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Abstract

We derive the characteristic dispersion relations for a number of surface po-
laritons, including surface plasmon polaritons, surface phonon polaritons and
surface exciton polaritons. The system we consider is a one-dimensional peri-
odic array of nanorods (or microrods) located on the planar interface between
vacuum and metal (or semiconductor). The dispersion relations display fre-
quency bands and band gaps. Variations of the band structure for each type
of polaritons are explored with the varying parameters, including inter-rod
spacing, nanorod (microrod) characteristics and the type of media involved.
The quantisation of the surface polaritons allows us to explore their coupling
to quantum emitters in the vicinity of the interface, as well as the manipula-
tion of the interaction. This may have implications for quantum information
processing.

We also analyse a two-dimensional periodic nanowire array, and in par-
ticular the related surface plasmon polaritons. We show that they display a
discrete frequency spectrum.
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Chapter 1

Introduction

Over the past couple of decades, the research topic quantum information tech-
nology has attracted a great deal of interest. This is mainly because of the
necessity of high performance data processing, which is predicted to exceed
the capability of conventional silicon electronic devices. Due to their integra-
tion limit, they could hardly meet the rapid growth of data in the long run.
Thus quantum information technology has been proposed as one of the poten-
tial solutions. In fact, quantum information technology itself involves a wide
range of subfields [1, 2] including quantum algorithms, quantum complexity
theory, quantum cryptography, quantum communication, quantum entangle-
ment, quantum dense coding, quantum teleportation, quantum state manipu-
lation, etc. No doubt it shall trigger another science and technology revolution
in the near future. Though both theoretically and experimentally, there have
been vast developments since the concept of quantum information processing
(QIP) was put forward, it is still one of the biggest challenges to realize scalable
quantum information processing for scientists to face and overcome.

1.1 Motivation

Numerous researchers have endeavoured to address the challenge of realizing
QIP via feasible, controllable, accurate, and effective schemes. Among these
schemes, the use of the coupling of light and matter in nanostructures has
attracted broad attention. Nihei and Okamoto demonstrated the coherent con-
trol of an excited atom in photonic crystals [3]; Lixin He studied strain manipu-
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lation of excitons in self-assembled quantum dots [4]; Jakubczyk et al. studied
the light-matter interaction in ZnTe-based micropillar cavities with CdTe quan-
tum dots [5]; Stephan et al. proposed on-chip quantum optics using quantum
dots driven by electric field in micropillar cavities [6]; Walker et al. reported
strong light-matter coupling in a semiconductor planar waveguide [7]; Lu et
al. investigated the polaritons in a ZnO microcavity [8, 9] etc.. In 2013, Pierre
et al. studied the coherence of colliding excitons in carbon nanotubes [10], and
Reimer considered single-photon emission from a nanowire quantum dot [11].

In these studies, concerning light-matter coupling, both theoretical and
experimental, we found that researchers simply focused on the possibility of
utilizing polaritons such as surface plasmons and exciton polaritons interact-
ing with quantum dots. However, researchers rarely considered the coupling
of light with matter in a periodic nano-scale structure. They either focused on
the properties of a micro-structure’s modes, like Mischok et al., who reported
confined modes in laterally structured metal-organic microcavities [12], and
Reinhardt et al. who observed mode discretization in an organic microcavity
including a perforated silver layer [13]. Or in contrast, they studied how the
polaritons interact with quantum dots within a limited number of microcavi-
ties, as in the work of Jakubczyk et al. [5] or Hopfmann et al. [6].

The work presented in this thesis concerns a structure consisting of an
array of nanorods (or micro-rods) periodically located on the planar interface
separating two media: vacuum and metal (semiconductor). This structure sup-
ports surface polaritons and displays frequency bands (or band gaps). Such a
system can be assumed to be a one-dimensional surface photonic cavity and
it can be fabricated using nanolithography [14, 15]. The structure combines
the positive features of surface modes with their strong coupling capabilities
[16, 17] to quantum emitters, due to their small mode volumes [18, 19], to-
gether with the possibility of controlling the interaction with emitters using the
frequency bands or band gaps in this system. Such flexibility of manipulation
is vital for practical quantum information processing. Our system involves a
one dimensional periodic structure, which is composed of an array of rods on
the nano or micro scale, and thus we will briefly introduce the background re-
lated to nano-scale (micro-scale) rods. Moreover, as we are also going to study
the interaction of surface modes with an emitter, it is essential to discuss this
as well. As for the properties of surface modes, we will present them in detail
in Chapter 2.
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1.2 Nano-scale and micro-scale structure

1.2.1 Fabrication techniques

At present, nanotechnology is one of the frontiers of both science and engi-
neering. Huge endeavours have been made on the design and fabrication of
nanostructures. Among the developments in fabrication, nano-lithography
techniques have shown variety. First came conventional nanosphere lithog-
raphy [20, 21], then photolithography emerged [22], then after, electron beam
lithography [23, 24] appeared, and focused ion beam lithography [25, 26] came
into reality. At the beginning of the 21st century, Zheng and Huang in Penn-
sylvania State University, developed cost-effective and high-throughput tech-
niques to fabricate metal nano-structure arrays [15]. Very recently, nanoim-
print appeared, which is beyond the limitations set by light diffraction or beam
scattering in the conventional techniques [14]. Boltasseva reviewed the main
characteristics of nanoimprint technology for fabricating various plasmonic
structures as well as the advantages of these structures in Ref. [27].

Earlier than nanotechnology, microelectronic technologies were mainly
focused on the design and fabrication of electronic devices (systems) or sub-
systems. As a pioneer representative of microelectronic technologies, semi-
conductor technologies for integrated circuits appeared in 1958 [28]. Since
then, various technologies centered on semiconductor design and fabrication
appeared successively, such as thermal oxidation [29, 30], ion implantation
[31, 32], optical lithography [33], chemical vapor deposition [34] and epitax-
ial growth [35], etc.. These technologies helped manufacturers to be able to
fabricate micron devices, e.g. planar-diffused transistors [36], microstrips [37],
to name but a few, with the dimensions ranging from 10 to 2000 microns.

1.2.2 1D nano-structures

Benefitting from state-of-art nano-technology, various kinds of nanostructures
have come into reality. Nano-structures are used as sensors [38], optical wave-
guides [39, 40, 41] etc., and they can also be used for surface-enhanced Raman
spectroscopy (SERS) [42, 43]. Nano-structures can be three-dimensional (3D)
[44], two-dimensional (2D) and one-dimensional (1D), or even zero-dimensional
(0D) nano-structures [45]. In our work we will focus on 1D nano-structures,
except for Chapter 4, where we will also investigate more about the surface
phonon polaritons interacting with an emitter in a micro-scale structure.

Semiconductor nanostructures such as nanowires, nano-rods, nanobelts,
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nanotubes, have been intensively researched, owing to their unique properties,
such as electronic bandgap, excellent thermal conductivity and high electron
mobility [46]. Thus they have potential application in nanotechnology and
quantum information processing [47, 48]. In our work, we will use a nano-scale
system which is composed of a periodic array of nanorods located between
vacuum and metal or between vacuum and semiconductor. In addition, in
Chapter 6, we will also study the interaction of an emitter with surface modes
in a 2D nanowire array located on the interface of vacuum and metal. We
assume these nanorods to have excellent conductivity. From our analysis the
overall periodic nano-scale structure may show a wide frequency bandgap. It
is then a good choice for us to study how these structures will influence the
interaction of surface modes and emitters.

1.2.3 1D micro-structures

Micro-structures can strongly influence physical properties such as optical char-
acteristics, which in turn govern the practical applications of these structures.
The materials of these micro-structures can be broadly classified into metallic,
polymeric and inorganic semiconductors [49, 50]. Also, dimensionally, they
can be 3D, 2D, and 1D micro-structures. All these types of micro-structures
have been well studied: for example, Wang et al. investigated the construction
of a dynamic three-dimensional microstructure for the hydration of cement
using 3D image registration [51]; Hao Lu et al. reported the basic theory and
method of single exposure interference lithography to fabricate 2D superposed
microstructures [52], Babiker pointed out that a 1D multilayer micro-structure
can be used as a wavelength selective emitter with excellent performance in
thermophotovoltaic systems [53]. In our work, we are interested in 1D micro-
structures which match the characteristic length of surface phonon polaritons
in Chapter 4. This micro-structure is composed of a periodic microrods array
located at the interface between vacuum and a semiconductor. We will ex-
plore how the surface phonon polaritons will be influenced by this particular
micro-structure.

1.3 Emitter-field interaction

As our aim is to focus on the interaction of surface modes with an emitter,
this specific interaction involves two parts: the field and the emitter. In our
work, we will use a two-energy-level emitter for convenience. This could be in
practice either an atom or a quantum dot, depending on the resonance energy
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relevant to the problem. For the field we will consider three different types of
surface modes: surface plasmons polaritons (SPPs), surface phonon polaritons
(SPhPs) and surface exciton polaritons (SEPs).

1.3.1 Surface modes

All three surface modes can display bands (band gaps) at a planar surface be-
tween a dielectric and a metal (or semiconductor). These polaritons are used
to describe interactions in a solid either on the surface or in the bulk.
Often they are distinguished as follows:
(I). Surface phonon-polaritons: coupling of optical phonons with infrared pho-
tons.
(II). Surface exciton-polaritons: coupling of photons with an exciton.
(III). Surface plasmon-polaritons: coupling of surface plasmons with light.
Polaritons are quasi-particles resulting from strong coupling of electromag-
netic waves with an electric (or magnetic) dipole excitation. The coupling hap-
pens when the electromagnetic wave and the dipole have very close frequency.
As for the properties of these polaritons, we will discuss them in Chapter 2.

1.3.2 The dipole approximation

In classical electromagnetism an electron moving in an electromagnetic field
with velocity~v experiences the Lorentz force [54, 55]:

~F =−e(~E +~v×~B), (1.1)

where ~E and ~B have the form:

~E = E0ε̂sin(~k ·~r−ωt +ϕ), (1.2)

and
~B = E0ω

−1(~k× ε̂)sin(~k ·~r−ωt +ϕ). (1.3)

Here the unit vector ε̂ is the polarisation vector, e is the charge of an electron,
E0 is the amplitude of the electric field. ω is the frequency of the wave, ϕ is
the initial phase of the wave, ~k is the wave propagation vector, and ~r is the
position vector. When ~v/c is small (c is the speed of light), the magnetic term
can be ignored for the Lorentz force. Moreover, if we assume the electric field
to be uniform over the length scale of the emitter, with its wavelength much
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larger than the emitter size, we have

~E(t) =−E0ε̂sin(ωt−ϕ), (1.4)

and
~F(t) = eE0ε̂sin(ωt−ϕ). (1.5)

When ~F(t) is conservative, it can be obtained from a scalar potential W , with

~F =−∇W, (1.6)

so that
W = e~E ·~r =−~E ·~D, (1.7)

where ~D =−e~r is the electric dipole operator. This is called the “dipole approx-
imation” [56].

1.3.3 Transition rate

An emitter such as an atomic system can interact with the electromagnetic field
in three ways. First, there is spontaneous emission [57, 58, 59], for which an
excited state drops to a lower energy state of the emitter. Second, stimulated
emission [60, 61], when an emitter is influenced by the radiation field which
makes the emitter emit a photon. Third, absorption [59, 62, 63], for which
the emitter absorbs a photon of the electromagnetic field which promotes the
emitter state to a higher energy state.

In a homogeneous medium such as free space, the rate of spontaneous
emission in the dipole approximation [64, 63] is given by:

Γo = |µ12|2ω
3
o/3π h̄c3

εo, (1.8)

where |µ12|= |〈i|~d| f 〉| is the transition dipole moment, ε0 is the permittivity of
free space, and h̄ is Planck’s constant. In addition,

|µ12|2= e2|〈ψb|~r|ψa〉|2, (1.9)

where |ψa〉 and |ψb〉 are the initial and final states with respect to the energy
levels Ea and Eb ( Ea < Eb ) of the emitter.
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1.4 Thesis outline

In this thesis aiming at manipulating quantum states, we propose an analyti-
cal scheme to describe surface modes interacting with an emitter. The emitters
are located in the vicinity of the interface between two different media incor-
porating a periodic-structure composed of nano-scale rods or wires. Due to
the periodicity of the structure, we will apply Bloch’s theorem to study the
frequency band characteristic. We will consider the effects of different spacing
between the nanorods (nanowires), different materials of the substrate, and
characteristics of nanorods (nanowires). Then by quantizing the modes, we
will calculate the transition rate of the emitter interacting with the various sur-
face modes. The results shall enable us to understand how we could realize the
manipulation of quantum states by adjusting the parameters of the system, or
by choosing an appropriate type of emitter with certain transition rates or by
selecting suitable substrate to match the coupling of surface modes and the
emitter.

The whole thesis contains seven chapters. First of all, in the introduction,
we have argued the motivation of our work, and also briefly mentioned the
background related to the system which will be considered in the following
chapters.

Chapter 2 presents the main properties of SPPs, SPhPs, SEPs, including
the dispersion relations, frequency range, and the variation of the dielectric
function with frequency and/or wavevector.

In Chapter 3, we introduce the boundary conditions for SPPs in a 1D
periodic nanorod array at the interface between vacuum and metal. The focus
of Chapter 3 is to investigate the dispersion relation of SPPs; it also elaborates
the steps necessary to quantize the field, and to calculate the transition rates of
an emitter interacting with the SPPs.

In Chapter 4 and Chapter 5, we will explore the SPhPs and SEPs, first
within a system similar to Chapter 3 and then for a system constituting a pe-
riodic array of microrods. The dispersion relations and the transition rates are
also studied. We will present the findings and compare SPPs, SPhPs, and SEPs
with the results obtained in each system.

Chapter 6 examines a different system which is composed of a 2D peri-
odic nanowire array situated at the interface between vacuum and metal. We
will study the case of SPPs coupled with an emitter. The chapter describes the
boundary conditions, and establishes the dispersion relation.

The conclusion section of this dissertation in Chapter 7 summarizes the
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findings and indicates the implications for future research.
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Chapter 2

Background

Surface modes are coupled to emitters when their frequencies are in the res-
onant range of spontaneous transition frequencies of the emitters. Surface
modes include surface plasmon polaritons (SPPs) [65, 66], surface phonon po-
laritons (SPhPs) [67], and surface exciton polaritons (SEPs) [68, 69]. In this
chapter, we will introduce the basic properties of the polaritons in bulk, and
surface modes at an interface for SPPs, SPhPs, and SEPs, respectively. We will
mainly focus on the properties of the dispersion relations, including the fre-
quency behaviour of the modes against the wave-vector, the frequency do-
mains, and the relationship between the frequency and the dielectric function.

2.1 Polaritons

Before being able to describe SPPs, SPhPs and SEPs, we need describe briefly
the general concept of a polariton. A polariton is the result of strong coupling
of electromagnetic waves with an electric dipole (or magnetic dipole) carrying
excitation. Generally, the quantum of the coupled phonon-photon transverse
wave field is called a phonon polariton; the coupling between an exciton and
an photon is considered as a exciton polariton [68]; and the coupling of surface
plasmons with light is called surface plasmon polariton. The coupling occurs
when the frequencies and wavevectors of both electromagnetic (EM) field and
the excitation are approximately equal. In a system of two coupled oscillators
with two natural frequencies, when the coupling strength increases, the lower
frequency decreases and the higher increases.
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Figure 2.1: Schematic diagram of field configuration for the p-polarised surface
plasmon at a vacuum-metal interface (adapted from Z Han et al. [99] ). εv = 1
is the dielectric constant for vacuum, εm is the dielectric function for metal. The
incident wave has the energy h̄ω . The magnetic field Hy of SP is parallel to the
interface (p-polarised wave), and ~E of SP is in the xz plane.

2.2 General dispersion relation for surface modes

In a nonmagnetic bulk isotropic medium, the frequency of the incident trans-
verse electric field can be derived from Maxwell’s equation,

µ0∂
2~D/∂ t2 =52~E, (2.1)

where µ0 is permeability of free space, ~D is electric displacement vector, ~E is
the electric field. We assume that ~E has the form exp(−iωt)exp(i~k ·~r) and ~D =

ε(ω,k)ε0~E. Then we can obtain the dispersion relation:

ε(ω,k)ε0µ0ω
2 = k2, (2.2)

where ε0 is the permittivity of free space. As ε0µ0 = 1/c2, ω is related to the
dielectric function ε(ω,k) by

ε(ω,k)ω2/c2 = k2. (2.3)

When the surface modes propagate along an interface as a polarisation
wave, e.g. a metal dielectric interface, we call it a surface plasmon (SP). A
schematic representation of an electron density wave propagating along a metal-
dielectric interface is shown in Fig 2.1. The displaced charges produce an elec-
tric field within the xz plane, and the corresponding magnetic field Hy is par-
allel to the y-direction. It should be pointed out that no s-polarised surface
oscillations exist because for an ideal interface, there must be a component of
the electric field normal to it, if waves are to be formed propagating along the
interface [65]. We consider that both the electric field and the magnetic field
propagate along the surface (z = 0), and decay in the positive (z > 0) and nega-
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tive (z < 0) directions. Choosing the x-axis as the direction of propagation, we
have:

~Ei = (Exi,0,Ezi)e−kzi|z|ei(kxix−ωt), (2.4)

and
~Hi = (0,Hyi,0)e−kzi|z|ei(kxix−ωt), (2.5)

where kzi are determined below, and the index i represents the media: i = 1 for
z > 0, and i = 2 for z < 0; and kxi stands for the magnitude of a wave vector
which is parallel to the surface. ~E1 (~E2) represents the electric field in vac-
uum (metal), and ~H1 (~H2) represents the magnetic field in vacuum (metal). The
eigenfrequency ω of the electromagnetic fields is connected with kxi by an im-
plicit dispersion relation which can be obtained from Maxwell’s equations by
applying the boundary conditions across the vacuum-metal interface. Thus
we list them as follows [70, 71]:

∇× ~Hi = ε0εi∂~Ei/∂ t, (2.6)

∇×~Ei =−µ0∂ ~Hi/∂ t, (2.7)

∇·(εi~Ei) = 0, (2.8)

∇· ~Hi = 0. (2.9)

Substituting equations 2.4 and 2.5 into eq. 2.6 we find:

ikz1Hy1 = ωε1ε0Ex1, (2.10)

and
ikz2Hy2 =−ωε2ε0Ex2. (2.11)

As~k = (kxi, ikzi), from eq. 2.3, the relationship of the wave vector, the frequency
and the dielectric function becomes:

k2
zi = k2

xi− εiω
2/c2. (2.12)

Moreover, from equations 2.4 and 2.8, we can derive the relation between the
field amplitudes:

kxiExi + kziEzi = 0. (2.13)

According to the boundary conditions [70], the component of the elec-
tric and magnetic fields parallel to the surface must be continuous, so from
equations 2.4 and 2.5, we know

Ex1 = Ex2, (2.14)
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and
Hy1 = Hy2. (2.15)

In addition, the boundary conditions also require the normal component of
~D = ε(ω,k)~E to be continuous at the interface, which means:

ε1Ez1 = ε2Ez2. (2.16)

Then when we combine equations 2.13, 2.14 and 2.16 together, we find:

ε1/kz1 + ε2/kz2 = 0. (2.17)

From eq. 2.17 we know that for the surface modes to exist, ε1 and ε2 must have
opposite signs, namely,

ε1ε2 < 0. (2.18)

The boundary conditions requires the continuity of Exi, which implies that
kx1 = kx2 has to be satisfied. Hence, by eliminating kzi from equations 2.12 and
2.17, we find the dispersion relation of surface plasmon:

kx =
ω

c

√
ε1ε2

ε1 + ε2
. (2.19)

For real solutions of kx, it has to be:

ε1ε2

ε1 + ε2
> 0; (2.20)

because ε1ε2 < 0, thus we have:

ε1 + ε2 < 0. (2.21)

It is worth mentioning, that eq. 2.19 is a general dispersion relation for surface
modes, it makes sense only when we specify ε1 and ε2.

2.3 Plasmons

A plasmon is a collective longitudinal excitation of the conduction electron
gas. It exists both in the body and on the surface of the bulk. It is the result
of the quantization of the plasma oscillations of the free electron gas density
with respect to the fixed positive ions in a metal. One can imagine an external
electric field incident on a metal: it will induce the electrons to move towards
the opposite direction of the incident electric field. When the electric field dis-
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appears, the electrons will move back to their original place due to attraction
of the positive ions. Once the external field is turned on, these electrons will
move towards the incident field again. This oscillation back and forth at the
plasma frequency forms the plasmon. In reality, we can excite a plasmon by
reflecting a photon (or electron) from a metallic film or by passing an electron
through a thin metallic film [72, 73, 74], the coupling happening between the
SP and the photon when the wave vector of the incident light (for producing
the reflected photon) in the plane of the surface matches the wave vector com-
ponent kx of the SP.

Plasmons play a pivotal role in the optical properties of metals. The elec-
tric field whose frequency lies below the plasma frequency is reflected, because
the electrons in the metal can screen the incoming wave. If the incident fre-
quency is above the plasma frequency, it is transmitted, due to the electrons
being unable to respond fast enough to screen it. For most metals, the plasma
frequencies are in the ultraviolet range [75], which means that they are reflec-
tive materials in the visible range. In addition, some metals, such as copper
[76], have electronic interband transitions in the visible range, whereby spe-
cific colors are absorbed.

Generally, the dielectric function of the free electron gas has the form
ε(ω,k) = 1−ω2

p/ω2 [77], and the plasma frequency is defined by:

ω
2
p = n0e2/ε0m?. (2.22)

Here n0 is the conduction electron density, and e is the elementary charge, m?

is the effective electron mass, ε0 is the permittivity of free space. In addition,
the plasmon energy can be calculated as:

Ep = h̄
√

n0e2/m?ε0. (2.23)

Where h̄ is the Planck constant divided by 2π . Thus eq. 2.3 gives:

ω
2−ω

2
p = c2k2. (2.24)

This is the dispersion relation for electromagnetic waves in bulk material. Fig
2.2 shows a schematic dispersion relation ω versus k for the bulk.
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Figure 2.2: Dispersion relation for bulk plasmons, showing how the solutions
lie above the light line. [This figure is adapted from J M Pitarke et al. [65]]

2.3.1 Surface plasmon polariton

In a case of vacuum-metal interface, ε1 = 1 and ε2 = 1−ω2
p/ω2 with damping

ignored the eq. 2.19 yields:

kx =
ω

c

√
ω2−ω2

p

2ω2−ω2
p
. (2.25)

In general, for nonradiative modes which imply kzi is real, from eq. 2.12 we
know, kx ≥

√
εiω/c must be satisfied. Thus the dispersion relation lies to the

right of the light line: kx =
√

εiω/c. In our case, the light line becomes: kx =ω/c.
In addition, we can see that for real values of kx in eq. 2.25, the range of ω lies
with in [0,ωp/

√
2), which is reflected by the blue curve in Fig 2.3.

2.4 Phonons

The quantum of energy for a lattice vibration is called a phonon. A phonon
is a quantum mechanical description of collective excitation modes in periodic
elastic arrangements of atoms or molecules in condensed matter [78]. Long-
wavelength phonons give rise to sound, while shorter-wavelength, higher-
frequency phonons lead to heat. Phonons are important for many of the physi-
cal properties of condensed matter, such as heat capacity, thermal conductivity
and electrical conductivity [79]. The investigation of phonons is an important
part of condensed matter physics.
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Figure 2.3: Surface plasmon polariton dispersion relation according to eq. 2.25
at a vacuum-metal interface (blue curve). The red horizontal line is ω =ωp/

√
2,

the nearly vertical red line is the light line.

Researchers have investigated both experimentally [80] and theoretically
[81] the polar media which permit transverse phonon polariton excitations on
the basis of the well-understood dielectric function with a loss parameter ig-
nored [82, 83]:

ε(ω) = ε∞

ω2−ω2
L

ω2−ω2
T
, (2.26)

where ε∞ is the dielectric response at high frequency, and ωT and ωL are the
transverse and longitudinal phonon frequencies, respectively. The relation be-
tween ωT and ωL is named as the Lyddane-Sachs-Teller relation (LST relation)
[84]:

ω
2
L/ω

2
T = ε(0)/ε∞, (2.27)

where ε(0) is the static dielectric constant. Using eq. 2.3, we can obtain the
bulk dispersion relation of ω against k as follows:

k2 = ε∞

ω2−ω2
L

ω2−ω2
T

ω2

c2 . (2.28)

A plot of frequency against wavevector is shown to demonstrate the dispersion
relation 2.28 in Fig 2.5 which is taken from [82].

2.4.1 Surface phonon polaritons

SPhPs are formed by infrared light coupled with optic phonons at suitable
interfaces. In nature, a surface phonon polariton is a transverse magnetic
mode (TM) [81], which propagates along the interfaces of polar dielectrics
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Figure 2.4: Schematic drawing for dispersion relation eq. 2.28 for a material
with polariton dielectric function. The belt-like region represents the forbidden
region of ω . For real solutions, ω is either smaller than ωT , or larger than ωL.
Here a is a lattice spacing, c is the speed of light. [This figure is from K C
Huang et al. [82]]

[85], and exhibits a large local-field enhancement near the interfaces at in-
frared frequencies. For surface phonon polaritons, the interface is between,
for instance, vacuum and a polar medium, where we have ε1 = 1 and ε2(ω) =

ε∞

[
1+(ω2

L−ω2
T )/(ω

2
T −ω2− iωγ)

]
[82, 83], and imaginary part γ is the damping

factor. As mentioned in section 2.2, the surface polariton dispersion relation eq.
2.19 is also true for SPhPs, thus we may obtain the specific form of dispersion
relation for SPhPs with damping ignored (γ = 0):

kx =
ω

c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
. (2.29)

A schematic plotting of dispersion curve eq. 2.29 is shown in Fig 2.5 to describe
the SPhP.

We notice that for surface phonon polaritons, their allowed frequency
interval is in the forbidden region for bulk polaritons [86] which are shown in
Fig 2.5 by the shaded areas. This result can be obtained by imposing kx in eq.
2.29 to be real. This gives:

ε∞(ω
2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
≥ 0. (2.30)
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Figure 2.5: Surface phonon polariton dispersion curve which is between the
two shaded areas for a GaAs-vacuum interface. Shaded areas represent stop
band for bulk polaritons. [After M G Cottam et al. [86]].

Solving the inequality, we then find:

ωT ≤ ω(k)<
√
(ε∞ω2

L +ω2
T )/(1+ ε∞). (2.31)

When ω → ωT , the asymptotic values for kx and kz1 are kx→ ω/c and |kzi|→ 0
respectively, which implies that the surface polaritons are weakly localised at

low frequency; When ω →
√
(ε∞ω2

L +ω2
T )/(1+ ε∞), the limit values for kx and

kz1 are kx→∞ and |kzi|→∞ respectively, which illustrates that surface polaritons
are strongly localised in z direction at the high frequency.

2.5 Exciton polaritons

Excitons are bound electron-hole pairs which can move through the crystal and
transport energy; they do not transport charge as each exciton is electrically
neutral. When a photon with energy greater than the electronic energy band
gap is absorbed in certain crystals, an exciton is formed; Or, an exciton can be
produced by photons with an energy value a little lower than the bandgap, as
long as the energy is greater than the difference between the bandgap energy
and the exciton binding energy. Generally one discusses excitons in two dif-
ferent limiting approximations. The first type is called Frenkel excitons. This
exciton is small and tightly bound; The second is the Mott-Wannier exciton, for
which the excitation is weakly bound and the electron-hole separation is large
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in comparison with the lattice constant.

Exciton polaritons result from the coupling of a photon with an exciton.
They were described in 1950s by Pekar [87], Hopfield [88], and Agranovich
[89], etc.. In a bulk semiconductor without the contribution of the exciton, the
wavevector k of the photon can be written as:

k2 = εbω
2/c2, (2.32)

where ω is the frequency and εb is the background dielectric function. Taking
the excitonic contribution into account, the dielectric constant of the semicon-
ductor can be written as [90, 91]:

ε = εb

(
1+

ωLT

ωex−ω− iγ

)
, (2.33)

where ωex is the exciton resonant frequency, ωLT is the longitudinal-transverse
splitting of bulk [87], γ is the non-radiative decay rate of the exciton. If we
ignore the non-radiative decay rate, we can re-write k in the form of:

k2 = εb
ω2

c2

(
ω−ωex−ωLT

ω−ωex

)
. (2.34)

As we can see from eq. 2.34, for real k, ω has to be in the range [0,ωex]

or [ωex +ωLT ,∞). Moreover, we know that when k = 0, there are two solu-
tions: ω = 0 and ω = ωex +ωLT . When k→ ∞, eq. 2.34 has two limit: ω → ωex

and ω → ck/
√

εb. [ωex,ωex +ωLT ] is a forbidden region, for ω , where no exci-
ton polariton exist. A sketch illustration of the dispersion relation eq. 2.34 is
shown in Fig 2.6. As Little pointed out [92], exciton polaritons are effectively
buried in the host materials, so it is difficult to make use of exciton polaritons
in a bulk system. On the contrary, low-dimensional structures, such as planar
microcavities [93, 94], allow for greater control over the exciton and photon.

2.5.1 Surface exciton polaritons

Surface exciton polaritons are electromagnetic modes propagating along the
surface of a medium [95]. Macroscopically these modes decrease exponentially
in amplitude with distance from the surface and have components kx of the
wavevector in the plane of the surface. We assume transverse magnetic (TM)
polarized light propagates along x-direction on the surface, thus the magnetic
field of the light-wave is anti-parallel to the y-direction. If we consider the
surface between a semiconductor and a vacuum, then the electric field of the
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Figure 2.6: Dispersion relation (blue lines) of exciton-polaritons in bulk. The
longitudinal-transverse splitting of the exciton ωLT , which is the energy dif-
ference between ωex and the upper branch at wavevector k = 0, its physical
meaning is the stability of exciton-polaritons. [This figure is adapted from J M
Pitarke et al. [65]].

surface exciton polaritons in the semiconductor can be written as (z < 0):

~E2 = ~Eo2eikxx+kz2z, (2.35)

and for the mode in the vacuum, it can be expressed as (z > 0):

~E1 = ~Eo1eikxx−kz1z, (2.36)

where we assume that the z-axis is perpendicular to the surface. ~E1 and ~E2

represent the electric field in vacuum and semiconductor respectively. From
eq. 2.3, the components of k have to satisfy:

k2
x − k2

zi = εiω
2/c2, (2.37)

where i= 1,2, εi stands for the dielectric function of the media, and~ki =(kx, ikzi).
For the vacuum, we have ε1 = 1; for the semiconductor, we have ε2 = εb[1+
ωLT/(ωex−ω − iγ)]. With the non-radiative decay ignored, we can simplify ε2

as:
ε2 = εb

ωex−ω +ωLT

ωex−ω
. (2.38)

As derived in Sec 2.2, we can obtain the dispersion relation:

ω = ckx
√
(1+ ε2)/ε2. (2.39)
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Figure 2.7: The dispersion relation of the surface polariton ω versus k is shown
with the red line. The horizontal dashed line represents ω = ωex, the horizontal
green line represents ω = ωex +ωLT , the tilted dashed line stands for the light
line. [This figure is adapted from J M Pitarke et al. [65]].

To satisfy eqs. 2.20 and 2.21, we know the range of ε2 has to be ε2 ≤ −1. In
addition, when substituting ε2 into eq. 2.39, kx can be rewritten as follows:

kx =
ω

c

√
εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT
. (2.40)

To make kx real, the right side of eq. 2.40 has to meet

εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT
≥ 0, (2.41)

which will introduce a constraint on the range of ω :

ωex ≤ ω < ωex +ωLT εb/(1+ εb). (2.42)

We show the dispersion relation ω versus kx in Fig 2.7, where δ meets the
condition:

ε2(ωex +ωLT −δ ) =−1. (2.43)

In fact, the value of δ can be found from ωex +ωLT − δ = ωex +ωLT εb/(1+ εb),
which produce δ = ωLT/(1+ εb).
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Chapter 3

Surface plasmons interacting with
emitters in a structure
with one-dimensional periodicity

In this chapter, we are going to explore a system formed by a periodic array of
metallic nanorods positioned at the interface of vacuum and metal, as shown
in Fig 3.1. We consider the system as strongly confined in the y-direction. We
will determine the system’s surface plasmon polaritons and how they inter-
act with emitters. These emitters could be quantum dots localised between
the parallel nanorods just above the surface. We will show that when short
nanorods are periodically, side by side located on a line on the planar interface
separating the two media, there exist surface plasmon polaritons which dis-
play frequency bands and gaps. The overall quasi-one-dimensional structure
could be considered as a surface photonic cavity, and may be readily fabri-
cated using nanolithography [27, 15]. The surface modes due to their small
mode volumes [18, 19] couple strongly with the emitters [16, 17, 96].

The outline of the chapter is as follows: in section 3.1 we describe the
system. In section 3.2, the system’s characteristic dispersion relations display-
ing band gaps are derived analytically. By varying the system’s parameters,
including inter-rod spacing, nanorod characteristics and the type of media in-
volved, we show that we can control the surface modes’ frequencies and their
gaps. In section 3.3 we perform the quantisation of the surface modes. In
section 3.4, we show how the quantization makes it possible to describe the
coupling of the surface plasmons to quantum emitters in the vicinity of the
interface, which may have implications for quantum information processing.
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Figure 3.1: Model of surface plasmons interacting with emitters in a 1D peri-
odic structure. The schematic inset in the top right corner shows the charge
distribution and the accompanying fields of a surface plasmon. The light yel-
low rectangular strips are the metallic nanorods. These nanorods are oriented
along the z direction, and parallel to one another. The lateral dimension of the
nanorods Lx is much smaller than both the height Lz and the nanorod separa-
tion d.

3.1 The system

First of all we will describe the model system we use. As we can see in Fig 3.1,
the space above and below the interface is occupied by two different isotropic
media: a dielectric with permittivity ε1 and a metal with dielectric function
ε2(ω). Above the interface there is a periodic array of metallic nanorods along
the common axis, x-direction. In this system all the nanorods are embedded
inside a channel bounded by barriers which are assumed impenetrable to elec-
tromagnetic field. The depth of the channel is chosen to be comparable with
the height of the nanorods, as the channel is impenetrable to surface modes,
so that there is electromagnetic confinement in the y-direction (Fig 3.2). This
could be implemented by using another metallic medium with much higher
conductivity. These nanorods have the same dimensions and are made of the
same material. We assume that the width of the unit cell d is considerably
larger than the height of the nanorods Lz, and we suppose d, Lz � Lx, where
Lx is the lateral thickness of the nanorod in the x-direction. In nanotechnology
nanorods stand for nanoscale objects with typical dimensions range from 1 to
100 nm which may be synthesized from metals or semiconducting materials
[97, 98]. The height of the nanorods is assumed to be much larger than the
decay length 1/kz1 (1/kz2) of the SPP that forms at the interface of media 1 and
2 for SPP frequencies comparable to the cutoff. In fact, combining Eq. 2.12
and Eq. 2.25 we find k2

z1c2 = ω4/(ω2
p − 2ω2) (here we assume that ε1 = 1), so
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Figure 3.2: Illustration of how SPPs are excited and guided into the chan-
nel. On the left brown side, the SPPs can be launched by a method, i.e.
Kretschmann configuration. On the right blue side which is the model sys-
tem in Fig 3.1, the SPPs are guided by the channel arrayed with nanorods (
yellow colour ). The depth of the channel is comparable with the height of the
nanorods.

that when the frequence of the SPP is very low, the decay length will be much
larger than the height of nanorods; while for the frequency close to ωp/

√
2, a

much smaller value of the decay length will be achieved, which will form tight
confinement for the SPP on the surface of the channel. Thus in our system, we
mainly consider the frequency of SPP in an reasonable range ( e.g. from 0.4ωp

to ωp/
√

2 ). ωp is specified as ωpε2
in the figures shown in next sections. Be-

cause of this, in the following, the frequencies below the minimum frequency
of 0.4ωpε2

which is adequate for tight confinement correspond to dashed lines.

SPP is a type of surface wave, which can be guided along the interface in
the same way as light can be guided by an optical fiber [99]. Once launched,
the SPPs will ripple along the metal-dielectric interface and do not stray from
waveguide [100, 101]. Thus we launch the SPP on the left (as shown in Fig
3.2), and guide the wave in the channel, which has width equal to the lateral
width of the nanorods Ly. SPPs are shorter in wavelength than the incident
light so they can both have tighter spatial confinement and higher local field
intensity. Therefore, for simplicity, we assume that the confined SPP modes
simply occupy the lowest mode state, which in the y-direction is a sine func-
tion vanishing at both ends of the channel. Of course a general solution for an
SPP field propagating along the y-direction involves a series of guided eigen-
mode branches. For these different branches corresponding to different mode
frequencies, the confinement has potential implications, such as to confine the
transmitted radiation beyond the diffraction limit, which will allow the real-
ization of ultra-compact plasmonic circuitry; Also it is very efficient to couple
with individual emitters due to the confined SPP modes [99]. When the inte-
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gral of the sine function in y-direction is replaced by the integral of its average,
there is no great deviation, so we can suppose the channel has a constant chan-
nel width. The SPPs will propagate along the interface until their energy are
lost either to absorption in the metal or scattering into other directions (such
as into free space).

3.1.1 The channel width requirement

As we have already pointed out, our system is confined in the y-direction,
so it is necessary to estimate a suitable width for the SPP to be confined in
the channel. As we treat the SPP as the classical electromagnetic wave, and
employ the lowest frequency mode of the surface mode, and assume that the
confined waveguide which is air-filled has the minimum width of ∆Ly, then if
we broaden twice of the Fourier bandwidth limit we could have [102]:

∆Ly∆(ky)≥ 1, (3.1)

As ∆ω = c∆ky, where ∆ky is the deviation of SPP’s wavenumber, ∆ω is the de-
viation of the frequency, then we know:

∆ω ≥ c/∆Ly (3.2)

then
∆E = h̄∆ω ≥ h̄c/∆Ly. (3.3)

If we choose ∆Ly = 400 nm, then the minimum energy change is

∆E = h̄∆ω ≈ 0.5eV. (3.4)

As in general, the SPP’s energy is usually in a range from 3.6 eV (for Ag) to
14.9 eV (for Al) [103], thus when the substrate material with h̄ωp close to 15
eV, and the channel width is 400nm, the frequency deviation can be reduced to
3%, under this condition, we assume that the channel is large enough for the
SPPs to neglect the change in frequency with respect to the frequency of the
mode outside the channel. However, for smaller channel widths, the infrared
cutoff of the SPP branch used should be taken into account. For simplicity, in
this thesis, we only consider channel widths which are large enough to neglect
this deviation of frequency. Applying the Fourier bandwidth limit enables us
to choose a proper channel width, and this method will also be applied in the
following chapters.
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3.1.2 The property of surface modes

In this chapter, we consider the medium above the plane z = 0 as vacuum
(ε1 = 1), while below z = 0 the substrate is a metal with ε2 = 1−ω2

pε2
/ω2 in the

absence of damping. Here ωpε2
is the plasma frequency of the metal. A plasma

oscillation in a metal is a collective longitudinal excitation of the conduction
electron gas [104, 105], while a plasmon is a quantum of this plasma oscillation
[106].

Because of the surface plasmons’ longitudinal property [107, 108], we
suppose that above the interface the vertical z-component of the surface modes
in unit cell n, can be expressed as a linear combination of the forward and back-
ward waves along the x-direction:

E(n)
1ẑ (z,x) = E1ze−kz1z−iωt [a(n)eikx(x−nd)+b(n)e−ikx(x−nd)], (3.5)

where a(n) and b(n) are the coefficients of the forward and backward waves,
respectively. E1z is the amplitudes of the waves’ z-component. kx and kz1 are
the x and z components of wavevector~k in the vacuum, respectively.

According to Maxwell’s equations, the magnetic field ~H and the electric
field ~E have the relation:

∇× ~H = ε0ε1∂~E/∂ t =−iωε0ε1~E =−iωε0ε1(E
(n)
1x̂ ,0,E(n)

1ẑ ). (3.6)

Above the interface (z > 0), the magnetic and electric fields are ~H = (0,H(n)
1ŷ ,0)

and ~E = (E(n)
1x̂ ,0,E(n)

1ẑ ), respectively; ε0 is the vacuum permittivity, ε1 is the rela-
tive permittivity. Also

∇× ~H =−~i∂H(n)
1ŷ /∂ z+~k∂H(n)

1ŷ /∂x, (3.7)

so by comparing eq. 3.6 and eq. 3.7, we find:

∂H(n)
1ŷ /∂x =−iωε0ε1E1ze−kz1z−iωt [a(n)eikx(x−nd)+b(n)e−ikx(x−nd)], (3.8)

and we can obtain H(n)
1ŷ :

H(n)
1ŷ =−ωε0ε1E1z

kx
e−kz1z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)]. (3.9)

Thus we have:

∂H(n)
1ŷ /∂ z =

ωε0ε1kz1E1z

kx
e−kz1z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)]. (3.10)
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Because ∂H(n)
ŷ /∂ z =−iωε0ε1E(n)

x̂ , we have

E(n)
1x̂ =

kz1E1z

ikx
e−kz1z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)]. (3.11)

Our solution is derived by analysing two kinds of boundary conditions:
the first is the interface between the two different layers media 1 and 2; the
second occurs between two neighbouring unit cells separated by a nanorod.
In the following we will show that, from each type of boundary condition,
we can obtain a dispersion relation, thus the final solution for the SPPs in our
system should satisfy simultaneously both dispersion relations.

3.2 Dispersion relation

3.2.1 Dispersion relation from boundary condition at the in-

terface of the two media

On the interface of two media:

kx =
ω

c

√
ε1ε2

ε1 + ε2
. (3.12)

As mentioned before, in this chapter we consider a dielectric-metal interface,
with the dielectric constants ε1 = 1, and ε2 = 1−ω2

pε2
/(ω2+ iγω) [109, 65]. Here

γ is the damping factor. Typically the ratio of γ/ω is less than 1% [110, 111],
e.g, for Ag, the ratio of γ/ω is nearly 0.2%; for Al, the ratio is in the range from
0.5% to 1%; for Cu, the ratio is greater than 0.4% and less than 1%. Hence there
is no great deviation if we ignore the damping factor by using a simpler form
of dielectric function ε2 = 1−ω2

pε2
/ω2 in the following calculation. The plasma

frequency of the metal is defined by the relation ω2
pε2

= noe2/ε0mmetal , where no

is the concentration of the electrons in metal, and mmetal is the effective mass
of the electron . We introduce a characteristic length do = c/ωpε2

, and write
kxdo = k̃x to simplify eq. 3.12 as:

k̃x =
ω

ωpε2

√√√√ ω2/ω2
pε2
−1

2ω2/ω2
pε2
−1

. (3.13)

This dispersion relation is shown in Fig 3.3.
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Figure 3.3: Schematic of simplified dispersion relation eq. 3.13, obtained from
a vacuum-metal interface.

3.2.2 Dispersion relation from nanorod array periodicity

Due to the fact that the nanorods determine a periodic sequence of unit cells
along the x-direction, the Bloch wave vector Q has to be taken into account.
Bloch’s theorem states that the eigenfunctions of the wave equation for a peri-
odic potential must be of a special form [112]:

ψ(~r+~R) = ei~k·~R
ψ(~r), (3.14)

where ~R = dx̂ is a lattice vector of the crystal, and ~k = Qx̂ is the Bloch wave
vector. Our model is a periodic array; we assume the number of unit cell nmax

is large enough that the approximation nmax = ∞ applies. In fact, as researchers
[113] discovered, when the number of the unit cells in periodic structures gets
to n = 50, it is sufficiently large that it can be considered as infinite for the
following equations 3.15 and 3.16 to be hold. Thus we can apply Bloch’s the-
orem, and the coefficients within the electric and magnetic fields maintain the
properties:

a(n+1) = a(n)eiQd, (3.15)

and
b(n+1) = b(n)eiQd, (3.16)

where Q is the one-dimensional Bloch wave vector along the x-direction. Thus
without loss of generality, we consider the boundary condition at x = nd across
the nanorod. The parallel electric field is continuous:

E(n)
1ẑ = E(n+1)

1ẑ . (3.17)
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So the boundary condition applied to Eẑ gives:

E(n+1)
1ẑ = E1ze−kz1z−iωt [a(n)eikx(x−(n+1)d)+b(n)e−ikx(x−(n+1)d)]eiQd. (3.18)

In addition, the boundary condition for the magnetic fields is determined by
Ampere’s law:

H(n+1)
1ŷ −H(n)

1ŷ = σ(ω)LxE(n)
1ẑ , (3.19)

where we have used that Lx is much smaller than all relevant length scales.
Also,

H(n+1)
1ŷ =−ωε0ε1E1z

kx
e−kz1z−iωt(a(n)eikx(x−(n+1)d)−b(n)e−ikx(x−(n+1)d))eiQd. (3.20)

Substituting the corresponding components eqs. 3.5, 3.9, 3.18 and 3.20 of the
surface modes into eqs. 3.17 and 3.19, we obtain the following equations:

(1− eiQd−ikxd)a(n)+(1− eiQd+ikxd)b(n) = 0, (3.21)

and

[M1(1− eiQd−ikxd)−1]a(n)+[M1(−1+ eiQd+ikxd)−1]b(n) = 0. (3.22)

Here for the sake of simplicity, we have written −ωεoε1/σ(ω)Lxkx = M1,
and σ(ω) is the nanorod material conductivity [114, 115]. By equating the
determinant formed from the system of equations 3.21 and 3.22 to zero, we
find another dispersion relation:

cosQd− coskxd =−sinkxd
ω2

pnano
Lxkx

2ω2ε1
. (3.23)

Here we have used σ(ω)=−iωεnano(ω), while ω2
pnano

= noe2/m?εo is the nanorod’s
plasma frequency (m? is the effective mass of the electron of the nanorod). The
dispersion relation eq. 3.23 is illustrated in Fig 3.4 with different parameters.

3.2.3 Combining the two dispersion relations

In Fig 3.4, we assume Lx = 10 nm, and we use d̃ = d/do, in terms of the char-
acteristic length do = c/ωpε2

in the order of magnitude 10−7m, to represent the
width of the unit cell, with d̃ varying from 0.01 to 2. One thing we wish to
note here is that the values for d̃ in Fig 3.4, do not always respect the constraint
d � Lx, however, we wish to only emphasise how the dispersion relation de-
pends on d̃.
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(a)

(b)

(c)

(d)

Figure 3.4: Schematic dispersion relations of ω/ωpnano against k̃x. Blue lines
represent Qd = 0, red lines represent Qd = π ; between the blue and red lines
is the band, shaded in grey. The four panels correspond to different values of
parameter d̃ = d/do, as labeled.
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Figure 3.5: Intersection of the two dispersion relations eq. 3.13 and eq. 3.23
when supposing ωpnano = ωpε2

. The grey areas are the frequency band of
ω/ωpnano against k̃x, and the brown line is the dispersion curve of eq. 3.13;
the red areas are the band gaps resulting from the common solution of the two
dispersion equations.

The surface modes in our system correspond to the common solution of
the dispersion relation eqs. 3.13 and 3.23. Choosing the parameters, e.g. d̃ = 1,
and ωpε2

= ωpnano , and combining Fig 3.3 and Fig 3.4, we graphically show the
intersection of the two dispersion relations (Fig 3.5).

In Fig 3.5, the bands formed by the dispersion relation 3.23 are shaded in
grey, while the white areas are the gaps for eq. 3.23, i.e. where there are no
allowed solutions for eq. 3.23. The magenta lines correspond to points with
Qd = π , while the blue lines to points with Qd = 0. When searching for a com-
mon solution for eqs. 3.13 and 3.23, Fig 3.5 shows that only values of eq. 3.13
(brown curve) between 2 consecutive blue (Qd = 0) and magenta (Qd = π) lines
are allowed. This implies that the red areas in Fig 3.5 identify the gaps. Fig 3.5
then shows interesting features which are different from the dispersion rela-
tion when there is only an interface between the two layers and no nanorods
(such as eq. 3.13):
(I) due to the nanorod array’s periodicity, the curve of the system dispersion
relation is not continuous.
(II) at small k̃x, where it has photon-like behaviour, the band gap width with
respect to k̃x increases with increasing k̃x. (See red areas in Fig 3.5).

One more point which is worth mentioning is that the dispersion relation
3.23 in the four panels of Fig 3.4, shows that the smaller the unit cell width d,
the wider the band of ω/ωpε2

against k̃x, which also implies wider band gaps.
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3.2.4 Relation between surface plasmon frequency and Bloch

wave vector

We wish now to study the relation between ω and the Bloch wave vector Q.
From the dispersion relations eq. 3.13 and eq. 3.23, we can eliminate k̃x and
obtain:

cosQd− cos(
ω

ωpε2

√√√√ ω2−ω2
pε2

2ω2−ω2
pε2

d̃)

=−sin(
ω

ωpε2

√√√√ ω2−ω2
pε2

2ω2−ω2
pε2

d̃)
ω2

pnano
Lx
do

ω

ωpε2

√
ω2−ω2

pε2
2ω2−ω2

pε2

2ω2ε1

=−sin(
ω

ωpε2

√√√√ ω2−ω2
pε2

2ω2−ω2
pε2

d̃)
ω2

pnano
Lx

√
ω2−ω2

pε2
2ω2−ω2

pε2

2ωωpε2
ε1do

, (3.24)

which can be rearranged in the form:

cosQd = cos(
ω

ωpε2

√√√√ ω2−ω2
pε2

2ω2−ω2
pε2

d̃)− sin(
ω

ωpε2

√√√√ ω2−ω2
pε2

2ω2−ω2
pε2

d̃)
ω2

pnano
Lx

√
ω2−ω2

pε2
2ω2−ω2

pε2

2ωωpε2
ε1do

.

(3.25)
Now, if we choose to define Ω = ω/ωpε2

, the above equation becomes:

cosQd = cos(Ω

√
Ω2−1

2Ω2−1
d̃)− sin(Ω

√
Ω2−1

2Ω2−1
d̃)

√
Ω2−1
2Ω2−1

Lxω
2
pnano

/2Ωε1doω
2
pε2

,

(3.26)
so we can obtain the expression for Qd against the other parameters in a gen-
eral form:

Qd = arccos[cos(Ω

√
Ω2−1

2Ω2−1
d̃)−sin(Ω

√
Ω2−1

2Ω2−1
d̃)

√
Ω2−1
2Ω2−1

Lxω
2
pnano

/2Ωε1doω
2
pε2

].

(3.27)
From the above equation, we can clearly see that for Ω→ 0,

Qd = arccos(1− d̃Lxω
2
pnano

/2ω
2
pε2

ε1do). (3.28)

When we choose different parameters, the plot of the relation Ω against Qd

can be obtained. Two examples are shown in Fig 3.6, with the parameter val-
ues given in the caption. Fig 3.6 clearly shows the presence of gaps in the
dispersion curve.
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(a)

(b)

Figure 3.6: Plottings of ω against Qd for different parameters, and L̃x ≡ Lx/d0.
Both panels have the same parameter ωpnano = 2ωpε2

, but panel (a) has L̃x = 0.1,
d = 3do; and panel (b), L̃x = 0.24, and d = 4do. Near the top of both panels, the
lines do not always reach to π due to numerical imprecision.
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To understand eq.3.26 better, we can fix d̃ and Lx and observe how the
factor ωpnano/ωpε2

influences the relation of Ω against Qd. In this way we can
understand the behaviour of the SPPs by choosing different materials, when
the unit cell width, and the width of the nanorod are fixed. In Fig 3.7 we plot
three cases with d̃ = 3 and Lx = 0.1do. For typical metals, the plasma frequency
may vary from, e.g. 1.244×1015 s−1 (Pt) , to 3.57×1015 s−1 (Al) [110], which is
why in Fig 3.6 we use a ratio of ωpnano/ωpε2

in the range [0.5:3.0], this represents
possible combination of the nanorod and substrate materials. We notice that
with the ratio of ωpnano/ωpε2

increasing, the first branch of Ω against Qd is lower
in values, and the width of the gap of Ω = ω/ωpε2

at Qd = π increases.

We also found that Ω = 1/
√

2 is the limiting value for the dispersion re-
lation. When the value of Ω approaches 1/

√
2, as shown in Fig 3.6 and Fig

3.7, it is apparent that the band and gap regions alternate very rapidly when ω

increases. Mathematically, this is due to the dispersion relation containing the
term

√
(Ω2−1)/(2Ω2−1).

The nature of the solutions for the coefficients a(n) and b(n), implies the
bi-directional propagation of the surface modes forming travelling waves on
the one-dimensional periodic structure. This point to some degree has been
verified by recent experiments [116].

3.3 Quantization of the surface plasmon field

From the previous section, we can understand the properties of surface modes
in terms of the dispersion relation. In order to understand how these modes
interact with emitters, it is essential to quantize the field first, then to calculate
the interaction of the field and matter. For simplicity, we consider multi-level
atoms as emitters. Once the field is quantized, we will apply Fermi’s golden
rule [117, 62] to calculate the transition rate of the emitters at resonance with
the surface modes.

From quantization theory, the electric and magnetic fields contribute the
same to the total Hamiltonian in vacuum [118, 63]:

Ĥvacuum =
1
2

∫
(εo|~E|2 +µo|~H|2)d~r, (3.29)

which implies:

Ĥ~E =
1
2

∫
εo|~E|2d~r = Ĥ~H =

1
2

∫
µo|~H|2d~r. (3.30)
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(a)

(b)

(c)

Figure 3.7: Schematic diagrams show band gaps change with the ratio of
ωpnano/ωpε2

. For the panels (a), (b) and (c) the ratios are 0.5, 1.5, and 3.0 re-
spectively. Here d̃ = 3 and Lx = 0.1do.

34



Chapter 3
Surface plasmons interacting with emitters in a structure

with one-dimensional periodicity

For the magnetic component, we have

~H =
∫
( f (~k,~r)âQ +H.C)dQ, (3.31)

where, in our case, f (~k,~r)âQ = H(n)
1ŷ âQ, with âQ the annihilation operator, and

H.C stands for the Hermitian conjugate of f (~k,~r)âQ. In our system, the only
wavevector variable in fact, is the Bloch wavevector Q (which means that kx

could be expressed as a function of Q), hence in momentum space the modes
are characterised by only a one-dimensional wavevector Q. The annihilation
and creation operator must satisfy the commutator [âQ, â

†
Q′] = δ (Q−Q′). Then

using eq. 3.9 we obtain:

f (~k,~r)âQ =−ωεoε1

kx
E1ze−kz1z−iωt(a(n)eikx(x−nd)−b(n)e−ikx(x−nd))âQ, (3.32)

and

f ∗(~k,~r)â†
Q =−ωεoε1

kx
E∗1ze

−kz1z+iωt(a?(n)e−ikx(x−nd)−b?(n)eikx(x−nd))â†
Q. (3.33)

From eq. 3.30, for the purpose of calculating the total Hamiltonian, we need
only to employ the magnetic field or the electric field. Choosing the magnetic
component as an option, we calculate the quantization of the field. Suppose
we have an infinite number of unit cells, then Bloch’s theorem can be applied.
So by substituting eqs. 3.32 and 3.33 into eq. 3.30, we can write:

ĤHvacuum =
1
2

∫
µo~H2d~r

=
1
2

∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫

∞

0
dz
∫

dQ(~H1âQ + ~H∗â†
Q)
∫

dQ′(~H1âQ′+ ~H∗â†
Q′)

=
∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫

∞

0
dz

1
2

∫
dQ[−ωεoε1

kx
E1ze−kz1z−iωt(a(n)eikx(x−nd)

−b(n)e−ikx(x−nd))âQ−
ωεoε1

kx
E∗1ze

−kz1z+iωt(a?(n)e−ikx(x−nd)−b?(n)eikx(x−nd))â†
Q]

×
∫

dQ′[−ωεoε1

k′x
E1ze−k′z1z−iωt(a(n)eik′x(x−nd)−b(n)e−ik′x(x−nd))âQ′

−ωεoε1

k′x
E∗1ze

−k′z1z+iωt(a?(n)e−ik′x(x−nd)−b?(n)eik′x(x−nd))â†
Q′]. (3.34)

The calculations for quantizing the Hamiltonian are quite onerous and are re-
ported in full in Appendix B. Here we sketch the calculation for just one of the
terms involved. We use a(n) = a(0)eiQnd , b(n) = b(0)eiQnd . From the eq. 3.34 we
take the first two product terms of âQ in the third line and the â†

Q′ in the sixth
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line and denote it as:

ĤH1⊗7 =
µo

2

∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫

∞

0
dz{(−

∫
ωεoε1

kx
E1ze−kz1z−iωt

×a(n)eikx(x−nd)âQdQ)(−
∫

ωεoε1

k′x
E1ze−k′z1z+iωta?(n)eikx(x−nd)â†

Q′dQ′)}

=
µoLyω2ε2

o ε2
1 E2

1z

2kxk′x

∫
∞

0
e−(kz1+k′z1)zdz

∫
a(n)eikx(x−nd)âQdQ

×
∫

a?(n)eikx(x−nd)â†
Q′dQ′dx

=
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫
∑
n

∫ (n+1)d

nd
ei[(Q−Q′)nd+(kx−k′x)(x−nd)]dxâQâ†

Q′dQdQ′

=
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫
∑
n

∫ (n+1)d

nd

(
ei(kx−k′x)x

i(kx− k′x)

)′
dx

×ei(Q−Q′)nd−i(kx−k′x)nd âQâ†
Q′dQdQ′

=
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫
∑
n

ei(kx−k′x)d−1
i(kx− k′x)

ei(Q−Q′)nddQdQ′âQâ†
Q′

=
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫
∑
n

ei(Q−Q′)nddei(kx−k′x)
d
2

sin((kx− k′x)
d
2 )

(kx− k′x)
d
2

dQdQ′âQâ†
Q′,

(3.35)

we then note that,

∑
n

ei(Q−Q′)nd = ei(Q−Q′)d(1− ei(Q−Q′)nd)/(1− ei(Q−Q′)d)

= ei(Q−Q′)(n+1)d/2 sin[(Q−Q′)nd/2]
sin[(Q−Q′)d/2]

, (3.36)

with limn→∞(sin[(Q−Q′)nd/2]/sin[(Q−Q′)d/2]) = 2πδ (Q−Q′)/d. Using these
properties we obtain:

ĤH1⊗7 =
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫ 2π

d
δ (Q−Q′)ei(Q−Q′)(n+1)d/2

×dei(kx−k′x)d/2 sin((kx− k′x)d/2)
(kx− k′x)d/2

dQdQ′âQâ†
Q′

=
∫

πµoLyω2ε2
o ε2

1 E2
1z(a

(o))2

2k2
xkz1

âQâ†
QdQ. (3.37)

Similarly, we can repeat this process for the rest of the terms, as reported in
Appendix B. Thus we finally obtain the Hamiltonian:

Ĥvacuum =
∫

πµoLyε2
o ε2

1 ω2|E1z|2

kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (3.38)
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In the medium, the general form of the Hamiltonian[119] is

Ĥmedium =
1
2

∫ [d(εω)

dω
~E2 +

d(µω)

dω
~H2
]

d~r, (3.39)

where ε = ε0εr(ω,k) = ε0ε2, µ = µ0µr(ω,k). While for surface plasmons in metal
medium, we suppose µ = µ0, and ε2 = 1−ω2

pε2
/ω2. As

d(εω)/dω =
(

1+ω
2
pε2

/ω
2
)

ε0, (3.40)

then the Hamiltonian in metal medium becomes:

Ĥmetal =
1
2

∫
[ε0(1+

ω2
pε2

ω2 )~E2 +µ0~H2]d~r. (3.41)

We first calculate the magnetic part of the Hamiltonian in metal substrate.
While the magnetic field in metal medium ε2 is:

H(n)
2ŷ =−ωε0ε2E2z

kx
ekz2z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)], (3.42)

thus

f (~k,~r)âQ =−ωεoε2

kx
E2zekz2z−iωt(a(n)eikx(x−nd)−b(n)e−ikx(x−nd))âQ, (3.43)

and

f ∗(~k,~r)â†
Q =−ωεoε2

kx
E∗2ze

kz2z+iωt(a?(n)e−ikx(x−nd)−b?(n)eikx(x−nd))â†
Q. (3.44)

We denote the magnetic part of the Hamiltonian as ĤHmetal , then it can be writ-
ten as:

ĤHmetal =
1
2

∫
µo~H2d~r

=
1
2

∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫ 0

−∞

dz
∫

dQ(~H1âQ + ~H∗â†
Q)
∫

dQ′(~H1âQ′+ ~H∗â†
Q′)

=
∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫ 0

−∞

dz
1
2

∫
dQ[−ωεoε2

kx
E2zekz2z−iωt(a(n)eikx(x−nd)

−b(n)e−ikx(x−nd))âQ−
ωεoε2

kx
E∗2ze

kz2z+iωt(a?(n)e−ikx(x−nd)−b?(n)eikx(x−nd))â†
Q]

×
∫

dQ′[−ωεoε2

k′x
E2zek′z2z−iωt(a(n)eik′x(x−nd)−b(n)e−ik′x(x−nd))âQ′

−ωεoε2

k′x
E∗2ze

k′z2z+iωt(a?(n)e−ik′x(x−nd)−b?(n)eik′x(x−nd))â†
Q′]. (3.45)

Follow the same steps as we did for the Hamiltonian in vacuum, we finally
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obtain the result for ĤHmetal in metal (more details can be found in Appendix
B):

ĤHmetal =
∫

πµoLyε2
o ε2

2 ω2|E2z|2

2kz2k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (3.46)

Likewise, we can expand the electric field and calculate the integral of the elec-
tric part of the Hamiltonian in metal, we finally can obtain the result as follows:

ĤEmetal =
∫
(1+

ω2
p

ω2 )
πµoLyε2

o ε2
2 ω2|E2z|2

2kz2k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (3.47)

So in metal medium, the total Hamiltonian is Ĥmetal = ĤHmetal + ĤEmetal :

Ĥmetal =
∫
(2+

ω2
p

ω2 )
πµoLyε2

o ε2
2 ω2|E2z|2

2kz2k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (3.48)

Because ε1E1z = ε2E2z, and ε1
kz1

+ ε2
kz2

= 0, we can further get

Ĥmetal =
∫ (2ω2 +ω2

p)ε1

(ω2
p−ω2)

πµoLyε2
o ε2

1 ω2|E1z|2

4kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ.

(3.49)
Compare the two forms of Ĥvacuum and Ĥmetal , we find a relationship between
them:

Ĥmetal =
(2ω2 +ω2

p)ε1

4(ω2
p−ω2)

Ĥvacuum, (3.50)

while Ĥtotal = Ĥvacuum + Ĥmetal , thus we have:

Ĥtotal =

(
1+

(2ω2 +ω2
p)ε1

4(ω2
p−ω2)

)∫
πµoLyε2

o ε2
1 ω2|E1z|2

kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q+ â†
QâQ)dQ.

(3.51)
We know the total Hamiltonian for the system is

Ĥtotal =
∫ 1

2
h̄ω(âQâ†

Q + â†
QâQ)dQ, (3.52)

we finally can obtain the amplitude of E1z, which determines the surface modes’
strength:

|E1z|2(a(0)
2
+b(0)

2
) =

h̄kz1k2
xc2

2Lyωεoε2
1

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
, (3.53)

We can then determine the surface modes’ vertical and in-plane components
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using the relation E2z = E1xkx/kz. We find:

E2
1za

(0)2
=

h̄kz1k2
xc2

2Lyωεoε2
1

A2

A2 +B2

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
, (3.54)

and

E2
1zb

(0)2
=

h̄kz1k2
xc2

2Lyωεoε2
1

B2

A2 +B2

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
, (3.55)

where we have defined A = 1− eiQd+ikxd and B = 1− eiQd−ikxd . a(0) and b(0) can
be related as a(0)/b(0) = A/B.

As a result of the quantization process, the feature of SPPs are known,
and we are now ready to calculate the transition rates corresponding to surface
modes interacting with the emitters.

3.4 Transition rates of emitters interacting with SPPs

Now we study how the surface modes described in the previous sections may
interact with emitters positioned just above the two-media interface, (see Fig
3.1). We will assume that the surface modes travelling along the x direction and
decaying on both sides of the interface are a small perturbation to the emitters
located above the interface.

We consider the emitters to be single neutral atoms and use the electric
dipole approximation [56]. Using Fermi’s golden rule, we will calculate the
transition rate of the system. For simplicity, we will focus on a two-level atom
and the transition to a quantum state | f 〉 after applying a perturbation to quan-
tum state |i〉. Then the transition rate can be obtained as:

Γ =
2π

h̄
|〈i;0|Hint | f ;1〉|2δ (Ei−E f )

=
2π

h̄
|〈i;0|− ~d ·~E| f ;1〉|2δ (Ei−E f )

=
2π

h̄
|〈i|− ~d · | f 〉〈1|~E|0〉|2δ (Ei−E f ). (3.56)

Here δ (Ei−E f ) = δ (Ee−Eg− h̄ω) = δ (h̄ωo− h̄ω) = δ (ωo−ω)/h̄, with Ei, the
emitter’s energy of initial state, E f the energy of final state; We assume the
energy of the ground state Eg is the final state energy, and Ee, the excited state
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energy is the initial energy, and h̄ω is the energy of a quantized plasmon. Also

〈1|~E|0〉= 〈1|
∫

dQ(~EâQ +H.C)|0〉

= 〈0|0〉
∫

dQ~Eδ (Q−Q′)

= ~E(Q). (3.57)

In eq. 3.56, ~d is the electric dipole moment operator of the emitter. So the
absorption transition rate can be obtained as:

Γ =
∫ 2π

h̄
|〈i|Hint | f 〉|2δ (Ei−E f )dQ

=
∫ 2π

h̄
|〈i;0|− ~d ·~E| f ;1〉|2δ (Ei−E f )dQ

=
∫ 2π

h̄
|〈i|− ~d| f 〉 ·~E(Q)|2δ (Ei−E f )dQ. (3.58)

Because ~E has only two components, E1x̂ and E1ẑ, eq. 3.58 becomes:

Γ =
∫ 2π

h̄2 |〈i|− ~d| f 〉 ·~E(Q)|2δ (ωo−ω)dQ

=
∫ 2π

h̄2 |〈i|dx| f 〉 ·E1x̂ + 〈i|dz| f 〉 ·E1ẑ|2δ (ωo−ω)dQ. (3.59)

Because δ (ω−ω0) = δ (Q−Qo)/|dω/dQ|= |dQ/dω|δ (Q−Qo), the above equa-
tion becomes:

Γ =
∫ 2π

h̄2 |〈i|dx| f 〉 ·E1x̂ + 〈i|dz| f 〉 ·E1ẑ|2|
dQ
dω
|δ (Q−Qo)dQ. (3.60)

From eq. 3.26 we can derive dQ/dω = f (Ω, d̃), where

f (Ω, d̃) =

[d̃ sin(k̃xd̃)k̃′x +
d̃ cos(k̃xd̃)k̃xΩk̃′x + sin(k̃xd̃)Ωk̃′x−2sin(k̃xd̃)k̃x

2T Ω3 ]/(d sin(Qd)ωpε2
).

(3.61)

In which k̃′x =
(√

Ω2−1
2Ω2−1 +

2Ω2

(2Ω2−1)3/2(Ω2−1)1/2

)
, T = ε1doω2

pε2
/Lxω2

pnano
and k̃x =

Ω
√

(Ω2−1)(2Ω2−1). Thus

Γ =
2π

h̄2 |〈i|dx| f 〉 ·E1x̂ + 〈i|dz| f 〉 ·E1ẑ|2| f (Ω, d̃)|. (3.62)

With the help of the eqs. 3.5, 3.11, and 3.61 we can obtain the exact result
of the transition rate for a specific multi-level emitter with certain initial and
final states. In the particular case, when the dipole is parallel to the surface, eq.
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3.62 becomes:

Γ‖ = |〈i|dx| f 〉|2
2πc2k3

z1e−2kz1z

h̄Lyεoε2
1 ω

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
f (A−B)| f (Ω, d̃)|,(3.63)

while if the dipole is perpendicular to the surface, we have:

Γ⊥ = |〈i|dz| f 〉|2
2πc2kz1k2

xe−2kz1z

h̄Lyεoε2
1 ω

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
f (A+B)| f (Ω, d̃)|.(3.64)

In eqs. 3.63 and 3.64, f (A−B) and f (A+B) are defined as:

f (A−B) =

√

A2

A2 +B2 eikx(x−nd)−

√
B2

A2 +B2 e−ikx(x−nd)
2

, (3.65)

and

f (A+B) =

√

A2

A2 +B2 eikx(x−nd)+

√
B2

A2 +B2 e−ikx(x−nd)
2

. (3.66)

Now we introduce the free space emission rate Γo = |µ12|2ω3
o/3π h̄c3εo, where

|µ12| = |〈i|~d| f 〉|, and use it to express the result in eq. 3.63 and eq. 3.64 in a
comparative way as:

Γ‖
Γo‖

=
6π2c5k3

z1e−2kz1z

Lyε2
1 ωω3

o

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
f (A−B)| f (Ω, d̃)|, (3.67)

and

Γ⊥
Γo⊥

=
6π2c5kz1k2

xe−2kz1z

Lyε2
1 ωω3

o

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
f (A+B)| f (Ω, d̃)|, (3.68)

with Γo‖ = |µ12‖|
2ω3

o/3π h̄c3εo and Γo⊥ = |µ12⊥|2ω3
o/3π h̄c3εo. Here µ12‖ and µ12⊥

correspond to |µ12‖|= |〈i|dx| f 〉| and |µ12⊥|= |〈i|dz| f 〉|.

It it essential to understand the scale of Γo, and therefore, we take a two-
level atom such as a hydrogen atom, as an example. According to the selection
rules [63, 120], for spontaneous transition within a hydrogen atom, the quan-
tum numbers l = 1 and m = 0,±1 must be satisfied for the excited state. Hence,
the 2P→ 1S transition rate is

Γo2P→1S = |µ12|2ω
3
o/3π h̄c3

εo

= (2/3)8
α

5mec2/h̄

= 6.27×108s−1, (3.69)

where α = 1/137 is the fine-structure constant, and me is the mass of the elec-
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tron.

In order to maintain consistency with the figures in Fig 3.6, we plot the
corresponding Γ‖ (Fig 3.8) and Γ⊥ (Fig 3.9) against Ω with the same parameters
ωpnano , ωpε2

, d, Lx as in Fig 3.6. There will be a cut off for the lowest acceptable
vaule of Ω given by the condition 1/kz1 � Lz. For Lz ≈ Ly = 200 nm we have
that 1/k̄z1 = Lz corresponds to Ω̄ = 0.3.

When we compare the Fig 3.8 and Fig 3.6, we see that the gaps in Ω are
reflected in Fig 3.8 for both Γ‖ and Γ⊥. This is also true when comparing Fig
3.9 with Fig 3.6. We notice that when Ω is between 0.6 and 0.8, the relative
transition rate is quite high, which implies that when the surface modes are
phonon-like (see Fig 3.3, where 0.6 < Ω < 0.8 corresponds to large k̃x), the cou-
pling is considerably strong, which indicates strong local field enhancement
in the vicinity of the boundary. It is not surprising that the relative Γ‖ and
Γ⊥ are such high. In fact, average surface enhancement factor is on order of
104-108 [121, 122]; and the maximum surface enhancement factors, so far as we
know, are on the order of 1012-1014 (e.g., for large Ag colloidal cluster system)
[123, 124, 121]. In our system, the strong local field enhancement implies that,
the periodic nanorod array could be useful for emitter-field interaction. For
small Ω, the corresponding k̃x is small, for which the wave is photon-like. In
this range, the coupling is much weaker. Also, when k̃x is larger, the lifetime
of the surface modes is longer, namely, when phonon-like surface modes are
interacting with emitters, the interaction time is longer. This should provide
a better opportunity to control the transition of the excited states to ground
states.

Our findings also indicate that we may be able to manipulate the quan-
tum states: (a), by switching on or off the specific regimes of frequency Ω of
the stimulating field, so that the transition between the excited and ground
states can be controlled; (b), by increasing the frequency to the edge of the
gap, where the transition also stops. This physical meaning should provide a
feasible option when applied in reality with flexibility.

3.5 Conclusion

In this chapter we discussed a promising scheme where surface modes can
be coupled to emitters located just above the interface between a metal and a
vacuum with a periodic nanorod array. We demonstrated that these surface
modes are travelling waves. In fact, this feature has been verified to some
degree by experiments [116, 125], where the researchers found there exist trav-
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(a)

(b)

Figure 3.8: Sketch of the relation of Γ‖/ΓO‖ against Ω = ω/ωpε2
for the

same rest parameters as in Fig 3.5 in the presence of the periodic nano
-rods array (for panel (a), L̃x = 0.1, d = 3do; and for panel (b), L̃x = 0.24, d = 4do).
The emitter is at the position x = d/2, and Ly = 300 nm.
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(a)

(b)

Figure 3.9: Diagrams of the relation of Γ⊥/ΓO⊥ against Ω = ω/ωpε2
within the

periodic nanorods array ( panel (a), L̃x = 0.1, d = 3do; panel (b), L̃x = 0.24, d =
4do). The emitter is at position x = d/2, and Ly = 300 nm.
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elling plasmons at the interface between vacuum and metal when a nanostrip
array is embedded at the interface, though the reports of these experiments
[116, 125] did not include a theoretical description. Our theoretical results pro-
vide predictions of the surface modes’ properties including the wave’s ampli-
tude, phase velocity, frequency, and dispersion relation. Moreover, due to the
small volume of these modes, it is easy to couple the modes to emitters located
in each unit cell. By choosing an appropriate frequency, the emitters will be
resonant with the SPPs.
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Surface phonon polaritons
interacting with emitters in a
one-dimensional periodicity
structure

In the previous chapter, we have demonstrated that when nanorods are pe-
riodically arranged on the planar interface between a dielectric and a metal,
there exist surface plasmon polaritons which display frequency band gaps. In
this chapter, we consider the surface phonon polaritons and study their char-
acteristic dispersion relations with similar structures to those considered in the
previous chapter. Firstly, we will find the solutions for the two types of bound-
ary conditions, which will provide us with the dispersion relation of ω against
~k or Q. Secondly we will quantize the EM field in order to find the surface
phonon polariton’s amplitude. This will allow us to calculate the transition
rate of emitters interacting with a specific surface mode.

4.1 The system

In this section, we will first consider the dispersion relation of the surface
modes between a vacuum and a polar medium (such as a semiconductor) in-
terface, which has a similar structure as shown in Fig 3.1. Surface phonon
polaritons, as we mentioned in Chapter 2, are transverse magnetic modes re-
sulting from the coupling of infrared photons with optical phonons. As in
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Chapter 3, we characterised the two different media by ε1 and ε2. We consider
again medium 1 as vacuum, namely ε1 = 1; while for medium 2 we choose a
polar medium, a semiconductor, for which the dielectric function is described
as [82]:

ε2(ω) = ε∞(1+
ω2

L−ω2
T

ω2
T −ω2− iωγ

). (4.1)

Here ε∞ = ε(ω)|ω=∞ is the high-frequency limit of the dielectric function [84];
ωT and ωL are the transverse and longitudinal phonon frequencies, and γ is a
damping factor [126]. Usually, the damping factor is rather small compared
with the phonon polariton frequency (the ratio of γ/ωT or γ/ωL is in a range of
1%− 5%) [127, 128], therefore the deviation can be ignored when we assume
γ = 0 in calculation. The surface phonon polariton is a TM wave [129], which
means the magnetic component is parallel to the interface, so the components
of ~E are perpendicular to the Hy. Due to the periodic property of the model, it
is possible that the wave component kx runs along both directions of x and −x.
Following the way we described in Chapter 3, we assume the z component of
~E to be a linear combination of the forward and backward waves along the x

direction in unit cell n:

E(n)
1ẑ = E1ze−kz1z−iωt [a(n)eikx(x−nd)+b(n)e−ikx(x−nd)], (4.2)

in medium 1, and:

H(n)
1ŷ =−ωε0ε1E1z

kx
e−kz1z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)], (4.3)

meanwhile

E(n)
1x̂ =

kz1E1z

ikx
e−kz1z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)], (4.4)

the parameters n, Lx and d have the same meaning as mentioned in Chapter 3.

4.2 Dispersion relation of the SPhPs in a structure

with one-dimensional periodicity

4.2.1 Allowed frequency interval

By applying the usual electromagnetic boundary condition at the interface, one
can obtain [130]:

kx =
ω

c

√
ε1ε2

ε1 + ε2
. (4.5)
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For simplicity, we here ignore the imaginary part of ε2, namely we set the
damping factor γ = 0. By using eq. 4.1, kx can be rewritten as:

kx =
ω

c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
, (4.6)

from which we can write ω in terms of kx , ωT and ωL [130]:

ω
2(kx) =

ε∞

2
[(1+ ε∞)c2k2

x + ε∞ω
2
L− M1/2

sph (kx)], (4.7)

where
Msph (kx) = [(1+ ε∞)c2k2

x + ε∞ω
2
L]

2−4ε∞c2k2
x(ω

2
T + ε∞ω

2
L). (4.8)

Recalling that the right side of eq. 4.6 has to be real and taking ε2 < 0 into
consideration, we have the condition:

ε∞(ω
2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
> 0, (4.9)

we find that the surface phonon polariton modes occupy the frequency inter-
val:

ωT ≤ ω(k)<
√

(ε∞ω2
L +ω2

T )/(1+ ε∞). (4.10)

A sketch of SPhP is shown Fig 4.1. We now introduce a characteristic length
do2 = c/ωT , then eq. 4.6 can be written as:

k̃x = Ω

√
ε∞(Ω2−ω2

L/ω2
T )

(1+ ε∞)Ω2− ε∞ω2
L/ω2

T −1
, (4.11)

where k̃x = kxdo2, and Ω = ω/ωT . It is apparent that the interval for the SPhP
frequency depends on ωT , ωL and ε∞. If we consider the range of ω/ωT and
use the LST relation [84]:

ω
2
L/ω

2
T = ε(0)/ε∞, (4.12)

where ε(0) is the static dielectric constant, we find that the range of ω/ωT is
[1,
√

(1+ ε(0))/(1+ ε∞). Table 4.1 gives the numerical values of this range for
various semiconductors and provides us with feasible options when we con-
sider choosing appropriate materials for our system. For example, if we need
a narrow frequency band, we may choose GaSb, InSb, etc. When a wide range
of frequency is needed, one may choose CsI, ZnS, etc..

48



Chapter 4
Surface phonon polaritons interacting with emitters in a

one-dimensional periodicity structure

(a)

(b)

Figure 4.1: Phonon polariton dispersion curves follow M G Cottam et al. [86];
where panel (a) is the curve for an intrinsic GaAs/vacuum interface. Panel (b)
zooms on the scale of the surface mode. Both curves are to the value ω/ωT =
1.0; the almost vertical dashed line is the light line in vacuum.
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Table 4.1: The range of frequencies of surface phonon polaritons in semicon-
ductors. ε∞ and ε(0) are from the experimental result of Verma et al. [131];
except the CsI, which is derived from K C Huang et al. [82]

Material ε∞ ε(0) Range of ω/ωT

GaSb 14.44 15.69 [1 , 1.04)
InSb 15.68 17.88 [1 , 1.06)
AlSb 10.24 12.04 [1 , 1.07)
GaAs 10.88 12.85 [1 , 1.08)
GaP 9.11 11.11 [1 , 1.10)
AlAs 8.16 10.06 [1 , 1.10)
InAs 12.25 15.16 [1 , 1.10)
AlP 7.54 9.80 [1 , 1.12)
InP 9.61 12.55 [1 , 1.13)

ZnTe 7.28 9.67 [1 , 1.14)
SiC 6.52 9.70 [1 , 1.19)

ZnSe 6.20 9.20 [1 , 1.19)
CdTe 7.21 10.76 [1 , 1.20)
ZnS 5.13 8.32 [1 , 1.23)
CsI 3.0 5.33 [1 , 1.26)

4.2.2 Dispersion relation

As in Chapter 3 section 3, we use Bloch’s theorem to calculate the second dis-
persion relation. Because of Bloch’s theorem, the coefficients in eqs. from 4.2
to 4.4 will have the properties: a(n+1) = a(n)eiQd and b(n+1) = b(n)eiQd , where Q

is the one-dimensional Bloch wave vector. When applying the boundary con-
dition across the rods between two neighbouring unit cells, as has been done
in Chapter 3, we find the second dispersion relation has the same form:

cos(Qd)− cos(kxd) =−sin(kxd)
ω2

pnano
Lxkx

2ω2ε1
. (4.13)

Now if we combine the first dispersion relation eq. 4.6 and the second
dispersion relation eq. 4.13, we obtain:

cosQd− cos

(
ω

c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
d

)
=

−sin

(
ω

c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
d

)
ω2

pnano
Lx

√
ε∞(ω2−ω2

L)

(1+ε∞)ω2−ε∞ω2
L−ω2

T

2ωc
.

(4.14)
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From equation eq. 4.14, we can find a relation between Q and ω :

Qd = arccos[cos

(
ω

c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
d

)

−sin

(
ω

c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
d

)
ω2

pnano
Lx

√
ε∞(ω2−ω2

L)

(1+ε∞)ω2−ε∞ω2
L−ω2

T

2ωc
].

(4.15)

As we have set the characteristic frequency Ω = ω/ωT , then eq. 4.14 be-
comes:

cosQd− cos [ΩS(Ω)
ωT d

c
] =−sin [ΩS(Ω)

ωT d
c

]
ω2

pnano

2ΩcωT
S(Ω)Lx, (4.16)

where S(Ω) =

√
ε∞(Ω2−ω2

L/ω2
T )

(1+ε∞)Ω2−ε∞ω2
L/ω2

T−1
= k̃x/Ω.

From eq. 4.15 we can calculate the range of allowed values of Qd. The
lowest value of Qd is when Ω = 1, which gives:

Qd|start = arccos

[
cos
[

S(1)
ωT d

c

]
− sin

[
S(1)

ωT d
c

]
ω2

pnano

2cωT
S(1)Lx

]
. (4.17)

Similarly for the other extreme, we obtain:

Qd|end = arccos

[
cos
[

ΩlimS(Ωlim)
ωT d

c

]
− sin

[
ΩlimS(Ωlim)

ωT d
c

]
ω2

pnano

2ΩlimcωT
S(Ωlim)Lx

]
,

(4.18)
where Ωlim =

√
(ε∞ω2

L/ω2
T +1)/(1+ ε∞). Table 4.2 shows values of Qd|start and

Qd|end for different materials:

Table 4.2: The values for ωT and ωL are from C Kittel [79]; P M Amirtharaj et
al. [132]; and K C Huang et al. [82], ωT and ωL are in unit of 1013 s−1.

Material Qd|d=100nm
start Qd|d=100nm

end ωT ωL

GaSb 0.231 0.242 4.3 4.6
InSb 0.231 1.394 3.5 3.7
GaAs 0.231 1.629 5.1 5.5
GaP 0.232 2.404 6.9 7.6
InAs 0.231 2.373 4.1 4.5
InP 0.234 2.527 5.7 6.5
SiC 0.251 2.325 14.9 17.9
ZnS 0.250 0.444 5.16 6.63
CsI 0.271 2.545 7.54 10.05
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Figure 4.2: The graph shows the relation of Ω against Qd, where the parameters
are: Lx = 10 nm , d = 100 nm, the substrate is made of CsI, and ε1 = 1. For these
parameters, Qd|start = 0.271, Qd|end = 2.545.

4.2.3 Results in nano-scale system

By choosing specific parameters ωL, ωT and ωpnano in a nano-scale system, we
suppose the cell width d, the width of nanorod Lx and the channel width Ly

are in the order of nanometer, then we can obtain the dependence of ω on Q

from eq. 4.14. As an example, we choose the substrate to be made of CsI, for
which ωT = 7.54× 1013 s−1, ωL = 10.05× 1013 s−1, ε∞ = 3.0 [82], and ε1 = 1 as
we mentioned above. As for the nanorod, we choose gold with the parameter
ωpnano = 2.183×1015 s−1 [110] fitted in the Drude model. The plotting of ω/ωT

versus Qd is shown in Fig 4.2. To understand this dispersion better, we plot the
relation with different parameters. First, we change the unit cell width d, and
keep the rest of the parameters the same as in Fig 4.2. The result is shown in
Fig 4.3. When we compare the results in figures Fig 4.2 and Fig 4.3, we notice
that as d increases, the starting point of Qd on the x-axis moves towards larger
values.

Secondly, vary Lx, and keep the other parameters the same as in Fig 4.2,
we obtain the result as shown in Fig 4.4. It demonstrates that when changing
Lx, the lowest allowed value of Qd is also changed: the smaller Lx, the smaller
the value of Qd. The overall trend of the curve remains the same as in Fig 4.2
and Fig 4.3. (We need to emphasise that in order to show how the dispersion
relation changes with Lx, the values for Lx do not always obey d� Lx.)

In addition, in Fig 4.5, we plot the dispersion relation of ω/ωT against
ckx/ωT in two extreme cases: panel (a), when d is large, and much greater than
the thickness of the nanorod; panel (b), when Lx = 0. It can be seen that in both
cases, both d is considerable large and Lx = 0, the result is essentially the same.
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(a)

(b)

Figure 4.3: Plottings of relation ω/ωT against Qd with different unit cell width.
Parameters as in Fig 4.2 but panel (a) has d = 200 nm, and panel (b) has d = 500
nm. Here for panel (a), Qd|start = 0.338, Qd|end = 2.836; for panel (b) Qd|start =
0.513, Qd|end = 2.877.
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(a)

(b)

Figure 4.4: Plottings of relation ω/ωT against Qd with different width of
nanorods. Panel (a): Lx = 5 nm, and panel (b): Lx = 50 nm, with the rest of the
parameters the same as in Fig 4.2. For panel (a), Qd|start = 0.193, Qd|end = 2.780;
for panel (b) Qd|start = 0.510, Qd|end = 2.821.
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(a)

(b)

Figure 4.5: Diagrams of dispersion curve ω/ωT against ckx/ωT under two ex-
treme conditions. Panel (a) has d = 1000 nm,Lx = 10 nm; and panel (b) has
d = 100 nm, Lx = 0 nm.
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Additionally, the results for these two extreme cases, could in fact have been
anticipated as there is no nanorod on the interface, and the dispersion curve
ω/ωT against ckx/ωT is just as for a simple vacuum-polar medium interface.

In summary, there are some features we find from the results in the fig-
ures:
(I) In contrast to SPPs, SPhPs in the presence of a one-dimensional array of
periodic nanostructures do not obviously show a frequency band gap for the
dispersion relation ω/ωT against Qd. This point may be explained that for
SPPs, when the frequency approaches its limit ω = ωpε2

/
√

2, the frequency gap
gets smaller with the increment of ω , especially at the edge of Qd = π , the dis-
persion curve reverses to the opposite direction where it shows the smallest
gap of ω . However, the frequency of SPhP is usually two orders of magnitude
lower than for SPP, thus for SPhP, the frequency band gap becomes hard to
observe at the end of Qd on the x-axis when the system is in a nano dimension.

(II) The whole interval of ω/ωT is located in
[
1,
√

(ε∞ω2
L/ω2

T +1)/(1+ ε∞)
]
.

(III) The width of the unit cell decides the curve’s original position. As d in-
creases, so does the smallest allowed value of Qd. Lx plays a similar role as d.
(IV) For the extreme cases when d is very large compared to the width of
nanorod, or Lx = 0, the model’s dispersion relation matches the situation of
a vacuum-dielectric media interface in the absence of the array of nanorods.

4.2.4 Results in micro-scale system

However, we may notice that do2 = c/ωT , the system’s characteristic length,
has in fact, the magnitude of 10−5m. It is then worth considering the features
of dispersion relations in a system with dimensions close to 10−5m, namely, on
the order of micrometer. Therefore we present some more results (Fig 4.6 and
Fig 4.7) with respect to systems with characteristic length.

As can be clearly seen, in Fig 4.6 and Fig 4.7, when the lengths d and
Lx are comparable to do2, both dispersion relations ω/ωT vs Qd and ω/ωT vs
ckx/ωT display the folding phenomenon expected from the periodicity of the
structure, and in particular display band gaps. By adjusting the parameters,
such as varying d or Lx in an appropriate range, we can observe how the dis-
persion curves vary. We provide examples in Fig 4.8 and Fig 4.9 to illustrate
the changes.

In comparison with the nano-scale system, we summarize the features of
Fig 4.8 and Fig 4.9 as follows: Fig 4.8 panels (a) and (b) show that when Lx

is smaller, the band gap is smaller; and vice versa. As we expect, when Lx is
small enough, the band gap disappears, which is what we observed in a nano-
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Figure 4.6: The plotting of dispersion relation of ω/ωT versus Qd. The pa-
rameters of the figure are: d = 10× 10−5 m, Lx = 1.0× 10−5 m. ε1 = 1, and the
substrate is the same as in Fig 4.2, CsI, for which ωT = 7.54× 1013 s−1, and
ωL = 10.05×1013 s−1. Different from Fig 4.2, here we choose ωpnano = ωT , which
implies that the quasi-nanorod is made of a doped semiconductor. The top
zigzag lines show the trend that when the lines approach the limit of ω/ωT ,
more and more foldding branches turn up.

Figure 4.7: The sketch of dispersion relation of ω/ωT versus ckx/ωT . The pa-
rameters of the figure is: d = 10× 10−5 m, Lx = 1.0× 10−5 m. ωpnano = ωT ,
ωT = 7.54×1013 s−1, and ωL = 10.05×1013 s−1.
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(a)

(b)

Figure 4.8: Schematic plottings of ω/ωT versus Qd with different width of mi-
crorods. Panel (a) and panel (b) share the same parameters as Fig 4.6 except
one parameter is different: for panel (a), Lx = 5 µm, and for panel (b), Lx = 2
µm.
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(a)

(b)

Figure 4.9: Plottings show the relation of ω/ωT versus ckx/ωT with different
width of microrods. Panel (a) and panel (b) share the same parameters as Fig
4.6 except one parameter is different: for panel (a), Lx = 5 µm, and for panel
(b), Lx = 2 µm.

59



Chapter 4
Surface phonon polaritons interacting with emitters in a

one-dimensional periodicity structure

scale system. From this point of view, by adjusting the width of the rod, we
are able to select the width required for a specific frequency band in order that
the surface phonon polaritons interact with emitters in optimized conditions.

The frequency gaps in Fig 4.9 correspond to the gaps in Fig 4.8, for both
panel (a) and panel (b), respectively. This is different from Fig 4.5, for which
the dispersion relation is obtained in a nano-scale system and the dispersion
curves are divided into several sections. With the increment of frequency, the
gaps in frequency become smaller. Comparing Fig 4.8 and Fig 4.9, we see for
both figures that the frequency is in the same range as in a nano-scale system:[
1,
√

ε∞ω2
L/ω2

T+1
1+ε∞

]
, which indicates that whatever the scale of the system, the do-

main of the frequency remains the same. One point that should be noted is
that, with the increment of ω/ωT , the gradient of the dispersion curve becomes
smaller, even close to zero, which implies that the surface modes move more
slowly at higher frequencies.

4.2.5 Determine suitable system by applying Fourier bandwidth

limit

As mentioned in Chapter 3, we can estimate a suitable channel width by ap-
plying the Fourier bandwidth limit for the surface modes to be sustained in
the system. In general, the SPhP’s energy is in the range of 27 ∼ 59 meV
[131, 82, 132], now if we apply Fourier bandwidth limit as we did in Chap-
ter 3,

∆E = h̄∆ω ≥ h̄c/2∆Ly. (4.19)

If we choose the minimum product for the above equation, then we can ob-
tain a range of minimum channel width ∆Ly ∈ [1.6∼ 3.5] µm for which typical
SPhPs can be maintained in our system. Also, it allows us to choose the ap-
propriate channel width, in order that the deviation of energy can be ignored,
e.g. when ∆Ly = 10 µm, ∆E ≈ 1 meV, thus the deviation of energy is less than
4%. In addition, by comparing the theoretical results for nano-scale system
and micro-scale system, we can determine that only in the micro-scale system
does our theoretical analysis hold.
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4.3 Quantization of SPhPs and the transition rate of

an emitter

4.3.1 Results from quantization of the SPhPs

To quantize the modes of the surface phonon polaritons, we follow the same
steps as in Chapter 3 and we obtain the amplitude of E1z as (details attached in
Appedix B):

|E2z|2(a(0)
2
+b(0)

2
) =

h̄kz1k2
xc2

2Lyωεoε2
1

1[
3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] . (4.20)

Further, we can obtain:

E2
1za

(0)2
=

h̄kz1k2
xc2

2Lyωεoε2
1

A2

A2 +B2
1[

3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] , (4.21)

and

E2
1zb

(0)2
=

h̄kz1k2
xc2

2Lyωεoε2
1

B2

A2 +B2
1[

3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] , (4.22)

where A = 1− eiQd+ikxd and B = 1− eiQd−ikxd . In the quantization process we
have determined the surface modes’ amplitude. This makes it possible to cal-
culate the transition rate when surface phonon polaritons interact with two-
level emitters.

4.3.2 The transition rate when SPhPs interact with emitters

Having calculated the transition rate in Chapter 3, section 3.4, we know the
result:

Γ =
∫ 2π

h̄2 |〈i|− ~d| f 〉 ·~Ee(Q)|2δ (ωo−ω)dQ

=
∫ 2π

h̄2 |〈i|dx| f 〉 ·E1x̂ + 〈i|dz| f 〉 ·E1ẑ|2δ (ωo−ω)dQ. (4.23)

Here δ (ω−ω0) =
δ (Q−Qo)

| dω

dQ |
= | dQ

dω
|δ (Q−Qo), thus eq. 4.23 becomes:

Γ =
∫ 2π

h̄2 |〈i|dx| f 〉 ·E1x̂ + 〈i|dz| f 〉 ·E1ẑ|2|
dQ
dω
|δ (Q−Qo)dQ. (4.24)
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From eq. 4.14 we find (the derivation is shown in Appendix A):

dQ
dω

=
d sin(kxd)k′x +

ω2
pnano Lx

2ε1ω3 [dωkx cos(kxd)k′x +ω sin(kxd)k′x−2sin(kxd)kx]

sin(Qd)d
,(4.25)

where

k′x =
1
c

[√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
(4.26)

+
ω2ε∞(ω

2
L−ω2

T )√
ε∞(ω2−ω2

L)[(1+ ε∞)ω2− ε∞ω2
L−ω2

T ]
3

]
.

Thus the transition rate has the form:

Γ =
2π

h̄2 |〈i|dx| f 〉 ·E1x̂ + 〈i|dz| f 〉 ·E1ẑ|2|
dQ
dω
|Q=Qo . (4.27)

With the help of equations 4.2 and 4.4, we now can obtain the result of the
transition rate for specific two-level atoms with certain initial and final states.
When the dipole is parallel to the surface, the transition rate is:

Γ‖ = |〈i|dx| f 〉|2
2c2k3

z1e−2kz1z

h̄Lyεoε2
1 ω

1[
3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] f (A−B)|dQ
dω
|Q=Qo.

(4.28)

While if the dipole is perpendicular to the surface we have:

Γ⊥ = |〈i|dz| f 〉|2
2c2kz1k2

xe−2kz1z

h̄Lyεoε2
1 ω

1[
3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] f (A+B)|dQ
dω
|Q=Qo.

(4.29)

Using free space emission rate we can obtain eq. 4.28 and eq. 4.29 in a neat
way respectively:

Γ‖
Γo‖

=
6πc5k3

z1e−2kz1z

Lyε2
1 ωω3

o

1[
3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] f (A−B)|dQ
dω
|Q=Qo , (4.30)

and

Γ⊥
Γo⊥

=
6πc5kz1k2

xe−2kz1z

Lyε2
1 ωω3

o

1[
3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] f (A+B)|dQ
dω
|Q=Qo,(4.31)
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where, Γo‖ = |µ12‖|
2ω3

o/3π h̄c3εo, Γo⊥ = |µ12⊥|2ω3
o/3π h̄c3εo, and

f (A−B) =

√

A2

A2 +B2 eikx(x−nd)−

√
B2

A2 +B2 e−ikx(x−nd)
2

, (4.32)

and

f (A+B) =

√

A2

A2 +B2 eikx(x−nd)+

√
B2

A2 +B2 e−ikx(x−nd)
2

. (4.33)

Now we are in a position to obtain the transition rate for any set of pa-
rameters. From equations 4.30 and 4.31, we can see that the transition rates Γ‖

and Γ⊥ are proportional to k3
z1 and kz1, respectively. This reflects the fact that

with a bigger decay factor (which implies the energy is more concentrated at
the interface), the transition rate is higher, and vice versa. Moreover, if we com-
pare equations 4.30 and 4.31, we see that Γ⊥ is also proportional to k2

x , which
indicates that when the dipoles of the emitters are perpendicular to the inter-
face, the larger the kx the higher the transition rate. In addition, the transition
rate decays with the distance of the emitter from the surface z, and is inversely
proportional to the longitudinal channel width Ly.

The transition rate is also connected to the transition frequency ωo = |E2−
E1|/h̄, where E2 and E1 represent the excited and ground state energies for a
two-level emitter respectively. The higher the ωo the lower the Γ‖ and Γ⊥. It is
also linked to the functions f (A+B), f (A−B), and | dQ

dω
| as well.

Because the transition rate is also related to the frequency of the surface
phonon polariton, to understand the properties of the transition rate, we plot
Γ‖/Γo‖ against ω/ωT , and Γ⊥/Γo⊥ against ω/ωT as shown in Fig 4.10. These
figures correspond to the results for the microscale structure in Fig 4.6. We
choose the channel width 10 µm, so that the deviation of the SPhP energy can
be ignored as mentioned previously. As can be seen from the plottings, for
a periodic micro-scale system, they have frequency gaps for SPhPs, by which
one can enhance the lifetime of the emitters by suppressing the release of ex-
citation energy. Also, when the frequency lies in the range of the excitation
frequency of the emitters, this will lead to enhanced de-excitation.

4.4 Conclusion

In this chapter, we have studied the surface phonon polaritons’ properties in
a nano-scale system with a periodic nanorod array. We found that surface
phonons on the periodic nanostructure hardly show any frequency band gaps.
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(a)

(b)

Figure 4.10: The plottings (a) and (b) show Γ‖/Γo‖ vs ω/ωT and Γ⊥/Γo⊥ vs
ω/ωT respectively. Parameters are based on Fig 4.6 for both panels: d = 10×
10−5 m, Lx = 1.0×10−5 m. ε1 = 1, the substrate is CsI with ωT = 7.54×1013 s−1,
and ωL = 10.05×1013 s−1. The emitters are located on the interface at z = 0.1d
at the point x = d/2, with Ly = 10−5 m.
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At the same time, we also investigated the surface modes’ property in a micro-
scale system. As anticipated, we found well folded dispersion curves with
band gaps. For a micro-system, we analysed how the dispersion curves change
by varying the parameters, such as the width of the rod, and demonstrated that
bands (band gaps) can be utilized to manipulate (stabilise) the quantum states
of an emitter. By applying the uncertainty principle, we found that the SPhPs
can exist only in the micro-scale system. In addition, when the frequency ap-

proaches the limit
√

(ε∞ω2
L/ω2

T +1)/(1+ ε∞), the variation of ω is slow, which
means with the increment of kx, the increasing speed of ω is gentle. This feature
allows large values of kx, which implies that the surface phonon polaritons oc-
cupy a small mode volume making possible strong coupling capabilities. Fur-
ther, the quantization of the field allows us to calculate the transition rates of
the surface modes interacting with emitters. We explored the general condi-
tion when the emitter resides in the vicinity of the interface, and studied two
specific examples; namely, when the dipole of the emitter is parallel or perpen-
dicular to the interface. The examples predict that in a micro-scale system, it is
feasible to carry out manipulation of quantum states; however, compared with
SPPs in a nano-scale system, the coupling is weaker.
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Chapter 5

Emitters coupled by surface exciton
polaritons on 1D periodic
micro-structure

In previous chapters, we have investigated SPPs and SPhPs interacting with
emitters located just above the planar interface between two dielectrics combed
by a nanorod/microrod array. In this chapter, we consider surface exciton
polaritons and study their dispersion relation within a similar structure. In
section 5.1, we explore the behaviour of the SEPs with the boundary condi-
tions being taken into account. A suitable system scale is also considered. The
dispersion relation will then be presented and compared with the dispersion
relation of SPPs in Chapter 3. Next, we present the results for the quantized
field and for the transition rate of emitters interacting with SEPs. We will show
that in practice, compared to SPPs and SPhPs, SEPs are more restricted for ma-
nipulating the quantum states of the emitters.

5.1 The field properties in the periodic-structure

In this section, we are briefly going to introduce the surface modes’ features.
For convenience, here we use the same model as Fig 3.1. As mentioned in
Chapter 3, the space above the interface is occupied by a vacuum of dielectric
constant ε1 = 1 and the space below by a medium of dielectric function ε2. On
the interface, along the x-direction, the rods are positioned in an array in a
channel of width Ly. It is worth mentioning that, the suitable channel width
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could be chosen by applying the uncertainty principle in the same way we did
in the previous chapters, as long as we know the typical SEP frequency. For
instance, for GaAs, the frequency of SEP is approximately 2.3× 1015 s−1 (see
Ref. [133]), in order that the deviation of can be ignored (suppose ∆ω/ω < 5%).
Then following the same method as in section 3.1, Chapter 3, we find that the
allowed minimal channel width is 1µm. For ZnO, the SEP frequency is around
8.2×1014 s−1 (see Ref. [134]), which allows a minimal channel width of nearly
4µm, when taking the frequency deviation to be negligible. Meanwhile, the
allowed channel width indicates that the demension of the system is in the
scale of micrometer. The width of each microrod is Lx, and the width of the
unit cell is d.

Surface exciton polaritons are modes propagating along the surface be-
tween a crystal and the adjacent medium; These surface modes decrease ex-
ponentially in amplitude with distance from the surface [95]. Following the
same considerations as in section 3.1, Chapter 3, the expressions of the surface
modes’ components are the same as previously:

E(n)
1ẑ = E1ze−kz1z−iωt [a(n)eikx(x−nd)+b(n)e−ikx(x−nd)], (5.1)

and
E(n)

1x̂ =
kz1E1z

ikx
e−kz1z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)]. (5.2)

For the magnetic field we have:

H(n)
1ŷ =−ωε0ε1E1z

kx
e−kz1z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)], (5.3)

Knowing the surface modes provides the opportunity to investigate the dis-
persion relation of the SEPs in our system.

5.2 Dispersion relation of surface exciton polaritons

on 1D interface

In view of the unique feature of surface exciton polaritons, in this section we
first present the relation between frequency and the in-plane wave vector; then
we calculate the SEPs dispersion relation with the periodicity of the system
being taken into account.
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Figure 5.1: Sketch of dielectric function with respect to frequency. [This figure
is adapted from A Kavokin et al. [91]]

5.2.1 Analysing the dispersion of SEPs

As in previous chapters, we take ε1 = 1. For a semiconductor, when the damp-
ing factor is neglected, we have ε2(ω,k) = εb[1+ωLT/(ωex−ω)] [133, 91]. Here
εb is the background dielectric constant when there is no exciton in the semi-
conductor; ωex is the exciton resonant frequency, and ωLT is the transverse-
longitudinal splitting. To analyse the dispersion relation kx =

ω

c

√
ε1ε2/(ε1 + ε2)

mentioned in Chapter 2, which is also true for SEPs, we can simplify the dis-
persion relation as kx =

ω

c

√
ε2/(1+ ε2). In order to see how ε2(ω) changes with

ω , we provide the sketch shown in Fig 5.1. The green hatched area of Fig 5.1
indicates the allowed frequency range for SEPs on the plane z = 0,

ωex < ω ≤ ωex +ωLT εb/(1+ εb). (5.4)

Also, kx can be rewritten as

kx =
ω

c

√
εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT
. (5.5)

It should be noted that the range of ω is:
(
ωex,ωex +ωLT εb/(1+ εb)

]
, and the

interval of ω (M ω = ωLT εb/(1+ εb) ) depends on two factors: ωLT and εb. We
provide a table giving the range of ω for several typical semiconductors in
Table 5.1 [135, 136, 137, 138, 139]. As can be seen for different materials, the
interval of ω varies substantially from material to material. For GaAs (ωex =

2.3017× 1015 s−1) [133], ωLT = 0.1215× 1012 s−1, and εb = 13.69, which means
that the allowed bandwidth is within [2301.7× 1012 s−1,(2301.7+ 0.11323)×
1012 s−1]; while for ZnO (ωex = 8.1626×1014 s−1) [134], ωLT = 7.596×1012 s−1,
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Table 5.1: The range of longitudinal-transverse frequency splitting of SEPs in
semiconductors. These results are obtained from M Wegener et al. [135]; M
Uemoto et al. [136]; M A Kaliteevski et al. [133]; J Wicksted et al. [138]; M
Grundmann [137]; and S F Chichibu et al.[139]

Material h̄ωLT/meV εb M ω in 1012 s−1 Reference
GaAs 0.08 13.69 0.113 Kaliteevski
ZnSe ≈ 1.3 8.1 ≈ 1.76 Wegener/Grundmann
CdS ≈ 2.0 9.38 ≈ 2.75 Wegener/Wicksted
ZnO 5.00 8.86 6.83 Uemoto/Chichibu
CuCl 5.65 5.56 7.28 Uemoto

and εb = 8.86, which indicates that the bandwidth of ω is [816.26× 1012 s−1,
(816.26+6.83)×1012 s−1].

5.2.2 The system’s dispersion relation

As in previous chapters, from the boundary condition across a microrod, at
x = nd, we have: E(n)

1ẑ = E(n+1)
1ẑ with

E(n+1)
1ẑ = E1ze−kz1z−iωt(a(n)eikx(x−(n+1)d)+b(n)e−ikx(x−(n+1)d))eiQd. (5.6)

Similarly, the current in the microrods implies that: H(n+1)
1ŷ −H(n)

1ŷ = σ(ω)LxE(n)
ẑ ,

with

H(n+1)
1ŷ =−ωε0ε1E1z

kx
e−kz1z−iωt(a(n)eikx(x−(n+1)d)−b(n)e−ikx(x−(n+1)d))eiQd. (5.7)

By substituting the corresponding components of the surface modes into the
two conditions, we find the dispersion relation:

cosQd− coskxd =−sinkxd
ω2

pnano
Lxkx

2ω2ε1
. (5.8)

We here present two examples to show how the dispersion relations ω/ωex

against Qd and ω/ωex against kx depend on the material. For a first exam-
ple (Fig 5.2), we take GaAs with the parameters [133] h̄ωex = 1.515eV(ωex =

2.3017× 1015s−1), h̄ωLT = 0.08meV(ωLT = 0.1215× 1012s−1), εb = 13.69 at 4K.
For a second example (Fig 5.3) we take ZnO with the parameters from Ref.
[136] and Ref. [134].

As shown in Fig 5.2, for GaAs, the range of ω/ωex, according to the cho-
sen parameters, is [1,1.00005]; By contrast, for ZnO (Fig 5.3), the range of ω/ωex

is much wider: [1,1.0084]. In practical applications, if the surface exciton po-
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(a)

(b)

Figure 5.2: Schematic diagrams show relations of ω/ωex against Qd (panel (a))
and ω/ωex against kx (panel (b)), at the interface of vacuum and GaAs. The
dimension of the system is: d = 15 µm, Lx = 1 µm.

laritons are used to stimulate emitters, the emitters must have a transition fre-
quency very close to the frequencies of the SEPs, and thus the wider the fre-
quency range of the SEPs, the more likely the resonance is to happen between
an emitter and an SEP. This indicates that compared to GaAs, ZnO is a better
choice for carrying out the coupling of a SEP to an emitter.

In addition, we know from Chapter 3 that the bandwidth of surface plas-
mons is far greater than that of exciton polaritons. Therefore if we wish to
use SEPs to stimulate emitters, their frequency has to be carefully matched to
that of the specific type of the emitter, which suggests a serious restriction for
flexible application using SEPs to manipulate the emitters’ transitions.

Nevertheless, as we can see from both Fig 5.2 and Fig 5.3, they have sim-
ilar features: with the increment of Qd, or ckx/ωex, the value of ω/ωex also in-
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(a)

(b)

Figure 5.3: Plottings of relations of ω/ωex against Qd (panel (a)) and ω/ωex
against kx (panel (b)) at the interface of vacuum and ZnO. The dimension of
the system is: d = 15 µm, Lx = 1 µm.
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creases. Also, with ω/ωex increasing, the gradient of both curves gets smaller,
which means at higher frequency, the SEP moves slower. This phenomenon is
common to SPP and SPhP.

It should be pointed out that the dispersion relation for SEPs does not
show zone folding in our system, whose dimension is close to the characteristic
length c/ωex. In fact, we come to the conclusion that where there is a restriction
of the system’s dimension, as happens in a relatively narrow band width (the
band-width of SEPs is even narrower than SPhPs), it is difficult to form the
folding for the dispersion relation.

5.3 Field quantization result and the interaction of

SEPs with emitters

In Chapter 3, we have discussed the quantization process with a detailed de-
scription, and also presented how we calculate the transition rate for surface
modes interacting with emitters. In this section, to avoid repetition, we present
the brief results of the electric field after being quantized, and of the associated
transition rates.

5.3.1 Field quantization result

Following the same quantization process as in Chap 3, section 3.3 (derivation
details can be found in Appendix B), we obtain the vertical and horizontal
components:

E1za(0) =

√√√√ h̄kz1k2
xc2

2Lyωεoε2
1

1[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] A2

A2 +B2 , (5.9)

and

E1zb(0) =

√√√√ h̄kz1k2
xc2

2Lyωεoε2
1

1[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] B2

A2 +B2 , (5.10)

where A = 1− eiQd+ikxd and B = 1− eiQd−ikxd . From eqs. 5.9 and 5.10 the exact
form of any corresponding wave component in the unit cell can be derived.
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For instance,

E(n)
1ẑ = E1ze−kz1z−iωt(a(n)eikx(x−nd)+b(n)e−ikx(x−nd))

= e−kz1z−iωt [E1za(0)eikx(x−nd)+E1zb(0)e−ikx(x−nd)]eiQnd

= e−kz1z−iωteiQnd

√√√√ h̄kz1k2
xc2

2Lyωεoε2
1

1[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)]√ f (A+B),

(5.11)

and

E(n)
1x̂ =

kz1

ikx
E1ze−kz1z−iωt(a(n)eikx(x−nd)−b(n)e−ikx(x−nd))

=
kz1

ikx
e−kz1z−iωt [E1za(0)eikx(x−nd)−E1zb(0)e−ikx(x−nd)]eiQnd

=
kz1

ikx
e−kz1z−iωteiQnd

√√√√ h̄kz1k2
xc2

2Lyωεoε2
1

1[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)]√ f (A−B),

(5.12)

where
√

f (A+B)=
√

A2

A2+B2 +
√

B2

A2+B2 , and
√

f (A−B)=
√

A2

A2+B2−
√

B2

A2+B2 . From
eqs. 5.11 and 5.12, when kx, kz1, and Q are known, for a certain structure of our
system with given materials, we can get all the information required about the
SEPs.

5.3.2 Transition rate of the emitter resonant with the SEPs

As mentioned in section 5.2, we know it is hard to observe the SEPs in our sys-
tem. In order to verify this point, we look at the transition rate of the emitters
interacting with SEPs in the system mentioned. We calculated the transition
rate in Chapter 3 when the emitter is resonant with the surface modes; here we
use the result from eq. 3.49:

Γ =
∫ 2π

h̄2 |〈i|dx| f 〉 ·E1x̂ + 〈i|dz| f 〉 ·E1ẑ|2|
dQ
dω
|δ (Q−Qo)dQ, (5.13)

where ~d = (dx,dz) is the electric dipole moment operator of the emitter, i and f

are the initial and final states of the emitter.

From eq. 5.8 we find:

dQ
dω

=
d sin(kxd)k′x +

Lxω2
pnano

2ε1
[

d cos(kxd)k′xkx
ω2 +

sin(kxd)k′x
ω2 − 2sin(kxd)kx

ω3 ]

sin(Qd)d
, (5.14)
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where k′x equals:

k′x =
1
c
[

√
εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT

+
ωεbωLT

2
√
[εb(ω−ωex−ωLT )][(1+ εb)ω− (1+ εb)ωex− εbωLT ]3

]. (5.15)

Then from equations 5.11 to 5.15, one obtains the result for the transition rate
for specific emitters with certain initial and final states. The transition rate has
the form:

Γ =
2π

h̄2 |〈i|dx| f 〉 ·E1x̂ + 〈i|dz| f 〉 ·E1ẑ|2|
dQ
dω
|Q=Qo . (5.16)

When the dipole is parallel to the surface, it becomes:

Γ‖ = |〈i|dx| f 〉|2
2c2k3

z1e−2kz1z

h̄Lyεoε2
1 ω

f (A−B)[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] |dQ
dω
|Q=Qo. (5.17)

While if the dipole is perpendicular to the surface, we find:

Γ⊥ = |〈i|dz| f 〉|2
2c2kz1k2

xe−2kz1z

h̄Lyεoε2
1 ω

f (A+B)[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] |dQ
dω
|Q=Qo. (5.18)

f (A−B) and f (A+B) are given by

f (A−B) = |

√
A2

A2 +B2 eikx(x−nd)−

√
B2

A2 +B2 e−ikx(x−nd)|2, (5.19)

and

f (A+B) = |

√
A2

A2 +B2 eikx(x−nd)+

√
B2

A2 +B2 e−ikx(x−nd)|2. (5.20)

If we introduce the free space emission rate Γo = |µ12|2ω3
o/3π h̄c3εo, where

µ12 = |〈i|~d| f 〉|, we respectively rearrange eqs. 5.17 and 5.18 more concisely:

Γ‖
Γo‖

=
6πc5k3

z1e−2kz1z

Lyε2
1 ωω3

o

f (A−B)[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] |dQ
dω
|Q=Qo |

dQ
dω
|Q=Qo, (5.21)

and

Γ⊥
Γo⊥

=
6πc5kz1k2

xe−2kz1z

Lyε2
1 ωω3

o

f (A+B)[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] |dQ
dω
|Q=Qo|

dQ
dω
|Q=Qo ,(5.22)

with Γo‖ = |µ12‖ |
2ω3

o/3π h̄c3εo and Γo⊥ = |µ12⊥|2ω3
o/3π h̄c3εo.
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(a)

(b)

Figure 5.4: Diagrams of relative transition rate (Γ‖/Γo‖ and Γ⊥/Γo⊥) versus
relative frequency (ω/ωex). This figure corresponds to Fig 5.2 with the same
parameters ωex, ωLT and dimension for GaAs. Ly = 1 µm.

Now we are in a position to obtain the relative transition rates with any
fixed parameters. Two examples for Γ‖/Γo‖ and Γ⊥/Γo⊥ against ω/ωex are
given in Fig 5.4 and Fig 5.5, for the materials GaAs and ZnO respectively. For
both Fig 5.4 and Fig 5.5, we suppose that Ly = 1 µm and Ly = 4 µm for each
figure, respectively. We set ωpnano = 10ωex for each system, and the emitters are
at the position z = 0.1d, x = 0.5d.

We notice the following features from Fig 5.4 and Fig 5.5:
(I). In both cases, when the dipole of the emitter is perpendicular to the in-
terface, the transition rates are larger than when the dipole is parallel to the
surface.
(II). Compared with SPPs and SPhPs, the range of the transition rate is much
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(a)

(b)

Figure 5.5: Diagrams of relative transition rate (Γ‖/Γo‖ and Γ⊥/Γo⊥) versus rela-
tive frequency (ω/ωex). The results in this figure correspond to a ZnO-vacuum
interface, with the same exciton resonant frequency ωex, transverse and longi-
tudinal splitting ωLT and dimension as Fig 5.3. Ly = 4 µm. (The curves in both
panels are not that smooth due to the range of Γ‖/Γo‖ or Γ⊥/Γo⊥ is smaller com-
pared to Fig 5.4, so that there are less points obtained by computer program.)
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narrower, which is due to SEPs
′
narrow frequency band.

(III). Both of the transition rates are monotone increasing functions.
It is apparent that, for such a narrow band-width of ω for SEPs, compared
with SPPs and SPhPs, it is more difficult to make the emitters resonant with
the surface modes.

5.4 Conclusion

In this chapter, we have investigated surface exciton polaritons interacting
with emitters just above an interface with embedded microrods. We studied
the features of the dispersion relations, and compared the relations obtained
for different conditions with different materials and dimensions of the sys-
tem. Further, the transition rates of an emitter interacting with the SEP were
discussed, and compared with the results of previous chapters. Finally, the
possible limits on manipulating quantum states by using SEPs to interact with
an emitter in our system were discussed.
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Chapter 6

Properties of surface modes within
a nanowire array

In the last 3 chapters, we have investigated the surface modes, including SPPs,
SPhPs, and SEPs, interacting with emitters in the vicinity of an interface sep-
arating vacuum and a dielectric medium. The investigations ranged from the
dispersion relation of the frequency against Bloch wave vector Q and wave
vector kx, to the quantization of the surface modes, and further to the transi-
tion rate when these modes interact with the emitters. In these chapters, we
used a system with a periodic array of nanorods at the interface, which could
be considered as a quasi-one-dimensional problem. However, in this chapter,
we study a new system in which nanowires are involved instead of nanorods.
At the interface between the vacuum and the dielectric medium, a periodic
nanowire-array is located with each wire parallel to the y-direction of Fig 6.1.
We will use surface plasmons as an example to explore the features of the sur-
face modes of the structure, including the dispersion relations.

In the first section, we will introduce the features of the system. Sec-
ondly, the dispersion relation of surface plasmon polaritons in the system will
be studied as well as the boundary conditions considered. Finally, we will
present the conclusion of our work on this unique nanowire array system.

6.1 The system’s properties

For the system shown in Fig 6.1, the media above and below the interface are
denoted by ε1 and ε2 respectively. One can see that the interface is combed
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Figure 6.1: Model of surface plasmons interacting with emitters within a
nanowire array. We choose the substrate as a dielectric medium, and the space
above is a vacuum. The nanowires have the width Lx, with a thickness Lz.
They are longitudinally extended along the y-direction, and parallel to each
other. The unit width is d, and the emitters are located in the vicinity of the
vacuum-dielectric interface.

with a periodic nanowire array. Often, a nanowire is a nanostructure with the
diameter of the order of a nanometer (10−9 meters); or alternatively, nanowires
can be defined as structures that have a thickness or diameter constrained to
tens of nanometers. In this chapter, we consider the width of the nanowires
Lx is sufficiently small that it can be ignored, and the length of the nanowires
is taken as infinity. In addition, the thickness Lz of the nanowire, compared
to the width of the unit cell, is negligible. Because of the surface plasmons’
property [107], we depict the surface modes ~E as a linear combination of the
forward and backward waves along the x-direction (~Eup, ~Edown represent the
field in vacuum and dielectric, respectively):

~Eup = e−kz1z+iky1y−iωt [~B(n)
1 eikx(x−nd)+~B(n)

2 e−ikx(x−nd)], (6.1)

and

~Edown = ekz2z+iky2y−iωt [~A(n)
1 eikx(x−nd)+~A(n)

2 e−ikx(x−nd)], (6.2)

where

~B(n)
1 = (x̂B(n)

1x , ŷB(n)
1y , ẑB(n)

1z ),

~B(n)
2 = (x̂B(n)

2x , ŷB(n)
2y , ẑB(n)

2z ),

~A(n)
1 = (x̂A(n)

1x , ŷA(n)
1y , ẑA(n)

1z ),

~A(n)
2 = (x̂A(n)

2x , ŷA(n)
2y , ẑA(n)

2z ). (6.3)
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Using the Maxwell equation,

∂ ~H
∂ t

=− 1
µ0µr

∇×~E, (6.4)

one can then obtain

~Hup =
e−kz1z+ikyy−iωt

iωµ0µr1

×{x̂[(ikyB(n)
1z +B(n)

1y kz1)eikx(x−nd)+(ikyB(n)
2z +B(n)

2y kz1)e−ikx(x−nd)]

−ŷ[(ikxB(n)
1z +B(n)

1x kz1)eikx(x−nd)+(−ikxB(n)
2z +B(n)

2x kz1)e−ikx(x−nd)]

+ẑ[(ikxB(n)
1y − iB(n)

1x ky)eikx(x−nd)− (ikxB(n)
2y + iB(n)

2x ky)e−ikx(x−nd)]}, (6.5)

and

~Hdown =
ekz2z+ikyy−iωt

iωµ0µr2

×{x̂[(ikyA(n)
1z −A(n)

1y kz2)eikx(x−nd)+(ikyA(n)
2z −A(n)

2y kz2)e−ikx(x−nd)]

−ŷ[(ikxA(n)
1z −A(n)

1x kz2)eikx(x−nd)− (ikxA(n)
2z +A(n)

2x kz2)e−ikx(x−nd)]

+ẑ[(ikxA(n)
1y − iA(n)

1x ky)eikx(x−nd)− (ikxA(n)
2y + iA(n)

2x ky)e−ikx(x−nd)]}. (6.6)

Here ~Hup and ~Hdown indicate the magnetic field in the vacuum and dielectric,
respectively.

6.2 Dispersion relation

In common with the other systems considered in the thesis our model here has
two types of boundary condition. The first is related to the interface separating
the two different media ε1 and ε2; the second is that between the two neigh-
bouring unit cells where there is a nanowire. So we treat these two conditions
separately.

6.2.1 Electromagnetic boundary condition

Because the tangential components of the electric field (as shown in Fig 6.2)
are continuous at the boundary [70], E1x̂ = E2x̂ and E1ŷ = E2ŷ on the interface
(z = 0).

This means:

(B(n)
1x eikx(x−nd)+B(n)

2x e−ikx(x−nd))eiky1y = (A(n)
1x eikx(x−nd)+A(n)

2x e−ikx(x−nd))eiky2y, (6.7)
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Figure 6.2: Sketch of tangential components of the electric field at the interface
z = 0. Ex̂ and Eŷ represent the x-component and y-component of the electric
field.

and

(B(n)
1y eikx(x−nd)+B(n)

2y e−ikx(x−nd))eiky1y = (A(n)
1y eikx(x−nd)+A(n)

2y e−ikx(x−nd))eiky2y. (6.8)

By comparing both sides of eqs. 6.7 and 6.8 for any value of x and y, we obtain:

B(n)
1x = A(n)

1x

B(n)
1y = A(n)

1y

B(n)
2x = A(n)

2x

B(n)
2y = A(n)

2y (6.9)

Moreover, if we substitute the above results into eqs. 6.5 and 6.6, we obtain
ky1 = ky2.

As the reference [70] points out, for finite conductivity, the tangential
components of the magnetic intensity are continuous at all points across the
interface between the two media, thus we obtain H1x̂ = H2x̂ and H1ŷ = H2ŷ. For
H1x̂ = H2x̂, we have

e−kz1z

iωµ0µr1
[(ikyB(n)

1z +B(n)
1y kz1)eikx(x−nd)+(ikyB(n)

2z +B(n)
2y kz1)e−ikx(x−nd)]

=
ekz2z

iωµ0µr2
[(ikyA(n)

1z −A(n)
1y kz2)eikx(x−nd)+(ikyA(n)

2z −A(n)
2y kz2)e−ikx(x−nd)]. (6.10)

This produces:
ikyB(n)

1z +B(n)
1y kz1

µr1
−

ikyA(n)
1z −A(n)

1y kz2

µr2
= 0, (6.11)
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and
ikyB(n)

2z +B(n)
2y kz1

µr1
−

ikyA(n)
2z −B(n)

2y kz2

µr2
= 0. (6.12)

In addition, for H1ŷ = H2ŷ, we obtain:

e−kz1z

iωµ0µr1
[(ikxB(n)

1z +B(n)
1x kz1)eikx(x−nd)+(−ikxB(n)

2z +B(n)
2x kz1)e−ikx(x−nd)]

=
ekz2z

iωµ0µr2
[(ikxA(n)

1z −A(n)
1x kz2)eikx(x−nd)− (ikxA(n)

2z +A(n)
2x kz2)e−ikx(x−nd)], (6.13)

which produces

ikxB(n)
1z +B(n)

1x kz1

µr1
−

ikxA(n)
1z −A(n)

1x kz2

µr2
= 0, (6.14)

and
−ikxB(n)

2z +B(n)
2x kz1

µr1
+

ikxA(n)
2z +A(n)

2x kz2

µr2
= 0. (6.15)

We may notice that, eqs. 6.7 and 6.8 have 12 unknown quantities, and we
have so far eqs. 6.11, 6.12, 6.14 and 6.15, to determine these quantities, we
need 8 more equations to find the solutions. We then apply another Maxwell’s
equation, ∇·~E = 0, which will bring us ∇·~Eup = 0 and ∇·~Edown = 0.

From eq. 6.1 by applying ∇·~Eup =
∂E1x
∂x +

∂E1y
∂y + ∂E1z

∂ z = 0, we have:

ikxB(n)
1x + ikyB(n)

1y − kz1B(n)
1z = 0, (6.16)

and
−ikxB(n)

2x + ikyB(n)
2y − kz1B(n)

2z = 0. (6.17)

Also, ∇·~Edown =
∂E2x
∂x +

∂E2y
∂y + ∂E2z

∂ z = 0. Substituting it into eq. 6.2, we get:

ikxB(n)
1x + ikyB(n)

1y + kz2A(n)
1z = 0, (6.18)

and
−ikxB(n)

2x + ikyB(n)
2y + kz2A(n)

2z = 0. (6.19)

Now let us look at the boundary condition across the nanowire. At this
point, the continuity of the tangential components of the electric and the mag-
netic field must be satisfied. Applying the boundary condition across the
nanowire shown as in Fig 6.3 (here we choose x = (n+ 1)d and z = 0 for sim-
plicity), we have: E1x̂n = E1x̂(n+1), which produces:
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Figure 6.3: Sketch showing the application of Faraday’s law at the interface of
two media. As Faraday’s law requires that the line integral of the electric field
along the brown loop (which is in xy plane) is zero implying that

∮
~E·d~l = 0

(because there is no magnetic field through z-direction at the point x=(n+1)d).
We suppose the loop is a rectangle of length δ` along y-direction, and width δ t
along x-direction.

B(n)
1x f +B(n)

2x f̄ = B(n)
1x g+B(n)

2x g, (6.20)

where f = eikxd and g = eiQd . Similarly, because E1ŷn = E1ŷ(n+1), we have:

B(n)
1y f +B(n)

2y f̄ = B(n)
1y g+B(n)

2y g. (6.21)

Suppose now that a current flows through the nanowire which is as-
sumed to have an ideal conductivity [70], then a discontinuity (shown in Fig
6.4) in the magnetic field intensity components at the point x = (n+ 1)d must
be taken into account: H1x̂n−H2x̂n = σ(ω)EŷnLz. Here σ(ω) = −iωεnano(ω) is
the conductivity of the nanowire’s material and εnano(ω) is the corresponding
dielectric function. Then one can obtain:

− f AB(n)
1x + f̄ AB(n)

2x + f BB(n)
1y + f̄ BB(n)

2y = 0, (6.22)

where A = kxky(C1/kz1+C2/kz2) and C j = 1/iσωµ0µ j ( j = 1,2); while B =C1kz1+

C2kz2−C1k2
y/kz1−C2k2

y/kz2−1.
Moreover, H1x̂n−H1x̂(n+1) = 0, from which we get:

−M( f −g)B(n)
1x +M( f̄ − f )B(n)

2x +( f −g)NB(n)
1y +( f̄ −g)NB(n)

2y = 0, (6.23)

where M = kxky/kz1 and N = kz1− ky/kz1.

In order to simplify the calculation, we now assume that B(n)
1x = 1. Then

B(n)
2x = ( f − g)/(g− f̄ ) = α . Thus from eq. 6.23 one can obtain f = g, which
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Figure 6.4: Schematic diagram which shows application of Ampere’s law at
the interface of two different media. As there exists a current through the
nanowire inside the brown rectangular loop (which is in xz plane), a discon-
tinuity appears between the H1x̂n and H2x̂n:

∮
~H·d~l = σEŷn. The loop is δ` long

in the x-direction, and δ t long in the z-direction.

implies
kx = Q+2mπ/d, (6.24)

where m is the integer equal or greater than zero, namely, 0,1,2,3, .... Substi-
tuting f = g into eq. 6.22, we can obtain the relation of B(n)

1y and B(n)
2y in terms of

f , g and α .

6.2.2 Dispersion relation

As we pointed out in Chapter 2, at the interface of two different dielectric me-
dia, the following relation has to be satisfied [140]:

ε1

kz1
+

ε2

kz2
= 0. (6.25)

It gives us ε1k2
z2 = ε2k2

z1; also k2
zi = k2

x + k2
y − εiω

2/c2, (i=1,2). Because kx = Q+

2mπ/d, we can therefore obtain

(Q+2mπ/d)2 + k2
y =

ε1ε2ω2

(ε1 + ε2)c2 . (6.26)

Let ε1 = 1 and ε2 = 1−ω2
p/ω2, which is the dielectric function for metal, and

write K2
m = (Q+ 2mπ/d)2 + k2

y . By substituting ε1 and ε2 the into eq. 6.26 with
kz1 and kz2 eliminated, we find

ω
4− (ω2

p +2c2K2
m)ω

2 +ω
2
pc2K2

m = 0. (6.27)
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From this we obtain

ω
2 =

ω2
p +2c2[(Q+2mπ/d)2 + k2

y ]±
√

ω4
p +4c4[(Q+2mπ/d)2 + k2

y ]
2

2
. (6.28)

Now if we introduce a characteristic length do = c/ωp, we can rewrite eq. 6.28
as:

ω2

ω2
p
=

1+2[(Q̃+2mπ d̃)2 + k̃2
y ]±

√
1+4[(Q̃+2mπ d̃)2 + k̃2

y ]
2

2
, (6.29)

where Q̃ = Qdo, d̃ = do/d and k̃y = kydo. As for the range of ω , it must satisfy eq.
6.26. Also the condition mentioned in Chapter 3, that 0 < ω < ωp/

√
2, needs to

be met. From eq. 6.28, one sees the SP frequency is determined by five param-
eters: Bloch wave vector Q, the unit cell width d, the positive integer m, wave
component ky, and the plasma frequency of the substrate ωp. More details are
shown in the 3D figures Fig 6.5, Fig 6.6, Fig 6.7 and Fig 6.8 respectively. Taking
the variables of eq. 6.26 into account, the figures Fig 6.5, Fig 6.6, Fig 6.7 and
Fig 6.8 are plotted in 3D, which demonstrate the dispersion of ω/ωp against Q

as well as ky for different m. The influence of these factors can be summarized
as follows:
(a) There are two branches of the SP frequency, in the dispersion relation of ω

against Q, ky or d once we have selected the material of the dielectric medium.
(b) For given d and m, as indicated in eq. 6.26, ω2 is quadratic in Q or ky.
(c) Fixing Q and ky, we find that ω has discrete values with respect to m.
(d) When m = 0, Q and ky play equivalent roles in the dispersion relation eq.
6.26.
(e) The dispersion curve ω/ωp versus Q̃ or k̃y is similar to the dispersion rela-
tion curve (Fig 3.3) when the interface is between vacuum and metal.
(f) In our system, Q takes the place of kx, especially when m = 0. The dispersion
curve, as we can see from Fig 6.5, exhibits the same feature as Fig 3.3.
(g) We find, with m increasing, Q̃ and ky are confined to areas as displayed in
Figs 6.5, 6.6, 6.7 and 6.8 for m = 0,1,2,3 respectively. Specifically, for Q̃, with
m increasing, its available range is getting smaller; it is also true for ky which
is reflected in eq. 6.26 as ky and Q̃ have a quasi-equivalent role. Still from eq.
6.26, for certain ω , if m increases, Q and ky have to become smaller to satisfy
the equation.

(h) The largest value for m is mmax =
dω

πc

√
ω2−ω2

p
2ω2−ω2

p
, and occurs when the value of

Q and ky are zero, which means the allowed area is then a point.

In order to grab a clear opinion of the dispersion relations, we here also
present the 2D plottings in terms of ω/ωp versus Q̃ and k̃y. We first explore
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Figure 6.5: 3D plotting showing allowed range for ω/ωp versus Q̃ and k̃y when
m = 0 (m is the integer in eq. 6.28) . Q̃ = Qdo, k̃y = kydo, and the characteristic
length is do = c/ωp

Figure 6.6: 3D plottings showing available range for ω/ωp versus Q̃ and k̃y
when m = 1. Q̃, k̃y have the same meaning as in Fig 6.5.
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Figure 6.7: 3D plotting illustrating the relation ω/ωp versus Q̃ and k̃y when
m = 2. Q̃, k̃y have the same meaning as in Fig 6.5.

Figure 6.8: 3D plotting exhibiting the relation ω/ωp versus Q̃ and k̃y when
m = 3. Q̃, k̃y have the same meaning as in Fig 6.5.
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Figure 6.9: Plotting of ω/ωp versus k̃y. The curves from the bottom to the top,
represent Q̃ = 0 and Q̃ = π alternately. We choose a parameter d̃ = 0.4 which is
close to the range of visible light wavelength. The hatched area represents the
allowed regions. The right side zoomed-in inset shows the whole range of the
dispersion relation, in which the lowest branch represents m = 0; this branch is
the same as when the surface plasmon runs along the interface of the vacuum
and metal.

two plottings concerning ω/ωp versus k̃y. The first one, shown as Fig 6.9,
which exhibits bands as anticipated. The properties shown in Fig 6.9 match
those from Fig 6.5 to Fig 6.8. For example, with m increasing, k̃y is confined to
higher values with respect to ω/ωp. However, from Fig 6.5 or such Fig 6.6, we
could hardly see the bands or band gaps, while on contrast, 2D plottings ad-
vantage to show the band gaps. In addition, when m increases, the bands and
the band gaps get narrower. As we can imagine, when m goes to infinite, the
up branches except the lowest branch will merge together to the limit, namely:
ω/ωp→ 1/

√
2, as described in Chap 2. The second one, labelled as Fig 6.10, can

be compared with Fig 6.9. We find that when d̃ increases, the corresponding
branches of the dispersion curves also level up.

It is also worth to take a look on the relation ω/ωp versus Q̃ for fixed k̃y.
Fig 6.11 depicts when we force k̃y = 0, the relation between ω/ωp and Q̃. It can
be seen that Fig 6.11 has the same trends as Fig 6.5, however, one point which
in Fig 6.5 can not be easily seen is that, when k̃y becomes larger and larger
(shown as in Fig 6.12), the lowest brance of the dispersion curves level up to
higher values, which implies larger k̃y occupy narrower bands (or narrower
band gaps).
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Figure 6.10: Plotting of ω/ωp versus k̃y with different parameter d̃ = 1.4.

Figure 6.11: Plotting of dispersion relation ω/ωp versus Q̃ with the param-
eters d̃ = 0.4 and k̃y = 0. The curves from the bottom to the top, represent
m = 0,1,2, ... successively. The plotting contains the panel which shows the
whole range of the dispersion relation.
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(a)

(b)

Figure 6.12: Schematic panels for comparison with Fig 6.11. Parameter k̃y is
choosen as 1 and 2 for panel (a) and panel (b) respectively.
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6.3 Conclusion

In this chapter, we have studied the SPPs properties in a new system in which
the nanowires are located parallel to the interface. We find that in such a sys-
tem, the dispersion relation is related to the Bloch wave vector Q, the wave
component ky, as well as the unit cell width d. The most special feature of these
SPPs is that the frequency ω has discrete values in this structure. This feature,
to some degree, has been verified by the experiments done by Mischok, etc.
[116]. Compared with that experimental result, our theoretical results demon-
strate the surface modes’ property including the wave’s amplitude, phase ve-
locity, frequency, and the dispersion relation, etc.

However, should other elementary excitations be used, such as SPhPs or
SEPs, they could yield new results, including the dispersion relations in such
a system.
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Summary and Conclusions

In our work, we have carried out extensive investigation into surface polari-
tons and their interactions with emitters in a one-dimensional periodic system
of nano-scale or micro-scale. We discovered that in each system, surface modes
exhibit band structures which are controllable by varying the parameters of the
system, such as the properties of the materials, the dimension of the structure
and the density of the rods. Due to the particular characteristics of each type
of surface mode, we have presented the related discussions separately.

For surface plasmon polaritons, because of their associated characteristic
length, we set up a system of nanoscale size. We found that in a periodic nanos-
tructure, the surface plasmon polaritons at the interface between the vacuum
and metal, has frequency bands which lie entirely to the right of the light line,
and are separated into several segments. At low frequency, their behaviour
is similar to photons. While at high frequency, by contrast, their behaviour
is similar to phonons. Further to this, surface plasmon polaritons have fre-
quency band gaps and their gap width is determined by the unit cell of the
periodic array of nanorods, the plasma frequency of the substrate, the plasma
frequency of the nanorods, as well as the height of the nanorods themselves.
We discovered that when the frequency is higher, the transition rate of the
emitter interacting with the surface plasmon polaritons is higher, which im-
plies that when the surface plasmon polaritons are like phonons, the coupling
is considerably stronger. This property implies that, the periodic nanorod ar-
ray could be useful for quantum state manipulation. In addition, when SPPs
behave like phonons, their lifetimes are longer, which implies these SPPs in-
teracting with emitters, the interaction time is longer. This should provide
a good opportunity to control the transitions of the excited states to ground
states and vice versa for the emitter. For lower frequencies, the correspond-
ing wavevector are smaller, corresponding to waves which are photon-like. In

92



Chapter 7 Summary and Conclusions

this range, compared to the high frequencies, the coupling is much weaker.
Our findings also indicated that we may be able to manipulate the quantum
states flexibly by switching on or off the stimulating field in the resonance fre-
quency range of the emitter; or by increasing the frequency to the edge of the
gap, where the coupling with the emitter ends. In addition, the transition rate
is also connected to the spontaneous transition frequency determined by the
type of emitter and to its excited state and ground state energy difference.

For surface phonon polaritons, we found difference from surface plas-
mon polaritons. Surface phonon polaritons on a one-dimensional array of pe-
riodic nanostructures exhibit frequency bands but hardly show any frequency
band gaps. The whole allowed frequency interval of surface phonon polariton
is located in a narrow region which is determined by the transverse and longi-
tudinal phonon frequencies, and by the high-frequency limit of the dielectric
function. Moreover, the width of the unit cell decides the starting point of dis-
persion of the frequency against Bloch’s wavevector. In extreme cases, when
the width of the unit cell is very large compared to the height of the nanorods
or when the height of the rods is zero, the model’s dispersion relation matches
very well the situation of an interface separating a vacuum and a dielectric
medium in the absence of an array of nanorods.

A key point is that for surface phonon polaritons, the characteristic length
is in the micrometer range, therefore, we also investigated the properties of
surface phonon polaritons in a micro-scale system. At this length scale the fre-
quency band structure does show band gaps. We highlighted the findings as
follows: when the height of the rods is smaller, the frequency band gaps are
narrower and vice versa. By adjusting the height of the rods, we are able to
optimise the conditions for the interaction between surface phonon polaritons
and emitters. In contrast to the dispersion relation obtained in a nano-scale
system, the dispersion curves are divided into several sections in a micro-scale
system. With the increment of the frequency, the gaps in frequency become
narrower. However, the whole range of the frequency of surface phonon po-
laritons remains the same. As such, with the increment of the frequency, the
gradient of the dispersion curve became smaller, even close to zero, indicating
that surface phonon polaritons move more slowly at higher frequencies.

As for the interaction of the emitter with surface phonon polaritons, we
discovered that with a bigger surface phonon polariton decay factor kz1, the
transition rate is higher, and vice versa. We found that the transition rate is
proportional to the horizontal wavevector component kx, which indicates that
when the dipoles of the emitters are perpendicular to the interface, the larger
the kx, the higher the transition rate. In addition, the transition rate decays with
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the distance of the emitter from the vacuum-semiconductor interface, and is in-
versely proportional to the lateral width of the system. We also found that for
the same resonant frequency of the emitter and the surface phonon polariton,
in a nano-scale system, the coupling is much stronger than in a micro-scale sys-
tem under the same condition. Therefore, for a micro-scale system, the lifetime
of the emitters can be enhanced by holding the release of excitation energy. Be-
sides, when the surface phonon polariton frequency lies in the range of the
excitation frequency of the emitters, the de-excitation is enhanced.

We next turned to study surface exciton polariton. By considering us-
ing typical semiconductors in the structure, we found that the frequency range
of surface exciton polaritons depends on the background dielectric constant,
exciton resonant frequency and the transverse-longitudinal exciton splitting.
However, compared to the surface plasmon polaritons and surface phonon po-
laritons, the bandwidth of surface exciton polaritons is much narrower. Thus
in practice, for surface exciton polaritons coupling with emitters, the type of
the emitters must have a transition frequency within a very narrow range and
very close to the frequencies of the surface exciton polaritons. Therefore it re-
stricts the flexibility in using surface exciton polaritons to manipulate emitters’
transitions.

Nevertheless, we discussed the dispersion relations of the surface mode
frequency against Bloch’s wavevector, and the surface mode frequency against
the horizontal wavevector component. For both dispersion curves, with fre-
quency increasing, the gradient of both curves gets smaller, which means at
higher frequency, the surface exciton polariton moves slower. This phenomenon
is common to surface plasmon polaritons and surface phonon polaritons. How-
ever, the dispersion relation for surface exciton polaritons did not show band
folding, even for a system with dimensions close to the characterstic length as-
sociated with surface exciton polaritons. This is due to the allowed frequency
band-width is relatively narrow and hence it is difficult to form the folding for
the dispersion relation as the corresponding Q vector never reaches the zone
boundary.

As for the transition rates of the emitters interacting with surface exciton
polaritons, we discovered that when the dipole of the emitter is perpendicular
to the interface the transition rate is larger than when the dipole is parallel to
surface. Compared with SPPs and SPhPs, the range of values of transition rate
is much narrower, which is the result of the narrow frequency band of SEPs.
The transition rates can generally be assumed to be a monotonic increasing
function of frequency. From all these findings we realized that surface exci-
ton polaritons, which have such a narrow band-width compared with surface
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plasmon polaritons and surface phonon polaritons, it would be more difficult
to make the emitters resonant with surface modes.

In the Chapter 6, we analysed surface plasmon polaritons in a 2D pe-
riodic system in which parallel nanowires are positioned at the interface be-
tween the vacuum and the metal. We explored the dispersion relations and
found a special feature of these SPPs, namely, that the allowed frequencies ω

are discrete. Moreover, we discovered that the dispersion relation of ω against
Q and ky with fixed unit cell width d, is limited by the positive integer m, by
which means when m approaches to its maximum, the existence of Q and ky

turns smaller, till it becomes zero when m = mmax. All these characteristics
were reflected by the plottings presented.

Over the course of this work, we have carried out a detailed investiga-
tion into various surface modes and their interaction with emitters close to
interface with the periodic structure. We found that all these surface modes,
exhibit frequency bands. For the surface plasmon polariton, we can find wide
band-gaps for appropriate dimensions of the structure together with suitably
selected materials. While for surface phonon polaritons, the frequency bands
are narrower compared with surface plasmon polaritons. When the periodic
structure is on the scale of SPhP’s characteristic length, the dispersion curves
with band-gaps also exist. However, by comparison with surface plasmon
polaritons and surface phonon polaritons, the frequency range of surface exci-
ton polaritons is much more narrower, thus hardly can we find the frequency
band-gaps. Also, the possibility of the emitters interacting with surface exciton
polaritons, is more restricted than for surface plasmon polaritons and surface
phonon polaritons. The transition rates, for either surface plasmon polaritons,
surface phonon polaritons or surface exciton polaritons interacting with the
emitter, are generally monotonic increasing functions of the frequency. How-
ever for surface plasmon polaritons and surface phonon polaritons, the rates
are piecewise functions of frequency due to the band-gaps. In addition, as the
frequency range may vary, we pointed out that a wider frequency range pro-
vides more flexibility to control the manipulation of the interaction of surface
modes with the emitters.

Our work has focused on surface modes interacting with the emitters
located in the unit cells of a periodic structure, which may lead to a way of
implementing scalable quantum information processing. For future work it
would be worth studying the entanglement between the emitters located in
different unit cells on the same side of the interface or even on opposite sides
of the interface, which could lead to potential quantum information processing
schemes.
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A.1

The original dispersion relation for surface plasmons in the periodic structure
is:

cosQd− coskxd =−sinkxd
ω2

pnano
δ`kx

2ω2ε1
. (A.1)

As for the dielectric functions, they satisfy the dispersion relation:

kx =
ω

c

√
ε1ε2

ε1 + ε2
. (A.2)

Where ε1 = 1, and ε2 = 1−ω2
pε2

/ω2. After some rearrangement we obtain:

cosQd = cos

Ω

√
Ω2−1

2Ω2−1
d̃

−sin

Ω

√
Ω2−1

2Ω2−1
d̃

√ Ω2−1
2Ω2−1

δ l/(2Ω

ω2
pε2

ω2
pnano

ε1do).

(A.3)
Then the differential of left side is

(cos(Qd))′ =−d sin(Qd); (A.4)

for the right side, in order to make it clear, we will separate it into 3 steps. First,

we calculate the derivative of k̃x = Ω

√
Ω2−1

2Ω2−1 ,

k̃′x =

√
Ω2−1

2Ω2−1
+Ω

√ Ω2−1
2Ω2−1

′ (A.5)

while
(√

Ω2−1
2Ω2−1

)′
equals:

√ Ω2−1
2Ω2−1

′ = ( Ω2−1
2Ω2−1

)−1
2 2Ω

(2Ω2−1)2 =
2Ω

(2Ω2−1)3/2(Ω2−1)1/2 . (A.6)
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Thus we obtain k̃′x:

k̃′x =

√ Ω2−1
2Ω2−1

+
2Ω2

(2Ω2−1)3/2(Ω2−1)1/2

 . (A.7)

So the first term of the right side of eq. (1) becomes:

(cos(Ω

√
Ω2−1
2Ω2−1

d̃))′ = (cos(k̃xd̃))′ =−d̃ sin(k̃xd̃)k̃′x. (A.8)

As for the second term of the right side of eq. (1), we write it in a neater way:

−sin(k̃xd̃)k̃x/(2T Ω
2), (A.9)

where T =
ε1doω2

pε2
δ`ω2

pnano
, so the derivation of −sin(k̃xd̃)k̃x/(2T Ω2) becomes:

(−sin(k̃xd̃)k̃x/2T Ω
2)′ =− 1

2T
[d̃ cos(k̃xd)k̃′x

k̃x

Ω2

+
sin(k̃xd̃)

Ω2 k̃′x− (2
sin(k̃xd̃)k̃x

Ω3 ))]. (A.10)

Equating both sides, we have:

[−d sin(Qd)]dQ = (−d̃ sin(k̃xd̃)k̃′x−
1

2T
[d̃ cos(k̃xd)k̃′x

k̃x

Ω2 (A.11)

+
sin(k̃xd̃)

Ω2 k̃′x− (2
sin(k̃xd̃)k̃x

Ω3 ))])dΩ,

thus we obtain:

dQ
dΩ

= [d̃ sin(k̃xd̃)k̃′x +
d̃ cos(k̃xd̃)k̃xΩk̃′x + sin(k̃xd̃)Ωk̃′x−2sin(k̃xd̃)k̃x

2T Ω3 ]/d sin(Qd).

(A.12)

Because dQ
dΩ

= dQ
d ω

ωε2

= ωε2
dQ
dω

, we finally get:

dQ
dω

= [d̃ sin(k̃xd̃)k̃′x +
d̃ cos(k̃xd̃)k̃xΩk̃′x + sin(k̃xd̃)Ωk̃′x−2sin(k̃xd̃)k̃x

2T Ω3 ]/d sin(Qd)ωε2.

(A.13)
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A.2

The dispersion relation for the surface phonon polaritons in the periodic struc-
ture is:

cosQd− coskxd =−sin(kxd)
ω2

pnano
δ`kx

2ω2ε1
. (A.14)

Rearranging the equation, we get

cosQd = cos(kxd)− sin(kxd)
ω2

pnano
δ`kx

2ω2ε1
. (A.15)

The derivative on the left side first gives:

cos′Qd =−sin(Qd)d; (A.16)

the right side has two terms: the first term gives:

cos′(kxd) =−d sin(kxd)k′x, (A.17)

the second term will be(
−sin(kxd)

ω2
pnano

δ`kx

2ω2ε1

)′
=−

ω2
pnano

δ`

2ε1

(
sin(kxd)kx/ω

2)′
=−

ω2
pnano

δ`

2ε1

[
d cos(kxd)k′xkx/ω

2 + sin(kxd)k′x/ω
2−2sin(kxd)kx/ω

3]
=−

ω2
pnano

δ`

2ε1ω3

[
dωkx cos(kxd)k′x +ω sin(kxd)k′x−2sin(kxd)kx

]
. (A.18)

Putting together the right side and the left side:

(−sin(Qd)d)dQ =

(−d sin(kxd)k′x−
ω2

pnano
δ`

2ε1ω3 [dωkx cos(kxd)k′x +ω sin(kxd)k′x−2sin(kxd)kx])dω.

Thus we obtain:

dQ
dω

=
d sin(kxd)k′x +

ω2
pnano δ`

2ε1ω3 [dωkx cos(kxd)k′x +ω sin(kxd)k′x−2sin(kxd)kx]

sin(Qd)d
.(A.19)

(A.20)

Finally, as

kx =
ω

c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T
, (A.21)
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we obtain:

k′x =
1
c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T

+
ω

c

(√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T

)′

=
1
c

√
ε∞(ω2−ω2

L)

(1+ ε∞)ω2− ε∞ω2
L−ω2

T

+
1
c

ω2ε∞(ω
2
L−ω2

T )√
ε∞(ω2−ω2

L)[(1+ ε∞)ω2− ε∞ω2
L−ω2

T ]
3
. (A.22)

A.3

For sake of simplicity, we suppose the dielectric functions to be ε1 = 1, and
ε2(ω,k) = εb

[
1+ ωLT

ωex−ω−iγ

]
. Here εb is the background dielectric constant when

there is no exciton in the semiconductor, ωex is the exciton resonant frequency,
γ is the non-radiative decay rate of the exciton, and ωLT is the transverse-
longitudinal splitting. To simplify the calculation, we ignore the decay rate
γ , thus ε2 = εb

ω−ωex−ωLT
ω−ωex

, then kx can be rewritten as below:

kx =
ω

c

√
εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT
. (A.23)

From the dispersion relation (eq. 5.14), we have:

cosQd− coskxd =−sinkxd
ω2

pnano
δ`kx

2ω2ε1
. (A.24)

The differential on the left side is (cosQd)′ =−d× sin(Qd)dQ; on the right side,
it becomes:(

−sin(kxd)dk′x−
δ`ω2

pnano

2ε1
[
d cos(kxd)k′xkx

ω2 +
sin(kxd)k′

ω2 − 2sin(kxd)kx

ω3 ]

)
dω

(A.25)
By setting the two sides of the derivative of eq. 5.14 equal to each other, we
find dQ

dω
:

dQ
dω

=
d sin(kxd)k′x +

δ`ω2
pnano

2ε1
[

d cos(kxd)k′xkx
ω2 +

sin(kxd)k′x
ω2 − 2sin(kxd)kx

ω3 ]

sin(Qd)d
, (A.26)
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where k′x equals:

k′x =
1
c

√
εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT

+
ω

2c

(
εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT

)−1
2 εbωLT

[(1+ εb)ω− (1+ εb)ωex− εbωLT ]2

=
1
c

√
εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT

+
ωεbωLT

2c
[εb(ω−ωex−ωLT )]

−1
2

[(1+ εb)ω− (1+ εb)ωex− εbωLT ]
3
2

=
1
c

√
εb(ω−ωex−ωLT )

(1+ εb)ω− (1+ εb)ωex− εbωLT

+
ωεbωLT

2c
1√

[εb(ω−ωex−ωLT )][(1+ εb)ω− (1+ εb)ωex− εbωLT ]3
. (A.27)
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In general, the total energy for electromagnetic field in a system with volume
V is

W =
1
2

∫ [d(εω)

dω
~E2 +

d(µω)

dω
~H2
]

dV, (B.1)

where ε = ε0εr, and µ = µ0µr, thus we can deal with at least three different
conditions:

1. in vacuum, for which εr = 1, µr = 1, thus ε = ε0εr = ε0, µ = µ0µr = µ0,
then we know the total energy is

W =
1
2

∫ [
ε0~E2 +µ0~H2

]
dV. (B.2)

2. in nonmagnetic dielectric, for which ε = ε(ω), µr = 1, then the total
electromagnetic field energy is

W =
1
2

∫ [d(εω)

dω
~E2 +µ0~H2

]
dV. (B.3)

3. in magnetic medium, for which µ = µ(ω), ε = constant, we have

W =
1
2

∫ [
ε~E2 +

d(µω)

dω
~H2
]

dV. (B.4)

These results can be referred for calculating the Hamiltonian for the quan-
tized electromagnetic field as well.

B.0.1 Hamiltonian in vacuum

Quantization theory indicates that, in vacuum, the electric and magnetic fields
contribute the same to the total Hamiltonian:

Ĥ~E =
1
2

∫
εo|~E|2d~r = Ĥ~H =

1
2

∫
µo|~H|2d~r. (B.5)
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Then, to calculate the total Hamiltonian, we need only the magnetic field ex-
pression (or the electric field expression). As we can see the form containing
the magnetic field (eq. 3.12) is more concise than the electric field (eq. 3.8 or eq.
3.14), so to calculate the total Hamiltonian, choosing the magnetic component
is an easier option. We write the magnetic component as follows:

~H =
∫
( f (~k,~r)âQ +H.C)dQ, (B.6)

where f (~k,~r)âQ = H(n)
1ŷ âQ, âQ is the annihilation operator, and H.C stands for

Hermitian conjugate of f (~k,~r)âQ. The annihilation and creation operator sat-
isfy the commutator relationship: [âQ, â

†
Q′] = δ (Q−Q′). While the magnetic

field is:

H(n)
1ŷ =−ωε0ε1E1z

kx
e−kz1z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)], (B.7)

thus

f (~k,~r)âQ =−ωεoε1

kx
E1ze−kz1z−iωt(a(n)eikx(x−nd)−b(n)e−ikx(x−nd))âQ, (B.8)

and

f ∗(~k,~r)â†
Q =−ωεoε1

kx
E∗1ze

−kz1z+iωt(a?(n)e−ikx(x−nd)−b?(n)eikx(x−nd))â†
Q. (B.9)

Thus ĤH can be written as:

ĤH =
1
2

∫
µo~H2d~r

=
1
2

∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫

∞

0
dz
∫

dQ(~H1âQ + ~H∗â†
Q)
∫

dQ′(~H1âQ′+ ~H∗â†
Q′)

=
∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫

∞

0
dz

1
2

∫
dQ[−ωεoε1

kx
E1ze−kz1z−iωt(a(n)eikx(x−nd)

−b(n)e−ikx(x−nd))âQ−
ωεoε1

kx
E∗1ze

−kz1z+iωt(a?(n)e−ikx(x−nd)−b?(n)eikx(x−nd))â†
Q]

×
∫

dQ′[−ωεoε1

k′x
E1ze−k′z1z−iωt(a(n)eik′x(x−nd)−b(n)e−ik′x(x−nd))âQ′

−ωεoε1

k′x
E∗1ze

−k′z1z+iωt(a?(n)e−ik′x(x−nd)−b?(n)eik′x(x−nd))â†
Q′]. (B.10)

We suppose that the number of the unit cell is large enough, so that n can be
treated as infinity. Thus we can apply Bloch’s theorem, a(n) = a(0)eiQnd , b(n) =

b(0)eiQnd . Eq. B.10 tells us the integration is over the space (dxdydz), and also
over the reciprocal lattice vector dQ. To make it more clearer, we denote eq.
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B.10 as follows:

ĤH =
1
2

∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫

∞

0
dz∫

dQ[( 1©− 2©)âQ +( 3©− 4©)â†
Q]

×
∫

dQ′[( 5©− 6©)âQ′+( 7©− 8©)â†
Q′],

where the circled numbers represent:

1©=
ωεoε1

kx
E1ze−kz1z−iωta(n)eikx(x−nd)

2©=
ωεoε1

kx
E1ze−kz1z−iωtb(n)e−ikx(x−nd)

3©=
ωεoε1

kx
E∗1ze

−kz1z+iωta?(n)e−ikx(x−nd)

4©=
ωεoε1

kx
E∗1ze

−kz1z+iωtb?(n)eikx(x−nd)

5©=
ωεoε1

k′x
E1ze−k′z1z−iωta(n)eik′x(x−nd)

6©=
ωεoε1

k′x
E1ze−k′z1z−iωtb(n)e−ik′x(x−nd)

7©=
ωεoε1

k′x
E∗1ze

−k′z1z+iωta?(n)e−ik′x(x−nd)

8©=
ωεoε1

k′x
E∗1ze

−k′z1z+iωtb?(n)eik′x(x−nd)

Thus we know the half Hamiltonian ĤH has 16 integral items in terms of
these circled numbers. Here we first calculate the product terms containing âQ

and â†
Q′ for example:

ĤH1⊗7 =
µo

2

∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫

∞

0
dz{(−

∫
ωεoε1

kx
E1ze−kz1z−iωt

×a(n)eikx(x−nd)âQdQ)(−
∫

ωεoε1

k′x
E1ze−k′z1z+iωta?(n)eikx(x−nd)â†

Q′dQ′)}

=
µoLyω2ε2

o ε2
1 E2

1z

2kxk′x

∫
∞

0
e−(kz1+k′z1)zdz

∫
a(n)eikx(x−nd)âQdQ

×
∫

a?(n)eikx(x−nd)â†
Q′dQ′dx

=
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫
∑
n

∫ (n+1)d

nd
ei[(Q−Q′)nd+(kx−k′x)(x−nd)]dxâQâ†

Q′dQdQ′

=
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫
∑
n

∫ (n+1)d

nd
(

ei(kx−k′x)x

i(kx− k′x)
)′dx

×ei(Q−Q′)nd−i(kx−k′x)nd âQâ†
Q′dQdQ′
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=
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫
∑
n

ei(kx−k′x)d−1
i(kx− k′x)

ei(Q−Q′)nddQdQ′âQâ†
Q′

=
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫
∑
n

ei(Q−Q′)nddei(kx−k′x)
d
2

sin((kx− k′x)
d
2 )

(kx− k′x)
d
2

dQdQ′âQâ†
Q′.

(B.11)

We then note that,

∑
n

ei(Q−Q′)nd = ei(Q−Q′)d(1− ei(Q−Q′)nd)/(1− ei(Q−Q′)d)

= ei(Q−Q′)(n+1)d/2 sin[(Q−Q′)nd/2]
sin[(Q−Q′)d/2]

, (B.12)

with limn→∞
sin[(Q−Q′)nd/2]
sin[(Q−Q′)d/2] =

2π

d δ (Q−Q′).
Using these properties we obtain:

ĤH1⊗7 =
µoLyω2ε2

o ε2
1 E2

1z(a
(o))2

2kxk′x(kz1 + k′z1)

∫ ∫ 2π

d
δ (Q−Q′)ei(Q−Q′)(n+1)d/2

×dei(kx−k′x)d/2 sin((kx− k′x)d/2)
(kx− k′x)d/2

dQdQ′âQâ†
Q′

=
∫

πµoLyω2ε2
o ε2

1 E2
1z(a

(o))2

2k2
xkz1

âQâ†
QdQ. (B.13)

We can repeat this process for the rest of the terms, and find:

ĤH2⊗8 =
∫

πµoLyω2ε2
o ε2

1 E2
1z(b

(o))2

2k2
xkz1

âQâ†
QdQ, (B.14)

and

ĤH3⊗5 =
∫

πµoLyω2ε2
o ε2

1 E2
1z(a

(o))2

2k2
xkz1

â†
QâQdQ, (B.15)

and

ĤH4⊗6 =
∫

πµoLyω2ε2
o ε2

1 E2
1z(b

(o))2

2k2
xkz1

â†
QâQdQ. (B.16)

The rest of the integral terms either have the term of δ (Q+Q′) (thus the integral
is zero), or cancel each other. Thus finally we can obtain the total Hamiltonian:

Ĥvacuum =
∫

πµoLyε2
o ε2

1 ω2|E1z|2

kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.17)

The above result is applicable to SPP, SPhP and SEP at the interface of vacuum
and media when calculating the total Hamiltonian in vacuum part.
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B.0.2 Hamiltonian in different media

B.0.2.1 SPP

The Hamiltonian in free space is

Ĥvacuum =
1
2

∫
[ε0~E2 +µ0~H2]d~r, (B.18)

since the electric field and the magnetic field carry equal amounts of energy in
vacuum, thus the Hamiltonian can also be expressed as:

Ĥvacuum = 2× 1
2

∫
ε0~E2d~r = 2× 1

2

∫
µ0~H2d~r, (B.19)

However, in the media, the Hamiltonian is

Ĥmedia =
1
2

∫ [d(εω)

dω
~E2 +

d(µω)

dω
~H2
]

d~r, (B.20)

where ε = ε0εr(ω,k), µ = µ0µr(ω,k). While for surface plasmons in metal

medium, we suppose µ = µ0, and εr = 1− ω2
p

ω2 . As

d(εω)

dω
=

(
1+

ω2
p

ω2

)
ε0 (B.21)

then the Hamiltonian becomes:

Ĥmetal =
1
2

∫
[ε0(1+

ω2
p

ω2 )
~E2 +µ0~H2]d~r (B.22)

We first calculate the magnetic part of the Hamiltonian. While the magnetic
field is:

H(n)
2ŷ =−ωε0εrE2z

kx
ekz2z−iωt [a(n)eikx(x−nd)−b(n)e−ikx(x−nd)], (B.23)

thus

f (~k,~r)âQ =−ωεoεr

kx
E2zekz2z−iωt(a(n)eikx(x−nd)−b(n)e−ikx(x−nd))âQ, (B.24)

and

f ∗(~k,~r)â†
Q =−ωεoεr

kx
E∗2ze

kz2z+iωt(a?(n)e−ikx(x−nd)−b?(n)eikx(x−nd))â†
Q. (B.25)

We denote the magnetic part of the Hamiltonian as ĤH , then it can be
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written as:

ĤH =
1
2

∫
µo~H2d~r

=
1
2

∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫ 0

−∞

dz
∫

dQ(~H1âQ + ~H∗â†
Q)
∫

dQ′(~H1âQ′+ ~H∗â†
Q′)

=
∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫ 0

−∞

dz
1
2

∫
dQ[−ωεoεr

kx
E2zekz2z−iωt(a(n)eikx(x−nd)

−b(n)e−ikx(x−nd))âQ−
ωεoεr

kx
E∗2ze

kz2z+iωt(a?(n)e−ikx(x−nd)−b?(n)eikx(x−nd))â†
Q]

×
∫

dQ′[−ωεoεr

k′x
E2zek′z2z−iωt(a(n)eik′x(x−nd)−b(n)e−ik′x(x−nd))âQ′

−ωεoεr

k′x
E∗2ze

k′z2z+iωt(a?(n)e−ik′x(x−nd)−b?(n)eik′x(x−nd))â†
Q′]. (B.26)

Eq. B.26 is denoted as follows:

ĤH =
1
2

∞

∑
n

∫ (n+1)d

nd
dx
∫ Ly/2

−Ly/2
dy
∫ 0

−∞

dz∫
dQ[( 1©− 2©)âQ +( 3©− 4©)â†

Q]

×
∫

dQ′[( 5©− 6©)âQ′+( 7©− 8©)â†
Q′],

where the circled numbers represent:

1©=
ωεoεr

kx
E2zekz2z−iωta(n)eikx(x−nd)

2©=
ωεoεr

kx
E2zekz2z−iωtb(n)e−ikx(x−nd)

3©=
ωεoεr

kx
E∗2ze

kz2z+iωta?(n)e−ikx(x−nd)

4©=
ωεoεr

kx
E∗2ze

kz2z+iωtb?(n)eikx(x−nd)

5©=
ωεoεr

k′x
E2zek′z2z−iωta(n)eik′x(x−nd)

6©=
ωεoεr

k′x
E2zek′z2z−iωtb(n)e−ik′x(x−nd)

7©=
ωεoεr

k′x
E∗2ze

k′z2z+iωta?(n)e−ik′x(x−nd)

8©=
ωεoεr

k′x
E∗2ze

k′z2z+iωtb?(n)eik′x(x−nd)

We repeat the same way of calculating the Hamiltonian as previously,
and find the magnetic part of the total Hamiltonian:

ĤH =
∫

πµoLyε2
o ε2

r ω2|E2z|2

2kz2k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.27)
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Similarly, we can expand the electric field and calculate the integral of the
electric part of the Hamiltonian, we finally can obtain the result as follows:

ĤE =
∫
(1+

ω2
p

ω2 )
πµoLyε2

o ε2
r ω2|E2z|2

2kz2k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.28)

So the total Hamiltonian is Ĥmetal = ĤH + ĤE :

Ĥmetal =
∫
(2+

ω2
p

ω2 )
πµoLyε2

o ε2
r ω2|E2z|2

2kz2k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.29)

Because ε1E1z = εrE2z, and
ε1

kz1
+

εr

kz2
= 0, (B.30)

thus Ĥmetal becomes:

Ĥmetal =−
∫
(2+

ω2
p

ω2 )
πµoLyε2

o ε3
1 ω2|E1z|2

2εrkz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ, (B.31)

further we can obtain:

Ĥmetal =
∫ (2ω2 +ω2

p)ε1

(ω2
p−ω2)

πµoLyε2
o ε2

1 ω2|E1z|2

4kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ,

(B.32)
From eq. B.17 and eq. B.32 we see a relation between Ĥmetal and Ĥvacuum

Ĥmetal =
(2ω2 +ω2

p)ε1

4(ω2
p−ω2)

Ĥvacuum (B.33)

We know the total Hamiltonian for the system is

Ĥtotal =
∫ 1

2
h̄ω(âQâ†

Q + â†
QâQ)dQ (B.34)

while Ĥtotal = Ĥvacuum + Ĥmetal , thus we have:

Ĥtotal =

(
1+

(2ω2 +ω2
p)ε1

4(ω2
p−ω2)

)∫
πµoL′yε2

o ε2
1 ω2|E1z|2

kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q+ â†
QâQ)dQ.

(B.35)
Then the amplitude of E1z becomes known:

|E1z|2(a(0)
2
+b(0)

2
) =

h̄kz1k2
xc2

2L′yωεoε2
1

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
. (B.36)

We can then determine the surface modes’ vertical and in-plane components
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using the relation of a(n) and b(n) (see Chapter 3):

E2
1za

(0)2
=

h̄kz1k2
xc2

2L′yωεoε2
1

A2

A2 +B2

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
, (B.37)

and

E2
1zb

(0)2
=

h̄kz1k2
xc2

2L′yωεoε2
1

B2

A2 +B2

4(ω2
p−ω2)

4(ω2
p−ω2)+(2ω2 +ω2

p)ε1
, (B.38)

where we have defined A = 1− eiQd+ikxd and B = 1− eiQd−ikxd . a(0) and b(0) can
be related as a(0)/b(0) = A/B.

B.0.2.2 SPhP

In the same way, for surface phonon polaritons, we suppose µ = µ0, as εr =

ε∞

ω2−ω2
L

ω2−ω2
T

, then we obtain

d(εω)

dω
= ε0ε∞

(
ω2−ω2

L

ω2−ω2
T
− 2ω2(ω2

T −ω2
L)

(ω2−ω2
T )

2

)
, (B.39)

then accordingly,

Ĥsemicond =
1
2

∫
[ε0ε∞

(
ω2−ω2

L

ω2−ω2
T
− 2ω2(ω2

T −ω2
L)

(ω2−ω2
T )

2

)
~E2 +µ0~H2]d~r. (B.40)

We can follow the same steps by calculating the magnetic and electric part of
the total Ĥsemicond , and can obtain:

ĤsemiH =
∫

πµoLyε2
o ε2

r ω2|E2z|2

2kz2k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.41)

While apply the relation between the field amplitudes (see Chap 2) the electric
part of the total Hamiltonian is

ĤsemiE =
∫

ε0ε∞

(
ω2−ω2

L

ω2−ω2
T
− 2ω2(ω2

T −ω2
L)

(ω2−ω2
T )

2

)
πµoLyε2

o ε2
r ω2|E1z|2

2kz1k2
x

×(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.42)

Thus the total Hamiltonian Ĥtotal = Ĥsemicond + Ĥvacuum for the system is:

Ĥtotal =
∫ [

1+ ε∞

(
ω2−ω2

L

ω2−ω2
T
− 2ω2(ω2

T −ω2
L)

(ω2−ω2
T )

2

)]
×

πµoL′yε2
o ε2

1 ω2|E1z|2

2kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.43)
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then we can get the result for the electric field:

|E1z|2(a(0)
2
+b(0)

2
) =

h̄kz1k2
xc2

2L′yωεoε2
1

1[
3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] . (B.44)

We can then determine the surface modes’ each component:

E2
1za

(0)2
=

h̄kz1k2
xc2

2L′yωεoε2
1

A2

A2 +B2
1[

3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] , (B.45)

and

E2
1zb

(0)2
=

h̄kz1k2
xc2

2L′yωεoε2
1

B2

A2 +B2
1[

3+ ε∞

(
ω2−ω2

L
ω2−ω2

T
− 2ω2(ω2

T−ω2
L)

(ω2−ω2
T )

2

)] . (B.46)

B.0.2.3 SEP

For surface exciton polaritons, suppose µ = µ0, we have εr = εb
ωex−ω+ωLT

ωex−ω
, thus

d(εω)

dω
= ε0εb

(
ωex−ω +ωLT

ωex−ω
+

ωLT ω

(ω−ωex)2

)
(B.47)

then we know the

Ĥsemicond =
1
2

∫
[ε0εb

(
ωex−ω +ωLT

ωex−ω
+

ωLT ω

(ω−ωex)2

)
~E2 +µ0~H2]d~r (B.48)

Repeat the quantization process as in section one, we obtain

Ĥsemicond =
∫ [

1+ ε0εb

(
ωex−ω +ωLT

ωex−ω
+

ωLT ω

(ω−ωex)2

)]
×

πµoL′yε2
o ε2

1 ω2|E1z|2

2kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.49)

therefore, the total Hamiltonian for the system is:

Ĥtotal =

[
3+ εb

(
ωex−ω +ωLT

ωex−ω
+

ωLT ω

(ω−ωex)2

)]
×
∫

µoL′yε2
o ε2

1 ω2|E1z|2

2kz1k2
x

(a(0)
2
+b(0)

2
)(âQâ†

Q + â†
QâQ)dQ. (B.50)

Then it is known to us that the electric field has the exact value:

|E1z|2(a(0)
2
+b(0)

2
) =

h̄kz1k2
xc2

2L′yωεoε2
1

1[
3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] , (B.51)
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We can then determine the surface modes’ vertical and in-plane components
using the relation of a(n) and b(n). We find:

E2
1za

(0)2
=

h̄kz1k2
xc2

2L′yωεoε2
1

A2

A2 +B2
1[

3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] , (B.52)

and

E2
1zb

(0)2
=

h̄kz1k2
xc2

2L′yωεoε2
1

B2

A2 +B2
1[

3+ εb

(
ωex−ω+ωLT

ωex−ω
+ ωLT ω

(ω−ωex)2

)] . (B.53)
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