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Abstract 

The cumulative effect of obesity with a sedentary/low-active lifestyle at mid-life 

places individuals at elevated risk for obesity-associated comorbidities and 

accelerated cognitive decline in later life. There is a paucity of research 

examining the relationship between physical activity (PA) and cognitive 

function in middle-aged obese adults, further confounded by a lack of objective 

measurement of PA. Study 1 (n=63) aimed to examine the relationship 

between objectively measured physical activity with multiple cognitive test 

outcomes in a sample of low-active, overweight/obese, middle-aged adults. 

The findings indicated that IQ and age were the greatest predictors of cognitive 

function, with small contribution from PA and body composition. Increased 

physical activity and/or cardiorespiratory fitness (CRF) translates to improved 

cognitive function in non-obese adults, yet this has largely been unexplored in 

overweight/obese adults. It is not known what aspects of exercise (volume or 

intensity) yield optimal improvements, or the physiological adaptations that are 

required to translate to cognitive change. Study 2 (n=28) aimed to compare 

the impact of 12-weeks high-intensity exercise regimes (interval and 

continuous) on indices of cardiovascular fitness and cognitive function in 

middle-aged, overweight/obese females relative to a no-exercise control 

group. The findings suggest equivalent improvement in CRF between groups, 

and a favourable effect of training following INT for a limited number of 

cognitive outcomes (executive function and spatial memory). Study 3 (n=33) 

aimed to examine the impact of increasing habitual activity through pedometer 

“step-count” targets over 12-weeks on indices of cardiometabolic health and 

cognitive function. Findings indicate that post-intervention step count was 

associated favourably with indices of executive function, verbal and spatial 

memory. Taken together these studies found a limited number of exercise 

associated improvements, predominantly in executive function and spatial 

working memory.  
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Chapter 1 Literature Review 

 

1.1 Obesity and cognitive function 

The physical consequences of obesity have been well documented indicating 

increased risk of mortality and morbidity, including (but not limited too) cardiovascular 

disease (CVD), type 2 diabetes mellitus (T2DM), hypertension, dyslipidemia, 

metabolic syndrome and sleep apnoea (Eckel, Kahn, Robertson, & Rizza, 2006; 

Poirier et al., 2006). In addition to somatic comorbidities, the relationship between 

obesity and cognitive function is an area of investigation that has grown over the past 

two decades. It is known that mid-life obesity is a significant risk factor for Alzheimer’s 

disease and vascular dementia in later life (Rosengren, Skoog, Gustafson, & 

Wilhelmsen, 2005; Whitmer, Gunderson, Barrett-Connor, Quesenberry Jr, & Yaffe, 

2005; Xu et al., 2011) and this risk is reported to be independent of comorbidities 

(Anstey, Cherbuin, Budge, & Young, 2011; Beydoun, Beydoun, & Wang, 2008; 

Whitmer et al., 2008). The increasing prevalence of obesity at mid-life and an ageing 

population contribute significantly to increasing prevalence rates (Loef & Walach, 

2013). The number of people in the United Kingdom in 2015 estimated to be living 

with dementia is 850,000 (Prince et al., 2014). Therefore, it is of great importance to 

examine strategies to preserve or improve cognitive function in a population with 

elevated risk of impairment. It is known that obesity at mid-life is associated with an 

accelerated trajectory of cognitive aging, however, research examining the impact of 

mid-life obesity on mid-life cognitive function is in its infancy.  

 

1.1.1 Defining Obesity  

Obesity is characterized by excessive fat accumulation in adipose tissues, the 

diagnostic criteria for which is when body fat exceeds 35% in women and 25% in men 

according to the WHO. The gold standard for measuring fat mass and fat-free mass 

are two variants of the same technique, underwater weighing and air-displacement 

plethysmography (ADP) (Fields et al., 2002). Both machine-based methods are 

based on the principle of body density, with water displacement and air displacement 

as the criterion underlying the underwater weighing and ADP techniques, 

respectively.  Underwater weighing estimates body fat by measuring the volume of 



2 
 

water displaced by the body and the difference in the weight of the body both in water 

and in normal environment. This estimates body density based on the principle that 

fat floats in water (or other less dense liquids). ADP uses air displacement to estimate 

fat mass and fat free mass. Underwater submersion a key requisite for underwater 

weighing, ADP precludes the inconvenience associated with underwater submersion 

however both techniques require special (and costly) apparatus. Both methods are 

accurate but are largely unfeasible for clinical practice and research, and therefore 

mainly used as a gold standard to which other methods are validated against. Other 

machine-based techniques use computed tomography (CT), MRI and dual energy X-

ray absorptiometry (DEXA) to provide reliable measurements of fat mass. Due to the 

high cost of these methods they are not routinely applied in research settings and 

clinical practice. The most widely applied methods include anthropometric measures 

such as skinfold thickness, waist circumference and WHR or machine based 

measures such as body impedance analysis (BIA) and near infrared reactance. Body 

mass index (BMI) >30kg/m2 is predominantly used as a surrogate marker of obesity, 

and BMI >40kg/m2  signalling morbid obesity (Pasco et al., 2014). BMI is a ratio of 

weight for height and does not take into account body composition, so therefore is 

not accurate at indicating adiposity (Pasco et al., 2014). BMI typically overestimates 

obesity prevalence in those with muscular builds (Romero-Corral et al., 2008) and 

underestimates in those with low lean tissue but excess fat (Romero-Corral et al., 

2008).  

A report published by The Health and Social Care Information Centre (HSCIC) on 3rd 

March 2015 indicated that current UK rates on obesity are 26% men and 24% women. 

Additionally, 41% men and 33% of women are overweight (HSCIC, 2015). Obesity is 

associated with most major cardiovascular (CV) risk factors, such as plasma lipids, 

blood pressure, glucose, inflammation, and places additional stress on the heart by 

unfavourably affecting structure and systolic and diastolic ventricular function (Lung 

& Institute, 2014; Peeters et al., 2003; Worre-Jensen, Jensen, Heitmann, & Sørensen, 

2007). It is a complex condition with multiple causal factors and is associated with 

many chronic diseases such as cardiovascular diseases (CVDs), stroke, 

hypertension, T2 DM (Karandish & Shirani, 2015; Lung & Institute, 2014). 

Furthermore, obesity is also associated with psychosocial issues, such as body 

esteem and self esteem (Witherspoon, Latta, Wang, & Black, 2013). Of particular 

concern is the rise in prevalence of severe, or morbid obesity in adults and children 

(Ells et al., 2015; Lung & Institute, 2014).  
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1.1.1.1 Obesity paradoxes 

The relationship between obesity and health is complicated, and several obesity 

paradoxes have been identified (McAuley & Blair, 2011). “Pre-obesity” is the 

paradox where being overweight is protective in normal populations, despite 

“overweight” implying increased risk for health. This was supported by a meta-

analysis of 97 studies including 2.88 million individuals examined all-cause mortality 

for overweight and obesity relative to normal weight (Flegal, Kit, Orpana, & Graubard, 

2013). Optimal survival occurred in the overweight BMI category (25-30 kg/m2), who 

had a 6% lower mortality rate than normal BMI 25 - 30 kg/m2). Furthermore, although 

this did not reach significance, Class 1 obesity (30 - 35kg/m2) had a 5% lower mortality 

rate than the normal BMI category. This provided empirical evidence that being 

overweight was associated with reduced mortality risk when compared to normal 

weight counterparts in a very large sample. “Fat but fit” refers to the paradox where 

obesity is not a risk factor for mortality in physically fit individuals. It appears that low 

CRF and inactivity are a greater health threat than obesity (McAuley & Blair, 2011). 

In a number of studies, once cardiorespiratory fitness has been taken into account, 

the relationship between obesity and mortality risk is attenuated (Lavie, McAuley, 

Church, Milani, & Blair, 2014; McAuley & Blair, 2011). Available data indicates that 

obese individuals who are fit do not have higher risk for CVD and all-cause-mortality 

when compared to their normal weight and fit counterparts. Another interesting finding 

that potentially underpins this thesis is that “fat but fit” individuals have substantially 

lower mortality risk than normal-weight but unfit individuals (McAuley & Blair, 2011). 

In an earlier study by the same author of 13,155 men with hypertension, McAuley et 

al., (2009) found that obese, hypertensive men who were fit had no increased CVD 

or all-cause mortality risk compared with the group of fit, normal-weight men. 

This indicates that efforts to increase fitness independent of weight loss may be a 

more relevant public health agenda, especially given the poor success rates of weight 

loss maintenance (Jeffrey, Drewnowski, & Epstein et al., 2000). One interesting point 

is that the likelihood of having high fitness is greatly decreased with increasing BMI. 

Evidence for this was found by Duncan (2010) who analysed submaximal exercise 

test data in 4675 adults aged 20–49 years from NHANES (1999–2002). The findings 

indicated that for normal weight, overweight and obese adults, the percentage of 

adults in each category that were high in fitness was 30%, 17% and 9%, respectively. 

“Healthy obesity” describes the fact that a sizeable population of obese adults have 

normal cardiometabolic risk profiles. Healthy obesity is indicated by the absence of 
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six risk factors (hypertension, insulin resistance, high triglycerides, impaired fasting 

glucose/diabetes, low HDL, and high C-reactive protein (McAuley & Blair, 2011). 

There is dispute as to whether metabolically healthy obesity (MHO) is maintainable 

over time (Bell, Kivimaki, & Hamer, 2014). However, it has been posited that CRF 

may influence the prognosis of MHO (Ortega et al., 2012).    

Although several obesity paradoxes are evident, recent evidence indicates these 

typically do not apply to morbid obesity (Class III, BMI > 40 kg/m2) (Lavie et al., 2014). 

Prognosis for morbidly obese patients is adversely affected for CHD and heart failure 

(Das et al., 2011; Nagarajan et al., 2013). This level of severe obesity is a major risk 

factor when considering the development CV diseases and poor prognosis. Efforts to 

treat and prevent morbid obesity are urgently required (Lavie et al., 2014).    

The topic “obesity and cognitive function” fails to acknowledge the complexity of what 

obesity means for different individuals. When disseminating research findings or 

public health messages the term ‘obesity’ is often used as one category, yet it is 

widely known obese individuals are not all the same in terms of amount of excess fat, 

location of excess fat and most importantly of all, impact on health and/or 

psychosocial status. This research described in this section collectively shows that 

relationship between obesity and health is complex. In some individuals obesity does 

translate to poorer health, however this is not the case for all. In both obese and 

normal weight counterparts low cardiorespiratory fitness is predictive of mortality. 

Furthermore, there is increasing evidence to suggest that physically fit obese 

individuals do not have elevated CVD risk or mortality. This may have theoretical 

relevance for the relationship between obesity and cognitive function. 

 

1.1.2 Defining cognitive function  

Cognitive function is a global term that describes the processing, integration, storage 

and retrieval of information (Smith, Hay, Campbell, & Trollor, 2011). Cognitive 

processes may be categorised under distinct domains including attention, executive 

function, spatial and verbal learning and memory, working memory and psychomotor 

performance. These cognitive abilities may be assessed through performance on 

domain specific cognitive function tests. Objective data collected from cognitive 

function tests can be used to assess baseline performance to compare to normative 

data for specific populations. Serial testing may also be utilised to track or monitor 

cognitive change, either indicative of age-related decline, disease progression or 
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alternatively, a response to an intervention. One major issue for serial testing is that 

data for normative change is lacking (Attix et al., 2009). Further complicating the 

assessment of clinical and meaningful change is the influence of sample 

characteristics such as demographic parameters, motivation, and health, as well as 

factors such as practice effects, regression to the mean and measurement error 

(Cysique et al., 2011; Salthouse, 2012). It is known that certain sample 

characteristics, namely health related outcomes, predispose individuals to an 

accelerated rate of cognitive decline. However, no single neurological abnormality 

has been identified that accounts for age-related cognitive decline, meaning 

functional decrements are the product of an interaction between multiple causative 

factors (Ash & Rapp, 2014).  

Cognitive function has been examined with regard to various health outcomes or 

psychosocial influences. However, irrespective of the suggested predictor variable 

under investigation, one issue that is uniformly observed across all areas of research 

is that there are a huge number of cognitive tests that can be administered for each 

cognitive domain. Evidence of this is shown in Table 1.1, from a meta-analysis 

conducted by Smith et al., (2010) of just 29 studies examining cognitive function and 

exercise.  

 

Table 1.1 Classification of cognitive tests by domain from a meta-analysis of 
29 studies taken from Smith et al. (2010). 
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1.1.2.1 Domains of cognitive function 

The term “executive function” is frequently cited as an umbrella term for a wide range 

of cognitive processes that are largely linked to the prefrontal cortex (Miyake & 

Friedman, 2012; Podell et al., 2012). Distinct executive functions have been identified 

and include verbal reasoning, problem-solving, planning and organisation, 

sequencing, the ability to sustain attention, working memory, resistance to 

interference, impulse control, multitasking, cognitive flexibility and utilisation of 

feedback (Anderson, Jacobs, & Anderson, 2011; Elliott, 2003; Toplak, West, & 

Stanovich, 2013). However, the most commonly assessed facets deemed to be 

indicative of executive function are shifting, inhibition and updating (Miyake & 

Friedman, 2012; Podell et al., 2012). Despite the identification of multiple distinct 

executive functions, the assessment of such functions is marred by the “task impurity 

problem” as most measures of executive function require a non-executive component 

to perform the task (Miyake & Friedman, 2012). 

Verbal memory refers to the acquisition, retention and recall of verbal information 

(Tulving & Thomson, 1973). Typically, episodic verbal memory is assessed through 

list-learning over multiple trials, followed by delayed recall approximately 30 minutes 

later (Delis, Kramer, Kaplan, & Ober, 1987; Rey, 1958). This method helps to 

distinguish between measures of acquisition and retention, with acquisition 

corresponding to the total number of words recalled across trials and retention 

corresponding to the number of words recalled in the delayed trial or during a 

recognition task (Genon et al., 2013). Verbal learning is assessed through the 

increase in words recalled across the initial trials. Impairments in the encoding of 

contextual information and consolidation of new verbal material drive deficits in 

episodic memory performance (Silva et al., 2012), a cognitive construct that has been 

identified as highly predictive of future cognitive decline (Blacker et al., 2007) and 

Alzheimer’s Disease (Genon et al., 2013).  

Spatial memory is a process which allows a person to remember locations and also 

the relationships between objects in a space, either in 2D or 3D format, and is 

essential for forming and retrieving memories of events (Suthana, Ekstrom, 

Moshirvaziri, Knowlton, & Bookheimer, 2011). Most neuropsychological studies on 

spatial memory function use object-location memory tasks (Kessels, Nys, Brands, 

van den Berg, & Van Zandvoort, 2006). Such tasks typically involve the presentation 
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of a number of objects in a spatial layout (either on a computer screen or on a board), 

with the task being to remember the locations and demonstrate this by relocating the 

objects to their original position from the presentation phase (Kessels et al., 2006). 

The right hippocampus and bilateral posterior parahippocampal gyrus are cited as the 

structures supporting object location and the processing of spatial scenes (Burgess, 

Maguire, & O'Keefe, 2002; Erickson, Miller, Weinstein, Akl, & Banducci, 2012a; Heo 

et al., 2010). Impairments in spatial memory are often the first symptoms following 

damage to the medial temporal lobes caused by pathologies such as Alzheimer’s 

Disease (Burgess et al., 2002). Superior spatial memory performance in older adults 

was positively correlated with hippocampal blood flow in a study conducted by Heo 

et al. (2010), although it is known that hippocampal blood flow decreases with age. 

1.1.3 Obesity and cognitive function in mid-life 

Two recent systematic research reviews (Fitzpatrick, Gilbert, & Serpell, 2013; 

Prickett, Brennan, & Stolwyk, 2015) have concluded that although there is evidence 

of impaired cognitive function in obese younger adults (aged 18-65 years), there is 

not enough evidence to support the view that these are independent of obesity-related 

comorbidities or other variables (education, mood, CVD risk and age). Therefore, the 

research undertaken in this thesis examined the role of indices of cardiovascular 

health as potential mechanisms mediating the relationship between obesity and 

cognitive deficits. Irrespective of whether the contribution is independent or 

potentiated by comorbidity, impairments are evident in obese samples when 

compared to healthy weight counterparts. All of the research presented in this thesis 

was undertaken in adults below the age of 65 years.  

1.1.3.1 Executive Function 

Concept formation and set-shifting.  

The Wisconsin Card Sorting Test (WCST) was used to examine concept formation 

and set-shifting in four studies.  Three studies found decrements in performance in 

obese samples relative to comparison groups (Fagundo et al., 2012; Lokken, Boeka, 

Yellumahanthi, Wesley, & Clements, 2010). However, none of these studies 

controlled for cardiovascular risk, although they did control for age and education. 

The fourth study did not find any significant decrements in performance in obese but 

matched for cardiovascular factors and depression, in addition to age and education 

(Ariza et al., 2012).  
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Decision making and delay discounting  

Performance on the Delay Discounting Task (delay of gratification) and Iowa 

Gambling task were significantly better in a normal weight group when compared to 

an obese group and an obese group with binge eating disorder (BED) (Davis, Patte, 

Curtis, & Reid, 2010). However, in this study the normal weight group had 

substantially higher education, and the addition of this variable rendered all 

differences non-significant. Two studies showed significantly worse performance on 

the Iowa Gambling task, even after controlling for education (Fagundo et al., 2012; 

Pignatti et al., 2006). No significant differences were found between obese women 

and normal weight women, using a delay discounting task (Nederkoorn, Smulders, 

Havermans, Roefs, & Jansen, 2006) 

Inhibition 

Performance on the Stroop colour-word interference task indicated no difference in 

interference between an obese and a comparison group (Ariza et al., 2012), however 

Fagundo et al. (2012) reported that obese had significantly higher Stroop interference 

compared to healthy controls. The stop signal task also did not detect any difference 

between obese and healthy weight individuals (Nederkoorn et al., 2006).   

1.1.3.2 Working memory 

Working memory has been shown to be similarly impaired in overweight and obese 

young adults (24.9 ± 4.5), relative to healthy weight counterparts (Coppin, Nolan-

Poupart, Jones-Gotman, & Small, 2014). This was observed through a greater 

number of total errors and over-estimation errors on the conditioned cue preference 

test. In these cases, age and education were matched between groups and did not 

account for the findings.  

Although no significant differences in accuracy and reaction time for performance on 

a verbal n-back task were observed between obese, overweight and healthy weight 

groups, the obese demonstrated lower task-related activation in the right parietal 

cortex (Gonzales et al., 2010). Conversely, performance for a one-back visual 

memory task (reaction time and accuracy) was shown to be poorer in obese subjects 

when compared to healthy weight individuals (Stingl et al., 2012). In this case, a 

negative correlation between BMI and neuronal activity was observed in the occipital 

area. This was interpreted by the authors as evidence of greater effort during 

encoding, although as this was correlated with reduced performance these 
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compensatory mechanisms were unsuccessful. When compared to lean individuals, 

structural MRI studies have shown lower gray matter density in the medial frontal 

gyrus of the prefrontal cortex in obese individuals (Pannacciulli et al., 2006). This 

region is involved in inhibition of inappropriate responses and control of goal-directed 

behaviour. Additionally, decreased basal metabolism in the prefrontal cortex was 

associated with increasing BMI and poorer inhibitory control processing (Volkow et 

al., 2009).  

1.1.3.3 Psychomotor performance and speed 

In middle aged adults (32-62 years), information processing speed (as measured by 

WAIS Digit–Symbol Substitution Test (DSST), showed a significant negative 

relationship with BMI (Cournot et al., 2006). This remained significant after adjustment 

for age, sex, educational level, diabetes, systolic blood pressure, and perceived 

health score. However, no differences in processing speed, as measured by a similar 

test, were found between obese and non-obese adults (Ariza et al., 2012).  

1.1.3.4 Complex attention 

Selective attention, on a subtest of the Sternberg test, was observed to be 

significantly poorer in obese individuals (Cournot et al., 2006) when comparing those 

in the highest quartiles of BMI. Additionally, attentional switching measured by 

performance on the Trail Making Test (TMT), was shown to be significantly poorer in 

obese (Fergenbaum et al., 2009) who demonstrated a fourfold increased risk for 

lowered executive function relative to healthy weight individuals. However, no 

significant differences were found in TMT performance between obese and healthy 

weight individuals in three other studies (Ariza et al., 2012; Boeka & Lokken, 2008; 

Gonzales et al., 2010).  

1.1.3.5 Memory 

Verbal memory 

Two studies reported that verbal memory test performance (immediate learning and 

delayed recall) was significantly poorer in obese relative to non-obese individuals 

(Cournot et al., 2006; Gunstad, Paul, Cohen, Tate, & Gordon, 2006). However, Boeka 

and Lokken (2008) reported that verbal memory (California Verbal Learning Test-II) 

was not significantly different to normative data in a group of morbidly obese adults 
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seeking bariatric surgery. Gonzales et al. (2010) also reported no significant 

difference in verbal memory between normal, overweight and obese groups. 

 

1.1.4 Is the relationship between obesity and cognitive 

function explained by CVD risk factors? 

Obesity is associated with many comorbidities known to adversely impact cognitive 

function such as T2DM, hypertension, hypercholesterolaemia, and insulin resistance, 

especially when these are found to co-occur in individuals. (Yaffe et al., 2014). Further 

complicating the issue is that sub-clinical or pre-disease states including metabolic 

disturbances (insulin resistance, raised serum lipids, and cholesterol) or vascular 

function (elevated blood pressure) are cerebrovascular risk factors (Morra, Zade, 

McGlinchey, & Milberg, 2013). Furthermore, evidence from MRI studies indicates that 

asymptomatic cerebrovascular brain injury is common, often starting in midlife due to 

uncontrolled CVD risk factors (DeCarli (2013). Asymptomatic brain infarction, white 

matter hyperintensities and accelerated brain atrophy accumulate undiagnosed 

leading to late-life impairment.  

 

The negative association of obesity with cognitive function appears to be potentiated 

by high blood pressure. Waldstein and Katzel (2006) examined the interactive 

relationship between indices of obesity (waist circumference and BMI), blood 

pressure (systolic and diastolic) and cognitive function. Poorest performance in 

psychomotor skill and response inhibition, as measured by the grooved pegboard and 

Stroop Colour-Word tasks respectively, was observed in those with higher waist 

circumference and high blood pressure. The cumulative effects of obesity and 

hypertension with respect to cognitive deficit were also demonstrated by (Elias, Elias, 

Sullivan, Wolf, & D'agostino, 2003). Poorest performance in logical memory 

(immediate and delayed recall) and visual reproduction was observed in those with 

both obesity and hypertension, compared to those with just one risk factor (either 

obesity or hypertension).  

It is also apparent that interactions between clusters of risk factors may exert conjoint 

effects upon cerebrovascular health and cognitive function. Cardiovascular risk 

factors such as diabetes, hypertension and high cholesterol levels, all predispose an 

individual to cognitive decline through distinct pathways and also by potentiating each 

other (Imtiaz, Tolppanen, Kivipelto, & Soininen, 2014). The interaction between T2DM 
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and a subclinical marker of cardiovascular disease, coronary artery calcified plaque 

(CAC), was reported by Hugenschmidt et al. (2013). Initially T2DM status was 

associated with poorer performance on DSST, RAVLT, and phonemic fluency, 

however inclusion of CAC attenuated this relationship and was an important predictor 

of cognitive performance. This highlights the contribution of subclinical cardiovascular 

disease to cognitive dysfunction in diabetes, as opposed to diabetes status alone. 

Given that risk of cognitive decline is highest in individuals managing multiple 

comorbid conditions, there is a call for the early treatment of hypertension and 

cardiovascular risk before an individual presents with symptoms. As many 

cardiovascular risk factors are modifiable, this highlights the opportunity for 

intervention before comorbidities become clinically apparent (DeCarli, 2013; 

Hugenschmidt et al., 2013). It has been suggested that it may be more appropriate to 

focus on interventions that target overall risk, as opposed to reducing individual risk 

factors (Dregan, Stewart, & Gulliford, 2012). Interventions which drive mechanistic 

changes upon multiple aspects of cardiovascular health would therefore be most 

effective.   

 

It is difficult to quantify the contribution of the individual cardiovascular risk factors 

associated with cognitive function as there may be interaction between risk factors, 

and this also may be modulated by age (Van Den Berg, Kloppenborg, Kessels, 

Kappelle, & Biessels, 2009). However, it seems that multiple risk factors at mid-life 

increase the risk of cognitive decline and dementia in later life (Dregan et al., 2012; 

Reijmer et al., 2012; Xu et al., 2011). T2DM and hypertension are more robustly 

associated with decrements in cognitive function although obesity and dyslipidemia 

are also associated with mild to moderate decrements (Van Den Berg et al., 2009). 

Interestingly, in a sample of middle-aged women (n=1,448) followed over 34 years it 

was found that obesity and low leisure time physical activity (LTPA) were only risk 

factors for dementia when combined with each other (Mehlig et al., 2014).  This is 

despite both being identified as strong risk factors for T2DM in combination and 

individually.  Conversely, optimal cardiovascular health, as measured in accordance 

with the American Heart Association, was examined alongside cognitive function from 

young adulthood (18 – 30 years) to midlife (Reis et al., 2013). Overall better 

cardiovascular health, comprising of seven metrics including avoidance of overweight 

or obesity, a healthy diet, non-smoking, physical activity, total cholesterol, blood 

pressure, and fasting glucose within healthy levels, was positively associated with 

improved DSST performance, reduction in Stroop interference and increased recall 

of RAVLT in midlife at a 25-year follow-up.  
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1.1.5 Interim summary 

It is apparent from the extant literature that there is not adequate control for CVD risk 

factors when examining the relationship between obesity and cognitive function. This 

may in part explain the inconsistent findings. There is currently not enough valid 

evidence to support an independent contribution of adiposity to cognitive function 

outcomes. It is known, however, that low CRF is unfavourably associated with 

multiple CV risk factors irrespective of body size. There is evidence to suggest that 

improving CRF in obese individuals may off-set the risk of cognitive dysfunction that 

is associated with mid-life obesity and sedentary behaviour.  
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1.2 Exercise and cognitive function 

A wealth of research provides substantial evidence that exercise and physical activity 

(PA) have a beneficial impact on cognitive function (section 1.2.2). Irrespective of the 

plausible mechanisms suggested to mediate this, the relationship is not well 

understood. Consistency between studies is lacking in the cognitive domains (and 

tests administered) shown to be responsive to exercise or PA. It is also not possible 

to ascertain whether particular aspects of exercise (intensity, duration, mode) confer 

greatest benefit to domain specific cognitive functions and whether this differs 

between samples with compromised health.  

 

1.2.1 Defining exercise and physical activity 

Physical activity can be defined as any voluntary body movement generated by the 

contraction of skeletal muscles resulting in energy expenditure (Caspersen, Powell, 

& Christenson, 1985). Light physical activities are distinct from exercise and typically 

involve sitting, standing and walking or domestic tasks such as light housework 

(Ainsworth et al., 2000). Exercise is a subset of physical activity that is structured, 

planned and repetitive, with the aim of improving or maintaining fitness (Caspersen 

et al., 1985). Understanding these concepts is imperative when attempting to interpret 

the impact of either physical activity or exercise upon measures of cognitive function. 

Effects may well be dependent upon intensity, pattern or volume. 

1.2.1.1 Intensity 

Physical activity can be categorised according to estimated energy expenditure in 

metabolic equivalents (METs), with light PA (LPA; <3METs), moderate PA (MPA; 3-

5.99 METs) and vigorous PA (VPA; >6METs) (Crouter, DellaValle, Haas, Frongillo, & 

Bassett, 2013). Individuals may be classified in terms of physical activity levels by 

daily number of steps, according to guidelines set down by Tudor-Locke and Bassett 

Jr (2004). Step-count determined categories are as follows; sedentary <5000 steps/d, 

low active 5000 to 7499 steps/d, somewhat active 7500 to 9999, active ≥10,000 to 

12,499, and highly active 12,500 steps/d. Due to the use of objective measures of 

PA, such as accelerometers, PA categories also correspond to counts per minute 

(CPM) cut-points: sedentary (<99 CPM), LPA (100-1952 CPM), MPA (1952-5999 

CPM) and VPA (>6000 CPM) (Freedson, Melanson, & Sirard, 1998). To define these, 
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cut-points of counts per minute correspond to categories of PA intensity based on 

calibration studies (Augustin, Mattocks, Cooper, Ness, & Faraway, 2012). 

Intensity domains are used to categorise exercise based on the physiological 

response and metabolic stress induced, and these are moderate, heavy, very heavy 

and severe (Rossiter, 2011). Moderate-intensity exercise corresponds to work-rates 

below the lactate threshold (LT), whereby blood lactate increases above resting value 

(~ 1 mM) but does not substantially rise any further and steady state oxygen uptake 

(V̇O2) is attained within approximately 2 – 3 minutes (Turner et al., 2006; Whipp, 

Ward, & Rossiter, 2005; Wilkerson, Koppo, Barstow, & Jones, 2004). Heavy-

intensity exercise corresponds to work-rates that induce a mild but stable increase 

of blood lactate (between 2–4mM) and V̇O2 steady state is established but delayed, 

typically by ~15-20 minutes (Katch, Weltman, Sady, & Freedson, 1978; Rossiter, 

2011; Wilkerson et al., 2004). This exercise is perceived to be less comfortable than 

moderate-intensity exercise (Parfitt, Rose, & Burgess, 2006). Exercise in the heavy 

domain lies between LT and critical power (CP), which is the upper limit for steady 

state exercise (Rossiter, 2011). Very heavy-intensity comprises of exercise above 

critical power, where both blood lactate (5-10 mM)  and V̇O2 fail to reach steady state 

and increase to the limit of tolerance (Rossiter, 2011; Turner et al., 2006). Exercise in 

the severe-intensity domain is associated with substantial and progressively 

increasing blood lactate and V̇O2 will continue to rise until exercise is terminated or 

V̇O2 is reached (Turner et al., 2006; Wilkerson et al., 2004). This supramaximal 

exercise can only be tolerated for very short periods of time, and exhaustion is 

reached before V̇O2 max can be attained (Turner et al., 2006; Wilkerson et al., 2004).  

1.2.1.2 Interval exercise 

Interval (INT) exercise is a mode of exercise, comprising of repeated and relatively 

short bouts of high-intensity workloads interspersed with periods of rest or low-

intensity active recovery (Billat, 2001). The rationale behind INT is that it allows for 

individuals to spend more time exercising at a higher intensity than would be possible 

if performed in one continuous session (Tschakert & Hofmann, 2013). It is exercising 

at the higher intensity that translates to superior adaptive responses and training 

effects, such as cardiorespiratory fitness or vascular function (Ramos, Dalleck, 

Tjonna, Beetham, & Coombes, 2015; Weston, Wisløff, & Coombes, 2014). It is 

evident from the extant literature that the terminology to describe INT regimes is not 

consistent. Tschakert and Hofmann (2013) reported a large number of 
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denominations: “intermittent exercise, interval-type exercise, interval training, high-

intensity interval training, aerobic high-intensity interval training, repeated-sprint 

exercise, sprint intervals, and low-volume high-intensity interval training” (p. 601). A 

prominent research group in this area have used the term ‘aerobic interval training 

(AIT)’ (Molmen-Hansen et al., 2012; Tjønna et al., 2008; Wisløff et al., 2007), 

whereas, other prominent groups have described ‘sprint interval training (SIT)’ to 

describe all-out supramaximal intervals (Burgomaster et al., 2008; Gibala et al., 

2006). A recent review has suggested that to standardise the terminology a 

classification scheme should be adhered to for interval training based on intensity 

(Weston et al., 2014). AIT is to be removed from the dialogue, and INT falls into two 

categories as indicated in Figure 1.1: 

 

Figure 1.1 Suggested classification scheme for interval training adapted from 
(Weston et al., 2014) 

 

Furthermore, the HIIT prescription differs between studies in terms of the durations 

and target intensities of the interval bouts. Additionally, the ratio between the interval 

bouts and recovery periods is termed the duty cycle. All of these may be manipulated 

to alter the metabolic demand induced by the exercise. The most widely used HIIT 

prescription is the four intervals of 4 minutes (4 x 4 HIIT) interspersed with ~3 minutes 

of active recovery (Moholdt et al., 2009; Molmen-Hansen et al., 2012; Rognmo, 

Hetland, Helgerud, Hoff, & Slørdahl, 2004; Schjerve et al., 2008; Tjønna et al., 2008; 

Wisløff et al., 2007). The target intensity of the interval bouts was guided by heart rate 

(HR) max or peak, and ranged between 85%-95% HRmax/peak and active recovery 

bouts were at a work rate corresponding to 50-70% HRmax/peak. Alternatively, protocols 

using short-interval duration HIIT comprise of 1-minute interval bouts interspersed 

with 1-minute recovery bouts. Under this 10 x 1 HIIT prescription, exercise intensity 
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of the interval bouts was set as 89-100% peak power output (PPO) (Currie, 

Dubberley, McKelvie, & MacDonald, 2013; Klonizakis et al., 2014; Little, Jung, Wright, 

Wright, & Manders, 2014). Alternatively, intensity was determined using V̇O2 in a 

protocol using 1-minute interval bouts at 80% V̇O2peak interspersed with 4-minute 

recovery bouts at 50% V̇O2peak (Mitranun, Deerochanawong, Tanaka, & Suksom, 

2014). Another short-interval duration HIIT prescription examined manipulation of the 

duty cycles, whilst controlling for exercise volume, and the impact of metabolic stress 

on arterial stiffness (Rakobowchuk, Harris, Taylor, Cubbon, & Birch, 2013). For both 

conditions, interval bouts were at a work rate (WR) corresponding to 120% V̇O2peak 

interspersed with active recovery at 20 Watts. However, 30s:60s (work:recovery) duty 

cycles were undertaken by those in the HIIT condition, whereas the moderate-

intensity interval training group performed duty cycles of 10s:20s.   

    

1.2.2 Exercise and cognitive function in mid-life 

Controlled trials in younger adult populations are rare and have yielded 

heterogeneous findings. A review conducted on the impact of exercise interventions 

on memory in adults (aged 18-65 years) concluded that long-term exercise has small 

but negligible effects on memory (Roig, Nordbrandt, Geertsen, & Nielsen, 2013). The 

following studies are in adults samples aged 18-65 years, however this research was 

not conducted in obese samples.  

Improved visual-spatial memory was observed in a running group (n=14) relative to 

no-exercise controls (n=14) following a six-week intervention in young adults (mean 

age 19.7 years) (Stroth, Hille, Spitzer, & Reinhardt, 2009). However, although verbal 

memory and attention were assessed, no significant changes were observed. 

Conversely, Pereira et al. (2007) demonstrated improvements in short-term verbal 

memory (Rey Auditory Verbal Learning Test; RAVLT) following 12 weeks of aerobic 

exercise in 8 young adults (mean age 33 years). Improvement on RAVLT 

performance was associated with increased cerebral blood flow in the dentate gyrus 

of the hippocampus. Conflicting findings regarding verbal memory may be attributed 

to differing exercise regimes. The protocol by Stroth et al. (2009) comprised of three 

30-minute running sessions per week over a 6-week intervention and exercise 

intensity was at 70-100% lactate threshold. The protocol by Pereira et al. (2007) 

comprised of four 60-minute sessions per week for 12 weeks. Sessions included 40 
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minute of ‘aerobic activity’ plus warm-up and cool-down. The aerobic activity, selected 

by the participant, ranged from cycling on a stationary ergometer, running on a 

treadmill, climbing on a StairMaster, or using an elliptical trainer. 

In sedentary middle-aged adults (n=68; mean age 48 years) Hötting et al. (2012a) 

examined the impact of 6-month intervention on cognitive function and cardiovascular 

fitness. The study compared a cycling group (endurance training) to a stretching 

group and a no-exercise control. The cycling protocol comprised of two 60-minute 

sessions per week at 85% lactate threshold. Relative to controls and stretching group, 

significant improvements in immediate and delayed verbal recall were observed in 

the cycling group. However, improvement in attention was significantly greater in the 

stretching group compared to the cycling group.  

A further two studies have reported improvement in memory after training regimes in 

young adults, however in both cases they failed to account for the acute effect of 

exercise on cognitive function. Griffin et al. (2011) reported improved hippocampal 

learning (performance on face-name task) following 5 weeks of exercise training on 

a stationary cycle (3 sessions per week at 60% VO2max). This occurred alongside 

increased brain-derived neurotrophic factor (BDNF) response during exercise, 

obtained from venous samples. Alternatively, four weeks of exercise sessions (4 

session/week of 30-minutes jogging or brisk walk) were shown to improve 

performance on a memory task (novel object recognition) in a sample of young adults 

(20.6 ± 0.4 years) (Hopkins, Davis, VanTieghem, Whalen, & Bucci, 2012). However, 

this effect was only observed in the participants who exercised less than 24 hours 

before the cognitive assessment. The effects of acute exercise are widely reported 

and known to have greater effect sizes on memory, when compared to long-term 

interventions (Roig et al., 2013). The acute effects of exercise on cognitive function 

are known to last up to up to 48 hours from the end of exercise therefore, any studies 

conducting post-intervention tests within this time frame are measuring acute 

response as opposed to long-term change.   

 

1.2.3 Interval exercise and cognitive function in mid-life 

obesity 

To date, only one study has investigated the impact of a high-intensity-interval-

training (HIIT) intervention on cognitive function in obese adults (Drigny et al., 2014). 
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Six men (mean age 49 years, mean body fat percentage 31%) underwent 

assessment for cognitive function, aerobic capacity, cerebral oxygenation, central 

haemodynamic and cardiometabolic parameters before and after a 4-month 

intervention. The programme comprised of 2 HIIT sessions per week on an ergocycle, 

plus an additional 60-minute session of moderate intensity continuous exercise (60% 

peak power output) and two 20-minute resistance training sessions. This therefore 

was not a ‘pure’ assessment of interval exercise. HIIT sessions designed by Drigny 

et al. (2014) comprised of 10-minute sets made up of repeated 15-30s bouts at 80% 

maximal aerobic power interspersed with 15-30s passive recovery. Participants 

performed 2-3 10-minute sets within a session (34-48 minutes) complying with a Borg 

rating of perceived exertion (RPE) of 15. The sets were also separated by 4-minute 

recovery bouts. Significant improvements were observed in short-term memory 

(Forward Digit Span score increase of ~1 point), attention and processing speed (Digit 

Symbol Substitution Test score increase of ~6.2 points) and verbal memory (RAVLT 

scores: total List A1-15 score increased by 9 words; delayed recall increase of 3.5 

words). Cerebral oxygen extraction significantly improved post-training during both 

exercise and recovery.  

In addition to (Drigny et al., 2014), only one study has examined the impact of exercise 

on cognitive function in obese middle-aged adults. However, the type of exercise 

cannot be categorised clearly in terms of work-rate profile (i.e. interval or continuous) 

as it was based on dance/rhythmic activities. Monleón et al. (2015) examined the 

effect of an 8-month physical activity intervention on cardiopulmonary fitness, body 

mass index (BMI), and vigilance performance in 29 obese adults (mean age 48.5 

years; mean BMI 38.5). The training consisted of two 60-minute sessions of 

supervised dance/rhythmic activities per week, with an intensity target of 12-13 on 

the Borg rating of perceived exertion scale (moderate intensity activity). Following the 

intervention, performance on a psychomotor vigilance task had improved as indicated 

by faster responses and fewer lapses (missed responses) relative to baseline. This 

coincided with a small reduction in BMI (mean reduction ~1kg/m2), and significant 

improvement in cardiopulmonary fitness (as indicated by greater distance covered in 

6-minute walk test).  
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Monleón et al. (2015) examined the impact of 8 months PA (based on dance and 

rhythmic activity) on a psychomotor vigilance task in obese adults (mean age 48.5 

years; mean BMI 38.5).  Improved performance was observed following the 

intervention, in addition to increased cardiopulmonary fitness and reduced BMI. 

Drigny et al. (2014) examined the impact of 4 months of high-intensity interval training 

(HIIT) on multiple tests of cognitive function in 6 obese men (mean age 49 years, 

mean body fat percentage 31%). Significant improvements were observed in short-

term memory (Forward Digit Span), attention and processing speed (Digit Symbol 

Substitution Test) and immediate and delayed verbal memory (RAVLT). Cerebral 

oxygen extraction, as measured by near-infrared spectroscopy (NIRS) significantly 

improved post-training during both exercise and recovery.  

 
 

1.2.4 Habitual physical activity and cognitive function 

Much of the research investigating the relationship between PA and cognitive function 

has been conducted in older adults. Self- report of PA is typically used as a variable 

to predict risk of decline or presence/occurrence of dementia/impairment. One caveat 

which should be noted is that interpretation of the extant literature is hampered by the 

differing definitions of PA employed and the lack of objective measurement that 

characterise research to date. However, this research suggests that PA potentially 

contributes to the differential preservation of cognitive function that is observed 

between ageing adults (Bielak, Cherbuin, Bunce, & Anstey, 2014). 

Cross-sectional research in younger adults suggests low levels of “free-living” PA are 

associated with increased risk of poor performance on fluid intelligence (Singh-

Manoux, Hillsdon, Brunner, & Marmot, 2005) and response inhibition (Hillman et al., 

2006). However, PA was assessed through self-report questionnaire which is subject 

to bias and provides no detailed or accurate information on the intensity or volume of 

exercise/PA undertaken. Singh-Manoux et al. (2005) reported that adults (35-55 

years) reporting low levels of PA had increased risk of poor performance on a 

measure of fluid intelligence, as measured by Alice Heim 4-I test, and this was after 

adjustment for education, employment grade, self-rated health, blood pressure level, 

cholesterol level, smoking status, mental health status, and social network index 

score.  Initially low PA was associated with risk for poor performance on measures of 

memory, phonemic fluency and semantic fluency, however adjustment for education 

and socioeconomic position greatly attenuated these relationships. PA was derived 
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from self-report, and categories were as follows: “Low active”: <2 hours/week of 

moderate activity and <1 hour of vigorous; “high active”: >2.5 hours/week of moderate 

or >1 hour of vigorous activity. “Medium active” was classed for anyone falling 

between high and low active. Additionally (Hillman et al., 2006), reported low physical 

activity was associated with slower reaction times on the congruent and incongruent 

conditions of the Erikson Flanker Task in a young cohort (25.5 ± 4.9 years), although 

accuracy was not significantly different to those with higher activity level.  During a 

task switching performance in young adults (21.4 ± 0.3 years), a physically active 

group showed more efficient executive functioning relative to a sedentary group 

(Kamijo & Takeda, 2010). Event-related brain potential (ERP) was measured (P3 

amplitude) through electroencephalograms (EEGs), and results indicated P3 ERP 

amplitude was larger for the sedentary group during a test that placed greater demand 

on working memory, indicating a greater amount of attentional resources were 

required relative to the active group.  

1.2.5 Objectively measured physical activity and cognitive 

function in obesity 

There is limited research exploring objectively measured PA and cognitive function in 

obese, and/or middle-aged adults. The following studies were conducted in pre-

bariatric (morbidly obese, including some with comorbidities) adults, across a range 

of ages (20-80 years).  The relationship between cognitive function and objectively 

measured PA was assessed in 71 pre-bariatric surgery patients using a biaxial 

accelerometer (SenseWear Pro2 armband) (Langenberg et al., 2015). The 

parameters of physical activity were: composite physical activity score based on 

frequency, intensity and duration of PA periods; mean steps·min-1; step frequency; 

percent of PA within wear time; and active energy expenditure per minute. 

Performance on tests of executive function (computerised Iowa Gambling Task, IGT), 

working memory (computerised Corsi Block Tapping Test, CBT) and verbal memory 

(Auditory Verbal learning Test, AVLT) were not significantly associated with any 

measures of PA, when age, BMI, somatic comorbidity and depressive symptoms 

were controlled for. When interactions were explored, depression score (measured 

using the Patient Health Questionnaire-Depression Scale) significantly impacted the 

relationship between PA and working memory. Of the participants with low depression 

scores, those with low PA had worse performance on CBT than those with high PA. 

Participants with high depression scores showed poor performance on CBT 

regardless of high or low PA. This perhaps highlights that PA has limited capacity to 
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help in samples that have additional burden from comorbidity and psychological 

factors. The meagre support for an association between PA and cognitive function in 

a severely obese sample was also observed by Galioto et al. (2014). Self-reported 

PA was collated in 85 bariatric patients, and objectively measured PA was also 

collected in a subset (n=31) of these patients. Self-report of weekly PA was weakly 

correlated with poorer attention and executive function. Self-reported PA (daily 

minutes) and objectively measured daily minutes of MVPA were negatively correlated 

with memory. With respect to the number of domains tested, higher minutes of PA 

were not associated with better cognitive function. This sample were classed as 

sedentary and light active (steps/day was ~7949; MVPA ~105 min/week). The pre-

bariatric samples participating in both studies showed a similar activity pattern as 

more than half were classed as sedentary or low active (Galioto et al., 2014; 

Langenberg et al., 2015). It was suggested by the authors of the two separate studies 

that the low volume of moderate and vigorous PA possibly explained the lack of 

association between PA and cognitive function, as participants were not attaining a 

level of PA sufficient to drive cognitive benefit.  It could also be that the lack of 

variance in PA in these studies reduced the potential to detect a relationship between 

PA and cognitive function. 

 

1.2.5.1 Objectively measured PA and cognitive function in older 

adults 

The use of objective measures, such as accelerometers, when examining the 

relationship between PA and cognitive function is predominantly restricted to elderly 

populations.  This research indicates that higher accumulated minutes of LPA and 

MVPA were both associated with improved executive function (inhibition; TMT)  (Kerr 

et al., 2013). Additionally, accumulated minutes of MPA showed favourable 

associations with increased hippocampal volume and, indirectly with memory 

(Makizako et al., 2014), and lower accumulated MPA and LPA associated with severe 

white matter lesions (WML) and brain atrophy (Doi et al., 2015). The limited research 

in older adults indicates that LPA and MVPA are associated with cognitive function 

(memory and executive function). Vigorous-intensity PA per se was not reported but 

was combined with moderate-intensity to form MVPA (Doi et al., 2015; Makizako et 

al., 2014). It must be noted that vigorous activity is not common in older adults, which 

may also explain the lack of relationship between accelerometer measured vigorous 

activity and cognitive outcomes in ageing samples.  
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1.2.6 How does exercise impact cognitive function? 

The benefits of exercise for the brain are becoming increasingly evident but remain 

poorly understood. This is largely due to the fact that changes within the brain in 

response to exercise are difficult to measure in humans. Many processes have to be 

inferred (such as angiogenesis by MRI, or peripheral sampling of BDNF). Regular 

exercise directly impacts the brain through increased neurogenesis, angiogenesis, 

metabolism and cerebrovascular function, all of which support synaptic plasticity 

(Cotman, Berchtold, & Christie, 2007; Voss, Vivar, Kramer, & van Praag, 2013). This 

ultimately translates to improved cerebral perfusion and metabolism (Colcombe et al., 

2006). Review of the cellular/molecular processes through which exercise promotes 

structural and functional changes within the brain is beyond the scope of this thesis. 

However, a brief overview is included as the evidence indicates that parameters of 

exercise may be manipulated to optimise cerebrovascular adaptation (Lucas, Cotter, 

Brassard, & Bailey, 2015).   

1.2.6.1 Exercise and structural brain changes 

Figure 1.2, taken from Lucas et al. (2015), highlights the potential mechanisms 

through which exercise translates to adaptations within the brain. It is thought that the 

mechanical shear stress resulting from the change in blood flow, and neural activation 

required to generate movement promote a cascade of cellular processes that promote 

structural changes (Bolduc, Thorin-Trescases, & Thorin, 2013; Lucas et al., 2015). It 

is known from studies using transcranial Doppler and MRI techniques that cerebral 

blood flow increases during exercise up to approximately 70% V̇O2max (Subudhi, 

Lorenz, Fulco, & Roach, 2008). Exercise requires activation in specific brain areas 

and this leads to increases in localised cerebral blood flow coupled with metabolic 

demand. It has been proposed (Bolduc et al., 2013) that shear stress-dependent 

eNOS activity increases during exercise, due to the increase in cerebral blood flow 

and neuronal activity. Nitric oxide bioavailability is posited to maintain 

cerebrovascular function. Additionally, the elevated neuronal activity that is required 

to drive bodily movement increases metabolic demand, and perfusion increases to 

meet this demand (Bélanger, Allaman, & Magistretti, 2011). Exercise also activates 

the expression of key factors that mediate neurogenesis such as brain-derived 

neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), insulin-like 

growth factor 1 (IGF-1) (Cotman et al., 2007; Voss et al., 2013) 
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Figure 1.2 Schematic of the mechanisms driven by exercise that are proposed 
to alter brain structure and function from Lucas et al. (2015) 
 

 

1.2.6.2 Exercise-related structural change and cognition 

Exercise-induced structural brain changes have been associated with improvements 

in cognitive function. Research conducted in older adults has established an 

association between cardiovascular fitness and higher brain volume in areas such as 

the superior frontal cortex volume, hippocampus and medial temporal lobe (Bugg & 

Head, 2011; Erickson et al., 2009; Erickson et al., 2011). Following 12 months of 

cardiovascular exercise, anterior hippocampal volume increased by 2%, and 

interestingly, this was correlated with the increase in BDNF (Erickson et al., 2011). 

Improved performance on a spatial memory task was directly associated with the 

increase in hippocampal volume, but not the change in cardiorespiratory fitness or 
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BDNF levels. Following a 6-month intervention, increase in physical activity correlated 

with increase in RAVLT score (Ruscheweyh et al., 2011). Higher physical activity 

levels positively correlated with increased gray matter volume in prefrontal and 

cingulate regions, and also with changes in BDNF. The neurophysiological 

adaptations that occurred in response to exercise drove cognitive function changes, 

indicating the importance of exercise to maintain the structures supporting memory 

(Roig et al., 2013). 

Cerebral blood volume (CBV) in the dentate gyrus, a sub-region of the hippocampus, 

was shown to increase following 12-weeks of aerobic exercise training in adults 

(mean aged 21-45 years) (Pereira et al., 2007). This translated to improved 

performance on recall of Trial 1 of the RAVLT, but not other outcomes such as 

delayed recall or recognition. Performance on trial 1 correlated with the increase in 

CBV and VO2max. Cerebral vasculature is not the only explanation for fitness related 

structural changes and improved cognition. Higher aerobic fitness was associated 

with higher levels of N-acetylaspartate (NAA), a metabolite found in cell bodies of 

neurons, which was associated with superior working memory span, but not short 

term attention or spatial memory (Brugniaux, Marley, Hodson, New, & Bailey, 2014; 

Erickson et al., 2012b).  

 

1.2.6.3 Reduction of systemic factors 

As indicated in Figure 1.3, exercise favourably impacts on multiple systemic 

cardiovascular risk factors implicated in cognitive decline. The figure elegantly 

highlights the large number of plausible mechanistic pathways through which 

exercise may impact upon brain structure and function.  
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Figure 1.3 Schematic of the mechanisms through which exercise and physical 
activity favourably impact cognitive function by reducing systemic 
cardiovascular risk factors from (Obisesan et al., 2012) 
 

Evidence of this relationship is provided by studies that have reported that cognitive 

change was related to improvement in systemic risk factors following exercise 

intervention. In women with mild cognitive impairment (aged 55-85 years) improved 

performance in the Trail Making Test (part B) and Stroop colour/word task were 

associated with increased fitness following 6-months high intensity (75-85% HRR) 

aerobic exercise (Baker et al., 2010). This coincided with reduced fasting plasma 

levels of insulin, increased glucose disposal during a metabolic clamp and reduced 

cortisol levels.  
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1.2.7 Manipulation of exercise to target systemic factors 

The physiological adaptation to training, and consequent reduction in systemic 

cardiovascular risk factors, has shown to be responsive to differing exercise 

intensities, volumes or modalities. It is not known how exercise impacts cognitive 

function, or how the various aspects/modes of PA can be manipulated to influence 

cognitive function. In order to harness the benefits of exercise on cognitive function 

effectively, we need to establish the role of each exercise parameter (intensity, 

frequency, duration, mode) on the underlying mechanisms supporting brain health 

and subsequent cognitive performance. 

1.2.7.1 Cardiorespiratory fitness  

V̇O2max strongly predicts mortality in patients with and without cardiovascular disease, 

and was a stronger predictor of increased risk of death than was hypertension, 

smoking, diabetes or other exercise test measures such as ST-segment depression, 

the peak heart rate, or the development of arrhythmias during exercise (Myers et al., 

2002). Additionally, the risk of death doubled for those with an exercise capacity less 

than 5 MET (17.5 ml/kg/min) compared to those whose capacity was over 8 MET (28 

ml/kg/min). Every 1 MET (3.5 ml/kg/min) increase in exercise capacity was associated 

with a 12% improvement in survival. Kaminsky et al. (2013) have also reported a 10-

25% improvement in survival rate for every 1 MET (3.5 ml/kg/min) increase in 

exercise capacity. A systematic review of studies conducted in those with life-style 

induced cardiometabolic disease has reported that the gains in cardiorespiratory 

fitness (CRF) following HIIT (19.4% increase) are nearly double that induced by 

MICT(10.3%) (Weston et al., 2014). The baseline values for V̇O2max were similar for 

both conditions among studies (HIIT: 22.5 ml/kg/min; MICT: 22.6 ml/kg/min). 

Cardiorespiratory fitness is shown to be more responsive to HIIT than MICT, with five 

studies showing superior improvement following an HIIT regime (Mitranun et al., 

2014; Molmen-Hansen et al., 2012; Schjerve et al., 2008; Tjønna et al., 2008; Wisløff 

et al., 2007).  

1.2.7.2 Exercise and Glycaemic control in T2 DM 

Traditionally, high intensity exercise has not been recommended for individuals with 

T2DM (Albright et al., 2000), favouring instead low-moderate intensity (50% V̇O2) 

over a higher volume (~3-5 days/week, session duration 30-60 mins). The reasoning 

behind this was to promote self-efficacy and adherence, and to reduce fear of 
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hypoglycaemia or physical discomfort. High-intensity exercise results in substantial 

muscle glycogen depletion, which elevates risk of post-exercise hypoglycaemia 

(Colberg et al., 2010).   However, it is known that high-intensity exercise improves 

glycaemic control to a greater extent than low-intensity (Boulé, Kenny, Haddad, Wells, 

& Sigal, 2003) and even moderate-intensity exercise (Terada et al., 2013). However, 

high-intensity exercise (in a continuous fashion) cannot be sustained for long periods 

due to a reduced tolerance for exercise caused by low V̇O2max and muscle fibre 

composition abnormalities (increased number of type IIb muscle fibres, low 

percentage of type I fibres, and a low capillary density) (Albright et al., 2000). The 

evidence suggests that high-intensity interval training (HIIT) induces superior 

improvements in glycaemic control relative to moderate-intensity continuous training 

(MICT). Terada et al. (2013) examined predictors of the heterogeneous glycaemic 

responses to training, which are often observed, and found that the greatest reduction 

in capillary blood glucose was in HIIT group relative to MICT, and in those with higher 

baseline capillary blood glucose. Additionally, session duration also predicted greater 

reduction in blood glucose. MICT protocol comprised of 40% oxygen consumption 

reserve (V̇OR) and HIIT sessions comprised 1-minute bouts at 100% V̇OR 

interspersed with 3 min recovery bouts at 20% V̇OR. Additionally, Karstoft et al. (2014) 

reported glycaemic control only improved following an interval walking training (IWT) 

regime, but  did not in the continual walking training (CWT) comparison group. Groups 

were matched on energy expenditure, training volume and mean training intensity, 

suggesting it is the spikes and/or variation in exercise intensity that drives favourable 

metabolic outcome (Karstoft et al., 2014; Mitranun et al., 2014). It has been observed 

that those with highest baseline values of capillary glucose showed the greatest 

reduction post-exercise (Terada et al., 2013).  

 

1.2.7.3 Vascular function 

Flow mediated dilation was shown to improve to a greater extent following HIIT 

relative to MICT (Molmen-Hansen et al., 2012; Schjerve et al., 2008; Tjønna et al., 

2008; Wisløff et al., 2007). These studies are from the same research group using 

the 4 x 4 HIIT protocol described in section 1.2.1.2. Wisløff et al. (2007) reported no 

change in SBP or DBP following both HIIT and MICT. SBP was shown to significantly 

decrease following HIIT, but not MICT (Mitranun et al., 2014; Molmen-Hansen et al., 

2012), and no change was observed in DBP. Reductions in both SBP and DBP were 

reported following HIIT and MICT (Tjønna et al., 2008).  
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1.2.7.4 Body fat 

It seems that body weight (and body fat) are more responsive to MPA or LPA over a 

higher volume, when compared to HIIT (Pattyn, Coeckelberghs, Buys, Cornelissen, 

& Vanhees, 2014). Greater exercise volume is recommended for fat loss (Vanhees 

et al., 2012), with no additional benefit from higher intensity exercise. Waist 

circumference and body weight were reduced by 4.5cm and 5-6% respectively in 

participants undertaking 150 minutes/week of LPA over a 24-week intervention 

(Ross, Hudson, Stotz, & Lam, 2015). Participants who performed the same amount 

of exercise, but at a higher intensity, did not show any further reductions. Lower 

exercise intensity and longer duration activate fat metabolism to provide energy for 

movement, whereas carbohydrates are used at higher intensities (Hansen, Dendale, 

van Loon, & Meeusen, 2010) 

1.2.7.5 Enjoyment/quality of life 

HIIT was reported to be more enjoyable than MICT, based on informal comments by 

participants (Tjønna et al., 2008), with the variation of the interval protocols deemed 

as motivating whereas the continual exercise was described as boring. Also, superior 

improvements in participant quality of life were reported following AIT relative to MICT 

(Fu et al., 2013; Molmen-Hansen et al., 2012; Wisløff et al., 2007) as measured by 

Short-Form 36-item Health Survey and MacNew global score. 

1.2.8 Work-matched interval and continuous exercise:  health 

There are multiple studies suggesting HIIT confers superior benefits for health, when 

compared to moderate-intensity continuous exercise (Chapter 1, 1.2.7). In terms of 

comparing work-matched HIIT and CON training regimes upon indices of health, only 

one intervention study was found. This study examined the effect on INT and on 

glycaemic control and endothelium-dependent vasodilatation in 43 participants with 

type 2 diabetes (Mitranun et al., 2014). The training regimes were matched for 

exercise session duration and energy expenditure. The protocol comprised of three 

30- or 40-minute sessions (CON and INT respectively) per week for 12 weeks. The 

intervention increased training intensity over 12 weeks for both groups, with the CON 

group exercising at 65% V̇O2peak  for sessions. The INT sessions comprised of 

repeated 1–minute bouts at 85% VO2 peak interspersed with 4-minute recovery at 

60% VO2 peak. Relative to a sedentary control, both INT and CON improved 

glycaemic control, aerobic fitness, and endothelium-dependent vasodilation. 
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However, the magnitude of improvement was greater in INT for these measures. An 

additional benefit was observed in INT only for blood markers (HbA1c, erythrocyte 

malondialdehyde, serum von Willebrand factor, plasma glutathione peroxidase and 

nitric oxide). This suggests that when matched for total work, undertaking exercise in 

intervals of higher intensity provides superficial benefits for health related indices. 

Additionally, and of relevance to exercise adherence, obese women (with and without 

diabetes) perceived interval training to be easier when compared to continuous 

exercise (Coquart et al., 2008). Whilst the continuous and interval exercise sessions 

were matched for relative workload (100% power at ventilatory threshold) and session 

duration (32-minutes), ratings of perceived exertion (RPE) were significantly lower for 

the INT sessions.  

 

1.2.9 Habitual PA and systemic risk factors 

Accelerometer-measured indicators of PA volume have shown association with BMI 

categories in a large U.S sample (n=3,522), with steps per day, daily minutes of 

moderate and vigorous activity decreasing as BMI category increased from healthy 

weight to obese (Tudor-Locke, Brashear, Johnson, & Katzmarzyk, 2010). These 

findings were supported in a Norwegian sample (Hansen, Holme, Anderssen, & Kolle, 

2013), with daily minutes of overall PA, moderate and vigorous intensity activity being 

lower in the overweight/obese BMI categories than in those with a healthy weight. A 

linear decrease in BMI and the probability of being overweight was observed as daily 

MVPA increased from 0 to 40-50 minutes in the International Physical activity and the 

Environment Network (IPEN) adult study (n=5712) (Van Dyck et al., 2014). This study 

found no associations between sedentary time and weight status after controlling for 

MVPA. In a highly sedentary and abdominally-obese sample, daily sedentary time, 

light-intensity time and mean activity were associated with waist-circumference and 

clustered metabolic risk score, independent of MVPA (Healy et al., 2008b). Waist 

circumference was predicted by sedentary time when controlling for MVPA, but the 

reciprocal relationship was not significant (MVPA controlling for sedentary time). This 

indicates that sedentary time had more influence on waist circumference than MVPA 

in this abdominally obese sample. Daily time spent in sedentary, light-activity and 

MVPA were 57%, 39%, and 4% respectively. 

In a sample (n=878) of obese adults with high risk of T2DM, sedentary time  was a 

greater predictor of poor health than MVPA (Henson et al., 2013). Sedentary time 



30 
 

was negatively associated with 2-hour plasma glucose and metabolic markers 

(triacylglycerol and HDL-cholesterol), whereas MVPA and total physical activity were 

associated with adiposity but not with cardiometabolic markers. It must be noted that 

of the accelerometer (Actigraph GT3X) wear time, 71% was spent sedentary, 24.3% 

was spent in light activity and only 3.9% of time was spent in MVPA. It may be 

possible that the sedentary nature of the sample accounted for the lack of relationship 

between MVPA (3.9% of wear time) and cardiometabolic variables. These findings 

are in contrast to those of Ekelund, Griffin, and Wareham (2007) who found clustered 

metabolic risk factor in an obese sample (n=258) was predicted by total time spent in 

MVPA, but not time spent sedentary, time spent at light-intensity activity or aerobic 

fitness. Additionally, total accumulated MVPA predicted variance in clustered 

metabolic risk, whereas MVPA accumulated in bouts (5- or 10-minute bouts) failed to 

reach significance. This research highlights that it is important to consider how PA is 

fractionated (i.e. in bouts or non-bouts) and the issues of entering PA summaries 

concomitantly into a statistical model. 

Both MVPA bout minutes (>10 min) and MVPA non-bout minutes (<10 min) have 

been independently associated with BMI and waist circumference (Strath, Holleman, 

Richardson, Ronis, & Swartz, 2008). However, the strength of the relationship 

between lower BMI and MVPA bout minutes was 4-fold that of MVPA non-bout 

minutes. The strength of the relationship between lower WC and MVPA bout minutes 

was 3-fold that of MVPA non-bout minutes. The authors highlighted that MVPA 

accumulated in bouts were at a higher intensity (average 2,370 counts·min-1) 

compared to non-bout MVPA minutes (average 1,472 counts·min-1). In an 

overweight/obese T2DM sample, waist circumference and BMI were positively 

associated with prolonged sedentary time (>30 minutes) and negatively with light-

intensity activity (Healy, Winkler, Brakenridge, Reeves, & Eakin, 2015). An equal 

(beneficial) impact on BMI was observed when prolonged sedentary time was 

displaced with either non-prolonged sedentary time or light activity. This indicates that 

merely breaking up prolonged sedentary time, with increasing number of sedentary 

breaks, is an effective intervention strategy for abdominally-obese and T2DM  

samples. The fractionation of sedentary time and its impact on health, must be 

explored as a separate concept to the fractionation of PA/exercise 

There is conflicting evidence regarding whether accruing PA through longer 

continuous bouts (≥10 minutes) is superior for health benefits than a PA volume 

accrued through non-bouts (~3 minutes, ~5 minutes). Glazer et al. (2013) compared 
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the association of objectively measured MVPA, when the same volume was 

accumulated by either bouts (>10 mins) or non-bouts (<10 mins), with CVD risk 

factors such as measures of adiposity and blood lipid and glucose levels. MVPA 

accumulated through non-bouts was associated with lower prevalence of obesity, 

smaller waist circumferences and lower triglyceride levels, BMI and Framingham risk 

score. Interestingly, the magnitude of these relationships was similar to those accrued 

through bouts of MVPA >10 mins. In this sample, compliance with national PA 

guidelines (150 minutes of total MVPA per week) was associated with lower CVD risk 

and lower prevalence of obesity and IGT, regardless of how MVPA was accrued (>10 

mins or shorter bouts). It is important to look at summaries of PA (i.e. moderate-

intensity) in both bouts (>10 minutes) and intermittent regimes (<10 minutes), 

however this results in two variables with a large amount of shared variance although 

both are clinically important. The same issue arises for sedentary behaviours as both 

total accumulated minutes of sedentary behaviour (SB), and prolonged SB (>30 

minutes, > 60 minutes) have been shown to be implicated in health. The fractionation 

of a PA summary creates variables that are a function of each other, but also distinct 

and of clinical relevance to a research question (i.e. bouts versus non-bouts).  

 

1.2.10 Is adoption of “exercise” manageable and effective for 

highly sedentary adults? 

Contemporary exercise recommendations state that at least 150 minutes per week of 

moderate-intensity aerobic exercise, or 75 minutes per week of vigorous-intensity 

(ACSM and AHA) are required to confer substantial benefit to health (Haskell et al., 

2007). However, this presents two issues: firstly, some individuals are not physically 

capable of attaining the prescribed amount of exercise; secondly, even those meeting 

the recommended moderate to vigorous physical activity (MVPA) levels may still be 

spending the majority of their time sedentary (Craft et al., 2012; Hamilton, Healy, 

Dunstan, Zderic, & Owen, 2008). The attainment of the recommended daily MVPA is 

not sufficient to nullify the negative influence of inactivity upon health when the 

majority of time is spent sedentary (Helmerhorst, Wijndaele, Brage, Wareham, & 

Ekelund, 2009; Lahjibi et al., 2013). Therefore, it is important to examine the impact 

of light activity and sedentary time upon on the very same cardiovascular and 

cardiometabolic risk factors implicated in cognitive decline.  
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It is widely accepted that being physically active reduces the risk of all-cause mortality 

(Löllgen et al., 2009; Samitz et al., 2011; Woodcock, Franco, Orsini, & Roberts, 2011). 

However, the greatest benefit is observed in moving those at the lowest end of the 

physical activity spectrum into light activities. Two large scale meta-analyses 

observed the largest reductions in all-cause mortality risk in those moving from no 

activity to low activity, with minor additional benefit from further increases in PA 

(Löllgen et al., 2009; Woodcock et al., 2011). From a public health perspective, 

interventions aimed at increasing activity from the lowest category of physical activity 

would confer greatest impact on cardiovascular health outcomes (Franklin & 

McCullough, 2009).  

1.2.10.1 Change in habitual PA and health 

1.3 Step count and cardiovascular health 

Research linking cognitive function outcomes and objective measures of physical 

activity, particularly at the lower end of the spectrum, is lacking. However, there is 

mounting evidence linking step count to cardiovascular and cardiometabolic 

parameters implicated in change in cognitive function. For those falling within the 

sedentary category (≤5000 steps/day) exercise prescription recommendations from 

ACSM (Garber et al., 2011) state that an increase of just ≥2000 steps per day to make 

a total daily target of ≥7000 would be beneficial for health, whereas alternative 

guidelines (Tudor-Locke & Bassett Jr, 2004) suggest a target of 10,000 steps per day 

to reduce disease risk and maintain health.  

The use of steps per day to define sedentary behaviour is based on the rationale that 

a low step-count indicates more time spent in sedentary behaviours. The 2005–2006 

National Health and Nutrition Examination Survey (NHANES) accelerometer data 

showed that participants accumulating <5000 steps per day spent an extra 2.75 – 

2.95 hours in sedentary behaviours compared to those who accumulated ≥10 000 

steps/day (Tudor-Locke, Johnson, & Katzmarzyk, 2011). Changes in daily number of 

steps were shown to reduce accelerometer measured sedentary time in individuals 

with T2DM, with an increase of 2500 steps translating to a reduction of sedentary time 

by  >1 hour (De Greef, Deforche, Tudor-Locke, & De Bourdeaudhuij, 2010). Reducing 

sedentary time and increasing activity levels are important for particular populations 

whose sedentary behaviour exacerbates the risk of developing preventable chronic 

diseases (Owen, Bauman, & Brown, 2009). 
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Many studies have used a target of 10,000 steps per day in interventions. Achieving 

this target has reduced SBP in sedentary, obese subjects by approximately 3 mmHg 

(Hultquist, Albright, & Thompson, 2005; Iwane et al., 2000) or up to 8 mmHg (Swartz 

et al., 2003b). Swartz and colleagues also observed improved glucose tolerance post 

intervention, as glucose levels 2-hours post glucose ingestion had decreased by 11% 

from baseline tests. Furthermore, in an overweight cohort (average BMI 29.5 kg/m2) 

with a baseline of approximately 7000 steps per day, increasing by an average of 

3,500 steps to just over 10,000 for 12 weeks was associated with reductions in BMI, 

WC and resting heart rate (Chan, Ryan, & Tudor-Locke, 2004). The improvements in 

waist circumference and heart rate were related to the increase in steps per day.  

Conversely, in a sample of healthy but non-exercising young men reducing 

ambulatory activity from approximately 10,000 steps to approximately 1,400 steps per 

day reduced insulin sensitivity (Krogh-Madsen et al., 2010) in just two weeks.  

Despite the associated health benefits of accumulating 10,000 steps per day, this 

may not be attainable for some individuals. This has been confirmed by Sidman, 

Corbin, and Masurier (2004) who observed that women with lower baseline steps 

were significantly less likely to meet a 10,000 daily step goal when compared to those 

with higher baseline steps. Alternatively, lower and more attainable targets of step 

increases have proven to be beneficial for some cardiovascular and cardiometabolic 

outcomes. A systematic review conducted by Bravata et al. (2007) of pedometer 

based RCTs found that an increase of approximately 2500 steps per day led to 

reductions in systolic blood pressure (approximately 3.8 mmHg) but had no impact 

on plasma glucose. Also, Van Dyck et al. (2013) identified a threshold of increasing 

steps per day by ≥4000 in order to improve HbA1c in individuals with T2DM.   

 

1.4 Interim summary 

 

The relationship between cognitive function and exercise in obese, middle-aged 

adults is still in its infancy. When designing the studies for this thesis, information had 

to be gathered from two separate (but overlapping) areas of research: cognitive 

function regarding impact of exercise and also cognitive function and obesity. The 

research was further complicated by a large number of physiological health 

parameters reported to predict change in cognitive function. Those same 
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physiological parameters (cardiovascular risk factors) that are shown to be increased 

in obesity are also reduced by increasing fitness and exercise levels.  

The literature described in section 1.1, suggests that overweight/obese individuals 

may suffer decrements in cognitive function relative to healthy weight counterparts at 

mid-life. However, reviewers have questioned the validity of the evidence for an 

independent contribution of obesity to cognitive function, due to limitations regarding 

control for CVD risk factors and education. This effect is likely not independent of 

obesity-associated comorbidities as systematic research reviews have highlighted 

methodological limitations leading to inadequate control for, or measurement of, 

cardiovascular risk factors. It is possible that any differences in cognitive function 

observed at mid-life are driven by unmeasured subclinical or undiagnosed CVD risk 

factors. Additionally, based on the overall hypothesis that impairments in cognitive 

function are driven by presence of cardiovascular risk factors it may be postulated 

that we may not see change in cognitive function in obese individuals who do not 

change in these health parameters.  This section also indicated a large number of 

cognitive tests that were sensitive to detect differences between obese and non-

obese samples, predominantly under the domains of executive function and memory. 

Section 1.2 describes that research examining the impact of exercise and physical 

activity on cognitive function. There is currently no data providing information on 

objectively measured free-living physical activity and cognitive function outcomes in 

obese middle-aged adults. Additionally, a very limited number of studies have 

examined the impact of exercise regimes on cognitive function in obese, middle-aged, 

adults. However, the findings do indicate improved short-term memory, attention and 

processing speed and verbal memory, and these were associated with improvements 

in cerebral oxygenation (Drigny et al., 2014) and cardiovascular fitness (Monleón et 

al., 2015). Once again, this section indicated a large number of cognitive tests that 

were sensitive to detect change following an exercise intervention or change in CRF.  

There is no consensus on the components of exercise necessary for optimal cognitive 

benefit. It is known from section 1.2.7 that altering the intensity, duration or mode of 

exercise will have a different impact on physiological adaptation. The literature 

suggests some specific types of exercise may yield superior adaptation for specific 

cardiovascular measures (e.g. high-intensity-interval-training and fitness). Based on 

the hypothesis that cognitive benefit is the result of reduction in systemic 

cardiovascular risk factors, there is compelling evidence that high-intensity exercise 

has superior impact on systemic factors (insulin sensitivity, blood pressure, etc). 
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However, this is not uniform for all health outcomes (e.g. high volume, low intensity 

exercise and fat loss). 

There is vast opportunity for exploratory work examining the impact of specific facets 

of exercise on cognitive function in obese adults. However, it is not known which 

physiological parameters should be the primary target of an intervention in order to 

yield greatest benefit for cognitive function outcomes. Given the demographic of the 

sample under investigation, exercise prescription in sedentary, obese/overweight 

middle-aged samples must consider the feasibility and affect induced (enjoyment) by 

an exercise regime to ensure successful adoption and adherence. Irrespective of the 

possibilities health benefits of varying exercise regimes (in terms of duration, volume, 

intensity), they must be desirable and manageable to the target population for 

successful adoption and continued adherence.   

In terms of shaping a thesis from the information gathered, there were several issues 

that had to be addressed when designing my studies. The first concerned cognitive 

test selection given that a vast number of tests were sensitive to measures of 

adiposity or changes following exercise. Secondly, in terms of designing exercise or 

PA interventions there were a vast number of factors that could be manipulated 

(intensity, duration, mode). Finally, a large number of physiological parameters are 

suggested as mechanistic links between cognitive function and exercise or obesity.  

1.5 Thesis Aims 

Section 1.2.9 highlighted a paucity of research using objective measurements of PA 

when examining the relationship between habitual PA and cognitive function. It is 

known that the cumulative effects of obesity with low activity place individuals at 

greater risk for cardiometabolic complications of obesity and cognitive decline. In non-

obese and older adults, habitual PA is favourably associated with cognitive function, 

indicating that even LPA may have a neuroprotective effect. The relationship between 

objectively measured PA and cognitive function in obese individuals has not been 

studied. The accurate assessment of PA may help identify particular facets of PA 

(volume, bouts, intensity) that confer benefits to both health and cognitive function. In 

those performing the lowest amounts of PA, it is not known if increasing LPA is 

sufficient to elicit health benefits, or whether higher-intensity exercise is required. 

Consideration must be taken of what is manageable when moving those from the 

lowest end of the PA spectrum upwards, in order to promote exercise adoption and 

adherence. 
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Exercise and/or increasing CRF has translated to improvements in cognitive function 

following intervention in non-obese adults. It is thought this is through direct effects of 

brain structure and function, and also through the longer-term reduction in CVD risk 

factors. In healthcare research, interval exercise has shown to be a potent stimulus 

for increased CRF and reduced CVD risk. However, the use of HIIT prescription for 

cognitive function outcomes in obesity is new, and to date has only been investigated 

by one research group. The findings indicate HIIT is useful as a strategy for improving 

cognitive function, however, the sample included 6 men with no comparison group.  

 

i. To explore the relationship between objectively measured physical activity 

and cognitive function in a sample of overweight/obese and middle-aged 

adults.  

 

ii. To compare the impact of medium-term heavy-intensity exercise regimes 

(interval and continuous) on indices of cognitive function and cardiovascular 

health. Change over time was examined relative to baseline cognitive 

performance, IQ and age 

 

iii. To examine the impact of a medium-term light-intensity “free-living” 

pedometer programme on indices of cognitive function and cardiometabolic 

health. Change over time was examined relative to baseline cognitive 

performance, IQ and age.  
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Chapter 2 General Methodologies 

2.1 Introduction 

This chapter includes the methodologies that are common to multiple studies 

presented in this thesis. If any measure or procedure was subject to adjustment 

between studies, the details of this are listed in the methodology section of the 

respective study chapter.  

2.2 Screening Procedure 

The purpose of the screening procedures was twofold; to identify eligible participants 

for study inclusion, and to quantify within each included sample any confounding 

variables known to impact upon cognitive function. The screening procedure followed 

the same protocol for all experimental studies included in this thesis. Individuals 

expressing an interest in participation were screened over the telephone using an 

Initial Contact Questionnaire (ICQ, Appendix 6.1). The purpose of telephone 

screening was to confirm the inclusion/exclusion criteria prior to invitation to the 

laboratory. Screening took place seven days after an individual had received and read 

the study specific participant information sheet (PIS, section 2.3. First, screening 

questions were asked in accordance with the ICQ. Ineligible volunteers were informed 

during the screening call and consent to keep contact details for future studies was 

requested. For eligible participants, the researcher verbally outlined the study and 

explained the procedures in accordance with the PIS.  Eligible individuals still 

expressing willingness to participate were then invited to the laboratory for their first 

study visit. Once enrolled onto a study, some secondary screening measures were 

collected and included as covariates in statistical models in the analysis of the data. 

The screening items obtained were factors known to have a confounding impact on 

cognitive function, or modulate the responsiveness of cognitive function to the specific 

interventions undertaken.  
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2.2.1 Screening measures 

The screening measures common across multiple studies are detailed in the following 

section: 

2.2.1.1 Study Eligibility: Cardiovascular Risk 

2.2.1.2 AHA/ACSM Health/Fitness Facility Preparticipation Screening 

Questionnaire 

The American Heart Association (AHA)/American College of Sports Medicine 

(ACSM) Preparticipation Questionnaire (AAPQ) is a widely used screening tool used 

to identify individuals at elevated risk of adverse exercise-induced events (Balady et 

al., 1998). The combination of vigorous intensity exercise and symptomatic or 

subclinical CVD is a major cause of exertion-induced cardiovascular events (Franklin 

& McCullough, 2009). The incidence of exercise-associated events, such as acute 

myocardial infarction or sudden death is highest in habitually sedentary individuals 

(Thompson et al., 2007). The AAPQ is a valid, cost-effective and time-efficient 

screening tool that allows for the identification of individuals with medical 

contraindications to exercise. Participants completed the AAPQ by ticking all 

statements that applied to them regarding health questions within the following 

categories: “history”, “symptoms”, “other health issues”, and “cardiovascular risk 

factors” (Appendix 6.2). 

Stratified risk was based on the number of symptoms or risk factors for a variety of 

cardiovascular, pulmonary and metabolic diseases.  The risk stratification process 

assigns an individual to one of the following three categories: ‘low risk’, ‘moderate 

risk’ and ‘high risk’ as shown in Table 2.1. Exercise testing and physical 

activity/exercise prescription for participants adhered to the ACSM guidelines 

according to risk stratification (Heath, 2005).  
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Table 2.1 ACSM Risk Stratification Categories for Atherosclerotic 
Cardiovascular Disease 

Low Risk 
Asymptomatic Individuals (<45 yrs men; 
<55 yrs women) with ≤ 1 CVD risk factor 

from Table 2.2 

Moderate Risk 
Asymptomatic Individuals (<45 yrs men; 

<55 yrs women) with ≥ 2 CVD risk factors 
from Table 2.2 

High Risk 
Individuals with known cardiovascular, 
pulmonary or metabolic disease or ≥ 1 

symptom listed in Table 2.3 

ACSM, American College of Sports Medicine; CDV, cardiovascular disease 

As shown in Table 2.1 low risk individuals do not have a diagnosis or symptoms of 

cardiovascular, pulmonary or metabolic diseases, and a maximum of one CVD risk 

factor listed in Table 2.2. In accordance with the ACSM guidelines, participants 

identified as low risk were not asked to consult a physician before initiating any 

physical activity/exercise interventions. Moderate risk individuals do not have a 

diagnosis or signs/symptoms of cardiovascular, pulmonary or metabolic disease, but 

have two or more CVD risk factors listed in Table 2.2. Moderate risk classification 

confers increased risk of an acute cardiovascular event. Therefore in accordance with 

ACSM guidelines participants classed as moderate risk were supervised by a 

physician when completing a maximal exercise test. Participation in low-moderate 

intensity physical activity is considered safe for this group.   
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Table 2.2 Atherosclerotic Cardiovascular Disease (CVD) Risk Factor 
Thresholds for use with ACSM Risk Stratification (Heath, 2005) 

Positive Risk Factors Defining Criteria 

Age Men ≥ 45 yrs; Women ≥ 55 yrs 

Family history Myocardial infarction, coronary revascularization, or 
sudden death before 55 yr of age in father or other 
male first-degree relative, or before 65 yr of age in 
mother or other female first-degree relative 

Cigarette Smoking Current cigarette smoker or those who quit within the 
previous 6 months or exposure to environmental 
tobacco smoke 

Sedentary Lifestyle Not participating in at least 30 min of moderate 
intensity (40%–60% VO2R) physical activity on at 
least three days of the week for at least three months 

Obesity Body mass index ≥30 kg·m2 or waist girth ≥102 cm 
(40 inches) for men and ≥88 cm (35 inches) for 
women 

Hypertension Systolic blood pressure ≥140 mm Hg and/or diastolic 
≥90 mm Hg, confirmed by measurements on at least 
two separate occasions, or on antihypertensive 
medication 

Dyslipidemia Low-density lipoprotein (LDL-C) cholesterol ≥130 
mg·dL_1 (3.37 mmol·L_1) or high-density lipoprotein 
(HDL-C) cholesterol <40 mg·dL_1 (1.04mmol·L_1) or 
on lipid-lowering medication. If total serum 
cholesterol is all that is available use ≥200 mg·dL_1 
(5.18 mmol·L_1) 

Prediabetes Impaired fasting glucose (IFG) = fasting plasma 
glucose ≥100 mg·dL_1 (5.50 mmol·L_1) but <126 
mg·dL_1  (6.93 mmol·L_1) or impaired glucose 
tolerance (IGT) = 2-hour values in oral glucose 
tolerance test (OGTT) _140 mg·dL_1 (7.70 mmol·L_1) 
but <200 mg·dL_1  (11.00 mmol·L_1) confirmed by 
measurements on at least two separate occasions 

Negative Risk Factor Defining Criteria 

High-serum HDL cholesterol ≥60 mg·dL_1 (1.55 mmol·L_1) 

 

High risk individuals would exhibit symptoms/signs (as shown in Table 2.3) or have a 

diagnosis of, cardiovascular, pulmonary or metabolic disease. For these individuals, 

a medical examination prior to the initiation of physical activity or exercise at any 
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intensity was required and any maximal exercise test performed was supervised by 

a physician. 

Table 2.3 Major Signs or Symptoms Suggestive of Cardiovascular, Pulmonary, 
or Metabolic Disease  

  

 Pain, discomfort (or other anginal equivalent) in the chest, neck, jaw, 
arms, or other areas that many be due to ischemia  

 Shortness of breath at rest or with mild exertion  

 Dizziness or syncope  

 Orthopnea or paroxysmal nocturnal dyspnea  

 Ankle Oedema  

 Palpitations or tachycardia  

 Intermittent claudication  

 Known heart murmur  

 Unusual fatigue or shortness of breath with usual activities  

 

 

2.2.2 Intelligence 

2.2.2.1 Wechsler Abbreviated Scale of Intelligence (two-subtest 

form). 

Short forms of the Wechsler Scales are suitable for estimation of IQ for research 

screening purposes (Franklin & McCullough, 2009), as opposed to the full scales 

which assess particular intellectual capabilities. The administration of the full 

Wechsler scales is a lengthy procedure lasting between 60-90mins (Löllgen, 

Böckenhoff, & Knapp, 2009) and IQ per se was not a research outcome in this thesis 

but collected to use as a covariate in analysis since many cognitive test outcomes are 

correlated with IQ. Therefore, to meet the research needs and reduce time for 

participants, the WASI two-subtest form was selected. Both the construct validity of 

WASI scales, and also convergent validity with an alternative short-form scale, the 

Wide Range Intelligence Test (Samitz, Egger, & Zwahlen, 2011), have been 

supported by Canivez, Konold, Collins, and Wilson (2009).  

The vocabulary and matrix reasoning subtests were administered and scored 

adhering to the standardised procedures listed in the WASI (Wechsler, 1997). The 

Vocabulary subtest is a 42-item scale assessing expressive vocabulary and verbal 

knowledge. Words were visually presented from the stimulus booklet and participants 

were asked to orally define each word. The vocabulary scale was recorded with a 
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dictaphone and transcribed following the testing session. The Matrix Reasoning 

subtest is a 35-item scale that assesses general intellectual ability and nonverbal fluid 

reasoning. The task consists of an incomplete grid of patterns presented in a stimulus 

booklet, with five numbered choices of response presented beneath each grid. 

Participants answered by stating the number of the response that would complete the 

pattern. Administration time took 15 minutes.  

Raw scores from the Vocabulary and the Matrix Reasoning sub-tests were converted 

to T scores in accordance with the WASI manual. The T scores were summed and 

converted to IQ scores using the age-appropriate “IQ Equivalents of Sums of T 

Scores: Full Scale-2 Subtests” table, which generated an FSIQ-2 score. 
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2.2.3 Study Exclusion Criteria 

The following exclusion criteria were common across the studies presented in this 

thesis (Table 2.4). Further exclusion criteria specific to each study are listed in the 

methods section of the respective study chapters.  

Table 2.4 Inclusion and Exclusion Criteria common across multiple studies 

 Inclusion Criteria Exclusion Criteria 

BMI ≥25 kg/m2 BMI < 25 kg/m2 

Sedentary, low-active.  Moderate-active lifestyle 

Visual and verbal ability to 
provide written informed 
consent and complete 
cognitive function tests.  

Musculoskeletal impairment or injury affecting ability to 
complete experimental intervention. 

Clinical diagnosis of: 

Uncontrolled Hypertension (and medication) 

 Type 1 diabetes 

 Uncontrolled cardiac dysrhythmias  or 
 pacemaker fitted 

 Neurological disorder 

 Depression (and medication) 

 Hypothyroidism (and medication) 

Previous stroke or Transient Ischaemic Attack 

Use of any medication known to impact on cognitive 
functions. 

Use of antidepressant, anxiolytic, or thyroid medication.  

Visual impairment preventing the completion of the 
cognitive tests (e.g. colour-blindness).  

Unable to provide written informed consent. 

 

2.3 Ethical considerations 

Prior to commencement of the studies, ethical approval was obtained from Biological 

Sciences Faculty Research Ethics Committee (Study 2) and Institute of Psychological 

Sciences Research Ethics Committee (Study 3) at the University of Leeds. Study 1 

was covered by the ethical approval sought for Study 2 and Study 3. For all studies, 

the same procedure was followed regarding obtaining written informed consent. 

Participants were provided with a study specific participant information sheet and 
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given 7 days to read prior to being contacted by the researcher. Participants were 

then invited to the School of Psychology to a familiarisation visit for a full debrief of 

the study requirements and procedures and the opportunity to ask any questions. 

Emphasis was given to the participants’ right to withdraw from the study at any time 

before or during study participation. All participants provided written informed consent 

prior to study inclusion. 

2.3.1 Study 2 

Study 2 (Chapter 4) was approved by the Biological Sciences Faculty Research 

Ethics Committee at the University of Leeds (Reference: BIOSCI 10-021, Date: 

10/05/2012). The following amendments were approved:  

Amendment 1: (Reference: BIOSCI 10-021, Date:  07/08/12)  

Amendment 2: (Reference: BIOSCI 10-021, Date:  19/08/13) 

Amendment 3: (Reference: BIOSCI 10-021, Date:  07/10/13)  

The final versions of approved documents for Study 2, such participant information 

sheet (PIs) and consent forms can be seen in Appendix 6.3 and Appendix 6.4, 

respectively.  

2.3.2 Study 3  

Study 3 (Chapter 5) was approved by Institute of Psychological Sciences Research 

Ethics Committee at the University of Leeds (Reference: 13-0141 (Version 1), Date: 

26/08/13). The following amendments were approved:  

Amendment 1: (Reference: 13-0184, Date:  20/10/13)  

Amendment 2: (Reference: 14-0070, Date:  28/03/14)  

The final versions of approved documents for Study 3, participant information sheet 

(PIs) and consent forms can be seen in Appendix 6.5 and Appendix 6.6, respectively.  

2.4 Baseline testing 

Following screening, eligible participants enrolled on either study 2 or study 3 first 

attended the School of Psychology for a familiarisation visit prior to attending the 

baseline testing visits. 
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2.4.1 Familiarisation visit 1 

Written informed consent was obtained after prior reading of the PIS (Appendix 6.3 

and Appendix 6.5 for Studies 2 and 3 respectively) and a verbal explanation of all 

study procedures. Participants completed a Recruitment Information Questionnaire 

(RIQ, Appendix 6.7), the Wechsler Abbreviated Intelligence Scale (WAIS-III, 

Appendix 6.8), and a Physical Activity Readiness Questionnaire (PAR-Q, section 

2.2.1.2) Participants completed a practise version of the cognitive test battery to 

familiarise them with the tests, ensure participants understood how to perform the 

tests correctly and assess compliance (effort). At the end of visit 1, participants were 

provided with an ActiGraph accelerometer to wear for a period of seven days and a 

log sheet (Appendix 6.9) to complete during their week wearing the accelerometer. 

Laboratory Visit 1 took 90 minutes to complete. 

2.4.2 Baseline visit 2 

Participants attended baseline visit 2 in a 12-hour fasted state. The cognitive test 

battery was completed (see respective study chapters for study specific tests). 

Systolic and diastolic blood pressure were taken (see section 2.7). Anthropometric 

indices were measured (see section 2.8).  

2.5 Measurement of cognitive function 

The selection of cognitive tests included in this thesis were based upon the following 

two criteria. Firstly, tests were considered if they had previously detected differences 

between obese and healthy weight adults, or between those with or without obesity 

associated comorbidities. Secondly, tests sensitive to longitudinal change in cognition 

following weight loss and/or physical activity interventions or a reduction in 

comorbidity symptoms were also considered. The domains vulnerable to deficits in 

obesity are frequently cited as executive function, memory and attention (Sellbom & 

Gunstad, 2012). These domains are also known to be amenable to improvement 

following aerobic exercise intervention or reductions in cardiovascular risk (Erickson 

et al., 2012a; Obisesan et al., 2012; Smith et al., 2010).  

Divergent cognitive tests batteries were employed to meet study specific 

requirements and address the corresponding research questions. However, many 

cognitive tests were utilised in more than one study, the details of which are included 

in this chapter for brevity. The batteries for each study were designed to test specific 
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constructs within the global fields of executive function, memory and attention. 

Additional study specific tests are reported in the methodology section of the 

appropriate experimental chapters (Chapters 3, 4 and 5), along with any adapted 

versions of tests. The tests described in this chapter are grouped according to domain 

tested. The rationale for specific tests used is included in each corresponding section. 

2.5.1 Memory 

2.5.1.1 Visual Verbal Learning Test (immediate and delayed) 

The Visual Verbal Learning Test (VVLT) is a visual analogue of the Rey Auditory-

Verbal Learning Test (RAVLT, Rey, 1964) that measures immediate and delayed 

verbal memory via word list recall. The test administered in the studies in this thesis 

has been shown to be sensitive to detect impairments in both immediate and delayed 

verbal memory in individuals with T2DM when compared to adults with normal 

glucose tolerance (Lamport, Dye, Mansfield, & Lawton, 2013).   

In the VVLT, the test stimuli were presented visually as opposed to aurally. Aurally 

presented information is known to be recalled better than visually presented 

information (Penney, 1989; Van Der Elst, Van Boxtel, Van Breukelen, & Jolles, 2005). 

Some of the participant samples accessed for this thesis had above average IQ and 

many years of education. Given the relationship between estimates of IQ and verbal 

memory (Steinberg, Bieliauskas, Smith, Ivnik, & Malec, 2005), the visual presentation 

of stimuli was chosen to prevent ceiling effects and increase the sensitivity of the test 

to detect differences in a highly educated and high IQ sample.  

Participants were presented with 16 words from word list A, in a randomised order 

controlled by E-prime at a rate of one word every 2 seconds. Participants were then 

given 60 seconds to recall as many of the words they had just seen using a 

dictaphone. This procedure was followed for another two trials, to make a total of 

three initial learning trials (Trials A1 – A3). Trial A3 was followed by a presentation of 

a 16-word interference list (List B) and a subsequent free recall of these words (Trial 

B1). A free recall of List A immediately succeeded this (Trial A4). After a 20-minute 

delay period, wherein other cognitive tests were performed, participants were once 

again instructed to recall List A (Trial A5). Word stimuli were presented centrally on 

the screen in capitals, font size 28, and in yellow text on a black background. The 

word lists were created using the SOP for creating 16 word VVLT lists (Appendix 

6.10) and words selected from the MRC Psycholinguistic database (Wilson, 1988). 
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Parallel versions of the test, which were administered in a counterbalanced fashion, 

can be seen in (Appendix 6.11). Counterbalanced versions were matched on the 

following properties: concreteness, imageability, familiarity, age of acquisition and 

word length.  

In accordance with Lezak (2004) and Lamport et al. (2013) the following direct and 

derived scores were used to calculate indices of verbal learning: Immediate word 

span (Trial A1), final acquisition level (Trial A3), total acquisition (∑ A1, A2 & A3), 

proactive interference (Trial A1 minus Trial B1) and retroactive interference (Trial A3 

minus A4, delayed recall (Trial A5). Additionally, rate of learning over trials (LOT) was 

derived from total acquisition corrected for immediate learning span LOT= ((∑ A1-A3) 

- (3*Trial A1 Score)) in accordance with Ivnik et al. (1992). 

Norms presented for men and women aged 40-49 years by Savage and Gouvier 

(1992) for RAVLT indicate approximately 7.6 words for delayed recall and a total 

acquisition of 22.4 words over the first 3 trials for immediate learning.  

2.5.1.2 Rey Recognition Test 

Recognition tasks allow for the assessment of memory storage that is distinct from 

retrieval (Harris, Ivnik, & Smith, 2002a). Comparison of the recognition (VVLT List A) 

and the delayed recall score from the previously administered VVLT (Trial A5) can be 

used as a proxy of the efficiency of spontaneous retrieval (Lezak, 2004). The 

recognition task administered for this thesis has demonstrated sensitivity to detect 

impairments in recognition in adults with T2DM and impaired glucose tolerance when 

compared to adults with normal glucose tolerance (Lamport et al., 2013). The stimuli 

consisted of a total of 48 words: 32 words (16 from List A and 16 from List B) from 

the initial VVLT presentation (2.5.1.1 and Appendix 6.11), and a further 16 new 

distracter words (List C). The words were presented in a random order visually in the 

middle of a computer screen at the rate of one word every 2 seconds. Participants 

were required to respond to the stimuli by pressing keys labelled 1, 2, or 3, 

corresponding to word lists A, B, or C. Words presented visually remained on the 

screen for 3 seconds. Outcome variables are number correct and reaction time for 

correct responses only.  

Raw scores were collected for correctly recognised hits and also false positives for 

all 48 recognition trials. A recognition score below 12 (out of possible 15 from original 

RAVLT) would be rare according to norms published by Ivnik et al. (1992). More 
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recently Lezak (2004) suggested that one or two errors per recognition trial would be 

normal but further deviation from this would be indicative of dysfunction.  

In accordance with Harris et al. (2002a), recognition percent correct (RPC) was 

calculated. This is the total proportion of 48 recognition items correctly identified as 

belonging to their respective lists (Lists A, B and C). The comparison between a score 

from the original VVLT List A or B performance, to their respective recognition trial 

score can be used to identify specific problems in verbal memory (Harris et al., 

2002a). A deficit in delayed recall (Trial A5 from VVLT) but a normal RPC score 

highlight retrieval problems but not storage capacity. A deficit in delayed recall, 

coupled with a poor RPC score would be indicative of problems in encoding and/or 

storage.    

 

2.5.1.3 Visual Spatial Learning Test (immediate and delayed) 

 

The Visual Spatial Learning Test (VSLT;(Malec, Ivnik, & Hinkeldey, 1991)) is a test of 

visuospatial memory and learning. The test administered for this thesis has 

demonstrated sensitivity to impairments in immediate spatial memory in individuals 

with T2DM when compared to adults with normal glucose tolerance (Lamport et al., 

2013).  

 

The VSLT apparatus consisted of a 6 x 4 grid and fifteen nonsense geometric designs 

in black and white. Participants were initially presented with a blank grid and the 15 

designs placed next to the grid as shown in Figure 2.1. Participants were then shown 

the grid with seven of the designs placed on specific squares within the grid. The 

positions were pre-determined according to parallel versions of the test, which were 

administered in a counterbalanced fashion (Appendix 6.12)  Participants were given 

ten seconds to view the positioning of the seven designs placed on the grid, and 

instructed to look away whilst the examiner removed all designs from the grid.  
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Figure 2.1 VSLT grid and the 15 possible target designs 

 

Participants were then presented with the empty grid and fifteen designs and given 

the task to select the target seven designs and place them back in the correct grid 

spaces. This procedure was repeated for a further two trials, to make a total of three 

initial learning trials (Trials 1-3). Three initial learning trials were followed by a 30-

minute delayed recall. Other cognitive tests from the battery were performed during 

this 30 minute interval. For the delayed component of the VSLT, participants were 

presented with the empty grid and the fifteen designs placed beside it and instructed 

to select the seven designs seen previously and place them in the correct grid 

squares. For each trial, scores were obtained for the number of correct designs only, 

correct locations only and correct designs in the correct locations.  

  

2.5.1.4 Corsi Block Tapping Task 

The Corsi Block-Tapping Task (CBT) (Corsi, 1973) is a widely used spatial working 

memory task that requires the simultaneous storage and manipulation of spatial and 

temporal information under conditions where the information is changing (Shah, 

Prados, Gamble, De Lillo, & Gibson, 2013; Toepper et al., 2010b).  

Completion of the CBT under fMRI has shown increased prefrontal cortex activity in 

both the ventrolateral and dorsolateral prefrontal brain regions during the task 

(Toepper et al., 2010a). A further experiment, isolating the encoding phase of CBT 

showed increased activity in the right hippocampus during the encoding phase, in 

addition to activity within the parietal, frontal and occipital regions (Toepper et al., 

2010b). The CBT detected differences in performance within an obese sample 

between those with somatic comorbidities (hypertension, diabetes, etc) and those 

without (Kiunke et al., 2013). Additionally, the version of CBT administered in this 

thesis has been shown to be sensitive to differences in performance according to 
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diabetes status (T2DM or normal glucose tolerance) in middle aged adults (Lamport 

et al., 2013).  

A computerised version was selected for this thesis as, in addition to the Corsi span 

score traditionally obtained, automatic scoring allows for accurate recording of overall 

duration of response as well as latencies between responses (Berch, Krikorian, & 

Huha, 1998). The CBT was administered using E-prime software on a DELL PC with 

a 17” screen. The display showed a black screen, with nine 1.5cm white blocks 

arranged in the positions shown in Figure 2.2. These were the same block 

configurations as the original Corsi apparatus (Berch et al., 1998; Corsi, 1973).  The 

numbers were not displayed to participants but are indicated in Figure 2.2 for clarity 

for the reader.  

 

 
Figure 2.2 On-screen block configuration for CBT 

 

The stimulus material consisted of target blocks that were displayed filled in red. 

Participants were presented with sequences, where the red target blocks would 

appear one at a time to replace one of the white blocks in the configuration shown 

above in Figure 2.2. The path sequences ranged from two to nine blocks, and were 

presented in a randomised order controlled by E-Prime. The duration of the target 

blocks was 500ms with a 500ms inter-stimulus interval. The encoding phase (stimulus 

presentation) therefore increased with each sequence level. Participants were 

instructed to reproduce each sequence after each presentation, and used a mouse 

to click on the white boxes in a forward recall order. Four trials per level were 

presented. The path sequences at each level (levels 2-9) from CBT version 1 are 
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listed in Table 2.5 as an example. Three parallel versions of CBT were administered 

in this thesis.  

 

Table 2.5 Path sequence per level of difficulty presented as a digit sequence for 
CBT version 1 

Level 2 
   1,2 
   2,7 
   4,9 
   5,8 

Level 3 
   2,7,8 
   5,6,9 
   3,5,6 
   2,1,3 

Level 4 
   1,2,7,6 
   4,2,6,8 
   6,2,9,8 
   5,1,7,3 

Level 5 
   6,7,1,5,2 
   2,3,4,8,5a 

   1,3,8,2,5 
   2,1,8,7,3 a 

Level 6 
   6,7,5,4,1,2 
   4,1,6,7,8,2 a 
   2,3,4,6,9,8 
   5,6,7,1,4,8 a 

Level 7 
   2,6,5,4,7,9,8 
   5,4,1,6,3,9,7 a 
   2,7,4,3,9,8,5 
   9,5,3,6,1,8,2 a 

Level 8 
   2,3,4,5,6,9,8,7 
   8,1,4,2,7,3,5,9 a 
   7,8,6,5,4,3,1,2 
   3,8,2,1,4,7,9,5 a 

Level 9 
   2,7,8,4,9,1,3,5,6 
   3,1,2,4,7,6,5,8,9 a 
   5,1,3,6,8,7,9,2,4 
   3,1,2,4,8,5,6,9,7 a 

 

Each digit corresponds to the numbered blocks shown in Figure 3.1 
aCrossing trials in which the path taken from block to block crosses a previous path 
within the same trial 
 

A further methodological consideration that the computerised version accounted for 

was path configuration. Traditionally, sequences of the same length had been 

grouped at the same level and considered to be of similar difficulty (Berch et al., 

1998). The highest number of blocks in a sequence remembered would determine 

the Corsi span score (Corsi, 1973). More recent work has highlighted the impact of 

path configuration within each level, as the number of times a path crosses itself 

determines path complexity and therefore, item difficulty (Busch, Farrell, Lisdahl-

Medina, & Krikorian, 2005). Within sequences of the same length, individuals 

remember fewer crossing trials than non-crossing trials (Shah et al., 2013). To control 

for the intra-level item inconsistency generated through path complexity, each level 

(4 trials) was split further into 2 non-crossing trials and 2 crossing trials. It has also 

been shown that as the number of crossings within a trial increases, accuracy 

decreases and response times increase (Parmentier, Elford, & Maybery, 2005). 

Therefore, one path crossing per path configuration was standardised for all crossing 

trials at every level of sequencing.  

Accuracy was derived from the sum of correct responses across all levels. Mean 

reaction times (ms) per target were analysed for correct responses only. Additionally, 
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span limit for both crossing and non-crossing trials was determined as the highest 

level at which at least one trial was correctly reproduced. Normative data for the CBT 

support a Corsi span of approximately 6 in healthy adults (Kessels, van Zandvoort, 

Postma, Kappelle, & de Haan, 2000). 

2.5.2 Attention 

2.5.2.1 Rapid Visual Information Processing (RVIP) 

A Rapid Visual Information Processing (RVIP) task based on the Bakan Vigilance 

Task (Bakan, 1959) was administered to assess sustained attention. Vigilance is the 

ability to maintain attention and focus during unchallenging and monotonous tasks 

over time (Langner & Eickhoff, 2013). The cognitive effort required to maintain 

attention in simple, repetitive tasks has been shown to elicit higher stress response 

and ratings of subjective effort than more stimulating tasks (Warm, Parasuraman, & 

Matthews, 2008). Imaging studies have shown that sustained vigilance tasks require 

activation of the frontal and parietal cortical areas (Sarter, Givens, & Bruno, 2001), 

particularly within the right cerebral cortex (Petersen & Posner, 2012).  The original 

Bakan task demonstrated sensitivity to the impact of differing weight-loss treatment 

arms in overweight women on correct hits (Green, Elliman, & Kretsch, 2005). 

Measures of sustained attention have also been shown to be sensitive to differences 

between obese and normal weight counterparts (Cserjesi, Luminet, Poncelet, & 

Lenard, 2009). They are also sensitive to impairments in adults with sleep apnoea 

(Beebe & Gozal, 2002; Dorrian, Rogers, & Dinges, 2005; Engleman & Douglas, 2004; 

Lal, Strange, & Bachman, 2012) and improvements following aerobic exercise 

interventions (Smith et al., 2010) 

 

The RVIP task used in this thesis adheres to the experimental paradigm of continuous 

stimulus detection (non cued) (Langner & Eickhoff, 2013).  A series of single digits 

(numbers 1-9) were presented centrally on the screen at a rate of 600 milliseconds 

with a 600 millisecond inter-stimulus interval. Number stimuli were presented in yellow 

(font size 36 Courier New) and on a black background. The task usually lasts for 6 

minutes as this has been previously demonstrated to induce fatigue (Auburn et al., 

1987) but can be shortened or extended as required.  There were 100 stimuli per 1 

minute block. Participants were required to correctly identify sequences of either three 

consecutive odd (e.g. 3, 9, 1) or three consecutive even (e.g. 8, 2, 6) targets in a row. 
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Participants were reminded that targets within a sequence did not have to be in an 

ascending or descending order. The number of correctly identified sequences and 

number of errors (false positives, and misses) was measured as well as the reaction 

time for these.  

2.6 Subjective ratings of cognitive test performance 

2.6.1 Cognitive Test Evaluation Questionnaire (CTEQ) 

Ratings of subjective performance and mental effort in relation to the cognitive tests 

were be made after the test battery using visual analog rating scales (VAS) adapted 

from the NASA TLX (Task Load Index) mental workload measure (Hart & Staveland, 

1988). The CTEQ was a pencil and paper task where items were presented as a 

100mm line, with descriptors at each end that represented extremes of each item in 

question. The items assessed were time pressure, concentration, difficulty, 

performance and frustration. For example, in the case of the question ‘How much did 

you concentrate during these tests?’ the descriptors were ‘a small amount’ (on the 

left) and ‘a large amount’ (on the right). Additionally, participants were asked to 

identify the tests which they found to be the most and least difficult in the test battery 

(Appendix 6.13). The CTEQ took 3 minutes to complete. 

2.7 Assessment of blood pressure 

Systolic and diastolic blood pressure were taken at the left arm using an automated 

Omron M7 BP cuff after participants had been seated for forty minutes with an 

appropriately sized cuff. Three measures were taken with a minimum of one minute 

between measurement trials, and the average recorded. The IPSEC approved 

standard operating procedure (SOP) details the procedure (Appendix 6.14). 

2.8 Anthropometric Measures 

2.8.1 Body mass index (BMI) 

The body mass index (BMI) of participants was calculated from their height (Ht) and 

body mass (BM) using a stadiometer and scales to the nearest 0.5 cm and 0.1 kg 

respectively. BMI was determined using the following formula: 
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 BMI = BM (kg)/ Ht2 (m)  

where BM = body mass and Ht = height. 

 

2.8.2 Waist circumference (WC) 

Waist circumference (WC) was measured with participants stood straight with arms 

at sides, feet together and abdomen relaxed. Using a standard tape measure placed 

around the waist in a horizontal plane above the level of the highest point of the iliac 

crest, located using the fingertips, WC was measured to the nearest 0.5 cm. 

2.8.3 Hip Circumference (HC) 

Hip circumference (HC) was measured while participants were standing straight with 

arms at their sides, feet together, abdomen relaxed and not tensing the gluteal 

muscles. Using a standard tape measure placed around the greatest protrusion of 

the gluteal (buttock) muscles, HC was measured to the nearest 0.5 cm. 

 

2.8.4 Body composition 

Total body fat free mass (FFM) and percentage body fat (% BF) were measured by 

bioelectrical impedance analysis (BIA) using the TANITA body composition analyser.  

Resistance to a low safe electrical current as it travels through the body was 

measured, giving an estimate of total body water (TBW) using the following formula 

(Lukaski & Bolonchuk, 1988): 

 TBW = 0.372(Ht²÷R) + 3.05(Sex) + 0.142(BM) - 0.069(age) 

Where Ht = height, R = resistance, BM = body mass. 

Based on the fact that approximately 73 % of FFM consists of water, total body FFM 

can then be determine. Finally, FFM was deducted from BM giving the fat mass (kg), 

the percentage of which can be calculated. 
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2.9 Measurement of physical activity 

2.9.1 Actigraph accelerometer 

 
Physical activity was objectively measured using Actigraph GT3X monitors and all 

data collected by the devices was downloaded and analysed using ActiLIfe 5 

software. The Actigraph devices are one of the most widely used monitors in physical 

activity research (Bassett Jr, Rowlands, & Trost, 2012; Kelly et al., 2013). The GT3X 

monitor uses a triaxial accelerometer that measures acceleration of the body in three 

planes (vertical, medio-lateral and anterior-posterior) (Kelly et al., 2013; Warren et al., 

2010).  

In terms of movement frequencies, the majority of daily physical activity lies between 

0.3-3.5 Hz, with approximately 0.75 Hz indicating slow walking and ≥4 Hz indicative 

of fast running (Santos-Lozano et al., 2012). The inter and intra-instrument reliability 

of the GT3X accelerometers was assessed using mechanical oscillations (Santos-

Lozano et al., 2012). Their results support the accuracy of this device to estimate free-

living physical activity with an intra-instrument coefficient of variation of ≤2.5% 

(between frequencies of 2.1-4.1 Hz) and an intra-class correlation coefficient for 

activity counts of 0.97. Additionally, the GT3X counts per minute demonstrated a 

strong positive correlation with oxygen consumption (VO2) in a lab setting for healthy 

weight adults for treadmill paced slow walking (4.8 km·h-1), fast walking (6.4 km·h-1) 

and running (9.7 km·h-1) (Kelly et al., 2013).  

The monitors estimate human movement by converting the raw accelerations to a 

digital signal, this is then filtered according to the appropriate cut-points and converted 

to “counts” (Bassett Jr et al., 2012). The counts are derived from the amplitude and 

frequency of the acceleration measured from a specific device, and therefore vary 

between monitor brands (Warren et al., 2010). The application of cut-offs or intensity 

thresholds impacts on how movement counts are classified in terms of intensity. 

Therefore, to reduce misclassification error, it is essential that the cut-points are 

appropriate for the user characteristics (e.g. obese/overweight) and movement 

characteristics (e.g. sedentary, low-active, high intensity) to be assessed (Warren et 

al., 2010).  



57 
 

The Actigraph monitors, secured to elastic waist bands provided, were worn vertically 

on the hip to allow for use of the inclinometer function. The following sections describe 

the specific frequency, cut-points and filters applied to the devices.  

2.9.1.1 Frequency 

The normal frequency filter was applied. An alternative filter, the low frequency 

extension (LFE), has increased sensitivity to detect movement at the low end of the 

intensity spectrum (Cain, Sallis, Conway, Van Dyck, & Calhoon, 2013) so could 

potentially have been applied given that all participants researched in this thesis were 

sedentary. However, even though the LFE was found to reduce the misclassification 

of sedentary behaviours to non-wear time, the sensitivity also overestimated step 

counts (Cain et al., 2013; Wanner, Martin, Meier, Probst-Hensch, & Kriemler, 2013). 

Step count was an essential outcome variable for Study 3 (pedometer study) so the 

application of LFE would have made this outcome unusable.   

2.9.1.2 Epoch length 

Epochs are the time intervals into which the measured information is summarised, 

and are traditionally set as 60s in adults (Heil, Brage, & Rothney, 2012). The devices 

administered were set to store data in epochs of 60 seconds. Before being stored to 

memory, within each 60s epoch the data samples were collected at a rate of 30Hz, 

filtered and stored to memory. The devices stored 30 x 60 = 1800 data points for 

every enabled axis every 60 seconds.  

2.9.1.3 Cut points 

The Freedson adult (1998) cut points were selected as these are widely used and 

also validated in obese samples(Freedson et al., 1998). The cut-points categorise PA 

as follows; sedentary (<99 CPM), LPA (100-1952 CPM), MPA (1952-5999 CPM) and 

VPA (>6000 CPM). A review of 12 different cut-points for adults on ActiGraph 

accelerometer data failed to find clear evidence to support one cut-point being 

superior to the others (Loprinzi et al., 2012). This review highlighted that it is unlikely 

that any cut-point will have perfect sensitivity or specificity. This is potentially due to 

the fact that once a cut point is validated against one criterion (i.e. obesity/weight 

category) it assumes that all people in that category behave in the same way. By 

applying absolute cut-points to determine PA level, there is an assumption that a 

specific number of raw activity counts means the same thing in terms of PA level to 

each individual (i.e. 7000 counts·min-1 is vigorous-intensity activity). When comparing 
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3 sets of ActiGraph accelerometer cutpoints (Freedson, Swartz and Hendelmen) 

against HRR, it was found that the majority of time identified as moderate intensity by 

(78.3%), Swartz (88.0%), and Hendelman (94.7%) corresponded with a HRR 

indicative of light intensities (less than 45% HRR) (Ham, Reis, Strath, Dubose, & 

Ainsworth, 2007). This not only demonstrates the variability in PA classifications 

between the 3 cut points selected (Freedson, Swartz and Hendelmen) but also a high 

rate of misclassification between light and moderate intensity as the moderate cut-

points did not correspond with changes in heart rate indicative of moderate-intensity. 

Vigorous-intensity PA demonstrated less variability amongst cut-point methods in 

terms of frequency and duration, the majority of counts above 7000 counts·min-1 

corresponded with >60% HRR.   

However, if the focus of research is sedentary behaviour then cut-points may be 

altered to increase sensitivity to detect movement at the lowest end of the activity 

spectrum. In the GT3X models, research has shown that 150 counts per minute 

(CPM) may be the most appropriate to measure sedentary behaviour (SB). A 

validation study comparing 100 cpm or 150 cpm in GT3X against direct observation 

found 150 cpm to be more accurate when sedentary time was higher and 100 cpm to 

be more accurate when sedentary time was lower (Kozey-Keadle, Libertine, Lyden, 

Staudenmayer, & Freedson, 2011).  

2.9.1.4 Wear-time 

For daily wear time compliance, 10 wearing hours during week days and 8 wearing 

hours during weekends were required. Periods of 60 or more consecutive minutes of 

0 counts were excluded as non-wear time (Bassett Jr et al., 2012). An alternative 

window for non-wear time of 20 minutes was suggested by Berendsen et al. (2014). 

The optimal time frame was based on 10 participants wearing CAM accelerometers 

worn at the thigh, and validated in 6 participants. These findings cannot be applied to 

the hip-worn Actigraph models that were used for this study. Conclusive evidence 

regarding optimal non-wear time is lacking, however, allowing for limited movement 

(1-2 minutes of <50 counts·min-1) can improve accuracy (Winkler et al., 2012). 

2.9.1.5 Wear days for compliance 

It is recommended that the devices be worn for 7 consecutive days, consisting of 5 

week days and two weekend days. Acceptable wear days for compliance were a 

minimum of 5 days, including 1 weekend day. If the device was not worn for the 
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adequate number of wear days, then participants were asked to rewear the device 

for the number of days that were missing.  

2.9.1.6 Instructions and wear time log 

All participants were asked to complete a wear time log (Appendix 6.9) noting the 

times the device was put on and taken off on each of the seven wear days. This not 

only aided data processing, but also served as a reminder for participants to wear the 

device each day. This also helped to reduce burden on participants who reported they 

had missed wear days. In this case, they were instructed to continue to wear the 

device for the missed days as opposed to returning to the lab multiple times to drop 

off an accelerometer with an incomplete data set and collect a new device.  

2.10 Statistical approaches common across studies   

In the analysis of the empirical investigations presented within this thesis, cognitive 

test performance was the primary outcome variable, physiological parameters were 

collected as secondary outcome variables and IQ and age were included as 

covariates. The analytical approach for each thesis study was reviewed by an 

independent statistician, study 1 was reviewed by (Dr Arief Gusnanto, Department of 

Statistics, School of Mathematics, University of Leeds), and studies 2 and 3 were 

reviewed by (Frits Quadt, Quadt Consultancy BV). All data were entered and checked 

in Excel and then analysed using SAS (Statistical Analysis System, Version 9.2; SAS 

Institute, Inc., Cary, NC) or PASW (Version 20.0, SPSS Inc. Chicago).  

All data were summarised and screened for outliers. Residual plots were inspected 

for deviations from normality, and any data exceeding the 99% confidence interval, 

corresponding to 2.58 standard deviations, were removed (Tabachnick & Fidell, 

2007). Skewed data were normalised using appropriate transformations. 

Untransformed data are presented in figures for clarity throughout the thesis. For all 

analyses, the significance level was set at α = 5%.  

For the analysis of between-and within-subjects effects upon primary outcomes, SAS-

mixed models procedure (PROC MIXED) was employed. This procedure uses a 

likelihood-based estimation method to estimate unknown variance-covariance 

parameters (Jennrich & Schluchter, 1986). This model allows for variance in 

covariates within a subject, which is not permitted in PROC GLM procedures. 

Additionally, PROC MIXED can accommodate data that are missing at random.  
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All main effects and interactions were requested in the first model and the model fit, 

F values and significance of main effects and interactions examined. Non-significant 

interactions were removed, starting with highest order interactions, and the resulting 

model was compared to the previous model using the McQuarrie Tsai AICc criterion 

((McQuarrie & Tsai, 1998). The AICc criterion gives an indication of the amount of 

remaining unexplained variance after the model has been fitted, where a smaller AICc 

value indicates a better model. This was used in preference to the Akaike’s 

information criterion (AIC) because the AICc protects against overfitting (Quadt 

Consultancy BV, personal communication). If an improvement in model fit was found, 

other non-significant effects were removed and again the AICc criterion used to 

evaluate the model fit. Models were chosen on the basis of ‘best fit’, and interaction 

terms that improved the fit were retained. F values and corresponding significance 

values for the main effects and interactions in the final selected model for each 

cognitive outcome variable are given in the respective chapters or corresponding 

appendices. Where outliers were indicated by boxplots or regression plots, the 

analysis was re-run with the outlying data points excluded. Only where the exclusion 

led to a difference in inferences that could be drawn from the findings, were the data 

permanently removed and the corresponding values are reported. 

Main effects of condition (e.g. exercise or control) were explored using the least 

squares (LS) means procedure. This employed the Tukey-Kramer (Tukey, 1951) test 

to compare the LS mean outcome score from each test of cognitive performance in 

response to each condition at the average level of the corresponding baseline rating. 

In the event of heterogeneity of regression slopes, indicated by a significant 

baseline*condition interaction, LS means comparisons were also used to compare 

the effects of each condition on LS mean cognitive performance score at different 

levels of the corresponding baseline rating using the Tukey-Kramer test.  
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Chapter 3 Study 1 - Relationship between objectively 

measured physical activity and cognitive function in 

overweight/obese middle-aged adults. 

3.1 Introduction 

3.1.1 Physical Activity and cognitive function 

Chapter 1 examined the evidence showing compromised cognitive function in 

overweight/obese samples. This is thought to be driven by obesity-associated 

comorbidities. The evidence reviewed suggested that self-reported physical activity 

(PA) has a potentially mechanistic role in the relationship between obesity and 

cognitive function. Nevertheless, there is a paucity of research and therefore 

considerable gaps in our knowledge about the relationship between objectively 

measured PA and cognitive function in obese/overweight samples. It is not known 

whether particular aspects of PA (e.g. intensity, duration, etc) play a critical role in 

this relationship. It is also not known whether any specific cognitive domains are more 

responsive to PA, or lack of it, than others. Little research has been undertaken in 

middle aged adults and although these findings cannot be directly applied to the 

middle-aged obese sample studied in this thesis, they suggest cognitive domains 

which might merit exploration as part of the research presented in this thesis. Lessons 

and recommendations from the research discussed below were carried forward to 

shape the research objectives for the study presented in this chapter.  

There is very limited evidence available on the association between objectively 

measured PA and cognitive function in overweight/obese middle-aged adults. As 

described in Chapter 1, section 1.2.5, only a limited number of studies examining the 

relationship between PA and cognitive function have used objective measures of PA 

in non-elderly adults. These studies were conducted in pre-bariatric (morbidly) obese 

adults with comorbidities, limiting the application of the findings to patient samples of 

this demographic.  Two studies in this area (Galioto et al., 2014; Langenberg et al., 

2015) found limited support for an association between memory and MVPA, and also 

an interaction between low accumulated minutes of total PA, depression and working 

memory. Both samples examined were low active and it was suggested by the 

authors that there may not have been enough variability in the physical activity data 
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to detect effects on cognitive function outcomes. A further suggestion was that 

participants were not attaining sufficient PA to drive cognitive benefits. 

Research in older adults indicates higher accumulated minutes of moderate-intensity 

and light-intensity predict variation in executive function and memory (Kerr et al., 

2013; Makizako et al., 2014). In terms of cognitive preservation, in order to identify 

suitable PA behaviours for intervention, we must elucidate what specific components 

of PA are associated with variation in domain-specific cognitive outcomes. There is 

not enough data to make inferences regarding the type of PA (i.e. intensity) that 

confers the greatest benefit. The objective measurement of PA is essential to this 

investigation.  

 

3.1.2 PA outcomes and implications for research 

In order to explore or clarify the relationships between PA and other parameters (such 

as cognitive function or health) it is essential that PA is assessed accurately. 

Typically, accelerometer counts are summarised into individual summary statistics 

(daily MVPA, sedentary minutes, light-activity, etc). Collinearity between PA 

outcomes has been reported (Augustin et al., 2012) as the summaries of PA 

behaviour (sedentary, light, moderate, vigorous, total counts, etc) are not mutually 

exclusive. If only one summary (i.e. MVPA) is entered as a predictor in a model, 

adjustment for all other activity summaries (sedentary, light, etc) is required. However, 

this is problematic when the variables are not independent of one another as it results 

in parameter estimates with large variances that are unreliable. Additionally, because 

these variables are not independent of one another it is not appropriate to enter the 

summaries of PA levels simultaneously as predictors in a model. An approach is 

required that addresses the collinearity issue.  

3.1.3 Inter- and intra-correlation of PA and health variables 

The research described above highlights a potential relationship between PA and 

cognitive function, but it is apparent from chapter 1 that a variety of health markers 

also mediate this relationship. Body composition and fat distribution can vary greatly 

within overweight/obese samples. The sample for this study were all categorised as 

overweight/obese based on a BMI of at least 25 kg/m2, however, variation in adiposity 

measures (WC, WHR, BF% and BMI) must be taken into consideration. This is 

particularly important as some characteristics, such as waist circumference 



64 
 

(indicative of abdominal obesity), are shown to exert a greater influence on health 

and also cognitive function when compared to more general measures of obesity (BF 

%, BMI). As described in (1.1.4), indices of body composition are also highly 

correlated indices of cardiometabolic health. Therefore, in addition to the overlapping 

variance of PA outcomes described in section 3.1.2, it is known that PA, body 

composition and markers of cardiometabolic health are correlated with each other 

also (Chapter 1). The issues highlighted in this short review helped to shape the 

statistical approach adopted for the study presented in this thesis chapter. 

3.1.4 Summary 

Habitual PA is known to have a positive relationship with cognitive function outcomes, 

however objective measures of PA are rarely used in research. It is not known 

whether specific facets of PA (i.e. time spent in intensity domains) are associated with 

domain-specific cognitive function outcomes. This area of research has largely been 

conducted in older adults, with only two studies examining this relationship in obese, 

non-elderly samples. The research by Galioto et al. (2014) and Langenberg et al. 

(2015) found very limited support for a relationship between PA and cognitive function 

outcomes. However, the samples were fairly homogenous in activity levels in that 

they were highly sedentary, perhaps making it difficult to detect cognitive function in 

relation to variance in PA. One thing to consider in this area of research is that PA 

has the capacity to moderate many of the health markers associated with cognitive 

decline (blood pressure, fasting glucose, adiposity). However, many of these show 

high degrees of correlation with each other and with PA outcome variables. Therefore, 

they should not be considered as distinct variables, rather the overall pattern they 

show should be explored. 

3.2 Objectives and Hypotheses 

The primary aim of the work in this chapter was to explore the relationship between 

cognitive function outcomes and markers of PA including sedentariness, body 

composition and health in overweight/obese middle-aged adults. Insufficient literature 

was available to make an a priori hypothesis regarding the relationship between 

objectively measured activity and domain-specific cognitive performance. Based on 

the empirical evidence reviewed in Chapter 1 and section 3.1, it was hypothesised 

that higher scores on tasks of executive function and verbal memory would be 

predicted by higher accumulated minutes of MVPA and LPA. A secondary objective 
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was to conduct exploratory analyses of the relationship between health/activity and 

additional cognitive domains (attention, working memory and spatial memory).  

Objectives: 

I. To explore the relationship between cognitive outcomes and PA in a sample of 

overweight/obese middle-aged adults, whilst controlling for age and IQ.  

II. To identify the variables (individual or composite) which predict cognitive function 

within each cognitive domain.  

 

3.3 Methods 

3.3.1 Participants 

The study sample consisted of males and females aged 30-60 years from the Leeds 

area who were recruited to take part in Studies 2 (Chapter 4) and 3 (Chapter 5). All 

participants were classed as overweight/obese (BMI of ≥25 kg/m2) and low-active 

according to their average step count (~7235.8 steps/day) recorded over 7 days. As 

part of the exclusion criteria, all participants reported <2 30-minute sessions of 

moderate-intensity activity per week. Eligibility was assessed by the researcher (see 

screening procedure and inclusion/exclusion criteria described in Chapter 2 (section 

2.2.3). Seventy three participants (11 males; 62 females) provided both 

accelerometer and cognitive function data. Of these, 6 returned accelerometers that 

had failed to record step count. Additionally, data for systolic blood pressure was 

missing for 1 participant and data for IQ was not recorded for 3 participants. Hence, 

the final sample consisted of 63 participants. Additional measures of fasting glucose 

and executive function (TMT and Stroop colour/word interference task) were obtained 

from those participants (n=51) who took part in study 2.   

 

3.4 Experimental Design 

The study conformed to a cross-sectional design. Measures of cognitive function, 

body composition, cardiometabolic health and physical activity were collected within 
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a 2-week time frame for each participant. These data were then utilised for all 

analyses presented in this chapter. 

3.5 Experimental protocol 

All testing took place in the School of Psychology, and each testing visit was 

completed within 90 minutes. Individuals meeting the study inclusion criteria for 

studies 2 and 3 were invited to the laboratory for a study familiarisation visit and 

administration of the practice cognitive test battery (Visit 1; see section 2.3.1). 

Between Visit 1 and Visit 2 all participants wore an accelerometer for a 7-day 

assessment of baseline PA level. Upon completion of the 7-day PA assessment, 

participants attended the lab for baseline testing visit (Visit 2, see Chapter 2, section 

2.2.3) for assessment of cognitive function, body composition and, blood pressure. 

Fingertip capillary blood samples were collected for assessment of fasting glucose 

and insulin in a subsample (n=46) for study 3 (pedometer chapter). Figure 3.1 shows 

the study flow from study familiarisation to completion. 

 

 

Figure 3.1 Study flow diagram 

  



67 
 

3.6 Study Procedures 

3.6.1 Assessment of physical activity 

Physical activity was assessed using a GT3X Actigraph accelerometer as previously 

described in section (Chapter 2, section 2.9). The PA outcomes that were generated 

were; daily accumulated minutes of sedentary (<99 CPM), LPA (100-1952 CPM), 

MPA (1952-5999 CPM) and VPA (>6000 CPM), and daily step count. In addition to 

these, fractionation of PA was explored by including the following variables: 

moderate/vigorous-intensity PA (MVPA) bout minutes (>10minutes), MVPA total 

counts (bouts>10 minutes), and sedentary bouts (SB) (>60 minutes).  

3.6.2 Assessment of anthropometric indices 

The measures of anthropometric indices were assessed as previously described in 

section (Chapter 2, section 2.8). The outcomes measured for this study were body fat 

percentage, body mass index (BMI), waist circumference (WC) and waist-hip ratio 

(WHR).  

3.6.3 Assessment of blood pressure  

Systolic and diastolic blood pressure were taken at the left arm using an automated 

Omron M7 BP with an appropriately sized cuff after participants had been seated for 

forty minutes. Three measures were taken with a minimum of one minute between 

measurement trials, and the average recorded. The IPSEC approved standard 

operating procedure (SOP) shows the procedure (IPSEC ref 00-0204, see Appendix 

6.14. 

3.6.4 Assessment of cognitive function 

All participants attended the cognitive test sessions in a 12 hour fasted state. The 

tests and order of administration are shown in Table 3.1. All tests were administered 

for studies 2 and 3, and are therefore described in Chapter 2, section 2.4. 
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Table 3.1 Order of cognitive test presentation within the cognitive test battery 

Cognitive test 
Test duration 

(minutes) 
Cognitive domain 

1. Visual Spatial Learning Test▲  6 Spatial memory  

2. Visual Verbal Learning Test* 12 Verbal memory 

3. Corsi Block Tapping Test* 
(Computerised version) 

4 Spatial working memory  

4.Bakan Test* 6 Attention 

5. Stroop (colour/word) * 3 Executive function 

6. Trail Making Test (A&B) ▲ 2 Executive function 

* Test administered on computer (experimenter not present) 

▲Test administered by hand by the experimenter 

 

3.7 Ethical approval 

Ethical approval for Study 1 was covered by ethical approval obtained for Studies 2 

and 3 (see Chapter 2, section 2.3).  

 

3.8 Analysis of data  

All data were analysed using SPSS 21.0 (SPSS, Inc. Chicago, USA) and the 

significance (α-levels) were set as p < 0.05.  All data were summarised, plotted as 

means (± SE) with boxplots produced to check for outliers.  

To examine the relationship between anthropometric and physical activity outcomes, 

Pearson’s correlation coefficients were performed. Because of the ratio of cases to 

variables, and the presence of multicollinearity, principal component analysis (PCA 

see section 3.8.1) was used to extract factors from the measures of anthropometry 

and physical activity. Multicollinearity among the predictor variables results in 

unstable parameter estimates, which greatly impacts on the prediction of the 

dependent variable in the regression model (Tabachnick & Fidell, 2007).The 

relationships apparent between the body composition and PA variables rendered 

them unsuitable for concomitant use in multiple regression models (MR) to predict 

cognitive function. Systolic blood pressure and fasting glucose were not correlated 
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with the PA/body composition measures so were retained as individual predictor 

variables. Hierarchical multiple linear regression analyses (see section 3.8.2) were 

performed for each individual cognitive outcome variable. This was to establish the 

extent to which the anthropometric and physical activity principal components (PCs) 

explained the variance in cognitive function outcomes, whilst controlling for IQ and 

age, which are known to be important predictors of cognitive function (Diaz-Asper, 

Schretlen, & Pearlson, 2004; Fjell et al., 2013). 

3.8.1 Principal component analysis (PCA) 

PCA is a data reduction technique which works by first examining the structure of a 

high-dimensional data set and then projecting the observations onto principal 

components (Croux & Haesbroeck, 2000). After mapping the original data, it is 

transformed (by rotating the axes along which the variables included are plotted) in a 

linear fashion to a new co-ordinate system, in a lower dimensional space 

(Gharibnezhad, Mujica, & Rodellar, 2015). Put simply, it extracts the most relevant 

information from an often intercorrelated data set by reducing it to a lower dimension 

and revealing the collection of structures which underpin the original high-dimensional 

data set (Shlens, 2014).  

PCA produces eigenvalues, ordered in magnitude from largest to smallest, which 

represent variance explained along unobserved dimensions (Dinno, 2014). Each 

eigenvalue represents a portion of the total standardised variance, therefore, to 

account for all the variance in the data set PCA generates the same number of PCs 

as there are observed variables (Tabachnick & Fidell, 2007). In this case, a maximum 

of 12 PCs would explain 100% of the variance in the 12 body composition and 

physical activity variables. Orthogonal PCs maximise the variance explained (from 

the 12 original body composition and PA variables), the largest portion of data 

variability is explained by the first PC, and the subsequently extracted PCs describe 

the remaining portions of data variability in descending order (Stanimirova, 

Daszykowski, & Walczak, 2007).  

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy and Bartlett’s test of 

sphericity were performed to confirm the appropriateness of PCA on this dataset. 

Varimax rotation was used to extract orthogonal principal components (PCs) 

(Tabachnick & Fidell, 2007). Twelve variables (4 body composition and 8 PA 

variables) were compressed, via dimension reduction, to 4 principal components 

(PCs). The components are distinct from each other, but collectively represent all of 
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the variance in the 12 body composition and PA variables. Twelve components would 

explain all (100%) of the variance in the 12 body composition and PA variables, 

however, this defeats the objective of dimension reduction where the aim is to 

represent the variables which explain maximum variance in the most parsimonious 

manner. The number of components to retain was decided using empirical guidelines 

described below and confirmed by scree plots and parallel analysis.   

Selection of the number of factors to be retained for analysis was initially guided by 

the size of the eigenvalues and the Scree test following varimax rotation (Cattell, 

1966), which shows eigenvalues plotted against the components. Eigenvalues 

represent the variance contributed to the PC after extraction (Tabachnick & Fidell, 

2007). Any component with an eigenvalue lower than 1 is deemed as less important 

since it accounts for only a small proportion of the variance in the sample. Factor 

loadings indicate the contribution of each original variable to the variance accounted 

for by a principal component. For inclusion into a principal component, loading values 

> 0.5 are required, and a higher loading score indicates a higher contribution. Factor 

loadings above .71 are considered excellent (Comrey & Lee, 2013). 

3.8.1.1 Parallel analysis 

The widely used Scree test and eigenvalues-greater-than-one rule which are used to 

determine the number of PCs to extract, are both simplistic, vulnerable to 

overestimation of components and less adequate in small sample sizes (O’Connor, 

2000; Tabachnick & Fidell, 2007). A recommended procedure to decide upon the 

number of components to retain is Parallel Analysis (Horn, 1965).  This three-step 

procedure involves randomly generating data sets that parallel the original data set 

(in terms of number of cases and variables). PCA is then repeatedly performed on 

the randomly generated data sets whilst noting the eigenvalues for each analysis 

(O’Connor, 2000). Finally, the average eigenvalues for each component from the 

Parallel Analysis are then compared to the results from the original analysis 

(Tabachnick & Fidell, 2007). Only eigenvalues from the original data set that exceed 

the values from the Parallel Analysis are retained, this is usually set as the 95th 

percentile (Cota, Longman, Holden, Fekken, & Xinaris, 1993; Glorfeld, 1995). 

3.8.2 Hierarchical multiple linear regression 

A series of hierarchical multiple linear regression analyses were performed to 

establish the extent to which anthropometric and PA PCs explained the variance in 
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cognitive function outcomes, whilst controlling for IQ and age.  For each cognitive 

outcome, variables were entered into the regression model in blocks. In every multiple 

regression model, age and IQ were entered in the first block since these were 

considered causally prior. The 4 PCs and SBP (which did not show multicollinearity 

with other outcomes and therefore, was not included in the PCA) were added in the 

second block.  Standardised residual plots were inspected for deviations from 

normality and MR repeated on the Box Cox transformed variables as appropriate, 

with Lambda reported where used. Untransformed data are presented in figures for 

clarity. Variance inflation factor (VIF) values were inspected to confirm that collinearity 

had been resolved. In every MR output, VIF for all predictor variables was low (1 ± 

0.5), and therefore is not reported in tables of results.  
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For clarity, the whole analytical approach adopted for this study is summarised in the 

schematic below (Figure 3.2).  

 

 

Figure 3.2 Schematic of statistical analysis 

3.9 Results 

3.9.1 Participant characteristics 

Participant characteristics for those participants included in the analysis are shown in 

Table 3.2. The sample consisted of 63 participants (males = 10; females = 53) aged 

30-60 years (mean age: 46.1 ± 7.0 years). All participants included in the analysis 

were overweight/obese (BMI 32.7 ± 4.4 kg/m2; body fat percentage 41.6 ± 6.6 %). 

Systolic (SBP) blood pressure values ranged from healthy (80-120 mmHg) to 

hypertensive (140+mmHg). Of the sample with glucose data available (n=46), 72.7% 
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had values in the healthy range (3.6-5.5mmol/L) and 27.3% had values that exceeded 

the upper limit of the healthy range.    

Table 3.2 Participant Characteristics  

 
Males 

(n=10) 

Females 

(n=53) 
 Total sample 

Characteristic Mean ± SD Mean ± SD p n Mean ± SD min max 

Age (yrs) 48.4 ± 6.9 45.6 ± 7.0 .242 63 46.1 ± 7.0 30 57 

BMI (kg/m2) 31.8 ± 4.1 32.9± 4.4 .500 63 32.7 ± 4.4 25.5 44.5 

Body fat 
percentage (%) 

30.5 ± 3.2 43.7 ± 4.7 .000 63 41.6 ± 6.6 24.3 54.5 

WC (cm) 114.4 ± 8.1 108.8 ± 11.3 .143 63 109.7 ± 11.0 86 133 

WHR 1.01 ± 0.1 0.94 ± 0.1 .006 63 0.95 ±  0.1 .77 1.11 

SBP (mmHg) 

 
130.9 ±  14.3 125.0 ± 14.3 .240 63 126.0 ± 14.3 99 162 

DBP (mmHg) 

 
92.2 ± 10.6 84.6 ± 8.9 .019 63 86.18 ± 10.1 68 109 

Fasting Glucose1 
(mmol/L) 

5.5 ± 0.8 5.5 ± 1.6 .992 46 5.43 ± 1.5 4.15 10.50 

IQ (score) 122.0 ± 9.6 113.1 ± 12.8 .042 63 114.52 ± 12.7 69 135 

1NB Fasting glucose available in sub-sample only (n=46). DBP=diastolic blood pressure, SBP=systolic 
blood pressure, min=minimum, max=maximum, WC=waist circumference, WHR=waist-hip ratio  

 

Significant gender differences are apparent from Table 3.2 which shows that 

percentage body fat was significantly higher in females (43.7 ± 4.7 %) than in males 

(30.5 ± 3.2 %; t(61)=-8.54, p<.001). Waist hip ratio was significantly lower in females 

(0.94 ± 0.1) than in males (1.01 ± 0.1; t(61)=2.83, p<.01). Diastolic blood pressure 

was significantly lower in females (84.6 ± 8.9 mmHg) than in males (92.2 ± 10.6 

mmHg; t(61)=2.41, p<.05). IQ was significantly higher in males (122.0 ± 9.6) than 

females (113.1 ± 12.8; t(61)=2.07, p<.05). However, the difference in sample size 

between genders should be noted. 

Table 3.3 shows the Wechsler Adult Intelligence Scale (Wechsler, 1997) 

classifications and the percentage of the study sample that fell within each category. 

Of the sample, 41.2% were classed as above average (superior or very superior), 

54.0% achieved average scores (average or high average). Only 4.8% obtained 
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scores below average (low average or extremely low). The majority of the sample 

(67.1%) were categorised as high average to very superior. 

Table 3.3 Participant IQ classifications1 

WASI IQ score classification 
% of sample 
in category 

130 and above very superior 7.9 

120-129 superior 33.3 

110-119 high average 28.6 

90-109 average 25.4 

80-89 low average 3.2 

70-79 borderline 0.0 

69 and below extremely low 1.6 
1 Classification based on the Wechsler Adult Intelligence Scale (Wechsler, 1997) 

3.9.2 Objectively measured physical activity (7 days) 

Table 3.4 shows the objectively measured physical activity behaviours of the sample 

(n=63) over a 7-day period. Accelerometers were worn for an average of 6.3 ± 1.0 

days. Average daily wear time was 807.3 ± 90.4 minutes, this equates to 

approximately 13.5 hours. The table shows daily total accumulated minutes 

(irrespective of bout durations) of sedentary, light, moderate and vigorous activity. 

Sixty-six percent of waking hours were spent sedentary, 29.6 % spent in LPA, 4.2% 

spent in MPA and 0.1% of daily time was spent in VPA. In terms of vigorous activity 

75.3% were accumulating 0 minutes, only 2% were accumulating >5 minutes daily, 

the maximum was 9.3 minutes daily. When moderate and vigorous activity were 

combined into one class of behaviour (MVPA) and observed in bouts (≥10 minutes), 

average daily bouts were ≤1 bout. Only 3 participants (4.8%) achieved the 

recommended 30 minutes of daily MVPA (accumulated through three 10-minute 

bouts). Thirty three percent were achieving 1-3 bouts daily. Sixty-two percent (n=39) 

were doing less than one bout. Sedentary behaviour (SB) was also looked at in bouts 

(>60 minutes) to look at impact of prolonged sedentary time. The sample had a daily 

average of 1.6 bouts (>60 mins) per participant, with 14.3% participants accumulating 

nearly 4 hour-long bouts each day. In terms of step count, 60.3% of the sample were 

classed as sedentary or low active (below 7500 steps).  However, some were highly 

sedentary (under 2300 steps) and 14.3% were active/highly active (10,000+ steps). 
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Table 3.4 Objectively measured physical activity characteristics of 
participants (n=63)1 

 
Males    
(n=10) 

Females 
(n=53) 

 Total  sample (n=63) 

Characteristic Mean ± SD Mean ± SD p Mean ± SD min max 

Time sedentary 
(mins/day) 

584.3 ± 73.2 524.8± 84.7 .042 534.2 ± 85.3 303.9 722.0 

LPA (mins/day) 183.7 ± 61.7 249.3 ± 75.9 .013 238.9 ± 77.3 124.2 433.7 

MPA (mins/day) 39.5 ± 18.0 32.6 ± 18.5 .278 33.7 ± 18.5 1.8 84.0 

VPA (mins/day) 1.4 ± 3.0 0.2 ±  0.8 .019 0.5 ±  1.4 0.0 9.3 

MVPA daily 
(bouts>10 mins) 

1.1 ± 0.8 0.8 ±  0.8 .251 0.9 ± 0.8 0.0 3.17 

MVPA total counts 
(bouts > 10 mins) 

443487.6 ±  
410762.5 

286719.0 ± 
309889.3 

.169 
311602.9 ± 
329195.4 

0.0 
134930

1 

Daily steps 
6832 ± 
2193.1 

7439.5 ± 
3216.3 

.571 
7343.2 ± 
3069.8 

2285.7 17062.4 

Sedentary bouts 

(> 60 mins) 
2.21 ± 1.2 1.52 ± 0.9 .042 1.6 ± 1.0 0.0 3.86 

Wear days 6.3 ± 1.0 6.3 ± 0.9 .860 6.3 ± 1.0 4.0 8.0 

Wear time (mins) 809.1 ± 81.9 807.0 ±  92.6 .947 807.3 ±  90.4 631.3 1005.0 

1 Sample size for all variables was as shown, except for daily step count. Total sample size for this 
variable was n=67 (n = 10 for males; n=57 for females). LPA-light-intensity PA, min=minimum, 
max=maximum, MPA=moderate-intensity PA, VPA=vigorous-intensity PA 

 

The pattern of activity in this sample is similar to that found in a large U.S sample 

(Tudor-Locke et al., 2010), where the daily percentage of time spent in sedentary, 

low/light (combined), moderate and vigorous activities was 56.8%, 40.4%, 2.6% and 

0.2% respectively. Only 3.2% of U.S adults achieved the public guidelines. Within the 

overweight category, average steps per day was ~6,900, with 25.3 minutes of 

moderate activity and 5.3 minutes of vigorous activity accumulated daily. Within the 

obese category, average steps per day were ~5,800, and 17.3 minutes of moderate 

activity and 3.2 minutes of vigorous activity were accumulated daily.  

Significant gender differences in some of the PA outcomes are apparent from Table 

3.4. Total accumulated sedentary time was higher in males (584.3 ± 73.2 mins/day) 

than in females (524.8± 84.7 mins/day; t(61)=2.08, p<.05). Total LPA was higher in 

females (249.3 ± 75.9) than in males (183.7 ± 61.7; t(61)=-2.57, p<.05). Total VPA 
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was significantly higher in males (1.4 ± 3.0 mins/day) than females (0.2 ± 0.8 

mins/day; t(61)=2.40, p<.05). Prolonged sedentary bouts (>60 minutes) were 

significantly higher in males (2.21 ± 1.2 bouts) than females (1.52 ± 0.9 bouts; 

t(61)=2.07, p<.05. Once again, it must be noted that there are more females than 

males in the sample.   

 

3.9.3 Inter- and intra-correlation of health and physical activity 

predictor variables 

Table 3.5 shows correlation within and between subclasses of predictor variables 

prior to principal component extraction. As expected, PA variables were related to 

other PA variables. The strongest relationships were observed between step count, 

moderate-intensity activity (all three measures) and sedentary behaviour. The table 

also shows body composition variables were related to step count, and moderate-

intensity and vigorous-intensity activity. Systolic blood pressure and fasting glucose 

did not significantly correlate with any body composition or physical activity variables, 

and were therefore not incorporated into PCA. Age and IQ showed limited weak 

correlations with the body composition or physical activity variables.    
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Table 3.5 Inter- and intra-correlations of relevant participant characteristics 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. BMI -                

2. percentage body fat .654** -               

3. Waist 
circumference 

.813** .437** -              

4. Waist-hip ratio .129 -.093 .558** -             

5. Time sedentary 
    (mins/day) 

-.183 -.327** -.074 .094 -            

6. LPA (mins/day) .018 .202 -.050 .011 -.382** -           

7. MPA (mins/day) -.024 -.172 -.078 -.207 -.138 -.102 -          

8. VPA (min/day) -.162 -.241* -.022 .052 .018 -.150 .231* -         

9. MVPA >10 bout 
    (mins/day) 

-.137 -.223 -.150 -.146 -.040 -.197 .840** .289* -        

10. MVPA total counts -.222 -.281* -.194 -.131 .014 -.160 .781** .379** 
.918*

* 
-       

11. Daily step count -.357** -.214 -.358** -.155 -.242* .351** .518** -.039 
.408*

* 
.458*

* 
-      

12. Sedentary bouts 
      (> 60 mins) 

-.167 -.312** -.060 .055 .714** -.620** -.066 .111 .129 .174 -.307* -     

13. Age -.193 -.238 -.092 .206 .224 .119 -.174 -.311** -.078 -.136 -.026 .076 -    

14. IQ -.131 -.332** .035 .075 .400** .045 -.005 .031 .059 .172 .045 .241* .054 -   

15. SBP .148 -.066 .199 .199 -.191 .125 .052 -.016 -.023 -.003 .140 -.139 .225 .072 -  

16. Fasting glucose -.095 -.102 -.022 .225 .126 .148 -.163 -.104 -.090 -.131 .050 -.022 .194 -.011 .220 - 

*p<0.05,**p<0.01;*** p<0.001, 1Numbers in the title row correspond to the numbered predictor variables in the first column. BMI=body mass index, LPA-light-intensity PA, 
MPA=moderate-intensity PA, SBP=systolic blood pressure, VPA=vigorous-intensity PA,
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The pattern of correlation coefficients in Table 3.5 suggests multicollinearity amongst 

the variables that are hypothesised to predict cognitive function. Thus these 

predictors are not suitable to be included as individual predictors in multiple 

regression analysis.  

 

3.9.4 Principal component analysis 

Principal component analysis (PCA) removes the multicollinearity problem by 

simplifying the complexity of the relationship between predictor variables and 

reducing these correlated variables to principal components (PCs) to allow the 

variables to be used as composite predictors. The KMO measure of sampling 

adequacy was > 0.6, confirming that the sample size was adequate to apply PCA. 

Four principal components were retained for subsequent analysis since these had 

eigenvalues >1 and the Scree plot in Figure 3.3 showed a change in the slope of the 

line after the fourth factor. Parallel analysis (represented in Figure 3.3 by the red 

dotted line) was also performed to assess adequacy of extraction. 

 

Figure 3.3 Scree plot and parallel analysis of eigenvalues for all physical 
activity and body composition factors. 

 

The parallel analysis indicated that the fourth component fell below the 95th percentile 

criterion, and hence technically only 3 components should have been retained. 

However, this would have meant that one of the principal components theoretically 

important to this thesis which reflected central adiposity and VPA would have been 
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lost. The decision was therefore, made to retain four components and interpret these 

with caution. 

Table 3.6 shows the results of the PCA. Four components (PC1-PC4) were retained, 

each explaining more than 10% of the variance. The cumulative variance explained 

by the 4 principal components was 77.3%. Table 3.6 shows the eigenvalues and 

variance explained by each PC, and the factor loadings of the variables within each 

principal component.  The four components were labelled as follows (see Table 3.6 

for variable loadings on each PC): 

 PC1 (MPA + steps) comprised of ‘MPA’, ‘MVPA bouts’  and ‘MVPA total counts’ 

which all loaded very highly on this component (>.90), and step count which 

showed a moderate loading (.50).  

 PC2 (adiposity) comprised of ‘BMI’, ‘WC’ and ‘body fat’ which all loaded highly on 

this component (>.70). Step count, in addition to loading on PC1, also makes a 

contribution to PC2 (-.43).   

 PC3 (SB) comprised of ‘sedentary bouts’ and ‘time sedentary’ which had high 

positive loadings (>.80) on this component, and also ‘LPA’ which had a high 

negative loading (-.77) on this component. Step count also makes a contribution 

to PC3 (-.48).  

 PC4 (WHR + VPA) comprised of ‘WHR’ which had a high positive loading on this 

component (.82), and also ‘VPA’ which loaded to a lesser extent on this 

component (.58). ‘WC’ and ‘body fat’ in addition to loading on PC2, also make 

smaller contributions PC4 (.46 and -.37 respectively).  
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Table 3.6  Rotated factor loadings for each PC 

Variable 

Loadings after Varimax rotation1 

PC1 

“MPA+steps” 

PC2 

“Adiposity” 

PC3 

“SB” 

PC4 

“WHR+VPA 

MPA (mins/day) .94 .03 -.10 -.01 

MVPA >10 bout (mins/day) .95 -.05 .04 -.01 

MVPA total counts (bouts > 
10 mins) 

.93 -.15 .04 .04 

Step count .50 -.43 -.48 -.05 

BMI -.01 .94 -.02 -.01 

WC -.08 .84 .03 .46 

Body fat (%) -.14 .75 -.24 -.37 

Sedentary bouts (>60min) -.02 -.12 .90 .03 

LPA (min/day) -.16 -.12 -.80 .01 

Time sedentary (mins/day) -.17 -.19 .77 .06 

WHR -.24 .20 -.03 .82 

VPA (mins/day) .19 -.13 .06 .58 

Eigenvalues of PC 3.44 2.51 2.04 1.29 

% of variance explained 
by PC 

28.62 20.92 17.02 10.72 

Cumulative % variance 28.62 49.54 66.56 77.28 
1 Values represent loadings on each principal component.

2. 
Loadings printed in green are intended to 

highlight substantial/meaningful loadings on more than one PC              
          

 

3.9.5 Predictors of cognitive function 

Multiple linear regression analyses were performed for each cognitive test outcome. 

For each two models were produced. Model 1 included only the covariates, IQ and 

age added in the first block as these are known to be causally prior to cognitive 

function. In the second model SBP and the 4 PCs were added in a second block. For 

brevity, model 2 is reported unless this failed to reach significance, in which case the 

results from model 1 are reported in tables in the appendices. Data on fasting glucose 

was available in 46 participants. However, when entered into model 2, the 

accumulated missing data from the 5 entered variables reduced the sample size for 

analysis to 38 (with 8 predictors). Therefore, fasting glucose was also omitted from 

the analysis.   
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3.9.5.1 Verbal memory 

Five outcomes were generated by the visual verbal learning test (VVLT); total 

acquisition, delayed recall, recognition, proactive interference and retroactive 

interference. See section 2.4.1.1 for details on how the scores are derived for the 

VVLT outcomes.  

3.9.5.1.1 Total acquisition (total words recalled)  

Model 1 was significant, F(2,61)=5.08, p < .01, and explained 12% of the variance in 

total words recalled (adjusted R2 = .12). The β coefficients (Table 3.7) indicated that 

IQ was a significant predictor of words recalled (β = .36, t= 3.01, p< .01). Translated 

in terms of number of words recalled, for every 1.0 point increase in IQ score, there 

is a change of 0.17 words, B = 0.17, p<.001, so 10 points difference in IQ (one 

standard deviation) is likely to produce almost 2 more words recalled. Age did not 

significantly predict total words recalled.  

Model 2 just failed to reach statistical significance, F(7, 61)=2.13, p = .056, and 

accounted for 12% of the variance in total words recalled (adjusted R2 =.12). The beta 

coefficients for the PCs and SBP were non-significant. The relationship between IQ 

and total words recalled remained significant following inclusion of the PCs and 

systolic blood pressure, β= 0.32, p < 0.05.  
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Table 3.7 Multiple linear regression analyses of relationship between 
immediate verbal memory (total acquisition) and health parameters 

  Immediate verbal memory: total acquisition 

Model  B SE B β t Sig 

1 

Constant 

Age 

IQ 

 

19.39 

-0.14 

 0.17 

 

7.65 

0.10 

0.06 

 

 

-0.16 

 0.36 

 

 2.54 

-1.34 

 3.01 

 

.01 

.19 

.00 

2 

Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

 

32.31 

-0.13 

 0.15 

-0.09 

 0.13 

-0.92 

 0.42 

 0.27 

 

9.89 

0.11 

0.06 

0.05 

0.73 

0.84 

0.73 

0.73 

 

 

-0.15 

 0.32 

-0.21 

 0.02 

-0.14 

 0.07 

 0.05 

 3.27 

-1.16 

 2.43 

-1.59 

.182 

-1.09 

.578 

.371 

.00 

.25 

.02 

.12 

.86 

.28 

.57 

.71 
 Model 1: adjusted R2 = .12; F(2,61)=5.08, p< .01 
 Model 2:  adjusted R2 = .12; F(7, 61)=2.13, p= .056 

 

3.9.5.1.2 Delayed recall 

For VVLT delayed recall neither model was significant, F(2,61)=2.33, ns and 

F(7,61)=1.06, ns, respectively (see Appendix 6.15). 

3.9.5.1.3 Recognition List A 

The standardised residuals deviated from normality, and were transformed using Box 

Cox transformation (λ = 1.2). Model 1 was significant, F(2,61)=6.90, p < .01, and 

explained 16% of the variance in recognition of List A (adjusted R2 =.16).   

 

In model 2, the inclusion of the PCs and blood pressure resulted in a model that 

approached significance, F(7,61) = 2.08, p = .062 and explained 10% of the variance 

(adjusted R2 =.10). Table 3.8 shows that recognition score was predicted by IQ (β = 

.29, t= 2.27, p< .05) and age (β = -.324, t= -2.60, p< .01). This translates to an 

increase of 0.11 words recognised for every 1.0 point increase in IQ score (B=0.12, 

p<.01), and a decrease of 0.23 words for every 1.0 year increase in age (B=-0.23, 

p<.01). The coefficients for the PCs and SBP were not significant. 
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Table 3.8 Multiple linear regression analyses of relationship between verbal 
recognition and health parameters 

 Recognition List A (n=62) 

Model  B SE B Β t Sig 

1 

Constant 

    Age 

    IQ 

 

12.61 

-0.22 

 0.12 

 

5.94 

0.08 

0.04 

 

 

-0.32 

 0.32 

 

 2.12 

-2.74 

 2.75 

 

.04 

.01 

.01 

2 

Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

 

10.31 

-0.23 

 0.11 

 0.03 

 0.05 

 0.03 

 0.47 

 0.25 

 

7.88 

0.09 

0.05 

0.04 

0.58 

0.67 

0.59 

0.59 

 

 

-0.34 

 0.29 

 0.10 

 0.01 

 0.01 

 0.10 

 0.05 

 1.31 

-2.60 

 2.27 

 0.78 

 0.09 

 0.04 

 0.81 

 0.43 

.20 

.01 

.03 

.44 

.93 

.97 

.42 

.67 

  Model 1: adjusted R2 = .16; F(2,61)= 6.90, p< .01 
  Model 2: adjusted R2 = .10; F(7,61)= 2.08, p= .06 

 

3.9.5.1.4 Proactive Interference 

The scoring of proactive interference is described in Chapter 2, section 2.5.1.1, but a 

high score is not desirable (indicates greater proactive interference experienced). 

Neither model 1 nor model 2 were significant, F(2,61)= 1.32, ns, and F(7,61)= .50, 

ns, respectively (see Appendix 6.16). 

3.9.5.1.5 Retroactive Interference 

The scoring of retroactive interference is described in Chapter 2, section 2.5.1.1, but 

a high score is not desirable (indicates greater retroactive interference experienced). 

Model 1 was significant, F(2,60) = 3.67, p = .03, and explained 08% of the variance 

in retroactive interference(adjusted R2 =.08). Age significantly predicted retroactive 

interference score (β=.32, t=2.67, p<.01). This translated to a .10 increase in 

retroactive interference score for every 1.0 year increase in age (B = .10, p< .01). IQ 

did not significantly predict retroactive interference. Model 2 was not significant, 

F(7,60) = 1.27, ns, see Appendix 6.17. 

3.9.5.2 Spatial Memory  

Four outcomes were generated by the visual spatial learning test; designs recalled, 

locations recalled, combined designs and locations recalled, delayed recall (designs 

and locations).  



84 
 

3.9.5.2.1 Designs 

For VSLT designs, model 1 was significant, F(2,54) = 4.85, p< .01, and explained 

13% of the variance in spatial memory (designs) (adjusted R2 =.13). Designs recalled 

were predicted by age (β = -.27, t= -2.10, p< .05) and IQ (β = .32, t= 2.48, p< .05). 

This translates to a .10 decrease in designs score for each 1.0 year increase in age 

(B=-.11, p<.05) and a 0.07 increase in design for every 1.0 point increase in IQ score 

(B=0.07, p<.05). Model 2 was not significant, F(7,54) = 1.77, ns, see Appendix 6.18.   

3.9.5.2.2 Locations 

For VSLT locations, model 1 approached significance, F(2,54)= 2.94, p= .06, and 

explained 7% of the variance in spatial memory (locations) (adjusted R2 =.07).  

Locations recalled were predicted by age (β = -.29, t= -2.17, p< .05). This translates 

to a decrease in 0.18 locations score for every 1.0 year increase in age (B=-0.18, 

p<.05). IQ was not a significant predictor in model 1. Model 2 was not significant, 

F(7,54) = 1.10, ns, see Appendix 6.19.  

 

3.9.5.2.3 Designs and locations 

For VSLT designs/locations model 1 approached significance, F(2,54)= 5.12, p<.01, 

and explained 13% of the variance in spatial memory (designs/locations), adjusted 

R2 =.13. Designs/locations score was predicted by age (β = -.33, t= -2.61, p< .01) and 

IQ (β = -.26, t= -2.08, p< .05). This translates to a 0.26 decrease in designs/locations 

score for every 1.0 year increase in age (B=-0.26, p<.05) and a 0.11 increase in 

designs/location score for every 1.0 point increase in IQ score (B=0.11, p<.05). Model 

2 was not significant, F(7,54) = 1.71, ns, see Appendix 6.20.  

3.9.5.2.4 Delayed designs and locations 

 
Model 1 approached significance, F(2,54)= 3.01, p=.06, and explained 7% of the 

variance in VSLT delayed (designs/locations) (adjusted R2 =.07). Model 2 approached 

significance, F(7,54) = 2.13, p= .06 and explained 13% of the variance (adjusted R2 

=.13). Delayed recall of designs/locations was predicted by PC3 “SB” (β= .31, t= -

2.37, p< .05 and age (β= -.34, t= -2.49, p< .05), as indicated in Table 3.9. In terms of 

delayed designs/locations score this translates to a 0.79 increase for every 1.0 point 

increase in PC3 factor score (B=0.79, p<.05) and a 0.12 decrease for every 1.0 year 

increase in age (B=-.012, p<.05).  
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Table 3.9 Multiple linear regression analyses of relationship between VSLT 
designs and locations (delayed) and health parameters 

 VSLT delayed (designs/locations) (n=58) 

Model  B SE B β t Sig 

1 Constant 

Age 

IQ 

3.50 

-0.09 

 0.04 

3.50 

0.05 

0.03 

 

-0.26 

 0.21 

 1.00 

-1.99 

 1.61 

.32 

.05 

.11 

2 Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

 6.24 

-0.12 

 0.02 

 0.01 

-0.35 

-0.57 

 0.79 

 0.30 

4.24 

0.05 

0.03 

0.02 

0.32 

0.38 

0.33 

0.31 

 

-0.34 

 0.10 

 0.05 

-0.14 

-0.21 

 0.31 

 0.13 

1.47 

-2.49 

 0.76 

 0.34 

-1.09 

-1.50 

 2.37 

 0.96 

.15 

.02 

.45 

.73 

.28 

.14 

.02 

.34 

  Model 1: adjusted R2 = .07; F(2,54) = 3.01, p= .058 
  Model 2: adjusted R2 = .13; F(7,54) = 2.13, p = .058 

 
 

3.9.5.3 Attention 

Four outcomes were generated by the rapid visual information processing (RVIP) 

task; total correct, reaction time of correct, missed targets and false positive 

responses.  

 

3.9.5.3.1 Total correct 

Model 1 approached significance, F(2,61)= 2.60, p=.08, and explained 5% of the 

variance in Bakan total correct (adjusted R2 =.05).  Model 2 was significant, F(7,61) = 

2.41, p< .05 and explained 14% of the variance (adjusted R2 =.14). Total correct score 

was predicted by PC2 “Adiposity” (β= -.30, t= -2.31, p< .05) and PC4 “WHR + VPA” 

(β= .27, t= 2.22, p< .05) as indicated in Table 3.10. This translates to a 2.72 increase 

in total correct score for every 1.0 point increase in PC4 factor score (B=2.72, p<.05) 

and a 3.21 decrease in total correct score for every 1.0 point increase in PC2 score 

(B=-3.31, p<.05).  
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Table 3.10 Multiple linear regression analyses of relationship between Bakan 
total correct and health parameters 

  Bakan total correct (n=62) 

Model  B SE B β t Sig 

1 Constant 

Age 

IQ 

 0.20 

-0.11 

 0.25 

14.32 

0.18 

0.11 

 

-0.07 

 0.28 

 0.01 

-0.59 

 2.26 

.99 

.55 

.03 

2 Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

25.68 

-0.21 

 0.17 

-0.10 

-0.84 

-3.21 

 0.60 

 2.72 

17.23 

0.19 

0.11 

0.09 

1.21 

1.39 

1.22 

1.22 

 

-0.15 

 0.20 

-0.14 

-0.08 

-0.30 

 0.06 

 0.27 

 1.49 

-1.12 

 1.56 

-1.08 

-0.69 

-2.31 

 0.49 

 2.22 

.14 

.27 

.12 

.28 

.49 

.03 

.62 

.03 

 Model 1: adjusted R2 = .05; F(2,61) = 2.60, p= .08 
 Model 2: adjusted R2 = .14; F(7,61) = 2.41, p< .05 

3.9.5.3.2 Reaction time for total correct 

Model 1 approached significance, F(2,61)= 3.03, p= .056 and explained 6% of the 

variance, adjusted R2= .06. Model 2 was significant, F(7,61) = 2.32, p< .05 and 

explained 13% of the variance (adjusted R2 =.13). Reaction time (for total correct) was 

predicted by PC3 (Sedentary behaviour) (β= .29, t= 2.29, p< .05), as indicated by 

Table 3.11. This translates to 14.59 ms increase in reaction time for every 1.0 point 

increase in PC3 factor score (B=14.59, p<.05).  

Table 3.11 Multiple linear regression analyses of relationship between Bakan 
reaction time (correct) and health parameters 

 Reaction time of hits (n=62) 

Model  B SE B β t Sig 

1 Constant 

Age 

IQ 

402.18 

 2.20 

-0.56 

73.74 

0.93 

0.57 

 

 0.30 

-0.12 

 5.45 

 2.37 

-0.99 

.00 

.02 

.33 

2 Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

326.24 

 2.31 

-0.70 

 0.70 

 3.23 

 9.17 

14.59 

-5.93 

89.75 

0.98 

0.58 

0.47 

6.32 

7.26 

6.37 

6.36 

 

 0.31 

-0.15 

 0.19 

 0.06 

 0.16 

 0.29 

-0.12 

 3.64 

 2.36 

-1.21 

 1.48 

 0.51 

 1.26 

 2.29 

-0.93 

.00 

.02 

.23 

.14 

.61 

.21 

.03 

.36 

 Model 1: adjusted R2 = .06; F(2,61) = 3.03, p= .056 
 Model 2: adjusted R2 = .13; F(7,61) = 2.32, p< .05 
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3.9.5.3.3 Misses  

Model 1 approached significance, F(2,61)= 2.64, p=.08, and explained 5% of the 

variance in Bakan misses (adjusted R2 =.05). Model 2 was significant, F(7,61) = 2.41, 

p< .05 and explained 14% of the variance (adjusted R2 =.14).  The number of missed 

responses was predicted by PC2 “Adiposity” (β= -.29, t= -2.30, p< .05) and PC4 “WHR 

+ VPA” (β= -.27, t= -2.22, p< .05), as indicated by Table 3.12.  This translates to a 3.2 

increase in misses for every 1.0 point increase in PC2 factor score (B= 3.2, p<.05) 

and a 2.7 decrease in misses for every point 1.0 increase in PC4 factor score (B=-

2.7, p<.05).  

 

Table 3.12 Multiple linear regression analyses of relationship between Bakan 
misses and health parameters 

 Bakan misses (n=62) 

Model  B SE B β t Sig 

1 Constant 

Age 

IQ 

59.87 

 0.11 

-0.25 

14.29 

0.18 

0.11 

 

 0.08 

-0.29 

 4.19 

 0.61 

-2.28 

.00 

.55 

.03 

2 Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

34.45 

 0.21 

-0.18 

 0.10 

 0.82 

 3.20 

-0.60 

-2.70 

17.21 

0.19 

0.11 

0.09 

1.21 

1.39 

1.22 

1.22 

 

 0.15 

-0.20 

 0.14 

 0.08 

 0.29 

-0.06 

-0.27 

 2.00 

 1.13 

-1.58 

 1.09 

 0.68 

 2.30 

-0.49 

-2.22 

.05 

.27 

.12 

.28 

.50 

.03 

.62 

.03 

  Model 1:  adjusted R2 = .05; F(2,61 = 2.64), p= .08 
  Model 2: adjusted R2 = .14; F7,61)= 2.41, p< .05 

 
 

3.9.5.3.4 False Positives 

The standardised residuals deviated from normality, and were transformed using Box 

Cox transformation (λ = 0.6). Neither model 1 nor model 2 were significant, F(2,62)= 

1.12, ns, and F(7,62) = 1.23, ns, respectively (see Appendix 6.21).  
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3.9.5.4 Spatial working memory (Corsi) 

Four outcomes were generated by the computerised Corsi block tapping task; 

accuracy, reaction (correct responses), correct responses (crossing trials), correct 

responses (uncrossing trials).  

3.9.5.4.1 Accuracy 

Model 1 was significant, F(2,62)= 12.03, p< .001 and explained 26% of the variance 

(adjusted R2= .26). Model 2 was significant, F(7,62) = 4.03, p< .01 and explained 26% 

of the variance (adjusted R2 =.26). As indicated in Table 3.13 accuracy score was 

significantly predicted by age (β = -.42, t= -3.53, p< .001) and by IQ (β = .35, t= 2.95, 

p< .001). PC3 “SB” approached significance (β = .21, t= 1.82, p= .07). This translates 

to a 0.76 decrease in accuracy for every 1.0 year increase in age (B=-0.76, p<.001), 

a 0.34 increase in accuracy with every 1.0 point increase in IQ, and a 2.59 increase 

in accuracy for every 1.0 increase in PC3 factor score (B=2.59, p=.07).  

 

Table 3.13 Multiple linear regression analyses of relationship between Corsi 
correct responses and health parameters 

 Number correct (n=63) 

Model  B SE B β t Sig 

1 Constant 

Age 

IQ 

44.86 

-0.72 

 0.39 

14.83 

0.20 

0.11 

 

- 0.40 

 0.39 

 3.02 

-3.62 

 3.60 

.00 

.00 

.00 

2 Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

38.77 

-0.76 

 0.34 

 0.11 

 0.56 

 0.00 

 2.59 

 0.28 

19.20 

0.22 

0.12 

0.11 

1.40 

1.62 

1.42 

1.43 

 

-0.42 

 0.35 

 0.12 

 0.04 

 0.00 

 0.21 

 0.02 

 2.02 

-3.53 

 2.95 

 1.03 

 0.40 

 0.00 

 1.82 

 0.20 

.05 

.00 

.00 

.31 

.69 

1.00 

.07 

.84 

 Model 1: adjusted R2 = .26; F(2,62)= 12.03, p< .001 
 Model 2: adjusted R2 = .26; F(7,62 = 4.03, p<.001 
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3.9.5.4.2 Reaction time for correct responses 

Model 1 was significant, F(2,62)= 4.97, p< .01 and explained 11% of the variance 

(adjusted R2= .11). Model 2 was significant, F(7,62)= 2.77, p< .05 and explained 17% 

of the variance (adjusted R2 =.17). As indicated in Table 3.14, reaction time (correct 

responses) was significantly predicted by IQ (β = -.25, t= -2.00, p<.05) and SBP (β = 

.33, t= 2.64, p< .01). Age (β = .32, t= 1.88, p< .01) and PC4 “WHR + VPA” (β = -.23, 

t= -1.86, p= .07) showed a trend towards significance. This translates to a 3.57 ms 

increase in RT for every 1.0 mmHg increase in SBP (B=3.57, p<.001), and a 2.99 ms 

decrease in RT for every 1.0 point increase in IQ score (B=-2.99, p<.05). For every 

1.0 point increase in PC4 “WHR + VPA” score there was a decrease in reaction time 

34.1 ms (B=-34.1, p=.07). For every 1.0 point increase in PC4 “WHR and VPA” score 

there was a 34.1 ms decrease in reaction time (B=-34.1, p<.05). 

 

Table 3.14 Multiple linear regression analyses of relationship between Corsi 
reaction times (correct) and health parameters 

 Reaction time of correct (n=63) 

Model  B SE B β t Sig 

1 Constant 

Age 

IQ 

1046.16 

 6.93 

-2.82 

197.38 

2.63 

1.44 

 

 0.32 

-0.23 

 5.30 

 2.63 

-1.96 

.00 

.01 

.06 

2 Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

695.87 

 5.21 

-2.99 

 3.57 

-3.36 

-7.46 

17.23 

-34.06 

246.47 

2.77 

1.49 

1.35 

17.97 

20.86 

18.30 

18.30 

 

 0.24 

-0.25 

 0.33 

-0.02 

-0.05 

 0.11 

-0.23 

 2.82 

 1.88 

-2.00 

 2.64 

-0.19 

-0.36 

 0.94 

-1.86 

.01 

.07 

.05 

.01 

.85 

.72 

.35 

.07 

 Model 1:  adjusted R2 = .11; F(2,62) = 4.97, p< .01 
 Model 2:  adjusted R2 = .17; F(7,62) = 2.77, p< .05 
 
 

3.9.5.4.3 Accuracy: crossing trials 

Model 1 was significant, F(2,62)= 5.28, p< .01 and explained 12% of the variance 

(adjusted R2= .12). Model 2 was significant, F(7,62) = 2.32, p< .05 and explained 13% 

of the variance (adjusted R2 =.13). As indicated in Table 3.15, accuracy (crossing-

trials) was predicted by age (β = -.32, t= -2.51, p< .01), PC3 “SB” (β = .26, t= 2.13, p< 

.05), and IQ (β = .24, t= 1.90, p= .06). This translates to a 0.30 decrease in accuracy 

score for every 1.0 year increase in age (B=-.30, p<.01), and a 1.68 increase in 
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accuracy score for every 1.0 point increase in PC3 “SB” factor score (B=1.68, p<.05). 

Accuracy score increases by 0.12 for every 1.0 point increase in IQ (B=.12, p=.06) 

Table 3.15 Multiple linear regression analyses of relationship between Corsi 
correct responses (crossing trials) and health parameters 

 Crossing trials: number correct (n=63) 

Model  B SE B β t Sig 

1 Constant 

Age 

IQ 

13.62 

-0.26 

 0.15 

8.30 

0.11 

0.06 

 

-0.28 

 0.29 

 1.64 

-2.34 

 2.44 

.11 

.02 

.02 

2 

Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

 

 9.00 

-0.30 

 0.12 

 0.08 

-0.47 

 0.05 

 1.68 

-0.34 

10.64 

0.12 

0.06 

0.06 

0.78 

0.90 

0.79 

0.79 

 

-0.32 

 0.24 

 0.17 

-0.07 

 0.01 

 0.26 

-0.05 

 0.85 

-2.51 

 1.90 

 1.29 

-0.61 

 0.06 

 2.13 

-0.42 

.40 

.01 

.06 

.20 

.55 

.95 

.04 

.67 

 Model 1:  adjusted R2 = .12; F(2,62) = 5.28, p< .01 
 Model 2:  adjusted R2 = .13; F(7,62) = 2.32, p< .05 

 
 

3.9.5.4.4 Accuracy: non-crossing trials 

Model 1 was significant, F(2,62)= 12.15, p< .001 and explained 27% of the variance 

(adjusted R2= .27). Model 2 was significant, F(7,62) = 3.90, p< .05 and explained 25% 

of the variance (adjusted R2 =.25). As indicated in Table 3.16, accuracy (non-crossing 

trials) was significantly predicted by age (β = -.41, t= -3.43, p< .001) and IQ (β = .35, 

t= 2.97, p<.001). This translates to a 0.46 decrease in accuracy score for every 1.0 

year increase in age (B=-.46, and a 0.21 increase in score for every 1.0 point increase 

in IQ (B=.21, p<.001). The coefficients for the PCs and SBP were not significant. 

 



91 
 

Table 3.16 Multiple linear regression analyses of relationship between Corsi 
correct responses (non-crossing trials) and health parameters 

 Non-crossing trials: number correct (n=63) 

Model  B SE B β t Sig 

1 Constant 

Age 

IQ 

31.17 

-0.45 

 0.24 

9.10 

0.12 

0.07 

-0.40 

 0.39 

 3.42 

-3.68 

 3.58 

.00 

.00 

.00 

2 Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

29.95 

-0.46 

 0.21 

 0.04 

 1.00 

-0.18 

 0.89 

 0.65 

11.87 

0.13 

0.07 

0.07 

0.87 

1.00 

0.88 

0.88 

-0.41 

 0.35 

 0.07 

 0.13 

-0.02 

 0.12 

 0.08 

 2.52 

-3.43 

 2.97 

 0.54 

 1.15 

-0.18 

 1.01 

 0.73 

.01 

.00 

.00 

.59 

.25 

.86 

.32 

.47 

 Model 1:  adjusted R2 = .27; F(2,62)= 12.15, p<.001 
 Model 2:  adjusted R2 = .25; F(7,62)= 3.90, p< .01 

 

3.10 Summary of findings 

The principal component analysis reduced the twelve body composition and physical 

activity variables into four principal components (PC1 “MPA + steps”; PC2 “adiposity”; 

PC3 “SB”; PC4 “WHR + VPA” as described in section 3.9.4. The PCs were entered 

with SBP, age, and IQ (model 2) in multiple regression analyses for each cognitive 

outcome. Model 1 contained age and IQ only. A summary of the relationships 

between the cognitive function outcomes and PC predictors is presented in Table 

3.17.  
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Table 3.17 Tabulated summary of findings 

Cognitive Outcome 

 Predictors of cognitive function 

Significant 
Age2 IQ2 SBP 

PC1 
MPA+steps 

PC2 
Adiposity 

PC3 
SB 

PC4 
WHR+VPA Model 1 Model 2 

Verbal 
memory 

Total Acquisition sig marginal O + O O O O O 

Delayed recall ns ns O O O O O O O 

Proactive Interference ns ns O O O O O O O 

Retroactive interference sig ns + O O O O O O 

Recognition List A sig trend - + O O O O O 

Spatial 
memory 

Designs sig ns - + O O O O O 

Locations trend ns - O O O O O O 

Designs/locations sig ns - + O O O O O 

Delayed designs/locations trend trend - O O O O + O 

Spatial  
working 
memory 

Accuracy sig sig - + O O O + O 

Reaction time (correct) sig sig + - + O O O - 
Accuracy: crossing sig sig - + O O O + O 

Accuracy: non-crossing sig sig - + O O O O O 

Attention 

Total correct  trend sig O O O O - O + 
RT for total correct trend sig + O O O O + O 

False positives ns ns O O O O O O O 

Misses trend sig O O O O + O - 
Summary total1 9/17 7/17 11/17 9/17 1/17 0/17 2/17 3/17 3/17 

1Number of significant associations (+ve and –ve) with cognitive function outcomes for each predictor variable; Key: + indicates positive association, - indicates negative 

association and O indicates no association,               indicates significant predictors. 2associations are shown for model 2 if significant, otherwise for model 1 
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Table 3.17 shows that age and/or IQ were significantly associated with most of the 

cognitive function outcomes. In every model (with the exception of attention 

outcomes), age and IQ made the greatest contribution to explained variance. All 

associations between age/IQ and the cognitive function outcomes were in the 

expected direction, i.e. cognitive performance decreased with increases in age and 

increased with increases in IQ. Systolic blood pressure made little contribution to any 

cognitive outcome, significantly predicting only one measure of spatial working 

memory, but not attention, verbal memory or spatial memory.  

For verbal memory, model 1 (age and IQ) was significant for 3 out of 5 VVLT 

outcomes (excluding delayed recall and proactive interference). The inclusion of the 

PCs and SBP (model 2) resulted in non-significant models for delayed recall, 

retroactive interference and proactive interference. Model 2 just failed to reach 

significance for total acquisition and recognition, however, within this model IQ 

predicted both total acquisition and recognition, and age predicted recognition. None 

of the verbal memory outcomes were predicted by the PCs or SBP.  

For the spatial memory outcomes, model 1 was significant (or showed a trend) for all 

VSLT outcomes. The inclusion of the PCs and SBP (model 2) resulted in non-

significant models for designs, locations and designs and locations. Model 2 just failed 

to reach significance for delayed designs/locations, and in this both PC3 “SB” and 

SBP were predictors.  

For spatial working memory, models 1 and 2 were significant for all Corsi outcomes. 

For attention, model 1 showed a trend towards significance for hits, reaction time of 

hits, and missed responses, but was non-significant for false-positive responses. The 

inclusion of the PCs and SBP (model 2) resulted in significant models for total correct 

responses, reaction time for correct responses and number of missed responses.  

PC1, labelled “MPA + steps,” was positively loaded on time moderate (mins/day), 

MVPA bouts (>10 mins), MVPA total counts and step count. PC1 did not make any 

significant contribution to explained variance for any verbal memory, spatial memory, 

working memory, attention or executive function outcomes.  

PC2, labelled “adiposity,” was positively loaded on BMI, waist circumference and 

body fat percentage. PC2 significantly predicted 2 measures of attention, with an 

increased score associated with a decrease in total correct and increase in missed 
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responses. PC2 (Adiposity) did not make any significant contribution to explained 

variance for memory (verbal, spatial or working memory). 

PC3, labelled “SB,” was loaded positively on total time sedentary (mins·day-1) and 

number of prolonged sedentary bouts (bouts >60 mins), and negatively on time light-

activity (mins·day-1). Increase in PC3 score significantly predicted slower reaction 

times in an attention task. Associations were also observed with spatial memory and 

spatial working memory but the direction of these relationships indicated that 

performance increased as PC3 score increased, which was an unexpected finding. 

Spatial memory measure (designs/locations) showed a positive association with PC3 

score. PC3 did not make any significant contribution to explained variance for verbal 

memory outcomes.  

 

PC4, labelled “WHR + VPA,” loaded positively on waist-hip ratio and vigorous-

intensity activity. Increasing PC4 WHR + VPA score was associated with better 

performance on 2 attention measures (total correct and fewer missed responses). 

Faster (i.e. reduced) reaction times for the spatial working memory measure (reaction 

time for correct responses) were associated (trend) with increased PC4 score. PC4 

did not make any significant contribution to explained variance for verbal memory and 

spatial memory outcomes. 

3.11 Discussion 

The aim of this cross-sectional study was to explore the relationships between 

cognitive function and PA in an obese/overweight sample. This was achieved by 

utilising principal component analysis to reduce a large number of correlated PA and 

body composition predictor variables to a small number of components. These were 

then suitable for concomitant use in multiple regression analysis. The study extends 

previous work by using an objective measure of PA, and exploring the relationship of 

PA outcomes with multiple domains of cognitive function in an overweight/obese 

middle aged (30-60 years) sample.  

The investigation of the relationship between PA (using objective measures) and 

cognitive function is a relatively new research area, especially in obese, middle-aged 

samples. Much research has been conducted in older/elderly adults across a 

spectrum of cognitive ageing and neurodegeneration. The only available research 

using objective measures of PA conducted in obese and younger/middle-aged adults 
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was conducted in bariatric (morbid) patients (Galioto et al., 2014; Langenberg et al., 

2015). Once somatic comorbidity and depressive symptoms were controlled for, PA 

was not significantly associated with cognitive function. Additionally, the sedentary 

nature of the samples may have explained the lack of findings as they were not doing 

a high enough volume of MVPA to elicit benefit. These findings cannot be generalised 

to an overweight/obese, non-patient population or to those that are accumulating 

more minutes of MVPA.  

 

3.11.1 Interpretation of findings 

The most consistent finding was that age and IQ were the greatest predictors of the 

cognitive function outcomes examined in this chapter. This was as expected, and 

confirmed the inclusion of these two causally prior variables in the first stage of each 

regression model. It is known that cognitive function declines with age (Chapter 1), 

although the trajectory of change is complicated and non-linear (Fjell et al., 2013). It 

is thought that around the age of 60 years, the trajectory of change increases but this 

varies greatly between individuals. IQ, measured using the seven-subtest version of 

the Wechsler Adult Intelligence Scale-Revised (WAIS-R), has been shown to be 

predictive of performance on  28 neuropsychological test outcomes (derived from 16 

tests including verbal memory, spatial memory, attention, executive function) in 221 

adults aged between 20-91 years (Diaz-Asper et al., 2004). Due to time constraints, 

the four-subtest version was used for this thesis, however, the relationship described 

by Diaz-Aser and colleagues was apparent in the data examined for this chapter. One 

interesting finding from Diaz-Asper et al’s study was that the strength of the 

relationship between IQ and test performance was weaker in those who were 

categorised as above average. Those with above average IQ outperformed those 

with average IQ on every test variable however the effect size was small. Comparing 

above-average to average IQ yielded a smaller effect size (d= .41), whereas 

comparing the average IQ to a below-average group gave a larger effect size (d= 

.73). This has been attributed to ceiling effects achieved on the cognitive tests for 

those with above average IQ. This may have implications for the participants 

examined in this chapter as many were above average for IQ score. It is a possibility 

that it is less likely participants with high IQ will show cognitive change in relation to 

other variables as their performance is already high. If participants are close to 

reaching ceiling effects there is less scope to identify a strong relationship with other 

variables over and above the effect of IQ.   
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3.11.1.1 Principal component 1 (moderate activity) 

Another key finding was that the principal component describing moderate-intensity 

activity (PC1) did not predict any verbal memory, spatial memory, working memory, 

or attention. This reflects the null findings observed by (Galioto et al., 2014; 

Langenberg et al., 2015) between MVPA and cognition in morbidly obese adults. 

When moderate-intensity activity has been examined as a predictor of cognitive 

function, null findings were observed for Corsi performance and AVLT scores 

(Langenberg et al., 2015) and the findings for this chapter replicated this. Additionally, 

the null findings between moderate-intensity activity and the VSLT outcomes (spatial 

memory) also reflect the extant literature. A direct association was not observed 

between spatial memory and MVPA in older adults, but one that was mediated 

through hippocampal volume (Makizako et al., 2014). This highlights the issue that 

the relationship between PA and cognitive outcomes may not be direct, but mediated 

through unmeasured variables known to impact cognitive function. 

 It was beyond the scope of this PhD research to conduct any form of brain imaging. 

However, it is known that hippocampal volume, and also memory (both verbal and 

spatial) are associated with glucose regulation and insulin sensitivity. Fasting glucose 

had been measured in a subsample only, but this variable could not be included in 

the analysis for the full sample. It is possible that the inclusion of fasting glucose may 

increase the variance explained by the multiple regression models. Additionally, the 

low volume (minutes of) of moderate-intensity accumulated by the sample may 

explain the lack of findings for the cognitive outcomes. The current sample was 

homogenous in terms of moderate-intensity activity, and only included people at the 

lower end of the spectrum. Only 3 participants were meeting the guidelines for 

moderate-intensity exercise (30-minutes accumulated in bouts >10 minutes). The 

majority of the current sample were accumulating just one 10-minute bout of 

moderate-intensity exercise per day. The sample does not represent 

overweight/obese adults that are doing higher amounts of moderate-intensity activity. 

Therefore, without an adequate range of time spent in moderate-intensity activity, 

there was not enough variation to allow firm conclusions to be drawn regarding the 

relationship between moderate-intensity activity and cognitive outcomes. It is not 

known if increasing time spent in moderate-intensity activity can lead to an 

improvement in cognitive outcomes in obese/low active adults.  
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3.11.1.2 Principal component 2 (adiposity)  

The association between a principal component loaded on percentage body fat, BMI 

and waist circumference (PC2) and attention is consistent with extant literature. 

Previous research has demonstrated poorer performance on the D2 attention 

endurance test in obese women when compared to healthy weight counterparts 

(Cserjesi et al., 2009). The null findings with verbal memory and spatial memory were 

unexpected as markers of obesity have been associated with multiple cognitive 

outcomes (Prickett et al., 2015). However, these differences are normally observed 

when obese individuals are compared to healthy weight individuals. The current 

sample only included those that were classed as overweight and obese (according to 

body fat percentage and BMI). Healthy weight participants were not included and 

morbidly obese individuals were under-represented.  Therefore, the sample showed 

a lack of variation in terms of body composition values. 

3.11.1.3 Principal component 3 (sedentary behaviour) 

An association between PC3 and slower (i.e. increased) reaction times for the Bakan 

Test (attention) was observed, however, there is no available data on objectively 

measured sedentary time and cognitive outcomes in overweight adults to allow for 

comparisons with other research. There were some unexpected findings observed 

for increased sedentary behaviour and superior performance on spatial and spatial 

working memory.  This would indicate that prolonged sedentary time is associated 

with better spatial and working memory, and this is after controlling for age and IQ. 

This highlights the pitfalls of cross-sectional data, as causality cannot be established 

and unmeasured variables may be driving unexplained relationships. It must be noted 

that PC3 score included both sedentary behaviour and light-intensity activity, 

although loadings were in opposing directions (positive and negative respectively). It 

would be preferable to keep the two differing PA summaries distinct, as opposed to 

amalgamated into one composite factor. This is because the minimal literature 

available indicates that sedentary behaviour would have a negative impact on 

cognitive function, and that light-intensity activity would have a (subtle) beneficial 

impact. The presence of two opposing PA summaries in one composite score ‘dilutes 

the effect of each summary, and prevents exploration of the impact each has on 

cognitive function.  
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3.11.1.4 Principal component 4 (WHR and vigorous-intensity activity) 

Increased PC4, “WHR + VPA” score showed a trend towards a significant negative 

relationship with reaction time for correct responses (i.e increased PC4 associated 

with reduced reaction time) on the spatial working memory task. It is an unexpected 

finding that faster reaction times for Bakan correct responses were associated with 

higher scores on PC4 “WHR + VPA”. Reaction times on a vigilance task were 

previously shown to improve with increased cardiorespiratory fitness (Monleón et al., 

2015) and exercise is typically associated with faster reaction times. It must be 

highlighted that waist-hip ratio made the greatest contribution to PC4, not vigorous-

intensity activity. It is unclear why waist-hip ratio would be the greatest contributor to 

a distinct PC (PC4), whilst the other 3 measures of body composition loaded on PC2 

“adiposity”. The interpretation of this PC may be further complicated by the inclusion 

of both men and women in the same sample. Men and women typically show differing 

fat distribution, and a WHR value that would be considered healthy for a man, might 

be unhealthy for a woman. Additionally, the range of vigorous-intensity activity was 

extremely low prior to PCA. In terms of vigorous-intensity activity, the majority (75%) 

were not doing any at all, only 2 participants were accumulating >5 minutes per day. 

It is possible that the lack of association between vigorous-intensity PA and cognitive 

function outcomes is due to the possibility that the current sample were not doing 

enough exercise to drive cognitive benefit. The pairing of WHR and vigorous-intensity 

activity creates a PC that is difficult to reconcile, and, the findings relating to PC4 must 

be interpreted with great caution. 

3.11.1.5 Interim summary 

In this overweight/obese and low-active sample, age and IQ were greater predictors 

of cognitive function outcomes than any of the PA and body composition PCs. It could 

be interpreted that IQ exerts a protective effect on the impact that obesity and 

sedentary behaviour has on cognitive outcomes. However, due to the homogenous 

nature of the sample, there was insufficient variation within the PA variables to draw 

firm conclusions. The aim was to explore whether variation in PA and body 

composition PCs predicted variation in cognitive function. However, the PA variables 

were restricted by the low activity of this sample, which was concentrated one end of 

the spectrum of PA behaviour. Without a full range of PA behaviours, firm conclusions 

about MVPA and cognitive function in a sample accumulating minimal levels of MVPA 

cannot be drawn. If age- and IQ-matched participants accumulating higher daily 

minutes of moderate- and vigorous-intensity activity were added to the sample, this 
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would allow comparison of the contributions of IQ and exercise (MPA and VPA) 

across a range of activity patterns. The unexpected findings serve to highlight the 

limitations of cross-sectional research. Causality cannot be established, it is only 

possible to observe the relationships that occur within the confines of the sample. 

These relationships will be impacted upon by the characteristics of that particular 

sample, and are not more widely generalisable. 

3.11.2 Limitations 

This study found some null (but expected) findings, alongside some significant but 

unexpected relationships. Therefore, limitations to the approach used must be 

considered upon completion of data collection, since decisions regarding data 

processing and data analysis present the greatest “opportunity” for error. The 

following section discusses the statistical approach employed followed by a 

discussion of the accelerometer data processing and the limitations of this.    

3.11.2.1 Critique of the statistical approach adopted.  

3.11.2.1.1 Application of PCA to the data set 

Principal component analysis was a statistically sound strategy to apply as it reduced 

the dimensionality of a data set that comprised of a large number of interrelated 

variables, whilst retaining ~77% of the variation present in the data set. This permitted 

consideration of a range of measured variables despite a limited cases to variable 

ratio (Tabachnick & Fidell, 2007) However, multidimensional data sets, such as for 

this chapter, are difficult to interpret as with increasing numbers of variables, the 

structure of the data set cannot be visualized (Gharibnezhad et al., 2015). 

Additionally, redundant variables create empty space and PCA is the best tool to 

tackle all of these issues.  

Using PCA, it is possible to quantify the importance of each dimension, as the first 

PC produced explains the greatest variance, and relative importance decreases with 

each successive PC (Shlens, 2014). For this data set, PC1 “MPA + steps” was the 

most important dimension and explained 28% of variance in the data set. The second 

most important contribution to variation in the data set was PC2 Adiposity, 

contributing a further 21% to explained variance. A further 17% of variance was 

explained by PC3 sedentary behaviour. The dimension that explained the lowest 

portion (11%) of variance was PC4 vigorous-intensity. In simplified terms, PC1 “MPA 

+ steps” explained the greatest variation in the data set. It also shows, that despite 
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the sample being categorised as overweight/obese (and typically treated as being the 

same in research) the dimension including adiposity measures (PC2 “Adiposity”) 

showed the second largest amount of variation.  

One issue of classical PCA is that it fails to process missing data, and the deletion of 

cases with missing data loses important information. The data set in this study was 

no exception and was reduced from 73 to 63 cases following dimension reduction 

due to missing data on some variables. An alternative to this would be to use 

expectation maximisation (EM), an iterative process which computes the model’s 

parameters and fills in the missing information directly. This can be used in 

conjunction with a robust version of PCA (Stanimirova et al., 2007).    

3.11.2.1.2 Quality of the PCA model 

The quality of the PCA model was evaluated using a bootstrapping cross-validation 

technique, parallel analysis (Horn, 1965). This is an accurate and well-regarded 

empirical method for determining the number of components to retain (Cota et al., 

1993; Dinno, 2014; Hayton, Allen, & Scarpello, 2004). This parallel analysis (PA) 

revealed the fourth principal component “WHR + VPA” fell just below the 95th 

percentile criterion for PA, and therefore should not be retained. The decision about 

how many components to retain is important. Both types of misspecifications 

(specifying too few and too many) lead to substantial error, but specifying too few is 

deemed more serious a mistake (Ford, MacCallum, & Tait, 1986). Under-extraction 

of PCs compresses variables into a smaller factor space, losing information and 

neglecting potentially important factors and increasing erroneous loadings (O’Connor, 

2000). This means measured variables that would have loaded on the excluded 

component, are either not included in the model; forced (and falsely loaded) on one 

of the included components such that loadings of variables on included components 

are distorted (Hayton et al., 2004). If the fourth component had been ignored, and the 

PCA forced to 3 components, one of the variables theoretically important to this thesis 

(vigorous-intensity activity) would have been lost. When looking at the raw data, the 

sample were accumulating such low amounts of vigorous activity that the majority of 

the sample were doing no minutes daily. When boxplots were inspected for outliers, 

all those who accumulated more than zero minutes were considered unusual. There 

were only 2 participants who accumulated >5 minutes daily, and these were 

considered outliers in a statistical sense. This highlights that no-one in the sample 

was meeting the current guidelines for VPA. It is possible that these “outliers” drove 

the creation of the fourth principal component. Therefore, PC4 only describes the 
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behaviour of those who were doing some (although minimal) amounts of vigorous-

intensity activity and does not represent the majority (75%). The decision was made 

to retain four principal components and interpret their effects with caution. 

 

3.11.2.1.3 Limitations of principal components extracted 

The principal components did not incorporate variables from both physical activity 

and body composition categories. The components represented one or the other. This 

may in part be explained by the fact that the data set was fairly homogenous in terms 

of activity level and body composition (highly sedentary and all overweight/obese). It 

would be beneficial to create components using a larger sample, including individuals 

accumulating more MPA and VPA, and those in the healthy range for indices of body 

composition. Although dimension reduction is essential when analysing data sets with 

lots of inter-correlating variables, the ability to explore the contribution of specific 

variables (i.e. VPA, steps per day) is lost. It is therefore not possible to isolate specific 

types of PA that would be eligible for intervention. Additionally, the fractionation of a 

PA summary i.e. MPA in bouts versus non-bouts) has shown to have distinct 

implications for health (Chapter 1). As these variables would be so highly correlated, 

due to being a function of each other, it is likely that when entered into PCA they 

would load on the same component and no distinction would be made between them. 

Evidence of this was observed in the data set following application of PCA. Principal 

Component 1 loaded on 3 measures of MPA; total accumulated moderate-intensity 

minutes (non-bouts), MVPA bouts (>10 minutes); MVPA total counts (>10 minute 

bouts). All measures are valid (raw data versus processed data, sustained versus 

accumulated) and cited in the literature as a research focus. Additionally, PC3 

“Sedentary behaviour” loaded positively on total accumulated minutes sedentary 

(non-bouts) and sedentary bouts (>60 minutes). Sustained sedentary time is a new 

area of research as it likely has a different impact on health, when compared to shorter 

non-bouts. If fractionation of PA volume is the research focus then PCA may not be 

appropriate to use.  
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3.11.2.2 Accelerometer data processing 

The raw accelerometer data (signals detected by the accelerometer) have to be 

converted to meaningful PA outcomes, but there are many different prediction 

equations or raw count cut-points within the literature and these are placement-site 

specific (hip, wrist) (Strath et al., 2013). It is known that the intensity, frequency and 

duration of PA estimates vary according to the methods used to process the data 

(Ham et al., 2007). There is substantial variability in the cut-points and prediction 

equations developed, with the minimum threshold for MPA ranging from 200 to 2000 

counts/min (Strath et al., 2013). The variation in raw counts between participants at 

a particular speed/work rate is the greatest source of error in PA estimates (Aadland 

& Steene-Johannessen, 2012). Activity classification can differ substantially 

according to the analytic method used to determine PA level (cut points, wear time 

validation). 

3.11.2.2.1 Cut-points alter with cardiovascular fitness 

The Freedson adult cut-points (Freedson et al., 1998) were selected and rationale for 

this is provided in Chapter 2 (section 2.9.1). However it is difficult to determine 

whether the Freedson adult cut-points selected were the optimum analytical approach 

in this sample, as it is not possible to confidently identify another set of cut-points that 

would have been superior (Loprinzi et al., 2012). Further complicating the issue of 

classifying PA level using absolute cut-points is the diversity in (and influence of) 

cardiovascular fitness, age and body composition of any sample or population. The 

application of one set of cut-points to a data set (as is current practice) assumes that 

all individuals performing a velocity of motion (defined by a set number of counts) will 

experience the same physiological response indicative of an intensity domain (i.e. 

heart rate, breathlessness, RPE/exertion). Unless these additional measures are 

collected, the domains identified by accelerometer count cannot be cross-referenced 

against biological markers of exertion, and therefore cannot be confirmed.  

The cut points may over or underestimate the levels of PA as they do not take into 

account the fitness level of an individual. Interindividual variability in Actigraph 

accelerometer counts has been demonstrated at moderate- (40% HRR) and vigorous 

intensity (60% HRR) during a submaximal exercise test (Ozemek, Cochran, Strath, 

Byun, & Kaminsky, 2013). Participants across a range of cardiorespiratory fitness 

(VO2max: 27.9 to 58.5 ml·kg-1) showed variability at 40% HRR of 1455-7520 activity 

counts·min-1 and variability at 60% HRR of 3459-10066 counts·min-1. This was 
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significantly impacted by fitness group (<10 MET, 10-13 MET, >13 MET). It is 

suggested that cut points appropriate for fitness level should be derived. However, 

this would mean a maximal or sub-maximal exercise test would have to be performed 

by all individuals.  

3.11.2.2.2 Impact of age 

The sample studied for this thesis range in age from 30 to 60 years. The metabolic 

cost of walking increases with age (Peterson & Martin, 2010) and body weight 

(Browning, Baker, Herron, & Kram, 2006; Lafortuna et al., 2008; Morris et al., 2014). 

Age is associated with declines in metabolic and force-producing capacity (Peterson 

& Martin, 2010). Body weight is an important determinant of the energy expenditure 

required to propel the body forward. A study by Lafortuna et al. (2008) found that 

metabolic energy utilised during a treadmill walk at the same velocity and incline was 

2.3-fold higher in an obese group compared to a normal weight group. This is thought 

to be influenced by the work required to redirect and accelerate the centre of mass 

and the work required to generate force in order to support body weight (Grabowski, 

Farley, & Kram, 2005). The influence of age and body weight are not captured by 

accelerometers, and cut-points validated against one criterion (ie. age) cannot 

account for variations in another (i.e. body weight). Furthermore, the relationship 

between age and body weight is not linear. The normalisation of energy expenditure 

to body weight may be essential to determine clear/correct PA intensity thresholds. 

Alternative (lower) cut-points for MPA (612 counts·min-1) and VPA (4780 counts·min-

1) have been suggested by Aadland and Anderssen (2012). However, this was 

validated using the Actigraph GT1M model which only measures acceleration in 1 

plane (vertical) and so are not comparable to the newer models of Actigraph, such as 

the GT3X used for this thesis. 

The cut-point selection impacts on the ability to compare the findings presented in 

this chapter to research that has utilised different cut-points and processing criteria. 

The Freedson ault (1998) cut points were selected as they have been widely used in 

research conducted in obese samples which allowed for the comparison of the data 

presented in this thesis with the literature. Appropriate cut-points to define PA 

intensity are known to vary according to age and weight status. The sample for this 

thesis ranged in age from 30-59 years, and in BMI from 25- to 44.5 kg/m2.Therefore, 

no cut-point available can account for variation in both of these factors. 
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3.11.2.2.3 Misclassification of PA  

The most widely applied algorithm to classify non-wear time is 60 consecutive 

minutes of zero counts on the vertical axis of the accelerometer, allowing for 1-2 

minutes of counts ranging from 1 to 100 (Troiano et al., 2008; Tudor-Locke et al., 

2010). Variation in the time window has been shown to impact on the estimates of PA 

and SB in normal weight and obese samples (Healy et al., 2008a; Masse et al., 2005; 

Miller et al., 2013), and the use of an invalid algorithm can misclassify non-wear time 

which impacts on the number of valid hours/days (Berendsen et al., 2014). 

Misclassification of sedentary time and non-wear time occurs as they both show 

similar outputs (Berendsen et al., 2014). Additionally, misclassification of non-wear 

time has been shown to be significantly higher in obese participants compared to 

healthy weight counterparts (Winkler et al., 2012). A potential explanation for this is 

that increased adiposity impacts on the tilt of the device leading to the under-detection 

of movement (Corder, Brage, & Ekelund, 2007). This study only had the option to 

categorise SB as time spent sedentary, it could not distinguish between sitting, lying, 

stepping behaviours. If a more accurate breakdown of SB into sitting and standing 

behaviours was required, an alternative accelerometer such as the ActivPal or ActiCal 

would be essential.  

 

3.11.3 Considerations for future research 

The findings from the present study highlight aspects of the methodology that could 

be enhanced for future research investigating the relationship between objectively 

measured PA and cognitive function in overweight/obese adults. The following 

modifications are suggested for future studies: 

I. Study a larger sample.  

Although PCA reduced the number of predictor variables to a small number of 

components, due to the ratio of cases to variables the study was underpowered. With 

63 cases and 7 predictor variables/PCs, the current study pushed the limits of the 

number of variables that could be entered into a regression model, i.e. 10 cases per 

variable (Tabachnick & Fidell, 2007). 

II. Recruit a more heterogeneous sample in terms of body composition and 

accumulated PA 
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The study failed to show a relationship between MPA or VPA and any cognitive 

outcomes. The sample recruited was homogenous in terms of activity levels (highly 

sedentary and low accumulated minutes of moderate- and vigorous-intensity activity). 

This was because the recruitment process targeted sedentary individuals. This may 

potentially explain the lack of effect of observed between MVPA and cognitive 

outcomes. It would be pertinent to recruit overweight/obese samples who are 

accumulating a greater number of minutes of moderate-and vigorous-intensity 

activity. Exploration of the impact of MVPA on cognitive function requires samples 

that show a wide range of variation in MVPA (from low to high daily minutes) and 

indeed cognitive function. 

 

III. Examine whether an exercise intervention aimed at increasing PA can 

improve cognitive function. 

The use of cross-sectional data limits the interpretation of the results, relationships 

that coexist are reported but causality cannot be established. Additionally, this can be 

impacted upon by the characteristics of the sample examined or the influence of 

unmeasured variables. In order to examine whether PA influences cognitive function, 

a more direct approach is to manipulate the PA outcome of interest and assess 

whether cognitive function changes as a result of this. In the current sample, it was 

not possible to explore the relationship between vigorous-intensity activity and 

cognitive outcomes as the sample was limited to individuals that were doing minimal 

(<5 minutes) vigorous-activity. 

IV. Examine PA as distinct summaries as opposed to composites 

PCA reduced the separate PA summaries into a smaller number of composites. In 

general, this was not problematic except in the case of PC3 which amalgamated 2 

markers of sedentary behaviour with light-intensity activity into one score. From a 

physiological perspective it is preferable to keep these variables distinct, as it is likely 

that they would impact on cognitive function in different ways and through different 

physiological pathways. A further point for consideration is the inclusion of variables 

that are a function of one another, but all of clinical relevance in the same PC. This is 

evident in PC1 “MPA + steps” which comprised time in moderate activity (mins/day), 

time in MVPA bouts (>10 mins), MVPA total counts and step count. It was also evident 

in PC3 which included time sedentary (mins/day) and number of prolonged sedentary 

bouts (>60 minutes). Because the variables share variance, they are included in the 
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same PC but this prevents exploration of the fractionation of a PA summary (i.e. bouts 

versus non-bouts of MVPA).   

3.12 Conclusion 

In conclusion, the findings show a limited number of associations between PA and 

adiposity composites and cognitive outcomes in overweight/obese adults. The study 

suggests that objectively measured PA has a limited but significant association with 

spatial memory, spatial working memory and attention, after controlling for age and 

IQ. In the current sample, age and IQ contributed more to variance in cognitive 

function, when compared to the physical activity and body composition composites. 

However, the cross-sectional design only confirms these findings in a sample that 

were accumulating minimal amounts of moderate- and vigorous-intensity activity. It is 

not possible to draw inferences about the relationship between MVPA and cognition 

in overweight/obese adults without a full range of MVPA behaviours. Despite this, the 

results offer promising evidence to suggest PA has a relationship with cognitive 

function in low-active, overweight/obese adults. Further exploration is warranted in 

larger-scale cross-sectional studies, and also in intervention studies focussed on 

increasing PA to examine the effect on cognitive function.       
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Chapter 4 Study 2: Impact of continuous versus interval 
exercise training upon cardiovascular and cognitive function 

in overweight obese women. 
 

4.1 Introduction 

Aerobic exercise improves cognitive function in healthy weight adults (Chapter 1, 

section 1.2.3), but this has not been investigated in obese samples. It is suggested 

that the exercise-related improvements in cognitive function may be driven by a 

reduction in cardiovascular risk factors (Chapter1, section 1.2.5.2). Exercise is known 

to impact brain structure directly (section 1.2.5.1) and also indirectly through systemic 

changes. Based on the hypothesis that greater physiological adaptation may translate 

to a greater chance of improving cognitive function, it is pertinent to explore a 

mode/type of exercise that elicits greatest physiological adaptation.  

The role that each of the parameters that underpin exercise (intensity, frequency, 

mode, duration) have upon neuroprotective benefit is poorly understood. The 

workload and duration of the interval bout drive metabolic demand, and the duration 

of the recovery bout can be manipulated to provide either full or partial recovery. 

Manipulation of these duty cycles impacts the acute metabolic or cardiopulmonary 

response during exercise, which subsequently impacts long-term training adaptations 

if repeated over time. Much of the research in section 1.2.7 indicates superior 

improvement following HIIT, relative to continuous exercise in many of the systemic 

factors associated with cognitive function (insulin sensitivity, inflammation, 

cardiovascular indices). However, the use of HIIT has largely been unexplored with 

regard to cognitive function.  

4.1.1 Interval exercise and cognitive function 

To date, only two studies have investigated the effects of increasing exercise or PA 

on cognitive function in middle-aged obese adults (Drigny et al., 2014; Monleón et al., 

2015). The protocols of both studies are described in detail in Chapter 1 section 1.2.3. 

However, the “interval training” protocol described by Drigny and colleagues was 

mixed given that in addition to two interval sessions per week participants also 

performed aerobic training and resistance work. The programme comprised of 2 HIIT 

sessions per week on an ergocycle, plus an additional 60-minute session of moderate 

intensity continuous exercise (60% peak power output) and two 20-minute resistance 
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training sessions. This therefore was not a ‘pure’ assessment of interval exercise. The 

study yielded significant improvements in short-term memory (Forward Digit Span), 

attention and processing speed (Digit Symbol Substitution Test) and verbal memory 

(RAVLT). This coincided with significantly improved post-training cerebral oxygen 

extraction during both exercise and recovery. However, the statistics used were a 

simple pre-post t-test, with no control group for comparison. This is further 

compounded by a low sample size of just 6 men. The study by Monleón et al. (2015) 

indicated performance on a psychomotor vigilance task had improved as indicated by 

faster responses and fewer lapses (missed responses) relative to baseline. However, 

the type of exercise cannot be categorised clearly in terms of work-rate profile (i.e. 

interval or continuous) as it was based on dance/rhythmic activities. The training 

consisted of two 60-minute sessions of supervised dance/rhythmic activities per 

week, with an intensity target of 12-13 on the Borg rating of perceived exertion scale 

(moderate intensity activity). 

4.1.2 Continuous work-rate exercise and cognitive function 

A limited number of studies examining the impact of exercise on cognitive function in 

young adult samples are available in the extant literature (Chapter 1, section 1.2.2), 

however none of these have been conducted in obese individuals. Collectively these 

studies have provided heterogeneous findings, as improvements in visual-spatial 

memory were reported following a six-week running intervention, but no significant 

changes in verbal memory or attention (Stroth et al., 2009). Pereira et al. (2007)  

reported improvement in short term verbal memory following twelve weeks aerobic 

exercise training, which occurred alongside increased cerebral blood flow in the 

dentate gyrus of the hippocampus. Improved performance in immediate and delayed 

verbal recall was observed following 24 weeks of cycling, when compared to a no-

exercise control and a stretching group. However, the stretching group demonstrated 

significant improvement in attention relative to the cycling and no-exercise control 

conditions. From a limited number of studies investigating the impact of continuous 

exercise sessions on cognitive function, many methodological differences have been 

identified. The protocols were different in terms of intervention duration (6 weeks – 8 

months), frequency of weekly exercise sessions (2-4), duration of sessions (30-60 

minutes), intensity of sessions and method used to control for intensity of sessions.   
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It is already known that traditional CON exercise is positively associated with cognitive 

performance. However, without a comparison of the two training regimes it is not 

known if any further benefit is derived from either INT or CON. It is not known if 

repeated excursions into a higher intensity have the capacity to elicit a superior 

physiological adaptation if both training stimuli (INT and CON) are performed within 

the same intensity domain and matched for work done.  

4.2 Study objectives and hypotheses 

Chapter 1 highlights the relationship between cognitive function and cardiovascular 

risk factors, and section 1.2.7 discusses the potential superior benefits of heavy-

intensity aerobic interval training upon such risk factors. However, heavy-intensity 

interval exercise training has not been compared to work-matched, heavy-intensity 

continuous exercise training for either cardiovascular risk or cognitive function 

outcomes. The aim of this chapter was to compare the impact of two work-matched, 

heavy-intensity exercise regimes (INT and CON) and a no-exercise control group 

upon cognitive function and cardiovascular risk in sedentary, overweight/obese 

women. The interrelationships between changes in these variables were explored as 

a secondary aim. It was hypothesised that the INT and CON regimes would drive 

physiological changes, and that these changes would be associated with improved 

cognitive function relative to controls. It was also hypothesised that the INT regime 

would drive superior benefit in cardiovascular adaptations relative to the CON regime. 

It was not known whether either experimental regime (INT or CON) would have a 

greater impact on cognitive function outcomes. 

4.3 Methods 

4.3.1 Participants 

Twenty-eight participants were recruited from the Leeds area from a pre-existing 

database listing individuals that have expressed a wish in being contacted for 

research purposes/future studies and/or local advertisement. All participants were 

healthy, pre-menopausal females with a BMI ≥27 kg/m2 and therefore classed as 

overweight/obese.  
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4.3.1.1 Inclusion/Exclusion Criteria 

In addition to the inclusion/exclusion criteria listed in section (Chapter 2, section 

2.2.3). Error! Reference source not found. displays the additional criteria used for 

the work reported in this chapter.  

Table 4.1 Study specific inclusion/exclusion criteria 

Inclusion Criteria Exclusion Criteria 

Female (pre-menopausal) 

BMI ≥27 kg/m2 

Male 

BMI < 27 kg/m2 

Age 30-55 years 

 

Age <30 or > 55 

Resting/exercise ECG indicating significant 
ischemia, recent myocardial infarction or other 
acute cardiac event or other exercise related 
ECG abnormalities.  
 
Clinical diagnosis of unstable angina 

  

 

4.3.1.2 Recruitment and attrition 

Figure 4.1 indicates the flow of participants through the study, from recruitment to 

completion. The consort diagram shows that the study received initial interest from 

148 volunteers, however 83 were excluded based upon BMI <27 kg/m2 (n=31) 

medication (n=27), depression (n=19), surgery (n=2), injury or chronic joint problem 

(n=4). A further 29 individuals did not respond to any further contact. Thirty-six eligible 

participants passed screening and were enrolled on the study. Six dropped out of the 

study during baseline tests, 1 declined and 4 did not respond. In total 25 participants 

completed all baseline assessments and were allocated to training groups. The INT 

training group (n=13) lost 3 participants from baseline to post-testing. The CON group 

(n=12) lost 2 participants from baseline to post-testing.      



112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Experimental Design 

The study conformed to a 3x3 independent parallel groups design examining 

cognitive performance and cardiovascular health over a 12-week supervised exercise 

intervention. Twenty sedentary, overweight/obese females were randomly assigned 

to one of two experimental groups (INT and CON, n=10 per group). A non-exercise 

(NO-EX) control group (n=8) was recruited separately/retrospectively. All participants 

attended the laboratory at three time points (weeks 0, 6 and 13) for baseline, mid and 

post assessment of cognitive function, body composition and cardiopulmonary 

fitness. 

Assessed for eligibility (n = 148) 

Excluded (n = 83) 

No response (n=29 

 

Eligible and enrolled on study (n = 36)  

Allocated to INT 

(n = 13) 

Allocated to CON 

(n = 12) 

Did not respond (n = 4) 

Declined (n=1) 

Dropped out (n=6) 

Completed baseline tests (n = 25)  

CON 

Completed mid-point tests (n = 11) 

INT 

Completed mid-point tests (n = 11) 

Drop out (n =1) Drop out (n =2) 

Drop out (n =1) 
Drop out (n =1) 

CON 

Completed post-tests (n = 10) 

INT 

Completed post-tests (n = 10) 

Figure 4.1 Consort diagram 
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4.5 Testing Procedure 

Testing took place in the Institute of Psychological Sciences and the Faculty of 

Biological Sciences, University of Leeds. Each visit was completed within 90 minutes. 

Individuals meeting the study inclusion criteria were invited to the laboratory for a 

study familiarisation visit and administration of the practice cognitive test battery (Visit 

1; see section 4.6.1). Seven days after completion of Visit 1, during which an 

accelerometer was worn to monitor PA, participants attended the lab for a baseline 

testing visit (Visit 2, see section 4.6.1) for assessment of cognitive function and body 

composition. Participants attended a separate laboratory visit for an assessment of 

cardiopulmonary function (Visit 3, see section 4.6.2). Visit 3 signified week 0 of the 

study, and the immediate initiation of the 12-week intervention phase. All measures 

from Visits 2 and 3 were repeated at mid-point (Visits 4 & 5, week 6) and upon 

completion of the 12-week intervention (Visits 6 & 7, week 13). Figure 4.2 provides a 

flow diagram of study visits from study familiarisation to completion. 

 
Figure 4.2 Study protocol flow diagram 
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4.6 Laboratory Visits  

4.6.1 Baseline Visits 1 and 2 (Week 0) 

Participants attended study familiarisation visit 1 and baseline visit 2, all procedures 

are described in Chapter 2, section2.4.  

4.6.2 Baseline Visit 3 (Week 0) 

In addition to the test visits described in Chapter 2, section 2.4, participants completed 

a cardio-respiratory fitness test on an electronically braked stationary cycle (Section 

4.7.2) in week 0.  Laboratory Visit 3 took 70 minutes to complete. 

4.6.3 Mid-point and post-testing assessments 

Baseline visit 2 (section 2.4.2) and visit 3 (4.6.2) were repeated at week 6 (mid-point) 

and week 13 (post-intervention) 

4.7 Study Procedures 

4.7.1 Assessment of cognitive function 

All participants attended the cognitive test sessions in a 12 hour fasted state. Parallel 

versions of each cognitive test were used and administered in a counterbalanced 

order at mid-point and post-testing. The acute impact of exercise on cognitive function 

is well documented (Roig et al., 2013) and can last up to 48 hours post-exercise. 

Therefore, post-test cognitive function tests were administered >48 hours after the 

final exercise session or maximal exercise test. The cognitive test battery took 

approximately 44 minutes to complete, see Table 4.2 for details. 
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Table 4.2 Order of cognitive test presentation within the cognitive test battery 

Cognitive test 
Test duration 

(minutes) 
Cognitive domain 

1. Visual Spatial Learning Test▲  6 Spatial memory  

2. Visual Verbal Learning Test* 12 Verbal memory 

3. Corsi Block Tapping Test* 
(Computerised version) 

4 Spatial working memory  

4. Tower of Hanoi* 5 
Problem solving 
(executive function) 

5. Delayed Visual Spatial Learning 
Test▲ 

2 Delayed spatial memory 

6. Grooved Pegboard▲ 3 Psychomotor skill 

7.Bakan Test 6 Attention 

8. Delayed Visual Verbal Learning 
Test* 

3 Delayed verbal memory  

9. Word Recognition Test* 3 Delayed verbal memory 

* Test administered on computer (experimenter not present) 
▲Test administered by hand by the experimenter 

 

4.7.1.1 Visual Spatial Learning Test 

The Visual Spatial Learning Test (VSLT) was administered as previously described 

in Chapter 2, section 2.5.1.3. For this research study versions 1, 2 and 3 were 

administered (Appendix 6.12) 

4.7.1.2 Visual Verbal Learning Test 

The Visual Verbal Learning Test (VVLT) was administered as previously described in 

Chapter 2, section 2.5.1.1. For this research study versions 1, 2 and 3 were 

administered (Appendix 6.11) 

4.7.1.3 Corsi Block Tapping Test 

The Corsi Block Tapping Test was administered as previously described in Chapter 

2, section 2.5.1.4.   

4.7.1.4 Tower of Hanoi 

The Tower of Hanoi (Simon, 1975) is a test of planning ability (executive function). 

The ToH is known to assesses several different cognitive components such as 
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planning, inhibition, procedural learning, explicit reasoning, working memory, and 

visuospatial memory (Welsh, Revilla, Strongin, & KEPLER, 2000; Welsh, Satterlee-

Cartmell, & Stine, 1999). The ToH task measures planning ability as it requires the 

formulation and execution of strategy whilst adhering to a set of rules (Shallice, 1982; 

Simon, 1975). The computerised TOH consisted of a visual representation of three 

rods upon which 4 discs of different size and colour were placed (the physical version 

contains 5 discs). The screen shows a target formation of the discs, and a starting 

formation (Figure 4.3). The task is to copy the target formation in a limited number of 

moves. There are two rules: (i) a larger disc must not be placed on the top of a smaller 

one; and (ii) only one disc is allowed to move at a time. The difficulty level of trials 

depends on number of moves required to solve the task. There were ten trials per 

test administration, consisting of two trials for each of the five levels of 4,5,6,7 or 

8 moves. There were two outcome variables: (i) the number of errors made, and 

(ii) the time to complete each trial (i.e. time taken to solve the problem). Impaired 

performance of the TOH or a similar task has been shown by frontally damaged 

adults(Shallice, 1982).  

 

Figure 4.3 Visual configuration of a trial from the computerised Tower of 
Hanoi test 

 

There was only one correct sequence of moves for each trial. This was the fewest 

number of moves required to match the target formation. If the participant deviated 

from the correct sequence the screen presented a message saying “this was not 

the correct sequence please try again”. Subsequently the screen refreshed to the 
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original starting formation. Forcing the participant to apply the fewest number of 

moves encourages problem solving rather than guessing. The screen informed 

the participant of the number of moves required to complete a trial, which was 

updated after each move, hence the participant was not required to retain in 

working memory the number of moves they had made. There was no time limit 

and therefore each trial had to be completed before the test concluded.  

 

4.7.1.5 Grooved Pegboard 

The Grooved Peg Board (Klove, 1963) assessed assesses manual dexterity and is a 

test of psychomotor skill. It consists of a metal board with a matrix of 25 holes (5 rows 

of 5 holes). Pegs have a ridge along one side and must be rotated to match the hole 

before they can be inserted. The holes are rotated to different angles such that the 

participant has to rotate each peg before it will fit in the holes. The task is to insert the 

pegs as quickly as possible into the slots in sequence, first with the dominant hand 

and then with the non-dominant one. The holes had to be filled in a specified order, 

e.g. one row at a time from left to right. Participants completed the task first. The 

test ends when all the pegs have been placed and the DV is the time taken to 

complete the task. 

 

4.7.1.6 Bakan Test (Rapid Visual Information Processing) 

The Bakan test was administered as previously described in general methods section 

2.5.2.1. In this study the 6-minute Bakan test was used.   

4.7.1.7 VVLT recognition Test 

The VVLT recognition task was administered was as previously described in general 

methods section 2.5.1.2.  For this research study versions 1, 2 and 3 were used, to 

correspond with the VVLT lists (Appendix 6.11). 
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4.7.2 Assessment of cardiorespiratory fitness (maximal 

exercise test) 

A seated ramp-incremental (12W·min-1) step exercise test (RISE-105) protocol was 

followed for the assessment of maximal aerobic capacity (V̇O2 max). Additional 

variables derived were lactate threshold (LT), work rate peak (WRpeak) and ramp 

incremental (RI) test duration. These variables were required to calculate the work-

rates for the individual training sessions throughout the study duration. 

An electronically braked cycle ergometer (Excalibur Sport V2.0; Lode BV, Groningen, 

The Netherlands) was used for all cardio-respiratory fitness tests. Participants were 

fitted with a mouthpiece and nose clip to allow for breath by breath analysis during 

the test. The sensors for carbon dioxide, oxygen and air flow were calibrated before 

each test to ensure accurate measurement of pulmonary gas exchange using Breeze 

Suite software (V.5.0 and V.7.2; Medgraphics, Medical Graphics Corporation, St 

Paul, MN, USA).  Participants were also fitted with a 12-lead ECG to monitor heart 

rate at 2-minute intervals during the test. Additional measures taken every 2 minutes 

were blood pressure using a sphygmomanometer and Borg’s scale of rating of 

perceived exertion (RPE). 

The exercise testing protocol commenced with a 3-minute rest period, followed by 4 

minutes of cycling at 20 W. During this time gas exchange was confirmed to be at 

steady state, quantified by a respiratory exchange ratio (RER) between 0.75-0.9. The 

RI test was 12 W/min and participants were encouraged to maintain a cycling 

cadence above 70 rpm until volitional fatigue. Volitional fatigue was determined when 

the cadence fell below 50 rpm. Upon completion of the RI test, a 5-minute period of 

unloaded cycling (20 W) was performed to allow for recovery and calculation of the 

work-rate for the step-exercise (SE) test. WRpeak was calculated as follows: 

WRpeak = RI test duration x ramp rate + 20 (W) 

The SE test was set at a work-rate of 105% WRpeak and initiated at the end of the 5-

minute recovery period. Participants were encouraged to maintain a cycling cadence 

of ~80 rpm until volitional fatigue.  Upon completion of the SE participants completed 

5 minutes of active recovery at 20 W and were monitored to ensure heart rate and 

V̇O2  returned to baseline values.  
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The breath-by-breath data were edited using OriginPro 8 software (OriginLab, 

Northampton, MA), and data exceeding 99.9% confidence interval were removed. 

V̇O2peak  was calculated from a 12-breath rolling average, for both RI and SE 

components of the test. V̇O2max  was reported as the average of the V̇O2peak   for RI 

and SE. Lactate threshold was estimated using the V-slope method (Beaver, 

Wasserman, & Whipp, 1986), which identifies a breakpoint in the “v-slope” where 

CO2 output (V̇CO2p ) is plotted as a function of pulmonary oxygen uptake (V̇O2p ) 

(Rossiter, 2011). This is confirmed by a plateau in end-tidal CO2. 

4.7.3 Assessment of anthropometric indices 

The measures of anthropometric indices were assessed as previously described in 

section (Chapter 2, section 2.8). The variables obtained for this research chapter were 

body fat percentage, BMI, waist circumference (cm) and waist-hip ratio.  

4.8 Exercise training protocol 

Participants were matched for age and BMI and assigned to heavy-intensity interval 

training (INT) or heavy-intensity continuous training (CON). Participants attended the 

lab twice per week for 12 weeks, for supervised training on electronically braked cycle 

ergometers. In week 6 of the training regime (mid-point), all participants completed a 

maximal exercise test for appropriate adjustment of work rates.   

4.8.1 Confirmation of training regime intensity domain 

The first training session for both INT and CON groups was monitored to confirm 

individuals were exercising in the heavy-intensity domain. Breath by breath data were 

collected to allow for analysis of cardiopulmonary gas exchange, which was 

monitored continuously for the full duration of the monitored session. Fingertip 

capillary blood samples were assessed for blood lactate levels (Lactate Pro, Arkray, 

Japan). Two blood lactate measures were taken during a 5 minute seated rest period 

prior to commencement of exercise. During exercise, for INT blood lactate was 

measured every 5 minutes during the first 20-minute training session. As the CON 

group were matched for work, the first training sessions were shorter in duration and 

so blood lactate was collected every 4 minutes.  The monitored training session was 

completed on the first training session following the baseline and mid-point maximal 

exercise test. If cardiopulmonary gas exchange or blood lactate values indicated that 
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a participant was not exercising in the heavy–intensity domain, work rates were 

adjusted and participants were asked to complete a second monitored training 

session. 

  

4.8.2 Training stimulus 

4.8.2.1 Interval training 

The INT training group performed 30 – 40 minute sessions involving repeated 

excursions into a work rate corresponding with 70%Δ between LT and V̇O2 peak 

interspersed with recovery periods. The work:recovery ratio for the INT group was 

40s:80s, with the work component performed at 70% delta between LT and V̇O2 max, 

and recovery component was 20 Watts. The duty cycles selected were based on the 

1:2 (work:recovery) cycles described by Turner et al. (2006). The 40s:80 s protocol 

utilised for this study was adapted from the previous work by Turner and colleagues 

(2006) to tailor the regime for a sedentary, overweight/obese and middle-aged 

sample. The 70% delta (Δ) work-rate was calculated by the following equation: 

70%Δ = 0.7(WRpeak – WRLT) + WRLT 

 

4.8.2.2 Continuous training 

The CON group exercised at a steady work rate of 120% lactate threshold. The work 

(J) performed in each session by CON was matched to the work performed by INT 

participants by manipulating the CON session durations. For CON participants, the 

work was calculated that would have been performed had they been in the INT group. 

From this, the duration for the CON sessions was calculated with the following 

equation: 

𝑇𝑖𝑚𝑒 =  
𝑊𝑜𝑟𝑘 

𝑃𝑜𝑤𝑒𝑟 
 

Work (J) was the total amount completed during an INT session comprising of the 

40s intervals at 70%Δ work-rate and 80s at 20 W. Power (J/s) was the CON session 

work rate at 120% lactate threshold.  
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4.8.2.3 Non-exercising control group 

Participants were asked maintain their current diet and physical activity levels, and 

abstain from taking up any new physical activity or exercises throughout the 12-week 

duration of the study.  

 

4.8.3 Training session duration (INT and CON) 

The training session durations are shown for both INT and CON in Table 4.3.  

 

Table 4.3 Training session durations for INT and CON groups 

Intervention week 

Session duration (minutes) 

INT1 

(Total) 

CON2 

(Mean ± SD) 

1 20 13.3 ± 1.3  

2 25 16.6 ± 1.7 

3-6 30 19.9 ± 2.0 

7-9 35 22.5 ± 2.1 

10-12 40 25.8 ± 2.4 
1Session duration for INT group was same for all INT participants. 2Session duration for CON group 
was different among CON participants, but matched for work (kJ) performed in INT sessions. 

 

4.9 Ethical Approval 

Attainment of ethical approval is described in Chapter 2, section 2.3.  

4.10 Data Analysis  

The SAS-mixed models procedure (PROC MIXED) was employed to examine the 

potential within-subjects change in cognitive function or cardiovascular health 

outcome variables over the 12-week intervention period, compared with the no 

intervention control group examined over the same period. The analysis included two 

fixed factors; condition with 3 levels (INT, CON and NO-EX); and time with 2 levels 

(mid and post). Baseline performance (on each cognitive or cardiovascular health 

outcome) was retained as a covariate. IQ was included as a covariate for all cognitive 
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outcomes, and age was included as a covariate for all cognitive and cardiovascular 

outcomes. Where age or IQ were non-significant they were removed from the model. 

Where covariates were significant, they were plotted to determine direction of 

relationship with the dependent variable. When significant main effects or interactions 

were found, Tukey corrected post hoc tests (LSMEANS) were performed to explore 

these. In cases, where an interaction with baseline or other covariate was significant, 

the LSMEANS procedure, examines the effect at the average value of the baseline 

(or other covariate) and is reported where significant. For such cases average 

baseline score is indicated on the relevant figure by a vertical line (e.g. see Error! 

Reference source not found.). 

4.11 Results 

4.11.1 Participant characteristics 

The sample comprised of 28 females from the Leeds area (mean age: 41.4 ± 6.8 

years). Table 4.4 shows that no significant differences were present between the 

three groups (INT, CON, and NO-EX) for participant characteristics at baseline 

(largest F(2,27)=2.31, p=.120). Mean IQ score was 115.4 ± 12.3 and the sample were 

categorised as ‘high average’ (Wechsler, 2008). All participants were obese (mean 

body fat percentage: 42.5 ± 4.7 %; mean BMI: 32.2 ± 4.2 kg/m2), and met the criteria 

for abdominal obesity (mean waist circumference: 105.5 ± 10.4 cm; mean waist-hip 

ratio 0.91 ± 0.07).  
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Table 4.4 Participant characteristics (mean ± SD) at baseline for INT, CON and 
NO-EX 

 
INT 

(n=10) 
CON 

(n=10) 
NO-EX 
(n=8) 

p 

Age (yrs) 41.2 ± 4.0 42.9 ± 7.2 39.8 ± 9.2 .632 

IQ (score) 115.1 ± 14.5 116.2 ± 12.4 114.8 ± 10.4 .968 

BMI (kg/m2) 33.0 ± 3.7 30.9 ±  3.3 32.8 ±  5.6 .503 

Body fat (%) 44.6 ± 2.3 40.3 ±  4.0 42.6 ±  6.7 .120 

Fat mass (kg) 40.5 ± 8.5 34.1 ±  6.9 38.4 ±  11.3 .279 

Lean tissue (%) 55.4 ± 2.3 59.7 ±  4.0 57.4 ± 6.7 .120 

FFM (kg) 49.8 ± 7.6 49.9 ±  4.6 49.8 ±  3.7 .999 

WC (cm) 108 ± 9.9 100.6 ±  8.1 106.9 ±  11.5 .216 

WHR 0.92 ±  0.1 0.88 ±  0.1 0.92 ±  3.7 .494 

   IQ=intelligence quotient, BMI=body mass index, WC = waist circumference, 
FFM=fat free mass, WHR=waist-hip ratio 

 

Table 4.5 shows that no significant differences were present between the three 

groups (INT, CON, and NO-EX) for any of the variables at baseline (largest 

F(2,27)=1.68, p=.207) with the exception of percentage of LT at V02max, 

F(2,27)=6.11, p<.001. Post hocs showed that NO-EX condition (61.4 ± 6.9 %) had 

significantly higher LT% at V̇O2max  than INT (50.9 ± 6.1 %, p<.05). Mean resting heart 

rate (RHR) was 66.7 ± 7.6 bpm. Average mean arterial pressure (94.3 ± 9.8 mmHg) 

was is in the normal range. Mean absolute V̇O2max  was 2079.8 ± 323.9 ml/min, and 

relative V̇O2max was 23.9 ± 3.2 ml/kg/min, and classed as very poor according to the 

ACSM percentile values for maximal aerobic power (Pescatello, 2014).  
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Table 4.5 Indices of cardiovascular fitness (mean ± SD) at baseline for INT, CON 
and NO-EX 

 
INT 

(n=10) 
CON 

(n=10) 
NO-EX 
(n=8) 

p 

Resting heart rate 
(bpm) 

66.4 ±  7.7 67.5 ±  8.8 66.3 ± 6.7 .934 

SBP (mmHg) 125.9 ± 10.9 123.2 ±  15.5 115 ±  11.5 .207 

DBP (mmHg) 81.9 ± 8.7 81.2 ± 10.1) 77.9 ± 8.8 .633 

MAP (mmHg) 96.6 ±  9.1 95.2 ± 11.0 90.3 ± 9.3 .388 

Absolute V̇O2max  
(ml/min) 

2138.4  ± 405.9 2067.2 ± 257.0 1969.5 ± 299.6 .757 

Relative V̇O2max  
(ml/kg/min) 

23.8 ± 2.8 24.6 ± 2.9 21.8 ± 2.9 .658 

LT (ml∙min-1) 1077.1 ± 173.0 1149.1 ± 242.7 1255.1 ± 200.1 .215 

Percentage LT  

V̇O2max  
50.92 ± 6.1 55.1 ±  6.1 61.4 ± 7.0 .007 

SBP=systolic blood pressure, DBP=diastolic blood pressure, MAP=mean arterial 
pressure, LT=lactate threshold  

 

 

4.11.2 Impact of exercise intervention on cognitive function 

4.11.2.1 Verbal memory (VVLT) 

4.11.2.1.1 Total acquisition 

In the final model, 2 outlying observations were excluded to normalise the residuals. 

Baseline total acquisition score was a significant covariate, F(1,21)=28.1, p<.0001, 

and as expected showed a positive correlation with total words recalled at subsequent 

test visits. There was a trend towards a main effect of condition, F(2,21)=2.75, p= .09, 

but no significant interactions (see Appendix 6.22). Figure 4.4 indicates that total 

acquisition performance was better for CON than for INT and NO-EX at average 

baseline score.  
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Figure 4.4 VVLT total acquisition over mid and post (vertical axis) plotted 
against baseline score. Vertical line indicates average baseline total acquisition 
 

4.11.2.1.2 Delayed recall 

In the final model, 1 outlying observation was excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,21)=20.7, p<.001, and as expected 

showed a positive correlation with words recalled (after 30-minute delay) at 

subsequent test visits. The analysis revealed no further significant main effects or 

interactions (see Appendix 6.22).  

4.11.2.1.3 Recognition 

In the final model, 2 outlying observations were excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,21)=4.39, p< .05, and as expected  

showed a positive correlation with word recognition at subsequent test visits. The 

analysis revealed no further significant main effects or interactions (Appendix 6.22) 

4.11.2.1.4 Proactive interference 

In the final model, 3 outlying observations were excluded to normalise the residuals. 

The analysis revealed no significant main effects or interactions (Appendix 6.22).  
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4.11.2.1.5 Retroactive interference 

In the final model, 1 outlying observation was excluded to normalise the residuals. 

There was a trend towards baseline score as a significant covariate, F(1,22)=3.09, 

p= .09, and as expected showed a positive correlation with performance at 

subsequent test visits. The analysis revealed no significant main effects or 

interactions (Appendix 6.22).  

4.11.2.2 Spatial memory (VSLT) 

4.11.2.2.1 Total designs  

In the final model, baseline score was a significant covariate, F(1,22)=15.1, p<.001, 

and as expected showed a positive correlation with designs recalled at subsequent 

test visits. There was a trend towards a significant visit*condition interaction, 

F(2,22)=3.01, p= .07. Figure 4.5 indicates that VSLT design score increased from mid 

to post for INT and CON, but decreased for NO-EX. The analysis revealed no 

significant main effects or interactions (see Appendix 6.23).  

 

Figure 4.5 VSLT designs recalled at mid-point and post-intervention (relative 
to average baseline score) for INT, CON and NO-EX 

 

4.11.2.2.2 Locations 

In the final model, 1 outlying observation was excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,22)=5.20, p<.05, and as expected 

showed a positive correlation with locations recalled at subsequent test visits. There 

was a significant main effect of visit, F(1,21)=7.94, p<.01 which is qualified by a 
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significant baseline*visit interaction, F(1,21)=6.80, p< .05. Figure 4.6 shows that 

irrespective of condition, in those with low baseline scores, performance at post-

testing was worse than at mid-point. However, no differences in mid- and post-test 

performance were observed in those with high baseline scores. Post hoc tests for 

main effect of visit were not significant and the analysis revealed no significant main 

effects or interactions (see Appendix 6.23). 

 

Figure 4.6 VSLT locations performance (whole sample) plotted against 
baseline score (horizontal axis) for mid-point and post-test. Vertical line 
indicates average baseline location score. 
 

4.11.2.2.3 Designs and locations 

In the final model, 1 outlying observation was excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,22)=4.20, p=.05, and as expected 

showed a positive correlation with designs/locations recalled at subsequent test visits. 

There was a significant main effect of visit, F(1,22)=4.18, p= .05, which is qualified by 

a baseline*visit interaction, F(1,22)=4.65, p< .05. Figure 4.7 indicated that in those 

with high baseline scores, performance was better at post-testing relative to mid-

point. The analysis revealed no significant main effects or interactions (see Appendix 

6.23). 
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Figure 4.7 VSLT designs/locations performance (whole sample) plotted 
against baseline score (horizontal axis) for mid-point and post-test. Vertical 
line indicates average designs/locations score. 
 

4.11.2.2.4 Delayed recall of designs and locations 

In the final model, 1 outlying observation was excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,22)=14.71, p<.0001, and as expected 

showed a positive correlation with delayed designs/locations recalled at subsequent 

test visits. There was a trend towards a baseline*condition interaction, F(2,22)=2.89, 

p= .08. Figure 4.8 indicates that in those with low baseline scores, performance at 

subsequent testing (pooled over mid and post) was superior in INT relative to CON 

and NO-EX. However, in those with high baseline scores performance at subsequent 

testing was poorer in INT relative to CON and NO-EX. The analysis revealed no 

significant main effects or interactions (see Appendix 6.23). 
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Figure 4.8 VSLT delayed designs/locations over mid- and post (vertical axis) 
plotted against baseline score 
 

4.11.2.3 Attention 

4.11.2.3.1 Correct hits 

In the final model 1 outlying observation was excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,21)=120.32, p<.001, and as expected 

showed a positive correlation with total correct hits at subsequent test visits. The 

analysis revealed no further significant main effects or interactions (see Appendix 

6.24).  

4.11.2.3.2 Reaction time of correct responses 

In the final model 1 outlying observation was excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,21)=15.56, p<.001, and as expected 

showed a positive correlation with reaction time of correct responses at subsequent 

test visits. The analysis revealed no further significant main effects or interactions 

(see Appendix 6.24).  

4.11.2.3.3 Missed responses 

In the final model, 1 outlying observation was excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,22)=81.61, p<.001, and as expected 

showed a positive correlation with total missed responses at subsequent test visits. 

There was a trend towards a main effect of visit, F(1,21)=3.78, p= .07. Post hoc tests 

show that, irrespective of condition, the number of errors at post-intervention (29.9 ± 
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1.2) were significantly lower than at mid-point (34.0 ± 1.24; t(21)=3.32, p<.01). The 

analysis revealed no further significant main effects or interactions (see Appendix 

6.24). 

4.11.2.3.4  False positive responses 

In the final model, 2 outlying observations were excluded to normalise the residuals. 

Baseline score and age were significant covariates, F(1,21)=5.07, p<.05, and 

F(1,21)=10.1, p<.01, respectively. As expected baseline score was positively 

correlated with performance at subsequent testing, however false-positive responses 

were higher in younger participants. There was a significant main effect of condition, 

F(2,21)=9.76, p< .001, and a trend towards a baseline*condition interaction, 

F(2,21)=2.66, p= .09, as indicated in Figure 4.9. Post-hoc comparisons showed 

overall false-positive responses for NO-EX (10.2 ± 1.1) were significantly higher than 

INT (5.5 ± 0.9;t(21)=-3.26, p< .01) and CON (5.4 ± 1.0; t(21)=-3.23, p< .01). The 

analysis revealed no further significant main effects or interactions (see Appendix 

6.24). 

 

Figure 4.9 False-positive responses over mid-and post (vertical axis) plotted 
against baseline for INT, CON and NO-EX. Vertical line indicates average 
baseline false positive responses. 
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4.11.2.4 Spatial working memory (Corsi) 

4.11.2.4.1 Correct responses 

In the final model, 1 outlying observation was excluded to normalise the residuals. 

Baseline score and IQ were significant covariates, F(1,21)=92.76, p<.0001, and 

F(1,21)=9.71, p<.01, respectively. As expected both baseline score and IQ showed a 

positive correlation with performance at subsequent testing. There was a significant 

main effect of condition, F(2,21)=5.44, p< .01, which is qualified by a significant 

baseline*condition interaction, F(2,21)=5.97, p<.01. There was also a trend towards 

a baseline*visit interaction, F(1,21)=3.85, p= .06. The baseline by condition 

interaction is evident in Figure 4.10, as those with low baseline scores (average score 

= 61.2) show superior performance in INT and CON relative to NO-EX. However, in 

those with above-average baseline score performance is worse for INT relative to 

CON and NO-EX. The analysis revealed no further significant main effects or 

interactions (see Appendix 6.25).  

 

Figure 4.10 Corsi (total correct) over mid-and post (vertical axis) plotted 
against baseline scores for INT, CON, and NO-EX. Vertical line indicates 
average baseline total correct responses. 

 

4.11.2.4.2 Reaction time for correct responses 

In the final model, 2 outlying observations were excluded to normalise the residuals. 

Baseline score and IQ were significant covariates F(1,20)=27.3, p<.001 and 

F(1,20)=5.58, p< .05, respectively. Baseline score showed a positive correlation with 
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performance at subsequent test visits, and reaction time decreased as IQ increased. 

The analysis revealed no further significant main effects or interactions (see Appendix 

6.25).  

 

4.11.2.4.3 Correct responses: crossing trials 

In the final model, baseline score and IQ were significant covariates, F(1,20)=16.51, 

p<.001, and F(1,20)=4.73, p< .05, respectively. As expected both baseline score and 

IQ showed a positive correlation with performance at subsequent testing. Age showed 

a trend towards being a covariate, F(1,20)=3.42, p= .07, and showed a negative 

correlation with performance. The analysis revealed no further significant main effects 

or interactions (see Appendix 6.25).  

4.11.2.4.4 Correct responses: non-crossing trials 

In the final model, baseline score was a significant covariate, F(1,22)=12.58, p<.01, 

and as expected showed a positive correlation with performance at subsequent visits. 

The analysis revealed no further significant main effects or interactions (see Appendix 

6.25).  

4.11.2.5 Executive Function (ToH) 

4.11.2.5.1 Errors 

In the final model, 3 outlying observations were excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,21)=10.19, p<.01, and as expected 

showed a positive correlation with performance at subsequent visits. The analysis 

revealed no further significant main effects or interactions (see Appendix 6.26).  

4.11.2.5.2 Completion time 

In the final model, 3 outlying observations were excluded to normalise the residuals. 

Baseline score was a significant covariate, F(1,21)=69.19, p<.0001, and as expected 

showed a positive correlation with completion time at subsequent visits. There was a 

main effect of visit F(1,20)=6.38, p< .05, and a trend towards an effect of condition, 

F(2,21)=3.25, p= .06. There was a significant baseline*condition interaction, 

F(2,21)=6.25, p< .01, as indicated in Figure 4.11. In those with slower baseline 

completion time, performance at subsequent visits was faster for INT relative to CON 

and NO-EX. No differences between the conditions were evident in those with fast 

completion times at baseline. There was a significant baseline*visit interaction, 
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F(1,20)=10.57, p< .01,  and a trend towards a visit*condition interaction, 

F(2,20)=2.88, p= .08.  Post hoc analysis showed that, irrespective of condition, 

completion time at post-testing (216.4± 7.8) was significantly faster than mid-point 

(230.3 ± 8.1; t(20)=1.95, p= .06) but just failed to reach significance. Post hoc tests 

for the visit by condition interaction also just failed to reach significance, but indicated 

at mid-point testing completion time for INT (199.3 ± 12.0) was significantly faster 

than CON (250.3 ± 12.1; t(20)= -3.00, p= .07).  

 

 

Figure 4.11 ToH completion time over mid-and post (vertical axis) plotted 
against baseline scores for INT, CON, and NO-EX. Vertical line indicates 
average baseline ToH completion time. 
 

 

4.11.2.6 Psychomotor skill (Grooved Peg Board) 

4.11.2.6.1 Completion time (dominant hand)  

In the final model, baseline completion was a significant covariate, F(1,21)=146.83, 

p<.0001, and as expected showed a positive correlation with completion time at 

subsequent testing.  There was a significant main effect of condition, F(2,21)=7.60, 

p< .01, as qualified by a significant baseline*condition interaction, F(2,21)=7.74, p< 

.01. The analysis revealed no further significant main effects or interactions (see 
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Appendix 6.27). The baseline by condition interaction is evident in Figure 4.12 as in 

those with slower baseline completion times, performance at subsequent testing is 

superior in INT relative to NO-EX and CON. In those with faster completion times at 

baseline, performance is superior in CON relative to NO-EX and INT.  

 

Figure 4.12 GPB (dominant hand) completion time over mid-and post (vertical 
axis) plotted against baseline scores for INT, CON, and NO-EX. Vertical line 
indicates average baseline completion time. 

 
 

4.11.2.6.2 Completion time (non-dominant hand)  

In the final model, 1 outlying observation was excluded to normalise the residuals. In 

the final model, baseline completion time was a significant covariate, F(1,21)=80.96, 

p<.001, and as expected showed a positive correlation with completion time at 

subsequent testing.  There was a main effect of condition, F(2,21)=4.82, p<.05 as 

qualified by a significant baseline*condition interaction, F(2,21)=4.59, p<.05. Figure 

4.13 indicate that in those with faster completion times at baseline, performance at 

subsequent testing is better in CON relative to INT and NO-EX. In those with slower 

completion times at baseline, performance at subsequent testing is superior in NO-

EX relative to INT and CON. The analysis revealed no further significant main effects 

or interactions (see Appendix 6.27).  
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Figure 4.13 GPB (non-dominant hand) completion time over mid-and post 
(vertical axis) plotted against baseline scores for INT, CON, and NO-EX. 
Vertical line indicates average baseline completion time. 
 

 

4.11.3 Impact of intervention on health  

4.11.3.1 Cardiovascular fitness 

Absolute V̇O2max , relative V̇O2max , lactate threshold (LT) and percentage LT of VO2max 

had not significantly altered post-intervention after controlling for baseline values 

(Error! Reference source not found., p >.05). Mean arterial pressure (MAP) was 

lower in NO-EX relative to INT and CON, as confirmed by a main effect of condition 

(p<.05).     
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Table 4.6 Cardiovascular fitness (mean ± SD) at baseline and post-intervention for INT, CON and NO-EX 

 

*Indicates significant group differences at post-intervention after controlling for baseline score (p<.05).   
 

 

 

 

 INT CON NO-EX 

 Baseline Post Baseline Post Baseline Post 

Absolute V̇O2max  

(ml/min) 
2138.4 ± 405.9 2221.6 ± 406.1 2067.2 ± 257.0 2103.4 ± 226.9 1969.5 ± 299.6 2052.7 ± 316.9 

Relative V̇O2max  

(ml/kg/min) 
23.8 ± 2.8 25.2 ± 3.1 24.6 ± 2.9 25.2 ± 2.6 21.8 ± 2.9 22.2 ± 5.1 

Lactate Threshold  
(ml∙min-1) 

1077.1 ± 173.0 1195.8 ± 235.6 1149.1 ± 242.7 1124.8 ± 158.8 1255.1 ± 200.1 1191.5 ± 174.4 

Percentage LT of 

V̇O2max x (%) 
50.9 ± 6.0 54.6 ± 7.8 55.1 ± 6.1  53.5 ± 4.9 61.4 ± 6.9 56.8 ± 9 

Mean Arterial Pressure 
(mmHg)* 

96.6 ± 9.1 93.1 ± 8.6 95.2 ± 10.9 95.0 ±10.8 90.3 ± 9.3 88.1 ± 6.8 
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4.11.3.2 Absolute V̇O2max  

In the final model, baseline absolute V̇O2max  was a significant covariate, 

F(1,16)=180.79, p<.0001, and as expected showed a positive correlation with 

absolute V̇O2max x at subsequent testing. The analysis revealed no further significant 

main effects or interactions (see Appendix 6.28).   

4.11.3.2.1 Relative V̇O2max  

In the final model 2 outlying observations were excluded to normalise the residuals. 

In the final model, baseline relative V̇O2max was a significant covariate, 

F(1,18)=130.82, p< .0001, and as expected showed a positive correlation with relative 

VO2max at subsequent testing. The analysis revealed no further significant main effects 

or interactions (see Appendix 6.28).   

4.11.3.2.2 Lactate threshold 

In the final model, baseline lactate threshold was a significant covariate, 

F(1,19)=14.04, p<.001, and as expected showed a positive correlation with lactate 

threshold at subsequent testing. The analysis revealed no further significant main 

effects or interactions (see Appendix 6.28).   

4.11.3.2.3 Percentage LT of V̇O2max  

In the final model, baseline percentage LT of V̇O2max  was a significant covariate, 

F(1,18)=4.23, p<.05, and as expected showed a positive correlation with LT 

percentage of VO2max at subsequent testing . The analysis revealed no further 

significant main effects or interactions (see Appendix 6.28).   

4.11.3.2.4 Mean arterial pressure 

In the final model, baseline mean arterial pressure (MAP) was a significant covariate, 

F(1,18)=39.84, p<.001, and as expected showed a positive correlation with MAP at 

subsequent testing. There was a significant main effect of condition, F(2,18)=8.15, 

p<.01 and a significant baseline*condition interaction, F(2,18)=4.77, p<.05. There 

was a trend towards significance for age as a covariate, F(1,18)=3.31, p=.08, such 

that MAP increased with age. Figure 4.14 indicates that in those with highest MAP at 

baseline, values at subsequent testing were lower in INT and NO-EX relative to CON. 
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In those with lower baseline MAP, values at subsequent testing were lowest in CON 

and NO-EX relative to INT.  The analysis revealed no further significant main effects 

or interactions (see Appendix 6.28). 

 

  

 

Figure 4.14 Mean arterial pressure (MAP) at baseline plotted against MAP at 
post-test for INT, CON and NO-EX. Vertical line indicates average baseline 
MAP. 
 

 

4.11.3.3 Indices of obesity 

4.11.3.3.1 Body mass Index (BMI) 

In the final model, 4 outlying observations were excluded to normalise the residuals. 

Baseline BMI was a significant covariate, F(1,20)=958.5, p<.0001, and as expected 

showed a positive correlation with BMI at subsequent testing. There was a significant 

visit*condition interaction, F(2,19)=3.67, p< .05. Figure 4.15 indicates that from mid- 

to post-intervention BMI increased in NO-EX, decreased in CON and did not change 

for INT. The analysis revealed no further significant main effects or interactions (see 

Appendix 6.29Appendix 6.28).   
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Figure 4.15 BMI at mid- and post-intervention (controlling for baseline BMI) for 
INT, CON and NO-EX 

 

4.11.3.3.2 Body fat percentage 

In the final model, 1 outlying observation was excluded to normalise the residuals. 

Baseline body fat percentage was a significant covariate, F(1,22)=77.79, p<.001, and 

as expected showed a positive correlation with  body fat percentage at subsequent 

testing. There was a trend towards a main effect of visit, F(1,20)=3.10. p= .09. The 

analysis revealed no further significant main effects or interactions (see Appendix 

6.29). Raw values suggested that body fat percentage increased over the 12 weeks 

of intervention irrespective of condition.  

4.11.3.3.3 Waist circumference 

In the final model, baseline waist circumference was a significant covariate, 

F(1,21)=399.40, p< .001, and as expected showed a positive correlation with WC at 

subsequent testing. The analysis revealed no significant main effects or interactions 

(see Appendix 6.29).  

4.11.3.3.4 Waist-hip ratio 

In the final model, baseline WHR was a significant covariate, F(1,22)=105.43, p<.001, 

and as expected showed a positive correlation with WHR at subsequent testing. 

There was a visit*condition interaction, F(2,21)=3.82, p< .05, as indicated in Figure 

4.16. This indicates that from mid- to post-intervention WHR decreased for NO-EX 
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and did not change for INT and CON. There was a trend towards a significant main 

effect of visit, F(1,21)=3.15, p= .09 and a trend towards a baseline*visit interaction, 

F(1,21)=3.66, p= .07. The analysis revealed no further significant main effects or 

interactions (Appendix 6.29).  

 

 

Figure 4.16 WHR at mid- and post-intervention (controlling for baseline WHR) 
for INT, CON and NO-EX 
 

 

4.11.4 Summary of findings 

4.11.4.1 Impact of 12-week intervention on cognitive function 

A tabulated summary of the effect of the intervention on cognitive function is shown 

in Table 4.7.  

 As expected, baseline cognitive performance was the greatest predictor of 

performance at subsequent tests visits for all verbal memory (excluding proactive 

interference), spatial memory, spatial working memory, attention, executive 

function and psychomotor skill outcomes.  

 Performance on the executive function task (ToH) was altered following the 

intervention, showing faster completion times for INT relative to CON and NO-EX. 

This effect was more pronounced at mid-point testing (visit*condition). 
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 Performance on a spatial memory outcome (designs) improved for INT and CON 

from mid to post, but decreased for NO-EX (a trend for visit*condition interaction). 

 Baseline scores showed significant (or a trend for) interactions with condition for 

Corsi correct responses, ToH completion time, GPB completion time (dominant 

and non-dominant hand) and VSLT delayed designs/locations. For VSLT, corsi 

and ToH in participants with poorest baseline performance, INT showed superior 

performance at subsequent testing relative to CON and NO-EX.  

 Baseline score showed significant (or a trend for) interactions with visit for VSLT 

(locations and designs/locations), ToH completion time and Corsi (total correct). 

For VSLT and corsi outcomes, those with lowest baseline scores were showing a 

decline in performance from mid-point to post. Those with high baseline scores 

were not affected. For ToH, performance improves from mid to post in those with 

the slowest baseline completion times  

 Overall, age and IQ did not impact change in cognitive score over time for the 

majority of cognitive function outcomes. Irrespective of condition, IQ was 

associated with better performance in spatial working memory task (accuracy, 

RT correct, accuracy: crossing trials). Age was a significant covariate for 

attention (false-positive responses) indicating that performance was worse in 

younger participants. Age showed a trend for an association with working 

memory (accuracy of crossing trials) indicating performance decreased with 

age.  
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       Table 4.7 Tabulated summary of cognitive function outcomes 

 Main effects Covariates Interaction terms 

Cognitive outcome Visit Cond Baseline Age IQ B*Visit B*Cond Visit*Cond Age*Cond IQ*Cond 

VERBAL MEMORY           

Total Acquisition N 
Trend 
p= .09 

Sig. 
p< .001 

- - N N N - - 

Delayed recall N N 
Sig. 

p< .001 
- - N N N - - 

Recognition N N 
Sig. 

p< .05 
- - N N N - - 

Retroactive 
Interference 

N N 
Trend 
P= .09 

- - N N N - - 

Proactive 
Interference 

N N N - - N N N - - 

SPATIAL MEMORY           

Designs N N 
Sig. 

p< .001 
- - N N 

Trend 
p=.07 

- - 

Locations 
Sig. 

p< .01 
N 

Sig. 
p< .05 

- - 
Sig. 

p< .05 
N N - - 

Designs/locations 
Sig. 

p< .05 
N 

Sig. 
p< .05 

- - 
Sig. 

p< .05 
N N - - 

Delayed  
designs/locations 

N N 
Sig. 

p< .001 
- - N 

Trend 
p= .08 

N - - 

ATTENTION           

Hits N N 
Sig. 

p< .001 
- - N N N - - 

Reaction time hits N N 
Sig. 

p< .001 
- - N N N - - 

Missed responses 
Trend 
p= .07 

N 
Sig. 

p< .001 
- - N N N - - 

False-positives N 
Sig. 

p< .001 
Sig. 

p< .05 
Sig. 

p< .01 
- N 

Trend 
p= .09 

N - - 

NB cond = condition, B*Visit = baseline*visit, B*Cond = baseline*condition; - indicates term removed from final model for best fit (lowest AICc 
score) 
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 Main effects Covariates Interaction terms 

Cognitive outcome Visit Cond Baseline Age IQ B*Visit B*Cond Visit*Cond Age*Cond IQ*Cond 

SPATIAL WORKING MEMORY          

Correct responses 
trend 
p<.07 

Sig. 
p< .01 

Sig. 
p< .001 

- 
Sig. 

p< .01 
Trend 
p= .06 

Sig. 
p< .01 

N - - 

Reaction time of 
correct responses 

N N 
Sig. 

p< .001 
- 

Sig. 
p< .05 

N N N - - 

Correct responses: 
crossing trials 

N N 
Sig. 

p< .001 
Trend 
p= .07 

Sig. 
p< .05 

N N N - - 

Correct responses: 
non-crossing trials 

N N 
Sig. 

p< .001 
- - N N N - - 

EXECUTIVE FUNCTION           

Errors N N 
Sig. 

p< .01 
- - N N N - - 

Completion time 
Sig. 

p< .05 
Trend 
p= .06 

Sig. 
p< .001 

- - 
Sig. 

p< .01 
Sig. 

p< .01 
Trend 
p= .08 

N N 

PSYCHOMOTOR PERFORMANCE         

Completion time: 
Dominant hand 

N 
Sig. 

p< .01 
Sig. 

p< .001 
- - N 

Sig. 
p< .01 

N - - 

Completion time: 
Non-dominant 
hand 

N 
Sig. 

p< .05 
Sig. 

p< .001 
- - N 

Sig. 
p< .05 

N - - 

       NB cond = condition, B*Visit = baseline*visit, B*Cond = baseline*condition; - indicates term removed from final model for best fit (lowest AICc score) 
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4.11.4.2 Effects of 12-week intervention on health parameters 

A tabulated summary of the effect of the intervention on indices of cardiovascular 

fitness and obesity is shown in Table 4.8.  

 As expected, the baseline cardiovascular fitness and anthropometric parameters 

were the strongest predictors of the corresponding post-intervention parameters. 

 MAP was significantly reduced post-intervention for NO-EX but not the exercising 

conditions, this was also from a lower baseline MAP.  

 Baseline MAP showed a significant interaction with condition indicating those with 

highest baseline values showed greatest improvement following INT.  

 Evidence suggests NO-EX showed a subtle increase in BMI but a decrease in 

WHR post-intervention relative to mid-point.  

 Raw data (see Table 4.8) indicated small improvements in absolute and relative 

V̇O2max  but these failed to reach significance after controlling for baseline value. 

The NO-EX control group also showed signs of increasing absolute V̇O2max.  

 

 

 

 

 

 

 

 

 

 

 

 



145 
 

 

    Table 4.8 Tabulated summary of outcomes: Indices of cardiovascular fitness and obesity 

 Main effects Covariates Interaction terms 

 Visit Condition Baseline Age B*Visit B*Cond Visit*Cond Age*Cond 

Indices of cardiovascular fitness   

Absolute V̇O2max  - N 
Sig. 

p< .0001 
- - N - N 

Relative V̇O2max  - N 
Sig. 

p< .0001 
- - N - - 

Lactate Threshold  - N 
Sig. 

p< .001 
N - N - N 

LT Percentage of 

V̇O2max  
- N 

Sig. 
p< .05 

N - N - N 

Mean Arterial 
Pressure 

- 
Sig. 

p< .01 
Sig. 

p< .001 
Trend 
p= .08 

- 
Sig. 

p< .05 
- N 

Indices of obesity         

Body fat (%) 
Trend 
p= .09 

N 
Sig. 

p< .001 
- N N N - 

BMI N N 
Sig. 

p< .0001 
- N N 

Sig. 
p< .05 

- 

WC N N 
Sig. 

p< .001 
- N N N - 

WHR 
Trend 
p= .09 

N 
Sig. 

p< .001 
- 

Trend 
p= .07 

N 
Sig. 

p< .05 
- 

     NB cond = condition, B*Visit = baseline*visit, B*Cond = baseline*condition, BMI=body mass index, WC=waist circumference, WHR= waist-hip ratio 
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4.12 Discussion 

 

Contrary to expectations, there was minimal evidence to support a different pattern of 

change in cognitive function over time between the interval, continuous or no-exercise 

control groups in this sample of obese, middle-aged women. The domains of executive 

function and spatial memory showed improvement following the intervention. Furthermore, 

participants with the lowest baseline scores for spatial memory, spatial working memory and 

executive function showed the greatest improvement following INT training. However, given 

the large number of cognitive outcomes tested, this study only found limited support for INT 

and CON regimes relative to a no-exercise control condition. The training regimes resulted 

in equivalent improvements in cardiovascular fitness, and minimal changes in body 

composition. It is possible that this may explain why only a limited number of cognitive 

outcomes were altered following the exercise regimes.  

4.12.1 Cognitive function  

The greatest support for an improvement following the exercise intervention was the 

executive function measure Tower of Hanoi (ToH), with superior improvement observed 

following the INT regime. The total time to complete the task was reduced, which is thought 

to indicate improved quality of executive planning once solution templates are implemented 

(Chang et al., 2011). This effect was most pronounced in those with the poorest baseline 

performance (slowest completion time). Performance on ToH is known to impacted by 

cerebral blood flow (Fincham, Carter, van Veen, Stenger, & Anderson, 2002).  Cerebral 

haemodynamics during the Tower of Hanoi Task (ToH) have been assessed using 

Transcranial Doppler sonography (TCD) in the left and right middle cerebral artery (MCA) 

and anterior cerebral artery (ACA). Schuepbach et al. (2002) reported that CBF prominently 

increased in both MCAs and ACAs during the TOH task within 40s of onset of the task. The 

medial and orbital parts of the frontal lobe are supplied by the ACAs, and lateral areas by 

the MCAs (Tatu, Moulin, Bogousslavsky, & Duvernoy, 1998). Additionally, the ACAs supply 

the medial parts of the temporal lobe, and the MCAs supply the parietal lobe. This increase 

in CBF indicate activation of the medial and lateral parts of the frontal cortex. Furthermore,  

activation in the prefrontal and parietal regions has shown to respond in proportion to how 

much planning preceded a move in TOH (Fincham et al., 2002). Although unmeasured for 
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this thesis, it is possible that improved cerebral blood flow may have support the favourable 

impact of INT on executive function task.  

Improved performance (mid- to post-intervention) following training was evident in one 

measure of spatial memory (immediate designs) in both the INT and CON groups, whereas 

a decrease was observed in the no-exercise control. However, on the basis that this effect 

was observed for this measure of spatial memory but not the others from the same test 

(locations, designs/locations and delayed designs/locations) this finding should be 

interpreted with caution.  

A decline in performance from mid-point to post-intervention was observed for a number of 

measures, but only in those with the lowest baseline scores. This was irrespective of group, 

and indicated that those with the lowest baseline scores for spatial memory (immediate 

locations and designs/locations) and spatial working memory (Corsi) outcomes were 

showing a decline in performance from mid- to post-intervention. The potential causes of 

this effect would be based on speculation, but could possibly reflect changes in motivation 

for the cognitive tests, concentration, or fatigue for example. However, it is of interest that 

this effect only occurs in those with low performance at baseline. Those with high baseline 

scores were able to maintain this at both mid- and post-intervention testing. This effect was 

limited to spatial memory and spatial working memory only. 

For all cognitive domains, baseline score had the biggest impact on subsequent cognitive 

performance, and once this was controlled for this seemed to override any effects of 

exercise. It is likely that over a relatively small time-frame of 3 months, the cognitive changes 

that could possibly occur would be small. Although this robust approach removes the 

potential problem of baseline variance driving effects, this may be too strict to detect 

significant improvements as it is highly likely that those with the lowest baseline performance 

were most likely to show improvements.  

In this study, age and IQ had little impact on the cognitive outcomes at subsequent testing. 

Both covariates were associated with spatial working memory measures (Corsi), in the 

expected direction, in that performance increased with higher IQ and decreased with age. It 

has been suggested that age-related decline in cognitive performance can occur in healthy 

educated adults from as early as 20-30 years old (Salthouse, 2009). This is due to a number 

of studies showing continuous declines in indices of brain structure and function from the 

age of 20 years, including brain volume (Pieperhoff et al., 2008), metabolites (Kadota, 

Horinouchi, & Kuroda, 2001) and myelin integrity (Hsu et al., 2008). In the current study, 

increasing age showed a negative association with performance on spatial working memory 
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but only in crossing-trials which are more challenging than non-crossing trials. The 

interaction of age with crossing-trials only perhaps indicates that more challenging cognitive 

tests are required to detect subtle differences in this middle-aged obese/overweight sample. 

It is possible that this sample were not demonstrating any detectable age-associated 

decline, as all participants (except for one age 51 years old) were between the ages of 30 

to 50 years. In the current sample there is also evidence of age showing a relationship with 

an attention measure (false-positive responses) in an unexpected direction. Younger 

participants were making more false-positive responses at both baseline and subsequent 

testing. This may indicate the younger participants in this sample were more impulsive than 

older participants.  

4.12.2 Cardiovascular fitness and body composition 

Although the raw data indicated that absolute and relative V̇O2max increased in both INT and 

CON, these findings were not significant and also did not show significant difference to the 

no-exercise control group. Analysis of the cardiorespiratory fitness data was impacted by 

missing data at mid-point for the no-exercise control group only. This group were added 

retrospectively when availability of the exercise-testing laboratory was limited. Despite mid-

point maximal exercise test data being available for INT and CON, it was omitted from the 

analysis leaving only one time-point (post-test) entered in the analysis. Through the process 

of normalising the residuals, the two participants that showed the greatest increase in 

V̇O2max  were removed from the analysis and they were both from the INT condition. Both 

participants showed plausible increments in absolute VO2 max of ~100-200ml/min at mid- and 

again at post-testing. However, with baseline retained as a covariate and only post-test data 

entered into the analysis, these responses to training were identified as outliers. The removal 

of these 2 participants from one group (INT), with already low numbers (n=10), may have 

diminished the capacity of the analysis to detect group differences and watered down the 

effects of the intervention. This highlights the limitations of the small sample studied.   

4.12.2.1.1 “No-exercise” control group 

The raw data indicate the 2 individuals within the NO-EX control group increased absolute 

V̇O2max.This is not possible without adaptation to exercise which raises an issue of 

compliance to the no-exercise control condition. The analysis did not identify them as 

outliers, and without evidence they had failed to comply it would have been wrong to remove 

them as this would have constituted “cherry picking” the data to manipulate the findings. 

Additionally, analysis of the body composition data indicated that the only significant 

changes were an increase in BMI and a reduction in WHR for NO-EX only. Irrespective of 
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what may be causing these changes, these findings highlight that the control group have not 

behaved as expected. This may explain why the INT and CON groups were not found to be 

statistically different to NO-EX   

It was expected that both exercise regimes would induce a change in cognitive performance 

relative to a no-exercise control. It is difficult to draw inferences from the extant literature as 

no other studies have compared the impact of interval and continuous exercise on cognitive 

function. Typically, one type of exercise regime (INT or CON) has been compared to a no-

exercise control group, or it is been examined pre-to post with no control group or 

experimental condition. The work carried out for this chapter builds on previous work by 

directly comparing the impact of both interval and continuous exercise on cognitive function 

relative to a no-exercise control group. Furthermore, the INT and CON regimes were 

matched in terms of work-done and intensity domain, in order to establish the impact of the 

greater excursions into the heavy intensity domain induced by INT training.   

4.12.3 Impact of interval exercise on cognitive function 

The findings of this study are inconsistent with the literature detailed in section 4.1 showing 

improvements following training regimes (either interval or continuous) for multiple cognitive 

test outcomes. Therefore, it is helpful to compare the methodology of the current study to 

the relevant extant literature. Only one study examined the impact of high-intensity-interval-

training (HIIT) on cognitive function in obese adults (section 4.1.1). The current study utilised 

a different exercise protocol to that of Drigny et al. (2014), who observed improvements in 

short-term memory, verbal memory, attention and processing speed following 4 months of 

interval training. Relative to the current study, the interventions differed in terms of study 

duration, exercise frequency, mode of exercise and interval training protocol. The sample 

examined for this thesis exercised twice per week, as opposed to four, and did not perform 

any resistance work or moderate intensity continuous exercise. Therefore, it is possible that 

exercising twice per week, irrespective of mode, was not sufficient to drive sufficient changes 

in health or cognitive function. Secondly, Drigny et al. (2014) examined outcomes from pre-

to post in 6 men, and made no comparisons to either a no-exercise control group or 

alternative exercise condition. This crude type of analysis increases the chance of type I 

error, and it is not possible to rule out confounding effects due to the lack of control group. 

Due to the large number of methodological differences, it is not possible to make 

comparisons between studies. The differences highlighted between these two studies alone 

identify a large number of factors that can be manipulated when designing a HIIT protocol. 

Manipulation of such factors may possibly mediate the effects of exercise on cognitive 

function.  
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4.12.4 Impact of continuous exercise on cognitive function 

The current findings were also inconsistent with literature showing improvement in cognitive 

function in young adults following a continuous exercise intervention (Chapter 1, section 

1.2.2). Collectively these studies provided evidence that continuous exercise improved 

spatial memory and verbal memory, which were both measured as part of this chapter. 

Given the different duration of intervention, frequency of sessions, modes of exercise and 

uncontrolled exercise intensity it is not possible to make comparisons between the studies. 

A review of the literature examining the impact of exercise interventions on memory in adults 

aged 18-65 years concluded that effects were subtle but negligible (Roig et al., 2013). 

However, the studies were conducted in non-obese samples, and did not examine 

mechanisms such as cardiovascular risk factors. The research showing a positive change 

in cognitive function (Drigny et al., 2014; Monleón et al., 2015) used statistical methods that 

did not control for baseline performance (a factor found to be driving all relationships for the 

current study). There is very limited literature regarding the impact of exercise (either 

continuous or INT) on cognitive function in a younger adult and obese sample. However, 

there are multiple studies investigating the impact of various INT/CON regimes on 

physiological parameters that help to show how manipulation of such regimes can have a 

differential impact on health. 

4.12.5 Possible explanations of the null findings 

While the sample size limits the ability to detect differences, it must also be considered that 

the exercise regimes were not sufficient to stimulate physiological adaptation or indeed drive 

improvements in cognitive function. 

4.12.5.1 Exercise protocols  

Both training groups exercised twice per week for three months, it is possible that the 

frequency of exercise and duration of study were not sufficient to drive physiological 

adaptation nor cognitive change. A meta-analysis on the impact of long-term exercise 

interventions on memory found that interventions of 6-months or more showed the greatest 

effect sizes (Roig et al., 2013). For studies showing significant improvements in cognitive 

outcomes after 3-4 months (Drigny et al., 2014; Pereira et al., 2007), participants were 

exercising 4 times per week. The shortest intervention showed improved cognitive function 

after 6-weeks (Stroth et al., 2009) but the protocol involved running on 5 days per week. The 

only other study that had participants exercising twice per week was by (Hötting, 

Schauenburg, & Röder, 2012b) and this lasted 6 months.  
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With regard to health parameters, research demonstrating larger improvements in V̇O2max 

(increase ~19.4%) have utilised interval training protocols with intervals of 4-minutes high-

intensity interspersed with 3 minutes of active recovery (Rognmo et al., 2004; Schjerve et 

al., 2008; Tjønna et al., 2008; Wisløff et al., 2007). Therefore, to adapt the current protocol 

to stimulate greater cardiorespiratory adaptation would be to increase the duration of the 

high-intensity bouts (without changing work-rate). One mechanism to explain how AIT 

translates to superior improvements in fitness is the upregulation of mitochondrial 

biogenesis. PGC-1α regulates cellular energy metabolism, promoting mitochondrial 

biogenesis and the remodeling of muscle tissue  and regulates carbohydrate and lipid 

metabolism (Liang & Ward, 2006). PGC-1α has been correlated with improved V̇O2peak 

following aerobic interval training indicating a mechanistic link (Tjønna et al., 2008; Wisløff 

et al., 2007). It has been suggested (Daussin et al., 2008) that fluctuation in ATP turnover 

seen in interval training activates signalling pathways leading to increased peroxisome 

proliferator-activated receptor-gamma coactivator (PGC-1α). Additionally, both Tjønna et al. 

(2008) and Wisløff et al. (2007) reported increased rate of Ca2+ reuptake into the 

sarcoplasmic reticulum by 50-60%, which is associated with reduced muscle fatigue and 

improved function, thereby improving CRF.   

The interval bouts may also be manipulated in terms of work-rate corresponding to a higher 

intensity. Despite the sample assessed for this chapter exercising within the heavy domain, 

it is possible that the physiological strain induced from the bouts at 70%Δ was not sufficient 

stimulus for adaptation. The sprint interval protocols have demonstrated that they can 

improve insulin sensitivity in a very short time frame of 2 weeks (Babraj et al., 2009; Richards 

et al., 2010; Whyte, Gill, & Cathcart, 2010). All protocols employed repeated 30s “all-out” 

Wingate sprints, completing only 6 sessions per intervention. Insulin function was not 

assessed for this chapter but is a theoretically important variable associated with verbal and 

spatial memory.  

For this thesis study, the work:recovery ratio was 1:2 at 40s:80s. Manipulation of the duty 

cycles (without altering work-rate) is known to impact on average exercise intensity (Turner 

et al., 2006). It is known that shortening the recovery bouts reduces the time available for 

the body to clear the lactic acid build up in the blood stream. Therefore, by shortening the 

recovery bouts in duration, this can elevate the intensity of the whole exercise session. 

Additionally, shortening the recovery bouts will reduce the duration of the entire session 

which may be preferable for some individuals. The work-rate for the work bouts for this 

chapter was set at 70% Δ LT V̇O2max  which was high intensity, but also sub-maximal. At a 

higher work-rate the increased exertion elevates blood pressure/flow which in turn increases 
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the shear stress exerted on the vascular walls. With higher intensity exercise, muscle 

glycogen depletion is increased (Colberg et al., 2010).  

This study tightly controlled the intensity domain that the INT and CON groups exercised 

within. The methodological issues relating to the prescription of exercise intensity according 

to a single parameter such as % V̇O2max  or % Lactate threshold have previously been 

described. For continuous exercise, percentage of maximal oxygen uptake (% VO2max) is 

frequently used to determine exercise intensity (Lansley, Dimenna, Bailey, & Jones, 2011; 

Rossiter, 2011; Scharhag-Rosenberger, Meyer, Gäßler, Faude, & Kindermann, 2010; Whipp 

et al., 2005). The validity of this has been disputed as great inter-individual variability is 

observed in parameters such as lactate threshold (LT), critical power (CP), and ˙Vo2max 

(Rossiter, 2011; Whipp et al., 2005). The assumption is that physiological demand on 

individuals exercising at the same % VO2max is similar, however, large variation in 

physiological and metabolic responses have been observed at the same relative intensity. 

In the current study the % Δ concept was utilised (Lansley et al., 2011), which is considered 

a more robust method to control for exercise intensity. The accurate characterisation of 

exercise intensity is central to understanding the impact of exercise interventions on both 

health parameters and cognitive function. It is possible that, once intensity domain and work 

were matched between INT and CON groups, any additional benefit from brief excursions 

at a higher work-rate for INT were negligible. This may explain why differences were not 

observed between the INT and CON exercise groups.   

4.12.5.2 Possible reasons for lack of detected effects between control and 

exercise groups  

Central to determining the impact of an exercise intervention on cognitive function, relative 

to a no-exercise control group, is the assumption that the control group does not change. 

The statistical analysis for this chapter examined differences between the three groups (INT, 

CON and NO-EX) over time, when baseline performance on cognitive outcome was 

controlled for. It was not expected, that the control group would improve on cognitive function 

or cardiovascular health outcomes. Inspection of the raw data indicated that individuals 

within the no-exercise control group increased absolute and relative V̇O2max,  something that 

is not possible without improving fitness (and/or losing body weight for relative VO2 max 

only). Additionally, over the 12 week intervention, the no-exercise control group 

demonstrated improvements in a small number of outcomes for spatial memory, spatial 

working memory, and attention. It must be noted that the standard error for the control group 

was often higher than the two exercise conditions. This highlights the issues of using a 
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control group in a medium term (12-weeks) free living intervention study. It is not known 

whether a degree of change in cognitive function is to be expected over 12 weeks. Normative 

trajectories of cognitive change have not been established, particularly in an obese-middle 

aged sample. The purpose of a control group is to act as a reference point to the 

experimental conditions. Therefore, if the control group show change in an unexpected 

direction then this undermines interpretation of the data set as a whole. Finally, it highlighted 

the possibility that those effects were driven by some unmeasured variable. This will have 

been compounded by the small size of the control group as this firstly undermines the 

chance of detecting a true effect and secondly reduces the chance that significant findings 

reflect a true effect (Button et al., 2013). Increasing the sample size reduces the variability 

of the sample mean, which increases the power of a statistical test.  

4.12.5.3 Statistical approach  

The analysis for the current study utilised SAS PROC MIXED and retained baseline score 

as a covariate. This approach has been evaluated as the optimal statistical method in terms 

of bias, precision and power (Egbewale, Lewis, & Sim, 2014; Vickers, 2001; Zhang et al., 

2014). ANCOVA accounts for imbalance by including baseline values in a regression model, 

which yields unbiased estimates of treatment effect (Egbewale et al., 2014). Variance in 

baseline score is considered unexplained noise, so including it as a covariate acts as noise 

reduction, allowing for greater confidence in the treatment effects. Covariates explain some 

of the variation between individuals, leading to smaller standard errors (SE) for the effect of 

condition/treatment which can increase statistical power (Kahan, Jairath, Doré, & Morris, 

2014). Larger increases in power are observed when the covariate is highly correlated with 

the outcome (Pocock, Assmann, Enos, & Kasten, 2002). This approach has been found to 

be equally beneficial in small and large randomised controlled trials (Thompson, Lingsma, 

Whiteley, Murray, & Steyerberg, 2014). Therefore, in terms of evaluating the statistical 

approach used across studies, the one for the current study is considered more robust than 

the approach utilised by (Drigny et al., 2014; Hötting et al., 2012b; Monleón et al., 2015; 

Pereira et al., 2007; Roig et al., 2013; Stroth et al., 2009). Significant improvement in 

cognition following interval training was reported by Drigny et al. (2014), however a t-test 

was used to examine pre-post data, and with no comparison group which is a crude 

comparison of treatment effect. 

The findings from the current study indicate that baseline cognitive performance was a 

significant covariate for all cognitive domains, and ideally should be controlled of in analysis. 

The analysis controlled for the variation in baseline score, and once all cases were treated 
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as if baseline score was the same (and balanced between conditions), no further group 

differences were observed at subsequent testing.  

 

4.12.6 Mechanisms underpinning cognitive change 

4.12.6.1 Cardiovascular fitness and cerebral oxygenation 

It is thought that long-term exercise participation serves to reduce cognitive decline by 

enhancing neuronal plasticity and also reducing the comorbidities/risk factors associated 

with cognitive decline (Hotting et al. (2012). It is not known if a change in cardiovascular 

fitness (the primary goal of exercise interventions) is essential in order for cognitive change 

to occur. The sample studied for this chapter showed minimal increase in V̇O2max . If 

increase in cardiovascular fitness is essential for improvement in cognitive function, then 

this may explain why significant improvements in cognitive outcomes were not observed in 

the sample. However, the literature gives mixed findings on whether this physiological 

adaptation is the key mechanism driving cognitive change.   

The positive changes in a number of cognitive outcomes observed by Drigny occurred 

alongside significant improvements in cerebral oxygenation, but the changes in V̇O2max  

were not significant. This presents us with the possibility that V̇O2max  was not essential for 

cognitive change, however it must be noted that the small sample size (6 adults) meant the 

analysis may have been underpowered to detect significant pre-post differences.  

Two studies observing improvements in cognitive function following continuous exercise 

regimes found that improvements in verbal memory correlated with improvements in 

V̇O2peak  (Hötting et al., 2012b; Pereira et al., 2007). Both studies showed selective 

improvement in different aspects of verbal memory. Cardiovascular fitness predicted 

improvement in recognition of words after a 30-minute delay, but not immediate memory 

(total acquisition over 3 trials) or attention in the 6-month trial by (Hötting et al., 2012b). At a 

1-year follow up, those that had maintained their cardiovascular fitness had preserved their 

enhanced recognition performance, whilst those below the group median for cardiovascular 

fitness had lost their gains in recognition performance. After the initial 6-month intervention 

74% sample continued to exercise for an average of 2.5 hours per week. This suggests that 

enhancing and maintaining cardiovascular fitness can prevent declines in memory 

performance over longer time frames. Pereira et al. (2007) observed improved V̇O2max  was 

predictive of performance in trial 1 of immediate learning only, but not other verbal memory 
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outcomes (total acquisition over 3 trials and delayed recall) that had also significantly 

improved over the 3-month trial. This study also measured cerebral blood volume (CBV) in 

the hippocampus, and found significant improvements in the dentate gyrus. Individual 

changes in dentate gyrus CBV were correlated to individual changes in V̇O2max. However, 

the relationship between performance trial 1 and increases in dentate gyrus CBV just failed 

to reach significance (p=.052).  

Changes in cognitive function have occurred alongside improvements in V̇O2max, however 

it is not known if change in V̇O2max is a prerequisite for change in cognitive function. It is 

difficult to isolate the impact of cardiovascular fitness upon cognitive function due to the 

number of other effects driven by cardiovascular fitness. This includes a cascade of changes 

within the brain impacting neuroplasticity, meaning markers such as BDNF, IGF-1, could 

become primary targets for intervention. Additionally, participation in exercise and 

consequent changes in cardiovascular fitness reduce a number of chronic systemic risk 

factors associated with cognitive decline. All these factors must be incorporated into 

investigations to fully elucidate the impact of exercise (and specific parameters within that) 

upon cognitive function.  

 

4.12.7 Exercise for optimal brain health  

If preservation of cognitive function is the goal, we need to establish what central and 

systemic mechanisms are most important for neurocognitive health. If these are identified 

then exercise prescription can target specific mechanisms accordingly. On a systemic level, 

a wealth of research advocates glucose hormeostasis and insulin sensitivity, inflammation, 

endothelial function and alterations in adipokines as the likely systemic factors mediating 

the relationship between exercise and neurocognitive health (Obisesan et al., 2012). An 

exercise stimulus can differentiate in terms of intensity, duration, frequency, mode, and 

work-rate profile. The exercise stimulus induces physiological strain in terms of mechanical 

tension (shear stress), neuronal activation, oxidative stress, and energy substrate flux. 

Therefore, manipulation of the exercise stimulus leads to differential induced physiological 

strain. This will have implications for the humoral, metabolic and molecular 

signalling/sensoring and transcription. Functional adaptations include vasoreactivity, 

cognition, neurovascular coupling, and substrate content. It is essential that approaches to 

optimize exercise for brain-related health or disease outcomes are explored. 
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4.12.7.1 Central pathway 

Structural adaptations associated with exercise are cerebral blood flow/volume, 

angiogenesis, vessel compliance, grey matter volume, white matter integrity, structural 

networks, neuroplasticity, dendritic density (Lucas et al., 2015). These measures are beyond 

the scope of this thesis, but are essential to understanding the mechanistic link between 

exercise and brain health. It is plausible that INT duty cycles may be manipulated with an 

aim of generating shear stress surges that result in optimal cerebrovascular adaptation. The 

impact on HIIT on adaptation of the cerbrovasculature (and subsequent impact on cognitive 

function) has not been assessed (Lucas et al., 2015). One concern relating to HIIT is that it 

is yet to be confirmed that HIIT does not lead to cerebrovascular damage, particularly in 

clinical populations that present higher risk of stroke or vascular dementia. High intensity 

exercise has been shown to increase blood-brain barrier permeability due to impaired 

cerebral autoregulation (Bailey et al., 2011). HIIT by nature can result in sudden increases 

in systemic blood pressure, and if this goes beyond the autoregulatory range of the brain, 

there is elevated risk of a cerebrovascular event (Lucas et al., 2015). Nevertheless, the role 

of different exercise parameters, such as blood flow rate/profile, on cerebrovascular 

endothelium has not been studied. It is possible that interval exercise can be explored as a 

method of accelerating cerebrovascular adaptation. 

 

4.12.8 Conclusion  

The general consensus is that HIIT is superior to MICT, for reduction in systemic 

cardiovascular risk factors associated with cognitive decline. However, the use of HIIT in 

relation to cognitive function research is new. As described in 1.2.7, the infinite number of 

HIIT protocols provide limitless potential for the physiological strain induced by the exercise 

stimulus. If a reduction in systemic health factors is a key goal, then interval training provides 

greater opportunity for optimal physiological adaptation than continuous exercise. This is 

due to there being a larger number of factors that can be manipulated in order to change the 

exercise stimulus when compared to continuous work-rate exercise. Continuous exercise 

can be altered in terms of the work-load set (which remains constant) and the duration of 

the individual sessions. Exercise above the lactate threshold, and at higher intensities will 

see a continual accumulation of blood lactate, meaning the session duration will be limited 

by individuals reaching fatigue. Interval exercise has a greater number of variables that can 

be manipulated such as peak workload and peak-workload duration, mean workload, 

intensity and duration of recovery, number of intervals (Tschakert & Hofmann, 2013). This 
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presents us with the opportunity to manipulate just one variable or multiple variables to 

directly affect the acute physiological responses during exercise. Knowledge of the duty 

cycles can help prescribe an exercise stimulus that allows for exercise at a high intensity to 

drive adaptation, but with recovery bouts ensuring a session is manageable/enjoyable. It is 

not known which systemic/central factors are the most important targets for intervention in 

order to drive cognitive change. It is likely this may be different for individuals with differing 

baseline metabolic profile. 

 

The aim of this study was to compare the impact of two work-matched, heavy-intensity 

exercise regimes (INT and CON) and a no-exercise control group upon cognitive function 

and cardiovascular risk in sedentary, overweight/obese middle-aged women. It was 

hypothesised that INT and CON regimes would drive physiological changes, and that these 

changes would be associated with improved cognitive function relative to controls. It was 

also hypothesised that the INT regime would drive superior benefit in cardiovascular 

adaptations relative to the CON regime. Training effects were observed for executive 

function task (ToH) following INT, relative to CON. This occurred alongside equivocal 

improvements in cardiovascular fitness between groups. It remains to be seen if HIIT 

presents the optimal strategy to improve cognitive function. There is no evidence to support 

that, when matched for work done or intensity, that INT has any superior benefit relative to 

CON. However, there are two potential advantages of INT over CON. First, it allows 

individuals to exercise at a high intensity for a longer period of time than would be possible 

in one continuous bout. Secondly, even when matched for intensity, the work-rate profile of 

INT generates an oscillating blood flow which may have implications for long-term 

cerebrovascular adaptations. This has yet to be assessed in humans. The current study 

failed to show any superior effect of either supervised INT or CON regimes relative to a no-

exercise control group on cognitive outcomes. This may be due to an insufficient training 

stimulus and/or limitations of sample studied. Informal comments from the participants 

indicate that INT was perceived as being more enjoyable, which may have implications for 

exercise adherence. 
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Chapter 5 Study 3: Impact of differing walking dose on cognitive 
function and indices of health in sedentary, overweight/obese 

middle-aged adults. 
  

5.1 Introduction 

Chapter 1 indicated that participation in physical activity is associated with cognitive benefit. 

This cognitive benefit may have been driven by cardiovascular or metabolic mechanisms 

associated with an increase in PA or conversely by a decrease in time spent inactive and 

the cellular damage associated with sedentariness. Accredited public health 

recommendations are available for MVPA, but it is not currently known how much light 

activity is required for health benefits when moving from sedentariness to light-active. There 

is much scope for evidence based research to inform public health recommendations with 

regard to light activities, using a metric that allows for the objective tracking of activity in real-

world application. It is not yet known whether increasing time spent in light activities may 

confer improvements in cognitive function.  

5.2 Objective measurement of physical activity 

Instruments such as pedometers and accelerometers are used to objectively measure 

physical activity, both at a cross sectional level and to detect change longitudinally. 

Individuals are typically classified in terms of physical activity levels by daily step count 

(section 1.2.1). Step counting is now widely accepted as a method of translating physical 

activity research to real-world application as it assesses and tracks physical activity 

doses/volumes in a metric that can be understood and achieved by the general population 

(Tudor-Locke, Craig, Thyfault, & Spence, 2012).  

5.3 Step count and cognition 

Despite the association between physical activity and cognitive function, there is a paucity 

of research linking objectively measured step counts or walking targets with cognitive 

function outcomes. Additionally, most published research has been conducted in older 

adults and is therefore not applicable to younger or middle aged adults. In a sample of 

18,700 older females, a weekly accumulation of 1.5h hours of walking was associated with 

improved category fluency and working memory when compared to those accumulating less 

than 40 minutes (Weuve et al., 2004). Increasing daily steps from approximately 5600 to 

7000, to accumulate a total weekly increase of 90 minutes walking over 3 months lead to 
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improvements in word fluency scores relative to controls (Maki et al., 2012). Finally, a 

prospective study conducted by  Abbott et al. (2004) showed elderly men (aged 71-93 years) 

walking less than 0.25 miles daily had a 1.8 fold increased risk of dementia compared to 

those with a daily accumulation of ˃2 miles.  

In terms of health outcomes, the research conducted to date indicates that those at the 

lowest end of the physical activity spectrum elicit the greatest benefit from increases in 

ambulatory or light activity. However, these studies report great heterogeneity in terms of 

average step count at baseline, target increase in steps (relative to baseline) and also in the 

health outcome variables assessed. It is therefore not known if a dose response or threshold 

effect occurs for specific health outcomes.  It has yet to be determined whether increases in 

ambulatory activity have an impact on cognitive function in a middle-aged, obese sample. 

The impact of moving individuals from the lower end of the physical activity spectrum 

upwards by means of accumulated step counts upon cognitive function has also not been 

explored. Hence, the aim of the work in this chapter was to examine the impact of increasing 

ambulatory activity upon measures of cognitive function and cardiovascular health in 

sedentary and low-active, overweight/obese middle-aged adults, and to explore any 

relationships between changes in these variables. 

5.4 Objectives and Hypotheses 

The primary objective of the study presented in this chapter was to compare the impact of 

two different step count goals, (taking into account baseline daily step count) compared to a 

no-exercise control group (who maintained usual sedentary levels of PA) upon indices of 

cognitive performance cardiometabolic health and obesity over a 12-week period. 

Attainment of the step count goals was guided by the use of pedometers, a method that the 

public can utilise and incorporate into real-world application. It was hypothesised that after 

12 weeks, achieving both step-count goals would lead to benefits in cardiometabolic health 

and anthropometric variables, with a greater benefit associated with the larger step count 

goal. It was hypothesised that the larger step count goal would be required to drive change 

in any cognitive function outcomes. A secondary hypothesis was that any observed changes 

in cognitive parameters would be associated with changes in cardiometabolic parameters.  
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5.5 Methods 

5.5.1 Participants 

Thirty-three non-diabetic participants were recruited from the Leeds area (10 Males and 25 

females) with a BMI of ≥25 kg/m2). Eligibility was assessed by the researcher during a 

screening telephone call to ensure participants met the criteria listed below  All participants 

included were classed as sedentary or low-active (<10,000 steps/day) according to the step 

defined sedentary lifestyle index (Tudor-Locke et al., 2013) following 7 days objective 

measurement with an Actigraph accelerometer (section 2.9.1). The screening procedure 

followed has previously been described in section (Chapter 2, section 2.2).  

5.5.2 Inclusion/exclusion criteria 

In addition to the inclusion/exclusion criteria listed in (Chapter 2, Table 2.4), the following 

inclusion/exclusion criteria applied: 

Inclusion 

 Age 30-60 years old 

 Daily step-count below 10,000 steps/day 

Exclusion 

 Age <30 years or >60 years 

 Step count >10,000 steps/day 

 A mobility issue that impacted upon walking capacity, or condition worsened by walking. 

5.5.3 Recruitment and attrition 

Figure 5.1 indicates the flow of participants through the study, from recruitment to 

completion. The consort diagram shows that the study received initial interest from 67 

volunteers, however 22 were excluded based upon BMI <27 kg/m2 (n=5) medication (n=11), 

and depression (n=6). Fifty eligible participants passed screening and were enrolled on the 

study. A further 5 individuals did not respond to any further contact. In total 45 participants 

completed all baseline assessments and were allocated to training groups. Seventeen 

participants were allocated to the +6000 steps/day group, however, 5 dropped out and a 

further 7 asked to change to the +3000 group. Twenty-eight were allocated to the +3000 

steps/day, however this gained 7 members from the +6000 group and lost 15 drop-outs by 

mid-point testing. Twenty people completed mid-point assessments in the +3000 group and 

only 5 in the +6000 group.  Both conditions lost 1 participant each from mid-point to post 

testing. Leaving a total of n=19 for the +3000 group and n=4 for the +6000 group.     
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5.6 Experimental Design 

The study was initially planned to conform to a 3x3 independent parallel groups design 

examining cognitive performance and indices of cardiovascular health over a 12-week 

physical activity intervention. Sedentary, overweight/obese adults were assigned to one of 

two experimental groups (between-subject factor); low walking dose, high walking dose. A 

no-exercise control group were added retrospectively. All participants attended the 

Assessed for eligibility (n = 67) 

Excluded (n = 22) 

Eligible and enrolled on study (n = 50)  

Allocated to 

+3000 (n = 28) 

Allocated to 

+6000 (n = 17) 

Did not respond (n = 5) 

Completed baseline tests (n = 45)  

+6000 group 

Completed mid-point tests (n = 5) 

+3000 group 

Completed mid-point tests (n = 20) 

Drop out (n =5) Drop out (n =15) 

Change groups (n = 7)  

Drop out (n =1) Drop out (n =1) 

+6000 group 

Completed post-tests (n = 4) 

+3000 group 

Completed post-tests (n = 19) 

+3000 (n = 35) 

Figure 5.1 Consort diagram 
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laboratory at three time points (weeks 0, 6 and 13, within-subject factor) for baseline, mid 

and post assessment of cognitive function, mood and cardiovascular health.  

5.6.1 Experimental protocol 

All testing took place in the School of Psychology, and each testing visit was completed 

within 90 minutes. Individuals meeting the study inclusion criteria were invited to the 

laboratory for a study familiarisation visit and administration of the practice cognitive test 

battery (Visit 1; see section 5.7.1). Between Visit 1 and Visit 2 all participants wore an 

accelerometer for a 7-day assessment of baseline physical activity level. Upon completion 

of the 7-day PA assessment, participants attended the lab for baseline testing visit (Visit 2, 

see section 5.7.2) for assessment of cognitive function, body composition, blood pressure 

and glycaemic control. Visit 2 signified week 0 of the study, and the immediate initiation of 

the 12-week intervention phase. All measures from Visit 2 were repeated at mid-point (Visit 

3, week 6) and upon completion of the 12-week intervention (Visit 4, week 13). Figure 5.2 

shows the study flow from study familiarisation to completion. 
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Figure 5.2 Intervention study flow diagram 

 
 

5.7 Laboratory Visits 

5.7.1 Study Familiarisation - Visit 1 

The procedures for the familiarisation visit have been previously described in Chapter 2, 

section 2.4.1. 

5.7.2 Baseline Testing - Visit 2 

Participants attended the lab in a 12 hour fasted state to complete the 38-minute battery of 

cognitive tests, listed in further detail in section 5.8.5.  Systolic and diastolic blood pressure 

measures were taken (Chapter 2, section 2.7) along with simple measures of body weight, 
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height and waist circumference. A fingertip-capillary blood sample was collected to assess 

fasting insulin and glucose, see section 5.8.4. Participants returned the accelerometer at 

this visit so that their step count data could be downloaded. Laboratory Visit 2 took 75 

minutes to complete. 

5.7.3 Mid-point Testing – Visit 3 

All procedures listed in section 5.7.2 were repeated at week 6 of the intervention.  

5.7.4 Post Testing – Visit 4 

All procedures listed in section 5.7.2 were repeated upon completion of the 12-week 

intervention at week 13. 

5.8 Study Procedures 

5.8.1 Assessment of ambulatory activity 

Ambulatory activity was assessed using a GT3X Actigraph accelerometer as previously 

described in Chapter 2, section 2.9.1. The variable obtained for this study was daily step 

count. 

5.8.2 Assessment of anthropometric indices 

The measures of anthropometric indices were assessed as previously described in Chapter 

2, section 2.8. The variables collected for this study were body fat percentage, BMI, waist 

circumference (cm) and waist-hip ratio.  

5.8.3 Assessment of blood pressure  

Systolic and diastolic blood pressure were taken at the left arm using an automated Omron 

M7 BP cuff after participants had been seated for forty minutes with an appropriately sized 

cuff. Three measures were taken with a minimum of one minute between measurement 

trials, and the average recorded. The IPSEC approved SOP details the procedure (Appendix 

6.14).  

5.8.4 Assessment of fasting blood insulin and glucose 

Fingertip sampling was performed using Unistik extra, single use safety lancets and blood 

samples (~750 µL) were collected in Microvette CB 300 tubes (Sarstedt) for the analysis of 



166 
 

fasting insulin and glucose. Fingertip-capillary blood sample collection is less invasive than 

venous samples. High correspondence between capillary blood and venous blood has been 

demonstrated in fasted conditions (Kuwa, Nakayama, Hoshino, and Tominaga (2001) The 

YSI 2300 Instrument (YSI) used here has been compared against the previous gold standard 

instrument (Glucose Analyzer II (BMG) Beckman’s Instruments), and showed no deviations 

in glucose measurements up to approximately 13 mmol/L (Nowotny, Nowotny, Strassburger, 

& Roden, 2012).  

5.8.4.1 Fasted plasma insulin 

Immediately after blood sampling, 600 µL of capillary blood was pipetted into Eppendorf 

tubes and centrifuged (2000G/5min/4°C) to obtain plasma samples. A minimum of 150 µL 

blood plasma was pipetted into new Eppendorf tubes and immediately stored at -80°C in 

preparation for transport to the Leeds University Dental Institute where the assay was 

performed. This volume of blood plasma allowed for duplicate measurements. Capillary 

insulin levels were then measured using enzyme-linked immunosorbent assays (ELISA) 

using the ALPCO insulin ELISA kit. There are no definitive guidelines on healthy levels of 

fasting insulin. The NHANES III Survey indicated the average fasted insulin level in a US 

population study was 8.4 µIU/ml in women and 8.8 µIU/ml in men (Harris et al., 2002b). 

Previous research in non-western samples reported ranges of 3-6 µIU/ml (Lindeberg, 

Eliasson, Lindahl, & Ahrén, 1999).  

5.8.4.2 Fasted glucose 

The remaining capillary blood sample (~150 µL) was used for the analysis of blood glucose 

levels using an YSI glucose analyser. The IPSEC approved SOP details the procedure 

(IPSEC ref 12-0078, see Appendix 6.30). The World Health Organisation classifications of 

fasting blood glucose indicate 3.9-5.5 mmol/L as normal, 5.6-7.0 mmol/L as impaired fasting 

glucose or pre-diabetes, and greater than 7.0mmol as diabetes (Alberti & Zimmet, 1998). 

5.8.4.3 Insulin-sensitivity (HOMA-IR) 

Based on (Zhou et al., 2010) who applied the homeostasis model assessment of insulin 

resistance (HOMA-IR) (Matthews et al., 1985) to capillary blood samples,  the following 

formula was applied:  

[HOMA-IR = (fasting insulin (µIU/ml) x fasting glucose (mmol/L))/22.5] 
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A value of 2.5 is traditionally accepted as being indicative of insulin resistance (Muniyappa, 

Lee, Chen, & Quon, 2008; Singh, Garg, Tandon, & Marwaha, 2013).  

 

5.8.5 Assessment of cognitive function 

All participants attended the cognitive test sessions (Visits 2, 3 & 4) in a 12 hour fasted state. 

All cognitive outcome variables were measured in both the high and moderate step exercise 

groups and the control group at baseline, mid-point (Week 6) and after the intervention 

period (Week 13).  

The following battery of tests lasted approximately 38 minutes, see Table 5.1 

Table 5.1 Order of cognitive test presentation within the cognitive test battery 

Cognitive test 
Test duration 

(minutes) 
Cognitive domain 

1. Visual Verbal Learning Test 12 Verbal memory 

2. Corsi Block Tapping Test  4 Spatial working memory 

3. Trail Making Task (A&B) 5 
Cognitive flexibility 
(Executive function) 

4.Bakan Test 6 Attention 

5.Delayed Visual Verbal Learning Test 3 Delayed verbal memory  

6. Word Recognition Test 3 Delayed verbal memory 

7. Stroop Task (word/colour) 5 Executive Function 

 

5.8.5.1 Visual Verbal Learning Task 

The Visual Verbal Learning Test (VVLT) was administered as previously described in 

Chapter 2, section 2.5.1.1. Parallel versions 4, 5 and 6 were administered (Appendix 6.11). 

5.8.5.2 Corsi Block Tapping Task 

The Corsi Block Tapping Test was administered as previously described in Chapter 2, 

section 2.5.1.4. 
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5.8.5.3 Trail Making Test: Parts A & B (pen and paper version) 

The Trail Making Test (TMT) was originally designed for the Army Individual Test Battery 

(1944) and then incorporated into the Halstead-Reitan Battery (Reitan & Wolfson, 1985), 

one of the most widely used batteries in cognitive testing. The TMT is one of the most widely 

used cognitive tests and measures processing speed and task switching (Tombaugh, 2004). 

Research utilising fMRI in participants whilst performing the TMT has shown distinct patterns 

of prefrontal cortex activity during the TMT-B, particularly in the ventro- and dorsolateral 

prefrontal regions (Allen, Owens, Fong, & Richards, 2011; Müller et al., 2014).    

The test is made up of two parts (Parts A and B). For both parts A and B, participants were 

presented with 25 circles distributed across a sheet of paper. For part A, the circles were 

numbered 1-25, and participants traced across the sheet with a pencil connecting the 

numbers in ascending order. For part B, the circles included both numbers (1-13) and letters 

(A-L). The participants had to connect the circles in an ascending pattern, but had to 

alternate between numbers and letters (e.g. 1-A-2-B-3-C, etc). Figure 5.3 shows the 

configurations for parts A and B.  

 
Figure 5.3 Trail Making Test: Parts A and B 

 

Participants were instructed to connect the circles as quickly as possible, and time to 

complete the task was taken as the outcome variable. If participants made an error the 

experimenter told them immediately, and participants had to correct their move as quickly 
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as possible.  The correction of errors was included in the total time to complete the task, but 

was not in itself collected as an outcome variable. 

From the two test components, both direct and derived scores may be obtained. The direct 

scores of parts A and B are represented by the time taken to complete in seconds. From 

these scores, B minus A difference score, the B:A ratio score and the (B minus A)/A 

proportional score have all been clinically applied to detect different aspects of frontal lobe 

dysfunction (Perianez et al., 2007).  Sanchez-Cubillo et al. (2009) investigated the construct 

validity of both the direct and derived TMT scores. Of the direct scores, TMT-A performance 

primarily assesses visuoperceptual abilities, whereas TMT-B primarily requires working 

memory, and then task-switching ability. Of the derived scores B minus A demonstrated 

reduced demand on the visuoperceptual and working memory systems, thus providing a 

more “pure” indicator of executive control.     

Normative data stratified by both age and education have been provided for TMT scores 

from multiple sources (Perianez et al., 2007; Tombaugh, 2004). Normative data provided on 

adults (mean age 38.9 years) with approximately 13 years education suggests scores for 

TMT-A, TMT-B and B-A as being 31.7±13.7s, 68.1±43.2s, and 36.4±35.1s respectively 

(Perianez et al., 2007). The normative data, as per age and education stratification level was 

taken into consideration when analysing the TMT scores for specific participant/patient 

groups within the thesis.   

5.8.5.4 Bakan Task (Rapid Visual Information Processing) 

The Bakan test was administered as previously described in general methods section 

2.5.2.1. 2.5.2.1In this study the 6-minute Bakan test was used.  

5.8.5.5 VVLT Recognition  

The VVLT recognition task was administered was as previously described in Chapter 2, 

section 2.5.1.2. Parallel versions 4, 5 and 6 were used, to correspond with the VVLT lists 

(Appendix 6.11). 

5.8.5.6 Stroop colour/word interference test 

The Stroop color-word interference test (Stroop, 1935) is one of the most widely used 

measures of prefrontal cortex function (Demakis, 2004; Van der Elst, Van Boxtel, Van 

Breukelen, & Jolles, 2006; Yanagisawa et al., 2010), more specifically it is a test of selective 

attention and inhibitory control (Spieler, Balota, & Faust, 1996). A meta-analysis evaluating 
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tests of frontal lobe function in frontal versus nonfrontal participants, found the Stroop task 

to be the most strongly and consistently sensitive test to frontal lobe dysfunction or damage 

(Demakis, 2004). The colour-word naming task has also demonstrated sensitivity to 

impaired glucose regulation within a non-diabetic sample of young adults (mean age 35 

years) (Gluck et al., 2013) which is highly relevant to participant samples included in this 

thesis.  

The task was administered on a computer (using E-prime) and participants responded to a 

visual stimulus by pressing one of four keys on a response box. The response box keys 

corresponded to the correct response. The stimuli consisted of words presented in one of 

four ink colours (red, green, blue or yellow) which formed three conditions: congruent, 

incongruent or control. Trials were equally weighted in terms of congruent, incongruent or 

neutral trials. The stimuli for congruent trials consisted of the names of colours written in the 

same ink colour as the semantic meaning of that word (e.g. the word “red”, written in red). 

Incongruent trials consisted of the names of colours written in a different ink colour to the 

meaning (e.g. the word “blue”, written in green). Neutral trials consisted of words written in 

an ink colour with no semantic meaning (e.g. the word “valley”, written in yellow). The task 

consisted of 60 trials including 20 congruent, 20 incongruent and 20 neutral word stimuli 

presented in a randomised order. Participants were instructed to respond only to the ink 

colour that each word was written in, and not the semantic meaning of the word. The 

response box keys ‘1’, ‘2’, ‘3’ and ‘4’ corresponded with the answers “red”, “green”, “blue” 

and “yellow” respectively.     

During incongruent trials, the conflict between the relevant (colour of word) and irrelevant 

(name of word) sources of information produces a breakdown in inhibitory processing known 

as Stroop interference. This is typified by a prolonged response time in the incongruent trials, 

when compared to neutral and congruent trials. Relative to congruent or neutral trials, a 

faster response time in incongruent trials would be indicative of a selective attentional 

system that supresses the irrelevant information more efficiently (Pilli, Naidu, Pingali, 

Shobha, & Reddy, 2013). The magnitude of Stroop Interference is therefore used as a proxy 

for efficiency of the inhibitory system (Spieler et al., 1996).   

Reaction time (ms) and accuracy (% errors) under each of the three conditions were the 

outcome variables generated. From this Stroop interference was calculated by subtracting 

the reaction time of the neutral trails (N-RT) from the reaction time of the incongruent trials 

(I-RT); Interference = (I-RT)-(N-RT). Stroop interference was also calculated as a 

percentage, in accordance with Langenecker, Nielson, and Rao (2004) using the following 

equation: (RTI -RTN)/RT-N 
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5.9 Physical activity protocol 

At week 0 of the intervention, participants were randomly allocated to one of two intervention 

arms. A non-exercise control was added retrospectively. The intervention arms comprised 

of a low dose walking group or a high dose walking group. Baseline daily step count was 

calculated for all participants following a 7-day period wearing a GT3X Actigraph 

accelerometer (Chapter 2, section 2.9.1). Relative to individual baseline steps, participants 

were either given a target increase of +3000 steps/day “low dose” or a target increase of 

+6000 steps/day “high dose.” Yamax SW-200 pedometers (Yamax Corp., Tokyo, Japan) 

were used by particpants throughout the duration of the study. To verify the accuracy of the 

pedometers participants were instructed to walk 20 steps, if a measurement error ˃ 1 step 

was observed the positioning of the device was adjusted until an accurate reading was 

achieved. The pedometers displayed step count only, which participants were able to view. 

Participants were asked to record their total accumulated step count at the end of each day 

(including rest days) on log sheets (Appendix 6.31). The weekly log was returned to the 

researcher at the end of each intervention week, and reviewed with the participant in a 

weekly telephone call to aid motivation and compliance. All participants were asked not to 

engage in any calorie-restricting diets or any additional exercise above their prescribed step 

count during the study.  

5.9.1 Non-exercising control group 

Participants were asked maintain their current diet and physical activity levels, and abstain 

from taking up any new physical activity or exercises throughout the 12-week duration of the 

study. The control group were not given a pedometer to use during the study to report daily 

step count as research has shown the monitoring device itself can motivate increases in 

step counts.  

5.10 Ethical approval 

Attainment of ethical approval is described in Chapter 2, section 2.3.  

5.11 Data Analysis   

The SAS-mixed models procedure (PROC MIXED) was employed to examine the potential 

within-subjects change in cognitive function or cardiometabolic health outcome variables 

over the 12-week intervention period, compared with the no intervention control group 

examined over the same period.  
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The initially planned analysis was to include two fixed factors; condition with 3 levels (+3000 

steps, +6000 steps, and NO-EX), and time with 2 levels (mid and post) with baseline steps 

included as a covariate. However, high attrition rates and failure to adhere to the +6000 

steps condition resulted in insufficient sample size within each condition to permit the 

planned analysis. Therefore, the two exercise conditions were combined into one 

“pedometer” condition, and post-intervention step count was included as a covariate. Since 

no step count data was collected for the NO-EX condition at mid-point this time-point could 

not be entered into the model. Therefore, the factor “time” was omitted from the analysis and 

participants were examined at post-testing only.    

Participant ID was entered as a random factor and condition was entered as a fixed factor. 

Baseline performance (on each cognitive or cardiometabolic health outcome) was retained 

as a covariate. Age and post-intervention step count were also initially included as covariates 

but removed from models if non-significant. For cognitive outcomes only, IQ was also 

included as a covariate. Where covariates were significant, they were plotted to determine 

direction of relationship with the dependent variable. When significant main effects or 

interactions were found, Tukey corrected post hoc tests (LSMEANS) were performed to 

explore these. In cases, where an interaction with baseline or other covariate was significant, 

the LSMEANS procedure, examines the effect at the average value of the baseline (or other 

covariate) and is reported. For such cases average baseline score is indicated on the 

relevant figure by a vertical line (e.g. see Figure 5.10). 

5.12 Results 

5.12.1 Participant characteristics  

5.12.1.1 Three experimental conditions (+3000, +6000 and NO-EX) 

Participant characteristics at baseline for the three original experimental conditions are 

presented in Table 5.2. Systolic blood pressure was significantly higher in participants 

assigned to the +6000 steps/day condition (133.7 ± 16.8 mmHg) relative to NO-EX (117.0 ± 

12.3 mmHg; F(2,32)=3.63, p<.05). Diastolic blood pressure was significantly higher in 

participants assigned to the +6000 steps/day condition (95.9 ± 12.6 mmHg) relative to NO-

EX (79.2 ± 9.2 mmHg; F(2,32)=5.59, p<.01). There were trends for differences between 

groups at baseline for age, F(2,32)=2.72, p=.08, and IQ, F(2,32)=2.72, p=.08 No further 

differences at baseline were evident between the experimental conditions.    
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Table 5.2 Participant characteristics (mean ± SD) at baseline (three conditions) 

 

Pedometer   

+3000 

(n=19) 

+6000 

(n=5) 

NO-EX 

(n=9) 
p  

IQ 116.6 ± 9.8 127.0 ± 4.2 115.8 ± 10.2 .079 

Age 48.8 ± 6.7 44.2 ± 9.8 41.2 ± 9.7 .082 

Body fat (%) 40.6 ± 8.7 34.8 ± 8.4 42.5 ± 6.3 .242 

BMI 34.1 ± 6.5 33.5 ± 5.3 32.3 ± 5.4 .770 

WC 115.2 ± 12.3 117.0 ± 8.2 106.5 ± 10.8 .118 

WHR 0.98 ± 0.1 0.99 ± 0.1 0.93 ± 0.1 .133 

Fasting glucose 5.3 ± 0.9 5.2 ± 0.2 4.97 ± 0.6 .691 

Fasting Insulin  6.7 ± 3.9 10.2 ± 4.1 8.7 ± 4.7 .541 

HOMA-IR  1.7 ± 1.1 2.2 ± 0.9 2.1 ± 1.4 .667 

Systolic blood 
pressure 

123.6 ± 9.0 133.7 ± 16.8 117.0 ± 12.3 .038 

Diastolic blood 
pressure 

86.5 ± 7.9 95.9 ± 12.6 79.2 ± 9.2 .009 

Daily step count 6123.7 ± 2027.8 6667.1 ± 2708.7 5840.2 ± 1531.4 .800 

 
Figure 5.4 shows baseline and post-intervention average daily step count for the three 

experimental conditions. The figure indicates little change in the no exercise group as 

expected, and increases in step-count post-intervention in both the +3000 and +6000 groups 

F(2,27)=4.71, p<.05. However,  step-count achieved in the +6000 group was not different to 

the +3000 group meaning the high dose group were not achieving the prescribed increase 

in step count, F(2,27)=2.15, ns.  
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Figure 5.4 Objectively measured (Actigraph GT3X) average daily step count at 
baseline and post intervention by group (+3000, +6000 and NO-EX) 
 

5.12.1.2 Two experimental conditions (pedometer and NO-EX) 

Due to the low number of participants in the +6000 condition (n=5) and failure to comply with 

the prescribed target, the high (+6000) and low (+3000) dose pedometer conditions were 

collapsed into one group (‘pedometer’). The participant characteristics for the pedometer 

and no exercise groups used in subsequent statistical analysis are presented in Table 5.3. 

At baseline, diastolic blood pressure was significantly higher in the pedometer group (88.5 

± 9.6 mmHg) relative to NO-EX (79.2 ± 9.2; t(31)=2.5, p<.05). Age was also significantly 

higher in the pedometer condition (48.3 ± 7.2 years) than in the NO-EX condition (41.2 ± 

9.7; t(31)=2.26, p<.05). Systolic blood pressure was marginally higher in the pedometer 

condition (125.7 ± 11.2 mmHg) relative to NO-EX (117.0 ± 12.3; t(31)=1.94, p=.06). No 

further differences between the pedometer and NO-EX conditions were evident at baseline.  
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Table 5.3 Participant characteristics (mean ± SD) at baseline (two conditions) 

 
Pedometer 

(n=24) 

NO-EX 

(n=9) 
p 

IQ 118.8 ± 9.8 115.8 ± 10.2 .451 

Age 48.3 ± 7.2 41.2 ± 9.7 .031 

Body fat (%) 39.4 ± 8.8 42.5 ± 6.9 .329 

BMI 33.9 ± 6.1 32.3 ± 5.4 .487 

WC 115.9 ± 11.2 106.5 ± 10.8 .992 

WHR 0.99 ± 0.1 0.93 ± 0.1 .887 

Fasting glucose 5.3 ± 0.9 5.0 ± 0.6 .405 

Fasting Insulin 6.9 ± 3.8 8.7 ± 4.3 .452 

HOMA-IR 1.7 ± 1.0 2.0 ± 1.4 .297 

Systolic blood 
pressure 

125.7 ± 11.2 117.0 ± 12.3 .062 

Diastolic blood 
pressure 

88.5 ± 9.6 79.2 ± 9.2 .018 

Daily step count 6241.9 ± 2136.3 5840.2 ± 1531.4 .670 

 
Figure 5.5 shows the significant time*condition interaction for daily step count F(1,28)=9.13, 

p<.05 such that from baseline to post-intervention participants in the the pedometer 

condition increased daily step count (average increase of 2274.8 ± 1971.4 steps) whereas 

participant in the NO-EX group did not.  

 

 

Figure 5.5 Objectively measured (Actigraph GT3X) average daily step count at 
baseline and post intervention by group (pedometer and NO-EX) 
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5.12.2 Cognitive function 

5.12.2.1 Verbal memory 

Total acquisition, delayed recall, recognition, retroactive interference and proactive 

interference were unaltered following 12-weeks pedometer or NO-EX conditions (Table 5.4; 

p>.05).  As expected, baseline performance was a significant covariate and showed a 

positive correlation with post-test performance for total acquisition, delayed recall and 

recognition, F(1,22)=22.30, p<.001, F(1,21)=41.83, p<.0001 and F(1,21)=18.10, p<.001, 

respectively. All further effects are reported under the respective subsection for verbal 

memory outcomes.  

Table 5.4 Visual verbal learning test (VVLT) outcomes at baseline and post for 
pedometer and NO-EX conditions 

 Pedometer group NO-EX 

 Baseline Post Baseline Post 

Total Acquisition1 33.4 ± 5.7 36.2 ± 6.2 31 ± 6.3 32.4 ± 7.5 

Delayed recall2 10.8 ± 3.6 11.6 ± 2.9 9.7 ± 2.8 9.4 ± 3.1 

Recognition (List A)2 13.2 ± 1.7 13.6 ± 2.2 12.4 ± 2.1 12.0 ± 2.6 

Proactive Interference 1.4 ± 1.5 1.5 ± 3.2 1.7 ± 1.4 2.6 ± 2.1 

Retroactive interference 2.5 ± 2.3 2.1  3.6 3.1 ± 2.4 2.9 ±2.3 

No main effects of condition were found (p>.05). 1 Maximum score= 48; 2 Maximum score =16  
 

5.12.2.1.1 Total acquisition 

The analysis revealed no significant main effects or interactions (see Appendix 6.32). 

5.12.2.1.2 Delayed recall 

Step-count and IQ showed trends towards significance as covariates, F(1,21)=3.11, p=.09 

and F(1,21)=3.14, p=.09 respectively. Both IQ and post-intervention step-count showed a 

positive correlation with delayed recall. The analysis revealed no significant main effects or 

interactions (see Appendix 6.32). 

5.12.2.1.3 Recognition 

IQ showed a trend towards significance as a covariate, F(1,21)=3.81, p=.06, and showed a 

positive correlation with recognition score The analysis revealed no significant main effects 

or interactions (see Appendix 6.32). 
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5.12.2.1.4 Proactive interference 

In the final model the analysis revealed no significant main effects or interactions (see 

Appendix 6.32).  

5.12.2.1.5 Retroactive interference 

In this analysis 2 outlying observations were excluded to normalise the residuals. In the final 

model the analysis revealed no significant main effects or interactions (see (see Appendix 

6.32) 

5.12.2.2 Spatial memory 

Recall of immediate designs, locations, designs/locations and delayed designs/locations 

were unaltered following the 12-week pedometer or NO-EX conditions (Table 5.5; p>.05). 

Baseline performance was not a significant covariate for any of the spatial memory 

outcomes. All other effects are reported under the respective subsection for spatial memory 

outcomes. 

 

Table 5.5 Visual spatial learning test (VSLT) outcomes at baseline and post for 
pedometer and NO-EX conditions 

 Pedometer group NO-EX 

 Baseline Post Baseline Post 

Designs1 18.0 ± 1.9 17.8 ± 2.0 18.5 ± 1.6 18.25 ± 1.7 

Locations1 15.1 ± 3.4 15.2 ± 4.5 14.8 ± 3.2 16.3 ± 4.2 

Designs/Locations1 9.9 ± 4.1 10.4 ± 5.6 14.8 ± 3.2 13.9 ± 3.5 

Delayed designs/locations2 3.5 ± 2.8 4.7 ± 2.5 5.8 ± 1.4 4.7 ± 2.1 

No main effects of condition were found (p>.05). 1 Maximum score= 21; 2 Maximum score=7 

5.12.2.2.1 Total designs 

In the final model, step-count showed a trend towards significance as a covariate and a 

positive correlation with total designs recalled, F(1,19)=3.64, p=.07. The analysis revealed 

no significant main effects or interactions (see Appendix 6.33).  
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5.12.2.2.2 Locations 

In the final model, the analysis revealed no significant main effects or interactions (see 

Appendix 6.33).  

5.12.2.2.3 Designs and locations 

In the final model, the analysis revealed no significant main effects or interactions (see 

Appendix 6.33).  

5.12.2.2.4 Delayed designs and locations 

In the final model, step-count and age showed trends towards significance as covariates, 

F(1,16)=3.67, p=.07 and F(1,16)=3.66, p=.07 respectively. Both IQ and post-intervention 

step-count showed a positive correlation with delayed recall of designs/positions. The 

analysis revealed no significant main effects or interactions (see Appendix 6.33).  

5.12.2.3 Attention: Bakan 

Total correct, reaction time of correct and missed responses were unaltered following the 

12-week pedometer or NO-EX conditions (Table 5.6; p>.05). Post-intervention, false positive 

responses decreased for the pedometer group and increased in NO-EX and the main effect 

of condition was significant (F(1,19)=7.92, p<.01). As expected, baseline performance was 

a significant covariate and showed a positive correlation with post-test performance for total 

correct and reaction time of correct and missed responses, F(1,19)=64.65, p<.0001, 

F(1,17)=5.08, p<.05, and F(1,18)=59.64, p<.0001 respectively. All further effects are 

reported under each subsection for Bakan outcomes. 

Table 5.6 Bakan rapid visual information processing (RVIP) outcomes at baseline and 
post for pedometer and NO-EX conditions 

 Pedometer group NO-EX 

 Baseline Post Baseline Post 

Total correct1 25.3 ± 10.7 25.8 ±  12.5  28 ± 10.0 25.8 ± 13.5 

Reaction time of correct 
(ms) 

452.2 ± 46.7 467.5 ± 75.7 437.4 ± 64.3 398.6 ± 19.9 

Missed responses 34.7 ± 10.7 34.2 ± 12.5 32.1 ± 10.0 31.2 ± 13.5 

False-positive responses* 7.7 ± 8.5 6.3 ± 4.8 6.1 ± 4.9 9.4 ± 7.0 

* indicates a significant main effect of condition (p<.05) for false-positive responses. No main effects 

of condition were found for total correct reaction time of correct and missed responses (p>.05). 1 Maximum 
score= 60) 
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5.12.2.3.1 Total correct hits 

There was a significant age*condition interaction, F(2,19)=14.32, p<.001. Age and total 

correct were negatively correlated in the pedometer condition, but performance at post-

testing for NO-EX did not differ according to age. There was a significant IQ*condition 

interaction, F(2,19)=6.14, p<.01. The correlation between IQ and total correct was negative 

for NO-EX and positive for the pedometer group. The analysis revealed no further significant 

main effects or interactions (see Appendix 6.34).  

 

5.12.2.3.2 Reaction time of correct hits 

There was a significant baseline*condition interaction, F(1,17)=4.55, p<.05. The 

baseline*condition interaction is evident in Figure 5.6. The divergence of slopes indicates 

that the relationship between performance at baseline and post-intervention was different 

according to condition. For those with slower baseline reaction time (RT), post-intervention 

performance was better in NO-EX and unchanged in the pedometer condition. This effect 

appears to be driven by the smaller number of data points for NO-EX. The analysis revealed 

no further significant main effects or interactions (see Appendix 6.34). 

 

 

Figure 5.6 Reaction time of responses (BAKAN) at baseline (horizontal axis) and post-
testing (vertical axis) for pedometer and NO-EX groups. Vertical line indicates average 
baseline RT. 
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5.12.2.3.3 Missed responses 

In this analysis 1 outlying observation was excluded to normalise the residuals. There was 

a significant age*condition interaction, F(1,18)=16.87, p<.001. The pedometer condition 

showed the expected correlation between increasing age and worse performance (more 

missed responses), whereas for NO-EX post-intervention performance was unaffected by 

age. There was also an IQ*condition interaction, F(1,18)=8.46, p<.01. The pedometer 

condition showed the expected correlation between increasing IQ and better performance 

(fewer missed responses), whereas for NO-EX post-intervention performance was 

unaffected by IQ. The analysis revealed no further significant main effects or interactions 

(see Appendix 6.34).  

5.12.2.3.4 False-positive responses 

In the final model, there was a significant main effect of condition, F(1,19)=7.92, p<.01, 

indicating that the pedometer group were making less false-positive responses than NO-EX. 

However, post hoc tests for the main effect of condition were not significant, (p>.05). There 

was a trend towards an age*condition interaction, F(2,19)=2.75, p=.09, such that older 

people had worse performance (higher false-positive responses) in the pedometer group 

relative to NO-EX. The analysis revealed no further significant main effects or interactions 

(see Appendix 6.34).  

5.12.2.4 Spatial working memory 

Total correct responses, reaction time for correct responses, and accuracy of crossing trials 

were unaltered following the 12-week pedometer or NO-EX conditions (Table 5.7; p>.05). 

Post-intervention, accuracy of crossing trials increased for NO-EX and decreased for the 

pedometer group as indicated by a significant main effect of condition. As expected baseline 

performance was a significant covariate and showed a positive correlation with post-test 

performance for total correct responses, reaction time for correct responses and accuracy 

of crossing trials (F(1,18)=20.14, p<.001, F(1,18)=10.21, p<.01, and F(1,21)=4.98, p<.05 

respectively. All further effects are reported under each subsection for spatial working 

memory outcomes. 
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Table 5.7 Spatial working memory (Corsi) outcomes at baseline and post for 
pedometer and NO-EX conditions 

 Pedometer group NO-EX 

 Baseline Post Baseline Post 

Accuracy (total 
correct) 58.3 ± 11.0 56.3 ± 11.5 62.7 ± 8.0 65.3 ± 10.9 

Reaction time 
(correct) 

1023.7 ± 
143.8 

1015.8 ± 
202.4 

980.3 ± 
200.1 

969.8 ± 
139.7 

Accuracy: 
crossing  

18.6 ± 6.3 19.0 ± 6.5 23.6 ± 5.5 24.0 ± 7.6 

Accuracy: non-
crossing* 

39.6 ± 6.1 37.5 ± 6.7 39.0 ± 4.1 41.3 ±4.8 

No main effects of condition were found for total correct, reaction time of correct, and accuracy of 
crossing trials (p>.05).  
 

5.12.2.4.1 Accuracy (total correct responses) 

There was a steps*condition interaction, F(1,18)=6.58, p<.05 and a baseline*condition 

interaction, F(1,18)=5.82, p<.05.  Within the pedometer condition, higher post-intervention 

step-count was positively associated with more total correct responses. For NO-EX, all 

participants had low post-intervention step-count (as a function of the intervention), but had 

better performance relative to those with low step-count in the pedometer condition. It must 

be noted 2 participants in the pedometer condition had lower step counts than NO-EX. The 

analysis revealed no further significant main effects or interactions (see Appendix 6.35). The 

baseline*condition interaction is evident in Figure 5.7. 

 

Figure 5.7 Post-intervention total correct (Corsi) plotted against step-count for 
pedometer and NO-EX. Vertical line indicates average post-intervention daily step 
count. 
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5.12.2.4.2 Reaction time for correct responses 

The analysis revealed no further significant main effects or interactions (see Appendix 6.35). 

5.12.2.4.3 Accuracy: crossing trials 

The analysis revealed no significant main effects or interactions (see Appendix 6.35). 

5.12.2.4.4 Accuracy: non-crossing trials 

In this analysis 3 outlying observations were excluded to normalise the residuals. In the final 

model, there was a significant main effect of condition, F(1,17)=5.03, p<.05.  Post hoc tests 

showed that after controlling for baseline score (average = 39.55), performance was better 

in NO-EX (41.4 ± 1.7) relative to the pedometer condition (36.8 ± 0.8; f(17)=-2.24, p<.05). 

This is evident in Figure 5.8. Age and IQ were significant covariates, F(1,17)=5.39, p<.05 

and F(1,17)=5.07, p<.05, respectively. As expected, age showed a negative and IQ showed 

a positive correlation with accuracy. The analysis revealed no further significant main effects 

or interactions (see Appendix 6.35). 

 

Figure 5.8 Correct responses for non-crossing trials (Corsi) at baseline (horizontal 
axis) and post-testing (vertical axis) for pedometer and NO-EX groups. Vertical line 
indicates average baseline correct: non-crossing trials. 
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5.12.2.5 Executive Function 

All outcomes for the Trail Making Test (TMT) and Stroop  colour/word test were unaltered 

following 12-weeks pedometer or NO-EX conditions (Table 5.8Error! Reference source 

not found.; p>.05).  As expected, baseline performance was a significant covariate and 

showed a positive correlation with post-test performance for TMT (part B) and TMT (B minus 

A), F(1,16)=19.30, p<.001, and F(1,16)=47.63, p<.0001 respectively. All further effects are 

reported under each subsection for executive function outcomes.  

 

Table 5.8 Executive function outcomes (Trail Making Test and Stroop colour/word 
Test) at baseline and post for pedometer and NO-EX conditions 

 Pedometer group NO-EX 

 Baseline Post Baseline Post 

TMT part A 21.1 ± 6.9 19.2 ± 7.1 17.6 ± 3.5 18.0 ± 10.6 

TMT part B 51.7 ± 26.8 41.5 ± 1.8 38.6 ± 13.9 34.8 ± 11.9 

TMT (B minus A) 30.6 ± 22.7 22.3 ± 16.3 18.5 ± 14.4 16.7 ± 9.6 

Stroop Interference 
(ms) 

158.6 ± 187.0 201.7 ± 168.9 94.1 ± 141.8 129.9 ± 137.8 

Stroop: Reaction time 
of incongruent (ms) 

1169.6 ± 310.8 1150.1 ± 313.2 1055.2 ± 250.3 948.4 ± 283.8 

No main effects of condition were found (p>.05). 

 

5.12.2.5.1 Trail Making Test: Part A (TMT A) 

In the final model, step-count was a significant covariate and showed a positive correlation 

with performance on TMT part A, F(1,19)=6.85, p<.05. The analysis revealed no significant 

main effects or interactions (see Appendix 6.36).  

5.12.2.5.2 Trail Making Test: Part B (TMT B) 

In this analysis 2 outlying observations were excluded to normalise the residuals. There was 

a significant age*condition interaction, F(1,16)=6.87, p<.05, such that older participants had 

worse performance (slower completion time) in NO-EX, relative to the pedometer condition. 

There was a trend towards an IQ*condition interaction, F(1,16)=3.26, p=.09, in that as IQ 

increased performance increased for the pedometer condition, but not for NO-EX. The 

analysis revealed no significant main effects or further interactions (see Appendix 6.36). 
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5.12.2.5.3 Trail Making Test: B minus A 

In this analysis 3 outlying observations were excluded to normalise the residuals. Steps, and 

IQ were significant covariates, F(1,16)=10.39, p<.01, and F(1,16)=8.05, p<.01, respectively. 

Irrespective of condition, increasing post-intervention step-count was correlated with faster 

completion times whereas IQ was negatively correlated with performance (higher B minus 

A score). The analysis revealed no significant main effects or further interactions (see 

Appendix 6.36). 

5.12.2.5.4 Stroop interference 

In this analysis 4 outlying observations were excluded to normalise the residuals. In the final 

model, there was a significant baseline*condition interaction, F(1,17)= 5.67, p<.05. The 

divergence of slopes in Figure 5.9 indicates that the relationship between baseline and post-

intervention performance is different according to condition. For those with greater 

interference at baseline, post-intervention performance is better in NO-EX relative to the 

pedometer group. However, this appears to be driven by just 2 individuals in the NO-EX 

condition with high baseline interference scores. The analysis revealed no significant main 

effects or further interactions (see Appendix 6.36). 

 

Figure 5.9 Stroop interference at baseline (horizontal axis) and post-testing (vertical 
axis) for pedometer and NO-EX groups. Vertical line indicates average baseline 
Stroop interference. 

5.12.2.5.5 Stroop: reaction time for incongruent stimuli 

In this analysis 1 outlying observation was excluded to normalise the residuals. In the final 

model, age was a significant covariate and showed a positive correlation with reaction time 

for incongruent responses, F(1,21)=4.98, p<.05. The analysis revealed no significant main 

effects or interactions (see Appendix 6.36). 
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5.12.3 Health parameters 

The impact of the 12-week intervention on indices of cardiometabolic health and obesity are 

presented as follows: 

5.12.3.1 Indices of cardiometabolic health 

Fasting glucose, HOMA-IR, systolic blood pressure (SBP) and diastolic blood pressure 

(DBP) were unaltered following 12-weeks pedometer or NO-EX conditions as evident from 

Table 5.9). The raw data indicate that fasting insulin levels declined in both groups, but the 

main effect of condition on post intervention fasting insulin levels, F(1,17)=4.47, p<.05 

reflected reduced fasting insulin levels in the NO-EX group  

Table 5.9 Indices of cardiometabolic health at baseline and post for pedometer and 
NO-EX conditions 

 Pedometer group NO-EX 

 Baseline Post Baseline Post 

Fasting glucose 5.3 ± 0.8 5.4 ± 0.7 4.9 ± 0.5 5.2 ± 0.6 

Fasting Insulin* 6.9 ± 3.9 6.3 ± 4.2 8.7 ± 4.2 7.1 ± 4.3 

HOMA-IR 1.7 ± 1.0 1.6 ± 1.3 2.0 ± 1.3 1.7 ± 1.1 

Systolic blood pressure 125.7 ± 11.2 123.6 ± 13.5 117.0 ± 12.3 
113.4 ± 

9.6 

Diastolic blood 
pressure 

88.5 ± 9.6 84.1 ± 11.7 79.2 ± 9.2 77.4 ± 6.0 

* indicates a significant post-intervention effect of condition (p<.05) for fasting insulin. No main effects 

of condition were found for fasting glucose, HOMA-IR, systolic blood pressure and diastolic blood 

pressure (p>.05).  

As expected, baseline value was a significant covariate and showed a positive correlation 

with post-test value for fasting glucose, fasting insulin and HOMA-IR, F(1,17)=4.38, p=.05, 

F(1,17)=79.86, p<.0001 and F(1,16)=76.38, p<.0001 respectively. Baseline SBP and DBP 

were significant covariates and showed a positive correlation with post-intervention value, 

F(1,23)=39.54, p<.0001, and F(1,21)=21.53, p<.0001, respectively All further effects are 

reported under the respective subsection for indices of cardiometabolic health.   

5.12.3.1.1 Fasting glucose (capillary plasma sample) 

In this analysis 3 outlying observations were excluded to normalise the residuals. In the final 

model, there was a trend towards a significant step*condition interaction, F(1,17)=4.04, 

p=.06. However, Figure 5.10 shows that post-intervention fasting glucose was higher in NO-

EX relative to the pedometer group, regardless of step count. Post-intervention step-count 
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was a significant covariate, and showed a weak positive correlation with fasting glucose, 

however this was within the healthy range (3.6 - 5.5 mmol/L), F(1,17)=5.76, p<.05. Age was 

a significant covariate and showed a positive correlation with post-intervention fasting 

glucose, F(1,17)=6.94, p<.05. There were no further significant main effects or interactions 

(see  Appendix 6.37).  

 

 

Figure 5.10 Post-intervention step-count (horizontal axis) and fasting glucose 
(vertical axis) for pedometer and NO-EX groups. Vertical line indicates average post 
intervention step count. 

 

5.12.3.1.2 Fasting Insulin (capillary plasma sample) 

In the final model, there was a significant main effect of condition, F(1,17)=4.47, p<.05. Post 

hoc tests showed that after controlling for baseline fasting insulin (average = 7.16 µIU/ml), 

post-intervention values were higher in the pedometer condition (7.11 µIU/ml) relative to NO-

EX (3.22 µIU/ml; t(17)=2.98, p<.01. Figure 5.11 shows that the NO-EX had fewer 

participants with higher values which may have affected the results. Age was a significant 

covariate, and showed a negative correlation with fasting insulin (see Appendix 6.38) which 

was unexpected, F(1,17)=9.18, p<.01, however the data indicate that this was driven by a 

low number of young individuals with high fasting insulin. The analysis revealed no 

significant main effects or interactions (see Appendix 6.37). 



187 
 

 

Figure 5.11 Fasting insulin at baseline (horizontal axis) and post-testing (vertical 
axis) for pedometer and NO-EX groups. Vertical line indicates average baseline 
fasting insulin. 
 

5.12.3.1.3 HOMA-IR 

In this analysis 1 outlying observation was excluded to normalise the residuals. There was 

a trend towards a baseline*condition interaction, F(1,16)=3.25, p=.09. The 

baseline*condition interaction is evident in Figure 5.12 the divergence of slopes indicates 

that the relationship between baseline and post-intervention HOMA-IR differs according to 

condition. The interaction however looks to be driven by a small number of participants in 

both conditions with HOMA-IR that exceeded the upper limit of the healthy range (2.5). Age 

showed a trend towards being a significant covariate with older age associated with higher 

HOMA-IR, F(1,16)=3.16, p=.09. The analysis revealed no significant main effects or 

interactions (see Appendix 6.37).  
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Figure 5.12 HOMA-IR at baseline (horizontal axis) and post-testing (vertical axis) for 
pedometer and NO-EX groups. Vertical line indicates average baseline HOMA-IR. 

 

5.12.3.1.4 Systolic blood pressure 

In this analysis 1 outlying observation was excluded to normalise the residuals. Post-

intervention step-count showed a trend towards being a significant covariate, such that those 

with higher step-count had lower systolic blood pressure, F(1,23)=3.41, p=.07. The analysis 

revealed no significant main effects or interactions (see Appendix 6.37). 

5.12.3.1.5 Diastolic blood pressure 

There was a significant baseline*condition interaction, F(1,21)=4.88, p<.05. The 

baseline*condition interaction is evident in Figure 5.13, the divergence of slopes indicates 

that the relationship between baseline and post-intervention performance differs according 

to condition.  This appears to be driven by NO-EX as those with low baseline DBP show 

higher values post-intervention than the pedometer group. This is further compounded by 

the fact that all participants with high baseline DBP are in the pedometer condition. The 

analysis revealed no significant main effects or further interactions (see Appendix 6.37). 
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Figure 5.13 Diastolic blood pressure (DBP) at baseline (horizontal axis) and post-
testing (vertical axis) for pedometer and NO-EX groups. Vertical line indicates 
average baseline DBP. 

 

5.12.3.2 Indices of obesity  

BMI, waist circumference (WC) and waist-hip ratio (WHR) were unaltered following 12-

weeks pedometer or NO-EX conditions (Table 5.10; p>.05). A main effect of condition for 

body fat percentage is evident in Table 5.10 as the NO-EX group had higher body fat at 

baseline and post relative to the pedometer group. As expected, baseline value was a 

significant covariate and showed a positive correlation with post-test value for body fat, BMI, 

WC and WHR, F(1,22)=524.72, p<.0001, F(1,23)=1325.12, p<.0001, F(1,21)=199.7, 

p<.0001, and F(1,21)=199.7, p<.0001, respectively. All further effects are reported under the 

respective subsection for index of obesity.   
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Table 5.10 Indices of obesity at baseline and post for pedometer and NO-EX 
conditions 

 Pedometer group NO-EX 

 Baseline Post Baseline Post 

Body fat (%)* 39.4 ± 8.8 38.2 ± 8.2 42.5 ± 6.9 42.7 ± 5.8 

BMI 33.9 ± 6.1 32.5 ± 4.9 32.3 ± 5.4 32.5 ± 5.1 

WC 115.9 ± 11.2 113.9 ± 9.1 106.5 ± 10.8 105.0 ± 10.9 

WHR 0.99 ± 0.1 0.98 ± 0.1 0.93 ± 0.1 0.92 ± 0.1 

* indicates a significant post-intervention effect of condition (p<.05) for body fat.).  

 

5.12.3.2.1 Body fat percentage 

In this analysis 2 outlying observations were excluded to normalise the residuals. In the final 

model, there was a significant main effect of condition, F(1,22)=4.37, p<.05. Post hoc tests 

confirmed that, after controlling for baseline (average = 39.5%), post-intervention body fat 

was significantly higher in NO-EX (40.7 ± 0.5) relative to the pedometer group (39.3 ± 0.2; 

f(22)=-2.78, p<.01). There was a trend towards a significant baseline*condition interaction, 

F(1,22)=3.12, p=.09. The analysis revealed no significant main effects or further interactions 

(see Appendix 6.39).  

5.12.3.2.2 BMI 

In this analysis 1 outlying observation was excluded to normalise the residuals. Irrespective 

of group, post-intervention step-count was a significant covariate and showed a negative 

correlation with BMI, F(1,23)=8.33, p<.01. The analysis revealed no significant main effects 

or further interactions (see Appendix 6.39).   

5.12.3.2.3 Waist circumference 

In the final model, the analysis revealed no significant main effects or interactions (see 

Appendix 6.39). 

5.12.3.2.4 Waist-hip ratio 

In the final model, the analysis revealed no significant main effects or further interactions 

(see Appendix 6.39). 

 



191 
 

5.13 Summary of findings 

Findings from this study are summarised as follows: 

5.13.1 Effects of 12-week intervention on cognitive function 

A tabulated summary of the effect of the intervention on cognitive function outcomes is 

shown in Table 5.11.  

 

 As expected, baseline cognitive performance was the strongest predictor of post-

intervention performance for verbal memory (total acquisition, delayed recall and 

delayed recognition), attention (correct hits, reaction time for correct hits, and missed 

responses), spatial working memory (accuracy, reaction time for correct responses and 

accuracy: crossing-trials), and executive function (TMT part B and TMT B minus A). 

However, baseline score did not predict performance at post-testing for any outcomes 

on the spatial memory or Stroop tests. 

 Baseline values showed significant interactions with condition for attention (Bakan: 

reaction time for correct hits), spatial working memory (total correct) and executive 

function (Stroop interference).  

 No post-intervention main effects of condition were observed for any verbal memory, 

spatial memory, attention or executive function outcomes.  

 Only one outcome from the Bakan task (false-positive responses) showed an effect of 

intervention, indicating superior performance in the pedometer group. 

 The Corsi task (accuracy:non-crossing trials) showed an effect of intervention, and 

indicated superior performance in NO-EX. 

 Irrespective of condition, the number of steps (post-intervention) was a significant 

predictor of the Trail Making Test (part A, and B minus A) scores and predicted (trend) 

VVLT delayed recall and VSLT outcomes (designs and delayed designs/locations. In all 

cases, higher step-count was associated with better performance. 

 Post-intervention step-count also showed an interaction with condition for one Corsi 

outcome (total correct) in that the least active (lower step count) had better performance 

in NO-EX. However, post-intervention step-count data is only available for NO-EX below 

7000 steps/day so above this threshold no inferences can be made against the 

pedometer condition.  

 Age showed an interaction with condition for Bakan outcomes (total correct, missed 

responses and false-positives) and TMT (part B). For NO-EX, increased age was 

associated with worse TMTB performance, but this relationship was not evident in the 
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pedometer group. For the pedometer group, increased age was associated with poorer 

performance in Bakan outcomes, but this was not evident in NO-EX. 

 Irrespective of group, as age increased performance decreased in spatial working 

memory outcome (accuracy: non-crossing trials) and executive function (Stroop RT 

incongruent) and showed a trend for one VSLT outcome (delayed designs/locations) 

only.  

 IQ showed an interaction with condition for Bakan outcomes (total correct and missed 

responses) and TMT B. In all cases, increasing IQ was associated with better 

performance in the pedometer condition and worse performance in NO-EX. 

 Irrespective of group, as IQ increased performance increased in Corsi (accuracy:non-

crossing trials), TMT ( B minus A) and VVLT outcomes (trends for delayed recall and 

recognition) 
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   Table 5.11 Tabulated summary of cognitive outcomes 

 Main effects Covariates Interaction terms 

Cognitive outcome Condition Baseline Steps Age IQ B*Cond Steps*Cond Age*Cond IQ*cond 

VERBAL MEMORY: Visual Verbal Learning Test (VVLT)    

Total Acquisition N 
Sig. 

p<.001 
N N N N - N N 

Delayed recall N 
Sig. 

p<.0001 
Trend 
p=.09 

- 
Trend 
p=.09 

N - - - 

Recognition N 
Sig. 

p<.001 
N - 

Trend 
p=.06 

N - - - 

Retroactive Interference N N N N N N - - - 

Proactive Interference N N N N - N - N - 

SPATIAL MEMORY: Visual Spatial Learning Test (VSLT)       

Designs N N 
Trend 
p=.07 

- - N - - - 

Locations N N N N - N - - - 

Designs/locations N N N N - N - - - 

Delayed  
designs/locations 

N N 
Trend 
p=.07 

Trend 
p=.07 

- N - - - 

ATTENTION: Bakan          

Total correct N 
Sig. 

p<.0001 
N - - N - 

Sig. 
p<.001 

Sig. 
p<.01 

Reaction time hits N 
Sig. 

p<.05 
N N N 

Sig. 
P<.05 

- N N 

Missed responses N 
Sig. 

p<.0001 
N - - N - 

Sig. 
P<.001 

Sig. 
p<.01 

False-positives 
Sig. 

p<.01 
N N N N N - 

Trend 
p=.09 

- 

N indicates term included in final model but non-significant; - indicates term removed from final model for best fit (lowest AICc score);  Cond=condition, 
B*cond=baseline*condition 
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 Main effects Covariates Interaction terms 

Cognitive outcome Cond Baseline Step Age IQ B*Cond Steps*Cond Age*Cond IQ*cond 

SPATIAL WORKING MEMORY: Corsi         

Accuracy N 
Sig. 

p<.001 
N N N 

Sig. 
p<.05 

Sig. 
p<.05 

N N 

Reaction time for  
correct responses 

N 
Sig. 

p<.01 
N N N N - N N 

Accuracy: crossing trials N 
Sig. 

p<.05 
N N - N - - - 

Accuracy: non-crossing 
trials 

Sig. 
p<.05 

N N 
Sig. 

p<.05 
Sig. 

p<.05 
N - N N 

EXECUTIVE FUNCTION : Stroop colour/word and Trail Making Test  

Stroop: interference N N N N N 
Sig. 

P<.05 
N N N 

Stroop: Reaction time of 
incongruent responses 

N N N 
Sig. 

P<.05 
N N N N N 

TMT A N N 
Sig. 

P<.05 
N - N - - - 

TMT B N 
Sig. 

p<.0001 
N N N N - 

Sig. 
p<.05 

Trend 
p=.09 

TMT B minus A N 
Sig. 

p<.0001 
Sig. 

P<.01 
N 

Sig. 
p<.01 

N - - N 

N indicates term included in final model but non-significant; - indicates term removed from final model for best fit (lowest AICc score);  Cond=condition, 
B*cond=baseline*condition 
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5.13.2 Effects of 12-week intervention on health parameters 

A tabulated summary of the effect of the intervention on indices of obesity and 

cardiometabolic health is shown in Table 5.12. The evidence suggests that within this 

overweight/obese sample, the majority of participants were within the healthy range 

for the cardiometabolic parameters at the start of the intervention.  

 As expected, the baseline cardiometabolic and anthropometeric parameters 

were the strongest predictors of the corresponding post-intervention parameters.  

 Baseline values showed significant (or a trend towards) interactions with condition 

for DBP and HOMA-IR. In each case, negligible group differences occurred when 

baseline and post-intervention were within the healthy range, and values that 

exceeded the healthy range were under-represented in the sample.  

 Body fat percentage and fasting insulin were the only health parameters that were 

altered post-intervention (main effect of condition). After controlling for baseline 

values, body fat percentage was higher in NO-EX relative to the pedometer 

condition. Fasting insulin was significantly lower following NO-EX relative to the 

pedometer group. 

 Despite the lack of differences between the pedometer and control group, the 

number of steps (post-intervention) was a significant predictor of fasting glucose, 

BMI and showed a trend for SBP. Those taking more steps had lower values for 

BMI and SBP. The finding that those achieving more steps had higher fasting 

glucose but this was not physiologically relevant since all values were within the 

healthy range.  

 Post-intervention step-count also showed an interaction with fasting glucose 

indicating that the least active (lower step count) had higher fasting glucose in 

NO-EX. However, post-intervention step-count data is only available for NO-EX 

below 7000 steps/day so above this threshold no inferences can be made in 

relation to the pedometer condition.  
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   Table 5.12 Tabulated summary of indices of health parameters 

 
Main effects Covariates Interaction terms 

Physiological parameters Condition Baseline Steps Age B*Cond Steps*Cond Age*Cond 

Indices of cardiometabolic health     

Fasting glucose N 
Sig. 

p<.05 
Sig. 

p<.05 
Sig. 

p<.05 
N 

Trend 
p=.06 

N 

Fasting insulin 
Sig. 

P<.05 
Sig. 

p<.0001 
N 

Sig. 
p<.01 

N - - 

HOMA-IR N 
Sig. 

p<.0001 
N 

Trend 
p=.09 

Trend 
p=.09 

- - 

Systolic blood pressure N 
Sig. 

p<.0001 
Trend 
p=.07 

N N - - 

Diastolic blood pressure N 
Sig. 

p<.0001 
N - 

Sig. 
P<.05 

- N 

Indices of obesity        

Body fat percentage 
Sig. 

p<.05 
Sig. 

p<.0001 
N - 

Trend 
p=.09 

- - 

BMI N 
Sig. 

p<.0001 
Sig. 

p<.01 
- N - - 

Waist circumference N 
Sig. 

p<.0001 
N N N - - 

Waist-hip ratio N 
Sig. 

p<.0001 
N - N - - 

N indicates term included in final model but non-significant; - indicates term removed from final model for best fit (lowest AICc score);  
Cond=condition, B*cond=baseline*condition 
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5.14 Discussion 

The study reported in this chapter aimed to examine the impact of 12-weeks of 

increased daily step-count on measures of cognitive function, cardiometabolic health 

and obesity indices in an overweight/obese middle-aged adult sample relative to a 

no-exercise control. The intention had been to examine two differing step-count 

‘doses’ against a control group, however the low number of participants completing 

the “high dose” of +6000 steps/day rendered this condition inadequate for statistical 

analysis. The decision was made to collapse the high (+6000 steps) and low (+3000 

steps) dose pedometer groups into one condition. To account for the differing step 

counts achieved by the participants, post intervention step-count was included as a 

covariate in the analysis for all cognitive and health-related outcomes. Issues arising 

directly from this are discussed in the section 5.14.2.4.2.  

5.14.1 Overview of findings 

At first glance the findings appear to suggest there was no effect of the pedometer 

intervention, since there were few significant main effects of condition. However, 

exploration of the covariates and interactions suggest that post-intervention step-

count was beneficial for a limited number of health parameters and cognitive function 

outcomes. Individuals exceeding the healthy ranges were potentially driving some of 

the main effects of condition (or baseline*condition interactions) but were under-

represented in the sample.  

5.14.1.1 Cognitive function outcomes 

With regard to cognitive outcomes, the findings of most interest were the associations 

between increased step-count and better performance in measures of executive 

function, delayed verbal memory and spatial memory (immediate and delayed).  

Currently, there is no literature available for comparison in terms of the impact of step-

count change (or objectively measured PA) on cognitive outcomes in obese adults. 

The only data examining the impact of a walking intervention on TMT and verbal 

memory performance is in the elderly (Maki; Kerr; Klusmann et al 2010) However, it 

is not appropriate to make comparisons to samples that are experiencing age-

associated cognitive decline.  

A main effect of intervention (after controlling for baseline score) was observed for 

Bakan task (false-positive responses) showing superior performance in the 
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pedometer condition. This appeared to be driven by an interaction with age as 

younger participants were making higher impulsive incorrect responses in the NO-EX 

condition only. Conversely, older individuals made fewer impulsive incorrect 

responses post-intervention in the pedometer condition only. This may indicate the 

younger participants in this sample were more impulsive than older participants. An 

unexpected finding was observed indicating superior post-intervention performance 

in NO-EX for the Corsi task (accuracy:non-crossing trials). Inspection of the Corsi 

data suggests NO-EX maintained their performance from baseline to post-testing, 

whereas a few individuals in the pedometer group showed a decline in performance, 

driving the average down. The non-exercise control group demonstrated some 

unexpected behaviour, as indicated by improved performance at post-test relative to 

baseline for Stroop interference, Bakan (reaction time for correct hits) and Corsi (total 

correct).  In all cases, this was driven by 2 individuals in NO-EX with poor performance 

at baseline and improved post-test performance, perhaps highlighting change that 

was driven by an unmeasured confounding variable that had changed between test 

visits, such as differing motivation, concentration, fatigue or stress. 

As expected, the strongest predictor of post-test cognitive performance was baseline 

performance. When this was controlled for in the analysis, minimal effects of the 

intervention were observed. Because the size of the control group was small and 

showed some unexpected behaviour, it is difficult to draw any conclusions about the 

efficacy of the pedometer intervention. This study failed to provide support for 

significant improvement in cognitive function outcomes following 12-weeks in a 

sample of overweight/obese adults. This may be interpreted in two ways: either the 

intervention of +3000 steps/day for 12 weeks was not sufficient to impact either health 

or cognitive function, or limitations to the methodology, analysis or sample 

characteristics were not conducive to detecting change. 

5.14.1.2 Cardiometabolic health 

Subtle improvements were observed in a limited number of cardiometabolic 

outcomes in response to the walking intervention, although the majority of the sample 

were within the healthy range at baseline which may have limited the capacity for 

change. High post-intervention step count was associated with lower blood pressure 

(SBP only) and reduced BMI. Although, two meta-analyses indicate improvements in 

cardiometabolic parameters (systolic and diastolic blood pressure, lipids and 

lipoproteins) following walking interventions these can occur irrespective of change in 

body composition (Kelley, Kelley, & Tran, 2001, 2004). With regard to blood pressure, 
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reductions within the healthy range are of clinical relevance as the association with 

cardiovascular risk has no lower threshold (McInnes, 2005). The raw data indicated 

that fasting insulin reduced in both conditions, however the analysis (once controlling 

for baseline insulin) determined that NO-EX had lower post-test values. The spread 

of data indicated that the pedometer group had more participants with high baseline 

fasting insulin, and it appears the statistical process of correcting for baseline variance 

washed out these effects. Post-intervention fasting glucose was identified as being 

significantly higher in NO-EX relative to the pedometer group, however as this was 

within the healthy range it does not have any clinical relevance. Typically associations 

between objectively measured step-count and glycaemic control have only been 

demonstrated in individuals with T2DM (Manjoo, Joseph, & Dasgupta, 2012) and with 

impaired glucose tolerance (as qualified by fasting glucose and 2-hr glucose) (Swartz 

et al., 2003a).  The only participants with T2DM in the study presented in this chapter 

were removed from the analysis since they were outliers from fasting glucose and 

insulin, and the majority of the sample were within the healthy range. In a sample 

(~9300) with impaired glucose tolerance and elevated cardiovascular risk, every 2000 

step/day increment at baseline was associated with a 10% reduction in risk for 

cardiovascular event over a 6-year follow-up period (Yates et al., 2014). 

5.14.2 Possible explanations for null findings 

5.14.2.1 Comorbid risk not present at baseline 

Obesity status of the sample was confirmed, as qualified by general indices (body fat: 

females >40%, males >30%) and abdominal obesity (waist circumference >100cm), 

however, very few exhibited signs of compromised cardiometabolic health at 

baseline. The sample did not represent overweight/obese individuals exceeding the 

healthy range for fasting glucose, insulin and HOMA-IR. Subtle improvements in 

these parameters within an already healthy range are not clinically meaningful. 

Despite trying to recruit individuals with T2DM, only a limited number volunteered for 

the study and this was further impacted by attrition. As a consequence, no data from 

T2DM patients were included in the analysis.  The sample also under-represented 

hypertensive individuals as only 2 completers were above the criteria for Grade 1: 

mild hypertension (SBP 140-159mmHg; DBP 90-99mmHg) (Chalmers et al., 1998). 

Therefore, if the hypothesis is that reduction in cardiometabolic parameters is the 

mechanistic link between obesity and cognitive function then we cannot expect to see 
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change in cognitive function in those that do not experience any change in these 

physiological parameters.  

5.14.2.2 Compliance 

The physical activity data (Actigraph accelerometer) collected over a 7-day period at 

the end of the intervention may not have been representative of average step-count 

achieved over the full duration (12 weeks) of the study. Objective measurement of 

step count attained, and therefore evidence of compliance, is not available for weeks 

1-11 of the study. If, for example, participants failed to comply in the final week they 

would have been incorrectly identified as having a lower post-intervention step-count. 

Conversely, participants failing to comply during the study may have been motivated 

by the accelerometer in the final week, and so would have been identified as having 

high post-intervention step count. This may have had implications when exploring 

post-intervention step-count as a covariate in the analysis. It would have been 

preferable to use the accelerometers for every week of the study. However, due to 

the cost (~£250 per device) this was not feasible for this 12-week study.  

While baseline and post-intervention step-count were objectively measured (7-day 

Actigraph GT3X), the intervention itself was guided by pedometer and self-report of 

daily step. Self-report is susceptible to social desirability bias and it is possible there 

may have been discrepancies between the step-count achieved and that which was 

reported. Objective evidence of this has been demonstrated in previous studies e.g.  

participants were not informed their pedometers had a function that stored the daily 

step count for 40 days (Fukuoka, Kamitani, Dracup, & Jong, 2011). In their 3-week 

pilot study, 7.3% of the sample consistently entered additional steps each night 

(online diary) to what was shown on the pedometer display in weeks 2 and 3. Whilst 

there is no evidence available on the prevalence of this in longer-term interventions, 

it is a factor that must be considered for this 12-week study. The pedometers used 

for this study (YAMAX SW-200) have been validated in overweight/obese adults and 

shown to have high correlation (r =.87) with output from Actigraph GT3X (Barreira et 

al., 2013). However, it is possible that some participants may have unknowingly 

under-or over achieved steps due to inaccuracy of device to detect actual steps. This 

typically occurs if the pedometer is not positioned correctly, and this is easily affected 

by clothing around and/or increased adiposity. A few participants requested to swap 

pedometers due to suspicion they were not registering step count accurately. One 

observation from drop-outs during the study was that a number cited the reason for 

leaving was frustration with a pedometer not accurately measuring steps. These were 
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merely subjective accounts and not supported by empirical evidence. However, if 

devices such as pedometers are to be used to guide and motivate physical activity 

adherence, we need to explore what circumstances compromise accuracy (i.e. 

placement, clothing, waist circumference).  

5.14.2.3 Attrition  

Despite extensive recruitment methods (Newspaper article in Yorkshire Evening 

Post, e-mail distribution lists and a poster campaign around Leeds) volunteer interest 

in the study was low. This study also suffered from high attrition rates with many 

participants dropping out in the first week (after completing all baseline tests). This 

raises concerns that this is not a desirable or feasible method of increasing PA levels 

for many adults. The attrition rates and refusal (in many cases) to initiate the +6000 

step count (5 days per week) highlight that this is not immediately obtainable for some 

individuals. For individuals with a baseline of 4000 steps/day or more, a target of an 

additional 6000 steps, would take them to 10,000 steps per day. This is in accordance 

with Sidman et al. (2004) (previously described in Error! Reference source not 

found.) who observed low baseline step-count was predictive of reduced likelihood 

of meeting a total step goal of 10,000 steps per day. In this free-living intervention, 

the additional time required to meet the step goals had to fit in with work/life 

commitments for the participants. Informal comments from the participants indicated 

that trying to meet the step count targets on 5 days per week was difficult to manage. 

Based on a moderate pace (100 steps/min) the +6000 target translates to a time 

commitment of 60 minutes per day. The time required will be even higher for those 

that cannot maintain a pace of 100 steps/minute so this has implications use in 

populations with impaired mobility 

5.14.2.4 Methodological Considerations of  

5.14.2.4.1 Use of fingertip-capillary blood samples 

Capillary blood samples were collected for assessment of fasting glucose, insulin and 

consequent calculation of HOMA-IR. The euglycemic-hyperinsulinemic clamp test is 

considered the gold standard for assessment of insulin sensitivity assessment. 

However, due to cost and invasive nature of this method it was not considered for this 

study. HOMA-IR has been shown to reliably reflect the insulin sensitivity derived from 

the  euglycemic-hyperinsulinemic clamp (Bonora et al., 2000). However, the issue is 

the use of capillary blood as opposed to venous blood. High correspondence between 

capillary blood and venous blood has been demonstrated in fasted conditions as 
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Kuwa et al. (2001) obtained equivalent values of blood glucose in healthy participants 

from capillary blood (4.69±0.29 mmol/L) and venous blood (4.68± 0.33 mmol/L). 

Additionally, capillary samples are appropriate in fasted samples as no significant 

differences have been found glucose levels measured in venous blood and capillary 

blood (Yang, Chang, & Lin, 2012).  

Fingertip-capillary sampling has been shown to be sensitive to changes in insulin 

following acute aerobic or resistance exercise  (Balaguera-Cortes, Wallman, 

Fairchild, & Guelfi, 2011), or post-prandial responses to a standardised meal following 

four different exercise sessions (high-intensity interval training or continuous 

exercise) (Sim, Wallman, Fairchild, & Guelfi, 2014). Studies quantifying appetite- and 

metabolism-related peptides including insulin that have employed fingertip-capillary 

sampling have produced measures representative of the values reported using 

antecubital-venous samples (Cani et al., 2009; Green, Gonzalez, Thomas, 

Stevenson, & Rumbold, 2014). However, Green et al. (2014) directly compared 

insulin values from fingertip-capillary blood samples to antecubital-venous in a fasted 

state (time 0) and then every 30 minutes for two hours following a meal to measure 

agreement between the two methods. The authors found no evidence of systematic 

bias between antecubital-venous blood (302.4± 154.7 pmol/l per hour) and fingertip-

capillary (236.2 ±113.0 pmol/l per hour). However, they did recommend caution as 

agreement between the two methods was worse at higher concentrations, and 

therefore quantification of insulin from capillary samples is not appropriate when other 

alternatives are available. The fingertip-capillary sampling in this study was 

conducted in fasted participants, and typically measured low values. Capillary blood 

contains a greater ratio of arterial blood than venous blood, and is therefore 

considered more representative of arterial blood (Merton, Jones, Lee, Johnston, & 

Holt, 2000). However, interstitial and intercellular fluid in capillary blood also means 

that capillary blood is not directly comparable to arterial blood. It must be taken into 

consideration that the insulin levels measured from capillary samples may not 

accurately reflect circulating insulin within the body. This has further implications for 

the calculation of HOMA-IR, which is already an estimation of hepatic insulin 

sensitivity (Radikova, 2003). HOMA-IR has shown high correlation (.88, p<.0001) with 

estimates obtained by euglycemic-hyperinsulinemic clamp  (Matthews et al., 1985) 

but this is with blood obtained from venous samples. There is currently no data 

validating HOMA-IR estimated from fasted capillary blood so this must be interpreted 

with caution.   
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5.14.2.4.2 Step-count as a covariate 

The analytical approach had to be adapted to compensate for the loss of an 

experimental condition and implications arising from this. Originally, step-count would 

not have been included as a covariate as there would have been two distinct groups 

(+3000 and +6000 steps/day). However, collapsing the two step target conditions into 

one the analysis had to control for the fact that some participants had completed 

double the step-count when compared to others over the course of 12 weeks. 

Including step-count as a covariate was an appropriate action to take, as confirmed 

by an independent statistician consulted for this study. However, it meant that anyone 

with missing step-count data was not included in the analysis. The statistical approach 

did not factor baseline step-count into the analysis. However, due to the exclusion 

criteria the sample did not include any individuals classed as active (≥10,000 

steps/day) or high-active (>12,500). Within the pedometer group, 32% were classed 

as sedentary (>5,000 steps/day), 44% were low-active (500-7499 steps/day) and 

24% were medium-active (7000-9999 steps/day) in accordance with step-count 

guidelines (Tudor-Locke & Bassett Jr, 2004). In a much larger sample, it would have 

been of interest to stratify by category and explore whether those with the lowest 

baseline step-count had greater benefit. 

If funding permits, the use of accelerometers for the full duration of future studies is 

advisable for accurate assessment of daily step-count. However, the benefit of this 

extends beyond the assessment of compliance. Where a pedometer is limited to 

reporting step count only, an accelerometer allows for the data to be explored in terms 

of steps, bouts and intensity of activity. The participants for this study were given a 

step-count goal, however no restrictions were set regarding how this could have been 

achieved. Therefore, the daily target could have been obtained through one 

continuous bout (e.g. 3,000 steps), multiple smaller bouts (e.g. 500-1000 steps; ~10 

mins), or accumulated throughout the day. As step-count is the only outcome, there 

is no indication of the intensity domain that any additional walking was performed in. 

A physical activity goal (e.g. 10,000 steps/day) per se may not be sufficient to drive 

health benefits, as there is evidence suggesting the way it is performed impacts on 

the success. The relative importance of step count, intensity and duration of physical 

activity when examining outcomes for vascular structure and function where 

compared following a 12-week pedometer intervention in sedentary older adults 

(>50years).  Step count and moderate-intensity physical activity MPA (1952 to 5924 

counts) were measured using Actigraph GT3X. Of all those that completed the study, 

there was no interaction between FMD% change over time in those that achieved a 
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daily 10,000 steps or >30 minutes of (MPA) accumulated in non-bouts) per day. 

However, subgroup analysis of those achieving >30 mins/day were stratified based 

on those achieving ≥20 mins/day through bouts (≥10 mins) to those that didn’t perform 

bouts. Of participants achieving >30 minutes of accumulated MPA, those that 

achieved this through ≥20 mins/day in 10-minute bouts demonstrated significant 

improvement in FMD, whereas no change was observed in those that did not perform 

MPA in bouts. In this context, reaching the goal itself was not sufficient to reduce age-

related endothelial dysfunction, but reaching that goal in bouts (>10 minutes) 

improved FMD.  This has implications for the dosing of PA for specific health goals.  

5.15 Conclusions 

This research study aimed to examine the impact of two different step count goals, 

relative to a no-exercise control group, upon indices of cognitive performance, 

cardiometabolic health and obesity over a 12 week period. Due to attrition, and 

consequent collapse of the “high dose” (+6000 steps) and “low dose” (+3000 steps) 

conditions, a dose response could not be examined. All participants were entered as 

one “pedometer” condition, and post-intervention step count was included as a 

covariate in the analysis. The study significantly increased step-count post-

intervention, and this was associated with better performance on executive function, 

verbal memory, spatial memory and spatial working memory. No further effects of 

increasing PA were observed on cognitive outcomes. The pedometer intervention 

had minimal impact on cardiometabolic health, however the majority of the sample 

were within the healthy range, thereby leaving limited capacity for improvement. Many 

of the participants reported difficulty attaining the target of +3,000 steps per day on 5 

walk days per week. Although walking is cost effective and safe method to increase 

exercise, the step targets that are associated with health benefits (10,000 steps) have 

a high time-commitment which must be maintained on a daily basis. It has been 

suggested that the desired step-count goal is not achievable through daily activities 

and this could be supplemented by participation in higher intensity activities (Choi, 

Pak, & Choi, 2007).  
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Chapter 6 General Discussion 

The final chapter summarises the key findings of this thesis in relation to the original 

thesis aims set out in Chapter 1. The original contribution of this work to the field of 

exercise and cognitive function in obesity is highlighted, and strengths and limitations 

of the work carried out are considered. The implications of the thesis findings for 

future research are discussed. There is currently a paucity of research regarding the 

effects of exercise (of varying regimes) on cognitive function in overweight/obese 

middle-aged adults. Consequently, evidence of cognitive tests that are sensitive to 

detect exercise-associated change are lacking in people of this demographic. 

Therefore, the work undertaken for this thesis was largely exploratory.    

6.1 Overview of Thesis 

The area of research examining the impact of exercise on cognitive function in obese 

adults at mid-life is in its infancy. Of the literature described in chapter 1, only 4 studies 

in total were conducted in middle-aged, obese adults (Drigny et al., 2015; Galioto et 

al., 2014; Langenberg et al., 2015;, Monleón et al., 2015). This confirmed the topic to 

be a novel and largely unexplored area of research, however, it may also be 

considered an obstacle when designing the studies as there was very limited relevant 

material to draw from. The studies presented in this thesis comprised of one cross-

sectional examination of cognitive function data in relation to PA and health 

parameters, and two pre-post exercise intervention studies.  

The literature described in section 1.2.4 indicates a paucity of research examining the 

relationship between physical activity (PA) and cognitive function in middle-aged 

obese adults. Furthermore, only 2 studies conducted in obese adults used objective 

measures of PA (section 1.2.5). Both studies examined the relationship between 

objectively measured PA and cognition in pre-bariatric (morbidly obese) adults 

(Galioto et al., 2014; Langenberg et al., 2015), and provided rationale for study 1. The 

data for study 1 was gathered from baseline data for Study 2 and Study 3 and helped 

to identify cognitive tests that were sensitive (or not sensitive) to habitual PA. 

The primary aim of the thesis was to examine whether improvement in cognitive 

function could occur following an exercise regimen. Chapter 1 (section 1.2.2) 

indicated that increased physical activity and/or cardiorespiratory fitness (CRF) 

translates to improved cognitive function in non-obese adults, yet this has largely 
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been unexplored in overweight/obese adults. However, it is not known what aspects 

of exercise (volume or intensity) yield optimal improvements, or the physiological 

adaptations that are required to translate to cognitive change.  Studies 2 and 3 

employed two differing protocols of exercise/PA.   

The original thesis aims were: 

i. To explore the relationship between objectively measured physical activity 

and cognitive function in a sample of overweight/obese and middle-aged 

adults.  

 

ii. To compare the impact of medium-term heavy-intensity exercise regimes 

(interval and continuous) on indices of cognitive function and cardiovascular 

health. Change over time was examined relative to baseline cognitive 

performance, IQ and age 

 

iii. To examine the impact of a medium-term light-intensity “free-living” 

pedometer programme on indices of cognitive function and cardiometabolic 

health. Change over time was examined relative to baseline cognitive 

performance, IQ and age.  

6.2 Key findings 

Study 1 (n=63) aimed to examine the relationship between objectively measured 

physical activity with multiple cognitive test outcomes in a sample of low-active, 

overweight/obese, middle-aged adults. The relationship between habitual PA and 

cognitive function has not been examined in obese individuals using objective 

measures of PA.  Therefore, the work undertaken for this thesis was largely 

exploratory. The cross-sectional exploration of the relationship between objectively 

measured PA and cognitive function (over multiple domains) indicated that the 

greatest predictors of cognitive function were age and IQ, with minimal contribution 

from the physical activity and body composition composites. The PCs made a limited 

contribution to variance in cognitive function. Attention, as measured by performance 

on the Bakan task, was negatively associated with adiposity and sedentary behaviour 

composites (PC2 and PC3 respectively). However, spatial memory (VSLT) and 

spatial working memory (Corsi) indicated a favourable impact on performance with 

increasing sedentary behaviour (PC3). The sedentary/low-active profile of the sample 
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indicated that the vast majority of participants were not meeting the guidelines (150 

accumulated minutes of MPA per week). Additionally, only a very small minority were 

undertaking any VPA, which consequently compromised the quality of the principal 

component containing this theoretically relevant variable.  

Study 2 (n=28) aimed to compare the impact of 12-weeks high-intensity exercise 

regimes (interval and continuous) on indices of cardiovascular fitness and cognitive 

function in middle-aged, overweight/obese females relative to a no-exercise control 

group. The impact of increasing participation in high-intensity exercise over a 12-week 

period showed a limited number of favourable training effects on executive function 

and spatial memory. This occurred alongside minimal improvements on 

cardiorespiratory fitness. Manipulation of the INT regime presents us with great 

opportunity to selectively target systemic health factors associated with cognitive 

decline, and optimise cerebrovascular adaptation.  

Study 3 (n=33) aimed to examine the impact of increasing habitual activity through 

pedometer “step-count” targets over 12-weeks on indices of cardiometabolic health 

and cognitive function. Findings indicate that post-intervention step-count was 

associated with executive function, spatial working memory, spatial memory and 

verbal memory.  

Collectively, these studies have shown that IQ, age and baseline cognitive ability have 

a far greater impact on cognitive function, and this is over and above any contribution 

from exercise or health parameters. This is not an unexpected finding, but it does 

have implications for the dialogue surrounding obesity research (6.4.1). There was 

no evidence of cognitive impairment or poor performance in the sample of low-active 

and overweight/obese adults studied for this thesis. Conversely, inspection of the raw 

data indicated ceiling effects for many participants at baseline, and this was 

maintained at subsequent test visits (perhaps limiting the ability to assess change).  

The objective measurement of physical activity confirmed that participants studied for 

this thesis were sedentary to low-active.  According to the literature described in 

Chapter 1, the combination of a sedentary/low active lifestyle with indices of obesity 

mean this sample are at elevated risk for obesity-associated comorbidities 

(hypertension, CVD, diabetes) and decrements in cognitive performance relative to 

age-matched healthy-weight counterparts. However, the sample studied for this 

thesis indicated that most fell within the healthy ranges for indices of cardiometabolic 
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health. These findings are therefore not generalisable to individuals of this 

demographic with presence of obesity-driven comorbidity.             

6.2.1 Cognitive domains (and tests) sensitive to exercise-

associated change 

The spatial working memory (Corsi) task was shown to be most sensitive across the 

three studies to the effects of exercise, and interaction with covariates such as age 

and IQ. Accuracy on this task was favourably impacted by post-intervention step 

count, and also following the INT regime relative to the other conditions. This task 

was shown to be sensitive to variation in IQ and also age (within adults 30-60 years 

old). Tests of executive function were only administered in studies 2 and 3, but in both 

cases detected exercise-associated change. The Trail Making Test detected 

differences according to post-intervention step count, whereas the ToH task showed 

training effects following the INT regime relative to the other conditions. The VVLT 

showed limited sensitivity within studies 2 and 3, observed through trends, for 

favourable effect of step-count on delayed recall and training effects following the 

CON regime on immediate learning (total acquisition) relative to the other conditions. 

The VSLT showed limited sensitivity within studies 2 and 3, observed through trends, 

for favourable impact of post-intervention step-count and training effects following the 

INT regimes. Attention (Bakan task) seemed to be highly sensitive to age within the 

two intervention studies, however, it did not seem to be impacted by the exercise 

regimes themselves. It was observed that the tests with more challenging aspects 

were able to detect differences, and it is likely that any cognitive changes that may be 

evident at mid-life would be subtle in a sample that were not experiencing obesity-

associated comorbidity. If baseline cognitive performance is high at baseline, there is 

little scope for improvement driven by exercise over a 12-week time frame. All tests 

administered for this thesis were shown to be sensitive to age and IQ in the expected 

direction.  

6.2.1.1 Influence of age and IQ 

The resounding finding was that age and IQ had the greatest association with 

cognitive function outcomes across the 3 studies. However, an interesting effect is 

observed between Studies 2 and 3. When considering the same cognitive tests that 

were used for both studies 2 and 3, age (and interactions with condition) was largely 

unrelated to cognitive outcomes in Study 2 (INT/CON), yet was implicated in a larger 

number of outcomes in Study 3. In Study 2, increasing age showed a negative 
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association with performance on one outcome on Corsi task, but only in crossing-

trials which are more challenging than non-crossing trials. It is possible that this 

sample were not demonstrating any detectable age-associated decline, as all 

participants (except for one age 51 years old) were between the ages of 30 to 50 

years. Study 3 had a large cluster of participants between the ages of 50-60 years, 

and age was associated with performance on Bakan, TMT, and to lesser extent Corsi 

and VSLT. It is possible that some participants within this study were starting to show 

age-associated cognitive decline. A similar pattern emerges for IQ between studies 2 

and 3, in that it is largely unrelated to cognitive outcomes in Study 2 (INT/CON), yet 

implicated in a larger number of outcomes in Study 3. This finding is of interest as it 

may indicate that IQ is starting to play a protective role in the ageing participants of 

the pedometer group. It is possible, this collectively shows the older members are 

starting to experience age-related decline. 

6.2.1.2 Baseline cognitive performance 

Baseline cognitive performance was the greatest predictor of performance on 

subsequent test visits across Studies 2 and 3. In study 2, it was evident that those 

with poor baseline cognitive performance had superior performance at subsequent 

testing following the INT regime on tests of executive function (ToH), spatial working 

memory (Corsi), and spatial memory (VSLT) in Study 2. However, in Study 3 an effect 

is observed where those with poor baseline performance show superior performance 

in the NO-EX condition at subsequent testing for attention (Bakan), spatial working 

memory (Corsi) and Stroop interference, relative to the pedometer group. The extant 

literature reveals a multitude of plausible mechanisms through which obesity-driven 

comorbidities can lead to brain health, and conversely how exercise may favourably 

impact these. However, if IQ and baseline cognitive function have the greatest impact 

of cognitive function, might it be argued that education or cognitive stimulation is a 

more potent stimulus for neurocognitive protection. 

6.2.2 Preservation versus improved cognitive function? 

From the perspective of the primary outcome of cognitive function, the success of an 

intervention was evaluated based on whether cognitive function had improved over a 

12-week period (Study 2 and Study 3). But the question remains as to whether the 

appropriate goal in middle-aged obese adults is an improvement in cognitive function 

or should it be preservation of cognitive function over a longer period of time. A wealth 

of research provides support for detectable improvement in cognitive function 
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following exercise in older adults. Yet these samples are experiencing age-associated 

cognitive decline, with greater capacity to “improve”. It is likely that in middle-aged 

adults, any changes would be subtle, and therefore difficult to detect. 

6.2.3 Physiological adaptation following exercise intervention 

Firstly, a limited number of volunteers for study 2 and study 3 presented with obesity-

associated comorbidity or compromised cardiometabolic health. A vast number of 

physiological parameters are associated with cognitive function, as described in 

section 1.2.6.3, such as inflammation, glucose hormeostasis, blood pressure and 

lipids. This translates to a reduction in vascular inflammation, endothelial damage and 

improves vascular compliance. Only 4 participants in Study 3 were insulin resistant, 

as indicated by HOMA-IR and 6 participants were hypertensive. Of the sample for 

Study 2, 3 participants presented as being hypertensive. Based on the hypothesis 

that change in cognitive function would be driven by physiological adaptation to 

exercise and reduction in systemic risk factors, it is possible that greater effects would 

be observed in samples with poorer baseline health.  However, improved cognitive 

function has been observed following exercise interventions in healthy adults (section 

1.2.2). Such changes have been observed alongside structural brain changes. 

Exercise regimes may be developed to target optimal adaptation within the brain for 

the structures that support cognition.  

6.2.4 Sedentary time: cognitively stimulating versus passive 

Study 1 observed an unusual finding, that prolonged sedentary time was associated 

with better performance on spatial memory and spatial working memory tasks. One 

thing to consider when investigating the impact of sedentary behaviour on cognitive 

function is whether a cognitively stimulating/demanding task is performed during that 

time or not. The participants were recruited from the area surrounding the University 

of Leeds, with many volunteers being staff, including professors, lecturers and PhD 

students. It is possible that performing cognitively stimulating or demanding tasks 

during time spent sedentary has a protective effect against any cognitive harm 

potentially caused by high levels of sedentariness.  

The context of sedentary time may be very important with relation to cognitive function 

outcomes. It has been shown that sedentary behaviour in the form of passive TV 

viewing was associated with poorer executive function outcomes in 2179 healthy 

adults (Kesse-Guyot et al., 2012). A negative association was observed between TV 
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watching and Trail Making Test (TMT) performance. Longitudinal studies in middle-

aged and sedentary adults (n=5437) indicate that high levels of TV viewing at mid-life 

were predictive of poorer Mini-Mental State Examination scores at a 5-year follow-up 

(Wang et al., 2006). Future research should attempt to classify whether sedentary 

time is spent doing cognitively stimulating or unstimulating tasks.  

One question for debate is whether cognitively stimulating training would superior to 

exercise in preserving cognitive decline alone or in combination with exercise. 

Evidence suggests that combined exercise with cognitive training may be the optimal 

method to preserve/enhance cognitive function. Functional and structural changes in 

the human brain have been observed following either exercise (Hillman et al., 2008) 

or cognitive training (Lövden et al., 2012; Stine-Morrow, 2011). However, very few 

studies have combined both interventions to compare the effects of exercise and 

cognitive training on cognitive function (Hotting & Roder, 2012). The first study to 

compare a combination of aerobic exercise and cognitive training against the 

individual interventions or no training (control group) was by Fabre et al. (2002). This 

study indicated the combination of aerobic endurance training plus cognitive training 

targeting various cognitive functions (e.g. memory, attention, spatial skills) was 

superior in improving cognitive function in older adults. 

More recently in middle-aged (40-55 years) and sedentary adults, Holzschneider et 

al. (2012) examined the combined effects of combined a physical exercise and spatial 

memory training on spatial memory functions both at the behavioural and neural level. 

Spatial learning skills and functional brain activation (fMRI) were measured during a 

spatial maze learning task before and after the 6-month interventions. One condition 

completed aerobic endurance training (‘cycling’) whereas the control condition 

completed a non-endurance stretching/coordination programme. In the final month 

(month 5) all participants had six cognitive training sessions; either spatial training 

(‘spatial training’) or a non-spatial visualperceptual control training (‘perceptual 

training’). Results indicated that irrespective of the exercise training condition, 

participants of the spatial learning groups showed the largest improvement in maze 

task performance relative to the perceptual learning groups. This finding was 

supported by a positive correlation between the brain activation level associated with 

the spatial task and the level of cardiovascular fitness (VO2peak values) in 

participants who had received cardiovascular training and spatial cognitive training. 

This indicates that exercise alone may not be sufficient to translate to functional 

changes in brain networks, particularly for spatial learning and that a combination with 
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cognitive training may be optimal. Furthermore, the cognitive training had more 

pronounced effects of post-test cognitive performance than the exercise training 

alone.  

A positive effect of cognitive interventions has been demonstrated in various domains, 

including working memory (Dahlin et al., 2008]), executive functions (Persson & 

Reuter-Lorenz, 2008]), processing speed (Edwards et al., 2005), and reasoning 

(Boron et al., 2007]). If the main goal is to improve/preserve cognitive function then it 

is likely that exercise interventions alone are not sufficient to drive substantial effect 

and future research should focus on combined exercise and cognitive training. 

However, it is known that on a neural level that exercise can increase hippocampal 

volume, increase cerebral blood flow, and improve functional connectivity. These 

changes are thought to translate to improved cognitive function. Therefore, 

exploration of the types of exercise that yield optimal structural brain changes to 

support a cognitive training programme would be highly worthwhile. This type of 

research is in its infancy, but the findings reported by Drigny et al., 2014, indicate that 

HIIT may be an exciting avenue to explore with regard to changes within the brain.  

6.3 Limitations of methodology 

6.3.1 Cognitive test selection 

To provide rationale for cognitive test selection for this thesis, information had to be 

gathered from two areas of research. Tests were chosen that were sensitive to detect 

differences between obese and non-obese samples or had detected a change in 

cognitive function following an exercise regimen. As indicated in section 1.1.3 and 

1.2.2 of the literature review, there was a wide choice of valid tests and no general 

consensus or indication whether any specific tests would be the optimal choice. A 

further complication is that with the inclusion of physiological parameters another 

layer is added to the rigmarole of cognitive test selection. Particularly as cognitive 

domains and tests are known to be sensitive to specific health parameters (i.e. verbal 

memory and insulin sensitivity). There is also conflict between selecting a wide range 

of tests/domains for exploratory purposes, or focus on one specific domain and a 

narrow selection of tests.  
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6.3.2 Serial cognitive testing and order effects 

Studies 2 and 3 employed a repeated measures design which raises the possibility 

that practice effects could explain any improvement in cognitive function over time as 

participants became more familiar with the tests. To reduce the potential influence of 

practice effects participants completed a practise version of the cognitive test battery 

1-week prior to the baseline cognitive tests, and this practice data was not included 

in the statistical analysis. Furthermore, counterbalanced versions of the test batteries 

were administered at pre, mid and post-testing. There was a fixed time-frame of six 

weeks between each test session so this would have also reduced the influence of 

practice effects on outcomes between visits. The order of the cognitive testing within 

each battery remained the same at all testing visits, so it is possible that this may 

have influenced specific tests. The battery for Study 2 took 44 minutes to complete, 

and the battery for Study 3 lasted 38 minutes. It is possible that fluctuations in fatigue 

or motivation may have influenced specific tests, particularly at the start and end of 

the test battery. There is also the possibility that certain tests may influence 

performance on the subsequent test. For example, the Bakan task (6-minutes) was 

widely reported to be fatiguing which may have impacted test performance on the test 

that immediately followed. However, because a number of the individual tests had a 

delayed component with a fixed time-frame for completion it was not possible to 

counterbalance the order of tests within each battery.  

6.3.3 Recruitment 

Recruitment of participants (or lack of) had a huge impact on data collection during 

this 4-year thesis. Recruitment methods included campus based posters and leaflets, 

campus based e-mail distribution lists, poster and leaflet campaigns around all areas 

of Leeds, talks (Diabetes UK Leeds support group) and newspaper articles in the 

Yorkshire Evening Post. Despite extensive recruitments methods, interest in the 

studies was lower than expected. Of those that expressed initial interest, the majority 

had to be excluded based on medication use for comorbidities and depression, see 

CONSORT diagrams in sections 4.3.1.2 and 5.5.3. Many participants also fell below 

the minimum BMI threshold. It might be considered that the exclusion criteria may 

have impacted on recruitment as a large proportion with obesity do have obesity-

associated comorbidities and associated medication. Further research could be more 

inclusive but stratify data based on comorbidity or medication use.  
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Another observation was that once the study information had been sent out to 

interested volunteers, many did not respond again to further contact. Based on the 

information they had received they had decided not to take part in the study. It would 

be helpful to know what components of the study were perceived as off-putting to the 

general public. It must be taken into consideration the impact that a study would have 

on participants in terms of time commitment, invasiveness of procedures, interest in 

the topic or benefits to participants. The studies were not able to offer monetary 

compensation for participation in the studies. In addition, each study was 12-weeks 

long and testing required participants to attend the University of Leeds campus for 

lengthy test sessions (90-minutes) on multiple occasions throughout the study 

duration.     

6.3.4 Compliance 

As the physical activity component of study 3 was performed in a free-living 

environment, compliance to the protocol cannot be guaranteed. Participants returned 

self-report information on their daily pedometer step count total each week. Due to 

issues with cost of devices, it was not possible to use accelerometers to objectively 

measure the targets reached throughout the 12-week intervention. The use of 

objective measures precludes issues of compliance to step count and is highly 

recommended for these types of studies. Compliance to the training regime was not 

an issue for Study 2 as the INT and CON sessions were supervised by researchers, 

and the exercise work-rates were controlled by the equipment. We could confirm that 

that every participant performed the exercise that was prescribed to them.  However, 

for both studies 2 and 3, it was part of the requirements that participants did not make 

any changes to their normal dietary patterns, particularly concerning weight loss 

attempts through calorie restriction. We had no evidence to support whether 

participants made any dietary changes or complied with instructions to keep the diet 

unchanged. Food diaries may have provided interesting data on this, however these 

are still vulnerable to the inaccuracies of self-report data. An unexpected finding was 

observed in Study 2 (section 4.11.3.3.2), in that for all groups body fat increased over 

the 12-week intervention. The increase in exercise does not lead to an increase in 

body fat unless there is a compensatory eating mechanism.   

 



216 
 

6.3.5 Control group 

The control group (n=10) were added retrospectively, and due to recruitment 

difficulties the same group acted as a comparison condition for both intervention 

studies. For both Study 2 and 3, raw data indicated improvements in a number of 

cognitive outcomes for the exercise conditions. However, after controlling for baseline 

performance, this statistical approach was largely unable to detect differences in post-

intervention performance between the experimental conditions and the no-exercise 

control group. The average scores from the control group demonstrated improved 

performance from baseline to post-intervention in attention (Bakan) and spatial 

working memory (Corsi) outcomes. Inspection of the raw data revealed that this effect 

was driven by 2 individuals who had poor performance at baseline and showed 

marked improvement at mid-point, which was maintained at post-testing. Due to the 

low number of cases, the behaviour of these 2 individuals resulted in a group mean 

that showed an improvement in performance.  

6.4 Recommendations 

Individuals who are both sedentary and obese are at elevated risk for many chronic 

CVD outcomes, and accelerated age-related cognitive decline. Although this 

relationship is not understood, it is suggested that regular exercise may preserve 

cognitive function through reduction of systemic CVD risk, and also direct effects on 

brain structure and function. The area of research examining the impact of exercise 

on cognitive function in obese individuals is in its infancy, and it is therefore unknown 

what physiological parameters should be targets for intervention. Targets for 

intervention will be dependent on the baseline cardiovascular or metabolic profile of 

the individuals undertaking exercise, and this can differ widely within an obese 

sample.  

Additionally, a large body of the research examining the relationship between obesity 

and cognitive function fails to adequately control for cardiorespiratory fitness, CVD 

risk and other psychosocial factors which are known to impact on cognitive function. 

It seems that in obesity research, there is increasing evidence to suggest that these 

confounding variables have greater predictive power of cognitive function than the 

presence of adiposity itself. Therefore, failure to control for all the things known to 

impact on health and cognitive function may contribute to a type of ‘Semmelweis 

reflex’ in obesity research (Bálint & Bálint, 2009). This is where an established norm 
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is held in the scientific community in the face of contrary new evidence. It is apparent 

from the extant literature read as part of this thesis, the concept that obesity may 

impact on cognitive function independent of other factors is heavily entrenched in the 

literature and widely accepted. This is despite emerging evidence that once other 

factors are controlled for (education, subclinical CVD measures, CRF) the 

relationships between obesity and cognitive function are attenuated. The most 

appropriate course of action is to control for all known factors that impact on cognitive 

function, however this is largely unfeasible for a lot of researchers due to cost and 

time constraints. This would require full medical assessment of cardiovascular health 

(vascular function, blood pressure, cardiac function), blood samples (lipids, glucose, 

insulin, inflammatory markers), CRF test and also measurement of psychosocial 

factors (stress, depression, esteem), education and IQ. The research undertaken for 

this thesis also could not meet these requirements, such that many theoretically 

important factors were not measured. As researchers, consideration of the 

participants must be made regarding the number of time-consuming and potentially 

invasive procedures involved in a study. This may also have a direct impact on the 

recruitment of volunteers and attrition rates over a medium-term intervention with 

repeated test phases.  

6.4.1 Obesity stigma 

The existence of several obesity paradoxes in health research may have theoretical 

relevance to cognitive function research. Discussed in Chapter 1are the concepts of 

“fat but fit” and “healthy obesity” where obesity is not a risk factor for mortality in 

physically fit individuals, and where a sizeable proportion of obese adults have normal 

cardiometabolic risk profiles, respectively (Karandish & Shirani, 2015; McAuley & 

Blair, 2011). It seems that in some individuals, obesity does translate to poorer health 

and/or cognitive dysfunction, but this is certainly not the case for all. The process of 

targeting only obese individuals for exercise intervention may be psychologically 

harmful (Graham & Edwards, 2013). It is known that known that fitness levels are 

strongly associated with mortality, irrespective of body size (Sui et al., 2007). The 

process of only targeting obese/overweight individuals for intervention reaffirms 

obesity stigma and fails to address the core need for improved fitness (health) as 

opposed to weight. With regard to public health promotion, improved fitness must be 

encouraged for all. There is a growing body of research drawing attention the fact that 

targeting obese individuals for exercise interventions may inadvertently be causing 

more harm than good (Azevedo & Vartanian, 2015; Graham & Edwards, 2013; Pearl, 
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Dovidio, Puhl, & Brownell, 2015). The focus must be shifted away from weight, and 

towards exercise for health and enjoyment (Leone & Ward, 2013).  

The primary goal of “tackling obesity” has been placed on weight (fat) loss through 

diets, exercise, medication or surgery, with the emphasis on body size and not health. 

This reinforces that weight loss is the key component of the success of an 

intervention, but a large proportion are unable to maintain a lower body weight over 

time (Karandish & Shirani, 2015). There is growing concern that the focus on weight 

predisposes some individuals to negative consequences such as repeated cycles of  

weight loss and regain, eating disorders, reducing self-esteem, and weight 

stigmatization and discrimination (Bacon & Aphramor, 2011; Mann et al., 2007; 

Montani, Viecelli, Prévot, & Dulloo, 2006). The Health at Every Size (HAES) 

paradigm, shifts the focus from weight loss/control to health promotion irrespective of 

body size (Robison, 2005). It is recommended that in order for health promotion to be 

truly effective in obesity, body acceptance must be encouraged and size diversity 

embraced. Intentionally or unintentionally singling out individuals based on weight 

contributes to stigma, and the interventions may do more harm than good (Azevedo 

& Vartanian, 2015). There is evidence to suggest that personal experiences of weight 

stigmatisation and internalised weight bias are associated with reduced exercise 

motivation and self-efficacy (Pearl, Puhl, & Dovidio, 2014).  

6.4.2 Exercise for enjoyment 

When comparing the perceived benefits and barriers to exercise between obese and 

non-obese women it was found obese participants were twice as likely to agree that 

they only exercise for weight loss (Leone & Ward, 2013). It was posited by the authors 

that this may indicate that obese women believe the long term benefits of exercise 

are only attained once weight loss has been achieved. Furthermore, obese women 

were more likely to report lack of enjoyment as a barrier to exercise. From informal 

discussion with the participants volunteering for the thesis studies, nearly all reported 

that their motivation for joining the exercise study was to lose weight. Exercise is 

certainly beneficial for health, but the optimal type/profile of this is under debate. One 

size does not fit all. While INT seems beneficial for vascular health, equivocal results 

are found for metabolism/fat loss/etc between HIIT and MICT. It may be that 

depending on the health parameter under examination, the optimal “type” of exercise 

may vary according to health, and the type of adaptation required. This will also differ 

on the health status of the individual undertaking exercise. This also does not take 

into account stages of change – it does not matter if HIIT is the perfect exercise 
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prescription for someone, if they are not able to adopt and adhere to this type of 

exercise. Promote for enjoyment, and build up efficacy, as exercise should not just 

be viewed as a mechanism to lose weight.      

6.4.3 Implications for scientific community 

When considering the ethical issues relating to public health approaches to obesity 

there have been frequent calls for interventions to target the whole population (not 

just obese) and shift the focus onto health promotion (Azevedo & Vartanian, 2015). 

This has implications for the scientific community and obesity research, which 

typically recruits obese individuals and healthy weight controls as a comparison 

group.   The future of research “in obese” should not target obese individuals but 

include people of all body sizes, and stratify groups by measured health parameters 

as opposed to weight. This will become complicated in individuals with more than one 

comorbidity, however, it is known that aggregated risk factors interact with each other 

so it is not good practice to fail to control for this.   

6.4.4 Translating to real-world application 

Research studies go through rigorous exclusion/inclusion criteria prior to study 

commencement – to prevent people with elevated risk of harm from participating in 

something that could bring on an event (cardiac, stroke). Also, during exercise testing 

in a lab people are monitored closely ECG, BP check, life-support trained. The 

general public hearing about a new HIIT, may not even know if they are of elevated 

risk (undiagnosed issues) or if they are aware, may not understand the magnitude of 

the implications of them participating in heavy intensity exercise. The high level of 

control over exercise parameters in a lab is necessary to isolate the most relevant 

mechanisms for physiological adaptation.  The equipment allows us to examine work-

rates and accurately measure the metabolic strain that is induced.  Exercise 

prescription with this level of accuracy is not possible for the general public. If our 

study results were to be translated to a public health message suggesting intervals at 

70% delta VO2max with recovery bouts at 120% LT were beneficial for 

health/cognition/etc, then no-one would be able to implement this accurately. The 

general public do not have the opportunity to attend a laboratory for monitored 

maximal exercise testing by health practitioners, so that the work-rates corresponding 

to parameters can be calculated. Therefore, it may be more helpful to examine 

exercise strategies that are easy for the public to understand and adopt. This thesis 
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used one heavily controlled lab study, and one in a free-living environment. The 

pedometer step count targets were easy to adopt by the participants.  

6.5 Final conclusions 

This thesis aimed to explore the relationship between cognitive function and exercise 

in obese, middle aged adults. The cross-sectional research (study 1) indicated that 

age and IQ had far greater impact on the cognitive function outcomes relative to the 

physical activity or body composition principal components. The primary agenda was 

to explore whether exercise could translate to improvements in cognitive function over 

a medium-term period of time (3 months). Two intervention studies yielded a low 

number of exercise-associated post-intervention improvements in cognitive function, 

predominantly in executive function and working spatial memory tasks. The majority 

of the sample were metabolically healthy obese adults, and minimal physiological 

adaptations were observed (CRF, BP) over the 12-week interventions. The rationale 

for both studies was based on the hypothesis that interventions inducing a greater 

improvement in health would translate to greater improvements in cognitive function. 

It is possible that in both cases, the exercise interventions were not sufficient to drive 

physiological adaptation required that would be required to translate to cognitive 

function outcomes. Furthermore, high baseline cognitive function and IQ had the 

greatest association with cognitive test performance. This research would have 

benefitted greatly from larger sample sizes that were more heterogeneous in terms 

of intelligence and health.  

From the perspective of improving cognitive function, future research should 

incorporate exercise training with cognitive training. The components of exercise that 

yield optimal structural and functional brain changes should be explored. In terms of 

systemic adaptation to exercise in obese samples, the focus should be on improving 

health parameters (CRF, BP and insulin sensitivity) as opposed to fat loss. In order 

to promote exercise adoption and adherence, heavy focus should be placed on 

exercise for enjoyment. Public health messages and the scientific community must 

make a concerted effort not to alienate overweight/obese individuals by targeting 

obese individuals as the sole recipient of exercise interventions or health advice. 

Exercise is beneficial for all, and low cardiorespiratory fitness is a greater predictor of 

mortality than excess fat (section 1.1.1.1).   To aid recruitment for “obesity research” 

studies should be advertised for individuals of all body sizes, with markers of obesity 
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and comorbidities used to either stratify samples or included as covariates in 

statistical analyses.  
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6.7 Appendices 

 

 

 

Initial Contact Questionnaire 

Name ……………………………………………................. Date ___ / ___ / ___ 

Contact telephone no: ……………......……………………………........................ 

                       Email ..................................................................................................................  
 
WHAT IS YOUR DATE OF BIRTH?  ____ / ____ /____  Age …………..  
 

 WHAT IS YOUR APPROXIMATE : 

o Height ..................   

o Weight …………. 

 IS ENGLISH YOUR FIRST LANGUAGE? 

o Yes   Details: ……………………………………..       

o No 

 DO YOU SMOKE?      

o Yes   Given up      

o No         

Details:……………………………………………… 

 DO YOU EXERCISE? 

o Yes   Type/Regularity (must be ≤ 2) .       

o No 

Details:……………………………………………… 

 ESTIMATED HOURS A DAY SPENT WALKING? (e.g to and from work) 

………………………………………………………………………………………….   

 ARE YOU CURRENTLY SUFFERING FROM ANY ILLNESS OR CHRONIC 

CONDITION?  

o Yes   Type / How often ……….……………………………... 

o No 

IF YES, DETAILS:……………………………...……………………………….... 

 

 

 

 

 

 

 

 

 

 

 Appendix 6.1 Initial Contact Questionnaire 
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 ARE YOU CURRENTLY TAKING ANY MEDICATION  

o Yes   Type / How often ……….……………………………... 

o No 

IF YES DETAILS:………...……………………………...…………………………........…. 

 HAVE YOU BEEN DIAGNOSED WITH DEPRESSION OR TAKEN 

ANTIDEPRESSANTS?  

o Yes   Details …………………………………………......…... 

o  No 

 

 HAVE YOU BEEN DIAGNOSED WITH TYPE 1 OR TYPE 2 DIABETES?  

o Yes   Details .......……………………………………......…... 

o  No 

 

 HAVE YOU BEEN DIAGNOSED WITH ISCHAEMIC HEART DISEASE 

(ISCHAEMIA)?  

o Yes   Details ………………………………………….....…... 

o  No 

 

 HAVE YOU BEEN DIAGNOSED WITH ANGINA?  

o Yes   Details …………………………………………..…... 

o  No 

 

 HAVE YOU EXPERIENCED UNCONTROLLED CARDIAC DYSRHYTHMIAS?  

o Yes   Details ………………………………………………... 

o  No 

 

 DO YOU HAVE A CARDIAC PACEMAKER FITTED? 

o Yes   Details ………………………………………………... 

o  No 

 

 HAVE YOU BEEN DIAGNOSED WITH UNCONTROLLED HYPERTENSION?  

o Yes   Details ………………………………………………... 

o  No 

 

 HAVE YOU BEEN DIAGNOSED WITH A NEUROLOGICAL DISORDER?  

o Yes   Details ………………………………………………... 

o  No 
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 HAVE YOU SUFFERED A STROKE?  

o Yes   Details ………………………………………………... 

o  No 

 

 

 HAVE YOU SUFFERED FROM A MUSCULOSKELETAL INJURY OR 

IMPAIRMENT IN THE LAST 6 MONTHS? 

o Yes   Details ………………………………………………... 

o  No 

 

 HAVE YOU UNDERGONE ANY SURGERY IN THE LAST 6 MONTHS? 

 

o Yes   Details ………………………………………………... 

o  No 

 HAVE YOU UNDERGONE ANY BARIATRIC SURGERY IN THE LAST 5 YEARS? 

  

o Yes   Details ………………………………………………... 

o  No 

 

 DO YOU HAVE ANY SURGICAL PROCEDURES PLANNED FOR THE NEXT 6 

MONTHS? 

  

o Yes   Details ………………………………………………... 

o  No 

 

 HAVE YOU HAD OR ARE YOU EXPERIENCING ANY MENOPAUSAL 

SYMPTOMS  (e.g hot flushes or night sweats)?   

o Yes   Details ………………………………………………... 

o No 

 ARE YOU TAKING ANY HORMONAL CONTRACEPTION?   

o Yes   Name …………………………………………………... 

o No                 Details 

…………………………………………………... 

 

 

 

  

 

Invited for Visit 1 Yes / No  Date ____ / ____ /____  Time ………. 
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Appendix 6.2 AHA/ACSM Health/Fitness Facility Preparticipation Screening 
Questionnaire 
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Appendix 6.3 Participant Information Sheet: Study 2 

 

The Impact of differing exercise regimes upon cardiac 

function and mental performance in female participants with 

a body mass index (BMI) of at least 30 

You are being invited to take part in a research study.  Before you decide it is 

important for you to understand why the research is being done and what it will 

involve.  Please take time to read the following information carefully and discuss it 

with others if you wish.  Ask us if there is anything that is not clear or if you would like 

more information.  Take time to decide whether or not you wish to take part. 

What is the purpose of the study? 

The purpose of the study is to examine the effects of (i) everyday physical activity and 

(ii) different types of exercise regimes on heart and blood vessel function and mental 

performance (e.g. memory, reaction time, and problem solving skills) in women with 

a body mass index equal to or greater than 30. If exercise regimes that might be 

easier to achieve because they are conducted in an intermittent manner (short bursts) 

can improve heart and blood vessel health, plus positively change weight and brain 

function, then these regimes can be utilised more widely.  

Some results from the study will be used towards an educational qualification by a 

member of the research team. 

Why have I been chosen? 

You are invited to participate in the study because you are a woman aged between  

35-50 years, reporting good health and a Body Mass Index (BMI) of at least 30kg/m2. 

BMI is a number calculated from your weight and height that provides a reliable 

indicator of body fatness for most people. It is calculated by dividing your weight in 

kilograms by the square of your height in metres. 
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For example, if you weigh 81 Kg and are 1.64m tall, BMI would be calculated as 

follows:   𝐵𝑀𝐼 =
81 𝑘𝑔

(1.64𝑚 X 1.64𝑚)
 

We are hoping to recruit approximately 100 female participants from the community. 

You have either responded to an advertisement, been recruited by word of mouth, or 

you have previously volunteered to take part in a research study at the University and 

indicated that you were happy to be contacted about other future studies. 

Do I have to take part? 

It is up to you to decide whether or not to take part.  If you do decide to take part you 

will be given this information sheet to keep and be asked to sign a consent form.  If 

you decide to take part you are still free to withdraw at any time and without giving a 

reason. A decision to withdraw at any time, or a decision not to take part, will not 

affect your legal rights or your selection in any way. If you do decide to withdraw we 

will ask you if we can include all data collected from you up until this point. 

What will happen to me if I take part? 

Initially, you will be asked to attend three “experimental” sessions to complete the 

following tests on separate days.  

At the first session we will outline the study and all procedures in detail with you. 

You will complete a Recruitment Information Questionnaire (RIQ) to confirm all the 

inclusion/ exclusion criteria and ensure you are suitable for this study. You will 

complete a Physical Activity Readiness Questionnaire (PAR-Q) which we will review 

and determine whether you are fit to perform the exercise component of this study. 

You will also complete the National Adult Reading Test (NART) which is a method 

used in clinical settings to assess intelligence levels 

Following simple measures of body weight and height, we will measure your body fat 

percentage using a technique called bioimpedance which requires you to stand on a 

machine, dressed but in your bare feet and to hold two hand-grips. This machine 

measures the amount of fat and muscle you have in your body by passing a small 

electric current through your body and measuring the resistance. This is completely 

safe, provided that you do not have a cardiac pacemaker fitted, and you will not be 

able to feel anything. The bioimpedance machine is very similar to those which you 

might find in a commercial gym. 
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You will be asked to complete a cycling test on a stationary bicycle under the 

supervision of the investigator and a medic. This test involves cycling at progressively 

higher intensities you can no longer continue while we monitor your heart rate and 

breathing using ECG and a gas collection system. An ECG is an interpretation of the 

electrical activity of the heart over a period of time. It is a non-invasive procedure that 

captures the signals externally through skin electrodes 

The gas collection system simply measures the air you breathe in and out to see how 

much oxygen your body uses. The test takes between 6 and 12 minutes and is a test 

often undertaken by patients who have recently had heart attacks or are about to 

have surgery. This test will also be used as a screening tool for ECG abnormalities 

that may be evident before and during exercise. If any unusual findings are noted you 

will not be asked to complete the test or the exercise will be stopped. You will be given 

information to take to your GP at this point. You will also be asked to practise 

completing the cognitive tests (tests of mental performance) so that you know what 

to expect on the actual cognitive test days.  

The second laboratory visit will involve several measures of the health of arteries.  

The speed of the pulse as it travels along the blood vessels will be measured using a 

device called the SphygmoCor. This device takes non-invasive measures of blood 

pressure. This involves placing a pen-like device over the blood vessels in the neck, 

wrist, arm and foot. We will also look at your heart using an ultrasound machine. This 

is the same type of machine that looks at babies in the womb and is very safe. We 

will ask you to wear a t-shirt that has been cut-off about mid-torso so that you can 

take off your bra but be completely covered. A medical examiner (sonographer) will 

place some gel on your breast bone and just under your left breast. He will then place 

a probe onto the skin at these sites to look at the health of your heart. A female 

researcher will be present and you will be provided with a customised t-shirt so that 

the breast will be covered. For the blood vessel function you will be lying down on 

your back and we will inflate a blood pressure cuff around your lower arm for a period 

of 5 minutes. This is a safe procedure but will feel uncomfortable towards the end of 

the 5 minutes. This discomfort will disappear when the cuff is released. We will hold 

a probe against the crook of your arm during this test to assess function using 

ultrasound. You will then rest for 10-15 minutes. After which, you will be given a dose 

of glyceryl trinitrate (GTN). One of the researchers will spray a small amount of this 

substance under your tongue. This allows your blood vessels to relax. During this 

time the same artery in your arm will be imaged using ultrasound.   
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In the third laboratory visit you will complete short battery of cognitive tests, which 

will last approximately 44 minutes in total. This battery will consist of computerised 

tests of both verbal and spatial memory plus tests of vigilance and attention (which 

you will have already practiced at the screening visit).  

After completing the cognitive tests you will be asked to complete a short 

questionnaire on your experience of completing the tests (e.g. how well do you think 

you performed in these tests?).  Finally a blood sample will be taken by the medic or 

a phlebotomist (60ml which is about 4 tablespoons). This blood sample will be used 

to assess your vascular health by calculating the number and function of a special 

type of blood cells that are related to your cardiovascular health. 

We will then give you an ActiHeart accelerometer to wear for a period of one week in 

order to assess movement counts and sedentary behaviour. After these seven days 

using the accelerometer you will be invited back to the laboratory to discuss 

participation in the exercise training component of the study. 

Following discussion of the exercise training intervention, we will then ask you to 

attend two exercise sessions per week at the University for six months. There will be 

different times to choose from. These sessions will be 30-40 minutes long and involve 

cycling on a stationary cycle. You will have a personal trainer for this session and we 

will build up to the 30 minutes. You will either be cycling continuously at a low exercise 

load or in short bursts of 40 seconds, followed by 80 seconds rest. Water will be 

available and there are private shower facilities next to the laboratory. We will ask you 

to complete one 20 minute brisk walk per week at home. In your first and midpoint 

training session a small drop of blood will be taken from your finger every 3-5minutes 

to evaluate a blood marker that allows us to assess how hard you are exercising at. 

We are also asking for volunteers to have 60ml of their blood taken before and after 

the first and last training session but you do not have to do this part if you don’t want 

to.  

At the end of the six months the measures we took during the first three visits to the 

laboratory will be repeated.  
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The following diagram explains Stage 1 of the study: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial contact by email or telephone expressing interest 

in study 

Baseline visit 1  

Study explained, Informed consent taken. 

Full medical history taken  

Inclusion/exclusion criteria checked using Recruitment Information Questionnaire (RIQ) 

Complete Physical Activity Readiness Questionnaire (PAR-Q) and National Adult Reading Test (NART) 

Height, weight, waist/hip ratio measured...Practise short version of cognitive tests 

Perform a supervised cycling test on a stationary bicycle (6-12 mins).  

 

  

 

Baseline visit 2 (fasted state) 

Assessment of health of arteries: blood pressure using cuff, speed of pulse using SphygmoCor 

device and vascular function is assessed using ultrasound. Cardiac structure and function assessed 

via echocardiography 

Body composition will be assessed through bioelectrical impedance calculating your percentages 

of body fat and fat free mass 

Blood sample will be taken (60ml) to asses endothelial progenitor cell number and function, insulin 

sensitivity, cholesterol levels 

 

Baseline visit 3 (fasted state) 

Battery of cognitive tests, which will last approximately 45 minutes in total.  

Participants complete a cognitive test evaluation questionnaire(CTEQ). 
Participants asked to wear ActiHeart accelerometer for 7 days 

 

Preliminary Telephone Screening Interview to assess main  

inclusion/exclusion criteria 

 Eligible to continue  Not Eligible to continue 

Invited to attend first Laboratory 
visit 

Aiming for 100 participants. 

Not invited to participate in study 
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The following diagram explains Stage 2 of the study: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mid and Post Exercise Intervention Assessments 

Participants will come into the Laboratory to repeat the tests from Stage 1 baseline Visits 1-3  

at both 12 weeks (Visits 4-6) and 6 months (Visits 7-9) . 

Participants asked to wear the ActiHeart accelerometer for 7 days after Visit 9 but not after Visit 6 

At the end of Stage 2 participants will complete a debriefing questionnaire and have their honorarium 

processed 

 

 

 

 

 

Stage 2: 6 Months Exercise Training 

Aiming to recruit 60 participants from Stage 1 Randomised 
allocation to exercise Group 1 or Group 2 

 

 

 

 

Exercise Group 2  

Intermittent sessions, with short bursts 

(40seconds) heavy intensity followed by 

recovery periods (80seconds) 2x 30 minute 

sessions per week in Lab 

Lab sessions have additional warm-up (5 

mins) and cool-down (5 mins) components. 

Plus 

1 x 30 minute walking session per week in 

the home environment 

Optional (10 participants) 

Complete a standardised exercise session 

(30 minutes) instead of the usual training 

session twice over 6 months (1st training 

session and at 5 months) 

 

Exercise Group 1  

Continuous exercise sessions at a moderate 

intensity 2x 30 minute sessions per week in 

Lab 

Lab sessions have additional warm-up (5 

mins) and cool-down (5 mins) components. 

Plus 

1 x 30 minute walking session per week in the 

home environment 

Optional (10 participants) 

Complete a standardised exercise session 

(30 minutes) instead of the usual training 

session twice over 6 months (1st training 

session and at 5 months) 

All participants are asked to continue into the training stage (Stage 2) 

Participants not willing to undergo 
exercise training will not progress to 
Stage 2 and their contribution to study 
will be over 

Participants willing to undergo 
exercise training will progress to 
Stage 2 
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What do I have to do? 

If you decide to take part we will ask you to continue your lifestyle as normal. The only 

restrictions that we would wish you to follow would be to refrain from exercise, caffeine 

and alcohol for 12 hours prior to each laboratory visit, and not to eat in the two hours 

before visiting the laboratory. As well, we ask that you not participate in other studies 

that involve blood collection at the same time as you are undertaking this study and 

that you do not donate blood during this period. If you have to attend hospital for any 

reason during the study you would need to inform Dr Karen Birch or Dr Ali Khalil.  

What are the possible disadvantages and risks of taking part? 

There is almost always a small risk to undertaking any exercise task. More so if you 

have not been physically active for a significant period of time. There is a very small 

risk of muscle injury during the performance tests. You will have proper warm up and 

cool down activities that will minimise any potential risks to your well-being. Side 

effects such as muscle soreness are a normal response to undertaking exercise. This 

should be very minimal because of the warm up and cool down that you will 

undertake. Very rarely you might feel faint after the exercise sessions. We will monitor 

you closely after the exercise and make sure you cool down correctly. Fainting usually 

happens when people just stop exercising suddenly. We do not let this happen in our 

laboratory. In healthy adults, having a cardiovascular event (e.g. heart attack) is very 

rare. To minimise this risk you will go through a pre-screening process before any 

exercise is performed. You may experience a headache or dizziness following the 

GTN dose, although many people do not have any side effects. We will measure your 

blood pressure after the assessment and make sure you feel well before being 

allowed to leave the laboratory. 

What are the possible benefits of taking part? 

You may feel better both physically and mentally following this exercise training study. 

You may lose some weight and you may find that you feel fitter and more able to cope 

physically with daily life. There may be some direct benefits to the health of your heart 

and lungs. You participation will hopefully be helping the body of research knowledge 

in this area, which may help people in the future. Finally, some of the testing 

procedures may reveal aspects of your cardiovascular fitness and health that you 

may find interesting and useful. 
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What if something goes wrong? 

If you are harmed by taking part in this research project, there are no special 

compensation arrangements. If you are harmed due to someone’s negligence, then 

you may have grounds for a legal action but you may have to pay for it. Regardless 

of this, if you wish to complain, or have any concerns about any aspect of the way 

you have been approached or treated during the course of this study, you may 

complain to the University Secretary. If you wish to make a complaint then please ask 

a member of the research team how to proceed. 

Will my taking part in the study be kept confidential? 

Yes, any information which is collected about you during the course of the research 

will be kept strictly confidential. Once you decide to take part you will be given a 

subject number and this number will be used on all of the paperwork associated with 

the research.  In this way no-one will be able to identify who the results belong to, and 

the master copy of names and subject numbers will be kept separately from the result 

sheets, in a locked cabinet by Dr Karen Birch and Dr Ali Khalil. Your name and 

address will not be associated with any data that is used in scientific reports or 

publications. 

What will happen to the results of the research study? 

When the study is completed the results will be analysed and used in the write-up of 

academic research publications. Remember that your own results are confidential 

and that your name will not be associated with any information published from this 

study. All of the data will be kept for 5 years and then destroyed. 

Who is organising and funding the research? 

This research is being organised by Dr Karen Birch of the Centre for Sport and 

Exercise Sciences and Professor Louise Dye of The Institute of Psychological 

Sciences. The funding for this research has been made available from the University 

of Leeds 

Will I receive anything for taking part? 

Upon completion of the study, a small payment to cover some of the travel costs  will 

be paid to each participant to compensate you for the time that you have invested in 
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the study. If you decide to withdraw before completing the study you will be 

compensated in accordance with the number of visits that you have completed (at the 

rate of £10 per visit).  

Contact for further information. 

Dr Ali Khalil,  
PhD student 
Institute of Membrane and Systems Biology 
University of Leeds 
Leeds 
LS2 9JT 
tel: 01133431669 
mobile: TBA 
email: a.khalil09@leeds.ac.uk 
 
Amy Weeks 
MSc Student 
Institute of Psychological Sciences 
University of Leeds 
Leeds 
LS2 9JT 
Tel: +44(0) 113 3431669 
Email: sp07avw@leeds.ac.uk 
 
Dr Karen Birch 
Senior Lecturer in Exercise Physiology 
Centre for Sports and Exercise Sciences 
Institute of Membrane and Systems Biology 
University of Leeds 
Leeds 
LS2 9JT 
0113 3436713 
k.m.birch@leeds.ac.uk 
 
Prof Louise Dye 
Institute of Psychological Sciences 
University of Leeds 
Leeds 
LS2 9JT 
0113 3435707 
Email:l.dye@leeds.ac.uk 
 
Miss Emma Harris 
PhD student 
Centre for Sports and Exercise Sciences 
Institute of Membrane and Systems Biology 
University of Leeds 
Leeds 
LS2 9JT 
Tel: +44(0) 113 3431669 
Email: sp06eh@leeds.ac.uk  
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Appendix 6.4 Consent form: Study 2 

       INFORMED CONSENT FORM 

 

The Impact of differing exercise regimes upon cardiac 

function and mental performance in female participants with 

a body mass index (BMI) of at least 30 

1. I confirm that I have read and understood the Participant Information Sheet 

dated 16/04/2012 (version 4) for the above study. I have had the opportunity 

to consider the information, ask questions and have had these answered 

satisfactorily. 

 

2. I understand that my participation is voluntary and that I am free to withdraw 

at any time without giving any reason, without my medical care or legal rights 

being affected. 

3. I have been informed that Visit 3 of the baseline visits and the post-exercise 
training laboratory visit  will involve a 60 ml blood sample being taken 
 

4. I understand that data collected during the study, may be looked at by 

individuals from the University research team, collaborators on the research 

project and the University of Leeds for the purposes of research governance. 

All data will be anonymised with the exception of the recruitment 

questionnaires containing personal data. I give permission for these 

individuals to have access to my data. 

 

5. I agree to take part in the above study…………………………....................... 

 

Participant’s name……………………………………………………… Date ____ / ____ /_____  

Signature ……………………......................................................................................................    

Researcher’s name………………………………………………………Date ____ / ____ /_____   

Signature ……………………......................................................................................................    

Please 
Initial 
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Appendix 6.5 Participant Information Sheet: Study 3 

 
 

Impact of differing walking dose upon cognitive function in people 
with a body mass index (BMI) of at least 25. 

 
You are being invited to take part in a research study.  Before you decide it is important for 
you to understand why the research is being done and what it will involve.  Please take time 
to read the following information carefully and discuss it with others if you wish.  Ask us if 
there is anything that is not clear or if you would like more information.  Take time to decide 
whether or not you wish to take part. 
 

What is the purpose of the study? 

The purpose of this study is to investigate the impact of two different doses of physical 
activity (achieved through daily number of steps) upon indices of body size, blood pressure, 
mental performance (e.g. memory, reaction time, and problem solving skills) and insulin 
sensitivity in sedentary people with a body mass index equal to or greater than 25. 
Some results from the study will be used towards an educational qualification by a member 
of the research team. This study is supervised by Dr Clare Lawton and Dr Karen Birch (see 
page 7).  

 
Why have I been chosen? 

You are invited to participate in the study because you are: 
1) Aged between 30-60 years 
2) Reporting good health OR diagnosis of Type 2 Diabetes Mellitus (including use of diabetic 
medication)  
3) Reporting a sedentary or low-active lifestyle 
4) Have a Body Mass Index (BMI) of at least 25kg/m2. BMI is a number calculated from your 
weight and height that provides a reliable indicator of body fatness for most people. It is 
calculated by dividing your weight in kilograms by the square of your height in metres. 
 
For example, if you weigh 81 Kg and are 1.64m tall, BMI would be calculated as follows:               

𝐵𝑀𝐼 =
81 𝑘𝑔

(1.64𝑚 X 1.64𝑚)
    BMI = 30.1 

 
We are hoping to recruit approximately 108 participants from the community to participate 
in this 12-week physical activity study. You have either responded to an advertisement, been 
recruited by word of mouth, or you have previously volunteered to take part in a research 
study at the University and indicated that you were happy to be contacted about other future 
studies. 

 
Do I have to take part? 
It is up to you to decide whether or not to take part.  If you do decide to take part you will 
be given this information sheet to keep and be asked to sign a consent form.  If you decide 
to take part you are still free to withdraw at any time and without giving a reason. A decision 
to withdraw at any time, or a decision not to take part, will not affect your legal rights or 
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your selection in any way. If you do decide to withdraw we will ask you if we can include all 
data collected from you up until this point. 
 

 
What will happen to me if I take part? 
There will be four visits to the lab in total. Initially, you will be asked to attend two 
“experimental” sessions to complete the following tests on separate days before starting the 
12-week walking component of the study. 

 

Visit 1: 60-90 mins 
At the first session we will outline the study and all procedures in detail with you. You will 
complete a Recruitment Information Questionnaire (RIQ) to check your medical history, 
confirm all the inclusion/exclusion criteria and ensure you are suitable for this study. You will 
complete a Physical Activity Readiness Questionnaire (PAR-Q) which we will review and 
determine whether you are fit to perform the exercise component of this study. You will 
complete the Wechsler adult intelligence scale (WAIS-III) which is a method used in clinical 
settings to assess intelligence levels. You will also complete the positive and negative affect 
scale (PANAS-X) to assess mood, and the Perceived Stress Scale (PSS) to assess current levels 
of perceived stress.  Height and weight will also be taken to confirm BMI.  
 
We will then give you an ActiHeart accelerometer to wear for a period of one week in order 
to assess your physical activity level. This is a small, light device worn around the hip on a 
belt provided during your waking hours, and should not cause you any inconvenience. After 
seven days using the accelerometer you will be invited back to the laboratory to complete 
the official cognitive test. 

 
Visit 2: 60 mins  
You will also be asked to practise completing the cognitive tests (tests of mental 
performance) so that you know what to expect on the actual cognitive test days. 
 
 

Visit 3: 60-90 mins (1 week after completing visit 2) 

The third laboratory visit is a fasted visit which we will schedule for a morning appointment. 
This means after eating your evening meal the night before you do not have any breakfast 
or drink anything other than water before you attend this visit.  
 
We will first of all take simple measures of body weight and height, waist circumference and 
hip circumference. We will measure your body fat percentage using a technique called 
bioimpedance which requires you to stand on a machine, dressed but in your bare feet and 
to hold two hand-grips. This machine measures the amount of fat and muscle you have in 
your body by passing a small electric current through your body and measuring the 
resistance. This is completely safe, provided that you do not have a cardiac pacemaker fitted, 
and you will not be able to feel anything. The bioimpedance machine is very similar to those 
which you might find in a commercial gym. Resting blood pressure will be taken using a 
standard automated cuff on your left arm. Three measurements will be taken with a minutes 
rest between each measurement.  
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We will also measure your blood glucose and insulin levels using a capillary diabetic kit, you 
will be shown a step-by-step guide of this procedure before you decide to participate in this 
research.  
You will then complete the battery of cognitive tests, which will last approximately 38 
minutes in total. This battery will consist of computerised tests of both verbal and spatial 
memory plus tests of vigilance and attention (which you will have already practiced at the 
screening visit).  
 
After completing the cognitive tests you will be asked to complete a short questionnaire on 
your experience of completing the tests (e.g. how well do you think you performed in these 
tests?).  

 
Walking programme 
 
Following discussion of the physical activity intervention, we will then ask you to reach a 
target number of steps per day on 5 days per week for the duration of the study. This target 
number will be selected for you, and depending on which group you are randomly assigned 
to will either be a high or a low dose. You will be given a pedometer to track your daily 
number of steps and a weekly log sheet. We ask you to write your daily number of steps in 
the log sheet every day and we will arrange to collect this from you at the end of each week. 
If you would prefer we can send this to you by e-mail and you can fill this out and e-mail it 
back to us. We would also like permission to phone you once a week at a time convenient 
for you. This call is to check how you are getting on, as it is very important that you are 
achieving your prescribed number of steps on your 5 walk days each week. If you are having 
problems reaching your targets, or experiencing any health problems then it is important 
you talk to us about this so we may help you. In this call we can also answer any questions 
you may have and hopefully boost your motivation each week!   
 
The tests from visit 3 will be repeated half-way through the study in week 6 (visit 4) and at 
the end of week 12 (visit 5). This only requires one visit at mid and one visit at post study, 
each lasting 60-90 minutes. You will also be asked to wear the accelerometer the week after 
completing the study, week 13, to assess movement counts.  
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The following diagram explains Stage 1 of the study: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The following diagram explains Stage 2 of the study: 
 
 
 
 
 

Initial contact by email or telephone expressing interest in 

study 

Baseline visit 1  

1) Study explained, Informed consent taken. 
2) Inclusion/exclusion criteria checked using Recruitment Information Questionnaire 

(RIQ) 
3) Complete Physical Activity Readiness Questionnaire (PAR-Q) and Wechsler Adult 

Intelligence Scale (WAIS-III) 

4) Complete the Positive and Negative Affect Scale (PANAS) and Perceived Stress 
Scale (PSS) 

5) Height and weight measured. 

6) Participants asked to wear ActiHeart accelerometer for 7 days 

 

  

 

Baseline visit 3 (fasted state) 
1) Body composition will be assessed through bioelectrical impedance calculating 

your percentages of body fat and fat free mass. Height, weight, waist and hip 
circumference measured. 

2) Blood pressure checked with automated cuff 
3) Battery of cognitive tests, which will last approximately 45 minutes in total.  
4) Participants complete a cognitive test evaluation questionnaire (CTEQ). 
5) Finger prick plasma samples will be collected to assess fasting insulin and 

glucose 
 

Preliminary Telephone Screening Interview to assess main  

inclusion/exclusion criteria 

 Eligible to continue  Not Eligible to continue 

Invited to attend first Laboratory 
visit 

Aiming for 72 participants. 

Not invited to participate in study 

Eligible to continue 
Sedentary 

Invited to participate in study 

 

Not Eligible to continue 
Too Active 

Not invited to participate in study 

Baseline visit 2  
Complete practise short version of cognitive tests (30 mins) 
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What do I have to do? 

 
You will be asked to attend the laboratory for five experimental sessions to be assessed for body 
composition, blood pressure, mental performance and insulin resistance. You will then be provided 
with a pedometer and asked to reach a target number of daily steps on 5 days per week, for 12 week 
duration. The tests you completed before starting the study will be repeated at week 6 and after 
you have completed the study. We ask that you do not change your diet in any way. The only 
restrictions that we would wish you to follow would be to refrain from exercise, caffeine and alcohol 
for 12 hours prior to each laboratory visit, and not to eat in the two hours before visiting the 
laboratory. If you have to attend hospital for any reason during the study you would need to inform 
one of the investigators (contact details on page 7).  
 

What are the possible disadvantages and risks of taking part? 
The finger-prick blood sample collection is a low-risk procedure, but some may find this slightly 
painful. Amy Weeks has been trained in the finger prick technique, has first aid training and will be 
following a standardised procedure to minimise discomfort and any risk associated with this 
procedure. There is almost always a small risk to undertaking any exercise task. More so if you have 
not been physically active for a significant period of time. Very rarely you might feel faint after 
walking sessions if you attempt too much in one go. We will start you off with a manageable target 
and phone weekly to see how you are getting on. There is a chance in T2 diabetic patients of 
developing foot ulcers if care and attention in not paid to the feet. We will advise you on appropriate 
footwear and to look out for any symptoms of lost feeling in the feet. We also advise you to pay 
attention to any blisters, bruises or cuts on your feet and if there is any cause for concern to contact 
a doctor or podiatrist immediately and discontinue the walking study. Finally, the blood pressure 
measures may show that you have a high blood pressure, which you may have not previously known 
about. In this case we will advise you to see your doctor to have this checked.  

Mid and Post Exercise Intervention Assessments 

Participants will come into the Laboratory to repeat the tests from baseline Visit 2 at 

both week 6 (visit 3) and week 13 (visit 4). 

   

 Participants asked to wear the ActiHeart accelerometer for 7 days after Visit 4 but not 

after Visit 3 

 

 

 

 

 

 

 

 

12 weeks walking programme 

 

Randomised allocation to walking Group 1 or Group 2. 

 

 

 

 

 

Exercise Group 1  

Low dose walking 

group 

 

Increase daily step 

count by 3,000 on 5 

days per week 

Exercise Group 2  

High dose walking 

group 

 

Increase daily step 

count by 6,000 on 5 

days per week 
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What are the possible benefits of taking part? 
You may feel better both physically and mentally following this walking study. You may lose some 
weight and you may find that you feel fitter and more able to cope physically with daily life. There 
may be some direct health benefits such as improved blood pressure or insulin sensitivity. You 
participation will hopefully be helping the body of research knowledge in this area, which may help 
people in the future. Finally, some of the testing procedures may reveal aspects of your health that 
you may find interesting and useful. 

 
What if something goes wrong? 
If you are harmed by taking part in this research project, there are no special compensation 
arrangements. If you are harmed due to someone’s negligence, then you may have grounds for a 
legal action but you may have to pay for it. Regardless of this, if you wish to complain, or have any 
concerns about any aspect of the way you have been approached or treated during the course of 
this study, you should contact Dr Clare Lawton or Dr Karen Birch) who will investigate your 
complaint. If you remain unhappy and wish to make a formal complaint then this can be done 
through the university complains procedure.  
 

Will my taking part in the study be kept confidential? 
Yes, any information which is collected about you during the course of the research will be kept 
strictly confidential. Once you decide to take part you will be given a subject number and this 
number will be used on all of the paperwork associated with the research.  In this way no-one will 
be able to identify who the results belong to, and the master copy of names and subject numbers 
will be kept separately from the result sheets, in a locked cabinet by Dr Clare Lawton or Dr Karen 
Birch. Your name and address will not be associated with any data that is used in scientific reports 
or publications. 
 

 
What will happen to the results of the research study? 
When the study is completed the results will be analysed and used in the write-up of academic 
research publications. Remember that your own results are confidential and that your name will not 
be associated with any information published from this study. All of the data will be kept for 5 years 
and then destroyed. 
 

 
Who has reviewed this research? 
All research is looked at by an independent group of people called a research ethics committee, to 
protect your interests. This study has been reviewed by the research ethics committee of the Institute 
of Psychological Sciences (reference number: 14-0070) 
 

Who is organising and funding the research? 
This research is being organised by Dr Clare Lawton of The Institute of Psychological Sciences and 
Dr Karen Birch of the Centre for Sport and Exercise Sciences. The research is funded as part of an 
educational award (PhD) by the ESRC and NHS. It is a collaboration between the University of Leeds 
and Salford Royal Hospital NHS Trust.  

 
Will I receive anything for taking part? 
Upon completion of the study, a small payment (up to maximum of £15) to cover some of the travel 
costs can be paid to each participant upon request. Bus tickets or documentation of miles driven 
must be provided and this will be processed by an external finance office before a payment can be 
made. All those that complete all aspects of the study will be entered into a prize draw for your 
chance to win £50 of Love2shop vouchers.        
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Contact for further information. 

 
Amy Weeks 
PhD Student 
Institute of Psychological Sciences 
University of Leeds 
Leeds 
LS2 9JT 
Tel: +44(0) 113 3431669 
Email: a.v.weeks11@leeds.ac.uk 
 
Dr Clare Lawton 
Institute of Psychological Sciences 
University of Leeds 
Leeds 
LS2 9JT 
01133435741 
C.L.Lawton@leeds.ac.uk 
 
 
Dr Karen Birch 
Senior Lecturer in Exercise Physiology 
Centre for Sports and Exercise Sciences 
Institute of Membrane and Systems Biology 
University of Leeds 
Leeds 
LS2 9JT 
0113 3436713 
k.m.birch@leeds.ac.uk 
 
Prof Louise Dye 
Institute of Psychological Sciences 
University of Leeds 
Leeds 
LS2 9JT 
0113 3435707 
Email:l.dye@leeds.ac.uk 
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Appendix 6.6 Consent form: Study 3 

 
 

INFORMED CONSENT FORM 
 

Impact of differing walking dose upon cognitive function in people with a 
body mass index (BMI) of at least 25. 

 
6. I confirm that I have read and understood the Participant Information Sheet dated 

28/03/14 (version 4) for the above study. I have had the opportunity to consider the 

information, ask questions and have had these answered satisfactorily. 

 
7. I understand that my participation is voluntary and that I am free to withdraw at any time 

without giving any reason, without my medical care or legal rights being affected. 

8. I have been informed that Visit 2,3 and 4 will involve a finger prick blood sample being 
taken 

 
9. I understand that data collected during the study, may be looked at by individuals from 

the University research team, collaborators on the research project and the University of 

Leeds for the purposes of research governance. All data will be anonymised with the 

exception of the recruitment questionnaires containing personal data. I give permission 

for these individuals to have access to my data. 

 
10. I agree to take part in the above study........................................................................ 

 
11. I give/do not give permission for my contact details to be kept securely on file for potential 

future studies (please delete as appropriate) 
 
 

Participant’s name………………………………………………………………………… Date ____ / ____ /_____   
 
Signature ……………………......................................................................................................    
 
 
Researcher’s name…………………………………………………………………………Date ____ / ____ /_____   
 
Signature……………….................................................................................................... 

  

Please 
Initial 
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Appendix 6.7 Recruitment Information Questionnaire 
 

 

Date of contact _____ /_____ /_____ Researcher …………………………………. 

How did you find out about the study? Contacted by us   

      Poster advert   

      Word of Mouth  

      Other    

 

 

Name ……………………………………………………………………………………………………………………… 

Address …………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………………….. 

………………………………………………………………………………………………………………………………… 

Contact phone number …………………………………………..……………………………………………….. 

E-mail …………………………………………………………………………............................................... 

Dept ……………………………………………………………………………………………………………………… 

Date of Birth   ____ / ____ /____         Age …………………………………………. 

Measured height…………………….………….    Measured weight…………………….. 

Measured BMI ………............................ 

 

Occupation Employed   Unemployed  

  Retired   Housewife  

  Student   Other  

Hours of work -  Full time/ Part time 

Night shifts - Yes/No  Details ……………………………………………………………………………………. 

Holidays planned or booked over next 6 months? Yes/No 

GENERAL INFORMATION 

CONTACT INFORMATION 
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Dates   …………………………………………………………………………………………………………………… 

 

 

How would you rate your general 

health………………………………………………………………………………. 

Have you ever been told you have any of the following? 

Myocardial Infarction      Yes/No 

Atherosclerosis      Yes/No 

Heart Disease       Yes/No 

Coronary Thrombosis      Yes/No 

Rheumatic Heart      Yes/No 

Heart Attack       Yes/No 

Aneurism       Yes/No  

Coronary Occlusion      Yes/No 

Angina        Yes/No 

Cardiac Dysrhythmias      Yes/No 

Heart Murmur       Yes/No 

Stroke        Yes/No 

Transient Ischaemic Attack     Yes/No 

Hypertension       Yes/No 

If you answered Yes to hypertension, are you taking any medication for this? Please give 

details: 

........................................................................................................................................………

……………………………………………………………………………………………………………………… 

Do you have or have you had any medical conditions? (i.e. heart condition, asthma, 

diabetes) 

…………………………......................................................................................................... 

………………………………………………………………………………………………………………………………… 

Current medications 

……………………………………………………………………………………………………………… 

Do you have a cardiac pacemaker fitted?    Yes/No 

Do you suffer from any neurological disorders? If so please give details:  

HEALTH 
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........................................................................................................................................………

……………………………………………………………………………………………………………………… 

Have you suffered a musculoskeletal impairment or injury in the past 6 months? If so 

please give details:  

........................................................................................................................................………

……………………………………………………………………………………………………………………… 

Have you had any surgical procedures within the last 6 months? If so please give details:  

........................................................................................................................................………

………………………………………………………………………………………………………………… 

Have you ever smoked?   No, never smoked   

                     Yes 

                     Given up     How long ago?.................... 

How many units of alcohol do you usually drink per week? 

……………………………………………………………………………………….. 

N.B. 1 small (125mls) glass of wine or half a pint of lager or 1 shot of spirits = 1 unit 

EXERCISE 

Do you do regular exercise? Yes / No 

If yes, how many times a week do you exercise? One to four  

       More than four  

What type of exercise do you do? 

.............................................................................................. 

If none, are you planning to start doing regular exercise in the next 4 months?  

Details…………………………………………………………………………………………………………………………………

….……………………………………………………………………………………………………. 

PREGNANCY 

Are you currently pregnant or planning a pregnancy this year?  Yes / No  

Have you had a baby or have you been pregnant in the last 6 months?  Yes/ No    

Date of delivery (if applicable) ___ / ___ / ___  

Have you breast fed in the last 6 months? Yes / No 
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MENOPAUSAL SYMPTOMS 

Do you think you have reached the menopause (the menopause means not having had a 

period for 12 months of more) 

………………………………..……………………………………………………………. 

Are you taking/ have you taken hormone replacement therapy 

(HRT)?.................................... 

What was the date of your last period? 

..................................................................................... 

How many periods have you had in the last 12 

months?……………………………………………………….. 

Are you experiencing hot flushes?  Yes / No How often 

…………………………………………….. 

Are you experiencing night sweats?  Yes / No How often 

………………………………………………… 

Has your weight varied within the last 3 months?  Yes / No 

If  yes by how much? ........................................................... 

Are you currently on any form of a weight loss diet? Yes / No 

Details…………………………………………………………………………………………………………………… 

..…………………………………………………………………………………................................................ 

 

Can we keep this information on file and contact you about future studies?     Yes / No  

Inclusion visit arranged for           Date _____ /_____ /_____  

ADDITIONAL NOTES 

 

OTHER INFORMATION 
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Appendix 6.8 Wechsler Abbreviated Scale of Intelligence 
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Appendix 6.9 Actigraph accelerometer wear time log 

Participant ID                         Accelerometer no.   

Instructions for wearing the accelerometer and log sheet  

 Please wear the accelerometer every day starting from the morning after you 

collect it from the trial enrolment session. 

 Please do not get the accelerometer wet.  Remove it for swimming, having a 

bath or shower and record on this log sheet.  Please remember to put it back on 

again after you have taken it off.  

 You do not need to wear the accelerometer while you sleep.  Take it off before 

going to bed and record the time.  It’s a good idea to leave it somewhere where 

you can see it first thing in the morning.  Every morning, remember to put it on 

as soon as you wake up.  

 The accelerometer should be worn on the hip bone and can be worn 

underneath or on top of your clothing.  It should fit tightly but comfortably 

around the body.  

 

 Time put 
on  

Time taken 
off 

Reason for 
taking off 

How much time spent 

Swimming 
(minutes) 

Cycling 
(minutes) 

  E.g  7.30pm E.g. shower E.g. 20 
mins 

E.g.  0 
mins 

Day 1  (on 
waking) 

     

      

     

(bed time)      

Day 2  (on 
waking) 

     

      

     

(bed time)      

Day 3  (on 
waking) 

     

      

     

(bed time)      

 
 

     

 

 

  



275 
 

 

 
Time put 
on  

Time 
taken off 

Reason for 
taking off 

How much time spent 

Swimming 
(minutes) 

Cycling 
(minutes) 

 

 

Day 4  (on 
waking) 

     

      

     

     

(bed time)      

Day 5  (on 
waking) 

     

      

     

     

(bed time)      

Day 6  (on 
waking) 

     

      

     

     

(bed time)      

Day 7  (on 
waking) 

     

      

     

     

(bed time)      
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Appendix 6.10 SOP for creating 16 word VVLT lists 

 
Use the file “New words for MRC database with words from stories deleted”. This is on the 
N drive in Unilever 07, main study, cog tests. This file has 9 worksheets. One of these is 
the “source” worksheet which contains all the words. You will notice that despite the name 
of this file, this worksheet still contains words which are in the story recall version.  
 
The remaining worksheets in this file contain words which are categorised according to 3 
properties: concreteness, familiarity, and imageability. The worksheets are named 
according to the properties of the words in worksheet. For example, the worksheet named 
“HHH” contains words which are high in concreteness, high in familiarity, and high in 
imageability. As another example, the worksheet LHL contains words which are low in 
concreteness, high in familiarity, and low in imageability, and so on and so forth.  
 
For the 16 word VVLT lists 480 words are needed. There are 10 VVLT versions, each 
which contain 3 word lists (named ‘A’ ‘B’ and ‘C’). Each word list requires 16 words. 
Therefore, there are 48 (3x16) words in each VVLT version, and 480 words (10x48) in 
total. Each of the word lists need to be matched for various properties which could affect 
recall, such as concreteness, imageability, familiarity, and word length. In order to do this 
certain words need to be selected from certain worksheets (e.g. HHH or HLH etc.). Follow 
the instructions below to select the words.  
 
For each 16 word word list: 

 4 words must be selected from worksheet HHH. 
1 word must be 4 letters 
1 word must be 5 letters 
1 word must be 4 or 5 letters 
1 word must be 6 or 7 letters.  

(* there are only 39 5 letter words so of the “1 must come from 4 or 5” a maximum of 9 will 
come from the 5 letter words. In addition, there are only 11 seven letter words so of the “1 
word must be 6 or 7 letters” a maximum of 11 7 letter words can be used) 
 

 3 words must be selected from worksheet HLH. 
2 words must be 4 or 5 letters (there are only 58 4 or 5 letter words so use 2 words 
which are 6 letters). 
1 word must be 6 or 7 letters (again, there are only 28 6 or 7 letter words so use 2 
words which are 8 letters) 

 

 1 word must be selected from worksheet LHH. 
Use a word with any number of letters. 

 

 4 words must be selected from worksheet LHL. 
2 words must come from 4 letters (there are only 57 4 letter words, so use 3 words 
which are 5 letters). 
1 word must be 5 or 6 letters. 
1 word must be 7 or 8 letters 
 

 4 words must come from worksheet LLL 
1 word must be 4 letters 
1 word must be 5 letters 
1 word must be 6 letters 
1 word must be 7 or 8 letters.  
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Appendix 6.11 Versions for Visual Verbal Learning Test 

 

 
 

Version 1 Version 2 

List A  List B  List C  List A  List B  List C  

BOOK  NOSE  GRASS  CITY  HALL  EDGE  

EARTH  METAL  STEP  MOUTH  VOICE  PAPER  

ROOM  SNOW  FILM  STAND  ROUND  SWEET  

PERSON  BRIDGE  SUMMER  DOCTOR  CHURCH  SPRING  

HOLE  POOL  KING  GOLD  DUST  CAMP  

COAST  MARCH  FRAME  BLOCK  CHAIN  CROSS  

PATIENT  PLATFORM  SHOULDER  FOREST  ISLAND  MARKET  

LOVE  VOTE  READ  HAPPY  SPACE  SPEAK  

FAIR  AREA  KIND  DROP  BUSY  SICK  

BEST  COOL  MOVE  FAST  CARE  TELL  

SHORT  EVENT  WHOLE  THING  PEACE  THINK  

DISTANCE  RESPECT  FEELING  READING  PURPOSE  SUCCESS  

FLOW  LACK  RATE  GAIN  DUTY  JOIN  

BRIEF  IDEAL  LEVEL  PHASE  POWER  MINOR  

CHOOSE  FACTOR  LATTER  METHOD  REVIEW  IMPACT  

SESSION  ATTEMPT  CONTENT  JUSTICE  FAILURE  BALANCE  

 

 
Version 3 Version 4 

List A  List B  List A  List B  List A  List B  

NEWS  NINE  PAGE  List A  List B  List C  

COLOUR  DRINK  FIGHT  BLUE  BODY  COLD  

NOTE  PAIN  SHOP  WOOD  WIND  TRIP  

BEDROOM  BROTHER  COLLEGE  HEAT  HILL  LADY  

ARMY  BAND  BILL  FAMILY  LEADER  LETTER  

DANCE  ENEMY  FLOOR  RIFLE  SCALE  SPOKE  

CATTLE  COLUMN  CORNER  FELT  FORT  HERO  

GENERAL  SILENCE  PRETTY  MACHINE  OFFICER  PAYMENT  

NICE  SAVE  TALK  DEATH  DOZEN  EIGHT  

NONE  SLOW  TURN  ABLE  AWAY  BORN  

CLEAN  CLOSE  GUESS  CALL  COST  DONE  

INTEREST  OCCASION  RELIGION  EFFORT  FUTURE  GROWTH  

POOR  RULE  TASK  SCIENCE  SERVICE  SOCIETY  

CARRY  LEARN  SCENE  LESS  NEXT  RISK  

JUNIOR  MOTION  SOCIAL  CLAIM  ISSUE  MORAL  

COMMAND  CULTURE  EXTREME  BELIEF  BITTER  BUDGET  
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Version 5 Version 6 

List A  List B  List C  List A  List B  List C  

SEAT  SONG  SPOT  DARK  DATE  DEAD  

KNIFE  LIGHT  MONEY  BLOOD  CHAIR  CHILD  

MUSIC  NIGHT  PARTY  LAKE  LAND  LINE  

CIRCLE  COFFEE  DINNER  NOTICE  SEASON  SQUARE  

FLESH  GROUP  MOTOR  JURY  PICK  TEAM  

CLAY  CELL  CASE  BEACH  TRIAL  POINT  

COUSIN  ESTATE  FIGURE  STATION  OPENING  VILLAGE  

EAST  HELL  NAME  WROTE  THICK  HEAVY  

EASY  FEAR  FINE  FACT  HEAR  REAL  

FIRM  FREE  GIVE  GROW  LEFT  WANT  

PROUD  QUIET  REACH  EXTRA  SENSE  USUAL  

ABILITY  CONTROL  FREEDOM  BUSINESS  INCREASE  PERSONAL  

WISH  VIEW  UNIT  BEAT  DEAR  EVER  

SPITE  STYLE  THEME  APART  BREAK  LEAST  

CENTRE  CRISIS  ENOUGH  EXTENT  LISTEN  SPIRIT  

FUNCTION  MAJORITY  RESEARCH  BENEFIT  CENTURY  MEASURE  

 

Practice version 

List A  List B  List C  

FOOT  TEST  WALL  

GLASS  HEART  HUMAN  

COVER  FRONT  TASTE  

PICTURE  STUDENT  WEATHER  

BASE  DRAW  FILE  

TEXT  RACE  MARK  

PROPERTY  VALLEY  YELLOW  

DEEP  LORD  PAIR  

TYPE  WEST  WIDE  

CLEAR  WRONG  RESULT  

AFRAID  AMOUNT  CAREER  

QUALITY  TROUBLE  WORKING  

RISE  SEEK  TILL  

WORTH  VALUE  TRUST  

SYMBOL  UNIQUE  WONDER  

PORTION  REALITY  PRIMARY  
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Appendix 6.12 Visual Spatial Learning Test versions 
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Appendix 6.13 Cognitive Test Evaluation Questionnaire 
 
Subject number:    Subject Initials:         Visit:  Date: 

 

1.  How much time pressure did you feel due to the rate/pace of the tests? 

Not very                                                                                                   Very 

much                                                                                                         much 

 

2.  How difficult did you find these tests today? 

Not at all                                                                                                    Extremely 

difficult                                                                                                       difficult 

 

3.  How much did you concentrate during these tests? 

A small                                                                                                    A large  

 amount                                                                                                          amount   

 

4.  How hard did you try in these tests? 

Not at all                                                                                                    Extremely 

hard                                                                                                            hard 

 

5.  How well do you think you performed in these tests? 

Not at all                                                                                                    Extremely 

well                                                                                                         well 

 

6.  How frustrating did you find these tests today? 

Not at all                                                                                                    Extremely 

frustrating                                                                                                     frustrating 

 

 

7. Please number the following tests from the battery you have just completed indicating how difficult 

you found them? (1 = easiest test, 8 = hardest test) 

Visual Spatial Learning Test (Pattern memory test on board)  __________ 

 

Visual Verbal Learning Test (Word list memory test)    __________ 

 

Corsi block tapping test (Red square sequences)   __________ 

 

Stroop Task (Colour/word test)     __________ 

 
Bakan Test (3 odd or 3 even numbers in a row)   __________ 

         

Word Recognition test (Delayed word list memory task)  __________ 

 

Delayed Visual Spatial Learning (Delayed pattern memory test) __________ 

 

Trail Making Test (Joining circles with letters/numbers)  __________ 
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Appendix 6.14 Blood Pressure: Standard Operating Procedure v2 30/09/2009 
 

 1. Staff  
In order to perform blood pressure (BP) testing on volunteers, staff must first read the Omron M7 
manual.  
This is a low risk procedure and is commonly used for self monitoring of blood pressure.  
2. Volunteers  
All volunteers must be well informed of the study and its requirements via the Study Information 
Sheet. Participants should also be given a verbal explanation and have signed the associated consent 
form (see appendices 1 and 2 for examples of a typical study information sheet and consent form 
for a study using blood pressure measures with mandatory information highlighted).  
3. Equipment  
Omron Digital Automatic Blood Pressure Monitor M7.  
4. Testing  

1. Please note that BP should be measured after the participant has spent 10 minutes resting.  
2. Explain to the volunteer clearly and confidently what you are going to do and show them the 

equipment you will be using.  
3. Allow the volunteer to ask any questions and talk through any concerns.  
4. Explain to the volunteer that, in the event of receiving a high BP result, it is recommended 

that they speak to their GP. Participants receiving a high BP score should also be told that 
this could be a result of ‘white coat syndrome’ whereby BP is elevated due to anxiety levels 
related to undergoing the BP measure. However, participants should be made aware that it 
is important that all cases of high BP be investigated further by their GP.  

5. Ask the volunteer to sit comfortably at a table with their feet flat and the floor and their arm 
resting on the table.  

6. Ask participants to relax their arm and turn their palm upward.  
7. Fit the cuff to the participant’s arm ensuring that it is at heart height during measurement.  
8. Press the on/off button on the Omron M7 – wait for zero and the heart symbol to appear 

before continuing.  
9. Ask the participant to sit still and not move or speak during the measurement process.  
10. Press the start button.  
11. Wait for the cuff to automatically inflate.  
12. Wait for the cuff to then automatically deflate.  
13. Record the values of blood pressure from the display (note: the top number is systolic BP 

and the number underneath is the diastolic BP).  
14. Ideally the first reading should be corroborated with a second reading (with a 3rd reading 

taken in case of a discrepancy between the first and second readings).  
15. When you have finished testing BP, press on/off button to turn off the power (note: power 

automatically switches off after 5 minutes).  
16. When you have finished using the BP monitor, slightly fold the air tube and insert it into the 

cuff (do not disconnect the air tube).  
17. Put the cuff and main unit in the storage case.  
18. Provide the participant with a copy of his/her BP result (see Appendix 3 for an example).  
19. Participants with high BP should again be told to discuss this further with their GP.  
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Appendix 6.15 Multiple linear regression analyses of relationship between delayed 
verbal memory and health parameters 

  Delayed verbal memory (n=62) 

Model  B SE B β t Sig 

1 

Constant 

Age 

IQ 

 

-0.18 

0.01 

0.06 

 

3.61 

0.05 

0.03 

 

 

0.03 

0.27 

 

-0.05 

0.22 

2.11 

 

.96 

.83 

.04 

2 

Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

 

3.09 

-0.01 

0.04 

-0.00 

-0.17 

-0.60 

0.29 

0.08 

 

4.75 

0.05 

0.03 

0.03 

0.35 

0.40 

0.35 

0.35 

 

 

-0.03 

0.19 

-0.02 

-0.06 

-0.21 

0.11 

0.03 

0.65 

-0.18 

1.38 

-0.16 

-0.49 

-1.47 

0.83 

0.22 

.52 

.86 

.17 

.88 

.63 

.15 

.41 

.83 

  Model 1: adjusted R2 = .07; F(2,61)=2.33, ns 
  Model 2: adjusted R2 = .12; F(7,61)=1.06, ns 

 

 

Appendix 6.16 Multiple linear regression analyses of relationship between proactive 
interference and health parameters 

 Proactive Interference (n=62) 

Model  B SE B β t Sig 

1 

Constant 

Age 

IQ 

 

5.86 

-0.07 

-0.01 

 

3.22 

0.04 

0.02 

 

 

-0.19 

-0.06 

 

1.82 

-1.51 

-.46 

 

.07 

.14 

.65 

2 

Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

 

6.87 

-0.05 

-0.00 

-0.02 

0.03 

0.14 

-0.18 

-0.06 

 

4.30 

0.05 

0.03 

0.02 

0.32 

0.37 

0.32 

0.32 

 

 

-0.15 

-0.02 

-0.12 

0.01 

0.05 

-0.08 

-0.03 

1.60 

-1.06 

-0.16 

-0.82 

0.09 

0.38 

-0.58 

-0.19 

.12 

.30 

.88 

.42 

.93 

.71 

.57 

.85 

  Model 1: adjusted R2 = .04; F(2,61) = 1.32, ns 
  Model 2: adjusted R2 = .06; F(7,61) = .50, ns 
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Appendix 6.17 Multiple linear regression analyses of relationship between retroactive 
interference and health parameters 
 

 

 

 

 

 

 

 

 

 

 

  Retroactive Interference (n=61) 

Model  B SE B β t Sig 

11 

Constant 

Age 

IQ 

-3.25 

0.10 

0.01 

 

2.93 

.04 

.02 

0.32 

0.06 

-1.11 

2.60 

0.50 

.27 

.01 

.62 

22 Constant 

Age 

IQ 

SBP 

PC1 

PC2 

PC3 

PC4 

-2.18 

0.11 

0.02 

-0.01 

-0.19 

-0.00 

-0.31 

0.06 

3.91 

0.04 

0.02 

0.02 

0.29 

0.33 

0.29 

0.29 

0.34 

0.09 

-0.09 

-0.08 

-0.00 

-0.14 

0.03 

-0.56 

2.46 

0.63 

-0.65 

-0.64 

-0.01 

-1.09 

0.21 

.58 

.02 

.54 

.52 

.52 

.99 

.28 

.84 

               Model 1:  adjusted R2 = .08; F(2,60) = 3.67, p< .05 
 Model 2:   adjusted R2 = .05; F(7,60) = 1.27, ns  
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 Appendix 6.18 Multiple linear regression analyses of relationship between  
 VSLT  designs and health parameters 

 VSLT designs (n=55) 

Model  B SE B β t Sig 

11 Constant 

Age 

IQ 

14.58 

-0.11 

0.07 

3.78 

0.05 

0.03 

 

-0.27 

0.32 

3.85 

-2.10 

2.48 

.00 

.04 

.02 

22 Constant 

Age 

IQ 

SBP 

PC1 

PC2 

PC3 

PC4 

18.91 

-0.12 

0.06 

-0.02 

-0.02 

-0.58 

0.19 

0.18 

4.83 

0.06 

0.03 

0.03 

0.36 

0.43 

0.38 

0.36 

 

-0.30 

0.27 

-0.11 

-0.01 

-0.19 

0.07 

0.07 

3.92 

-2.14 

1.96 

-0.78 

-0.05 

-1.34 

0.49 

0.50 

.00 

.04 

.06 

.44 

.96 

.19 

.63 

.62 

  Model 1: adjusted R2 = .13; F(2,54) = 4.85, p< .01 
  Model 2: adjusted R2 = .16; F(7,54) = 1.77, ns  

 

 

Appendix 6.19 Multiple linear regression analyses of relationship between VSLT 
locations and health parameters 

 VSLT locations (n=55) 

Model  B SE B β t Sig 

1 
Constant 

Age 
IQ 

16.57 
-0.18 
0.06 

6.07 
0.08 
0.04 

 
-0.29 
0.17 

2.73 
-2.17 
1.28 

.01 

.03 

.21 

2 
Constant 

    Age 
    IQ 

    SBP 
    PC1 
    PC2 
    PC3 
    PC4 

15.44 
-0.19 
0.04 
0.03 
0.20 
-0.23 
0.77 
0.12 

7.82 
0.09 
0.05 
0.04 
0.59 
0.70 
0.61 
0.58 

 
-0.31 
0.13 
0.09 
0.05 
-0.05 
0.18 
0.03 

1.97 
-2.14 
0.90 
0.63 
0.33 
-0.33 
1.27 
0.22 

.05 

.04 

.37 

.53 

.74 

.75 

.21 

.83 

  Model 1: adjusted R2 = .07; F(2,54) = 2.94, p= .06 
  Model 2: adjusted R2 = .10;; F(7,54) = 1.10, ns 
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Appendix 6.20 Multiple linear regression analyses of relationship between VSLT 
designs/locations and health parameters 

 VSLT designs/locations (n=55) 

Model  B SE B β t Sig 

1 Constant 
Age 

IQ 

9.49 
-0.26 
0.11 

7.33 
0.10 
0.05 

 
-0.33 
0.26 

1.30 
-2.61 
2.08 

.20 

.01 

.04 

2  
Constant 

    Age 
    IQ 

    SBP 
    PC1 
    PC2 
    PC3 
    PC4 

9.88 
-0.30 
0.09 
0.03 
-0.05 
-0.74 
0.91 
0.21 

9.42 
0.11 
0.06 
0.05 
0.71 
0.85 
0.74 
0.69 

 
-0.39 
0.21 
0.09 
-0.01 
-0.13 
0.17 
0.04 

1.05 
-2.73 
1.49 
0.65 
-0.08 
-0.87 
1.23 
0.31 

.30 

.01 

.14 

.52 

.94 

.39 

.22 

.76 

  Model 1: adjusted R2 = .13; ΔR2  = .17; F(2,54) = 5.12, p< .01 
  Model 2: adjusted R2 = .14; ΔR2  = .04; F(7,54) = 1.71, ns 

 

 

Appendix 6.21 Multiple linear regression analyses of relationship between Bakan 
false positives and health parameters 

 Bakan false positives (n=63) 

Model  B SE B β t Sig 

11 Constant 

Age 

IQ 

9.14 

-0.07 

-0.02 

4.06 

0.05 

0.03 

 

-0.16 

-0.09 

2.25 

-1.24 

-0.74 

.03 

.22 

.46 

22 Constant 

    Age 

    IQ 

    SBP 

    PC1 

    PC2 

    PC3 

    PC4 

8.59 

-0.07 

-0.01 

0.00 

0.27 

-0.34 

-0.83 

-0.02 

5.17 

0.06 

0.03 

0.03 

0.38 

0.44 

0.38 

0.38 

 

-0.17 

-0.06 

-0.01 

0.09 

-0.11 

-0.28 

-0.01 

1.66 

-1.24 

-0.44 

-0.06 

0.71 

-0.79 

-2.17 

-0.05 

.10 

.22 

.66 

.95 

.48 

.44 

.03 

.96 

 Model 1: adjusted R2 = .03; F(2,62) = 1.12, ns 
 Model 2: adjusted R2 = .14; F(7,62) = 1.23, ns 

 



287 
 

Appendix 6.22 SAS PROC mixed models for the Visual Verbal Learning Test (VVLT) 

 

Total Acquisition Delayed recall Recognition List A 
Retroactive 
Interference 

Proactive 
Interference 

Main effect terms 
Visit 
condition 

 
F(1,20)=1.61, ns 
F(2,21)=2.75, p= .09 

F(1,21)=1.14, ns 
F(2,21)=1.33, ns 

F(1,20)=0.62, ns 
F(2,21)=0.53, ns  

F(1,21)=2.29, ns 
F(2,22)= 0.78, ns 

F(1,20)=0.02, ns 
F(2,22)=0.63, ns 

Covariate 
Baseline 
Age 
IQ 

 
F(1,21)=28.1, p<.0001 
 
 

F(1,21)=20.7, p<.001 
 
 

F(1,21)=4.39, p< .05 
 
 

F(1,22)=3.09, p = .09 
 
 

F(1,22)=0.23, ns 
 
 

Interaction terms 
Baseline*visit 
Baseline*condition 
Visit*condition 
Age*condition 
IQ*condition 

 
F(1,20)=1.12, ns 
F(2,21)=2.5, ns 
F(2,20)=0.25, ns 
 
 

F(1,21)=1.14, ns 
F(2,21)=1.76, ns 
F(2,21)=1.76, ns 
 
 

F(1,20)=0.21, ns 
F(2,21)=0.40, ns 
F(2,20)=0.61, ns 
 
 

F(1,21)=1.47, ns 
F2,22)= 1.32, ns 
F(2,21)=0.70, ns 
 
 

F(1,20)=2.64, ns 
F(2,22)=0.91, ns 
F(2,22)=0.59, ns 
 
  

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.23 SAS PROC mixed models for the Visual Spatial Learning Test (VSLT) 

 
Designs Locations 

Immediate 
Designs/Locations 

Delayed 
designs/locations 

Main effect terms 
Visit 
condition 

F(1,22)=0.03, ns 
F(2,22)=0.61, ns 

F(1,21)=7.94, p< .01 
F(2,22)=0.93, ns 

F(1,22)=4.18, p< .05 
F92,22)=0.02, ns 

F(1,22)= 2.40, ns 
F(2,22)=2.09, ns 

Covariate 
Baseline 
Age 
IQ 

F(1,22)=15.09, p< .001 
 
 

F1,22)=5.2, p< .05 
 
 

F(1,22)=4.20, p< .05 
 
 

F(1,21)=14.71, p< .001 
 
 

Interaction terms 
Baseline*visit 
Baseline*condition 
Visit*condition 
Age*condition 
IQ*condition 

F(1,22)=0.00, ns 
F(2,22)=0.50, ns 
F(2,22)=3.01, p= .07 
 
 

F(1,21)=6.80, p< .05 
F(2,22)=0.57, ns 
F(2,21)=1.11, ns 
 
 

F(1,22)=4.65, p< .05 
F(2,22)=0.05, ns 
F2,22)=1.71, ns 
 
 

F(1,21)=1.91, ns 
F(2,22)=2.89, p= .08 
F(2,21)=0.56, ns 
 
 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.24 SAS PROC mixed models for the Bakan Rapid Visual Information Processing Task  

 
Correct hits 

Reaction time of 
correct hits 

False-positive 
responses 

Missed responses 

Main effect terms 
Visit 
condition 

F(1,20)=1.06, ns 
F(2,21)= 2.00, ns 

F(1,20)=0.55, ns 
F(2,21)=1.26, ns 

F(1,18)=0.26, ns 
F(2,21)=9.76, p< .001 

F(1,21)=3.78, p= .07 
F(2,22)=0.48, ns 

Covariate 
Baseline 
Age 
IQ 

F(1,21)=120.32, p< .001 
 
 

F(1,21)=15.56, p<.001 
 
 

 
 
F(1,21)=5.07, p< .05 
F(1,21)=10.05, p< .01 
 

F(1,22)=81.61, p< .001 
 
 

Interaction terms 
Baseline*visit 
Baseline*condition 
Visit*condition 
Age*condition 
IQ*condition 

F(1,20)=0.14, ns 
F(2,21)=1.60, ns 
F(2,20)=0.03, ns 
 
 

F(1,20)=0.66, ns 
F(2,21)=1.26, ns 
F(2,20)=1.11, ns 
 
 

F(1,18)=0.02, ns 
F(2,21)=2.66, p= .09 
F(2,18)=1.81, ns 
 
 

F(1,21)=0.77, ns 
F(2,22)=0.36, ns 
F(2,21)= 0.00, ns 
 
 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.25 SAS PROC mixed models for the Corsi spatial working memory task  

 
Total correct 
responses 

Reaction time of 
correct responses 

Correct responses: 
crossing trials 

Correct responses: 
non-crossing trials 

Main effect terms 
Visit 
condition 

 
F(1,21)=3.56, p< .07 
F(2,21)=5.44, p< .01 

 
F(1,21)=0.00, ns 
F(2,20)=1.96, ns 

 
F(1,22)=0.10, ns 
F(2,20)=0.25, ns, 

 
F(1,21)=0.00, ns 
F(2,22)=1.85, ns 

Covariate 
Baseline 
Age 
IQ 

 
F(1,21)=92.76, p<.001  
 
F(1,21)=9.71, p<.01 

 
F(1,20)=27.3, p<.001 
 
F(1,20)=5.58, p< .05 

 
F(1,20)=16.51, p<.001  
F(1,20)=3.42, p= .07 
F(1,20)=4.73, p< .05 

F(1,22)=12.58, p<.01 
 

Interaction terms 
Baseline*visit 
Baseline*condition 
Visit*condition 
Age*condition 
IQ*condition 

 
F(1,21)=3.85, p= .06 
F(2,21)=5.97, p< .01 
F(2,21)=0.16, ns 
 
 

 
F(1,21)=0.11, ns 
F(2,20)=2.09, ns 
F(2,21)=2.41, ns 
 
 

F(1,22)=0.06, ns 
F(2,20)=0.26, ns 
F(2,22)=0.56, ns  
 

F(1,21)=0.13, ns 
F(2,22)=2.12, ns 
F(2,21)=0.19, ns 
 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.26 SAS PROC mixed models for the Tower of Hanoi task 

 
errors Time to solve task 

Main effect terms 
Visit 
condition 

F(1,19)=0.42, ns 
F(2,21)=0.31, ns 

F(1,20)=6.38, p< .05 
F(2,21)=3.25, p= .06 

Covariate 
Baseline 
Age 
IQ 

F(1,21)=10.19, p<.01 
 
 

F(1,21)=69.19, p<.001 
F(1,15)=0.11, ns 
F(1,15)=0.22, ns 

Interaction terms 
Baseline*visit 
Baseline*condition 
Visit*condition 
Age*condition 
IQ*condition 

F(1,19)=0.06, ns  
F(2,22)=0.03, ns  
F(2,20)=0.06, ns 
 
 

F(1,20)=10.57, p< .01 
F(2,21)=6.25, p< .01 
F(2,20)=2.88, p= .08 
F(2,15)=0.08, ns 
F(2,15)=0.19, ns 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.27 SAS PROC mixed models for Grooved pegboard task 

 
Completion time: non-

dominant hand 
Completion time: non-

dominant hand 

Main effect terms 
Visit 
condition 

 
F(1,21)=3.03, ns  
F(2,21)=7.60, p< .01 

 
F(1,20)=0.01, ns 
F(2,21)=4.82, p< .05 

Covariate 
Baseline 
Age 
IQ 

F(1,21)=146.83, p<.001 
 

F(1,21)=80.96, p<.001 
 

Interaction terms 
Baseline*visit 
Baseline*condition 
Visit*condition 
Age*condition 
IQ*condition 

F(1,21)=2.76, ns  
F(2,21)=7.74, p< .01 
F(2,21)=1.93, ns 
 

F(1,20)=0.03, ns  
F(2,21)=4.59, p< .05 
F(2,20)=1.54, ns 
 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.28 SAS PROC mixed models for indices of cardiovascular health 

 

Absolute VO2 max Relative VO2 max Lactate Threshold 
Percentage LT at 

VO2max 
Mean arterial 

pressure  

Main effect terms 
condition F(2,16)=0.94, ns F(2,18)=2.26, ns F2,19)=0.31, ns F(2,18)=0.26, ns F(2,18)=8.15, p<.01 

Covariate 
Baseline 
Age 

F(1,16)=180.79, p<.0001 
 

F(2,18)=130.82, p<.0001 
 

F(1,19)=14.04, p<.001 
F(1,19)=0.05, ns 

F(1,18)=4.23, p<.05 
F(1,18)=0.42, ns 

F(1,18)=39.84, p<.001 
F(1,18)=3.31, p=.08 

Interaction terms 
Baseline*condition 
Age*condition 

F(2,16)=0.00, ns 
F2,16)=0.67, ns 

F(2,18)=1.95, ns 
 

F(2,19)=0.83, ns 
F(2,19)=0.04, ns 

F(2,18)=0.20, ns 
F(2,18)=0.17, ns 

F(2,18)=4.77, p<.05 
F(2,18)=1.38, ns 

Where no F value is presented this interaction or covariate was not retained in the final model 

 

Appendix 6.29 SAS PROC mixed models for indices of obesity 
 

Percentage body fat BMI Waist circumference Waist-hip ratio 

Main effect terms 
Visit 
condition 

F(1,20)=3.10. p= .09 
F(2,22)=1.07, ns  

 
F(1,19)=0.76, ns 
F(2,20)=0.18, ns 

F(1,19)=0.81, ns 
F(2,21)=0.44, ns 

F(1,21)=3.15, p= .09 
F(2,22)=0.80, ns 

Covariate 
Baseline 
Age 

F(1,22)=77.79, p<.001 
 

F(1,20)=958.53, p<.0001 
 

F(1,21)=399.40, p< .001 
 

F(1,22)=105.43, p<.001 
 

Interaction terms 
Baseline*visit 
Baseline*condition 
Visit*condition 
Age*condition 

F(1,20)=2.45, ns 
F(2,22)=1.07, ns 
F(2,20)=1.15, ns 
 

F(1,19)=0.60, ns 
F(2,20)=0.17, ns 
F(2,19)=3.67, p< .05 
 

F(1,19)=0.89, ns 
F(2,21)=0.42, ns 
F(2,19)=1.99, ns 
 

F(1,21)=3.66, p= .07 
F(2,22)=0.88, ns 
F(2,21)=3.82, p< .05 
 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.30Standard Operating Procedure: Finger-prick capillary blood sample 

 
SOP for Finger Prick Blood Glucose analysis using YSI and Insulin analysis using ELISA 
  
Note: This SOP is an amendment to the IPSEC approved SOP 202 (Finger Prick Blood 
Glucose Testing) – version 4 (19 June 2007) and adds information specific to finger prick 
sample collection for YSI (glucose) and ELISA (Insulin) analyses. 
 
1.  Staff 
 
In order to perform finger prick blood glucose (FPBG) and finger prick blood insulin (FPBI) testing 
on volunteers, staff must have read the YSI Blood Glucose Analyser operating manual, the Unistik 
3 and Microvette CB 300 manuals and the SOP for the ALPCO insulin ELISA kit. In-house training 
includes familiarisation with the testing equipment and observing the procedure as carried out by 
a competent/experienced member of staff (minimum of 2 separate FPBG/FPBI events). Staff 
should practise the procedure on themselves or a colleague prior to taking samples from a 
volunteer. Subsequent training involves supervised practise (FPBG/ FPBI testing under the 
supervision of a competent/experienced member of staff). Supervised practise should take place 
on at least 2 occasions (until the member of staff feels competent to undertake this procedure). 
Following this the competence of the staff member should be confirmed by an appropriate 
assessor and this must be documented in the HARU training log (See Appendix 1). A 
competent/experienced assessor is defined as someone who has performed finger prick blood 
glucose testing successfully and without incident on at least 10 occasions following in-house 
training. 
 
2.  Volunteers 
 
All volunteers must be well informed of the study and its requirements (via the Participant 
Information Sheet and verbal explanation) and have signed the associated consent form. (See 
appendices 2 and 3 for examples of a typical Participant Information Sheet and consent form for 
a study using finger prick blood sampling with mandatory information highlighted). 
 
3.  Preparation of Room/Test Area. 
 
The room must be clean and tidy. The desk/table should be cleaned with a 2% solution of Virkon. 
All equipment and study paperwork should be prepared and checked in advance. The meter and 
lancing device should be cleaned with a 2% solution of Virkon and all equipment placed in a clean 
kidney dish. 
 
Equipment blood sampling:   

 Unistik 3 extra single use safety 

 Microvette CB 300 tubes (Sarstedt)  

 Sterets 

 Gauze 

 Sterile scissors 

 Liquid nitrogen 
  
Equipment blood analysis: 

 YSI blood glucose analyser & YSI kit box 

 ALPCO insulin ELISA kit 

 Precision pipettes with disposable tips capable of dispensing 25‐100 μl 

 Repeating or multi‐channel pipette capable of dispensing 100 μl 

 Volumetric container and pipettes for reagent preparation 

 Distilled or deionized water 

 Microplate washer or wash bottle 

 Orbital microplate shaker capable of 700‐900 rpm 

 Microplate reader with 450 and 620‐650 nm filter 
 
4.  Testing 
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4.1 Blood sampling and storage 
 
Wash testing site with soap and warm water and make sure it is completely dry before testing. 
Explain to the volunteer clearly and confidently what you are going to do and show them the 
equipment you will be using.  
Allow the volunteer to ask any questions and talk through any concerns 
 

1. Hold the Unistik 3 body and twist off the grey lancet cap until you feel it separate from 
the yellow body. Don’t pull, just twist. Dispose of the grey cap in the bin. 

 
 
 
 
 
 
 

2. Choose a site as indicated by the shaded areas on 
pictures.          

 
3. Hold the Unistik device firmly against the chosen site and press the release button. To 

obtain a drop of blood, massage the sample site, taking care not to squeeze too hard at 
the site 

 
 
 
 
 
 
 
 

4. Remove the conically shaped inner tube of the Microvette from the carrier tube. Hold 
the Microvette in a horizontal or slightly inclined position and collect the blood sample 
with the capillary tip (filling volume 300uL). 

 
5. When filled, detach the small stopper attached to the cap and push the stopper firmly 

onto the tip of the tube. 
 

6. Replace the cap to close the tube.  
 

7. Give the volunteer a Steret and piece of gauze to clean the sample site. 
 

8. Place the collection tube into the carrier tube. Mix the sample thoroughly by gently 
inverting the Microvette  

 
9. Measure Blood Glucose using the YSI Blood Glucose Analyser (see 4.2)  

 
10. Centrifuge the remaining sample for insulin analysis (2000x g/ 5 min / 20°C) to 

generate plasma. Wear gloves! 
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11. Take 150µL of the clarified plasma and freeze in liquid nitrogen for transport to Leeds 
Dental Institute. Store the samples at -80°C until insulin analysis using ELISA (see 4.3). 
Liquid nitrogen should be collected in a ‘dewar’ flask using appropriate protective 
clothing (gloves and face protection). The nitrogen should never be used or taken in an 
enclosed space (e.g. a lift) because of the risk of suffocation. 

 
4.2 Measuring Blood Glucose using the YSI Blood Glucose Analyser 
 
The YSI kit box is kept in the fridge between G39 & G40. 
 

1. The YSI will be in Standby mode. To exit standby press standby, then 2 then enter. 
 

2. Firstly run the buffer solution and the internal standard through the system. You do this 
by pressing Menu and then 1 - service. Cycle the buffer first by pressing 2-buffer. This 
will cycle the buffer solution. Make sure that the buffer flows to the waste bottle. Cycle 
the internal standard next by pressing 3-cal. Make sure the internal standard flows to 
the sample chamber. 

 
3. You then need to check the probe response. Enter the diagnostics menu by pressing 

Menu then 3-diagnostics. To see the probe response press 3-probe. The number 
displayed on the screen is the baseline current (Ib). Press 1-flush. Buffer will be 
flushed. The baseline reading should be <5nA. Then press 2-calibrator. The cal pump 
will cycle and some of the standard will be aspirated. The plateau (pL) reading should 
be >8nA above the baseline Ib current. If there is not at least an 8nA difference 
between the two readings, do not run the instrument. 

 
4. Place the unit into run mode by pressing the Menu then the Run key. It will flush buffer 

and the baseline will be checked for <5nA and stability. The instrument is then 
calibrated and a report printed and the screen will display ‘ready for sample’. 

 
5. Check the membranes are OK by using a small amount of YSI 2363 Potassium 

Ferrocyanide solution as a sample.  Press sample and when the sipper has stopped 
hold the tube so only 3mm of the sipper is in the sample. Press sample again. The 
acceptable range is between 0 – 5. 

 
6. Do a linearity test using a small amount of YSI 1531 glucose standard. Press sample 

and when the sipper has stopped hold the tube so only 3mm of the sipper is in the 
sample. Press sample again. The acceptable range is between 47.5 to 52.5mM. 

 
7. If any of the above readings are outside the limits press Calibrate to re-calibrate the 

unit and then test them again. 
 

8. The machine is now ready to use. To test a sample, press sample and when the sipper 
has stopped hold the tube so only 3mm of the sipper is in the sample. Press sample 
again. Write down the result or make a note on the printout of the volunteer ID. 

 
NB. In run mode, the YSI calibrates itself every 15 minutes or every 5 samples. It will 
sometimes self –calibrate several times until a stable calibration is established. 
 

9. Once you have finished testing take the unit out of run mode by pressing Run, then 2 
then enter. Put the unit back into standby mode by pressing menu and then standby 

 
4.3 Measuring Blood Insulin using the ALPCO insulin ELISA kit 
 
REAGENT PREPARTION AND STORAGE CONDITIONS 

 The kit should be stored at 2‐8°C. The kit is stable until the expiry date on the box label. 

 All reagents must reach room temperature prior to preparation and subsequent use in 
the assay. 
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Diabetes Controls (Levels 1 and 2) are provided in a lyophilized form. Dilute each control with 
0.6 ml of deionized water. Close the vial with the rubber stopper and cap, then gently swirl the 
vial and allow it to stand for 30 minutes prior to use. The contents of the vial should be in 
solution with no visible particulates. The reconstituted controls are stable for 7 days stored at 2‐
8°C. For longer term storage the controls should be stored at <‐20°C in aliquots for up to 6 
months (repeated freeze/thaw cycles should be avoided). The concentration ranges of the 
controls are provided on the Certificate of Analysis enclosed with each kit; however, it is 
recommended that each laboratory establishes its own acceptable ranges. 
 
Wash Buffer (21X) is diluted with 20 parts deionized water. For example, to prepare Working 
Strength 
Wash Buffer, dilute 20 ml of Wash Buffer (21X) with 400 ml of deionized water. Working 
Strength Wash 
Buffer is stable for 30 days at room temperature (18‐25°C). 
 
 
ASSAY PROCEDURE 
Bring all reagents to room temperature prior to use. Briefly vortex all reagents before use. A 
standard curve must be included with each assay and/or with each plate, if more than one plate 
is run at a time. 
All standards, controls, and samples should be run in duplicate. 

1. Designate enough microplate strips for the standards, controls, and desired number of 
samples. The remaining strips should be stored in the tightly sealed foil pouch 

containing the desiccant and stored at 2‐8°C. 
2. Pipette 25 μl of each standard, reconstituted Control (see Reagent Preparation), or 

sample into their respective wells.  
3. Pipette 100 μl of Detection Antibody into each well. 

4. Cover microplate with a plate sealer and incubate for 1 hour, shaking at 700‐900 rpm 

on an orbital microplate shaker at room temperature (18‐25°C). 
5. Decant the contents of the wells and wash the microplate 6 times with at least 350 μl 

of Working Strength Wash Buffer (see Reagent Preparation) using a microplate 
washer. Alternatively, use a wash bottle to fill the wells, and then discard the liquid, 
inverting and firmly tapping the microplate on absorbent paper towels between washes. 
After the final wash with either the microplate washer or wash bottle, remove any 
residual Wash Buffer and bubbles from the wells by inverting and firmly tapping the 
microplate on absorbent paper towels. (See Microplate Locking Diagram below.) 

6. Pipette 100 μl of TMB Substrate into each well. 
7. Cover microplate with a plate sealer and incubate for 15 minutes at room temperature 

(18‐25°C) on an orbital microplate shaker (700‐900 rpm). 
8. Pipette 100 μl of Stop Solution into each well. Gently mix the wells to stop the reaction. 

Remove bubbles before reading with microplate reader. 
9. Place the microplate in a microplate reader capable of reading the absorbance at 450 

nm with a reference wavelength of 620‐650 nm. The microplate should be analyzed 
within 30 minutes following the addition of the Stop Solution. 
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CALCULATION OF RESULTS 
 
The Varioscan Flash plate reader should be programmed to quantify the absorbance data ained 
using a 4 parameter logistic (pl) fit.   
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Appendix 6.31 Pedometer log sheets 

 

 The pedometer should be worn on the hip bone and can be worn underneath or 
on top of your clothing.   

 At the start of each day, hold down the reset button until the display shows 0. 
Then wear you pedometer as usual, this will count the number of steps you are 
taking. 

 For step count take final reading at the end of each day when you take the 
pedometer off before bed. Write down the total number of steps for each 
day on this sheet. A new sheet will be provided for you every week. 

 Please do not get the pedometer wet.  Remove it for swimming, having a bath or 
shower and record on this log sheet.  Please remember to put it back on again 
after you have taken it off.  

 You do not need to wear the pedometer while you sleep.  Take it off before going 
to bed and record the time.  It’s a good idea to leave it somewhere where you 
can see it first thing in the morning.  Every morning, remember to put it on as 
soon as you wake up.  

 You do not have to achieve your target increase of steps in one go, this can made 
up over the day bit by bit.  

 

At baseline your average step count was X,XXX over the seven days.  
 
Your target number of steps to achieve on your 3 chosen walk days is X,XXX. This 
equates to approximately 30 extra minutes of walking on each walk day. It is ok to 
be slightly below this, and it is absolutely fine to go over this amount. Just write 
down the step count at the end of each day. You can select which are walk days 
and rest days. 

Week 1 Date Walk day or  
Rest day? 

Time put on Time taken 
off 

Total Step 
Count  

Day 1 
 

     

Day 2      

Day 3      

Day 4      

Day 5      

Day 6      

Day 7      

 

Instructions for wearing the pedometer and log sheet 

Please wear the pedometer every day during the study 
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Appendix 6.32SAS PROC mixed models for the Visual Verbal Learning Test (VVLT) 

 

Total Acquisition Delayed recall Recognition List A 
Retroactive 
Interference 

Proactive 
Interference 

Main effect terms 

Condition F(1,15)=0.26, ns F(1,21)=0.73, ns F(1,21)=1.09, ns F(1,16)=0.28, ns F(1,19)=0.003, ns 

Covariate 

Baseline 

Steps 

Age 

IQ 

F(1,22)=22.30, p<.001 

F(1,15)=1.04, ns 

F(1,15)=0.02, ns 

F(1,15)=0.14, ns 

F(1,21)=41.83, 
p<.0001 

F(1,21)=3.11, p=.09 

 

F(1,21)=3.14, p=.09 

F(1,21)=18.10, p<.001 

F(1,21)=0.14, ns 

 

F(1,21)=3.81, p=.06 

F(1,16)=1.64, ns 

F(1,16)=1.63, ns 

F(1,16)=0.73, ns 

F(1,16)=0.01, ns 

F(1,19)=2.49, ns 

F(1,19)=1.25, ns 

F(1,19)=0.36, ns 

 

Interaction terms 

Baseline*condition 

Steps*condition 

Age*condition 

IQ*condition 

F(1,15)=2.95, ns 

 

F(1,15)=0.55, ns 

F(1,15)=0.45, ns 

F(1,21)=3.11, ns 

 

 

 

F(1,21)=0.66, ns 

 

 

 

F(1,16)=0.97, ns 

 

 

 

F(1,19)=1.92, ns 

 

F(1,19)=0.36, ns 

 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.33 SAS PROC mixed models for the Visual Spatial Learning Test (VSLT) 
 

Designs Locations 
Immediate 

Designs/Locations 
Delayed 

designs/locations 

Main effect terms 

condition F(1,19)=1.73, ns F(1,16)=0.28, ns F(1,16)=1.04, ns F(1,16)=0.05, ns 

Covariate 

Baseline 

Steps 

Age 

IQ 

F(1,19)=2.06, ns 

F(1,19)=3.64, p=.07 

 

 

F(1,16)=0.01, ns 

F(1,16)=2.17, ns 

F(1,16)=1.83, ns 

 

F(1,16)=0.06, ns 

F(1,16)=1.24, ns 

F(1,16)=1.13, ns 

 

F(1,16)=0.65, ns 

F(1,16)=3.65, p=.07 

F(1,16)=3.66, p=.07 

 

Interaction terms 

Baseline*condition 

Steps*condition 

Age*condition 

IQ*condition 

F(1,19)=1.63, ns 

 

 

 

F(1,16)=0.13, ns 

 

 

 

F(1,16)=0.72, ns 

 

 

 

F(1,16)=0.05, ns 

 

 

 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.34 SAS PROC mixed models for the Bakan Rapid Visual Information Processing Task 

 
Correct hits 

Reaction time of 
correct hits 

False-positive 
responses 

Missed responses 

Main effect terms 

condition F(1,19)=2.36, ns F(1,17)=0.22, ns F(1,19)=7.92, p<.01 F(1,18)=2.84, ns 

Covariate 

Baseline 

Steps 

Age 

IQ 

F(1,19)=64.65, p<.0001 

F(1,19)=0.16, ns 

 

 

F(1,17)=5.08, p<.05 

F(1,17)=0.03, ns 

F(1,17)=0.01, ns 

F(1,17)=0.02, ns 

F(1,19)=0.59, ns  

F(1,19)=2.47, ns 

 

 

F(1,18)=59.64, p<.0001 

F(1,18)= 0.13, ns 

F(1,18)=0.69, ns 

F(1,18)=1.99, ns 

Interaction terms 

Baseline*condition 

Steps*condition 

Age*condition 

IQ*condition 

F(1,19)=0.95, ns 

 

F(2,19)=14.32, p<.001 

F(2,19)=6.14, p<.01 

F(1,17)=4.55, p<.05 

 

F(1,17)=1.40, ns 

F(1,17)=0.55, ns 

F(1,19)=2.47, ns 

 

F(2,19)=2.75, p=.09 

 

F(1,18)=0.68, ns 

 

F(1,18)=16.87, p<.001 

F(1,18)=8.46, p<.01 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.35 SAS PROC mixed models for the Corsi spatial working memory task 

 Total correct 
responses 

Reaction time of 
correct responses 

Correct responses: 
crossing trials 

Correct responses: 
non-crossing trials 

Main effect terms 

condition F(1,18)=0.00, ns F(1,18)=0.02, ns F(1,21)=0.02, ns F(1,17)=5.03, p<.05 

Covariate 

Baseline 

Steps 

Age 

IQ 

F(1,18)=20,14, p<.001 

F(1,18)=2.82, ns 

F(1,18)=0.87, ns 

F(1,18)=1.75, ns 

F(1,18)=10.21, p<.01 

F(1,18)=0.90, ns 

F(1,18)=0.02, ns 

F(1,18)=0.12, ns 

F(1,21)=4.98, p<.05 

F(1,21)=0.47, ns 

F(1,21)=0.43, ns 

 

F(1,17)=0.20, ns 

F(1,17)=0.92, ns 

F(1,17)=5.07, p<.05 

F(1,17)=5.39, p<.05 

Interaction terms 

Baseline*condition 

Steps*condition 

Age*condition 

IQ*condition 

F(1,18)=5.82, p<.05 

F(1,18)=6.58, p<.05 

F(1,18)=0.50, ns 

F(1,18)=0.29, ns 

F(1,18)=0.33, ns 

 

F(1,18)=0.23, ns 

F(1,18)=0.32, ns 

F(1,21)=0.00, ns 

 

 

 

F(1,17)=1.22, ns 

 

F(1,17)= 1.50, ns 

F(1,17)=1.74, ns 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.36 SAS PROC mixed models for executive function outcomes 

 RT Incongruent Stroop Interference TMT A TMT B TMT BminusA 

Main effect terms 

condition F(1,16)=1.73, ns F(1,17)=0.30, ns F(1,19)=0.00, ns F(1,16)=0.90, ns F(1,16)=2.09, ns 

Covariate 

Baseline 

Steps 

Age 

IQ 

F(1,16)=0.30, ns 

F(1,16)=0.72, ns 

F(1,16)=6.02, p<.05 

F(1,16)=1.35, ns 

F(1,17)= 0.23, ns 

F(1,17)= 0.12, ns 

F(1,17)=2.67, ns 

F(1,17)=0.10, ns 

F(1,19)= 1.49, ns 

F(1,19)=6.85, p<.017 

F(1,19)=0.37, ns 

 

F(1,16)=19.30, p<.001 

F(1,16)=1.64, ns 

F(1,16)=1.74, ns 

F(1,16)=2.85, ns 

F(1,16)=47.63, p<.0001 

F(1,16)=10.39, p<.01 

F(1,16)=3.10, ns 

F(1,16)=8.05, p<.01 

Interaction terms 

Baseline*condition 

Steps*condition 

Age*condition 

IQ*condition 

F(1,16)=2.86, ns 

F(1,16)=0.97, ns 

F(1,16)=0.35, ns 

F(1,16)=0.45, ns 

F(1,17)= 5.67, p<.05 

F(1,17)= 0.52, ns 

F(1,17)=0.40, ns 

F(1,17)=0.20, ns 

F(1,19)=0.18, ns 

 

 

 

F(1,16)=0.27, ns 

 

F(1,16)=6.87, p<.05 

F(1,16)=3.26, p=.09 

F(1,16)=0.42, ns 

 

 

F(1,16)=1.54, ns 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.37 SAS PROC mixed models for indices of cardiometabolic health 

 
Fasting glucose Fasting insulin HOMA-IR  

Systolic blood 
pressure 

Diastolic blood 
pressure 

Main effect terms 

Condition F(1,17)=2.70, ns F(1,17)=4.47, p<.05 F(1,16)=2.63, ns F(1,23)=0.24, ns F(1,21)=2.70, ns 

Covariate 

Baseline 

Steps  

Age 

F(1,17)=4.38, p=.05 

F(1,17)=5.76, p<.05 

F(1,17)=6.94, p<.05 

F(1,17)=79.86, p<.0001 

F(1,17)=2.28, ns 

F(1,17)=9.18, p<.01 

F(1,16)=76.38, p<.0001 

F(1,16)=0.00, ns 

F(1,16)=3.16, p=.09 

F(1,23)=39.54, p<.0001 

F(1,23)=3.41, p=.07 

 

F(1,21)=21.53, p<.0001 

F(2,21)=0.00, ns 

 

Interaction terms 

Baseline*condition 

Steps*condition 

Age*condition 

F(1,17)=0.77, ns 

F(1,17)=4.04, p=.06 

F(1,17)=1.51, ns 

F(1,17)=1.02, ns 

 

 

F(1,16)=3.25, p=.09 

 

 

F(1,23)=0.09, ns 

 

 

F(1,21)=4.88, p<.05 

 

F(2,21) =0.70, ns 

Where no F value is presented this interaction or covariate was not retained in the final model 
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Appendix 6.38 Age (horizontal axis) plotted against fasting insulin 
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Appendix 6.39 SAS PROC mixed models for indices of obesity 

 Percentage body fat BMI Waist circumference Waist-hip ratio 

Main effect terms 

Condition F(1,22)=4.37, p<.05 F(1,23)=2.29, ns F(1,21)=0.04, ns F(1,24)=0.12, ns 

Covariate 

Baseline 

Steps  

Age 

F(1,22)=524.72, p<.0001 

F(1,22)=0.19, ns 

 

F(1,23)=1325.12, p<.0001 

F(1,23)=8.33, p<.01 

 

F(1,21)=199.7, p<.0001 

F(1,21)=0.06, ns 

F(1,21)=0.03, ns 

F(1,24)=68.42, p<.0001 

F(1,24)=0.12, ns 

 

Interaction terms 

Baseline*condition 

Steps*condition 

Age*condition 

F(1,22)=3.12, p=.09 

 

 

F(1,23)=1.63, ns 

 

 

F(1,21)=0.00, ns 

 

 

F(1,24)=0.12, ns 

 

 

Where no F value is presented this interaction or covariate was not retained in the final model 
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