
 

 

 

A Multi-level Multi-Modular Flying Capacitor Voltage Source 

Converter for High Power Applications 

 

Ikenna Bruce Efika 

 

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy 

 

The University of Leeds 

School of Electronic and Electrical Engineering 

 

September 2015 



i 

 

The candidate confirms that the work submitted is his own, except where 

work which has formed part of jointly-authored publications has been 

included. The contribution of the candidate and the other authors to this 

work has been explicitly indicated below. The candidate confirms that 

appropriate credit has been given within the thesis where reference has 

been made to the work of others. 

 Selected Publications: 

1. I.B. Efika, and L. Zhang: ‘A Cascaded Flying Capacitor Multilevel 

Converter for HVDC and FACTS’. Proc. UHVnet 2011 Colloquim, 

Winchester, United Kingdom. 

2. I.B. Efika, and L. Zhang: ‘An Overlapping Hexagon Space Vector 

Modulation Scheme applied to a Cascaded Floating Capacitor 

Modular Multilevel Converter’. Proc. EPE 2013 Conference, Lille, 

France. 

3. I.B. Efika, C.J. Nwobu, and L. Zhang: ‘Cascaded Modular Flying 

Capacitor Converter Using Wavelet-Energy Operator 

Synchronisation for Unbalanced Grid Voltages’. Proc. UHVnet 

2013 Colloquim, Glasgow, United Kingdom. 

4. I.B. Efika, and L. Zhang: ‘Reactive Power Compensation using 

Modular Multilevel Flying Capacitor Converter with PSPWM’. Proc. 

PEMD 2014 Conference, Manchester, United Kingdom. 

5. I.B. Efika, and L. Zhang: ‘Unipolar PSPWM scheme for High 

Voltage Applications’. Proc. UHVnet 2014 Colloquim, Surrey, 

United Kingdom. 

 

Chapters 3 and 4 of this thesis comprise work forming part of the 2nd, 4th, 

and 5th publications respectively. All work in Chapters 1, 2, 3, and 4 are 

attributable to the candidate under the supervision of Dr. Li Zhang. All work 

in Chapter 5 are attributable to the candidate under the supervision of Dr. Li 

Zhang with some advice from Dr. Alan Watson and Prof. Jon Clare. 

 

This copy has been supplied on the understanding that it is copyright 

material and that no quotation from the thesis may be published without 

proper acknowledgement. 

 



- ii - 

ii 

 

 

The right of Ikenna Bruce Efika to be identified as Author of this work has 

been asserted by him in accordance with the Copyright, Designs and 

Patents Act 1988. 

 

© 2015 The University of Leeds and Ikenna Bruce Efika 



- iii - 

iii 

 

Acknowledgements 

I express my gratitude towards Dr. Li Zhang, for supervising and supporting 

my research. Special thanks to Dr. Alan Watson and Prof. Jon Clare from 

the PEMC group at the University of Nottingham, for lending me time and 

access to their intellect during the hardware validation period of the research 

work. Thanks to Dr. Mike Waite, as his technical advice was a vital 

contribution; and to Edward Bray, for assisting me with project logistics. 

I also recognize the patience and invaluable intellectual support provided to 

me by the System Concepts HVDC research and technology team at Alstom 

Grid, Stafford. 

My brother Dr. Chidi and his wife Mrs. Uche Efika acted as friends and 

guardians in my journey both academically and in general, my sisters Dr. 

Chigozie Dera Efika and Barr. Olachi Jennifer Efika always provided me 

motivation. I am eternally indebted to my parents Chief. (Sir) Emmanuel 

Ifeanyi Efika and Barr. Mrs. Veronica Charity Efika for their continued and 

unparalleled support both spiritually, morally and financially. 

I commend the patience shown by all my friends during this phase of my life. 

 

Most importantly … To God 

Chukwu bu onye nāzùm dika aturu; ó dighi ihe kọrọm. 

N'ebe-ita-nri nke ahihia ndu ka O nēme ka m'makpu; N'akuku miri nke izu-

ike ka Ọ nedum nwayo. 

Ọ nēweghachi nkpuru-obim; Ọ nēdum n'uzọ nile nke ezi omume n'ihi aha-

Ya. 

Ọzọ, asi na ejem ije na ndagwurugwu onyinyo ọnwu, M'gaghi-atu egwu ihe 

ọjọ ọ bula; n'ihi na Gi onwe-gi nọyerem: Ndele-Gi na nkpa-n'aka-Gi, ha 

onwe-ha nākasim obi. 

I nēdo table n'usoro n'irum n'anya ndi nākpab͕um: I tewo isim manu; ikom bu 

inwebiga-ihe-ókè. 

Nání idi-nma na ebere gāb͕asom ubọchi nile nke ndum: M'gēbi kwa n'ulo 

Jehova rue ogologo ubọchi nile. (ABU ỌMA 23: 1-6). 



- iv - 

iv 

 

Abstract 

Two vital and dynamically changing issues are arising in the electric grid - an 

increase in electrical power demand, and subsequent reduction in power 

quality. Power electronics based solutions such as the Static Synchronous 

Compensator are increasingly deployed to mitigate power quality issues 

while High Voltage DC Transmission converters are currently installed to 

support the existing grid transmission capacity. Both applications require 

high power and high voltage power converters using switching devices with 

limited voltage ratings. The advent of Modular Multilevel Converters (MMC) 

is one of the recent responses to this need. These use half or full H-bridge 

circuits stacked up to form a chain, and hence can withstand high voltages 

using lower-rated switching devices. 

This thesis introduces a new member into the MMC family, i.e the Modular 

Multi-level Flying Capacitor Converter (MMFCC). This uses a three-level 

flying capacitor full-bridge circuit as a sub-module and offers features of 

modularity, scalability and fault tolerance. The choice of FC topology in 

place of the simple H-bridge stems from the FC’s ability to offer two extra 

voltage levels in the sub-module output and hence more degrees of freedom 

per module in controlling the voltage waveform. A three-level full-bridge FC 

sub-module uses three capacitors - an outer one for supporting the sub-

module voltage, and two inner floating ones with half of the outer one’s 

capacitance and voltage rating. This use of slightly more complex FC sub-

modules gives the benefits of a modular structure but without using twice as 

many sub-modules with their associated capacitors for the same total 

voltage. The thesis presents the principles of this topology, switching states 

redundancies and a method for capacitor voltage balancing.  

Also discussed are: the configuration of MMCC including the MMFCC in 

Single-Star Bridge-Cell (SSBC) or Single-Delta Bridge-Cell (SDBC) for 

FACTS and Battery Energy Storage System (BESS) applications; and 

Double-Star Chopper-Cell (DSCC) or Double-Star Bridge-Cell (DSBC) for 

HVDC systems. 

A novel overlapping hexagon pulse width modulation scheme is introduced 

and discussed for switching control of the MMFCC. This uses multiple 

hexagons all centred on one point, the same in number as the cascaded FC 
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sub-modules, which are phase displaced relative to each other. The 

approach simplifies the modulation algorithm and brings flexibility in shaping 

the output voltage waveforms for different applications. 

An MMFCC experimental rig was designed and built in-house to validate 

some of the simulation results obtained for the modulation of this new 

topology. Details of the rig as well as results captured are discussed. 
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Chapter 1  

Introduction 

1.1 Background Literature 

Decades of development in semiconductor devices present opportunities for 

many applications of power electronic converters. Advances in 

semiconductor and device physics disciplines such as wide band-gap 

materials steer towards the development of more robust and even higher-

power solid state switches to serve as building blocks in power electronic 

converters for high power applications. 

In electric grid applications, power capacity and quality are predominant 

directives which also list as key specifications during the design of power 

electronics converters. A notable power electronics based grid application is 

the Static Synchronous Compensator (STATCOM) which is installed to 

facilitate the realisation of stringent electric power quality requirements. 

Academic impact of the concept can be observed from the early 90’s [1] 

albeit that industrial implementation was not until the late 90’s, both in the 

United States (Sullivan’s Static Synchronous Compensator) and the birth of 

the “modular” STATCOM in the United Kingdom [2]. 

High Voltage Direct Current (HVDC) systems are another application which  

use power electronics as the enabling technology [3]. Besides bulk power 

transfer between two interconnected electric grids which increases the 

capacity of both grids, a HVDC system provides other functions to support 

power quality, such as AC fault blocking and reactive power support. 

The realisation of STATCOM technology and other Flexible AC 

Transmission Systems (FACTS) together with the HVDC installations across 

the globe support the smart and super grid concepts which are gradually 

becoming a reality. 

1.1.1 High Power Applications – The smart and super grid 

concept 

The evolution of an electric grid is mainly driven directly by changes in 

quality and quantity of power demand which is normally a result of 

industrialisation and population growth. In developed countries such demand 

growth is currently low or negligible. On the other hand, developing countries 
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experience a noticeable and rapid annual increase in demand. These 

regions are where noticeable changes in the electric grid are expected in the 

near future. 

In certain developing countries such as Nigeria, this impact has begun to 

materialise. Figure 1.1 displays the percentage change in annual electric 

consumption (base in kWh) for one developed country (United Kingdom) and 

three developing countries: Kenya; Nigeria; and Ethiopia between 1971 and 

2010 [4]. The consumption values1 observed for the year 1971 are used as 

base values for per-unitization (Refer to Appendix A.1 for data). 

 

Figure 1.1: Per-unit Change in annual electric consumption for UK, 
Kenya, Nigeria and Ethiopia between 1970 and 2010. 

A continual increase in annual electric consumption is reflected in Figure 1.1 

especially for the developing countries, with Nigeria showing an increase of 

almost 13 times between 1971 and 2010. The United Kingdom plot shows 

an increase to only 1.5 times the base value (Note this is only an indication 

of rate of change, UK’s consumption value is higher than the rest by an 

order of hundreds). Clearly developing countries must strive to adopt similar 

                                            

1 Annual electricity consumption values for year 1971 (used as base values 
for per-unitisation): UK – 237.8 TWh; Kenya – 0.9 TWh; Nigeria - 
1.6TWh; and Ethopia – 0.5 TWh. 
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infrastructural changes and philosophies for electric grid management to 

reduce the alarming rate of rise in electricity consumption. 

The smart-grid and super-grid philosophy proposes a generation of electrical 

networks that tackle grid evolutionary requirements both on a local and 

global scale. 

The smart grid concept introduces systems which enable the utilisation of 

conventional as well as renewable energy sources to realise a stable and 

efficient network with minimal environmental impact. In the present 

deregulated grid, power flow is still mainly unidirectional, from the generating 

sector (power plants) to the transmission sector and the distribution sector. 

The smart grid concept promotes a change to a real-time and bi-directional 

flow of power and information. This introduces a multi-disciplinary field with 

formidable challenges, most of which are well beyond the scope of this work.  

A key aspect of the smart grid concept which is within the scope of this 

research work is the deployment of several power electronic solutions, such 

as: 

- Battery Energy Storage Systems (BESS) which capture and store 

electric energy in an electric grid, and supply such energy rapidly 

(within milliseconds) of demand [5-7]; 

- Transmission and distribution level FACTS devices such as 

STATCOMs that dynamically alter an electrical line’s parameters to 

ensure the transfer of high quality power [1, 2, 8]; 

- Distribution level power electronic converters for interfacing 

renewable sources with the grid. 

Many groups are actively researching the smart grid topic and much 

literature is available  [5-7, 9-18]. 

The super grid concept introduces a means of interconnecting several 

electric grids with the main aim being the facilitation of electric power 

exchange on a global scale. It has often been called the “DC grid”, which 

highlights HVDC as the main enabling system with power electronics as the 

main enabling technology. Although the main technology required to realise 

the super grid is available, full development is anticipated to be decades 

away, partly because of geopolitical implications [19]. 

Smart-grid and super-grid systems present economic and technical benefits 

and supplement or replace conventional applications of AC systems but 
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create additional requirements for the introduction of power electronic 

systems. 

1.1.2 Power Electronics – The enabling technology 

A power electronic converter is a circuit normally comprising a plurality of 

power semiconductor devices and in certain arrangements an auxiliary 

clamping component (capacitor, inductor, battery, etc.) [20]. While different 

implementations show variations in device state control and converter 

configuration based on specific requirements, the main aim of a converter 

circuit is to interface two homogenous or heterogeneous power systems and 

enable unidirectional or bi-directional power flow. 

Advances in the semiconductor and device physics disciplines enabled the 

transition away from mercury arc valves to solid-state devices such as the 

thyristor. With a rugged nature and high current handling capacity, thyristor-

based power electronic devices were key, as their implementations in six-

pulse, twelve-pulse and twenty-four-pulse configurations provided a platform 

for implementing diverse high power applications. However, the 

commutation of a thyristor is quite slow by nature (typically around 300 μs) 

as well as limited in scope as the device can only be line-commutated and 

conduct in one direction. As a result, the output of thyristor based systems 

contain low order harmonics making the system reliant on complex and 

expensive damping and filtering circuits. 

Higher speed switching (typically around 2μs) solid-state devices 

(MOSFETs, IGBTs) are now available and supported the development of the 

two-level voltage source converters (2L-VSC). In the 2L-VSC system, a 

careful modulation technique is applied to such a switch. As a result the 

system’s output will contain harmonics which appear around the switching 

frequency, thus a high switching frequency produces higher-order harmonics 

that are easier to filter. An inherent limitation in two-level VSCs is the need to 

switch at high frequencies as this results in high switching losses that are 

unacceptable at high power levels. For instance a 1% loss in a 700 MW  

HVDC converter (i.e. 7 MW) results in a £21,000,0002 project cost. 

                                            

2 The bid price for a HVDC converter comprises a “mandatory” mark-up 
amount that reflects the converter’s lifetime power losses (e.g. 30 years). 
The “watts” to “price” conversion rate is provided by the customer and 
typically within the range of £2 - £5/Watt. The value of £3/Watt was 
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1.2 Overview of Multilevel Converter Topologies 

Multilevel converters provide an alternative for realising high power 

converters. 

The concept of multiple voltage levels from a converter can be dated back to 

1975 with the design of the three level converter [21, 22]. 

Multiple voltage levels are provided by stacking extra levels of switches in 

the converter structure, either through clamping diodes, capacitors or by just 

cascading electrically isolated cells together. 

Consider an inverter with input voltage (VDC) consisting of stacked cells. 

Each cell synthesizes only a fraction of the input voltage and in most cases, 

a resulting system with (nc) stacked cells, will have each level experiencing 

only  a nc
th portion of VDC across it, significantly reducing the voltage stress 

on the switches in each cell. Studies show that the staircase waveform 

synthesized at the output contains lower harmonics and has a lower THD at 

both high and low frequencies of operation. However the inclusion of extra 

power components (switches, capacitors, and diodes) introduces control 

complexities and system loss evaluation is more difficult to perform. A brief 

outline of the established standards for multilevel converters is presented as 

they have been widely reviewed [23-33]. 

1.2.1 Neutral Point Clamped (NPC) Converter 

Initially proposed by Nabae et al in 1981 [34], the Neutral-Point Clamped 

(NPC) converter is also known as the diode clamped converter. Diodes are 

used as the voltage clamping devices to connect extra levels of cells and 

facilitate synthesising the distinct voltage levels. The most basic form of this 

converter is the three-level configuration which provides an output with three 

distinct voltage levels: 0; VDC/2; and VDC. A three-level NPC converter is 

shown in  Figure 1.2 first in half bridge, then in H-bridge configuration. 

The extra level of switches on each leg of the converter in both 

configurations (i.e Sa1, Sa4; Sb1, Sb4) is clamped to the neutral point via two 

diode pairs (Da1, Da2; Db1, Db2) consequently preventing the voltage in one 

level from surpassing that in the next level. The equipotential neutral point 

(N) is provided by two capacitors in series C1 and C2 hence the voltage 

                                                                                                                           

adopted in this study such that a 7 MW loss results in a £21,000,000 
mark-up. 
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across these capacitors must be balanced to ensure undistorted levels in the 

converter output voltage waveform. 

Consider the half-bridge arrangement shown in Figure 1.2a, the operating 

principle is as follows: 

- The switching states for Sa1 and Sa2 are co-ordinated in such manner 

that the voltage that reflects across the AC output (VAC) is either 0, 

+0.5VDC, or +VDC. 

- Valid operating states:  

1. With the devices Sa1 and Sa2 both switched ON, the full DC 

voltage (+VDC) is reflected across the AC output. 

2. With the device Sa1 switched OFF; and Sa2 ON, the voltage 

across the capacitor C2 (i.e. VDC/2) reflects across the AC 

output via the clamping diode (Da1). Diode Da1 is forward-

biased or reverse-blocking depending on the direction of 

current. 

3. With the devices Sa1 and Sa2 both switched OFF, the AC 

output is electrically tied to ground i.e. VAC = 0. 

- Invalid operating states:  

1. With the device Sa1 switched ON; and Sa2 OFF, the diode Da1 

goes into forward blocking mode, preventing current from the 

DC source or the capacitor C1 to the AC side. The diode Da2 

also blocks a current path from establishing between the 

capacitor C2 and the AC side. 

- The switching state for Sa3 is always a binary opposite of Sa1 and Sa4 

a binary opposite of Sa2. This prevents short-circuit conditions from 

occurring across the DC rail and the capacitors (C1, C2). 

The same principle is applicable in the H-bridge configuration shown in 

Figure 1.2b (i.e. to  Sb1, Sb2, Sb3, Sb4). Both “half bridges” that make up the 

H-bridge are controlled to produce the resulting multilevel voltage waveform. 

Switching state redundancies are available as shown in Table 1.1 and this is 

beneficial as switching stress can be shared among the devices and are also 

required to balance DC link capacitors C1 and C2. 

Table 1.1 illustrates the possible operating states for the full-bridge neutral 

point clamped multilevel inverter, while Figure 1.3 shows the current paths 

that established by applying the different states. 
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Figure 1.2: A three-level neutral point clamped (NPC) converter in: (a) 
half; and (b) H-bridge configuration. 

Note that only the main current paths are shown albeit that in reality two 

other current paths exist which provide: 

- current sharing through anti-parallel and clamping diodes; or 

- current continuity through anti-parallel diodes when the main current 

path is suddenly interrupted due to a change in switching state. 

The state 1001 is invalid as it results in an over voltage condition. 

 

(a) 

(b) 
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Table 1.1: Valid states for a three- level NPC converter 

Leg A Switches Leg B Switches 
VAC 

Sa1 Sa2 Sa3 Sa4 Sb1 Sb2 Sb3 Sb4 

1 1 0 0 0 0 1 1 VDC 

1 1 0 0 0 1 1 0 +VDC/2 

0 1 1 0 0 0 1 1 +VDC/2 

1 1 0 0 1 1 0 0 0 

0 1 1 0 0 1 1 0 0 

0 0 1 1 0 0 1 1 0 

0 1 1 0 1 1 0 0 -VDC/2 

0 0 1 1 0 1 1 0 -VDC/2 

0 0 1 1 1 1 0 0 -VDC 

 

 

Figure 1.3: Possible current paths for a three-level NPC converter in 
H-bridge configuration. Current can flow in either direction. 
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Table 1.2 expresses the power devices requirement while extending the 

diode clamped converter. 

Table 1.2: Power device requirements for NPC converter 

Component Quantity 

Levels (Positive to Zero) m 

Switches and parallel diodes (per leg) 2(m-1) X 2 

Clamp diodes (m-1)(m-2) 

Capacitors m-1 

There is a complexity involved in deriving the rating of the clamping diodes, 

since they, during certain switching instants, may experience higher than 

expected voltage levels thus any further extension would result in an 

expensive system. 

A key challenge in controlling this converter is balancing the neutral-point 

capacitors. The absence of adequate redundant switching states makes this 

task difficult to achieve. Applications of this topology include a wide range of 

variable speed drives [35, 36]. It is currently applied in some medium power 

grid utility applications [37-41]. 

1.2.2 Cascaded H-Bridge (CHB) Converter 

The cascaded H-Bridge (CHB) topology is based on the series connection of 

multiple electrically isolated standard H-bridge modules and is well reviewed 

[27, 31]. Each module is supplied by an isolated DC source (VDC/n), where 

“n” represents the number of cascaded H-bridges per phase. 

Figure 1.4 shows one leg of a three-level CHB converter topology. With each 

module capable of generating (VDC/n, 0, -VDC/n), the final AC output is a 

cascade of the separate AC outputs on each level and proper modulation 

control of the converter ensures an output with low total harmonic distortion 

value and harmonic content. In the CHB topology the absence of clamping 

devices (capacitors, diodes) reduces the number of power components. In 

practice the CHB topology is modular and less complex to control, however 

the requirement of several isolated DC supplies results in an expensive 

converter arrangement. 
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Figure 1.4: A single phase 3-level Cascaded H-bridge (CHB) topology. 

The arrangement shown in Figure 1.4 is one phase of a 3-level CHB 

converter topology formed from a cascade connection of two H-bridge 

modules. The operating principle for each H-bridge is as follows (for instance 

consider the H-bridge formed from Sa1, Sa2, Sb1 and Sb2): 

- The switching states for Sa1 and Sb1 are toggled in such manner that 

the voltage reflected across the H-bridge output is either 0, +VDC/n, or 

–VDC/n. 

- The switching states for Sa2 and Sb2 are always operated in 

complementary manner to Sa1 and Sb1. This prevents creating a 

short circuit condition across the DC supply of the H-bridge. 

The same principle is applicable to the second H-bridge (i.e. to  Sa3, Sa4, 

Sb3, Sb4) but depending on the modulation technique implemented, the 

switching operation of H2 may be phase- displaced and/or disposed to 

produce the resulting multilevel voltage waveform. 

Table 1.3 illustrates the possible operating states for the 3-level CHB 

topology, while Figure 1.5 shows the current paths for one phase of a CHB 

inverter. There are four valid operating states (1001, 1010, 0101 and 0110) 

for a CHB inverter with two H-Bridges per phase, thus a total of 16 (i.e 24) 

switching states are available. 

The converter can be configured to include extra levels by increasing the 

number of H-bridges as shown in Table 1.4. 
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Table 1.3: Valid switching states for a 3- level Cascaded H-bridge 
topology  

Sa1 Sa2 Sa3 Sa4 Sb1 Sb2 Sb3 Sb4 VAC 

1 0 0 1 1 0 0 1 + VDC 

1 0 0 1 1 0 1 0 +VDC/2 

1 0 0 1 0 1 0 1 +VDC/2 

1 0 1 0 1 0 0 1 +VDC/2 

0 1 0 1 1 0 0 1 +VDC/2 

1 0 0 1 0 1 1 0 0 

1 0 1 0 1 0 1 0 0 

1 0 1 0 0 1 0 1 0 

0 1 0 1 1 0 1 0 0 

0 1 0 1 0 1 0 1 0 

0 1 1 0 1 0 0 1 0 

0 1 1 0 0 1 0 1 -VDC/2 

0 1 1 0 0 1 0 1 -VDC/2 

1 0 1 0 0 1 1 0 -VDC/2 

0 1 0 1 0 1 1 0 -VDC/2 

0 1 1 0 0 1 1 0 - VDC 

 

Switching redundancies are present in this topology while producing the 

voltage levels: VDC/2; 0; and –VDC/2 as shown in Table 1.3. This makes it 

possible to control the converter such that the voltage stress is shared 

amongst the switches on each level. 

Benefits of this system include the absence of excessive power components 

and a neutral point which reduces control complexities. However the 

presence of isolated power supplies per level limits this topology to only 

applications which do not rely on the presence of a single DC supply. 
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Figure 1.5: Current paths for a 3- level Cascaded H-bridge topology. 

 

Table 1.4: Component requirements for a Cascaded H-bridge 
topology 

Component per leg Quantity 

Levels (Positive to Zero) m 

Isolated Power Supplies (m-1) 

Switches and parallel diodes (per leg) 4(m-1) 
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Recommended applications for this topology include interfacing renewable 

energy sources to the grid, such as the voltage source converter in a grid-

connected wind turbine application and implementation of FACTS devices, 

for instance in a distribution-level STATCOM device.  

1.2.3 Flying Capacitor Clamped (FCC) Converter 

The FCC was developed by Meynard and Foch [30]. capacitors set the 

intermediate voltage levels of this topology. Each voltage level in the 

converter AC output is formed as a result of the complementary switching 

action of a pair of switches. The result is a current path formed that 

bypasses or goes through the floating capacitor in that level. 

The basic principle behind operating the FCC converter involves creating a 

path for current to flow either from the DC link or clamping capacitors to the 

load. As the clamping capacitors ideally have a known value (VDC/nC) where 

nC is the number of cells, different voltage levels are achieved by altering the 

path of current flow, connecting or disconnecting the capacitors via the 

switches. 

Figure 1.6 shows the circuit for a three-level flying capacitor converter: first 

in half bridge; then in full bridge configuration. The half-bridge FCC 

arrangement is capable of synthesising three AC voltage levels: 0; VDC/2; 

and VDC as this is a two-quadrant configuration. As the FCC H-bridge 

arrangement is a four-quadrant arrangement, five voltage levels can be 

produced: VDC; VDC/2; 0; -VDC/2; and -VDC. 

Consider the half-bridge arrangement shown in Figure 1.6a, this 

arrangement is controlled as described below: 

- The switching states for Sa1 and Sa2 are chosen in such manner that 

the current that flows to the VAC terminals is supplied: completely by 

the DC source; by the capacitor Ca (thus discharging occurs); or a 

combination of both (thus charging occurs). 

- Valid operating states:  

1. With the devices Sa1 and Sa2 both switched ON, the full DC 

voltage (+VDC) is reflected across the AC output. 

2. With the device Sa1 switched OFF; and Sa2 ON, the voltage 

across the capacitor (ideally VDC/2) reflects across the AC 

output. During this switching instant, the capacitor discharges. 
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Figure 1.6: A three-level Flying Capacitor Clamped (FCC) converter in: 
(a) half; and (b) H-bridge configuration. 

 

3. With the device Sa1 switched ON; and Sa2 OFF, the difference 

between VDC and the capacitor voltage (i.e. ideally VDC -VDC/2) 

reflects across the AC output. During this switching instant, the 

capacitor charges. 

(a) 

(b) 
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4. With the devices Sa1 and Sa2 both switched OFF, the AC 

output is electrically tied to the negative VDC terminal hence 

VAC = 0. 

- Invalid operating states:  

Besides violation of the necessary complementary operation, there are no 

invalid switching states for the FCC topology. 

- For complementary switching operation: Sa4 is always a binary 

opposite of Sa1; and Sa3 a binary opposite of Sa2. This prevents 

short-circuit conditions from occurring across the DC rail and the 

capacitor (Ca). 

The principle described above is applicable in the H-bridge configuration 

shown in Figure 1.6b (i.e. to  Sb1, Sb2, Sb3, Sb4). The two “half bridges” that 

make up the H-bridge arrangement are controlled to produce the resulting 

multilevel voltage AC waveform. 

To realise the correct intermediate voltage levels at VDC/2 (and -VDC/2 in the 

H-bridge arrangement) the voltage level in each flying capacitor (Ca and Cb) 

must be maintained at half the DC link voltage (VDC). Redundant switching 

states are available as shown in Table 1.5 with two main benefits:  

- The switching stress can be shared among the devices in a bridge; 

and 

- It is easier to balance the flying capacitors via an open loop rotation 

algorithm or closed loop selection algorithm during modulation. 

Table 1.5 illustrates the possible operating states for the three-level FCC 

topology in H-bridge arrangement, while Figure 1.7 shows the current paths 

for the different switching states. As all four switching states (1100, 1010, 

0101 and 0011) are valid for the two half-bridge networks (i.e.: Sa1, Sa2, Sa3, 

Sa4; and Sb1, Sb2, Sb3, Sb4), there are a total of 16 (i.e  24) operating states 

for the three-level FCC H-bridge. 

In a practical system, switching the flying capacitors in and out of the circuit 

cause charging/discharging depending on the polarity of current. Thus 

voltages across the clamping capacitors (Ca and Cb) will vary during 

operation. It is then necessary to maintain their required voltage level 

otherwise voltage distortions will appear on the converter AC output 

waveform. The redundancies present in the switching states which are 

shown in Table 1.5 and the current paths established during switching 
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(Figure 1.7) make it possible for capacitor balancing to be achieved through 

proper switching state selection while the converter output voltage is 

synthesised. 

Table 1.5: Valid switching states for three- level FCC in H-bridge 
arrangement.3 

Sa1 Sa2 Sa3 Sa4 Sb1 Sb2 Sb3 Sb4 VAC Ca Cb 

1 1 0 0 0 0 1 1 + VDC NC 

1 1 0 0 1 0 1 0 +VDC/2 NC ↓ 

1 1 0 0 0 1 0 1 +VDC/2 NC ↑ 

1 0 1 0 0 0 1 1 +VDC/2 ↑ NC 

0 1 0 1 0 0 1 1 +VDC/2 ↓ NC 

1 1 0 0 1 1 0 0 0 NC 

1 0 1 0 1 0 1 0 0 Ca = Cb 

1 0 1 0 0 1 0 1 0 Ca = Cb 

0 1 0 1 1 0 1 0 0 Ca = Cb 

0 1 0 1 0 1 0 1 0 Ca = Cb 

0 0 1 1 0 0 1 1 0 NC 

1 0 1 0 1 1 0 0 -VDC/2 ↓ NC 

0 1 0 1 1 1 0 0 -VDC/2 ↑ NC 

0 0 1 1 1 0 1 0 -VDC/2 NC ↑ 

0 0 1 1 0 1 0 1 -VDC/2 NC ↓ 

0 0 1 1 1 1 0 0 - VDC NC 

The presence of capacitors as the clamping devices makes the FCC 

topology expensive to implement, especially in high power applications such 

as transformer-less grid tied systems. In such applications, the clamping 

capacitors need to be rated at a certain percentage of the total DC bus 

voltage rating. This topology also has its benefits as the presence of 

capacitors makes it suitable for use as a compensation device in certain 

                                            

3 NC – Not connected; ↓ - Discharge; ↑ - Charge 
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“medium power” FACTS applications (around 11 kV, 1 kA) such as for active 

power filtering. 

 

Figure 1.7: Current paths for a 3- level Flying Capacitor Clamped 
topology. 

 

Extending the FCC topology to include extra levels involves increasing the 

number of clamping capacitors and complementary switch pairs as 

expressed in Table 1.6. 
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Table 1.6: Component requirements for a Flying capacitor clamped 
half-bridge topology 

Component per leg Number 

Voltage Levels m 

Switches and parallel diodes 2(m-1) 

DC Link Capacitors m-1 

Clamp capacitors (m-3)/2 

1.3 Component requirements for conventional multilevel 

topologies 

The plot in Figure 1.8 shows the power component requirements for a three-

phase configuration of the NPC, CHB and the FC. Note that all topology 

structures considered produce the same number of voltage levels. Five 

different groups of plots (DC bus, switches, capacitors, diodes and total) are 

shown, with each group containing three bar-plots to represent number of 

each component used for the three topologies as described in the legend 

(green-NPC, blue-FC, red-CHB).  

 

Figure 1.8: Component requirements for FC, NPC and CHB 
topologies. 
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The plots shown in Figure 1.8, were generated using the contents of Table 

1.7. As well converter device requirements for an 11-level (0 to positive 

peak) output voltage are highlighted in black. 

In Figure 1.8 is, all the capacitors and diodes (including anti-parallel diodes) 

are considered to have the same rating. It is assumed that these devices are 

series connected to achieve the required voltage level. This assumption is 

made to ensure consistency in the analysis provided. In a practical 

application, such devices can be distinctly selected to match required 

voltage levels. 

 

Table 1.7: Power Component Requirements For Standard Multilevel 
Topologies4 

 NPC CHB FC 

DC Bus 1  1mp   1 

Capacitors  1mp   0  3m
2

p


 

Diodes      2m1m1m2p    1m4p    1m2p   

Switches  1m2p    1m4p    1m2p   

 

The total number of devices required increases relatively with the number of 

output levels as Figure 1.8 depicts. The NPC topology shows the highest 

rate of rise in number of power components required as the output level 

increases, while the CHB topology requires the least. This translates directly 

to the power losses expended on each topology. 

1.4 Modular Multilevel Cascaded Converter – the new 

concept 

It is clear from the above writing that conventional multilevel power 

converters rely on clamping devices (capacitors, diodes or galvanic isolated 

DC links) to stack up more voltage levels. Such a configuration is difficult to 

extend further rendering the conventional circuits practically impossible to 

                                            

4 m – Number of output voltage levels; p = Number of phase legs. 
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implement after certain voltage levels, especially if specifications for 

interconnecting distributed resources  (IEEE 1547) are adhered to. Hence 

conventional multilevel topologies remain limited to medium level power 

applications. Recent development has led to the implementation of modular 

multilevel cascaded converters (MMCCs), a new breed of power electronic 

converter [42, 43]. In a MMCC topology, a power module is used as a basic 

building block and multiple modules are stacked to meet an application’s 

power level requirements. In this context, “power module” refers to a basic 

circuit configuration comprising semiconductor switches which are switched 

in or out of circuit to provide access to an energy storage device. The 

topology has no known extension limitations and commercial systems exist 

with such configurations, however the control of this topology introduces 

several challenges. By nature, the topology presents several current paths, 

thus during operation, phenomena termed “circulating currents” may occur. 

The mitigation of this phenomenon is an active area of research in several 

institutes [21, 44-46]. Another key challenge involves maintaining balance in 

the energy storage element in each module as this is difficult in practice and 

requires sophisticated modulation algorithms, thus is also a subject of active 

research [47-49]. 

Hitherto the basic building blocks in an MMCC as well as emerging parallel 

and series variants,  for example, the Alternate Arm Converter (AAC) [50],  

employed either half or full-bridge circuits with a capacitor. The review of the 

features of conventional multilevel converters, such as the diode clamped or 

flying capacitor types, suggests that it is possible to use any one or both of 

them as the building blocks for an MMCC, hence exploiting their advantages 

and increasing their range of applications to include higher power. Several 

investigations have produced significant publications, and industrial 

applications are in existence which confirm the versatility of the MMC for 

medium to ultra-high power applications [2, 51, 52], making the MMC circuit 

architecture of primary interest in this research work. 

1.5 Research Aim,  Objectives and Thesis Structure 

The topic of this project stems from the desire to seek an alternative 

structure as the building block for an MMCC while exploiting attractive 

features offered by the conventional multilevel converters. The overall aim is 

to investigate the use of the 3-level  flying-capacitor H-bridge circuit as the 

structure to form a new  MMCC, the Modular Multi-level Flying Capacitor 
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Converter (MMFCC). This will involve developing suitable modulation 

schemes and applications, exploiting MMFCC advantages as redundancy of 

switching states is  evaluated.  

The specific objectives for achieving the research aim are defined as follows: 

 Exploiting this topology and evaluating how the FCC module fits into 

the MMCC topology structure thereby forming the MMFCC. 

 Considering the switching states, corresponding current paths and 

capacitor charging/discharging modes available, 

 Operational analysis of this topology in single- and double star 

configurations, and single- and double delta configurations, for high-

power applications. 

 Investigating some adapted and novel multilevel modulation schemes 

for the MMFCC, in terms of harmonic performance and switching 

utilisation and losses. 

 Designing and building an experimental prototype MMFCC 

demonstrator for practical validation of the converter model developed 

in Matlab-Simulink. Developing control techniques for this converter to 

function as a static synchronous compensator, and hence evaluating 

its feasibility in high power applications using the validated converter 

model, 

The structure of the thesis is as follows: 

Chapter 2: 

In this chapter, the Modular Multilevel Converter concept is introduced and 

the family classification is presented as well as emerging topologies. The 

implementation of the 3-level FCC circuit at MMC module level, which 

results in the Modular Multilevel Flying Capacitor Converter (MMFCC), is 

then introduced and discussed. 

Chapter 3: 

Within this section, an assessment exercise performed, to qualify five basic 

candidate sub-module concepts during the research work, is discussed. 

Criteria used to assess each sub-module concept were footprint, cost, 

redundancy, efficiency and performance. This helps to establish a rationale 

behind the choice of the 3-level FC H-bridge sub-module concept for 

extension and further evaluation during the rest of the research. 
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Chapter 4: 

Modulation control techniques are introduced in Chapter 4 to handle the 

sophisticated co-ordination required by a single-star MMFCC topology. Also 

within this section, the newly-developed overlapping multilevel hexagon 

space vector modulation (OMHSVM) scheme is described. 

Simulation results are presented to validate the presented modulation 

concepts. 

Chapter 5: 

The experimental rig developed during the course of the research is 

described in Chapter 6. Following detailed discussion of the power circuit, 

the different subsystems (DSP, FPGA cards) which make up the control 

hardware platform are discussed in detail. Experimental waveforms obtained 

are used to validate the converter performance simulated in Chapter 4. 

Chapter 6: 

A summary of the findings revealed during the research work is provided in 

Chapter 6, and recommendations to guide future advancement of this work 

are also provided. 
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Chapter 2  

 

Modular Multilevel Converters 

The cascaded H-bridge topology is formed by chaining a set of H-bridges 

and is therefore inherently “modular” -bridges. Its first industrial 

implementation by Robicon Corporation [53], was considered an impressive 

advance in the field. The system involved a total cascade of nine H-bridges 

(3 per phase) in the converter phase arms; however a complex  

star-delta-star phase shifting transformer arrangement was required to 

supply the isolated DC requirements of each H-bridge. The converter 

configuration  offered  attractive benefits yet was costly to extend for high 

power applications. Nonetheless this limitation experienced by Robicon 

Corporation while implementing the CHB topology fostered research interest 

in realising a more industry-friendly high power converter. 

In response Leniscar and Marquardt presented the Modular Multi-Level 

Converter (M2LC) [54, 55] initially introduced in [56]. The proposal detailed a 

high power converter with significant technical and cost benefits. One of 

these was  its easy scalability achieved by simply cascading additional 

modules in series within each converter phase arm. 

This chapter presents detailed discussions of the developments in the area 

of modular multilevel converters. A generalized family classification of 

topologies is first discussed, based on its constituents, followed by some 

emerging architectures. Afterwards, a different module concept, the 3-level 

FCC module is introduced as a replacement for the H-bridge cell and a 

quadrant system is described to show the control degrees of freedom 

available to the 3-level FCC multilevel module. A hybrid version of the 3-

level FCC module, which has been termed within this chapter as the FC-H 

module, is also described in brief to cover ideal modulation waveforms and 

temporary circuits formed during its different switching instants. 

The terms “cell” and “module” are used interchangeably and refer to the 

basic building block i.e. H-bridge, half-bridge or FCC circuit, for each MMC 

topology. The author is aware that the term “sub-module” is also used in 

other literature to express the same idea. 
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2.1 Modular Multilevel Converter (MMC) Configurations 

In an MMC topology, each converter phase comprises at least an “arm” built 

up from a stack of sub-modules. An inductor is normally inserted either at 

the top or bottom of the stack and this depends on physical installation limits 

such as the footprint available on site. This “buffer” inductor serves the 

purpose of limiting the in-rush current to the converter arm as well as limiting 

di/dt in the converter’s current waveforms during the different switching 

actions.  

2.1.1 Sub-Modules Using Half-Bridge Cells [54] 

A half-bridge cell comprises two switching devices, two diodes and a DC 

energy storage element (i.e. capacitor, super-capacitor or battery) as 

illustrated in Figure 2.1(a). Each cell is capable of producing a two state 

output voltage: 0 or +VC, where VC is the voltage of the associated DC 

source (see Table 2.1). Thus  each cell acts as a controllable unipolar 

voltage source. The current flow through each cell can be bidirectional, 

hence it gives two quadrant operation. For high voltage applications, 

multiples of such cells are used as sub-modules and the terminals of these 

are cascaded to form one phase arm with the inductor mentioned above 

connected at one end as shown in Figure 2.1(b) .  

 

Figure 2.1: (a) Half-Bridge Cells and (b) one converter phase arm. 
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Table 2.1: Valid Half-Bridge Module Switching States. 

VO - cell output voltage; IO – cell current direction; and Vc - capacitor 
voltage (↓ = Discharging, ↑ = Charging, NC = No Change) 

S1 S2 VO 
VC 

+IO -IO 

1 0 +Vc ↑ ↓ 

0 1 -Vc ↓ ↑ 

The main benefit of realising the sub-modules by half-bridge cells is their 

simplicity in comparison to using other topologies. However a limitation is the 

inability to suppress, by converter action, fault currents arising from DC-side 

short circuits. This is because  each switching device, either MOSFET or 

IGBT, is equipped with an  integral inverse parallel diode, forming an 

uncontrollable rectifier. Though the current technology has made DC-bus 

faults rare and AC circuit breaker tripping is tolerable, such defect is still a 

concern to be addressed.   

2.1.2 Sub-Modules Using H-Bridge Cells 

The use of a H-bridge cell as sub-module has also been investigated [3]. 

With four switch-diode combinations and one energy storage element of the 

same type as its half-bridge counterpart above, this offers three-state output 

voltage as listed in Table 2.2 and bidirectional current flow, hence giving 

four-quadrant operation as shown in Figure 2.2(a). 

 

Figure 2.2: (a) H-Bridge Cells and (b) one converter phase arm. 
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The phase arm is realised by chain connection of multiple cells as shown in 

Figure 2.2(b). Clearly, compared with the half-bridge cells, using this module 

within the topology doubles the number of semiconductor devices. However 

it is capable  of suppressing DC faults by converter action. 

Table 2.2: Valid H-bridge Cell Switching States. 

VO - cell output voltage; IO – cell current direction; and Vc - capacitor 
voltage (↓ = Discharging, ↑ = Charging, NC = No Change) 

S1 S2 S3 S4 VO 
VC 

+IO -IO 

1 0 0 1 +Vc ↑ ↓ 

0 1 1 0 -Vc ↓ ↑ 

0 1 0 1 0 NC NC 

1 0 1 0 0 NC NC 

Notes for Table: The convention for the converter current is, +ve current is 

one that flows into the converter; and negative current flows out of the 

converter. 

2.1.3 Classification of Modular Multilevel Converters 

Since its inception, various names have been given to the modular multilevel 

topology, such as cascade multilevel converter, modular multilevel 

converter, M2LC, M2C and chain-link converter. To establish consistency, 

both in naming and understanding, a review and classification of this family 

of converters was conducted in 2010 [43]. In this review, the name “Modular 

Multilevel Cascaded Converters” (MMCC) was adopted for this family of 

converters. The following categories are specified within: 

 Single Star Bridge Cells (MMCC-SSBC) 

 Single Delta Bridge Cells (MMCC-SDBC) 

 Double Star Chopper Cells (MMCC-DSCC) 

 Double Star Bridge Cells (MMCC-DSBC) 

Note that each of the converters in this category presents certain 

characteristics that either increase or reduce suitability when applied in one 

application or the other. To ensure consistency with existing literature, the 

term “arm” is used to refer to a cascade of modules that act together to 

synthesise the same portion of an output (AC or DC) in an MMC. The author 
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is aware the other nomenclature such as converter “limb” or “phase limb” 

may be used in other literature. In the topologies described it is also 

assumed that the storage element used is a capacitor. 

In this thesis, the format adopted for discussing the MMCC family involves a 

further categorisation into the following: 

 No DC link (Single- Bridge Cells: SSBC, SDBC) 

 Common DC link (Double Star-  Cells: DSCC, DSBC) 

The “No DC link” category includes the MMCC-SSBC and MMCC-SDBC 

circuits, while the Common DC link category includes the MMCC-DSCC and 

MMCC-DSBC circuits. 

Although the MMCC-SSBC and MMCC-DSBC are more popular circuits, 

especially for industrial implementation, all the categories are discussed in 

this section including the double delta circuit which was not reviewed in [43]. 

2.2.4 Single- Bridge Cells  

This type of MMCC is typically built from H-bridge modules. Several such 

modules are series-connected to form each converter arm. It is not common 

to implement half-bridge modules in the single-star arrangement due to the 

limitation presented by the inability to reverse voltage polarity. Moreover 

fewer redundancies are available for module capacitor energy exchange.  

This topology can support applications which do not require a DC link. Such 

requirement is common for certain applications: Flexible AC Transmission 

systems (FACTS) devices such as Static Compensator (STATCOM); Battery 

Energy Storage Systems (BESS) [22, 57-60]; and grid interface converters 

for integrating distributed renewable energy sources [61]. 

Single- Star Bridge Cells (MMCC-SSBC) 

The configuration of a three-phase MMCC in single-star arrangement and 

built from H-bridge cells is illustrated in Figure 2.3. Each converter arm 

comprises a number of H-bridge modules series connected to form two arm 

terminals: an AC and a DC terminal. The AC terminal for each converter arm 

(U, V, W) is connected to one phase of the AC line (A, B, C) typically via a 

transformer and/or a line reactor of known value: LcA, LcB, LcC. The DC 

terminals for each converter arm are connected to a common node, that 

forms the converter’s neutral point which may be grounded or left “floating” 

depending on application requirements like transformer set-up. 
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Figure 2.3: MMCC Single Star topology using H-bridge modules. 

The connection between the converter and the AC line i.e. transformer 

arrangement is chosen based on application requirements and typically 

specified by the customer. Some points considered while making this choice 

are: 

- Type of AC grid (three- or four- wire system). 

- Level of isolation required between the converter and AC grid. 

- Ratings required for the converter’s AC current and terminal voltages 

in relation to the grid current and voltage. 

- Build, physical size and means of transporting the transformer. 

Figure 2.3 shows a star-delta type transformer arrangement and the star-

neutral point is grounded at the grid side. This arrangement is suitable when 

a four-wire AC system is present and sufficient grid-converter isolation is 

required. The converter’s terminal voltages are supplied by the delta side of 

the transformer and the neutral point is left “floating”. This arrangement 

reduces certain project costs. For instance there is no longer a need for 

grounding transformers and disconnector switches at the converter side. 

Other common AC connection (transformer) arrangements include: 

- Star-Delta (with floating star); 

- Star-Star (with grounded or floating star); and  

- Delta-Star (with grounded or floating star). 
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Assuming that the voltage level (VC) is maintained across each module 

capacitor, then each converter arm will synthesise an AC waveform with up 

to (2n.VC + 1) voltage levels (where n is the number of H-bridge modules in 

the converter arm). The different switching states available to a H-bridge 

module and corresponding module capacitor voltage are as shown in Table 

2.2. 

Consider connecting this MMCC-SSBC to a balanced three-phase source, 

each phase current flows into one phase arm through an equivalent series 

impedance presented by the transformer and AC line (LsA, LsB, LsC),   the 

converter arm inductor (LcA, LcB, LcC) and the chained modules. The energy 

storage components are either charged or discharged depending on the 

direction of phase current and individual module switching states. Clearly 

there is  only one current path in each phase arm. Hence circulating currents 

do not exist in this topology. Based on this functionality, the MMCC-SSBC 

topology will only interact with positive-sequence components in a power 

system, making it attractive only for smart grid applications with stiff and 

symmetrical AC supplies such as distribution-side STATCOM or BESS 

applications. 

Single- Delta Bridge Cells 

The configuration of a single delta bridge cell-based MMCC is as illustrated 

in Figure 2.4. Each converter arm (A-B; B-C; and C-A) comprises “n” series-

connected modules and three such arms are connected in delta form. There 

is neither a common neutral point nor common DC link hence the 

transformer arrangement must either be in floating-star or delta configuration 

at the converter side. 
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Figure 2.4: MMCC Single Delta topology using H-bridge modules. 

The switching states in Table 2.2 still govern the output voltages for each H-

bridge cell but the delta configuration introduces circulating phase currents, 

making it possible for an inverter with this topology to interact with both 

positive- and negative-sequence symmetrical components. 

Consider an AC current flowing from Phase-A through at the converter-side 

transformer terminal “U” shown in Figure 2.4. An ideal path for this current 

would be to split at the converter connection point between converter arms: 

A-B; and C-A. The portion of current that flows through both converter arms 

is determined by the voltage across each arm at that instant. Multiple return 

paths are available via terminals “V” and/or “W”, again determined by the 

voltage across the converter arm B-C. These extra paths allow for the 

current to “circulate” within the converter at each instant. A case for this is 

presented in [46], where an investigative study is presented for a 5 kVA 

PWM controlled MMCC in single delta bridge cell configuration. This was 

deployed with the aim of realising negative-sequence reactive power control 

in a STATCOM application. As a result of this functionality, the MMCC-

SDBC is attractive for smart grid power applications that may involve 

unsymmetrical AC systems. It is also suitable for Battery Energy Storage 

System (BESS) applications as it also allows interaction active power 

components in a grid. 



 

31 

 

Ratings for Single- Bridge Arrangements 

When rating the arms in a single star (Figure 2.3) or single-delta (Figure 2.4) 

structure, it is important to note that voltage rating (thus number of modules) 

and current rating (thus current rating for module switches) for the converter 

arms are affected by the secondary-side transformer arrangement. This is 

qualified in Table 2.3. 

Table 2.3: Ratings for Single- Star and Delta topologies. 

 Single Star Converter Single Delta Converter 

Grounded Star 
PH

L-L II;
V

V ratingrating 
3

 Not Applicable 

Floating Star 
PH

L-L II;
V

V ratingrating 
3

 
3

PH
L-L

I
I;VV ratingrating   

Delta 3
32

PH
L-L II;

V
V ratingrating   PH

L-L II;
V

V ratingrating 
3

 

where  

 VL-L is the line to line voltage value at converter side. 

 IPH is the phase current at converter side 

According to Table 2.3, the voltage rating for an MMCC-SDBC topology is 

“√3” times more than that of an equivalent MMCC-SSBC topology when a 

floating star converter-side transformer arrangement is used and 2 times 

more when a delta converter-side transformer arrangement is used. 

Also, the current rating for an MMCC-SDBC topology is “√3” less than that of 

an equivalent MMCC-SSBC topology regardless of the transformer 

arrangement. This means that switches (IGBT’s) of a lower current rating 

(which are cheaper) may be used within the H-bridge modules but more H-

bridge modules are required in series. 

Main control objectives for a MMCC circuit application implementing single- 

bridge modules/cells include ensuring equal and constant voltages module 

capacitors as well as the control of symmetrical positive (single-star) and/or 

negative (single-delta) sequence components on the AC terminals. 

2.1.4 Double- Bridge Arrangements 

This arrangement of MMCC allows the use of half- or H-bridge modules and 

the choice of either depends primarily on the type of application and sort of 

functionality provided by the converter. Several such modules are series-
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connected to form each converter arm and the arrangement is an extension 

of the single- star or delta topology such that a double star or double delta 

circuit may be realised. The double star bridge cell (MMCC-DSBC) supports 

applications that require a common DC link  and has become popular over 

the past half-decade as the enabling technology for HVDC applications. 

The arrangement realised by extending into a double delta bridge cell 

topology (MMCC-DDBC) has neither been reviewed in any academic 

publications nor received industrial interest. This is possibly because no 

extra functionality has been identified by using such an arrangement. 

The MMCC-DSBC and MMCC-DDBC topology structures are introduced in 

the following text. For the case of the MMCC-DSBC topology some basic 

analysis is provided to highlight some of the research interest and focus 

placed on this topology at the moment. Typical converter ratings are also 

provided. 

Double- Star Bridge Cells 

 

Figure 2.5: MMCC Double Star Bridge Cell topology using half-bridge 
modules. 
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Figure 2.5 shows the double star topology of a MMCC. A half-bridge 

arrangement is shown as the module circuit and it is uncommon for H-bridge 

modules to be applied in this topology. This is because each converter arm 

is required to operate in only two quadrants (i.e. bipolar current and unipolar 

voltage) hence the half-bridge module is sufficient. 

Unlike the single- star and delta arrangements the double star topology is 

built from six converter arms connected as pairs to form each converter 

phase i.e. as three top arms and three bottom arms. Essentially the topology 

comprises two single-star circuits with phase-parallel connected AC 

terminals. In each phase the top and the bottom arms are connected through 

converter arm reactors LcAT, LcAB, LcBT, LcBB, LcCT, LcCB to form common AC 

phase terminals (U, V, W). The three top arms are connected to form a  

common positive DC terminal (+VDC) while the three bottom arms form the 

negative DC terminal  (–VDC). 

The “phase-parallel” configuration of the top and bottom arms result in 

several current paths available within this topology thus allowing the 

“circulating current” phenomenon to occur. 

The half-bridge module circuit shown in Figure 2.5 comprises a capacitor 

and two semiconductor power switches (S1; and S2). These are typically 

IGBTs  and can be controlled to synthesise two output voltage levels at VO. 

Assuming the voltage level (VC) is maintained across each module, then 

each converter arm will synthesise an AC waveform with up to (n.VC + 1) 

voltage levels (where n is the number of half-bridge modules in the converter 

arm). The different operating states available to a half-bridge module are 

outlined in Table 2.1. The module output voltage (VO) for each state and 

resulting consequence  to the module capacitor voltage (VC) (i.e. charging or 

discharging) is also specified. 

Similar derivation may be applied to the single and double star circuits to 

determine power demand levels. However a more sophisticated current 

control strategy is required for the double star circuit due to the several 

control variables namely: three AC currents; six arm currents; and DC 

current. More so, the circulating currents must be controlled. An equivalent 

circuit for the converter is shown in Appendix B.1 outlining several composite 

and complex closed circuits formed by the double star topology during 

operation. This is used to establish certain expressions that describe the 

circulating currents within the double star topology. 
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Circulating current is a dominant issue in the control of the double star 

MMCC circuit and is a subject of research [21, 45]. It is often considered 

during design of the control of the topology and mostly at the inner loop 

current controller [48, 49, 62]. 

In Chapter 3 the different tiers of control required for proper management of 

a Modular Multilevel converter are introduced and those essential for 

managing the circulating currents within the converter are highlighted.  

The MMCC-DSBC topology has attracted industrial interest due to its ease 

of extension and application versatility. Many power electronics industries 

have produced either a prototype or commercial-ready version of this 

topology especially for application to HVDC schemes. 

Double- Delta Bridge Cells 

Following through from the classification in [43], it is then possible to 

implement a double delta bridge or chopper cell (DDBC or DDCC). However 

this circuit has neither been reviewed academically nor established 

practically as the presence of a double delta circuit, even though more 

expensive, presents no significant benefits. From an application perspective, 

the Double Delta circuit is also limited as it does not provide a common DC 

link. 

However, the MMCC-DDBC topology presents the possibility of separately 

controlling each delta converter and the circulating current through the delta 

connected arms and facilitates active power exchange between the cells 

capacitors in each arm. 

Figure 2.6 presents a configuration with a double delta circuit connected to a 

3-phase AC supply. Such a circuit will control both positive and negative 

sequence symmetrical components and in practice it can be used as an 

inverter for reactive power compensation as well as a harmonic filter. 
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Figure 2.6: MMCC Double-Delta topology using H-bridge modules. 

As shown in Figure 2.6, a double-delta topology is built up using  

H-bridge cells and comprises two single-delta converters (top and bottom 

delta converters) hence it presents six phase arms comprising of “n” number 

of bridge cells in each arm. The AC supply terminals are tapped from the 

connection points on each phase in the delta configuration. 

There are no extra benefits from the complexity that is such an extension, 

except possibly for increasing current capacity which may be achieved via 

less complicated means (e.g. increasing module switch current rating, 

choice of converter transformer, etc.). Further analysis is not conducted for 

this topology. 

2.1.4.1 Voltage and Current Ratings for the Double- Star Arrangement 

It is important to know the voltage and current rating for the converter arms 

in a double- star (Figure 2.5) structure as these ratings help in choosing the 

number of modules as well as the current rating of module switches. The 
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effect of converter transformer arrangement is already qualified in Table 2.3 

thus Table 2.4 focuses on generalised converter arm ratings for an MMCC-

DSBC topology. 

Table 2.4: I – V Ratings  for the Double Star Bridge Cell topology. 

Arm Rating Voltage (V) Current (A) 

Operating 
ACDC_ VVV TOPARM   

DCAC_ VVV BOTTOMARM   

Inverter Rectifier 

23

ACDC II
ITop   

23

ACDC II
IBottom   

23

ACDC II
ITop   

23

ACDC II
IBottom   

Peak ACDC_ VVV PeakARM   
23

AC_PeakDC

_

II
I PeakARM   

where  

 VDC is a DC voltage portion, the total DC rail voltage is ±VDC i.e. 2VDC. 

VAC is the AC voltage applied to the converter (this is either a phase 

or line-line voltage depending on the transformer arrangement 

chosen). 

VARM_TOP is the voltage applied across the top converter arm during 

operation. See Figure 2.7. 

VARM_BOTTOM is the voltage applied across the bottom converter arm 

during operation. 

 VARM_Peak is the maximum voltage value of the converter arm (top or 

 bottom). See Figure 2.7. 

 IDC is a DC current absorbed or supplied by an inverter or rectifier. 

 IAC is an AC current absorbed or supplied by an inverter or rectifier. 

ITop is a combination of AC and DC currents that flow through the top 

converter arm. See Figure 2.7. 

IBottom is a combination of AC and DC currents that flow through the 

bottom converter arm. 

IARM_Peak is the peak current value experienced at the converter arm 

(top or bottom). See Figure 2.7. 
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Figure 2.7: 1 phase of MMCC-DSBC showing basic operating principle 
and peak ratings during (a) inversion; and (b) rectification. 

In Figure 2.7 the equivalent circuit for one phase of an MMCC-DSBC 

topology is shown in order to outline the current paths via the top and bottom 

converter arm in that phase. This allows the basic operating principle to be 

discussed and the converter arm ratings established. 

The equivalent circuit is shown as an AC voltage VAC connected to the DC 

rail ±VDC via the top and bottom converter arms such that the top and bottom 

arms experience the voltages (+VDC-VAC) and (-VDC+VAC) respectively. 

VAC is either a line or phase voltage depending on the transformer 

arrangement implemented. For instance VAC is a phase voltage if a star-delta 



 

38 

 

transformer is used or a line voltage when a star-star transformer 

arrangement is implemented. A neutral point N is shown as a reference for 

the AC voltages while a ground point 0 is used a reference for the DC side 

voltages. To simplify the circuit analysis/discussions N and 0 are assumed to 

be at equipotential (this is the case only for an ideal system i.e. Symmetrical 

AC voltages and stiff DC voltages). 

As the AC voltage alternates between positive and negative peak values 

during each cycle, the peak operating voltage (VARM_Peak) observed in the top 

and bottom converter arms is |VDC+VAC|. However, in the design of a 

practical MMCC-DSBC system, each converter arm is rated up to |2VDC| 

instead. This is done to accommodate an “unlikely” but possible scenario 

when all the cells in a complementary converter arm are completely 

bypassed exposing the other arm to voltages up to 2VDC. Such a scenario is 

typically as a result of local protection trips reacting to a cascading fault 

current local to one arm. Incidentally such voltage rating also provides each 

converter arm with a certain percentage redundancy which helps guarantee 

minimal converter downtime. 

As an inverter (Figure 2.7a), a third of the total DC current flows into the top 

and bottom converter arms while each arm contributes half the AC current. 

As a rectifier (Figure 2.7b), half the AC current  flows via the top and bottom 

converter arms to contribute a third of the total DC current. 

Thus in any case each converter arm experiences a combination of AC and 

DC currents with peak values up to (
23

AC_PeakDC
II

 ). This value is essential 

when choosing the current rating for the components each module, 

especially the switches. 

 

2.1.5 Emerging MMCC Configurations 

The emergence of new MMCC configurations is driven by a need for more 

compact high voltage converters with extremely low converter losses to drive 

applications for the smart and super-grid concepts. Academic and industrial 

researchers are constantly investigating more MMCC configurations. 

Current research focus is on MMCC topologies for HVDC applications. 

Hence the realisation from such investigations are geared towards solutions 

with common DC link. The hybrid converter reviewed in this work are 
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classified as: series- and parallel-hybrid topologies. This classification 

describes the method/configuration of connecting the converter arms 

between the AC and DC sides. Figure 2.8 shows both configurations. 

 

Figure 2.8: Hybrid MMCC Classification based on DC connection 
showing (a) parallel-hybrid; and (b) series-hybrid configuration. 

Based on this classification the MMCC-DSBC topology is inherently of 

parallel-type connection i.e. the converter arms are connected in parallel 

between the AC and DC sides. 

Hybrid MMCC with Parallel Connection  (The Alternate Arm Converter – 

AAC) 

For parallel-hybrid topologies, the connection between the AC and DC side 

is of parallel type but each converter arm is built from a cascade of different 

cells or devices to establish VARM. Different topologies will aim to achieve 

different objectives, but the main motive in a parallel-hybrid configuration is 

to provide more control options in the transition of the current flowing in each 

converter arm as it flows through the circuit. One such example is found in 

the Alternate Arm Converter (AAC) which showcases the use of director 

switches (also known as selector switches) to force a prescribed path for the 
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current through in each phase [44], thus allowing the flow of circulating 

currents to be governed. Extra functionality such as DC fault blocking is 

possible depending on the cell type chosen to build up each converter arm. 

The selector switches serve the function of choosing which converter arm is 

activated as the current flows either from AC line to DC terminals or vice 

versa. Incidentally, the position of the selector switches presents a means of 

dividing the double star circuit into two single star circuits and three modes 

of operation are presented. The AAC can function normally as a 

rectifier/inverter or as two separate MMCC-SSBC circuits which can be 

operated independently or simultaneously as inverters.  During a DC-fault 

ride-through scenario it is then possible to reconfigure the converter for utility 

support purposes (STATCOMs, harmonics filters, etc.). 

 

Figure 2.9: The Alternate Arm Converter showing (a) module; and (b) 
Director switch circuit. 

Figure 2.9 shows one parallel hybrid arrangement, an alternate arm 

converter. The AC line terminals (A, B, C) are connected to the converter AC 

terminals (U, V, W) via a star-delta transformer connection. The top and 
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bottom converter arm in each converter phase comprises a series 

connection of: 

- a converter limb reactor (LcAT, LcAB, LcBT, LcBB, LcCT, LcCB) that limits 

the rapid current transients can occur during switching. This reactor 

value is also chosen typically smaller than that in the MMCC-DSBC 

topology such that quick control of circulating current during an “over-

lap period” may be achieved [44]; 

- a director switch (DSAT, DSAB, DSBT, DSBB, DSCT, DSCB): a 

semiconductor switching assembly (Figure 2.9b) used to connect or 

disconnect each converter arm into or out of the circuit. This provides 

extra degrees of control freedom that ensure that an optimal current is 

transferred between the AC and DC system for a certain DC power 

value; and 

- a series connection of modules (Figure 2.9a) that when collectively 

controlled provide a required converter arm voltage that governs the 

flow of current between the AC and DC sides via that arm. 

The number of modules required for the AAC is reduced as the director 

switches are rated to provide voltage support. Switching loss reduction is 

also suggested in [44], particularly if soft-switching (especially zero-current 

switching) is adopted for the control of the selector switches. 

The Alternate Arm Converter is an active research topic and a subject of 

several publications. In [63-65] a system level analysis is provided for the 

topology suggesting a 40% decrease in the number of modules per 

converter arm compared against an MMCC-DSBC topology of the same 

rating. Some of the enhanced converter control techniques developed for the 

AAC are discussed in [50, 66], such as the application of an extended 

overlap period for the control of the director switches to realise enhanced 

energy management within the converter, as well as third-order harmonic 

voltage injection to reduce converter losses. Power loss and thermal 

analysis were performed for the AAC over a period of 200 seconds. This is 

presented in [67], which suggests a reduction in switching losses when 

compared against MMCC-DSBC topology. 

One of the main benefits of the AAC is its ability to ride through AC faults 

and block DC faults, these features are discussed in [68] and [44] 

respectively. 
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The choice and build of the semiconductor switching assembly for the 

director switches (Figure 2.9b) is still an active research topic. Perhaps with 

the current research into wide band-gap semiconductor devices, the near 

future will present more sophisticated semiconductor devices to better serve 

at such a capacity. 

MMCC Series-Hybrid Connection (The Series Bridge Converter -SBC) 

A series-hybrid MMCC still comprises of a series stack of cells on each 

converter phase arm. However a series connection of the converter arms (U, 

V, W) forms the DC rail. One such topology is the Series Bridge Converter 

(SBC) presented in [69] as shown in Figure 2.10. 

 

Figure 2.10: The Series Bridge Converter showing (a) module; and (b) 
Director switch circuit. 

As shown in Figure 2.10, The SBC is built up using only three converter 

arms (U, V, W). Each converter arm comprises an H-bridge circuit 

connected in parallel with a series string of modules (chain-link). The three 

arms are connected in series to provide or receive power from the DC link. 
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For instance with the converter operating as an inverter, the 3-phase AC 

waveforms are generated as follows: 

In each arm: 

- the Chain-link receives energy from the DC link and is controlled to 

generate three quasi-sinusoidal but full-wave rectified waveforms 

(with each waveform displaced 1200 from the other); 

- the H-Bridge circuit is controlled to “invert” the rectified waveform 

provided by the Chain-link every 1800 thus generating a quasi-

sinusoidal AC waveform; and 

- the resulting AC waveform is coupled to the AC line via three single 

phase transformers. 

Investigations have shown a possible converter footprint reduction (from 

sub-module count reduction) when compared with an MMCC-DSBC 

topology of similar power rating. As well, the SBC is capable of advanced 

functionality such as active DC filtering due to its configuration and control 

[70]. The converter footprint is  smaller than that of the MMCC-DSBC and 

AAC making this topology attractive for offshore applications where footprint 

is at a premium. As a result the SBC topology is a subject of active research 

[69, 71]. 

Voltage and Current Ratings for the AAC and SBC 

The ratings for the chainlinks and director switches for the AAC and SBC are 

shown in Table 2.5. For the AAC these ratings are established from [50, 63], 

however as ratings for the SBC chainlinks and director switches are unclear 

in the relevant literature [69-71], Figure 2.11 is provided to support the 

specifications. 

Table 2.5: I – V Ratings  for the AAC and SBC. 

Rating Voltage (V) Current (A) 

AAC DCVVARM  ; 
2

DC
AC

V
VVDS   










23

ACDC II
I ARM   

SBC 
3

DCV
VARM  ; 

3

DC
AC

V
VVDS   DC

AC

2
I

I
I ARM  ; ACIIDS   
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where  

 VDC is the total DC rail voltage.±VDC for the AAC and VDC for the SBC. 

VAC is the AC voltage applied to the converter (this is either a phase 

or line-line voltage depending on the transformer arrangement 

chosen). 

VARM is the voltage rating of the chainlink. 

 IDC is a DC current absorbed or supplied by an inverter or rectifier. 

 IAC is an AC current absorbed or supplied by an inverter or rectifier. 

IARM is current rating of the chainlink. 

IDS is current rating of the Director Switch. 

 

Figure 2.11: SBC basic operating principle to support specification for 
peak ratings. 

In Figure 2.7  the circuit for a SBC is shown which outlines the current paths 

as well as establishes peak voltage and current expectations within the 

converter. 

The circuit shows each phase of a three-phase AC line VAC_(A, B, C) connected 

to a H-bridge built using four director switches. The H-bridges are connected 

in series via their DC terminals to form the DC rail (+VDC, 0) and three 

converter arms (one for each H-bridge) are connected to the DC terminals of 
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the H-bridges such that a combination of AC and DC currents flows via the 

converter arms while only AC currents flow via the director switches. This 

arrangement supports ratings specified in Table 2.5 for the converter arms 

(VARM) and director switches (VDS) in the SBC. 

To summarise the findings in Table 2.5, the SBC is expected to offer further 

size (hence cost) reduction than the AAC compared to a MMCC-DSBC 

because: 

- There is a lower requirement for peak voltage rating for each 

converter arm; and 

- In reality building such a  converter while adhering to voltage 

clearance requirements needs the erection of only two equipment 

columns (i.e. one  for the converter arms and one for the director 

switches). 

Table 2.5 also suggests that the peak current rating for the converter arms is 

expected to increase and although this needs further clarification, it is 

immediately evident that the SBC is an attractive topology for offshore 

applications (wind farm power transmission) while the AAC is suitable for 

interconnecting AC/DC system which are prone to faults.  

2.2 Discussion and Comparison of MMCC Configurations 

In this section a discussion is presented in order to compare the following 

described topologies: 

- MMCC-SSBC 

- MMCC-SDBC 

- MMCC-DSBC 

- AAC 

- SBC 

These topologies were developed to tackle different applications’ suitability, 

making them difficult to compare directly across common criteria. To tackle 

this difficulty, the topologies are first compared using standard system 

design criteria and against a range of applications (FACTS, HVDC, Offshore 

Power Transmission). 

A filled radar chart is used to graphically present comparison for each group 

above and express the rank of each topology. This type of chart is a good 

platform for comparing different systems which are normally not directly 
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comparable. A table is also provided showing how the topology ranks are 

determined. 

System Design Criteria 

Every system has to consider the five basic design parameters: 

- Size (and Weight): Some applications place a high premium on cost, 

weight or both. For instance in an offshore application a design with 

smaller (footprint) is more attractive, while for an aerospace 

application size and weight reduction are of equal and great 

importance. 

- Cost: This is the overall cost for choosing a certain design/technology 

(not just the direct financial cost). For instance using a star-star 

instead of a star-delta transformer incurs an extra “cost” in terms of 

grounding transformers. 

- Efficiency: System efficiency is important in the choice of any design 

but it becomes more stringent in applications that operate in high 

orders of magnitude. For instance in a 600MW HVDC application, 1% 

loss implies 6 million watts of heat to dissipate. 

- Performance: This is often associated with how closely the system 

output tracks a prescribed reference (or fundamental). For a converter 

certain qualities are used to track performance such as: dynamic 

response to step changes/faults, harmonic content, etc. 

- Reliability: This is associated with the robustness of the system. In 

summary it is a reflection of how much tolerance is exhibited by the 

system before shut-down is required. 

Each application accords more importance to some of the design 

parameters than the others. For instance for a FACTS application, size and 

performance may be of greatest importance while for a HVDC application 

size, efficiency and reliability will often hold great importance. 

To capture this variance, a ranking system is developed to capture the 

suitability of each topology to the different applications. Basically the 

topology rank is obtained by multiplying an importance value by a suitability 

value. The importance values are in a range of 1 – 3 and allocated to each 

system design parameter for each application where: 

- 1: Low importance; 

- 2: Medium importance; and 

- 3: High importance. 
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On the other hand, the suitability values range are allocated to each 

topology and reflect how much the topology meets the system design 

parameter. The suitability values are in a range of 1 – 5, where: 

- 0: Not Applicable; 

- 1: Unsuitable; 

- 2: Somewhat unsuitable; 

- 3: Neutral; 

- 4: Somewhat suitable; and 

- 5: Very Suitable. 

Final ranking is achieved by multiplying the suitability and importance 

values. 

Topology Ranking for a FACTS Application 

Table 2.6: Converter topology ranking for a FACTS application. 

 SSBC SDBC DSBC AAC SBC 

Size 10 10 4 6 8 

Cost 8 8 4 8 8 

Efficiency 6 6 6 8 8 

Performance 3 12 15 15 9 

Reliability 4 4 4 5 3 

Total 31 40 33 42 36 

Importance values: Size (2); Cost (2); Efficiency (2); Performance (3); Reliability (1). 
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Figure 2.12: Filled radar showing topology ranking for FACTS 
applications. 

 

Topology Ranking for a HVDC Application 

Table 2.7: Converter topology ranking for a HVDC application. 

 SSBC SDBC DSBC AAC SBC 

Size 0 0 4 6 8 

Cost 0 0 2 4 4 

Efficiency 0 0 9 12 12 

Performance 0 0 15 15 9 

Reliability 0 0 12 15 9 

Total 0 0 42 52 42 

Importance values: Size (2); Cost (1); Efficiency (3); Performance (3); Reliability (3). 
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Figure 2.13: Filled radar showing topology ranking for a HVDC 
application. 

 

Topology Ranking for Offshore Power Transmission 

Table 2.8: Converter topology ranking for an offshore power transmission 

application. 

 SSBC SDBC DSBC AAC SBC 

Size 0 0 6 9 15 

Cost 0 0 4 8 8 

Efficiency 0 0 6 8 8 

Performance 0 0 6 8 8 

Reliability 0 0 12 12 12 

Total 0 0 34 45 51 

Importance values: Size (3); Cost (2); Efficiency (2); Performance (2); Reliability (3). 
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Figure 2.14: Filled radar showing topology ranking for an offshore 
power transmission application. 

2.3 Summary 

The concept of Modular Multilevel Cascade Converters has been reviewed  

as the  fundamental background for describing the proposed topology based 

on a different module structure. 

The chapter presented the two converter topologies most commonly used as 

sub-modules in MMCCs. The discussions highlighted their main features;  

sub-modules using  half-bridge cells, though using fewer semiconductor 

devices, cannot suppress DC faults by converter operation;  sub-modules 

with a full-bridge cell can suppress DC faults by using the switching devices.   

The chapter then gave a comprehensive review of four modular multilevel 

converter topologies; MMCC-SSBC , MMCC-SDBC, MMCC-DSBC and 

MMCC-DDBC. It was shown that the former two use H-bridge cells as 

modules and are suitable only for STATCOM and BESS applications. In 

contrast the latter two double arm configurations use half-bridge cells as 

modules and are only for HVDC converters. An extensive analysis was given 

of the phenomenon of circulating current occurring in MMCC-DSBC. The 

chapter also reviewed the emerging forms of MMC, such as AAC and SBC. 



 

51 

 

Comparisons of all the topologies according to five well-known criterion were 

given. 
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Chapter 3  

MMFC Converter Sub-module Benchmarking 

So far, previous discussions have focused on topologies with modifications 

to the system-wide converter structure but all using the conventional half- or 

H-bridge sub-modules within each converter phase arm. Other emerging 

converter topologies such as flying capacitor or diode clamped converters 

may also be used to form sub-modules for the MMCCs.  

This chapter presents a new set of sub-modules for MMCC based on the 

flying capacitor topology. These are: 

- 3-level half-bridge flying capacitor cells; 

- 3-level H-bridge flying capacitor cells; and 

- 3-level Hybrid H-bridge flying capacitor cells. 

Before exploring these topologies for specific applications, their features, 

advantages and shortcomings as compared with their two well-known and 

well-used counterparts need to be assessed and quantified against a set of 

clearly defined criteria or metrics. Thus in this chapter a set of practically-

oriented metrics for evaluating sub-modules for modular multilevel 

converters is established. These are first applied to evaluate the typical half- 

and H-bridge sub-modules. They are then applied to the flying capacitor - 

based sub-module concepts, and results are compared. Codifying these 

metrics provides a potentially useful tool for practical designers of converter-

based equipment.  

The 3-level H-bridge flying capacitor sub-module is chosen for further 

investigation in this research, because it offers more degrees of control 

freedom at the sub-module level.  

3.1 Sub-module Benchmark Analysis 

A set of guidelines and assumptions used while assessing the different sub-

module concepts are outlined. Assumptions are backed either by data from 

a manufacturer’s datasheet or relevant publications. The following five 

metrics are established for assessing the sub-module concepts: footprint; 

cost; redundancy; efficiency; and performance. 
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3.1.1 Guidelines for Assessing Sub-module concepts 

The main components that form the sub-module concepts investigated are a 

combination of at least one of each item below: power semiconductor switch; 

Capacitor; Heat Sink(s); and Gate Electronics Module (GEM). 

Table 3.1 outlines the device options chosen and used to derive values for 

the sub-module assessment metrics. 

Table 3.1: Devices used for sub-module assessment parameters 
based on hardware rig. 

Device Manufacturer reference Comments 

Switch 

Module 

IKW30N60T (Infineon) 600 V, 30 A Power IGBT 

Capacitor EETED2G561EA 

(Panasonic) 

600 V, 560µF Capacitor 

Heat Sink SK105/105SA 

(Fisher Elektronics) 

Chosen specifically for its 

compensating thermal impedance 

(Rth = 2 K/W) to match maximum 

switch module operation. 

Gate 

Electronics 

Module 

(GEM) 

FPGA (ProASIC3) 

Transducers (LEM) 

Only the key parts that vary across 

the different sub-module concepts 

are considered. 

Three points are worth noting:  

In a power conversion application anti-parallel diodes are typically included 

either as separate physical devices or parasitic/body diodes connected 

across each power semiconductor switch. The declaration of a power 

semiconductor switch S1; S2; .. ; SX by the author is inclusive of such a diode 

i.e. D1; D2; …; DX. 

Certain power conversion applications e.g. Battery Energy Storage Systems 

use batteries in place of capacitors. But such applications are not 

investigated during this study. 

A pair of switches is operated in a complementary manner to avoid short 

circuit of a sub-module capacitor. 
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In practice, devices are selected to match an application’s requirements and 

may present a different voltage, current or capacitance rating. The devices 

listed in Table 3.1 are selected mainly to support further investigations 

including software and hardware evaluation conducted during the research. 

 

3.1.1.1 Sub-module Footprint Assessment 

To ensure consistency, the footprint assessment of each sub-module 

concept is based on the requirements for a 60 kV converter arm, with the 

geometry as shown in Figure 3.1. 

 

Figure 3.1: Guideline for footprint assessment (a) sub-module 
showing insulator with gap/clearance distance; (b) typical phase 
arm layout . 

The sub-module hardware set-up used for the footprint assessment is shown 

in Figure 3.1(a) while a typical converter phase arm layout is shown in 

Figure 3.1(b). This arrangement outlines the capacitor, the Switch module; 

and the GEM. It is assumed that the footprint for the heat sink is included in 

that of the Switch module. 

The total footprint value for a 60 kV converter arm is derived as a function of 

the width (X) and height (Y) of the converter arm as expressed in (3.1) and 

the following factors are taken into consideration: 
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- the number of sub-modules tiers required to realise the 60 kV 

converter arm. 

- recommended gap/clearance distance between each sub-module tier 

as specified in IEC608151; and 

- sub-module width as a function of component count i.e. number of 

switch modules and capacitors required for each sub-module 

concept. 

    STSMCTSMT nXYnYnFootpr .1.int      3.1 

where  nST is the number of sub-modules per tier. The value of 10 is 

chosen here for ease in analytical calculations. 

nT is the number of sub-module tiers required for a 60 kV arm.  

The total number of sub-modules for a 60 kV arm is nT times 

nST. 

YSM is the sub-module height. A value of 20 cm is used (This is 

based on the height specified for the SK105 heat sink in Table 

3.1 plus 25%). 

XSM represents the per-unitised sub-module width. Values are chosen based 

on Table 3.2. 

YC is the inter-tier clearance distance. The value is chosen 

based on expression (3.2). 

 
T

C
n

kV
USCDY

60
        3.2 

where  USCD = 36.5 mm/kV. 

The values in Table 3.2 are chosen so that a half-bridge sub-module i.e. with 

1 switch module; 1 capacitor and 1 GEM presents a per-unitised width of 1 

p.u. This is a typical ratio experienced with a sub-module for high voltage 

applications. 

Also, the footprint values are presented in cm rather than cm2 since the 

width of the sub-module is per-unitised.  

                                            

1 IEC 60815: Guide for the selection and dimensioning of high-voltage 
insulators for polluted conditions; Definitions, information and general 
principles. 
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Table 3.2: Per-unitised values for sub-module width. 

Device Width (p.u) 

Switch 

Module2 

XS = 0.2 per Switch module 

Capacitor XC = 0.6 per Capacitor 

GEM XGEM = 0.2 per GEM 

Total (XSM) XSM = XS + XC + XGEM 

 

3.1.1.2 Sub-module Cost Assessment 

Cost assessment is performed using Table 3.3. Again the total cost used is 

the cost of building a 60 kV converter arm. 

Table 3.3: Guidelines for assessing sub-module cost. 

Device Part Number Unit Cost (£)3 

Switch Module IKW30N60T (1 Pair) 8.94 

Capacitor EETED2G561EA 8.15 

Heat Sink SK105 10.65 

GEM 

FPGA Board (ProASIC3) 6.00 

Gate Drive + Isolation (ACPL-332J; 

MEV1S0515SC) 

9.1 

Voltage Transducer (LEM  LV 25-P) 42.41 

 

3.1.1.3 Sub-module Redundancy Assessment 

Redundancy is determined for each sub-module concept based on the 

number of transition states available (i.e. states that result in sub-module 

voltage variation due to the converter arm current direction). For instance a 

                                            

2 A pair of switches operated in a complementary manner to avoid short 
circuit of a sub-module capacitor. 

3 Values based on Farnell (uk.farnell.com) prices for each part at the time of 
assessment. 
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half-bridge sub-module has only 2 transition states. The state when both 

devices are off is not considered an operating mode. This mode can be used 

for black- start4 of a Modular Multilevel Converter, and not during normal 

operation. 

 

3.1.1.4 Sub-module Efficiency Assessment 

The assessment of sub-module efficiency is based primarily on an analytical 

method for calculating the losses of an MMC-based VSC HVDC. This is an 

adaptation of a semiconductor manufacturer application note [72] and with 

IEC 627515 as reference. This loss assessment method defines nine loss 

categories (PV1 to PV9) for such an HVDC converter arm, however only four 

of these are adopted and they are sufficient to provide the metrics for sub-

module efficiency, namely: 

- Conduction losses for IGBT (PV1) and diode (PV2); and 

- Switching losses PV6 and PV7 for IGBT and diode respectively. 

Conduction losses 

Two methods are available for ascertaining the conduction losses. One 

relies on intensive digital simulations fed with relatively accurate curve-fit 

data for device on-state voltage as a function of current [73-75]. The other 

method relies on the use of piecewise linear characteristics to obtain time-

averaged conduction losses [76]. The latter method is less cumbersome and  

thus is adopted during this work. 

The instantaneous conduction losses PV1
* and PV2

* are calculated using the 

expressions in (3.3) and (3.4) 

  
2

_0

*

1 .. ARMTONARMCEV IRIVP       3.3 

  
2

_0

*

2 .. ARMDONARMFV IRIVP       3.4 

where  VCE0 is the IGBT on-state zero-current collector-emitter voltage. 

                                            

4 In this context, black-start refers to the start-up procedure for a Modular 
Multilevel Converter, when there is DC link voltage but no AC voltage. 

5 IEC62751 – Determination of power losses in voltage sourced converter 
(VSC) valves for HVDC. 
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  RON_T is the IGBT on-state resistance. 

  VF0 is the zero-current diode forward voltage. 

  RON_D is the diode on-state resistance. 

  IARM is the instantaneous value of converter arm current. 

The values used for VCE0 and VF0 are obtained via piecewise linear 

interpolation [72] and using Infineon’s IKW30N60T datasheet [77]. This is 

shown in Figure 3.2. 

 

Figure 3.2: Determination of current-dependent device parameters (a) 
VCE0 and RON_T; and (b) VF0 and RON_D. 

 

Based on Figure 3.2, VCE0 = 0.75 V and VF0 = 0.9 V, while RON_T and RON_D 

are derived as shown in (3.5). References [72] and [78] recommend that a 

margin of around 0.4 V be added to account for tolerance between typical 

and maximum collector-emitter saturation characteristics, thus the values 

are adjusted accordingly such that VCE0 = 0.75 + 0.4 = 1.15 V; and VF0 = 0.9 

+ 0.4 = 1.3 V. 
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The time-averaged conduction losses PV1 and PV2 are calculated using the 

average and RMS converter arm currents as shown in (3.6) and (3.7). 
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  2

_01 .. RMSTONAVGCEV IRIVP        3.6 

  2

_02 .. RMSDONAVGFV IRIVP        3.7 

where  IAVG is the converter arm average current. 

  IRMS is the converter arm R.M.S current. 

Figure 3.3 describes the time varying functions of the converter arm current 

and voltage that are used for assessing each sub-module. This is typical 

wave-shape for a converter arm within a MMC-DSBC topology and 

operating as an AC to DC converter. 

 

Figure 3.3: (a) Converter arm and (b) time varying function of arm 
current and voltage. 

Based on the converter arm current shown in Figure 3.3(b) the average 

current is simply the D.C value. On the other hand, the mean square value is 

the sum of the separate AC and DC mean square values such that (3.6) and 

(3.7) are re-written as shown in (3.8) and (3.9) to reflect an adaptation from 

[76] for a converter arm in a MMC-DSBC rectifier. 
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(3.8) and (3.9) show that there is always current passing through devices 

even though with voltage VCE0,  VF0. The conduction loss is thus a sum of all 

IGBT and diode conduction losses as shown in (3.10). 

   21 VVCSCOND PPnP       3.10 

where nCS is the number of complementary switch pairs / sub-module i.e. 

switch modules. 

Switching losses 

It is assumed that all the sub-modules are switched in 3 times during each 

fundamental cycle (i.e. 150 Hz for a 50 Hz fundamental) as is the case when 

a carrier-based switching scheme with a 150 Hz carrier is used. In practice a 

sophisticated “active select and sort” optimisation algorithm is typically used 

so that only the required number of sub-modules are switched during each 

cycle to achieve a desired criterion e.g. sub-module capacitor voltage 

variation; sub-module loss per cycle; Total Harmonic Distortion; or a 

combination of either. 

The switching loss PSW is calculated as shown in (3.11) 

  )( OFFONSWCSSW EEfnP        3.11 

where fSW is the sub-module switching frequency. 150Hz is used. 

EON is turn-on energy (including tail and diode reverse 

recovery). 1.0mJ 

EOFF is turn-on energy (including tail and diode reverse 

recovery). 1.1mJ 

Values for EON and EOFF are obtained from Infineon’s IKW30N60T datasheet 

[77]. 
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Total losses for a 60 kV Converter Arm 

To account for the differences in voltage output capacity in each sub-module 

concept, the loss assessment values used are based on a 60 kV converter 

arm rather than for an individual sub-module. This will account for the fact 

that the total number of sub-modules required to realise the same converter 

arm is different for each sub-module concept. 

The loss for a 60 kV converter arm is calculated using the values obtained 

from (3.10) and (3.11) as shown in (3.12) while the efficiency is calculated 

using (3.13). 
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where VDC is a DC voltage portion i.e DC rail voltage is ±VDC = ±30kV 

(See Figure 3.3b).  

VAC is the AC voltage applied to the converter arm = 20kV as 

shown in Figure 3.3(b). 

 

3.1.1.5 Sub-module Performance Assessment 

At system level, qualities such as Total Harmonic Distortion (THD) are 

typically used to assess converter performance but this is insufficient for 

sub-module level analysis. Table 3.4 presents an alternative yet simple 

means as the sub-module performance assessment. This is a “score based” 

method  assessing the number of functions a converter built by a particular 

sub-module can perform.  
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Table 3.4: Assessing sub-module performance. 

Functionality Score 

Supports Single Star Bridge cell (SSBC) topology 0.25 

Supports Single Delta Bridge cell (SDBC) topology 0.25 

Supports Double Star Bridge cell (DSBC) topology 0.25 

Supports DC Fault Blocking and DC Fault Ride Through 0.25 

Basically each sub-module is scored based on the functionalities (and 

topologies) supported. 

 

3.1.2 Benchmark Analysis for the Half-bridge Sub-module 

 

Figure 3.4: Half-bridge analysis showing sub-module (a) 
configuration; (b) cascade arrangement for converter arm (c) I-V 
Quadrant showing operation and transition states. 

The sub-module configuration for a half-bridge arrangement is shown in 

Figure 3.4(a) and outlines one switch module i.e. two power semiconductor 

devices (S1; S2) connected in parallel across the sub-module capacitor C. 

The sub-module positive and negative output terminals are realised between 

S1; S2 and at the emitter (or drain if MOSFET is used) of S2 respectively. The 

cascade arrangement for a converter arm is shown in Figure 3.4(b) and 

operation is such that each sub-module presents a voltage (0 or VC volts). 

The converter arm voltage at each switching instant is the sum of all active 

sub-module voltages. Figure 3.4(c) shows how the operating states for the 

half-bridge sub-module distribute across a quadrant plane occupying only 

two quadrants (±I; V). The transitional states, i.e. states that result in sub-

module capacitor voltage variation, are also shown in Table 3.5.  
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Table 3.5: Half-bridge Sub-module Operating and Transition States. 

V – output voltage; IARM – arm current direction; and Vc - capacitor 
voltage showing transition (↓ = Discharging, ↑ = Charging, NC = No 
Change) 

State S1 S2 
V 

+IARM -IARM 

0 0 1 0 0 

1 1 0 ↑Vc ↓Vc 

 

Half-bridge Footprint Assessment 

Table 3.6: Per-unitised width for Half-bridge Sub-module. 

Device Quantity Width (p.u) 

Switch Module 1 0.2 

Capacitor 
1 0.6 

GEM 
1 0.2 

Total (XSM) p.u. 1.0 
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Half-bridge Cost Assessment 

Table 3.7: Half-bridge Sub-module Cost Assessment. 

Device Quantity Cost (£) 

Switch Module 1 8.94 

Capacitor 1 8.15 

Heat Sink 1 10.65 

GEM FPGA Board 1 6.00 

 Gate Drive + Isolation 2 18.2 

 Voltage Transducer 1 42.41 

Total 94.35 

Total for 60kV arm (i.e x 100) 9435 

 

Half-bridge Redundancy Assessment 

Figure 3.4(c) outlines 2 transition states in State 1 which cause the sub-

module capacitor voltage value to increase or decrease. Careful sub-module 

management is typically applied to maintain the capacitor voltage within a 

band ΔVC. This can be achieved using a passive carrier-based modulation 

technique with natural balancing or via an active selection algorithm. 

Half-bridge Efficiency Assessment 
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This value is based on the fact that all sub-modules are switched in every 

cycle (e.g. when a passive6 carrier-based PWM scheme is used). 

In practice a sophisticated optimisation-based algorithm is typically used to 

actively select only the required number of sub-modules while optimizing for 

sub-module capacitor voltage tolerance as well as losses. This has been 

proven to reduce losses down to 1% [62, 73, 76, 79]. 

 

Table 3.8: Half-bridge sub-module efficiency using guideline7. 

Parameter Value 

nCS (number of switch modules per sub-module) 1 

PV1 (3.8) 4.58 W 

PV2 (3.9) 15.08 W 

PCOND (3.10) 19.66 W 

PSW (3.11) 0.315 W 

nSM (number of sub-modules in 60kV arm) 100 

PLOSS_60kV (3.12) 1997.5 W 

Efficiency (3.13) in % 99.69% 

 

 

 

                                            

6 Passive carriers can be phase-locked to their reference signal or free-
running but without the capability of phase/amplitude adjustment. 

7 VCEO = 1.15 V; RON_T = 0.035 Ω; VFO = 1.3 V; RON_D = 0.018 Ω; fSW = 150 

Hz; EON = 1.0 mJ; EOFF = 1.1 mJ; IDC = 30 A; IAC; 30 A; VDC = 20 kV;  
VAC = 30 kV 
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Half-bridge Performance Assessment 

Table 3.9: Half-bridge sub-module performance. 

Functionality Score 

Supports Single Star Bridge cell (SSBC) topology 0 

Supports Single Delta Bridge cell (SDBC) topology 0 

Supports Double Star Bridge cell (DSBC) topology 0.25 

Supports DC Fault Blocking and DC Fault Ride Through 0 

Total 0.25 

 

3.1.3 Benchmark Analysis for the H-bridge Sub-module 

 

Figure 3.5: H-bridge analysis showing sub-module (a) configuration; 
(b) cascade arrangement for converter arm (c) I-V Quadrant 
showing operation and transition states. 

The sub-module configuration for a H-bridge arrangement is shown in Figure 

3.5(a) and outlines two switch modules (S1,S2 and S3,S4) both connected in 

parallel across the sub-module capacitor C. The sub-module positive and 

negative output terminals are realised between S1_S2 and S3_S4 

respectively. The cascade arrangement for a converter arm is shown in 

Figure 3.5(b) and operation is such that each sub-module presents a voltage 

(0, VC or -VC volts). The converter arm voltage at each switching instant is 

the sum of all active sub-module voltages. Figure 3.5 (c) shows how the 

operating states for the H-bridge sub-module distribute across an I-V 

quadrant plane occupying all four quadrants (±I; ±V). The transitional states 

are also shown in Table 3.10.  
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Table 3.10: H-bridge Sub-module Operating and Transition States. 

V – output voltage; IARM – arm current direction; and Vc - capacitor 
voltage showing transition (↓ = Discharging, ↑ = Charging, NC = No 
Change) 

State S1 S2 S3 S4 
V 

+IARM -IARM 

0 0 1 0 1 0 0 

1 1 0 1 0 0 0 

2 1 0 0 1 ↑Vc ↓Vc 

3 0 1 1 0 ↓-Vc ↑-Vc 

 

H-bridge Footprint Assessment 

Table 3.11: Per-unitised width for H-bridge Sub-module. 

Device Quantity Width (p.u) 

Switch Module 2 0.4 

Capacitor 
1 0.6 

GEM 
1 0.2 

Total (XSM) p.u. 1.2 
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H-bridge Cost Assessment 

Table 3.12: H-bridge Sub-module Cost Assessment. 

Device Quantity Cost (£) 

Switch Module 2 17.88 

Capacitor 1 8.15 

Heat Sink 2 21.30 

GEM FPGA Board 1 6.00 

 Gate Drive + Isolation 4 36.40 

 Voltage Transducer 1 42.41 

Total 132.14 

Total for 60kV arm (i.e x 100) 13214 

 

H-bridge Redundancy Assessment 

Figure 3.4(c) outlines 4 transition states from States 2 and 3 which cause the 

sub-module capacitor voltage to transition (charge or discharge). This is two 

times more than are available in the half-bridge sub-module. 

 

H-bridge Efficiency Assessment 
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99.38%  is the efficiency of one converter arm. This value is based on the 

fact that all sub-modules are switched in every cycle (e.g. when a passive 

carrier-based PWM scheme is used). One assumption made is that special 

consideration is not placed on the choice of transition between states. For 

instance, it would be desirable to transition from State 1 to State 2 or from 

State 0 to State 3 (refer to Table 3.10) when a positive or negative voltage is 

required respectively or vice versa when zero volts is required. With such 

consideration it is possible to reduce the switching losses by around 25%. 

However the switching loss is only 1.57% of the total sub-module loss thus 

such contribution may be plausibly neglected. 

Table 3.13: H-bridge sub-module efficiency using guideline8. 

Parameter Value 

nCS (number of switch modules per sub-module) 2 

PV1 (3.8) 4.58 W 

PV2 (3.9) 15.08 W 

PCOND (3.10) 39.32 W 

PSW (3.11) 0.62 W 

nSM (number of sub-modules in 60kV arm) 100 

PLOSS_60kV (3.12) 3995 W 

Efficiency (3.13) in % 99.38% 

 

 

H-bridge Performance Assessment 

                                            

8 VCEO = 1.15 V; RON_T = 0.035 Ω; VFO = 1.3 V; RON_D = 0.018 Ω; fSW = 150 

Hz; EON = 1.0 mJ; EOFF = 1.1 mJ; IDC = 30 A; IAC; 30 A; VDC = 20 kV;  
VAC = 30 kV 
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Table 3.14: H-bridge sub-module performance. 

Functionality Score 

Supports Single Star Bridge cell (SSBC) topology 0.25 

Supports Single Delta Bridge cell (SDBC) topology 0.25 

Supports Double Star Bridge cell (DSBC) topology 0.25 

Supports DC Fault Blocking and DC Fault Ride Through 0.25 

Total 1.00 

In addition to being able to support the SSBC and SDBC  topologies, using 

an H – bridge sub-module within an MMCC in double star topology allows 

DC fault blocking.  During a DC fault (short-circuit), the DC voltage collapses 

to almost zero. For a converter with a half-bridge sub-modules, a circuit is 

formed between the AC line and DC short-circuit through the anti-parallel 

diodes of the lower sub-module IGBTs in the converter phase arm (even 

with early fault detection and with both IGBT’s switched off). The peak 

amplitude values typical of such fault current can be in the order of several 

hundred thousand amps and certainly damage any conducting devices. 

For a converter built from H-bridge sub-modules it is possible to prevent the 

AC line from feeding into the DC short-circuit i.e block the DC fault current 

by recreating the “absent” DC link voltage. This is achieved by inserting the 

sub-module capacitance in reverse (State 3) causing the converter phase 

arm to present a voltage of negative amplitude (but same amplitude and 

polarity with the DC link voltage when referred to the DC neutral point) 

thereby preventing the AC side from feeding fault current into the DC short-

circuit. 

The use of H-bridge sub-modules in a MMC-DSBC topology has not been 

industrially evaluated as it does not present an economical solution over the 

half-bridge sub-module. In any case a sophisticated optimisation-based 

algorithm can be applied to actively select only the required number of sub-

modules while optimizing for sub-module capacitor voltage tolerance as well 

as losses. 
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3.2 Analysis of Flying Capacitor Sub-Module Concepts 

3.2.1 Sub-modules Using Flying Capacitor Half-bridge Cells 

 

Figure 3.6: Flying Capacitor Half-bridge analysis showing sub-module 
(a) configuration; (b) cascade arrangement for converter arm (c) I-
V Quadrant showing operation and transition states. 

The sub-module configuration for a FC half-bridge (flying capacitor half-

bridge) arrangement is shown in Figure 3.6(a) and outlines two switch 

modules (S1,S4 and S2,S3) connected in parallel across the sub-module 

capacitor C and flying capacitor CFC respectively. For consistency in power 

rating the sub-module capacitor is shown to comprise two capacitors to 

match the typical/desired value of the flying capacitor voltage  

(i.e. VFC = 0.5VC). The sub-module positive and negative output terminals 

are realised between S2,S3 and at the negative terminal of the sub-module 

capacitor respectively. 

The cascade arrangement for a converter arm is shown in Figure 3.6(b) and 

operation is such that each sub-module can present a voltage of: 0, VFC, VC- 

VFC or VC volts (i.e typically 0, 0.5VC or VC when careful voltage balancing is 

observed). Figure 3.6(c) shows how the operating states for the FC half-

bridge sub-module distribute across an I-V quadrant plane occupying two  

quadrants (±I; +V) but with the option to synthesise 3 voltages. 

The transitional states are also shown in Table 3.15. 
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Table 3.15: Flying Capacitor Half-bridge Sub-module States. 

V – output voltage; IARM – arm current direction; and VC, VFC sub-
module, flying capacitor  voltage showing transition (↓ = Discharging, ↑ 
= Charging, NC = No Change). 

State S1 S2 S3 S4 
V 

+IARM -IARM 

0 0 0 1 1 0 0 

1 0 1 0 1 ↑VFC ↓VFC 

2 1 0 1 0  (↑VC  - ↓VFC) (↓VC  - ↑VFC) 

3 1 1 0 0 ↑VC ↓VC 

 

FC Half-bridge Footprint Assessment 

Table 3.16: Per-unitised width for FC Half-bridge Sub-module. 

Device Quantity Width (p.u) 

Switch Module 2 0.4 

Capacitor 
3 1.8 

GEM 
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Total (XSM) p.u. 2.4 
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FC Half-bridge Cost Assessment 

Table 3.17: FC Half-bridge Sub-module Cost Assessment. 

Device Quantity Cost (£) 

Switch Module 2 17.88 

Capacitor 3 24.45 

Heat Sink 2 21.3 

GEM FPGA Board 1 6.00 

 Gate Drive + Isolation 4 36.40 

 Voltage Transducer 2 84.82 

Total 190.85 

Total for 60kV arm (i.e x 50) 9542.5 

 

Half-bridge Redundancy Assessment 

Figure 3.4(c) outlines 6 transition states (2 each in State 1, 2 and 3 shown in 

Table 3.15) which cause the sub-module capacitor and flying capacitor 

voltage to charge or discharge. Careful sub-module management is typically 

applied to maintain the capacitor voltage within a band ΔVC as well as the 

capacitor voltage within the band ΔVFC. This can be achieved using a 

passive carrier-based modulation technique with natural balancing or via an 

active selection algorithm. 

 

FC Half-bridge Efficiency Assessment 
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Table 3.18: FC Half-bridge sub-module efficiency using guideline9. 

Parameter Value 

nCS (number of switch modules per sub-module) 1 

PV1 (3.8) 4.58 W 

PV2 (3.9) 15.08 W 

PCOND (3.10) 39.32 W 

PSW (3.11) 0.62 W 

nSM (number of sub-modules in 60kV arm) 50 

PLOSS_60kV (3.12) 1997 W 

Efficiency (3.13) in % 99.69% 

 

  

                                            

9 VCEO = 1.15 V; RON_T = 0.035 Ω; VFO = 1.3 V; RON_D = 0.018 Ω; fSW = 150 

Hz; EON = 1.0 mJ; EOFF = 1.1 mJ; IDC = 30 A; IAC; 30 A; VDC = 20 kV;  
VAC = 30 kV 
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FC Half-bridge Performance Assessment 

Table 3.19: Half-bridge sub-module performance. 

Functionality Score 

Supports Single Star Bridge cell (SSBC) topology 0 

Supports Single Delta Bridge cell (SDBC) topology 0 

Supports Double Star Bridge cell (DSBC) topology 0.25 

Supports DC Fault Blocking and DC Fault Ride Through 0 

Total 0.25 

 



 

76 

 

3.2.2 Sub-modules Using Flying Capacitor H-bridge Cells 

 

Figure 3.7: Flying Capacitor H-bridge analysis showing sub-module 
(a) configuration; (b) cascade arrangement for converter arm (c) I-
V Quadrant showing operation and transition states. 

The sub-module configuration for a FC H-bridge (flying capacitor H-bridge) 

arrangement is shown in Figure 3.7(a). This outlines the use of two flying 

capacitor half-bridge arrangements (half bridge L and R) thus comprising a 
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total of four switch pairs (S1a,S4a; S2a,S3a; S1b,S4b; S2b,S3b) one sub-module 

capacitor C and corresponding flying capacitors for each half-bridge CFC_L 

and CFC_R. For consistency in power rating the sub-module capacitor is 

shown as comprising two capacitors to match the typical/desired value of the 

flying capacitor voltage (i.e. VL = VR= 0.5VC). 

The cascade arrangement for a converter arm is shown in Figure 3.7(b) and 

operation is such that each sub-module can present an approximate voltage 

of: - VC, -0.5VC, 0, 0.5VC or VC volts (assuming a careful voltage balancing is 

applied). Figure 3.7(c) shows how the operating states for the FC half-bridge 

sub-module distribute across an I-V quadrant plane occupying all four  

quadrants (±I; ±V). 

 

The transitional states are shown in Table 3.20. 
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Table 3.20: Flying Capacitor H-bridge Sub-module State Combinations 
and Transitions. 

V – output voltage; IARM – arm current direction; and VC, VFC sub-
module, flying capacitor  voltage showing transition (↓ = Discharging, ↑ 
= Charging, NC = No Change). 

State 

L10 

State 

R11 

V 

+IARM -IARM 

0 0 0 0 

3 3 0 0 

2 2 (↓VL  - ↑VR) ≈ 0 (↑VL  - ↓VR) ≈ 0 

T
ra

n
s
itio

n
 S

ta
te

 C
o

m
b

in
a

tio
n
 

2 1 (↑VC - ↓VL - ↓VR) ≈ 0 (↓VC - ↑VL - ↑VR) ≈ 0 

1 2 (↓VC - ↑VL - ↑VR) ≈ 0 (↑VC - ↓VL - ↓VR) ≈ 0 

1 1 (↑VL - ↓VR) ≈ 0 (↓VL - ↑VR) ≈ 0 

3 2 ↑VR ≈ 0.5VC ↓VR ≈ 0.5VC 

2 3 ↓VL ≈ -0.5VC ↑VL ≈ -0.5VC 

3 1 (↑VC - ↓VR) ≈ 0.5VC (↓VC - ↑VR) ≈ 0.5VC 

1 3 (↑VL - ↓VC) ≈ -0.5VC (↓VL - ↑VC) ≈ -0.5VC 

0 2 (↑VR -↓VC ) ≈ -0.5VC (↓VR - ↑VC ) ≈ -0.5VC 

2 0 (↑VC - ↓VL) ≈ 0.5VC (↓VC - ↑VL) ≈ 0.5VC 

0 1 ↑-VR ≈ -0.5VC ↓-VR ≈ -0.5VC 

1 0 ↓VL ≈ 0.5VC ↑VL ≈ 0.5VC 

3 0 ↑VC ↓VC 

0 3 ↓-VC ↑-VC 

 

  

                                            

10 (S1a: S2a: S3a: S4a): 0 = (0:0:1:1); 1 = (0:1:0:1); 2 = (1:0:1:0); 3 = (1:1:0:0). 

11 (S1b: S2b: S3b: S4b): 0 = (0:0:1:1); 1 = (0:1:0:1); 2 = (1:0:1:0); 3 = (1:1:0:0). 
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FC H-bridge Footprint Assessment 

Table 3.21: Per-unitised width for FC H-bridge Sub-module. 

Device Quantity Width (p.u) 

Switch Module 4 0.8 

Capacitor 
4 2.4 

GEM 
1 0.2 

Total (XSM) p.u. 3.4 
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FC Half-bridge Cost Assessment 

Table 3.22: FC H-bridge Sub-module Cost Assessment. 

Device Quantity Cost (£) 

Switch Module 4 35.76 

Capacitor 4 32.60 

Heat Sink 4 42.60 

GEM FPGA Board 1 6.00 

 Gate Drive + Isolation 8 72.80 

 Voltage Transducer 3 127.23 

Total 316.99 

Total for 60kV arm (i.e x 50) 15849.5 
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FC H-bridge Redundancy Assessment 

Figure 3.7(c) and Table 3.20 outline the transition states which cause the 

sub-module capacitor and flying capacitor voltage to charge or discharge. 

This is possible because of the 24 i.e. 16 state combinations for the switch 

modules in the left and right half-bridge legs. A total  of 14 out of the 16 

combinations result in sub-module and/or flying capacitor voltage transitions 

and when the current direction is considered a total of 28 possible voltage 

transitions are revealed. Careful sub-module management is typically 

applied to maintain the capacitor voltage within a band ΔVC as well as the 

capacitor voltage within the band ΔVL, ΔVR. This is essential in order to 

maintain the typical (or approximate) sub-module output voltage during such 

transition when: 

 

- V = VC; 

- V ≈ 0.5VC = VL = VR = (VC - VL) = (VC - VR); and 

- V ≈ 0 = (VL – VR) = (VC - VL- VR). 

This can be achieved using a passive carrier-based modulation technique 

with natural balancing or via an active selection algorithm. 

 

FC H-bridge Efficiency Assessment 

 WPV 58.4
9

30

4

30
035.02.0

3

30
15.12.0

22

1 

























  

 

 WPV 08.15
9

30

4

30
018.08.0

3

30
3.18.0

22

2 

























  

 

  WPCOND 64.7808.1558.44   

 

WPSW 26.110)1.10.1(1504 3    

 

  WP kVLOSS 399526.164.785060_   



 

81 

 

 
%39.99100

9

30

4

30
3020

1997
1(%)

22
22



































Efficiency  

99.39%  is the efficiency of one converter arm. 

Table 3.23: FC H-bridge sub-module efficiency using guideline12. 

Parameter Value 

nCS (number of switch modules per sub-module) 1 

PV1 (3.8) 4.58 W 

PV2 (3.9) 15.08 W 

PCOND (3.10) 78.64 W 

PSW (3.11) 1.26 W 

nSM (number of sub-modules in 60kV arm) 50 

PLOSS_60kV (3.12) 3995 W 

Efficiency (3.13) in % 99.39% 

 

FC H-bridge Performance Assessment 

Table 3.24: FC H-bridge sub-module performance. 

Functionality Score 

Supports Single Star Bridge cell (SSBC) topology 0.25 

Supports Single Delta Bridge cell (SDBC) topology 0.25 

Supports Double Star Bridge cell (DSBC) topology 0.25 

Supports DC Fault Blocking and DC Fault Ride Through 0.25 

Total 1.0 

                                            

12 VCEO = 1.15 V; RON_T = 0.035 Ω; VFO = 1.3 V; RON_D = 0.018 Ω; fSW = 150 

Hz; EON = 1.0 mJ; EOFF = 1.1 mJ; IDC = 30 A; IAC; 30 A; VDC = 20 kV;  
VAC = 30 kV 
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3.2.3 Sub-modules Using Flying Capacitor Hybrid H-bridge Cells 

 

Figure 3.8: Flying Capacitor Hybrid H-bridge analysis showing sub-
module (a) configuration; (b) cascade arrangement for converter 
arm (c) I-V Quadrant showing operation and transition states. 

The sub-module configuration for a FC Hybrid H-bridge (flying capacitor 

hybrid H-bridge) arrangement is shown in Figure 3.8(a). This outlines a 
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hybrid combination of a flying capacitor half-bridge (half-bridge L) and a 

standard half-bridge (half-bridge R) thus comprising a total of three switch 

pairs (S1a,S4a; S2a,S3a; and S1b,S2b), one sub-module capacitor C and one 

flying capacitor CFC for the left half-bridge. For consistency in power rating 

the sub-module capacitor is shown to comprise two capacitors to match the 

typical/desired value of the flying capacitor voltage (i.e. VL = VR= 0.5VC). 

The cascade arrangement for a converter arm is shown in Figure 3.8(b) and 

operation is such that each sub-module can present an approximate voltage 

of: - VC, -0.5VC, 0, 0.5VC or VC volts (when careful voltage balancing is 

applied). Figure 3.8(c) shows how the operating states for the FC Hybrid  

H-bridge sub-module distribute across an I-V quadrant plane occupying all 

four  quadrants (±I; ±V). 

The operating states and resulting transitions are shown in Table 3.25. 

Table 3.25: Flying Capacitor Hybrid H-bridge Sub-module State 
Combinations and Transitions. 

V – output voltage; IARM – arm current direction; and VC, VFC sub-
module, flying capacitor  voltage showing transition (↓ = Discharging, ↑ 
= Charging, NC = No Change). 

State 

L13 

State 

R14 

V 

+IARM -IARM 

0 0 0 0 

3 1 0 0 

2 1 ↓VFC ≈ -0.5VC ↑VFC ≈ -0.5VC 

T
ra

n
s
itio

n
 S

ta
te

s
 

C
o
m

b
in

a
tio

n
 

1 1 (↑VFC - ↓VC) ≈ -0.5VC (↓VFC - ↑VC)  ≈ -0.5VC 

2 0 (↑VC - ↓VFC) ≈ 0.5VC (↓VC - ↑VFC) ≈ 0.5VC 

1 0 ↓VFC ≈ 0.5VC ↑VFC ≈ 0.5VC 

3 0 ↑VC ↓VC 

0 1 ↓-VC ↑-VC 

FC Hybrid H-bridge Footprint Assessment 

                                            

13 (S1a: S2a: S3a: S4a): 0 = (0:0:1:1); 1 = (0:1:0:1); 2 = (1:0:1:0); 3 = (1:1:0:0). 

14 (S1b: S2b): 0 = (0:1); 1 = (1:0). 
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Table 3.26: Per-unitised width for FC Hybrid H-bridge Sub-module. 

Device Quantity Width (p.u) 

Switch Module 3 0.6 

Capacitor 
3 1.8 

GEM 
1 0.2 

Total (XSM) p.u. 2.6 
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FC Hybrid H-bridge Cost Assessment 

Table 3.27: FC H-bridge Sub-module Cost Assessment. 

Device Quantity Cost (£) 

Switch Module 3 26.82 

Capacitor 3 24.45 

Heat Sink 3 31.95 

GEM FPGA Board 1 6.00 

 Gate Drive + Isolation 6 54.6 

 Voltage Transducer 2 84.82 

Total 228.64 

Total for 60kV arm (i.e x 50) 11432 
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FC Hybrid H-bridge Redundancy Assessment 

Figure 3.8(c) and Table 3.25 outline the transition states which cause the 

sub-module capacitor and flying capacitor voltage to charge or discharge. 

There are 23 i.e. 8 state combinations for the switch modules in the left and 

right half-bridge legs. 6 out of the 8 combinations result in sub-module 

and/or flying capacitor voltage transitions and when the current direction is 

considered a total of 12 possible voltage transitions are available. 

 

FC Hybrid H-bridge Efficiency Assessment 
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Efficiency  

99.54%  is the efficiency of one converter arm. 
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Table 3.28: FC H-bridge sub-module efficiency using guideline15. 

Parameter Value 

nCS (number of switch modules per sub-module) 1 

PV1 (3.8) 4.58 W 

PV2 (3.9) 15.08 W 

PCOND (3.10) 58.98 W 

PSW (3.11) 0.95 W 

nSM (number of sub-modules in 60kV arm) 50 

PLOSS_60kV (3.12) 2996.5 W 

Efficiency (3.13) in % 99.54% 

 

FC Hybrid H-bridge Performance Assessment 

Table 3.29: FC H-bridge sub-module performance. 

Functionality Score 

Supports Single Star Bridge cell (SSBC) topology 0.25 

Supports Single Delta Bridge cell (SDBC) topology 0.25 

Supports Double Star Bridge cell (DSBC) topology 0.25 

Supports DC Fault Blocking and DC Fault Ride Through 0.25 

Total 1.0 

  

                                            

15 VCEO = 1.15 V; RON_T = 0.035 Ω; VFO = 1.3 V; RON_D = 0.018 Ω; fSW = 150 

Hz; EON = 1.0 mJ; EOFF = 1.1 mJ; IDC = 30 A; IAC; 30 A; VDC = 20 kV;  
VAC = 30 kV 
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3.2.4 Discussion and Comparison of Sub-module Configurations 

Table 3.30: Comparison of the different sub-module concepts based 
on requirements for a 60 kV converter arm. 

Sub-module 

Assessment 

Half-

bridge 

H-

bridge 

FC Half-

bridge 

FC H-

bridge 

FC 

Hybrid 

Footprint    (cm) 4409  5291 8707 12335 9433 

Cost       (£) 9435  13214 9543 15849 11432 

Redundancy (states) 2 4 6 28  12 

Arm Efficiency (%) 99.69  99.38 99.69  99.39 99.54 

Performance (Rank) 0.25 1.00  0.25 1.00  1.00  

Table 3.30 summarises the assessment performed on the different  sub-

module concepts based on requirements for building a 60 kV converter arm.  

The following facts can be extracted from the results summarised above. 

- The half-bridge sub-module concept presents the lowest per-unitised 

footprint, cost and losses, making this concept the choice for 

implementation in HVDC applications which require such attributes, 

especially since scaling is usually in the order of a few hundred units 

(e.g. up to 600 kV). However, the small number of redundancy states 

available and performance/functionality supported limits the scope of 

application of this concept. For instance, in a STATCOM application 

the converter arm is expected to synthesise both positive and 

negative voltages, while in a HVDC application DC fault blocking is 

provided by reversing the voltage polarity of a converter arm thus 

“blocking” the fault current from flowing through. Both functionality 

events are not supported by a half-bridge submodule. 

- The H-bridge sub-module concept may be implemented if such 

functionality events are compulsory in an application, but at the 

expense of 20% more per-unitised footprint and 40% extra cost (as 

well as double the converter losses). However the fact that only two 

“extra” redundancy states are available makes it difficult to justify the 

extra expense for this sub-module concept unless specific changes 

are made at the topology level (e.g. as in the Series Bridge and 

Alternate Arm converters) which significantly reduces the sub-module 

count. 
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- The FC half-bridge sub-module has the same performance limits as 

the half-bridge sub-module but with a higher footprint requirement and 

only 4 more redundancy states making further assessment of this 

concept less interesting. 

- The flying capacitor H-bridge sub-module concept presents about  

21/2 times larger footprint and is 70% more expensive than the half-

bridge concept. These are not attractive attributes in an application 

with high sub-module scaling. However, the FC H-bridge concept is 

very attractive in an application with “moderate16” scaling. There are 

26 more redundant states and the ability to reverse voltage allows 

higher performance with support for more topology structures as well 

as fault blocking. 

- Preference between the FC H-bridge and FC-Hybrid concepts mainly 

depends on application requirements. For instance in a medium 

voltage application where efficiency/cost/footprint have the highest 

priority (e.g Battery Energy Storage Systems) the FC Hybrid concept 

is more attractive than the FC H-bridge but vice versa for an 

application where transient performance of the converter has a higher 

priority (e.g STATCOM, active power filters). 

In this assessment the same types of components (capacitors, switch 

modules, etc.) are used for implementing each sub-module configuration. 

The assessment is conducted in this manner for consistency, but the 

likelihood in practice is that components would be specifically selected to 

implement the different sub-module concepts. For instance, one  capacitor 

(instead of two) with the appropriate rating (VC) would be implemented as 

the sub-module capacitor in the flying capacitor based concepts. This would 

result in lower cost and footprint values per sub-module. Furthermore, the 

choice of a modulation strategy that properly utilises the redundant states, 

especially in the FC H-bridge  concept allows flying capacitors with lower 

capacitances to be used, thus resulting in lower footprint and cost values per 

sub-module. 

 

                                            

16 Moderate scaling in this context, refers to medium voltage applications as 
specified in IEEE 1623-2004 (1 to 100 kV). This is typical for FACTs 
applications (STATCOMS, Active power filters, e.t.c). 
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3.3 Summary 

This chapter has evaluated and compared the five basic candidate 

topologies as sub-modules for a modular multilevel converter. These are  

half-bridge, H-bridge, FC half-bridge, FC H-bridge and FC hybrid. Criteria 

studied were footprint, cost, redundancy, efficiency and performance.  

It has been shown that amongst all candidates topologies, the half-bridge 

sub-module offers lowest footprint and cost and highest efficiency, hence it 

has been preferred currently by various companies as the building block for 

HVDC converters. The FC H-bridge, on the other hand, has the highest 

footprint and cost, however it has the highest number of redundant switching 

states, hence offering more degrees of freedom in control at the sub-module 

level making it flexible for converters requiring high performance dynamic 

control. This topology is also versatile, able to work for all functions involving 

either unidirectional or bidirectional current flow, and can support fault 

blocking and DC fault ride-through. These features make it a good candidate 

for applications with “moderate17” scaling. Comparing the half-bridge, H-

bridge circuits and FC H-bridge has not been investigated so extensively, 

hence, setting the theme of this research. 

 

                                            

17 Moderate scaling in this context, refers to medium voltage applications as 
specified in IEEE 1623-2004 (1 to 100 kV). This is typical for FACTs 
applications (STATCOMS, Active power filters, e.t.c). 
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Chapter 4  

MMFC Converter Control and Modulation Studies 

Following the choice of the FC H-bridge topology for the sub-modules of the 

modular multilevel converter, this chapter investigates a suite of techniques 

for the modulation of a single star MMFCC converter. Extensive discussions 

cover the Selective Harmonic Elimination Technique and various sine-carrier 

based modulation schemes. Their basic principles, and computational 

procedures and features, are explored in detail.  

Based on the above a novel “Overlapping Hexagon Space Vector 

Modulation” (OH-SVM) technique has been developed by the author as an 

adaptation of the multilevel space vector pulse width modulation technique.  

This method is shown to offer a number of favourable features for the 

modulation control of the MMFCC, including ease of duty cycle computation 

and capacitor voltage balancing. The rationale of the technique, and 

computational algorithms, are discussed in detail. For convenience the 

converter setup adopted for the modulation studies is shown in Figure 4.1 

 

Figure 4.1: MMFCC converter and sub-module setup for modulation 
studies. 

An outline of the three-level Flying capacitor H-bridge sub-module adopted 

for the modulation studies is shown in Figure 4.1 and two such sub-modules 

are represented to form each converter phase arm. The sub-module 

capacitor is denoted as C and the flying capacitors as CFC.  
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Simulation results are provided demonstrating the good harmonic 

performance and flexibility in coping with dynamic voltage variations. 

Simulation setup and associated scripts are outlined in Appendix D. 

A comparison of all the modulation schemes presented is provided in a 

summary section using performance metrics, such as capacitor voltage 

variation, total harmonic distortion, dynamic response and computational 

complexity. 

4.1 Converter Modulation Techniques 

The primary objective of any converter modulation technique, for any  

topology, is to convert the instantaneous reference voltage, i.e the value 

demanded by the desired sinusoidal output waveform, into switching signals. 

Classic PWM modulation techniques widely covered in the literature include 

sine-triangle PWM are implemented easily using analogue or digital 

electronic circuits. Another well-used scheme for low to medium power 

drives is current-hysteresis or tolerance-band PWM, chosen mainly for its 

fast dynamic response. Space Vector Modulation (SVM) is an attractive 

technique that uses a combination of space phasor and vector reference 

frames which render benefits such as ease of digital implementation with the 

hexagon symmetry  offering up to 1.15 p.u of extra modulation depth. The 

staircase or Selective Harmonics Elimination (SHE) scheme is also well-

known and attractive for medium to high power applications due to its low 

switching frequency. Such classic modulation techniques are well proven but 

limited when extension to higher levels, i.e for modular multilevel or 

cascaded converter applications, is considered. 

Some extensions to the classic modulation techniques are available to cater 

for conventional multilevel topologies and are covered in the literature [31, 

80-92]. Techniques such as the Phase-Shift PWM, Amplitude-Disposition (or 

Phase Disposition) PWM, Multilevel SVM, Multilevel hysteresis PWM  and 

Multi-Level selective harmonic elimination PWM are some of the available 

extensions. This suite of “extended” PWM techniques normally aim to 

operate at low per-device switching frequency, while retaining a satisfactory 

output harmonic spectrum. Such PWM techniques are limited when applied 

to modulation of converter phase arms with several hundred sub-modules. 

To tackle such applications, modulation concepts based on active select and 
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sort optimisation have become a growing research interest. A representative 

example is also presented. 

To improve readability the following nomenclature is used to describe these  

modulation studies: 

(a) Average converter switching frequency (fS). This is a determining 

factor of the converter voltage harmonic quality. The converter 

switching frequency is derived as the number of notches/per cycle 

multiplied by the fundamental frequency. A notch is defined as a step 

change in the voltage waveform caused by a change in sub-module 

switching state which results in an increase or decrease in the phase 

arm voltage. 

(b) Sub-module switch frequency (fSS). This is the major factor affecting 

converter switching losses. The sub-module switch frequency is 

defined as the number of switching transitions for each sub-module 

complementary switch pair within one fundamental cycle. A transition 

is a change of a device operating state from 0 (blocking) to 1 

(conducting). Preferably all devices within the converter phase arm 

should have comparable fSS values but this varies depending on the 

modulation scheme implemented. 

(c) Modulation amplitude index or amplitude modulation index (mA). This 

is a control variable used to adjust the converter phase limb peak 

voltage to match a demand (reference) voltage value. 

(d) Sub-module capacitor voltage drift. This occurs when the time spent 

charging the sub-module capacitor is continuously not equal to time 

spent discharging, causing the voltage to charge (or discharge) 

continuously thus drifting away from the typical value over after a 

number of fundamental cycles. This issue is typical with modulation 

techniques that utilise open-loop balancing and further escalated 

when the current being synthesised is not symmetrical. 

(e) Sub-module capacitor voltage deviation. This is a voltage variation 

experienced due to the sub-module switching actions and can be 

measured over a fundamental period. This is mainly defined by the 

sub-module capacitance value, however the modulation scheme 

plays a part in this voltage variation due to the mathematical 

relationship between the capacitance and instantaneous current at 

the instant of switching. 
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The difference between the terms capacitor voltage deviation and drift is 

shown in Figure 4.2. 

 

Figure 4.2: Capacitor Voltage Variation in one Module of MMFCC with 
SHE modulation (no capacitor balancing). 

In practice, the sub-module switching frequency (fSS) is used to estimate the 

the charge/discharge cycle of the sub-module capacitor as well as for the 

flying capacitors using the number of sub-module switching transitions1. This 

fall out of the scope of this research work. 

Values of other practical parameters of an MMFCC converter, as used in the 

simulation study of the modulation techniques, are shown in Table 4.1. 

Table 4.1: Parameters for MMFCC Modulation Simulator 

Load Side Parameters 

Parameter Value 

Vph peak across load @ 1 p.u ma Vs 1 kV 

Three Phase Load (Star Connection) LS 

RS 

12mH 

57.6Ω 

Converter Side Parameters 

Sub-module capacitor (C) voltage set-point VC 500 V 

Module Flying Capacitors (Capacitance) C 1mF 

General objectives for each modulation concept investigated and for each 

converter phase arm include: 

                                            

1 A sub-module transition is a change from one state to another. The states 
are: State 2 (Output  = VC); State 0 (Output = 0); and State 1 (Output = 
VFC). VC is the capacitor voltage; VFC = flying capacitor voltage. 
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1. Provision of 16 gate control signals to each submodule (as 8 

complementary pairs, with 4 pairs in each sub-module.) 

2. Maintaining the pair of sub-module flying capacitor voltages (VL, VR) 

within acceptable tolerance values of half the defined sub-module 

capacitor voltage set-point value (250 V). 

In practical systems, other objectives can include protection functionalities 

e.g. local co-ordination of: device desaturation, sub-module over-current and 

over-voltage assist; etc. Such are not the focus of the underlying 

investigations. 

4.1.1 Modulation using Selective Harmonic Elimination 

The selective harmonic elimination PWM technique is an attractive converter 

modulation technique for circuits where low switching frequency (i.e low 

loss) is a priority. The technique relies on a set of switching times carefully 

calculated to control the converter output voltage to a desired magnitude 

while supressing a selected number of harmonics. The amplitude of 

harmonic components tend to fall in inverse proportion to frequency, thus 

lower order harmonic components constitute more disturbance in a system. 

Hence regular practice is to attempt to suppress the lower order harmonic 

components. 

For an MMFCC topology, the switching actions needed to control the 

fundamental and suppress selected harmonics are implemented across the 

series-connected modules resulting in different voltage levels. This realises 

a staircase-shaped converter phase arm voltage, hence the common term 

for this extension is “level shifting” SHE [84, 86, 93]. Such adaptation allows 

the level shifting SHE to provide modulation of the MMFCC at a device 

switching frequency close to the fundamental while retaining good harmonic 

quality. 

A basic level shifting SHE principle applied to an MMFCC converter phase 

arm comprising two FCC sub-modules is shown in Figure 4.3. In the case 

illustrated, the sub-module switch frequency, fSS, is equal to the AC 

fundamental frequency as each device switches once during the cycle. In 

the positive half cycle, four distinct voltage steps (0.5VC; 1.0VC; 1.5VC; and 

2.0VC) are activated at four firing computed angles (α1, α2, α3, α4). 

Additionally the quarter (and half) wave symmetry of the target reference 

waveform allows an adaptation of the already computed firing angles for: 
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- deactivation of the voltage steps during the second quarter of the 

positive half cycle using angles π/2+α4, π/2+α3, π/2+α2, π/2+α1. 

- activation of the voltage steps during the first quarter of the negative 

half cycle using angles π+α1, π+α2, π+α3, π+α4; and 

- deactivation of the voltage steps during the second quarter of the 

negative half cycle using angles 3π/2+α4, 3π/2+α3, 3π/2+α2, 3π/2+α1. 

A total of 8 voltage steps is present in the waveform synthesized using level-

shifted SHE. The steps are more obvious when the sub-module switching 

signals are observed and imply a converter switching frequency of 8 times 

the AC fundamental frequency (i.e fS = 400Hz for a 50Hz AC signal). 
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Figure 4.3: Principle of Level-shifted Selective Harmonic Suppression 
applied to the MMFCC phase arm . 

The implementation in Figure 4.3 is a possible example that primarily 

demonstrates the multilevel SHE modulation principle for the MMFCC. In 

reality while applying the switching signals the following must be considered: 

- Equal sub-module utilisation within each converter phase arm.  

- Symmetrical switching utilisation between the positive and negative 

half cycle (at least over a plurality of fundamental cycles). 
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Such considerations are important to mitigate the issue of sub-module 

capacitor and flying capacitor voltage drift and minimise deviation. 

The multilevel SHE algorithm for the MMFCC involves two key stages: angle 

computation and switching signal generation. 

4.1.1.1 Angle Computation using Newton Raphson iterative method 

It may be preferred that the four switching angles computed for the case in 

Figure 4.3 should suppress the fifth, seventh and eleventh odd harmonics 

while controlling the AC fundamental magnitude to the desired ma value. All 

third-order harmonic components and their multiples (triplen harmonics) 

cancel out in the line-line waveform because of the three-phase converter 

arrangement. Based on this, the triplen components are not considered for 

suppression during the computation of firing angles. The four switching 

angles required are computed by solving the following four non-linear 

simultaneous equations in (4.1). 
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This can be expressed using the matrix expression as 
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and the solution to the expression in (4.2) is the basis for the computation of 

the firing angles required for SHE converter co-ordination and is typically 

solved using: 
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- An iterative numerical algorithm. This is commonly used and 

constitutes algorithms such as the Newton-Raphson and the Secant 

Iterative methods. 

- A Genetic – Optimization algorithm. This is normally implemented to 

resolve more dense non-linear expressions (i.e with more variables). 

Some known methods within this class are the Trust Region Dogleg, 

Trust Region Reflective or Levenberg-Marquardt methods [94-96]. 

The author has chosen to implement an iterative numerical algorithm. 

Specifically the Newton Raphson iterative method was implemented for the 

computation of four firing angles. 

The Newton-Raphson method involves replacing the expression in (4.2) by 

the first two terms of their Taylor series [97-99]. Thus the linear expression 

for F(x) becomes 
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X
XF


 )(  is a matrix with partial derivative elements otherwise known as the 

Jacobian, J, matrix. Its elements are expanded for the expression in (4.3) as 

shown in (4.4): 
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If the vector X0 (α1, α2, α3, α4)  represents the initial estimate of the solution 

for the firing angles, successive estimates of the firing angles can be 

expressed as  
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The numerical iteration loops continuously until either disrupted or the 

solution convergence criterion condition described by (4.6) is satisfied. 
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where ε is a predefined error tolerance value used to terminate the iteration. 

Appendix D.2 outlines the Matlab code for solving the expression in (4.2) 

using the Newton-Raphson method. Results obtained from the code in 

Appendix (B.1) are: 

  mA = 0.8 are α1=0.4311, α2=0.7947, α3=0.9956, α4=1.2023 

The main issue with using the Newton-Raphson iterative method for solving 

the SHE-PWM equations is a requirement to define all the Jacobian partial-
derivative functions (

jif  where i, j = 1, 2, 3, 4). Extending this technique 

to control more angles is tedious. For instance to solve for 12 firing angles a 

total of 144 Jacobian elements must first be obtained through derivation. 

Using the Secant Method (Appendix D.3) is less tedious as the differential 

elements in the Jacobian matrix are substituted with finite differential 

variables, however with some compromise of accuracy. 

It is well known that the solution of non-linear equation presents 

convergence issues. Providing adequate initial values increases the 

possibility of convergence but this means one must already be aware of the 

solution being sought after. This poses a limitation in any SHE algorithm 

practically implemented, where it is more difficult to estimate such solutions. 

Firing angles computed for the MMFCC converter phase arm for ma value in 

the range from 0.1 to 1.0 are shown in Table 4.2 and must meet the range 

criteria shown in (4.7). 

Only firing angles that satisfy the criteria may be applied to control the  sub-

module switches. In Table 4.2 the firing angles that do not meet this criteria 

are “greyed out”. For instance, when mA = 0.1, only the first two alpha angles 

computed (0.1726, 1.4963) result in device activation. The other two firing 

angles (1.7621, 2.1595) are clearly out of bounds based on (4.7) and hence 

are not used for switch activation. During such a case the MMFCC phase 

arm voltage waveform will comprise only three distinct levels (0, 0.5VC and 

VC). 
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Table 4.2: Firing angles computed for different modulation indices. 

mA α1 (rad) α2 (rad) α3 (rad) α4 (rad) 

0.1 0.1726 1.4963 1.7621 2.1595 

0.2 0.2201 1.2203 1.7787 2.0767 

0.3 0.2782 1.3756 1.6764 1.6764 

0.4 0.3418 1.0919 1.4999 1.7898 

0.5 0.3815 0.9758 1.2951 1.7620 

0.6 0.3857 0.8760 1.1894 1.6249 

0.7 0.6304 0.8356 1.0659 1.3316 

0.8 0.4311 0.7947 0.9955 1.2023 

0.9 0.6036 0.2172 0.8519 1.2020 

1.0 0.1748 0.3865 0.7113 1.0781 
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4.1.1.2 Switching signal generation (Sub-module switch activation) 

To derive the switching signals for the two sub-module switches in each 

converter phase arm the computed firing angles alongside the converter 

voltage phase angle (ωt) are considered. Typical implementation involves 

the use of a finite state machine that considers the state of the converter 

voltage phase angle as it cycles between 0 and 2π. This enables the firing 

angles to be recomputed and applied every quarter cycle thus achieving a 

more dynamic converter response to changes in mA. However, a “real-time” 

angle resolver is rarely used in practice as  convergence of numerical 

iteration process is uncertain. Rather a look-up table similar to Table 4.2 is 

normally populated with pre-computed values. This provides “best fit” firing 

angles to a modulation controller in order to match demanded modulation 

index values. 

 

Figure 4.4: Activation of Switches from Firing Angles 
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The firing angles generated from an angle resolver (or look-up table as 

discussed) are fed into a Finite state machine together with the rotational 

angle (ωt). The Finite state machine generates the converter limb states (0, 

1, 2, 3 or 4) which are fed into a module selector that determines the states 

(0, 1 or 2) to be activated in each module. As the FCC modules are in full 

bridge arrangement, the module leg activation sub-system decodes the 

states into module-leg states. Finally the module-leg states are submitted to 

a switch activation sub-system to generate the switching states for the sub-

module switches in each converter phase. Figure 4.5 outlines a sample 

flowchart to complement the discussions for Figure 4.4. 

Results captured for the MMFCC under SHE modulation are shown in 

Figure 4.6 - Figure 4.9 for mA = 0.8. In Figure 4.6, the waveforms shown are 

for Phase-A of the converter except for the line-line voltage which describes 

the voltage between Phases A and B. 

 

Figure 4.5: Flowchart for generating switching signals and activating 
the MMFCC sub-modules using multilevel SHE-PWM. 
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Figure 4.6: Converter Output using SHE-PWM Modulation (mA = 0.8). 

The results of FFT analysis performed on the phase and line-line voltage 

waveforms are shown in Figure 4.7, which confirm the targeted harmonic 

components are indeed supressed. 
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Figure 4.7: THD for SHE modulation showing (a)  Phase and (b) Line 
Voltage. 

At mA = 0.8 the angles (α1= 0.4313, α2= 0.7946, α3= 0.9954, α4= 1.2021) 

were applied to cancel the 5th, 7th and 11th harmonic components. This 

corresponds with 250Hz, 350Hz and 550Hz in Figure 4.5 and it is obvious 

that these components are supressed. 

Also to note, the triplen (3rd order) components i.e the 150Hz, 450Hz, etc 

which are present in the Phase voltage FFT chart are suppressed in that for 

the line-line voltage. The method described thus far does not account for 
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capacitor voltage variation which if left “uncontrolled” diverges from the 

expected value and results in further harmonic content in the converter 

voltages. Figure 4.8 shows the effect “un-monitored switching” has on the 

flying capacitor voltages. 

 

Figure 4.8: Capacitor Voltage Variation in one Module of MMFCC with 
SHE modulation (no capacitor balancing). 

Such divergence also manifests in the converter voltage waveforms. This is 

evident from around 0.02 secs in the phase voltage waveforms shown in 

Figure 4.6. Eventually the capacitor voltages either charge to the DC rail or 

discharge to 0. To avoid the divergence that results from uncontrolled 

capacitor voltage variation, a capacitor balancing algorithm based on the 

FCC redundant states [88] is applied within the switch activation sub-system.  

As a result, the flying capacitors now vary about a prescribed voltage value. 

Figure 4.9 shows the same capacitor voltages as seen in Figure 4.8, but with 

the balancing algorithm implemented. Both capacitors now vary about their 

prescribed value (0.5VN = 250 V). 
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Figure 4.9: Capacitor Voltage Variation in one Module of MMFCC with 
SHE modulation (with capacitor voltage balancing). 

A simple algorithm was applied to derive the balancing in Figure 4.9. The 

sub-module capacitor and flying capacitor voltages are provided as feedback 

signals into the switch activation sub-system and the selection criteria below 

is applied: 

- For charging current (i.e. flowing into the sub-module positive 

terminal), the sub-module with the lowest sub-module capacitor 

voltage is activated and the switch for the flying capacitor with the 

lowest voltage is activated. 

- For discharging current (i.e. flowing out of the sub-module positive 

terminal), the sub-module with the highest sub-module capacitor 

voltage is activated and the switch for the flying capacitor with the 

highest voltage is activated. 

This selection algorithm ensures that the sub-module capacitor and flying 

capacitor voltages do not deviate excessively but does not account for drift.   
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4.1.2 Modulation using Carrier Placement Strategies 

Carrier placement strategies are the most extensively applied modulation 

schemes for classical converter modulation. In principle the switching signals 

for an inverter are generated by comparing a sinusoidal (reference) signal 

with at least one triangular (carrier) signal at a frequency higher than that of 

the fundamental. The analysis of a carrier placement PWM strategy for an 

inverter can be expressed using Black and Holmes approach [21-24]. The 

carrier and reference signals are represented as time varying functions c(t) 

and o(t) in (4.8) and (4.9) respectively. 
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where ωC is the angular frequency of the carrier wave 

 TC is the period of the carrier wave 

 ϴC is the phase shift angle for the carrier wave 

 ω is the angular frequency of the reference wave 

 T is the period of the reference wave 

 ϕ is the phase offset for the reference wave 

 t is the instantaneous time value 

Applying Fourier analysis to the carrier modulated reference signal results in 

a double variable function of c(t) and o(t) with regards to its harmonic 

content as shown in (4.10). 
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where: 

00a  is an amplitude value which describes the DC bias in the pulse-width 

modulated waveform; 

ia0 , ja0 , ija and ib0 , jb0  and ijb  describe the amplitude of the harmonic 

components in each term of the summation operator; 

i are j are index variables for the carrier and baseband. 

The angular frequency of every harmonic order can be defined using the 

variables “i” and “j” as thus: (iωC + jω). For instance (4ωC + 8ω) describes 

the 8th sideband harmonic located around the harmonic number of the 4 th 

multiple of the carrier frequency. Also of interest are baseband harmonics 

presented when “i = 0” (i.e only j prescribes the harmonic frequency) as well 

as carrier harmonics, presented when “j =0” (i.e only the variable i prescribes 

the harmonic frequency). According to (4.10) a DC bias (or offset) in the 

reference signal is expressed in the first term “a00”. The next term expresses 

any baseband harmonics existing in the reference signal including the 

fundamental component at j = 1. Carrier placement techniques typically 

supress all low-order baseband harmonics that exist up to the equivalent 

carrier switching frequency apart from the fundamental. The second 

summation term in (4.10) expresses the carrier harmonics located at the 

modulation carrier frequency and its multiples. These are relatively higher 

order harmonics with low amplitudes. The third summation term expresses 

sideband harmonics which exist as result of the sum and difference between 

the baseband and carrier harmonic components. As the low-order harmonics 

are normally supressed, the sideband harmonics, exist only at the carrier 

frequency and above. 

Extensions to the classical carrier placement strategy to cater for multilevel 

converters include: the phase-shift PWM (PS-PWM); and  phase-disposition 

PWM (PD-PWM) also known as phase-displacement PWM. Variants for 

specific applications now include strategies like the Phase Opposition 

Disposition PWM (POD-PWM) and the Alternative Phase Opposition 

Disposition PWM (APOD-PWM), as well as their modified reference variants 

such as the Third Harmonic Injection- (THI- PWM) strategies. 

4.1.2.1 Phase-Shift PWM 

The Phase-Shift PWM technique involves the use of multiple carriers with a 

time or phase delay (phase-shift constant) from each other. Analytically this 
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is expressed as an introduction of more terms into the 2nd summation in 

(4.10). The overall effect is first significant harmonics being present not at 

the carrier frequency, but at the multiple of the carrier frequency and the 

number of carriers. 

Application to the multi-module FC topology involves two considerations: 

- The phase-shift value applied between the carriers that activate the 

different voltage levels for each converter phase. 

- The generation of switching signals for the adjacent switches in the 

full-bridge FCC sub-modules. This is tackled using the anti-phase 

references of a unipolar PWM. 

Four carrier signals are required to generate the four distinct voltage levels 

(excluding 0 V)  that make the phase voltage for the converter in Figure 4.1. 

The carrier frequency can be chosen as an even multiple of fundamental 

reference frequency, in such a case the side-band harmonics at the 

equivalent carrier frequency are supressed with the carrier harmonics 

attenuated. If an odd multiple value is chosen, the side-band harmonics are 

attenuated while the carrier harmonic is suppressed.  For each converter 

phase, the switching instants for the LHS switches are generated by 

comparing the four carrier signals with a positive sinusoidal reference signal. 

Switching signals for the sub-module RHS switches are generated by 

comparing a 1800 phase-shifted reference signal against the same four 

carrier signals. This unipolar PWM technique attenuates the carrier and side-

band harmonics by an extra order of 2 resulting in harmonics at (2fc, 4fc, 

…), instead of (1fc, 2fc, …). 

The reference, carrier and switching signals for the phase-shift PWM 

techniques applied to the 2-sub-module MMFCC phase arm is shown in 

Figure 4.10. The  phase-shift constant between the carrier signal is shown 

as θC and the carrier frequency is ωC with the relationship between both 

parameters expressed in (4.11). 
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where Tc is the number of carrier signals implemented = 4 
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Figure 4.10: Phase-Shift PWM applied to the MMFCC Phase leg. (a) 
reference and carrier waves (b) Switching signals. 

Note that in (4.11) the phase-shift is calculated with reference to the 250Hz 

carrier frequency (not the fundamental frequency). Also the total number of 

carriers can be obtained by subtracting 1 from the number of distinct levels 

in the converter phase voltage waveform. 

The converter phase voltage and harmonics/spectral THD plot is shown in 

Figure 4.11. Harmonic suppression is achieved and all carrier and baseband 

harmonics are supressed up until eight times the switching frequency (40 th 

harmonic order) as shown in Figure 4.11. The THD content of the phase 

voltage is 17.15% with side band harmonics (around 30th and 50th harmonic 

order) suppressed until the 40th harmonic order. 
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Figure 4.11: Phase-Shift PWM applied to the MMFCC. (a) converter 
phase voltage (b) Phase voltage spectral analysis. 

The sub-module switching actions shown in Figure 4.11 cause the voltages 

for the flying capacitors in each sub-module to vary depending on the 

direction of current flow. To illustrate this effect, voltage variation for the 

flying capacitors within one sub-module is shown in Figure 4.12. A sub-

module capacitor voltage (VC) of 500 volts simulated, hence the nominal 

voltage value expected for the flying capacitors is 250 volts. The capacitance 

value simulated for the flying capacitors is 560μF. 

The natural voltage balancing capability of the phase-shift PWM technique is 

illustrated in Figure 4.12 as the flying capacitor voltages VL, VR track around 

the nominal value of 250 volts. Due to the nature of PS-PWM modulation 

control, even though each carrier is shifted in time, the switching actions 

produced over a cycle are repetitive across all carriers. This results in equal 

utilisation of the available sub-module redundant switching states. Thus the 

flying capacitors are charged and discharged evenly. 
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Figure 4.12: PS-PWM Switching actions and the flying capacitor 
voltage variation for one sub-module. 

This shared utilisation of switching states also implies that voltage stress and 

subsequently switching losses are shared evenly across the devices in each 

module. The rate of charge and discharge reflected across the capacitors is 

always a function of capacitance and load characteristics while the level of 

charge and discharge is a function of the switching frequency. However the 

bias of the Phase-shift PWM technique towards a more balanced and 
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shared switching utilization also results in the this method presenting higher 

switching losses. 
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4.1.2.2 Phase-Disposition PWM 

The Phase-Disposition PWM (PDPWM) scheme involves displacing the 

carriers in amplitude instead of time. The number of disposed carriers 

signals required equals the number of discrete voltage levels minus 1, and 

these carriers are distributed evenly across the positive and negative half of 

the reference signal. 

An implementation of the PDPWM scheme for the MMFCC is illustrated in 

Figure 4.13 and requires the use of four carriers; in phase but level-shifted. 

The carrier signals are compared against a sinusoidal reference signal and 

its anti-phase counterpart, hence giving the unipolar switching. The resulting 

sub-module switching signals are shown in Figure 4.13(b) and applied to the 

sub-modules in each converter phase.: 

 

Figure 4.13: Phase-Disposition PWM applied to the MMFCC Phase leg. 
(a) reference and carrier waves (b) Switching signals. 
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The signals generated from comparing against the in-phase sinusoidal 

reference signal are applied for controlling the LHS switches, those from the 

anti-phase reference signal are applied to the RHS switches. 

As shown in Figure 4.13 (b) the switch utilisation is not even, thus different 

switches experience varying levels of conduction and switching stress. For 

instance, switches activated according to the top (red) and bottom (brown) 

carriers will experience more switching stress, hence higher switching losses 

compared with the others. However those devices activated by carriers in 

blue and green colours stay in the turn-on state longer so would have to 

withstand higher conduction losses. 

 

Figure 4.14: Phase-Disposition PWM applied to the MMFCC. (a) 
converter phase voltage (b) Phase voltage spectral analysis. 
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The spectrum analysis for the converter phase voltage Figure 4.14 (b) 

generated using the PDPWM scheme shows harmonics are not observed at 

the carrier frequency (1 kHz) but suppressed until two times the carrier 

frequency (i.e. the 40th harmonic order). The analysis also shows side band 

harmonics around the 33rd and 47th harmonic order. 

 

Figure 4.15: PD-PWM Switching actions and the flying capacitor 
voltage variation for one sub-module. 
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The switching signals generated from the PDPWM scheme causes the 

voltages across sub-module flying capacitors to vary and deviate from the 

nominal value. To illustrate this effect, the voltage variation for the flying 

capacitors within one sub-module is shown in Figure 4.15. 

The unsymmetrical switching pattern from the PDPWM scheme is shown to 

discharge the left flying capacitor and subsequently charge up the right flying 

capacitor by the same value of voltage. This results in a flying capacitor 

voltage deviation (from the nominal value) of ±30 V per cycle, making the 

open-loop implementation of the PDPWM scheme impractical. This clearly 

illustrates the importance of capacitor balancing for the PDPWM technique. 

The normal approach involves creating a feedback loop for each flying 

capacitor voltage, however this may prove tedious when the number of 

modules is increased to extend the converter to a higher voltage rating. 

Note that each flying capacitor voltage shows a variation rate and an amount 

which are functions of the carrier frequency and load characteristics. In 

Figure 4.15 each capacitor voltage shows a variation of either 12% about its 

nominal level of 250 V. This is because when implementing the standard 

PD-PWM technique, only 2 out of the 4 redundant switching states, which 

either discharge or charge the flying capacitors, are applied to synthesise 

the intermediate voltage levels. Over time this will lead to an output voltage 

waveform with an unacceptable spectral quality due to capacitor voltage 

level diverging away from its nominal voltage level.  
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4.1.2.3 Swapped carrier Phase-Disposition PWM with natural balancing 

A new modulation scheme was developed as part of this thesis to mitigate 

the voltage deviation that occurs when the classical extension of the 

PDPWM is applied to the MMFCC. This involves rotating the level of the 

carrier waves sequentially, as is shown in Figure 4.16 to realise a swapped 

carrier PDPWM scheme with natural capacitor voltage balancing. 

 

Figure 4.16: Swapped Carrier  PD-PWM for one MMFCC Phase-leg. 

The colour code in Figure 4.13 is maintained for reference. The red carrier 

waveform when compared with both the in-phase and anti-phase reference 

waveforms generates switching signals for LHS switches for one sub-

modules in each converter phase, while the green carrier waveform 

generates that for the RHS switches in the sub-module. For the next sub-

module the blue carrier generates signals for the LHS switches and finally 

the brown carrier waveform for the RHS switches. Interchanging the carriers 

over a defined period, causes a change in the switching state chosen and 

this results in an equal utilisation of the redundant states that cause the 

flying capacitors to charge and discharge. 

During each swapping action, the carrier that generated the previous state 

(causing the capacitor to charge) is “swapped” with one that still produces 

switching signals for that level, but causes the flying capacitor to discharge. 

(a)

(c) 

(d) 

(b) 
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Figure 4.17: Swapped Carrier PD-PWM Switching actions and the flying 
capacitor voltage variation for one sub-module. 

The resulting capacitor voltages from implementing this swapping technique 

are shown in Figure 4.17. The technique is also flexible as options exist for 

spreading the swapping sequence over the fundamental period or its 

multiples. For instance, a voltage variation of 30 volts was previously 

observed for the classical extension of the PDPWM. Spreading the carrier 

swapping sequence over one fundamental period will result in the flying 
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capacitor voltage varying by 30 Volts (for instance from 250 -280 volts) 

during the time interval (0 – 2π). In the next fundamental period (i.e after the 

carriers have been swapped) it will vary by -30 Volts (i.e from 280V back to 

250V) during the time interval (2π – 4π). The same swapping sequence can 

be implemented over half a fundamental cycle.  This will cause the capacitor 

to charge and discharge within a fundamental period (rather than two) and 

by  only 15 Volts. This is observed in the waveform shown in Figure 4.15 . 

It is then possible to infer that reducing the time for spreading this swapping 

sequence yields lower capacitor voltage variation but each state change also 

implies an extra switching loss across the device.  
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4.1.3 Overlapped Hexagon Space Vector Modulation Strategy 

Space vector pulse width modulation (SVM) is well-known for its ease of 

digital implementation and ability to provide an extra 15% higher DC link 

voltage utilisation when compared with other techniques. This is due to the 

protrusions presented by the vertices of the space-vector hexagon while  

representing three-phase sinusoidal voltages.  For two-level voltage source 

converters, two types of  SVM modulation: the two-phase; or symmetrical 

method is normally implemented with the directive to optimise converter 

efficiency via switching loss reduction. In [100] however, both techniques are 

combined in order to harness the advantages presented while overcoming 

the shortcomings. 

Multilevel SVM is an extension of the two-level SVM technique. The 

converter switching states, depending on the number of voltage levels, are 

mapped to the complex two-phase orthogonal α-β plane. The three-phase 

reference voltages for the converter, assumed to be balanced, are 

represented as a 2-D vector in this plane. Instantaneous duty-cycles are 

computed for the selected switching state vectors in closest proximity to a 

reference vector within a mapped hexagon area. Figure 4.16 shows each of 

the six sectors of the hexagon is divided into nVPG
2 triangles of equal size, 

due to multiple phase voltage levels required (where nVPG denotes the 

number of voltage levels from phase-peak to ground).  

 

Figure 4.18: ML-SVM for MMFCC showing (a) orthogonal hexagon 
plane (b) 5-level triangular region. 

The vertices of each triangle region within the hexagon are allocated specific 

switching vectors, thus the position of the reference vector within a triangle is 

 



 

121 

 

resolved to calculate the duty cycles of its vertex vectors. As an added 

advantage of ML-SVM, the symmetrical SVM technique can achieve 

capacitor voltage balancing for the FCC modules in open-loop. This is true 

as long as the voltage state vectors for synthesizing the reference are 

implemented in a manner that charges and discharges the flying capacitors 

evenly over a period. 

Despite the advantages stated, direct extension of the ML-SVM hexagon to 

control converter with higher voltage levels is complex due to the rapidly 

increased numbers of triangular regions and switching vectors. For instance, 

for a converter with nine voltage levels (including the zero voltage) there are 

96 triangular regions and 119 voltage switching vectors for total of six 

sectors. (4.12) and (4.13) express the total number of regions (nR) and 

voltage vectors (nV) required as a function nVPG. 
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   4.13 

where i is an index variable for initializing the summation operator. 

This is especially valid for the proposed MMFCC topology as each new 

module increases nVPG by a value of two, thus significantly complicating the 

modulation processes of region detection, voltage vector selection and 

subsequently vector duration calculation. 

4.1.3.1 OH-SVM Principle 

To tackle the complexity associated with the extension of the classical space 

vector modulation technique, a new modulation strategy: the overlapped 

space vector modulation was developed. We consider the MMFCC to be 

controlled two-tiers of a three-phase arrangement of FCC sub-modules. 

Each tier can independently synthesise a three-phase voltage thus can be 

mapped on a separate orthogonal plane within a 24 triangular region 

hexagon. As a result, the previous 5-level (96 region) hexagon may be 

represented as two 3-level (24-region) hexagons. 
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Figure 4.19: Principle of OH-SVM for MMFCC showing (a) 3D mapping 
of hexagon plane (b) Top view mapping of hexagon plane. 

Taking the hexagon for the tier of the lowest voltage level as the reference, 

the other hexagon overlaps that of its lower voltage counterpart, but with a 

phase angle displacement of αSH. This hexagon phase shift value is 

determined by the number of modules per phase (nMP), switching period (TS) 

and fundamental period (T) as expressed in (4.14) 
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This is shown in Figure 4.20 where a spatial representation of one of the 

interleaved hexagons is presented with a reference voltage vector, Vref , in 

each hexagon as well as a 1800 phase-shifted counterpart, Vref
’. The former 

determines switching vectors for the three-phase LHS unit-cells in a tier 

while the latter is for that of three-phase RHS unit cells. As a result of 

hexagon overlapping, the angular positions for both Vref and Vref
’  in each 

hexagon are also phase shifted accordingly. Taking the hexagon for the 

lowest tier as the reference with angular value, α, that for the nth tier is given 

as 

  radh SHNN  )1(        4.15 

where hN is the hexagon number to represent tier 1, tier 2 and so on. 

Naturally the phase angle for the corresponding Vref
’ is 180° displaced to αN. 
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Figure 4.20: 3-level hexagon for OH-SVM showing (a) all sectors (b) 
region detection in sector 1. 

4.1.3.2 OH-SVM Algorithm 

The OH-SVM algorithm involves determining the positions and hence 

switching state vectors in each hexagon for synthesizing Vref and Vref
’  and 

calculating the duty cycles for all chosen switching vectors. As is well known 

the classical multilevel SVM algorithm involves identifying the sector 

amongst six according to the phase angles of the reference voltages. With 

multiple overlapped hexagons the sector numbers of the reference voltage 

vectors in each hexagon may be different at certain instances. This can be 

obtained from the expression in (4.16) below which shows the Euclidean 

division of the perceived angle, αN, by the sector angle (60 0 or π/3), 

    
3

mod
3

13  PNP S        4.16 

where SN represents the current sector number. 

Next, as part of the OH-SVM algorithm the regions of the reference vector 

within a chosen sector, i.e the switching state vectors, are determined. There 

are four triangular regions in each sector bounded by three switching state 

vectors. To determine the location of a reference vector at each time instant, 

the vertex of the reference voltage vector, Vref, is decomposed into its two 

sector-based orthogonal components, VSα and VSβ , as expressed in (4.17). 
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The corresponding region the reference vector locates can be determined 

according to its Vsα , Vsβ values in comparison to the modulation index  as 

listed in Table 4.3. 

Table 4.3: Criteria for region localisation 

Region 1 Region 2 Region 3 Region 4 

VSα > 0.5VDC VSα <0.5VDC 

VSβ <0.5VDC 

VSα + VSβ > 0.5VDC 

VSβ > 0.5VDC VSα < 0.5VDC 

VSβ < 0.5VDC 

VSα + VSβ < 0.5VDC 

Three switching state vectors are selected from the three vector groups 

located at each vertex in the triangle region where the reference voltage 

phasor is located. For instance, if the peak of reference voltage phasor 

locates in sector 1-region 1, the possible switching state vectors are 200; 

210 and (100 or 211), while in sector 2-region 2, possible switching vectors 

are 100;  (211,210) and (110 or 221). 

An example of an optimized selection of switching voltage vectors for a 

reference voltage phasor located in Region 1 is shown in Table 4.4. 

Table 4.4: Vector combination chart showing voltage vector 
selections  for Sector 1 (Regions 1) 
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Region 

1 

A 1 0 2 0 2 0 2 1 2 1 2 0 2 0 1 0 

B 0 1 0 2 1 1 1 2 1 2 1 1 0 2 0 1 

C 0 1 0 2 0 2 1 2 1 2 0 2 0 2 0 1 

LHS and RHS denote the vectors chosen for left hand and right hand side 

switches of the full-bridge flying capacitor sub-modules respectively. Four 
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switching states are available for each leg of FCC module in each phase of 

the MMFCC converter. In Table 4.4 the voltage vectors are selected in order 

that open loop flying capacitor balancing is achieved by applying an equal 

number of charging and discharging states over the switching period. 

As in classical SVM, the vector duty cycles are calculated based on the 

symmetrical placement of the three closest voltage vectors forming edges of 

the region chosen to represent Vref. The three duty cycles (DA, DB, DC) 

required to describe the reference voltage at every instant as it passes 

through each region are shown in Table 4.5. Note that at every instant, the 

condition DA + DB + DC = 1 must be met, since they represent three vector 

time durations TA, TB, and TC and their sum must always equal to the sample 

period TS. 

Table 4.5: OH-SVM Vector Duty-Cycle Calculation 

Region 1 Region 2 Region 3 Region 4 

DA = VSβ 

DB = VSα – 0.5 

DC = 1 - DA - DB 

DA = VSβ – 0.5 

DB = VSα – 0.5 

DC = VSα + VSα – 

0.5 

DA = 1 - DA - DB 

DB = VSα – 0.5 

DC = VSα 

TA = VSα 

TB = VSβ 

TC = 0.5 - DA - DB 

 

4.1.3.3 Simulation Studies  of OH-SVM 

Simulation studies were performed as proof-of-concept validation of OH-

SVM technique applied for the the control of the 6-module, two-tier, MMFCC 

topology. The sub-module DC voltage was normalised as 250 V per FCC 

sub-module. The flying capacitors were simulated as 1000 μF. An R-L load 

of 57.6 Ω-12mH per phase was connected at the three-phase AC output 

terminals. A 2 kHz modulation sampling frequency was implemented. 

The flowchart for the OH-SVM scheme as applied for the control of the 

MMFCC topology is shown in Figure 4.21. 
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Figure 4.21: (a) Flow chart for the OH-SVM technique 
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Figure 4.22: (a) Sector detection and region localisation for (a) ML-SVM 
(b) OH-SVM 

Figure 4.22 (a) show the hexagon sector detection and is same for both the 

classical MLSVM and the OH-SVM. Figure 4.22 (b) shows the region 

detection experienced with the classical MLSVM technique. The modulation 



 

128 

 

amplitude index simulated was 0.8 so the reference vector crosses through 

only 7 (Region 1 to Region 7) out of the 16 regions in each sector. Figure 

4.22 (c) shows the region detection for the OH-SVM technique and the 

reduction is complexity is evident as the reference only crosses three 

triangle region for the same modulation amplitude index. 

The resulting converter output voltage waveform and its spectrum are shown 

in Figure 4.23. 

 

Figure 4.23: OH-SVM applied to the MMFCC. (a) converter phase 
voltage (b) Phase voltage spectral analysis. 
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4.2 Summary and Comparison of Modulation Techniques 

The assessment of the different modulation schemes discussed within this 

Chapter is based on a set of metrics that are considered when determining 

the “best-fit” modulation technique for different applications. These metrics 

are listed below: 

- Waveform performance of the Modulation technique (THD 

Compliance); typically the ability of the technique to yield a Total 

Harmonic Distortion lower than a predefined limit. 

- Robustness of the Modulation technique. This metric focuses on two 

abilities: (1) dynamic response to changes e.g. in reference; and (2) 

minimal or negligible capacitor voltage variation and drift. 

- Balance in switch utilisation. 

- Ease of implementation (complexity) of the modulation technique. 

Table 4.6 presents the comparative advantages of the different modulation 

schemes according to the above metrics. 

In terms of the ability to target the specific harmonics to be supressed, the 

SHE technique makes the most fitting technique for cases where THD 

compliance is of higher importance than any other requirement. This scheme 

may be ideal in applications where loads with high harmonic sensitivity are 

operated for a short period of time (or discontinuously) and in open loop. It is 

difficult to mitigate capacitor voltage drift using SHE-PWM over continuous 

periods unless active balancing is integrated at the comprise of higher 

switching frequency. 

Other situations may assign equal (or even higher) importance to the second 

and third metrics. For instance in a STATCOM application, the reference 

signal can experience several step changes within a cycle. The modulation 

technique is expected to immediately reflect these changes in the pulse 

width of switching signals as well as minimising changes in the flying 

capacitor voltages. The PSPWM and OH-SVM techniques are better 

candidates for such an application. 

Finally the complexity of a modulation technique has a negative impact on 

both its robustness and computational cost (i.e. reliability). In this context, 

the use of an iterative computational process and uncertainty of 

convergence present a disadvantage to the SHE modulation technique. 

Carrier signals are easily deployed in hardware and several digital signal 
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processor (DSP) and field programmable gate array (FPGA) manufacturers 

now provide libraries with full implementation of carrier signals. This allows 

for easy implementation of both the PSPWM and PDPWM techniques on 

embedded platforms. In the case of the OH-SVM, the use of overlapped 

three-region hexagons makes the digital implementation of the technique 

easy. 

Table 4.6: Assessment of Modulation techniques for the MMFCC 

 SHE PSPWM PDPWM OH-

SVM 

THD Compliance     

Open-loop Natural balancing     

Dynamic Response     

Switch/Sub-module Utilisation     

Reduced Complexity     

 

4.3 Summary 

In this chapter different modulation options were discussed for the switching 

control of the MMFCC topology. The SHE-PWM technique offered lower 

losses but at the compromise of capacitor voltage variation, even when 

adaptations are made for module utilization and capacitor balancing. 

Amongst the carrier-based techniques, the PS-PWM offered the most 

optimized solution for both capacitor voltage balancing and module 

utilization while the SCPD-PWM was shown to overcome the capacitor 

variation difficulties encountered with the PD-PWM technique. 

The novel OH-SVM technique was introduced and discussed. This is a 

significant contribution of this work. This proposed method treats the three-

phase MMFCC as multiple inverters with a phase limb being a chain of basic 

three-level FC H-bridges. Basic three level hexagons can be applied to 

determine the switch states and duty cycles separately within one tier of the 

converter and many such hexagons can be overlapped, with phase shift 

relative to each other, for the control of a complete MMFCC. This approach 

greatly simplifies the modulation algorithm and brings flexibility in shaping 

the output voltage waveforms for different applications. Spectrum analysis 
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showed that the technique offers similar waveform quality to that of the PS-

PWM scheme. In addition the OH-SVM presents an added advantage by 

allowing for the possibility to optimize for either losses or capacitor voltage 

variation. 

In Chapter 5 investigations surrounding the experimental validation of the 

new MMFCC topology are presented. 
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Chapter 5  

Experimental System 

Experimental validation is always required in power electronics for 

establishing the plausibility of power electronic topologies or control 

techniques. In this work some modulation schemes, both carrier based and 

as well the overlapping multi-hexagon space vector pulse width modulation  

have been presented, specifically for the control of the modular multilevel 

flying capacitor converter. Although their operation as well as an application 

has been shown in simulation in Chapter 4, this chapter presents the design 

and implementation of a “prototype” hardware rig in order to validate some of 

the modulation schemes in real time. 

Mainly, the set task was to achieve a properly scaled as well as a detailed 

hardware prototype to enable further research into the proposed MMFCC 

topology. To achieve this, a “modular” design methodology was adopted at 

all development stages of the prototype, which would allow the possibility of 

reconfiguring as well as uprating or downscaling the prototype to match 

different power levels. In effect, this would enable the investigation and 

validation of various control schemes for various applications. 

Towards the investigative goals of this research, the developed hardware 

prototype will be used to present experimental results for the modulation 

control of the two module MMFCC topologies using one carrier-based PWM 

scheme (phase-shift PWM) as well as the proposed overlapping multi-

hexagon space vector modulation scheme. 

Although the design of the hardware rig was at the University of Leeds 

control and power applications (CPA) laboratory, the implementation stage 

was split across two locations. Power hardware implementation was at the 

Leeds (CPA) laboratory, while the control and measurement systems were 

developed and deployed at the University of Nottingham Power Electronics 

Machines and Control (PEMC) laboratory. Due to the high safety standards 

as well as strong HSE guidelines and presence at both facilities, the rig was 

developed in the safest manner as was economically viable. Within the 

design and implementation of the rig were voltage and current 

threshold/peak  monitoring and detection circuits to handle scenarios such 

as: over current automatic shut-down; and over voltage shutdown 
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Most of the protection was implemented using latch circuits in order to create 

a “hold until clear” option for the fault scenario even if the control circuit 

power supply was removed. 

Owing to the number of semiconductor switching devices (48 IGBT’s) to be 

controlled as well as other control signals to be generated (independent 

enable/disable, reset, etc), a single digital control platform could not be 

adopted. A distributed control platform was implemented which includes a 

central Digital Signal Processor (DSP) and a cascade of Field 

Programmable Gate Array (FPGA) cards which provided sufficient 

processing capabilities as well as memory to handle the computation of 

some of the complex control algorithms and PWM signal generation 

schemes required for the operation of the hardware rig. In the sections 

following, an overview is presented for the MMFCC hardware rig 

development, showing the interconnection of the different subsystems of the 

hardware rig. The procedure for rig testing operation and experimental 

results obtained are then shown. An outline of the hardware rig is shown in 

Figure 5.1.  

 

Figure 5.1: Hardware rig outline showing (a) Power Hardware (b) 
Control Hardware (c) PCC. Legend: Red – Power line, Green – 
Digital line, Blue – Fibre optics 

(a) 

(b) 

(c) 
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5.1 Power Hardware 

 

Figure 5.2: Rig Power Hardware showing (a) FCC Module (b) Isolated DC Supplies (c) AC Line/Load connection. 

(a) 

(b) 

(c) 

Transformer 

Transformer 

AC 

AC 

AC 
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In Figure 5.2 the experimental rig power hardware is shown to mainly 

comprise of the 6 FCC modules (Figure 5.2 a) which make up the MMFCC 

topology, the isolated DC power supplies (Figure 5.2 b) which were required 

to sustain the module DC busses in open loop, while the modulation 

schemes were evaluated and the finally line/load connection (Figure 5.2 c). 

Three standard laboratory power supplies capable of producing two isolated 

sources each (i.e a total of six isolated sources) were available and sufficient 

to be deployed as the isolated power supplies. A half bridge circuit was 

implemented as basic building block for the FCC modules and during this 

work this is referred to as the “power cell card”. Each FCC module was built 

up using 4 power cell cards. To form each converter phase leg, two FCC 

modules are connected in series, with the top terminal serving as a phase 

output, while all three bottom terminals are tied to form a common neutral 

terminal. 

The phase outputs of the converter are connected to a three phase R-L load, 

via current transducers and across voltage transducers, for data acquisition 

purposes. 

With regards to power system rating, the experimental tests were performed 

with a 2kW (2 – kilowatt) threshold (i.e 200 Volts, 10 A). The description of 

the power cell card is as shown in Figure 5.3. 
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5.1.1 FCC - Power Cell Card 

 

Figure 5.3: Power Cell Card (Red = Power line, Green = Signal Line). 

In order to implement the Power cell card for the FCC module, the cell card 

circuit designed as a result of work presented in [101], was modified to that 

shown in Figure 5.3. 

The main power components in each power cell card are the card capacitor 

deployed using Panasonic’s EETED2E152EA, and two Infineon Power IGBT 

devices (IKW30N60T), rated at (600 V, 30A). 

Fibre Optics Receiver Circuit 

Although a one modification was the inclusion of a voltage “latch” protection 

circuit, the main modification which resulted to the power card circuit in 

Figure 5.3 is the use of optical fibre which provided enhanced isolation with 

no sacrifice to the signal link performance.  

A pair of Fibre Optic receiver circuits are built to plug into the Power cell 

cards in and convert the optical PWM signals from the control circuit into 

digital (0 – 5V) signals. 
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The main component in the Fibre Optics receiver circuits was Avago’s 

HBFR-2531 horizontal-mount Fibre optics receiver which connects to the 

optical PWM signal as shown in Figure 5.4. 

Note that the Fibre optic receiver output is coupled via an inverting Schmitt 

Trigger. This is required in order to counteract the inversion which takes 

place at the Fibre optics transmitter circuit (located at the control side). 

 

Figure 5.4: Fibre Optics Circuit. 

The circuit shown in Figure 5.4 was implemented on a printed circuit board 

based on the schematic shown in Figure 5.5 and is as-built in Figure 5.6. 

 

Figure 5.5: Schematic for Fibre Optics Rx Circuit PCB. 
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Figure 5.6: Fibre Optics Rx Circuit showing (a) PCB design (b) Populated 

Circuit. 

 

Gate Electronics 

The Gate electronics circuit comprises of the following: 

- A gate drive circuit which is present to provide sufficient turn-on 

current to its interconnected power IGBT device. 

- Power card feedback circuits which acquire current and voltage 

values present on the power components on the cell card, and 

present then to the controller as feedback signals as well as to the 

protection circuits for low-level protection decisions. 

- Protection circuits, which constantly compare the voltages and 

currents presented on the power cell card components to set 

threshold values. If a value is detected over the threshold, the firing 

signals to the power card are latched to ground and the fault state is 

held until a reset signal is used to clear the fault (even if the cell card 

loses its power supply). 

A simplified schematic of the gate drive circuit from [101] is shown in Figure 

5.7. 

(a) (b) 
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Figure 5.7: Power cell card – Gate drive circuit. 

Even though optical isolation is implemented to segregate the power cell 

cards from the control circuit, the gate drive circuit shown in Figure 5.7 

implements an opto-coupler  circuit alongside the gate driver circuit. This 

extra galvanic isolation serves the purpose of preventing noise from coupling 

from the measured analogue feedback signals across to the digital (control 

PWM signals). The gate driver on the other hand, provides sufficient gate 

conduction current to enable the power IGBT device. 

Both circuits were available on a single (ACPL-332J) IC package by Avago 

Technologies which also presented some extra functionality namely “Miller 

clamping” and “Desaturation detection”. The Miller clamping feature provided 

an alternative path for current present due to parasitic Miller capacitance to 

flow, hence preventing unscheduled IGBT power device turn-on. On the 

other hand, in order to implement the desaturation detection, the collector-

emitter voltage of the power IGBT devices are constantly monitored and 

compared with a predefined threshold. If the monitored value exceeds the 

threshold value, a fault state is declared and the current flowing thorough the 

IGBT device is made to decay slowly. 

A common 5 volts supply, provides power to the opto-coupler section of the 

gate drive circuit as well as the fibre optics receiver circuit, while isolated 15 

V power supply circuits were implemented to power each gate driver. This 

circuit is shown in Figure 5.8. 
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Figure 5.8: Isolated power supply for gate driver. 

The isolated power supply shown in Figure 5.8 was implemented using a 1W 

switch mode DC-DC converter in a self-sustained IC package while an LC 

(low-pass) filter with the values (L = 1μH, C = 4.7μF) is connected across the 

output of this package for filtering purposes. 

A total of 24 cell cards were built in order to create the six FCC-Power 

Modules required for the converter topology. After each FCC cell card 

design was verified and the hardware built, basic testing was carried out to 

ensure cell operation. Results from a test of one of the cards is shown in 

Figure 5.9. 

 

Figure 5.9: Sub-system testing at reduced voltage performed on power 
cell card to ensure functionality. Channel 1: Cell Card Voltage; 
Channel 2: Cell Card current; Channel 3: Current flowing through 
cell card capacitor. 
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In the test result shown in Figure 5.9, the power cell card was connected in a  

2-level half-bridge inverter circuit  configuration and switched using space 

vector PWM pulses at a switching frequency of 2.0kHz. This was done as a 

sub-system type test to ensure proper operations. Starting from the top, the 

first waveform (orange; measurement scale: 1 division = 20 V) shows the AC 

voltage output from power cell card (terminal OUT+ and OUT- in Figure 5.3). 

The second waveform shows the current measured at the top power IGBT 

device (measurement scale:1 division = 2A), while the third waveform shows 

voltage across the power cell card capacitor (measurement scale: 1 division 

= 100V). Consequently, the cell cards were initially tested for functionality at 

(30V, 2A). 

The power cell card (as-built) is as shown in Figure 5.10. 

 

Figure 5.10: Power cell card(as-built). 

 

FCC - Power Module 

Using the power cell card as the basic building block, the FCC module 

structure was built as a cascade of power cell cards, with 2 cards stacked in 

series to form each FCC module bridge leg, and two legs are connected in 

parallel to form the FCC full-bridge module. This is conceptually represented 

in Figure 5.11. 

On each power cell card, the two power IGBT devices present, are mounted 

on Fischer Elektronik SK105 heat sink, capable of dissipating 1.90C of heat 

per watt. This ensures that the IGBT devices retain their recommended 

temperatures even while the circuit is operated at the maximum rating. 

+ve INPUT:

Outer Cell or Vdc+

– ve INPUT

(Outer Cell or Vdc-)

+ve OUTPUT:

Inner Cell or Load

-ve OUTPUT:

Inner Cell or Load
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Figure 5.11: FCC Power module. 

Careful consideration was given to heat flow to enable the heat dissipated by 

the heak sinks to escape, while preventing external materials entering into 

the module enclosure. To achieve this, the heat vents are available on the 

module enclosure top and sides in a pattern which encourages the hot air 

within the module enclosure to rise and escape, subsequently causing cool 

air from the surrounding to make contact with the heat sink fins during the air 

exchange. 

The module enclosure was implemented using Perspex material. Laserscript 

3.0 was used to design the enclosure faces and the design files generated 

were exported and cut on a laser machine. Figure 5.12 the final product of 

two modules which were used to form one the MMFCC topology phase legs. 

The three legs which make up three phase MMFCC topology was built as 

shown in Figure 5.13. This system consisted of 24 power cell cards in total 

(i.e 48 IGBT devices). The system 3-ph rating is (4.15 kV, 30 A) in star 

configuration or (4.15kV, 17.3 A) in delta configuration. 

 

FCC Power cell card 

Heat Sink 

Module Enclosure 

Module Base Mount 
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Figure 5.12: FCC Power modules. 

 

 

Figure 5.13: 3-Phase MMFCC circuit (as-built). 

A schematic of the FCC Power module is shown in Figure 5.14. 
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Figure 5.14: Schematic of FCC Power module setup. 
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5.2 Control Circuit 

To meet up with the computationally demanding requirements posed by the 

converter circuit. A control circuit consisting of a PC, digital signal processor 

(Texas Instruments TMS320C6713 DSK) and 4 Field Programmable Gate 

Arrays (Actel ProAsic III FPGA cards), was deployed. This enabled the 

control setup to achieve required tasks such as: 

 

- Generate switching commands for different converter modulation 
schemes. 

- Capture, process and store system operation data (voltage, current, 

etc.) under different operating scenarios.  

5.2.1 PC 

A personal computer running the Microsoft windows 7 operating system is 

used as the “highest” level controller. It is used to house the following 

software applications which enabled the deployment of code for and to the 

lower level controllers (DSP and FPGA cards). 

- Texas Instrument’s Code Composer (DSP) 

- Actel’s Libero (FPGA cards) 

- Educational DSP (DSP – HPI Card) 

Note that due to compatibility issues  which were mainly based on port driver 

requirements for the DSP’s Host Port Information (HPI) daughter card, a 

virtual machine running the Microsoft Windows XP operating system was run 

simultaneously to execute the code composer and HPI- Education DSP 

software. 

 

5.2.2 Digital Signal Processor – TMS320C6713 

The digital signal processor deployed in this control circuit is the Texas 

Instrument TMS320C6713 development kit. Being a member of TI’s (C6x) 

family of processors, it is a special-purpose floating point microprocessor 

with an Harvard architecture and specialized instruction set appropriate for 

applications which present numerically intensive targets. Its ability to swap 
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between different endian modes also makes it attractive and flexible for 

different cascade control implementations. 

The three main features which made the TMS320C6713 microprocessor an 

assailable choice for the system requirements are: 

- Multiple Accumulate (MAC) operation and Multiple execution units 

which enable the DSP execute more than one accumulate and 

multiply operation in a single instruction cycle. This proved very useful 

while implementing the overlapping multi-hexagon space vector 

pulse-width modulation, which required the evaluation of some matrix 

and vector algebra. 

- Flexible and Efficient memory allocation. The TMS320C6713 

presents the ability to access several memory locations within one 

instruction cycle. This proved very useful for the converter controller. 

A block diagram showing an overview of the TMS320C6713 DSP is 

presented in Figure 5.15 while the actual board diagram is shown in Figure 

5.16. 

 

Figure 5.15: Block diagram for TMS320C6713. 
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Figure 5.16: Board diagram for TMS320C6713. 

The C6713 is a high speed floating point processor which runs at 225MHz 

and can perform up to eight operations per cycle. One of the major 

advantages of employing the C6713 DSK is linked to its peripherals and the 

ability to add external peripherals. Above all the external memory interface 

(EMIF) which not only supports 16Mbytes of on board SDRAM memory, 

Flash ROM, I/O port but also expands the memory interface through an 

expansion memory interface connector for a FPGA daughter boards. 

 

5.2.3 FPGA Cards 

 

Figure 5.17: Board diagram for FPGA Card. 

(a) 

(b) 
(c) 

(d) 

(e) 

(f) (g) 

(h) 

(i) 

(j) 
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The FPGA card (shown in Figure 5.17)  “sits” on the external memory 

interface of the TMS320C6713 DSP. The FPGA card (also termed the 

daughter card during this work), is programmed to link to the address and 

data buses of the DSP and occupyies the memory address 0xA0000000.  

However access is provided to only a limited number of bits in the address  

to avoid excessive use of DSP memory by the FPGA. In this work, only 8 – 

14 bits of the mentioned address space is used for addressing the FPGA 

together with CE2. 

The board diagram shown in Figure 5.17, comprises of the following 

components as listed: 

(a) The FPGA chip (Actel’s ProASIC III) 

(b) Bidirectional Buffers 3x74LVC16245A and 1x 74LVC245A by Philips. 

(c) Bidirectional Buffers 1x 74LVC245A by Philips. 

(d) High density 26 –pin SAMTEC header connector for I/O. 

(e) LED Display for visual feedback on the Fault signals 

(f) 10-way FPGA programming connector 

(g) Burden resitors for Analog to Digital (A2D) converter lines (±5V) 

(h) 4-way SAMTEC molex header for transmitting fault clear (RESET) 

and (ENABLE) lines. 

(i) 25-way D-type connector for A2D input signals (from PCC0 

(j) 10 A2D converter chips 

From a functional point of view, the FPGA card receives calculated variables 

and set-points from the DSP through the data and address busses on the 

EMIF and generate switching signals by means of digital counters 

implemented in the FPGA chip which may be used to emulate triangular 

carriers (as in carrier based PWM) or to generate switching interrupts based 

on vector timing intervals (such as is required in space vector modulation). 

The A2D converter shown in Figure 5.17j, has a 12 bit resolution, however 2 

bits are sacrificed to eliminate noise from the measurements. This provided 

sufficient resolution space. For instance while measuring and translating a 

±200 Volt signal from analogue to digital form, yields a (100mV:1bit) 

resolution. 

Generating Switching Signals 

As earlier discussed, two different digital techniques were applied for the 

generation of switching signals based on different modulation schemes. 
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For carrier based PWM, up-down counters are utilized on the FPGA chip to 

produce the carrier (or carriers) required to compare with DSP generated 

reference signal. For instance in PS-PWM. The carriers are initialized with 

different integers values in order to introduce the different phase shifts. This 

is described in (86)-(87) as well as in Figure 5.18. 

CARRIER

CLK

F

F
UPLIM




2
          5.1  

)(

).1(
)(_

CN

UPLIMN
NINTCARR


         5.2  

In (5.1), UPLIM is an integer value, equivalent to 1.0 p.u on the carrier wave, 

while in (5.2) CARR_INT defines the different initialization integers for the 

different carriers. For instance according to (5.2), for four carriers, the 1st 

carrier will have a CARR-INT of “0” (i.e phase-shift = 0), while the second 

carrier will have a CARR_INT of “UPLIM/4”. This is illustrated in Figure 5.18 

 

Figure 5.18: Carrier Based Signal generation on the FGPA Card. 

The second method (shown in Figure 5.19) is well suited for discrete and 

vector-based PWM schemes such as SHE-PWM or Space vector 

modulation. The code involved within this technique is mainly interrupt based 

and facilitated by a FIFO digital system implemented on the FPGA chip. 

The FIFO “First In First Out” memory block implemented on the FPGA chip 

is made of a parallel cascade of two 16 bit memory blocks. A main counter 

generates interrupt signals at the rate of the desired switching frequency. At 

each interrupt, two bits are read into the FIFO block simultaneously as they 

are read out. The first bit is a switching state, while the second is the 

switching time. Note that the DSP provides the inputs for the FIFO block. 

CARR_INT(1) CARR_INT(2) 
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Figure 5.19: Discrete signal generation on the FGPA Card. 

5.3 System testing 

5.3.1 System Setup 

The phase-shift PWM and OMH-SVM scheme proposed in Chapter 4 were 

tested on the experimental rig for operational validation. The experimental 

system parameters used during the test are listed in Table 5.1. 

Table 5.1:  Experimental system parameters. 

Parameter Value 

Type of MMCC configuration Series Star – FCC based 

Number of modules (per phase) 2 (Total = 6 modules) 

Converter rating 400 Volts pk-pk 

Flying Capacitors 560μF, 400 V 

Load R-L (12.6.6 Ω, 3mH) 

The layout of the experimental setup is shown in Figure 5.20 while the actual 

test setup shown in Figure 5.21.  
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Figure 5.20: Layout of Experimental Rig. 

 

Figure 5.21: Photograph of Experiemental Rig. 
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5.3.2 MMFCC Test Results 

 

Figure 5.22: MMFCC PSPWM - Phase (a) Module Voltage (b) Arm 
Voltage. 

First using the phase-shift PWM scheme, the MMFCC output voltage 

waveforms for Phase A are acquired as displayed in Figure 5.22. Note that 

experiments were performed under balanced phase conditions, hence 

phases B and C are identical with A with only the only difference being the 

1200 and 2400 phase shift. 

In Figure 5.22(a), the FCC module voltage waveform is displayed and as 

expected presents 5 voltage levels (peak to peak) or 3 voltage levels (with 

respect to the module DC bus midpoint (0 Volts). Figure 5.22(b) presents an 

MMFCC arm voltage for Phase A which was observed to comprise of 9 

voltage levels (-200V, -150V, -100V, -50V, 0, 50V, 100V, 150V, 200V). It is 

evident from the module voltage in Figure 5.22(a),  that the flying capacitors 

voltages are balanced with only negligible voltage deviations (approximately 

0.15 Div), even at the low switching frequency (250 Hz) used. 

Vertical 

[50V/div] 

Horizontal 

[5ms/div] 

(a) 

(b) 

Vertical 

[50V/div] 

Horizontal 

[5ms/div] 
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The voltage waveforms were modulated to emulate a 50 Hz (20ms) 

sinusoidal AC voltage waveform which is suitably so, as seen in both 

waveforms in Figure 5.22. Generally, the properly defined and distributed 

voltage levels displayed in Figure 5.22 signify good performance which can 

also demonstrated by the current waveforms shown in Figure 5.23. Clearly 

the current harmonics have been filtered by circuit inductance. Information 

on voltage harmonics is illustrated in Figure 4.14 and Figure 4.23.  

 

Figure 5.23: MMFCC PSPWM - Phase Current. 

 

Next the OMH-SVM scheme was programmed to be tested on the 

experimental rig using the same power input and load setup. However for 

data acquisition purposes, Educational DSP’s winDSK kit had to be 

deployed in order to capture variables from the DSP, rather than from the 

oscilloscope. 

Figure 5.24 displays the flowchart adopted for implementing the OMH-SVM 

scheme. 

The values observed during the experiments were captured, stored and 

plotted using Matlab’s enhanced plot functions. Figure 5.25 shows plots for 

the Sector and Region selection variables on the DSP and Figure 5.26 

shows voltage waveforms. 
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Figure 5.24: MMFCC OH-SVM – Control Flowchart. 
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Figure 5.25: MMFCC OMH-SVM – Control Variable for  (a) Sector and (b) 
Region Selection. 

(a) 

(b) 

Vertical 

[1unit/div] 

Horizontal 

[5ms/div] 

Vertical 

[1unit/div] 

Horizontal 
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Figure 5.26: MMFCC OMH-SVM - Phase (a) Module Voltage (b) Arm 
Voltage. 

FC Voltage deviation 

The flying capacitor voltages in one of the FCC modules (VCa, VCb) were also 

observed in other to further established that they were balanced as well as 

the voltage deviation they presented. This is shown in Figure 5.26, that the 

flying capacitors maintain the expected level of 50V. 

In Figure 5.26, the observation window used was, 2 switching periods (i.e 

0.008secs) in order to observe the effect of switching to the flying capacitor 

voltages. Asides the voltage spikes present due to switching impulse noise 

and slight anomalies from the data acquisition system, the waveform and 

voltage deviations are similar to those described by the simulation 

waveforms in Chapter 4 which validated the effectiveness of the open-loop 

balancing scheme implemented. 

(a) 

(b) 

Vertical 

[50V/div] 

Horizontal 

[5ms/div] 

Vertical 

[50V/div] 

Horizontal 

[5ms/div] 
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Figure 5.27: Measured vs Simulated MMFCC Flying Capacitor Voltages (a) VL (b) VR 
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In Figure 5.27 the capacitor voltages simulated in Chapter 4 are compared 

against those measured during the experimental testing. The correlation in  

both waveforms (e.g. notches present due to switching activity) is evident 

amidst the noise present in the measured voltage waveforms and 

quantisation from the ADC conversion on the FPGA. Also from a voltage 

amplitude perspective the simulated waveforms were captured from a 

scenario with a nominal capacitor voltage of 250 V and show a voltage 

deviation of around 5 Volts. In the experimental setup the nominal voltage 

value used is 50 V i.e five times smaller and the voltage variation observed 

is around 1 V (also 5 times smaller) thus there is also correlation in 

amplitude. 
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Chapter 6  

Conclusion and Recommendations 

6.1 Conclusions 

During the period of this research, it was intended to investigate the 

feasibility of implementing a Modular Multilevel Converter topology using a 

Multilevel Flying Capacitor Module in place of the already established two-

level H-bridge and half-bridge sub-modules. This possibility was clearly 

established and the work has led to the development and experimental 

verification of the first modular multilevel converter of this type, termed the 

“Modular Multilevel Flying Capacitor Converter” (MMFCC) throughout this 

work. 

The contributions of this research work to the wider power electronics field 

are summarised as follows: 

 A thorough and comprehensive study on the current types of modular 

multilevel cascaded converter was carried out. Focusing on the four 

MMCC topologies, namely, MMCC-SSBC, MMCC-SDBC, MMCC-

DSBC and MMCC-DDBC which use either half-bridge or full-bridge 

circuits as sub-modules, it explored in detail the circuit configurations, 

operating principles, and the phenomenon of circulating current. The 

investigation led to the clear conclusions that the former two need to 

use H-bridge cells as modules and are suitable only for FACTS and 

BESS applications, while the latter two use half-bridge cells as 

modules and are only appropriate for HVDC converters.  

 Two emerging new topologies, namely, the alternating arm converter 

(AAC) and the symmetrical bridge converter (SBC) were investigated. 

The study centred on their features for HVDC applications as 

contrasted to the currently used MMCC-DSBC and concluded that 

they could dominate in offshore HVDC where platform size 

constitutes a premium charge. 

 A new set of sub-modules for MMCC based on the flying capacitor 

topology were proposed by the author. These are: 

3-level half-bridge flying capacitor cells; 3-level H-bridge flying 

capacitor cells; and 3-level Hybrid H-bridge flying capacitor cells. 
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 A set of practically-oriented metrics for evaluating sub-modules for 

MMCCs was established, including footprint; cost; redundancy; 

efficiency; and performance. These could be potentially useful for 

practical designers of converter-based equipment. These were 

applied to evaluate the three FC-based sub-modules as well as the 

well-known half-bridge, H-bridge circuits. The conclusions stated 

clearly that the FC half-bridge and hybrid sub-modules offer a lower 

footprint as well as cost, but the lower number of redundancy states 

reduce their suitability for the dynamics presented by FACTS 

applications. The FC H-bridge on the other hand presents a high 

number of redundant states and thus was selected as the sub-module 

for evaluating modulation concepts for the topology. 

 The most significant outcome from this research has been a novel 

modulation scheme proposed and developed by the author, called the  

overlapping hexagon space vector modulation control scheme. The 

enormous proliferation of possible switching states arising in 

multilevel converters makes the control of converter switching 

potentially very complex. Some simplified method of selecting 

redundant switch states is required. This must be combined with a 

modulation technique, i.e. of performing pulse width modulation to 

produce a good approximation to a sinusoidal output. The modulation 

scheme must also attempt to reduce losses and balance the 

utilisation of the switches. A further problem  specific to the MMFCC 

is to design the modulation scheme to minimise drift of the flying 

capacitor voltages. Addressing this very complex problem of 

modulation  control was another main aim of this work.  

This proposed new modulation scheme has the ability to easily control 

the topology even at extended levels with suitable output quality. The 

essence of the method is to separate the converter into tiers, and 

perform space vector modulation within each tier but with phase shifts 

introduced between the hexagons describing the separate tiers. The 

concept can be applied to multilevel converters of other topologies. 

However, experimental verification was undertaken for the flying 

capacitor case which raises the additional problem of capacitor 

voltage balancing. 
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 To achieve this experimental validation of the simulated converter and 

modulation techniques, design and construction of a bespoke “scaled 

down” experimental rig has been discussed. The rig was tested using 

the modulation scheme developed in Chapter 4 and results captured 

were shown to match the simulated high quality converter voltage 

outputs, and stabilised sub-module capacitor voltages, even with a 

switching frequency as low as 250Hz. Hence the final main 

achievement of this work was to validate the concepts experimentally 

in a practical demonstrator of an MMFCC. 

As a result of this research work, conference publications have been 

presented based on Chapter 3, Chapter 4 and Chapter 5. In addition, a 

journal paper was submitted based on Chapter 4 and Chapter 5. It is 

expected that more publications will arise from continuation of the direction 

of this research work. 

6.1 Recommendations for Future Work 

Several paths are available for further investigation.  Future studies may 

involve the application of synchronization techniques for unbalanced grid 

conditions to the converter at system level. To achieve this, the converter 

transformer configuration may need to be adjusted to match the 

requirements of different scenarios. 

Further extensions of the work could be via collaborative research with a 

“distribution side” power utility company in order to test the converter 

topology at utility level. It is obvious that utility practices in place will prevent 

the direct connection of the converter to the utility-grid, however with 

permission, verified measurement devices can be connected and an 

emulator developed to verify the converter’s reaction to real-time transients. 

The system may be monitored over a period of days for converter dynamic 

performance evaluation. 

Finally, future research into the deployment of IGBT and subsequently wide 

band-gap devices (specifically GaN and SiC) in the MMFCC module circuit 

will help further exploit the FC-H module which was briefly described in 

Chapter 3. 
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Appendix A 

Introduction 

Functions/Derivations/Data used within Introduction (Chapter 1). 

A.1  Annual Electric Consumption Figures 

Table A 1: Annual Electric Consumption Figures (in kWh) for UK, 
Kenya, Nigeria and Ethiopia between 1970 and 2010. 

 UK Kenya Nigeria Ethiopia 

1971 237,819,000,000 909000000 1637000000 552000000 

1972 245,244,000,000 996000000 1920000000 564000000 

1973 262,525,000,000 1067000000 2122000000 551000000 

1974 254,961,000,000 1137000000 2026000000 542000000 

1975 252,590,000,000 1220000000 2901000000 537000000 

1976 257,883,000,000 1351000000 3364000000 531000000 

1977 262,335,000,000 1426000000 3977000000 505000000 

1978 265,801,000,000 1526000000 4204000000 535000000 

1979 276,899,000,000 1640000000 4269000000 596000000 

1980 263,772,000,000 1707000000 4997000000 635000000 

1981 257,612,000,000 1838000000 3840000000 682000000 

1982 252,304,000,000 1884000000 6341000000 728000000 

1983 256,268,000,000 1946000000 6491000000 780000000 

1984 259,414,000,000 2051000000 5055000000 842000000 

1985 272,952,000,000 2229000000 6723000000 809000000 

1986 280,780,000,000 2368000000 7795000000 835000000 

1987 288,693,000,000 2645000000 7863000000 881000000 

1988 297,891,000,000 2595000000 7877000000 864000000 

1989 302,234,000,000 2753000000 9007000000 866000000 



 

II 

 

1990 306,651,000,000 2930000000 8291000000 1082000000 

1991 313,062,000,000 3061000000 8751000000 1088000000 

1992 313,951,000,000 3159000000 9020000000 1117000000 

1993 316,990,000,000 3323000000 10361000000 1245000000 

1994 311,333,000,000 3356000000 10062000000 1306000000 

1995 323,503,000,000 3490000000 9876000000 1374000000 

1996 338,289,000,000 3655000000 9507000000 1443000000 

1997 340,102,000,000 3689000000 9304001000 1453000000 

1998 345,593,000,000 3813000000 8953000000 1488000000 

1999 352,534,000,000 3625000000 9036000000 1480000000 

2000 360,100,000,000 3525000000 9109000000 1507000000 

2001 363,112,000,000 3934000000 9476000000 1811000000 

2002 364,699,000,000 4013000000 13459000000 1840000000 

2003 368,297,000,000 4310000000 13444000000 2066000000 

2004 368,251,000,000 4679000000 16730000000 2285000000 

2005 378,775,000,000 4879000000 17959000000 2560000000 

2006 377,284,000,000 5305000000 15929000000 2942000000 

2007 375,211,000,000 5582000000 20328000000 3212000000 

2008 372,087,000,000 5716000000 19121000000 3419000000 

2009 352,330,000,000 5813000000 18617000000 3613000000 

2010 356,961,000,000 6321000000 21624000000 4502000000 

References: 

1. WorldBank: ‘Electric power consumption (kWh)’, World Development 

Indicators, 2012 
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Appendix B 

Modular Multilevel Converters 

Functions/Derivations used in Modular Multilevel Converter discussions 

(Chapter 2). 

B.1  Circulating Currents in MMC with Double Star Bridge 

Cells 

The equivalent circuit shown in Figure B 1 describes the current paths which 

establish within double star configuration. The convention adopted for the 

current direction is that of a rectification scheme. The convention required for 

an inverter is easily realised by swapping the current direction. 

An outline the desired current paths is shown in green. The three-phase 

currents (IsA, IsB and IsC), flow through into the converter arms via the 

inductors. The value of current that flows through each arm i.e. the arm 

current (IcAT, IcBT, IcCT: IcAB, IcBB, IcCB) depends on the value the controllable 

arm voltages (EcAT, EcBT, EcCT: EcAB, EcBB, EcCB). The arm voltages are 

synthesised as a result of the switching actions applied to the modules in 

that arm. It is desirable for arm currents in the upper or lower converter arms 

to sum up and produce IDC, such criteria ensures that no portion of the 

current circulates within the converter. 

A further examination of the MMC using Double Star Bridge Cells exposes at 

least nine extra current paths with the notations (1) – (9) in Figure B 1 (a. 

using phase voltages and b. using line voltages) that cause a portion of the 

supply currents to circulate within the converter. These can be represented 

using the two equivalent circuits shown in Figure B 2(a) which describes the 

circuit for the circulating current paths (I) – (VI) and Figure B 2 (b) for (VII) – 

(IX). 



 

IV 

 

 

Figure B 1 Current paths that establish within a MMCC double star 
topology: (a) Phase; and (b) Line-Line equivalent circuits. 

(a) 

(b) 
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Figure B 2 Equivalent circuits for the circulating currents showing: 
(a) paths for currents denoted (1)-(6); and (b) (7)-(9). 

Applying Kirchhoff’s voltage law to the closed circuit in Figure B 2 (a) and 

considering a fundamental time period when Phase A is positive while 

Phases B and C are negative (for instance when 300 < ϴ < 1200)  gives (B.1) 
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where: 

)( 1xeS  is the phase )( 1x  supply voltage applied across the inductor )( 1xLS ; 

)( 1xiS  is the phase )( 1x  AC current; 

)( 2xeS  is an adjacent phase )( 2x  supply voltage applied across the inductor 

)( 2xLS ; 

)( 2xiS  is the phase )( 2x  AC current; 

iC xe )( 1  is the phase )( 1x  converter ( i : 1 = upper, 2 = lower) arm voltage 

applied across the arm inductor )( 1xLC ; 

iC xi )( 1  is the phase )( 1x  converter arm current for ( i : 1 = upper, 2 = lower); 



 

VI 

 

iC xe )( 2  is the phase )( 2x  converter ( i : 1 = upper, 2 = lower) arm voltage 

applied across the arm inductor )( 2xLC ; 

iC xi )( 2  is the phase )( 2x  converter arm current for ( i : 1 = upper, 2 = lower); 

(B.1) can be further simplified by applying the relationship in (B.2) to include 

an expression for the line-line voltage as shown in (B.3). This negates the 

necessity to know the polarity of the supply phase current. 
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where: 

))(( 21 xxVS line-line voltage across Phase )( 1x and )( 2x  

(B.2) expresses a generalised function for the circulating currents (1 – 6). 

Consider ))(( 21 xxVS as the driving force for these circulating currents. To 

reduce or eliminate these circulating currents implies that ))(( 21 xxVS in 

expression (B.3) must tend towards zero. 

Thus to eliminate circulating current 1: (
1x = a; 

2x  = b; and i  = 1) 
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To eliminate circulating current 2: (
1x = b; 

2x  = c; and i  = 1) 

    
ArmUpperCPhase

C
C

C

ArmUpperBPhase

C
C

C ce
t

ci
cLbe

t

bi
bL

__

1
1

__

1
1





























    B.5 

To eliminate circulating current 3: (
1x = c; 

2x  = a; and i  = 1) 
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To eliminate circulating current 4: (
1x = a; 

2x  = b; and i  = 2) 
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To eliminate circulating current 5: (
1x = b; 

2x  = c; and i  = 2) 
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To eliminate circulating current 6: (
1x = c; 

2x  = a; and i  = 2) 

    
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(B.7)-(B.9) illustrate the conditions required to ensure that the circulating 

currents described in Figure B 2 (a) are eliminated (or at least minimized). 

Applying Kirchhoff’s second law to the closed circuit in Figure B 2 (b) also 

presents a relationship which describes the circulating currents (7-9) as 

expressed in (B3): 
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Thus to eliminate circulating current 7: (
1x = a; and 

2x  = b) 
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To eliminate circulating current (8): (
1x = b; and 

2x  = c) 
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To eliminate circulating current (9): (
1x = c; and 

2x  = a) 
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Appendix C 

MMFC Converter Module and Topology Analysis 

Functions/Derivations/Data used in MMFC Converter Module and Topology 

Analysis (Chapter 3). 

C.1  Devices used for Sub-module Assessment 

Device Manufacturer reference Comments 

Switch 

Module 

IKW30N60T (Infineon) 600 V, 30 A Power IGBT 

Capacitor EETED2G561EA 

(Panasonic) 

600 V, 560µF Capacitor 

Heat Sink SK105/105SA 

(Fisher Elektronics) 

Chosen specifically for its 

compensating thermal impedance 

(Rth = 2 K/W) to match maximum 

switch module operation. 

Gate 

Electronics 

Module 

(GEM) 

FPGA (ProASIC3) 

Transducers (LEM) 

Only the key parts that vary across 

the different sub-module concepts 

are considered. 
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Appendix D: MMFC Converter Control  and Modulation 

Studies 

D.1 Simulation Setup for Modulation Studies 

A software model of the MMFCC using the full-bridge FC sub-module 

concept was represented in Matlab-Simulink. This exercise was undertaken 

with three objectives in mind: 

- To allow “proof-of-concept” validation of the new sub-module concept 

using a Single Star topology at system-level; 

- To present a plausible platform for investigating the different 

converter modulation strategies; and 

- To provide benchmark results for comparing against those obtained 

during the experimental investigation conducted. 

The model reference library block allowed for quicker simulation as only the 

library block (not the 6 instances of it) are compiled during the simulation 

model execution. 

D.1.1 Plant Representation (AC Line, PCC, Load and Auxiliaries) 

 

Figure D.1: Plant Setup for MMFCC Modulation Studies. 

The plant setup adopted to support the MMFCC modulation studies is shown 

in Figure D.1 and the main simulation sub-systems are an AC source, the 

MMFCC, the Control system and the PCC including plant auxiliaries: 
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The AC system is the main power source in the plant representation. This is 

represented using a programmable voltage source in the Matlab-Simulink 

simulation software. 

The Point of Common Coupling (PCC) is a group of sub-elements that 

provide the converter’s interface to the line. Typically plant auxiliaries such 

as measurement elements and circuit breakers are also housed in the PCC 

to reduce feedback signal latency/delay values. This enables rapid 

protection coordination response during adverse over-current/over voltage 

conditions. One typical auxiliary feature of the PCC represented in the 

MMFCC plant is the implementation of a soft-start resistor and circuit 

breaker to mitigate the over-current condition that can occur during converter 

“black-start1” or “cold-start”2. Such an over-current condition is as a result of 

the presence of “uncharged” capacitors and a negligible resistance of the 

predominantly inductive line. Even with all sub-modules not in operation, a 

current path exists via the sub-module anti-parallel diodes and capacitor 

(note that this is true for all the sub-module topologies reviewed in Chapter 3 

and for either current direction). One option to mitigate this over-current 

condition is to swap only a few sub-module capacitors into the circuit and in 

sequence. Such a method is only feasible when all the sub-module gate 

circuits are powered from ground level i.e.for low voltage (i.e low sub-module 

count) applications. Using a soft-start resistor presents a more practical 

technique. A resistance of pre-calculated value normally in the order of a few 

hundred ohms is switched into circuit during converter start-up to limit the 

amplitude of the current that flows while the sub-module capacitors are 

charged up. The soft-start circuit breaker is open and the main breaker 

closed once nominal operating voltage values are achieved within the sub-

modules. 

A variety of plant loads are applicable for the setup shown in Figure D.1 but 

for convenience a simple R-L load is implemented as it is sufficient for the 

studies. 

                                            

1 The start-up procedure of a power-electronics converter in which its energy 
storage elements (capacitors, batteries) are charged up to nominal 
operating values from an established AC source. 

2 The start-up procedure of a power-electronics converter in which its energy 
storage elements (capacitors, batteries) are charged up to nominal 
operating values from an established DC source. 
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D.1.2 MMFCC Sub-Module Representation 

 

Figure D.2: Representation for the MMFCC sub-module in Simulink. 

An outline of the three-level Flying capacitor H-bridge sub-module 

represented in the Matlab-Simulink model is shown in Figure 4.1 and two 

such sub-modules are represented to form each converter phase arm. The 

sub-module capacitor is denoted as C and the flying capacitors as CFC.  

There are eight power semiconductor switches within each sub-module, and 

each switch is simulated using the IGBT/Diode model block in 

simpowersystems library. The device conduction, switching and snubber 

parameters are set to match those specified in Infineon’s Power IGBT 

devices (IKW30N60T) in order to simulate realistic switching conditions. 

The switching signals are supplied to each sub-module via a Simulink bus 

structure. A bus selector within each sub-module enables the control signals 

for four (out of eight) devices S1a, S2a, S1b and S2b to be selected while a 

logical NOT is applied to provide the remaining four signals i.e for S3a, S4a, 

S3b and S4b. This is not far from standard implementation practice which 

typically features a logical NOT and a dead-time between a pair of 

complementary signals. Such practice prevents the possibility of sub-module 

capacitor short-circuit either from logically incorrect complementary switch 

operation or device transition periods from conduction to blocking and vice 

versa that may result in a conduction overlap. 
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Feedback signals for each sub-module include: the sub-module capacitor 

voltage VC; and flying capacitor voltages VL and VR. 

 

D.1.3 Control System in Simulink 

 

Figure D.3: MMFCC System Control Concept. 

Coordinating the MMFCC and entire plant equipment (PCC + Plant 

Auxiliaries) requires a sophisticated control concept. Typically this involves a 

multi-layered structure of control sub-systems that tackle the various and 

multi-bandwidth requirements for plant coordination and protection. Different 

permutations of control sub-systems are possible that can provide similar 

functionality, a non-limiting example is shown in Figure D.3 with a 

description of the sub-systems within provided below. 

A HMI (Human Machine Interface) sub-system provides an interface for a 

system operator to monitor and operate plant equipment by issuing system 

set-points into a plant sequencer (e.g. mode of operation, real/reactive 

power demand values, etc.). There are no strict bandwidth requirements for 

the HMI, but the applications/algorithms within are usually executed at 

values in the order of a few milliseconds and best practice suggests at least 

once every fundamental cycle (e.g 10 ms for a 50 Hz system). In practice 

the HMI is a collection of executable applications installed on computing-

type platform and depending on plant requirements a system operator may 

access this platform on site or remotely. 

The Measurement Unit sub-system is a collection of plant signal processing 

functions (e.g. isolation, filtering and per-unitisation). The ideal requirement 
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of this sub-system an output with infinite bandwidth and no noise but such is 

impractical due to: limitations in hardware (both for analogue and digital 

systems); and the interaction of proportional propagation between a signal’s 

bandwidth and noise. This typically results in an engineering compromise as 

an optimal choice is between a high bandwidth – high noise signal feedback 

(thus quicker response but a potential for unintended response to noise) or 

lower bandwidth - lower noise feedback (slower response but shielded from 

noise).  Hopefully future research on advanced signal filter and noise 

cancelation techniques will uncover a potential for achieving plant feedback 

with extremely high bandwidth and negligible noise. In practice signal 

isolation is provided via the use of transducers (for high voltage to low 

voltage isolation) and terminal boards usually with optical isolation (for 

ground noise isolation). Signal filtering and per-unitisation can also be 

provided using hardware i.e via the use of operational amplifiers. Such an 

approach is cumbersome and not easily scalable thus modern application 

make use of embedded platforms based on Field Programmable Gate Array 

(FPGA) cards. This enables easy deployment of sophisticated filtering 

algorithms with execution at high bandwidth values (typically over 1MHz). In. 

For signal per-unitisation input signals are multiplied to an inverse of the 

system base values3 using a Gain value. Signal isolation functionality is not 

required for the software simulation of the plant. 

The primary function of the plant sequencer is supervision. This sub-system 

receives system set-points from the plant operator via the HMI, considers 

the system’s real-time condition (e.g. using states/signals from the 

measurement unit) and issues plant governing commands such as: 

block/de-block converter (DBC); make/break main circuit breaker (MCB); 

make/break soft-start circuit breaker (MCB); and set-points (PSET, QSET) for  

deriving the converter power and current control values. There are no 

stringent bandwidth requirements for the plant sequencer but it is best 

practice to implement a value between that of the HMI and that of the lower 

level power control function (e.g around 1 ms for the system under study).   

Earlier systems implemented the plant sequencer as a separate 

Programmable Logic Control (PLC) hardware with its digital output (states) 

connected into lower-level control hardware. The availability of quicker and 

                                            

3 Base values are a unit for per-unitising a system based on voltage, current 
and/or impedance ratings specified. 
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more robust embedded platforms often multicore digital signal processors 

has enabled the integration of both functionalities into a single embedded 

platform. 

In combination the Symmetrical decomposition, Phase Locked Loop (PLL), 

power control and current control sub-systems make up the cluster of lower 

level control sub-systems. A summary of the functionality provided is as 

follows: station demand values are received via the plant sequencer, 

compared against the processed plant feedback values to compute any 

phase and amplitude changes required for the converter. The result is a 

converter voltage demand supplied as input reference to the converter 

modulation sub-system. Symmetrical resolver and  PLL are signal 

processing functions but related to signal reference frame representation 

rather to signal quality adjustment. The symmetrical resolver provides two 

key functions. The per-unitised three-phase AC signals (VPCC
p.u

, IS
p.u) are 

resolved into positive, negative and zero- sequence components using 

Charles Fortescue’s decomposition technique to allow stable converter 

control even when the connected AC system is unbalanced. The next 

function is a reference frame resolver that generates a direct-quadrature (d-

q) representation for each set of three-phase feedback signals (e.g. VPCC_A, 

VPCC_B, VPCC_C → Vd, Vq). The d-q components are DC values and this allows 

the application of servo-type regulators that compensate for errors between 

converter feedback values and reference values (i.e. computed from station 

set-points).. The objective of any PLL in the control of a grid connected 

converter is to ensure the converter voltage is always synchronised with that 

of the AC line. This is compulsory to ensure that the desired quantity and 

quality of power is exchanged. A basic method for achieving this is via a 

servo regulator that compensates the error between the quadrature 

component of the converter voltage and that of the rotating reference frame 

described by the grid voltage. The PLL is an important aspect in the control 

of any grid-connected converter, more so when the grid has a low short 

circuit level (around 2.0 and below, typically defined as a “weak grid”). For 

convenience, during the studies within it is assumed that the AC system is 

balanced thus only positive sequence components of a balanced three-

phase reference are available for modulation control. 

The Power Control sub-system also known as the outer-loop control is 

required to compute the reference currents (Id
r, Iq

r) that must flow through the 

converter in order to achieve power set-points (PSET, QSET) and for a PCC 
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voltage value of Vd. The plant set-up requires the management of three key 

elements: real power; reactive power; and MMFC converter energy. The 

management of real power ensures that the voltage capacity of each 

MMFCC phase arm is within the limits of a desired reference value 

(ΣVC_SET). This is achieved by comparing the reference voltage value against 

the sum of the sub-module capacitor voltages (ΣVC) and compensating for 

the error via a servo regulator that generates the direct component (Id
r) of the 

converter reference current value. For the plant set-up in  Figure D.1 as long 

as ΣVC = ΣVC_SET, the direct component of the converter current is zero4. 

Management of reactive power typically presents two modes for 

consideration: AC voltage regulation (indirect reactive power control); and 

direct reactive power control. AC voltage regulation involves computing the 

quadrature component of the converter reference current (Iq
r) in order to 

maintain a set PCC voltage value (Vd_SET). 

Within the Current Control sub-system, instantaneous (but discretised) 

converter voltage demand values “VC” are computed at each sample instant. 

Typically the reference currents (Id
r, Iq

r) are compared against measured 

currents (Id, Iq) and the current error reflects change in converter voltage 

required to achieve the power set-points. This is the classical deadbeat 

control method other methods are available such as the use of multi input 

multi output (MIMO) based control or robust LQR digital control techniques. 

Finally the current control sub-system relies on the  phase signal “ωt” 

derived from the PLL sub-system to transform the computed converter 

voltage demand from the synchronous rotating reference frame back to a 

three-phase (A-B-C) symmetrical component. This requirement also makes 

the control method vulnerable in an application with a weak/unbalanced grid 

where the phase signal is less stable. In practice the Symmetrical resolver, 

PLL, Power control and Current control sub-systems are typically deployed 

within the same embedded hardware with sample bandwidth between 2 – 20 

kHz. 

An unbalanced system can resolve to positive, negative and zero sequence 

symmetrical components. One method for tackling such a scenario is as 

follows: the PLL is locked to the positive sequence component; and a dual 

                                            

4 This assumes an ideal (lossless) converter. In reality the converter will pull 
a minimal quantity of the direct current component to supply it’s losses. 
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parallel vector control algorithm based on the superposition theorem is 

implemented, one control loop regulates the positive sequence component 

and the other cancels the negative sequence component (it is assumed that 

a star-delta transformer connection rejects the influence of zero-sequence 

components). 

The lower control sub-systems shown in Figure D.3 and descriptions in the 

associated text are based on adaptations from the classical vector control 

principle. Vector control is not the focus of this thesis and merely an enabling 

feature within the simulation platform used by the author to investigate 

MMFCC modulation algorithms as discussed in the following text. 

The following text will focus purely on converter modulation and sub-module 

level dynamics. 

D.2  Newton-Raphson Algorithm 

Matlab functions (newtonmain.m, newtonm.m, jacob4x4.m and f4.m) are 

presented. 

D.2.1  main file (newtonmain.m) 

x0 = [0.35, 1.1, 1.2, 1.5]; %initial guess 
ma = 0.8;                   %modulation index 
[x,iter] = newtonm(ma,x0,'f4','jacob4x4');  %executing the algorithm 

D.2.2  Newton Raphson function (newtonm.m) 

function [x,iter] = newtonm(ma,x0,f,J)  
% Newton-Raphson method applied to a  
% system of linear equations f(x) = 0,  
% given the jacobian function J, with  
% J = delta(f1,f2,...,fn)/delta(x1,x2,...,xn)  
% x = [x1;x2;...;xn], f = [f1;f2;...;fn]  
% x0 is an initial guess of the solution  

  
N = 1000; % tolerance for number of iterations  
epsilon = 1e-10; % tolerance for error 
maxval = 10000.0; % define value for divergence  
xx = x0; % load initial guess  
while (N>0)  
 JJ = feval(J,xx);  
if abs(det(JJ))<epsilon  
 error('newtonm - Jacobian is singular - try new x0');  
 abort;  
end;  
 xn = xx - inv(JJ)*feval(f,xx,ma); 

  
 if abs(feval(f,xn,ma))<epsilon  
 x=xn;  
 iter = 1000-N;  
return;  
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end;  
if abs(feval(f,xx,ma))>maxval  
 iter = 1000-N;  
 disp(['iterations = ',num2str(iter)]);  
 error('Solution diverges');  
 abort;  
end;  
 N = N - 1;  
 xx = xn;  
end;  
error('No convergence after 1000 iterations.');  
abort;  
% end function 

D.2.3  Jacobian (jacob4x4.m) 

function [J] = jacob4x4(x)  
% Evaluates the Jacobian of a 4x4 
% system of non-linear equations 
J(1,1) = -sin(x(1));            J(1,2) = -sin(x(2));            

J(1,3) = -sin(x(3));            J(1,4) = -sin(x(4));  
J(2,1) = -5*sin(5*x(1));        J(2,2) = -5*sin(5*x(2));        

J(2,3) = -5*sin(5*x(3));        J(2,4) = -5*sin(5*x(4)); 
J(3,1) = -7*sin(7*x(1));        J(3,2) = -7*sin(7*x(2));        

J(3,3) = -7*sin(7*x(3));        J(3,4) = -7*sin(7*x(4));  
J(4,1) = -11*sin(11*x(1));      J(4,2) = -11*sin(11*x(2));      

J(4,3) = -11*sin(11*x(3));      J(4,4) = -11*sin(11*x(4)); 
% end function 

D.2.4  SHE functions (f4.m) 

function [f] = f4(x,ma)  
% f4(x) = 0, with x = [x(1);x(2);x(3);x(4)] representing 
% firing angles for a system of 4 non-linear equations 
f1 = cos(x(1))+cos(x(2))+cos(x(3))+cos(x(4))-(pi*ma/2); %fundamental 
f2 = cos(5*x(1))+cos(5*x(2))+cos(5*x(3))+cos(5*x(4));   %5th 

Harmonic 
f3 = cos(7*x(1))+cos(7*x(2))+cos(7*x(3))+cos(7*x(4));   %7th 

Harmonic 
f4 = cos(11*x(1))+cos(11*x(2))+cos(11*x(3))+cos(11*x(4));   %11th 

Harmonic 
f = [f1;f2;f3;f4]; 

% end function 

D.3  Secant Algorithm 

Matlab functions (secantmain.m, secantm.m, jacobFD.m and f4.m) are 

presented. 

D.3.1  main file (secantmain.m) 

x0 = [0.35, 1.1, 1.5, 1.35]; %initial guess 
ma = 0.8;                   %modulation index 
dx = 1e-10;                 %step used for finite difference 
[x,iter] = secantm(ma,x0,'f4','jacobFD');  %executing the algorithm 
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D.3.2  Secant function (secantm.m) 

function [x,iter] = secantm(ma,x0,dx,f)  
% Secant-type method applied to a  
% system of linear equations f(x) = 0, 17  
% given the jacobian function J, with  
% The Jacobian built by columns.  
% x = [x1;x2;...;xn], f = [f1;f2;...;fn]  
% x0 is the initial guess of the solution  
% dx is an increment in x1,x2,... variables  
N = 1000; % define max. number of iterations  
epsilon = 1.0e-10; % define tolerance  
maxval = 10000.0; % define value for divergence  
if abs(dx)<epsilon  
 error('dx = 0, use different values');  
return;  
end;  
xn = x0; % load initial guess  
[n m] = size(x0);  
while (N>0)  
 JJ = [1,2,3,4;2,3,4,5;3,4,5,6;4,5,6,7]; xx = zeros(n,1);  
for j = 1:n % Estimating  
xx = xn; % Jacobian by  
xx(j) = xn(j) + dx; % finite 
 fxx = feval(f,xx,ma);  
 fxn = feval(f,xn,ma);  
 JJ(:,j) = (fxx-fxn)/dx; % differences 
end; % by columns  
if abs(det(JJ))<epsilon  
 error('newtonm - Jacobian is singular - try new x0,dx');  
return;  
end;  
 xnp1 = xn - inv(JJ)*fxn;  
 fnp1 = feval(f,xnp1,ma);  
if abs(fnp1)<epsilon  
 x=xnp1;  
 iter = 1000-N; 
 disp(['iterations: ', num2str(100-N)]);  
return;  
end;  
if abs(fnp1)>maxval  
    iter = 1000-N; 
 disp(['iterations: ', num2str(100-N)]);  
 error('Solution diverges');  
return;  
end;  
 N = N - 1;  
 xn = xnp1;  
end;  
error('No convergence');  
return;  
% end function 

 

D.3.3  Finite Difference Jacobian (jacobFD.m) 

function [J] = jacobFD(f,x,delx)  
% Evaluates the Jacobian of a 4x4 
% SHE system of non-linear equations 
% f(x) = 0, through finite differences. 
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% The Jacobian is built by columns 
[m n] = size(x);  
for j = 1:m  
 xx = x;  
 xx(j) = x(j) + delx;  
 J(:,j) = (f(xx)-f(x))/delx;  
end;  
% end function 

 

D.3.4  SHE functions (f4.m) 

function [f] = f4(x,ma)  
% f4(x) = 0, with x = [x(1);x(2);x(3);x(4)] representing 
% firing angles for a system of 4 non-linear equations 
f1 = cos(x(1))+cos(x(2))+cos(x(3))+cos(x(4))-(pi*ma/2); %fundamental 
f2 = cos(5*x(1))+cos(5*x(2))+cos(5*x(3))+cos(5*x(4));   %5th 

Harmonic 
f3 = cos(7*x(1))+cos(7*x(2))+cos(7*x(3))+cos(7*x(4));   %7th 

Harmonic 
f4 = cos(11*x(1))+cos(11*x(2))+cos(11*x(3))+cos(11*x(4));   %11th 

Harmonic 
f = [f1;f2;f3;f4]; 

% end function 

D.4  Genetic Optimization fsolve Algorithm 

Matlab functions (fsolvemain.m and f4.m) are presented. 

D.4.1  main file (fsolvemain.m) 

x0 = [0.35, 1.1, 1.5, 1.35]; %initial guess 
ma = 0.8;                   %modulation index 
x = fsolve(@(x) f4(x,ma),x0);  %executing the fsolve algorithm 

 

D.4.2  SHE function (f4.m) 

function [f] = f4(x,ma)  
% f4(x) = 0, with x = [x(1);x(2);x(3);x(4)] representing 
% firing angles for a system of 4 non-linear equations 
f1 = cos(x(1))+cos(x(2))+cos(x(3))+cos(x(4))-(pi*ma/2); %fundamental 
f2 = cos(5*x(1))+cos(5*x(2))+cos(5*x(3))+cos(5*x(4));   %5th 

Harmonic 
f3 = cos(7*x(1))+cos(7*x(2))+cos(7*x(3))+cos(7*x(4));   %7th 

Harmonic 
f4 = cos(11*x(1))+cos(11*x(2))+cos(11*x(3))+cos(11*x(4));   %11th 

Harmonic 
f = [f1;f2;f3;f4]; 

% end function 

D.5  fsolve Algorithm – 12 Firing angles 

Matlab functions (fsolve12main.m and f12.m) are presented. 
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D.5.1  main file (fsolve12main.m) 

x00 = [0.15; 0.25; 0.35; 0.50; 0.85; 1.10; 1.15; 1.25; 1.35; 1.4; 

1.45; 1.5]; %initial guess 
ma = 0.8;                   %modulation index 
for i=0:1:100 

     
x = fsolve(@(x) f4(x,ma),x00);  %executing the fsolve algorithm 
x00 = x; 
end 

 

D.5.2  SHE function (f12.m) 

function [f] = f12(x,ma)  
% f4(x) = 0, with x = 

[x(1);x(2);x(3);x(4);x(5);x(6);x(7);x(8);x(9);x(10);x(11);x(12)] 

representing 
% firing angles for a system of 4 non-linear equations 
f1 = cos(x(1))-cos(x(2))+cos(x(3))+cos(x(4))-

cos(x(5))+cos(x(6))+cos(x(7))-cos(x(8))+cos(x(9))+cos(x(10))-

cos(x(11))+cos(x(12))-(pi*ma/2); 

%fundamental 
f2 = cos(5*x(1))-cos(5*x(2))+cos(5*x(3))+cos(5*x(4))-

cos(5*x(5))+cos(5*x(6))+cos(5*x(7))-

cos(5*x(8))+cos(5*x(9))+cos(5*x(10))-cos(5*x(11))+cos(5*x(12));   

%5th Harmonic 
f3 = cos(7*x(1))-cos(7*x(2))+cos(7*x(3))+cos(7*x(4))-

cos(7*x(5))+cos(7*x(6))+cos(7*x(7))-

cos(7*x(8))+cos(7*x(9))+cos(7*x(10))-cos(7*x(11))+cos(7*x(12));   

%7th Harmonic 
f4 = cos(11*x(1))-cos(11*x(2))+cos(11*x(3))+cos(11*x(4))-

cos(11*x(5))+cos(11*x(6))+cos(11*x(7))-

cos(11*x(8))+cos(11*x(9))+cos(11*x(10))-cos(11*x(11))+cos(11*x(12));   

%11th Harmonic 
f5 = cos(13*x(1))-cos(13*x(2))+cos(13*x(3))+cos(13*x(4))-

cos(13*x(5))+cos(13*x(6))+cos(13*x(7))-

cos(13*x(8))+cos(13*x(9))+cos(13*x(10))-cos(13*x(11))+cos(13*x(12));   

%13th Harmonic 
f6 = cos(17*x(1))-cos(17*x(2))+cos(17*x(3))+cos(17*x(4))-

cos(17*x(5))+cos(17*x(6))+cos(17*x(7))-

cos(17*x(8))+cos(17*x(9))+cos(17*x(10))-cos(17*x(11))+cos(17*x(12));   

%17th Harmonic 
f7 = cos(19*x(1))-cos(19*x(2))+cos(19*x(3))+cos(19*x(4))-

cos(19*x(5))+cos(19*x(6))+cos(19*x(7))-

cos(19*x(8))+cos(19*x(9))+cos(19*x(10))-cos(19*x(11))+cos(19*x(12));   

%19th Harmonic 
f8 = cos(23*x(1))-cos(23*x(2))+cos(23*x(3))+cos(23*x(4))-

cos(23*x(5))+cos(23*x(6))+cos(23*x(7))-

cos(23*x(8))+cos(23*x(9))+cos(23*x(10))-cos(23*x(11))+cos(23*x(12));   

%23th Harmonic 

f9 = cos(23*x(1))-cos(23*x(2))+cos(23*x(3))+cos(23*x(4))-

cos(25*x(5))+cos(25*x(6))+cos(25*x(7))-

cos(25*x(8))+cos(25*x(9))+cos(25*x(10))-cos(25*x(11))+cos(25*x(12));   

%25th Harmonic 
f10 = cos(29*x(1))-cos(29*x(2))+cos(29*x(3))+cos(29*x(4))-

cos(29*x(5))+cos(29*x(6))+cos(29*x(7))-

cos(29*x(8))+cos(29*x(9))+cos(29*x(10))-cos(29*x(11))+cos(29*x(12));   

%29th Harmonic 
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f11 = cos(31*x(1))-cos(31*x(2))+cos(31*x(3))+cos(31*x(4))-

cos(31*x(5))+cos(31*x(6))+cos(31*x(7))-

cos(31*x(8))+cos(31*x(9))+cos(31*x(10))-cos(31*x(11))+cos(31*x(12));   

%31th Harmonic 
f12 = cos(37*x(1))-cos(37*x(2))+cos(37*x(3))+cos(37*x(4))-

cos(35*x(5))+cos(35*x(6))+cos(35*x(7))-

cos(35*x(8))+cos(35*x(9))+cos(35*x(10))-cos(35*x(11))+cos(35*x(12));   

%35th Harmonic 
f = [f1;f2;f3;f4;f5;f6;f7;f8;f9;f10;f11;f12]; 

% end function 
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Appendix E 

Fundamental Power System & Control Concepts 

Functions/Derivations used in system level control equations (Chapter 6). 

E.1  Vector Current Control 

Vector Current Control (VCC) is one of the most popular control concepts 

used for grid-tied voltage sourced converters. It presents a means of directly 

controlling the current within a sufficiently high bandwidth is capable of 

damping resonances in a grid-tie systems. 

As the current is directly controlled, it is easy to protect the equipment from 

over currents easily and very quickly. 

The basic principle is that the real and quadrature powers are controlled via 

an inner current loop in the decoupled synchronous rotating reference (d-q) 

frame. 

It is important that the PCC is stiff and the dynamics of the PLL are 

negligible. 

 

 

Figure E1: Vector Current Control 

References: 

Yazdani, A., and Iravani, R.: ‘Voltage-Sourced Converters in Power 

Systems’ (Wiley-IEEE Press, 2010. 2010) 
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E.2  Symmetrical components 

The application of the symmetrical components is a fundamental part of the 

control within a high performance converter.  It is required to process the 

measured AC values to generate the positive, negative and if required zero 

sequence phasors.  It is also important in the PLL to ensure the AC voltage 

is always locked to a balanced representative of the reference value (the 

positive sequence phasor). 

The concept is that a three phase waveform may be divided into three 

components: - 

1. 
0x , a zero sequence component, a balanced, in phase waveform. 

2. 
1x , a positive sequence component, a balanced three phase term 

moving in the ‘forward’ direction. 
3. 

2x , a negative sequence component, a balanced three phase term 

moving in the ‘reverse’ direction. 

 

The basic measured ‘abc’ waveform is therefore divided as: - 
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  E.1 

where x  could be either voltage or current (or any rotating phasor).  The 

three separate phase waveforms are related as: - 
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The converse of this is given as: - 
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  E.4 

The standard deductions are for a balance set of three phase waveforms: - 

1. The zero sequence component is always zero. 
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2. The negative sequence component is the complex conjugate of the 
positive sequence component. 

3. The negative component phasor is completely independent of the 
positive component phasor. 
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