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Abstract

The principal result of this thesis is an affirmative answer to the inverse defor-
mation problem which asks: Does a given complete noetherian local ring have a
realisation as the unrestricted universal deformation ring of any residual represen-
tation? This is proved in two ways: firstly a complete answer is given using the
family of special linear groups over complete noetherian local rings and secondly,
if the finite field is not F3 or does not have characteristic 2, it is answered using
the family of symplectic groups.

Of central importance to the result in the symplectic case is the establishment
of a structure theorem for subgroups of special linear groups which surject onto
symplectic groups over finite fields.
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Chapter 1

Introduction

1.1 Universal Deformations

The central objects required for a precise formulation of the main results are
deformations of profinite groups. As a pre-requisite to this, we outline some basic
group theory and ring theory.

We commence by describing the algebraic construction of profinite groups of
which a thorough exposition may be found in Chapter 1 of [21]. To this end, we
introduce the notion of an inverse system of groups:

Let I be a directed partially ordered set which is the indexing set both for a
collection of groups {Gi | i ∈ I} and a collection of homomorphisms between these
groups {ϕij : Gi → Gj | i ≥ j ∈ I}. This collection of groups and homomorphisms
between them constitute an inverse system of groups if the following hold:

(i) ϕii is the identity

(ii) ϕjk ◦ ϕij = ϕik for all i ≥ j ≥ k ∈ I.

An inverse system of groups is written {Gi, ϕij}. Now suppose H is a group
accompanied by a collection of homomorphisms hi : H → Gi for each index i of I.
If ϕij ◦ hi = hj for all i ≥ j then the hi are compatible with {Gi, ϕij}. This leads
us to the following definition.

Definition 1.1.1. A group G with homomorphisms gi compatible with an inverse
system {Gi, ϕij} is the inverse limit ifG is universal in the following sense. Suppose
H is another group with homomorphisms hi compatible with {Gi, ϕij} then there
exists a unique homomorphism h : H → G such that gi ◦ h = hi.

The inverse limit of an inverse system {Gi, ϕij} will be written as lim←−Gi. With
this construction in place we make the following definition.

Definition 1.1.2. A group which is the inverse limit of an inverse system of finite
groups is called profinite.

Profinite groups have a natural topology which is defined by specifying that
subgroups of finite index are open. The topology of these groups is also explained
in detail in Chapter 1 of [21].

7



8 CHAPTER 1. INTRODUCTION

Next, we continue by introducing some basics of local ring theory. Let Fq be
the finite field with q elements. Thus q = pd where p is a prime number denoting
the characteristic of Fq and d is a positive integer. The letter k will be used to
denote a choice of finite field.

We denote by (A,mA) a local ring, i.e. a non-zero commutative ring with a
unique maximal ideal mA. The ring (A,mA) is a noetherian local ring if in addition
its ideals satisfy the ascending chain condition i.e. all chains of ideals of A of the
form:

I1 ⊆ I2 ⊆ . . .

eventually become stationary which means that there exists a positive integer d
such that for all integers e greater than d there is the equality Id = Ie.

Now we define the notion of the completion of a local ring.

Definition 1.1.3. Let (A,mA) be a local ring then its completion is the ring
Â := lim←−(A/mi

A) where i is interpreted as both a power and as a member of the
indexing set N.

If A = Â i.e. A is its own completion, then A is called complete.
For a fixed finite field k the set of all complete noetherian local rings with

residue field k form the objects of a category denoted by C(k). These rings are
either written A or (A,mA) if the maximal ideal is to be explicitly specified. The
morphisms in C(k) are local ring homomorphisms: if A and B are two rings in
C(k), a ring homomorphism A → B is a local ring homomorphism if the inverse
image of mB is mA and the induced map on residue fields is an isomorphism.

The following result, from [25], links our discussions on complete noetherian
local rings and profinite groups.

Lemma 1.1.4. If A belongs to C(k), then GLn(A) is a profinite group.

Finally, we pass further comment on the structure of the elements of C(k). Let k
be a fixed finite field and denote the ring of Witt vectors over k byW := W (k) (for a
detailed account of its construction see Section 2.6 of [30]). Every element (A,mA)
in C(k) is endowed with the structure of a W -algebra in the sense that given a
field homomorphism φ̄ : k → A/mA there is a unique local ring homomorphism
ιA : W → A which induces φ̄ on the residue fields. The image of ιA is of particular
significance and so we define

WA = ιA(W ). (1.1.1)

Also of importance will be the quotients of W by powers of the ideal (p) and so
we make the definition:

Wr = W/pr. (1.1.2)

We are ready now to introduce the deformation theory of profinite groups and
for the rest of this section Γ will denote a fixed choice of profinite group. To
begin we require the notion of a residual representation of Γ which is a continuous
homomorphism

ρ̄ : Γ→ GLn(k).
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We will study ρ̄ by considering how it may be deformed to other rings in C(k).
The concept is formalised precisely by the notion of deformations which we now
describe.

Definition 1.1.5. For a fixed residual representation ρ̄ of Γ a lifting of ρ̄ to a ring
A in C(k) is a representation of the form

ρ : Γ→ GLn(A)

such that there is the following commutative diagram

GLn(A)

m

��
Γ

ρ̄ //

ρ
;;

GLn(k)

where m : GLn(A)→ GLn(k) is the group homomorphism which is componentwise
reduction modulo mA.

A deformation of ρ̄ to A is an equivalence class of liftings where two liftings ρ1,
ρ2 of ρ̄ to A are equivalent if there exists an element T of GLn(A) in the kernel of
m so that for all g in GLn(A):

Tρ2(g)T−1 = ρ1(g).

Moreover, if ρ is a given lifting of ρ̄ then the deformation to which it belongs is
denoted [ρ].

We will require that our residual representations are absolutely irreducible and
so we define this concept:

Let K/k be a finite extension of fields and let ι : k → K be the inclusion of
fields, thus ι ◦ ρ̄ : Γ → GLn(K) is another representation of Γ. If ρ̄ is irreducible
and ι ◦ ρ̄ is irreducible for all K then ρ̄ is called absolutely irreducible.

All is now in place to state the next result by Mazur which is Proposition 1
of Section 1.2 in [18] and is fundamental to the deformation theory of profinite
groups. We note that this result introduces universal deformations and universal
deformation rings.

Theorem 1.1.6. Let Γ be a profinite group with the property that for every open
subgroup Γ0 < Γ of finite index the number of continuous homomorphisms from
Γ0 to Fp is finite. In addition, let ρ̄ : Γ→ GLn(k) be a representation.

Then there exist: a ring R := R(ρ̄) and a deformation [ρR] : Γ→ GLn(R); so
that for each lifting ρ : Γ→ GLn(A) there is a local ring homomorphism π : R→ A
which makes the following diagram commute.

GLn(R)

π

��
GLn(A)

m

��
Γ

ρ̄ //

ρ
;;

[ρR]

EE

GLn(k)
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Furthermore, if ρ̄ is absolutely irreducible R, [ρR] and π are unique. If this is the
case, R is called the universal deformation ring and [ρR] the universal deformation.

We remark that if ρ̄ : Γ → GLn(k) is irreducible the condition of absolute
irreducibility is equivalent to the centraliser of ρ̄(Γ) in Mn(k) consisting of scalar
matrices, where Mn(k) denotes the n× n matrices with coefficients in k (see The-
orem 9.2 of [17]).

1.2 Main Results

The principal result of this thesis is to provide an affirmative answer to the inverse
deformation problem which asks:

Inverse Deformation Problem. Which complete noetherian local rings have a
realisation as the unrestricted universal deformation ring of some residual repre-
sentation?

More precisely, let A be a fixed choice of ring in C(k). Does there exist a profi-
nite group Γ and a representation ρ̄ : Γ → GLn(k) with a universal deformation
ring equal to A?

Note that in this formulation of the inverse deformation problem there are no
restrictions on what Γ or n may be.

The question in its current formulation was posed by Bleher, Chinburg and De
Smit in [6] although its origins lie in an earlier form raised by Flach in [9].

Now an overview of the developments in this area is given. Recall that k is
a fixed finite field of prime characteristic p and W is the Witt ring of k. As
mentioned above, the inverse deformation problem stems from a question in [9].
This question asked if it is possible for an unrestricted universal deformation ring
not to be a complete intersection. This was first answered by Bleher and Chinburg
in [3] (also see [4]) where if k has characteristic 2 rings of the form W [[t]]/(t2, 2t)
were proven to be deformation rings. Bleher, Chinburg and De Smit then greatly
extended this first example to encompass all rings of the form W [[t]]/(pnt, t2) in [5]
with no restrictions on k. Then in [6] the same three authors provided a complete
categorisation of possible deformation problems with these deformation rings.

In [24] Rainone showed that rings of the form

• Zp[[t]]/(pn, pmt) for p > 3 and n > m

• Z/pnZ for p ≥ 5

are universal deformation rings. For an expanded account of the progress specifi-
cally regarding rings which are not complete intersections refer to [6].

At this point we reflect on the achievements of Rainone contextualising them
within the work of this thesis, [12] - the joint paper by this author and Manohar-
mayum and the work of Dorobisz [11] which is discussed in more detail below. In
[24] , Rainone made the first use of a so-called standard representation: the ρ̄ in
the following result which is Theorem 3.1.1 in [24]:
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Theorem 1.2.1. Let p ≥ 5 be a prime, Γ := GL2(Fp) and ρ̄ : Γ
∼=−→ GL2(Fp).

Then Fp is the universal deformation ring for this deformation problem.

In [16] Manoharmayum used an identity representation on the rings Wr =
W/(pr) to show that Wr where k has cardinality greater than 3 are universal
deformation rings in the next result:

Theorem 1.2.2. Let k be a finite field of cardinality greater than or equal to 4
and let n ≥ 2 be an integer subject to the restrictions:

• If k = F5 then n 6= 2

• If k = F4 then n 6= 3.

In addition let Γ := SLn(Wr) and ρ̄ : Γ → GLn(k) be reduction modulo p of the
standard representation ρWr : Γ→ SLn(Wr).

Then Wr is the universal deformation ring for the deformation problem defined
by Γ and ρ̄.

We reflect in more detail on the results and methods of [16]: the quoted de-
formation ring proof is a simple consequence of the paper’s main result which
through a sophisticated cohomological argument describes the structure of cer-
tain subgroups of general linear groups over complete noetherian local rings. In
[12] (the author’s joint work with Manoharmayum) the application of the method
of Manoharmayum’s Theorem 1.2.2 above was greatly extended to show that all
complete noetherian rings are universal deformation rings, thus providing the first
complete affirmative answer to the inverse deformation problem. To be more pre-
cise, the following result was proved in [12].

Theorem 1.2.3. Let k be a finite field of characteristic p. Then every element of
C(k) is a universal deformation ring.

More precisely, let (A,mA) ∈ C(k) and Γ := SLn(A) with n ≥ 3. Furthermore,
if k = F2 also assume that n ≥ 5. Now, let ρ̄ : Γ → GLn(k) be the compo-

nentwise reduction modulo mA of the identity representation ρA : Γ
∼=−→ SLn(A).

Then ρA is the universal deformation and A the universal deformation ring for
the deformation problem defined by Γ and ρ̄.

In this thesis, the method of [12] is extended to include SL2. Namely, we prove
the following result.

Main Theorem 1. Let k be a finite field with characteristic p. Then every element
of C(k) is an unrestricted universal deformation ring.

More precisely, let: A ∈ C(k), Γ = SLn(A) and ρ̄ : Γ → GLn(k) be reduction
modulo mA of the standard representation ρA : Γ→ SLn(A) where n is subject to
the restrictions:

• If k = F2 then n ≥ 5

• If k = F3 or k = F5 then n ≥ 3.
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Then ρA is the universal deformation and A the universal deformation ring for
the deformation problem defined by Γ and ρ̄.

At this point we remark that Main Theorem 1 is an improved version of Theo-
rem 1.2.3 above (which is the Main Theorem in [12]) extended to include the case
where n = 2 and A ∈ C(k) with k 6∈ {F2,F3,F5}.

To complete this overview we remark that the unrestricted inverse deformation
problem was independently answered by Dorobisz in [11] which appeared shortly
after [12]. In [11] Dorobisz investigates the same deformation problem (i.e. where

Γ := SLn(A), ρA : Γ
∼=−→ SLn(A) and ρ̄ : Γ→ SLn(k) is componentwise reduction

modulo mA) but uses an approach not involving cohomology but rather relying
solely on properties of special linear groups. The principal result of [11] phrased
in the language and notation of this work is the following:

Theorem 1.2.4. Let A ∈ C(k) where k is a finite field, Γ := SLn(A) and ρ̄ : Γ→
GLn(k) be reduction modulo mA of the standard representation ρA : Γ→ SLn(A)
where n is subject to the restrictions

• If k = 2 then n ≥ 4

• If k = F3 or k = F5 then n ≥ 3.

Then ρA is the universal deformation and A the universal deformation ring for
the deformation problem defined by Γ and ρ̄.

Especially noteworthy is the inclusion above of the case n = 4 and k = F2

which is not included in Main Theorem 1 (or in Theorem 1.2.3 - the result from
[12] ).

The method in this thesis and [12] utilisies cohomological properties of special
linear groups and as certain symplectic groups share these cohomological properties
our method produces analagous results within the context of these groups as well.

This brings us to survey other significant results of this thesis. The first is the
following theorem, a crucial component in the proof of Main Theorem 1, which
describes the important subgroup structure of GLn over complete noetherian local
rings.

Theorem 1.2.5. Let (B,mB) be an element of C(k). Let n ≥ 2 be an integer, p
be a prime and Fq be the finite field with q = pd elements. We make the following
restrictions on n and k:

• If k = F2 then n ≥ 5

• If k = F3 then n ≥ 3

• If k = F5 then n ≥ 3

and let G be a subgroup of SLn(B). Assume that G mod mB = SLn(k). Then there
exists an X ∈ GLn(B) satisfying X ≡ I mod mB such that SLn(WB) ⊆ XGX−1.
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We remark that this result is an extension of Manoharmayum’s Main Theorem
of [16] which proved the result for finite fields with cardinality greater than or
equal to 4 and let n ≥ 2 subject to the restrictions:

• If k = F5 then n 6= 2

• If k = F4 then n 6= 3.

This result of [16] was then extended by Manoharmayum and Eardley in [12]
to include:

• k = F3 when n ≥ 3

• k = F2 when n ≥ 5.

Thus Theorem 1.2.5 collates the results of [16] and [12].
The second significant result (motivated by the observation that in addition

to belonging to the family of special linear groups the groups SL2(A) also belong
to the family of symplectic groups) extends the principles of the cohomological
argument of [16] to a more complicated setting. This result, Main Theorem 3
in Chapter 8, provides an analogue of Theorem 1.2.5 for subgroups of GLn(B)
containing SLn(WB) subject to the restrictions:

• If n = 1 then k 6= F2,F3,F5

• If n ≥ 2 then p ≥ 3, the cardinality of k is greater than or equal to 5 and n
is coprime to p.

The third, Main Theorem 2 in Chapter 8, uses Main Theorem 3 to prove that
subject to the restrictions

• k does not have characteristic 2

• k 6= F3

all rings A in C(k) are universal deformations rings, i.e. the inverse deformation
problem may also be answered by symplectic groups. Thus a family of smaller
(in the sense of inclusion of groups) groups which answer the inverse deformation
problem is provided.

The fourth, Main Theorem 4 in Chapter 14, applies the methods used for
symplectic groups in a new setting; that of symplectic deformations. This situation
is considerably simpler and after proving another analogous structural result we
show that, excepting the restrictions on p and k the inverse symplectic deformation
problem also has an affirmative answer.

Finally, we make reference to some results which here play an intermediary role
but may be of independent interest:

• in Theorem 12.0.7 part (i) from Chapter 12 we prove thatH1(SP2n(Wr),M0) =
(0) subject to some restrictions on p, q and n.

• in Main Theorem 3 we prove a symplectic analogue to Theorem 1.2.5.
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• in Main Theorem 4 of Chapter 14 the deformation problem associated with
ρ̄ : SL2(A) → SL2(k) given by reduction modulo mA is generalised in a
different fashion. This time it is considered as a symplectic deformation i.e.
as a representation in the form ρ̄ : Γ → SP2n(k) and where deformations
of ρ̄ are of the form ρ : Γ → SP2n(A). The final result mentioned here
answers the so-called inverse symplectic deformation problem: Which rings
in C(k) have a realisation as a universal deformation ring to a symplectic
deformation?

1.3 Thesis Outline

The thesis essentially comprises two parts. The first part, chapters 2-7, are dedi-
cated to proving Main Theorem 1 thus answering the inverse deformation problem
for all complete noetherian local rings. This is achieved by considering identity
representation of special linear groups over rings in C(k) and residual representa-
tions induced from componentwise reduction modulo maximal ideal. Of central
importance to the argument is the invocation of Theorem 1.2.5 which allows us to
assume that a representative of the deformation class contains SLn(WA).

In Chapter 2 we state and investigate the relevant group theoretic properties
of SLn over complete noetherian local rings. Then in Chapter 3 we complete the
proof of Main Theorem 1 subject to proving Theorem 1.2.5.

Thus all that remains in this part is to prove Theorem 1.2.5, to this end in Chap-
ter 4 we provide background material on group cohomology and extensions. This
leads us to an examination of the submodule structure of kSLn(Wr)-modules in
Chapter 5 and the calculation of the relevant cohomological groups for kSLn(Wr)-
modules in Chapter 6. Then, with all this in place, we finish the proof of Theorem
1.2.5 in Chapter 7.

In the second part of the thesis (Chapters 8-14) the focus is on deformation
problems of symplectic groups. More specifically, in Chapters 9-13 we prove Main
Theorem 2 providing (with a few exceptions) another class of groups which answer
the inverse deformation problem. The model for the proof of Main Theorem 2
follows that for SLn. Namely, we begin with a discussion of the relevant group
theoretic properties of SP2n over complete noetherian local rings. Then we assume
the result of Main Theorem 3 to complete the proof of Main Theorem 2 in Chapter
10. As before, all that is now required is to prove Main Theorem 2 hence in Chapter
11 we examine the submodule structure of kSP2n(Wr)-modules and in Chapter
12 we make the necessary calculations of cohomological groups of kSP2n(Wr)-
modules. This allows us to complete the proof of Main Theorem 3 in Chapter
13.

Finally, in Chapter 14 we utilise the work of previous chapters to provide an
answer for the symplectic deformation problem, i.e. we prove Main Theorem 4.



Chapter 2

Special Linear Groups

The main objective of this chapter is to collect the group theoretic and structural
properties of special linear groups over rings in C(k) required for the deformation
ring calculations in Chapter 3. In addition, some results from this chapter are used
to determine kSLn(k)-modules and module homomorphisms in Chapter 5.

In Section 2.1 elementary matrices are introduced and a well known generating
set for SLn over complete local rings is established. Then in Section 2.2 the Stein-
berg relations for elementary matrices are used to determine which special linear
groups over local rings are perfect. Finally, Section 2.3 identifies the subgroup of
signed permutations in SLn and derives a number of elemental consequences and
related results. However, we begin by fixing the notation used.

For (A,mA) in C(k): the set of n× n matrices over A is denoted Mn(A); and
the familiar general linear and special linear groups of dimension n over A are
denoted GLn(A) and SLn(A) respectively. In each of these groups the identity
element will simply be written I: its dependence on n being suppressed.

2.1 Elementary Matrices

Let (A,mA) belong to C(k) and n ≥ 2 be an integer. For all pairs of integers
(i, j) in the range 1 ≤ i, j ≤ n the matrix units are defined to be the elements of
Mn(A) which have a 1 in the (i, j)-th entry and zeros in all others. These matrices
are denoted eij and their multiplication is governed by the formula eijekl = δjkeil
where δjk is the Kronecker Delta i.e.

δjk :=

{
1 if j = k

0 if j 6= k.

Furthermore, as n ≥ 2 this allows us to choose distinct indices i and j as above
and make the definition

Eij(λ) = I + λeij .

Elements of this form are called elementary matrices and clearly belong to SLn(A).
The elementary matrices generate a subgroup of SLn(A) denoted by E(n,A). Next
we present the following result, which is essentially Whitehead’s Lemma.

15
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Lemma 2.1.1. Let a belong to A×. There is the identity:(
a 0
0 a−1

)
= E21(a−1)E12(1− a)E21(−1)E12(1− a−1).

More generally, the diagonal matrix which differs from the identity only in that its
(i, i)-th entry is a and its (j, j)-th entry is a−1 may be expressed as the following
product of elementary matrices:

Eji(a
−1)Eij(1− a)Eji(−1)Eij(1− a−1).

The next theorem is a special case of result 1.2.11 in [13] and holds in the more
general setting of Euclidean domains. The theorem shows that over finite fields
elementary matrices generate the special linear group.

Theorem 2.1.2. If k is a finite field then E(n, k) = SLn(k).

The following corollary extends the conclusion of the theorem to all complete
local rings, hence in particular to all the elements of C(k).

Corollary 2.1.3. If A is a complete local ring then E(n,A) = SLn(A).

Proof. As each of the Eij(λ) belong to SLn(A) it is clear that E(n,A) is a subgroup
of SLn(A) therefore we must show the converse as well. The method is to show
that for an arbitrary element g of SLn(A) there exist two products of elements of
E(n,A), L and R, such that LgR = I. This would then imply that g = L−1R−1

and thus clearly belongs to E(n,A).
Let g ∈ SLn(A) and let ḡ be the element of SLn(k) obtained from g by com-

ponentwise reduction modulo mA. Then, as a consequence of the theorem above,
there exist L̄ and R̄ in E(n, k) such that L̄ḡR̄ = I . These matrices can be lifted to
L and R in SLn(A) so that LgR ≡ I mod mA. Therefore we have reduced to the
case of elements of SLn(A) with the form g = I +M where M is a n× n matrix
with entries in mA.

The next step is to show that by the multiplication of suitable matrices on the
left I +M may be assumed diagonal. This is completed for each row individually;
therefore we choose the r-th row to focus on and form the product:∏

i 6=r
Eri(λi)

 (I +M) = I +M +
∑
i 6=r

λi(1 +mii)eri + λi
∑
y 6=i

miyery

 . (2.1.1)

Let s be an index different from r and consider the (r, s)-th coefficient of the
right-hand side of the equation above. This is:

mrs + λs(1 +mss) +
∑
i 6=r,s

λimis.

If we set:
λs = −(1 +mss)

−1[mrs +
∑
i 6=r,s

λimis]
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then the (r, s)-th coefficient of equation (2.1.1) is zero. Therefore by choosing the
appropriate value for each λs we find that, with the exception of the (r, r)-th entry,
the r-th row of equation (2.1.1) consists of zeros. This process may be continued

over all values of r. Hence replacing λi with λ
(r)
i to reflect the dependence of these

scalars on r implies that

N :=

 n∏
r=1

∏
i 6=r

Eri(λ
(r)
i )

 (I +M)

is a diagonal matrix. Furthermore, each of these diagonal entries are units because,
as a product of elements of SLn(A), N is invertible.

Therefore we may write N = diag((ni)). Now define a set ui of units in the
ring A and a corresponding set of elements of SLn(A) by:

ui :=

i∏
r=1

n−1
r , Wi := Ei+1,i(u

−1
i )Ei,i+1(1− ui)Ei+1,i(−1)Ei,i+1(1− u−1

i ).

Lemma 2.1.1 implies that Wi is diagonal with: ui in the (i, i)-th position, u−1
i in

the (i + 1, i + 1)-th position and 1s on the remaining diagonal entries. With this
in place we form the product (

n−1∏
i=1

Wi

)
N

of which the first n − 1 diagonal entries are 1; this follows directly from the defi-
nitions of ui and Wi. The (n, n)-th entry is

n∏
i=1

ni

which must also equal 1 because N belongs to SLn(A) and this product is thus an
expression of its determinant.

2.2 Commutator Subgroups of Special Linear Groups

In this section the notions of a derived group and a perfect group are introduced
and explored within the context of special linear groups. Let g and h be two
arbitrary elements of G then their commutator is

[g, h] := ghg−1h−1.

The set of all commutators of G generates a normal subgroup called the derived
group of G denoted by [G,G]. If the commutators generate the whole of G then
G is called perfect.

This leads us to considering representations of perfect groups.
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Proposition 2.2.1. Let ρ : G → GLn(A) be a group homomorphism. If G is a
perfect group then the image of ρ is in fact contained in SLn(A).

Proof. As G is perfect it suffices to show that the images of commutators have
determinant equal to 1. Let g = [g1, g2] then by the multiplicative property of the
group homomorphisms ρ and det:

det(ρ(g)) = det([ρ(g1), ρ(g2)]) = I.

The commutator relations for special linear groups play an important role in
our deformation ring calculations. This brings us to the following lemma, known
as the Steinberg relations, a discussion of which is found in Chapter 5 of [20].

Lemma 2.2.2. Let n ≥ 3. The elementary matrices satisfy the following, which
are called the Steinberg relations:

(a) Eij(x)Eij(y) = Eij(x+ y),

(b) [Eij(x), Ejk(y)] = Eik(xy) if i 6= k

(c) [Eij(x), Ekl(y)] = I if i 6= l, j 6= k.

If n ≥ 3 then the elementary matrices in conjunction with the Steinberg rela-
tions specify SLn(A). However, if n = 2 the relations (b) and (c) are vacuous and
so in this case these relations are insufficient. Fortunately, Lemma 2.1.1 may be
used to determine which of the SL2 over complete local rings are perfect.

Lemma 2.2.3. Let (A,mA) be in C(k) where k has q elements. Then if the pair
(n, q) is neither (2, 2) nor (2, 3) the group SLn(A) is perfect.

Proof. When n ≥ 3 Lemma 2.2.2 (b) shows that each elementary matrix is a
commutator, hence the conclusion follows from Corollary 2.1.3.

If n = 2 the restriction q ≥ 4 implies that there exists an element a in A× such
that a2 6= 1, which we use to define the following element of SL2(A):

w :=

(
a 0
0 a−1

)
.

Then there are the commutator relations

E12(b) = [w,E12(b(a2 − 1)−1)] (2.2.1)

E21(b) = [w,E21(b(a2 − 1)−1)] (2.2.2)

which together with Corollary 2.1.3 complete the proof when q > 3.
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2.3 Permutation Matrices

In this section certain signed permutation matrices are identified which allow us
to conjugate elementary matrices to each other by elements of SLn(WA). With
this in mind recall that the symmetric group Sn can be identified with a subgroup
of GLn(Z) in a natural fashion. We note that for A in C(k), the unique homomor-
phism Z→ A defines a subring of A which is also a subring of WA and if extended
componentwise determines a subgroup of SLn(WA) via SLn(Z)→ SLn(A).

Let x be an arbitrary element of A. We will need to conjugate, using elements of
SLn(WA) exclusively, the elementary matrix E1n(x) to each of the other matrices
of the form Eij(x). From the discussion above it is clear that it is sufficient to
find suitable matrices belonging to SLn(Z). This leads us to signed permutation
matrices.

Definition 2.3.1. Let 1 ≤ r, s ≤ n with r 6= s and define

• (rs) ∈ GLn(Z) to be the permutation matrix which differs from the identity
only in that its r-th and s-th rows have been transposed,

• Dr ∈ GLn(Z) to be the diagonal matrix that differs from the identity only
in its (r, r)-th entry which is −1.

The notation (rs) intentionally suggests the familiar notation of transpositions
in Sn. It is clear that the matrices (rs) and Dr all have determinant −1 and thus
do not belong to SLn(Z). However, a product of any two of these elements will
have determinant 1 and thus belongs to SLn(Z) .

Now let n ≥ 3. Given 1 ≤ i, j ≤ n with i 6= j we define the following collection
of signed permutations Tij ∈ SLn(Z) by:

Tij :=



I if (i, j) = (1, n),

D2(1n) if (i, j) = (n, 1),

Dn(jn) if i = 1 and j 6= n,

D1(1i) if i 6= 1 and j = n,

(1i)(nj) if i 6= 1 and j 6= n and (i, j) 6= (n, 1)

(2.3.1)

This brings us to the following result.

Proposition 2.3.2. Let A ∈ C(k) and n ≥ 2 be an integer.

(i) Suppose X ∈ GLn(A). Then XEij(1) = Eij(1)X for all elementary matrices
Eij(1) with 1 ≤ i < j ≤ n if and only if X = λE1n(x) for some λ ∈ A×,
x ∈ A.

(ii) TijE1n(x)T−1
ij = Eij(x) for all 1 ≤ i 6= j ≤ n and x ∈ A.

Proof. For (i): if n ≥ 3 the Steinberg relations (Proposition 2.2.2 (c)) imply that
λE1n(x) commutes with Eij(1) for 1 ≤ i < j ≤ n, if n = 2 this is equivalent to



20 CHAPTER 2. SPECIAL LINEAR GROUPS

E12(x)E12(y) = E12(y)E12(x). In the opposite direction, suppose X commutes
with Eij(1). Then the relation Eij(1)X = XEij(1) implies

n∑
m=1

xjmeim =
n∑

m=1

xmiemj .

From which it is clear that: xjj = xii, the non-diagonal entries of the j-th row are
zero and the non-diagonal entries of the i-th column are zero. By varying over all
permissible values of the pair (i, j) the conclusion follows.

For part (ii): we note that by the definition of (rs) it is clear that multiplication
with (rs) on the right, respectively left, swaps the r-th and s-th rows, respectively
columns. It is also clear that multiplication with Dr on the right, respectively
left, multiplies by −1 the entries in the r-th row, respectively r-th column. We
conclude by observing that in each of the middle three products of equation (2.3.1)
the subscript of Dr has been chosen distinct from i and j.

Corollary 2.3.3. If n ≥ 3 and A ∈ C(k) then:

Tij(xe1n)T−1
ij = xeij for all 1 ≤ i 6= j ≤ n and x ∈ A. (2.3.2)

Furthermore, given any two pairs of indices i 6= j and k 6= l, eij may be conjugated
by elements of SLn(WA) to ekl; and eii − ejj may also be conjugated by elements
of SLn(WA) to ekk − ell.

If n = 2 then e12 may be conjugated to −e12 by the element D2(12) of SLn(WA)
(see Definition 2.3.1 for the definitions) and vice versa.

Proof. The observation of (2.3.2) follows from Proposition 2.3.2 (ii) as is demon-
strated by the equality:

I + xeij = Tij(I + xe1n)T−1
ij

= I + Tij(xe1n)T−1
ij .

For the next claim we note that T−1
ij eijTij = e1n by Proposition 2.3.2 (ii). Then

e1n may be conjugated to ekl by the argument above. Next, we observe that
T−1
ij (eii − ejj)Tij = e11 − enn and the argument follows similarly.

If n = 2 then the matrix D2(12), see Definition 2.3.1 for the definitions, may
be used to effect the conjugations.



Chapter 3

Skeleton Proof

3.1 The Main Argument

In this section the main thrust of the argument proving Main Theorem 1 is pre-
sented. In so doing, certain technical elements are left until later. We begin by
establishing the notation used.

Let k be a fixed choice of finite field, (A,mA) a fixed element of C(k) and n ≥ 2
an integer subject to the restrictions:

• If k = F2 then n ≥ 5

• If k = F3 or F5 then n ≥ 3.

We then define Γ = SLn(A), ρA : Γ
∼=−→ SLn(A) to be the identity representa-

tion (i.e. given by a fixed choice of isomorphism) and ρ̄ : Γ → GLn(k) to be
componentwise reduction modulo mA of ρA.

Lemma 3.1.1. The residual representation ρ̄ given above is absolutely irreducible.

Proof. We begin by observing that ρ̄ : SLn(A)→ SLn(k) is clearly surjective.

Next, we show that ρ̄ is irreducible. This is equivalent to showing that the n-
dimensional vector space kn has no non-trivial subspaces. Let v = (v1, . . . , vn) be
an arbitrary element of kn. Also let 1 ≤ i, j ≤ n be distinct integers and consider
the action of Eij(1) on v. If v is fixed by Eij(1) then equating this with v and
looking at the i-th components implies vi = vi + vj . Therefore the component vj
must be zero and continuing by running through all permissible values of i and j
the result follows.

Finally, recall that as ρ̄ : Γ → GLn(k) is irreducible the condition of absolute
irreducibility is equivalent to the centraliser of ρ̄(Γ) in Mn(k) consisting of scalar
matrices (see Theorem 9.2 of [17]). The first part of Proposition 2.3.2 implies that
an element in the centre of SLn(k) could have the form λE1n(x). However, as such
an element also commutes with En1(1), x must be zero.

Therefore, invoking Theorem 1.1.6 we have proved the following.

21



22 CHAPTER 3. SKELETON PROOF

Corollary 3.1.2. For the deformation problem defined by Γ and ρ̄ (as above)
there exists a universal deformation ring R and a universal deformation ρR (see
Theorem 1.1.6).

Now for a simple observation about the images of the deformations introduced
here.

Corollary 3.1.3. For the deformation problem defined by Γ and ρ̄ (as above) the
following hold:

• the image ρR(Γ) ⊆ SLn(A).

• the image ρ̄(Γ) ⊆ SLn(k).

Proof. Lemma 2.2.3 tells us that Γ is perfect therefore the result follows from
Proposition 2.2.1.

Recall from Theorem 1.1.6 the existence of a unique local ring homomorphism
π : R→ A for which π ◦ ρR is strictly equivalent to ρA and recall that m : A→ k
is componentwise reduction modulo mA. We may summarise the relationships
between the deformations ρ̄, ρA and ρR in the commutative diagram below:

SLn(R)

π

��
Γ

ρR
;;

ρA//

ρ̄

##

SLn(A)

m

��
SLn(k).

Proof of Main Theorem 1. For clarity the argument is split into three small steps.

Step 1. We begin by observing some characteristics of the universal deformation.
Let (R,mR) together with ρR : Γ → SLn(R) be the universal deformation ring
for the deformation problem defined by ρ : Γ → SLn(k). We note that ρR(Γ)
mod mR = SLn(k). Therefore, we may invoke Theorem 1.2.5 and upon replace-
ment of ρR with a strictly equivalent representation we may assume that ρR(Γ)
contains a copy of SLn(WR).

Step 2. We now note that the unique local ring homomorphism π : R→ A which
is associated with ρA by the universal property of R, i.e. so that π ◦ ρR is strictly
equivalent to ρA, is compatible with W -algebra structure morphisms ιA and ιR.
This is tantamount to the following commutative diagram:

WR

π

��
W

ιR
==

ιA //WA.

(3.1.1)
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With this in place, we make the following simple observations of the salient homo-
morphisms.

Proposition 3.1.4. With the notation defined above, we have the properties:

(i) ρR : Γ→ SLn(R) is injective and π : ρR(Γ)→ SLn(A) is an isomorphism.

(ii) The map π : R→ A is surjective.

Proof. Part (i) follows from the fact that π ◦ ρR is an equivalent lifting to ρA,
and that ρA is an isomorphism. Part (ii) also follows immediately from these
properties.

Step 3. To complete this outline of the proof we need the following result whose
proof is given in the next section.

Proposition 3.1.5. There exists a local ring homomorphism of elements of C(k),
represented by s : A→ R, which is a section to π : R→ A.

To complete the proof of Main Theorem 1 we verify that ρA : Γ → SLn(A) is
equivalent to the universal deformation. Recall that, by Proposition 2.2.2, the
elementary matrices Eij(x) generate SLn(A). Therefore matrices of the form
Eij(s(x)) generate ρR(Γ) where s : A → R is the section to π : R → A from
Proposition 3.1.5. As π ◦ s is the identity on A this implies the equality:

π ◦ s ◦ π ◦ ρR = π ◦ ρR. (3.1.2)

We observe that the restriction π|Im(s) is injective and thus may be cancelled in
the above compositions of maps. Hence giving the equality:

s ◦ π ◦ ρR = ρR. (3.1.3)

From this equality and the universal property of the pair R and ρR the map
s ◦ π : R→ R must be the identity on R. Therefore π : R→ A is an isomorphism
with inverse s : A → R. Finally, as ρA is strictly equivalent to π ◦ ρR by the
universal property of the pair R and ρR, s ◦ ρA is strictly equivalent to ρR. Thus
A ∼= R.

3.2 Proof of the Proposition 3.1.5

The prove the existence of the section s : A → R of Proposition 3.1.5 we require
Theorem 1.2.5 which is stated again below for convenience.

Theorem 1.2.5. Let (B,mB) be an element of C(k). Let n ≥ 2 be an integer, p
be a prime and Fq be the finite field with q = pd elements. We make the following
restrictions on n and k:

• If k = F2 then n ≥ 5
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• If k = F3 then n ≥ 3

• If k = F5 then n ≥ 3

and let G be a subgroup of SLn(B). Assume that G mod mB = SLn(k). Then there
exists an X ∈ GLn(B) satisfying X ≡ I mod mB such that SLn(WB) ⊆ XGX−1.

The proof of the Theorem 1.2.5 is substantial requiring the background of
chapters 5-6 and as such its proof is deferred until Chapter 7.

Proposition 3.2.1. Let π : R→ A be the unique local ring homomorphism which
makes π ◦ ρR strictly equivalent to ρA. Then the restriction π|WR

: WR → WA is
an isomorphism.

Proof. We begin by observing that ρR(Γ) mod mR = SLn(k), thus Theorem 1.2.5
allows us to assume that SLn(WR) belongs to the image of a representative of
the deformation class to which ρR belongs. The compatibility of the W -algebra
structure morphisms, see the diagram in 3.1.1, and Proposition 3.1.4 (ii) imply
that the group homomorphism:

π|SLn(WR) : SLn(WR)→ SLn(WA)

is surjective. Furthermore, Proposition 3.1.4 (i) implies that this map, π|SLn(WR) :
SLn(WR) → SLn(WA), is an isomorphism. Therefore the underlying ring homo-
morphism π|WR

: WR →WA is a ring isomorphism.

The above assertion allows us to identify WR and WA. Henceforth, we will not
differentiate between ιR(x) and ιA(x) for x ∈W .

Next we investigate the local ring homomorphism π in further detail.

Lemma 3.2.2. Let k be a finite field, (A,mA) a fixed element of C(k) and n ≥ 2
an integer subject to the restrictions:

• If k = F2 then n ≥ 5

• If k = F3 or F5 then n ≥ 3.

In addition let x ∈ A.

(i) There exist a unique λx in R× and a unique s(x) in R such that there is an
element λxE1n(s(x)) in ρR(Γ) with π(λxE1n(s(x))) = E1n(x).

(ii) Furthermore, Eij(s(x)) belongs to ρR(Γ) and is the unique pre-image of
Eij(x) under π.

Therefore the map s : A→ R characterised by the following property is well defined:

If x ∈ A then s(x) is the unique element in R such that π(s(x)) = x
and that Eij(s(x)) belongs to ρR(Γ) for all 1 ≤ i, j ≤ n with i 6= j.
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Proof. Part (i): Proposition 3.1.4(i) states that π : ρR(Γ) → SLn(A) is an iso-
morphism which implies that there exists a unique X ∈ ρR(Γ) such that π(X) =
E1n(x). We now investigate the form which X takes.

Proposition 3.2.1 together with our identification of WR with WA, imply that
the elementary matrices Eij(1) with 1 ≤ i < j ≤ n belong to both SLn(A) and
ρR(Γ). Recall that π is a local ring homomorphism, therefore as E1n(x) ∈ SLn(A)
commutes with the Eij(1) with 1 ≤ i < j ≤ n so must X. Thus Proposition 2.3.2
(i) implies that X = λxE1n(s(x)) for some s(x) in R and λx in R×.

Part (ii) for n ≥ 3: For x ∈ A let s(x) and λx ∈ R be defined as in part (i).
We may assume that, as elements of SLn(WR), the signed permutation matrices
Tij belong to ρR(Γ) (see the defining relations (2.3.1)). Hence Proposition 2.3.2
implies that λxEij(s(x)) = TijλxE1n(s(x))T−1

ij . From this, we see that λxEij(s(x))
is in ρR(Γ) and is the unique pre-image of Eij(x) for any pair 1 ≤ i, j ≤ n with
i 6= j. Note that if x ∈ WA then λx = 1 and s(x) = x (as π|WR

: WR → WA

is an insomorphism and we are identifying WA and WR). We now show that λx
is in fact equal to 1 for all elements. Let i, j, k be three distinct integers in
{1, 2, . . . , n}. By considering their inverse images in ρR(Γ), the relation Eij(x) =
Eik(x)Ekj(1)Eik(x)−1Ekj(1)−1 implies that

λxEij(s(x)) = λxEik(s(x))Ekj(1)λ−1
x Eik(s(x))−1Ekj(1)−1

= Eij(s(x)),

and hence λx = 1.
Part (ii) for n = 2: Let’s first look at the inverse image of E12(x). Lemma

3.2.2 implies that the inverse image of E12(mx) = (E12(x))m is

λx
mE12(m.s(x)). (3.2.1)

In particular, this holds if m = l2 − 1 for a unit l ∈ WA, thereby giving the
alternative identity:

E12((l2 − 1)x) = [L,E12(x)]

where L ∈ SLn(WA) is the diagonal matrix which has l in the (1, 1)-th entry
and l−1 in the (2, 2)-th entry. This identity implies that the inverse image of
E12((l2 − 1)x) must also be given by:

[L, λxE12(s(x))] = LλxE12(s(x))L−1λx
−1E12(−s(x))

= E12((l2 − 1)s(x)).

This implies that λx
l2−1 = 1. Given the restriction on k, we may assume that A

has two distinct units u and v such that the expressions u2−1 and v2−1 are both
non-trivial and distinct. Therefore λu

2−1
x = λv

2−1
x , hence λx = 1.

Now, let’s look at the inverse image of E21(x). The equation (3.2.1) implies
that π−1(E12(−x)) = E12(−s(x)). By observing the following identity:(

0 −1
1 0

)(
1 x
0 1

)(
0 1
−1 0

)
=

(
1 0
−x 1

)
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we see that the inverse image of E21(−x) under π is E21(−s(x)).
From the argument above it is clear that s : A→ R is well defined.

As we have shown that the set-theoretic section s : A → R is well defined all
that remains to prove Proposition 3.1.5 is to show that s is a local ring homomor-
phism.

Proposition 3.2.3. The map s : A → R defined in Lemma 3.2.2 is a local ring
homomorphism which is a section for π.

Proof. From the construction of s : A → R it is clear that s|WA
is the inverse

to π|WR
; and that π ◦ s is the identity on A. Also, Proposition 2.2.2(a) implies

that s(x + y) = s(x) + s(y) for all x, y ∈ A. If n ≥ 3 and 1 ≤ i, j, k ≤ n
are three distinct integers, then the commutation relation [Eij(s(x)), Ejk(s(y))] =
Eik(s(x)s(y)) shows that s(xy) = s(x)s(y). Therefore s : A → R is a ring homo-
morphism. Finally, by its construction s(mA) ⊆ mR and s induces the identity on
A/mA = R/mR = k and is thus a local ring homomorphism.

All that remains is to show when n = 2 that s exhibits the multiplicative
property as well. To this end, let a ∈ A× then Whitehead’s Lemma (Lemma
2.1.1) gives:

E21(a−1)E12(1− a)E21(−1)E12(1− a−1) =

(
a 0
0 a−1

)
E21(a)E12(1− a−1)E21(−1)E12(1− a) =

(
a−1 0
0 a

)
.

After mapping these matrices under s : A→ R and invoking the additive property,
these become:

E21(s(a−1))E12(s(1− a))E21(−1)E12(s(1− a−1)) = α

E21(s(a))E12(s(1− a−1))E21(−1)E12(s(1− a)) = β

respectively, where

α =

(
s(a) 1− s(a)s(a−1)

s(a−1)s(a)− 1 s(a−1)[2− s(a)s(a−1)]

)
β =

(
s(a−1) 1− s(a−1)s(a)

s(a)s(a−1)− 1 s(a)[2− s(a)s(a−1)]

)
.

By definition β = α−1 and looking at the (1, 2)-th entries we see that:

1− s(a−1)s(a) = −[1− s(a)s(a−1)]

which implies that s(a−1) = s(a)−1 if the characteristic of k is not equal to 2. If
the characteristic of k is 2 then also observe that the (1, 1)-th entry of α must
equal the (2, 2)-nd entry of β hence:

s(a) = s(a)[2− s(a)s(a−1)]
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which implies that s(a) = s(a)s(a)s(a−1). As a is a unit we may cancel a factor
of s(a) and thus s(a−1) = s(a)−1.

Suppose that a1, a2 are both units in A and consider the inverse image of a1a2

and the diagram:

(
a1 0

0 a−1
1

)(
a2 0

0 a−1
2

)
//

��

(
s(a1) 0

0 s(a−1
1 )

)(
s(a2) 0

0 s(a−1
2 )

)

��(
a1a2 0

0 a−1
1 a−1

2

)
//
(
s(a1a2) 0

0 s(a−1
1 a−1

2 )

)
which imply that s(a1)s(a2) = s(a1a2). Now we consider the case where a1 is a
unit and a2 is a non-unit. As A is a local ring this means that 1 + a2 is a unit and
using the diagram as above we have:

s(a1)s(1 + a2) = s(a1(1 + a2))

=⇒ s(a1)(1 + s(a2)) = s(a1 + a1a2)

=⇒ s(a1) + s(a1)s(a2) = s(a1) + s(a1a2)

which again implies that s(a1)s(a2) = s(a1a2). To conclude we consider the case
where both a1 and a2 are non-units which follows similarly from:

s(1 + a1)s(1 + a2) = s((1 + a1)(1 + a2))

=⇒ (1 + s(a1))(1 + s(a2)) = s(1 + a1 + a2 + a1a2)

=⇒ 1 + s(a1) + s(a2) + s(a1)s(a2) = 1 + s(a1) + s(a2) + s(a1a2).

.
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Chapter 4

Group Cohomology and
Extensions

4.1 Group Cohomology

Throughout this section let G be a profinite group. We give a utilitarian approach
to the cohomology of G defining only what is required in this thesis. Unfortunately,
this approach shrouds the true elegancy of the subject, which is better described
in [21]. As a lead-in to cohomology we introduce G-modules:

Definition 4.1.1. Let G be a group with identity e and M an abelian group. If
there is a map G×M →M : (g,m)→ g ·m satisfying

• g · (m+ n) = g ·m+ g · n

• e ·m = m

• (gh) ·m = g · (h ·m)

for all g, h ∈ G and m,n ∈M , then M is called G-module.

We begin with the definitions of the zeroth, first and second cohomology groups.

Definition 4.1.2. For a G and M as above: H0(G,M) = MG.

In order to define the first cohomology group we introduce:

Definition 4.1.3. Let G and M be as above, then 1-cocycles are defined as:

Z1(G,M) = {f : G→M | f(gh) = f(g) + g · f(h) ∀g, h,∈ G}

and 1-coboundaries are defined as:

B1(G,M) = {f ∈ Z1(G,M); | ∃m ∈M such that f(g) = g ·m−m, ∀g ∈ G}.

Then the 1-cohomology group is the following factor group:

H1(G,M) = Z1(G,M)/B1(G,M).
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Lemma 4.1.4. Let G be a group which acts trivially on a module M. Then
with regard to H1(G,M) the only 1-coboundary is the zero map. Also, as G acts
trivially a 1-cocycle f in H1(G,M) is a map satisfying

f(gh) = f(g) + f(h)

for all g and h in G. Therefore H1(G,M) = Hom(G,M).

Similarly, to introduce the second cohomology group we require:

Definition 4.1.5. Let G and M be as above, then 2-cocycles are defined as:

Z2(G,M) = {f : G×G→M |f(g1, g2g3)−f(g1g2, g3)+g1 ·f(g2, g3)−f(g1, g2) = 0}

and 2-coboundaries are defined as:

B2(G,M) = {f ∈ Z2(G,M) | ∃h : G→M such that

f(g1, g2) = g1 · h(g2)− h(g1g2) + h(g1), ∀g1, g2 ∈ G}.

Then the 2-cohomology group is the following factor group:

H2(G,M) = Z2(G,M)/B2(G,M).

We will make great use of the following well known result, called the inflation-
restriction exact sequence, which may be found in [21].

Proposition 4.1.6. Let N be a closed normal subgroup of G and M be a G-
module. Then there is the following exact sequence:

0→ H1(G/N,MN )
inf−−→ H1(G,M)

res−−→ H1(N,M)G/N
tr−→ H2(G/N,MN )

inf−−→ H2(G,M)

where the maps are

• inf : Hn(G/N,MN )→ Hn(G,M) is the inflation map

• res : Hn(G,M)→ Hn(N,M)G/N is the restriction map

• tr : Hn(N,M)G/N → Hn+1(G/N,M) is the transgression map.

4.2 Extensions

In this section we discuss standard results about group extensions, for a more
complete exposition see [8]. We remark that in this section I will denote both the
identity element in a given group and the set which has the identity as its only
element.

Definition 4.2.1. Let G be a finite group with identity I and M be a finite
abelian group. Then a short exact sequence of groups:

0→M ι−→ E
π−→ G→ I (4.2.1)

is called an extension of G by M.



4.2. EXTENSIONS 31

Next we consider the notion of equivalence of extensions. Let E1 and E2 be
two extensions of G byM. The extensions E1 and E2 are equivalent if there exists
a homomorphism θ : E1 → E2 so that the following diagram commutes:

E1

θ

��

π1

  
0 //M

ι2

!!

ι1
==

G // I.

E2

π2

>>

A crucial feature of group extensions, as defined in Definition 4.2.1, is that
there is a consequent well defined action of G on M i.e. M has an interpretation
as a G-module as we now outline.

As the map ι : M → E is injective it gives rise to an embedding of M as a
normal subgroup in E. Thus E acts on M via conjugation which is denoted by
γ ·m for γ ∈ E and m ∈M and is specified by the following:

γ ·m = γι(m)γ−1.

Moreover, the action of M on itself is trivial as M is abelian. Therefore, this
induces an action of E/M = G onM. We shall now define the action of G onM
precisely.

Let g ∈ G and choose a lifting, g̃, of g to E, i.e. such that π(g̃) = g. Then
the action of G on M, denoted g ·m for g ∈ G and m ∈ M, is specified by the
following:

ι(g ·m) = g̃ι(m)g̃−1.

Definition 4.2.2. Suppose we are given an extension of G by M , i.e. an exact
sequence of the form of equation 4.2.1. In addition, suppose there exists a group-
theoretic section s : G → E for π, i.e. such that π ◦ s : G → G is the identity on
G. Then the extension is said to split.

Now we investigate split extensions further, of central importance is the fol-
lowing definition of the semi-direct product.

Definition 4.2.3. Let M be a G-module and denote the action of an element
g ∈ G on m ∈M by g ·m. Then we can define the following group law on the set
M×G:

(m, g)(n, h) = (m+ g · n, gh) (4.2.2)

for m,n ∈ M and g, h ∈ G. The group thus defined is written MoG. Then the
canonical inclusion map ι :M→MoG defined by ι(m) = (m, 1) and projective
map π :MoG defined by π(m, g) = g specify the following extension of G byM:

0→M ι−→MoG
π−→ G→ I (4.2.3)

which is called the semi-direct product of G and M with respect to the given
action of G on M.
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Proposition 4.2.4. The semi-direct product of G andM with respect to the given
action of G on M is a split extension. Furthermore, every split extension of G by
M with a given action of G on M is equivalent to the semi-direct product of G
and M with respect to the same given action of G on M.

Proof. Firstly, observe that the map s : G → M o G given by s(g) = (0, g) is a
group theoretic section for π, hence the semi-direct product is a split extension.

Secondly, suppose we are given an extension of the form of equation 4.2.1 which
splits. Now, as π ◦ s is the identity on G there is a subgroup G̃ < E isomorphic to
G such that ι(M) ∩ G̃ = 1. Therefore we can write each element of E uniquely in
the form

ι(m)g̃

for some m ∈M and g̃ ∈ G̃. Thus, the map θ :MoG→ E given by

θ(m, g) = ι(m)g̃

is a group isomorphism making the extension equivalent to the semi-direct product.

We remark that if the action of G on M in Definition 4.2.3 is trivial then we
have the group law:

(m, g)(n, h) = (m+ n, gh)

which is the direct product of the abelian group M with the group G.

The next theorem is a standard classification theorem for group extensions up
to equivalence and may be found in [2] where it is Theorem VI.15.6. Prior to
stating the theorem we make the definition that an element x in H2(G,M) is said
to be normalised if

x(g, I) = x(I, g) = 0

for all g in G.

Definition 4.2.5. Let G act on M and x ∈ H2(G,M). We can define another
group law on the set M×G by:

(m1, g1)(m2, g2) = (x(g1, g2) +m1 + g1 ·m2, g1g2)

for g1, g2 ∈ G and m1,m2 ∈M. The group thus defined is called the twisted semi-
direct product of G and M and is written M ox G. Similarly to the semi-direct
product above the inclusion map ι and projection map π specify the following
extension:

0→M ι−→Mox G
π−→ G→ I

for the given action of G on M.

We remark that if we take the trivial cocycle in H2(G,M), i.e. x = 0, in
Definition 4.2.5 then the group law reverts to (m1, g1)(m2g2) = (m1 +g1 ·m2, g1g2)
and we obtain the usual semi-direct product.
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We also observe that if we are given a twisted semi-direct product, M ox G,
then the set-theoretic map s : G → M ox G is no longer necessarily a group
homomorphism as shown by the equality:

(0, g1)(0, g2) = (x(g1, g2), g1g2).

This indicates that in general, there is no reason to suggest that the twisted semi-
direct product should split.

Theorem 4.2.6. Let M be a G-module and let E(G,M) be the set of equivalence
classes of extensions of G by M inducing the given action of G on M. Then there
is a one-to-one correspondence:

E(G,M)↔ H2(G,M).

4.3 Extensions and Group Cohomology

The next result, which is Proposition 2.1 of [16], uses the transgression map to
establish a connection between extensions and the group H1(Mox I,M)G.

Proposition 4.3.1. LetM be a G-module and consider the group extensionMox

G for some normalised x ∈ H2(G,M). This gives rise to the exact sequence of
groups:

I →Mox I →Mox G→ G→ I

thus identifying M with the normal subgroup M ox I EM ox G. Now apply the
inflation-restriction exact sequence to the preceding exact sequence of groups and
the G-module M and define −φ :Mox I →M by −φ(m, I) = −m.

Then the transgression map

tr : HomG(Mox I,M) = H1(Mox I,M)G → H2(G,M)

takes −φ to the cohomology class of x.

We continue our recapitulation of the discussion in [16].

Lemma 4.3.2. Let M be an Fp[G]-module of finite cardinality and N ⊆M be an
FpG-submodule such that the following map is injective

H2(G,N )→ H2(G,M).

In addition, let x ∈ H2(G,N ) ⊆ H2(G,M) and suppose H <Mox G is a group
extension of G by N with respect to the restriction of the action of G on M.

Then there exists an isomorphism

θ : N ox G ∼= H

which makes these two extensions of G by N equivalent.
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Proof. The statement of the lemma implies that by Theorem 4.2.6 the extension

0→ N → H → G→ I

corresponds to x in H2(G,N ) and hence is equivalent to the extension N ox G.
Thus implying the existence of the isomorphism θ.

This section ends with the following result which is Proposition 2.2 in [16].

Proposition 4.3.3. Let M be an Fp[G]-module of finite cardinality and N ⊆M
be an FpG-submodule such that the following map is injective

H2(G,N )→ H2(G,M).

As in Lemma 4.3.2 above, let x ∈ H2(G,N ) ⊆ H2(G,M) and suppose H <
M ox G is a group extension of G by N with respect to the restriction of the
action of G on M. Finally, let θ : N ox G ∼= H be the resulting isomorphism.

Then, we may define a map η : G→M satisfying

θ(0, g) = (η(g), g)

for all g ∈ G.
Furthermore, these maps have the following properties:

1. θ(n, g) = (n+ η(g), g) for all n ∈ N , g ∈ G.

2. The map η : G→M is a 1-cocycle.

3. If H1(G,M) = 0 then θ is conjugation by (m, e) for some m ∈M.



Chapter 5

Modules for kSLn(Wr)

The aim of this chapter is twofold: in the first section to investigate the submod-
ule structure of certain kSLn(k)-modules and in the second to relate this to the
structure of kSLn(Wr)-modules and 1-cohomology groups. We begin by fixing the
notation used in this chapter.

Definition 5.0.4. Let M := M(n) denotes the set of n × n matrices with coef-
ficients in k. The subset consisting of matrices with trace zero is written M0 :=
M0(n).

Let k be a fixed choice of finite field, (A,mA) a fixed element of C(k) and

n ≥ 2 an integer. We then define ρA : SLn(A)
∼=−→ SLn(A) to be the identity

representation and ρ̄ : SLn(A) → SLn(k) to be the componentwise reduction of
ρA modulo mA. The residual representation ρ̄ defines an action of SLn(A) on M
via:

γ ·M = ρ̄(γ)Mρ̄(γ)−1 (5.0.1)

for all γ in SLn(A) and M in M. Furthermore, as the trace is similarity invariant,
M0 is naturally endowed with the structure of a SLn(A)-submodule of M.

Finally, we remark that if M is a SLn(A)-module then we can linearly extend
the action of SLn(A) to give an action of kSLn(A) thus making M a kSLn(A)-
module.

5.1 Modules for kSLn(k)

This section examines the kSLn(k)-submodule structure of M and M0 and con-
cludes by calculating homomorphism groups between them. To this end, we begin
by listing the generators of M and M0 in the following lemma.

Lemma 5.1.1. The kSLn(k)-module M is generated by aij := eij where the indices
satisfy 1 ≤ i, j ≤ n and are not necessarily distinct.

The kSLn(k)-submodule M0 is generated by the elements:

1. aij where i 6= j

35
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2. hi,i+1 := eii − ei+1,i+1 where 1 ≤ i ≤ n− 1.

Let S denote the scalar matrices in M. It is immediately clear that S ∩M0

is a kSLn(k)-submodule of M0. The trace of a scalar matrix λIn is nλ, therefore
this intersection is non-trivial if and only if the characteristic of k divides n.

Proposition 5.1.2. Let p be the characteristic of k and n ≥ 2.

(i) If p does not divide n then M0 is a simple kSLn(k)-module,

(ii) If p divides n and the pair (n, q) 6= (2, 2) then S is the only non-trivial
kSLn(k)-submodule of M0.

Proof. For part (i) assume that M is an arbitrary non-zero kSLn(k)-submodule
of M0. Then M contains a non-zero element

v =
n−1∑
i=1

λi(eii − ei+1,i+1) +
∑
i 6=j

µijeij

where at least one of the coefficients λi or µij is not zero and as p is coprime to n
we may assume v is not a scalar either. The procedure for the proof is: show that
an element w = νeij with i and j distinct belongs toM, then conclude by showing
that w may be conjugated to all elements of M0 by listing suitable elements of
SLn(k).

Suppose that µij 6= 0. For ease of presentation write the element v with respect
to the standard basis for M, i.e.

v =
∑
a,b

mabeab

where by assumption mij = µij 6= 0. There are of course restrictions on the
diagonal entries but these are unimportant here. To begin with assume n ≥ 3 and
fix an index x 6= i, j. The following elements belong to M:

v′ = (Exi(1)− I) · v =
∑
s

misexs −
∑
r

mrxeri −mixexi,

v′′ = (I − Eji(1)) · v′ = mixeji +mijexi,

v′′′ = (Ejx(1)− I) · v′′ = mijeji.

If n = 2 assume mij 6= 0 where i and j are distinct. Firstly, let p ≥ 3 then the
element

2Eji(1) · v − Eji(2) · v − v = 2mijeji

belongs to M. Secondly, let p = 2 and q ≥ 4 thus there exists x ∈ k× such that
x2 − 1 6= 0. Define an element of SL2(k) by

X =

(
x 0
0 x−1

)
.
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Then the following element belongs to M:

(X − I) · ((Eji(1)− I) · v) = (x2 − 1)mijeji.

Suppose that λi 6= 0 (in this case there is no need to differentiate between
n = 2 and n ≥ 3). If at least one of the µab is non-zero then the previous argument
may be invoked. Therefore assume v =

∑
rmrrerr. As λi 6= 0 and v is not a scalar

it is implied that at least one entry of v is non-zero, although not necessarily the
(i, i)-th. Label this entry σexx. In addition, at least one other entry differs from
σ; label this entry τeyy (τ may or may not be zero). Then the following belongs
to M:

(Exy(1)− I) · v = myyexy −mxxexy = (τ − σ)exy.

Therefore we may assume that a non-zero element µijeij is inM. By Corollary
2.3.3 if eij belongs to M then so do the eab with a 6= b. This also implies that
eij + eji is contained in M. The following conjugation

Eji(−1) · (eij + eji) = eij + eii − ejj

implies that eii − ejj also belongs to M. Invoking Corollary 2.3.3 again implies
that M contains all elements eaa − ebb for a 6= b. Therefore if p does not divide n
then M = M0.

For part (ii) observe that the elements of S clearly commute with the action
of SLn(k) and constitute a kSLn(k)-submodule of M0. The argument of part (i)
implies that S is the only kSLn(k)-submodule of M0.

Corollary 5.1.3. Let p|n and V := M0/S. The module V is a simple kSLn(k)-
module.

Proof. This follows directly from the argument proving Proposition 5.1.2 (i) by
regarding the elements described as belonging to V rather than M0.

Note that M/M0
∼= k and recall V := M0/S then we have the following.

Corollary 5.1.4. The following sequences of kSLn(k)-modules are exact:

1. 0 → M0 → M → k → 0. Furthermore if p does not divide n then this
sequence splits giving the direct sum decomposition M = M0 ⊕S.

2. Suppose that p|n, 0→ S→M0 → V→ 0.

Proposition 5.1.5. Let n ≥ 2. Firstly, assume that p does not divide n, if φ
belongs to HomkSLn(k)(M0,M0) then φ(e1n) = λe1n.

Secondly, assume p|n then the following hold:

• if φ ∈ HomkSLn(k)(M0,M0) then φ|S : S→ S

• if φ ∈ HomkSLn(k)(M0,V) then φ|S : S→ V is the zero map.
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Suppose that φ belongs to either HomkSLn(k)(M0,V) or HomkSLn(k)(V,V) then
φ(e1n) = λe1n where depending on the context e1n refers to either the matrix unit
or its image in V.

Proof. Let γ be an arbitrary element of SLn(k) and m an arbitrary element of
a kSLn(k)-module M. Then by definition φ in HomkSLn(k)(M,M) must exhibit
the property:

φ(γ ·m) = γ · φ(m) (5.1.1)

for all γ ∈ SLn(k).
For the first part (when p does not divide n), we show that for

φ ∈ HomkSLn(k)(M0,M0) equation (5.1.1) completely specifies the form which
φ(e1n) takes. Let 1 ≤ i ≤ n− 1 be an integer and observe that Ei,i+1 · e1n = e1n.
Therefore equation 5.1.1 implies that for all i:

Ei,i+1φ(e1n) = φ(e1n)Ei,i+1.

If we write φ(e1n) =
∑

a,bmabeab then this implies that

φ(e1n) +
∑
b

mi+1,beib = φ(e1n) +
∑
a

maiea,i+1.

This itself implies that 
mi+1,i+1 = mii

mi+1,x = 0 if x 6= i+ 1

mxi = 0 if x 6= i.

(5.1.2)

Running through all values of i we see that φ(e1n) = µI + λe1n. However, as
φ(e1n) ∈M0 and p does not divide n this means that µ = 0.

For the second part, observe that the proof of Lemma 3.1.1 implies that the ele-
ments of S are fixed by SLn(k) and thus so must their images under φ. This proves
the assertions in bullet points. The remaining assertions are a direct consequence
of the bullet points in combination with the proof of the first part.

Corollary 5.1.6. Let n ≥ 2 then:

1. HomkSLn(k)(M0,M0) ∼= k

2. HomkSLn(k)(M0, k) = 0.

3. HomkSLn(k)(M0,V) ∼= k

4. HomkSLn(k)(V,V) ∼= k

Proof. For part (1). Let φ ∈ HomkSLn(k)(M0,M0) and λ belong to k. We define
the functions f(M) = φ(M)− λM for M in M0 and make the observations:

• If p|n then for a suitable choice of λ the submodule S belongs to ker(f).
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• If p does not divide n then e1n belongs to ker(f) by Proposition 5.1.5.

Given the submodule structure of M0 (see Lemma 5.1.1) and that both ker(f)
and Im(f) ∼= M0/ ker(f) are submodules of M0 the observations above imply that
ker(f) = M0. Therefore we may write φ(M) = λM and the result follows.

For part (3). Let φ ∈ HomkSLn(k)(M0,V) and define f in an analogous way
by taking its image in V. By the preceding proposition e1n ∈ ker(f) and as V is
a simple kSLn(k)-module by Corollary 5.1.3 the result follows. The similar result
for part (4) for φ ∈ HomkSLn(k)(V,V) is immediate.

Finally, we look at part (2). Let φ ∈ HomkSLn(k)(M0, k) and note that SLn(k)
acts trivially on k. Therefore we must have φ(γ ·M) = φ(M) for all γ ∈ SLn(K)
and for all M ∈M0. Let

I ′ =
n−1∑
i=2

eii

and define the matrix:
N = e1n − en1 + I ′

(we remark that if n = 2 then N = e12− e21 or if n = 3 then N = e13− e31 + e22).
Observe that N · e1n = −en1. This implies that φ(e1n) = φ(N · e1n) = φ(−en1),
thus e1n + en1 belongs to the kernel of φ. Therefore as M0 is simple the result
follows.

5.2 kSLn(Wr)-modules

Recall from the introduction to this chapter that ρ̄ : SLn(A)→ SLn(k) defines an
action of SLn(A) on M and M0. In particular this holds for rings of the form Wr.
In this section we investigate kSLn(Wr)-module homomorphisms and relate them
to 1-cohomology groups.

However prior to this, we let π : Wr+1 → Wr be reduction modulo pr and
discuss the group extension obtained from the resulting group homomorphism:

π : SLn(Wr+1)→ SLn(Wr) (5.2.1)

defined to be componentwise reduction modulo pr

Recall that Mn(Wr+1) denotes the ring of n × n matrices over Wr+1. The
kernel of π is a normal subgroup of SLn(Wr+1) given by

Kr := {I + prM |M ∈Mn(Wr+1) with trace 0} .

Therefore the map π defines the exact sequence:

1→ Kr → SLn(Wr+1)
π−→ SLn(Wr)→ I (5.2.2)

we observe that Kr is an abelian subgroup of SLn(Wr+1) which can be seen from
the product

(I + prM)(I + prN) = I + pr(M +N + prMN) = I + pr(M +N)
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where M,N belong to Mn(Wr+1) (the second equality holds because p annihilates
pr in Wr+1).

As Kr is abelian it may be written additively. With this in mind, let I + prM
belong to Kr, as p annihilates any matrix of the form prM the matrix M depends
only on its image in Mn(k). Hence we may define a group isomorphism φ : Kr →
M0 by

φ(I + prM) = M mod pr. (5.2.3)

Therefore SLn(Wr+1) is an extension of SLn(Wr) by M0 with respect to the action
of γ ∈ SLn(Wr) on M ∈M0 given by

γ ·M = ρ̄(γ)Mρ̄(g−1).

Now we construct a map ε : M0 → SLn(Wr+1) which is a one-sided inverse for φ:

for M ∈M0 take a lift M̃ ∈Mn(Wr) of M and define

ε(M) = I + prM̃. (5.2.4)

This means that the extension SLn(Wr+1) is equivalent to

0→M0
ε−→M0 ox SLn(Wr)

π−→ SLn(Wr)→ I (5.2.5)

for some class x in H2(SLn(Wr),M0).

If p|n then we can define another exact sequence as we now explain. In this
instance the centre of SLn(Wr+1) is not trivial given by:

Zr = {(1 + prw)I | w ∈Wr} . (5.2.6)

The map π : SLn(Wr+1)→ SLn(Wr) induces the map:

π′ : SLn(Wr+1)/Zr → SLn(Wr)

with kernel Kr/Zr. This implies that there is the additional exact sequence of
groups:

I → Kr/Zr → SLn(Wr+1)/Zr
π′
−→ SLn(Wr)→ I. (5.2.7)

Recall the isomorphism φ : Kr → M0 of equation (5.2.3), its restriction φ|Zr

defines an isomorphism between Zr and S. This observation induces an isomor-
phism φ′ : Kr/Zr → V with a similar one-sided inverse ε′ : V → SLn(Wr+1)/Zr
such that the extension SLn(Wr+1)/Zr is equivalent to

0→ V
ε′−→ Vox SLn(Wr)

π′
−→ SLn(Wr)→ I (5.2.8)

for some class x in H2(SLn(Wr),V).

At this point we apply the inflation-restriction exact sequence of cohomology
groups (Proposition 4.1.6) to the extensions (5.2.2) and (5.2.7) and a SLn(Wr+1)-
module (respectively SLn(Wr+1)/Zr-module) M. This gives the exact sequence



5.2. KSLN (WR)-MODULES 41

0→ H1(SLn(Wr),MKr)→ H1(SLn(Wr+1),M)→
H1(Kr,M)SLn(Wr) → H2(SLn(Wr),M),

respectively

0→ H1(SLn(Wr),MKr/Zr)→ H1(SLn(Wr+1)/Zr,M)

→ H1(Kr/Zr,M)SLn(Wr) → H2(SLn(Wr),M).

In the next proposition we examine the two terms below:

H1(Kr,M)SLn(Wr) and H1(Kr/Zr,M)SLn(Wr).

Proposition 5.2.1. Let M be one of M0, V or k (the latter being interpreted as
isomorphic to either S or M/M0). There are the following isomorphisms:

1. H1(Kr,M)SLn(Wr) ∼= HomkSLn(k)(M0,M)

2. If p|n then H1(Kr/Zr,M)SLn(Wr) ∼= HomkSLn(k)(V,M)

Proof. First recall that Kr acts onM via conjugation of ρ̄. However, as Kr is the
kernel of ρ̄ this action is trivial. Therefore Lemma 4.1.4 implies the elements of
H1(Kr,M)SLn(Wr) are those f in H1(Kr,M) ∼= Hom(Kr,M) such that f(κ) =
g ·f(g−1κg) for all g ∈ SLn(Wr) and κ ∈ Kr. This means we have the isomorphism

H1(Kr,M)SLn(Wr) ∼= HomkSLn(Wr)(Kr,M).

Moreover, the isomorphism φ of equation (5.2.3) implies the isomorphisms

H1(Kr,M)SLn(Wr) ∼= HomkSLn(Wr)(M0,M) ∼= HomkSLn(k)(M0,M)

where the second isomorphism follows from the fact that SLn(Wr) acts on M by
conjugation via ρ̄.

A similar examination of H1(Kr/Zr,M)SLn(Wr) utilising the isomorphism φ̄
leads to the isomorphism

H1(Kr/Zr,M) ∼= HomkSLn(k)(V,M).

This brings us to the following corollary.

Corollary 5.2.2. There are the following group isomorphisms:

1. H1(Kr,M0)SLn(Wr) ∼= k

2. H1(Kr, k)SLn(Wr) ∼= (0).

If p|n then there are the additional isomorphisms:
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3. H1(Kr,V)SLn(Wr) ∼= k

4. H1(Kr/Zr,V)SLn(Wr) ∼= k.

Proof. For part (1) we apply Proposition 5.2.1 (1) which implies

H1(Kr,M0)SLn(Wr) ∼= HomkSLn(k)(M0,M0)

and the result follows from Corollary 5.1.6 (1).
For parts (2) and (3) we again apply Proposition 5.2.1 (1) and Corollary 5.1.6

(2) and (3). For part (4) we apply Proposition 5.2.1 (2) and then Corollary 5.1.6
(4).



Chapter 6

Cohomology of
SLn(Wr)-modules

The objective of this chapter is to prove Theorem 6.0.3 below which is fundamental
to the proof of Theorem 1.2.5. In so doing, it collates our discussions in previous
chapters on group extensions and SLn group and module structure. This chapter
is partitioned into two sections; one dedicated to each part of Theorem 6.0.3.

Theorem 6.0.3. Let n ≥ 2 be an integer, p be a prime and Fq be the finite field
with q = pd elements. We make the following restrictions on n and k:

• If k = F2 then n ≥ 5

• If k = F3 then n ≥ 3

• If k = F5 then n ≥ 3.

The following hold:

1. (a) If p does not divide n then H1(SLn(Wr),M0) = (0)

(b) H1(SLn(Wr),M) = (0) (whether or not p divides n).

2. If p|n then the map H2(SLn(Wr),S) → H2(SLn(Wr),M0) induced from
inclusion is injective.

In this chapter great use is made of the following standard result. In fact, its
use prevails in all cohomological calculations of this thesis. It is often referred to as
the long exact cohomology sequence and for example may be found in [21] where
it is Theorem 1.3.2.

Proposition 6.0.4. Let G be a group and A,B,C be G-modules. If

0→ A→ B → C → 0

is an exact sequence then there is a long exact sequence of cohomology groups

0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ . . .

→ Hn(G,C)→ Hn+1(G,A)→ . . .

43
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6.1 Proof of Part 1 of Theorem 6.0.3

In this section the 1-cohomology groups of Theorem 6.0.3 (1) are derived from
base case r = 1, i.e. Wr = k, which is the next result. It is a combination of the
results of Cline, Parshall and Scott in [10] for q > 3 and Jones in [14] for q = 2 or
3.

Theorem 6.1.1. Let n ≥ 2 be an integer, p be a prime and Fq be the finite field
with q = pd elements. We make the following restrictions on n and k:

• If k = F2 then n ≥ 5

• If k = F3 then n ≥ 3

• If k = F5 then n ≥ 3.

Then the following hold:

1. If p does not divide n then H1(SLn(k),M0) = (0)

2. If p|n then H1(SLn(k),M0) ∼= k.

Proof. If q ≥ 4 the results are from Table 4.5 of [10]. Therefore, we are left to
examine the cases q = 2, 3. We apply Proposition 6.0.4 (the long exact cohomology
sequence) to the exact sequence of SLn(k)-modules 0 → M0 → M → k → 0 of
Corollary 5.1.4. If p and n are coprime, this yields the following excerpt of the
exact sequence

→M0
SLn(k) →MSLn(k) f ′−→ kSLn(k) f−→ H1(SLn(k),M0)→ H1(SLn(k),M)→ .

We simplify this sequence by noting the following: M0
SLn(k) = 0 and MSLn(k) = S

by Proposition 5.1.2; kSLn(k) = k as the action of SLn(k) on kI is trivial; and
H1(SLn(k),M) = (0) by Proposition 8.6 of [14]. Therefore we obtain the exact
sequence:

0→ S
f ′−→ k

f−→ H1(SLn(k),M0)→ 0.

We automatically see that f ′ must be injective and hence it must be an isomor-
phism. Observe that the image of f is trivial and as the subsequent map is zero f
must in fact be surjective. Therefore H1(SLn(k),M0) = (0).

Now assume p|n, we again apply Proposition 6.0.4 to 0→M0 →M→ k → 0.
This time we use the simplifications: M0

SLn(k) = S and MSLn(k) = S by
Proposition 5.1.2; kSLn(k) = k as the action of SLn(k) on kI is trivial; and
H1(SLn(k),M) = (0) by Proposition 8.6 of [14]. Therefore we obtain the ex-
act sequence:

0→ S
f0−→ S

f ′−→ k
f−→ H1(SLn(k),M0)→ 0.

The map f0 is clearly an isomorphism hence f ′ is zero and f is injective. This is
sufficient as the final map shows f is surjective. Hence, H1(SLn(k),M0) ∼= k.
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The next stage in the proof of the theorem is to show that the H1(SLn(k),M0)
determine the groups H1(SLn(Wr),M0) for all positive integers r. For this we
require the following result concerning group extensions which is a combination of
the work of Manoharmayum in [16], Sah in [27] and results from [12].

Proposition 6.1.2. Let n ≥ 2 be an integer, p be a prime and Fq be the finite
field with q = pd elements. We make the following restrictions on n and k:

• If k = F2 then n ≥ 5

• If k = F3 then n ≥ 3

• If k = F5 then n ≥ 3.

Let π : SLn(Wr+1)→ SLn(Wr) be componentwise reduction modulo pr and Kr be
the kernel of π.

The exact sequence below does not split:

1→ Kr → SLn(Wr+1)
π−→ SLn(Wr)→ I. (6.1.1)

Proof. If q ≥ 4 and in addition (n, q) 6= (3, 4) then this result is Proposition 3.7 in
[16]. The other cases are discussed in Proposition 4.2 of [12]: if r = 1 and q = 2, 3
then it is a result of Theorem II.7 in [27].

The next result completes the proof of part 1a of Theorem 6.0.3 and is also
crucial to the proof of part 1b afterwards.

Proposition 6.1.3. Let n ≥ 2 be an integer, p be a prime and Fq be the finite
field with q = pd elements. We make the following restrictions on n and k:

• If k = F2 then n ≥ 5

• If k = F3 then n ≥ 3

• If k = F5 then n ≥ 3.

In addition, let π : SLn(Wr+1) → SLn(Wr) be componentwise reduction modulo
pr. Then the map

H1(SLn(Wr),M0)→ H1(SLn(Wr+1),M0)

induced from π is an isomorphism.

As a consequence:

H1(SLn(Wr),M0) =

{
(0) if p does not divide n

k if p|n.
(6.1.2)
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Proof. We begin by applying the inflation restriction exact sequence (Proposition
4.1.6) to the exact sequence:

1→ Kr → SLn(Wr+1)
π−→ SLn(Wr)→ I

and the SLn(Wr+1)-module M0. We recall that as Kr is in the kernel of π it acts
trivially on M0 and also that H1(Kr,M0)SLn(Wr) ∼= k by Corollary 5.2.2. The
resulting exact sequence simplifies to give:

0→ H1(SLn(Wr),M0)
f−→ H1(SLn(Wr+1),M0)

f ′−→ k
δ−→ H2(SLn(Wr),M0)→ .

(6.1.3)
We would like to show that the inflation map f is an isomorphism; it is obviously
injective so all that remains is to show its surjectivity. This equates to showing
that f ′ is the zero map. This is itself equivalent to showing that the transgression
map δ is injective.

Therefore all that is required to complete the proof is to show that δ is not
the zero map. We recall the definition of the map ε from equation (5.2.4) and the
extension

0→M0
ε−→M0 ox SLn(Wr)

π−→ SLn(Wr)→ I

of equation (5.2.5). Proposition 6.1.2 implies that this extension does not split,
hence the cohomology class x in H2(SLn(Wr),M0) which represents this exten-
sion is non trivial. Furthermore, Proposition 4.3.1 implies that the transgression
map, δ, takes the map −φ : M0 ox I given by −φ(m, I) = −m to the class x in
H2(SLn(Wr),M0). Thus δ is injective.

Finally, Theorem 6.1.1 implies that

H1(SLn(k),M0) =

{
(0) if p does not divide n

k if p|n.
(6.1.4)

and the concluding consequence follows inductively from the isomorphism

H1(SLn(Wr),M0)
∼=−→ H1(SLn(Wr+1),M0).

We reflect on the reasoning which concluded the proof of Theorem 6.1.1 in the
case q = 2 or 3. In that instance the calculation for H1(SLn(k),M0) was garnered
from H1(SLn(k),M) by using the long exact cohomology sequence applied to exact
sequence of SLn(k)-modules 0 → M0 → M → k → 0. To complete the proof of
part 1b of Theorem 6.0.3, we reverse this procedure relating the cohomology of M
to that of M0 and k. This requires the following two results.

Theorem 6.1.4. Let n ≥ 2 be an integer and k be a finite field of characteristic
p. If the following restrictions are met,

• if k = F2 then n ≥ 5
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• if k = F3 then n ≥ 3,

then H1(SLn(k), k) is trivial.
If p|n and k satisfies one of the following:

• k 6= F2

• k = F2 and n 6= 2, 4

then both H1(SLn(k), k) and H2(SLn(k), k) are trivial.

Proof. If k 6= F2 then the result follows from the proof of Theorem 3.5 of [16].
If k = F2 then the result is from [27]; H1(SLn(F2),F2) = (0) is mentioned in
the proof of Theorem II.7 and H2(SLn(F2),F2) = (0) is contained in Proposition
III.7.

In view of the motivation preceding the statement of the theorem above we use
the inflation-restriction exact sequence for the analogy of Proposition 6.1.3 where
the module M0 is replaced by k. As in the proof of Proposition 6.1.3, applying the
inflation-restriction exact sequence (see Proposition 4.1.6) gives the exact sequence

0→ H1(SLn(Wr), k)→ H1(SLn(Wr+1), k)→ H1(Kr, k)SLn(Wr) → .

Corollary 5.2.2 states that H1(Kr, k)SLn(Wr) is trivial and thus the inflation map
H1(SLn(Wr), k)→ H1(SLn(Wr+1), k) is an isomorphism. This discussion in con-
junction with Theorem 6.1.4 has proved:

Proposition 6.1.5. If one of the following holds

• n = 2 and q ≥ 4

• n = 3 and q ≥ 3

• n = 4 and q ≥ 3

• n ≥ 5.

then H1(SLn(Wr), k) = (0).

We are now ready to complete the proof of part 1 of Theorem 6.0.3.

Proof of Theorem 6.0.3 part 1b. Firstly, suppose p does not divide n. Then by
Proposition 6.1.3 and Proposition 6.1.5 respectively both H1(SLn(Wr),M0) and
H1(SLn(Wr), k) are trivial. Then applying Proposition 6.0.4 to the direct sum
decomposition M = M0⊕S from Corollary 5.1.4 implies H1(SLn(Wr),M) = (0).

Secondly assume p|n. Again we apply Proposition 6.0.4 to the following se-
quence from Corollary 5.1.4: 0 → M0 → M → k → 0. Recall, from the
proof and statement of Theorem 6.1.1, that M0

SLn(k) = MSLn(k) = S and
H1(SLn(Wr),M0) ∼= k. Therefore there is an exact sequence beginning:

0→ S→ S
f1−→ k

δ−→ k
f2−→ H1(SLn(Wr),M)→ 0.
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The second map is obviously an isomorphism hence the image of f1 must be zero.
This implies that δ is injective and thus an isomorphism. Therefore the image of
the map f2 is zero and as the final map is the zero map f2 is in fact an isomorphism.
Thus H1(SLn(Wr),M) = (0) in this case too.

6.2 Proof of Part 2 of Theorem 6.0.3

In this section the injectivity of the 2-cohomology groups is proved using a similar
but more involved method to that of part 1 of Theorem 6.0.3 and again centres
around showing that inflation maps are isomorphisms. This involves an examina-
tion of the transgression map (see Propositions 4.3.1 and 4.1.6) and relies on the
fixed first cohomology group calculations of Corollary 5.2.2.

Let F : M0 → V be the projection map, this induces a map

F0 : H1(SLn(Wr),M0)→ H1(SLn(Wr),V).

In Proposition 6.2.2 we show that F0 is an isomorphism and, as we shall see at the
end of the section, the proof of Theorem 6.0.3 (2) follows easily.

We commence with a lemma, whose appearance in the proof mirrors that of
Proposition 6.1.2 in the previous section.

Lemma 6.2.1. Let n ≥ 2 be an integer, p be a prime and Fq be the finite field
with q = pd elements. We make the following restrictions on n and k:

• If k = F2 then n ≥ 5

• If k = F3 then n ≥ 3

• If k = F5 then n ≥ 3

and let p|n. The sequence:

I → Kr/Zr → SLn(Wr+1)/Zr → SLn(Wr)→ I (6.2.1)

does not split.

Proof. If p ≥ 5 or r ≥ 2 then the result is Lemma 3.9 of [16]. If r = 1, n ≥ 3 and
p = 2 or 3 then the result is Proposition 4.2 part v(a) of [12]. The argument in[12]
also holds true in the remaining cases.

Now the lemma is used to prove the following proposition.

Proposition 6.2.2. Let p|n and let k satisfy one the following:

• k 6= F2

• k = F2 and n 6= 2, 4.
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Then the inflation map

H1(SLn(Wr),V)→ H1(SLn(Wr+1),V)

is an isomorphism.
Consequently the map

F0 : H1(SLn(Wr),M0)→ H1(SLn(Wr),V)

induced from the projection F0 : M0 → V is an isomorphism.

Proof. We begin by applying the inflation-restriction exact sequence (Proposition
4.1.6) to the group extension (6.1.1) and V. Noting that Corollary 5.2.2 implies
H1(Kr,V)SLn(Wr) ∼= k, this gives an exact sequence beginning

0→ H1(SLn(Wr),V)
f−→ H1(SLn(Wr+1),V)

f ′−→ k
δ−→ H2(SLn(Wr),V). (6.2.2)

We are required to show f is an isomorphism. It is clearly injective so all that
remains is to demonstrate surjectivity. If δ is injective then the image of f ′ is
trivial and the result follows. We proceed to show δ is injective.

Firstly, suppose that n ≥ 3. Apply Proposition 4.1.6 to the sequence (6.2.1)
and the SLn(Wr+1)/Zr-module, V. As H1(Kr/Zr,V)SLn(Wr) ∼= k by Corollary
5.2.2, this yields the exact sequence beginning

0→ H1(SLn(Wr),V)→ H1(SLn(Wr+1)/Zr,V)→ k
δ′−→ H2(SLn(Wr),V).

(6.2.3)
Lemma 6.2.1 implies H2(SLn(Wr),V) is non-trivial. Next we show that δ′ is
injective. To this end, recall the isomorphism φ′ : Kr/Zr → V and its one-sided
inverse ε′ : V → SLn(Wr+1)/Zr from the discussion preceding equation (5.2.8).
Also recall that the group extension (6.2.1) may be written additively as:

0→ V
ε′−→ Voy SLn(Wr)

π′
−→ SLn(Wr)→ I. (6.2.4)

Proposition 4.3.1 then implies that δ′ maps−φ′ to the class of y inH2(SLn(Wr),V)
and is thus injective. The map δ is shown to be injective by Corollary 5.2.2 which
provides the isomorphism

H1(Kr,V)SLn(Wr) ∼= H1(Kr/Zr,V)SLn(Wr).

Secondly, let n = 2, r = 1 and k be a field of cardinality 2d where d ≥ 2. We
have the following commutative diagram:

H1(K1,M0)SL2(k) δ′ //

f
��

H2(SL2(k),M0)

f ′

��
H1(K1,V)SL2(k) δ // H2(SL2(k),V).

We begin by investigating the arrows stemming from H1(K1,M0)SL2(k). Corol-
lary 5.2.2 implies the map f is an isomorphism and the proof of Proposition 6.1.3
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shows that δ is injective. Our attention turns to f ′. Proposition 6.0.4 is applied
to the exact sequence 0 → S → M0 → V → 0 resulting in the following excerpt
of an exact sequence

→ H2(SL2(k),S)→ H2(SL2(k),M0)
f ′−→ H2(SL2(k),V)→ .

Theorem 6.1.1 implies that the first group quoted in this sequence is trivial. There-
fore f ′ must be injective. We remark that by Corollary 5.2.2 H1(K1,M0)SL2(k) is
one-dimensional and thus both δ′ and f ′ are injective. Therefore the map δ must
be injective.

We conclude by showing that F0 : H1(SLn(Wr),M0) ∼= H1(SLn(Wr),V). To
begin with, we apply the long exact cohomology sequence (Proposition 6.0.4) to
the exact sequence of SLn(k) modules

0→ S→M0 → V→ 0.

This gives the excerpt of an exact cohomological sequence:

→ H1(SLn(k),S)→ H1(SLn(k),M0)→ H1(SLn(k),V)→ H2(SLn(k),S)→

Given the restrictions imposed on n we can invoke Theorem 6.1.4 which implies
that both H1(SLn(k),S) and H2(SLn(k),S) are trivial. Therefore we have shown
that F0 : H1(SLn(k),M0) ∼= H1(SLn(k),V), i.e. the case r = 1. Let’s rename
this isomorphism φ1 : H1(SLn(k),M0) ∼= H1(SLn(k),V), it will serve as the
base case for an inductive argument on r. To prove the inductive step assume
there is an isomorphism φr : H1(SLn(Wr),M0) ∼= H1(SLn(Wr),V). In addi-

tion, recall we have already shown that the inflation map H1(SLn(Wr),V)
∼=−→

H1(SLn(Wr+1),V) is an isomorphism earlier in this proof and that the inflation

map H1(SLn(Wr),M0)
∼=−→ H1(SLn(Wr+1),M0) is an isomorphism in Proposition

6.1.3. Therefore we obtain the following commutative diagram:

H1(SLn(Wr),M0)
φr //

∼=
��

H1(SLn(Wr),V)

∼=
��

H1(SLn(Wr+1),M0)
φr+1 // H1(SLn(Wr+1),V).

from which it is clear that the map φr+1 must also be an isomorphism, thus com-
pleting the inductive step. Therefore F0 : H1(SLn(Wr),M0) ∼= H1(SLn(Wr),V)
for all r.

Proof of Theorem 6.0.3 (2). Recall the exact sequence 0→ S→M0 → V→ 0 of
Corollary 5.1.4 and apply Proposition 6.0.4 (long exact cohomology sequence) to
it. This yields the following excerpt of an exact sequence

→ H1(SLn(Wr),M0)
F0−→ H1(SLn(Wr),V)

F ′
−→

H2(SLn(Wr),S)
F−→ H2(SLn(Wr),M0)→ .

Proposition 6.2.2 implies that F0 : H1(SLn(Wr),M0) → H1(SLn(Wr),V) is an
isomorphism. Thus the image of F ′ is trivial and hence F , induced from the
inclusion S→M0, is injective.



Chapter 7

Proof of Theorem 1.2.5

As we shall see, the proof of Theorem 1.2.5 follows from Proposition 7.0.5. This
proposition deals only with artinian rings in C(k) and before its statement we give
a basic introduction to artinian rings.

Definition 7.0.3. A noetherian ring is called artinian if it satisfies the descending
chain condition on ideals i.e. any chain of ideals of A:

I1 ⊇ I2 ⊇ . . .

eventually stabilises.

Suppose that (A,mA) is an artinian local ring, then considering a descend-
ing chain of successive power of mA leads to the following observation which is
significant to Proposition 7.0.5.

Lemma 7.0.4. Let (A,mA) be a noetherian local ring, then A is artinian iff there
exists a natural number n such that mn

A = 0. Consequently the annihilator of mA

is non trivial.

Proof. If A is artinian, then considering the descending chain

mA ⊇ m2
A ⊇ . . .

implies that mn
A = mn+1

A for some n. Nakayama’s lemma then implies mn
A =

0. Conversely, if a noetherian ring (A,mA) has mn
A = 0 then as every ideal is

finitely generated and every generator is nilpotent, every descending chain must
stabilise.

Let A be an artinian element of C(k). Then Lemma 7.0.4 implies the existence
of a non-zero element t of A which annihilates mA. This element generates an
ideal in A which is denoted (t), therefore reduction modulo (t) defines a local ring
homomorphism π : A → A/(t) and hence a group homomorphism π : GLn(A) →
GLn(A/(t)).

Proposition 7.0.5. Let n ≥ 2 be an integer, p be a prime and Fq be the finite
field with q = pd elements. We make the following restrictions on n and k:

51
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• If k = F2 then n ≥ 5

• If k = F3 then n ≥ 3

• If k = F5 then n ≥ 3.

Let (A,mA) be an artinian ring in C(k) and t ∈ A be a non-zero element
such that tmA = 0. If G is a subgroup of SLn(A) with the property G mod t =
SLn(WA/(t)), then there exists an X ∈ GLn(A) with X ≡ I (mod t) such that
SLn(WA) ⊆ XGX−1.

Proof. We set B := A/(t) and π : A → B to be reduction modulo t. Recall,
from the discussion preceding equation (5.2.4), the contruction of the map ε :

M0 → SLn(A) by lifting M ∈M0 to M̃ ∈Mn(A) with trace zero and then taking

ε(M) := I + tM̃ . Therefore there is an exact sequence

0→M0
ε−→ SLn(A)

π−→ SLn(B)→ I (7.0.1)

Let G̃ denote the pre-image under π of SLn(WB) in SLn(A) this defines the
following exact sequence:

0→M0
ε−→ G̃

π−→ SLn(WB)→ I. (7.0.2)

We observe that bothG and SLn(WA) are subgroups of G̃ and examine the possible
subgroup structures relating these three. From sequence (7.0.2) we see that a
subgroup of G̃ specifies a corresponding submodule of M0. Hence Proposition
5.1.2 leads us to consider the following three possibilities:

1. G = G̃, in which case SLn(WA) ⊆ G and we are finished.

2. π : G→ SLn(WB) is an isomorphism.

3. If p|n then G may fit into the exact sequence 0→ S→ G→ SLn(WB)→ I.

Let’s investigate case 2. Suppose π : G → SLn(WB) is an isomorphism
which implies that the sequence (7.0.2) splits. If we first assume that SLn(WA) is
not isomorphic to SLn(WB) then, as M0 is irreducible by Theorem 6.0.3 (1(a)),
SLn(WA) ∼= G̃ ∼= M0 o SLn(WB). However, as the sequence splits this leads to a
contradiction of Proposition 6.1.2. Therefore, the projection map π : SLn(WA)→
SLn(WB) must also be an isomorphism and G is a twist of SLn(WA) by an element
of H1(SLn(WB),M0).

If p and n are coprime, then Theorem 6.0.3 (1(a)) implies that
H1(SLn(WB),M0) = (0) and Proposition 5.1.2 (i) implies that M0 is irreducible
(hence trivially for all submodules N ≤M0 the maps
H2(SLn(WB),N ) → H2(SLn(WB),M0) are injective). This allows us to invoke
Proposition 4.3.3 (3) which implies that there exists X ∈ SLn(A) with π(X) = I
such that XGX−1 ⊇ SLn(WA).

If p divides n then we define a subgroup G′ < GLn(A) by the exact sequence

0→M→ G′ → SLn(WB)→ I.
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Next, we show that for all kSLn(Wr)-submodules N ≤M the maps

H2(SLn(Wr),N )→ H2(SLn(Wr),M)

induced from inclusion are injective. Recall that Theorem 6.0.3 (2) allows us
to assume that the map H2(SLn(WB),S) → H2(SLn(WB),M0) induced from
S ↪→ M0 is injective. Therefore, all that remains is to show that the map
H2(SLnW (B),M0) → H2(SLn(WB),M) induced from M0 ↪→ M is injective.
To this end, Proposition 6.0.4 is applied to the exact sequence

0→M0 →M→ k → 0.

This yields the following excerpt of an exact sequence

→ H1(SLn(WB), k)→ H2(SLn(WB),M0)→ H2(SLn(WB),M)→ . (7.0.3)

Recall that Theorem 6.1.4 implies the first group in this sequence is trivial, hence
the map H2(SLnW (B),M0)→ H2(SLn(WB),M) induced from M0 ↪→M is injec-
tive. Recall also that Theorem 6.0.3 (1(b)) implies H1(SLn(WB),M) = (0) which
allows us to again invoke Proposition 4.3.3. Therefore, in an analogous fashion an
X ∈ GLn(A) is found for which π(X) = I and XGX−1 = SLn(WA).

Finally, we consider case 3 hence G is part of the exact sequence:

0→ S→ G→ SLn(WB)→ I. (7.0.4)

Theorem 6.0.3 part 2 implies that the map

H2(SLn(WB),S)→ H2(SLn(WB),M0)

induced from S ↪→ M0 is injective. Therefore, the sequence (7.0.2) splits if and
only if sequence (7.0.4) splits. If we assume that WA = Wr+1 and WB = Wr for
some natural number r then sequence (7.0.4) defines an isomorphism

f : SLn(Wr)→ G/Zr

which is a section for π. This implies the sequence (6.2.1) splits which leads to a
contradiction to Lemma 6.2.1. Therefore, WA = WB and the result follows using
H1(SLn(WB),M) = 0 as above.

We proceed to show how Theorem 1.2.5 follows from Proposition 7.0.5. The
artinian objects in C(k) form a full subcategory and the objects in C(k) are the
inverse limit of their artinian quotients i.e. a ring A,mA ∈ C(k) has the form

A = lim←−A
i

where the Ai = A/mi
A are artinian quotients of A. Following Schlessinger, in [29]

Definition 1.2, we introduce the following.
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Definition 7.0.6. Let (A,mA) and (B,mB) be artinian elements of C(k). An
exact sequence of the form:

0→ J → A→ B → 0 (7.0.5)

is called a small extension if J is a non-zero principal ideal which is annihilated by
mA.

We remark that if (A,mA) and (B,mB) are artinian and fit into an exact
sequence:

0→ J → A→ B → 0

where mAJ = (0) then J is a finite dimensional vector space over k. Thus, in this
situation, we may write J = (t1, t2, . . . , tn) and the following is a series of small
extensions:

0→ (t1)→ A→ A/(t1)→ 0

0→ (t2, t1)

(t1)
→ A

(t1))
→ A

(t1, t2)
→ 0

...

0→ (t1, . . . , ti)

(t1, . . . , ti−1)
→ A

(t1, . . . , ti−1)
→ A

(t1, . . . , ti)
→ 0

...

0→ J

(t1, ..., tn−1)
→ A

(t1, ..., tn−1)
→ A

J
= B → 0

Now let (A,mA) be an arbitrary element of C(k) then as A/mr
A is artinian we

may apply the argument to obtain a refinement of

mA ⊇ m2
A ⊇ m3

A ⊇ . . .

of the form:

mA = J1 ⊇ J2 ⊇ J3 . . .

so that extensions of the form:

0→ Jn
Jn+1

→ A

Jn+1
→ A

Jn
→ 0

are small and so that A = lim←−A/Jn. We are now in a position to complete the
proof of the theorem.

Proof of Theorem 1.2.5. Let mA = J1 ⊇ J2 ⊇ J3 . . . be a refinement of
mA ⊇ m2

A ⊇ m3
A ⊇ . . . as described above. In addition, let G < SLn(A) satisfy

G mod mA = SLn(k). Suppose that Xr ∈ GLn(A/Jr) is such that

XrGX
−1
r mod Jr ⊇ SLn(WA) mod Jr
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and that X̃r is a lift of Xr to GLn(A/Jr+1). Then by Proposition 1 there exists
Y ∈ GLn(A) with Y ≡ I mod Js for all s, such that

Y (X̃rGX̃
−1
r )Y −1 mod Jr+1 ⊇ SLn(WA) mod Jr+1.

Therefore let Xr+1 = Y X̃r which implies that Xr+1 mod Jr = Xr. Thus we can
define inductively X ∈ GLn(A) satisfying X mod Jr = Xr with the properties in
the theorem.
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Chapter 8

Main Results Using Symplectic
Groups

The next five chapters are devoted to a new proof of the affirmative answer to the
inverse deformation problem. This result is given in Main Theorem 2 by using the
family of symplectic groups.

Definition 8.0.7. Let n ≥ 1 be an integer, In be the n × n identity matrix and
define the matrix:

Jn =

(
0 In
−In 0

)
.

The symplectic group of dimension 2n over a ring A is defined as

SP2n(A) = {g ∈ GL2n(A) | gTJng = Jn}. (8.0.1)

We remark that if n = 1 there is a well known coincidence of SL2(A) and
SP2(A) which we now explain. Let

g =

(
a b
c d

)
∈ SP2(A)

The symplectic condition becomes

gTJg =

(
0 ad− bc

−(ad− bc) 0

)
= J

from which it is clear that the only restriction on g is that it have determinant 1,
i.e. it belongs to SL2(A). In general, see Corollary 9.1.4, SP2n(A) ≤ SL2n(A).

Let k be a finite field with characteristic p where |k| = 4 or |k| ≥ 7. Also
let A ∈ C(k), Γ = SL2(A) and ρ̄ : Γ → GL2(k) be reduction modulo mA of
the standard representation ρA : Γ → SL2(A). Then Main Theorem 1 implies
that ρA is the universal deformation and A the universal deformation ring for the
deformation problem defined by Γ and ρ̄. It is natural to ask if the same holds for
SP2n.
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Main Theorem 2. Let k = Fq where the characteristic of k is p. Then if q ≥ 4
every element of C(k) is a universal deformation ring of the residual represen-
tation ρ̄ : SP2n(A) → GL2n(k) given by reducing the standard representation
ρA : SP2n(A)→ SP2n(A) modulo mA.

More precisely, for the deformation problem described in this theorem we show
that A is the universal deformation ring in the following cases:

1. n = 1 and q 6= 2, 3 or 5

2. n ≥ 2, p ≥ 3, q ≥ 5 and p is coprime to n.

The main constituent to the proof of Main Theorem 2 is the following structural
property which is a direct analogy to Theorem 1.2.5 in the symplectic group setting.

Main Theorem 3. Let (B,mB) belong to C(k). Let n ≥ 1 be an integer, p a
prime and Fq be the finite field with q = pd elements. We make the following
restrictions:

• If n = 1 then k 6= F2,F3,F4

• If n ≥ 2 then p ≥ 3, q ≥ 5 and p is coprime to n

and let G be a closed subgroup of SL2n(B). If G mod mB = SP2n(k), then there ex-
ists an X ∈ GL2n(B) satisfying X ≡ I mod mB such that XGX−1 ⊇ SP2n(WB).

The final principal result is Main Theorem 4 in Chapter 14 which answers the
inverse symplectic deformation problem formulated in Section 14.1.



Chapter 9

Symplectic Groups

This chapter provides an account of the group theoretic structure of symplectic
groups over local rings in a manner akin to Chapter 2. To begin with, the notation
for the different types of symplectic group elements is set. Then later in Section
9.1 a generating set for SP2n(A) is found. The next section discusses the subgroup
structure of SP2n including a description of a p-sylow subgroup of SP2n(k) and an
important subgroup Ω which contains it. Finally, in Section 9.4 the commutator
relations for the generating elements are given and are used to determine which of
the SP2n(A) are perfect.

9.1 Generating Sets for Symplectic Groups

In this section a subgroup F (2n,A) of SL2n(A) is introduced which, like the ele-
mentary matrices in special linear groups, provides a set of generators for SP2n(A).
Before continuing we note that from now on we write J := Jn and I := In sup-
pressing the dependence on n. This brings us to fixing the notation used for the
elements of F (2n,A).

Lemma 9.1.1. Let x be an arbitrary element of A and let 1 ≤ i, j ≤ n be distinct.
Each of the following matrices is symplectic:

Ei(x) := Ei,n+i(x)

En+i(x) := En+i,i(x)

Fij(x) :=

(
Eij(x) 0

0 Eji(−x)

)
Gij(x) :=

(
I x(eij + eji)
0 I

)
Hij(x) :=

(
I 0

x(eij + eji) I

)
.
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Proof. Let S be a symmetric n× n matrix then(
I 0
S I

)
J

(
I S
0 I

)
=

(
0 I
−I −S + S

)
from which it is clear that Ei(x), En+i(x), Gij(x) and Hij(x) are symplectic ma-
trices. For the Fij(x) the result follows from the equality:

Fij(x)JFij(x)T =

(
Eij(x) 0

0 Eji(−x)

)
J

(
Eji(x) 0

0 Eij(−x)

)
=

(
0 Eij(x)Eij(−x)

−Eji(−x)Eji(x) 0

)

With this notation in place the following definition introduces the group gen-
erated by all elements described in Lemma 9.1.1.

Definition 9.1.2. We define the group:

F (2n,A) =< Ei(A), En+i(A), Fij(A), Gij(A) and Hij(A) | ∀ 1 ≤ i 6= j ≤ n > .

As all the elements which generate F (2n,A) are all symplectic this group is a
priori a subgroup of SP2n(A). Moreover, we will see that SP2n(A) and F (2n,A)
coincide. The proof relies on the next result which is from Section 2.2 of [22].

Theorem 9.1.3. If k is a finite field then F (2n, k) = SP2n(k).

Corollary 9.1.4. If k is a finite field and A belongs to C(k) then F (2n,A) =
SP2n(A).

Proof. The method is analogous to that of Corollary 2.1.3; we show that for every
element g of SP2n(A) there exist two products, L and R, of elements of F (2n,A)
satisfying LgR = I.

Theorem 9.1.3 implies the existence of matrices L and R such that LgR = I+M
where M belongs to M2n(mA). The element I + M is composed of n × n blocks
of the form (

I +A′ B′

C ′ I +D′

)
.

Corollary 2.1.3 allows us to assume that A′ is zero (for more details see the dis-
cussion around equation (2.1.1)). Therefore we obtain a matrix of the form:

g̃ =

(
I B
C I +D

)
.

As this matrix belongs to SP2n(A) we have the equality:

g̃tJg̃ =

(
C − Ct I +D − CtB

−I −Dt +BtC Bt +BtD −B −DtB

)
=

(
0 1
−1 0

)
.
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This implies the following conditions:

C = Ct

D = CtB

Bt −B = DtB −BtD.

Substituting the first into the second gives D = CB and substituting this into the
third equality gives:

Bt −B = (CB)tB −Bt(CB) = BtCB −BtCB = 0.

Thus B and C are symmetric. Let S = (sij) be an arbitrary symmetric matrix in
Mn(A). If we set λi = sii and µjk = sjk for j < k then there are the following
equalities

(
I 0
S I

)
=

(
n∏
i=1

En+i(λi)

)∏
j<k

Hjk(µjk)

 ,

(
I S
0 I

)
=

(
n∏
i=1

Ei(λi)

)∏
j<k

Gjk(µjk)

 .

If the matrix S is set to both−B and−C separately; then the following observation
completes the proof:(

I 0
−C I

)
g̃

(
I −B
0 I

)
=

(
I 0
−C I

)(
I B
C I + CB

)(
I −B
0 I

)
= I.

9.2 Subgroups of SP2n(Fq)

Let p be a prime and Fq the finite field with q = pd elements. In this section we
construct subgroups N , G and Ω of SP2n(Fq) such that Ω = N oG contains the
p-sylow subgroup of SP2n(Fq). To this end we state the following order formula
for symplectic groups which is Theorem 3.1.2 of [22].

Proposition 9.2.1. If Fq is the finite field with q = pd elements then:

|SP2n(Fq)| =
n∏
i=1

(q2i − 1)q2i−1.

Next we introduce sylow subgroups. Let l be a prime, r an integer coprime
to l and H a group of order lµr. If H ′ < H has order lµ then H ′ is called an
l-sylow subgroup of H. The basic theory of these subgroups ensures that l-sylow
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subgroups exist and that all such subgroups are conjugate. For a detailed account
of these subgroups consult Chapter 3 in [1].

Our attention turns to finding a p-sylow subgroup for SP2n(k). Proposition
9.2.1 implies that a p-sylow subgroup of SP2n(Fq) has order

q
∑n

i=1 2i−1 = qn(n+1)−n = qn
2
.

Observe that the elements Fij(x) are an embedding of SLn(Fq) as a subgroup of
SP2n(Fq). The order of this subgroup is given by the formula

(q − 1)−1
n−1∏
i=0

(qn − qi).

The subgroup of SP2n(k) isomorphic to SLn(k) has a p-sylow subgroup of order

q1q2 . . . qn−1 = qn(n−1)/2.

If U represents a p-sylow subgroup of SLn(Fq), then U may be taken to be the
subgroup of upper triangular matrices with 1s on the diagonal (see Chapter 7 of
[1] for example). Clearly U can be embedded in SP2n(k) using the restriction of
the embedding of SLn(k), i.e. let u be belong to U and let u 7→ ũ where

ũ =

(
u 0
0 u−T

)
. (9.2.1)

The image of this embedding in SP2n(Fq) is written Ũ ; it forms a subgroup of the
p-sylow subgroup. As we shall see, the p-sylow subgroup of SP2n(Fq) has the form
of the semidirect product N o Ũ . This leads us to the definition of the subgroup
N which is an abelian normal subgroup of the p-sylow subgroup.

Definition 9.2.2. Let N be the abelian group generated by elements of the form
Ei(1) and Grs(1).

If S be a symmetric n× n matrix then N consists of all matrices of the form

n =

(
I S
0 I

)
.

It is clear that N has order qn(n+1)/2 and that the intersection of N with Ũ is
trivial. We show that Ũ acts on N via conjugation. Let n ∈ N , ũ ∈ U and
consider the equality

ũnũ−1 =

(
I uSuT

0 I

)
. (9.2.2)

As (uSuT )T = uSuT the element ũnũ−1 belongs to N . Therefore, we can form
the semidirect product N o Ũ which has order

|N |.|Ũ | = qn(n+1)/2qn(n−1)/2 = qn
2
.

Thus we have shown the following result.
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Lemma 9.2.3. Let N and Ũ be the subgroups of SP2n(Fq) as above. The subgroup
of SP2n(Fq) they generate is the semidirect product N o Ũ which is the p-sylow
subgroup of SP2n(Fq).

In the calculations of Chapter 12 we will make use of a certain subgroup Ω
containing the p-sylow subgroup NoŨ which we now introduce. The identification
given in equation (9.2.1) extends to an embedding of GLn(Fq) in SP2n(Fq), the
image of which we denote G. The intersection of G and Ũ is again trivial and
the conjugation in equation (9.2.2) extends naturally to G i.e. G acts on N via
conjugation.

Definition 9.2.4. Define the following subgroup of SP2n(Fq):

G =

{(
g 0
0 g−T

)
| g ∈ GLn(Fq

}
.

As G
⋂
N = I the discussion above allows us to make the definition:

Ω := N oG.

This section is concluded by observing that

σ(rs) :=

(
(rs) 0

0 (rs)

)
(9.2.3)

defines an embedding of Sn in SP2n(Fq) where (rs) are the transpositions of Defi-
nition 2.3.1 (noting that (rs)−T = (rs)).

9.3 More on General Linear Groups

Motivated by the embedding of GLn(Fq) in SP2n(Fq), we outline some basic facts
about general linear groups. For further details on this material see [1]. Recall
that if n ≥ 3 we have the Steinberg relations which shall be denoted S.

Definition 9.3.1. Let λ be a non-zero element of k and define an integer n(λ) by
λn(λ) = 1. The following set of variations are denoted T .

(1) Dr(λ)n(λ) = I

(2) Dr(λ)Ds(µ) = Ds(µ)Dr(λ)

Definition 9.3.2. If λ, µ be non-zero elements of k then the following set of
relations are called U .

(1) Dr(λ)Eij(µ)Dr(λ
−1) = Eij(µ) if r 6= i, j

(2) Di(λ)Eij(µ)Di(λ
−1) = Eij(λµ)

(3) Dj(λ)Eij(µ)Dj(λ
−1) = Eij(λ

−1µ)

Theorem 9.3.3. Let µ, λ, Eij(µ) and Dr(λ) be as above. If n ≥ 3 then we have
the presentation:

GLn(k) =< Eij(µ), Dr(λ) | S, T , U > . (9.3.1)
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9.4 Commutator Subgroups of Symplectic Groups

As in the case of special linear groups, commutator relations play an important role
in the calculation of deformation rings for symplectic groups. Not least, because
the relations in the proposition below show that for almost all pairs (n, k) SP2n(A)
is a perfect group.

Proposition 9.4.1. Let λ and µ be arbitrary elements of A. There are the fol-
lowing commutator relations for the elements generating SP2n(A):

1. [Ei(λ), Ej(µ)] = 1

2. [Ei(λ), En+j(µ)] =

{
M1 if i = j

1 if j 6= i

3. [Ei(λ), Frs(µ)] =

{
1 if s 6= i

Gir(−λµ)Er(−λµ2) if s = i

4. [Ei(λ), Grs(µ)] = 1

5. [Ei(λ), Hrs(µ)] =


Fis(λµ)En+s(λµ

2) if r = i

Fir(λµ)En+r(λµ
2) if s = i

1 if r, s 6= i

6. [En+i(λ), En+j(µ)] = 1

7. [En+i(λ), Frs(µ)] =

{
His(λµ)En+s(−λµ2) if r = i

1 if r 6= i

8. [En+i(λ), Grs(µ)] =


Fsi(−λµ)Es(λµ

2) if r = i

Fri(−λµ)Er(λµ
2) if s = i

1 if r, s 6= i

9. [En+i(λ), Hrs(µ)] = 1

10. [Fij(λ), Frs(µ)] =


Fis(λµ) if r = j and s 6= i

M2 if r = j and s = i

1 if r = i and s = j

1 if r 6= j and s 6= i

11. [Fij(λ), Grs(µ)] =



Gis(λµ) if r = j and s 6= i

Gir(λµ) if r 6= i and s = j

Er(2λµ) if r = i and s = j

Es(2λµ) if r = j and s = i

I otherwise
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12. [Fij(λ), Hrs(µ)] =



Hjs(−λµ) if r = i and s 6= j

Hjr(−λµ) if r 6= j and s = i

En+s(−2λµ) if r = i and s = j

En+r(−2λµ) if r = j and s = i

I otherwise

13. [Gij(λ), Grs(µ)] = 1

14. [Gij(λ), Hrs(µ)] =



Fjs(λµ) if r = i and s 6= j

Fis(λµ) if r = j and s 6= i

Fjr(λµ) if r 6= j and s = i

Fir(λµ) if r 6= i and s = j

M3 if r = i and s = j

M4 if r = j and s = i

I if r, s /∈ {i, j}

15. [Hij(λ), Hrs(µ)] = 1

where the matrices M1, M2, M3 and M4 are given by:

M1 =

(
I + λµ(1 + λµ)eii −λ2µeii

λµ2eii 1− λµeii

)
,

M2 =

(
1 + α 0

0 1 + β

)
with α = λµ(−eii + ejj + µeij − λeji + λµejj)

and β = λµ(−ejj + eii + µeji − λeij + λµeii)

M3 =

(
I + λµ(eii + ejj) −λ2µ(eij + eji)
λµ2(eij + eji) I − λµ(eii + ejj)

)
M4 =

(
I + λµ(1 + λµ)(eii + ejj) −λ2µ(eij + eji)

λµ2(eij + eji) 1− λµ(eii + ejj)

)
.

Corollary 9.4.2. Let k be the residue field of A then the group SP2n(A) is perfect
provided the pair (n, k) is not one of: (1,F2), (1,F3) or (2,F2).

Although the conclusion in the case (n, k) = (2,F2) is not immediately clear
from the relations it follows from the exceptional isomorphism SP4(F2) ∼= S6 where
S6 is the group of permutations of six letters. We remark that the commutator
subgroup of S6 is the alternating group A6.

Next we state some simple implications of the form an arbitrary element X ∈
M2n(A) must take if it commutes with the generating elements of SP2n(A). These
conditions will be particularly helpful when considering the image of the universal
deformation.

Lemma 9.4.3. Let X ∈M2n(A). The following list shows the implications of the
commutator relations on X:
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1. If X commutes with Ei,m+i(1) then∑
a

xaiea,m+i =
∑
b

xm+i,beib

2. If X commutes with Em+i,i(1) then∑
b

xibem+i,b =
∑
a

xa,m+ieai

3. If X commutes with Fij(1) then∑
b

xjbeib −
∑
b

xm+i,bem+j,b =
∑
a

xaieaj −
∑
a

xa.m+jea,m+i

4. If X commutes with Gi,j(1) then∑
b

xm+j,beib +
∑
b

xm+i,bejb =
∑
a

xaiea,m+j +
∑
a

xajea,m+i

5. If X commutes with Hi,j(1) then∑
b

xjbem+i,b +
∑
b

xibem+j,b =
∑
a

xa,m+ieaj +
∑
a

xa,m+jeai.

Corollary 9.4.4. The centraliser of SP2n(k) in GL2n(k) is the subgroup of in-
vertible scalar matrices.



Chapter 10

Skeleton of Proof in Symplectic
Case

10.1 The Main Argument

In this section the main thrust of the argument proving Main Theorem 2 is pre-
sented, leaving the technical details of Main Theorem 3 until later. We begin by
establishing the notation used.

Let k be a fixed choice of finite field, (A,mA) a fixed element of C(k) and n ≥ 1
and integer subject to the restrictions:

• If n = 1 then k 6= F2,F3,F4

• If n ≥ 2 then p ≥ 3, q ≥ 5 and p is coprime to n.

We then define Γ = SP2n(A), ρA : Γ
∼=−→ SP2n(A) to be the identity represen-

tation (i.e. given by a fixed choice of isomorphism) and ρ̄ : Γ → GL2n(k) to be
componentwise reduction modulo mA of ρA.

Lemma 10.1.1. The residual representation ρ̄ given above is absolutely irre-
ducible.

Proof. We begin by observing that for all g ∈ SP2n(k) there exists γ ∈ SP2n(A)
such that ρ̄(γ) = g.

Next, we show that ρ̄ is irreducible. Let v = (v1, . . . , v2n) be an arbitrary
element of k2n. Also let 1 ≤ i, j ≤ n be distinct integers and consider the action
of Fij(1) = I + eij − en+j,n+i on v. If v is fixed by Fij(1) then equating this
with v and looking at the i-th and n + j-th components implies vi = vi + vj and
vn+j = vn+j − vn+i. Therefore the components vj and vn+i must both be zero and
continuing by running through all permissible values of i and j implies that k2n

has no non-trivial subspaces and the result follows.
Finally, recall that as ρ̄ : Γ → GLn(k) is irreducible the condition of absolute

irreducibility is equivalent to the centraliser of ρ̄(Γ) in Mn(k) consisting of scalar
matrices (see Theorem 9.2 of [17]). Therefore the result follows from Corollary
9.4.4.
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Therefore, invoking Theorem 1.1.6 we have proved the following.

Corollary 10.1.2. For the deformation problem defined by Γ and ρ̄ (as above)
there exists an universal deformation ring R and a universal deformation ρR (see
Theorem 1.1.6).

Now we examine the images of the deformations introduced here.

Corollary 10.1.3. For the deformation problem defined by Γ and ρ̄ (as above) the
following hold:

(i) the image ρR(Γ) ⊆ SL2n(A).

(ii) the image ρ̄(Γ) ⊆ SP2n(k).

Proof. Corollary 9.4.2 tells us that Γ is perfect therefore part (i) follows from
Proposition 2.2.1. For part (ii) recall that all g ∈ SP2n(A) satisfy gTJg = J ,
reducing this equality modulo mA implies ḡ = ρ̄(g) also satisfies ḡT J̄ ḡ = J̄ .

Recall from Theorem 1.1.6 the existence of a unique local ring homomorphism
π : R→ A for which π ◦ ρR is strictly equivalent to ρA and recall that m : A→ k
is componentwise reduction modulo mA. We may summarise the relationships
between the deformations ρ̄, ρA and ρR in the commutative diagram below:

SL2n(R)

π

��
Γ

ρR
;;

ρA//

ρ̄

##

SP2n(A)

m

��
SP2n(k).

With an argument similar to that of Section 3.1 we will show that A together
with ρA is the universal deformation ring for ρ̄ by using a similar pattern of small
steps.

Proof of Main Theorem 2. Step 1. Let (R,mR) together with ρR : Γ → SL2n(R)
be the universal deformation ring for ρ : Γ→ SP2n(k). Note that ρR takes values
in SL2n(R) by Corollary 2.2.1, and that ρR(Γ) mod mR = SP2n(k). Therefore,
we may invoke Theorem 3 and upon replacement of ρR with a strictly equivalent
representation we may assume that ρR(Γ) contains a copy of SP2n(WR).

Step 2. This is similar to the previous step 2 of Section 3.1 and culminates in the
following observations

Proposition 10.1.4.

(i) ρR : Γ→ SL2n(R) is injective and π : ρR(Γ)→ SP2n(A) is an isomorphism.

(ii) The map π : R→ A is surjective.

Proof. This follows immediately from the argument in Proposition 3.1.4.
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Step 3. To complete the outline of the proof we need the following result whose
proof is given in the next section.

Proposition 10.1.5. There exists a local ring homomorphism s : A → R which
is a section to π : R→ A.

To complete the proof of Main Theorem 2 we verify that ρA : Γ → SP2n(A)
is equivalent to the universal deformation. Recall that, by Corollary 9.1.4, the
matrices F (2n,A) generate SP2n(A). Therefore matrices of the form Ei,n+i(s(a)),
En+i,i(s(a)), Fi,j(s(a)), Gij(s(a)) and Hij(s(a)) generate ρR(Γ) where s : A → R
is the section to π : R→ A from Proposition 10.1.5.

As π ◦ s is the identity on A, we can now conclude that s ◦π ◦ρR = ρR. Hence,
as before, we have shown that A ∼= R.

10.2 Proof of Proposition 10.1.5

The method for constructing the section s resembles that of Section 3.2, although
it is messier. This is because SP2n has a more complicated set of generators than
SLn (see Corollary 2.1.3 and Corollary 9.1.4). The proof of the existence of the
section s : A→ R of Proposition 3.1.5 relies upon Main Theorem 3 which is stated
again below for convenience.

Main Theorem 3. Let (B,mB) belong to C(k). Let n ≥ 1 be an integer, p a
prime and Fq be the finite field with q = pd elements. We make the following
restrictions:

• If n = 1 then k 6= F2,F3,F4

• If n ≥ 2 then p ≥ 3, q ≥ 5 and p is coprime to n

and let G be a closed subgroup of SL2n(B). If G mod mB = SP2n(k), then there ex-
ists an X ∈ GL2n(B) satisfying X ≡ I mod mB such that XGX−1 ⊇ SP2n(WB).

Similarly to the special linear case, the proof of Main Theorem 3 requires the
background of chapters 11-12 and as such its proof is deferred until Chapter 13.

Proposition 10.2.1. Let π : R→ A be the unique local ring homomorphism which
makes π ◦ ρR strictly equivalent to ρA. Then the restriction π|WR

: WR → WA is
an isomorphism.

Proof. We note that ρR(Γ) mod mR = SP2n(k) therefore Main Theorem 3 al-
lows us to assume that SP2n(WR) belongs to the image of a representative of the
deformation class to which ρR belongs. The rest of the argument follows from
Proposition 10.1.4 in a way which is in essence identical to that of the proof of
Proposition 3.2.1.
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This allows us to again identify WR and WA. Henceforth, we will not differen-
tiate between ιR(x) and ιA(x) for x ∈W .

Next we investigate the local ring homomorphism π in further detail.

Proposition 10.2.2. Let k be a fixed choice of finite field, (A,mA) a fixed element
of C(k) and n ≥ 1 an integer subject to the restrictions:

• If n = 1 then k 6= F2,F3,F4

• If n ≥ 2 then p ≥ 3, q ≥ 5 and p is coprime to n

In addition let a ∈ A. The matrices Ei(s(a)), En+i(s(a)), Fij(s(a)), Gij(s(a)) and
Hij(s(a)) such that 1 ≤ i, j ≤ n are distinct (see Lemma 9.1.1 for their definitions)
belong to ρR(Γ) and are the unique pre-image under π of Ei(s(a)), En+i(a), Fij(a),
Gij(a) and Hij(a) respectively. Therefore the map s : A→ R characterised by the
following property is well defined:

If a ∈ A then s(a) is the unique element in R such that π(s(a)) = a and
that Ei(s(a)), En+i(s(a)), Fij(s(a)), Gij(s(a)) and Hij(s(a)) belong to
ρR(Γ) for all 1 ≤ i, j ≤ n with i 6= j.

Proof. Let π(Xi) = Ei(a) then by Proposition 9.4.1 Xi must commute with: Ej(1)
for all 1 ≤ j ≤ n, Gjk(1) for all 1 ≤ j, k ≤ n and for all j 6= i En+j(1). Hence by
Lemma (9.4.3) we obtain:

Xi = λi(I + xiei,m+i)

where λi := λi(Ei(1)) and xi := xi(Ei(a)) are elements of R. Let σ(rs) denote
image of the embedding of transpositions of the symmetric group Sn into SP2n(R),
see the discussion around equation (9.2.3) for details. We may then conclude that
λi = λj and xi = xj from the equality σ(ij)Ei(a)σ(ij) = Ej(a) . Therefore,
we write λ := λi and x := xi. Now let π((X ′i)

−1) = En+i(−a) the relation
JEi(a)J−1 = En+i(−a) implies (X ′i)

−1 = λ(I − xen+i,i).
Similarly, let π(Yrs) = Frs(a). This case is more complicated, to begin with

observe that Yrs must commute with: Ei(1) for all i 6= s, En+j(1) for all j 6= r and
Fik(1). This yields

Yrs = µ(I + yers + zen+s,n+r + uer,n+r + ven+s,s)

where: µ := µ(Frs(a)), y := y(Frs(a)), z := z(Frs(a)), u := u(Frs(a)) and v :=
v(Frs(a)) are elements of R. The next step is to show that u and v are both zero.
We show that as p 6= 2 this follows from the relations [Frs(a), Grs(1)] = Er(2a)
and [Frs(a), Hrs(1)] = En+s(−2a). The first of these relations implies

YrsGrs(−1) = X2
rGrs(1)Yrs (10.2.1)

which itself yields that:

Yrs + µ(er,n+s + es,n+r + yer,n+r + ven+s,n+r)
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is equal to

λ2Yrs + λ2µ(2xer,n+r + er,n+s + es,n+r + zer,n+r + vers).

From which it is clear that v = 0, λ2 = 1 and y − z = 2x. The second relation
implies

YrsHrs(1) = (X ′i)
−2Hrs(1)Yrs

which itself yields that

Yrs + µ(en+r,s + en+s,r + zen+s,s + uers)

is equal to

Yrs + µ(en+r,s + en+s,r − 2xen+s,s + yen+s,s + uen+s,n+r).

From which it is clear that u = 0. Considering conjugation by the elements σ(rs)
shows that the coefficients do not depend on the indices r and s. The relation
[Er(a), Hrs(1)] = Frs(a)En+s(a), or rather its equivalent:
Er(a)Hrs(1)Er(−a) = Frs(a)En+s(a)Hrs(1), implies that

I + en+r,s + en+s,r + x(ers − en+s,n+r)

is equal to

λ−1µ(I + yers + zen+s,n+r + xen+s,s + zen+s,s + en+r,s + en+s,r).

From which it is clear that λ = µ, y = x and z = −x. If n ≥ 3 then the relations
[Frs(a), Fst(1)] = Frt(a) imply that µ = 1, hence λ = 1 also. If n = 2 and q ≥ 7
then the argument in the proof of Lemma 3.2.2 (ii) for n = 2 applied to the
matrix F12(a) implies that µ = 1. If n = 2, q = 5 and consider the pre-image of
F12(3x), then an argument similar to that of Lemma 3.2.2 (ii) for n = 2 implies
that F12(3s(x)) = µ3F12(3s(x)). Therefore µ3 = 1 and considering cubic powers
implies µ = 1.

Let π(Zkl) = Gkl(a) and π(Z ′kl) = Hkl(a) then the commutator relations:

[Fki(a), Gil(1)] = Gkl(a)

[Hil(1), Fik(a)] = Hkl(a)

imply that Zkl = I+x(ek,n+l+el,n+k) and Z ′kl = I+x(en+k,l+en+l,k) respectively.
The proof is completed by setting s(a) = x.

Corollary 10.2.3. The map s : A → R defined in Proposition 10.2.2 is a local
ring homomorphism which is a section for π.

Proof. Everything carries over from the proof of Proposition 3.2.3.
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Chapter 11

Modules for kSP2n(Wr)

The aims of this chapter are similar to those of Chapter 5. However the situation
is more complicated than for special linear groups as we are now viewing M0 =
M0(2n) as a kSP2n(k)-module. We begin by fixing the notation used.

Let k be a fixed choice of finite field, (A,mA) a fixed ring in C(k) and n ≥ 1 an

integer. We then define ρA : SP2n(A)
∼=−→ SL2n(A) to be the identity representation

and ρ̄ : SP2n(A)→ SP2n(k) to be the componentwise reduction of ρA modulo mA.
As SP2n(A) is a subgroup of SL2n(A), the residual representation ρ̄ defines an
action of SP2n(A) on M0 via:

γ ·M = ρ̄(γ)Mρ̄(γ)−1

for all γ in SP2n(A) and M in M0.
Similarly to the special linear case, we remark that a SP2n(A)-module can be

turned into a kSP2n(A)-module.

11.1 kSP2n(k)-modules

This section examines the kSP2n(k)-submodule structure of M0 which is more
involved than that of M0 as a kSL2n(k)-module. In particular, we shall see that
as a kSP2n(k)-module M0 has the form of a direct sum. With this in mind, we
introduce the following subsets of M0.

Definition 11.1.1. Let A, B and C be elements of M(n) and define the following
subsets of M0:

N :=

{(
A B
C −AT

)
| BT = B, CT = C

}
and

P :=

{(
A B
C AT

)
|A ∈M0(n), BT = −B, CT = −C

}
.

Lemma 11.1.2. The subsets N and P are kΓ-submodules of M0. Furthermore,
there is the direct sum decomposition

M0 = N⊕P.

73
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Proof. We begin by showing that both of these subsets are invariant under the
action of SP2n(k). Let M , written in four n × n blocks A, B, C and D, be an
element of N or P respectively. Firstly, suppose S is a symmetric n × n matrix
this implies(

I S
0 I

)
·M =

(
I S
0 I

)
.

(
A B
C D

)
=

(
A+ SC −AS − SCS +B + SD

C −CS +D

)
.

If M is in N then

(−CS +D)T = (−CS −AT )T = (−SC −A) = −(A+ SC)

(−AS − SCS +B − SAT )T = −SAT − SCS +B −AS

which implies that: (
I S
0 I

)
·M

also belongs to N. If M is in P then:

(−CS +D)T = (−CS +AT )T = (SC +A)

(−AS − SCS +B − SAT )T = −SAT − SCS −B +AS

and we may conclude similarly.
Secondly, let g belong to GLn(k) then we have(

g 0
0 g−t

)
·M =

(
g 0
0 g−t

)
.

(
A B
C D

)
=

(
gAg−1 gBgt

g−tCg−1 g−tDgt

)
and the same conclusion may again be drawn.

Thirdly, the action of J on M is given by

J ·M =

(
D −C
−B A

)
and once again J ·M belongs to N or P respectively. Therefore both N and P are
invariant under the action of SP2n(k) and hence are kSP2n(k)-submodules of M0.

Finally, we observe that as p > 2 the intersection of N and P is trivial. There-
fore the proof of the direct sum decomposition is completed by comparing dimen-
sions. M0(2n) has dimension 4n2 − 1; the restriction being on the final diagonal
entry to ensure trace zero. We remark that the dimension of an n× n symmetric
matrix, respectively skew-symmetric matrix, is n(n+1)/2 respectively n(n−1)/2.
Therefore N has dimension 2n2 + n , P has dimension 2n2− n− 1 and N⊕P has
dimension 4n2 − 1.

Our next objective is to examine the kSP2n(k)-submodule structure of N and
P. For this, we require generating sets for both modules.
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Lemma 11.1.3. Let 1 ≤ i, j ≤ n be distinct integers.

(i) N is generated by:

• ai := ei,n+i

• bi := en+i,i

• hi := eii − en+i,n+i

• cij := ei,n+j + ej,n+i where i < j

• dij := en+i,j + en+j,i where i < j

• fij := eij − en+j,n+i.

(ii) P is generated by:

• h̃i := eii − ei+1,i+1 + en+i,n+i − en+i+1,n+i+1

• c̃ij := ei,n+j − ej,n+i where i < j

• d̃ij := en+i,j − en+j,i where i < j

• f̃ij := eij + en+j,n+i.

Proof. For part (i), let B and C be the symmetric n×n matrices in the definition
of N (see Definition 11.1.1). B can be expressed uniquely as a linear combination
of the aii and cij ; similarly C may be written uniquely in terms of bii and dij .
Analogously the elements hi and fij are sufficient to uniquely express elements
belonging to the two diagonal blocks.

Part (ii), we observe that the antisymmetric matrix B (respectively C) may
be written uniquely as a linear combination of c̃ij (respectively d̃ij) and elements
belonging to the two diagonal blocks written in terms of h̃i and f̃ij .

This leads us to consider the irreducibility of these and related modules.

Proposition 11.1.4. Let p > 2 be the characteristic of k.

(1) N is an irreducible kSP2n(k)-module,

(2) If p does not divide n then P is an irreducible kSP2n(k)-module,

(3) If p|n then S is the unique kSP2n(k)-submodule of P.

Proof. Let v be an arbitrary element of M0 written in n× n blocks as

v =

n∑
x,y=1

axyexy +

n∑
x,y=1

bxyex,n+y +

n∑
x,y=1

cxyen+x,y +

n∑
x,y=1

dxyen+x,n+y (11.1.1)

and observe the identities:

(i) (2En+i(1)− En+i(2)− I) · v = 2biien+i,i

(ii) (En+i(1) + En+j(1)− En+j(1)En+i(1)− I) · v = bijen+i,j + bjien+j,i
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(iii) (I − En+j(1)) · (Ei(1) · v)− (I − En+j(1)) · v = dijeij + ajien+j,n+i

(iv) If v is diagonal then Fij(1) · v − v = (ajj − aii)eij + (djj − dii)en+j,n+i.

Firstly assume v is a non-zero element of a submodule N of N. If bii is non-zero,
then identity (i) implies that 2biien+i,i = 2biibi belongs to N and thus the equation

−(J + Jσ(ij)− JFij(1)) · bi = cij

bi + (σ(ij)− Fij(1)) · bi = cij

allows us to assume cij is in N . If bij = bji is non-zero then identity (ii) implies
that bij(en+i,j + en+j,i) = bijcij belongs to N . If cii, respectively cij , is non-zero
then taking J · v allows us to assume bii, respectively bij , is non-zero, and so in
either case we may assume cij is in N . If aji = −dij is non-zero then identity (iii)
implies that aji(en+j,n+i − eij) = −ajifij belongs to N and the equation

(I − Ej(1)) · fij = cij (11.1.2)

implies that cij also belongs to N . If v is not covered by one of the previous cases
then it must be diagonal. If v has the form v = λ

∑
i(eii − en+i,n+i) then

(I −Gij(1)) · v = 2λ(eij + eji) = 2λcij .

If not, then ajj 6= aii for some pair i and j, hence identity (iv) implies that

(ajj − aii)eij − (ajj − aii)en+j,n+i = (ajj − aii)fij

belongs to N . Equation (11.1.2) then implies that cij belongs to N as well. There-
fore in each case we may assume that an element cij belongs to N .

Secondly assume v is a non-zero element of a submodule P of P and proceed in
a similar fashion. If bij = −bji is non-zero then identity (ii) implies bij c̃ij belongs
to P and if cij = −cji is non-zero taking J · v also allows us to assume c̃ij to be in
P. If aji = dij is non-zero then identity (iii) and the equality

(I − Ej(1)) · f̃ij = c̃ij

implies that c̃ij belongs to P. All that remains is the case when v is diagonal. If
p|n then the scalar matrices S have trace zero and form a submodule of P. If v
is not a scalar then aii 6= ajj for some i and j. Then identity (iv) implies that
(ajj−aii)̃fij , hence c̃ij , is in P. Therefore, if P is not S, we may assume c̃ij belongs
to P.

To complete the proof we show that cij (respectively c̃ij) may be conjugated
to each of the other generators of N (respectively P). This is listed below; the
expressions without square brackets around refer to N and those with to P

• σ(ik) · cij = ckj and [σ(ik) · c̃ij = c̃kj ]

• σ(jk) · cij = cik and [σ(jk) · c̃ij = c̃ik]
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• (Fij(1)− I) · cij = 2ai

• −J · cij = dij and [−J · c̃ij = d̃ij ]

• −J · ai = bi

• (I − En+i(1)) · ai − bi = hi and [(Hi,i+1(−1)− I) · c̃i,i+1 − d̃i,i+1 = h̃i]

• (Fij(1)− I) · hj = fij and [(Fij(1)− I) · h̃j = f̃ij ].

The irreducibility of P/S follows immediately from the argument for P.

In the following corollary recall that V = M0/S.

Corollary 11.1.5. If p is coprime to n then N and P are the only non trivial
kS2n(k)-submodules of M0. If p|n then S and N ⊕ S, in addition to N and P,
are kSP2n(k)-submodules of M0.

The following sequences of kSP2n(k)-modules are exact:

1. 0→ N→M0 → P→ 0

2. 0→ P→M0 → N→ 0

3. if p|n, 0→ S→M0 → V→ 0

4. if p|n, 0→ N⊕S→M0 → P/S→ 0.

Proof. These sequences easily follow from Lemma 11.1.2 and Proposition 11.1.4.
In the fourth sequence we have made the identification

M0

N⊕S
∼=

N⊕P

N⊕S
∼=

P

S
.

11.2 kSP2n(Wr)-modules

Recall that ρ̄ : SP2n(A)→ SP2n(k) gives M0 the structure of a kSP2n(A)-module,
in this section we investigate the structure of kSP2n(Wr)-modules.

Recall the definition of the subgroup N of SP2n(Wr) from Definition 9.2.2, it
consists of matrices of the form: (

I S
0 I

)
where S ∈ Mn(Wr) is a symmetric matrix. We note that SP2n(Wr)-modules are
naturally N -modules as well. In preparation for the cohomological calculations in
Chapter 12 we begin by considering the action of N on the modules introduced in
the previous section.
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Lemma 11.2.1. Recall that M(n) is the set of n× n over k and define:

B :=

{(
0 B
0 0

)
| B ∈M(n)

}
Then

M0
N =

{
B ⊕S if p|n
B if not.

Proof. Let S be an n×n symmetric matrix and let the four n×n blocks A, B, C
and D constitute an arbitrary element of M0 then we must have the equality(

A B
C D

)
=

(
1 S
0 1

)(
A B
C D

)(
1 −S
0 1

)
which implies the equality:(

SC −AS − SCS + SD
0 −CS

)
= 0 (11.2.1)

Looking at the top left-hand block, we see that SC = 0. We write C =
∑

xy cxyexy
then if S = eii this implies that

∑
y ciyeiy = 0 which by running through all values

of i shows that C = 0.

Focusing on the top right-hand block, we see that AS = SD. Again if S = eii
and A =

∑
xy axyexy and D =

∑
x,y dxyexy we see that∑

x

axiexi =
∑
y

diyeiy

which shows that aii = dii for i and that all entries off the diagonals of A and D
are zero. Now let S = ers + esr then this implies

arrers + assesr = assers + arresr

i.e. that all the diagonal entries of A are equal. If p does not divide n then A must
equal the zero matrix. If p|n we remark that the action of G clearly fixes S and
G also fixes B as shown by(

g 0
0 g−T

)
.

(
0 B
0 0

)
=

(
0 gBgT

0 0

)
.

Therefore, as their intersection is obviously 0, the direct sum decomposition fol-
lows.

Corollary 11.2.2. Let B be defined by Lemma 11.2.1. Then the following hold:

(1)

NN =
{
B ∈ B | BT = B

}
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(2)

PN =

{{
B ∈ B | BT = −B

}
if p does not divide n{

B ∈ B | BT = −B
}
⊕S if p|n.

Proof. The results follows from the observations NN = B
⋂
N and PN = B

⋂
P.

Corollary 11.2.3. Recall that V = M0/S, thus:

VN =

{(
0 B
0 0

)
+ S | B ∈M(n)

}
.

Proof. We adopt the block notation to that used in the proof of Lemma 11.2.1.
The analogue to equation (11.2.1) is that(

SC −AS − SCS + SD
0 −CS

)
∈ S.

If we set S = eii the top left-hand block implies that
∑

xy cxyexy is a scalar matrix,
hence we may assume C = 0. The rest of the proof follows exactly as in the
lemma.

The results obtained so far, i.e. modules fixed by N , are extended to calculate
the modules fixed by SP2n(k).

Corollary 11.2.4. The submodules fixed by the action of SP2n(k) are given by:

1. M0
SP2n(k) =

{
S if p|n
0 if not

2. NSP2n(k) = 0

3. PSP2n(k) =

{
S if p|n
0 if not.

Proof. We note that SP2n(k) clearly fixes S. Therefore result follows immediately
from Lemma 11.2.1 and the equality:(

0 B
0 0

)
= J.

(
0 B
0 0

)
=

(
0 0
−B 0

)
.

Now we investigate kSP2n(Wr)-module homomorphisms.

Proposition 11.2.5. If n ≥ 2 be an integer andM represent each of the kSP2n(Wr)-
modules: N, P and P/S; then

HomkSP2n(Wr)(M,M) ∼= k.
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Proof. These homomorphism groups are found by considering the restriction that
the fixed action of G imposes, see equation (5.1.1).

Firstly, let M = N and consider the image of ai under φ in HomkG(N,N).
Specify the image of ai in the form φ(ai) =

∑
x,y axyexy. As Ej(1) fixes ai for all

j equation (5.1.1) implies that Ei · φ(ai) = φ(ai) which yields:
axj = 0 for every x 6= j

am+j,y = 0 for every y 6= n+ j

ajj = an+j,n+j .

(11.2.2)

The action of Grs(1), which also fixes α, on φ(α) implies∑
y

(an+s,yery + an+r,yesy)−
∑
x

(axrex,n+s + axsex,n+r) = 0. (11.2.3)

A comparison of coefficients of er,n+s implies an+s,n+s = arr. By varying r and s
we conclude that all diagonal entries of φ(ai) are equal. Thus, as φ takes values
in N the diagonal entries are zero. So far we have shown that the only possible
non-zero entries of φ(ai) are those in the top right-hand n × n block. Let j 6= i
then the element Fij(1) fixes ai hence∑

y

aj,n+yei,n+y +
∑
x

ax,n+jex,n+i + aj,n+jei,n+i = 0.

This implies that 
aj,n+y = 0 for every y 6= i

ax,n+j = 0 for every x 6= i

aj,n+i + ai,n+j = 0.

(11.2.4)

The third restriction implies that aj,n+i = −ai,n+j which as φ takes values in N
implies that aj,n+i = 0. Varying j over all its possible values makes it clear that
the only possible non-zero entry is the (1, n + 1)-th. Therefore it follows that we
may write φ(ai) = λai for some λ := λ(N) in k.

Secondly, consider the image of c̃rs under φ in HomG(P,P). We write φ(c̃rs) =∑
x,y bxyexy. As in the previous case the elements Ei(1) and Gij(1) fix c̃rs hence

the diagonal entries of φ(c̃rs) are equal and the only other possible non-zero entries
are in the top right-hand n× n block.

If p does not divide n then the diagonal entries are all zero. The group elements
Frs(1) and Fsr(1) also fix c̃rs which in turn imply:

•


bs,n+y = 0 for each y 6= r

bx,n+s = 0 for each x 6= r

bs,n+r + br,n+s = 0

•

{
br,n+y = 0 for each y 6= s

bx,n+r = 0 for each x 6= s
.
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If n = 2 then this is sufficient to conclude that φ(c̃rs) = λc̃rs for some λ := λ(P)
in k. If n ≥ 3 then take j 6= r, s and observe that Frj(1) fixes c̃rs which implies

•

{
bj,n+y = 0 for each y 6= r

bx,n+j = 0 for each x 6= r
.

Running through all possible values of j allows us to again conclude that φ(c̃rs) =
λc̃rs. Corollary 11.2.4 implies that if p|n the image φ(S) ⊆ S.

Thirdly, letM = P/S and β denote the image of crs inM. Then the argument
for c̃rs in P hold modulo S. Therefore for φ in HomkG(M,M) we may conclude
that φ(β) = λβ.

For each M the map f : M → M defined as f(m) = φ(m) − λm has non
trivial kernel. As each N and P/S have no non trivial kSP2n(Wr)-submodules the
kernel of φ in these cases must equate to the totality of the module in question.
If p does not divide n then for P we may conclude similarly. If p|n then S ⊂
ker(f) and the first isomorphism theorem for modules implies that there are two
kSP2n(Wr)-submodules of P one isomorphic to ker(f) and the other isomorphic
to im(f) ∼= P/ker(f). However as S is the only non-trivial kSP2n(Wr)-submodule
of P we must have ker(f) = P. Therefore in each case ker(f) =M and thus φ is
multiplication by a scalar.

Corollary 11.2.6. If p does not divide n then HomkSP2n(Wr)(N,P) = 0. If p|n
then HomkSP2m(Wr)(N,P/S) = 0.

Proof. Suppose p does not divide n. Consider the image of a1 under φ in
HomkSP2n(Wr)(N,P). The relations from equations (11.2.2), (11.2.3) and (11.2.4)
hold and imply that

φ(a1) =
n∑
j=2

aj,n+1(ej,n+1 − e1,n+j).

If n ≥ 3 choose two distinct indices r and s both of which are also not equal to 1.
Then Frs(1) · a1 = a1 and hence

φ(a1) = Frs(1) · φ(a1)

= φ(a1) + as,n+1(er,n+1 − e1,n+r)

which implies that as,n+1 = 0. Running through all suitable choices of r and s
completes the proof. If n = 2 then φ(e1,3) = a(e1,4 − e2,3) and acting on φ(e1,3)
with σ(12) implies that φ(e2,4) = −a(e1,4 − e2,3). Therefore φ(e1,3 + e2,4) = 0 and
as P has no non trivial submodules φ is the zero map. The case p|n clearly follows
from this argument.
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Chapter 12

Cohomology of
SP2n(Wr)-modules

In this chapter the objective is to make the calculations necessary to prove Main
Theorem 3 in the next chapter. The principal results here are summarised in the
Theorem 12.0.7.

Theorem 12.0.7. Let n ≥ 1 be an integer, p be a prime and Fq be the finite field
with q = pd elements. We make the following restrictions on n and k:

• If n = 1 then q = 4 or q ≥ 7

• If n ≥ 2 then p ≥ 3, q ≥ 5 and n is coprime to p.

Then the following hold:

(i) H1(SP2n(Wr),M0) = (0).

(ii) the map H2(SP2n(Wr),N) → H2(SP2n(Wr),M0) induced from inclusion is
injective.

(iii) the map H2(SP2n(Wr),P) → H2(SP2n(Wr),M0) induced from inclusion is
injective.

As we shall see in Section 12.2, the proof of the above theorem is derived from
the following proposition (whose proof is calculated from first principles in Section
12.1).

Prior to stating the proposition we recall the subgroup Ω of SP2n(k) from
Definition 9.2.4. Ω = N oG where N is the abelian subgroup of Ω from Definition
9.2.2 and G is the subgroup isomorphic to GLn(k) from Definition 9.2.4, i.e. we
have the following exact sequence:

I → N → Ω = N oG→ G→ I. (12.0.1)

The restriction of ρ̄ to Ω, G,N defines an action of these subgroups on the SP2n(k)-
modules N, P and M0.

83
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The application of (inflation-restriction) to the sequence (12.0.1) produces the
exact sequence beginning

0→ H1(G,MN )→ H1(Ω,M)→ H1(N,M)G → . . . (12.0.2)

Proposition 12.0.8. Let n ≥ 1 be an integer, p be a prime and Fq be the finite field
with q = pd elements. Recall the subgroups G and N of SP2n(k) given in Definition
9.2.4 and Definition 9.2.2 respectively. We make the following restrictions on n
and k:

(i) If n = 1 then q = 4 or q ≥ 7

(ii) If n ≥ 2 then p ≥ 3, q ≥ 5 and n is coprime to p

then following hold:

1. H1(G,NN ) = (0)

2. H1(G,PN ) = (0).

3. H1(N,N)G = (0).

4. H1(N,P)G = (0).

12.1 Proof of Proposition 12.0.8

The first and second parts of the proposition are proved simultaneously. This is
achieved by showing that the group H1(G,M0

N ) = (0) and then illustrating how
the separate parts of the proposition follow.

Before continuing we make a simple general observation. If g and h are two
elements which commute of a group H, M be a H-module and f ∈ H1(H,M);
then we have the equality:

f(g)− h · f(g) = f(h)− g · f(h). (12.1.1)

This equation will be referenced many times in the current section.
Recall that Lemma 11.2.1 implies that if p is coprime to n then M0

N = B. If
g ∈ GLn(k) then the action of G on B is described by:(

g 0
0 g−T

)(
0 B
0 0

)(
g−1 0
0 gT

)
=

(
0 gBgT

0 0

)
(12.1.2)

Therefore if we define an action of γ ∈ GLn(k) on M ∈Mn by γ ·M = γMγT we
obtain the following isomorphism

H1(G,M0
N ) ∼= H1(GLn(k),M(n))

Lemma 12.1.1. With the restrictions:

• if n = 1 then q = 4 or q ≥ 7
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• if n ≥ 2 then p ≥ 3, q ≥ 5 and n is coprime to p

we have that H1(SP2n(k),M(n)) = (0).

Proof. If n = 1 then SP2(k) = SL2(k) and has already been examined in Theorem
6.0.3. Therefore let n ≥ 2 and note that the restrictions p ≥ 3 and q ≥ 5 ensure
the existence of an element u ∈ k∗ satisfying µ2 − 1 6= 0

Let f be an arbitrary 1-cocycle in H1(G,M(n)) we consider the images of the
elements of G and show that this defines a 1-coboundary.

Step (i). Fix an element µ in k∗ satisfying µ2 − 1 6= 0 and denote the image of µI
under f as f(µI) =

∑
x,y axyexy. Let λ be a non-zero element of k. The group

element Dr(λ) commutes with µI. Equation (12.1.1) implies

µI · f(Dr(λ))− f(Dr(λ)) = (µ2 − 1)f(Dr(λ))

= Dr(λ) · f(µI)− f(µI)

= (λ− 1)[
∑
x6=r

axrexr +
∑
y 6=r

aryery] + (λ2 − 1)arrerr.

We fix θ := (µ2 − 1)−1 and the equation above simplifies to give:

f(Dr(λ)) = θ[(λ− 1)(
∑
x 6=r

axrexr +
∑
y 6=r

aryery) + (λ2 − 1)arrerr].

Step (ii). Similarly to the first step, here we specify f(Eij(τ)) using the fact that
it commutes with µI. Equation (12.1.1) tells us that

(µ2 − 1)f(Eij(τ)) = Eij(τ).f(µI)− f(µI)

= τ(
∑
x

axjexi +
∑
y

ajyeiy + τajjeii).

Therefore the image of Eij(τ) is given by

f(Eij(τ)) = θτ(
∑
x

axjexi +
∑
y

ajyeiy + τajjeii).

Step (iii). All that remains is to verify that f is a 1-coboundary. To this end, set
X = θf(µI); to complete the proof we will show that f(g) = g · X − X. Then
firstly it is clear that:

µI · θf(µI)− f(µI) = (µ2 − 1)θf(µI) = f(µI).

In step (i), when finding the image of Dr(λ) under f , we essentially showed that:

θ−1f(Dr(λ)) = θ−1(Dr(λ) ·X −X).

This is clearly equivalent to f(Dr(λ)) satisfying the 1-coboundary condition. The
argument in step (ii) analogously shows that:

θ−1f(Eij(τ)) = θ−1(Eij(τ) · f(µI)− f(µI)).
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Proof of Proposition 12.0.8, 1 and 2. From this proof we return to the proof of
Proposition 12.0.8 parts 1 and 2. These results follow easily as we now observe. If
f belongs to H1(G,NN ) or H1(G,PN ) then to complete the proof we must show
that the matrix X of step (iii) belongs to N, respectively P. As X is defined as a
scalar multiple of an element in the image of f , this is clear.

Now we focus on Proposition 12.0.8 parts 3 and 4. In a manner akin to the
proof of 1 and 2 we calculate H1(N,M0) and use this to prove parts 3 and 4
separately.

Lemma 12.1.2. If p ≥ 3 and n ≥ 2 then H1(N,M0)G = (0).

Proof of Lemma 12.1.2 . Let f be an element of H1(N,M0)G we observe that for
all g in G and n ∈ N we have:

f(n) = g · f(g−1ng). (12.1.3)

Step 1. Let us consider the image of Ei(1) under f which we write in n× n-block
matrix form:

f(Ei(1)) =

(
Ai Bi

Ci Di

)
.

As Ei(1) commutes with Ej(1) for all j, we investigate the restrictions that equa-
tion (12.1.1) places on f(Ei(1)). Before we continue, we remark that if j = i
then the condition on the cocycles are vacuous. Equation (12.1.1) implies that the
following matrix is zero(

[−eiiCj ] + [ejjC
i] [Ajeii + eiiC

jeii − eiiDj ]− [Aiejj + ejjC
iejj − ejjDi]

0 [Cjeii]− [Ciejj ]

)
.

(12.1.4)
Write Ci =

∑
x,y c

i
xyexy, then the top left and bottom right entry blocks give us

respectively:

−
∑
x

cjixeix +
∑
y

cijyejy = 0 (12.1.5)∑
x

cjxiexi −
∑
y

ciyjeyj = 0 (12.1.6)

This implies that the j-th row and j-th column of Ci are zero. Therefore the only
possible non-zero entry of Ci is the (i, i)-th.

Let us now examine the top right entry, begining by observing that ejjC
iejj =

0. Writing Ai =
∑

x,y a
i
xyexy and Di =

∑
x,y d

i
xyexy this implies that:∑

x

ajxiexi −
∑
y

djiyeiy =
∑
x

aixjexj −
∑
y

dijyejy.

This means that, with the possible exceptions of aijj = dijj and aiij = −djij , the en-

tries of the j-th column of Ai are zero. Similarly with these two possible exceptions
the entries of the j-th row of Di are zero.
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Step 2. Next define Dr to be the diagonal matrix with −1 in both its (r, r)-th and
(n + r, n + r)-th entries and 1s elsewhere on the diagonal. We remark that Dr is
its own inverse. As Dr commutes with Ei(1), equation (12.1.3) implies that

Drf(Ei,n+i(1))Dr = f(Ei,n+i(1)). (12.1.7)

Running through all 1 ≤ r ≤ n implies that the only possible non-zero entries of
f(Ei(1)) are on the diagonals of Ai, Bi, Ci and Di. Combining all of what we
have so far gives:

Ai =
∑

x a
i
xxexx Bi =

∑
x b

i
xxexx

Ci = λieii Di =
∑

x 6=i a
i
xxexx + diiieii

(12.1.8)

Step 3. Let us introduce the images under f of the Grs(1) to the discussion, which
we write as

f(Grs(1)) =

(
Xrs Y rs

W rs Zrs

)
.

As Grs(1) commutes with Ei(1) equation (12.1.1) implies that for all i the matrix(
−eiiW rs Xrseii + eiiW

rseii − eiiZrs
0 W rseii

)
(12.1.9)

is equal to(
−(ers + esr)C

i Ai(ers + esr) + (ers + esr)C
i(ers + esr)− (ers + esr)D

i

0 Ci(ers + esr)

)
.

(12.1.10)
We write W rs =

∑
a,bwabeab and then set i = r. Comparing the top left hand

blocks of the two matrices immediately above gives

λresr =
∑
a

wrsraera.

Noting s 6= i, this equality firstly implies that λr = 0 thus Cr = 0. Secondly,
it also implies that the r-th row of W rs consists of zeros. As λi = 0 for all i, if
i = s or i 6= r, s the top left hand blocks imply that i-th rows consist of zeros.
Therefore, the block W rs is zero.

Step 4. Fis commutes with Ei,n+i(1) for each permissable value of s. Equation
(12.1.3) then implies that Fisf(Ei(1))F−1

is = f(Ei(1)). Consequently

f(Ei(1)) =

(
Eis(1)AiEis(−1) Eis(1)BiEsi(1)

0 Esi(−1)DiEsi(1)

)
(12.1.11)

Comparing top left hand blocks implies that aiss = aiii. Similarly, comparing bot-
tom right hand blocks implies that diii = aiii. Examining the top right hand block
implies that biss(eis + esi + eii), hence biss = 0. Allowing s to take all permissable
values implies that we may write the image of Ei(1) under f in the form:

f(Ei(1)) = aiI + biei,n+i
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As σ(ij) belongs to G and σ(ij)Ei(1)σ(ij) = Ej(1), equation (12.1.3) implies
f(Ei(1)) = σ(ij)f(Ej(1))σ(ij). Therefore ai = aj := a and bi = bj := b and we
may write

f(Ei(1)) = aI + bei,n+i.

Step 5. We switch back to examining the restrictions placed on f from the fact
that Ei(1) and Grs(1) commute, i.e. re-examining the implications of the equality
of equations (12.1.9) and (12.1.10), we see that the top right hand block of equation
(12.1.10) is zero. If we set i = r we have∑

a

xarear −
∑
b

zrberb = 0

which implies that xar = 0 if a 6= r, zrb = 0 if b 6= r and that xrr = zrr. Similarly,
setting i = s gives that xas = 0 if a 6= s, zsb = 0 if b 6= s and that xss = zss. If
n ≥ 3 then set i 6= r, s and analogously this implies that xai = 0 if a 6= i, zib = 0
if b 6= i and that xii = zii. In summary we write the image of Grs(1) under f in
the form: (

Drs M rs

0 Drs

)
where Drs is a diagonal matrix.

Step 6. Observe that DrGrs(1)Dr = Grs(1)−1 = DsGrs(1)Ds. As Dr and Ds both
belong to G equation (12.1.3) implies

f(Grs(1)) = Drf(Grs(1)−1)Dr = −DrGrs(1)−1f(Grs(1))Grs(1)Dr (12.1.12)

where the second equality follows from the definition of a 1-cocycle via the obser-
vation 0 = f(g−1g) = f(g−1) + g−1 · f(g). Now we examine the implications of
equation (12.1.12).(

Drs M rs

0 Drs

)
= −

(
DrD

rsDr M ′

0 DrD
rsDr

)
(12.1.13)

where

M ′ = DrD
rs(ers + esr)Dr +DrM

rsDr −Dr(ers + esr)D
rsDr.

Looking at the top left hand block we restate that since both Dr and Drs are
diagonal matrices they commute and hence Drs = 0. This also implies that

M ′ = DrM
rsDr

and from a comparison of the top right hand blocks it is clear that the only possible
non-zero entries of M rs are mra for all a 6= r and mbr for all b 6= r. Combining
this with the analogous condition deriving from Ds implies that

M rs = mrsers +msresr
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Note that σ(rs)Grs(1)σ(rs) = Grs(1) and hence that

f(Grs(1)) = σ(rs)f(Grs(1))σ(rs).

This clearly implies that mrsers+msresr = msrers+mrsesr i.e that mrs = msr :=
mrs. Therefore we have shown

f(Grs(1)) = mrs(er,n+s + es,n+r)

If n = 2, G12(1) is the only element of this form and we may write f(G12(1)) =
m(e12 + e21). This may also be done when n ≥ 3. The equalities

σ(xr) ·Grs(1) = Gxs(1)

σ(sy) ·Gxs(1) = Gxy(1)

imply the equalities

f(Grs(1)) = mrs(ers + esr) = σ(xr) ·Gxs(1) = mxs(ers + esr) (12.1.14)

f(Gxs(1)) = mxs(exs + esx) = σ(sy) · f(Gxy(1)) = mxy(exs + esx). (12.1.15)

Therefore mrs does not depend on either r or s and we may write:

f(Grs(1)) = m(er,n+s + es,n+r).

Step 7. In reference to the images of Grs(1) and Ei(1), we will now show that
b = m and a = 0. To this end, observe that Frs(1) · Grs(1) = Er(2)Grs(1) which
implies

f(Grs(1)) = Frs(1)−1 · [f(Er(2)) + Er(2).f(Grs(1))] (12.1.16)

and we set about calculating the left hand side of this equality. Remarking that
both Ei(1) and Grs(1) commute with both of their images, the observation

Frs(1)−1 · [Er(2).f(Grs(1))] = m(er,n+s + es,n+r − 2er,n+r)

implies that collecting all this together implies that equation (12.1.16) is equivalent
to

m(er,n+s + es,n+r) = 2(aI + ber,n+r) +m(er,n+s + es,n+r − 2er,n+r).

As the characteristic of k is not equal to 2, a = 0 and b = m. In summary the
images have the forms:

f(Er(1)) = ber,n+r, f(Grs(1)) = b(er,n+s + es,n+r).

Step 8. In conjunction with the final step, the calculations made so far are suffi-
cient if k = Fp but for general k we require a supplementary argument. Let x be
an arbitrary element of k. Then define Dr(x) to be the diagonal matrix with x in
the (r, r)-th entry, x−1 in the (n+ r, n+ r)-th entry and 1s on the other diagonals.
Then by equation (12.1.3), the equality Dr(x) ·Grs(1) = Grs(x) implies

f(Grs(x)) = Dr(x) · f(Grs(1)) = xf(Grs(1)).
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For the images of Ei(x) recall the third relation of 11 in Proposition 9.4.1. If λ = x
and µ = 2−1 then this relation implies Frs(x)Grs(2

−1)Frs(−x) = Er(x)Grs(2
−1).

Utilising equation (12.1.3) again yields the equality:

f(Er(x)) = Frs(x) · f(Grs(2
−1)− f(Grs(2

−1)))

= xf(Er(1)).

Step 9. We conclude by showing that f is a coboundary. Define a matrix in M0

by

X = 2−1b
n∑
a=1

(en+a,n+a − ea,a).

Then the calculations

(1 + xei,n+i) ·X = X + bxei,n+i

(1 + xer,n+s + xes,n+r) ·X = X + bx(er,n+s + es,n+r)

imply that f is indeed a coboundary.

Proof of Proposition 12.0.8, 3 and 4. Consider f in H1(N,N): in the proof of
Lemma 12.1.2 above we showed that for f ∈ H1(N,M0)G the image of f in
fact belongs to N. Moreover, in step 9 of the proof above the element X, which
is used to show that f is a coboundary, is an element of N. Thus it is clear that
H1(N,N)G = (0).

Now suppose that f belongs to H1(N,P)G. As the top right hand n×n block
of elements of P are skew symmetric steps 7 and 8 of the proof of Lemma 12.1.2
above imply that f(Ei(x)) = 0 and f(Grs(x)) = 0. Therefore, H1(N,P)G = (0)
and step 9 is not required.

12.2 Proof of Theorem 12.0.7

Now we use Proposition 12.0.8 to complete the proof of Theorem 12.0.7. These
calculations are greatly simplified using standard cohomological results as is now
demonstrated. The following is Proposition 6 in Chapter VII of [30].

Proposition 12.2.1. If Ω < Γ are two groups and M a Γ-module, then the
composition

H1(Γ,M)
res−−→ H1(Ω,M)

cores−−−→ H1(Γ,M) (12.2.1)

is multiplication by the index [Γ : Ω].

Corollary 12.2.2. If [Γ : Ω] is coprime to p then the composite map cores ◦ res
is injective. Therefore, the map

res : H1(Γ,M)→ H1(Ω,M) (12.2.2)

is injective.
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For further details of the results above see [30] or [21]. We apply this result to
our context. To this end, fix Γ = SP2n(k) and the subgroup Ω to be its namesake
defined in 9.2.4. As remarked previously Ω contains the p-sylow subgroup of
SP2n(k) hence the index [SP2n(k) : Ω] is coprime to p. Therefore for an arbitrary
kSP2n(k)-module M Corollary 12.2.2 implies there is an injection:

H1(SP2n(k),M)→ H1(Ω,M).

Thus if H1(Ω,M) = (0) we may conclude that H1(SP2n(k),M) is also trivial.
In fact the calculation can be simplified even further. Recall the group exten-

sion (12.0.1) specified by Ω = N oG and the exact cohomology sequence given in
equation 12.0.2 which we restate below:

0→ H1(G,MN )→ H1(Ω,M)→ H1(N,M)G → . . .

From this, we obtain the following criterion for determining H1(SP2n(k),M).

Corollary 12.2.3. Let Ω, G and N be the subgroups of SP2n(k) given in Defini-
tions 9.2.4 and 9.2.2. If H1(G,MN ) = H1(N,M)G = (0) then
H1(Ω,M) = H1(SP2n(k),M) = (0).

Corollary 12.2.4. Let n ≥ 1 be an integer, p be a prime and Fq be the finite field
with q = pd elements. We make the following restrictions on n and k:

(i) If n = 1 then q = 4 or q ≥ 7

(ii) If n ≥ 2 then p ≥ 3, q ≥ 5 and n is coprime to p

then following hold:

(1) H1(SP2n(k),N) = (0)

(2) H1(SP2n(k),P) = (0).

Proof. After invoking Corollary 12.2.3 the result follows immediately from Propo-
sition 12.0.8.

Recall the map ε : M0 → Kr from equation (5.2.4). Its restriction to the
submodule N defines an isomorphism ε|N : N → Kr(N) where the latter is given
by

Kr(N) := {I + prn | n ∈ N} . (12.2.3)

Similarly recall that ε is a one-sided inverse to the map φ|K(N) : K(N)→ N given
by φ(I + prn) = n mod pr. We remark that Kr(P), ε|P and φ|Kr(P) are defined
similarly. The next result is analogous to Proposition 6.1.2 and Lemma 6.2.1.

Proposition 12.2.5. Let n ≥ 1 be an integer, p be a prime and Fq be the finite
field with q = pd elements. We make the following restrictions:

• If n = 1 then q = 4 or q ≥ 7
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• If n ≥ 2 then p ≥ 3, q ≥ 5 and n is coprime to p.

Let π : SP2n(Wr+1)→ SP2n(Wr) be componentwise reduction modulo pr.

(1) The following sequence does not split

I → Kr(N)→ SP2n(Wr+1)
π−→ SP2n(Wr)→ I. (12.2.4)

(2) If E be a subgroup of SL2n(Wr+1) which fits into the exact sequence

I → K(M0)/K(P)→ E/K(P)
π′
−→ SP2n(Wr)→ I (12.2.5)

where π′ is induced from the reduction modulo pr map SP2n(Wr+1)→ SP2n(Wr),
then the exact sequence above does not split.

Proof. We remark that if n = 1 then SP2(Wr) = SL2(Wr) and so the proof is
covered in Chapter 6. Therefore, assume n ≥ 2.

For Part (1): suppose that this sequence splits. Thus there is a group homo-
morphism s : SP2n(Wr) → SP2n(Wr+1) such that π ◦ s = id. We consider the
image of the element E1(x) of SP2n(Wr) under the map s, which must be of the
form

s(E1(x)) = E1(t) + prµ

where t := t(x) is a lifting of x to Wr+1 and µ := µ(i, j) belongs to M2n(Wr+1)
then π(µ) = 0. The condition on µ implies that it is annihilated by p. We write
g = E1(t), λ = pr and calculate

s(g)λ = gλ +
λ−1∑
z=0

gλ−1−zµgz

= E1(λt) +M

where the matrix M has the form

λ∑
z=0

[
µ+ t(λ− 1− z)

∑
b

µn+1,be1b + zt
∑
a

µa1ea,n+1 + t2(λ− 1− z)zµn+1,1e1,n+1

]
.

As λ annihilates the entries of µ the summation over z of the bracketed term
above may be simplified to:

t
α

2

(∑
a

µa1eaj −
∑
b

µn+1,be1b

)
+ t2

(
β

2
− δ

6

)
µn+1,1e1,n+1 (12.2.6)

where α = λ(λ − 1), β = λ(λ − 1)2 and δ = λ(λ − 1)(2λ − 1). Therefore if either
p > 3 (and so does not divide 6) or r > 1 (and so p divides α/2, β/2 and δ/6) the
sum of the bracket is zero. This implies that in these cases s(E1(x))p

r
= E1(prt).

If x is a unit in Wr then t must be a unit in Wr+1 and as such is not annihilated
by pr. This is a contradiction to the existence of the section s.
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If p = 3 then define a map m : Wr → k by m(x) = µn+1,1 where prWr+1 has
been identified with k. The equality

e1,n+1s(E1(x1 + x2))e1,n+1 = e1,n+1s(E1(x1))s(E1(x2))e1,n+1

implies that m(x1 + x2) = m(x1) +m(x2). Equation (12.2.6) implies that m(x) =
−t−1 for all t ∈ k. If k 6= F3, then this is a contradiction.

For Part (2): let x be a unit in SP2n(Wr). If s be a section for π then from the
proof of Proposition 6.1.2 the image of Ei(x) must belong to the identity coset in
E/K(P). However equation (12.2.6) clearly implies that this is not the case.

Proposition 12.2.6. Let n ≥ 1 be an integer, p be a prime and Fq be the finite
field with q = pd elements.We make the following restrictions:

• If n = 1 then q = 4 or q ≥ 7

• If n ≥ 2 then p ≥ 3, q ≥ 5 and n is coprime to p.

1. The inflation map H1(SP2n(Wr),N) → H1(SP2n(Wr+1),N) is an isomor-
phism. Therefore H1(SP2n(Wr),N) = (0) for all r.

2. The inflation map H1(SP2n(Wr),P) → H1(SP2n(Wr+1),P) is an isomor-
phism. Therefore H1(SP2n(Wr),P) = (0) for all r.

Proof. Let M = N,P and observe the exact sequence

0→ N
ε|N−−→ SP2n(Wr+1)→ SP2n(Wr)→ I (12.2.7)

Then invoking Proposition 4.1.6 (inflation-restriction) yields the exact cohomology
sequence

0→ H1(SP2n(Wr),M)→ H1(SP2n(Wr+1),M)→ H1(K(N),M)SP2n(Wr)

δ−→ H2(SP2n(Wr),M)→

where we have noted that K(N) acts trivially on M,

IfM = N then by Proposition 11.2.5 HomkSP2n(Wr)(N,N) ∼= k and by an argu-

ment similar to that in Proposition 5.2.1 HomkSP2n(Wr)(N,N) ∼= H1(K(N),N)SP2n(Wr).
Therefore we must show that δ is injective to complete the proof. By Proposition
12.2.5 the sequence (12.2.4) does not split. Writing the extension additively as

0→ N
ε−→ Nox SP2n(Wr)

π−→ SP2n(Wr)→ I

where the map ε is a one-sided inverse to φ, it is clear that Proposition 4.3.1 implies
that δ maps −φ to the class of x in H2(SLn(Wr),N). Hence the inflation map is
an isomorphism and by Corollary 12.2.4:

H1(SP2n(Wr+1),N) ∼= H1(SP2n(k),N) = (0).
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If p does not divide n and ifM = P then HomkSP2n(Wr)(N,P) ∼= H1(K(N),P) =
(0) by Corollary 11.2.6. Thus the inflation-restriction sequence above in conjunc-
tion with Corollary 12.2.4 implies

H1(SP2n(Wr),P) ∼= H1(SP2n(k),P) = (0).

Proof of Theorem 12.0.7. For Part (i) we apply the long exact cohomology se-
quence (Proposition 6.0.4) to following exact sequence of SP2n(Wr)-modules:

0→ N→M0 → P→ 0.

This yields the following excerpt of an exact cohomology sequence

→ H1(SP2n(Wr),N)→ H1(SP2n(Wr),M0)→ H1(SP2n(Wr),P)→ . (12.2.8)

Proposition 12.2.6 implies that both H1(SP2n(Wr),N) and H1(SP2n(Wr),P) are
(0), hence part (i) follows. which from the preceding parts of this proof clearly
implies that H1(SP2n(Wr),M0) = (0).

For Part (ii), note that the exact cohomology sequence in equation (12.2.8)
continues to

→ H1(SP2n(Wr),P)→ H2(SP2n(Wr),N)
f−→ H2(SP2n(Wr),M0)→ .

As H1(SP2n(Wr),P) = (0) the map f is clearly injective.
Part (iii) follows similarly by considering the sequence 0→ P→M0 → N and

recalling that H1(SP2n(Wr),N) = (0).



Chapter 13

Proof of Main Theorem 3

The proof of Main Theorem 3 has the same form as that of Theorem 1.2.5 relying
on the artinian case covered in Proposition 13.0.7. The extension of Proposition
13.0.7 to Main Theorem 3 is exactly similar to the way Theorem 1.2.5 follows from
Proposition 7.0.5, namely by defining a refinement of the chain of ideals:

mA ⊇ m2
A ⊇ m3

A ⊇ . . .

and inductive limit.

Therefore all that remains is to prove the following result.

Proposition 13.0.7. Let n be a positive integer, p be a prime and Fq be the finite
field with q = pd elements. We make the following restrictions on n, p and q:

• If n = 1 then k 6= F2,F3,F4

• If n ≥ 2 then p ≥ 3, q ≥ 5 and p is coprime to n.

Let (A,mA) be an artinian ring in C(k) and t ∈ A be a non-zero element such that
tmA = 0. If G be a subgroup of SL2n(A) with the property G mod t = SP2n(WB)
where B = A/(t), then there exists X ∈ SL2n(A) with X ≡ I mod t such that
SP2n(WA) ⊆ XGX−1.

Proof. Let π : A→ B be reduction modulo t. Recall the map ε|N : N→ SP2n(A).
Thus, there is an exact sequence

0→ N
ε|N−−→ SP2n(A)

π−→ SP2n(B)→ 1 (13.0.1)

Let G̃ denote the pre-image under π of SP2n(WB) in SL2n(A) this defines the
following exact sequence:

0→M0
ε|N−−→ G̃

π−→ SP2n(WB)→ 1. (13.0.2)

We observe that both G and SP2n(WA) are subgroups of G̃ and examine the pos-
sible subgroup structures relating these three. There are four cases to investigate.
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(1) G = G̃, in which case SP2n(A) ⊆ G and we are finished.

(2) π : G→ SP2n(WB) is an isomorphism.

(3) G fits into an exact sequence

0→ N→ G→ SP2n(WB)→ I (13.0.3)

(4) G fits into an exact sequence

0→ P→ G→ SP2n(WB)→ I. (13.0.4)

Let’s investigate case (2). As π : G→ SP2n(WB) is an isomorphism the sequence
(13.0.2) splits. This implies that G̃ = M0oSP2n(WB) and that SP2n(WA) =Mo
SP2n(WB) whereM is either 0 or N. AsH2(SP2n(WB),N)→ H2(SP2n(WB),M0)
is injective any extension E = N ox SP2n(WB) must also split hence by Propo-
sition 12.2.5 we must have SP2n(WA) ∼= SP2n(WB). Therefore G is a twist
of SP2n(WA) by an element of H1(SP2n(WB),M0). Theorem 12.0.7 (i) implies
H1(SP2n(WB),M0) = (0) and thus Proposition 4.3.3 (3) implies that there exists
X ∈ SL2n(A) with π(X) = I such that XGX−1 ⊇ SP2n(WA).

In case (3) G contains a subgroup which is a twist of SP2n(WA) by an element
of H1(SP2n(WB),N) and as H1(SP2n(WB),M0) = (0) as above this case may be
concluded.

Finally, we consider case (4). Theorem 12.0.7 states that the map

H2(SP2n(WB),P)→ H2(SP2n(WB),M0)

induced from inclusion is injective. The sequence (13.0.4) defines an isomorphism

f : SP2n(WB)→ G/K(P).

If we assume WA = Wr+1 and WB = Wr for some natural number r then ι ◦ f is a
section for π in the sequence (12.2.5). However, this contradicts Proposition 12.2.5
(2). Therefore SP2n(WA) ∼= SP2n(WB) and, as the map H2(SP2n(WB),P) →
H2(SP2n(WB),M0) induced from inclusion is injective, the result follows using
H1(SP2n(WB),M0) as above.



Chapter 14

Symplectic Deformations

In this chapter we consider another generalisation of the SL2 deformation prob-
lem, i.e. residual representations of the form ρ : SL2(A) → SL2(k). As observed
previously SL2(A) = SP2(A) and this time we are lead to a different deformation
problem. The results of this chapter prove Main Theorem 4 (described below in
Section 14.1), hence giving an affirmative answer to the inverse symplectic defor-
mation problem (also in Section 14.1) for all rings in C(k), provided k is not F2 or
F3.

14.1 Symplectic Deformation Problem

Let k be a finite field and let Γ be a profinite group. Suppose there is a residual
representation

ρ̄ : Γ→ SP2n(k)

and consider symplectic deformations by which we mean a deformation of the form

ρ : Γ→ SP2n(A)

where A belongs to C(k). Now set to Γ = SP2n(A) and the residual representation
to

ρ̄ : Γ→ SP2n(k),

where ρ̄ is reduction modulo mA. We observe that ρ̄ is surjective and therefore
that the centraliser of the image of ρ̄ coincides with the centre of SP2n(k).

This leads to the question of whether or not there is the notion of a universal
deformation and universal deformation ring in this setting. The following result,
an extension of Theorem 1.1.6, is a paraphrasing of Theorem 2.2 in [7] and confirms
that this is the case.

Theorem 14.1.1. Let Γ be a profinite group with the property that for every open
subgroup Γ0 < Γ of finite index the number of continuous homomorphisms from
Γ0 to Fp is finite and let ρ̄ : Γ→ SP2n(k) be a continuous representation.

If ρ̄ is absolutely irreducible and the centraliser of the image of ρ̄ is contained
in the centre of SP2n(k), then there exists a universal deformation ring R := R(ρ̄)
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and a universal deformation ρR : Γ → SP2n(R), i.e. for each deformation ρ :
Γ → SP2n(A) there is a local ring homomorphism h : R → A such that h ◦ ρR is
equivalent to ρ.

Returning to the symplectic deformation problem it is clear from our discus-
sions that Γ = SP2n(A) and ρ̄ : Γ → SP2n(k) as above satisfy the conditions
of the theorem and consequently the existence of a universal deformation ring is
confirmed. This brings us to state the following.

Main Theorem 4. Let k = Fq where the characteristic of k is p. If q ≥ 4
then every element of C(k) is a universal deformation ring of the residual repre-
sentation ρ̄ : SP2n(A) → SP2n(k) given by reducing the standard representation
ρA : SP2n(A)→ SP2n(A) modulo mA.

More precisely, for the symplectic deformation problem we show that A is the
universal deformation ring in the following cases:

1. n = 1 and q 6= 2, 3 or 5

2. n ≥ 2, p ≥ 3 and q ≥ 5.

14.2 Structure of Symplectic Deformations

Similarly to the previous cases we require the following structure result for sub-
roups of SP2n(A).

Theorem 14.2.1. Let n = 1 or n ≥ 3 be an integer, p be a prime and Fq be the
finite field with q = pd elements. We make the additional restrictions:

• If n = 1 then q 6= 2, 3, 5

• If n ≥ 2 then p > 2 and q 6= 3.

Let (A,mA) belong to C(k). If G is a closed subgroup of SP2n(A) satisfying G mod
mA = SP2n(k), then there exists an X ∈ SP2n(A) with X ∼= I mod mA such that
SP2n(WA) ⊆ XGX−1.

Just as in the two previous occasions this theorem follows from the following
artinian case. We recall that Proposition 11.1.4 implies N is a simple kSP2n(k)-
module.

Proposition 14.2.2. Let n = 1 or n ≥ 3 be an integer, p be a prime and Fq be
the finite field with q = pd elements. We make the additional restrictions:

• If n = 1 then q 6= 2, 3, 5

• If n ≥ 2 then p > 2 and q 6= 3.

Let (A,mA) belong to C(k), t be a non zero element of A satisfying tmA = 0, and
B = A/(t). If G is subgroup of SP2n(A) satisfying G mod t = SP2n(WB), then
there exists an X ∈ SP2n(A) with X ∼= I mod t such that SP2n(WA) ⊆ XGX−1.
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Proof. The notation is taken to be the same as that in Proposition 13.0.7. The
first difference comes to at point where the pre-image of SP2n(WB) is necessarily
specified as a subgroup SP2n(A). Thus G̃ fits into the exact sequence

0→ N→ G̃
π−→ SP2n(WB)→ I. (14.2.1)

As before both G and SP2n(WA) are subgroups of G̃. This time there are only
two cases:

1. G = G̃

2. π : G→ SP2n(WB) is an isomorphism

The conclusion in case 1 is trivial. For case 2 the argument is similar to that of
Proposition 13.0.7. As π : G→ SP2n(WB) is an isomorphism the sequence (14.2.1)
splits and G̃ = N o SP2n(WB). Therefore as N is simple we have trivially that
for all submodules N ≤ N the maps H2(G,N ) → H2(G,N) are injective. This
implies that G is a twist of SP2n(WA) by an element of H1(SP2n(WB),N) and by
Theorem 12.0.7 this cohomology group is trivial.

14.3 Symplectic Deformation Ring Calculations

Let n = 1 or n ≥ 3 be an integer, p be a prime and Fq be the finite field with
q = pd elements. We make the additional restrictions:

• If n = 1 then q 6= 2, 3, 5

• If n ≥ 2 then p > 2 and q 6= 3.

Consider the symplectic deformation problem defined in Section 14.1. Main
Theorem 14.2.1 again allows us to assume that SP2n(WR) belongs to a lifting
in the equivalence class of the universal deformation. We continue to show that
the conclusion: ρA is the universal deformation ring for ρ̄; follows easily from the
argument in Chapter 10.

Step 1. Let (R,mR) together with ρR : Γ→ SP2n(R) be the universal deformation
ring for ρ : Γ → SP2n(k). Note that ρR(Γ) mod mR = SP2n(k). Therefore, we
may invoke Theorem 14.2.1 and upon replacement of ρR with a strictly equivalent
representation we may assume that ρR(Γ) contains a copy of SP2n(WR).

Step 2 and Step 3. Follow similarly to the proof of Main Theorem 2 in Section
10.1.
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