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ABSTRACT 
In the Helicobacter hepaticus (Hh) colitis model, Hh infection of either wild-type mice treated 

with a blocking antibody to the IL-10 receptor (anti-IL-10R) or IL-10 KO mice results in 

intestinal inflammation associated with inflammatory Th1 and Th17 responses. Recent findings 

suggest that altered expression of the post-transcriptional gene regulators microRNAs contribute 

to pathogenic immune responses during intestinal inflammation. Here, examination of 

microRNA expression during Hh colitis showed that microRNAs are differentially expressed in 

the inflamed large intestine of Hh+ IL-10 KO mice compared to uninfected controls, both at the 

tissue-level and the CD4+ T-cell level. Kinetic examination of the cecal and colonic levels of 

miR-155, miR-326 and miR-132 (microRNAs previously shown to augment Th1 and/or Th17 

responses) demonstrated that miR-155 was up-regulated and miR-326 and miR-132 were down-

regulated at different time points post Hh infection. Furthermore, the change in expression of 

these microRNAs coincided with inflammation development. Microarray profiling of large 

intestine LP CD4+ T cells revealed that two microRNAs were significantly up-regulated (miR-

21a and miR-31) and seven microRNAs were significantly down-regulated (miR-125a, miR-

125b, miR-139, miR-181a, miR-192, miR-30a and miR-467c) in colitic IL-10 KO mice 

compared to uninfected controls.  

The anti-inflammatory cytokine IL-10 is necessary for protection against intestinal 

inflammation. Here, the phenotype of IL-10-producing LP CD4+ T cells was examined in a non-

inflammatory immune response (Hh+ WT mice) and in an inflammatory immune response 

(Hh+/anti-IL-10R-treated WT mice). Compared to uninfected controls, the Hh+ mice showed a 

slight expansion in IL-10+ IL-17A+FoxP3+/- cells whereas the Hh+/anti-IL-10R-treated mice 

showed a significant expansion in all the IL-10+ LP CD4+ T cells co-expressed both 

inflammatory cytokines IL-17A and/or IFN-γ and/or the Treg transcription factor FoxP3.  

The experiments carried out in this thesis demonstrate that the profile of two important 

regulatory factors, microRNAs and IL-10, is markedly different in LP CD4+ T cells from the 

colitic setting compared to uninfected controls.  
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CHAPTER 1. GENERAL INTRODUCTION 
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal 

tract and is thought to occur because of a dysregulated immune response to microbial flora. It is 

a complex disease and is thought to occur as a result of a mixture of immune and environmental 

factors in a genetically susceptible individual (Kaser et al., 2010). IBD comprises of two forms; 

Ulcerative colitis (UC) and Crohn’s disease (CD) (Kaser et al., 2010). The main difference 

between these two forms of IBD is that UC is restricted to the colon and inflammation is 

mucosal and sub-mucosal whereas CD can affect any region of the gastro-intestinal tract and the 

extent of inflammation is transmural (Kaser et al., 2010). 

Our lab studies intestinal inflammation using a murine model of colitis where 

inflammation is similar to CD. In this model, infection of IL-10 knock-out  (KO) mice or wild-

type (WT) mice treated with a blocking antibody to the IL-10-receptor (anti-IL-10R) with the 

Gram-negative bacterium Helicobacter hepaticus (Hh) results in chronic typhlocolitis (Kullberg 

et al., 2006; Kullberg et al., 1998). Conversely, WT mice infected with Hh alone do not develop 

intestinal inflammation (Kullberg et al., 1998). The type of inflammation seen in the Hh colitis 

model is similar to that seen in CD in that inflammation is transmural and it is associated with 

pathogenic CD4+ Th1 and Th17 responses (Kaser et al., 2010; Kullberg et al., 1998; Morrison et 

al., 2013). Furthermore, the Hh colitis model is a good model to study CD because it takes into 

account the microbial component of IBD (colitis in this model is triggered by Hh) and it also 

takes into account one of the susceptibility loci for IBD which is the IL10 gene (Lees et al., 

2011). 

Intestinal inflammation is thought to occur because of a breakdown in the regulatory 

mechanisms that keep effector CD4+ T-cell responses in check. Although previous studies in 

our lab have extensively characterised the pathogenic effector CD4+ T-cell response in Hh 

colitis (Morrison et al., 2013), the alteration in regulatory mechanisms is less well understood. 

The work carried out in this thesis sought to examine whether two types of regulatory 

mechanisms are altered in colitic mice compared to uninfected controls. At a cell-intrinsic level, 

we examined whether the profile of microRNAs, which are post-transcriptional gene regulators, 

are altered at the tissue level and CD4+ T-cell level in the large intestine of colitic IL-10 KO 

mice compared to uninfected controls. The anti-inflammatory cytokine IL-10 has been shown to 

be important for preventing intestinal inflammation in the Hh model (Kullberg et al., 2002), as 

well as other models of colitis (Asseman et al., 1999; Carthew and Sontheimer, 2009) and 

represents one of the cell-extrinsic mechanisms of keeping pathogenic immune responses in 

check. Although previous work in the lab has shown that protection against Hh-induced 

inflammation is dependent on IL-10, the phenotype of these cells has not been examined before. 

Here, we examined the phenotype of IL-10+ CD4+ T cells in a non-inflammatory and an 
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inflammatory immune response to Hh to determine whether these cells exhibit an altered 

phenotype in the colitic setting. 

In order to facilitate the understanding of the potential role different CD4+ T cells and 

mciroRNAs play in Hh colitis, the following sections give an overview of the immune system, 

with particular emphasis on the different types of CD4+ T-cell subsets that have been described 

so far, and an in-depth background on microRNAs, their biogenesis, roles in different 

autoimmune diseases as well as their potential use as therapy and as biomarkers. 

1.1 OVERVIEW OF THE MAMMALIAN IMMUNE SYSTEM 
The immune system is highly sophisticated and has evolved a number of defense mechanisms to 

protect against invasion by a multitude of pathogens such as bacteria, viruses, fungi and 

parasites, whilst remaining tolerant of the organism’s own cells as well as the commensal flora 

that inhabit mucosal surfaces (Male et al., 2006). The immune system can be broadly divided 

into two arms; the innate immune system, which comprises of immune cells that mount an 

immediate, non-specific response to a pathogen, and the adaptive immune system, which is 

highly specific for a particular pathogen (Male et al., 2006; Parkin and Cohen, 2001). 

1.1.1 The innate immune system 
The innate immune system is highly conserved in mammals and forms the first line of defense 

against invading pathogens. Broadly defined, it comprises all aspects of the host’s immune 

defense that are encoded in the germline genes of the host. This includes immune cells like 

dendritic cells, macrophages, monocytes, neutrophils, basophils and eosinophils and non-

cellular components like the complement system (Chaplin, 2010; Gomez and Balcazar, 2008).  

Cells of the innate immune system possess germline encoded pathogen recognition receptors 

(PRRs) that recognize conserved molecular structures on pathogens called pathogen-associated 

molecular patterns (PAMPs) (Kumar et al., 2011). Activation of innate immune cells via their 

PRRs triggers complex signaling pathways that result in inflammatory responses mediated by 

various cytokines and chemokines and facilitates eradication of the pathogen (Kumar et al., 

2011). Additionally, a specialized subset of innate immune cells, called antigen-presenting cells 

(APCs), comprised mainly of dendritic cells and macrophages, facilitate an effective immune 

response against infectious agents by initiating the adaptive immune response.  

1.1.2 The adaptive immune system 
The adaptive immune system has immunological memory and manifests with exquisite 

specificity for its target antigen (Chaplin, 2010). It is comprised of lymphocytes, i.e. the T cells 

and B cells (Chaplin, 2010). Lymphocytes develop in the primary lymphoid organs (thymus and 

bone marrow) (Chaplin, 2010; Male et al., 2006). In the thymus, immature T cells develop into 

either CD4+ or CD8+ T cells, while B cells develop in the bone marrow (Chaplin, 2010; Male et 
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al., 2006). T and B cells possess antigen-specific receptors on their surface called the T-cell 

receptor (TCR) and immunoglobulin/B-cell receptor (BCR), respectively. These antigen-

specific receptors are formed by somatic rearrangement from a collection of a few hundred 

germline gene elements, allowing the formation of millions of different antigen-receptors, each 

with a unique antigen specificity (Chaplin, 2010; Male et al., 2006). The assimilation of the 

TCR is random and often results in the development of auto-reactive TCRs. In a process termed 

‘central tolerance’, T cells possessing autoreactive TCR’s are killed by apoptosis in the thymus 

(Male et al., 2006). Any autoreactive T cells that escape central tolerance are kept in check in 

the periphery by a number of mechanisms termed ‘peripheral tolerance’, key enforcers of which 

are the regulatory T cells. Following development, mature T and B cells traffic to secondary 

lymphoid organs like the spleen and lymph nodes from where adaptive immune responses are 

initiated (Chaplin, 2010; Male et al., 2006). 

B cells are directly activated by their cognate antigen to become antibody-secreting 

plasma cells, a process that is aided by CD4+ T cells (Bonilla and Oettgen, 2010; Male et al., 

2006). In contrast, T cells require antigens to be presented to them in the form of a shorter 

peptide fragment complexed to a major histocompatibility complex (MHC) molecule. There are 

two classes of MHC molecules; MHC class I and MHC class II (Bonilla and Oettgen, 2010; 

Male et al., 2006). CD8+ T cells recognize antigens derived from intracellular pathogens 

(Bonilla and Oettgen, 2010; Male et al., 2006). These antigens are complexed to MHC class I, 

which is expressed by all nucleated cells (Bonilla and Oettgen, 2010; Male et al., 2006). In 

contrast, CD4+ T cells are activated by antigenic peptides that are processed and presented by 

APCs expressing MHC class II molecules (Bonilla and Oettgen, 2010; Male et al., 2006).  Upon 

antigen priming, naïve T cells become activated and differentiate into specialized effector cells. 

CD8+ T cells become cytotoxic T cells that can kill pathogen-infected cells. CD4+ T cells 

differentiate into T-helper (Th) cells that support other immune processes such as antibody 

production by B cells, CD8+ T-cell responses, bacteriocidal activity of phagocytes and 

recruitment of other immune cells to the site of infection through secretion of cytokines and 

chemokines (Bonilla and Oettgen, 2010; Male et al., 2006). Differentiated lymphocytes migrate 

from the peripheral lymphoid organs to the site of infection (Bonilla and Oettgen, 2010; Male et 

al., 2006). Following the initial encounter with the pathogen, a portion of the adaptive immune 

cells become long-lived memory cells, which persist in a dormant state even decades after the 

initial sensitization, but rapidly re-express effector functions when they re-encounter their 

specific antigen (Chaplin, 2010; Male et al., 2006). This persistence of immune memory is an 

important part of an effective host response against specific pathogens or toxins when they are 

encountered a second time (Chaplin, 2010; Male et al., 2006). 
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1.2 CD4+ T CELLS 
There are a number of different CD4+ Th subsets that have been described. From a functional 

point of view, CD4+ T cells can be broadly divided into two groups; effector T cells that provide 

protection against invading pathogens and regulatory T cells (Tregs) that prevent autoimmune 

reactions as well as limit effector T-cell responses against invading pathogens when the effector 

response becomes harmful to the host (Cosmi et al., 2014). The following section describes the 

differentiation and functions of different CD4+ T-cell subsets.  
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1.2.1 Effector T cells 
Depending on the antigen and co-stimulus received, naive CD4+ T cells can differentiate into 

different Th subsets, each with distinct functions and cytokine expression profiles. Optimal 

activation and differentiation of CD4+ T cells requires three signals. The first signal is the 

engagement of the TCR with the MHC-peptide complex on the APC (Male et al., 2006; Tao et 

al., 1997). The second signal is the engagement of the co-stimulatory molecule CD28 on the T 

cell with CD80 or CD86 on the APC, and the third signal are cytokines that are either present in 

the local milieu or secreted by the APC (Male et al., 2006; Tao et al., 1997). 

1.2.1.1 T-helper type 1 (Th1) cells 

Th1 cells were first described in 1986 (Mosmann et al., 1986). Th1 cells produce high amounts 

of IFN-γ and other inflammatory cytokines like TNF-α (Mosmann et al., 1986) (Figure 1.1). 

Th1 cells protect against intracellular pathogens by a number of mechanisms. Th1 cells enhance 

the bacteriocidal activity of phagocytes, primarily by IFN-γ mediated activation of the oxidative 

and nitrosative (iNOS) microbicidal systems and upregulation of phagocytosis-promoting Fc 

receptors and complement receptors (Male et al., 2006). Th1 cells also support CD8 effector 

functions (Bevan, 2004) and influence antibody class switching by B cells into isotypes with 

high affinity for activating Fc receptors on phagocytes (Snapper and Paul, 1987) (Male et al., 

2006). The differentiation of Th1 cells from naïve CD4+ T cells is a complex process dependent 

on two cytokines; the heterodimeric cytokine IL-12 (made up of IL-12p35 and IL-12p40 

subunits) and IFN-γ . IL-12 through STAT4 (Thierfelder et al., 1996) and IFN-γ through STAT1 

(Afkarian et al., 2002) induce the expression of the ‘master transcription factor’ of Th1 cells, T-

bet. T-bet enhances IFN-γ production by Th1 cells and amplifies Th1 differentiation by 

increasing its own expression (Szabo et al., 2000). The Runt-related transcription factors Runx1 

and Runx3 also play a role in Th1 cell differentiation. Runx1, in co-ordination with T-bet 

inhibits Th17 cell development by interfering with RORγt (Lazarevic et al., 2011). Runx3, 

together with T-bet binds to the IFN-γ promoter and silences the gene encoding IL-4 (Djuretic 

et al., 2007). In addition to their protective function, aberrant Th1 responses have been 

implicated in contributing to autoimmune and chronic inflammatory disorders like experimental 

autoimmune encephalomyelitis (EAE), type 1 diabetes, rheumatoid arthritis (Raphael and 

Forsthuber, 2012; Skurkovich and Skurkovich, 2005) and inflammatory bowel disease (IBD) 

(Noguchi et al., 1995). 

1.2.1.2 T-helper type 2 (Th2) cells 

Th2 cells were described at the same time as the Th1 cells in 1986 (Mosmann et al., 1986). Th2 

cells produce IL-4, IL-5, IL-9, IL-10, IL-13 and IL-25 as their effector cytokines (Figure 1.1). 

Th2 cells protect against extracellular parasites, including helminths (Pulendran and Artis, 

2012). IL-4 production during the primary response initiates the differentiation of Th2 cells 

from naïve CD4+ T cells (Parronchi et al., 1992). IL-4 production can be induced from naïve T 
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cells during intial activation by interaction of Jagged-1 expressed by DCs triggering Notch 

signaling in the T cells (Amsen et al., 2007). IL-25 produced by mast cells and macrophages 

can also trigger IL-4 production by non-B and non-T cells and thereby induces a Th2 response 

(Owyang et al., 2006). In the absence of IL-4, IL-13 has also been shown to promote Th2 

lineage differentiation (Barner et al., 1998). IL-4 signaling induces STAT6 expression that in 

turn upregulates the master transcription factor for Th2 cells, GATA-3 (Kaplan et al., 1996; 

Zheng and Flavell, 1997). Th2 cells play a major role in allergic inflammatory conditions such 

as allergic asthma (Pulendran and Artis, 2012).   

1.2.1.3 T-helper type 17 (Th17) cells 

Th17 cells provide protection against extracellular bacteria and fungi by recruiting neutrophils. 

The major Th17 effector cytokines are IL-17A, IL-17F, IL-21 and IL-22 (Aggarwal et al., 2003; 

Korn et al., 2007; Langrish et al., 2005; Liang et al., 2006; Veldhoen et al., 2006) (Figure 1.1). 

In 2000, the discovery of the heterodimeric cytokine IL-23 (made up of IL-12p40 and IL-23p19 

subunits) (Oppmann et al., 2000) that could promote IL-17A production from CD4+ T cells 

(Aggarwal et al., 2003), led to the discovery of Th17 cells. In mice, IL-6 or IL-21, in 

combination with TGF-β induces differentiation of naïve CD4+ T cells into Th17 cells (Bettelli 

et al., 2006; Korn et al., 2007; Veldhoen et al., 2006). IL-1β has also been shown to be 

important for the early development of murine Th17 cells (Chung et al., 2009). IL-6 and IL-21 

preferentially activate STAT3 (Durant et al., 2010; Mathur et al., 2007; Yang et al., 2007). One 

of the effects of STAT3 signaling is to up-regulate of the master Th17 transcription factor 

RORγt (Ivanov et al., 2006). Other transcription factors that influence Th17 development are 

IRF4 and Batf (Brustle et al., 2007; Schraml et al., 2009).  Aberrant Th17 responses contribute 

to autoimmune and inflammatory diseases like EAE, arthritis, contact dermatitis and IBD 

(Zambrano-Zaragoza et al., 2014). Following differentiation, IL-23R is up-regulated on the 

Th17 cells allowing IL-23 to maintain and promote survival of the cells (Stritesky et al., 2008; 

Veldhoen et al., 2006).  

1.2.1.4 T-helper type 22 (Th22) cells 

A subset of cells called Th22 cells has been described in humans (Duhen et al., 2009; Trifari et 

al., 2009). Similar to Th17 cells, Th22 cells also produce IL-22 but unlike Th17 cells, they 

produce little or no IL-17A (Duhen et al., 2009; Trifari et al., 2009) (Figure 1.1). IL-22 

promotes tissue repair by promoting epithelial cell proliferation and improving cell survival. IL-

22 also protects against extracellular pathogens, particularly Gram-negative bacteria such as 

Klebsiella pneumoniae and Citrobacter rodentium (Aujla et al., 2008; Zheng et al., 2008b). 

Th22 cells can be generated from naïve CD4+ T cells by plasmacytoid DCs in the presence of 

IL-6 and TNF-α (Duhen et al., 2009; Trifari et al., 2009). Th22 differentiation appears to be 

dependent on the aryl hydrocarbon receptor (AHR), and it is unclear if RORγt plays a role 

(Duhen et al., 2009; Trifari et al., 2009). Th22 cells are enriched in the human cecum where 
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they play an important role in maintaining mucosal barrier function (Wolff et al., 2012). It is 

currently unclear whether Th22 cells exist in the mouse. Supporting the presence of murine 

Th22 cells, one study found that CD4+ T cells are major sources of IL-22 and that adoptive 

transfer of in vitro differentiated Th22 cells but not Th17 cells into Citrobacter rodentium-

infected IL-22-deficient mice resulted in a host-protective response (Basu et al., 2012).  In 

contrast, a more recent study, which fate-mapped IL-22-producing cells found that IL-22 is 

produced by a number of different CD4+ T-cell subsets and is not expressed by a dedicated 

Th22 subset (Ahlfors et al., 2014).  

1.2.1.5 T-helper type 9 (Th9) cells 

Th9 cells are a subset of CD4+ T cells that produce high levels of IL-9 as their signature 

cytokine, but unlike the IL-9-producing Th2 cells, Th9 cells do not produce IL-4 (Dardalhon et 

al., 2008; Veldhoen et al., 2008) (Figure 1.1). Th9 cells closely associate with Th2 cells, as the 

Th2 cytokine IL-4 is required for the induction of Th9 cells (Veldhoen et al., 2008) and 

furthermore, both Th2 and Th9 cells require the transcriptions factor STAT6 (Goswami et al., 

2012). STAT6-deficient mice fail to develop both Th2 and Th9 cells (Goswami et al., 2012). 

Thus, it is unclear whether Th9 cells develop from Th2 cells or whether they are a truly distinct 

helper T-cell subset.  Th9 cells may develop from Th2 cells upon induction of transcription 

factors PU.1 and IRF4, which shut off IL-4 production and turn on IL-9 production (Chang et 

al., 2010; Staudt et al., 2010).  Supporting the idea that Th9 cells are a distinct helper T-cell 

subset is a study that showed that naïve CD4+ T cells can be directly cultured into Th9 cells in 

the presence of TGF-β, IL-4 and engagement of OX40 co-stimulation (Xiao et al., 2012). In 

these conditions, the non-canonical NF-kB pathway was more important than PU.1/IRF4 in 

inducing IL-9 production (Xiao et al., 2012). Th9 cells have been shown to be protective against 

tumors (Lu et al., 2012) and IL-9 protective against the nematode parasite Trichuris muris 

(Faulkner et al., 1998) ; however, Th9 cells were shown to be pathogenic in allergic airway 

inflammation (Chang et al., 2010; Kerzerho et al., 2013) and EAE (Jager et al., 2009). The fact 

that IL-9 is produced by a number of cells including Th2 cells, mast cells, eosinophils and 

neutrophils makes it difficult to study the exact role of Th9 cells (Soroosh and Doherty, 2009).   
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Figure 1.1 Differentiation of effector CD4+ T-cell subsets from naive precursors.  
Cartoon summarizing the different CD4+ T-cell subsets that can be generated from a naïve 
CD4+ T cell following activation with the appropriate antigen, co-stimulus and cytokine 
cocktail. The name of each subset and the master transcription factor for that subset is 
denoted in the appropriate cell. The characteristic cytokines secreted by each subset is shown 
below the appropriate cell. 

1.2.2 Regulatory T cells 
Regulatory T cells play an integral part in the immune response. They limit effector T cell 

responses to prevent excessive damage to self-tissues during the eradication of a pathogen as 

well as help in maintaining tolerance to self-antigens and commensals. Disruption of immune 

tolerance leads to autoimmune and inflammatory diseases. There are a number of intrinsic and 

extrinsic regulatory mechanisms that keep effector cells in check, among which regulatory T 

cells (Tregs) play a critical role. The following section describes the different Treg subsets and 

mechanisms by which they keep effector T cells in check. 

1.2.2.1 Thymically-derived Tregs (tTREGs) 

The importance of tTregs in maintaining tolerance was established in early experiments that 

revealed that mice that were thymectomized on day 3 of life developed multi-organ 

autoimmunity. This systemic autoimmunity was not observed when the thymectomy was 

performed on day 1 or day 7 of life or when mice thymectomized on day 3 received an infusion 

of thymocytes (Kojima et al., 1976; Nishizuka and Sakakura, 1969; Sakaguchi et al., 1982; 

Taguchi and Nishizuka, 1981). These studies showed that a suppressor population of 

thymocytes leave the thymus on day 3 of life and are able to keep the autoreactive thymocytes 

in control. Further analysis revealed that these suppressive populations expressed high levels of 

IL-2Rα (CD25) (Sakaguchi et al., 1995; Sakaguchi et al., 1996) and adoptive transfer of this 

CD4+ CD25+ population into mice thymectomized on day 3 prevented multi-organ 

autoimmunity (Suri-Payer et al., 1998). Subsequent characterization of these cells revealed that 
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they failed to proliferate upon TCR stimulation and instead inhibited proliferation of responder 

CD4+ T cells (Ermann et al., 2001; Takahashi et al., 1998; Thornton and Shevach, 1998). 

Furthermore, upon activation, the Tregs did not express any IL-2, but instead required IL-2 

produced by other cells for their activation and survival (Sakaguchi et al., 1995). The majority 

of CD4+ CD25+ T cells were later shown to express the transcription factor FoxP3 (Fontenot et 

al., 2005; Wan and Flavell, 2005) (Figure 1.2).  The finding that humans and mice deficient in 

CD4+ CD25+ T cells as a result of mutations to the FoxP3 gene develop severe autoimmune 

diseases (Chatila et al., 2000; Wildin et al., 2001) suggest that FoxP3+ Tregs are indispensible 

for the maintenance of self tolerance.  

tTregs develop in the thymus from a pool of thymocytes that have  high affinity for self 

antigens (Picca et al., 2006). Upon TCR engagement, CD25 is upregulated making these cells 

sensitive to IL-2 signaling and consequently activation of the STAT5 pathway (Burchill et al., 

2008; Lio and Hsieh, 2008). Engagement of co-stimulatory molecule CD28 with CD80 and 

CD86 also aids in the promotion of FoxP3 expression (Tai et al., 2005). Together, all these 

signaling pathways result in transcription factors STAT5 and NFAT binding to the Foxp3 locus 

and promoting FoxP3 expression, thus conferring the developing Treg cells with suppressive 

capacity (Yao et al., 2007; Zheng et al., 2010). tTregs were previously known as natural Tregs 

(nTregs), but recent changes to nomenclature of the Treg subsets have called for nTregs to now 

be called tTregs (Abbas et al., 2013). 
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1.2.2.2 Peripherally-derived Tregs (pTregs)  

In addition to the thymically-derived Tregs, FoxP3+ Tregs can also develop from naïve CD4+ T 

cells in the periphery in response to antigenic stimulation (Figure 1.2). The differentiation of 

pTregs from naïve precursors requires the presence of TGF-β and IL-2, and is favoured by sub-

optimal DC activation and sub-immunogenic doses of antigenic peptides (Apostolou and von 

Boehmer, 2004; Kretschmer et al., 2005; Zheng et al., 2008a). Furthermore, optimal induction 

of pTregs has been observed with non-immunogenic methods of antigen delivery such as 

peptide pumps or oral and intravenous methods of delivery (Apostolou and von Boehmer, 2004; 

Kretschmer et al., 2005). Two new markers have recently been identified that are expressed on 

tTregs but not pTregs and that can be used to distinguish these subsets; Neuropilin-1 (NRP1) 

and the Ikaros family transcription factor Helios. NRP1 is a reliable marker of tTregs under 

non-inflammatory conditions; however during inflammation, it is up-regulated on pTregs as 

well (Weiss et al., 2012; Yadav et al., 2012). Helios was identified as being expressed on tTregs 

alone (Thornton et al., 2010). Thornton et al based their conclusion that Helios is a marker of 

tTregs based on three findings; i) The earliest FoxP3+ Tregs to arise in the thymus of 3 day old 

mice, and the earliest FoxP3+ Tregs to populate the spleen of 4 day old mice are all Helios+, ii) 

CD4+ FoxP3- cells from FoxP3-GFP cells cultured in vitro in the presence of TGFβ to FoxP3+ 

Tregs remain Helios-negative and iii) pTregs induced in vivo in a model of oral tolerance fail to 

express Helios (Thornton et al., 2010). Following this finding, one study reported that 

depending on the method of stimulation, pTregs could express Helios i.e. when cells were 

stimulated with their cognate antigen in the presence of APCs they expressed Helios, but not 

when they were stimulated with anti-CD3/CD28 (Verhagen and Wraith, 2010). A subsequent 

study reported that Helios is also up-regulated by effector CD4+ T cells upon activation and 

proliferation (Akimova et al., 2011). In a communication to the editor of the Journal of 

Immunology, Thornton et al argue that all the studies where Helios was up-regulated on cells 

other than tTregs (Akimova et al., 2011; Verhagen and Wraith, 2010) were in studies where 

cells were stimulated in vitro. Further, in a review, Thornton and Shevach argued that in the 

study by Akimova et al, Helios expression was examined at the 3 day timepoint in suppression 

co-culture cells and at this timepoint, very few, if any responder T cells would have remained 

due to Treg-mediated depletion of IL-2 (Shevach and Thornton, 2014). Since then, a number of 

groups have used Helios to differentiate tTregs from pTregs in vivo (Daniel et al., 2015; Muller 

et al., 2015; Sanin et al., 2015; Smith et al., 2015)  

1.2.2.3 T-helper type 3 (Th3) cells 

Th3 cells were first described in rodents during the induction of oral tolerance (reviewed by 

Weiner (Weiner, 2001a)). Th3 cells differentiate from naïve precursors following antigen 

presentation by APCs coupled with CD86 co-stimulation and the presence of TGF-β (Weiner, 
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2001b).  Th3 cells produce TGF-β as their main effector cytokine although some Th3 clones 

also expressed some IL-4 and/or IL-10 in addition to TGF-β (Weiner, 2001b)(Figure 1.2). Th3 

cells also require IL-4 rather than IL-2 for their maintenance (Inobe et al., 1998). Th3 cells do 

not express FoxP3 and reportedly play a role in induction of pTregs by acting on other FoxP3- 

cells to induce FoxP3 expression (Carrier et al., 2007). 

1.2.2.4 T Regulatory 1 (Tr1) Cells 

Tr1 cells are Foxp3-negative regulatory T cells that differentiate from naïve CD4+ T cells in a 

TCR/antigen-specific manner either in presence of IL-10, or during repeated stimulation with 

antigen or when the antigen is presented by immature DCs (Awasthi et al., 2007; Dhodapkar et 

al., 2001; Fitzgerald et al., 2007; Jonuleit et al., 2000). Tr1 cells produce large amounts of IL-10 

in order to mediate suppression (Groux et al., 1997; Roncarolo et al., 2006; Vieira et al., 2004) 

(Figure 1.2). Transfer of Tr1 cells has been shown to protect against T cell transfer colitis 

(Groux et al., 1997). Recently co-expression of CD49b and LAG-3 has been identified as 

markers of Tr1 cells (Gagliani et al., 2013). 

 

Figure 1.2 Treg subsets. 
Cartoon depicting thymic Tregs and peripherally-induced Tregs that can be generated from 
naïve precursors in response to antigen, in the presence of appropriate co-stimulus and 
cytokines. The name of each type of Treg subset and the markers used to differentiate it are 
depicted within the appropriate cell. The characteristic cytokines secreted by each type of 
Treg is indicated below each cell. 
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1.2.3 Treg generation in the gut 
The generation of Tregs is a complex process that is influenced by the interplay of a number of 

factors such as the dendritic cells, cytokine environments and the presence of certain microbe 

and host-derived metabolites such as retinoic acid and short-chain fatty acids. 

1.2.3.1 Dendritic cell subsets that promote Treg generation in the gut 

The primary sites for induction of intestinal T cells are the Peyer’s Patches (PPs) in the small 

intestine, mesenteric lymph nodes (MLNs) and isolated lymphoid follicles in the small and large 

intestine (Kelsall, 2008). There are multiple DC populations that have been identified at these 

sites that differ in surface phenotype, cytokine production and ability to drive differentiation of 

different effector T–cell populations (Kelsall, 2008).  These DC subsets have unique functions 

such as promoting Treg differentiation, imprinting lymphocytes with unique homing receptors 

α4β7 (an integrin that binds to MadCAM-1 expressed on high endothelial venules of intestinal 

tissues) and CCR9 (a receptor for chemokine CCL25, that is constitutively expressed in the 

small intestine) (Campbell and Butcher, 2002; Johansson-Lindbom et al., 2003; Svensson et al., 

2002). These homing receptors allow primed T cells to recirculate to the intestine.  

 Of the different DC subsets identified, CD103+ DCs are important for imprinting naïve 

T and B cells with gut homing receptors and inducing the expression of FoxP3 (Coombes et al., 

2007; Johansson-Lindbom et al., 2005). The ability of CD103+ DCs to generate Tregs is also 

co-dependent on retinoic acid (RA), a metabolite of vitamin A metabolism and the cytokine 

TGF-β(Bakdash et al., 2015; Coombes et al., 2007; Mucida et al., 2009). 

1.2.3.2 Cytokine environment 

IL-10 and TGFβ are two cytokines that are known to be important in the differentiation of 

peripherally induced Treg subsets. As described in the previous section, IL-10 is important for 

the generation of Tr1 cells (Awasthi et al., 2007; Dhodapkar et al., 2001; Fitzgerald et al., 2007; 

Jonuleit et al., 2000) while TGFβ is important for the generation of pTregs and Th3 cells 

(Apostolou and von Boehmer, 2004; Kretschmer et al., 2005; Weiner, 2001b; Zheng et al., 

2008a). TGF-β has three isoforms, TGF-β 1, 2 and 3, all of which have overlapping but non 

redundant functions (Annes et al., 2003). All three isoforms occur as inactive complexes, which 

must be activated in order to bind to their receptors and initiate signalling (Annes et al., 2003). 

In its inactive form, TGFβ has a propeptide called latency associated peptide (LAP) at the n-

terminal region, which is covalently associates with active TGF-β and masks the receptor 

binding sites (Shi et al., 2011). Two members of the αv family of integrins have been found to 

play critical roles in converting TGFβ to its active form namely, αvβ6 and αvβ8 (Aluwihare et 

al., 2009). This was discovered by a study that showed that mice lacking αvβ6 and αvβ8 

showed multi-organ autoimmunity similar to that seen in TGFβl-deficient mice (Aluwihare et 

al., 2009). While αvβ6 is mainly expressed by epithelial cells (Busk et al., 1992), αvβ8 was 
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found to be expressed by a number of cells such as CNS cells, mesangial cells in the kidney, 

epithelial cells and fibroblasts in the airway and in CD4+ T cells and DCs (Araya et al., 2006; 

Khan et al., 2011; Milner et al., 1997; Travis et al., 2007). In the intestine, CD103+ DCs were 

found to express high levels of αvβ8 (Worthington et al., 2011). In fact, CD103+ DCs are able 

to induce FoxP3+ Tregs even in the absence of RA however loss of αvβ8 expression on these 

DCs completely ablated their ability to induce pTregs (Worthington et al., 2011). Thus αvβ8-

mediated activation of TGFβ plays a crucial role in Treg generation in the gut. 

1.2.3.3 Metabolic control of Treg generation in the gut 

Retinoic acid: RA is a metabolite that is synthesised from Vitamin A in a series of steps that is 

catalysed by retinal dehydrogenases (RALDHs). RALDHs in the gut are primarily produced by 

the CD103+ DCs (Coombes et al., 2007; Iwata et al., 2004). RA together with TGF-

β, promotes Treg generation by inducing FoxP3 expression while suppressing Th17 generation, 

decreasing proinflammatory cytokine production by effector T cells and by imprinting T cells 

primed in the MLN with gut homing receptors (Hill et al., 2008; Kang et al., 2007; Mucida et 

al., 2009; Sun et al., 2007). 

Microbe and microbial-derived metabolites that influence Treg generation in the gut: 

Germ-free or Vancomycin-treated mice exhibit a severe deficiency in colonic Tregs compared 

to SPF mice, suggesting that the microflora play important roles in inducing Tregs in the gut 

(Atarashi et al., 2011). Some microbial species such as Clostridia and Bacteroides fragilis have 

been shown to induce Tregs in the gut (Atarashi et al., 2013; Atarashi et al., 2011; Mazmanian 

et al., 2005). Clostridia induce Trges by attaching to intestinal epithelial cells and stimulating 

TGF-β production by these cells (Atarashi et al., 2013; Atarashi et al., 2011). B .fragilis produce 

polysaccharide A, which engages TLR2 on naïve T cells and induces them to differentiate into 

Tregs and also enhances Treg production of regulatory cytokines IL-10 and TGF-β (Mazmanian 

et al., 2005; Round and Mazmanian, 2010). 

Short-chain fatty acids (SCFAs): SCFAs such as butyrate, acetate and propionate are bacterial 

metabolites produced during bacterial fermentation of dietary fibre (Cummings et al., 1987). 

SCFAs have been shown to control Treg differentiation and function through several 

mechanisms. SCFAs signal through orphan G-protein coupled receptors (GPRs). Butyrate 

signals through GPR109a on macrophages and DCs to induce IL-10 and RALDHs production 

from these cells (Singh et al., 2014a). Butyrate is also a histone deacetylase and enhances 

acetylation at histone H3 lysine 27 at the Foxp3 promoter leading to Foxp3 expression (Arpaia 

et al., 2013; Furusawa et al., 2013). Propionate and other SCFAs signal through GPR43, which 

is expressed by Tregs, eosinophils and neutrophils and has been associated with dampening gut 

inflammation (Chang et al., 2014; Maslowski et al., 2009). 
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1.2.4 Mechanisms of Treg suppression 
The following section explains the different mechanisms by which Tregs suppress effector 

CD4+ T cells.   

Cell-cell contact dependent mechanisms of suppression: Tregs constitutively express high 

levels of cytotoxic T lymphocyte antigen-4 (CTLA-4) (Wing et al., 2008). Although the 

mechanisms by which CTLA-4 mediates Treg suppression is currently under active 

investigation, one of the methods identified is that CTLA-4 ligation to CD80/86 on DCs down-

regulates their expression (Wing et al., 2008). Another proposed mechanism is that CTLA-4 can 

capture CD80/CD86 from opposing cells by trans-endocytosis and degrade them within the 

CTLA-4-expressing cell (Qureshi et al., 2011). These mechanisms prevent activation of 

responder T cells by interfering with signal 2 of the T-cell activation process (binding of CD28 

to CD80/86). Tregs also express high levels of T-cell immunoreceptor with immunoglobulin 

and ITIM domain (TIGIT), which can induce IL-10 production by DCs (Yu et al., 2009). This 

mechanism interferes with signal 3 of effector T cell activation process by DCs, (production of 

cytokines that modulate the differentiation or activation process) as production of IL-10 by DCs 

will lead to a tolerogenic immune response.  

Depletion of IL-2: Effector CD4+ T cells are dependent on IL-2 for their expansion. Tregs 

constitutively express high levels of IL-2Rα (CD25) and deplete their surroundings of IL-2 

leading to apoptosis of effector T cells due to IL-2 deprivation (Pandiyan et al., 2007).  

Treg-mediated cytolysis: Tregs are capable of directly killing target cells in a perforin and 

granzyme-dependent manner (Askenasy, 2013; Cao et al., 2007; Gondek et al., 2005; Grossman 

et al., 2004). Granzymes enter target cells via pores made by perforins and induce apoptotic cell 

death by triggering the caspase pathway (Cao et al., 2007). Tregs may also induce death of 

target cells by employing the Fas/Fas ligand pathway (Janssens et al., 2003). 

Disruption of metabolic pathways: CD39 and CD73 are two enzymes that are constitutively 

expressed by murine Tregs and these enzymes mediate the conversion of inflammatory 

adenosine triphosphate (ATP) to adenosine, thereby abrogating ATP-mediated inflammatory 

effects such as P2-receptor mediated cell toxicity and ATP-driven maturation of DCs 

(Borsellino et al., 2007; Dwyer et al., 2010; Fletcher et al., 2009). The importance of CD39 is 

highlighted by the fact that Tregs from CD39 KO mice have a 50-60% reduction in their ability 

to suppress effector cells (Borsellino et al., 2007). CD39 catalyses the hydrolysis of ATP to 

adenosine diphosphate (ADP) and adenosine monophosphate (AMP), and CD73 further 

hydrolyses ADP and AMP to adenosine (Borsellino et al., 2007; Dwyer et al., 2010; Fletcher et 

al., 2009). Adenosine signals through the A2A receptor to dampen effector T-cell activation and 

proliferation (Huang et al., 1997; Lappas et al., 2005) and aids in the generation of Tregs (Zarek 

et al., 2008). 
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Secretion of anti-inflammatory cytokines: Tregs secrete anti-inflammatory cytokines IL-10 

(Asseman et al., 1999; Hara et al., 2001) and TGF-β (Fahlen et al., 2005; Powrie et al., 1996). 

Blockade of TGF-β or molecules involved in responsiveness to TGF-β results in systemic 

autoimmunity, highlighting the important regulatory role of TGF-β (Li et al., 2006a). Tregs 

themselves do not need to produce TGF-β to prevent colitis, suggesting that they may induce 

TGF-β from other cells to mediate suppressive effects (Fahlen et al., 2005; Kullberg et al., 

2005). Selective blockade of IL-10 from Tregs, achieved by crossing FoxP3YFP-Cre mice with 

Il10flox/flox mice led to spontaneous colitis but not systemic autoimmunity observed in mice 

lacking Tregs altogether (Rubtsov et al., 2008) showing that IL-10 is particularly important for 

maintaining intestinal homeostasis.  

1.2.5 Th Plasticity 
T-cell differentiation was once considered linear; however there are now a number of studies 

that have demonstrated that under certain conditions like chronic inflammation, so-called 

committed Th cells can acquire the features of other effector CD4+ T cells. Of all the T-cell 

subsets, the Th17 cells and Tregs exhibit the greatest degree of plasticity. The ability to 

combine different effector phenotypes into one cell may be an important adaptation of the 

immune system to deal effectively with not only the large variety of microorganisms that it is 

exposed to, but also the continual evolution of some of these species of microorganisms 

(Brucklacher-Waldert et al., 2014). The following section describes the different Th subsets that 

have been observed, that share phenotypes of other effector T cells. Where cells have 

definitively been shown to switch entirely to the transcription profile of another lineage, the 

term ‘plasticity’ has been used, and in instances where Th subsets display a ‘shared phenotype’ 

of two lineages, the term ‘hybrid’ has been used. 

1.2.5.1 Th17/Th1 plasticity 

Th17 cells can change phenotype to become a cell that secretes both IL-17A and IFN-γ, and 

then subsequently changes phenotype once again to become an ex-Th17 cell that secretes only 

IFN-γ. The IL-17A+ IFN-γ+ cells and ex-Th17 cells have been observed both in EAE and in the 

Helicobacter hepaticus (Hh) model of colitis (Hirota et al., 2011; Morrison et al., 2013). 

Furthermore, IL-17A+IFN-γ+ cells have also been observed in Crohn’s disease (CD) patients 

(Annunziato et al., 2007). Although the factors that trigger switching are not well understood, it 

was recently shown in mice that the transcription factors Tbet, Runx1 and Runx3 are important 

in driving the switching of Th17 cells to ex-Th17 cells (Wang et al., 2014d). 

1.2.5.2 Th17/Th2 hybrid cells 

Th17/Th2 lymphocytes that secrete both IL-4 and IL-17A have been observed in vivo in greater 

proportions in patients suffering from allergic asthma compared to healthy donors (Cosmi et al., 

2010). In an OVA-induced asthma model, transfer of Th17/Th2 lymphocytes induced more 
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severe asthma than the transfer of classical Th17 or Th2 cells, suggesting that the Th17/Th2 

cells are more pathogenic (Wang et al., 2010). 

1.2.5.3 Th17/Tr1 plasticity 

A recent study found that during the resolution of inflammation, Th17 cells trans-differentiate 

into ex-Th17/Tr1-type cells that mainly produce IL-10 and help in the resolution of 

inflammation both in the T-cell transfer model of colitis and in EAE (Gagliani et al., 2015). The 

conversion of Th17 cells to ex-Th17/Tr1-type cells is mediated by TGF-β and AhR (Gagliani et 

al., 2015). 

1.2.5.4 Treg/Th17 plasticity 

FoxP3+ IL-17+ cells have been identified in the inflamed mucosa of patient suffering from CD, 

but not in patients suffering from ulcerative colitis or healthy controls (Hovhannisyan et al., 

2011). These cells express both RORC and FoxP3 and were suppressive in vitro (Hovhannisyan 

et al., 2011). Examination of the TCR repertoire suggested that these cells originate from 

FoxP3+ Tregs (Hovhannisyan et al., 2011). Similarly, analysis of T cells from human tonsils 

isolated after routine tonsillectomies revealed that 25% of FoxP3+ Tregs produced IL-17 upon 

activation, and these FoxP3+ IL-17+ cells were suppressive (Voo et al., 2009). Conversely, in a 

murine model of autoimmune arthritis, FoxP3+ Tregs trans-differentiated into pathogenic Th17 

cells, and these ex-FoxP3 Th17 cells accumulated in the inflamed joint and were more 

osteoclastogenic than classical Th17 cells (Komatsu et al., 2014). 

1.2.5.5 Treg/Th1 hybrid cells 

FoxP3+ Tregs that express T-bet, and produce IFN-γ have been described (Koch et al., 2009). 

These T-bet+ FoxP3+ Tregs reportedly arise in response to IFN-γ and up-regulate chemokine 

receptor CXCR3, enabling them to home to the site of inflammation and suppress the Th1 cells 

(Koch et al., 2009). 

1.2.5.6 Th1/Th2 hybrid cells 

Th1/Th2 hybrid cells that express both T-bet and GATA3, and produce both IL-4 and IFN-γ, 

have been shown to develop directly from naïve precursors during the primary immune 

response to the parasites Heligmosomoides polygyrus (Peine et al., 2013). These cells supported 

Th1 and Th2 responses but caused less immunopathology (Peine et al., 2013). Furthermore, 

memory cells of the Th1/Th2 hybrid cells are maintained in vivo for months (Peine et al., 2013). 

1.3 MICRORNAS 
MicroRNAs (sometimes called miRs) are post-transcriptional gene regulators and have been 

shown to regulate many biological systems including the immune system (Bartel, 2004).. 

MicroRNAs belong to the family of small non-coding RNAs and are short, single-stranded 

pieces of RNA, approximately 22 nucleotides in length (Bartel, 2004). The first microRNA, lin-

4, was discovered in 1993 in the Caenorhabditis elegans model where it was found to down-



 30 

regulate a nuclear protein called lin-14 to initiate the second stage of larval development (Lee et 

al., 1993; Ruvkun and Giusto, 1989). Since then, approximately 35,800 microRNAs discovered 

across different species have been registered with a biological database (miRBase) that acts as 

an archive of microRNA sequences and annotations and provides a centralized system for 

assigning names to newly discovered microRNAs (Kozomara and Griffiths-Jones, 2011). More 

than 60% of protein-coding genes are estimated to be regulated by microRNAs (Friedman et al., 

2009), and microRNAs  have been found to regulate important cellular functions such as 

apoptosis, proliferation, differentiation and signal transduction (Ambros, 2004).  The following 

sections give a detailed background on microRNAs including their biogenesis, nomenclature, 

mechanism of action, role in regulating different cells of the immune system, impact of altered 

microRNA expression in different immune-mediated diseases and the potential use of 

microRNAs as biomarkers and therapy.  

1.3.1 MicroRNA Biogenesis 
MicroRNAs are encoded by genomic DNA. In the nucleus, microRNA genes are transcribed 

into primary microRNA (pri-miRNA) transcripts by RNA polymerase II (Lee et al., 2004). 

Maturation of these transcripts occurs in a two-step process directed by two ribonulease III 

enzymes; Drosha and Dicer. Drosha forms a microprocessor complex with DGCR8 (Di George 

Syndrome Critical Region 8) and processes the pri-miRNA transcript to a precursor-microRNA 

(pre-miRNA) stem loop structure that is approximately 60 nucleotides long (Han et al., 2006) 

(Figure 1.3). This structure is exported into the cytoplasm by exportin 5 (Yi et al., 2003) and is 

then processed into 22-nucleotide duplexes by Dicer (Chendrimada et al., 2005) (Figure 1.3). 

These duplexes are then separated into single strands and one strand (the guide strand) is loaded 

into the RNA-induced silencing complex (RISC), made up of Argonaute, GW repeat-containing 

protein GW182 and other proteins (Eulalio et al., 2008) (Figure 1.3). Once loaded, the miRNA 

will bind to the 3´ untranslated region (UTR) of its target mRNA to bring about either 

degradation of the target mRNA or translational repression (Chendrimada et al., 2007) (Figure 

1.3).  
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Figure 1.3 MicroRNA biogenesis 
In the nucleus, microRNA genes are transcribed into primary microRNA (pri-miRNA) 
transcripts by RNA polymerase II. Maturation of these transcripts occurs in a two-step 
process directed by two ribonulease III enzymes; Drosha and Dicer. Drosha forms a 
microprocessor complex with DGCR8 (Di George Syndrome Critical Region 8) and processes 
the pri-miRNA transcript to a precursor-microRNA (pre-miRNA) stem loop structure that is 
approximately 60 nucleotides long. This structure is exported into the cytoplasm by exportin 5 
and is then processed into 22-nucleotide duplexes by Dicer. These duplexes are then separated 
into single strands and one strand (the guide strand) is loaded into the RNA-induced silencing 
complex (RISC) to form the functional microRNA. Once loaded, the miRNA will bind to the 
3´ untranslated region (UTR) of its target mRNA to bring about either degradation of the 
target mRNA or translational repression. 

1.3.2 Mechanisms of mRNA repression by microRNAs 
Although each microRNA can target hundreds of mRNAs, the overall effect on target protein 

expression is subtle and works more to ‘fine tune’ the amount of protein expressed by a given 

cell (Arvey et al., 2010; Fabian and Sonenberg, 2012). The following section describes the two 

methods by which microRNAs are known to repress mRNAs. 

1.3.2.1 mRNA cleavage and degradation 

mRNA degradation by miRISC has been reported to occur by a number of mechanisms. With 

mRNAs that have high sequence complimentarity to the microRNA, the mRNA is degraded via 

Argonaute-catalyzed slicer activity (Behm-Ansmant et al., 2006; Wu et al., 2006). In addition to 

this, it has also been shown that mRNAs can be decapped, deadenylated and exonucleolitically 

digested (Behm-Ansmant et al., 2006; Wu et al., 2006). 

1.3.2.2 Inhibition of translation 

During translation of mRNAs, the ELF4 complex (made up of elF4A, elF4E and elF4G 

subunits) engages with the mRNA and recruits ribosomal units that form circular structures that 

enhance translation (Wahid et al., 2010). MicroRNAs are thought to inhibit translation of target 

mRNAs by a number of mechanisms: 

CYTOPLASM 
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• MiRISC structure competes with elF4E for binding to the mRNA 5´-cap structure 

thereby inhibiting translation initiation (Mathonnet et al., 2007; Thermann and Hentze, 

2007). 

• MiRISC inhibits mRNA circularization and thereby inhibits translation (Behm-

Ansmant et al., 2006; Wakiyama et al., 2007; Wu et al., 2006). 

•  MiRISC causes a premature translational termination by inhibiting the assembly of the 

60S ribosomal subunit with the 40S preinitiation complex (Chendrimada et al., 2007; 

Wang et al., 2008) 

•  MiRISC sequesters mRNAs in processing bodies (p-bodies). P-bodies lack 

translational machinery, thus mRNAs sequestered in them are unable to be translated to 

proteins (Valencia-Sanchez et al., 2006). 

1.3.3 MicroRNA target recognition 
The mechanism by which microRNAs recognize their target is not well understood. The general 

consensus is that microRNAs recognize mRNAs via conserved Watson-Crick pairing between 

the so-called ‘seed region’ between nucleotides 2-7 on the 5' end of the microRNA and the 3' 

untranslated region of the target mRNA (Grimson et al., 2007). Different studies have shown 

that a G:U wobble in the seed region significantly interrupts the interaction of a microRNA with 

its mRNA target (Brennecke et al., 2005). However, non-ideal pairing in the seed region can be 

overcome if there are additional complementary regions in the 3' end of the microRNA 

(Krichevsky et al., 2003). In general, the different bioinformatics target prediction tools 

available take into account at least two of the following parameters when predicting whether a 

given microRNA will bind to a certain mRNA: i) conservation of a microRNA and its targets 

across species (Brennecke et al., 2005), ii) free energy, which refers to how strong the binding 

between the mRNA and the microRNA is, and iii) accessibility energy (AE), which refers to 

how thermodynamically accessible the 3' UTR of the mRNA is to the microRNA (Kertesz et al., 

2007). The lower the AE, the greater the likelihood of a particular microRNA targeting a given 

mRNA (Kertesz et al., 2007). Although microRNA target prediction programs are efficient in 

predicting mRNA targets, it is still necessary to experimentally validate these targets. 

1.3.4 MicroRNA nomenclature 
The parameters for microRNA nomenclature are outlined in miRBase 

(http://www.mirbase.org/help/nomenclature.shtml). Briefly, the numbering of microRNA genes 

is simply sequential in order of discovery.  For example, in hsa-mir-121, the first three letters 

denote the organism (which in this case is Homo sapiens). Mir-121 (with the ‘r’ in lower case) 

refers to the microRNA gene and the stem-loop portion of the primary transcript. MiR-121 

(with the ‘R’ in upper case) refers to the mature microRNA. Lettered suffixes denote closely 

related mature sequences e.g. miR-10a and miR-10b.  Some microRNA cloning studies 
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revealed two mature microRNA sequences that originate from the same precursor. Where the 

relative abundancies of the two mature microRNA products are known, the dominant sequence 

is called miR-155 (for example) and the other product is called miR-155*. Where the relative 

abundancies of the two mature microRNA products originating from the same precursor is 

unknown, they are simply referred to as miR-142-5p (from the 5' arm) and miR-142-3p (from 

the 3' arm). 

1.3.5 MicroRNA-mediated regulation of the immune system 
A vast number of studies highlighted the important roles that microRNAs play in the 

development and function of immune cells of both the innate and adaptive immune systems. 

The examples cited below are a few of many. 

1.3.5.1 MicroRNA-mediated regulation of the innate immune system 

MicroRNA regulation of the innate immune system has been well studied, and microRNAs 

have the ability to influence innate immune cell differentiation, signaling pathways and 

cytokine production. For example, miR-17-92 targets Runx1 to promote monocyte 

differentiation (Fontana et al., 2007). Toll-like receptor (TLR) signaling induces the expression 

of a number of microRNAs such as miR-155 (O'Connell et al., 2007) and miR-146a (Taganov 

et al., 2006). In murine macrophages, TLR-induced miR-155 represses SOCS1 and SHIP-1 that 

are inhibitors of TLR signaling (O'Connell et al., 2007). Conversely, TLR-induced miR-146a 

negatively regulates NF-κB via TRAF6 and IRAK1 (Taganov et al., 2006).  TLR4 singalling on 

DCs represses PU.1 expression which in turn represses miR-142 expression and promotes the 

expression of miR-142 target IL-6 by DCs (Sun et al., 2013).   

1.3.5.2 MicroRNA-mediated regulation of the adaptive immune system 

MicroRNAs are crucial for the development of the adaptive immune system, as deletion of the 

microRNA biogenesis factor Dicer in CD4+ T cells led to reduced numbers of these cells, poor 

proliferation, increased apoptosis and a tendency to produce IFNγ (Koralov et al., 2008; Muljo 

et al., 2005). Deletion of Dicer in early B-cell progenitors led to increased apoptosis and a 

developmental block in pro- to pre-B-cell transition (Cobb et al., 2005). Highlighting the 

importance of microRNAs further, a number of studies have shown that individual microRNAs 

are critical to T- and B-cell biology. For example, loss of miR-17-92 led to increased BIM 

expression and apoptosis at the pro-B-cell to pre-B-cell transition, suggesting that miR-17-92 is 

vital for promoting early B-cell development (Thai et al., 2007; Ventura et al., 2008; Vigorito et 

al., 2007). MiR-155-deficient mice show defective class switching and antibody production 

(Thai et al., 2007; Vigorito et al., 2007). In CD4+ T cells, miR-155 was shown to promote 

differentiation of Th1 (Rodriguez et al., 2007) and Th17 cells (O'Connell et al., 2010), and miR-

326 was found to promote the differentiation of Th17 cells (Du et al., 2009).  
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1.3.5.3 Dysregulated microRNAs in cancers of immune cell origin 

Several studies have shown that microRNAs can promote oncogenesis (called oncomiRs) or act 

as tumour suppressors. For example, overexpression of miR-155 in mice led to a 

myeloproliferative disorder (Aung et al., 2015; Zhang et al., 2015b). Overexpression of miR-21 

resulted in acute lymphoblastic leukemia (Zhu et al., 2014a), and miR-29a overexpression led to 

the development of acute myeloid leukemia (Miyazaki et al., 2014). Research in chronic 

lymphocytic leukemia (CLL) led to the discovery of several putative tumour suppressor 

microRNAs. The first microRNAs that were discovered to be tumour suppressors in CLL were 

miR-15a and miR-16 (Guo et al., 2014). They were down-regulated during CLL and subsequent 

investigations found that miR-15a and miR-16 negatively regulate cell survival by targeting the 

pro-survival protein BCL2 (Zhu et al., 2014b). The miR-34 family (consisting of miR34a, miR-

34b and miR-34c) (Kittl et al., 2013), miR-29ab (Li et al., 2013b) and miR-181b (Li et al., 

2013b) were also found to be down-regulated in CLL. Tumour suppressor p53 induces the 

expression of miR-34 (Zhang et al., 2014a). MiR-34 helps in tumour suppression by promoting 

cell cycle arrest and apoptosis (Zhang et al., 2014a). MiR-29ab and miR-181b were found to 

target oncogenes T-cell lymphoma 1, BCL2 and myeloid cell leukemia sequence (Li et al., 

2013b).  

1.3.5.4 Dysregulated microRNAs in autoimmune diseases 

Dysregulated microRNA expression in many autoimmune diseases has been found to augment 

the pathogenic immune responses in these diseases. For example, in multiple sclerosis, 

increased miR-326 levels in Th17 cells, suppressed negative regulator of Th17 cells, ETS-1 and 

promoted a Th17 response (Du et al., 2009) (Table 1.1). In Rheumatoid arthiritis, decreased 

miR-146 expression in Tregs led to increased expression of miR-146 regulated target STAT1, 

and promoted pro-inflammatory cytokine production by Tregs (Zhou et al., 2014) (Table 1.1). 

A few more examples of the consequence of microRNA dysregulation in multiple sclerosis, 

rheumatoid arthritis, diabetes and systemic lupus erythematosis can be found in Table 1.1. 

These examples highlight the fact that microRNA expression levels have a profound impact on 

immune responses in these diseases. 
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Table 1.1 MicroRNAs that are dysregulated in autoimmune diseases 
 

Disease microRNA Expression Location Targeta Implications of miRNA dysregulationb Reference 

Multiple 

Sclerosis 

miR-326 

 

Increased Th17 cells ETS-1 Promotes a Th17 response (Du et al., 2009) 

miR-155 Increased Th17 cells ETS-1 Promotes a Th17 response (O'Connell et al., 

2010) 

miR-320a Decreased B cells MMP-9 MMP-9 increases blood brain barrier permeability (Aung et al., 2015) 

miR-26a Decreased Dendritic 

cells 

IL-6 Promotes differentiation of Th17 cells over Tregs by 

modulating IL-6 expression 

(Zhang et al., 2015b) 

miR-132 Increased B cells Sirtuin-1 Increased TNFα and lymphotoxin production by B cells (Miyazaki et al., 

2014) 

miR-20b Decreased Th17 cells RoRγt 

STAT3 

Promotes Th17 differentiation (Zhu et al., 2014a) 

a Target refers to the microRNA target identified by the authors. 
b The implications of miRNA dysregulation stated are those suggested by the authors. 
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Disease microRNA Expression Location Targeta Implications of miRNA dysregulationb Reference 

Rheumatoid 

Arthritis 

miR-146a Decreased Tregs STAT1 Promotes inflammatory cytokines by Tregs (Zhou et al., 2014) 

miR-155 Increased PBMCs SOCS1 Increased pro-inflammatory cytokine production (Li et al., 2013b) 

miR-34a* Decreased Synovial 

fibroblasts 

XIAP Resistance to apoptosis (Niederer et al., 

2012) 

miR-124a Decreased Synoviocytes MCP-1 

CDK2 

Promotes proliferation (Kawano and 

Nakamachi, 2011) 

Type 1 Diabetes miR-326 Increased PBLs  Co-related with ongoing islet autoimmunity (Sebastiani et al., 

2011) 

miR-21 - Islet β cells PDCD4 Downregulates PDCD4 and protects Islet β cells from cell 

death. 

(Ruan et al., 2011) 

a Target refers to the microRNA target identified by the authors. 
b The implications of miRNA dysregulation stated are those suggested by the authors. 
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Disease microRNA Expression Location Targeta Implications of miRNA dysregulationb Reference 

Systemic Lupus 

Erythematosus 

(SLE) 

miR-125b Decreased T cells Ets-1 

STAT3 

Downreg of miR-125b negatively correlated with lupus 

nephritis 

(Luo et al., 2013) 

miR-31 Decreased T cells RhoA Decreased IL-2 production (Fan et al., 2012) 

miR-21 Increased T cells and B 

cells 

PDCD4 Antiapoptotic (Garchow et al., 

2011) , (Stagakis et 

al., 2011) 

miR-125a Decreased T cells KLF13 Increased expression of inflammatory cytokine RANTES (Zhao et al., 2010) 

a Target refers to the microRNA target identified by the authors. 
b The implications of miRNA dysregulation stated are those suggested by the authors. 
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1.3.6 MicroRNAs as biomarkers 
There is a growing interest in using microRNAs as biomarkers. An ideal biomarker should be 

tissue and disease specific, stable and easily detected, and quantifiable by the least invasive 

option available. MicroRNAs fulfill all these criteria as they are they are present in whole 

blood, serum, plasma, urine and saliva (Weber et al., 2010), leading to the exciting possibility of 

using them as prognostic and diagnostic biomarkers.  In plasma, microRNAs were found to be 

stable for 24 hours at room temperature and through 8 freeze-thaw cycles (Mitchell et al., 2008). 

MicroRNAs can be easily detected by qRT-PCR, microarrays and deep sequencing. 

1.3.6.1 MicroRNAs as diagnostic biomarkers 

A number of studies have identified circulating microRNAs as potential diagnostic biomarkers 

in a range of diseases from cancer (Shaker et al., 2015; Wang et al., 2014c) to cardiovascular 

disease (Kondkar and Abu-Amero, 2015), allergic inflammation (Sawant et al., 2015), diabetes 

mellitus (reviewed by (Guay and Regazzi, 2013) and rheumatic diseases (reviewed by (Alevizos 

and Illei, 2010). 

1.3.6.2 MicroRNAs as prognostic biomarkers 

MicroRNA expression seems to be specific for different stages of a disease. For example, in an 

ovarian cancer study, the serum levels of miR-200c showed an escalating trend and miR-141 

showed a descending trend from early to advanced ovarian cancer, suggesting that expression of 

these microRNAs could be used as prognostic biomarkers for the stage of disease (Gao and Wu, 

2015). A similar study in colorectal cancer patients identified high miR-21 expression with poor 

prognosis that associated with a significantly worse 5-year survival rate (Dong et al., 2014).  

These are just two examples of many studies done to identify microRNAs as potential 

prognostic biomarkers and although still a long way from the clinic, these studies highlight a 

potentially significant role for microRNAs in disease diagnostics. 

1.3.7 MicroRNAs as therapy 
MicroRNAs are attractive as therapeutic agents because they can be easily delivered 

systemically using the same techniques as siRNAs (van Rooij et al., 2012). MicroRNA-based 

therapies generally comprise of either microRNA-mimics or microRNA-antagonists (van Rooij 

et al., 2012). MicroRNA-mimics are thought to be specific and well tolerated with few adverse 

events because they have the same sequence as endogenous microRNAs, thus will target the 

same genes (van Rooij et al., 2012). MicroRNA-antagonists target microRNAs already 

endogenously expressed in the tissue, decreasing the likelihood of inducing an adverse reaction 

(van Rooij et al., 2012). 

1.3.7.1 MicroRNA-mimics 

MicroRNA-mimics restore regulation by microRNAs that are down-regulated in a given disease 

condition to levels seen in normal cells, and this kind of therapy is termed ‘microRNA 
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replacement therapy’ (Bader et al., 2010).  There are only two microRNA replacement therapies 

currently being developed by a company called miRNA Therapeutics; miR-34 (phase I) and let-

7 (pre-clinical).  Mimics of let-7 and miR-34 are designed to treat a number of solid tumors. 

Let-7 targets oncogene KRAS, which is frequently mutated in different cancer types (Johnson et 

al., 2005). In KRAS-G12D transgenic mice and in human non small cell lung cancer xenografts, 

delivery of let-7 mimics led to a significant inhibition of tumor growth (Trang et al., 2010).  

MiR-34 targets anti-apoptotic factors BCL2, Met and CD44. Systemic delivery of miR-34 

inhibited tumour growth in mouse models of lung and prostate cancer and correlated with 

decreased proliferation and increased apoptosis of tumour cells (Liu et al., 2011; Wiggins et al., 

2010). 

1.3.7.2 MicroRNA-antagonists 

There are six microRNA antagonist therapies currently in development; miR-122, miR-208, 

miR-195, miR-21, miR-10b and miR103/105 miRagen (Janssen et al., 2013; Li and Rana, 

2014). 

  MiR-122 is the most advanced of all the microRNA-antagonist therapies and is 

currently in phase II clinical trials (Guggino et al., 2015). MiR-122 is highly expressed in the 

liver and is an essential host factor for hepatitis C virus (HCV) replication (Girard et al., 2008) . 

The miR-122 binding region to HCV is conserved in all the HCV genotypes, thus making miR-

122 antagonistic therapy effective even in mutated strains of HCV (Jopling et al., 2005). 

Systemic administration of miR-122 antagonist SPC3649 in chimpanzees chronically infected 

with HCV led to long lasting suppression of viral RNA in serum (Lanford et al., 2010). Anti-

miRs targeting miR-122 were successful at decreasing HCV RNA levels in a phase 2a study by 

Santaris Pharma (Janssen et al., 2013) 

MiR-208, miR-195, miR-21, miR-10b and miR-103/105 antagonist therapies are 

currently in pre-clinical development for the treatment of cardiovascular disease (van Rooij et 

al., 2007). MiR-208 KO mice are resistant to cardiomyocyte hypertrophy and fibrosis in 

response to induction of cardiac hypertrophy and heart failure, suggesting that blocking miR-

208 would ameliorate chronic heart disease (van Rooij et al., 2007).  Anti-miRs against miR-

208 are currently being developed by miRagen (Li and Rana, 2014). 

MiR-195 belongs to the miR-15 family and overexpression in the embryonic heart led 

to septal defects by targeting a number of cell cycle genes and promoting cardiomyocyte 

proliferation (Porrello et al., 2011) Inhibition of miR-195 in mice and pigs led to protection 

from myocardial infarction and improved cardiac regeneration (Hullinger et al., 2012) (Porrello 

et al., 2013). Anti-miRs against miR-195 are currently being developed by miRagen (Li and 

Rana, 2014).  

MiR-21 is overexpressed in many cancers and targets many tumour suppressors such as 

PTEN (Meng et al., 2007), TPMI (Zhu et al., 2007) and PDCD4 (Asangani et al., 2008). It is 
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also up-regulated during heart failure and in injured/ fibrotic kidneys (Chau et al., 2012; Thum 

et al., 2008) and promoted fibrosis in animal models. Anti-miR-21 is currently being 

investigated by Regulus Therapeutics to treat both cancer and fibrosis (Li and Rana, 2014). 

Overexpression of miR-103 and miR-107 in mouse models resulted in dysregulated 

glucose homeostasis, however, blocking of these microRNAs resulted in increased insulin 

sensitivity and glucose homeostasis (Trajkovski et al., 2011). Anti-miRs against miR-103 and 

miR-107 are currently being developed by Regulus Therapeutics (Li and Rana, 2014).  

1.4 INFLAMMATORY BOWEL DISEASE 
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastro-intestinal  

(GI) tract that comprises of two major forms; ulcerative colitis (UC) and Crohn’s disease (CD) 

(Kaser et al., 2010).  The main differences between UC and CD are that UC is confined to the 

large intestine and the extent of inflammation is mucosal and sub-mucosal whereas CD can 

affect any part of the GI tract, and the type of inflammation seen is transmural (Kaser et al., 

2010). !

1.4.1 Aetiology of IBD 
IBD is caused by a breakdown in intestinal homeostasis. The current understanding is that it 

occurs because of dysregulated immune responses to microflora of the gut in genetically 

susceptible individuals (Kaser et al., 2010). Thus both genetic and environmental factors play a 

role in IBD.!

1.4.1.1 Genetic factors 

The genetic factors involved in IBD have been extensively reviewed by Lees et al (Lees et al., 

2011). From genome-wide association studies (GWAS), it has become evident that there is a 

strong immune component in susceptibility to IBD. Of note, in both UC and CD, variants of 

genes involved in the IL-23 pathway, such as IL23R, STAT3, IL12b and those involved in IL-10 

signalling such as IL10R1 and IL10R2 are susceptibility loci for disease. In CD, there seems to 

be a role for defective bacterial processing with variants of genes such as NOD2 (Hugot et al., 

2001; Ogura et al., 2001), and autophagy genes ATG16L1 (Hampe et al., 2007) and IRGM 

(Parkes et al., 2007) conferring susceptibility. In contrast, in UC, NOD2 and autophagy gene 

variants do not confer susceptibility to disease, however, a number of genes encoding epithelial 

barrier proteins such as ECM1, CDH4 and HNF4A have been found to be associated with UC 

(Anderson et al., 2011; Consortium et al., 2009; Thompson and Lees, 2011). Other notable gene 

variants that confer susceptibility to UC are HLA DRB*0103, IL7R, IL8RA/IL8RB, DAP and 

IRF5 (Anderson et al., 2011). 
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1.4.1.2 Environmental factors: Microbiota 

There are a number of human and animal studies that point to the importance of the intestinal 

microbiota being a major environmental factor that drives IBD. In humans, the majority of CD 

occur in the distal ileum and colon and all UC cases occur in the large intestine, which harbours 

the highest bacterial load (Bibiloni et al., 2006; Frank et al., 2007). Secondly, as mentioned in 

the previous section, a number of the genetic factors that predispose patients to developing IBD 

are involved in bacterial sensing and autophagy. Human IBD is also characterised by increased 

T cell and antibody responses to commensal antigens (Duchmann et al., 1995; Macpherson et 

al., 1996) and furthermore, treatment of patients with broad-spectrum antibiotics (Isaacs and 

Sartor, 2004)  or  probiotic bacteria (Gionchetti et al., 2003) has been shown to improve 

intestinal inflammation. 

Some of the most compelling evidence for the involvement of microflora in driving 

intestinal inflammation stems from the fact that in several genetic models of colitis, the mice do 

not develop intestinal inflammation if they are germ-free (Rath et al., 1996; Sellon et al., 1998; 

Stepankova et al., 2007; Taurog et al., 1994). In some cases, the introduction of a single species 

of commensal bacteria is sufficient to induce colitis in susceptible mouse strains e.g. infection 

of germ-free IL-10 KO mice with either Bacteroides vulgatus or E. faecalis induced severe 

colonic inflammation (Kim et al., 2005; Sellon et al., 1998). !

1.4.2 IBD therapy 
There is no cure for IBD as yet. Current therapy used to treat the disease is a mixture of non-

biological and biological agents.  !

1.4.2.1 Non-biological agents 

Most of the non-biological drug therapies are broad spectrum immunosuppressants such as 

aminosalicylates, steroids and immunomodulators, which typically treat the symptoms of IBD, 

but do not cure disease or the underlying inflammatory immune processes (Burger and Travis, 

2011).!

1.4.2.2 Biological agents 

The biological agents currently used to treat IBD fall into two groups; inflammatory cytokine 

blocking agents and adhesion molecule blocking agents. TNF-α is an inflammatory cytokine 

produced by a number of immune cells. Antibodies that neutralize TNF-α  have been found to 

be effective in IBD patients, although a third of patients exhibit remain resistant to treatment 

(Altwegg and Vincent, 2014). Biological agents that target adhesion molecules α4 integrin 

(natalizumab) (Sandborn et al., 2005; Targan et al., 2007) and α4β7 integrin (vedolizumab) 

(Feagan et al., 2005; Parikh et al., 2012; Sandborn et al., 2013) have also proved to be effective, 

because they prevent leukocytes from infiltrating the intestinal lamina propria and thereby 

inhibit the downstream inflammatory cascade. Natalizumab is approved for treatment of 
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moderate-to-severe CD after failure of anti-TNF inhibitors and Vedolizumab is approved for 

treatment of moderate-to-severe UC and CD when one or more of the standard therapies have 

not elicited an adequate response (Amiot and Peyrin-Biroulet, 2015).!

1.4.2.3 Current pipeline 

The biological agents currently in clinical trials are designed to either i) block inflammatory 

cyokines or their signalling pathways e.g. monoclonal antibodies targeting IL-6 and IL-12/IL-23 

are being investigated for treatment of CD, ii) target adhesion molecules such as the β7 subunit 

of heterodimeric integrins α4β7 and αEβ7, or iii) block T-cell stimulation and induce apoptosis 

(Amiot and Peyrin-Biroulet, 2015). 

1.4.3 Experimental models of colitis 
There are a number of murine models of colitis that have been developed to study different 

aspects of IBD pathogenesis. They can broadly be classified into spontaneous models such as 

the C3H-HeJBir or SAMP1Yit mouse models (Cong et al., 1998; Matsumoto et al., 1998) 

(Table 1.2) and models where intestinal inflammation is induced (Table 1.2). The induced 

models of IBD are used to study different aspects of IBD aetiology such as the roles of genes 

that confer susceptibility, defective barrier function, the role of immune cells known to mediate 

inflammation during IBD etc. In general, intestinal inflammation can be induced in three ways; 

i) administration of exogenous chemical agents such as Tri-nitro benzene sulphonic acid 

(TNBS) or dextran sodium sulphate (DSS) that disrupt the epithelial barrier (Morris et al., 1989; 

Okayasu et al., 1990) (Table 1.2), ii) knocking out of genes such as IL-2 or IL-10, which have 

been show to be important for preventing inflammation (Kuhn et al., 1993; Sadlack et al., 1993) 

(Table 1.2) and iii) adoptive transfer of CD4+ T cells into immunodeficient mice such as RAG 

KO or SCID mice (Cong et al., 1998; Elson et al., 2000; Morrissey et al., 1993; Powrie et al., 

1993) (Table 1.2).   
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Table 1.2 Experimental models of colitis 
 
Type Description Reference 

Spontaneous models 

C3H-HeJBir mouse  Restricted to ileocecal lesions. Inflammation is similar to CD 
in that it involves a Th1 response. 

(Cong et al., 
1998) 

SAMP1/Yit mouse Develop severe inflammation similar to CD in the colon and 
ileum. 

(Matsumoto 
et al., 1998) 

Chemically induced models 

TNBS  TNBS is a hapten administered rectally in ethanol as an 
enema. There is disruption of the mucosal barrier and 
intestinal inflammation is similar to both UC and CD. 

(Morris et al., 
1989) 

Dextran sodium 
sulphate (DSS)  

DSS is given in drinking water to disrupt the epithelial barrier 
and induce acute colitis resembling UC. 

(Okayasu et 
al., 1990) 

Transgenic or Knock-out models 

IL-2 KO Mice develop chronic inflammation similar to UC. Display 
increased T- and B-cell activation and dysregulated MHC II 
expression. 

(Sadlack et 
al., 1993) 

IL-10 KO Develop enterocolitis similar to CD, characterised by a Th1 
response. Loss of IL-10 results in loss of regulation of normal 
immune responses to enteric antigens leading to 
overproduction of TNF-α and IFN-γ. 

(Kuhn et al., 
1993) 

STAT4 transgenic Mice develop chronic inflammation characterised by 
overproduction of TNF-α and IFN-γ. 

(Wirtz et al., 
1999) 

Transfer models 

CD45RBhigh CD4+ T 
cells to RAG KO or 
SCID mice 
 

Transfer of naive CD4+ T cells into lymphopenic mice results 
in chronic colitis and wasting disease characterised by 
elevated levels of IFN-γ. 

(Morrissey et 
al., 1993; 
Powrie et al., 
1993) 

C3H/HeJBir CD4+ T 
cells to C3H/HeSnJ  
SCID mice 
!

C3H/HeJBir CD4+ T cells are inherently reactive to 
microflora-derived antigens and drive the development of 
chronic colitis when transfered into SCID mice. 

(Cong!et!al.,!
1998;!Elson!
et!al.,!2000)!
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1.4.4 The Helicobacter hepaticus model of colitis 
Helicobacter is a genus of Gram-negative microaerophilic bacteria that are of two types; gastric 

Helicobacter and enterohepatic Helicobacter (Solnick and Schauer, 2001). Gastric Helicobacter 

colonise the stomach whereas enterohepatic Helicobacter can infect both the intestinal tract and 

the liver (Solnick and Schauer, 2001). 

H. hepaticus (Hh) is a type of enterohepatic bacterium that was first isolated from A/JCr 

mice suffering from hepatitis and hepatic tumours (Fox et al., 1996; Ward et al., 1994a; Ward et 

al., 1994b).  Hh was later found to be associated with the development of intestinal 

inflammation in immunodeficient mice such as nude and SCID mice (Fox et al., 1996). 

Following infection, Hh colonises the cecum and colon of specific pathogen free IL-10 KO 

mice and results in the development of chronic typhlocolitis (Kullberg et al., 1998). The 

requirement for the absence of IL-10 or IL-10 signalling to develop Hh-induced typhlocolitis is 

evidenced by the fact that Hh-infected (Hh+) IL-10 sufficient hosts do not develop intestinal 

inflammation (Kullberg et al., 1998) unless treated with a blocking antibody to the IL-10R (anti-

IL-10R) (Kullberg et al., 2006). The presence of intestinal flora is also vital to the development 

of Hh-induced colitis as germ-free IL-10 KO mice mono-associated with Hh do not develop 

disease (Dieleman et al., 2000).  

The development of inflammation in our model of Hh-induced colitis is dependent on 

lymphocytes, as evidenced by the fact that Hh+ RAG KO mice do not develop colitis unless 

they are given CD4+ T cells by adoptive transfer (Kullberg et al., 2002). Initial studies in the 

Hh+ IL-10 KO model suggested that intestinal inflammation was Th1 driven as MLN cells from 

these mice produced IFN-γ and TNF-α upon restimulation (Kullberg et al., 1998). The IL-

12p40 subunit was found to be crucial for sustaining Hh colitis as treatment of Hh+ IL-10 KO 

mice with anti-IL-12p40 antibody ameliorated colitis and mice showed decreased levels of IFN-

γ and TNF-α (Kullberg et al., 2001). Furthermore Hh+ IL-10/IL-12 double KO (DKO) mice 

were protected from colitis development (Kullberg et al., 2001). These studies suggested that 

IL-12 plays an important role in the development of colitis. However, soon after, it was 

discovered that the IL-12p40 subunit is a shared subunit between IL-12 and IL-23 (Oppmann et 

al., 2000). In light of this finding, the importance of IL-12 versus IL-23 in driving Hh-induced 

colitis was re-evaluated. Hh+/anti-IL-10R-treated WT (IL-12 and IL-23 sufficient) and IL-

12p35 KO mice (lacking IL-12 only) developed intestinal inflammation, however Hh+/anti-IL-

10R-treated IL-12p40 mice (lacking both IL-23 and IL-12) did not develop intestinal 

inflammation suggesting that IL-23 and not IL-12 is a key player driving Hh-induced intestinal 

inflammation (Kullberg et al., 2006).  Hh+/anti-IL-10R-treated WT mice also showed elevated 

levels of IFN-γ and IL-17A, suggesting the involvement of both Th1 and Th17 cells in intestinal 

inflammation (Kullberg et al., 2006). Kinetic studies in Hh+ IL-10 KO mice revealed that at 

peak inflammation, there are large numbers of IL-17A+, IL-17A+ IFN-γ+ and IFN-γ+ CD4+ T 
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cells present in the large intestine (Morrison et al., 2013). Transfer of ex-vivo sorted IL-17A+, 

IL-17A+ IFN-γ+ and IFN-γ+ into Hh+ RAG KO mice resulted in all the mice developing colitis, 

suggesting that each of these cells are colitogenic (Morrison et al., 2013). Assessment of ex-vivo 

sorted IL-17A+, IL-17A+ IFN-γ+ and IFN-γ+ CD4+ T cells for histone modifications revealed that 

Th17 cells are predisposed to up-regulate the Th1 program (Morrison et al., 2013). Furthermore, 

fate mapping of the Th17 cells using IL-17A-eYFP fate reporter mice revealed that Th17 cells 

progressively change phenotype, transitioning via an IL-17A+ IFN-γ+ stage to become cells that 

extinguish IL-17A production but continue to secrete IFN-γ (hereafter called ex-Th17 cell) 

(Morrison et al., 2013).  

1.5 INTESTINAL HOMEOSTASIS 
The gut represents a unique challenge for the immune system as it has to maintain tolerance to 

the millions of commensal bacteria and food antigens that it is exposed to, while at the same 

time mount a response against pathogens. As a consequence, the gut microenvironment is 

inherently anti-inflammatory, with a number of different mechanisms in place that maintain 

intestinal homeostasis and prevent the development of intestinal inflammation. The following 

section describes some of the regulatory factors that are important for maintaining intestinal 

homeostasis. 

1.5.1 Tregs and intestinal homeostasis 
Tregs play a critical role in maintaining immune homeostasis and tolerance in the gut. This is 

evidenced by the fact that humans who lack Tregs or have non-functional Tregs due to genetic 

mutations in FoxP3 suffer from severe intestinal inflammation (Bacchetta et al., 2006; 

McMurchy et al., 2009). Similarly, mice lacking FoxP3+ Tregs also develop severe colitis 

(Fontenot et al., 2003). 

 Among the different Treg populations defined, tTregs, pTregs and Tr1 cells (Groux et 

al., 1997; Mucida et al., 2007; Uhlig et al., 2006) have been shown to protect from the 

development of T cell transfer colitis however, it is unclear which population plays a more 

important role in maintaining intestinal homeostasis. Colonic Treg TCR sequencing found that 

both tTregs and pTregs mediate tolerance to Ag from commensal bacteria (Cebula et al., 2013; 

Lathrop et al., 2011) and based on expression of tTreg marker NRP1, it was shown that 50% of 

FoxP3+ Tregs in the colon are tTregs and the other half pTregs (Weiss et al., 2012). These 

results suggest that both these Treg populations contribute equally to maintaining intestinal 

homeostasis. Interestingly, full protection from the disease observed in FoxP3-deficient mice 

required the presence of both pTregs and tTregs (Haribhai et al., 2011), further strengthening 

the notion that these cells act in concert to maintain intestinal homeostasis. Further studies to 

assess the contribution of Tr1 cells, pTregs and tTregs to protecting against intestinal 

inflammation are needed. 



 46 

1.5.2 IL-10 and intestinal homeostasis 
IL-10 is an anti-inflammatory cytokine and studies in man and mouse have shown that it is vital 

for maintaining intestinal homeostasis. Mutations in the IL-10-receptor (IL-10R) and defects in 

IL-10 expression and IL-10 signalling pathways have been associated with human IBD 

(Glocker et al., 2009; Lees et al., 2011; Shim and Seo, 2014). Homozygous loss of function 

mutations in IL10 and the IL10R cause severe infantile IBD in humans (Kotlarz et al., 2012). 

Mice deficient in IL-10 (Kuhn et al., 1993) or the IL-10R (Spencer et al., 1998) spontaneously 

develop colitis. Furthermore, IL-10 was found to be protective in T-cell transfer colitis 

(Asseman et al., 1999; Carthew and Sontheimer, 2009) and IL-10 gene therapy improved DSS 

colitis (Sasaki et al., 2005) and TNBS colitis (Lindsay et al., 2002). In the Hh colitis model, WT 

mice infected with Hh do not develop intestinal inflammation whereas Hh-infection of IL-10 

KO mice or WT mice concomitantly treated with a blocking antibody to the IL-10R (anti-IL-

10R) leads to the development of intestinal inflammation (Kullberg et al., 2006; Kullberg et al., 

1998). IL-10 therapy has been trialed in humans. Initial studies showed that IL-10 therapy was 

safe and well tolerated (Colombel et al., 2001; Fedorak et al., 2000; Schreiber et al., 2000). 

Subsequent studies showed that while IL-10 therapy did improve Crohn’s disease activity 

index, this change was not significant (van Deventer et al., 1997). In fact, IL-10 treatment did 

not result in significant clinical improvement or remission rates in CD patients compared to 

those treated with the placebo (Buruiana et al., 2010; Herfarth and Scholmerich, 2002). There 

are several possible explanations for this. Firstly, it is possible that the dose of IL-10 is too low 

to elicit a response. Secondly, different individuals have different disease phenotypes/severity 

of disease. Patients with inherently low IL-10-levels benefited more from IL-10 

supplementation (Colombel et al., 2001). Furthermore, patients with very severe disease 

benefited from IL-10-supplementation compared to patients with less severe disease (Schreiber 

et al., 2000). Thirdly, animal models of colitis suggest that IL-10 may only be effective at 

preventing disease development and not effective at ameliorating established disease (Barbara et 

al., 2000; Herfarth et al., 1998), therefore IL-10 therapy may be better suited to be given during 

remission phase rather than to treat active inflammation. Finally, IL-10 alone may fail to 

suppress all the pro-inflammatory mediators.  As such, IL-10 therapy may still be beneficial to 

treat human IBD and is still under active investigation. 

IL-10 is mainly produced by T cells, B cells, macrophages, NK cells and DCs 

(reviewed by (Paul et al., 2012). Although few studies have been done to assess the importance 

of IL-10 derived from different cells in maintaining intestinal homeostasis, current findings 

suggest that in the gut, CD4+ T-cell derived IL-10 constitutes an important source of IL-10 as 

CD4+ T-cell specific deletion of IL-10 led to the development of spontaneous colitis (Roers et 

al., 2004). Macrophage-specific deletion of IL-10 however, did not induce spontaneous colitis, 

suggesting that macrophage-derived IL-10 is dispensable for gut homeostasis (Zigmond et al., 

2014). Among the CD4+ T cells, Th2, Tr1 and FoxP3+ Tregs are thought to be the major sources 
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of IL-10. FoxP3+ Treg-specific deletion of IL-10 led to the development of spontaneous colitis 

in the gut, but not systemic autoimmunity as seen with FoxP3-deficient mice, suggesting that 

Treg-derived IL-10 is specially important for maintaining homeostasis in the gut (Rubtsov et al., 

2008). 

IL-10 regulates immune responses in the gut through several mechanisms. IL-10R-

signaling in macrophages polarizes them to an anti-inflammatory phenotype as evidence by the 

fact that macrophage-specific deletion of the IL-10R resulted in severe spontaneous colitis with 

the production of pro-inflammatory mediators by these cells (Zigmond et al., 2014). IL-10 can 

directly act on Th17 cells to suppress them (Huber et al., 2011). Th17 cells express the IL-10R 

and are directly suppressed by Tr1 cells and FoxP3+ Tregs in an IL-10-dependent manner 

(Huber et al., 2011). Treatment of RAG KO mice with recombinant IL-10 reduced the 

frequency of IL-17A+ and IL-17A+ IFN-γ+ cells in established T cell transfer colitis, showing 

that Th17 cells can be directly suppressed by IL-10 (Huber et al., 2011).  

1.5.3 MicroRNAs and intestinal homeostasis 
The understanding of the role that microRNAs play in IBD is in its early stages. A small 

number of studies have profiled microRNAs and found them to be differentially expressed in 

tissues and peripheral blood of patients with active UC and CD when compared to healthy 

controls, suggesting that altered microRNA expression might contribute to driving the 

inflammatory response in IBD (Wu et al., 2011; Wu et al., 2010; Wu et al., 2008) (Table 1.3). 

Indeed, several studies in human IBD and animal models of colitis have shown that over 

expression and down-regulation of certain microRNAs do promote the inflammatory response. 

For example, miR-21 is overexpressed in both human UC and in DSS colitis (Shi et al., 2013; 

Yang et al., 2013). In these studies, miR-21 was found to repress RhoB, a protein important for 

maintaining tight junction integrity and transepithelial resistance (Shi et al., 2013; Yang et al., 

2013) (Table 1.4).  Other examples of how overexpression of certain microRNAs augments the 

pathogenic immune response in different colitis models and human IBD can be found in Table 

1.4. MiR-124 was found to be down-regulated in paediatric UC, DSS and IL-10 KO models of 

colitis (Koukos et al., 2013). Koukos et al found that down-regulation of miR-124 led to de-

repression of miR-124 target STAT3, and thereby promoted the pathogenic Th17 response 

(Koukos et al., 2013)(Table 1.5). More examples of how down-regulation of certain 

microRNAs promotes pathogenic immune responses in different colitis models and human IBD 

are described in Table 1.5.   

 

 



 48 

Table 1.3 MicroRNA profiling in tissues and peripheral blood of healthy controls and patients with active UC and CD 

 

 

 

IBD type Tissue Research findings Reference 

Active UC  Sigmoid 
colon  

Increased expression: miR-16, miR-21, miR-23a, miR-24, miR-29a, miR-126, miR-195, let-7f 

Decreased expression: miR-192, mR-375, miR-422b 

(Wu et al., 2008) 

Active CD  Sigmoid 
colon  

Increased expression: miR-23b, miR-106a, miR-191 
 
Decreased expression: miR-192, mR-375, miR-422b 

(Wu et al., 2010) 

  
Active CD  Terminal 

ileum 
 
Increased expression: miR-16, miR-21, miR-223, miR-594 

Active CD 

 

Peripheral 
blood 

 

Increased expression: miR-199a-5p, miR-362-3p, miR-340*, miR-532-3p, miRplus-E1271 
 
Decreased expression: miR-149*, miRplus-F1065 

(Wu et al., 2011) 

 

Active UC 
Increased)expression:)miR$28$5p,*miR$151$5p,*miR$199a$5p,*miR$340*,*miRplus$E1271,*miR$103$2*,*miR$362$3p,*miR$532$3p,*
miR$3180$3p,*miRplus$E1035,*miRplus$F1159*
*
Decreased)expression:)miR$505* 

Shraddha Kamdar
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Table 1.4 MicroRNAs that are overexpressed in human IBD and animal models of colitis and their mRNA targets 

MiR Colitis 
model 

Target or 
Pathway 

Research findings Reference 

miR-21 DSS  RhoB MiR-21 is up-regulated during inflammation. MiR-21 KO mice show improved survival in DSS colitis. RhoB 
is important for maintenance of integrity of epithelial tight junctions. MiR-21 targets RhoB to impair tight 
junction integrity and transepithelial resistance. 

(Shi et al., 2013) 

Human UC (Yang et al., 2013) 

miR-21 TNBS  

DSS  

T cell 
transfer 

Th1 
pathway 

MiR-21 is overexpressed in IBD. MiR-21 KO mice show exacerbated TNBS and T cell transfer colitis and 
reduced DSS colitis. 

In T cell transfer colitis, CD4+ CD45RBhigh cells from miR-21 KO mice were prone to Th1 polarisation. 

(Wu et al., 2014) 

miR-155 DSS Th1/Th17 
pathway 

MiR-155 is overexpressed in DSS colitis. MiR-155 KO mice show decreased clinical scores and frequencies 
of Th1 and Th17 cell compared to WT mice. 

(Singh et al., 2014b) 

miR-155 Human UC FOXO3a MiR-155 is overexpressed in UC patients with active disease. MiR-155 targets FOXO3a, which suppresses 
IκBα resulting in an increase in TNFα and IL-8. 

(Min et al., 2014) 

miR-29a DSS 

Human UC 

MCL-1 MiR-29a is overexpressed in both UC patients and DSS colitis. It targets MCL-1 leading to apoptosis of 
intestinal epithelial cells. 

(Lv et al., 2014) 

miR-29a DSS  

Human CD 

IL-23 MiR-29a is induced by NOD2 signaling in DCs of CD patients and mice. MiR-29a down-regulates IL-23 by 
directly targeting IL-12p40 (one of the sub-units of heterodimeric cytokine IL-23). Loss of miR-29a in 
disease may help to promote inflammation by promoting the Th17 pathway. 

(Brain et al., 2013) 

miR-150 DSS 

Human UC 

c-Myb 

BCL-2 

MiR-150 was found to be up-regulated in the colon of humans with active UC and mice with DSS colitis. 
MiR-150 was found to target transcription factor c-Myb, which in turn promotes anti-apoptotic protein Bcl-2. 
Thus overexpression of miR-150 led to increases apoptosis via downregulation of c-Myb and Bcl-2. 

(Zhang et al., 2010) 
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MiR Colitis 
model 

Target or Pathway Research findings Reference 

miR-595 

miR-1246 

Human UC 

Human CD 

NCAM1 

FGFR2 

MiR-595 and miR-1246 are overexpressed in serum of patients with active UC and CD patients 
compared to inactive disease. MiR-595 targets NCAM1 (a cell adhesion molecule) and FGFR2 
(fibroblast growth factor receptor 2), which are necessary for differentiation, proliferation and 
repair of the colonic epithelium and tight junction-maintenance.  

(Krissansen et al., 
2015) 

miR-106b 

miR-93 

Human CD 

 

ATG16L1 Increased expression of miR-106b and miR-93 was seen in colons of patients with active CD. 
MiR-106b and miR-93 were found to target autophagy protein ATG16LI leading to decreased 
autophagy-dependent clearance of bacteria. 

(Lu et al., 2014) 

miR-142-3p Colonic 
epithelial 

cells 

Jurkat T cells 

MiR-142-3p was found to be target autophage gene ATG16L1. Overexpression of miR-142-3- 
led to reduced levels of ATG16L1 levels and thus decreased autophagy. 

(Zhai et al., 2014) 
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 Table 1.5 MicroRNAs that are down-regulated in human IBD and animal models of colitis and their mRNA target 

MiRNA Colitis 
model 

Target or 
Pathway 

Research findings Reference 

miR-124 DSS  

IL-10 KO  

Paediatric 
UC  

STAT3 MiR-124 was down-regulated in the colon of colitic IL-10 KO mice, in the TNBS model and in paediatric UC 
patients (active vs inactive disease). MiR-124 was found to target STAT3. Loss of miR-124 expression, 
promoted STAT3 expression thus promoting the Th17 pathway. 

(Koukos et al., 
2013) 

miR-146b DSS  

 

Siah2 MiR-146b decreases intestinal inflammation and promotes epithelial barrier repair by repressing Siah2 to 
activate NF-kB activity 

(Nata et al., 2013) 

miR-19a DSS  

Human UC 

TNF-α MiR-19a was found to be down-regulated in the colon of patients with UC and mice with DSS colitis. MiR-
19a was found to target TNF-α. Thus a decrease in miR-19a levels led to an increase in  TNF-α expression. 

(Chen et al., 2013a) 

miR-10a IL-10 KO  

MyD88 
KO  

RAG KO  

IL-12/IL-
23p40 

MiR-10a is down-regulated by intestinal microbiota in DCs through TLR-TLR ligand interactions via the 
MyD88 pathway. MiR-10a targets IL-12/IL-23p40 suggesting that down-regulation of miR-10a may be a 
mechanism of maintaining intestinal inflammation. 

(Xue et al., 2011) 

miR-141 TNBS  

IL-10 KO  

Human CD  

CXCL12β MiR-141 is down-regulated in TNBS and IL-10 KO colitis as well as in CD patients. MiR-141 regulates 
CXCL12 in epithelial cells, which promotes leukocyte infiltration. Loss of miR-141 during inflammation 
increases CXCL12 expression and promotes leukocyte infiltration. 

(Huang et al., 2014) 

miR-200b Human UC 

Human CD 

TGF-β Mir-200b is down-regulated in the inflamed colon of UC and CD patients. MiR200b inhibits epithelial-
mesenchymal transition by targeting TGF-β and thereby promoting growth of intestinal epithelial cells. 

(Chen et al., 2013b) 
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1.6 AIMS 
IBD is a chronic inflammatory disorder of the gastrointestinal tract, that is caused in part, by a 

dysregulated immune response to microbial flora (Xavier and Podolsky, 2007). Our lab uses the 

Hh colitis model to study intestinal inflammation, and in this model, inflammation is associated 

with CD4+ Th1 and Th17 cells. Previous work in the lab has extensively characterised the 

pathogenic effector CD4+ T cell response during Hh-induced colitis (Morrison et al., 2013), 

however, the alterations in different regulatory mechanisms in the gut are less well understood.  

Thus the broad aim of this the work carried out in this thesis, was to examine whether cell-

intrinsic and cell-extrinsic mechanisms of regulation of effector T cells are altered during Hh-

induced colitis. 

Specifically, the aims were as follows: 

• To examine whether the expression of microRNAs (a cell-intrinsic mechanism of 

regulation) is altered in the inflamed large intestine of Hh+ IL-10 KO mice at the 

tissue level and LP CD4+ T-cell level, compared to healthy controls. 

MicroRNAs represent a cell-intrinsic mechanism of regulation. Although MicroRNAs have 

been shown to be alternatively expressed in human IBD, and altered microRNA expression has 

also been shown to potentiate the pathogenic immune response in human IBD and animal 

models of colitis, the role of microRNAs has not been examined in Hh colitis.  Thus, the aim of 

the experiments carried out in chapter four of this thesis was to examine whether microRNAs 

are differentially expressed in the inflamed large intestine of Hh+ IL-10 KO mice at the tissue 

level and LP CD4+ T-cell level, compared to healthy controls. 

•  To characterise the phenotype of Tregs and IL-10-producing LP CD4+ T cells in 

the large intestine during an inflammatory and a non-inflammatory immune 

response to Hh. 

Tregs and the anti-inflammatory cytokine IL-10 represent some of the cell-extrinsic 

mechanisms of regulating effector CD4+ T cells. Using the modified Hh/RAG KO adoptive 

transfer model of colitis, previous studies have shown that Tregs protect against the 

development of Hh colitis in an IL-10-dependent manner (Kullberg et al., 2002). However, the 

phenotype of different Treg subsets and IL-10+ CD4+ T cells in the large intestine LP have not 

been examined before. Therefore, the experiments carried out in Chapter 5 of this thesis were 

performed in order to characterise the phenotype of Tregs and of IL-10-producing CD4+ T cells 

in the large intestine LP during a non-inflammatory immune response to Hh (Hh+ IL-10-

sufficient mice) and compare it to that of an inflammatory immune response to Hh  (Hh+/anti-

IL-10R-treated IL-10-sufficient mice) at 2 weeks pi. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 ANIMALS 
C57BL/6 (B6) IL-10 KO mice were originally developed by Ralf Kuhn and Werner Muller, 

University of Cologne, Cologne, Germany (Kuhn et al., 1993), and were kindly provided by 

Anne O’Garra at the National Institute for Medical Research (NIMR, London, UK). B6 IL-

17AcreR26ReYFP (IL-17A-eYFP) fate-reporter mice (Hirota et al., 2011) were kindly donated by 

the laboratory of Brigitta Stockinger (NIMR, London, UK). B6 129S6-IL-10 mice (tiger mice) 

USA (Kamanaka et al., 2006) were originally developed by Richard Flavell, Yale University, 

Connecticut, and kindly provided by the laboratory of Adrian Mountford (University of York, 

UK). Male and female B6 IL-10 KO, B6 IL-17AcreR26ReYFP, B6 129S6-IL-10 and B6 CD45.2 

WT mice were bred and maintained under SPF conditions at the Biological Services Facility 

(BSF) at the University of York. All mice were bred and maintained in individually ventilated 

cages (IVC) racking from Techniplast (Buggugiate, Italy) and a maximum number of five mice 

were housed per cage. The cages were kept in a 12 hour light cycle/ 12 hour dark cycle set to 

gentle rise and fall i.e. during the light cycle, lights brighten gradually to reach their maximum 

brightness after 30 minutes and during the dark cycle, the lights dim gradually over 30 minutes 

before complete darkness is attained. The mice were fed on the ‘2018 Teklad global 18% 

protein rodent diet’ from Harlan Laboratories (Bicester, UK).  All mice were between 6 and 24 

weeks of age at the start of experimental work.  As a result of limited mouse numbers, in some 

experiments, a mixture of male and female mice were used in some experiments. All 

experiments in this thesis were carried out with the approval of the UK Home Office and in 

accordance with the rules and regulations of the ‘Animal and Scientific Procedures Act 1986’ 

(ASPA) and the Animal Welfare and Ethical Review Body at the University of York.  

2.2 HELICOBACTER HEPATICUS CULTURE AND 
INFECTIONS 

Hh (standard Frederick isolate 1A) (Fox et al., 1994) was cultured on blood agar plates 

containing Campylobacter-selective antibiotics at 37°C, kept under microaerobic conditions 

(88% N2, 5% CO2 and 7% H2) for 48 hours. Blood agar base, laked horse blood and 

Campylobacter Selective Supplement (containing trimethoprin, vancomycin and polymixin B); 

based on Skirrow formulation (Skirrow, 1977), were purchased from Oxoid (Hampshire, UK). 

Using sterile cotton swabs, Hh was collected into sterile endotoxin-free PBS (Sigma-Aldrich, 

Dorset, UK). Optical density of this suspension was estimated by using a spectrophotometer to 

determine the OD600 (assuming an OD600 of 1 is equal to 1 x 108/ml total bacteria) and 

viability was assessed using the LIVE/DEAD BacLight kit (Invitrogen, Paisley, UK) according 

to the manufacturer’s instructions. Hh was then diluted with sterile endotoxin-free PBS to 30 x 



 54 

106 Hh/ml for infection. Mice were inoculated by oral gavage with 0.5 ml PBS containing 15 x 

106 Hh. 

2.3 ISOLATION AND INJECTION OF ANTI-IL-10R 
MONOCLONAL ANTIBODY 

2.3.1 Isolation of anti-IL-10R mAb 
The following reagents, used to isolate anti-IL-10R mAb were obtained from Sigma-Aldrich 

(Dorset, UK): D-glucose, meat peptone, non-essential amino acids (NEAA), Glutamine, RPMI 

1640, 2-mercaptoethanol (2-ME), penicillin and streptomycin. Integra CELLine flasks were 

obtained from INTEGRA (Zizers, Switzerland). Hybridoma cells were obtained from ATCC via 

a material transfer agreement with DNAX. Ultra low IgG fetal bovine serum (FBS) was 

purchased from Thermo Fisher Scientific (Loughborough, UK). Two solutions were used 

during the course of the protocol; nutrient medium and cell compartment medium. Nutrient 

medium consisted of RPMI 1640 containing 100 u/ml penicillin, 100 µg/ml streptomycin, 2 

mM glutamine, 0.1 mM NEAA, 0.2% w/v meat peptone, 0.25% w/v D-glucose and 50 µM 2-

mercaptoethanol. Cell compartment medium was prepared by adding 10 ml of ultra-low IgG 

FBS to 90 ml of nutrient medium and sterile filtering the solution. All the steps were carried out 

in the hood using sterile technique. 

An appropriate number of 1B1.3a anti-IL-10R hybridoma cells were diluted in cell 

compartment medium to a concentration of 2 x 106 cells/ml. 15 ml of 1B1.3a anti-IL-10R 

hybridoma cells were carefully pipetted into the cell compartment of the CELLine flask, taking 

care to remove as many bubbles as possible. 1 L of pre-warmed nutrient medium was added to 

the medium compartment of the CELLine flask. The flask was closed and placed in an 

incubator at 37°C for 72 hrs. The medium was removed from the flask and cells pipetted out of 

the cell compartment into a 15 ml tube. Cell viability and yield were assessed by dye exclusion 

with trypan blue. An appropriate number of cells were kept aside for passage in a 50 ml tube, 

and the volume made up to 15 ml with cell compartment medium. As before, 1 L of pre-

warmed RPMI 1640 containing 300 µl 2-ME and 78 ml of nutrient medium was added to the 

medium compartment of the CELLine flask. The flask was closed and placed in an incubator at 

37°C for a further 72 hrs. 

The remaining hybridoma cells were centrifuged at 1200 RPM for ten minutes at 4°C. 

The supernatant was transferred to a fresh 15 ml tube and stored at -80°C until mAb could be 

purified on a Protein G column as described in the next section. 
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2.3.2 Purification of mAb on Protein G column 
The following reagents were used to purify mAb on the Protein G column: Protein G Sepharose 

4 Fast Flow (Pharmacia, West Sussex, UK), binding buffer (20mM phosphate buffer, pH 7.0), 

elution buffer (0.1M glycine-HCl buffer, pH 2.7), neutralization buffer (1M Tris-HCl buffer, pH 

8.0), storage buffer (20mM phosphate buffer, pH 7.0+ 20% ethanol) and PBS. 1B1.3a mAb was 

purified on the Protein G Column according to the manufacturer’s instructions. The tube 

containing purified 1B1.3a was then stored at 4ºC.  
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2.4 CELL ISOLATIONS 

2.4.1 Lamina propria cell isolation 
The following reagents that were used for the isolation of lamina propria cells were obtained 

from Sigma-Aldrich (Dorset, UK); Dubelcco’s phosphate buffered saline (PBS), HEPES, 

EDTA, glutamine, Dithiothreitol (DTT), Non-essential amino acids (NEAA), sodium pyruvate, 

2-mercaptoethanol, penicillin and streptomycin. HyClone fetal calf serum (FCS) was purchased 

from Thermo Fisher Scientific (Loughborough, UK) and heat inactivated by incubating in a 

56°C waterbath for 30 minutes. ‘RPMI Wash medium’ used during the protocol was made up of 

RPMI-1640 containing 10mM HEPES, 100 U/ml penicillin and 100 µg/ml streptomycin. 

‘Complete medium’ used during the protocol consisted of RPMI-1640 with 10% FCS, 100 u/ml 

penicillin, 100 µg/ml streptomycin, 10mM HEPES, 0.1 mM NEAA, 1 mM sodium pyruvate, 2 

mM L-glutamine and 50 µM 2-mercaptoethanol. 

Mice were sacrificed and the colon and cecum were removed and placed in a petri dish 

containing PBS/HEPES (PBS containing 10 mM HEPES, 100 U/ml penicillin and 100 µg/ml 

streptomycin). Tissues were cut open longitudinally using scissors and the luminal contents 

removed by gently scraping the surface with forceps. After cleaning, the tissues were transferred 

into a clean petri dish and cut into pieces 5 mm in length using a scalpel. The pieces were then 

transferred to a 50 ml tube containing 25 ml of PBS/HEPES. The tissue pieces were washed by 

vortexing the tube, the pieces were allowed to sediment and the supernatant discarded and 

another 20 ml of PBS/HEPES added. After washing in PBS/HEPES, the epithelial layer was 

removed by incubating the tissue pieces at 37°C in 15 ml of pre-warmed RPMI/EDTA (RPMI-

1640 containing 2% FCS, 10 mM HEPES, 5 mM EDTA, 2 mM glutamine, 1mM DTT, 100 

U/ml penicillin and 100 µg/ml streptomycin) for 20 minutes at 225 rpm in an orbital shaker. 

The tissue was then vortexed briefly, allowed to sediment and the supernantant discarded. 15 ml 

of pre-warmed RPMI/EDTA was added once again and the incubation and vortexing steps 

repeated. The tissue pieces were then washed twice in 15 ml of RPMI/HEPES (RPMI-1640 

containing 2% FCS, 10 mM HEPES, 2 mM glutamine and 100 U/ml penicillin and 100 µg/ml 

streptomycin) in order to remove the EDTA and DTT. The tissue was subsequently digested 

with 0.3125 mg/ml Liberase TL (Roche, West Sussex, UK) and 0.125 U/ml Dnase I (Sigma, 

Dorset, UK) in 4 ml RPMI/HEPES per uninfected cecum and colon pool and in 8 ml 

RPMI/HEPES per infected cecum/colon pool. Tissues were digested for 1 hour at 37°C while 

shaking at 225 rpm in an orbital shaker. The suspension of digested tissue was filtered through a 

100 µm cell strainer and any tissue fragments that were not filtered through were broken up 

with a plunger. The strainer was washed with 10ml of RPMI/EDTA and the resulting cell 

suspension centrifuged at 1100 rpm for 7 minutes.  Depending on the experiment, one of the 

following 3 steps were then carried out: 1) The cell pellet was resuspended in 10 ml of RPMI 
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wash medium and then centrifuged at 1100 rpm for 7 minutes. The supernatant was discarded 

and the cell pellet resuspended in complete medium 2) The cell pellet was resuspended in 10 ml 

of 40% isotonic Percoll (Sigma, Dorset, UK) in RPMI 1640 and then centrifuged at 1800 rpm 

for 20 minutes at 10°C. The supernatant was discarded and the cell pellet washed with 10 ml 

RPMI wash medium by centrifuging at 1100 rpm for 7 minutes. The supernatant was discarded 

and the cell pellet resuspended in complete medium 3) The cell pellet was resuspended in 5 ml 

of 40% isotonic Percoll in RPMI 1640 and then underlayed with 3 ml of 80% isotonic Percoll in 

PBS and centrifuged at 1800 rpm for 20 minutes at 10°C. Following centrifugation, cells were 

collected from the 40/80% Percoll interface, placed in a fresh tube and washed with RPMI wash 

medium by centrifuging at 1100 rpm for 7 minutes. The supernatant was discarded and the 

resulting cell pellet was then resuspended in complete medium. In all three conditions, cell 

viability and yield were then assessed by dye exclusion with trypan blue and counting on an 

Improved Neubauer haemocytometer.  

2.4.2 Spleen and mesenteric lymph node isolation  
Spleens and mesenteric lymph nodes (MLNs) collected from sacrificed animals were placed in a 

Petri dish containing 3 ml of wash medium. The tissues were broken up into a single cell 

suspension with a syringe plunger, and the back of the plunger washed with a further 3 ml of 

wash medium. The resulting suspension was then transferred to a 15 ml tube, the Petri dish 

washed with a further 3ml of wash medium and the washings transferred to the 15 ml tube. 

Large debris was allowed to settle and the supernatant was transferred to a fresh 15 ml tube. The 

cells were centrifuged at 1100 rpm for 7 minutes and the supernatant discarded. The MLN cells 

were resuspended in 12 ml of wash medium. Spleen cells were resuspended in 1 ml/spleen of 

red blood cell-lysing buffer (Sigma, Dorset, UK) and incubated at room temperature for 5 

minutes before adding a further 12 ml of wash medium. The spleen cells were centrifuged at 

1100 rpm for 7 minutes and the supernatant discarded. The spleen cells were then resuspended 

in 12 ml of wash medium. Both spleen and MLN cells were centrifuged at 1100 rpm for 7 

minutes and the resulting supernantant discarded. The cells were resuspended in complete 

medium and cell viability and yield were assessed by dye exclusion with trypan blue and 

counting on an Improved Neubauer haemocytometer.  

2.5 STIMULATION OF CELLS WITH PHORBOL 
MYRISTATE ACETATE AND IONOMYCIN 

Following isolation of cells as described in section 2.4, LP, MLN and spleen cells were diluted 

to a concentration of 5 x 106 cells/ml and 1.5 ml aliquoted into v-bottom tubes (7.5 x 106 

cells/tube). Phorbol 12-myristate 13-acetate (PMA) and ionomycin were added to get final 

concentrations of 10 ng/ml of PMA and 1 µg/ml of ionomycin. Cells were then incubated at 37 

°C in 5% CO2 for one hour. Brefeldin A was then added to each tube at a final concentration of 
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10 µg/ml, and the cells incubated for a further 3 hours at 37°C in 5% CO2. Tubes were then 

topped up with PBS and centrifuged at 1100 rpm for 7 minutes. The resulting supernatant was 

discarded and the cells resuspended in complete medium and surface stained as described in 

section 2.6. 

2.6 FLOW CYTOMETRY  
Depending on the experiment, cells were surface stained and fixed and then intracellularly 

stained with the combinations of fixatives and permeabilisation buffers summarized in Table 

2.1. 

Table 2.1 Combinations of fixation and permeabilisation buffers used during 

different flow cytometry staining protocols. 

Protocol Fixant Permeabilisation buffer 

A 2% paraformaldehyde (PFA)  

(Sigma-Aldrich, Dorset, UK) 

Permeabilisation buffer made in-house 
(subsequently referred to as 0.1% saponin buffer). 
This buffer consists of PBS containing Mg2+ and 
Ca2+ with 0.1% saponin (Calbiochem, La Jolla, 

USA), 10mM HEPES, and 1% FCS. 

B 2% PFA 

(Sigma-Aldrich, Dorset, UK) 

1x eBio permeabilisation buffer 

(Bioscience, Hatfield, UK). 

C eBio fixation-permeabilisation buffer 

(eBioscience, Hatfield, UK) 

1x ebio permeabilisation buffer 

(Bioscience, Hatfield, UK). 

D eBio fixation-permeabilisation buffer 

(eBioscience, Hatfield, UK) 

0.1% saponin buffer 

 

2.6.1 Staining for surface markers 
LP, MLN and spleen-cell suspensions in complete medium were diluted to a concentration of 

20 x 106 cells/ml and the desired volume was aliquoted into v-bottom tubes.  Cells were then 

labeled with antibodies against specific surface markers (see Table 1), at pre-determined 

concentrations, a fixable live-dead dye (Aqua Dead Cell Stain, Invitrogen, Paisley, UK) and 

0.125µg/100 µl FcγRIII/ FcγRII block (anti-CD16/CD32) and mixed with a pipette. The cells 

were left at 4°C in the dark for ten minutes and then washed by adding 2 ml of PBS and 

centrifuging at 1100 rpm for 7 minutes. The supernatant was removed and cells washed again 

with another 1ml of PBS and subsequent centrifugation at 1100 rpm for 7 minutes. The 

supernatant was removed and cells were fixed by adding 100ul of either 2% PFA or 1x fixation-

permeabilisation buffer (eBioscience) per tube. The cells were left in fixative for 1hr in the dark 

at 4°C. Cells were then washed by centrifuging at 1100 rpm for 7 minutes with 2 ml of 1x PBS 

The wash step was repeated with 1 ml of PBS. The supernatant was discarded and the cells then 
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resuspended in 500 µl of FACS buffer (0.5% FCS in PBS). Cells were stored protected from 

light at 4°C until acquisition on a flow cytometer.  

2.6.2 Intracellular staining for cytokines and transcription factors 
LP, MLN and spleen-cell suspensions in PBS were diluted to a concentration of 10 x 106 

cells/ml and 100 µl (1 x 106 cells) was aliquoted into v-bottom tubes.  Cells were then labeled 

with antibodies against specific surface markers (see Table 1), at pre-determined 

concentrations, a fixable live-dead dye (Aqua Dead Cell Stain, Invitrogen, Paisley, UK) and 

0.125µg/100 µl FcγRIII/ FcγRII block (anti-CD16/CD32) and mixed with a pipette. The cells 

were left at 4°C in the dark for ten minutes and then washed by adding 2ml of PBS and 

centrifuging at 1100 rpm for 7 minutes. The supernatant was removed and cells washed again 

with another 1ml of PBS and subsequent centrifugation at 1100 rpm for 7 minutes. The 

supernatant was removed and cells were fixed by adding 100ul of either 2% PFA or 1x fixation-

permeabilisation buffer (eBioscience) per tube. The cells were left in fixative for 1hr in the dark 

at 4°C. Cells were then washed by adding 500 µl of either 1x permeabilisation buffer (in case of 

protocol B and C of Table 2.1) or 0.1% saponin buffer (in case of protocol A and D of Table 

2.1) and centrifuging at 1100 rpm for 7 minutes. The wash step was repeated, supernatant 

removed and cells resuspended in 100 µl of either 1x permeabilisation buffer (in case of 

protocol B and C of Table 2.1) or 0.1% saponin buffer (in case of protocol A and D of Table 

2.1) containing 0.25µg/100 µl FcγRIII/FcγRII block (anti-CD16/CD32) and mixed with a 

pipette. If cells were to be stained for transcription factors (see Table 2.2), the required volume 

antibodies were added directly to the 1x permeabilisation buffer/ 0.1% saponin buffer 

containing FcR block and 100 µl aliquoted per sample tube. The cells were then incubated for 

30 minutes at 4°C while protected from light. After 30 minutes, anti-cytokine antibodies were 

added (see Table 2.2) at pre-determined concentrations, and the cells incubated for a further 30 

minutes at 4°C while protected from light. The cells were then washed by adding 500 µl of 1x 

permeabilisation buffer and centrifuging at 1100 rpm for 7 minutes. The wash step was repeated 

twice; once with 500 µl of 1x permeabilisation buffer/ 0.1% saponin buffer and subsequently 

with 500 µl of FACS buffer (0.5% FCS in PBS). The cells were then resuspended in 500 µl of 

FACS buffer and stored protected from light at 4°C until acquisition on either a BD LSR 

Fortessa X-20 (BD Biosciences, Oxford, UK) or a CyAn ADP analyzer (Beckman Coulter, 

High Wycombe, UK). 
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Table 2.2 Monoclonal antibodies used for detection of surface markers, cytokines and 

transcription factors by flow cytometry. 

NAME CLONE CONJUGATE COMPANY 

     SURFACE MARKERS 

CD3 145-2C11 PerCP eBioscience 

PE-Cy7 

CD4 GK 1.5 PE-Cy7 eBioscience 

RM4-5 BV605 BD Biosciences 

CD8 53-6.7 FITC BD Biosciences 

CD19 eBio1D3 PE eBioscience 

CD25 PC61 PE eBioscience 

CD49b HMα2 PE Biolegend 

LAG-3 C9B7W BV711 BD Biosciences 

Pan-CD45 30-F11 PE-Cy7 eBioscience 

CD45.2 A20 PE eBioscience 

CD62L MEL-14 APC BD Biosciences 

TCR-β H57-597 PE eBioscience 

CD16/32 2.4G2 Purified BD Biosciences 

CYTOKINES 

IFN-γ XMG1.2 PE-Cy7 eBioscience 

XMG1.2 eFluor450 eBioscience 

IL-17A TC11-18H10 PE eBioscience 

eBio17B7 FITC eBioscience 

IL-10 JES5-16E3 APC eBioscience 

TRANSCRIPTION FACTORS 

FoxP3 FJk-16a eFluor450 eBioscience 

Helios 22F6 APC eBioscience 
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2.7 CELL SORTING 

2.7.1 Fluorescence-activated cell sorting of CD4+ T cells from the large intestinal 
lamina propria 

Lamina propria cells from the large intestine of uninfected and 2-wk Hh-infected IL-10 KO 

mice were isolated as described in section 2.3.1. Cell suspensions were diluted to a 

concentration of 25 x 106 cells/ml and filtered through a 40 µm filter. Cells were then labeled 

with antibodies against CD45, CD4 and TCRβ (see Table 2.2) at pre-determined concentrations 

and stained in a 15 ml tube. The cells were left at 4°C in the dark for ten minutes and then 

washed by adding 10 ml of high FACS buffer (ice cold PBS + 5% FCS + 0.5mM EDTA) and 

centrifuging at 1100 rpm for 7 minutes. The supernatant was removed and cells washed again 

with a further 10 ml of high FACS buffer and subsequent centrifugation at 1100 rpm for 7 

minutes. The samples were then resuspended in high FACS buffer and transferred to a 5ml 

snap-cap tube. CD4+ T cells were then sorted as cells that were CD45+ CD4+ TCRβ+ using a 

Mo-flo Astrios (Beckman Coulter). Cells were sorted into tubes containing complete media 

(RPMI-1640 with 10% FCS, 100 u/ml penicillin, 100 µg/ml streptomycin, 10 mM HEPES, 0.1 

mM NEAA, 1 mM sodium pyruvate, 2 mM L-glutamine and 50 µM 2-mercaptoethanol). 

Following the sort, post-sort purities were done to ensure purity of the sorted population. Sorted 

cells were centrifuged at 4°C for 15 min at 1200 RPM. The supernatant was carefully removed 

and cell pellet resuspended in 700 µl of Qiazol (Qiagen, Manchester, UK), vortexed for 1 

minute and then snap frozen on dry ice before storing the samples at -80°C. 

2.7.2 .Fluorescence-activated cell sorting of naïve CD4+ T cells from the spleen 
and MLN. 

Splenic and MLN cells were isolated as described in section 2.4.2. Cell suspensions were 

diluted to a concentration of 25 x 106 cells/ml and filtered through a 40 µm filter. Cells were 

then labeled with antibodies against CD4 and CD62L see Table 2.2) at pre-determined 

concentrations. The cells were stained as described above in section 2.7.1. Naïve CD4+ T cells 

were sorted as cells that were CD4+ CD62Lhigh. Cells were sorted into tubes containing complete 

media. Following the sort, post-sort purities were done to ensure purity of the sorted population. 

The cells were then centrifuged at 4°C for 15 min at 1200 RPM. The supernatant was carefully 

removed and cell pellet resuspended in complete medium and stored at 4 °C until ready to 

culture. 
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2.8 RNA EXTRACTION 

2.8.1 Total RNA extraction from sorted cells 
Sorted CD4+ T-cell samples stored at -80°C in 700 µl of Qiazol were allowed to thaw and RNA 

extracted by carrying out a Qiazol/chloroform phase extraction. Once the samples had thawed, 

200 µl of chloroform was added and the tubes shaken vigorously by hand for 2 minutes. The 

samples were allowed to stand at room temperature for 5 minutes and then spun at 13000 x g for 

15 minutes in a microfuge at 4°C. The aqueous phase was carefully transferred with a pipette to 

a fresh Eppendorf tube, mixed with 1.5 volumes of 100% ethanol, and subsequent extraction 

carried our using the miRNeasy micro kit, according to the manufacturer’s instructions (Qiagen, 

Manchester, UK). On-column DNase digestion was carried out to remove any contaminating 

genomic DNA using the RNAse-free DNase set according to the manufacturer’s instructions 

(Qiagen, Manchester, UK). The only modifications made to the manufacturer’s RNA extraction 

protocol, in order to maximize the yield and improve RNA quality as advised by their 

technicians, were: i) an extra wash was carried out at each wash step and ii) instead of 

immediately centrifuging the columns, they were first incubated with each wash buffer for 3 

minutes at room temperature before centrifuging. RNA quality and quantity was assessed by 

measuring t.he absorbance at 230, 260 and 280 nm with a NanoDrop 2000 spectrophotometer 

(Thermo Fisher Scientific, Loughborough, UK). All samples were then stored at -80 °C. 

2.8.2 Total RNA extraction from tissues 
Cecal and colonic tissue were collected from uninfected and 1, 2, 8 and 14-wk Hh-infected mice 

and stored overnight at 4°C in RNAlater (Sigma-Aldrich, Dorset, UK). Thereafter, the 

RNAlater was removed and the samples stored at -80°C until RNA extraction. RNA was 

extracted from tissues using TRIzol (Invitrogen, Paisley, UK) /chloroform phase extraction. In 

brief, tissue samples were placed in 1 ml of TRIzol and a sterile ball bearing added to each tube. 

Samples were then homogenized at 50 Hz for 12 minutes in a Tissue Lyser (Qiagen, 

Manchester, UK). The resulting suspension was transferred to a fresh tube and 0.2 ml of ice-

cold chloroform added. The samples were shaken vigorously by hand for 2 minutes and then 

left to stand on ice for 10 minutes. The samples were then spun at 13000 x g for 15 minutes in a 

microfuge at 4°C. The aqueous phase was carefully transferred with a pipette to a fresh 

Eppendorf tube. An equal volume of ice-cold isopropanol was added and tubes inverted a few 

times to mix. The samples were left overnight at -20°C. The following day, samples were 

centrifuged at 13000 x g for 15 minutes at 4°C. The RNA precipitates at the bottom as a yellow-

white pellet.  The supernatant was removed and the RNA pellet washed twice by adding 1ml of 

ice-cold 75% ethanol and centrifuging at 13000 x g for 15 minutes at 4°C. After the second 

wash, the ethanol was removed and the samples allowed to air dry for ten minutes, before 

resuspending in 25-50 µl of RNAse-free water. The samples were left on ice for 1 hour to allow 



 63 

RNA to dissolve completely. Colonic and cecal RNA were quantified by measuring absorbance 

at 230, 260 and 280 nm with a NanoDrop 2000 spectrophotometer. RNA was diluted to 

between 1 and 2 µg/ml with additional RNase-free water and any contaminating genomic DNA 

was then removed using a DNA-free Kit (Applied Biosystems, Warrington, UK) according to 

the manufacturer’s instructions. All samples were then stored at -80 °C. 

2.9 RNA PRECIPITATION PROTOCOLS 
RNA was extracted from sorted cell samples as described in section 2.8.2. When analyzed on 

the NanoDrop 2000 spectrophotometer, some of the RNA extracted from sorted cells had poor 

260:230 ratios indicating a residual phenol/guanidine contamination. In order to remove 

possible contaminants, we tested different RNA precipitation protocols (Rio, 2011) detailed 

below: 

2.9.1 RNA precipitation using lithium chloride 
The volume of the extracted RNA was made up to 100 µl with nuclease-free water (Qiagen, 

UK). 0.1 volumes of 4 M lithium chloride and 3 volumes of ice cold 100% ethanol were added. 

The samples were mixed well and left overnight at -80 °C. Samples were allowed to thaw, and 

then centrifuged at 4 °C for 15 minutes at 12,000 x g. The pellet was then washed with 50 µl of 

ice-cold 70% ethanol and supernantant removed. The pellet was air dried for ten minutes and 

then resuspended in the required volume of nuclease-free water. RNA quantity and quality were 

assessed by measuring the absorbance at 230, 260 and 280 nm with a NanoDrop 2000 

spectrophotometer. 

2.9.2 RNA precipitation using ethanol  
The volume of the extracted RNA was made up to 100 µl with nuclease-free water (Qiagen, 

UK). 0.1 volumes of 3 M sodium acetate and 2.2 volumes of ice cold 100% ethanol were added. 

The samples were mixed well and left overnight at -80 °C. Samples were allowed to thaw, and 

then centrifuged at 4 °C for 15 minutes at 12,000 x g. The pellet was then washed with 50 µl of 

ice cold 70% ethanol and supernantant removed. The pellet was air dried for ten minutes and 

then resuspended in the required volume of nuclease-free water. RNA quantity and quality were 

assessed by measuring the absorbance at 230, 260 and 280 nm with a NanoDrop 2000 

spectrophotometer. 
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2.9.3 RNA precipitation using isopropanol 
The volume of the extracted RNA was made up to 100 µl with nuclease-free water (Qiagen, 

UK). In some experiments, 1 µl of 10mg/ml molecular grade glycogen was added.  0.1 volumes 

of 3M sodium acetate and 0.7 volumes of ice cold isopropanol were then added and the samples 

mixed well and left overnight at -80 °C. Samples were allowed to thaw, and then centrifuged at 

4°C for 15 minutes at 12,000 x g. The pellet was then washed with 50 µl of ice cold 70% 

ethanol and supernatant removed. The pellet was air dried for ten minutes and then resuspended 

in the required volume of nuclease-free water. RNA quantity and quality were assessed by 

measuring the absorbance at 230, 260 and 280 nm with a NanoDrop 2000 spectrophotometer. 

2.10  REVERSE TRANSCRIPTION (RT) 

2.10.1 MicroRNA RT 
RNA extracted from large intestinal tissues and sorted cells were reverse transcribed using the 

Taqman MicroRNA Reverse Transcription kit (Applied Biosystems, Warrington, UK), 

according to the manufacturer’s instructions. Taqman MicroRNA RT primers for mmu-miR-

155, mmu-miR-326, mmu-miR-132, mmu-miR-21, mmu-miR-31, mmu-miR-96, mmu-miR-

210, mmu-miR-181a and RNU6 were purchased from Applied Biosystems (Warrington, UK). 

2.10.2 Messenger RNA RT 
RNA extracted from large intestinal tissues was reverse transcribed using the following 

protocol. Briefly, 1 ng-5 µg of total RNA in DEPC-treated water was transferred to a sterile 

nuclease-free PCR tube and the final volume made up to 14 µl with DEPC-treated water. 2 µl of 

50ng/µl random hexamers (Invitrogen, Paisley, UK) and 1 µl 10mM dNTP mix (containing 2.5 

mM each of the following: dATP, dGTP, dCTP and dTTP, from Promega, Southhampton, UK) 

were added to the RNA and incubated at 65°C for 5 minutes then 4°C for 3 minutes using a 

DNA Engine Thermal Cycler (Bio-Rad, Hemel Hempstead, UK). All the tubes were briefly 

centrifuged and kept on ice. To each tube, the following were added: 5 µl 15x First strand 

buffer, 2 µl 0.1M DTT, 0.5 µl RNase OUT and 0.5 µl SuperScript RT II reverse transcriptase 

(all from Invitrogen, Paisley UK). The reaction mixture was mixed by gentle pipetting. The 

tubes were then incubated at 25°C for 10 minutes, then 42°C for 60 minutes, followed by 70°C 

for 10 minutes and finally at 4°C for 5 minutes using a DNA Engine Thermal Cycler. Samples 

were stored at -20°C until ready for use. 
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2.11  QUANTITATIVE REAL-TIME PCR (QRT-PCR) 
ANALYSIS 

2.11.1 qRT-PCR for microRNA 
Taqman-based qRT-PCR was used to quantify microRNA levels in both whole colon and 

cecum samples and in sorted cells. All reactions were performed in MicroAmp Optical 96-well 

reaction plates (Applied Biosystems, Warrington, UK). Each well contained 1.33 µl of RT 

product, 10 µl of either Taqman Universal PCR Master Mix II (2x) (without UNG) or Taqman 

Fast Universal PCR Master Mix II (2x) (without UNG)  (Applied Biosystems, Warrington, 

UK), 7.67 µl of nuclease free water (Qiagen, UK) and 1 µl of Taqman Small RNA Assay (20x) 

(Applied Biosystems, Warrington, UK). Taqman Small RNA Assays for mmu-miR-155, mmu-

miR-326, mmu-miR-132, mmu-miR-21, mmu-miR-31, mmu-miR-96, mmu-miR-210, mmu-

miR-181a and RNU6 were purchased from Applied Biosystems (Warrington, UK). The plates 

were sealed, centrifuged briefly and run on either an ABI Prism 7300 Sequence Detection 

System or StepOnePlus Real Time PCR System (Applied Biosystems, Warrington, UK). On the 

ABI Prism 7300 Sequence Detection System, the following cycling conditions were used: 50°C 

for 2 minutes, 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 

1 minute for all primer sets. On the StepOnePlus Real Time PCR System, the following cycling 

conditions were used: 95°C for 20 seconds followed by 40 cycles of 95°C for 1 second and 

60°C for 20 seconds for all primer sets. Data were analysed using either ABI 7300 SDS or 

StepOne Software (Applied Biosystems, Warrington, UK). MicroRNA expression levels were 

normalised to RNU6 using ΔCt calculations. Mean relative microRNA expression levels 

between control and experimental groups were determined using the 2-ΔΔCt calculations. 

2.11.2 qRT-PCR for messenger RNA 
SYBR green-based qRT-PCR was used to quantify mRNA levels of IL-17A, IFN-γ and ETS-1 

in cecum and colon tissue. All reactions were performed in MicroAmp Optical 96-well reaction 

plates (Applied Biosystems, Warrington, UK). Each well contained 12.5 µl 2x Power SYBR 

Green Mix (Applied Biosystems, Warrington, UK), 1 µl each of the forward and reverse primer, 

5.5 µl of nuclease free water (Qiagen, UK) and 5 µl cDNA (5-50ng). The final volume in each 

well was 25 µl.  Primers for HPRT, IL-17A, IFN-γ and ETS-1 were purchased from Sigma-

Aldrich (Dorset, UK) and their sequences are shown in Table 2.3. The 96-well plates were 

sealed and run on ABI Prism 7300 Sequence Detection System (Applied Biosystems, 

Warrington, UK). The following cycling conditions were used: 50°C for 2 minutes, 95°C for 10 

minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute for all primer sets. 

Target gene expression levels were normalised to HPRT (hypoxanthine-guanine phosphoribosyl 
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transferase) using ΔCt calculations. Mean relative mRNA expression levels between control and 

experimental groups were determined using the 2-ΔΔCt calculations. 

Table 2.3. Primer sequences 

TARGET SEQUENCE 

HPRT Forward: 5' –GCGTCGTGATTAGCGATGATGAAC-3'  

Reverse: 5' –ATCTCCTTCATGACATCTCGAGCAAGTC-3'  

IL-17A Forward: 5' –GCTCCAGAAGGCCCTCAG-3'  

Reverse: 5' –CTTTCCCTCCGCATTGACA-3'  

IFN-γ  Forward: 5' –GGATGCATTCATGAGTATTGC-3'  

Reverse: 5' –GCTTCCTGAGGCTGGATTC-3'  

ETS-1 Forward: 5' –TCCTATCAGCTCGGAAGAACTC-3' 

Reverse: 5' –TCTTGCTTGATGGCAAAGTAGTC-3' 

2.12  MICRORNA MICROARRAY 
A mouse microRNA microarray slide (Release 19.0), containing 8 arrays and representing 1247 

mouse microRNAs/array was purchased from Agilent Technologies (Stockport, UK). The 

microarray was kindly done by Sally James (Genomics, Technology facility, Department of 

Biology, University of York, York UK) according to the manufacturer’s instructions and the 

data kindly analyzed by Sandy McDonald (Genomics, Technology facility, Department of 

Biology, University of York, York UK) using GeneSpring GX Software (Agilent Technologies, 

Stockport, UK). 

2.13  HISTOLOGY 

2.13.1 Embedding tissues in wax and sectioning 
Colon pieces or three quarters of the cecum were removed from uninfected and 1, 2, 8 and 14-

wk Hh-infected mice and fixed overnight in 2ml of 10% buffered formalin. Before embedding 

the tissue in wax, the fixative and water was removed from the tissues by dehydrating them by 

incubation with increasingly concentrated ethanol. Briefly, after fixation, the formalin was 

removed and replaced with 70% ethanol for 1 hour (or long term storage until ready to embed 

the tissues). Tissues were transferred to embedding cassettes and submerged in fresh 90% 

ethanol for 2 hours on a shaker at room temperature. The cassettes were then transferred into 

fresh 100% ethanol for 2 hours on a shaker at room temperature, and then transferred twice 

more into fresh 100% ethanol for a period of 1 hour each (on a shaker at room temperature). 

The ethanol was then removed from the dehydrated tissue using xylene (Thermo Fisher 
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Scientific, Loughborough, UK). In brief, in a fume hood, the cassettes containing tissues were 

transferred into a glass jar containing fresh xylene and left for 2 hours at room temperature. The 

cassettes were then transferred into fresh xylene 3 more times, incubating them for 2 hours 

followed by 1 hour and finally 30 minutes, before blotting the cassettes free of xylene, and then 

transferring them into a pot containing melted paraffin wax at 65 °C and left overnight. In 

order to get rid of any residual xylene, the cassettes were transferred thrice more into fresh 

wax pots, leaving them for an hour in each pot at 65 °C. Finally, tissues were removed from 

their cassettes, placed in a mould containing a thin layer of melted wax. The tissues were 

then oriented in the correct position, the mould topped up with melted wax, and the back of 

the cassette placed over the mould. The mould containing the tissue was subsequently left 

to solidify at room temperature. Once the wax had solidified and cooled, it was removed 

from the mould and stored at room temperature, until the samples were ready to cut. The 

wax-embedded tissue samples were cut into 5 µm thick sections using a manual rotary 

microtome RM2235 from Leica Microsystems (Milton Keynes, UK). The sections were 

placed in warm water (40 °C) and then picked up gently onto poly-lysine coated slides 

(Thermo Fisher Scientific, Loughborough, UK) and left to dry overnight before staining with 

haematoxylin and eosin. 

2.13.2 Haematoxylin and eosin staining 
Paraffin sections were dewaxed by immersing the slides in xylene for 5 minutes. The slides 

were then transferred into fresh xylene pots twice more, immersing for 5 minutes in each pot. 

Tissue sections were then dehydrated by immersing them in tubs of decreasing concentrations 

of ethanol, starting with 3 minutes in 100% ethanol, followed by 1 minute each in 95%, 90% 

and 70% ethanol. The sections were washed briefly in distilled water and then stained with 

filtered Mayer’s Haematoxylin (Leica Microsystems, Milton Keynes, UK) for 8 minutes. The 

sections were then rinsed in running tap water for 5 minutes and then dipped in eosin (1.5 g 

eosin dissolved in 95% ethanol) (Sigma-Aldrich, Dorset, UK) 12 times (1-2 

seconds/immersion) and then washed in distilled water until the eosin stopped streaking. Tissue 

sections were then rehydrated by dipping the slides in 50% ethanol 10 times, 70% ethanol 10 

times and then leaving them in 95% ethanol for 30 seconds followed by a 100% ethanol for 1 

minute. Following rehydration, residual alcohol was removed from the tissue sections by 

immersing them in xylene for 1 minute. The sections were then transferred into another pot of 

xylene until ready to mount (within 2 hrs).  Slides were removed from xylene and mounted with 

DePex Gurr (VWR, Lutterworth, UK), a xylene-based mounting medium. A drop of DePex was 

added onto the tissue, a cover slip placed over the tissue, and the slide left to dry for two days. 

The tissue sections were then blindly scored from 0-3 for each parameter of inflammation i.e. 

extent of hyperplasia/goblet cell depletion in the epithelium, inflammation in the lamina propria, 

area affected and finally, markers of severe inflammation such as submucosal inflammation, 
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crypt abscesses, ulceration or extensive fibrosis. A total score out of a maximum possible score 

of 12 calculated by adding up the individual scores.   

2.14  IN VITRO CD4+ T-CELL POLARISATION 
Tissue culture plasticware was purchased from Nunc (Roskilde, Denmark), Sarstedt 

(Numbrecht, Germany) and Sigma-Aldrich (Dorset, UK). Recombinant human TGF-β and 

recombinant human IL-6 were purchased from Peprotech (London, UK). Recombinant mouse 

IL-23 and recombinant mouse IL-12 was purchased from eBioscience (Hatfield, UK). 

Recombinant human IL-2 was from Roche (West Sussex, UK).  

2.14.1 Primary stimulation of naïve CD4+ T cells 
Splenic cells were isolated from a C57BL/6 WT mouse as described in section 2.4.2 and 

irradiated at 3000 rad for 5 minutes in an RS2000 X-Ray Generator. Following irradiation, cells 

were centrifuged at 1200 rpm for 10 minutes at room temperature. The resulting cell pellet was 

washed twice by resuspending in RPMI wash medium and centrifuging at 1200 rpm for 10 

minutes at room temperature. The cell pellet was resuspended in complete medium. Cell 

viability and was assessed by dye exclusion with trypan blue. Irradiated splenocytes were used 

as antigen presenting cells. 

Naïve CD4+ CD62L+ cells were sorted from a pool of MLN and spleen cells from 

uninfected IL-10 KO mice as described in section 2.7.2. Two polarizing conditions were set up 

in 96-well flat-bottom plates: ‘Th1’ and ‘Th17’ conditions. Naïve CD4+ T cells and irradiated 

splenocytes were diluted appropriately in complete medium. 2 x 105 CD4+ T cells were cultured 

with 7.5 x 105 irradiated splenocytes in each well. Soluble anti-CD3 from BD biosciences 

(Oxford, UK) was added to each well at a final concentration of 1 µg/ml. To the Th1 condition, 

IL-12 was added to each well at a final concentration of 10 ng/ml. To the Th17 condition, TGF-

β, IL-6 and IL-23 were added to each well at a final concentration of 1 ng/ml, 50 ng/ml and 10 

ng/ml, respectively. The plate was incubated at 37 °C for 2 days. Cells were then split and to all 

Th1 wells, recombinant human IL-2 was added at a final concentration of 5 U/ml. To the Th17 

wells, recombinant mouse IL-23 was added at a final concentration of 10 ng/ml. The plate was 

incubated at 37°C. Over the next four days, plates were monitored and depending on growth, 

split and fresh IL-2 or IL-23 added to the respective conditions.  

2.14.2 Secondary stimulation of polarized CD4+ T cells 
48-well plates were coated overnight at 4°C with 100 µl/well of anti-CD3 at a concentration of 

10 µg/ml in PBS. On day 7 post primary stimulation, cells from each condition (No addition, 

Th1 and Th17) were pooled and cell viability and yield was assessed by dye exclusion with 

trypan blue.  
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Anti-CD3 was removed from the 48-well plates coated overnight at 4°C by washing with 

RPMI wash medium. Secondary cultures were set up by culturing 3 X 105 cells/ml from each 

condition (Th1 and Th17) in medium alone or with plate-bound anti-CD3. Subsequently, cells 

were collected for RNA extraction at 0, 6, 12, 24, 48 and 72 hours post anti-CD3 stimulation. At 

72 hours, supernatants were also collected, transferred into 96-well round-bottom plates and 

stored at -20 °C until cytokine amounts were assessed by ELISA.  

2.15  ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 
The murine IL-17A ELISA was purchased from Mabtech (Nacka strand, Sweden). Rat-anti-

mouse IFN-γ (clone R4-6A2) and biotin-rat-anti-mouse IFN-γ (clone XMG1.2)  were purchased 

from BD Biosciences (Oxford, UK). Streptavidin-conjugated horseradish peroxidase (SA-HRP) 

was obtained from KPL (Maryland, USA). Bovine serum albumin (BSA) and ABTS substrate 

were both purchased from Sigma-Aldrich (Dorset, UK). All ELISA experiments were 

performed in Nune Maxisorb 96-well plates (Roskilde, Denmark).  

The general protocol used to measure IL-17A and IFN-γ amounts in supernatants of  

stimulated in vitro polarized CD4+ T cells was as follows: 96-well plates were coated overnight 

with 100 µl/well of appropriate capture antibody diluted in PBS (2 µg/ml for IFN-γ and 1 µg/ml 

for IL-17A). After coating, unbound capture antibody was removed and the plates were blocked 

with 200 µl/well of blocking buffer (5% milk in wash buffer [0.05% Tween20 in PBS]). After 

blocking, plates were washed four times with wash buffer using a Skan washer 400 plate washer 

(Molecular Devices, Wokingham, UK). Samples and standards were diluted appropriately with 

diluent (wash buffer containing 1% BSA) and added in duplicate at a final volume of 100 

µl/well. The IL-17A top standard was added at 8 ng/well and the IFN-γ standard was added at 4 

ng/well. Both standards were diluted 2-fold over eight wells. Non-specific binding was 

controlled for by including at least 8 ‘blank’ wells/plate containing 100 µl/well of diluent. Plates 

were incubated overnight at 4°C and then were washed four times and 100 µl of biotinylated 

detection antibody (appropriately diluted in diluent to get a final concentration of 2 µg/ml for 

IFN-γ and 0.5 µg/ml for IL-17A) added to each well. The plates were incubated at 37 °C for 2 

hours and then washed four times. 100 µl SA-HRP (1:1000) was then added to each well and 

the plates incubated for 1 hour at 37 °C. Plates were washed four times and 100 µl of freshly 

prepared ABTS substrate at concentration of 1 mg/ml in citrate buffer added to each well. 

Citrate buffer contained 0.02 M citric acid, 0.04 M anhydrous Na2HPO4 and 0.003% H2O2. The 

colour was allowed to develop, and stopped by the addition of 15 µl/well of 10% sodium 

dodecyl sulphate (SDS). Optical density at 405nm was determined using a Versamax microplate 

reader (Molecular Devices, Wokingham, UK), and data analysed on Softmax Pro v5 software. 
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2.16  BIOINFORMATIC TOOLS 
The bioinformatics tool miRWalk was used to identify predicted mRNA targets of specific 

microRNAs. 

2.17  STATISTICAL ANALYSIS 
Statistical analysis was done using GraphPad Prism (v5) software, with one-way ANOVA or 

Mann Whitney U-tests employed when appropriate. To control for false discovery rate, post 

tests were also carried out. In case where one-way Anova was used, a bonferroni correction was 

applied, and in cases where a Mann Whitney-U test was done, a Tukey’s post test was done. 

Values of P < 0.05 were considered significant. 

For the MicroRNA microarray, samples were normalized using 90th percentile normalization, 

and a students t-test followed by a Benjamni-Hochberg test (False discovery rate test) applied. 

Following these tests, values of P < 0.05 were considered significant. 
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CHAPTER 3.  AN OPTIMISED PROTOCOL FOR 
RNA EXTRACTION FROM LYMPHOCYTES 

3.1 INTRODUCTION 
Quantitative real-time polymerase chain reaction (qRT-PCR) and microarrays are techniques 

commonly used to measure the expression levels of microRNAs and messenger RNAs 

(mRNAs). The reliability of both techniques is strongly dependent on the quality of RNA used 

as the input material (Rio, 2011). In this study, we optimized a method to extract and 

concentrate total RNA from lymphocytes to yield good quality RNA that can be used for 

downstream applications such as a microarray.  

The first step in any RNA extraction method involves lysing cells with a lysis buffer in 

order to release the RNA. Commonly used lysis buffers are TRIzol (Invitrogen) and Qiazol 

(Qiagen). TRIzol and Qiazol contain a mixture of phenol and guanidine isothiocyanate that 

disrupt cells, dissolve cellular components and denature protein (Rio, 2011). Once cells are 

lysed, chloroform is then added and the mixture centrifuged to yield 3 phases; a lower organic 

phase (red), an interphase that contains DNA and some denatured protein, and an upper aqueous 

phase (clear) that contains nucleic acids (DNA and RNA). RNA can then be extracted from the 

aqueous phase by using either RNA precipitation protocols in Eppendorf tubes, or commercially 

available kits that work on spin column technology. These spin columns contain a silica 

gel/glass fibre membrane (Rio, 2011). In the presence of ethanol and chaotropic salts such as 

guanidine isothiocyanate, RNA and DNA bind tightly to the silica membrane while less-

charged cellular components flow through (Rio, 2011). DNA can then removed by on column 

treatment with DNase 1 under high salt conditions to preserve the binding of RNA. The 

digested DNA is then washed off the membrane and the RNA can be eluted. RNA yield and 

purity is determined using a spectrophotometer. The bases in RNA absorb UV light at 250-265 

nm, thus measuring the absorbance at 260 nm (A260) is used to quantify the amount of RNA in a 

sample (Rio, 2011). However, DNA, protein and phenol also absorb UV light at 260 nm. Thus, 

it is necessary to check that the RNA yield indicated by A260 is pure RNA and not contaminated 

with proteins/salts. Proteins absorb UV light at 280 nm while phenol and chaotropic salts absorb 

at 230 nm (Rio, 2011). For purified RNA, the ratio of A260:A280 and A260:A230 should be 1.8-2.0. 

Anything less than 1.8 in either of these ratios suggests a possible protein or phenol 

contamination, respectively. Our broad experimental aims involved extracting RNA from ex 

vivo sorted and in vitro cultured CD4+ T cells for analysis of microRNA expression by 

microRNA microarray as well as by qRT-PCR. Lymphocytes generally have a low RNA 

content (Rio, 2011), and we found that this resulted in salt contamination not observed when 

RNA was extracted from high content RNA samples such as whole tissue.  

In this study, we examined the quality of RNA obtained from different commercially 

available kits, as well as the efficiency of different RNA precipitation protocols at removing salt 
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contaminations and concentrating the RNA. We optimized the RNA extraction protocol of the 

microRNeasy micro kit from Qiagen, and identified cold isopropanol precipitation as the best 

RNA precipitation method to i) improve the quality of, and ii) concentrate the RNA extracted 

from lymphocytes.  

3.2 RESULTS 

3.2.1 MicroRNeasy kits from Qiagen yield RNA with the least salt contamination 
Before extracting total RNA from our experimental samples, we wanted to test different 

commercially available RNA extraction kits to identify which one would be the best for our 

purpose. We used mesenteric lymph node (MLN) cells from uninfected IL-10 KO mice for all 

the optimisation experiments. We did so because using sorted CD4+ T cells for our tests was 

prohibitive in terms of the time and cost required to procure the samples. Using MLN cells 

enabled us to assess total RNA yields as accurately as possible, as these cells mostly consist of 

lymphocytes (40% of which are CD4+ T cells) and therefore were as close as possible to pure 

CD4+ T cells in terms of RNA content. There are a number of commercially available kits to 

extract total RNA. Some kits only extract RNA >200 nucleotides in length and thus exclude the 

small RNAs such as microRNAs which are 22-25 nucleotides in length. Other kits also extract 

the small RNAs. We extracted total RNA from MLN cells from naïve IL-10 KO mice by 4 

methods; 3 widely used commercially available kits that extract total RNA including 

microRNAs; 1) microRNeasy mini kits (Qiagen), 2) microRNeasy micro kits (Qiagen) and 

Direct-zol columns (Zymo research) and the protocol we usually use in our lab to extract RNA 

from tissues (using TRIzol as lysis buffer). The RNA yield and quality was measured on a 

NanoDrop 2000 spectrophotometer.  The different RNA extraction methods vary in terms of the 

maximum amount of RNA that can bind to the column, the chemistry of the extraction, lysis 

buffer used and the final elution volume (summarised in Table 3.1).  
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Table 3.1 Summary of different RNA extraction methods used 
 

RNA 
extraction 

method 

Type of RNA 
extracted 

Maximum 
binding capacity 

of the column 

Chemistry Lysis 
buffer 
used 

Final 
Elution 
volume 

Kullberg 
Lab method 

Total RNA 
including 

microRNAs 

Not Applicable Phenol: 
Chloroform phase 

extraction 

TRIzol  ≥ 5-100 µl 

miRNeasy 
mini kit 

Total RNA 
including 

microRNAs 

100 µg of RNA Phenol: 
Chloroform phase 

extraction 

Qiazol ≥ 30 µl 

miRNeasy 
micro kit  

Total RNA 
including 

microRNAs 

45 µg of RNA Phenol: 
Chloroform phase 

extraction 

Qiazol  ≥ 12 µl 

Direct-zol  

Mini-prep 
Kit 

 

Total RNA 
including 

microRNAs 

50 µg of RNA No phase 
extraction. Sample 

+ lysis buffer 
loaded directly 
onto column 

TRIzol  ≥ 25 µl 

 

The results showed that in three for the four methods where RNA was extracted from 

600,000 MLN cells, the total yield of RNA obtained was 170-200 ng whereas when RNA was 

extracted from 1.2 million cells, the yield of RNA obtained tripled (Table 3.2). The results also 

demonstrated that in all of the four extraction methods, a low 260:230 ratio was observed, 

suggesting that the RNA extracted was contaminated with phenol/guanidine from the lysis 

buffers (Table 3.2).  
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Table 3.2 Total RNA yield and quality obtained using different RNA extraction methods. 

Methoda MLN cell 
numberb 

Lysing 
Buffer 

RNA 
Conc.  
ng/ml 

Elution 
volume 

Total 
RNA 
yield 

260:280 260:230 

Kullberg 
Lab method 

600,000 TRIzol 12.79 
ng/µl 

15 µl 191.8 
ng 

1.81 0.71 

miRNeasy 
mini kit 

600,000 Qiazol 5.84 
ng/µl 

30 µl 175.2 
ng 

2.06 1.20 

miRNeasy 
micro kit  

600,000 Qiazol 14.70 
ng/µl 

12 µl 176.4 
ng 

1.81 1.43 

Directzol 
kit 

1.2 
milllion 

TRIzol 23.37 
ng/µl 

25 µl 688.8 
ng  

1.85 0.99 

a All the data shown are representative of at least 3 replicates except for the ‘Kullberg lab method’ which was only 
done once. 
bIn all the RNA extractions except the Direct-zol Kit, the same starting pool of MLN cells were used 

 

Poor 260:230 ratios are a common problem in samples with low RNA yield, so in order to get 

good quality RNA, we needed to optimize the method further. We decided to use the 

microRNeasy micro kits because the 260:230 ratio was the highest of all four RNA extraction 

methods, indicating the least salt contamination. 

3.2.2 Splitting the sample into smaller aliquots and performing separate 
chloroform phase extraction on each aliquot improves RNA yield 

To try and improve the RNA yield, we decided to split samples of 600,000 MLN cells stored in 

Qiazol into two aliquots, perform a separate chloroform phase extraction on each of these 

aliquots and then pool the aqueous phases from both these aliquots and load it onto a single 

microRNeasy micro column to extract the RNA. The results showed that this method resulted in 

slightly higher RNA yields of 290-340 ng of total RNA (Table 3.3), compared to 170-190 ng 

obtained previously (Table 3.2). The 260:230 ratios were still poor therefore further 

optimization of this method was required (Table 3.3). 
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Table 3.3 Improved RNA yield obtained by doing two phenol chloroform phase 

extractions and pooling the aqueous phase on to a single column to extract RNA. 

Methoda MLN cell 
numberb 

RNA 
Conc.  
ng/ml 

Elution 
volume 

Total 
RNA 
yield 

260:280 260:230 

miRNeasy 
micro kit 

2 X 300,000 28.03 
ng/µl 

12 µl 336 ng 1.81 0.71 

miRNeasy 
micro kit 

2 X 300,000 24.70 
ng/µl 

12 µl 288 ng 2.06 1.20 

a All the data shown are representative of 4 replicates. 
b The same starting pool of MLN cells were used 

3.2.3 Cold isopropanol precipitaton of RNA removes salt contamination and 
concentrates RNA 

In spite of improving RNA yield, we were still unable to improve the 260:230 ratio nor had we 

managed to attain the concentration of RNA required by Agilent’s microRNA microarray i.e. 

100 ng/µl. There are different RNA precipitation methods that can be used to remove salt 

contamination and concentrate the RNA. RNA is inherently hydrophilic and readily dissolves in 

water (Rio, 2011). The principle of different RNA precipitation methods are based on reducing 

the hydrophilicity of RNA by the addition of salts such as lithium chloride and sodium acetate 

that decrease the pH (Rio, 2011). The pH is made further acidic by the addition of alcohols such 

as ethanol or isopropanol (Rio, 2011). Following centrifugation, the RNA is precipitated out and 

re-dissolved in nuclease free water. We extracted RNA from aliquots of 1.2 million MLN cells 

using the microRNA micro kit (Qiagen) and then tried three different RNA precipitation 

protocols; 1) lithium chloride and 100% ice cold ethanol, 2) sodium acetate and 100% ice cold 

ethanol and 3) sodium acetate and ice cold isopropanol. The results showed that all three RNA 

precipitation methods improved the 260:230 ratio, but precipitation with cold isopropanol was 

the most efficient at removing the salt contamination as the 260:230 ratio in this sample 

improved the most, changing from 0.3 to 1.64 (Table 3.4). Despite this, RNA precipitation also 

had notable disadvantages of the loss of approximately 50% of the total RNA and a decrease in 

the 260:280 ratio (Table 3.4). We decided to use cold isopropanol to precipitate and concentrate 

the RNA and try and optimize the protocol further in order to improve RNA recovery. 
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Table 3.4 Efficiency of different RNA precipitation protocols at removing salt 

contamination and concentrating RNA. 

Sample MLN cell 
numbera 

Method to 
concentrateb 

RNA 
Conc 
ng/µ l 

Total 
RNA  

% RNA  
recovered 

260:280 260:230 

Before 
conc 

1.2 
million 

cells 
 

- 32 384 ng in  
12 µl 

- 2.06 0.52 

After 
conc 

Lithium 
chloride 

30 150 ng in  
5 µl 

42% 1.64 1.22 

        
Before 
conc 

1.2 
million 

cells 
 

- 31 372 ng in 
 12 µl 

- 1.99 1.45 

After 
conc 

Cold 
ethanol ppt 

37 185 ng in  
5 µl 

54% 1.79 1.52 

        
Before 
conc 

1.2 
million 

cells 
 

- 18 216 ng in  
12 µl 

- 1.9 0.3 

After 
conc 

Cold 
isopropanol 

ppt 

21 105 ng in 
 5 µl 

53% 1.68 1.64 

a The same starting pool of MLN cells were used. 
b All the data shown are representative of at least 3 replicates. 

 

3.2.4 The use of glycogen as a carrier improves RNA precipitation and RNA 
yield 

In order to improve RNA recovery, we added glycogen as a ‘carrier’. Glycogen is a 

polysaccharide with limited solubility in isopropanol and forms a precipitate that traps RNA 

(Rio, 2011). When centrifuged, a visible pellet forms, greatly enhancing handling of RNA (Rio, 

2011). We extracted total RNA from a sorted CD4+ T-cell sample using the microRNA micro 

kit, and then added 1 µl of a 10 mg/ml solution of glycogen to the total RNA. We then carried 

out cold isopropanol precipitation as before and measured RNA yield and quality using the 

Nanodrop 2000 spectrophotometer. The results showed that the addition of glycogen greatly 

improved the RNA recovered (Table 3.5). It is important to note that of the 924 ng of RNA 

originally extracted, 1 µl was used to measure RNA yield on the nanodrop, leaving 847 ng of 

RNA that was subsequently precipitated. Bearing this in mind, the results suggest that the 

addition of glycogen as a carrier does help to precipitate most of the RNA from the sample 

(Table 3.5). 
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Table 3.5 The use of glycogen as a ‘carrier’ greatly improves RNA recovery  

Sample Cell No.a Method to 
concentrate 

RNA 
Conc 
ng/µ l 

Total 
RNA  

% RNA 
Recovered 

260:280 260:230 

Before 
conc 

3 million 
LP CD4+ 
T cells 

- 77 µl 
 

924 ng in 
12 µl 

- 2.00 1.46 

After 
conc 

Isopropanol 
ppt (+ 

glycogen) 

139 ng/ul 
 

695 ng in 
5 µl 

82% 1.80 1.73 

a The data shown in the table is representative of at least 3 replicates. 

3.3 SUMMARY 
In this study we have shown that: 

• Of the methods examined, the MicroRNeasy micro kit from Qiagen yielded the RNA with 

the least salt contamination when RNA was extracted from a starting sample of relatively 

low cell numbers. 

• The RNA yield from a given sample can be improved by splitting the sample into two 

aliquots and carrying out a separate chloroform phase extraction on each aliquot.  The 

aqueous phase from each aliquot can be pooled onto a single column for subsequent RNA 

extraction. 

• Of the different RNA precipitation methods we tested, in our hands, cold isopropanol 

precipitation was the most efficient at removing salt contamination and concentrating the 

RNA. 

• The addition of glycogen as a ‘carrier’ helped to fully precipitate the RNA out of aqueous 

solution.  
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CHAPTER 4. ALTERED EXPRESSION OF 
MICRORNAS IN HELICOBACTER-INDUCED 

INTESTINAL INFLAMMATION 

4.1 INTRODUCTION 
MicroRNAs are post-transcriptional gene regulators that play important roles in regulating cells 

of the immune system (Bartel, 2004). Altered expression of microRNAs in immune cells has 

been observed in several autoimmune disorders such as rheumatoid arthritis (Nakasa et al., 

2008; Stanczyk et al., 2008), systemic lupus erythematosus (Dai et al., 2007) and multiple 

sclerosis (Du et al., 2009; Hu et al., 2013) as well as cancers of immune cell origin (Calin and 

Croce, 2006). Recent studies have shown that microRNAs are also dysregulated in IBD. 

MicroRNA microarray analysis of peripheral blood samples from patients with active UC and 

CD (Wu et al., 2011), sigmoid colon biopsies from chronically active UC and CD patients (Wu 

et al., 2008) and terminal illeal biopsies from chronically active CD patients (Wu et al., 2010) 

revealed a differential microRNA profile compared to healthy controls. While several studies 

have identified roles for altered microRNA expression contributing to intestinal pathology, in 

general, the full extent to which dysregulated microRNAs may potentiate the molecular 

mechanisms that give rise to intestinal inflammation are not very well characterized. 

CD4+ Th1 and Th17 cells are thought to contribute to the pathogenesis of both CD and 

Hh-induced colitis (Morrison et al., 2013; Xavier and Podolsky, 2007). There are a number of 

microRNAs that have been shown to have profound effects on CD4+ T-cell development and 

function, suggesting that altered expression of microRNAs could play significant roles in 

promoting pathogenic T cell responses in T-cell mediated autoimmune and inflammatory 

diseases. For example, several studies have shown that miR-155 is overexpressed in EAE, and 

was found to promote Th1 and Th17 responses by repressing ETS-1, an inhibitor of the Th17 

pathway and SOCS1, an inhibitor of JAK/STAT signalling (Singh et al., 2014b; Zhang et al., 

2014b) (Hu et al., 2013; O'Connell et al., 2010; Yao et al., 2012). MiR-20b was found to be 

down-reegulated in EAE. Consequently, the miR-20b targets RORγt and STAT3 were 

overexpressed, promoting the Th17 pathway (Zhu et al., 2014a). These and other examples of 

how the altered expression of microRNAs plays significant roles in promoting pathogenic T cell 

responses in T-cell mediated autoimmune and inflammatory diseases is highlighted in Table 

4.1.   

Although expression of microRNAs has been shown to modulate the inflammatory 

immune responses in both IBD and animal models of colitis (as described in Table 1.4 and 1.5 

of the general introduction), the role of microRNAs in Hh-induced colitis has not been studied 

before. Utilising the Hh+ IL-10 KO model of colitis (Kullberg et al., 1998), the broad aim of this 

study was to determine whether microRNAs are dysregulated at the site of Hh colonisation in 

the large intestine during Hh-induced intestinal inflammation compared to uninfected controls 
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both at the tissue level and the CD4+ T-cell level.  At the tissue level, we chose to examine miR-

155, miR-326 and miR-132 because these microRNAs have been previously shown to 

potentiate the Th17 and/or Th1 response (Du et al., 2009; Fan et al., 2012; Lin et al., 2014; 

Nakahama et al., 2013; O'Connell et al., 2010). At the CD4+ T-cell level, we profiled the 

expression of microRNAs from CD4+ T cells isolated from the large intestine LP at the peak of 

intestinal inflammation (2 wks pi) and compared it to that of uninfected controls.   
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Table 4.1 Modulation of development and function of CD4+ T cells by selected microRNAs 

 

MicroRNA Expression Location Target Implications of altered microRNA expression Reference 

MiR-155 Increased Th1 cells and 
Th17 cells 

     

Th17 cells 

 

Th17 and 
Tregs 

Unknown 
target 

 

    ETS-1 

 

SOCS1 

Lack of miR-155 leads to reduction in Th1 and Th17 cell numbers and in the severity of EAE and 
colitis. 

Th17 cells deficient in miR-155 were defective in their ability to induce EAE. Increased miR-155 
confers Th17 cells with encephaletogenic potential through repression of negative regulator ETS-1, 
resulting in an upregulation of IL-23R expression by these cells. 

MiR-155 inhibits SOCS1 to promote JAK/STAT signaling. This promotes differentiation of both Tregs 
and Th17 cells 

(Singh et al., 2014b; 
Zhang et al., 2014b) 

(O'Connell et al., 2010) 

(Hu et al., 2013) 

 

 (Yao et al., 2012) 

MiR-326 Increased Th17 cells ETS-1 Increased miR-326 expression promotes Th17 differentiation in EAE by silencing ETS-1, a negative 
regulator of Th17 differentiation. 

(Du et al., 2009) 

MiR-132/212 
cluster 

Increased Th17 cells BCL6 Stimulation of the aryl-hydrocarbon receptor leads to induction of miR-132/212, which induces Th17 
differentiation partially through miR-212-mediated inhibition of a suppressor of Th17 differentiation 
called BCL6.  

(Nakahama et al., 2013) 

MiR-210 Increased Th17 cells HIF-1α Increased miR-210 expression inhibited Th17 differentiation by suppressing 
HIF1α , a transcription factor important for Th17 differentiation in hypoxic environments. 

Wang et al., 2014a) 

MiR-310a Increased Th17 cells PIAS3 Increased miR-310a in CD4+ T cells promotes Th17 differentiation by repressing an inhibitor of 
STAT3 called PIAS3 in EAE. 

(Mycko et al., 2012) 

MiR-133b 

MiR-206 

Increased Th17 cells IL-17A/F  

Locus 

MiR-133b and miR-206b are induced by IL-123 in naïve CD4+ T cells. They cluster upsteam at the IL-
17A/F locus and promote the production of IL-17A 

(Haas et al., 2011) 

MiR-20b Decreased Th17 cells RORγt 

STAT3 

Down-regulation of miR-20b in Th17 cells during EAE was found to promote Th17 differentiation as 
miR-20b is a potent inhibitor of RORγt and STAT3. 

(Zhu et al., 2014a) 
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MicroRNA Expression Location Target Implications of altered microRNA expression Reference 

MiR181a Decreased Th1 cells CXCR3 

STAT1 

In a rodent model of EAE, decreased miR-181a expression was shown to potentiate the Th1 response 
via loss of miR-181a mediated repression of CXCR3 and STAT1. 

(Bergman et al., 2013) 

MiR-29 Decreased Th1 cells T-bet 

IFN-γ 

MiR-29 directly binds to T-bet and IFN-γ. Loss of miR-29 leads to unrestrained T-bet expression and 
Th1 differentiation. 

(Smith et al., 2012) 

MiR-146a Decreased CD4+ T cells Protein 
Kinase C 
epsilon 

(PRKCΕ) 

Down-regulation of miR-146a promotes Th1 differentiation, because it allows expression of its target 
PRKCε, which phosphorylates STAT4 to allow Th1 differentiation. 

(Mohnle et al., 2015) 

MiR-155 Decreased Th2 cells PU.1 MiR-155 is over-expressed in a murine model of allergic inflammation. MiR-155 was found to target 
transcription factor PU.1, a negative regulator of Gata 3 and thus Th2 differentiation. Over-expression 
of miR-155 resulted in diminished PU.1 levels, allowing Th2 differentiation.  

(Malmhall et al., 2014) 

MiR-126a Increased Airway wall POU domain 
class 2 

activating 
factor 1 

MiR-126a was found to target POU domain class 2 activating factor 1, an activator of PU.1. Thus 
overexpression of miR-126a in the airway wall of a murine model of house dust mite-induced allergic 
inflammation promoted Th2 responses by repressing expression of  POU domain class 2 activating 
factor 1 and thus PU.1 (an inhibitor of Gata3 and thus Th2 differentiation). 

(Mattes et al., 2009) 

MiR-31 Decreased FoxP3+ Tregs FoxP3 MiR-31 directly binds to FoxP3 to inhibit its expression. Decreased miR-31 enhanced Treg responses 
by allowing greater FoxP3 expression. 

(Rouas et al., 2009) 

MiR-210 Increased FoxP3+ Tregs 

 

FoxP3 MiR-210 directly binds to FoxP3 to inhibit its expression. Increased miR-210 expression in patients 
suffering from psoriasis vulgaris exacerbated disease by suppressing FoxP3. 

(Zhao et al., 2014) 
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Here, we have shown that microRNAs expression is altered in the large intestine of 

colitic Hh+ IL-10 KO mice, at both the tissue level and CD4+ T cell-level when compared to 

uninfected controls. At the tissue level, kinetic examination revealed that the change in 

expression of the microRNAs examined correlated with the development of intestinal 

inflammation. Microarray profiling of large intestinal LP CD4+ T cells from uninfected and 2-

wk Hh+ IL-10 KOs revealed that two microRNAs were significantly up-regulated (miR-21a and 

miR-31) and seven microRNAs were significantly down-regulated (miR-125a, miR-125b, miR-

139, miR-181a, miR-192, miR-30a and miR-467c) in CD4+ T cells from colitic IL-10 KO mice 

compared to uninfected mice. These results suggest a possible role for microRNAs in 

modulating the inflammatory response during Hh-induced colitis. 
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4.2 RESULTS 

4.2.1 Expression of miR-155, miR-326 and miR-132 is altered during Hh-induced 
colitis. 

The expression of microRNAs has not been previously examined in the Hh model of colitis. We 

know from previous work in the lab that there is an accumulation of IL-17A and IFN-γ-

producing CD4+ T cells that correlates with the development of Hh-induced intestinal 

inflammation (Morrison et al., 2013). Accordingly, we chose to examine the expression of three 

microRNAs that have previously been shown to potentiate the Th1 and/or Th17 response; miR-

155, miR-326 and miR-132 (Du et al., 2009; O'Connell et al., 2010; Yao et al., 2012; Zhang et 

al., 2014b). We examined the expression of these microRNAs in the large intestine of 

uninfected and Hh+ IL-10 KO mice at different time points pi (post infection) with Hh by qRT-

PCR. 

To confirm that the mice were inflamed, we examined colonic histology sections of 

uninfected and Hh+ IL-10 KO mice at different time points pi for epithelial hyperplasia, goblet 

cell depletion, leukocyte infiltration and the presence of crypt abscesses. The results showed 

that the mice were inflamed at 1, 2, 8 and 14 wks pi compared to uninfected controls (Figure 

4.1A). Scoring of the histological sections revealed that inflammation was established at 1 wk pi 

and by 8 wks pi, it had started to decrease slightly (Figure 4.1B). Analysis of colonic levels of 

IFN-γ and IL-17A by qRT-PCR revealed that the levels of these cytokines were higher at 1, 2 

and 8 wks pi compared to uninfected controls (Figure 4.1C). Although these results were 

significant for IFN-γ,  they were not significant for IL-17A because of one mouse in the 

uninfected group that expressed high levels of IL-17A and skewed the statistics (Figure 4.1C). 

(The same mouse also expressed higher levels of IFN-γ (Figure 4.1C)). Furthermore, the 

colonic levels of IFN-γ and IL-17A correlated with the development of intestinal inflammation, 

with the levels of these cytokines peaking at 2 wks pi after which they started to decrease 

(Figure 4.1C).    

We next examined the levels of miR-155, miR-326 and miR-132 in the colon of 

uninfected and Hh+ IL-10 KO mice at different time points pi with Hh and assessed whether 

their expression levels correlated with the degree of intestinal inflammation. The results showed 

that miR-155 was significantly up-regulated in the colon at 2, 8 and 14 wks pi and in the cecum 

at 2 and 8 wks pi and (Figure 4.1D, upper panel). In contrast, miR-326 was significantly 

down-regulated in the colon at 1 and 2 wks pi, whereas in the cecum it just showed a trend 

toward down-regulation (Figure 4.1D, middle panel). MiR-132 showed little change in 

expression in the colon, but in the cecum it was significantly down-regulated at 1 and 2 wks pi 

(Figure 4.1D, lower panel). Together, these results demonstrated that the expression of miR-

155, miR-326 and miR-132 was altered in the large intestine of inflamed Hh+ IL-10 KO mice 
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compared to uninfected controls, and that the change in expression of these microRNAs 

coincided with the development of intestinal inflammation. 

4.2.2  A non-inflammatory immune response to Hh does not induce a change in 
the expression of miR-155, miR-326 or miR-132 

We have previously shown that WT mice infected with Hh alone do not develop intestinal 

inflammation, whereas WT mice infected with Hh and concomitantly treated with a blocking 

antibody to the IL-10R develop typhlocolitis similar to Hh+ IL-10 KO mice (Kullberg et al., 

2006). To examine whether a non-inflammatory immune response to Hh could elicit a change in 

the large intestinal expression of miR-155, miR-326 and miR-132, or whether the expression 

levels of these microRNAs only changes during an inflammatory immune response to Hh, we 

examined the expression levels of these microRNAs by qRT-PCR in the cecum and colon of 

uninfected and 2-wk Hh+ and Hh+/anti-IL-10R-treated WT mice. The results showed that miR-

155 was expressed at similar levels in uninfected and Hh+ WT mice, but showed a significant 

increase in the Hh+/anti-IL-10R-treated WT mice when compared to uninfected controls in both 

the colon and the cecum (Figure 4.2A). MiR-326 was expressed at similar levels in uninfected 

and Hh+ WT mice, but showed a trend toward down-regulation in the Hh+/anti-IL-10R-treated 

WT mice in both the colon and the cecum when compared to uninfected controls  (Figure 4.2B) 

MiR-132 showed similar expression in the colon of uninfected and 2-wk Hh+ and Hh+/anti-IL-

10R-treated WT mice. (Figure 4.2C, left panel). In the cecum, MiR-132 was expressed at 

similar levels in uninfected and Hh+ WT mice, but although not significant, was expressed at 

slightly higher levels in Hh+/anti-IL-10R-treated WT mice compared to the uninfected controls, 

mainly because of 3 out of 8 mice in the group that showed high miR-132 expression (Figure 

4.2C, right panel). Taken together, these results demonstrated that the expression levels of 

miR-155, miR-326 and miR-132 remained unaltered in a non-inflammatory immune response to 

Hh. In contrast, during the inflammatory immune response, miR-132 levels increased slightly in 

the cecum alone whereas miR-155 was significantly up-regulated and miR-326 was down-

regulated (although not significantly) in both the cecum and the colon when compared to 

uninfected controls. 

4.2.3 The basal expression of miR-132 is different in WT and IL-10 KO mice 
To examine whether the basal levels of miR-155, miR-326 and miR-132 were comparable in 

uninfected IL-10 KO and uninfected WT mice, we examined the expression of these 

microRNAs by qRT-PCR in the cecum and colon of uninfected IL-10 KO mice and uninfected 

WT mice. The results showed no significant difference in the expression level of miR-155 

(Figure 4.3, left panel) or miR-326 (Figure 4.3, middle panel) in the cecum or colon of 

uninfected IL-10 KO mice compared to uninfected WT mice. In contrast, the levels of miR-132 

were significantly up-regulated in the cecum and the colon of uninfected IL-10 KO mice 
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compared to uninfected WT mice (Figure 4.3, right panel). As a result of this finding, we 

decided to exclude miR-132 from any further experiments. 

4.2.4 Up-regulation of Ets-1 correlates with down-regulation of miR-326 in colitic 
mice at different time points post Hh infection. 

Two recent publications validated Ets-1 as a target of miR-155 and miR-326 in CD4+ T cells 

(Du et al., 2009; Hu et al., 2013). To determine whether Ets-1 levels correlated with levels of 

miR-155 and/or miR-326 during Hh-induced intestinal inflammation, we measured the 

expression levels of Ets-1, miR-155 and miR-326 by qRT-PCR in the cecum and colon of 

uninfected and Hh+ IL-10 KO mice at 1, 2 and 8 weeks pi. As microRNAs are inhibitory, an 

increase in the expression of a microRNA should result in a decrease in the levels of its mRNA 

target and vice versa. The levels of Ets-1 significantly increased in the cecum at 1, 2 and 8 

weeks pi and in the colon at 2 and 8 weeks pi (Figure 4.4A). As previously shown (Figure 

4.1D), miR-155 was significantly up-regulated (Figure 4.4B) and miR-326 was significantly 

down-regulated (Figure 4.4C) in the cecum and colon of colitic mice compared to uninfected 

controls.  These results showed that the up-regulation of Ets-1 was coincident with the down-

regulation of miR-326 in the cecum and colon.  

4.2.5 At basal levels, miR-155 is more highly expressed in the immune 
compartment whereas miR-326 is more highly expressed in the non-
immune compartment of the large intestine. 

As the gut contains a number of different cells, we sought to examine whether at basal levels, 

miR-155 and miR-326 were more highly expressed in the immune or non-immune compartment 

of the gut. To do this, we sorted different cell populations from the large intestine of uninfected 

IL-10 KO mice and determined the levels of miR-155 and miR-326 in these cells by qRT-PCR. 

The experiment was designed such that a piece of colon and the epithelial cell fraction were 

retained from each mouse. Following digestion of the tissue and subsequent isolation of the LP 

cells over a percoll gradient, we sorted the LP cells into hematopoietic cells, which contain all 

the immune cells (Sort 1A: CD45-positive) and non-hematopoietic cells (non-immune cells) 

(Sort 1B: CD45-negative) (Figure 4.5A). We further sorted an aliquot of hematopoietic cells, 

into CD4+ T cells (Sort 2A: CD4+ TCRβ+) and CD45+ cells depleted of CD4+ T cells (Sort 2B) 

(Figure 4.5A). Examination of post-sort purities showed that all the sorted populations were 

greater than 85% pure (Figure 4.5B). Total RNA was then extracted from the sorted 

populations and the levels of miR-155 and miR-326 measured by qRT-PCR. The results showed 

that miR-155 was more highly expressed in the hematopoietic cells compared to the non-

hematopoietic cells (Figure 4.5C). In female mice, MiR-155 was expressed at similar levels in 

the LP CD4+ T cells compared to the rest of the hematopoietic cells whereas in male mice, miR-

155 was expressed at much higher levels in LP CD4+ T cells compared to the rest of the 

hematopoietic cells (Figure 4.5C). These results suggest that the up-regulation of miR-155 seen 

in the large intestine during Hh-induced colitis could simply be because of an increase in the 
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number of immune cells during intestinal inflammation rather than a bona fide increase of miR-

155 in a particular cell type.  

In contrast to miR-155, miR-326 was more highly expressed at the total tissue level and 

in non-hematopoietic cells compared to the hematopoietic cells and in fact, showed its lowest 

expression levels in the LP CD4+ T cells and the rest of the hematopoietic cells (Figure 4.5D). 

These results suggest that while it is plausible that the down-regulation of miR-326 observed in 

the large intestine of Hh+ IL-10 KO mice compared to uninfected controls could be due to a 

down-regulation of miR-326 in non-immune cells, it might also be simply due to a decrease in 

the ratio of non-immune to immune cells in the inflamed tissue compared to that of uninfected 

controls. 

4.2.6 MicroRNAs are differentially expressed in large intestinal CD4+ T cells 
from 2-wk Hh-infected IL-10 KO mice compared to those from uninfected  

Having determined that microRNA expression is altered in inflamed tissue from Hh+ IL-10 KO 

mice compared to uninfected controls, we wanted to examine in greater detail whether 

microRNAs are differentially expressed in large intestinal CD4+ T cells from 2-wk Hh+ IL-10 

KO mice compared to uninfected controls. We chose the 2 wk pi timepoint, because we know 

from previous work in the lab that intestinal inflammation peaks at 2 wks pi (Morrison et al., 

2013).  We began by isolating LP cells from uninfected and 2-wk Hh+ IL-10 KO mice. To 

ensure the mice were inflamed and exhibited a similar profile of IL-17A and IFN-γ-expressing 

LP CD4+ T cells to what we have previously observed, we stimulated an aliquot of cells with 

PMA and ionomycin. The cells were then surface and intracellularly stained and then analyzed 

by flow cytometry.  The gating strategy used for analysis of  IL-17A and IFN-γ in LP CD4+ T 

cells is depicted in Figure 4.6A. Representative staining of IL-17A and IFN-γ in LP CD4+ T 

cells from each of the eight 2-wk Hh+ infected samples and one uninfected sample is shown in 

Figure 4.6B. The results showed that similar to what has been observed previously at 2 wks pi 

(Morrison et al., 2013), there were high frequencies of IL-17A+, IL-17A+ IFN-γ+ and IFN-γ+ 
 LP 

CD4+ T cells in 2-wk Hh+ IL-10 KO mice compared to the uninfected controls (Figure 4.6B).  

The remaining LP cells from uninfected and 2-wk Hh+ IL-10 KO mice were stained 

with antibodies specific for CD4 and TCRβ, and CD4+ T cells sorted by flow cytometry. The 

sort strategy used is shown in Figure 4.6C. Following the sort, post-sort purities were examined 

and found to be greater than 92% (Figure 4.6D). Total RNA was then extracted from the sorted 

samples for use on Agilent’s mouse microRNA microarray platform. According to Agilent’s 

protocol for their microarray, a total of 1 µl containing at least 100 ng of total RNA is 

recommended and this RNA is subsequently diluted to a concentration of 50 ng/ µl for use on 

the array. From our optimization studies, we found that the minimum number of cells required 

to get a required yield of 100 ng/µl of RNA was three million cells (Chapter 3, Table 3.5). 

Thus, for some of the samples, particularly those obtained from uninfected controls, LP CD4+ T 
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cells obtained from several sorts had to be pooled to obtain enough cells to isolate RNA (Table 

4.2). CD4+ T-cell samples from uninfected IL-10 KO mice are denoted by the prefix ‘A’ and 

those from 2-wk Hh+ IL-10 KO mice are denoted by the prefix ‘B’ (Table 4.2). Total RNA 

yield and purity was measured using the Nanodrop 2000 spectrophotometer (Table 4.2). 

Samples A1, A2, B3 and B5 had a poor 260:230 ratio, therefore, a cold isopropanol 

precipitation of RNA was carried out to remove any residual salt contaminants (Table 4.2). All 

the samples to be used on the array conformed to either the recommended RNA concentration 

of 100 ng/ µl or the minimum RNA requirement of 50 ng/ µl  (Table 4.2). 

Following RNA extraction from CD4+ T cells derived from uninfected and Hh+ IL-10 

KO mice, their RNA integrity number (RIN) was measured on a bioanalyser. The RIN denotes 

how intact the RNA is and the scale ranges from 1-10 where 10 is intact RNA and 1 is degraded 

RNA. For a microarray a RIN greater than 7 is deemed acceptable (Madabusi et al., 2006). All 

our RNA samples had an RNA integrity number ≥ 9.3 (Table 4.2 and Figure 4.7). 
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Table 4.2 Summary of total RNA yield and purity for samples from uninfected and 2-wk Hh+ IL-10 KO mice to be used in the miR microarray 

Microarray 
sample namea 

No. of 
mice/sort 
that were 
pooledb 

Tot No. of 
sorted CD4+ 

T cells 

Total RNA 
in 14 µ l 

(µg) 

RNA conc 
ng/µ l 

260:280 260:230 Amount of total 
RNA used for 

Isopropanol ppt. of 
RNA 

Total 
RNA 
in 5µ l 
(µg) 

RNA 
conc 
ng/µ l 

260:280 260:230 RIN 

Uninfected samplesc: 

A1 6F 355,000 1.1 76.7 2.0 1.5 0.7 µg 0.7 138.8 1.8 1.7 9.7 

8F 1,600,000 

8F 486,000 

8F 590,000 

A2 6F 180,000 0.8 53.8 2.1 1.6 0.6 µg 0.6 132.2 1.8 1.7 9.5 

6F 578,000 

8F 541,000 

8F 855,000 

7F 419,546 

7F 430,000 

A3 10M 828,586 2.0 141.7 2.1 1.9 Not done 9.6 

13M 1,740,000 

11M 644,000 
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a‘A’ denotes samples from uninfected IL-10 KO mice and ‘B’ denotes samples from 2-wk Hh+ IL-10 KO mice.  
b F denotes samples from female mice and M denotes samples from male mice. 
c For samples A1, A2, A3, B2 and B4, A separate chloroform phase extraction was done on each sorted sample, before pooling the aqueous phase and extracting the 
RNA on a single column.  
d For sample B5, the total RNA was pooled after RNA extraction from each sorted sample individually.

Microarray 
sample namea 

No. of 
mice/sort 
that were 
pooledb 

Tot No. of 
sorted CD4+ 

T cells 

Total RNA 
in 14 µ l 

(µg) 

RNA conc 
ng/µ l) 

260:280 260:230 Amount of total 
RNA used for 

Isopropanol ppt. of 
RNA 

Total 
RNA 

in 
5µ l 
(µg) 

RNA 
conc 
ng/µ l 

260:280 260:230 RIN 

Infected samples (2-wk Hh+) 

B1 1F 3,250,000 2.6 184.7 2.1 2.0 Not done 9.8 

B2c  1F 1,620,000 3.1 223.4 2.1 2.0 Not done 9.7 

1F 2,250,000 

B3 1F 2,200,000 1.6 113.3 2.0 1.7 0.8 µg 0.8 161.2 1.9 1.9 9.7 

B4c  1M 1,120,000 1.6 115.4 2.1 2.1 Not done 9.5 

1M 2,200,000 

B5d 1M 1,390,000 0.2 14.0 1.9 1.3 Tot RNA from both 
samples pooled 
(0.3µg in total) 

0.2 66.9 1.8 1.3 9.3 

1M 1,300,000 0.1 9.0 1.6 1.1 
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Once the RNA extracted from LP CD4+ T cells had passed all the quality control 

checks, i.e. had a 260:280 and a 260:230 ratio of 1.7-2.0 and a RIN greater than 7, microRNA 

expression was measured on an Agilent’s Sureprint mouse microRNA microarray platform 

(Release 19.0, which profiles the expression of 1247 microRNAs). The microarray data were 

analyzed using Genespring software. The array data was normalised by using the 90th percentile 

normalisation method. The quality of the data from the array was assessed by two methods; i) 

box plots that depict normalised intensity values of each sample and enable one to visualise the 

degree of dispersion and skewness of the data and any outliers ii) principal component analysis 

(PCA). PCA is an example of exploratory data analysis and is useful for identifying outliers or 

major differences in the data. The box plots in Figure 4.8A depict normalized intensity values 

for each sample used on the array and show that all the samples exhibited a similar spread of the 

data and signal intensities. PCA clusters samples based on how similar their microRNA 

expression profiles across probes are, and helps to highlight similarities and differences between 

the samples. Thus, one would expect all the samples from uninfected mice to cluster together 

and those from infected mice to cluster together. PCA of the samples we ran on the microarray 

revealed that while samples A1-A3 clustered together and B1-B4 clustered together, sample B5 

did not cluster with the rest of the samples from infected mice (Figure 4.8B), suggesting that 

sample B5 is different from the other samples derived from Hh+ IL-10 KO mice. In order not to 

skew the results, we left sample B5 out of any further analysis. 

A student’s t-test was used to test for statistically significant differences in microRNA 

expression levels in CD4+ T cells from uninfected and Hh+ IL-10 KO mice. To control for a 

‘false discovery rate’, P values were corrected using the Benjamini Hochberg test (Benjamini et 

al., 2001). A P value <0.05 was considered statistically significant. Analysis of array results 

revealed that there were seven microRNAs that were significantly down-regulated (miR-125a, 

miR-125b, miR-139, miR-181a, miR-192, miR-30a, and miR467c) and two microRNAs that 

were significantly up-regulated (miR-21a and miR-31) in CD4+ T cells from 2 wk Hh+ IL-10 

KO mice compared to uninfected controls (Table 4.3). In addition to the 9 microRNAs that 

were significantly different, there were 105 microRNAs that showed a fold change ≥2 between 

the infected and uninfected samples, but were not statistically significant.  The raw data, and 

subsequent calculation of the fold change for the microRNAs that showed a fold change ≥2 as 

well as miR-155, miR-326 and miR-132 are included in the appendix (Section 7.1). A heat map 

of the normalized fluorescence intensity values of the 9 microRNAs that were significantly 

different and the 105 microRNAs that showed a fold change greater than 2 is depicted in Figure 

4.9. From the heat map, it is evident that a number of microRNAs were more highly expressed 

in sample A3 (sample from uninfected male IL-10 KO mice) compared to samples A1 and A2 

(samples from uninfected female IL-10 KO mice) (Figure 4.9) For some of these microRNAs, 

a higher expression was also observed in sample B4 that was obtained from a 2-wk Hh+ male 
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IL-10 KO mouse when compared to samples B1-B3 that were from 2-wk Hh+ female IL-10 KO 

mice, indicating a gender bias in their expression. 

Table 4.3 Significantly up-/down-regulated microRNAs in CD4+ T cells from 2-wk 
Hh+ IL-10 KO mice (compared to uninfected controls) 
SYSTEMATIC NAMEa P (Corr)b Pc REGULATION FOLD CHANGE 

mmu-miR-21a-5p 0.0408 2.9 x 10-4 Up 4 

mmu-miR-31-5p 0.0260 1.6 x 10-4 Up 4 

mmu-miR-467c-5p 0.0072 2.8 x 10-5 Down 23 

mmu-miR-125a-5p 0.0043 6.7 x 10-6 Down 29 

mmu-miR-139-5p 0.0043 1.0 x 10-5 Down 29 

mmu-miR-30a-5p 0.0120 5.7 x 10-5 Down 31 

mmu-miR-192-5p 0.0059 1.9 x 10-5 Down 72 

mmu-miR-125b-5p 0.0260 1.6 x 10-4 Down 73 

mmu-miR-181a-5p 0.0005 3.8 x 10-7 Down 92 
a Samples in red denote microRNAs that were significantly up-regulated. Samples in blue denote microRNAs that 
were significantly down-regulated.  
b P (corr) refers to P values corrected for ‘false discovery rate’ using the Benjamini Hochberg test.  
c ‘P’ refers to P value after a student’s t-test was applied to the corrected P value.  
 

From the microRNAs that were significantly different, we chose to examine miR-21a, 

miR-31 and miR-181a further, based on the fact that miR-21a and miR-31 were the microRNAs 

that were significantly up-regulated and miR-181a was the microRNA that was most 

significantly down-regulated (Table 4.3). From the microRNAs that showed a fold change >2, 

we decided to investigate miR-210 and miR-96 further, because of the microRNAs that were 

up-regulated, they showed the greatest fold increase (26-fold and 22-fold respectively) 

(Appendix, Section 7.1). A second heat map, highlighting the normalized fluorescence 

intensities of all the microRNAs in Table 4.3, miR-210 and miR-96, and the microRNAs 

examined earlier in the chapter (miR-155, miR-326 and miR-132) are shown in Figure 4.10. Of 

note, the microRNAs that we examined at tissue level (miR-155, miR-326 and miR-132) did 

not show any significant difference in fluorescence intensity between CD4+ T cells from 2-wk 

Hh+ IL-10 KO mice and uninfected controls  (Appendix, Section 7.1). MiR-21a, miR-31 and 

miR-181a did not show any gender bias in terms of their expression in CD4+ T cells from male 

and female samples of the same group, however, miR-96 and miR-210 were expressed at 

slightly higher levels in CD4+ T cells from the uninfected male compared to uninfected females 

(Figure 4.10). 

The microarray results for miR-21a, miR-31, miR-210, miR-96 and miR-181a were 

validated by measuring their expression levels by qRT-PCR using total RNA from the samples 

used on the array as well as RNA extracted from LP CD4+ T cells from additional uninfected 

IL-10 KO mice. The results showed that, similar to the array, miR-31, miR-210 and miR-21a 
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were up-regulated, although only the former two were statistically significant (Figure 4.11A). 

Although miR-96 showed a 26-fold increase on the array (Figure 4.10), by qRT-PCR, miR-96 

was only slightly up-regulated in LP CD4+ T cells from 2-wk Hh+ IL-10 KO mice compared to 

uninfected controls (Figure 4.11A). Similar to the array, miR-181a was significantly down-

regulated in CD4+ T cells from 2-wk Hh+ IL-10 KO mice compared to uninfected controls 

(Figure 4.11A). When examining fold changes, only miR-31 and miR-210 showed a significant 

fold-increase and miR-181a showed a significant fold-decrease in expression compared to 

uninfected controls (Figure 4.11B). Together, these findings validate the array results in that all 

the microRNAs tested by qRT-PCR followed the same trend in expression as suggested by the 

array. 

4.2.7 MiR-31, miR-21a, miR-210 and miR-96 are up-regulated whereas miR-
181a is down-regulated in CD4+ Th1 and Th17 cells compared to naïve 
CD4+ T cells. 

Given that intestinal inflammation in the Hh colitis model is characterized by an increase in IL-

17A and IFN-γ-producing CD4+ T cells (Morrison et al., 2013), we were interested in 

determining whether Th1 and/or Th17 cells expressed the microRNAs that were identified by 

the microarray to be differentially expressed in CD4+ T cells from 2-wk Hh+ IL-10 KO mice 

compared to uninfected controls. To do so, we polarized naïve CD4+ T cells in vitro to a Th1 or 

Th17 phenotype and then measured the expression levels of miR-21a, miR-31, miR-181a, miR-

210 and miR-96 by qRT-PCR. The sort strategy used to sort naïve CD4+ CD62L+ T cells from 

spleens and MLNs of uninfected IL-10 KO mice is shown in Figure 4.12A. Examination of 

post-sort purities of the sorted naïve CD4+ T cells revealed that the population was 95% pure 

(Figure 4.12B). Following the sort, naive CD4+ T cells were cultured with irradiated 

splenocytes, soluble anti-CD3 and polarising cytokines as follows: IL-12 for Th1-cell 

polarization; TGFβ, IL-6 and IL-23 for Th17-cell polarisation. After 7 days in culture, we 

activated the polarized CD4+ T cells with plate bound anti-CD3 and collected cells at different 

time points post activation for RNA extraction. In addition to the Th1- and Th17-polarised cells, 

we also measured microRNA levels in anti-CD3-treated Clone B2 cells. Clone B2 is a Hh-

specific CD4+ Th1 clone established in our lab (Kullberg et al., 2003). To confirm that the cells 

had been activated, at 72 hrs, we took supernatants from anti-CD3 treated wells and measured 

the levels of IFN-γ and IL-17A by ELISA. Reassuringly, supernatants from the Th17-polarised 

cells primarily expressed IL-17A, while those from Clone B2 and to a lesser extent, Th1-

polarised cells primarily expressed IFN-γ (Figure 4.12C).  

For microRNA expression analysis, we extracted total RNA from sorted naïve CD4+ 

CD62L+ cells and from Clone B2, Th1- and Th17-polarized cells at 0, 6, 12, 24, 48 and 72 hrs 

post anti-CD3 stimulation and following reverse transcription, measured the levels of miR-31, 

miR-210, miR-181a, miR-21a and miR-96 by qRT-PCR.  
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 The results showed that miR-31 was lowly expressed in naïve CD4+ T cells and resting 

Th17, Th1 and Clone B2 cells (Figure 4.13A). Upon activation with anti-CD3, miR-31 levels 

progressively increased in Th17, Th1 and Clone B2 cells suggesting that activation of these cell 

types induces miR-31 expression (Figure 4.13A). 

 MiR-210 was undetectable in naïve CD4+ T cells (Figure 4.13B). Compared to naïve 

CD4+ T cells, there was an increase in miR-210 expression in resting Th17, Th1 and Clone B2 

cells that remained more or less constant at different timepoints post anti-CD3 stimulation 

(Figure 4.13B). 

MiR-21a was expressed at low levels in naïve CD4+ T cells compared to resting Th17, 

Th1 and Clone B2 cells (Figure 4.13C). Subsequent stimulation of Th17 and Clone B2 cells 

with anti-CD3 did not result in a huge change in the expression levels of miR-21a. However in 

Th1 cells, miR-21a was progressively down-regulated at different timepoints post ant-CD3 

stimulation (Figure 4.13C). 

MiR-96 was expressed at very low levels in naïve CD4+ T cells (Figure 4.13D). 

Compared to naïve CD4+ T cells, there was an increase in miR-96 expression in resting Th17 

and Th1 cells but not Clone B2 cells  (Figure 4.13D). Following activation with anti-CD3, the 

expression levels of miR-96 remained at similar levels in Th17 and Clone B2 cells compared to 

their resting counterparts (Figure 4.13D).  In Th1 cells, the expression of miR-96 was 

progressively down-regulated until 24 hrs post anti-CD3 stimulation after which the levels of 

miR-96 remained relatively constant  (Figure 4.13D).  

MiR-181a was expressed at higher levels in naïve CD4+ T cells compared to resting 

Th17, Th1 and Clone B2 cells (Figure 4.13E). Subsequent stimulation with anti-CD3 resulted 

in a progressive down-regulation of miR-181a expression in Th17 cells (Figure 4.13E). In Th1 

and Clone-B2 cells anti-CD3 stimulation had no effect on the expression of miR-181a (Figure 

4.13E).  

Together, the results in Figure 4.13 demonstrated that miR-31, miR-21a, miR-210 and 

miR-96 were up-regulated and miR-181a was down-regulated in in vitro polarized Th1 and 

Th17 cells compared to the naïve CD4+ T cells, suggesting that the change in expression of 

these microRNAs seen in LP CD4+ T cells from 2-wk Hh+ IL-10 KO mice could be attributed to 

the increased numbers of Th1 and Th17 cells observed in the colitic setting compared to the 

naive setting. Furthermore these results showed that none of these microRNAs were exclusively 

Th1 or Th17 microRNAs. These results also suggest that miR-31 seems to be an activation-

induced microRNA, while miR-96 seemed to be down-regulated following Th1-cell activation.  
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4.2.8  Potential mRNA targets of miR-21a, miR-31, miR-210, miR-181a and miR-
96.  

To identify potential mRNA targets of miR-21a, miR-31, miR-210, miR-96 and miR-181a that 

could influence the development of the CD4+ Th1 and Th17 response during colitis, we used 

two methods: i) we reviewed the literature on these microRNAs to identify experimentally-

validated mRNA targets, ii) we used the bioinformatic target prediction program miRwalk to 

identify mRNA targets that a given microRNA is predicted to bind to. In addition to its own 

algorithm, miRwalk has the option of collating the results of ten other target prediction 

programs, giving a final prediction score depending on the number of programs that predict that 

a given miRNA will bind to a certain mRNA. The target prediction programs support different 

host organisms, and most of them have algorithms that take into account at least 2 out of the 

following 3 features; seed match, free energy and conservation (Yue et al., 2009). We opted to 

collate the results of 8 target prediction programs that support mammals; miRwalk, miRanda, 

miRDB, RNAhybrid, PICTAR5, PITA, RNA22 and TargetScan. It is important to note that an 

mRNA target predicted by just a single program may also be a true target of a particular 

microRNA. This is evidenced by the fact that FoxP3, which is an experimentally validated 

target of both miR-31 (Rouas et al., 2009) and miR-210 (Fayyad-Kazan et al., 2012; Zhao et al., 

2014), is only predicted to be a target of these microRNAs by one of the eight target prediction 

programs we opted for.  In an effort to find the most likely mRNA targets of a given 

microRNA, we used 6 out of 8 programs as a cut off for predicting that a certain miRNA would 

bind to a given mRNA. In case of miR-210, we relaxed the search criteria used to 5/8 programs 

(yielding 50 hits) because using the more stringent cut off of 6/8 programs only resulted in 9 

hits for miR-210 compared to 25-100 hits for the other microRNAs.  

We collated a list of predicted and validated mRNA targets of miR-21a, miR-31, miR-

210, miR-96 and miR-181a that could be involved in driving an inflammatory CD4+ Th1 or 

Th17 response during Hh-induced colitis (Tables 4.4-4.8, respectively).  A complete list of the 

predicted microRNA targets for each microRNA, using a cut off specified above is included in 

the appendix (Section 7.2).  
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Table 4.4 Function of relevant predicted and experimentally validated mRNA 
targets of miR-21a 
 
mRNA 
TARGET 

STATUS  FUNCTION OF mRNA TARGET 

Smad7 

 

Validated (Li et 
al., 2013a) 

 

Smad7 inhibits TGFβ by binding to and degrading TGFβ-receptor 1. 
In CD4+ T cells, it was found to strongly correlate with T-bet, and 
promote Th1 responses in humans with MS and mice with EAE. Mice 
with T-cell specific deletion of Smad7 showed reduced CNS 
inflammation and reduced Th1 responses and proliferation whilst the 
Th17 response remained intact (Kleiter et al., 2010). 

Defective TGFβ1 activity is associated with high Smad7 levels in 
patients with CD and UC. Inhibition of Smad7 resulted in dampened 
gut inflammation in different mouse models of colitis. Inhibition of 
Smad7 is currently being investigated as a possible drug target for 
IBD (Zorzi et al., 2013) . 

PDCD4 

 

Validated 
(Iliopoulos et 
al., 2011) 
(Asseman and 
von Herrath, 
2003) 

 

Programmed cell death 4 (PDCD4) is thought to play a role in 
apoptosis. Increased miR-21 in T cells inhibited PDCD4 and led to 
hyperproliferation and increased IFNγ and IL-17A secretion as well as 
more severe Ag-induced arthritis (Iliopoulos et al., 2011). In T1D, 
miR-21 down-regulates PDCD4 and protects islet β cells from cell 
death (Asseman and von Herrath, 2003). 

Peli1 Validated 

(Marquez et al., 
2010). 

Peli-1 inhibits NF-kB signalling and is necessary for maintaining T-
cell tolerance in the periphery (Marquez et al., 2010). 

Runx1 Predicted by 4 
programs 

Runx1 is a transcription factor that has been shown to be necessary for 
the development of IFNγ-producing Th17 cells (Wang et al., 2014d). 

If miR-21a is down-regulated in Th17 cells following activation in 
vivo as suggested by our in vitro data, this might enable Runx1 
expression and promote Th17 phenotype shifting to an IFNγ-
producing ex-Th17 phenotype. 
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Table 4.5 Function of relevant predicted and experimentally validated mRNA targets of 

miR-31. 

mRNA 
TARGET 

STATUS  FUNCTION OF mRNA TARGET 

Foxp3 Validated 
(Rouas et al., 
2009) 

FoxP3 is a transcription factor of thymic and a subset of peripherally-
induced Tregs and thought to be necessary for their suppressive 
capacity. MiR-31 was found to inhibit FoxP3 expression in human 
Tregs (Rouas et al., 2009) 

KSR2 and  

Rhoa 

Validated 

(Fan et al., 
2012; Xue et 
al., 2013) 

KSR2 and Rhoa are inhibiters of IL-2 production. MiR-31 mediated 
inhibition of KSR2 and Rhoa promotes IL-2 production by CD4+ T 
cells 

Retinoic 
acid-
inducible 
protein 3 

Validated 

(Zhang et al., 
2015a) 

MiR-31 negatively regulates pTreg generation by directly targeting 
Retinoic acid-inducible protein3, a factor found to be important for 
pTreg development (Zhang et al., 2015a).  

Twist1 Predicted The transcriptional repressor Twist 1 is an antagonist of NF-Κb-
induced cytokine expression. Expression of Twist1 in Th1 cells 
limited production of IFN-γ,  TNFα and IL-2 (Niesner et al., 2008). 

Twist1 prevents T-bet and Runx3 from binding to the Ifng locus and 
inhibits IFN-γ production. It leads to decreased expression of T-bet, 
IL-12Rβ2 and Runx3 (Pham et al., 2012). 

Twist1 limits the development of Th17 cells by directly repressing 
Il6rα. T-cell specific deletion of Twist1 led to early onset of EAE and 
Ag-induced arthritis (Pham et al., 2013). 

Thus, if Twist1 proves to be a target of miR-31, miR-31-mediated 
repression of Twist1 expression could promote the Th1 and Th17 
response in Hh colitis. 

IRF4 Predicted T-bet directly represses IRF4 (Interferon regulatory factor 4) to 
control Th17 lineage differentiation (Gokmen et al., 2013). 

Thus, If IRF4 proves to be a target of miR-31, miR-31-mediated 
repression of IRF4 could promote Th1 differentiation or Th17 
phenotype shifting to IFNγ-producing ex-Th17 cells. 
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Table 4.6 Function of relevant predicted and experimentally validated mRNA targets of 

miR-210. 

 

mRNA 
TARGET 

STATUS  FUNCTION OF mRNA TARGET 

FoxP3 

 

Validated (Zhao 
et al., 2014) 
(Fayyad-Kazan 
et al., 2012) 

Polycystic vulagris (PV) is a T-cell mediated autoimmune disease. 
CD4+ T cells from PV patients showed increased miR-210 expression. 
MiR-210 augmented immune dysfunction in PV by repressing FoxP3 
(Zhao et al., 2014). 

Hif-1α  Validated MiR-210 inhibits Th17 differentiation in hypoxic environments by 
inhibiting the transcriptional regulator of Th17 differentiation, Hif1a 
(Wang et al., 2014a). 

SIN3A Validated 
(Shang et al., 
2014) 

T-bet dependent removal of SIN3A-histone deacetylase complex from 
the Ifng locus has been shown to promote Th1 differentiation (Chang 
et al., 2008) (Tong et al., 2005). 

Up-regulation of miR-210 in glioma cells compared to normal brain 
tissue resulted in hyperproliferation and inhibition of apoptosis via 
miR-210 mediated silencing of SIN3A (Shang et al., 2014) 

NF-κB1 Validated (Qi et 
al., 2012) 

NF-κB1 is an inhibitor of transcription factor NF-κB. Loss of NF-κB1 
resulted in hyperproduction of Th17 cells (Chang et al., 2009). 

ZMIZ1 Predicted ZMIZ1 is a susceptibility loci for IBD (Lees et al., 2011). It enhances 
transcriptional activity of Smad3, thereby promoting TGF-beta 
signaling (Li et al., 2006b). 

Lair1 Predicted The collagen receptor is widely expressed by immune cells. Lair1 is 
an immune inhibitory receptor, and is down-regulated on T cells in 
Rheumatoid arthritis compared to those from healthy controls. Lair1 
has been shown to inhibit proliferation and induce apoptosis of T cells 
(Meyaard, 2008; Zhang et al., 2014c). 

Thus, If Lair1 proves to be a target of miR-210, miR-210-mediated 
repression of Lair1 could promote proliferation and survival of CD4+ 
T cells in Hh colitis. 

Dapk1 Predicted It inhibits NF-Kb activation in T cells and thereby limits T-cell 
proliferation and IL-2 production (Chakilam et al., 2013; Chuang et 
al., 2008). 

Thus, If Dapk1 proves to be a target of miR-210, miR-210-mediated 
repression of Dapk1 could promote proliferation of CD4+ T cells in 
Hh colitis. 

Ppp2r5c Predicted Inhibits NF-kB activation in T cells and thereby inhibits T cell 
proliferation (Breuer et al., 2014). 

Thus, If Ppp2r5c proves to be a target of miR-210, miR-210-mediated 
repression of Ppp2r5c could promote proliferation of CD4+ T cells in 
Hh colitis. 
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Table 4.7 Function of relevant predicted and experimentally validated mRNA targets of 

miR-96. 

mRNA 
TARGET 

STATUS  FUNCTION OF mRNA TARGET 

IRF4 Predicted T-bet directly represses IRF4 (Interferon regulatory factor 4) to 
control Th17 lineage differentiation (Gokmen et al., 2013). 

Thus, If IRF4 proves to be a target of miR-96, miR-96-mediated 
repression of IRF4 could promote Th1 differentiation or Th17 
phenotype shifting to IFNγ-producing ex-Th17 cells. 

ATG16L1 Predicted ATG16L1 is a susceptibility loci for IBD (Lees et al., 2011) and is 
necessary for autophagy. 

Thus, If ATG16L1 proves to be a target of miR-96, miR-96-mediated 
repression of ATG16L1 could promote CD4+ T-cell survival in Hh 
colitis. 
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Table 4.8 Function of relevant predicted and experimentally validated mRNA targets of 

miR-181a. 

mRNA 
TARGET 

STATUS  FUNCTION OF mRNA TARGET 

CXCR3 Validated 
(Bergman et al., 
2013) 

Chemokine receptor CXCR3 is important for the differentiation of 
naïve T cells into Th1 cells in the lymph node (Groom et al., 2012). 

CXCR3 is also important for the migration of Th1 cells from the 
lymph node to the site of inflammation (Xie et al., 2003). 

STAT1 Validated 
(Bergman et al., 
2013) 

STAT1 is one of the transcription factors that drives the production of 
IFN-γ (Levy and Darnell, 2002). 

PTPN22 

SHP-2 

DUSP5/6 

Validated 

(Li et al., 2007). 

MiR-181a targets multiple phosphatases to regulate threshold of TCR 
signalling. MiR-181a is highly expressed in immature thymocytes and 
plays a role in thymic selection (Li et al., 2007). 

Smad7 Predicted Smad7 inhibits TGFβ by binding to and degrading TGFβ-receptor 1. 
In CD4+ T cells, it was found to strongly correlate with T-bet, and 
promote Th1 responses in humans with MS and mice with EAE. Mice 
with T-cell specific deletion of Smad7 showed reduced CNS 
inflammation and impaired Th1 responses and proliferation but intact 
Th17 responses (Kleiter et al., 2010). 

Defective TGFβ1 activity is associated with high Smad7 levels in 
patients with CD and UC. Inhibition of Smad7 resulted in dampened 
gut inflammation in different mouse models of colitis. Inhibition of 
Smad7 is currently being investigated as a possible drug target for 
IBD (Zorzi et al., 2013). 

If Smad7 proves to be a target of miR-181a, down-regulation of miR-
181a in LP CD4+ T cells from colitic mice compared to uninfected 
controls could promote Smad7 expression and thus inflammation by 
augmenting Th1 responses. 

Fos Predicted Together with JUN, C-fos forms the transcription factor AP-1. 
Blocking of AP-1 results in diminished Th1/Th17 differentiation and 
increased FoxP3 expression in GVHD (Park et al., 2014) 

If C-fos proves to be a target of miR-181a, down-regulation of miR-
181a in LP CD4+ T cells from colitic mice compared to uninfected 
controls could promote C-fos and thus AP-1 expression and thus 
promote inflammation by augmenting Th1/Th17 responses. 
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4.3 DISCUSSION 
Altered expression of microRNAs has been shown to contribute to the pathogenesis of many 

autoimmune and inflammatory diseases (Hu et al., 2013). The aim of this study was to examine 

whether microRNA expression is dysregulated during Hh-induced colitis at the site of Hh 

colonization in the large intestine. In this chapter, we show that IL-10 KO mice suffering from 

Hh-induced colitis show altered expression of microRNAs both at the tissue level and CD4+ T-

cell level compared to uninfected controls. 

In the current study, kinetic examination of miR-155, miR-326 and miR-132 expression 

in the colon and cecum of uninfected and Hh+ IL-10 KO mice revealed that compared to 

uninfected controls, miR-155 was significantly up-regulated and miR-326 and miR-132 were 

significantly down-regulated at different time points pi with Hh. Furthermore, the change in 

expression of these microRNAs was coincident with the development of intestinal 

inflammation. Similar to CD (Globig et al., 2014; Xavier and Podolsky, 2007), inflammation in 

the Hh+ colitis model is characterized by an increase of CD4+ T cells that produce IFN-γ and/or 

IL-17A (Morrison et al., 2013).  We chose to examine the expression of miR-155, miR-326 and 

miR-132 because they have been implicated in modulating the Th1 and/or Th17 response (Hu et 

al., 2013; O'Connell et al., 2010; Singh et al., 2014b; Zhang et al., 2014b) (Du et al., 2009)  

(Nakahama et al., 2013). Similar to the current study, previous profiling of microRNAs in the 

spontaneous IL-10 KO model of colitis showed that miR-155 was up-regulated in the colon of 

severely inflamed IL-10 KO mice (Schaefer et al., 2011). In the DSS colitis model, miR-155 

KO mice showed less severe colitis and lower Th1/Th17 numbers (Singh et al., 2014b). 

Although there are no studies of miR-326 and miR-132 in the context of colitis, these 

microRNAs, along with miR-155 have been implicated in modulating the pathogenic immune 

response in autoimmune diseases like EAE, where Th1 and Th17 cells have been shown to 

contribute to the pathogenic immune response (Du et al., 2009; Nakahama et al., 2013; 

O'Connell et al., 2010; Yao et al., 2012; Zhang et al., 2014b). Studies in the EAE model of 

disease show that miR-132/212 KO mice (Nakahama et al., 2013) and miR-155 KO mice 

(O'Connell et al., 2010) are resistant to the development of EAE and exhibit lower numbers of 

Th1 and Th17 cells compared to their WT counterparts. In vivo silencing of miR-326 led to 

fewer Th17 cells and mild EAE (Du et al., 2009).    

 Examination of the mRNA levels of Ets-1, a validated target of both miR-155 (Hu et 

al., 2013) and miR-326 (Du et al., 2009), in the large intestine of uninfected and Hh+ IL-10 KO 

mice at 1, 2 and 8 wks pi revealed that compared to uninfected controls, Ets-1 levels 

progressively increased at increasing time points pi, correlating with the development of 

intestinal inflammation. Furthermore, the change in Ets-1 levels seemed to correlate more with 

the down-regulation of miR-326 rather than up-regulation of miR-155.  In the current study, 

examination of the basal levels of miR-326 in epithelial cells, immune cells and non-immune 
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cells of the large intestine revealed that at steady state, miR-326 was expressed at higher levels 

in the epithelial cells and non-immune compartment compared to the immune compartment. 

These results make it tempting to speculate that perhaps down-regulation of miR-326 seen at 

the tissue level in colitic mice may be attributed to a down-regulation of miR-326 in epithelial 

cells and/or non-immune cells. The finding that miR-326 is expressed at higher basal levels in 

non-immune cells is corroborated by the fact that all the studies in which miR-326 is shown to 

be down-regulated were observed in non-immune cells. For example, decreased miR-326 was 

observed in adipocytes during their differentiation (Tang et al., 2009), in glioma tissues 

compared to normal brain tissue (Wang et al., 2013) and in colorectal cancer cells compared to 

controls (Wu et al., 2015). Conversely, the studies that reported an up-regulation in miR-326 

levels were seen in immune cells, for example, increased miR-326 levels were seen in CD4+ T 

cells derived from mice suffering from EAE compared to uninfected controls (Du et al., 2009), 

and peripheral blood lymphocytes (PBLs) from patients suffering from type 1 diabetes 

compared to PBLs of healthy individuals (Sebastiani et al., 2011). Ets-1 is expressed by a 

number of different immune and non-immune cells (reviewed by (Matsumoto et al., 1998). 

Interestingly, a recent study showed increased Ets-1 levels in intestinal epithelial cells (IECs) in 

the DSS model of colitis and in IECs of humans suffering from ulcerative colitis (Li et al., 

2015). Increase in Ets-1 levels promoted apoptosis of IECs via acceleration of NF-kB signalling 

(Li et al., 2015). The study by Li et al. highlights a potential mechanism by which a decrease in 

miR-326 levels could promote Ets-1-induced apoptosis of IECs and thereby promote defective 

barrier function in Hh-induced colitis. Further analysis of miR-326 and Ets-1 expression in 

large intestine epithelial cells and non-immune cells at different time points post Hh infection 

will help to identify whether change in expression of miR-326 in these cell types correlates with 

the change in Ets-1 levels (if any) in these cell types. Further studies involving in vivo 

silencing/over expression of miR-326 during Hh-induced colitis will help elucidate whether 

miR-326 has any functional effect on Ets-1 levels and disease severity. 

Both the studies where Ets-1 was found to be a target of miR-155 and miR-326 were in 

the EAE model, where increased expression of miR-155 and miR-326 in Th17 cells suppressed 

Ets-1 and potentiated the inflammatory response (Du et al., 2009; Hu et al., 2013). Ets-1 acts as 

a positive regulator of Th1 cells as Ets-1 KO CD4+ CD45RBhigh cells failed to produce IFN-γ or 

induce colitis when transferred to SCID mice (Grenningloh et al., 2005). Conversely, Ets-1 is a 

negative regulator of Th17 cells, although the exact mechanism by which it does so is unclear 

(Du et al., 2009).  In the current study, microarray examination of miR-155 and miR-326 did 

not reveal any difference in expression in the LP CD4+ T cells isolated from 2-wk Hh+ IL-10 

KO mice compared to those of uninfected controls. Unless changes in miR-155 and miR-326 

levels in individual CD4+ T-cell subsets is masked at the total CD4+ T-cell level, it seems 

unlikely that Ets-1 levels are excessively promoted/inhibited by miR-155 or miR-326 in LP 

CD4+ T cells during Hh-induced colitis. As we did not measure Ets-1 levels in LP CD4+ T cells 
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from uninfected and 2-wk Hh+ IL-10 KO mice due to insufficient amounts of RNA, we cannot 

say whether Ets-1 levels changed however, given the evidence in the literature (Grenningloh et 

al., 2005), Ets-1 may potentiate the inflammatory CD4+ Th1 and perhaps ex-Th17 responses 

and therefore might be worth examining in the future.  

In this study, we profiled microRNA expression in LP CD4+ T cells from uninfected 

and 2-wk Hh+ IL-10 KO mice. To our knowledge, this is the first time that microRNAs have 

been profiled in ex-vivo sorted CD4+ T cells from the large intestinal lamina propria. We 

validated the array results by examining the expression by qRT-PCR, of five microRNAs that 

were significantly different and/or showed a fold change greater than two in the samples from 

the colitic setting when compared to controls. The qRT-PCR results confirmed the directional 

results of the array i.e up- or down-regulation of a given microRNA; however, the fold change 

observed in the microarray was much greater than that observed by qRT-PCR. For example, 

miR-96 showed a 29-fold increase in expression by in LP CD4+ T cells from 2-wk Hh+ IL-10 

KO mice compared to controls when examined by microarray, but only showed a 1.8-fold 

increase when examined by qRT-PCR. Generally, the change in expression of a given 

microRNA observed by microarray is considered to be true if the same directional change in 

expression of the given microRNA is also observed by qRT-PCR (Git et al., 2010). This is 

because the fold change can be influenced by a number of factors. Firstly, Taqman qRT-PCRs 

are highly specific and measure the expression of a single microRNA sequence whereas 

microarrays may not be able to distinguish between isoforms of a give microRNA (Git et al., 

2010). Secondly, Taqman qRT-PCRs and Agilent’s microRNA microarray assay have different 

chemistries (Pritchard et al., 2012). Taqman qRT-PCR uses reverse transcription and 

microarrays use ligation, thus the two methods may not have the same microRNA yields 

(Pritchard et al., 2012). 

MicroRNA profiling of 2-wk LP CD4+ T cells revealed that miR-21a was up-regulated 

in LP CD4+ T cells from 2-wk Hh+ IL-10 KO mice compared to uninfected controls. Another 

study has shown that up-regulation of miR-21 in peripheral blood leukocytes (PBLs) of IL-10 

KO mice suffering from mild inflammation precedes the up-regulation of these microRNAs in 

the colon of IL-10 KO mice suffering from severe intestinal inflammation (Schaefer et al., 

2011). Increased miR-21 expression has been observed in dermal T cells from patients suffering 

from psoriasis compared to healthy controls (Meisgen et al., 2012). Increased miR-21 has also 

been shown to promote CD4+ T cell proliferation by suppressing the pro-apoptotic factor 

PDCD4 (Figure 4.14) (Stagakis et al., 2011). A number of studies have also identified miR-21 

to be up-regulated upon CD4+ T-cell activation where miR-21 promoted TCR signaling by 

repressing Sprouty1, an inhibitor of ERK and JNK signaling (Figure 4.14) (Wang et al., 

2014b). That study also showed that overexpression of miR-21 on Jurkat cells promoted 

transcription factor AP-1 activity and IL-2 expression (Wang et al., 2014b). MiR-21 also 

potentiates TCR signaling by repressing an inhibitor of NF-kB signaling called Peli1 (Figure 
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4.14) (Marquez et al., 2010). Two studies showed that miR-21 was up-regulated following 

activation of CD4+ T cells in vitro (Smigielska-Czepiel et al., 2013; Stagakis et al., 2011). In the 

current study, although we observed an up-regulation in miR-21a expression in in vitro 

polarized Th1 and Th17 cells compared to naïve CD4+ T cells, we did not observe any 

subsequent up-regulation of miR-21a expression upon stimulating these Th1 and Th17 cells 

with anti-CD3. The difference in our results compared to those by Stagakis et al and 

Smigielska-Czepiel et al could be explained by the fact that we used plate-bound anti-CD3 

alone whereas they used anti-CD3/anti-CD28 to stimulate the cells (Smigielska-Czepiel et al., 

2013; Stagakis et al., 2011). These findings suggest that perhaps CD28 signaling plays an 

important role in inducing miR-21 expression. One study also showed that miR-21 was 

selectively up-regulated in in vitro polarized Th17 cells and not Th1 cells and miR-21 

augmented the Th17 response by inhibiting Smad7 (Figure 4.14) (Murugaiyan et al., 2015). 

The study by Murugaiyan et al also showed that miR-21 KO mice developed less severe EAE 

because of impaired Th17 responses (Murugaiyan et al., 2015). In the current study, although 

we saw an increase in miR-21a in Th17 cells compared to naïve CD4+ T cells, unlike 

Murugaiyan et al, we also observed a similar increase of miR-21a in Th1 cells. Once again, the 

discrepancy between our results and those of Murugaiyan et al could once again be explained 

by the fact that we used plate-bound anti-CD3 alone to stimulate the cells whereas they used 

anti-CD3/anti-CD28 stimulation. The role of miR-21 in IBD is unclear. Increased expression of 

miR-21 has been observed in Crohn’s ileitis compared to healthy controls (Wu et al., 2010). In 

animal models of colitis, miR-21 deficiency exacerbated CD4+ T-cell transfer colitis but proved 

to be protective in TNBS and DSS colitis (Wu et al., 2014). Thus further work to determine the 

role of miR-21a in Hh-induced colitis remains to be done.  

In the current study, we observed increased miR-31 expression in LP CD4+ T cells from 

2-wk Hh+ IL-10 KO mice compared to uninfected controls. Increased miR-31 expression has 

been previously observed in peripheral blood leukocytes (PBLs) of IL-10 KO mice suffering 

from mild inflammation, and precedes the up-regulation of the miR-31 in the colon of IL-10 

KO mice suffering from severe intestinal inflammation (Schaefer et al., 2011). Increased miR-

31 expression has also been observed in splenocytes and CD4+ T cells from EAE mice 

compared to those of healthy controls (Zhang et al., 2015a).  In the current study, we also found 

that miR-31 was progressively up-regulated in in vitro polarized Th1 and Th17 cells following 

activation with plate-bound anti-CD3. Similar to our findings, one study showed that miR-31 

was up-regulated in in vitro polarized Th1 and Th17 cells activated with anti-CD3/anti-CD28 

(Zhang et al., 2015a). Another study showed that miR-31 is up-regulated on primary CD4+ T 

cells upon TCR stimulation and in these cells, miR-31 promoted IL-2 expression by repressing 

an inhibitor of IL-2 expression called kinase repressor of Ras2 (KSR2) (Figure 4.14)  (Xue et 

al., 2013).  In CD4+ T cells isolated from patients suffering from SLE, which show decreased 

miR-31 expression compared to healthy controls, loss of miR-31 mediated repression of RhoA 
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impaired IL-2 production by these CD4+ T cells (Figure 4.14) (Fan et al., 2012). Importantly, 

miR-31 has been identified as a novel biomarker for IBD, as it was found to be up-regulated in 

colonic tissue (both fresh-frozen and formalin-fixed paraffin-embedded tissue) of patients 

suffering from UC and CD compared to healthy controls (Lin et al., 2014). Findings from the 

literature suggest that there are a multitude of mechanisms by which increased miR-31 

expression could augment the pathogenic CD4+ T-cell response in Hh colitis. Aside from 

promoting IL-2 expression by CD4+ T cells, (Fan et al., 2012; Xue et al., 2013) miR-31 was 

found to antagonize Treg function by repressing FoxP3 (Rouas et al., 2009) and negatively 

regulating pTreg generation by repressing retinoic acid inducible-protein 3, a factor required for 

pTreg development (Figure 4.15) (Zhang et al., 2015a). Furthermore, in the current study, we 

identified transcription factor Twist1 as a potential mRNA target of miR-31. Twist1 is a 

repressor of both IFN-γ production and Th17 generation (Niesner et al., 2008; Pham et al., 

2012; Pham et al., 2013). Twist1 inhibits NF-κb-induced production of IFN-γ, TNFα and IL-2 

(Niesner et al., 2008). Twist1 decreases the levels of T-bet, Runx3 and IL-12Rβ2 and inhibits 

IFN-γ  production by preventing T-bet and Runx3 from binding to the IFNγ promoter (Figure 

4.15) (Pham et al., 2012). Twist1 also limits the development of Th17 cells, as Twist1 has been 

found to directly suppress IL-6Rα expression (Figure 4.15) (Pham et al., 2013). Therefore, if 

Twist1 proves to be a target of miR-31, miR-31-mediated loss of Twist1 could augment the Th1 

and Th17 response in Hh colitis.  

In the current study, microRNA microarray analysis of LP CD4+ T cells from 

uninfected and 2-wk Hh+ IL-10 KO mice revealed that 105 microRNAs showed a 2-fold 

difference in expression in LP CD4+ T cells from colitic animals compared to uninfected 

controls. Of the microRNAs that were up-regulated, miR-210 and miR-96 showed the greatest 

fold increase compared to samples from uninfected controls. The array was carried out using 

total RNA derived from LP CD4+ T cells from male and female mice. In case of miR-210 and 

miR-96, the samples from the uninfected male showed a higher expression of these 

microRNAs, thus skewing the results to being less significant than they would have been with 

female samples alone. Similar to our finding, a recent study showed that sexual dimorphism in 

miR-210 expression has recently been observed in the placenta of humans, where it was found 

that miR-210 is expressed at higher levels in females carrying male fetuses compared to female 

fetuses (Muralimanoharan et al., 2015). Similar to our findings that miR-210 was up-regulated 

in LP CD4+ T cells from colitic Hh+ IL-10 KO mice compared to uninfected controls, a recent 

study showed that miR-210 was up-regulated in CD4+ T cells from patients suffering from 

psoriasis vulgaris compared to healthy controls (Zhao et al., 2014). In the current study, when 

we examined miR-210 expression in naïve and in vitro polarised Th1 and  Th17 cells, miR-210 

was expressed at slightly higher levels in Th17 cells compared to Th1 cells and naïve CD4+ T 

cells although not as highly as a similar study examining miR-210 expression in in vitro 

polarised Th subsets (Wang et al., 2014a). The fact that we did not observe as marked an 
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increase in miR-210 expression in Th17 vs Th1 cells as Wang et al did is likely due to the fact 

that we used anti-CD3 alone to stimulate the cells whereas Wang et al used anti-CD3/anti-

CD28. Giving credence to this theory is the fact that Wang et al further demonstrated that co-

stimulation with anti-CD28 is necessary to induce robust miR-210 expression (Wang et al., 

2014a). It is unclear whether the increased expression of miR-210 in LP CD4+ T cells from 2-

wk Hh+ IL-10 KO mice compared to those from uninfected controls may augment inflammation 

or not, as miR-210 has been shown to play both anti-inflammatory and pro-inflammatory roles. 

Supporting an anti-inflammatory role for miR-210, one study showed that in the T-cell transfer 

colitis model, miR-210 was found to limit Th17 differentiation by targeting HIF-1α (Figure 

4.15) (Wang et al., 2014a). In this study by Wang et al, CD4+ T cells from miR-210 KO mice 

induced more severe colitis than CD4+ T cells from WT counterparts as a result of an 

augmented Th17 response (Wang et al., 2014a). There are a few studies that suggest that miR-

210 may play a pro-inflammatory role. Zhao et al found that overexpression of miR-210 

potentiated psoriasis vulgaris by repressing FoxP3 expression, leading to loss of Treg mediated 

suppression of effector T cells and increased production of IFN-γ and IL-17A (Figure 4.15) 

(Zhao et al., 2014). MiR-210 has also been shown to bind to SIN3A mRNA (Shang et al., 

2014). SIN3A is a transcriptional regulatory protein that inhibits IFN-γ expression and Th1 

differentiation (Figure 4.15) (Tong et al., 2005). Furthermore, in the current study, we 

identified that miR-210 is predicted to repress two inhibitors of NF-kB signaling called Dapk1 

and Ppp2r5c and a pro-apoptotic factor called Lair1 (Figure 4.14). Further work to determine 

whether miR-210 plays a pro-inflammatory or anti-inflammatory role in Hh colitis remains to 

be done. 

In the current study, we found that of the microRNAs that were down-regulated in LP 

CD4+ T cells from 2-wk Hh+ IL-10 KO mice compared to uninfected controls, miR-181a was 

the most significantly down-regulated and showed the greatest fold decrease compared to 

uninfected controls (92 fold decrease). Furthermore, we found that miR-181a was expressed at  

higher levels in naïve ex vivo sorted CD4+ T cells compared to differentiated Th1 and Th17 

cells.  These findings agree with those of Li et al, who also found that miR-181a was expressed 

at higher levels in naïve CD4+ T cells compared to differentiated Th1 and Th2 cells (Li et al., 

2007). Although most of the literature related to miR-181a suggests that miR-181a is most 

highly expressed in the thymus and plays an important role in thymic selection and modulating 

TCR signalling sensitivities (Figure 4.14) (Ebert et al., 2009; Li et al., 2007), recent research 

suggests a role for down-regulation of miR-181a in augmenting the inflammatory Th1 response 

in the periphery. Thus, in humans, miR-181a was found to repress IFN-γ (Fayyad-Kazan et al., 

2014) and in rats suffering from EAE, miR-181a was found to suppress CXCR3 and STAT1 

and promote the Th1 response (Figure 4.15) (Bergman et al., 2013).  Therefore it is possible 

that the down-regulation of miR-181a  observed  in the current study in LP CD4+ T cells from 

2-wk Hh+ IL-10 KO compared to uninfected controls could play an important role in 
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potentiating the pathogenic Th1 response in the colitic setting. An important predicted target for 

miR-181a that might potentiate Hh-induced colitis is Smad7 (Figure 4.14). Smad7 is an 

inhibitor of TGF-β1, which plays a role in preventing mucosal inflammation (Heldin et al., 

1997) and anti-sense oligonucleotides targeting Smad7 are currently in clinical trials for 

treatment of CD (Monteleone et al., 2012).  

Some of the potential mRNA targets identified in the current study are common to 

different microRNAs. For example, FoxP3 is a validated target of both miR-210 and miR-31 

(Figure 4.15), Runx1 is a predicted target of both miR-21a and miR-96 and IRF4 is a predicted 

target of both miR-31 and miR-96 (Figure 4.15). Thus, it is tempting to speculate that these 

microRNAs might work synergistically to bring about changes in mRNA expression that would 

augment the inflammatory response. Similarly, Smad7 is a validated target of miR-21, but a 

predicted target of miR-181a. In the current study, miR-21a was upregulated whereas miR-181a 

was down-regulated in LP CD4+ T cells from colitic mice compared to those from uninfected 

controls. Thus it is plausible that if Smad7 is also a target of miR-181a, then loss of miR-181a-

mediated suppression of Smad7 maybe partially or completely compensated for by miR-21a-

mediated suppression of Smad7.  

Future studies should focus on determining whether the predicted mRNA targets 

identified are actually targets of miR-21a, miR-31, miR-181a, miR-210 or miR-96 by carrying 

out luciferase assays. Once a given mRNA has been identified as a target of a particular 

microRNA, in vivo studies involving over-expression or silencing of the microRNA could be 

carried out to determine whether repression or de-repression of the mRNA target has any 

functional effect on disease severity in Hh colitis. 

4.3.1 Summary 
MiR-155 was significantly up-regulated and miR-326 was significantly down-regulated in the 

inflamed large intestine of Hh+ IL-10 KO mice at different time points pi with Hh. Furthermore, 

the change in expression of these microRNAs coincided with the development of inflammation. 

Microarray profiling of microRNAs in LP CD4+ T cells from uninfected and 2-wk Hh+ IL-10 

KO mice demonstrated that several microRNAs were differentially expressed in LP CD4+ T 

cells from the inflamed large intestine compared to those of uninfected controls. Two 

microRNAs were significantly up-regulated (miR-21a and miR-31), seven microRNAs were 

significantly down-regulated, (miR-125a, miR-125b, miR-139, miR-181a, miR-192, miR-30a, 

and miR467c) and a further 105 microRNAs showed a fold change of more than two in LP 

CD4+ T cells from 2-wk Hh+ IL-10 KO mice compared to those of uninfected controls. 

Further examination of the expression of miR-21a, miR-31, miR-210, miR-96 and miR-181a in 

naïve CD4+ T cells and in vitro polarized Th1 and Th17 cells revealed that with the exception of 

miR-181a, which was expressed at higher levels in naïve CD4+ T cells compared to Th1 and 
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Th17 cells, miR-21a, miR-31, miR-210 and miR-96 were expressed at much higher levels in 

Th1 and Th17 cells compared to naïve CD4+ T cells. 

A number of potential mRNA targets (both predicted and experimentally validated) of miR-21a, 

miR-31, miR-210, miR-96 and miR-181a that might potentiate the pathogenic CD4+ T-cell 

response in Hh colitis were identified. 
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4.4 FIGURES 
 

 
Figure 4.1 Expression of miR-155, miR-326 and miR-132 is altered during Hh-induced 
colitis 
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Figure 4.1. Expression of miR-155, miR-326 and miR-132 is altered during Hh-induced colitis.  
Colonic and cecal tissues were collected from uninfected and Hh+ IL-10 KO mice at 1, 2, 8 and 14 wks 
pi. Colon sections were fixed in formalin and a section stained with haematoxylin and eosin (H and E) for 
histological examination. Bar, 100 µm. Total RNA was isolated from cecal and colonic tissue and RNA 
transcript levels of IFN-γ and IL-17A and miR-155, miR-326 and miR-132 were determined by qRT-
PCR. (A) Representative H and E stained sections of the colon from uninfected and Hh+ IL-10 KO mice. 
(B) Scatter plots showing histology scores of ascending colon showing at least 4 mice per time point. The 
histology sections were scored as follows: a score of 0-3 was assigned for each of the following four 
parameters respectively, i) epithelium and/or goblet cell hyperplasia, ii) inflammation in the lamina 
propria, iii) percentage area affected and iv) any markers of severe inflammation such as crypt abscesses 
and fibrosis, giving a final maximum score of 12. Data shown are pooled from two independent 
experiments where n ≥ 3 mice per group per experiment. (C) Scatter plots showing colonic mRNA levels 
of IFN-γ  (left panel) and IL-17A (right panel). Data shown are from a single experiment. (D) Scatter 
plots showing colonic (left panel) and cecal (right panel) levels of miR-155 (upper panel), miR-326 
(middle panel) and miR-132 (lower panel) in uninfected and Hh+ IL-10 KO mice. Data shown are pooled 
from three independent experiments in case of miR-155 and miR-326 and two independent experiments 
in case of miR-132 where n ≥ 3 mice per group per experiment. In B-D, each symbol represents an 
individual mouse and horizontal bars depict the mean. **p<0.01 and ***p<0.001 as determined by a two-
tailed Mann-Whitney test.  
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Figure 4.2 The large intestinal levels of miR-155, miR-326 and miR-132 remain 
unchanged during a non-inflammatory immune response to Hh.  
Colonic and cecal tissues were isolated from uninfected WT and 2-wk Hh+ and Hh+/anti-IL-
10R-treated WT female mice. Total RNA was extracted and following reverse transcription, 
levels of miR-155, miR-326 and miR-132 were determined by qRT-PCR. Cecal and colonic 
levels of  (A) miR-155 (B) miR-326 and (C) miR-132 in uninfected and 2-wk Hh+ and 
Hh+/anti-IL-10R-treated WT mice. Each symbol represents an individual mouse and 
horizontal bars show the mean of each/group. Data in figures are combined from two 
independent experiments. **p<0.01 and ***p<0.001 as determined by a two-tailed Mann-
Whitney test.  
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Figure 4.3 Basal expression of miR-132 is different in uninfected WT and uninfected IL-
10 KO mice. 
Colonic and cecal tissues were isolated from uninfected IL-10 KOs and uninfected WT female mice. 
Total RNA was extracted and following reverse transcription, levels of miR-155, miR-326 and miR-132 
were determined by qRT-PCR. The figure depicts cecal and colonic levels of miR-155 (left panel), miR-
326 (middle panel) and miR-132 (right panel) in uninfected WT (data shown are pooled from two 
independent experiments) and IL-10 KO mice (data shown are pooled from three independent 
experiments). Each symbol represents an individual mouse and horizontal bars show the mean of each 
group. *p<0.05 and **p<0.01 as determined by a two-tailed Mann-Whitney test.  
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Figure 4.4 Upregulation of Ets-1 correlates with down-regulation of miR-326 in colitic 
mice at different time points post Hh infection.  
Total RNA was extracted from colonic and cecal tissues isolated from uninfected and Hh+ IL-
10 KO male mice at 1, 2 and 8 weeks pi. Following reverse transcription, the levels of miR-
155, miR-326 and Ets-1 were determined by qRT-PCR. Levels of (A) Ets-1 (B) miR-155 and 
(C) miR-326 in the cecum (left panel) and colon (right panel). Each symbol represents an 
individual mouse. Horizontal bars show the mean of n≥4/group. Data in figures (A-C) are 
from a single experiment. *p<0.05 and **p<0.01 as determined by a two-tailed Mann-Whitney 
test.  
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Figure 4.5 At basal levels, miR-155 is more highly expressed in the immune compartment 
whereas miR-326 is more highly expressed in the non-immune compartment of the large 
intestine.  
Colonic tissue, epithelial cells and LP cells were collected from the large intestine of 
uninfected IL-10 KO mice.  The LP cells were surface stained with antibodies specific for 
CD45, CD4 and TCRβ and different cell populations sorted by flow cytometry. Total RNA 
was extracted from all the isolated tissues and cells and following reverse transcription, levels 
of miR-155 and miR-326 were determined by qRT-PCR. (A) Sort strategy used for the 
isolation of different cell types from the LP. From the LP cells, immune cells, contained 
within the hematopoietic cells (HC) were sorted as cells that were CD45+ (sort 1A). Non- 
immune cells, which fall within the non-hematopoietic cells, were sorted as cells that were 
CD45- (sort 1B). From an aliquot of the CD45+ HCs, CD4+ T cells (CD45+ CD4+TCRβ+) and 
all the rest of the immune cells, with the exception of the CD4+ T cells (LP rem. HC) were 
sorted as sort 2A and sort 2B respectively.   (B) Representative post-sort purities of cells 
sorted from the LP. (C) Levels of miR-155 (left panel) and miR-326 (right panel) in the colon, 
epithelial cells (EC) and different cell types isolated from the LP. Data are pooled from two 
independent experiments. One of the experiments consisted of male mice (solid symbols) and 
the other experiment consisted of female mice (open symbols). X-axis labels refer to the 
following: ’Col’ refers to colon, ‘EC’ refers to epithelial cells, ‘LP HC’ refers to 
hematopoietic cells (CD45+),‘LP non-HC’ refers to non-hematopoietic cells (CD45-) and ‘LP 
Rem. HC’ refers to all the hematopoietic cells excluding the CD4+ T cells. Each symbol in 
‘col’ represents tissue from an individual mouse, Each symbol in  ‘EC’ represents a pool of 
epithelial cells from two mice and Each symbol in ‘LP cells’, ‘LP HC’, ‘LP non-HC’, ‘LP 
CD4+ T cells’ and ‘LP Rem. HC’ represents cells pooled from n≥ 8 mice.  
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Figure 4.6 Phenotyping and isolation of CD4+ T cells from the lamina propria.  
Lamina propria cells were isolated from uninfected and 2-wk Hh+ IL-10 KO mice. An aliquot 
of LP cells from the infected samples were stimulated with PMA and Ionomycin and then 
surface and intracellularly stained with antibodies specific to TCRβ, CD4, IFN-γ and IL-17A 
and a live dead exclusion dye and examined flow cytometrically. The remaining LP cells were 
surface stained with antibodies specific for TCRβ and CD4, and CD4+ T cells sorted as cells 
that were TCRβ+ CD4+. (A) Gating strategy used for the analysis of the IFN-γ and IL-17A 
profile of LP CD4+ T cells. (B) Dot plots depicting the IFN-γ and IL-17A profile of LP CD4+ 
T cells from 2-wk Hh+ IL-10 KO mice and a representative profile of an uninfected mouse. 
F1-F4 denotes female IL-10 KO mice and M1-M4 denote male IL-10 KO mice. (C) Sort 
strategy used for the isolation of CD4+ T cells from the lamina propria of uninfected (upper 
panel) and 2-wk Hh+ IL-10 KO mice (lower panel). (D) Representative post sort purity of 
CD4+ T cells sorted from the lamina propria of uninfected (upper panel) and 2-wk Hh+ IL-10 
KO mice (lower panel). 
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Figure 4.7 Integrity of total RNA extracted from LP CD4+ T cells.  
Total RNA was extracted from large intestinal LP CD4+ T cells from uninfected and 2-wk Hh+ 
IL-10 KO mice. The RNA integrity was measure by running 1 µl of every sample on Agilent’s 
bioanalyzer. The electropherograms depict fluorescence intensity vs. migration time for each 
RNA sample. A1-A3 refers to RNA samples from uninfected IL-10 KO mice and B1-B5 refers 
to RNA samples from 2-wk Hh+ IL-10 KO mice. The smallest peak located at 24s represents 
the marker region, the peak just after 40 seconds represents the 18S ribosomal RNA fragment 
and the largest peak located between 45-50 seconds represents the 28S ribosomal RNA 
fragment. RIN indicates the RNA integrity number for each sample. 

 

Figure 4.7: Integrity of total RNA extracted from lamina propria CD4+ T cells. Total RNA was extracted from large intestinal 
LP CD4+ T cells derived from uninfected and 2wk Hh+ IL-10 KO mice. The RNA integrity was measure by running 1 µl of every 
sample on Agilent’s Bioanalyzer. The electropherograms depict fluorescence intensity vs. migration time for each RNA sample. 
A1-A3 refer to RNA samples from uninfected IL-10KO mice and B1-B5 refer to RNA samples from 2 wk Hh+ IL-10KO mice. 
The smaller peak just after 40 seconds represents the 18S ribosomal RNA fragment and the larger peak between 45-50 seconds 
represents the 28S ribosomal RNA fragment. RIN refers to RNA integrity number for each sample. 
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Figure 4.8 Analysis of array sample quality.  
Total RNA was extracted from large intestinal LP CD4+ T cells from uninfected and 2-wk Hh+ 
IL-10 KO mice and microRNA expression profile determined by a microRNA microarray. (A) 
Box plots depicting normalised intensity values for each sample on the array. ‘F’ denotes 
sample is derived from female IL-10 KO mice and ‘M’ denotes sample is derived from male 
IL-10 KO mice. (B) Principal component analysis of samples run on the microarray. Samples 
specified in blue are samples from 2-wk Hh+ IL-10 KO mice and samples specified in red are 
from uninfected controls. In figures A-B, samples A1-A3 are from uninfected IL-10 KO mice 
and B1-B5 are from 2-wk Hh+ IL-10 KO mice.  

A 

B 

Figure 4.9: Analysis of array sample quality. Total RNA was extracted from large intestinal CD4+ T cells derived from 
uninfected and 2-wk Hh+ IL-10 KO mice and microRNA expression profile determined by a microRNA microarray. (A) Box plots 
depicting normalised intensity values for each sample on the array. ‘F’ denotes sample is derived from female IL-10 KO mice and 
‘M’ denotes sample is derived from male IL-10 KO mice. (B) Principal component analysis of samples run on the microarray. 
Samples specified in blue are infected samples and samples specified in red are uninfected controls. In figures A-B, samples A1-
A3 are from uninfected IL-10 KO mice and B1-B5 are from 2-wk Hh+ IL-10KO mice. 
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Figure 4.9  Heat map depicting microRNAs that showed fold change ≥2 in infected 
compared to uninfected controls.  
Total RNA was extracted from large-intestinal CD4+ T cells from uninfected and 2-wk Hh+ 
IL-10 KO mice and microRNA expression profile determined by a microRNA microarray. The 
heat map depicts microRNAs that showed a ≥2-fold change when compared to uninfected 
controls. The heat map was generated using fluorescence intensities for each microRNA that 
were normalised by 90th percentile normalisation method followed by subtraction of the 
negative control from each normalised value. The normalised fluorescence intensities are 
represented on a log scale. On the colour scale, blue represents the lowest fluorescence 
intensity and red represents the highest fluorescence intensity. On the x-axis, ‘F’ denotes 
sample derived from female IL-10 KO mice and ‘M’ denotes sample derived from male IL-10 
KO mice. A1-A3 are from uninfected IL-10 KO mice and B1-B5 are from 2-wk Hh+ IL-10 KO 
mice. With the exception of miR-210 and miR-96, all the microRNAs depicted in blue are 
microRNAs that were significantly different between 2-wk Hh+ IL-10 KO mice and uninfected 
controls. 

Figure 4.9: Heat map depicting microRNAs that showed >2-fold change compared to uninfected controls. Total RNA was 
extracted from large-intestinal CD4+ T cells derived from uninfected and 2-wk Hh+ IL-10 KO mice and microRNA expression 
profile determined by a microRNA microarray. The heat map depicts microRNAs that showed a >2-fold change compared to 
uninfected controls. The heat map was generated using fluorescence intensities for each microRNA that were normalised by 90th 
percentile normalisation method followed by subtraction of the negative control from each normalised value. The normalised 
fluorescence intensities are represented on a log scale. On the colour scale, blue represents the lowest fluorescence intensity and 
deep orange, the highest fluorescence intensity. On the x-axis, ‘F’ denotes sample derived from female IL-10 KO mice and ‘M’ 
denotes sample derived from male IL-10 KO mice. A1-A3 are from uninfected IL-10 KO mice and B1-B5 are from 2-wk Hh+ 
IL-10 KO mice. 
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Figure 4.10 Heat map depicting fluorescence intensities, p values and fold change 
differences of specific microRNAs from the microRNA microarray.  
Total RNA was extracted from large intestinal CD4+ T cells from uninfected and 2-wk Hh+ 
IL-10 KO mice and microRNA expression profile determined by a microRNA microarray. The 
heat map depicts fluorescence intensities, P values and fold change differences of specific 
microRNAs as indicated in the figure. The heat map was generated using fluorescence 
intensities for each microRNA that were normalised by 90th percentile normalisation method 
followed by subtraction of the negative control from each normalised value. The normalised 
fluorescence intensities are represented on a log2 scale. On the colour scale, blue represents 
the lowest fluorescence intensity and deep orange, the highest fluorescence intensity. On the 
x-axis, ‘F’ denotes sample is derived from female IL-10 KO mice and ‘M’ denotes sample is 
derived from male IL-10 KO mice. A1-A3 are from uninfected IL-10 KO mice and B1-B5 are 
from 2-wk Hh+ IL-10 KO mice. MicroRNAs highlighted in green did not show any change in 
expression between uninfected and infected samples. MicroRNAs shown in clear boxes 
represent the microRNAs we chose to examine further. NS denotes ‘not significant’. 

 

Figure 4.10: Heat map depicting fluorescence intensities of specific microRNAs from the microRNA microarray. Total RNA 
was extracted from large intestinal CD4+ T cells derived from uninfected and 2-wk Hh+ IL-10 KO mice and microRNA 
expression profile determined by a microRNA microarray. The heat map depicts fluorescence intensities of miR-155, miR-326, 
microRNAs that were significantly different in their expression compared to uninfected controls and miR-96 and miR-210, which 
showed a fold change >2 compared to uninfected controls. The heat map was generated using fluorescence intensities for each 
microRNA that were normalised by 90th percentile normalisation method followed by subtraction of the negative control from 
each normalised value. The normalised fluorescence intensities are represented on a log scale. On the colour scale, blue represents 
the lowest fluorescence intensity and deep orange, the highest fluorescence intensity. On the x-axis, ‘F’ denotes sample is derived 
from female IL-10 KO mice and ‘M’ denotes sample is derived from male IL-10 KO mice. A1-A3 are from uninfected IL-10 KO 
mice and B1-B5 are from 2wk Hh+ IL-10 KO mice. MicroRNAs outlined a green box did not show any change in expression 
between uninfected and infected samples. MicroRNAs outlined in blue boxes showed a statistically significant change in 
expression between uninfected and infected samples.  MicroRNAs outlined in the orange box show microRNAs that showed a 
high fold change between uninfected and infected samples but the results were not statistically significant. MicroRNAs shown in 
clear boxes represent the microRNAs we chose to examine further. 
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Figure 4.11 qRT-PCR validation of microRNA microarray results. 
CD4+ T cells were sorted from the large intestinal LP of uninfected and Hh+ IL-10 KO mice. 
Total RNA was extracted and the expression levels of miR-31, miR-210, miR-21a, miR-96 
and miR-181a determined by qRT-PCR. (A) Levels of miR-31, miR-210, miR-21a, miR-96 
and miR-181a normalised to RNU6. Each symbol in the uninfected group represents miRNA 
levels in a pool of LP CD4+ T cells derived from n≥6 mice. For the Hh+ group, each symbol 
represents miRNA levels in a pool of LP CD4+ T cells derived from either one mouse or a 
pool of two mice. Clear symbols denote male samples and filled symbols denote female 
samples. Horizontal bars denote the mean. (B) Expression of miR-21a, miR-31, miR-210 and 
miR-181a relative to that of uninfected controls. Bars show means + s.e.m. of same samples 
as (A). * P<0.05 and **P<0.01 as determined by a two-tailed Mann-Whitney test. 

 

 

 

 

 

 

 

Figure 4.11: qRT-PCR validation of microRNA microarray results. CD4+ T cells were sorted from the large intestinal LP of 
uninfected and Hh+ IL-10 KO mice. Total RNA was extracted and the expression levels of miR-31, miR-210, miR-181a, miR-21a 
and miR-96 determined by qRT-PCR. (A) Levels of miR-31, miR-210, miR-181a, miR-21a and miR-96 normalised to RNU6. 
Each symbol in the uninfected group represents miRNA levels in a pool of LP CD4+ T cells derived from n≥6 mice. For the Hh+ 
group, each symbol represents represents miRNA levels in a pool of LP CD4+ T cells derived from either one mouse or a pool of 
two mice. Clear symbols denote male samples and filled symbols denote female samples. Horizontal bars denote the mean. (B) 
Expression of miR-21a, miR-31, miR-210 and miR-181a relative to that of uninfected controls. Bars show means + s.e.m. of 7 
samples in the uninfected group with each sample being derived from a pool of LP CD4+ T cells derived from n≥6 mice and 4 
samples in the Hh+ group with each sample being derived from LP CD4+ T cells from either one mouse or a pool of 2 mice. * 
p<0.05 and **p<0.01 as determined by a two tailed Mann-Whitney test. 
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MLN cells and splenocytes were pooled from two uninfected IL-10 KO mice and surface stained with 
antibodies specific for CD4 and CD62L. Naive CD4+ T cells (CD4+CD62L+) were sorted by flow 
cytometry. In each well, 2 x 105 naïve CD4+ T cells were cultured with 7.5x 105 irradiated splenocytes 
from a WT mouse and stimulated with soluble anti-CD3. Naïve CD4+ T cells being polarised to a Th1 
phenotype were treated with IL-12. Naïve CD4+ T cells being polarised to a Th17 phenotype were treated 
with a cytokine cocktail consisting of TGFβ, IL-6 and IL-23. After 48 hours, the cells were split and Th1 
cells maintained with IL-2, while Th17 cells were maintained with IL-23. Clone B2 cells (a Hh-specific 
Th1 clone) were maintained in IL-2. After five days, the Th1, Th17 and clone B2 cells were collected, 
counted and 3 x 105 cells/well stimulated with plate-bound anti-CD3. One well per condition containing 
medium only was used as a control. At 72 hrs post anti-CD3 stimulation, supernatants were isolated and 
the levels of IFN-γ and IL-17A determined by ELISA. (A) Sort strategy used for the sorting of naïve 
CD4+ T cells from the MLN and spleen of uninfected IL-10 KO mice. (B) Representative post-sort purity 
of sorted naïve CD4+ T cells. (C) Levels of IL-17A (left panel) and IFN-γ (right panel) in 72 hr 
supernatants from Clone B2 cells and in vitro-polarised Th17 and Th1 cells. Data shown are from one of 
two experiments.  

Figure 4.12 In vitro polarisation of naive CD4+ T cells. 



 121 

 

 
Figure 4.13 MiR-31, miR-210, miR-21a, miR-96 and miR-181a are expressed by both Th1 
and Th17 cells. 
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Figure 4.13: MiR-21a, miR-210, miR-96 and miR-181a are expressed in resting as well as activated CD4+ Th1 and Th17 
cells whereas miR-31 is only induced during activation of both these subsets. MLN cells and splenocytes were pooled from 
two uninfected IL-10 KO mice and surface stained with antibodies specific for CD4 and CD62L. Naive CD4+ T cells (CD4+ 
CD62L+ ) were sorted flow cytometrically and cultured with irradiated splenocytes from an uninfected WT mouse at a ratio of 1: 
3.75 i.e. 2 x 105 CD4+ T cells were cultured with 7.5x 105 irradiated splenocytes/well and treated with 1 µg/ml of anti-CD3. Naïve 
CD4+ T cells being polarised to a Th1 phenotype were treated with 10 ng/ml of IL-12. Naïve CD4+ T cells being polarised to a 
Th1 phenotype were treated with a cytokine cocktail consisting of 1 ng/ml of TGFβ, 50 ng/ml of IL-6 and 10 ng/ml of IL-23. After 
48 hours, the cells were split and Th1 cells maintained with 5 U/ml of IL-2, while  Th17 cells were maintained with 10 ng/ml of 
IL-23. Clone B2 cells (a Hh-specific Th1 clone) were maintained in 5 U/ml of IL-2. After five days, the Th1, Th17 and clone B2 
cells were collected, counted and 3 x 105 cells/well stimulated with plate-bound anti-CD3 (10 µg/ml). One well/condition 
containing medium only was used as a control. At 0, 6, 12, 24, 48 and 72 hrs post anti-CD3 stimulation, cells were collected and 
total RNA extracted. Total RNA was also extracted from an aliquot of the ex vivo sorted naïve CD4+ CD62L+ T cells used for the 
Th1/Th17 polarisation. Following reverse transcription, the levels of miR-31, miR-210, miR-181a, miR-21a and miR-96 were 
measured by qRT-PCR. Bar charts depict levels of (A) miR-31(B) miR-210 (C) miR-181a (D) miR-21a (E) miR-96 in naïve CD4+ 
T cells (grey bars with diagonal black stripes), Th17 cells (white bars with dots), Th1 cells (Black bars) and Clone B2 cells (grey 
bars). Data are pooled from two experiments. Error bars represent standard error of the mean of 2 biologocal replicates.  
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Figure 4.13. MiR-31, miR-210, miR-21a, miR-96 and miR-181a are expressed by both Th1 and 
Th17 cells. MLN cells and splenocytes were pooled from two uninfected IL-10 KO mice and surface 
stained with antibodies specific for CD4 and CD62L. Naive CD4+ T cells (CD4+CD62L+) were sorted by 
flow cytometry. and cultured with irradiated splenocytes from an uninfected WT mouse at a ratio of 1: 
3.75 i.e. 2 x 105 CD4+ T cells were cultured with 7.5x 105 irradiated splenocytes/well and stimulated with  
soluble anti-CD3. Naïve CD4+ T cells being polarised to a Th1 phenotype were treated with IL-12. Naïve 
CD4+ T cells being polarised to a Th17 phenotype were treated with a cytokine cocktail consisting of 
TGFβ, IL-6 and IL-23. After 48 hours, the cells were split and Th1 cells maintained with IL-2, while 
Th17 cells were maintained with IL-23. Clone B2 cells (a Hh-specific Th1 clone) were maintained in IL-
2. After five days, the Th1, Th17 and clone B2 cells were collected, counted and 3 x 105 cells/well 
stimulated with plate-bound anti-CD3. One well per condition containing medium only was used as a 
control. At 0, 6, 12, 24, 48 and 72 hrs post anti-CD3 stimulation, cells were collected and total RNA 
extracted. Total RNA was also extracted from an aliquot of the ex vivo sorted naïve CD4+ CD62L+ T cells 
used for the Th1/Th17 polarisation. Following reverse transcription, the levels of miR-31, miR-210, miR-
181a, miR-21a and miR-96 were measured by qRT-PCR. Bar charts depict levels of (A) miR-31 (B) 
miR-210 (C) miR-21a (D) miR-96 (E) miR-181a in naïve CD4+ T cells (grey bars with diagonal black 
stripes), Th17 cells (white bars with dots), Th1 cells (Black bars) and Clone B2 cells (grey bars). Data are 
pooled from two experiments. Error bars represent standard error of the mean of two biological replicates.  
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Figure 4.14 Regulation of T-cell activation by miR-21a, miR-31, miR-210 and miR-181a.  
The schematic depicts the possible roles of miR-21a, miR-31, miR-210 and miR-181a on 
different factors involved in T-cell activation. Targets in purple depict experimentally 
validated targets and targets in orange depict predicted targets. Targets in blue depict indirect 
downstream targets.   
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Figure 4.15 MicroRNA-mediated regulation of the expression of transcription factors 
and cytokines in different CD4+ T-cell subsets.  
The schematic depicts the potential roles of miR-21a, miR-31, miR-210, miR-96 and miR-181a on 
different factors involved in CD4+ T-cell differentiation and cytokine expression. Targets in purple depict 
experimentally validated targets and targets in orange depict predicted targets. Targets in blue depict 
indirect downstream targets. 
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CHAPTER 5. PHENOTYPIC CHARACTERIZATION 
OF LARGE INTESTINAL IL-10-PRODUCING 

CD4+ T CELLS FOLLOWING HELICOBACTER 
HEPATICUS INFECTION 

 

5.1 INTRODUCTION 
The intestinal immune system has a very challenging role, as it has to maintain tolerance 

towards commensal bacteria and food antigens, but at the same time, mount an adequate 

immune response towards pathogens (Xavier and Podolsky, 2007).  One of the key factors 

found to limit intestinal inflammation in man and mouse is the anti-inflammatory cytokine IL-

10. Mutations in the IL-10 receptor (IL10R) and defects in IL-10 expression and IL-10 

signalling pathways have been associated with human IBD (Glocker et al., 2009; Lees et al., 

2011; Shim and Seo, 2014). Mice deficient in IL-10 or the IL-10R can spontaneously develop 

colitis (Kuhn et al., 1993; Spencer et al., 1998).  

The CD4+ T cells constitute an important source of IL-10 as evidenced by the fact that 

mice with a CD4+ T-cell specific deletion of IL-10 spontaneously develop colitis (Roers et al., 

2004) and in the T-cell transfer colitis model, CD4+ T-cell derived IL-10 was sufficient to 

prevent colitis (Asseman et al., 1999). One of the major CD4+ T-cell subsets that produce IL-10 

are the Tregs, which, in addition to utilising other mechanisms, suppress effector T-cell 

responses in an IL-10 dependent manner (Asseman et al., 1999; Hara et al., 2001). In the last 

five years, different markers have been identified to distinguish different Treg subsets 

(summarized in Table 5.1). Helios and NRP1 have recently been identified as markers that are 

expressed on FoxP3+ tTregs but not FoxP3+ pTregs (Thornton et al., 2010; Weiss et al., 2012)  

(Table 5.1) and co-expression of CD49b and lymphocyte activation gene 3 (LAG-3) have been 

identified as markers of Tr1 cells (Gagliani et al., 2013) (Table 5.1).  In addition to Tr1 cells, 

LAG-3 is also expressed by other Treg and CD4+ T-cell subsets. LAG-3 is a type-1 membrane 

glycoprotein that has been shown to be required for maximal suppressive capacity of CD4+ 

CD25+ FoxP3+ Tregs (Do et al., 2015; Huang et al., 2004). In the CD4+ T-cell transfer model of 

colitis, co-transfer of CD25- LAG-3+ cells  (which were FoxP3-) along with naïve CD4+ T cells 

completely prevented colitis development (Okamura et al., 2009). 
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Table 5.1 Phenotypic markers of different Treg populations 
 

Treg Subset Markers 

FoxP3 Helios NRP1 CD49b LAG-3 

Natural/Thymic-derived Tregs 
(tTregs) 

+ + + - +/- 

 Tregs induced in the periphery 
(pTregs) 

+ - - - +/- 

Tr1 cells - - - + + 

 

The importance of IL-10 in maintaining intestinal homeostasis in the Hh colitis model 

is evidenced by the fact that IL-10-sufficient mice infected with Hh do not develop intestinal 

inflammation unless they are concomitantly treated with a blocking antibody to the IL-10R 

(anti-IL-10R) (Kullberg et al., 2006; Kullberg et al., 1998). Colitis induced in Hh+ RAG KO 

mice by the transfer of CD4+ T cells from IL-10 KO mice is prevented by co-transfer of CD4+ T 

cells from Hh+ but not uninfected WT mice, suggesting that Hh priming is necessary for the 

generation of disease-protective IL-10-producing cells (Kullberg et al., 2002). Furthermore, 

colitis induced in Hh+ IL-10/RAG double knock out mice (DKO) by transfer of CD4+ T cells 

from Hh+ IL-10 KO mice was prevented by co-transfer of CD4+ T cells from Hh+ IL-10-

sufficient mice (Kullberg et al., 2002). This protection was abrogated by anti-IL-10R mAb 

treatment showing that IL-10 derived from CD4+ T cells alone is sufficient to confer protection 

against Hh-induced colitis (in this model) (Kullberg et al., 2002). Although we know protection 

against Hh-induced colitis is dependent on IL-10, and that in the Hh+ IL-10/RAG DKO model, 

IL-10 derived from antigen-experienced CD4+ T cells alone is sufficient to confer protection, 

the phenotype of the IL-10-producing CD4+ T cells in the lamina propria (LP) during a non-

inflammatory immune response (seen in Hh+ WT mice) and an inflammatory immune response 

(seen in Hh+/anti-IL-10R-treated WT mice) has not been examined before. 

In this study we have characterized the proportions of tTregs, pTregs and Tr1 cells and 

the phenotype of IL-10-producing CD4+ T cells at the site of Hh colonization in the large 

intestine of uninfected and 2-wk Hh+ and Hh+/anti-IL-10R-treated Tiger and IL-17A-eYFP 

mice. Tiger mice are knock-in reporter mice, wherein green fluorescent protein (GFP) is 

inserted in an internal ribosomal entry site (IRES) immediately before the polyadenylation site 

for IL-10 (Kamanaka et al., 2006). Thus in the Tiger mice, GFP expression correlates with the 

production of IL-10 protein (Kamanaka et al., 2006), enabling us to study the phenotype of IL-

10-producing cells directly ex vivo without stimulating the cells.  In IL-17A-eYFP fate-reporter 

mice (generated by Hirota et al), a sequence encoding cre-recombinase is inserted into the Il17a 
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locus (called Il17acre) and crossing these Il17aCre knock-in animals with reporter mice 

expressing eYFP from the Rosa26 promoter (called Rosa26eYFP) results in the fluorescent 

protein permanently labeling Il17a+ cells and thus allows the identification of cells that have 

switched on IL-17A (Hirota et al., 2011). Using IL-17A-eYFP fate reporter mice, we and others 

have shown that Th17 cells change phenotype during inflammation to form a transient double 

positive population that secretes both IFN-γ and IL-17A and then changes phenotype to become 

a cell termed ‘ex-Th17 cell’ that stops secreting IL-17A, but continues to secrete IFN-γ (Hirota 

et al., 2011; Morrison et al., 2013). In the current study, we used IL-17A-eYFP mice to examine 

whether ex-Th17 cells produce IL-10. The IL-10-producing CD4+ T cells were characterized 

based on markers of Tregs and co-expression of inflammatory cytokines IL-17A and/or IFN-γ.  

The 2 wks pi time point was chosen because we know from previous work in the lab that 

intestinal inflammation peaks in Hh+ IL-10 KO mice at this time point (Morrison et al., 2013).  

The experiments carried out in this chapter showed that although the phenotype of the 

Tregs was not markedly different in the three experimental groups, there was a striking 

difference in the phenotype of the IL-10-producing CD4+ T cells. The major difference in the 

phenotype of the IL-10+ CD4+ T cells when compared to uninfected controls was that in the 

non-inflammatory response, there was a slight expansion in the IL-10+ IL-17A+ cells and most 

of these cells also co-expressed FoxP3 whereas in the colitic setting, almost half the IL-10+ LP 

CD4+ T cells co-expressed IL-17A and/or IFN-γ and half or slightly less than half of these cells 

also co-expressed FoxP3. Furthermore, in the colitic setting alone, a small proportion of ex-

Th17 cells produced IL-10. These results demonstrate that in the colitic setting in particular, a 

large proportion of IL-10+ LP CD4+ T cells share phenotypic characteristics of both regulatory 

and inflammatory cells. 
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5.2 RESULTS 
The aim of the experiments carried out in this chapter was to examine the phenotype of IL-10-

producing LP CD4+ T cells in uninfected, Hh+ and Hh+/anti-IL-10R-treated mice 

(by flow cytometry). The IL-10+ cells were to be phenotyped based on Treg markers such as 

FoxP3, CD49b and LAG-3 and co-expression of inflammatory cytokines IL-17A and/or IFN-γ. 

Accordingly, we used two strains of mice; Tiger mice and IL-17A-eYFP mice. Using Tiger 

mice, we planned to characterize the phenotype of IL-10-producing CD4+ T cells ex vivo based 

on GFP signal and using IL-17A-eYFP mice, we wanted to track the ex-Th17 cells and 

determine whether they produced IL-10 and/or expressed FoxP3. This necessitated being able to 

simultaneously detect FoxP3 and eYFP/GFP signal. Unfortunately we found that commonly 

used fixation and permeabilisation protocols were unsuccessful at doing so. Detailed below are 

some experiments that were carried out to optimize existing fixation and permeabilisation 

protocols and simultaneously detect eYFP/GFP and FoxP3.  

5.2.1 An optimized protocol to simultaneously detect eYFP/GFP and FoxP3 
5.2.1.1 The efficacy of different fixation and permeabilisation protocols in 

detecting Foxp3 and eYFP. 

The method we have traditionally used in our lab to detect intracellular cytokines and 

transcription factors T-bet and RORγt involves fixing cells with 2% paraformaldehyde (PFA) 

for 15 min at room temperature, followed by permeabilisation with a buffer containing 0.1% 

saponin (hereafter called 0.1% saponin) (Morrison et al., 2013). However, in preliminary 

experiments, we found that the combination of 2%PFA/0.1% saponin yielded weak FoxP3 

staining. eBioscience (eBio) has a combination of fixation/permeabilisation buffers specially 

designed to detect FoxP3 called ‘the FoxP3 staining buffer set’. Using the eBio kit involves 

fixing the cells for 1 hour with eBio fix-perm buffer (which is a mixture of fixative and 

permeabilisation buffer) followed by permeabilisation for 1 hour with eBio perm buffer. To 

compare the efficacy of these two methods (2% PFA/0.1% saponin and eBio fix-perm/eBio 

perm) at detecting eYFP and FoxP3, we isolated LP cells from 2-wk Hh+/anti-IL-10R-treated 

IL-17A-eYFP mice, and examined FoxP3 and eYFP expression in the CD4+ T cells by flow 

cytometry using the combination of either 2% PFA/0.1% saponin or eBio fix-perm/eBio perm 

buffers to fix and permeabilise the cells. The gating strategy used for the analysis is shown in 

Figure 5.1A. The results showed that using the combination of 2% PFA/0.1% saponin was 

effective at retaining eYFP expression, but yielded weak FoxP3 staining (Figure 5.1B). In 

contrast, the eBio buffers gave good FoxP3 staining, but quenched the eYFP signal (Figure 

5.1B), thus making it difficult to simultaneously detect eYFP and FoxP3 using either of these 

methods. 
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5.2.1.2 Changing the fixation and permeabilisation times when using the 
combination of 2% PFA/0.1% saponin does not improve FoxP3 staining. 

We next wanted to investigate whether altering the fixation, permeabilisation or mAb 

incubation times would improve FoxP3 staining when using 2% PFA/0/1% saponin. Thus, we 

isolated spleen cells from WT mice and examined FoxP3 expression in CD4+ cells that had 

either been fixed with 2% PFA for 15 min at room temperature or 1 hour at 4°C and then 

permeabilised with either 0.1% saponin buffer plus anti-FoxP3 mAb for 1 hour or with 0.1% 

saponin buffer alone for either 30 minutes or 1 hour followed by the addition of anti-FoxP3 for 

a further 1 or 1.5 hours. As a positive control for FoxP3 staining, we also stained an aliquot of 

cells that had been fixed and permeabilised with the eBio fix-perm/eBio perm buffers with 

FoxP3 mAb. The gating strategy used for the analysis is shown in Figure 5.2A. The results 

showed that neither the change in fixation time, permeabilisation time or a longer incubation 

with anti-FoxP3 mAb improved FoxP3 staining when using the combination of 2% PFA/0.1% 

saponin (Figure 5.2B).    

5.2.1.3 Simultaneous detection of eYFP and FoxP3 using 2% PFA and 
eBioscience permeabilisation buffer.  

Next, we sought to examine whether the loss of FoxP3 staining observed when using the 

combination of 2% PFA/0.1% saponin buffers and the loss of eYFP signal when using eBio fix-

perm/eBio perm buffers was due to the fixative used (2% PFA or eBio fix-perm) or the 

permeabilising reagent (0.1% saponin or eBio perm). To do so, we isolated lamina propria cells 

from 2-wk Hh+/anti-IL-10R-treated IL-17A-eYFP mice and examined the CD4+ T-cell 

expression of FoxP3 and eYFP using the following combination of fixation and permeablising 

reagents: 1) eBio fix-perm/eBio perm 2) 2% PFA/0.1% saponin 3) eBio fix-perm/0.1% saponin, 

and 4) 2% PFA/eBio perm. The gating strategy used for analysis is as shown in Figure 5.1A. 

The procotol used for surface and intracellular staining in all four fix/perm conditions is 

depicted in Figure 5.3A. The results showed that the use of eBio fix-perm/0.1% saponin 

retained FoxP3 staining but quenched the eYFP signal (Figure 5.3B).  In contrast, using 2% 

PFA/eBio perm both retained eYFP and yielded good FoxP3 staining (Figure 5.3B). These 

results suggest that the fixation afforded by 2% PFA allows retention of eYFP whereas the 

simultaneous fixation and permeabilisation that is employed by the eBioscience fix-perm causes 

the eYFP to leak out of the cell. These conclusions are supported by a study by Heinen et al 

who found that when using eBio fix-perm, eYFP could be detected in the supernatant that the 

cells were fixed in and not in the cells themselves (Heinen et al., 2014).  
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5.2.2 CD4+ T cell responses in the large intestine following infection with 
Helicobacter hepaticus. 

We began our experiments by examining CD4+ T cell responses in the large intestine of 

uninfected and 2-wk Hh+ and Hh+/anti-IL-10R-treated Tiger mice. We know from previous 

work in the lab, that at 2 wks pi, colitic Hh+ IL-10 KO mice show elevated LP cell numbers and 

an increase in the percentage and number of LP CD4+ T cells compared to uninfected controls 

(Morrison et al., 2013). Here, examination of LP cell numbers and the percentage and number 

of LP CD4+ T cells revealed that Hh+ Tiger mice showed similar numbers of LP cells, and 

percentage and number of LP CD4+ T cells as uninfected controls (Figure 5.4). In contrast, 

Hh+/anti-IL-10R-treated Tiger mice had a significantly higher number of LP cells, and 

percentage and number of CD4+ T cells compared to uninfected and Hh+ mice (Figure 5.4).   

We next examined the inflammatory and regulatory CD4+ T-cell responses in the large 

intestine. Accordingly, we isolated LP cells from the large intestine of uninfected and 2-wk Hh+ 

and Hh+/anti-IL-10R-treated Tiger mice and stimulated half of them with PMA and ionomycin 

in the presence of Brefeldin A for the detection of IL-10-GFP and IL-17A, IFN-γ and IL-10 by 

ICS. The other half were left unstimulated for the ex vivo analysis of IL-10-GFP and FoxP3 

expression. Both groups of cells (stimulated and unstimulated) were surface and intracellularly 

stained and the cells analysed by flow cytometry. The gating strategy used to examine the 

expression of IL-10-GFP and FoxP3, IL-17A, IFN-γ and IL-10 by ICS is shown in Figure 5.5A. 

From representative stainings of IL-10 GFP and IL-10 detected by ICS in the three experimental 

groups, it was evident that all of the IL-10 protein detected by ICS correlated with GFP 

expression (Figure 5.5B). The presence of GFP+ cells that were not positive for IL-10 protein is 

most likely because GFP has a longer half-life than IL-10 (Kamanaka et al., 2006).  

As a measure of the inflammatory response, the LP CD4+ T-cell expression of 

inflammatory cytokines IL-17A and IFN-γ were examined in uninfected, Hh+ and Hh+/anti-IL-

10R-treated Tiger mice. The results demonstrated that the Hh+ mice showed a slightly elevated, 

but not significant increase in the percentage and number of LP CD4+ T cells expressing IL-17A 

and/or IFN-γ compared to uninfected mice (Figure 5.5C). In contrast and similar to previous 

work in the lab (Morrison et al., 2013), the colitic mice showed a significant increase in the 

percentage and number of IL-17A+, IL-17A+ IFN-γ+ and IFN-γ+ LP CD4+ T cells compared to 

uninfected and Hh+ mice (Figure 5.5C). 

As a measure of the regulatory response, the expression of the Treg transcription factor 

FoxP3 and anti-inflammatory cytokine IL-10 (detected by both GFP signal and by ICS) were 

examined in uninfected, Hh+ and Hh+/anti-IL-10R-treated Tiger mice. The results showed that 

the Hh+ mice showed similar frequencies and slightly elevated numbers of FoxP3, IL-10-GFP 

and IL-10-producing CD4+ T cells compared to uninfected controls (Figure 5.5D). The 
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Hh+/anti-IL-10R-treated Tiger mice showed decreased frequencies of FoxP3+ cells and similar 

frequencies of IL-10-GFP and IL-10 protein to uninfected controls (Figure 5.5D, left panel). In 

terms of total numbers however, owing to the greater number of LP CD4+ T cells in colitic mice, 

the number of FoxP3+ cells, IL-10 GFP+ cells and IL-10+ cells by ICS were significantly higher 

compared to the uninfected and Hh+ mice (Figure 5.5D, right panel).  

Taken together, the results in Figures 5.5C-D demonstrated that in Hh+ mice, the 

primary CD4+ T cell response was a regulatory response, with both the percentage and number 

of IL-10+ and FoxP3+ cells being far greater than that of CD4+ T cells expressing inflammatory 

cytokines IL-17A and/or IFN-γ. Conversely, in Hh+/anti-IL-10R-treated mice, the primary CD4+ 

T cell response was an inflammatory response, with a greater percentage and number of cells 

expressing inflammatory cytokines IL-17A and/or IFN-γ, compared to those expressing FoxP3 

or IL-10 (Figures 5.5C-D).  

5.2.3 In the colitic setting, a significant proportion of IFN-γ-producing CD4+ T 
cells are derived from ex-Th17 cells 

Part of the experimental aims for this chapter was to determine whether ex-Th17 cells produce 

IL-10. This necessitated using IL-17A-eYFP mice to track the ex-Th17 population. We began 

by examining the CD4+ T-cell responses in the large intestine of uninfected and 2-wk Hh+ and 

Hh+/anti-IL-10R-treated IL-17A-eYFP mice to ensure that they were comparable to those 

observed in the Tiger mice, and to responses we have previously observed in IL-17A-eYFP 

mice (Morrison et al., 2013). Examination of the LP cell numbers and percentage and number of 

LP CD4+ T cells revealed that similar to the Tiger mice, the Hh+ IL-17A-eYFP mice showed 

similar numbers of LP cells, whereas the Hh+/anti-IL-10R-treated IL-17A-eYFP mice showed 

significantly higher numbers of LP cells compared to uninfected controls (Figures 5.6, left 

panel). The Hh+ mice also showed similar percentage and number of LP CD4+ T cells, whereas 

the Hh+/anti-IL-10R-treated IL-17A-eYFP mice showed significantly higher percentage and 

number of LP CD4+ T cells compared to uninfected controls (Figures 5.6, middle and right 

panel).  

We next wanted to examine the inflammatory and regulatory CD4+ T-cell responses in 

the large intestine LP of uninfected and 2-wk Hh+ and Hh+/anti-IL-10R-infected IL-17A-eYFP 

mice. To do so, we isolated LP cells from the large intestine and stimulated them with PMA and 

ionomycin in the presence of Brefeldin A. The stimulated cells were then surface and 

intracellularly stained with mAbs specific for surface markers, cytokines and FoxP3 and 

analysed by flow cytometry. To examine the expression of eYFP and inflammatory cytokines 

IFN-γ and IL-17A, we used the gating strategy shown in Figure 5.7A. The results revealed that 

Hh+ IL-17A-eYFP mice showed a significant increase in the frequency and a slight increase in 

the numbers of IL-17A+ cells (Figure 5.7B, upper panel) and similar frequencies and numbers 

of IL-17A+IFN-γ+ and IFN-γ+ cells compared to uninfected mice (Figure 5.7B, middle and 



 132 

lower panel respectively).  In contrast, Hh+/anti-IL-10R-treated mice showed a significant 

increase in the frequency of cells expressing IL-17A+, IL-17A+IFN-γ+and IFN-γ+ cells compared 

to uninfected and Hh+ mice (Figure 5.7B). To examine the proportion of ex-Th17 cells present, 

we examined eYFP expression in the IFN-γ-single positive cells and found that in uninfected 

and Hh+ mice, the ex-Th17 cells (eYFP+IFN-γ+IL-17A-) were virtually absent (Figure 5.7C, 

upper panel) and all the IFN-γ+ cells were Th1 cells (eYFP-IFN-γ+IL-17A-) (Figure 5.7C 

lower panel). In the Hh+/anti-IL-10R-treated mice, the ex-Th17 cells constituted approximately 

10% of the LP CD4+ T cells while the Th1 cells constituted approximately 15% of the LP CD4+ 

T cells, (Figure 5.7C, upper and lower panels, respectively). In terms of numbers, both the 

Th1 and ex-Th17 cells were significantly increased in the colitic setting compared to uninfected 

controls and Hh+ IL-17A-eYFP mice (Figure 5.7C, upper and lower panels, respectively).  

Following infection with Hh, there was also an increase in the frequency and number of a 

population of cells that were eYFP+ but negative for IL-17A and IFN-γ (termed eYFP+IL-17A-

IFN-γ-) compared to uninfected controls although this increase was only significant in the colitic 

setting (Figure 5.7D).  

As a measure of the regulatory response, we next examined the expression of anti-

inflammatory cytokine IL-10, Treg transcription factor FoxP3 and CD25 by the LP CD4+ T 

cells in the three experimental groups. The results showed that Hh+ IL-17A-eYFP mice showed 

a significant increase in the frequency of IL-10+ cells, but did not show any significant change in 

the frequency of FoxP3 or CD25 expression compared to uninfected mice (Figure 5.7E, left 

panel). In terms of total numbers, the Hh+ IL-17A-eYFP mice showed a slight but not 

significant increase in the number of IL-10+, FoxP3+ and CD25+ cells compared to uninfected 

controls (Figure 5.7E, right panel).  The Hh+/anti-IL-10R-treated IL-17A-eYFP mice showed 

similar frequencies of IL-10+ cells, a significant decrease in FoxP3+ cells and a significant 

increase in CD25+ cells compared to uninfected mice (Figure 5.7E, right panel). In terms of 

total numbers however, the Hh+/anti-IL-10R-treated IL-17A-eYFP mice showed a significant 

increase in the numbers of IL-10+, FoxP3+ and CD25+ cells compared to uninfected controls 

(Figure 5.7E, right panel) 

Taken together, these results showed that the CD4+ T-cell responses in IL-17A-eYFP 

mice were comparable to the Tiger in that in Hh+ IL-17A-eYFP mice, the main response was a 

regulatory response whereas in the Hh+/anti-IL-10R-treated IL-17A-eYFP mice, the main 

response was an inflammatory response. Secondly, these results also demonstrated that in both 

Hh+ and Hh+/anti-IL-10R-infected IL-17A-eYFP mice, there was an increase in the frequency 

of eYFP+IL-17A-IFN-γ- cells whereas in the colitic setting alone, there was an expansion of ex-

Th17 cells that constitute a significant source of IFN-γ in the large intestine LP.  
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5.2.4 In both Hh+ and Hh+/anti-IL-10R-treated mice, there is an expansion of 
both tTregs and pTregs in the large intestine LP. 

Although functional regulatory CD4+ T cell responses in the large intestine following Hh 

infection have been characterised before (Kullberg et al., 2002), the proportions of different 

Tregs i.e. tTreg, pTreg and Tr1 cells have not been examined. Therefore, we next wanted to 

examine proportions of different Treg subsets ex vivo in the three experimental groups. To do 

so, we isolated LP cells from the large intestine of uninfected and 2-wk Hh+ and Hh+/anti-IL-

10R-treated Tiger mice. The cells were then surface and intracellularly stained directly ex vivo 

with mAbs specific for surface markers and transcription factors and analysed by flow 

cytometry.   

We began by examining the proportions of the FoxP3-expressing Tregs i.e. the tTregs 

and pTregs. Recently, the cell surface receptor Neuropilin-1 (NRP1) and transcription factor 

Helios were identified as markers that are expressed on tTregs but not pTregs (Thornton et al., 

2010; Weiss et al., 2012). Initially, we planned to examine the proportions of tTregs based on 

expression of both NRP1 and Helios. However, our trial stainings for NRP1 using LP cells from 

an uninfected WT mouse showed very few NRP1+ LP CD4+ T cells (Figure 5.8A, upper 

panel) which was in stark contrast to the findings of Weiss et al., 2012, who showed high NRP1 

expression in LP CD4+ T cells from the colon of an uninfected WT mouse. Examination of 

NRP1 in CD4+ T cells from the spleen and MLN of the uninfected WT mouse revealed that 

NRP1 was detectable in these cells (Figure 5.8A, middle and lower panel).  The major 

difference in the protocols we used to obtain single cell suspensions from the spleen, MLN and 

large intestine was that the spleen and MLN cells were mashed up to directly obtain a single cell 

suspension whereas the large intestine was digested with liberase. Weiss et al used collagenase 

instead of liberase treatment to obtain their LP cells and were able to detect NRP1 (Weiss et al., 

2012). Given that in our spleen and MLN prep, we did not use liberase, and that Weiss et al 

used collagenase and not liberase to digest their LP cells and were able to detect NRP1, we 

hypothesised that perhaps liberase treatment was resulting in loss of NRP1 expression. To 

examine whether this was the case, we isolated spleens from uninfected WT mice and treated 

them with liberase for either 30 minutes or 1 hour before isolating the splenocytes. As a control, 

one spleen was left untreated. The results indicated that compared to the untreated spleen, the 30 

minutes liberase-treated spleen showed similar NRP1 expression however, the 1 hour liberase-

treated spleen only expressed half as much NRP1 (Figure 5.8B) showing that NRP1 expression 

is lost following liberase treatment.  

Therefore, using Helios alone as the distinguishing marker, we further characterised the 

FoxP3+ LP CD4+ T cells in uninfected and 2-wk Hh+ and Hh+/anti-IL-10R-infected Tiger mice 

into tTregs and pTregs ex vivo.  The gating strategy used is depicted in Figure 5.9A. The Hh+ 

mice showed a similar frequency of both Helios-positive and Helios-negative FoxP3+ cells 

compared to uninfected controls (Figure 5.9B, upper panels). However, in the colitic group 
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there was a significant decrease in the frequencies of both Helios-positive and Helios-negative 

FoxP3+ cells compared to uninfected controls (Figure 5.9B, upper panels). When examining 

the number of Helios-positive and Helios-negative FoxP3+ cells, we found that following 

infection with Hh, there was an increase in the numbers of both Helios-positive and Helios-

negative FoxP3+ cells, although this increase was only significant in the colitic group (Figure 

5.9B, lower panels). These results demonstrated that both the tTregs and pTregs expand 

following infection with Hh. Furthermore, in both the uninfected and Hh+ group, the tTregs and 

pTregs made up approximately 50% each of the total FoxP3+ Treg population in these mice 

however in Hh+/anti-IL-10R-treated mice, there were slightly more pTregs than tTregs in the 

large intestine. 

5.2.5 There is an expansion of LAG-3+ FoxP3+ cells following infection with Hh  
We next wanted to examine LAG-3 expression in different CD4+ T cell subsets following 

infection with Hh. We began by examining the ex vivo expression of LAG-3 in CD4+ T cells 

from the large intestine of uninfected and 2-wk Hh+ and Hh+/anti-IL-10R-treated Tiger mice. 

The gating strategy used is shown in Figure 5.10A. The results showed that compared to 

uninfected mice, there was a significant increase in the frequency of LAG-3-expressing cells in 

Hh+ and Hh+/anti-IL-10R-treated mice (Figure 5.10B, left panel). In terms of total numbers 

however, although there was an increase in LAG-3-expressing cells in both Hh+ and Hh+/anti-

IL-10R-treated mice, this increase was only significant in the colitic setting (Figure 5.10B, 

right panel).  

LAG-3 has been shown to be required for maximal suppressive capacity of CD4+ 

CD25+ FoxP3+ Tregs (Do et al., 2015; Huang et al., 2004). Thus we next examined LAG-3 

expression in FoxP3+ Tregs in the three experimental groups. The results showed that a 

significant increase in the frequency but not in the numbers of LAG-3+ FoxP3+ cells in Hh+ 

mice compared to uninfected mice (Figure 5.10C). In Hh+/anti-IL-10R-treated mice however, 

there was a significant increase in both the frequency and number of LAG-3+ FoxP3+ cells 

compared to uninfected mice (Figure 5.10C). These results demonstrated that while the LAG-

3+FoxP3+ cells expand slightly in Hh+ mice, they showed a significant expansion in the colitic 

setting.  

The results in Figure 5.10 showed that in Hh+ mice, of the 25,000 LAG-3+ LP CD4+ T 

cells (Figure 5.10B, right panel), 13,000 co-expressed FoxP3 demonstrating that about half of 

LAG-3+ cells were FoxP3+ Tregs. In contrast, in the Hh+/anti-IL-10R-treated mice, of the 

280,000 LAG-3+ LP CD4+ T cells (Figure 5.10B, right panel) only 28,000 co-expressed FoxP3 

demonstrating that the LAG-3+ FoxP3+ Tregs constituted a very small proportion of the LAG-3+ 

LP CD4+ T cells in the colitic setting.  

To determine whether LAG-3 expression was preferentially expressed in FoxP3+ tTregs 

compared to pTregs or vice versa, we examined LAG-3 expression in FoxP3+ Helios+ (tTregs) 
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and FoxP3+ Helios- (pTregs) LP CD4+ T cells in the three experimental groups. The gating 

strategy is shown in Figure 5.11A. Our results showed that in the uninfected mice (where 

pTregs and tTregs were present in equal numbers as shown in Figure 5.9B), only 4% of tTregs 

expressed LAG-3 compared to 10% of pTregs suggesting that a greater proportion of pTregs 

express LAG-3 compared to tTregs at steady state (Figure 5.11B, upper panels). In the Hh+ 

and Hh+/anti-IL-10R-treated mice, there was a significant increase in the frequency of tTregs 

and pTregs expressing LAG-3, compared to uninfected controls, although in both groups, the 

proportion of pTregs expressing LAG-3 was greater than the tTregs expressing LAG-3 (Figure 

5.11B, upper panels). In terms of numbers, both the Hh+ and Hh+/anti-IL-10R-treated mice 

showed an increase in tTregs and pTregs expressing LAG-3 compared to uninfected controls, 

however the increase was only significant in the colitic group (Figure 5.11B, lower panels). 

Given that LAG-3 has been shown to potentiate the suppressive capacity of FoxP3+ Tregs (Do et 

al., 2015; Huang et al., 2004), it is tempting to speculate that the LAG3+ FoxP3+ Tregs may be 

more suppressive than the LAG3+ FoxP3- Tregs in Hh-induced colitis. 

5.2.6 In the colitic setting, there is an expansion of LAG-3+ FoxP3-negative cells  
Given that in the colitic setting, only a small number of LAG-3+ LP CD4+ T cells co-expressed 

FoxP3 (Figure 5.10), we next examined LAG-3 expression ex vivo in the FoxP3-negative LP 

CD4+ T cells in uninfected, Hh+ and Hh+/anti-IL-10R-treated Tiger mice. The gating strategy is 

shown in Figure 5.12A. Our results showed that although there was an increase in the 

frequency of LAG-3+ FoxP3- LP CD4+ T cells in both Hh+ and Hh+/anti-IL-10R-treated mice 

compared to uninfected mice, this increase was only significant in the colitic setting (Figure 

5.12B).  Of the FoxP3-negative populations, LAG-3 is expressed by Tr1 cells (Gagliani et al., 

2013), exhausted CD4+ T cells (Freeman and Sharpe, 2012) and effector CD4+ T cells 

(Workman et al., 2002). LAG-3 is up-regulated in effector CD4+ T cells following antigen 

activation, and binds to MHC II to send inhibitory signals, preventing T cell proliferation and 

cytokine secretion (Workman et al., 2002). Therefore, to determine the proportions of Tr1 cells 

and LAG-3+ effector T cells in uninfected, Hh+ and Hh+/anti-IL-10R-treated mice, we examined 

the expression of CD49b and LAG-3 on FoxP3-negative LP CD4+ T cells. The gating strategy 

used for the analysis is shown in Figure 5.12C. Our results showed that although there was an 

increase in the frequency of both Tr1 cells (FoxP3-LAG-3+CD49b+) and effector LAG-3+ CD4+ 

T cells (FoxP3-LAG-3+CD49b-) in both Hh+ and Hh+/anti-IL-10R-treated mice, compared to 

uninfected controls, it was only significant in the colitic group (Figure 5.12D, upper panel). 

Furthermore, examination of numbers revealed that both the CD49b- LAG-3+ FoxP3- cells and 

the CD49b+ LAG-3+ FoxP3- cells expanded in both Hh+ and Hh+/anti-IL-10R-treated mice 

compare to uninfected controls (Figure 5.12D, lower panel). Together, the results in Figure 

5.12 demonstrated that the expansion in LAG-3+ FoxP3-negative cells in Hh+ and Hh+/anti-IL-

10R-treated mice was partly due to an expansion in Tr1 cells but primarily due to an increase in 

either exhausted CD4+ T cells or LAG-3+ effector CD4+ T cells or a combination of the two. 
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5.2.7 Simultaneous detection of Helios and GFP is impossible with current 
fixation and permeabilisation protocols 

We next wanted to examine the phenotype of IL-10-producing CD4+ T cells in the Tiger mice 

ex vivo based on GFP signal. One of the markers we wanted to use to phenotype IL-10-

producing CD4+ T cells was Helios. Unfortunately we were unable to optimize a fixation and 

permeabilisation protocol that would enable us to simultaneously detect IL-10 by GFP signal 

and Helios. As a result, we were unable to examine the extent to which pTregs/tTregs constitute 

the IL-10+ FoxP3+ pool in the three experimental groups. It is unclear why 2% PFA/eBio perm 

worked for FoxP3 but not for Helios. We tried two alternative protocols to try and improve 

Helios staining. Data from the literature suggests that pre-fixing the cells with 2% PFA for 30 

minutes, followed by a 30 minute fixation with the eBio fix-perm and subsequent 

permeabilisation with eBio perm buffer allows simultaneous detection of YFP signal and FoxP3 

and Helios (Grupillo et al., 2011). To examine whether this method worked in our hands, we 

isolated LP cells from 2-wk Hh+/anti-IL-10R-treated IL-17A-eYFP mice and stained them for 

surface markers followed by fixation, permeabilisation and intracellular staining using the 

following combinations using the following combinations of fixation and permeabilising 

reagents: i) eBio fix-perm/eBio perm, ii) 2% PFA/eBio perm, and iii) 2% PFA followed by eBio 

fix-perm/eBio perm. The results showed that while eBio fix-perm/eBio perm was effective at 

detecting FoxP3 and Helios, it quenched the eYFP signal (Figure 5.13A, left panel). 2% 

PFA/eBio perm retained eYFP, showed similar frequencies of FoxP3+ cells but yielded poor 

Helios staining compared to Ebio fix-perm/eBio perm (Figure 5.13A, middle panel). Using 2% 

PFA followed by eBio fix-perm/eBio perm retained eYFP, but resulted in poor FoxP3 and 

Helios staining compared to Ebio fix-perm/eBio perm (Figure 5.13A, right panel). 

Another study found that the use of 2% formaldehyde (FA), containing less than 3% 

methanol as a fixative was sufficient to detect eYFP and FoxP3 (Heinen et al., 2014), however 

Helios expression was not examined by this protocol. To examine whether this protocol would 

work for detection of Helios, we isolated LP cells from 2-wk Hh+/anti-IL-10R-treated IL-17A-

eYFP mice and stained them for surface markers followed by fixation, permeabilisation and 

intracellular staining using the following combinations of fixatives and permeabilising reagents: 

i) eBio fix-perm/eBio perm, ii) 2% PFA/eBio perm and iii) 2% FA/eBio perm. The results 

showed that although fixing cells with 2% FA retained eYFP, both FoxP3 and Helios staining 

were poor compared to the staining obtained with eBio fix-perm/eBio perm buffers (Figure 

5.13B). These results demonstrated that the only protocol that worked to detect Helios was ebio 

fix-perm/eBio perm, and because this protocol was inefficient at retaining YFP signal, it made it 

difficult to simultaneously detect both Helios and YFP. Thus, it was impossible to differentiate 

FoxP3+ IL-10-GFP+ cells into tTregs and pTregs. 
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5.2.8 In both Hh+ and Hh+/anti-IL-10R-treated mice, the majority of IL-10-
producing CD4+ T cells are of a regulatory phenotype  

We next examined the phenotype of IL-10-producing CD4+ T cells in a non-inflammatory 

immune response to Hh (Hh+ Tiger mice) and compared it to the phenotype observed in an 

inflammatory immune response to Hh (Hh+/anti-IL-10R-treated Tiger mice). To do so, we 

isolated LP cells from the large intestine of uninfected and 2-wk Hh+ and Hh+/anti-IL-10R-

infected Tiger mice, and then characterised the phenotype of IL-10+ CD4+ T cells by flow 

cytometry. The gating strategy used for the analysis is depicted in Figure 5.14A. From the 

results, both Hh+ and Hh+/anti-IL-10R-infected mice showed a decrease in the frequency of IL-

10+ FoxP3+ cells compared to uninfected mice, however this decrease was only significant in 

the colitic setting (Figure 5.14B) suggesting that in the colitic setting in particular, there is an 

expansion in the proportion of IL-10+ CD4+ T cells that are FoxP3-negative. 

To examine whether the expansion in the proportion of FoxP3-negative IL-10-

producing CD4+ T cells in the colitic setting was due to an expansion in Tr1 cells, we next 

examined the phenotype of IL-10-producing CD4+ T cells based on co-expression of CD49b 

and LAG-3. The gating strategy used is depicted in Figure 5.15A. Examination of LAG-3 

expression alone by IL-10-GFP+ cells revealed that the frequency of LAG-3-expressing IL-10-

GFP+ cells increased significantly in both Hh+ and Hh+/anti-IL-10R-infected mice compared to 

uninfected controls (Figure 5.15B, left panel). In terms of numbers, there was an increase in 

LAG-3+ IL-10-GFP+ cells in both Hh+ and Hh+/anti-IL-10R-infected mice compared to 

uninfected controls, however, this increase was only significant in the colitic setting (Figure 

5.15B, right panel). A representative staining of CD49b and LAG-3 from the Hh+ group of 

each experiment, when gated on IL-10-GFP+ CD4+ T cells is shown in Figure 5.15C. Although 

the CD49b/LAG-3 staining looked different in the three experiments, we set the gates based on 

the staining obtained with either the isotype controls or (Fluorescence-1) controls in case of 

experiment three, and thus considered the staining of CD49b/LAG-3 we observed to be true 

(Figure 5.15C). The results showed that in both Hh+ and Hh+/anti-IL-10R-infected mice, there 

was no significant difference in the frequency of Tr1 cells (IL-10+ CD49b+ LAG-3+) compared 

to uninfected mice (Figure 5.15D, left panel). When examining the total numbers of Tr1 cells 

(IL-10+ CD49b+ LAG-3+) we found that there was a slight increase in the Hh+ mice, but a 

significant increase in the colitic group (Figure 5.15D, right panel). Examination of the fold 

change in the numbers of IL-10+ Tr1 cells and IL-10+ FoxP3+ cells compared to those in 

uninfected controls revealed that in Hh+ mice, there was a slight but not significant expansion of 

IL-10+ Tr1 cells, whereas in the colitic setting both the IL-10+ Tr1 cells and IL-10+FoxP3+ 

expanded, with the IL-10+ Tr1 cells showing the greatest expansion (Figure 5.15E).  

Together, the results in Figures 5.14-5.15 showed that together, the IL-10+ Tr1 cells and 

IL-10+ FoxP3+ cells account for approximately 98% of IL-10-producing CD4+ T cells in 
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uninfected mice, 76% in Hh+ mice and 68% in colitic mice suggesting that following infection 

with Hh, there is an expansion of IL-10-producing CD4+ T cells from effector T cells.  

5.2.9 In both Hh+ and Hh+/anti-IL-10R-treated mice, the majority of IL-10-
producing CD4+ T cells express CD25 

We have previously shown using the Hh CD4+ T-cell transfer model of colitis that the 

CD45RBlow CD25- population is more protective than the CD45RBlow CD25+ cells (Kullberg et 

al., 2002). As protection in the Hh CD4+ T cell transfer model of colitis is dependent on IL-10 

(Kullberg et al., 2002), this suggested that the CD45RBlow CD25- population either produces 

greater amounts of IL-10 on a per cell basis or contains greater numbers of IL-10-producing 

CD4+ T cells compared to the CD45RBlow CD25+ cells. Here, to examine whether the numbers 

of IL-10+ CD25- cells were greater than IL-10+ CD25+ cells following infection with Hh, we 

isolated LP cells from the large intestine of uninfected and 2-wk Hh+ and Hh+/anti-IL-10R-

treated IL-17A-eYFP mice, stimulated the cells with PMA and ionomycin in the presence of 

Brefeldin A. Following surface and intracellular staining, we examined the expression of CD25 

in IL-10 producing CD4+ T cells. The gating strategy used to analyse the results is shown in 

Figure 5.16A. The results showed that compared to uninfected controls, there was an expansion 

in both IL-10+ CD25- cells and IL-10+ CD25+ cells in Hh+ and Hh+/anti-IL-10R-treated mice, 

however, in both these groups, the number of IL-10+ CD25+ cells was far greater than the IL-10+ 

CD25- cells (Figure 5.16B).  

The CD45RBlow CD25+/- cells used in our previous studies were done using cells sorted 

from MLNs of Hh+ WT mice and transferred into Hh+ RAG KO mice (Kullberg et al., 2002). 

The CD4+ CD45RBlow cells contain Treg populations and antigen-experienced cells (Toms and 

Powrie, 2001). In the large intestine, most cells are antigen-experienced and therefore express 

CD45RBlow (Asigbetse et al., 2010). Furthermore, although CD25 is constitutionally expressed 

by Tregs, it is up-regulated on effector CD4+ T cells upon activation (McNeill et al., 2007; 

Sakaguchi et al., 1995). Thus using CD45RBlow and CD25 to distinguish Treg populations was 

not feasible in the LP. Therefore, to determine whether the increase in IL-10+ CD25+ cells we 

saw was comprised of effector T cells expressing CD25, or Tregs expressing CD25, we 

examined the phenotype of IL-10-producing CD4+ T cells based on co-expression of FoxP3 and 

CD25. Although CD25 is constitutionally expressed by tTregs (McNeill et al., 2007; Sakaguchi 

et al., 1995), it may or may not be expressed on pTregs and Tr1 cells and is up-regulated on 

effector CD4+ T cells upon activation. The results showed that in all three experimental groups, 

the majority of the IL-10+ cells co-expressed FoxP3 and CD25, although the frequency of these 

cells dropped from 65% in the uninfected and Hh+ mice to 56% in the colitic group (Figure 

5.16C). Furthermore, the CD25- cells constituted between 28-31% of the IL-10-producing CD4+ 

T cells in the three experimental groups (Figure 5.16C). The results in Figure 5.16C showed 

that the proportion of IL-10+ FoxP3+ CD25+ Tregs were more than the IL-10+ CD25- cells, 

suggesting that if indeed the CD25- cells are more protective, it is most likely because of a 
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greater amount of IL-10 secreted on a per cell basis rather than an increased frequency of these 

cells. 

The majority of all the IL-10-producing CD4+ T cells in the three experimental groups 

were FoxP3+, with the frequency of IL-10+ FoxP3+ cells dropping from about 80% in uninfected 

and Hh+ mice to about 61% in the colitic group (Figure 5.16C). The IL-10+ CD25-single 

positive cells constituted the smallest proportion of IL-10+ CD4+ T cells in uninfected and Hh+ 

mice, however the frequency of these cells increased significantly in the colitic setting (Figure 

5.16C), suggesting an expansion of IL-10–producing CD4+ T cells that may be from effector T 

cells. 

5.2.10 In both Hh+ and Hh+/anti-IL-10R-treated mice, there is an expansion in IL-
10-producing CD4+ T cells that co-express inflammatory cytokines IL-17A 
and IFN-γ . 

Data published in the literature show that effector Th1 and Th17 cells can also produce IL-10 

(Esplugues et al., 2011; Saraiva et al., 2009). Because inflammation in the Hh colitis model is 

characterised by an increase in cells expressing inflammatory cytokines IL-17A and/or IFN-γ,  

we decided to examine whether IL-10-producing CD4+ T cells would co-express these 

cytokines. To do so, we isolated LP cells from the large intestine of uninfected and 2-wk Hh+ 

and Hh+/anti-IL-10R-treated Tiger mice and stimulated the cells with PMA and ionomycin in 

the presence of Brefeldin A. Following surface and intracellular staining, we examined the 

phenotype of cells producing IL-10 by flow cytometry. We began by comparing the phenotype 

of IL-10-producing CD4+ T cells detected by GFP signal with that of IL-10 protein detected by 

ICS. Representative staining of IL-10-GFP and co-expression of IL-10-GFP and IL-17A and/or 

IFN-γ in the three experimental groups is depicted in Figure 5.17A. When gating on IL-10-

GFP+ cells, the results showed that in uninfected mice most of the IL-10 producing CD4+ T 

cells were from cells that do not co-express IL-17A and/or IFN-γ ( (Figure 5.17B). In the Hh+ 

Tiger mice, there was a slight expansion in the IL-10-GFP+ cells that co-expressed IL-17A 

and/or IFN-γ (Figure 5.17B), however in the Hh+/anti-IL-10R-treated Tiger mice, the IL-10-

GFP+ cells that co-expressed IL-17A and/or IFN-γ constituted approximately 40% of the IL-10-

producing CD4+ T cells (Figure 5.17B). Representative staining of IL-10 detected by ICS and 

co-expression of IL-10 and IL-17A and/or IFN-γ in the three experimental groups is depicted in 

Figure 5.17C. Similar to the results obtained when gating on IL-10-GFP+ cells, when gating on 

IL-10+ cells detected by ICS, there was an expansion in IL-10+ CD4+ T cells that co-expressed 

IL-17A and or IFN-γ in the Hh+ and Hh+/anti-IL-10R-treated Tiger mice compared to 

uninfected controls, particularly in the colitic setting where these cells constituted slightly more 

than half of the IL-10+ LP CD4+ T cells (Figure 5.17D). Together, these results (Figure 5.17) 

showed that following infection with Hh, there was an expansion in IL-10-producing CD4+ T 

cells that co-express IL-17A and/or IFN-γ  both by ICS and GFP signal, particularly so in colitic 
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mice where these cells constitute approximately 40% of the IL-10-GFP+ LP CD4+ T cells or 

slightly more than half of the IL-10+ LP CD4+ T cells detected by ICS. 

5.2.11 Ex-Th17 cells contribute to a small proportion of the IL-10+ IFN-γ+ cells in 
the colitic setting. 

Given that between 13% of the IL-10-producing CD4+ T cells in the colitis Tiger mice co-

expressed IFN-γ (Figure 5 .17 Β  and D), we next examined the extent to which the ex-Th17 

cells contributed to this population. To do so, we used the IL-17A-eYFP mice, so that we could 

track the ex-Th17 cells. Thus we isolated LP cells from the large intestine of uninfected and 2-

wk Hh+ and Hh+/anti-IL-10R-treated IL-17A-eYFP mice and stimulated the cells with PMA and 

ionomycin in the presence of Brefeldin A. Following surface and intracellular staining, we 

examined the phenotype of cells producing IL-10 by flow cytometry. 

The gating strategy used is shown in Figure 5.18A. The results showed that compared to 

uninfected controls, the Hh+ mice showed a slight expansion in the IL-10+ IL-17A+ cells 

whereas in the colitic setting, approximately 40% of the IL-10-producing CD4+ T cells co-

expressed IL-17A and/or IFN-γ (Figure 5.18B). In addition these results demonstrated that in 

the colitic setting alone, the ex-Th17 cells constituted 4% of the IL-10-producing CD4+ T cells 

(Figure 5.18B). Interestingly, in both Hh+ and Hh+/anti-IL-10R-treated mice, there was an 

expansion in IL-10+ eYFP+ IL-17A-IFN-γ- cells (Figure 5.18B) demonstrating that at some 

point, these IL-10+ cells produced IL-17A, but have since switched off IL-17A production. Fold 

change comparison of the numbers of IL-10-producing CD4+ T cells that co-expressed eYFP, 

IL-17A and/or IFN-γ in Hh+ IL-17A-eYFP mice compared to uninfected controls revealed that 

the highest fold increase was observed in the IL-10+ IL-17A+ and IL-10+ eYFP+ IL-17A-IFN-γ- 

cells (Figure 5.18C, left panel). In the Hh+/anti-IL-10R-treated mice, all the IL-10-producing 

CD4+ T cells that co-expressed eYFP, IL-17A and/or IFN-γ showed a similar high fold 

increases mice compared to uninfected controls (Figure 5.18C). 

5.2.12 At least half the IL-10-producing CD4+ T cells that co-express IL-17A 
and/or IFN-γ  also express Foxp3. 

In the current study we found that in the colitic setting, approximately 40-50% of the IL-10-

producing CD4+ T cells also co-expressed inflammatory cytokines IL-17A and/or IFN-γ 

(Figure 5.17C-D and Figure 5.18B). At the same time, we also found that approximately 60-

75% of the IL-10-producing CD4+ T cells were of a regulatory phenotype i.e. 50-60% were 

FoxP3+ (Figure 5.14B and Figure 5.16C) and 16% were Tr1 cells (Figure 5.15D). These 

results suggested the possibility that there might be an overlap between these two subsets. As 

FoxP3+ cells that co-express IL-17A or IFN-γ have been described in the literature (Bhaskaran 

et al., 2015; Koch et al., 2009), we next examined whether the IL-10-producing CD4+ T cells 

that co-express either eYFP, IL-17A and/or IFN-γ also express FoxP3. The gating strategy used 

is shown in Figure 5.19A. The results showed that in the uninfected mice, most of IL-10+ cells 
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were from cells that were eYFP-IL-17A-IFN-γ- and most of these cells expressed FoxP3 (Figure 

5.19B, left panel). In Hh+ mice, there was a slight expansion in the IL-10+ IL-17A+ cells and IL-

10+eYFP+IL-17A-IFN-γ- cells and most of these cells also expressed FoxP3 (Figure 5.19B, 

middle panel). In the colitic setting, approximately half the cells in all the IL-10+ subsets that 

co-expressed IL-17A and/or IFN-γ  also expressed FoxP3 (Figure 5.19B, right panel). 

Additionally, most of the IL-10+eYFP+IL-17A-IFN-γ- cells in the colitic setting co-expressed 

FoxP3 (Figure 5.19B, right panel). These results demonstrated that following infection with 

Hh, there is an expansion of a population of IL-10+ cells that share phenotypic characteristics of 

both effector T cells and regulatory T cells in that they express inflammatory cytokines like 

IFN-γ and IL-17A, but also express the regulatory transcription factor FoxP3 and produce anti-

inflammatory cytokine IL-10. Furthermore, the expansion of eYFP+ FoxP3+ cells that do not 

express IL-17A or IFN-γ following infection with Hh, also suggests the possibility of Th17 cells 

changing phenotype to become regulatory. 

5.2.13 In a non-inflammatory immune response to Hh, a greater proportion of IL-
17A and/or IFN-γ-expressing cells also co-express FoxP3 and IL-10, 
compared to the colitic setting.  

Given that in the Hh+ and Hh+/anti-IL-10R-treated mice there was an expansion in intestinal IL-

10+ CD4+ T cells co-expressed eYFP, IL-17A and/or IFN-γ, we next examined the proportion of 

the effector T cell-subsets that express FoxP3 or IL-10 in uninfected, Hh+ and Hh+/anti-IL-10R-

treated IL-17A-eYFP mice. The gating strategy used is shown in Figure 5.20A. The results 

showed that a significantly higher proportion of Th17, 1L-7A+IFN-γ+, Th1 and eYFP+IL-17A- 

IFN-γ- cells expressed IL-10 in Hh+ mice compared to uninfected and Hh+/anti-IL-10R-treated 

IL-17A-eYFP mice (Figure 5.20B). Conversely, the colitic mice only showed a significant 

increase in the proportion of IL-10+ IL-7A+IFN-γ+ and IL-10+ ex-Th17 compared to the 

uninfected controls by virtue of the ex-Th17 cells and IL-7A+IFN-γ+ being virtually absent in 

the latter (Figure 5.20B). 

Examination of FoxP3 expression revealed that the Hh+ IL-17A-eYFP mice showed a 

significantly higher proportion of Th17, 1L-7A+IFN-γ+and eYFP+IL-17A- IFN-γ- cells expressed 

FoxP3 compared to uninfected and Hh+/anti-IL-10R-treated IL-17A-eYFP mice (Figure 

5.20C). While the frequency of FoxP3+ Th1 cells was similar in all three experimental groups, 

the highest frequency was observed in the Hh+ group (Figure 5.20C). The colitic mice only 

showed a significant increase in the proportion of FoxP3+ ex-Th17 compared to the uninfected 

controls by virtue of the ex-Th17 cells and IL-7A+IFN-γ+ being virtually absent in the latter 

(Figure 5.20C). 

Taken together, these results show in the non-inflammatory immune response to Hh, a 

greater proportion of IL-17A and/or IFN-γ-expressing CD4+ T cells also co-express FoxP3 or 

IL-10 compared to the inflammatory immune response to Hh. 
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5.3 DISCUSSION 
Here, we provide the first extensive characterisation of different Treg subsets as well as the 

phenotype of IL-10-producing CD4+ T cells at the site of Hh colonisation in the large intestine 

during two different immune responses to Hh; a non-inflammatory immune response observed 

in Hh+ Tiger/IL-17A-eYFP mice, and an inflammatory immune response observed in Hh+/anti-

IL-10R-treated Tiger/IL-17A-eYFP mice. The LP CD4+ T cells were characterised as Tregs 

based on expression of tTreg/pTreg marker FoxP3, tTreg marker Helios and Tr1 markers 

CD49b and LAG-3. The IL-10-producing CD4+ T cells were characterised based on co-

expression CD49b and LAG-3, FoxP3 and co-expression of inflammatory cytokines IL-17A 

and/or IFN-γ.  

In this study, we found that in the non-inflammatory response to Hh, there were more 

FoxP3 and IL-10-producing CD4+ T cells compared to those producing inflammatory cytokines 

IL-17A and IFN-γ (Figure 5.21A). Conversely, the opposite was true in the inflammatory 

immune response to Hh (Figure 5.21A).  This suggests that in order to maintain intestinal 

homeostasis, the number of FoxP3 and IL-10-expressing cells must be greater than effector T 

cells expressing IL-17A and IFN-γ. In the inflammatory immune response to Hh, while there 

was an expansion of IL-10+ and FoxP3+ T cells, the inflammatory T cells expanded to a greater 

extent. Given that mice have to be concomitantly infected with Hh and treated with a blocking 

antibody to the IL-10R in order to develop intestinal inflammation, this suggests that IL-10R-

signaling plays an important role in maintaining the balance between effector T cells and Tregs. 

Aside from the tolerogenic effects that IL-10 signaling elicits in DCs, the Th17 and IL-17A+ 

IFN-γ+ cells have also been shown to express the IL-10R and can be directly suppressed by IL-

10 (Huber et al., 2011). Furthermore, another study found that IL-10R-signaling is necessary for 

Treg-mediated Th17 suppression and that IL-10R signaling potentiates IL-10 production by 

FoxP3+ Tregs (Chaudhry et al., 2011).  

In the current study, we used co-expression of Helios and FoxP3 to differentiate tTregs 

from pTregs. Although both NRP1 and Helios have been identified as markers that are 

expressed on tTregs but not pTregs, we could not use NRP1 in our study as we found that NRP1 

was destroyed by the liberase digestion we used to obtain large intestine LP cells. Recent 

studies have called to question the reliability of Helios as a marker of tTregs. The basis of 

suggesting that Helios is a marker of tTregs was centered on three findings. Firstly, the first 

FoxP3+ Tregs to populate the thymus of 3 day old mice and the spleen of 4 day old mice are 

exclusively Helios+ and the appearance of Helios- cells only began to appear in the spleen in 12 

day old mice (Thornton et al., 2010). Secondly, in vitro induction of iTregs from CD4+ FoxP3- 

cells are Helios- and thirdly, in vivo induction of pTregs in a model of oral tolerance revealed 

that these pTregs did not express Helios (Thornton et al., 2010). Since then, a few studies have 

shown that Helios can be expressed by pTregs. One study showed that in vitro Helios 
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expression could be induced on iTregs depending on the method by which the cells are 

stimulated (Verhagen and Wraith, 2010). Helios expression was observed in pTregs derived 

from RAG KO TCR T4 Tg CD4+ FoxP3- cells stimulated with their cognate antigen in the 

presence of APCs but not when these cells were stimulated with plate bound anti-CD3 and anti-

CD28 (Verhagen and Wraith, 2010). A subsequent study reported that Helios is also up-

regulated by other CD4+ T cell subsets upon activation and proliferation (Akimova et al., 2011). 

In a communication to the editor of the Journal of Immunology Thornton et al argue that all the 

studies where Helios was up-regulated on cells other than tTregs (Akimova et al., 2011; 

Verhagen and Wraith, 2010) were in studies where cells were stimulated in vitro. Further, in a 

review, Thornton and Shevach state that the method of stimulating cells affects Helios 

expression and also argued that in the study by Akimova et al, Helios expression was examined 

at the 3 day time point in suppression co-culture cells and at this time point, very few, if any 

responder T cells would have remained due to Treg-mediated depletion of IL-2 (Shevach and 

Thornton, 2014). Since then, a number of groups have used Helios to differentiate tTregs from 

pTregs (Daniel et al., 2015; Muller et al., 2015; Sanin et al., 2015; Smith et al., 2015). Thus to 

limit any scope for error, we examined Helios expression in FoxP3+ CD4+ T cells directly ex 

vivo, without stimulating the cells in any way.  

Here, we characterized, for the first time, the proportions of tTregs, pTregs and Tr1 cells 

in the large intestine LP in uninfected, Hh+ and Hh+/anti-IL-10R-treated mice. We found that in 

uninfected Tiger mice, the proportion of FoxP3+ Tregs was far greater than the proportion of 

Tr1 cells, suggesting that at steady state, in the large intestine, the dominant Treg population is 

the FoxP3+ Tregs (Figure 5.21A). This finding concurs with that of another study (Maynard et 

al., 2007). We found that this phenomenon of greater numbers of FoxP3+ Tregs compared to Tr1 

cells in the large intestine LP was seen in both Hh+ and Hh+/anti-IL-10R-treated Tiger mice. 

Characterization of the FoxP3+ Tregs into tTregs and pTregs (based on expression of Helios by 

tTregs but not pTregs) revealed that in uninfected mice, these cells were present in equal 

numbers in the large intestine LP (Figure 5.21A). This finding is similar to results obtained by 

other groups who used NRP1 expression to differentiate tTregs from pTregs (Weiss et al., 2012; 

Yadav et al., 2012). Following infection with Hh, the tTregs and pTregs expanded slightly in 

the non-inflamed mice and maintained the relative proportions seen in the uninfected mice i.e. 

similar proportion of pTregs to tTregs (Figure 5.21A). Conversely, in the inflamed mice the 

tTregs and pTregs expanded significantly and furthermore, the proportion of pTregs was 

slightly greater than tTregs (Figure 5.21A). When examining the proportions of Tr1 cells, we 

found that although there was a slight expansion in the number of Tr1 cells in Hh+ mice and a 

significant expansion in the colitic setting, the frequency of Tr1 cells in both groups remained 

similar to that of uninfected mice. Although tTregs (Uhlig et al., 2006), pTregs (Mucida et al., 

2007) and Tr1 (Groux et al., 1997) cells are effective at preventing CD4+ T cell transfer colitis, 

it is unclear in vivo which subset might play a more important role in preventing Hh-induced 
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colitis. There are a number of studies that suggest that pTregs may be superior to tTregs in 

preventing autoimmune disease.  In a model of autoimmune gastritis, iTregs and not tTregs 

were able to suppress Th17 responses (Huter et al., 2008). Another study involving adoptive 

transfer of tTregs alone or in combination with conventional T cells into newborn FoxP3-

deficent mice showed that transfer of tTregs alone was able to prevent disease lethality but was 

unable to suppress chronic inflammation (Haribhai et al., 2011). Conversely, transfer of 

conventional T cells along with tTregs was able to reconstitute the pTreg pool and establish 

tolerance, highlighting a superior role for pTregs in preventing autoimmune and inflammatory 

responses (Haribhai et al., 2011) It has been established that Hh priming is necessary for the 

generation of disease protective Tregs (Kullberg et al., 2002), thus it is tempting to speculate 

that the pTregs and Tr1 cells might play a more important role than tTregs in preventing Hh-

induced colitis. Further comparison of the suppressive capacities of these three populations of 

Tregs using the modified Hh/RAG KO T cell transfer model of colitis will help to resolve this 

question.  

In this study, we also examined the expression of regulatory protein LAG-3. LAG-3 has 

been shown to play an important role in preventing autoimmune and inflammatory diseases 

(Okamura et al., 2009; Okazaki et al., 2011). LAG-3 deficiency accelerated onset of Type 1 

diabetes in non-obese diabetic mice (Okazaki et al., 2011). In the CD4+ T cell transfer model of 

colitis, co-transfer of IL-10 KO CD25- LAG-3+ (which were FoxP3-) cells along with naïve 

CD4+ T cells decreased the severity of colitis, however transfer of IL-10 sufficient CD25- LAG-

3+ cells completely prevented colitis (Okamura et al., 2009), suggesting that while LAG-3 on its 

own can limit colitis development to an extent, maximal protection is dependent on IL-10. In 

the current study, we found that in the uninfected and Hh+ mice, most of the LAG-3 was 

expressed by pTregs, tTregs and Tr1 cells whereas in the colitic setting, although there was an 

expansion in the numbers of LAG-3+ pTregs, tTregs and Tr1 cells, most of the LAG-3 was 

expressed by cells negative for Treg markers (i.e. CD4+ FoxP3- CD49b-). These LAG-3+ FoxP3- 

CD49b- might represent exhausted T cells, which reportedly arise during chronic inflammation 

(Wherry, 2011), or more intriguingly, represent a population of effector T cells with regulatory 

potential. Exhausted CD4+ T cells express a host of inhibitory receptors such as TIM-3 and PD-

1 (Wherry, 2011). Further examination of these markers in the LAG-3+ CD49b- FoxP3- 

population would help delineate whether the LAG-3-expressing effector T cells represented 

exhausted T cells. In the current study, in both Hh and Hh+/anti-IL-10R-treated mice, there were 

higher numbers of LAG-3-expressing pTregs compared to LAG-3-expressing tTregs. Given that 

LAG-3 is upregulated on antigen-activated cells (Workman et al., 2002), these results suggest 

that the LAG-3+ FoxP3+ Tregs are the Tregs specific for colitogenic antigens.  LAG-3 has also 

been shown to be required for maximal suppressive capacity of CD4+ CD25+ FoxP3+ Tregs (Do 

et al., 2015; Huang et al., 2004), thus it is tempting to speculate that the LAG3+ pTregs/tTregs 
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observed in Hh and Hh+/anti-IL-10R-treated mice may be more suppressive than LAG3- 

pTregs/tTregs. 

In the current study, we found that both Hh+ and Hh+/anti-IL-10R-treated Tiger/IL-17A-

eYFP mice showed an expansion in IL-10-producing CD4+ T cells compared to uninfected 

controls. Examination of the phenotype of the IL-10-GFP+ cells ex vivo based on tTreg/pTreg 

marker FoxP3 and Tr1 markers CD49b and LAG-3 revealed that following infection with Hh, 

both IL-10+ FoxP3+ cells and IL-10+ Tr1 cells expanded slightly in Hh+ mice and significantly in 

colitic mice compared to uninfected controls. Furthermore, the majority of IL-10+ cells in all 

three experimental groups expressed FoxP3 and a small proportion were Tr1-derived. Together, 

the FoxP3+ Tregs and Tr1 cells contributed to 98% of IL-10-producing CD4+ T cells in 

uninfected mice, 76% in Hh+ mice and 68% in the colitic setting, suggesting an expansion in 

effector T cells producing IL-10 following infection with Hh. 

Classifying the FoxP3+ IL-10 GFP+ cells further into tTregs and pTregs based on Helios 

expression proved to be challenging as we were unable to optimise the fixation and 

permeabilisation protocol to simultaneously detect IL-10-GFP and Helios. It is unclear why 

using the combination of 2% PFA/0.1% saponin to fix the cells was efficient at detecting FoxP3 

but ineffective at detecting Helios. Grupillo et al., 2011 published a protocol claiming that 

fixing cells with a combination of 2% PFA and eBio fix-perm followed by permeabilisation 

with eBio perm was effective at detecting Helios. However, in their results, they never showed 

positive staining for Helios using eBio fix-perm/eBio perm (Grupillo et al., 2011) and although 

we obtained similar Helios staining to Grupillo et al using their protocol of 2% PFA/eBio fix-

perm/eBio perm, we found that compared to the positive staining obtained with eBio fix-

perm/eBio perm, the Helios staining was very poor. To date, all the published literature in 

which Helios has been examined has been done using eBio fix-perm/eBio perm (Akimova et al., 

2011; Muller et al., 2015; Singh et al., 2015; Thornton et al., 2010) and to our knowledge, 

nobody has successfully managed to simultaneously detect Helios and GFP/eYFP expressed by 

some transgenic mouse strains.  

Using the T-cell transfer model of colitis, findings in Fiona Powrie’s lab showed that 

the CD4+ CD25+ cells mediate cure of colitis in an IL-10-dependent manner (Uhlig et al., 2006). 

Research in our lab, using a modified Hh+ CD4+ T-cell transfer model of colitis, showed that 

both CD25+ and CD25- CD45RBlow cells were protected against the development of Hh-induced 

colitis in an IL-10-dependent manner (Kullberg et al., 2002). However, in contrast to findings 

by Uhlig et al, in the study by Kullberg et al, it was found that at a higher ratio of CD45RBhigh : 

CD45RBlow cells, the CD45RBlow CD25- cells were more protective than CD45RBlowCD25+ cells 

(Kullberg et al., 2002). The main difference between the studies by Uhlig et al and Kullberg et 

al was the fact that the development of colitis in the latter model is dependent on Hh. Therefore 

the difference in the results between these two studies could be attributed to the fact that Hh 
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might modulate the immune response and result in the generation of either a greater frequency 

of IL-10-producing CD4+ T cells in the CD4+CD45RBlowCD25- fraction or a greater amount of 

IL-10 being produced by the CD4+CD45RBlowCD25- fraction. The previous study by Kullberg 

et al used CD4+CD45RBlowCD25- cells from the MLNs of Hh+ WT mice and transferring them 

at different ratios along with naïve CD4+ T cells from Hh+ IL-10 KO mice into Hh+ RAG KO 

mice.  In the current study, we assessed the expression of CD25 on IL-10+ cells in the large 

intestine LP CD4+ T cells from uninfected, Hh+ and Hh+/anti-IL-10R-treated mice. We found 

that in all three groups, the frequency of IL-10+ FoxP3+CD25+ cells was higher than IL-10+ 

CD25- cells in the large intestine, suggesting that the greater suppressive nature of the IL-10+ 

CD25- cells observed previously was likely due to higher amounts of IL-10 being produced on a 

per cell basis.  

Our results thus far had indicated that the majority of IL-10-producing CD4+ T cells in 

uninfected, Hh+ and Hh+/anti-IL-10R treated mice were of a Treg phenotype (either FoxP3+ 

Treg or Tr1) (Figure 5.21B). In both Hh+ and Hh+/anti-IL-10R-treated mice, there was an 

expansion in the proportion of IL-10 coming from cells that were negative for markers of Tregs 

and could therefore be effector T cells producing IL-10. The effector CD4+ T cell response in 

Hh+ mice was characterised by a slight increase in the IL-17A+ and IFN-γ+ cells, whereas, in 

Hh+/anti-IL-10R-treated mice, there was a significant expansion in IL-17A+, IL-17A+ IFN-γ+ 

and IFN-γ+ CD4+ T cells compared to uninfected controls (Figure 5.21A).  Some studies have 

shown that effector Th1 and Th17 cells can produce IL-10 (Esplugues et al., 2011; Saraiva et 

al., 2009). In the current study, examination of the phenotype of IL-10+ CD4+ T cells based on 

co-expression of IL-17A and IFN-γ revealed that interestingly, following infection with Hh 

alone, there was an expansion in the IL-10+ IL-17A+ cells, however, in the colitic setting, there 

was an expansion in IL-10+ IL-17A+, IL-10+ IL-17A+ IFN-γ+  and IL-10+ IFN-γ+ cells (Figure 

5.21B). Furthermore, in the colitic setting, IL-10+ CD4+ T cells that co-expressed IL-17A and/or 

IFN-γ  constituted almost half of the IL-10 producing CD4+ T cells (Figure 5.21B). These 

results were reproducible when examined by IL-10-GFP signal and IL-10 detected by 

intracellular staining. We also found that in the colitic setting alone, where ex-Th17 cells are 

enriched, a small proportion of IL-10-producing CD4+ T cells were ex-Th17-derived (Figure 

5.21B). These findings are interesting because they suggest that the expansion of an effector T 

cell subset is accompanied by an expansion in a proportion of that particular effector T cell 

population that also co-expresses IL-10 in both the inflammatory and non-inflammatory 

immune response to Hh. The exact mechanisms driving IL-10-production by CD4+ effector T 

cells is not clearly understood. Data from the literature suggests that different microbes and 

parasites, as well as the cytokine environments play a role in influencing IL-10 production by 

CD4+ effector T cells. IL-10 producing Th1 cells were first seen in the broncho-alveolar lavage 

in patients with active tuberculosis (Gerosa et al., 1999). Since then, Th1 cells have also been 

shown to be a major source of IL-10 in murine models of two different parasitic infections; 
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cutaneous Leishmania major (Anderson et al., 2007) and Toxoplasma gondii (Jankovic et al., 

2007).  Furthermore, Th1 cells can acquire the ability to produce IL-10 in environments where 

they undergo repeated antigenic stimulation, such as inflammation (Saraiva et al., 2009). IL-10-

producing Th17 cells have also been described in the literature. IL-10+ IL-17A+ cells have been 

observed in humans suffering from rheumatoid arthritis (Guggino et al., 2015) and psoriasis 

vulgaris (Antiga et al., 2012). In vitro studies show that the cytokine environment determines 

whether Th17 cells produce IL-10. One such in vitro study showed that C.albicans elicits IL-1β 

production, which in turn stimulated human Th17 cells to produce IFN-γ whereas S.aureus 

elicits IL-2 production and induced Th17 cells to produce IL-10 (Zielinski et al., 2012). Another 

study showed that in vitro derived Th17 cells, cultured in the presence of TGF-β and IL-6, but 

not IL-23 and IL-6 also co-express IL-10 (Singh et al., 2013). Although all these studies 

corroborate the existence of cells that co-express IL-10 and IL-17A or IFN-γ, we show here for 

the first time the extent to which these cells contribute to the total IL-10-producing CD4+ T cells 

in the large intestine during colitis.  Furthermore, this study also demonstrated for the first time 

that ex-Th17 cells produce IL-10. Although both Th1 and ex-Th17 cells express T-bet, produce 

IFN-γ and are present in comparable numbers in the large intestine of colitic mice (Morrison et 

al., 2013), these results also showed that a smaller proportion of ex-Th17 cells produce IL-10 

compared to the Th1 cells, highlighting another difference between these two cell types. 

We also found that in the non-inflammatory response to Hh, most of the IL-10-

producing CD4+ T cells that co-expressed IL-17A and/or IFN-γ also expressed FoxP3 whereas 

in the inflammatory response to Hh, half or slightly less than half of IL-10-producing CD4+ T 

cells that co-expressed IL-17A and/or IFN-γ also expressed FoxP3. These findings 

demonstrated that these cells share phenotypic characteristics of effector and regulatory CD4+ T 

cells (Figure 5.21B). Another study, using IL-17A-eYFP mice to examine Th17 plasticity 

during EAE found that similar to our model, Th17 cells changed phenotype to become ex-Th17 

cells (Hirota et al., 2011). However, in this model, Hirota et al found negligible FoxP3 

expression in the eYFP expressing cells in the draining lymph node and CNS cells of 12-15 day 

EAE mice (Hirota et al., 2011).  One reason for the differences in FoxP3 expression in their 

model and ours could be explained by the fact that they examined FoxP3 in eYFP+ cells from 

the spleen and CNS, whereas our studies were done on large intestinal LP cells and the local 

tissue environment may play a role in the immune responses elicited. Secondly, Hh may also 

modulate the immune response to induce slightly different phenotypes to those seen in EAE.  

Cells co-expressing FoxP3 and inflammatory cytokines have been observed previously. 

Suppressive IL-17A+ FoxP3+ (Hovhannisyan et al., 2011) cells have been isolated from the LP 

of patients with active CD. FoxP3+ pTregs but not tTregs have been shown to produce IL-17A 

and IFN-γ (Thornton et al., 2010). Another study involving fate mapping of FoxP3+ Tregs in 

autoimmune arthritis showed that FoxP3+ Tregs transdifferentiate to become pathogenic Th17 
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cells, and that FoxP3+ IL-17A+ cells may represent an intermediate phenotype of these cells 

(Komatsu et al., 2014).  FoxP3+ cells have been shown to start producing IFN-γ during the 

induction of intestinal inflammation in a microbiota-dependent colitis model and these cells 

were suppressive in nature (Feng et al., 2011b).  Another study showed that some FoxP3+ CD4+ 

T cells express the Th1 transcription factor T-bet, which in turn enabled them to express 

CXCR3, and accumulate at the same site as Th1 cells and suppress them (Koch et al., 2009). In 

light of all these studies, it is unclear whether the IL-10+ FoxP3+ CD4+ T cells that co-expressed 

IL-17A and/or IFN-γ originate from effector T cells or FoxP3+ Tregs and furthermore, whether 

these cells are protective or pathogenic. In the current study, we observed IL-10+ IL-17A+ 

FoxP3+/- cells in the non-inflammatory immune response to Hh, making it tempting to speculate 

that these cells may play protective roles. As these IL-10+ IL-17A+ FoxP3+/- cells were also 

observed in the inflammatory response to Hh of the current study, it is plausible that they may 

be protective in this setting as well. Further work examining the suppressive capacity of the IL-

10+ FoxP3+ CD4+ T cells that co-express IL-17A and/or IFN-γ needs to be done. 

Interestingly, the current study also identified a population of IL-10+ cells that were 

eYFP+IL-17A- IFN-γ- that expanded in both Hh+ and Hh+/anti-IL-10R-treated mice, 

demonstrating that following infection with Hh, a population of cells that once produced IL-

17A had switched off IL-17A production, were IFN-γ- and secreted IL-10. Furthermore, most of 

the IL-10+eYFP+IL-17A- IFN-γ- cells in both Hh+ and Hh+/anti-IL-10R-treated IL-17A-eYFP 

mice co-expressed FoxP3, suggesting two possible scenarios: i) a proportion of FoxP3+ Tregs 

transiently express IL-17A before switching off IL-17A production, ii) a proportion of Th17 

cells are switching phenotype to become regulatory in both the inflammatory and the non-

inflammatory immune response to Hh. Using IL-17A-eYFP mice, Hirota et al found that 

following C.albicans infection, eYFP+IL-17A- IFN-γ- CD4+ T cells were observed in the skin, 

but these cells were quiescent and produced little IL-17F, IL-22 and GM-CSF (Hirota et al., 

2011). Of note, IL-10 expression was not examined in these cells so it is unclear if they 

produced IL-10 or not (Hirota et al., 2011). One reason that could account for the differences in 

the phenotype of eYFP+IL-17A- IFN-γ- between the skin and the large intestine LP aside from 

the fact that they are different tissues, is that both the studies examined the effect of immune 

responses to different microbes i.e. Hirota et al examined the response to C.albicans and we 

examined the immune response to Hh. Different microbes have been shown to modulate CD4+ 

T-cell responses (Atarashi et al., 2011; Geuking et al., 2011; Zielinski et al., 2012). Some 

microbes promote FoxP3+ Tregs in the colon (Atarashi et al., 2011). Another study showed that 

C.albicans elicits IL-1β production, which in turn stimulated human Th17 cells to produce IFN-

γ whereas S.aureus elicits IL-2 production and induced Th17 cells to produce IL-10 (Zielinski et 

al., 2012). These studies give credence to the theory that the IL-10+eYFP+IL-17A- IFN-γ- 

observed in the current study could be microbially-induced. A recent study examined Th17 
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plasticity in a resolving immune response observed during N. brasiliensis and S.aureus infection 

and non-resolving immune response observed in DNIL-10R mice treated with anti-CD3, where 

mortality is Th17 associated (Gagliani et al., 2015). Gagliani et al showed that during a non-

resolving immune response a greater proportion of the Th17 cells switched phenotype to 

become IFN-γ-producing ex-Th17 cells (Gagliani et al., 2015). Conversely, during the 

resolution of inflammation, Th17 cells in the small intestine transdifferentiate to a cell termed as 

Tr1ex-Th17 (Gagliani et al., 2015). The Tr1ex-Th17 cells are thought to be Tr1-like because a 

significant proportion of these cells expressed IL-10 and LAG-3 but negligible amounts of 

FoxP3 (Gagliani et al., 2015). The current study suggests that in both the inflammatory and non-

inflammatory immune response to Hh, the majority of IL-10+eYFP+IL-17A- IFN-γ- cells were 

FoxP3+ suggesting that in the large intestine, if a proportion of Th17 cells are switching to a 

regulatory phenotype, they seem to be switching to a FoxP3+ Treg phenotype rather than a Tr1 

phenotype. The fact we may be seeing a switch from Th17 to FoxP3+ phenotype in the large 

intestine whereas Gagliani et al saw a switch from Th17 to Tr1ex-Th17 in the small intestine 

(Gagliani et al., 2015) could be explained by the fact that at steady state, the large intestine 

harbours greater numbers of FoxP3+ Tregs compared to Tr1 cells (Uhlig et al., 2006) whereas 

the opposite is true in the small intestine (Maynard et al., 2007). Thus it is possible that local 

factors influence Th17 cells in the small intestine to become Tr1-like, whereas in the large 

intestine, to become FoxP3+.  In this study, we only examined the phenotype of the IL-10-

producing CD4+ T cells at the peak of Hh-induced inflammation and the proportion of IL-

10+eYFP+IL-17A- IFN-γ-FoxP3+ was relatively small compared to the ex-Th17 cells. Hh-

induced inflammation does eventually resolve at about 90 days pi (Morrison et al., 2013). We 

know from previous work in the lab that during the resolution of Hh-induced inflammation, 

there is a drastic decrease in the number of ex-Th17 cells, and the CD4+ T cell response 

becomes more Th17 oriented (although the numbers of Th17 cells also drop). Thus it is 

tempting to speculate that perhaps inflammation resolves toward the later timepoints post Hh-

infection because Th17 cells switch to FoxP3+ Tregs or Tr1 cells rather than ex-Th17 cells. A 

kinetic experiment carried out in Hh+/anti-IL-10R-treated IL-17A-eYFP mice over a 90 day 

period and tracking IL-17A, IFN-γ, FoxP3 and LAG-3 expression in the LP CD4+ T cells will 

help to address this question. 
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5.3.1 Summary 
The similarities and differences in CD4+ T-cell responses, Treg profile and the phenotype of IL-

10-producing CD4+ T cells in the large intestine LP in a non-inflammatory immune response 

compared to an inflammatory immune response to Hh are summarised in Table 5.2. 

Briefly, the experiments carried out in this chapter showed that in both Tiger and IL-17A-eYFP 

mice, the primary CD4+ T cell response in Hh+ mice was a non-inflammatory response 

characterized by a higher frequency of FoxP3 and IL-10-expressing CD4+ T cells compared to 

those expressing IL-17A and/or IFN-γ  (Table 5.2). In the Hh+/anti-IL-10R-treated mice, the 

primary CD4+ T cell response was an inflammatory response, characterized by a higher 

frequency of IL-17A and/or IFN-γ-producing cells compared to those producing IL-10 and 

FoxP3 (Table 5.2). 

Ex-vivo characterisation of the Treg profile using Tiger mice revealed that in all three 

experimental groups, there were greater numbers of FoxP3+ Tregs compared to Tr1 cells in the 

large intestine (Table 5.2). Examination of Helios expression in the FoxP3+ Tregs revealed that 

in uninfected and Hh+ mice, there were equal proportions of pTregs and tTregs (Table 5.2). In 

contrast, in the colitic setting, there were slightly higher numbers of pTregs compared to tTregs 

(Table 5.2). 

Examination of the phenotype of IL-10+ LP CD4+ T cells based on Treg markers revealed that in 

all three experimental groups, the majority of IL-10+ LP CD4+ T cells expressed FoxP3 and a 

small proportion were Tr1 cells (Table 5.2). The major difference in the phenotype of the IL-

10+ CD4+ T cells when compared to uninfected controls was that in the non-inflammatory 

response, there was a slight expansion in the IL-10+ IL-17A+ cells and most of these cells also 

co-expressed FoxP3 whereas in the colitic setting, almost half the IL-10+ CD4+ T cells co-

expressed IL-17A and/or IFN-γ and half or slightly less than half of these cells also co-

expressed FoxP3 (Table 5.2).  

In the colitic setting alone, a small proportion of ex-Th17 cells produced IL-10 (Table 5.2).



 151 

Table 5.2 The similarities and differences in CD4+ T-cell responses and the phenotype of IL-10-producing CD4+ T cells in the large intestine 
LP of uninfected and 2-wk Hh+ and Hh+/aati-IL-10R-treated mice

 Uninfected mice Non-inflammatory immune response to Hh 

(Hh+ mice) 

Inflammatory immune response to Hh 

(Hh+ mice/anti-IL-10R-treated mice) 

CD4+ T-CELL  

RESPONSES 

Primarily regulatory 

IL-10+ and FoxP3+ cells > IL-17A+ and/or 
IFN-γ+ cells 

Primarily regulatory 

IL-10+ and FoxP3+ cells > IL-17A+ and/or  

IFN-γ+ cells 

Primarily inflammatory 

IL-17A+ and/or IFN-γ+ cells > IL-10+ and 
FoxP3+ cells 

FOXP3+ TREGS AND TR1 
CELLS  

FoxP3+ Treg > Tr1 cells FoxP3+ Treg > Tr1 cells FoxP3+ Treg > Tr1 cells 

No. of  pTregs = No. of  tTregs No. of  pTregs = No. of  tTregs No. of  pTregs > No. of  tTregs 

LAG-3 EXPRESSING 
CELLS 

Majority were FoxP3+ Tregs and Tr1 cells Majority were FoxP3+ Tregs and Tr1 cells Majority were effector T cells 

PHENOTYPE OF IL-10+ 
CD4+ T CELLS 

80% FoxP3+ 60-80% FoxP3+ 50-60% FoxP3+ 

15% Tr1 16% Tr1 18% Tr1 

About 5% co-expressed IL-17A and/or IFN-
γ of which most expressed FoxP3. 

About 25% co-expressed IL-17A and/or IFN-
γ of which most expressed FoxP3. 

About 40% co-expressed IL-17A and/or IFN-
γ of which half or slightly less than half 

of these cells also expressed FoxP3. 
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5.4 FIGURES 

 
Figure 5.1  Analysis of eYFP and FoxP3 expression using different fixation and 
permeabilisation buffers.  
A female Il17acreR26ReYFP mouse was inoculated with Hh and treated with anti-IL-10R mAb 
on days 0 and 7 pi. At 2 wks pi, large intestinal LP cells were isolated, surface stained with 
mAb specific for CD3, CD4 and a live dead exclusion dye, fixed and intracellularly stained 
for FoxP3 and analysed by flow cytometry. (A) Gating strategy used for analysis of the 
results. (B) Dot plots depicting eYFP and FoxP3 staining after the use of different 
combinations of fixatives and permeabilisation buffers (as indicated). Dot plots are gated on 
live CD4+ T cells. The data shown are from a single experiment. 
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Figure 3.1 Analysis of eYFP and FoxP3 expression using different fixation and permeabilisation buffers. A 
female Il17acreR26ReYFP mouse was inoculated with Hh and treated with anti-IL-10R mAb on days 0 and 7 pi..At 2 wks 
pi, large intestinal LP cells were isolated, surface stained with mAb specific for CD3, CD4 and a live dead exclusion 
dye, fixed and intracellularly stained for FoxP3 and analysed by flow cytometry. (A) Gating strategy used for analysis 
of the results. (B) The effect of different combinations of fixatives and permeabilisation buffers (as indicated on the 
figure) on the expression of eYFP and FoxP3. The data shown are from a single experiment. 
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Figure 5.2 Altering the fixation and permeabilisation time when using the combination of 
2% PFA fix/0.1% saponin perm does not improve FoxP3 staining.  
Splenocytes were isolated from a female WT mouse, surface stained with a mAb to CD4, 
fixed and then intracellularly stained for FoxP3 and analyzed by flow cytometry. (A) Gating 
strategy used for the analysis (B) FoxP3 expression after different incubation times for 
fixation, permeabilisation and intracellular staining steps (as indicated). Dot plots are gated 
on CD4+ cells. The figure shows data from a single experiment. 
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Figure 3.2. Altering the fixation and permeabilisation time when using the combination of 2% PFA fix/0.1% saponin perm 
does not improve FoxP3 staining. Splenocytes were isolated from a female WT mouse, surface stained with a mAb to CD4, fixed 
and then intracellularly stained for FoxP3 and analyzed by flow cytometry. (A) Gating strategy used for the analysis (B) FoxP3 
expression after different incubation times for fixation, permeabilisation and intracellular staining steps (as indicated). Dot plots are 
gated on CD4+ cells. The figure shows data from a single experiment. 
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Figure 5.3 Simultaneous detection of eYFP and FoxP3 expression using 2% PFA and 
eBioscience permeabilisation buffer.  
Il17acreR26ReYFP mice were inoculated with Hh and treated with anti-IL-10R mAb on days 0 
and 7 pi. At 2 wks pi, large intestinal LP cells were isolated,  surface stained with mAb 
specific for CD3 and CD4 and a live dead exclusion dye, fixed and intracellularly stained for 
FoxP3 and analysed by flow cytometry. (A) Protocol used for the intracellular staining of 
transcription factors. (B) Dot plots depicting eYFP and FoxP3 staining after the use of 
different combinations of fixatives and permeabilisation buffers (as indicated). Dot plots are 
gated on live CD4+ T cells and show data from one experiment where LP cells from a single 
Il17acreR26ReYFP female mouse were used. 

Plate up to 2 million cells/tube 

Surface stain in 100 µl  staining buffer 
for 10 min at 4°C in the dark 

Wash 2x in staining buffer 

Resuspend in 100 µl fixative   

Wash once in permeabilisation buffer 

Stain intracellularly in perm buffer for 1 
hr at 4°C in the dark 

Wash 2x; Once in Perm buffer and once 
in FACS buffer (PBS+ 0.5% FCS) 

Resuspend cells in FACS buffer 

FIX 
1 hr 

eBio Fix-perm 2% PFA eBio Fix-perm 2% PFA 
 

PERM 
1 hr 

eBio Perm 0.1% Saponin 0.1% Saponin eBio Perm 
 

eY
FP

 
Fo

xP
3 

CD4 

A B 

Spin down:1100 rpm 7 min 

Spin down:1100 rpm 7 min 

Spin down:1100 rpm 7 min 

Figure 3.3 Simultaneous detection of eYFP and FoxP3 expression using 2% PFA and eBioscience 
permeabilisation buffer. Il17acreR26ReYFP mice were inoculated with Hh and treated with anti-IL-10R mAb on days 0 
and 7 pi. At 2 wks pi, large intestinal LP cells were isolated,  surface stained with mAb specific for CD3 and CD4 and a 
live dead exclusion dye, fixed and intracellularly stained for FoxP3 and analysed by flow cytometry. (A) Protocol used 
for the intracellular staining of transcription factors. (B) Dot plots depicting eYFP and FoxP3 staining after the use of 
different combinations of fixatives and permeabilisation buffers (as indicated). Dot plots are gated on live CD4+ T cells 
and show data from a single experiment each where LP cells from a single Il17acreR26ReYFP female mouse were used. 
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Figure 5.4 LP cell numbers and percentage and number of LP CD4+ T cells in the large 
intestine of Tiger mice following infection with Hh.  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
female Tiger mice at 2 wks pi. The cells were surface stained with mAb specific for CD45, 
CD3, CD4 and a live dead exclusion dye, fixed with 2% PFA and then examined by flow 
cytometry. Scatter plots depicting the total number of LP cells (left panel), percentage of LP 
CD4+ T cells (middle panel) and total number of LP CD4+ T cells (right panel) in the large 
intestine. Horizontal bars show the mean. Each symbol represents an individual mouse. Data 
shown are pooled from three independent experiments. ***P<0.001 as determined by one-way 
Anova. 
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Figure 3.4.!CD4+!!T!cell!responses!in!the!large!intes4ne!of!!ger%mice!following!infec4on!with!Hh. LP cells were isolated 
from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated female Tiger&mice at 2 weeks pi. The cells 
were stimulated with PMA and ionomycin in the presence of Brefeldin A, surface stained with mAb specific for 
CD3, CD4 and a live dead exclusion dye, fixed with 2% PFA, permeabilised with ebio perm and then intracellulary 
for FoxP3, IL-10, IL-17A and IFN-γ. (A) Scatter plots depicting the total number of LP cells (left panel), percentage 
of LP CD4+ T cells (middle panel) and total number of LP CD4+ T cells (right panel) in the large intestine. Horizontal 
bars show the mean. Each symbol represents an individual mouse. Data shown are pooled from three 
independent experiments. (B) Dot plots depicting the gating strategy used for the analysis. (C) Dot plots showing 
representative staining of IL-10 GFP and IL-10 detected by ICS in the three experimental groups. Dot plots are 
gated on live CD4+ T cells. Data shown are from a single experiment where where n≥ 3 mice/group  (D) Graphs 
depicting the frequency of LP CD4+ T cells that are IL-17A single-positive, IL-17A+IFN-γ+, IFN-γ single-positive. 
Data shown are pooled from two independent experiments where n≥ 5 mice/group. (E) Graphs depicting the 
frequency and number of LP CD4+ T cells that express FoxP3 (top panel), IL-10-GFP (middle panel) and IL-10 by 
ICS (bottom panel). Data shown are pooled from three independent experiments where n≥ 8 mice/group for FoxP3 
and IL-10-GFP and from a single experiment where n≥ 3 mice/group for IL-10 detected by ICS. Bars in (D) and (E)  
show means + s.e.m. of either n≥ 8 mice/group (FoxP3 and IL-10-GFP) or n≥ 3 mice/group for IL-10 detected by 
ICS.  *p<0.05  **p<0.01 and ***p<0.001 as determined by one-way Anova.  
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Figure 5.5 CD4+ T cell responses in the large intestine of Tiger mice following infection 
with Hh.  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
female Tiger mice at 2 wks pi. Half the LP cells were left unstimulated and the other half 
stimulated with PMA and ionomycin in the presence of Brefeldin A. Both the stimulated and 
unstimulated cells surface stained with mAb specific for CD3, CD4 and a live dead exclusion 
dye, fixed with 2% PFA, permeabilised with ebio perm buffer. The unstimulated cells were 
then intracellulary stained for FoxP3 and the stimulated cells stained for IL-10, IL-17A and 
IFN-γ. (A) Dot plots depicting the gating strategy used for the analysis. (B) Dot plots showing 
representative staining of IL-10 GFP and IL-10 detected by ICS in the three experimental 
groups. Dot plots are gated on live CD4+ T cells. Data shown are from a single experiment 
where where n≥ 3 mice/group. (C) Graphs depicting the frequency of LP CD4+ T cells that are 
IL-17A single-positive, IL-17A+ IFN-γ+ and IFN-γ single-positive. Data shown are pooled 
from two independent experiments where n≥ 5 mice/group in total. (D) Graphs depicting the 
frequency and number of LP CD4+ T cells that express FoxP3 (top panel), IL-10-GFP (middle 
panel) and IL-10 by ICS (bottom panel). Data shown are pooled from three independent 
experiments where n≥ 8 mice/group in total for FoxP3 and IL-10-GFP and from a single 
experiment where n≥ 3 mice/group for IL-10 detected by ICS. Bars in (C) and (D) show 
means + s.e.m. of either n≥ 8 mice/group in total (FoxP3 and IL-10-GFP) or n≥ 3 mice/group 
for IL-10 detected by ICS. *P<0.05  **P<0.01 and ***P<0.001 as determined by one-way 
Anova.  
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Figure'3.5.'CD4+'T'cell'responses'in'the'large'intes9ne'of'Tiger&mice'following'infec9on'with'Hh.!LP!cells!were!isolated!from!
the!large!intes4ne!of!uninfected,!Hh+!and!Hh+/an49IL910R9treated!female!Tiger(mice!at!2!weeks!pi.!The!cells!were!s4mulated!
with!PMA!and! ionomycin! in! the!presence!of!Brefeldin!A,! surface! stained!with!mAb! specific! for!CD3,!CD4!and!a! live!dead!
exclusion!dye,!fixed!with!2%!PFA,!permeabilised!with!ebio!perm!and!then!intracellulary!for!FoxP3,!IL910,!IL917A!and!IFN9g.!(A)!
Dot!plots!depic4ng!the!ga4ng!strategy!used!for!the!analysis.!(B)!Dot!plots!showing!representa4ve!staining!of!IL910!GFP!and!
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Figure 5.6 LP cell numbers and percentage and number of LP CD4+ T cells in the large 
intestine of IL-17AcreRosa26eYFP mice following infection with Hh.  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
female Il17acreR26ReYFP mice at 2 wks pi. The cells were surface stained with mAb specific 
for CD45, CD3, CD4 and a live dead exclusion dye, fixed with 2% PFA and then examined by 
flow cytometry. Scatter plots depicting the total number of LP cells (left panel), percentage of 
LP CD4+ T cells (middle panel) and total number of LP CD4+ T cells (right panel) in the large 
intestine. Horizontal bars show the mean. Each symbol represents an individual mouse. 
Except for the plot showing the number of CD4+ T cells, which is pooled from four 
independent experiments, data shown are pooled from five independent experiments. *P<0.05  
**P<0.01 and ***P<0.001 as determined by one-way Anova.  
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Figure 5.7 CD4+ T-cell responses in the large intestine of Il17acreR26ReYFP mice following 
infection with Hh.  
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Figure 3.5. CD4+ T-cell responses in the large intestine of IL-17AcreRosa26eYFP mice following infection with Hh. LP cells were isolated from the 
large intestine of uninfected, Hh and Hh+/anti-IL-10R-treated female IL-17AcreRosa26eYFP mice at 2 wks pi. The cells were stimulated with PMA and 
ionomycin in the presence of Brefeldin A. The cells were surface stained with mAbs specific for CD3, CD4 an a live dead exclusion dye, fixed and 
then intracellulary stained for FoxP3, IL-10, IL-17A and IFN-g. With the exception of one experiment, which was fixed and permeabilised with 2% 
PFA/0.1% saponin, all the other experiments were fixed and permeabilised with the combination of 2% PFA/eBio perm. (A) Scatter plots depicting the 
total number of LP cells (left panel), percentage of LP CD4+ T cells (middle panel) and total number of LP CD4+ T cells (right panel) in the large 
intestine. Horizontal bars show the mean. Each symbol represents an individual mouse. Except for the plot showing the number of CD4+ T cells, 
which is pooled from four independent experiments, data shown in (A) are pooled from five independent experiments. (B) Dot plots depicting the 
gating strategy used for analysis of eYFP, IL-17A and IFN-γ expression in LP CD4+ T cells. (C) Graphs depicting the frequency of LP CD4+ T cells 
that are IL-17A single-positive, IL-17A+IFN-γ+, IFN-γ-single positive eYFP+, IFN-γ-single positive eYFP- and eYFP+IL-17A-IFN-γ-. Data shown are 
pooled from two independent experiments where n≥ 5 mice/group. (D) Dot plots depicting the gating strategy used for analysis of IL-10, FoxP3 and 
CD25 expression in LP CD4+ T cells. (E)  Graphs depicting the frequency of LP CD4+ T cells that express IL-10 (left panel), FoxP3 (middle panel) 
and CD25 (right panel). Data shown are pooled from five independent experiments where n≥ 3 mice/group/experiment for IL-10, three independent 
experiments where n≥ 3 mice/group/experiment for FoxP3 and CD25 two independent experiments where n≥ 5 mice/group for CD25. Bars in (C) and 
(E)  show means + s.e.m. of n≥ 5 mice/group *p<0.05  **p<0.01 and ***p<0.001 as determined by one-way Anova.  
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Figure 5.7. CD4+ T-cell responses in the large intestine of Il17acreR26ReYFP mice following infection 
with Hh. LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
female Il17acreR26ReYFP mice at 2 wks pi. The cells were stimulated with PMA and ionomycin in the 
presence of Brefeldin A. The cells were then surface stained with mAbs specific for CD3, CD4, CD25 
and a live dead exclusion dye, fixed and then intracellulary stained for FoxP3, IL-10, IL-17A and IFN-γ. 
With the exception of one experiment, which was fixed and permeabilised with 2% PFA/0.1% saponin, 
all the other experiments were fixed and permeabilised with the combination of 2% PFA/eBio perm. (A) 
Dot plots depicting the gating strategy used for the analysis. (B) Graphs depicting the frequency (left 
panel) and number (right panel) of LP CD4+ T cells that are IL-17A single-positive (Th17), IL-17A+ IFN-
γ+, IFN-γ-single positive in the three experimental groups. (C) Graphs depicting the frequency (left panel) 
and number (right panel) of LP CD4+ T cells that are IFN-γ-single positive eYFP+ (ex-Th17), IFN-γ-
single positive eYFP- (Th1) (D) Graphs depicting the frequency (left panel) and number (right panel) of 
LP CD4+ T cells that are eYFP+IL-17A- IFN-γ-. Data shown in (B), (C) and (D) are pooled from five 
independent experiments where n≥ 3 mice/group/experiment. (E) Graphs depicting the frequency (left 
panel) and number (right panel) of LP CD4+ T cells that express IL-10 (upper panel), FoxP3 (middle 
panel) and CD25 (lower panel). Data shown are pooled from five independent experiments where n≥ 3 
mice/group/experiment for IL-10, four independent experiments where n≥ 3 mice/group/experiment for 
FoxP3 and CD25 two independent experiments where n≥ 5 mice/group in total for CD25. Bars in (B) and 
(C) show means + s.e.m. of n≥ 5 mice/group in total *P<0.05  **P<0.01 and ***P<0.001 as determined 
by one-way Anova.  
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Figure 5.8 NRP1 expression is lost following digestion of tissues with liberase.  
LP, MLN and spleen cells were isolated from WT female mice, surface stained with mAb 
specific for CD3, CD4, NRP1 or an isotype control for NRP1 and a live dead exclusion dye, 
fixed with 2% PFA and analyzed by flow cytometry. (A) Dot plots depicting NRP1 expression 
in the LP (upper panel), spleen (middle panel) and MLN (lower panel). (B) Dot plots showing 
NRP1 expression in spleen cells that were either untreated (upper panel) or liberase treated 
for 30 minutes (middle panel) or 1hr (lower panel). Dot plots in (A) and (B) are gated on live 
CD4+ T cells. Data shown are from individual experiments carried out once. 
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Figure 3.4 NRP1%expression%is%lost%following%
diges4on%of%4ssues%with%liberase, LP, MLN and 
spleen cells were isolated from WT female 
mice, surface stained with mAb specific for 
CD3, CD4, NRP1 and a live dead exclusion 
dye, fixed and intracellularly stained for 
FoxP3 and/or Helios and analysed by flow 
cytometry. (A) Dot plots depicting gating 
strategy used for analysis of NRP1 
expression. (B) Dot plots depicting NRP1 
expression in the spleen, MLN and LP. Plots 
are gated on live CD4+ T cells. (C) Dot plots 
depicting effect of liberase treatment on 
NRP1 expression in  spleen cells that were 
fixed with either eBio fix-perm (left panel) or 
2% PFA (right panel). Plots are gated on live 
CD4+ T cells.  (D) Dot plots showing the 
gating strategy used for the analysis of NRP1 
expression in FoxP3+ CD4+ T cells in the 
spleen. (E) Dot plots depicting  the effect of 
liberase treatment on expression of NRP1 in 
FoxP3+ CD4+ T cells in spleen cells fixed 
with eBio fix-perm. Dot plots are gated on live 
CD4+ T cells. Data shown are from individual 
experiments carried out once. 
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Figure 3.6 NRP1 expression is lost following digestion of tissues with liberase. LP, MLN and spleen 
cells were isolated from WT female mice, surface stained with mAb specific for CD3, CD4, NRP1 and a 
live dead exclusion dye, fixed with 2% PFA and analysed by flow cytometry. (A) Dot plots depicting NRP1 
expression in the LP (upper panel), spleen (middle panel) and MLN (lower panel). Plots are gated on live 
CD4+ T cells. (B) Dot plots showing NRP1 expression in  spleen cells that were either untreated (upper 
panel) or liberase treated for 30 minutes (middle panel) or 1hr (lower panel). Plots are gated on live CD4+ 
T cells Data shown are from individual experiments carried out once. 
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Figure 5.9  Co-expression of Helios and FoxP3 in LP CD4+ T cells. 
 Large intestinal LP cells were isolated from uninfected, Hh+ and Hh+/anti-IL-10R-treated 
male and female Tiger mice at 2 wks pi. Cells were surface stained with mAb specific for 
CD3, CD4 an a live dead exclusion dye, fixed with 2% PFA, permeabilised with eBio perm 
and then intracellulary stained for Foxp3 and either Helios or an isotype control for Helios 
(A) Dot plots depicting the gating strategy used for the analysis. (B) Frequency of LP CD4+ T 
cells that are FoxP3+Helios+ (left panel) and FoxP3+Helios- (right panel). (C) Number of LP 
CD4+ T cells that are FoxP3+Helios+ (left panel) and FoxP3+Helios- (right panel). Data shown 
in (B) and (C) are a pool of three independent experiments. Bars show means + s.e.m. where 
n≥ 8 mice/group in total.**P<0.01 and ***P<0.001 as determined by one-way Anova.  
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Figure 3.6. Expression of Helios in LP FoxP3+ CD4+ T cells. MLN cells and large-intestinal LP cells were isolated from 
uninfected, Hh+ and Hh+/anti-IL-10R-treated male and female Tiger mice at 2 wks pi. Cells were surface stained with mAb specific 
for CD3, CD4 an a live dead exclusion dye, fixed with 2% PFA, permeabilised with eBio perm and then intracellulary stained for 
Foxp3 and Helios. (A) Dot plots depicting the gating strategy used for the analysis. (B) Frequency (left panel) and number (right 
panel) of LP CD4+ T cells that are FoxP3+Helios+. (C) Frequency (left panel) and number (right panel) of LP CD4+ T cells that are 
FoxP3+Helios-. Data shown in (B) and (C) are a pool of three independent experiments. Bars show means + s.e.m. where n≥ 8 mice/
group (total).  **p<0.01 and ***p<0.001 as determined by one-way Anova.  
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Figure 5.10 Expression of LAG-3 in LP CD4+ T cells and FoxP3+ LP CD4+ T cell.  
Large intestinal LP cells were isolated from uninfected, Hh+ and Hh+/anti-IL-10R-treated 
Tiger mice at 2 wks pi. Cells were surface stained with mAb specific for CD3, CD4, LAG-3, 
CD49b and a live dead exclusion dye, fixed with ebio fix-perm and then permeabilised with 
eBio perm and intracellulary stained for Foxp3 and Helios. (A) Dot plots depicting the gating 
strategy used for the analysis of LAG-3 and FoxP3 expression. (B) Frequency (left panel) and 
number (right panel) of LAG-3+ LP CD4+ T cells. (C) Frequency (left panel) and number 
(right panel) of FoxP3+ LAG-3+ LP CD4+ T cells. Data shown in B-C are pooled from three 
independent experiments. Bars show means + s.e.m of n≥ 8 mice/group in total. **P<0.01 and 
***P<0.001 as determined by one-way Anova.  
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Figure 3.10. Expression of LAG-3 in FoxP3+ LP CD4+ T cells. Large intestinal LP cells were isolated from uninfected, Hh+ and 
Hh+/anti-IL-10R-treated Tiger mice at 2 wks pi. Cells were surface stained with mAb specific for CD3, CD4, LAG-3, CD49b and 
a live dead exclusion dye, fixed with ebio fix-perm and then permeabilised with eBio perm and intracellulary stained for Foxp3 
and Helios. (A) Dot plots depicting the gating strategy used for the analysis of LAG-3 and FoxP3 expression. (B) Frequency (left 
panel) and number (right panel) of LAG3+ LP CD4+ T cells. (C) Frequency (left panel) and number (right panel) of FoxP3+ 
LAG3+ LP CD4+ T cells. Data shown in B-C are pooled from three independent experiments. Bars show means + s.e.m of n≥ 8 
mice/group. (D) Gating strategy used for analysis of LAG-3 expression in FoxP3+ Helios+ and FoxP3+ Helios- LP CD4+ T cells. 
(E) Upper panel: Frequency of FoxP3+ Helios+ LAG-3+ cells (left panel) and FoxP3+ Helios- LAG-3+ cells (right panel) LP CD4+ 
T cells. Lower panel: Number of FoxP3+ Helios+ LAG-3+ (left panel) and FoxP3+ Helios- LAG-3+ (right panel) LP CD4+ T cells. 
Data shown are pooled from three independent experiments. Bars show means + s.e.m of n≥ 8 mice/group.**p<0.01 and 
***p<0.001 as determined by one-way Anova.  
 

LA
G

-3
 Is

ot
yp

e!



 163 

  

 
Figure 5.11 Expression of LAG-3 in FoxP3+ tTregs and pTregs.  
Large intestinal LP cells were isolated from uninfected, Hh+ and Hh+/anti-IL-10R-treated 
Tiger mice at 2 wks pi. Cells were surface stained with mAb specific for CD3, CD4, LAG-3 or 
LAG-3 isotype control and a live dead exclusion dye, fixed with ebio fix-perm and then 
permeabilised with eBio perm and intracellulary stained for Foxp3 and Helios or their 
respective isotype controls. (A) Gating strategy used for analysis of LAG-3 expression in 
FoxP3+ Helios+ and FoxP3+ Helios- LP CD4+ T cells. (B) Upper panels: Frequency of LAG-3 

expression in FoxP3+ Helios+ (left panel) and FoxP3+ Helios- (right panel) LP CD4+ T cells. 
Lower panels: Number of FoxP3+ Helios+ LAG-3+ (left panel) and FoxP3+ Helios- LAG-3+ 
(right panel) LP CD4+ T cells. Data shown are pooled from three independent experiments. 
Bars show means + s.e.m of n≥ 8 mice/group in total.**P<0.01 and ***P<0.001 as determined 
by one-way Anova. 
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Figure 5.12 Expression of LAG-3 in FoxP3- LP CD4+ T cells.  
Large intestinal LP cells were isolated from uninfected, Hh+ and Hh+/anti-IL-10R-treated 
Tiger mice at 2 wks pi. Cells were surface stained with mAb specific for CD3, CD4, LAG-3, 
CD49b and a live dead exclusion dye, fixed with 2% PFA, permeabilised with eBio perm and 
then intracellulary stained for Foxp3 and Helios. (A) Gating strategy for the analysis of LAG-
3 in the FoxP3- LP CD4+ T cells. (B) Frequency (left panel) and number (right panel) of LAG-
3+ FoxP3- LP CD4+ T cells. Data shown are pooled from three independent experiments. Bars 
show means + s.e.m of n≥ 8 mice/group in total. (C) Gating strategy for the analysis of LAG-
3 and CD49b in the FoxP3- LP CD4+ T cells. (D) Upper panel: Frequency of FoxP3- CD49b+ 
LAG-3+ (left panel) and FoxP3- CD49b- LAG-3+ (right panel) LP CD4+ T cells. Lower panel: 
Number of Frequency of FoxP3- CD49b+ LAG-3+ (left panel) and FoxP3- CD49b- LAG-3+ 
(right panel) LP CD4+ T cells. Data shown are pooled from two independent experiments. 
Bars in (B) and (D) show means + s.e.m of n≥ 6 mice/group in total. **P<0.01 and 
***P<0.001 as determined by one-way Anova. 
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Figure!3.12.!Expression!of!LAG63!in!FoxP36!LP!CD4+!T!cells.!Large!intes+nal!LP!cells!were!isolated!from!uninfected,!Hh+!and!Hh+/an+8IL810R8
treated!Tiger!mice!at!2!wks!pi.!Cells!were!surface!stained!with!mAb!specific!for!CD3,!CD4,!LAG83,!CD49b!and!a!live!dead!exclusion!dye,!fixed!
with!2%!PFA,!permeabilised!with!eBio!perm!and!then!intracellulary!stained!for!Foxp3!and!Helios.!(A)!Ga+ng!strategy!for!the!analysis!of!LAG83!
in!the!FoxP38!LP!CD4+!T!cells.!(B)!Frequency!(leV!panel)!and!number!(right!panel)!of!LAG3+!FoxP38!LP!CD4+!T!cells.!Data!shown!are!pooled!from!
three!independent!experiments.!Bars!show!means!+!s.e.m!of!n≥!8!mice/group!in!total.!(C)!Upper!panel:!Frequency!of!FoxP38!CD49b+!LAG3+!
(leV!panel)!and!FoxP38!CD49b8!LAG3+!(right!panel)!LP!CD4+!T!cells.!Lower!panel:!Number!of!Frequency!of!FoxP38!CD49b+!LAG3+!(leV!panel)!and!
FoxP38!CD49b8!LAG3+!(right!panel)!LP!CD4+!T!cells.!Data!shown!are!pooled!from!two!independent!experiments.!Bars!show!means!+!s.e.m!of!n≥!
6!mice/group!in!total.!**p<0.01!and!***p<0.001!as!determined!by!one8way!Anova.!
 

# Lag3 + FoxP3neg Tr1 (FoxP£ neg Lage3+ CD49b+)

Uninf Hh+ Hh+/anti-IL-10R 
0
2
4
6
8

10

100
200
300
400

***
***

N
um

be
r o

f L
ag

3+
 F

ox
P3

 -n
eg

 
Tr

1 
ce

lls
 

N
um

be
r 

of
 F

ox
P

3-
C

D
49

b-
 

LA
G

-3
+  

LP
 C

D
4+

 T
 c

el
ls

 (x
10

3 )
 

PERCENTAGE 

NUMBER 

# Lag3+ FoxP£ neg non-Tr1

Uninf Hh+ Hh+/anti-IL-10R 
0
2
4
6
8

10

100
200
300
400 ***

***

N
um

be
r o

f L
ag

3+
 F

ox
P3

 -n
eg

 
Tr

1-
ne

g 
ce

lls
 (e

ffe
ct

or
 T

 c
el

ls
)

# Lag3+ FoxP3 neg cells

Uninf Hh+ Hh+/anti-IL-10R 
0

100

200

300 **
**

N
um

be
r o

f F
ox

P3
-n

eg
 L

A
G

3+ 

LP
 C

D
4+  

T 
ce

lls
 x

10
3

N
um

be
r 

of
 F

ox
P

3-
LA

G
-3

+  
LP

 
C

D
4+

 T
 c

el
ls

 (x
10

3 )
 

C
D

3 

Fo
xP

3!

CD4 LAG-3!CD4 

C
D

49
b 

C 
Live cells CD4+ T cells Foxp3-neg cells 

Isotype control 



 165 

 
Figure 5.13 Effect of different fixation protocols on Helios staining.  
Il17acreR26ReYFP mice were inoculated with Hh and treated with anti-IL-10R mAb on days 0 
and 7 pi. At 2 wks pi, large intestinal LP cells were isolated, surface stained with mAb 
specific for CD3 and CD4 and a live dead exclusion dye, fixed and intracellularly stained for 
FoxP3 and Helios and analysed by flow cytometry. Dot plots in (A) and (B) depict the 
expression of eYFP, FoxP3 and Helios after the use of different fixatives (as indicated) and 
are gated on live CD4+ T cells. Data shown in (A) and (B) are from a single experiment in 
each case where cells from a single Il17acreR26ReYFP female mouse were used. 
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Figure 3.10 Effect of different fixation protocols on Helios staining. Il17acreR26ReYFP mice were inoculated with 
Hh and treated with anti-IL-10R mAb on days 0 and 7 pi. At 2 wks pi, large intestinal LP cells were isolated,  surface 
stained with mAb specific for CD3 and CD4 and a live dead exclusion dye, fixed and intracellularly stained for FoxP3 
and Helios and analysed by flow cytometry. Dot plots in (A) and (B) depict the expression of eYFP, FoxP3 and Helios 
after the use of different fixatives (as indicated). Dot plots in (A-B) are gated on live CD4+ T cells. Data shown in (A) 
and (B) are from a single experiment in each case where cells from a single Il17acreR26ReYFP female mouse were 
used. 
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Figure 5.14 Phenotype of IL-10-producing CD4+ T cells based on expression of FoxP3.  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
male and female Tiger mice at 2 wks pi. The cells were stimulated with PMA and ionomycin 
in the presence of Brefeldin A and the other half left untreated. The cells were fixed with 2% 
PFA, surface stained with mAb specific for CD3, CD4 and a live dead exclusion dye, and then 
permeabilised with eBio perm and intracellularly stained for FoxP3. (A) Dot plots depicting 
the gating strategy used for the analysis. (B) Frequency (left panel) and number (right panel) 
of IL-10-GFP+ FoxP3+ LP CD4+ T cells. Data shown are from a single experiment. Bars in (B) 
show means + s.e.m of n≥ 3 mice/group in total. *P<0.01 **P<0.001 and as determined by 
one-way Anova. 
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Figure 3.8. Phenotype of IL-10-producing CD4+ T cells based on markers of Tregs. LP cells were isolated from the 
large intestine of uninfected, Hh and Hh+/anti-IL-10R-treated male and female tiger mice at 2 weeks pi. Half the cells 
were stimulated with PMA and ionomycin in the presence of Brefeldin A and the other half left untreated. PMA/
ionomycin treated cells were surface stained with mAb specific for CD3, CD4 and a live dead exclusion dye, fixed and 
then intracellularly stained for FoxP3. Ex-vivo cells were surface stained with mAb specific for CD3, CD4, CD49b and 
LAG-3 and a live dead exclusion dye. Both ex-vivo and PMA/ionomycin-treated cells were then analysed on a flow 
cytometer. (A) Dot plots depicting the gating strategy used for the analysis of FoxP3+ cells in the IL-10-GFP+CD4+ T 
cells. (B) Frequency of FoxP3 expression in IL-10-GFP+ LP CD4+ T cells. Data shown are from a single experiment 
where where n≥ 3 mice/group. (C) Dot plots depicting the gating strategy used for the analysis of CD49b and LAG-3 
expression in IL-10-GFP+ LP CD4+ T cells. Histograms on the right depict isotype controls in grey and positive staining 
in black. (D) Frequency (left panel) and number (right panel) of LAG-3+ cells in IL-10-GFP+ LP CD4+ T cells. 
Frequency (left panel) and number (right panel) of LAG-3+ cells in IL-10-GFP+ LP CD4+ T cells. (E) Dot plots showing 
representative staining of CD49b and LAG-3 expression. Dot plots are gated on live IL-10-GFP+ LP CD4+ T cells (F) 
Frequency (left panel) and number (right panel) of CD49b+ LAG-3+ cells in IL-10-GFP+ LP CD4+ T cells.  Data shown 
in (D) and (F) are pooled from three independent experiments. Bars in (B), (D), and (F) show means + s.e.m of n≥ 6 
mice/group. *p<0.05 and ***p<0.0005 as determined by one-way Anova.  
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Figure 5.15 Phenotype of IL-10-producing CD4+ T cells based on LAG-3 and/or CD49b.  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
male and female Tiger mice at 2 wks pi. The cells were fixed with 2% PFA, surface stained ex 
vivo with mAb specific for CD3, CD4, CD49b and LAG-3 and a live dead exclusion dye and 
analysed by flow cytometry. (A) Dot plots depicting the gating strategy used for the analysis 
of CD49b and LAG-3 expression in IL-10-GFP+ LP CD4+ T cells. (B) Frequency (left panel) 
and number (right panel) of LAG-3+ IL-10-GFP+ LP CD4+ T cells. (C) Dot plots showing 
representative staining of CD49b and LAG-3 expression. Dot plots shown are from the Hh+ 
group and are gated on live IL-10-GFP+ LP CD4+ T cells. (D) Frequency (left panel) and 
number (right panel) of CD49b+ LAG-3+ IL-10-GFP+ LP CD4+ T cells.  Data shown in (B) 
and (D) are pooled from three independent experiments. (E) Fold change of the number of 
CD4+ T cells and different subsets of IL-10-GFP expressing cells (as indicated in the figure) 
in Hh+ mice (left panel) and Hh+/anti-IL-10R -treated mice (right panel) compared to 
uninfected controls. Data shown are pooled from three independent experiments. Bars in (B), 
(D) and (E) show means + s.e.m of n≥ 8 mice/group in total. *P<0.01 **P<0.001 and 
***P<0.0001 as determined by one-way Anova for (B) and (D) and Mann-Whitney test for 
(E).  
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Figure'3.15.'Phenotype'of'IL6106producing'CD4+'T'cells'based'on'LAG63'
and/or'CD49b.!LP!cells!were!isolated!from!the!large!intes4ne!of!
uninfected,!Hh+!and!Hh+/an49IL910R9treated!male!and!female!Tiger!mice!
at!2!wks!pi.!The!cells!were!fixed!with!2%!PFA,!surface!stained!ex(vivo!with!
mAb!specific!for!CD3,!CD4,!CD49b!and!LAG93!and!a!live!dead!exclusion!
dye!and!analysed!by!flow!cytometry.!(A)!Dot!plots!depic4ng!the!ga4ng!
strategy!used!for!the!analysis!of!CD49b!and!LAG93!expression!in!IL9109
GFP+!LP!CD4+!T!cells.!!Histograms!on!the!right!depict!isotype!controls!in!
grey!and!posi4ve!staining!in!black.!(B)!Frequency!(leW!panel)!and!number!
(right!panel)!of!LAG93+!IL9109GFP+!LP!CD4+!T!cells.!(C)!Dot!plots!showing!
representa4ve!staining!of!CD49b!and!LAG93!expression.!Dot!plots!shown!
are!from!the!Hh+!group!and!are!gated!on!live!IL9109GFP+!LP!CD4+!T!cells.!
(D)!Frequency!(leW!panel)!and!number!(right!panel)!of!CD49b+!LAG93+!
IL9109GFP+!LP!CD4+!T!cells.!!Data!shown!in!(B)!and!(D)!are!pooled!from!
three!independent!experiments.!(E)!Fold!change!compared!to!uninfected!
controls!of!CD4+!T!cells!and!different!subsets!of!IL9109GFP!expressing!cells!
(as!indicated!in!the!figure)!in!Hh+!mice!(leW!panel)!and!Hh+/an49IL910R!9
treated!mice!(right!panel).!!Data!shown!are!pooled!from!three!
independent!experiments!except!for!IL9109GFP+!FoxP3+!cells!which!were!
from!a!single!experiment.!Bars!in!(B),!(D)!and!(E)!show!means!+!s.e.m!of!!
n≥!3!mice/group!in!total.!*p<0.01!**p<0.001!and!***p<0.0001!as!
determined!by!one9way!Anova!for!(B)!and!(D)!and!Mann9Whitney!test!for!
(E).!!
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Figure 5.16 Following infection with Hh, the majority of IL-10-producing CD4+ T cells 
express CD25.  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
female Il17acreR26ReYFP mice at 2 wks pi. The cells were stimulated with PMA and ionomycin 
in the presence of Brefeldin A. The cells were then surface stained with mAb specific for 
CD3, CD4, CD25 and a live dead exclusion dye, fixed with 2% PFA, permeabilised with eBio 
perm buffer and then intracellulary stained for FoxP3. (A) Gating strategy used for the 
analysis. (B) Graphs depicting the number of LP CD4+ T cells that are IL-10+CD25+ (left 
panel) and IL-10+CD25- (right panel). (C) Distribution of IL-10-producing CD4+ T cells based 
on the expression of FoxP3 and/or CD25. Values shown represent average frequencies ± 
standard deviation of n≥ 6 mice/group in total. Data shown in (B) and (C) are pooled from 
two independent experiments. *P<0.01 **P<0.001 and ***P<0.0001 as determined by one-
way Anova.  
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Figure 3.12. Following infection with Hh, the majority of IL-10producing CD4+ T cells express CD25. LP cells were isolated from 
the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated female IL-17AcreRosa26eYFP mice at 2 wks pi. The cells were stimulated 
with PMA and ionomycin in the presence of Brefeldin A. The cells were then surface stained with mAb specific for CD3, CD4, CD25 
and a live dead exclusion dye, fixed with 2% PFA, permeabilised with eBio perm buffer and then intracellulary stained for FoxP3. (A) 
Gating strategy used for the analysis. (B) Graphs depicting the number of IL-10-producing CD4+ T cells that are CD25-positve (left 
panel) and CD25-negative (right panel). (C) Graphs depicting the number of IL-10-producing CD4+ T cells that are FoxP3-positve (left 
panel) and FoxP3-negative (right panel). Bars show means + s.e.m. of n≥#6#mice/group# in#total.#  (D) Distribution of IL-10-producing 
CD4+ T cells based on the expression of FoxP3 and/or CD25. Values shown represent average frequencies ± standard deviation of n≥#6#
mice/group#in#total. Data shown in (B) and (C) are pooled from two independent experiments. *p<0.01#**p<0.001#and#***p<0.0001#as#
determined#by#one;way#Anova# 
 

13%  
±5.9 

65% 
±18.9 

 

4% ±4 
 

18% 
±13.8 

 

15% 
±5.9 

 

65% 
±10.1 

 

6% 
±1.7 

 

14% 
±6.9 

 

5% 
±2.4 

 

56%  
±21.0 

 

16% 
±8.4 

 

23% 
±11.3 

 

# IL-10+ CD25+ SK31 SK62

Uninf Hh+ Hh+/αIL-10R
0

10

20

30

40
*

***

# IL-10+ CD25neg SK31 SK62

Uninf Hh+ Hh+/αIL-10R
0

10

20

30

40 *

N
um

be
r 

of
  I

L-
10

+  
C

D
25

+ 

 L
P

 C
D

4+
 T

 c
el

ls
 (x

10
3 )

 

N
um

be
r 

of
  I

L-
10

+  
C

D
25

- 

 L
P

 C
D

4+
 T

 c
el

ls
 (x

10
3 )

 

C 



 169 

 
Figure 5.17 In the colitic setting, there is an expansion of IL-10-producing CD4+ T cells 
that co-express IL-17A and/or IFN-γ .  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
male and female Tiger mice at 2 wks pi and stimulated with PMA and ionomycin in the 
presence of Brefeldin A. The cells were surface stained with mAb specific for CD3, CD4 and 
a live dead exclusion dye, fixed with 2% PFA, permeabilised with eBio perm buffer and then 
intracellularly stained for IL-17A, IFN-γ and IL-10 and analysed by flow cytometry. (A) Dot 
plots showing representative staining of IL-10-GFP (upper panel) and distribution of IL-10 
GFP+ cells based on co-expression of IL-17A and/or IFN-γ (lower panel) in uninfected, Hh+ 
and Hh+/anti-IL-10R-treated Tiger mice. Dot plots are are gated on live LP CD4+ T cells. (B) 
Distribution of IFN-γ 

 
and IL-17A expression in each group when gated on LP CD4+ IL-10-

GFP+ cells. Data shown are representative of one of two experiments. (C) Dot plots showing 
representative staining of IL-10 detected by ICS (upper panel) and distribution of IL-10+ cells 
(detected by ICS) based on co-expression of IL-17A and/or IFN-γ (lower panel) in uninfected, 
Hh+ and Hh+/anti-IL-10R-treated Tiger mice. Dot plots are are gated on live LP CD4+ T cells. 
(D) Distribution of IFN-γ and IL-17A expression in each group when gated on LP CD4

+
IL-10

+
 

cells (detected by ICS). Data shown are from a single experiment. In (B) and (D), figures 
depict the frequency ± standard deviation of n≥ 3 mice/group. 
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Figure 5.18 A small proportion of IL-10+ IFN-γ + cells in the colitic setting are derived 
from ex-Th17 cells.  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh

+
/anti-IL-10R-treated 

female Il17acreR26ReYFP mice at 2 wks pi. The cells were stimulated with PMA and ionomycin 
in the presence of Brefeldin A. The cells were then surface stained with mAb specific for 
CD3, CD4, and a live dead exclusion dye, fixed and then intracellulary stained for FoxP3, IL-
17A and IFN-γ. In one experiment in which the cells were fixed and permeabilised with 2% 
PFA/0.1% saponin and in the other four experiments, the cells were fixed and permeabilised 
with 2% PFA/eBio perm. (A) Gating strategy used for the analysis of IL-10-producing CD4+ 
T cells that co-express eYFP, IL-17A and/or IFN-γ. (B) Distribution of IL-10-producing CD4+ 
T cells based on the expression of eYFP, IL-17A and/or IFN-γ in the three experimental 
groups. Data shown are pooled from five independent experiments. Values shown represent 
average frequencies ± standard deviation of n≥ 18 mice/group in total. (C) Fold change of the 
number of IL-10+ CD4+ T cells expressing either eYFP, IL-17A and/or IFN-
γ (as indicated in the figure) in Hh+ mice (left panel) or Hh+/anti-IL-10R-treated mice (right 
panel) when compared to uninfected controls. Data shown are pooled from four independent 
experiments. Bars show means + s.e.m of n≥ 15 mice/group in total. *P<0.05  **P<0.01 and 
***p<0.001 as determined by Mann-Whitney test. 
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Figure 5.19 FoxP3 expression in IL-10-producing CD4+ T cells that co-express IL-17A 
and/or IFN-γ .  
LP cells were isolated from the large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated 
female Il17acreR26ReYFP mice at 2 wks pi. The cells were stimulated with PMA and ionomycin 
in the presence of brefeldin A. The cells were then surface stained with mAb specific for 
CD3, CD4, and a live dead exclusion dye, fixed with 2% PFA, permeabilised with eBio perm 
buffer and then intracellularly stained for FoxP3, IL-17A and IFN-γ. (A) Gating strategy used 
for the analysis of FoxP3 expression within each of the IL-10-producing CD4+ T-cell subsets 
that co-express eYFP, IL-17A and/or IFN-γ. (B) Bars depict the number of FoxP3-positive 
(filled bars) and FoxP3-negative (open bars) cells in the LP IL-10-producing CD4+ T cells 
that co-express eYFP, IL-17A and/or IFN-γ in the three experimental groups. Data shown are 
pooled from three independent experiments. Bars show means + s.e.m of n≥ 11 mice/group in 
total.   
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Figure 3.13. FoxP3 expression in IL-10-producing CD4+ T cells that co-express L-17A and/or IFN-γ. LP cells were 
isolated from the large intestine of uninfected, Hh and Hh+/anti-IL-10R-treated female IL-17AcreRosa26eYFP mice at 2 weeks 
pi. The cells were stimulated with PMA and ionomycin in the presence of brefeldin A. The cells were then surface stained 
with mAb specific for CD3, CD4, and a live dead exclusion dye, fixed and then intracellulary stained for FoxP3, IL-17A 
and IFN-γ.(A) Gating strategy used for the analysis of FoxP3 expression within each of the IL-10-producing CD4+ T-cell 
subsets that co-express IL-17A and/or IFN-γ. (B) Bars depict the number of FoxP3-positive (filled bars) and FoxP3-
negative (open bars) cells in the LP IL-10-producing CD4+ T cells that co-express IL-17A and/or IFN-g in the three 
experimental groups. Data shown are pooled from two independent experiments in the case of uninfected and Hh+ mice and 
three experiments in Hh+/anti-IL-10R-treated mice. Bars show means + s.e.m of n≥ 8 mice/group.   
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Figure 5.20 A proportion of ex-Th17 cells express IL-10 and FoxP3.  
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Figure 3.14. A proportion of ex-Th17 cells express IL-10 and FoxP3. LP cells were isolated from the large intestine 
of uninfected, Hh and Hh+/anti-IL-10R-treated female IL#17AcreRosa26eYFP!mice at 2 wks pi. The cells were stimulated with 
PMA and ionomycin in the presence of Brefeldin A. The cells were then surface stained with mAb specific for CD3, 
CD4, and a live dead exclusion dye, fixed and then intracellulary stained with mAb specific for FoxP3, IL-17A and IFN-
γ. (A) Gating strategy used for the analysis of IL-10 and FoxP3 expression in CD4+ T cell-subsets that express eYFP, 
IL-17A and/or IFN-γ. Frequency of (B) IL-10+ cells  and (C) FoxP3+ cells in IL-17A+, IL-17A+IFN-γ+, IFN-γ+ eYFP+, IFN-γ
+eYFP- and IL-17A-IFN-γ-eYFP+ CD4+ T cells in the three experimental groups. Data shown in (B) are pooled from five 
independent experiments and data shown in (C) are pooled from three independent experiments. Bars show mean + 
s.e.m of n≥ 11 mice/group. *p<0.05  **p<0.01 and ***p<0.001 as determined by one-way Anova.  
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Figure 5.20. A proportion of ex-Th17 cells express IL-10 and FoxP3. LP cells were isolated from the 
large intestine of uninfected, Hh+ and Hh+/anti-IL-10R-treated female Il17acreR26ReYFP mice at 2 wks pi. 
The cells were stimulated with PMA and ionomycin in the presence of Brefeldin A. The cells were then 
surface stained with mAb specific for CD3, CD4, and a live dead exclusion dye, fixed and then 
intracellulary stained with mAb specific for FoxP3, IL-17A and IFN-γ. (A) Gating strategy used for the 
analysis of IL-10 and FoxP3 expression in CD4+ T cell-subsets that express eYFP, IL-17A and/or IFN-γ. 
Frequency of (B) IL-10+ cells and (C) FoxP3+ cells in IL-17A+, IL-17A+ IFN-γ+, IFN-γ+ eYFP+, IFN-
γ+eYFP- and IL-17A- IFN-γ-eYFP+ CD4+ T cells in the three experimental groups. Data shown in (B) are 
pooled from five independent experiments and data shown in (C) are pooled from three independent 
experiments. With the exception of one experiment in (B), in which the LP cells were fixed and 
permeabilised with 2% PFA/0.1% saponin, in all the other experiments in (B) and (C), the LP cells were 
fixed and permeabilised with the combination of 2% PFA/eBio perm. Bars show mean + s.e.m of n≥ 11 
mice/group in total. *P<0.05  **P<0.01 and ***P<0.001 as determined by one-way Anova.  
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Figure 5.21 Schematic depicting the main findings of chapter 5.  
The balance in the figure depicts the fact that in uninfected and Hh+ mice, the Treg response 
dominates over the effector CD4+ T-cell response. Conversly, in inflamed mice, the effector 
response dominates over the Treg response. The pale blue box linked by dotted blue lines to 
the Treg circle on the balance depicts the proportions of different Tregs examined, while the 
pale orange box linked by dotted orange lines to the Teff circle on the balance depicts the 
effector T cell populations present in each group. (B) The pie chart depicts the distribution of 
the IL-10+ LP CD4+ T cells in each experimental group as described in the figure. The 
phenotypic characteristics of the cells that make up the IL-10+ cells that share characteristic 
of effector T cells and Tregs are depicted in the blue box with the red border. 
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CHAPTER 6. GENERAL DISCUSSION 
Intestinal inflammation is thought to occur because of a breakdown in the regulatory 

mechanisms that keep effector CD4+ T-cell responses in check. Although previous studies in 

our lab have extensively characterised the pathogenic effector CD4+ T-cell response in Hh 

colitis (Morrison et al., 2013), the alteration in regulatory mechanisms is less well understood. 

The work carried out in this thesis sought to examine whether two types of regulatory 

mechanisms are altered in colitic mice compared to uninfected controls. At a cell-intrinsic level, 

we examined whether the profile of microRNAs, which are post-transcriptional gene regulators, 

are altered at the tissue level and CD4+ T-cell level in the large intestine of colitic IL-10 KO 

mice compared to uninfected controls. The anti-inflammatory cytokine IL-10 has been shown to 

be important for preventing intestinal inflammation in the Hh model (Kullberg et al., 2002), as 

well as other models of colitis (Asseman et al., 1999; Carthew and Sontheimer, 2009) and 

represents one of the cell-extrinsic mechanisms of keeping pathogenic immune responses in 

check. Furthermore, we have also shown previously that priming with Hh is necessary to 

generate disease-protective IL-10+ cells as Tregs from Hh+ WT but not uninfected WT mice 

were able to protect RAG KO mice from developing colitis upon co-transfer with naïve CD4+ T 

cells (Kullberg et al., 2002). Although previous work in the lab has shown that protection 

against Hh-induced inflammation is dependent on IL-10, the phenotype of these cells has not 

been examined before. Here, we examined the phenotype of IL-10+ CD4+ T cells in a non-

inflammatory and an inflammatory immune response to Hh to determine whether these cells 

exhibit an altered phenotype in the colitic setting. Briefly, the work carried out in this thesis has 

shown that the profile of microRNAs and IL-10+ CD4+ T cells is markedly altered in the colitic 

setting suggesting that the alteration observed in both these regulatory mechanisms may play a 

role in driving the inflammatory response. 

In Chapter 4, we focused on examining microRNA expression in the large intestine of 

Hh+ IL-10 KO mice and compared it to that of uninfected controls. Although differential 

microRNA expression has been observed in tissues from humans with active UC or CD 

compared to healthy controls (Wu et al., 2011; Wu et al., 2010; Wu et al., 2008), and altered 

microRNA expression has been shown to potentiate colitis in several animal models of colitis 

(Brain et al., 2013; Koukos et al., 2013; Xue et al., 2011; Zhang et al., 2010), the role of 

microRNAs in Hh-induced colitis has not been examined before. The current study revealed 

that microRNAs are differentially expressed at the tissue-level and CD4+ T-cell level in colitic 

mice compared to uninfected controls. Kinetic examination of microRNA expression at the 

tissue level revealed that the change in expression of microRNAs coincided with the 

development of intestinal inflammation. We next profiled microRNA expression by means of a 

microRNA microarray in LP CD4+ T cells. To our knowledge, this is the first time microRNAs 

have been profiled on ex vivo isolated LP CD4+ T cells in any colitis model. The microarray 
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revealed that two microRNAs (miR-21a and miR-31) were significantly up-regulated and seven 

microRNAs (miR-181a, miR-125a, miR-125b, miR-30a, miR-192, miR-467c and miR-139) 

were significantly down-regulated in LP CD4+ T cells from 2-wk Hh+ IL-10 KO mice compared 

to uninfected controls. A further 105 microRNAs showed a fold change greater than two in LP 

CD4+ T cells from 2-wk Hh+ IL-10 KO mice compared to uninfected controls of which miR-

210 and miR-96 showed the greatest fold increase. The differential expression of microRNAs in 

inflamed tissue and in LP CD4+ T cells from colitic mice compared to those from uninfected 

controls suggests the possibility of a change in microRNA expression modulating the 

inflammatory response in Hh colitis, and perhaps potentiating pathology through excessive 

suppression (in case of up-regulated microRNAs) or loss of suppression (in case of down-

regulated microRNAs) of their target mRNAs. From the microRNAs identified from the 

microarray, we examined the expression of miR-21a, miR-31, miR-210, miR-96 and miR-181a 

further and found that compared to naïve CD4+ T cells, miR-21a, miR-31, miR-210 and miR-96 

were up-regulated and miR-181a was down-regulated in in vitro polarized Th1 and Th17 cells. 

A number of predicted and experimentally validated mRNA targets of these microRNAs were 

identified whose microRNA-mediated change in expression could potentiate the inflammatory 

CD4+ T cell response in Hh colitis.  Of these predicted and experimentally validated mRNA 

targets, the most promising targets to investigate further, in my opinion, are miR-31 predicted 

target Twist 1, miR-31 and miR-210 validated target FoxP3 and the experimentally validated 

target for miR-21 but predicted target for miR-181a, Smad7. 

In the current study, we found that miR-31 was progressively up-regulated in in vitro 

polarized Th1 and Th17 cells following activation with anti-CD3. If Twist 1 proves to be a 

target of miR-31, miR-31-mediated repression of Twist 1 could augment the Th1, Th17 and 

perhaps the ex-Th17 response in a number of ways. Twist 1 is a transcriptional repressor that 

prevents the expression of IFN-γ, TNFα and IL-2 by Th1 cells (Niesner et al., 2008). Twist 1 

prevents T-bet and Runx3 from binding to the Ifng locus and prevents IFN-γ production (Pham 

et al., 2012). Twist 1 also limits Th17 development by directly repressing IL-6Rα (Pham et al., 

2013).  Given the current knowledge of the role of Twist 1, it is tempting to speculate that 

increased miR-31 expression suppresses Twist 1 and allows expression of IFN-

γ. Whether Twist 1 is also important for IFN-γ expression by ex-Th17 cells remains to be seen. 

 FoxP3 is a validated target of both miR-31 and miR-210 (Rouas et al., 2009; Zhao et 

al., 2014). Given that FoxP3 is necessary for the suppressive capacity of Tregs (Fontenot et al., 

2003; Khattri et al., 2003), overexpression of both miR-31 and miR-210 in the colitic setting 

might result in decreased FoxP3 expression and thus a decrease in the suppressive capacity of 

the Tregs. 

 Smad7 is a validated target of miR-21 but a predicted target of miR-181a. In the current 

study, we saw an up-regulation of miR-21 and a down-regulation of miR-181a in LP CD4+ T 
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cells from 2-wk Hh+ IL-10 KO mice compared to those from uninfected controls. Thus it is 

unclear whether Smad7 expression is suppressed due to increased miR-21a levels or whether it 

is overexpressed due to decreased miR-181a levels. It might also be that loss of miR-181a-

mediated suppression of Smad7 might be partially or completely compensated by miR-21-

mediated suppression of Smad7. Smad7 itself plays a very important role in IBD and colitis, 

where inhibition of Smad7 was found to ameliorate disease (Boirivant et al., 2006; Fantini et al., 

2009). Smad7 is found to be highly up-regulated in patients with CD, and high Smad7 

expression makes effector CD4+ T cells resistant to suppression by Tregs (Fantini et al., 2009). 

Blocking Smad7 expression in CD4+ T cells dramatically improved disease in TNBS and 

oxazolone colitis but not T cell transfer colitis (Boirivant et al., 2006) and antisense nucleotides 

targeting Smad7 are currently in clinical trials for treatment of CD (Monteleone et al., 2012). In 

contrast to its role in colitis, in EAE, miR-21-mediated knockdown of Smad7 promoted Th17 

differentiation and potentiated disease (Murugaiyan et al., 2015). 

 To examine whether miR-31, miR-21a, miR-210 and miR-181a and their 

predicted/validated targets play any role in augmenting the pathogenic Th1 and Th17 response 

in Hh colitis, it would be necessary to first examine whether predicted targets Smad7 and Twist 

1 are actually targets of miR-181a and miR-31 respectively by doing a luciferase assay to 

determine whether miR-181a and miR-31 are able to bind to Smad7 and Twist 1 and inhibit 

their expression. In a luciferase assay, the 3' UTR of the mRNA of interest is cloned 

immediately downstream of luciferase (Photinus or Renilla) contained in the reporter plasmid 

(Jin et al., 2013; Kuhn et al., 2008). The reporter plasmid and miRNA of interest are then 

transfected into a celline such as HeLa cell or Jurkat cell and luciferase activity measured after 

24-48 hrs (Jin et al., 2013; Kuhn et al., 2008). A decrease in luciferase activity implies that the 

microRNA has bound to its mRNA target and prevented luciferase protein expression (Jin et al., 

2013; Kuhn et al., 2008). The luciferase assay only verifies whether a microRNA can bind to its 

mRNA target, not whether this miR/mRNA interaction actually takes place in the cell of interest 

(in our case CD4+ T cells). Therefore, once a particular mRNA is validated as a target of a given 

microRNA, in vitro proof of principle studies can be carried out whereby the effect of 

overexpressing or inhibiting a microRNA on its target mRNA expression can be examined.  

Naïve CD4+ T cells can be transfected with microRNA mimics/inhibitors and then polarized to 

a Th1, Th17 or iTreg phenotype and the effect of microRNA overexpression or inhibition on its 

target mRNA expression, phenotype of the cell and cytokine production examined. 

Based on the results of the in vitro studies, in vivo studies could then be carried out to 

determine whether altering microRNA expression levels has any functional effect on disease 

severity in Hh-induced colitis. For microRNAs that were overexpressed in LP CD4+ T cells 

from 2-wk Hh+ IL-10 KO compared to uninfected controls, i.e. miR-21a, miR-31 and miR-210, 

the functional effect of these microRNAs on Hh colitis would be assessed by silencing them. 

There are three methods that are currently used to carry out in vivo studies to deplete 
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microRNAs: i) MicroRNA sponges (Ebert and Sharp, 2010), ii) Anti-sense oligonucleotides 

(Stenvang et al., 2012) and iii) Genetic knockouts (Stenvang et al., 2012). MicroRNA sponges 

are designed to act as decoy targets for a particular microRNA of interest and in essence deplete 

the microRNA by ‘soaking it up’ (Ebert and Sharp, 2010). Anti-sense oligonucleotides bind to 

the microRNA and prevent it from binding to its target mRNA (Stenvang et al., 2012). Finally, 

genetic knockouts can be generated for a particular microRNA (Stenvang et al., 2012).  If 

possible, my preference would be to use genetically modified mice for the microRNAs that 

were overexpressed i.e. miR-31, miR-21a and miR-210, primarily because genetic knockouts 

ensure complete deletion of the microRNA of interest (Stenvang et al., 2012).  In contrast, 

antisense oligonucleotides and sponges do not achieve complete depletion of the microRNA of 

interest and it is unclear how effective they are for long-term depletion of a microRNA (Ebert 

and Sharp, 2010; Stenvang et al., 2012).  Thus by breeding mice that conditionally knockout 

miR-31, miR-21a or miR-210 in CD4+ T cells alone, and infecting these mice with Hh and 

concomitantly treating them anti-IL-10R, the effect of these microRNAs on the CD4+ T-cell 

response, and on disease severity in Hh colitis could be assessed in vivo. We know from 

previous work in the lab that transfer of naïve CD4+ T cells from uninfected WT mice into Hh+ 

RAG KO mice results in intestinal inflammation (Kullberg et al., 2002). This model of Hh 

colitis could also be used to assess the effect of the miRNA/mRNA pathway in vivo by sorting 

naïve CD45RB high CD4+ T cells from miR-31 KO and miR-210 KO mice and adoptively 

transferring them into Hh+ RAG KO. This would not only enable us to assess effect of knocking 

out of these microRNAs on colitis severity, but also whether CD4+ T cells deficient in miR-31, 

miR-21 or miR-210 are defective in their ability to develop into Th1 and Th17 cells. 

For microRNAs that were down-regulated in LP CD4+ T cells from 2-wk Hh+ IL-10 

KO compared to uninfected controls, i.e. miR-181a, the functional effect of these microRNAs 

on Hh colitis would be assessed by overexpressing them. To do so, naïve CD4+ T cells could be 

sorted from uninfected IL-10 KO mice, transfected with synthetic miR-181a mimics, and 

transferred into Hh+ RAG KO mice to determine the effect of overexpressing miR-181a levels 

on colitis severity and on the development of the Th1 and Th17 cells. 

The experiments carried out in chapter 4 have provided very promising early results for 

future projects examining the roles that the microRNAs that were differentially expressed in LP 

CD4+ T cells isolated from colitic mice compared to uninfected controls play in modulating the 

CD4+ T-cell response during intestinal inflammation. Further delineation of the mRNA targets 

of these microRNAs, and examining whether these targets have any functional role in disease 

pathogenesis will help to shed more light on the molecular mechanisms underlying the 

pathogenesis of intestinal inflammation and will hopefully also identify potential novel 

therapeutic strategies to treat intestinal inflammation. With a number of microRNAs now 

emerging as biomarkers and being tested in clinical trials for use as therapeutic agents (Alevizos 

and Illei, 2010; Dong et al., 2014; Guay and Regazzi, 2013; van Rooij et al., 2012), the potential 
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clinical significance of microRNAs in CD, a disease which currently has few effective 

treatments, is important and needs to be examined further. 

In Chapter 5, we focused on examining the phenotype of IL-10-producing CD4+ T cells 

in the large intestine LP in a non-inflammatory immune response seen in Hh+ mice and an 

inflammatory immune response seen in Hh+/anti-IL-10R-treated mice. Our key finding was that 

in uninfected mice and mice exhibiting a non-inflammatory immune response to Hh, most of 

the IL-10-producing CD4+ T cells were of a purely Treg phenotype whereas in the colitic 

setting, almost half the IL-10-producing CD4+ T cells shared phenotypic characteristics of 

effector T cells (co-expressed IL-17A and/or IFN-γ) and regulatory T cells (expressed FoxP3). 

Furthermore, we also show in this study for the first time, that a small proportion of ex-Th17 

cells produce IL-10 and express FoxP3. Although IL-10+ cells that share effector and regulatory 

cell phenotypes have been observed in different diseases including human CD and murine 

colitis models, this study shows for the first time the extent to which these cells constitute the 

total IL-10+ CD4+ T-cell pool during colitis. These findings raise three important questions; 1) 

How does the phenotype of IL-10-producing LP CD4+ T cells change over time 2) Are the IL-

10+ CD4+ T cells that share characteristics of regulatory and inflammatory cells pathogenic or 

protective, and 3) Do these cells originate from an effector T cell or a regulatory T cell. The 

implications of the answers to these questions and the experiments that could be done to address 

them have been expanded upon in the next few paragraphs.  

1) How does the phenotype of IL-10+ CD4+ T cells change over time?  

In the current study, in both Hh+ and Hh+/anti-IL-10R-treated mice, the phenotype of IL-10-

producing LP CD4+ T cells was only examined at 2 wks pi and seemed to mirror, at much 

smaller frequencies, the phenotype effector CD4+ T cells subsets that were present in that 

particular experimental group at this timepoint (with the exception that some of the IL-10+ cells 

also expressed FoxP3). This finding suggests that there is a possibility that there are specialised 

Treg subsets that evolve alongside the effector T cells that keep them in check. We know from 

previous work in the lab, that Hh-induced inflammation peaks at 2wks pi and resolves at about 

14 wks pi and during the resolution of inflammation, the frequencies of IFN-γ+ and IL-

17A+IFN-γ+ LP CD4+ T cells decrease but the frequency of Th17 cells increase (Morrison et al., 

2013). A recent study showed that small intestinal Th17 cells have been shown to change 

phenotype to become Tr1ex-Th17 cells that primarily secrete IL-10 during the resolution of 

inflammation (Gagliani et al., 2015). Thus it would be interesting to examine whether the 

skewing of the immune response to a Th17 response at the later stages of Hh-infection that we 

have previously observed is accompanied by a phenotype shift to become IL-17A+ IL-10+ 

FoxP3+/- cells phenotype rather than an ex-Th17 cell phenotype, and if this shift might play a 

role in the resolution of the Hh-induced intestinal inflammation (Figure 6.1). To examine 

whether this is the case, a kinetic study could be done to examine whether the phenotype of IL-
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10-producing CD4+ T cells follows a similar change in expression pattern as the effector CD4+ 

T cells over time in uninfected, Hh+ and Hh+/anti-IL-10R-treated IL-17A-eYFP mice, and 

whether, during the resolution of Hh-induced intestinal inflammation, the Th17/Th17 IL-10+ 

FoxP3+/- switch dominates over the Th17/ex-Th17 switch.  

 

Figure 6.1 Th17-phenotype shifting during inflammation and the resolution of 
inflammation.  
The figure depicts the hypothesis that during inflammation, the Th17 to ex-Th17 pathway 
dominates (indicated by thick red arrows) whereas during the resolution of inflammation, the 
Th17 to a FoxP3+ Treg phenotype might dominate (indicated by thick blue arrows). 

2) Are the IL-10+ CD4+ T cells that share characteristics of regulatory and 

inflammatory cells pathogenic or protective? 

Another question that needs to be addressed is whether the IL-10-producing CD4+ T cells that 

co-express inflammatory cytokines are protective or pathogenic. Similar to the phenotype of 

cells we observed in Hh+ and Hh+/anti-IL-10R-treated mice, IL-17A+IL-10+ FoxP3- (Esplugues 

et al., 2011) and IL-17A+ FoxP3+ (Hovhannisyan et al., 2011) cells have been isolated from the 

LP of patients with active CD. Although the IL-17A+IL-10+ FoxP3- (Esplugues et al., 2011) and 

IL-17A+ FoxP3+ (Hovhannisyan et al., 2011) examined in humans suffering from CD were 

suppressive in nature, it is unclear whether the IL-10-producing CD4+ T cells that co-express 

inflammatory cytokines that we observed in Hh+ and Hh+/anti-IL-10R-treated mice are 

suppressive or inflammatory. In vitro and in vivo suppression assays could be used to address 

this question. For both assays, IL-10-producing CD4+ T cells that co-express IL-17A and/or 

IFN-γ can be sorted either by means of triple reporter mice that are FoxP3-RFP, IL-10-GFP and 
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either IFN-γ or IL-17A-eYFP, or by means of a cytokine secretion assay that we have 

previously used to sort like IFN-γ+, IL-17A+IFN-γ+ and IL-17A+ cells (Morrison et al., 2013). In 

vitro suppression assays would involve labelling responder CD4+ T cells (CD4+CD25-), with a 

dye such as CellTrace Violet (CTV) and culturing the CTV-labelled cells alone or in 

combination with the IL-10-producing CD4+ T cells that co-express IL-17A and/or IFN-

γ. Following stimulation with anti-CD3/anti-CD28 for 3 days, the ability of the IL-10-producing 

CD4+ T cells that co-express IL-17A and/or IFN-γ to limit the proliferation of responder cells 

could be examined by flow cytometry using the dilution of CTV signal as a read out of 

proliferative capacity. To examine whether the IL-10-producing CD4+ T cells that co-express 

IL-17A and/or IFN-γ are pathogenic, these cells could be sorted from Hh+/anti-IL-10R-treated 

WT mice, transferred into Hh+ RAG KO mice and the effect on colitis development determined.  

 

3) Do the IL-10+ CD4+ T cells that share characteristics of effector and regulatory cells 

originate from effector T cells or regulatory T cells? 

Finally, and perhaps the more difficult question to address is the origin of the IL-10-producing 

CD4+ T cells that co-express IL-17A and/or IFN-γ  that we observed in Hh+ and Hh+/anti-IL-

10R-treated mice. These cells could arise from i) effector T cells, ii) FoxP3+ Tregs and/or Tr1 

cells, iii) represent a hybrid Treg/effector subset that differentiates directly from naive CD4+ T 

cells or iv) a combination of two or more of these scenarios. The fact that the phenotype of the 

IL-10+FoxP3+/- CD4+ T cells that co-express IL-17A and/or IFN-γ seem to mirror, at smaller 

frequencies, the effector T cells that expand in that particular experimental group, seems to 

suggest that perhaps these cells originate from effector T cells. However, in the literature, aside 

from one study which showed that during the resolution of inflammation, small intestinal Th17 

cells have been shown to transdifferentiate into Tr1-like regulatory T cells (Gagliani et al., 

2015), most studies suggest that IL-10-producing CD4+ T cells that co-express IL-17A and/or 

IFN-γ  might arise from FoxP3+ Tregs or Tr1 cells. Although Tr1 cells primarily produce IL-10, 

they have been shown to produce small amount of IL-17A and variable amount of IFN-

γ (Gagliani et al., 2013; Roncarolo et al., 2011). In all the studies where FoxP3 was co-

expressed with Th1 or Th17 signature cytokines or transcription factors, these cells originally 

arose from Foxp3+ Tregs (Feng et al., 2011a; Koch et al., 2009; Komatsu et al., 2014; 

McPherson et al., 2015). FoxP3+ cells have been shown to start producing IFN-γ during the 

induction of intestinal inflammation in a microbiota-dependent colitis model and these cells 

were suppressive in nature (Feng et al., 2011b). In the EAE model, FoxP3+ Tregs were shown to 

start expressing T-bet, which in turn enabled them to express CXCR3 and accumulate at the 

same site as Th1 cells to suppress them (Koch et al., 2009). In autoimmune arthritis, fate 

mapping of FoxP3+ Tregs showed that these cells transdifferentiate to become pathogenic Th17 

cells, and that FoxP3+ IL-17A+ cells may represent an intermediate phenotype of these cells 
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(Komatsu et al., 2014).  One study showed that when highly purified FoxP3+ Tregs were 

cultured in the presence of anti-CD3/CD28 and IL-1β and IL-2, it resulted in a significant 

proportion of these cells secreting IL-17A, and these IL-17A+ FoxP3+ cells were termed Tr17 

cells (Li et al., 2012). Tr17 cells were found to express similar levels of FoxP3, CTLA-4 and 

GITR to FoxP3+ IL-17- Tregs (Li et al., 2012). In contrast to FoxP3+ IL-17- Tregs, the Tr17 cells 

expressed significantly higher levels of ICOS, Runx1 and Runx3 (Li et al., 2012). Runx1 is 

reportedly important for the sustained expression of FoxP3 and IL-17A in the Tr17 cells and 

Runx3 enables the Tr17 cells to express higher levels of perforin and Granzyme B (Li et al., 

2012). Interestingly, Runx1 and Runx3 are also required for the generation of IFN-γ-producing 

ex-Th17 cells (Wang et al., 2014d). In the current study, if the IL-10+ IL-17A+ FoxP3+ cells 

observed in Hh+ and Hh+/anti-IL-10R-treated mice are actually Tr17 cells, it might be that in 

the colitic setting, whatever stimuli trigger Runx1 and Runx3 expression in Th17 cells and 

cause them to change phenotype to become ex-Th17 cells, might trigger a similar switch in IL-

10+ IL-17A+ FoxP3+ Tr17 cells and enable them to switch alongside the effector T cells and thus 

express similar cytokines (Figure 6.2). Further analysis of GITR, CTLA-4 and ICOS in the IL-

10-producing CD4+ T cells that co-express FoxP3 and IFN-γ and/or IL-17A will give us further 

insight into whether these cells resemble the Tr17 cells and in fact constitute a Treg population 

rather than an effector T cell population. 
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Figure 6.2 Cartoon depicting hypothesis that Tr17 and Th17 cells switch alongside each 
other during Hh-induced intestinal inflammation.  
The schematic depicts the hypothesis that during Hh-induced colitis, Tr17 cells, and Th17 
cells switch alongside each other. Tr17 cells are regulatory cells that resemble effector Th17 
cells in that they express RORgt and Runx1 and Runx3, but differ from Th17 cells in that they 
express regulatory-cell associated factors like FoxP3, ICOS, GITR and CTLA-4 (Li et al., 
2012). Since the induction of Runx1 and Runx3 has been shown to trigger Th17 phenotype 
shifting to an ex-Th17 phenotype (Wang et al., 2014d), it is plausible that if Tr17 cells are 
present during Hh-induced colitis, that these Runx1 and Runx3-expressing cells might switch 
alongside the Th17 cells, resulting in a regulatory cell population that phenotypically 
expresses similar cytokines and transcription factors to the effector T cells present, but at the 
same time, also expresses regulatory-cell associated cytokines and transcription factors such 
as IL-10 and FoxP3. 

To determine whether FoxP3+ Tregs become pathogenic effector T cells during Hh-

induced colitis, FoxP3 reporter mice such as those used by Komatsu et al, can be infected with 

Hh and concomitantly treated with anti-IL-10R and analysing the expression of IFN-γ, IL-17A 

and IL-10 at different time points pi with Hh by flow cytometry. Komatsu et al bred a FoxP3 

reporter mouse by crossing Foxp3 bacterial artificial chromosome transgenic mice expressing 

the GFP-Cre recombinase fusion protein with ROSA26-YFP reporter mice to generate a mouse 

in which cells that are expressing or previously expressed FoxP3 are permanently labelled with 

YFP, whereas those currently expressing FoxP3 are labelled with GFP (Komatsu et al., 2014).  

Thus ex-Foxp3+ cells will be GFP- YFP+, enabling one to identify whether the ex-FoxP3 cells (if 

any) express inflammatory cytokines. To determine whether effector T cells have the potential 

to become Treg-like, one could use triple reporter mice that are IL-10-GFP, FoxP3-RFP and IL-

17A or IFN-γ-RFP such as those used by Gagliani et al (Gagliani et al., 2015). Different effector 

T-cell subsets that are negative for FoxP3 and IL-10 could be sorted from Hh+/anti-IL-10R-
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treated triple reporter mice and adoptively transferred into Hh+ RAG KO mice to determine 

whether these cells start expressing IL-10 and/or FoxP3.   

Importance of the findings of this thesis to the IBD field 

IBD is a complex group of diseases that is caused by a mix of genetic and environmental 

factors. This infers that the underlying trigger factors for development of IBD are different in 

each individual, and therefore it is not a disease where one treatment will fit all the cases. 

Indeed, this is illustrated by the fact that a third of patients remain refractory to TNF-α 

treatment and that treatment with recombinant IL-10 is only efficacious in patients who had a 

defect in IL-10 production. The current understanding is that IBD occurs either because of a 

breakdown in the regulatory mechanisms that keep immune cells in check, or because effector T 

cells become resistant to the suppressive effects of the Tregs or a combination of both these 

factors. Thus understanding the roles that different regulatory mechanisms play in modulating 

the inflammatory response might lead to the development of new therapies. For example, one of 

the findings of the work in this thesis was that miR-21, miR-31 and miR-210 were significantly 

increased in LP CD4+ T cells from colitic mice compared to uninfected controls. It is plausible 

that these microRNAs work in concert to promote the inflammatory T-cell response by 

rendering effector T cells refractory to Treg suppression and inhibiting the Treg response itself. 

Both miR-31 and miR-210 have been found to inhibit Treg generation, as both these 

microRNAs repress FoxP3 and miR-31 also represses Retinoic acid-inducible protein 3, an 

important factor for pTreg generation (Fayyad-Kazan et al., 2012; Rouas et al., 2009; Zhang et 

al., 2015a). MiR-21 has been shown to repress Peli1(Marquez et al., 2010). Peli1 is an ubiquitin 

ligase abundantly expressed in T cells and has been shown to inhibit NF-kB signaling (Chang et 

al., 2011). Peli1 KO mice show multiorgan autoimmunity and the T cells in these mice are 

resistant to suppression by Tregs (Chang et al., 2011). Thus an increase in miR-21 could inhibit 

Peli1 expression in effector T cells and make them resistant to Treg-mediated suppression. If 

this is also the case in patients suffering from IBD, then inhibiting these microRNAs may 

restore intestinal homeostasis. MicroRNA therapy could also potentially be used in combination 

with other therapeutic agents to improve or speed up recovery. 

Another very important finding of the work carried out in this thesis is that a significant 

proportion of IL-10+ LP CD4+ T cells in the colitic setting share phenotypic characteristics of 

both inflammatory and regulatory T cells. Given the important role of IL-10 in preventing 

intestinal inflammation, IL-10 as a therapeutic tool has been an area of active investigation. 

Unfortunately, although animal models of colitis showed great promise for IL-10 therapy 

(Asseman et al., 1999; Lindsay et al., 2002; Sasaki et al., 2005), clinical trials in humans with 

IBD showed little efficacy (Buruiana et al., 2010; Herfarth and Scholmerich, 2002). There are 

several possible explanations for this. Firstly, it is possible that recombinant IL-10 is not very 

stable.  Secondly, it is also possible that the dose of IL-10 is too low to elicit a response. 
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Thirdly, as explained previously, different individuals have different disease 

phenotypes/severity of disease. Patients with inherently low IL-10-levels benefited more from 

IL-10 supplementation (Colombel et al., 2001). Furthermore, patients with very severe disease 

benefited from IL-10-supplementation compared to patients with less severe disease (Schreiber 

et al., 2000). Finally, IL-10 alone may fail to suppress all the pro-inflammatory mediators.  

Supporting this theory, previous studies from our lab using the Hh+/RAG KO T-cell transfer 

model of colitis have shown that IL-10+ T cells from Hh+ WT mice but not uninfected WT mice 

protected Hh+ RAG KO mice from developing colits suggesting that antigen-priming is 

necessary to generate disease protective cells (Kullberg et al., 2002). This protective effect was 

lost when the mice were treated with a blocking antibody to the IL-10R (Kullberg et al., 2002). 

Thus it is tempting to speculate that although protection from colitis is dependent on IL-10, 

perhaps the antigen-primed Tregs utilize other mechanisms that are dependent on IL-10 to keep 

effector T cells in check. Thus using Tregs expanded from the patient’s own serum to treat IBD 

is another area that is now an important are of research. Using Tregs as therapy will not only 

overcome the problem of stability and dosage issues of recombinant-IL-10, as these cells can 

produce IL-10 endogenously at the site of inflammation, but they may also be more effective at 

limiting effector T cell responses by other mechanisms. The work carried out in this thesis has 

shown that a large proportion of IL-10+ LP CD4+ T cells seen in Hh-induced colitis share 

phenotypic characteristics of regulatory and inflammatory T cells. If these cells are of Treg 

origin and are pathogenic, then they are a cause for grave concern, as it highlights the possibility 

that Tregs may be unstable in the inflammatory environment and precludes their use to treat 

IBD. Equally, if the IL-10-producing CD4+ T cells that co-express IL-17A and/or IFN-γ and/or 

FoxP3 are suppressive, and actually represent a highly specialised subset of Treg cells that are 

more effective at suppressing a particular effector T cell, then understanding the factors that 

trigger the development of these cells could lead to the development of more effective 

immunotherapies. In order to use Tregs as therapy, it is important to ensure that these cells are 

stable and do not become pathogenic themselves when introduced into an inflammatory 

environment. Recent clinical trial data of Treg therapy in other diseases has proved promising. 

Treatment of humanised mice with in vitro expanded Tregs was found to prevent transplant 

rejection (Issa et al., 2010; Sagoo et al., 2011) and graft versus host disease (GVHD) (Ermann et 

al., 2005; Scotta et al., 2013). Furthermore, phase I trials in patients with GVHD and type 1 

diabetes showed that Treg therapy is safe (Marek-Trzonkowska et al., 2012; Trzonkowski et al., 

2009). Using Tregs as cell based therapies for CD is an attractive proposition, and a proof-of-

principle study showed that it is possible to expand CD45RA+ regulatory cells from the blood of 

patients with CD in vitro and that these cells homed to the human small bowel and were stable 

and did not express inflammatory cytokines when transferred into C.B-17 SCID mice bearing 

human small intestine xenotransplants (Canavan et al., 2015). Furthermore, in vitro CD45RA+ 

Tregs suppressed Tconv cells isolated from patients with active CD (Canavan et al., 2015). In 
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an earlier phase 1/2a trial, CD patients refractive to other therapy were sensitised to ova and 

ovalbumin-specific Tregs (Ova-Tregs) subsequently isolated from CD patients’ peripheral 

blood mononuclear cells, expanded in vitro and administered intravenously to the same patients 

(Desreumaux et al., 2012). Desreumaux et al’s study demonstrated that while Ova-Treg therapy 

was safe and well tolerated in most of the patients, 3 of the 20 participants suffered from severe 

adverse events related to the Ova-Tregs (mainly gastrointestinal and related to underlying CD) 

(Desreumaux et al., 2012).  Although early results are promising, more comprehensive studies 

are required to ensure efficacy of Treg therapy for CD, primarily because of the diversity of 

mucosal environments and the significant influence the resident microbiota has in shaping 

immune responses in the gut.  

In conclusion, the data presented in this thesis highlight changes in the expression 

profile of two important regulatory factors in LP CD4+ T cells from colitic mice compared to 

those from uninfected controls; microRNAs and IL-10. Further studies should focus on whether 

the change in microRNA expression and/or the phenotype of IL-10-producing CD4+ T cells in 

the colitic setting potentiates inflammation in any way, and whether these factors may be 

manipulated to decrease the severity or prevent intestinal inflammation. 
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APPENDICES 

APPENDIX 1   MICRORNA MICROARRAY RAW DATA 
 microRNAs up-regulated ≥ 2 fold 
 microRNAs with fold difference < 2 fold 

Only 3 of 1133 miRs (miR-155, miR-326 and miR-132) are shown as these microRNAs were examined at the tissue level in Chapter 4 
 microRNAs down-regulated ≥ 2 fold 

 
Table A1.1 Raw data of microRNA microarray carried out on LP CD4+ T cells from uninfected and 2-wk Hh+ IL-10 KO mice 

MicroRNA 
Fluorescence Intensity of samplea  
(normalised to negative control) 

 (log scale) 

Average 
uninf b 

(A1-A3) 

Average 
Hh-inf c 
(B1-B4) 

  

Expression            
in uninf 
controld 

(2^value) 

Expression        
in Hh-inf 

micee 
(2^value) 

  

Upreg Fold 
change 

(ratio of 
Inf/Uninf) 

Downreg 
Fold 

change  
(ratio of 

uninf/inf) 
  A1 A2 A3 B1 B2 B3 B4 
Blank/neg control value: -5.1 -5.4 -6.3 -5.1 -5.1 -5.7 -5.0 

 
  

 
    

 
    

mmu-miR-210-3p 0.0 0.0 4.5 6.3 6.7 6.4 5.5 1.5 6.2   2.8 74.0   26.35 0.04 
mmu-miR-96-5p 0.0 0.0 4.8 6.4 5.3 6.2 6.4 1.6 6.1   3.0 68.5   22.83 0.04 
mmu-miR-182-5p 0.0 0.0 5.3 6.0 5.5 5.7 5.7 1.8 5.7   3.4 53.3   15.82 0.06 
mmu-miR-18a-5p 0.0 0.0 4.9 5.4 5.1 5.4 5.6 1.6 5.4   3.1 41.0   13.15 0.08 
mmu-miR-148a-3p 0.0 0.0 4.8 5.0 5.1 5.2 5.0 1.6 5.1   3.0 34.0   11.26 0.09 
mmu-miR-301a-3p 0.0 0.0 0.0 0.0 0.0 5.1 4.9 0.0 2.5   1.0 5.6   5.59 0.18 
mmu-miR-188-5p 0.0 3.4 6.2 5.2 6.0 6.2 4.4 3.2 5.4   9.1 43.4   4.78 0.21 
mmu-miR-370-3p 0.0 0.0 5.7 4.4 5.9 6.0 0.0 1.9 4.1   3.7 16.9   4.53 0.22 
mmu-miR-185-5p 4.4 0.0 5.6 5.4 5.2 5.8 5.5 3.3 5.5   10.2 43.9   4.31 0.23 
mmu-miR-31-5p 4.7 4.4 6.0 7.0 6.9 7.1 7.0 5.0 7.0   32.8 131.0   4.00 0.25 
mmu-miR-21a-5p 12.0 11.3 12.7 13.7 13.8 14.0 13.8 12.0 13.8   4096.7 14365.3   3.51 0.29 
mmu-miR-135a-1-3p 0.0 0.0 0.0 0.0 3.7 3.4 0.0 0.0 1.8   1.0 3.4   3.42 0.29 
mmu-miR-532-5p 0.0 4.3 5.6 4.9 4.9 5.0 4.9 3.3 4.9   9.8 30.1   3.07 0.33 
mmu-miR-202-3p 5.7 0.0 6.3 4.6 5.8 6.0 5.8 4.0 5.6   15.8 47.2   2.99 0.33 
mmu-miR-27b-3p 6.3 5.5 7.5 7.9 7.8 7.9 8.0 6.5 7.9   87.6 238.2   2.72 0.37 
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MicroRNA 
Fluorescence Intensity of samplea  
(normalised to negative control) 

 (log scale) 

Average 
uninf b 

(A1-A3) 

Average 
Hh-inf c 
(B1-B4) 

  

Expression            
in uninf 
controld 

(2^value) 

Expression        
in Hh-inf 

micee 
(2^value) 

  

Upreg Fold 
change 

(ratio of 
Inf/Uninf) 

Downreg 
Fold 

change  
(ratio of 

uninf/inf) 
  A1 A2 A3 B1 B2 B3 B4 
Blank/neg control value: -5.1 -5.4 -6.3 -5.1 -5.1 -5.7 -5.0 

 
  

 
    

 
    

mmu-miR-652-5p 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0 1.4   1.0 2.7   2.70 0.37 
mmu-miR-466h-3p 0.0 0.0 0.0 0.0 4.7 0.0 0.0 0.0 1.2   1.0 2.3   2.26 0.44 
mmu-miR-3096b-5p 0.0 5.2 5.6 4.6 5.4 4.8 4.3 3.6 4.8   12.1 27.4   2.26 0.44 
mmu-miR-6538 0.0 4.4 6.4 4.4 4.5 5.7 4.4 3.6 4.8   12.1 27.2   2.25 0.45 
mmu-miR-19a-3p 0.0 0.0 0.0 0.0 0.0 4.6 0.0 0.0 1.2   1.0 2.2   2.24 0.45 
mmu-miR-6354 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.0 1.1   1.0 2.2   2.21 0.45 
mmu-miR-3096a-5p 0.0 5.1 6.1 4.8 5.0 5.0 4.6 3.7 4.9   13.1 28.9   2.20 0.45 
mmu-miR-668-3p 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 1.1   1.0 2.2   2.17 0.46 
mmu-miR-183-5p 5.0 4.4 5.8 6.4 5.5 6.4 6.3 5.0 6.2   33.1 71.8   2.17 0.46 
mmu-miR-1306-3p 0.0 0.0 0.0 0.0 0.0 4.4 0.0 0.0 1.1   1.0 2.1   2.13 0.47 
mmu-miR-130b-3p 5.9 5.9 7.4 7.6 7.4 7.4 7.6 6.4 7.5   85.8 182.3   2.12 0.47 
mmu-miR-146a-5p 9.2 8.7 9.7 10.4 10.0 10.4 10.3 9.2 10.3   587.0 1243.2   2.12 0.47 
mmu-miR-223-3p 7.0 7.9 10.2 9.1 9.3 9.8 9.4 8.4 9.4   331.1 675.4   2.04 0.49 
mmu-miR-3102-5p 5.9 6.1 7.6 7.4 7.8 8.1 7.0 6.6 7.6   95.0 190.6   2.01 0.50 
mmu-miR-155-3p 8.8 8.4 9.2 9.1 8.8 9.4 9.1 8.8 9.1  439.5 540  1.23 0.81 
mmu-miR-326-5p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  1.0 1.0  1.00 1.00 
mmu-miR-132-5p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  1.0 1.0  1.00 1.00 
mmu-miR-126-3p 6.7 0.0 7.3 0.0 4.7 4.8 5.2 4.7 3.7   25.7 12.7   0.49 2.03 
mmu-miR-3070b-3p 6.7 6.7 6.5 5.8 5.9 5.8 4.9 6.7 5.6   101.2 49.5   0.49 2.05 
mmu-miR-5121 5.1 6.1 6.4 0.0 9.6 5.2 4.4 5.9 4.8   57.7 27.9   0.48 2.07 
mmu-miR-30b-3p 0.0 0.0 3.3 0.0 0.0 0.0 0.0 1.1 0.0   2.2 1.0   0.46 2.15 
mmu-miR-710 0.0 0.0 3.3 0.0 0.0 0.0 0.0 1.1 0.0   2.2 1.0   0.46 2.15 
mmu-miR-298-5p 0.0 0.0 3.3 0.0 0.0 0.0 0.0 1.1 0.0   2.2 1.0   0.46 2.17 
mmu-miR-504-3p 7.7 7.7 7.2 6.4 6.7 6.6 6.1 7.6 6.4   188.2 86.2   0.46 2.18 
mmu-miR-1839-3p 5.9 6.5 6.7 5.1 4.8 5.6 5.3 6.4 5.2   82.7 37.6   0.45 2.20 
mmu-miR-191-3p 0.0 0.0 3.4 0.0 0.0 0.0 0.0 1.1 0.0   2.2 1.0   0.45 2.21 
mmu-miR-302c-5p 3.4 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0   2.2 1.0   0.45 2.21 
mmu-miR-1947-3p 4.5 5.7 5.9 5.6 0.0 5.6 5.5 5.4 4.2   41.2 17.8   0.43 2.31 
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MicroRNA 
Fluorescence Intensity of samplea  
(normalised to negative control) 

 (log scale) 

Average 
uninf b 

(A1-A3) 

Average 
Hh-inf c 
(B1-B4) 

  

Expression            
in uninf 
controld 

(2^value) 

Expression        
in Hh-inf 

micee 
(2^value) 

  

Upreg Fold 
change 

(ratio of 
Inf/Uninf) 

Downreg 
Fold 

change  
(ratio of 

uninf/inf) 
  A1 A2 A3 B1 B2 B3 B4 
Blank/neg control value: -5.1 -5.4 -6.3 -5.1 -5.1 -5.7 -5.0 

 
  

 
    

 
    

mmu-miR-342-3p 10.9 10.8 11.8 9.9 9.7 10.4 9.8 11.2 10.0   2304.2 993.3   0.43 2.32 
mmu-miR-378d 6.7 6.5 7.4 5.1 6.1 6.3 5.0 6.9 5.6   116.6 49.5   0.42 2.35 
mmu-miR-877-3p 5.1 5.8 5.9 5.7 0.0 6.1 5.5 5.6 4.3   48.6 20.3   0.42 2.40 
mmu-miR-671-5p 0.0 3.3 3.5 0.0 0.0 3.6 0.0 2.3 0.9   4.9 1.9   0.39 2.59 
mmu-miR-196b-5p 0.0 0.0 4.2 0.0 0.0 0.0 0.0 1.4 0.0   2.7 1.0   0.38 2.67 
mmu-miR-221-3p 0.0 0.0 4.2 0.0 0.0 0.0 0.0 1.4 0.0   2.7 1.0   0.37 2.67 
mmu-miR-149-3p 0.0 0.0 4.3 0.0 0.0 0.0 0.0 1.4 0.0   2.7 1.0   0.37 2.68 
mmu-miR-1934-3p 0.0 0.0 4.3 0.0 0.0 0.0 0.0 1.4 0.0   2.7 1.0   0.37 2.70 
mmu-miR-3107-5p 0.0 0.0 4.3 0.0 0.0 0.0 0.0 1.4 0.0   2.7 1.0   0.37 2.71 
mmu-miR-181d-5p 0.0 0.0 4.3 0.0 0.0 0.0 0.0 1.4 0.0   2.7 1.0   0.37 2.71 
mmu-miR-130a-3p 0.0 0.0 4.3 0.0 0.0 0.0 0.0 1.4 0.0   2.7 1.0   0.37 2.71 
mmu-miR-3473c 0.0 4.3 0.0 0.0 0.0 0.0 0.0 1.4 0.0   2.7 1.0   0.37 2.71 
mmu-miR-7a-1-3p 0.0 0.0 4.4 0.0 0.0 0.0 0.0 1.5 0.0   2.8 1.0   0.36 2.77 
mmu-miR-30e-3p 0.0 0.0 4.4 0.0 0.0 0.0 0.0 1.5 0.0   2.8 1.0   0.36 2.77 
mmu-miR-3069-3p 0.0 0.0 4.4 0.0 0.0 0.0 0.0 1.5 0.0   2.8 1.0   0.36 2.79 
mmu-let-7c-5p 11.4 10.6 12.0 10.0 9.4 10.1 10.0 11.3 9.9   2598.1 930.3   0.36 2.79 
mmu-miR-5117-3p 4.1 3.4 5.4 3.4 0.0 4.0 3.8 4.3 2.8   19.6 7.0   0.36 2.80 
mmu-miR-378a-5p 0.0 0.0 4.5 0.0 0.0 0.0 0.0 1.5 0.0   2.8 1.0   0.36 2.81 
mmu-miR-1196-3p 4.5 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0   2.8 1.0   0.35 2.82 
mmu-miR-200a-3p 0.0 0.0 4.5 0.0 0.0 0.0 0.0 1.5 0.0   2.8 1.0   0.35 2.83 
mmu-miR-5046 4.5 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0   2.9 1.0   0.35 2.85 
mmu-miR-3473e 0.0 0.0 4.5 0.0 0.0 0.0 0.0 1.5 0.0   2.9 1.0   0.35 2.85 
mmu-miR-146b-5p 0.0 0.0 4.6 0.0 0.0 0.0 0.0 1.5 0.0   2.9 1.0   0.35 2.89 
mmu-miR-511-3p 0.0 0.0 4.6 0.0 0.0 0.0 0.0 1.5 0.0   2.9 1.0   0.34 2.91 
mmu-miR-99b-5p 0.0 0.0 4.6 0.0 0.0 0.0 0.0 1.5 0.0   2.9 1.0   0.34 2.92 
mmu-miR-324-5p 0.0 0.0 4.6 0.0 0.0 0.0 0.0 1.5 0.0   2.9 1.0   0.34 2.92 
mmu-miR-100-5p 0.0 0.0 4.7 0.0 0.0 0.0 0.0 1.6 0.0   3.0 1.0   0.34 2.95 
mmu-let-7b-5p 11.7 11.1 12.2 10.1 9.7 10.3 10.3 11.7 10.1   3253.7 1100.6   0.34 2.96 



 190 

MicroRNA 
Fluorescence Intensity of samplea  
(normalised to negative control) 
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mmu-miR-345-5p 0.0 0.0 4.7 0.0 0.0 0.0 0.0 1.6 0.0   3.0 1.0   0.34 2.96 
mmu-miR-328-5p 0.0 0.0 4.7 0.0 0.0 0.0 0.0 1.6 0.0   3.0 1.0   0.33 2.99 
mmu-miR-129-1-3p 4.8 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0   3.0 1.0   0.33 3.00 
mmu-let-7b-3p 4.6 5.5 5.5 4.5 0.0 4.5 5.5 5.2 3.6   37.2 12.1   0.33 3.06 
mmu-miR-331-3p 0.0 0.0 4.9 0.0 0.0 0.0 0.0 1.6 0.0   3.1 1.0   0.33 3.07 
mmu-miR-5099 0.0 0.0 4.9 0.0 0.0 0.0 0.0 1.6 0.0   3.1 1.0   0.32 3.13 
mmu-miR-5627-3p 5.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0   3.2 1.0   0.32 3.17 
mmu-miR-10b-5p 0.0 0.0 5.1 0.0 0.0 0.0 0.0 1.7 0.0   3.2 1.0   0.31 3.21 
mmu-miR-181c-5p 0.0 0.0 5.2 0.0 0.0 0.0 0.0 1.7 0.0   3.3 1.0   0.30 3.31 
mmu-miR-3544-3p 6.7 5.9 5.9 5.4 0.0 6.1 6.0 6.1 4.4   70.5 20.6   0.29 3.43 
mmu-miR-1897-5p 0.0 0.0 5.3 0.0 0.0 0.0 0.0 1.8 0.0   3.4 1.0   0.29 3.43 
mmu-miR-195a-5p 5.0 0.0 7.0 0.0 0.0 4.4 4.4 4.0 2.2   15.9 4.6   0.29 3.45 
mmu-miR-5107-5p 4.4 4.7 6.3 4.4 0.0 4.6 4.3 5.2 3.3   35.8 10.1   0.28 3.56 
mmu-miR-5620-3p 4.8 0.0 4.2 0.0 0.0 0.0 4.3 3.0 1.1   8.0 2.1   0.26 3.82 
mmu-miR-1892 5.8 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0   3.8 1.0   0.26 3.84 
mmu-miR-181b-5p 0.0 0.0 5.8 0.0 0.0 0.0 0.0 1.9 0.0   3.8 1.0   0.26 3.84 
mmu-miR-497-5p 0.0 0.0 5.8 0.0 0.0 0.0 0.0 1.9 0.0   3.8 1.0   0.26 3.85 
mmu-miR-3099-3p 6.4 6.3 6.0 5.5 5.6 5.6 0.0 6.2 4.2   74.9 18.2   0.24 4.12 
mmu-miR-322-5p 0.0 0.0 6.2 0.0 0.0 0.0 0.0 2.1 0.0   4.2 1.0   0.24 4.19 
mmu-miR-199b-5p 0.0 0.0 6.3 0.0 0.0 0.0 0.0 2.1 0.0   4.3 1.0   0.23 4.30 
mmu-let-7e-5p 7.3 6.4 8.7 5.3 4.7 5.6 5.3 7.5 5.2   177.9 37.7   0.21 4.73 
mmu-miR-6401 6.2 5.8 5.8 4.4 5.6 4.5 0.0 5.9 3.6   59.7 12.3   0.21 4.84 
mmu-miR-199a-3p 0.0 0.0 7.1 0.0 0.0 0.0 0.0 2.4 0.0   5.1 1.0   0.19 5.13 
mmu-miR-5119 0.0 4.0 4.0 0.0 0.0 0.0 0.0 2.7 0.0   6.3 1.0   0.16 6.29 
mmu-miR-705 4.3 0.0 3.7 0.0 0.0 0.0 0.0 2.7 0.0   6.4 1.0   0.16 6.37 
mmu-miR-1196-5p 5.8 5.9 6.6 0.0 0.0 6.0 5.6 6.1 2.9   68.8 7.5   0.11 9.17 
mmu-miR-467e-5p 4.8 0.0 4.8 0.0 0.0 0.0 0.0 3.2 0.0   9.3 1.0   0.11 9.32 
mmu-miR-290-3p 0.0 5.5 4.3 0.0 0.0 0.0 0.0 3.3 0.0   9.7 1.0   0.10 9.66 
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mmu-miR-467b-5p 5.5 5.1 6.4 0.0 4.6 4.6 0.0 5.7 2.3   50.6 4.9   0.10 10.26 
mmu-miR-194-5p 0.0 4.8 5.3 0.0 0.0 0.0 0.0 3.4 0.0   10.4 1.0   0.10 10.41 
mmu-let-7f-1-3p 3.5 5.5 5.4 0.0 0.0 5.4 0.0 4.8 1.4   27.6 2.6   0.09 10.81 
mmu-miR-1897-3p 4.5 4.4 5.8 0.0 0.0 5.6 0.0 4.9 1.4   30.1 2.7   0.09 11.31 
mmu-miR-375-3p 0.0 5.2 5.3 0.0 0.0 0.0 0.0 3.5 0.0   11.3 1.0   0.09 11.34 
mmu-miR-342-5p 4.3 4.1 5.1 0.0 0.0 3.6 0.0 4.5 0.9   22.1 1.9   0.08 11.84 
mmu-miR-151-5p 4.5 0.0 6.2 0.0 0.0 0.0 0.0 3.6 0.0   11.9 1.0   0.08 11.87 
mmu-miR-99a-5p 0.0 4.3 6.5 0.0 0.0 0.0 0.0 3.6 0.0   12.1 1.0   0.08 12.07 
mmu-miR-34a-5p 5.1 5.7 7.9 0.0 4.7 4.9 0.0 6.2 2.4   75.2 5.3   0.07 14.21 
mmu-miR-429-3p 0.0 6.1 6.5 0.0 0.0 0.0 0.0 4.2 0.0   18.3 1.0   0.05 18.32 
mmu-miR-467c-5p 4.5 4.2 4.8 0.0 0.0 0.0 0.0 4.5 0.0   22.7 1.0   0.04 22.73 
mmu-miR-451a 6.8 5.9 8.2 4.3 0.0 0.0 5.2 7.0 2.4   125.6 5.3   0.04 23.91 
mmu-miR-139-5p 4.7 4.2 5.6 0.0 0.0 0.0 0.0 4.8 0.0   28.7 1.0   0.03 28.72 
mmu-miR-200c-3p 4.9 6.2 6.7 0.0 0.0 0.0 4.3 5.9 1.1   60.8 2.1   0.03 29.04 
mmu-miR-125a-5p 4.5 4.3 5.8 0.0 0.0 0.0 0.0 4.9 0.0   29.5 1.0   0.03 29.46 
mmu-miR-30a-5p 4.1 4.3 6.4 0.0 0.0 0.0 0.0 4.9 0.0   30.5 1.0   0.03 30.52 
mmu-miR-200b-3p 5.8 7.3 7.5 0.0 0.0 0.0 4.6 6.9 1.2   116.6 2.2   0.02 52.24 
mmu-miR-192-5p 5.0 6.5 7.1 0.0 0.0 0.0 0.0 6.2 0.0   71.5 1.0   0.01 71.51 
mmu-miR-125b-5p 5.4 5.0 8.1 0.0 0.0 0.0 0.0 6.2 0.0   72.6 1.0   0.01 72.59 
mmu-miR-181a-5p 6.1 6.3 7.2 0.0 0.0 0.0 0.0 6.5 0.0   91.9 1.0   0.01 91.86 
a Samples A1-A3 denote samples from uninfected IL-10 KO mice and samples B1-B4 denote samples from 2-wk Hh+ IL-10 KO mice 
b Average normalised fluorescence intensities of samples from uninfected mice 
c Average normalised fluorescence intensities of samples from 2-wk Hh+ IL-10 KO mice 
d Average microRNA expression in samples from uninfected mice 
e Average microRNA expression in samples from 2-wk Hh+ IL-10 KO mice 
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APPENDIX 2   MRNA TARGETS PREDICTED BY MIRWALK  
 Gene plays a role in CD4+ T-cell development and function. Altered regulation of gene by miR in question could have an inflammatory role in Hh colitis 
 Gene plays a role in CD4+ T-cell development and function. Altered regulation of gene could have an anti-inflammatory role in Hh colitis 

 

Table A2.1 Predicted mRNA targets of miR-31 

Mouse 

miR Gene 

Sum of 
target 

prediction 
programsa 

Gene functionb 

MiR-31 Unc93b1 7 Plays a role in TLR signalling 
Narg1 7 Mainly involved in retinopathy and blood vessel development 
Kank1 7 No literature available on function 
Slc25a28 7 No literature available on function 
Hip2 7 No literature available on function 
Sugt1 7 Involved in neurogenesis 
Topbp1 7 Growth factor/ Involved in neurogenesis, vdj recombination in lymphocyte development 
Ppp6c 7 No literature available on function 
Stx12 7 No literature available on function 
Ctnnd2 6 Maintenance of neural structure and synapses 
Ppl 6 Part of the cornified envelop of the epidermis 
Snx16 6 Sorting nexin thought to be involved in trafficking of proteins between early and late endosomal compartments 

Twist1 6 
Deficiency of Twist1 promotes Th17 cell development. Involved in a feedback loop with STAT3 to repress IL-6 production. 
Negative regulatory factor that inhibits the expression of T-bet, Runx3 and IL-12Rβ2 (Niesner et al., 2008; Pham et al., 2012; Pham et 
al., 2013) 

Heatr5a 6 No literature available on function 
Khdrbs3 6 Involved in spermatogenesis 
Herpud2 6 No literature available on function 
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Mouse 

miR Gene 

Sum of 
target 

prediction 
programsa 

Gene functionb 

MiR-31 Irf4 6 T-bet represses IRF4 to inhibit Th17 cells. IRF4 deficiency promotes Th1 response (Gokmen et al., 2013) 
Srpr 6 No literature available on function 
Orc5l 6 No literature available on function 
Nup153 6 No literature available on function 
Pou2f3 6 Expressed mainly in the skin. Epidermis and keratinocytes. No function in the literature 
Supt16h 6 No literature available on function. Highly expressed in the thymus but can't access paper. No mechanism mentioned in title' 

Sh2d1a/SAP 6 SAP is mainly involved in promoting T-cell dependent humoral immunity. It is shown to promote Th2 development and suppress Th1 
cells (Cannons et al., 2006). 

Zfand3 6 No literature available on function 
Dpagt1 6 No literature available on function. Papers last published in 1999>1994>1982 
Jazf1 6 Lipid metabolism. 

Hyou1 6 Involved in anti-tumour response. Facilitates Ag cross presentation, CD8 tumour-specific response and increased IFN-γ and IL-12 
from NK cells (Yu et al., 2013). 

Snx4 6 Involved in endocytosis and intracellular trafficking 

Jph4 6 Part of Junctophilin family of transmembrane proteins. Involved in formation of junctional membrane structures in excitable cells by 
interacting with plasma membrane and spanning the ER. 

Xpnpep3 6 No literature available on function 
Usp28 6 No literature available on function 
Lats2 6 Core Kinase of Hippo pathway and plays and important role in cell proliferation as seen in adipocytes 

Nup50 6 Part of nucleopore complex that allows flow of macromocules between nucleus and cytoplasm. Mutations in Nup50 asscociated with 
autoimmune hepatitis 

Grhpr 6 No literature available on function 
B3gnt2 6 Involved in olfactory discrimination  
Tmem117 6 Involved in spermatogenesis 
Tnrc4 6 Regulate pre-mRNA alternative splicing 
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Mouse 

miR Gene 

Sum of 
target 

prediction 
programsa 

Gene functionb 

MiR-31 Dnajb1 6 Anti-Inflammatory in rheumatoid arthritis patients. Inhibited CD4+ T cells and stimulated PBMCs to produce IL-10. Together with 
chaperone protein Schlafen 1 induces cell cycle arrest in T cells (Zhang et al., 2008). 

Nipsnap3a 6 No literature available on function 
Asb3 6 No literature available on function 
Fbxw11 6 Involved in down-regulation of CD4 
Ubac1 6 No literature available on function 
Gabrp 6 GABA, a major inhibitory neurotransmitter binds to Gabrp to open an integral chloride channel and inhibit synaptic transmission 
Prpf40b 6 No literature available on function 
Fzr1 6 Involved in mitosis and meiosis 
Rsbn1 6 Exclusively expressed in spermatids 
Pwp1 6 No literature available on function 
Tppp3 6 Binds to tubulin. May be involved in cell proliferation 
Plekha6 6 No literature available on function 
Acad11 6 Mutation results in polycystic kidney disease. Deletion in embryonic lethality and congenital heart defects 

Ppp3ca 6 Calcineurin promotes degradation of STAT3 in neurons. Plays an important role in TCR signaling in mature cells and promotes 
production of IFN-γ and IL-2 (Chan et al., 2002).  

Zc3h18 6 No literature available on function 
Ube3b 6 Neuronal development and functions 
Tmem9b 6 No literature available on function 
Ccr2 6 Receptor for monocyte chemoattractant CCL2 
D430039N05
Rik 6 No literature available on function 

Ppp2r5a 6 Involved in negative control of cell growth and division 
Tacc2 6 Member of TACC family of proteins. Involved in stabilizing of microtubules 
Lin7c 6 Mainly involved in CNS functions in the synapse, metastasis of HSSC 
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Mouse 

miR Gene 

Sum of 
target 

prediction 
programsa 

Gene functionb 

MiR-31 Spred1 6 Inhibition of Ras/MAPK pathway,inhibition of cell motility and metastasis, tumour suppressor, suppressor of IL-3 induced late phase 
hematopoiesis. 

Ppp1r9b 6 Scaffold protein. Mostly localized in dendrite spines. Thought to be involved in info transfer at the immunological synapse in DCs. 

Cops2/cop9 6 Cop9 signalosome is required for survival and proliferation of T cells (Menon et al., 2007). 
Fermt1/Kindl
in 6 Mainly expressed in epithelial cells in lung cancer and UC 

a Sum of target prediction programs that predict that miR-31 will bind to a given gene. Target prediction programs taken into account: miRanda, miRDB, miRWalk, RNA Hybrid, 
PICTAR5, PITA, RNA22 and Targetscan. 
b Gene function as per NCBI Gene cards and where referenced, primary literature. 
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 Table A2.2 Predicted mRNA targets of miR-21a 

Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-21 Wwp1 7 Inhibits differentiation of stem cells/osteoblasts etc. 
Aspn 7 Modulates TGF beta signalling pathway. 
Stag2 7 Cell cycle, meiosis, mitosis. 

Peli1 7 Validated target of miR-21 in proliferation phase of liver regeneration. Inhibits NF-kB signaling. Necessary for maintaining T cell 
tolerance in the periphery (Marquez et al., 2010). 

Trim33 7 differentiation of hematopoetic cells. Smads/TGFbeta signalling 
Dnajb4 7 No literature available on function 
Zfp704 6 No literature available on function 
Tssk2 6 Important for spermatogenesis 
Xk 6 Regulates ion transport in erythrocytes. 
Elf2/NERF 6 Interacts with Runx1 (Cho et al., 2004). 
Tnrc6b 6 Key component of RISC. Discruption in yolk sac reulted in gene disruption and apoptosis. 
Tgfbi 6 TGF beta signillaing? Found to regulate bone mass and size in mice. 
Xkr6 6 No literature on function. 
Stc1 6 anti-inflammatory. Inhibits ROS formation. Negative feedback loop for ERK1/2 signalling during oxidative stress 
Mrpl9 6 No literature on function. 
Spata9 6 Involved in spermatogenesis 
Bhlhb2/DEC
1 6 DEC1 is a transcription factor that is necessary for T cell autoreactive response in EAE. Promotes production of GM-CSF, IFN-γ and 

IL-2 (Martinez-Llordella et al., 2013). 
B230380D07
Rik 6 No literature on function. 

Nfib 6 Coregulation of genetic programs with STAT5  
Ntf3 6 Growth factor involved in neurogeneses. Produced by Th1 cells in spinal cord to aid in wound healing. 
Wdr78 6 No literature on function. 
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a Sum of target prediction programs that predict that miR-21 will bind to a given gene. Target prediction programs taken into account: miRanda, miRDB, miRWalk, RNA Hybrid, 
PICTAR5, PITA, RNA22 and Targetscan. 
b Gene function as per NCBI Gene cards and where referenced, primary literature. 

 

Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-21 Acvr2a 6 Th17 specific gene thought to play a role in differentiation of naïve T cells to Th17 cells. Induced by TGFβ and IL-6 (Ihn et al., 2011).  
Sox5 6 Transcription factor involved in embryonic development. No T cell specific function in the literature. 
Klhdc5 6 Seems to be involved mainly in mitosis 

Eif2ak4 6 
Amino acid-starvation response component (Bunpo et al., 2010). Anti-inflammatory. Involved in remission of EAE (Orsini et al., 
2014). Involved in pathway of inhibition of Th17 pathway following Halofuginone treatment (Sundrud et al., 2009). Promotes IDO 
and thereby promotes Tregs (Wang et al., 2009a). 
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 Table A2.3 Predicted mRNA targets of miR-210 

Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-210 
Zmiz1 6 

Susceptibility loci for IBD, T1D, and vitilago. Collaborates with Notch to promote cute lymphocytic leukemia. ZimZ1 is involved in 
IL-23 pathway and is a transcriptional co-activator of protein inhibitor of Stat signaling (PIAS) family (Lees et al., 2011; Li et al., 
2006b). 

Foxa1 6 Transcription factor thought to define a new class of Tregs in the CNS in MS and EAE. Also seen to promote cancer metastasis. 
Htr7 6 Serotonon receptor. Colitis severity is less in KO mice. Expressed by DCs. 
Hhip 6 Part of hedgehog signaling. Polymorphisms asscociated with COPD and lung function. 
Dnajc15 6 Negative regulator of mitochondrial membrane potential and ATP production 
Nfkb1 6 Validated target (Qi et al., 2012). Regulates T cell homeostasis and prevents chronic colonic inflammation (Chang et al., 2009). 

Coro1c 6 
Not much literature on coronin1c. Actin binding protein. Coronin 1 KO mice are resistant to AI and lack peripheral T cells. 
Coronin1a is only expressed on hematopoeitic cells and is an activation marker of T cells. Suggested as a therapeutic target for T-cell 
mediated autoimmune diseases (Pieters et al., 2013). 

Setd8 6 Histone methyl tranferase involved in cell cycle regulation, breast cancer and regulating adipogenesis  
Sertad4 6 No literature available 
Galk1 6 Deficiency causes development of cataracts 
C330002I19
Rik 5 Necessary for sustained ERK signaling in T cells, regulates T cell motility 

Tssc1 5 Not much literature. Runx2 induces bone osteolysis via Tssc1 in breast cancer 
Lamp1 5 Lysosome associated membrane protein. Necessary for infection of T-cruzi into host. 

Lair1 5 Collagen receptor widely expressed by immune cells. Immune inhibitory receptor, down-regulated on T cells in Rheumatoid arthritis. 
Shown to inhibit proliferation and induce apoptosis of T cells (Meyaard, 2008; Zhang et al., 2014c). 

Pld1 5 May play a role in signal transduction and subcellular trafficking 
Zmat3 5 No literature available 

Ctgf 5 Connective tissue growth factor. Shown to promote Th17 differentiation in renal tissue. Seen in Rheumatoid arthritis as well (Nozawa 
et al., 2013; Rodrigues-Diez et al., 2015) 

Aldh5a1 5 Involved in lipid and myelin regulation 
Txndc9 5 Not much literature. Expression correlates with tumour size and invasion in colorectal cancer 
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Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-210 Rtn1 5 Bind to Bcl2 and reduce Bcl2,s anti-apototic activity. 
Gsr 5 Glutathione reductase is an important anti-oxidant and makes cells resistant to oxidative stress 
Necab1 5 Calcium binding protein expressed in the hippocampus 
Epha7 5 Mainly involved in cancer. Marker of metastasis 
AC125535.4 5 Not much let on function. Required for cranofacial and eye developmeno in frogs 
Xpnpep3 5 NO literature on function 

Dapk1 5 Controls Stat3 Activation in IELs and prevents TNF-induced Stat3 activation. It inhibits NF-Kb activation in T cells and thereby 
limits T-cell proliferation and IL-2 production (Chakilam et al., 2013; Chuang et al., 2008). 

Ppp2r5c 5 Inhibits NFkB activation in t cells and thereby inhibits T cell proliferation (Breuer et al., 2014). 
Drd5 5 Doapmine receptor D5. Expressed on DC and potentiates Th17 response 
Tpm3 5 Involved in wound healing. Promotes Th2 response 
Syt10 5 No literature on function 

Sin3a 5 Validated target. Repressor of IFN-γ gene expression. T-bet antagonizes Sin3a recruitment to promote IFN-γ expression (Chang et al., 
2008; Shang et al., 2014; Tong et al., 2005). 

Tppp 5 Critical for oligodendrocyte differentiation 
Dpy19l3 5 No literature on function 
Txnip 5 Oxidative stress mediator 
Enpp5 5 No literature on function 
Rbpms2 5 No literature on function 

Acvr1b 5 Validated target of miR-210 (Mizuno et al., 2009). Suppresses Acvr1b to inhibit osteoblast differentiation. Belongs to TGFβ 
superfamily. Activin receptor is necessary for signaling. Mutations asscociated with pitiutary tumours  

Rad50 5 Essential for Th2 cytokine response 
Eml4 5 Stabilizes microtubules 
Wdr38 5 No literature on function 
Slc3a1 5 No literature on function 
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Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-210 Rab3b 5 Neuronal Rab3 required for long-term suppression of hippocampal inhibitory synapse. Required for normal function of calcium-
triggered synaptic vessicle exocytosis 

Iscu 5 Validated miR-210 target. Represses ISCU to control mitochondrial metabolism during hypoxia (McCormick et al., 2013). 
Rab6ip1 5 No literature on function 
Cdcp1 5 Stem cell marker. Involved in cancer metstasis and tumour progeression 
Hhat 5 Involved in hedgehog signaling 

Ctbp2 5 Transcription factor Zeb1, co-operates with CtBP2 and HDAC1 to suppress IL-2 gene function in T cells. Also contributes to cancer 
metastasis (Wang et al., 2009b) 

Erbb2 5 Growth factor receptor located on epithelial cells. Involved in breast cancer metastasis 
Chd6 5 Essential for motor co-ordination as deletion of CHD6 affects motor co-ordination 
Neurl2 5 No literature on function 
Nptx1 5 Involved in neuropathic pain and hypoxic-ischemic neuronal death 

a Sum of target prediction programs that predict that miR-210 will bind to a given gene. Target prediction programs taken into account: miRanda, miRDB, miRWalk, RNA Hybrid, 
PICTAR5, PITA, RNA22 and Targetscan. 
b Gene function as per NCBI Gene cards and where referenced, primary literature. 
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 Table A2.4 Predicted mRNA targets of miR-96 

Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-96 
 

Tcf7l2 8 Key regulator of glucose metabolism. Tcf712 KO mice are less susceptible to diabetes 

Ezr 7 Protein that mediates interactions between plasma and actin cytoskeleton. Implicated in amplification of B-cell signaling and 
homeostasis 

E2f5 7 Validated miR 181a target. Promotes hepatocellular cancer and gastric cancer. Involved in cell cycle and embryogenesis 
0910001A0
6Rik 7 No literature on function 

Rev1 7 Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a 
template-dependent reaction 

Cdh20 7 Cadherin (calcium dependent cell adhesion molecule). Involved in mouse embryogenesis 
Klhl8 7 No literature on function 

Itpr2 7 Inositol Triphosphate receptor forms a ligand gated ion channel act by calcium and IP3. Controls CD4+ T cell cytokine program 
(Nagaleekar et al., 2008). 

Mkx 6 Regulator of Tendon development. Suppresses SIN3a (miR-201a target in fibroblasts. No studies on T cells). 
Cables1 6 Critical for neuronal development. Positively affects neuron growth. Tumour suppressor in the intestine 
Xkr4 6 Mainly bovine studies. Associated with increased rump fat 
Map3k7ip2 6 Invovled in innate immune signaling. Adaptor protein with MAP3K7 and TAK1 and TRAF6. Promotes IL-1 signaling 
Vcl 6 actin filament binding protein. Regulates cell-matrix and cell-cell adhesion 
Amph 6 Involved in synaptic recycling machinery as well as has a role in macrophage survival 
Grhl2 6 TF that promotes breast cancer tumour growth and proliferation f cells 
Meox2 6 Role in mesoderm induction and its earliest regional specification, somitogenesis, and myogenic and sclerotomal differentiation 
Heatr5a 6 No literature available on function 
Zhx1 6 Transcriptional repressor. No function a such with T cells 
Tacc1 6 No literature available on function 

Fyn 6 Protein tyrosine kinase. Promotes Th17 differentiation observed in lamina propria and T-cell transfer colitis model (Ueda et al., 
2012). 

Gphn 6  Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to 



 202 

Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-96 
 

Klhl7 6 No literature available on function 
Fut9 6 Involved in anxiety disorders. Shown to maintain stem cell populations 
Galnt7 6 Plays a role in osteoblast differentiation 
Hoxa5 6 Plays a role in intestinal maturation and organogenesis 
Smek1 6 Involved in stem cell pluripotency maintenance in embryos 
Fgf13 6 Fibroblast growth factor 13 
Cobl 6 Critical for neuromorphogenesis processes 
Gad2 6 Islet antigen in T1D 
Ube2q2 6 No literature available on function 
Ptpn9 6 Plays a role in negative regulation of hepatic insulin signaling 
Rhpn2 6 No literature available on function 
Chmp2b 6 Not much literature on function. Plays a role in neurodegeneration 
Actr1a 6 No literature available on function 
Map2k1 6  
Snx30 6 No literature available on function 

Pcdh8 6 Calcium-dependent cell-adhesion protein (By similarity). May play a role in activity-induced synaptic reorganization underlying 
long term memory 

Farp1 6 Involved in synapse formation 
Herpud1 6 Membrane protein that is expressed during cellular stress. Not much literature available on function 
Wdr47 6 No literature available on function 
Dus2l 6 No literature available on function 

AC140392.3 6 Component of the NuA4 histone acetyltransferase (HAT) complex that is involved in transcriptional activation of select genes 
principally by acetylation of nucleosomal histones H4 and H2A. 

Plod2 6 Essential for stability of intermolecular collagen 
Epb4.1l3 6 Tumor suppressor that inhibits cell proliferation and promotes apoptosis. 
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Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-96 D3Bwg0562
e 6 Hydrolyzes lysophosphatidic acid (LPA). Facilitates axonal outgrowth during development and regenerative sprouting 

Yipf4 6 No literature available on function 
Frs2 6 Fibroblast growth factor receptor 
Zcchc11 6 Suppresses miRNA biogenesis thru uridylation of pre-microRNAs. 
Rab35 6 The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of 
Ptger3 6 Transport vesicles to their fusion with membranes (Sakata et al., 2010).  
Ppfibp2 6 No literature available on function 
Gpm6b 6 No literature available on function 
Ube2g1 6 No literature available on function 
Zdhhc5 6  Palmitoyl acyltransferase for the G-protein coupled receptor SSTR5 
Dock1 6 Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. 

Unc45b 6 Acts as a co-chaperone for HSP90 and is required for proper folding of the myosin motor domain. Plays a role in sarcomere 
formation during muscle cell development 

Vat1 6 The protein encoded by this gene is an abundant integral membrane protein of cholinergic synaptic vesicles and is thought to be 
involved in vesicular transport. 

Pgs1 6 No literature available on function 
a Sum of target prediction programs that predict that miR-96 will bind to a given gene. Target prediction programs taken into account: miRanda, miRDB, miRWalk, RNA Hybrid, 
PICTAR5, PITA, RNA22 and Targetscan. 
b Gene function as per NCBI Gene cards and where referenced, primary litera 

 
 

!
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 Table A2.5 Predicted mRNA targets of miR-181a 

Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-181a 
 Smad7 7 

Growth inhibitor. Inhibits proliferation and TGFβ signaling. Expression of Smad7 shown to promote IL-17A+ IFN-γ+ cells (Rizzo 
et al., 2014).  
Smad7 knockdown in clinical trials for patients with active CD. Drives Th1 response in EAE and MS (Kleiter et al., 2010; Zorzi et 
al., 2013). 

Kank1 7 Involved in regulation of actin polymerization and cell motility. 
Lmo3 7 Oncoprotein and plays a role in adipogenesis 
Npepps 7 Limits MHC class I presentation in DCs. Impedes development of neuropathology by inhibiting TAU-induced neurodegenaration. 
Rnf145 7 No literature available 
Zic3 7 Involved in cardiac gene expression, development of the inner ear and converts fibroblasts to neural progenitor-like cells 
Btbd3 7 Controls dendrite orientation towards active axons 

Bcl6b 6 Required for activation of naive CD4+ T cells by TCR triggering (Takamori et al., 2004). Bazf deficient mice show aberrant 
regulation of hematopoeisis by T cells mediates magnitude of secondary response from CD8+ T cells (Broxmeyer et al., 2007). 

Dazap2 6 Not much lit. down-regulated in multiple myeloma. May be associated with cell cycle and proliferation 
Fkbp1a 6 Regulates notch1 to facilitate cell communication between endocardium and myocardium 
Ywhag 6 Proto-oncogene. Overexpressed in various cancers. 
Abcd3 6 Likely plays an important role in peroxisome biogenesis 

Id2 6 
ID2 knockdown in GVHD led to aberrant IL-10 prod by effector T cells. Necessary for development of EAE (Lin et al., 2012). 
ID2-deficient T cells results increased expression of SOCS3 and BIM on activated cells (Lin et al., 2012). Furthermore, CD4+ T 
cells deficient in ID2 show decreased proliferation and increased cell death (Lin et al., 2012).  

Cttnbp2nl 6 No literature available 
Tnfrsf11b 6 Involved in production of osteoprotogerin, a protein important for bone remodelling 
Plcl2 6 Not much literature. Modulates pain behavior in neuropathic pain model in mice 
Adcy1 6 Potentiates insulin secretion from MIN6 cells, mutations cause severe hearing impairment. 
Atp1b1 6 Required for blastocyst formation and cardiac contractility. Plays a role in renal handling of fluid balance 
Tgfbi 6 Anti-adhesion protein that reduces metastatic potential of cancers 
Prdm4 6 Critical mediator of cell death, mitosis and differentiation of neural stem cells 
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Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-181a Hmgb2 6 Promotes cell viability metastatic and chemotherapeutic resistance in cancers 
Unc5a 6 Tumour suppressor in bladder cancer. Promotes neuronal apoptosis during spinal cord development 
Klhl8 6 No literature available 
Trspap1 6 No literature available 
Fbxl3 6 Role in circardian rhythm 
Mgat3 6 Biomarker for prognosis and therapy of alzheimers 
Arhgef3 6 Involved in iron uptake and implicated in osteoporosis 
Tox 6 Role in thymocyte selection. Required for CD4+ Lineage commitment 
Klf15 6 Pro-adipogenic transcription factor. 
Wsb1 6 Binds to IL-21 and enhances it's maturation. Increased survival of neuroblastoma (Nara et al., 2011). 
Baz2b 6 Not much literature available 
Etv6 6 Forms a fusion gene with Runx1. Susceptibility loci for ALL. 
Cpd 6 Role in intracellular trafficking. Thought to play a role in TGF beta signaling 
Crebl2 6 Involved in adipogenesis 
Ppp3r1 6 Involved in cardiac contractility, beta cell formation and bone formation 
Lmbrd2 6 No literature available 
Esr1 6 Estrogen receptor 1. Shown to induce Tregs in EAE and inhibit inflammatory cytokine production 
Tmem116 6 No literature available 
Psmf1 6 Selective modulator of proteosome mediated MHC class I Ag presentation 

Afap1 6 Actin filament asscociated protein 1. Not a lot of specific literature on Afap1 but other Afaps involved in modulation of actin 
cytoskeleton 

Yipf4 6 No literature available 
Lin28 6 Neurogenesis, tissue repair, oncogene 
Mlf1 6 Regulates Runx Protein levels (drosophilla.). Plays a role in cell proliferation (Bras et al., 2012).  
Wnk1 6 Plays a role in maintaining blood pressure 
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Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-181a Eif4a2 6 No literature on function 
Ibtk 6 No literature available 
AC121108.
12 6 Involved in lipid mobilisation in adipocytes.  

Ddx55 6 No literature available 
Il1a 6 Not T cells intrinsic 
Cpne2 6 Calcium binding protein expressed by neutrophis. Thought to play a role in their differentiation 
Fbxo11 6 Suppresses p53 function. Thought to be involved in TGF beta signalling. Not much lit available 
Tbpl1 6 Involved in spermatogenesis 
Napg 6 No specific lit on function. Gene variants are implicated in bipolar disorder 
Mkrn1 6 Controls cells cycle arrest and apoptosis.  
Ssx2ip 6 Promotes metastasis and chemoresistance of hepatocellular carcinoma 
Tbc1d15 6 No literature on function 
Hoxa11 6 Control chondrocyte differentiation upstream of Runx2 
Jazf1 6 Susceptibility loci for T2D 
Gatm 6 No literature on function 
Atp5l 6 ATP Synthase 

Ghitm 6 Transmembrane protein. Found to be differentially expressed in Jurkat T cells when stim with CXCL10/CXCL12.  
No literature on function 

Fign 6 No literature on function 
Slc39a8 6 Solute carrier family 39. 
Heatr5a 6 No literature on function 

Tgfbr1 6 Validiated target of miR-181a. Activated TGFβR1 phosphorylates Smad2, results in Smad2-Smad4 complex translocating to the 
nuclus and modulating expression of TGFβ asscociated genes (Liu et al., 2012). 

Dock4 6 GTPase activator. It regulates dendrite development in neurones and promotes cancer cell migration 
Pak7 6 Promotes gastric cancer by promoting cell proliferation. It can promote neurite outgrowth and stabilise microtubule formation 



 207 

Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-181a Nol4 6 No literature on function 
Ss18l1 6 No literature on function 
Mtmr12 6 No literature on function 
Spire1 6 Involved in vessicle transport processes 
St8sia4 6 Required for synthesis of Polysialic acid, a modulator of neural adhesion molecule NCAM1 
Sgpp1 6 Regulates Sphingolipid metabolism and apoptosis 
Hck 6 Belongs to Src family of tyrosine kinases. Acts downstream of IFNG, IL-2, IL-6, IL-8 and Fc Receptors 
Itga2 6 Regulates neutrophil recruitment during DSS colitis. Marker of Tr1 cells 

Fos 6 Together with JUN, C-fos forms the TF AP-1. Blocking of AP-1 results in diminishes Th1/Th17 differentiation and increased 
FoxP3 in GVHD (Park et al., 2014). AP-1 also shown to promote expression of IL-23p19 in macrophages (Liu et al., 2009). 

Prkcd 6 Validated miR-181a target (Chen et al., 2014). Lack of PKRCD leads to autoreactive B cells. 
Plk4 6 Involved in spindle formation during cell cycle 
Lmo1 6 Oncogene. Promotes T cell lymphocytic leukeimia 
Ddx3x 6 RNA helicase. Not much literature on function 
Hoxa1 6 Promotes tumour growth.  
Zfand5 6 Involved in osteoclast differentiation 
Wasl 6 Highly expressed in neural tissues. Associates with signaling molecules to alter actin cytoskeleton 
Spata9 6 Involved in spermatogenesis 
Gabra1 6 GABA A receptor. Involved in neuronal signaling. Implicated in epilepsy 
Pdhx 6 No literature on function 
Ddit4 6 Regulates cell growth, proliferation and survival via inhibition of mTORC1 
Spry4 6 Inhibitor of MAPK signaling pathway 
Il6 6 IL-6 promotes Th17 cell development 
Sel1l 6 Regulates beta cell function and growth 
Tanc2 6 Regulation of dendritic spines and spinal memory and cytoskeletal rearrangements 
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Mouse 
miR Gene 

Sum of target 
prediction 
programsa 

Gene functionb 

MiR-181a Aftph 6 No literature on function 
Zyg11b 6 No literature on function 
Gpr22 6 G-protein coupled receptor involved in cardiovascular function 

E2f5 6 Validated miR-181a target. Promotes hepatocellular cancer and gastric cancer. Involved in cell cycle and embryogenesis (Zou et 
al., 2014) 

Epc2 6 No literature on function 
Nr6a1 6 Receptor involved in germ cell development and neurogenesis 
Rad21 6 Involved in mitosis 

a Sum of target prediction programs that predict that miR-181a will bind to a given gene. Target prediction programs taken into account: miRanda, miRDB, miRWalk, RNA Hybrid, 
PICTAR5, PITA, RNA22 and Targetscan. 
b Gene function as per NCBI Gene cards and where referenced, primary literature. 
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ABBREVIATIONS 

ABTS 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) 

ADP Adenosine diphosphate 

AE Accessibility energy 

AHR Aryl hydrocarbon receptor 

ANOVA Analysis of variance 

APC Allophycocyanin (fluorochrome) 

APCs Antigen-presenting cells 

ARGM Acetylornithine aminotransferase 

ATG16L1 Autophagy related 16-like 1 

ATP Adenosine triphosphate 

B6 C57BL/6 mouse 

BCL2 B-cell CLL/Lymphoma 2 

BCR B-cell receptor 

BMDC Bone-marrow-derived dendritic cell 

BSA Bovine serum albumin 

BV Brilliant violet 

c-Myb C-Myb Avian myeloblastosis viral oncogene homolog 

CD Cluster of differentiation 

CD Crohn’s disease 

CDH4 Adherin 4, Type 1, R-cadherin (retinal) 

CDK2 Cyclin-dependent kinase 2 

cDNA Complimetary deoxyribonucleic acids 

CLL Chronic lymphocytic leukemia 

Cre Cre recombinase 

CTLA-4 Cytotoxic T lymphocyte antigen-4 

CXCL12β Chemokine (C-X-C motif) ligand 12β 

CXCR3 Chemokine (C-X-C motif) receptor 3 

DAP Death-associated protein 
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Dapk1 Death-associated protein kinase 1 

DC Dendritic cell 

DEPC Diethylpyrocarbonate 

DGCR8 Di George Syndrome Critical Region 8 

DNA Deoxyribonucleic acids 

dNTP Deoxynucleotide triphosphate 

DSS Dextran sodium sulphate 

DTT Dithiothreitol 

DUSP5/6 Dual specificity phosphatase 5/6 

EAE Experimental autoimmune encephalomyelitis 

eBio eBioscience 

ECM1 Extracellular matrix protein 1 

EDTA Ethylenediaminetetraacetic acid 

ELF4 E74-like Factor 4 (Ets domain transcription factor) 

ELISA Enzyme-linked immunosorbant assay 

Ets-1 V-ets avian erythroblastosis virus E26 oncogene homolog 1 

eYFP Enhanced yellow fluorescent protein 

FACS Fluorescence activated cell sorting 

FBS Fetal bovine serum 

FCS Fetal calf serum 

FDR False discovery rate 

FGFR2 Fibroblast growth factor receptor 2 

FITC Fluorescein Isothiocyanate 

FOXO3a Forkhead box O3 

FoxP3 Forkhead box P3 

GFP Green fluorescent protein 

GI Gastro-intestinal   

GM-CSF Granulocyte macrophage-colony stimulating factor 

GVHD Graft versus host disease 
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GWAS Genome-wide association studies 

HC Hematopoietic cells 

HCV Hepatitis C virus 

Hh Helicobacter hepaticus 

Hh+ Helicobacter hepaticus-infected 

HIF-1α Hypoxia-inducible factor 1, alpha subunit 

HNF4A Hepatocyte nuclear factor 4, alpha 

HPRT Hypoxanthine guanine phosphoribosyl transferase 

HRP Horseradish peroxidase 

IBD Inflammatory bowel disease 

ICS Intracellular cytokine staining 

IEC Intestinal epithelial cells 

IFN-γ Interferon-gamma 

Ig Immunoglobulin 

IL Interleukin 

IL-10R IL-10 receptor 

IRAK1 Interleukin-1 receptor-associated kinase 1 

IRES Internal ribosomal entry site 

IRF4 Interferon regulatory factor 4 

IRF5 Interferon regulatory factor 5 

iTreg In vitro-induced Treg 

KLF13 Kruppel-Like factor 13 

KO Knock out 

KRAS Kirsten rat sarcoma viral oncogene homolog 

KSR2 Kinase suppressor of Ras2 

LAG-3 Lymphocyte activation gene 3 

Lair1 Leukocyte-associated immunoglobulin-like receptor 1 

LP Lamina propria 

M Molar 
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mAb Monoclonal antibody 

MCL-1 Myeloid cell leukemia 1 

MCP-1 Monocyte chemoattractant protein-1 

ME Mercaptoethanol 

mg Milligram 

MHC Major histocompatibility complex 

miR MicroRNA 

MiRISC MicroRNA loaded onto RNA-induced silencing complex 

ml Millilitre 

MLNs Mesenteric lymph nodes 

mM Millimolar 

MMP-9 Matrix metalloprotease 9 

mRNA Messenger RNA 

NCAM-1 Neural cell adhesion molecule 1 

NEAA Non-essential amino acids 

NF-κB Nuclear Factor kappa-light-chain enhancer of activated B cells 

NFAT Nuclear factor of activated T-cells 

NOD2 Nucleotide-binding oligomerization domain containing 2 

NRP1 Neuropilin-1 

OD Optical density 

OVA Ovalbumin 

p-bodies Processing bodies 

PAMPs Pathogen-associated molecular patterns 

PBMCs Peripheral blood mononuclear cells 

PBS Phosphate buffered saline 

PCA Principal component analysis 

PCR Polymerase chain reaction 

PDCD4 Programmed cell death 4 

PE Phycoertherin 
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PE-Cy7 Phycoertherin-cyanine 7 

Peli1 Pellino 1 

PerCP Perdinin chlorophyll protein 

Perm Permeabilisation buffer 

PFA Paraformaldehyde 

PIAS3 Protein inhibitor of activated stat, 3 

PMA Phorbol 12-myristate 13-acetate 

Ppp2r5c Protein phosphatase 2, regulatory subunit B 

Pre-miRNA Precursor-microRNA 

Pri-miRNA Primary microRNA 

PRKCε Protein Kinase C epsilon 

PRRs Pathogen recognition receptors 

PTPN22 Protein tyrosine phosphatase, non-receptor type 22 

pTreg Peripherally-derived Treg 

PV Polycystic Vulgaris 

qRT-PCR Quantitative real-time polymerase chain reaction 

rad Radiation absorbed dose 

RAG Recombination activating gene 

RANTES Regulated on activation, normal T expressed and secreted 

Rhoa Ras homolog family member A 

RhoB Ras homolog family member B 

RIN RNA integrity number 

RISC RNA-induced silencing complex 

RNA Ribonucleic acid 

RNU6 RNA, U6 small nuclear 6 

RORγt Retinoic-acid related orphan receptor- γt 

rpm Revolutions per minute 

RPMI Roswell Park memorial institute 

RT Reverse transcription 
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Runx1 Runt-related transcription factor-1 

Runx3 Runt-related transcription factor-3 

SCID Severe combined immunodeficiency 

SDS Sodium dodecyl sulphate 

SEM Standard error of the mean 

ShelAg Soluble H. hepaticus antigen preparation 

SHIP-1 Src homology-2 domain-containing inositol5-phosphatase 1 

SHP-2 Src homology-2 domain-containing protein tyrosine phosphatase 2 

Siah2 Siah E3 Ubiquitin protein ligase 2 

SIN3A Sin3 transcription regulator family member A 

siRNA Silencing ribonucleic acids 

SLE Systemic Lupus Erythematosus 

Smad7 Mothers against decapentaplegic homolog 7 

SOCS1 Suppressor of cytokine signaling 1 

SPF Specific pathogen free 

STAT Signal transducer and activator of transcription 

T-bet T-box transcription factor T 

TCR T-cell receptor 

TGF-β Transforming growth factor β 

Th T-helper 

Tiger Interleukin-ten ires gfp-enhanced reporter 

TIGIT T-cell immune-receptor with immunoglobulin and ITIM domain 

TLR Toll-like receptor 

TNBS Tri-nitro benzene sulphonic acid 

TNF-α Tumour necrosis factor α 

Tr1 T regulatory 1  

TRAF6 TNF Receptor-associated factor 6 

Treg T regulatory cell 

tTreg Thymically-derived Treg 
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U Units 

UC Ulcerative colitis 

UTR Untranslated region 

UV Ultra violet 

Wk Week 

WT Wild-type 

x g Times gravity 

XIAP X-linked inhibitor of apoptosis 

ZMIZ1 Zinc-finger, MIZ-type containing 1 

µg Microgram 

µl Microlitre 

µM Micromolar 
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