NE were stained using an immunofluorescence technique for LAMP-1 
(a late endolysosomal marker) and IL-1β. Confocal images of cytokine-primed ECs 
stained for IL-1β and co-stained for LAMP-1 suggested a wide distribution of IL-1β 
throughout the cytoplasm and no colocalization with LAMP-1 (Figure 5C). 
Unsurprisingly, no signals were detected for IL-1β in unstimulated ECs (data not 
shown). However, in ECs incubated with NE for increasing times (30min, 1, 2h), IL-
1β was co-localised with LAMP-1 (Figure 5D). Indeed, following a 2h stimulation of 
EC with NE, the majority of IL-1β was detected in MVBs (Figure 5D).  
To confirm that the site of IL-1β processing and secretion was indeed mediated by 
an endolysosomal mechanism, we evaluated the effect of bafilomycin A1 (BAF1), a 
lysosomal V/ATPase inhibitor that has been shown to prevent endolysysomal 
formation (37). Treatment of ECs with BAF1 (50nM) before the addition of NE largely 
decreased IL-1 levels in the supernatants after 6h, and that was associated with a 
reduction in pro-IL-1 cleavage in the lysates (Figure 6A, B). We subsequently 
performed TEM on cytokine- primed HCAECs +/- NE and observed >200nm 
structures in the cytosol with classical morphological features of multivesicular 
bodies (MVB) (38). These were detected in close proximity to the plasma membrane 
in NE- activated ECs but not in unstimulated ECs (Figure 6C, panel i). Interestingly, 
inside the cells, the majority of IL-1 was detected within the MVBs (Figure 6C, panel 
ii).  
NE is detected in ECs and is colocalized with IL- 1β in the endothelium of mature 
atherosclerotic plaques: To follow the fate of NE in activated ECs, we used Alexa-
Fluor 647-labelled NE and performed immunofluorescence staining. After 
permeabilization, we also labelled the internal endolysosomes with LAMP-1. 
Surprisingly, NE was detected inside cells. The enzyme co-localised with LAMP-1 
(Figure 7A).  
 
Finally, we asked whether NE could be detected in atherosclerotic plaques in mice to 
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ascertain if NE could contribute to local IL-1β generation. Only in well-developed 
atheromatous lesions of ApoE-/- mice fed a high fat for 12 weeks was IL-1β was 
detected, predominantly in endothelial cells. Interestingly, in these lesions, NE also 
appeared to be expressed in the luminal endothelium (Figure 7B) and colocalized 
with IL- 1β-positive stained ECs (Figure 7C).  
 
DISCUSSION  
Here we describe for the first time, how coronary artery ECs release IL-1β, which 
has been a ‘holy grail’ of endothelial biology for many years. We report that a 
considerable amount of IL-1β is released from ECs in response to NE via a caspase-
1 independent, vesicular pathway. This is supported by the following lines of 
evidence: 1) Bioactive IL-1β is secreted only in MVs following NE treatment, 2) IL-1β 
secretion is unaffected by YVAD and occurs without caspase-1/NLRP3 activation 
and 3) MVB are prevalent in primed NE-treated ECs and contain IL-1β protein. We 
propose that ‘protected release’ (10) (i.e. contained within membrane-bound 
vesicles) of IL-1β is a prevalent mechanism in HCAECs.  
The endothelium is fundamental in atherosclerotic plaque development, not only 
during early lesion development but also later by controlling plaque instability (39). In 
atherosclerosis, crosstalk between circulating cells such as monocytes and 
neutrophils and the endothelium can cause ECs to liberate soluble agents 
perpetuating the cycle of inflammation. Several lines of evidence suggest that IL-1 is 
an apical cytokine in this process (40) yet its mechanism of release from ECs is 
largely unknown. Furthermore, the biological pattern of the crosstalk is not 
completely defined. We hypothesised that NE induces IL-1β secretion from vascular 
endothelium.  
Since caspase-1 has been identified as the main proteolytic enzyme to play a role in 
proIL-1β cleavage and secretion in monocytes and macrophages (41), we used a 
specific caspase-1 inhibitor (YVAD-CHO) as a potential means of attenuating IL-1β 
release. Our data show that caspase-1 appears to be non-essential in EC in this 
setting for IL-1β cleavage and release by NE. This is at odds with other in vitro 
studies in monocytes (42), but in agreement with more recent data from other cell 
types (43) and in vivo models (44,45). Our findings are also supported by the 
findings of Guma et al. (46), who describe the presence of IL- 1β in the synovial fluid 
of caspase-1-/- mice. Moreover, our data may explain why caspase-1 suppression did 
not show promise in vascular healing or atherosclerosis progression (33).  
It has been previously shown that IL-1 lacks the signal peptide for directing it to the 
classical ER-Golgi secretory pathway (31). Therefore, IL-1β release has been 
proposed to occur by distinct mechanisms, including MV shedding and 
endolysosomal regulation (10). Strikingly, in HCAEC, NE induced MV shedding 
occurred independent of caspase-1 activity contrasting with previous investigations 
on immune cells in terms of their caspase-1 dependency of MVs shedding. We 
suggest that, at least in HCAEC, NE is able to directly cleave the IL-1β precursor, 
which is associated with protected release in membrane-bound vesicles. In MVs, the 
prominent forms of IL-1 released (also present inside cells) were 20kDa, 18kDa and 
15kDa. These isoforms have been detected previously in vitro (13) and although 
proposed as 5-10 fold less bioactive than the 17kDa isoform, they are active enough 
for IL-1 to bind to its receptors and initiate signalling. Our study is the first to show in 
intact cells that NE is capable of cleaving proIL-1β at multiple sites and that these 
products are bioactive.  
A common biogenesis has linked Ca2+ regulated MV shedding and IL-1 secretion 
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with an increase in intracellular calcium levels (34). We are in agreement with this 
and demonstrated that NE transiently increased (Ca2+)i to a maximum after addition 
of exogenous Ca2+ suggesting that NE mobilized (Ca2+)i, mainly by influx of 
extracellular Ca2+. The secretory pathway identified here has been used to describe 
the secretion of other non-classical proteins such as EGF (47). Although a few 
studies have begun to investigate NE-mediated IL-1β secretion in renal disease and 
lung ours is the first in cardiovascular inflammation to propose a direct effect of NE 
on IL-1β release and to link this to a MV release mechanism.  
Recent immunofluorescence staining data in murine macrophages has shown that 
IL-1β does not colocalise with LAMP-1 in macrophages (48). This finding is 
consistent with our data in EC prior to NE treatment (cytokine-primed cells) where IL- 
1β appears to be diffusely distributed within the cytoplasm. Significantly, however, 2h 
after NE treatment, colocalisation increased, strongly suggesting that IL-1β 
compartmentalisation may be acutely induced by NE and pre-destined for maturation 
by regulated transport. In ECs primed with cytokines and treated with NE, we 
observed that MVB with cytosolic IL-1β accumulated within cell invaginations similar 
to (49). This is consistent with work from Rubartelli et al in monocytes (50). Since 
MVBs were not detected in cells that did not produce IL-1β (51), this strongly 
suggests that the MVBs are a part of the secretory pathway of IL-1β.  
The colocalisation of IL-1β and LAMP-1 suggests that NE may trigger a signalling 
pathway that allows the IL-1β processing to occur in secretory endolysosomes 
(MVB). However, the possibility of NE internalisation within ECs, via endocytosis, 
cannot be ruled out, particularly as we detect enhanced NE activity in NE-treated 
ECs lysates compared with untreated and cytokine- primed cells. In agreement with 
others who have shown that NE is internalised by macrophages (52) and tumour 
cells (28) by active transport, we also detected NE inside EC using confocal imaging. 
Therefore, it is possible that after internalisation of NE by ECs, NE enters MVBs 
where it cleaves proIL-1β.  
It is possible that NE is also causing release of IL-1â due to a toxicity effect, with NE 
causing cell damage and leakage of cellular contents. However, at the NE 
concentration used, this is unlikely to be the case as cell viability was not significantly 
affected, nor was apoptosis proven. Indeed, IL-1â has been shown to increase 
caspase 3/7 in cells without inducing apoptosis (53), which is in agreement with our 
data; NE increases IL-1â levels, which, in turn, affects caspase 3/7, but does not 
affect apoptosis. We use recombinant NE throughout this study, raising the question 
of what the natural source of NE would be and whether levels of NE would be 
enough to activate EC. Previous work by our group has shown IL-â is released from 
activated co-cultures of ECs and monocytes, at greater levels than from monocytes 
or ECs alone, and that an unidentified monocyte-derived mediator significantly 
contributed to this response (54). Taken together with the current findings reported 
here, we postulate that NE is the mediator released from monocytes and would be 
the natural source of NE in vivo.  
Given the continued prominence and topicality of IL-1 in the generation and 
progression of atherosclerosis (55) we studied the expression of NE in vivo in a 
recognised atherosclerosis preparation: aortic root plaques taken from ApoE-/-

 
mice 

fed a high fat diet for 12 weeks. Although previous work has detected NE in coronary 
arteries (6) aortic aneurysms (56) and in carotid plaques (17), our study is the very 
first to investigate NE distribution in experimental atherosclerosis. Significantly, NE 
was mainly detected in the endothelium of plaques, and was detected alongside IL-
1β. The antibody used for these studies recognises both proIL-1β and mature forms, 
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and we show a clear cellular colocalization with NE in support of our data that NE 
activates and promotes secretion of IL-1β. This colocalization of NE and IL-1β 
suggests that the IL-1â observed is likely to be active. We propose that circulating 
NE is assimilated into developing plaques from degranulating immune cells during 
their passage through the main vasculature or via vasa vasorum where these exist. 
This suggestion remains to be clarified, and a causal connection between IL-1â and 
NE confirmed, in a future study utilising NE-/- mice.  
In conclusion, we significantly add to and cement the emerging role of NE in IL-1 
induced inflammation. Further, we suggest a novel mechanism for NE-mediated IL-1 
secretion by ECs, namely pro-IL-1 processing in the secretory endolysosomes and 
packaging of mature bioactive IL-1 within MVs for release into the extracellular 
environment, as part of a single continuum mechanism (figure 8), which is similar to 
that previously proposed for other cell types (57). We detect NE and IL-1β in vivo in 
the setting of atherosclerosis within endothelium in atheromatous plaques. The 
pathophysiological relevance of the detection of vesicular IL-1, particularly derived 
from endothelium, gives ECs the potential to exert a regulatory influence upon 
atherogenesis and henceforth to become a possible therapeutic target by modulating 
IL-1 secretion in the local environment. Our findings have wider application for a 
better understanding of the role of other important proteases with prominent non-
proteolytic and possibly signalling roles such as azurocidin, proteinase 3 and 
Cathepsin G and provide other avenues for therapeutic targets to limit the influence 
of interleukin-1.  
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FIGURE LEGENDS  
FIGURE 1: NE enhances IL-1β secretion from HCAECs by a caspase-1 
independent mechanism. A)  
IL-1β is released by HCAECs after 48h stimulation with cytokines (TNF-α/IL-1á; 
10ng/ml) followed by NE activation (0.5µg/ml - 2µg/ml) for 2h, measured by ELISA 
(n=3). B) Cell viability (measured by trypan blue) is not significantly reduced 
following exposure to 1µg/ml NE (n=3). C) HCAECs, incubated for 48h +/- cytokines 
then further incubated for 6h in serum free media +/- NE (1µg/ml), in the presence or 
absence of inhibitors (NEIII; 500µM & YVAD; 50µM), n=5, shows IL-1β release is 
increased by NE independent of caspase-1. D) Levels of IL-1β in cell lysates is not 
increased following NE incubation, n=5. E) Graph showing increased NE activity in 
EC lysates treated with NE for 6h compared to unstimulated cells, n=3. F) LDH 
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levels are unchanged following NE treatment, measured in conditioned media or in 
cell lysates as a total of LDH, n=3. G) Caspase-3/7 activity is unchanged in HCAECs 
following NE treatment. HCAECs in 96 well plates (2x104 cells/well) incubated +/- 
cytokines (TNF-α/IL- 1α; 10ng/ml each) for 48h, were subjected to NE (1µg/ml) in 
serum free media for 6h (n=3). Campthothecin (10µg/ml) was used to induce 
apoptosis as a positive control. All data are mean ± SEM, analysed by one-way 
ANOVA with Tukey’s multiple comparison multiple test, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001.  
FIGURE 2: NE selectively cleaves proIL-1β in primed EC lysates without 
caspase-1/NLRP3 activation. A) Western blot analysis of cell lysates of primed EC 
+/- NE, assessed for IL-1β (i), Caspase- 1 (ii) and NLRP-3 (iii). The blots are 
representative of n=3, with α-tubulin levels as loading control. For IL-1â, recombinant 
IL-1β (rIL-1β; 20µg, 17kDa) was loaded as a positive control and represents the 
commonly detected mature form, whereas proIL-1β (31kDa) indicates the inactive 
pro-form. For Caspase- 1, activated THP-1 cell lysates were used as a positive 
control for the p20 isoform. B) Densitometric analysis of 20kDa IL-1â levels (n=3). C) 
Western blot illustrating the cleavage of recombinant proIL-1β (rProIL-1β; 20µg) by 
NE. rProIL-1â was incubated at 37oC (5% CO2; v/v) alone or in the presence of NE 
(1µg/ml) for 30min, 2h, and 6h. D) Western blot for recombinant mature IL-1β (rIL-
1â; 20µg) in the presence or absence of NE, shows no cleavage (n=3) and E) ELISA 
for recombinant mature IL-1β shows no difference in levels following NE treatment. 
Data are mean ± SEM, analysed by one-way ANOVA and Tukey’s post-test, 
*p<0.05, **p<0.01.  
FIGURE 3: Neutrophil elastase activates microvesicle shedding from 
endothelial cells in a time dependent manner. HCAECs were left untreated or 
treated with cytokines (IL-1α/TNF-α) for 48h and then labelled with annexin-V 
AlexaFluor®488. After the addition of 1µg/ml of NE, cells were visualized in a heated 
chamber (5% CO2 v/v) using a confocal microscope to scan MV release. Images 
captured after 10 minutes, 30 minutes, 2 hours and 6 hours show an early 
generation of MVs after 10min of NE stimulation, but more prominent at later time 
points. Arrowheads indicate fluorescent MVs and arrows represent earliest blebbing 
in EC treated with NE. Scale bars=50µm; the representative images are from three 
independent experiments (n=3), and have been digitally altered to remove 
background fluorescence.  
FIGURE 4: NE induces secretion of extracellular vesicles containing bioactive 
IL-1 from HCAECs A) Flow cytometric characterisation of MV released in response 
to NE. MVs were isolated and stained with annexin V PE-CY7 as described in the 
materials and methods. Analysis of MVs (red) using Megamex beads (blue) shows 
they are within the 0.2-0.9ìm size limits. B) A significant increase in MV stained with 
annexin V is seen in NE treated cells compared to untreated controls. Analysis was 
performed by Flow Jo software, n=3, mean ± SEM, 1-way ANOVA followed by 
Tukey’s post- test, *p<0.05, **p<0.01. C & D) Detection of IL-1â in isolated MVs by 
immunoblotting. Equal amounts of protein (20ìg) were loaded in each lane, with rhIL-
1â (20ìg) used as a positive control (17kDa). Data are representative of n=4. E) 
Luciferase assay for measurement of IL-1â bioactivity in HeLa cells exposed to 
freshly harvested conditioned media (total supernatants from cytokines primed cells 
(TNF-α/IL-1á; 10ng/ml each +/- NE; 1ìg/ml) or rIL-1â (0.1nM) for 6h +/- anti-IL-
1â â (1ìg/ml). Specificity for IL-1â is shown by reduction of IL-8 luciferase detection 
following incubation with IL-1â neutralising antibody. Data are expressed as mean ± 
SEM, n=3, analyzed by one way ANOVA followed by Tukey’s test, ****p<0.0001. F) 
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Immunoelectron microscopic analysis of IL-1β in ECs +/- NE treatment. Anti-IL-1β 
conjugated immunogold (20-nm gold particles, arrows) was used to confirm the 
present of IL-1β in the MVs (0.2µm) released from the plasma membrane of ECs. 
Scale bars=0.2µm.  
FIGURE 5: Mechanisms contributing to IL-1β release in endothelial HCAEC. A 
& B) HCAECs were assayed for changes in the cytosolic-free Ca2+ in response to 
the indicated conditions. A) No significant change in cytosolic Ca2+ levels are seen in 
Ca2+-free media. B) The fluorescent intensity of intracellular calcium changes after 
5min of NE stimulation, in the presence of CaCl2. Data are n=6, mean ± SEM, 
analysed by one-way ANOVA and Tukey’s post-test, *p<0.05, ***p<0.001. C) IL-
1â co- localises with LAMP-1 after NE stimulation. Cells were primed with cytokines 
(TNF- α/IL-1α; 10ng/ml each) followed by incubation +/- NE (1µg/ml) in serum free 
media over 2h, before immunostaing for IL- 1β (red) and LAMP-1 (green), scale 
bars; 10µm. D) Histogram showing a high correlation between IL-1β and LAMP-1 in 
ECs after NE activation.  
FIGURE 6: NE induces IL-1β release by an endolysosomal dependent 
mechanism. A) ELISA measuring IL-1â release in conditioned media of HCAECs 
primed with cytokines (TNF-á/IL-1á; 10ng/ml) ± NE (1ìg/ml) ± BAF1 (50nM) after 6h. 
Experiments are n=3, and data are mean ± SEM, analysed by 1-way ANOVA 
followed by Tukey’s post-test, *p<0.05. B) Western blot analysis of lysates harvested 
from primed HCAECs activated with NE/±BAF1 (50nM) for 6h, 20ìg protein loaded 
per lane with á-tubulin used as a loading control. The blot is representative of three 
independent experiments. C) MVB characterization: i) EM analysis showing a full 
appearance of MVB; multivesicular bodies in NE treated cells in the close proximity 
of plasma membrane. ii) Immunolabelling with anti-IL-1â (20-nm gold particles; 
arrow) shows IL-1â within MVB (arrowhead). Scale bars=50nm  
FIGURE 7: NE is detected in ECs and is colocalized with IL-1β in the 
endothelium of mature atherosclerotic plaques. A) Confocal images showing 
LAMP-1 and NE in primed ECs after NE treatment. HCAECs were incubated +/- 
Alexa Fluor 647-labelled (1ìg/ml) NE for 2h in serum free media before washing in 
PBS and colocalisation performed using an antibody against LAMP-1. Confocal 
images were analysed using Zeiss image and image j software, scale bars=10ìm. B) 
Immunohistochemical detection of NE and IL-1â in the luminal endothelium of mouse 
atherosclerotic plaques. Paraffin embedded aortic sinuses from ApoE-/- mice fed high 
fat diet for 12 weeks were stained with primary antibodies as indicated. Specificity of 
staining is confirmed by no primary negative control. Scale bars=200ìm. C) 
Colocalisation of IL-1-â, NE and vWF in aortic atherosclerosis. NE positivity was 
detected predominantly in the endothelium (top right panel; arrows). IL-1â positive 
endothelium (top left panel) was also detected. The bottom panels show vWF 
stained endothelium and DAPI for the nuclei. Specificity of staining is confirmed by 
no primary negative control. Images are representative of histology data obtained 
from a total of 6 animals. Scale bar = 100ìm.  
FIGURE 8. Schematic of the proposed mechanism of IL-1β secretion from ECs 
by NE. NE is released by circulating cells at the site of atheroma and transported by 
endocytosis inside the diseased endothelium (primed by inflammation) (i). An 
increase in calcium, due to NE effects, leads to remodelling of the cell membrane 
and vesiculation (ii), which in turn facilitates the shedding of MVs containing mature 
IL-1β (iii). ProIL-1β is upregulated in the inflamed endothelium (iv). NE enters MVBs 
and cleaves the proIL-1β contained within (v). MVBs also fuse to the plasma 
membrane and release exosomes containing IL-1 (vi).  
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Video 1. Typical MV shedding after application of NE to ECs was observed.  
Annexin V-AlexaFluor®488 labelling to cell membranes was performed first then NE 
was applied to the cells and monitored in heated chamber (5% CO2 v/v) using an 
Inverted widefield fluorescence microscope Leica AF6000 Time Lapse, as indicated 
in the materials and methods, for 2h. MVs clearly bud off from ECs starting at 10-15 
minutes of NE stimulation and continued for 2h. 2min intervals are shown, 200x 
magnification was used.  
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Figure 1:  
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Figure 2:  
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Figure 3:  
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Figure 4:  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure 8  
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