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ABSTRACT

The use of pyrolysis as a waste disposal method for waste plastics has been

well established. However, the market value of the recycled plastic products

and separate upgrading of the pyrolysis product liquid are some of the

challenges facing the process. Therefore, the use of pyrolysis-catalysis of

waste plastic in a two-stage pyrolysis-catalysis reactor system could bring a

balance between sustainability and market value of the products generated.

Hence, this work investigated the influence of different types of zeolite

catalysts on the pyrolysis-catalytic upgrading of waste plastics for quality liquid

fuels and valuable chemical production.

Initially, two zeolite Y and ZSM-5 catalysts, in the form of pellets, were used

for pyrolysis-catalysis of WEEE. Zeolite catalyst with a lower Si-Al ratio (Y

zeolite) produced a higher conversion of the styrene to other aromatic

products, particularly benzene and toluene. Thereafter, the influence of six

zeolite catalysts with different surface areas and Si: Al ratios was investigated

on the catalytic pyrolysis of waste high-density polyethylene (HDPE). Overall,

the results suggest that the catalyst properties influenced the conversion of

HDPE to more valuable products such as fuel-range hydrocarbons and

chemicals. Similarly, pyrolysis of real-world mixed plastics, simulated mixed

plastic (SMP), and virgin plastics were investigated in the presence of  HZSM-

5 catalyst.  In addition, a sample of spent FCC catalyst was also tested for the

pyrolysis of the plastic samples.

Finally, the influence of spent FCC, fresh zeolite Y and ZSM-5 catalysts was

investigated under different bed temperatures from 400 – 600 °C. This final
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work confirmed that the choice of a bed tempetrure of 500 °C, for most of this

research was appropriately justified.

Overall, the product oils gave fuel properties similar to gasoline, the aromatic

content of the oil make them suitable as chemical feedstocks, the gas

products with very high-calorific values can be used as fuel gas.
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Chapter 1 INTRODUCTION

1.1 Introduction

1.1.1 Plastics

Plastics are lightweight, resistant to rust or rot, cheap in price, reusable and

durable. These are common reasons for the popularity of plastics in many

applications [1]. Global plastics production has risen by almost 10% every

year to reach 245 million tonnes in 2006. Panda et al. [1], reported that plastic

consumption on a per capita basis has grown to over 100 kg/y in North

America and Western Europe, with the potential to grow to up to 130 kg/y per

capita in the future. The USA has the highest annual plastics consumption

with 27.3 million tonnes. Also, the rapidly developing part of Asia (excluding

Japan) has the highest potential for growth in per capita consumption.

The rise in plastics consumption has led to the creation of massive amounts

of plastic waste and in turn poses greater difficulties for its disposal. The

problem is compounded by the fact that the service life of some plastic wastes

is very small as 40% at less than 1 month [2], whereas the service life of other

plastics ranges from 1-35 years [3].  These service lives differ from country to

country, in Germany plastic has 14 years average service life while India it is

eight years [3].

The main forms of plastics are thermosets and thermoplastics. The

thermosets plastics are those plastics which harden by curing and cannot be

remoulded while thermoplastics are those which soften when heated and

harden again when cooled. Thermoplastics are the most common types of
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plastics accounting for almost 80 percent of the plastics used in Western

Europe [4]. Waste from service industries or manufacturing industries may

contain much higher proportions of plastics.

Municipal solid waste (MSW) contains a wide range of plastics and makeup

7-9% of the weight of MSW, which is about 20-30% by volume of the MSW.

For sorted municipal solid waste, the plastic content increases to about 9-12%

by weight [5].Sorted waste is waste sorted according to their usage.

In Europe (West Europe countries), the main plastic components of municipal

solid waste are high-density polyethylene (HDPE), low density polyethylene

(LDPE), polypropylene (PP), polystyrene (PS), polyvinylchloride (PVC) and

polyethylene terephthalate (PET) [4, 6]

1.1.2     Sources of Plastics waste

Plastic wastes may be classified as municipal and industrial plastics according

to their origin.

1.1.2.1      Municipal Plastic Waste

Municipal plastic waste are discarded and collected as part of municipal solid

waste (MSW). Municipal solid waste plastic include domestic items (food

containers, packaging foam, disposable cups, plates, cutlery, CD and

cassette boxes, fridge liner, vending cups, electronic equipment cases,

drainage pipes, carbonated drinks bottles, plumbing pipes and guttering,

flooring, cushioning foams, thermal insulation foams and surface coating).

Therefore, MSW is a mixture of plastic with major components being

polyethylene, polypropylene, polystyrene, polyvinyl chloride and polyethylene

terephthalate [1].
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1.1.2.2     Industrial Plastic Waste

The industrial plastic wastes are mainly homogenous and are wastes arising

from the large processing, packaging and manufacturing industry. These

waste palstics arise from the electric industries (e.g. TV screen, cassette

boxes, switch boxes, cable sheaths), the automotive industries (spare parts

for cars e.g. fan blades, battery containers and seat cover) and construction

and demolition companies (e.g. polyvinyl chloride  pipes, and fitting, tiles and

sheets).

1.1.3      Plastic Wastes Disposal

Plastic wastes are classified as solid waste. Thus, their disposal may involve

already established methods of solid waste disposal. However, there are

many methods of solid waste disposal, since plastic is mainly non-

biodegradable the methods most suited for its disposal are landfilling,

incineration, recycling and chemical recovery.

1.1.3.1     Landfilling

The landfill is the oldest waste disposal method, but undesirable for plastic

which is mainly non-biodegradable and poses a problem with recent

legislations. However, the plastic wastes have a high volume to weight ratio;

appropriate landfill space is both scare and expensive. Thus, other disposal

methods should be preferred as alternatives [2].

1.1.3.2    Mechanical recycling

Mechanical recycling is a type of recycling where the homogenous waste

plastics are converted into products with nearly the same or lower

performance level than the original product. However, practical experience

has shown that reprocessing of mixed contaminated plastic produce polymer
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poly-blends that are inferior mechanically and lacking in durability compared

with those produced by virgin polymer [7].

1.1.3.3    Biological recycling

Biological recycling methods are only applicable to biodegradable plastics

which are currently less than 2% of plastic products. In biological recycling,

living organisms degrade the organic matter into its raw monomers.

1.1.3.4     Incineration

Incineration is a waste-to-energy (WtE) technology for energy recovery from

combustible materials including plastics. Plastic waste generates thermal

energy in the same order as that used in its manufacture [8]. Public distrust in

developed countries at present limit the use of incineration technology as it

can produce greenhouse gases and some highly toxic pollutants.

1.1.3.5   Chemical recycling

Chemical recycling or tertiary recycling is a process to convert polymer waste

into the original monomer or other valuable chemicals that can serve as

feedstock for a variety of downstream industrial processes. Three main types

of chemical recycling are; depolymerisation (alcoholysis, glycolysis and

hydrolysis to yield their raw monomer), partial oxidation (gasification) and

cracking (thermal, catalytic and hydrocracking) [2].

1.1.3.6   Cracking/pyrolysis

The cracking process shown in Figure 1.1.1 below includes processes that

break down the polymer chain into useful lower molecular weight compounds

[1]. Cracking or pyrolysis processes are of three types i.e. thermal, catalytic

and hydrocracking.
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Figure 1.1-1 the different routes for plastic managements [1]

1.1.3.7   Pyrolysis
Pyrolysis can be classified into low, medium and high temperature processes,

based on the range of temperature used to degrade the polymer structure as

shown in Figure 1.1-2. Several researchers [9] [10] [11] [12]  [13] have

described the three ranges as follows:

i) High-temperature pyrolysis the process involves thermal

degradation of polymer/organic materials at temperatures higher

than 800 °C and produces a mainly gas product.

ii) Medium temperature pyrolysis process is carried out at a

temperature between 550-800 °C to produce a mainly oil and gas

product and in some cases char.

iii) Low-temperature pyrolysis is performed at temperatures lower than

500 °C to produce mostly oils.

Figure 1.1-2 Three temperature ranges of pyrolysis   [13]

Medium
Temperature
500 – 800 °C

High
Temperature

> 800 °C

Low
Temperature

< 500 °C
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Use of pyrolysis as a means of waste management should be economically

viable to produce marketable products at a saleable price.

1.1.3.8    Thermal Degradation of Plastics or Polymer

There are two distinct reactions in thermal degradation of plastics or polymer;

these reactions normally occur simultaneously in the reactor. The first reaction

involves a random scission of chemical bonds, causing a molecular weight

reduction of the polymer compound, and the second is a chain –end scission

of C-C bonds, producing volatile products. The composition and type of

pyrolysis give useful information about mechanisms of thermal degradation

[14]. Thermal degradation of the polymers follows either chain end

degradation (unzipping route) or random degradation route [15].

Chain end degradation or unzipping route

M*n  →M*n-1 +  M

M*n-1 → M*n-2 + M

Random degradation route

M*n → Mx + My

Chain-end degradation involves the continuous release of monomer units

from the chain ends and also known as a depolymerization reaction. The

reaction occurs through free radical mechanisms and is the opposite of the

propagation step in addition polymerization. The molecular weights of the

polymer decrease slowly and simultaneously, and a great number of

monomers are liberated. Thus, in general, the chain end degradation occurs

when the backbone bonds are weaker than the bonds of the side groups and

only with polymer molecules, carrying active chain ends  with a free radical,

cation, anion etc. [14].
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Random degradation is the opposite of the polycondensation process, it

occurs at any random point along the polymer chain, and practically no

monomer is liberated. Carrying an active site by the polymer is not prerequisite

for random degradation to occur.

The degradation of plastics has been conducted by numerous researchers for

decades, and has involved thermal and catalytic degradation and has been

performed on single and mixed plastics.

1.1.4      Catalysis

1.1.4.1    What is catalysis?

The word catalysis originates from the Greek which means to split or

breakdown.  Catalysis is an increase in the rate of a chemical reaction as a

result of the action or use of a catalyst. A catalyst is a substance that increases

the rate of a chemical reaction without itself undergoing any change at the end

of the reaction. In a better perspective, a catalyst can speed up reactions by

orders of magnitude, enabling them to be carried out under the auspicious

thermodynamic regime, and at a much lower temperature and pressure [16].

Two types of catalysis are known i.e.  homogeneous and heterogeneous

catalysis. In homogeneous catalysis both the catalysts and the reactants are

in the same phase, i.e., all molecules are in the gas phase or all molecules

are in the liquid phase. Heterogeneous catalysis means the catalyst is in a

different phase of the reaction mixture it is catalysing. In heterogeneous

catalysis, solid catalysed reactions can occur in gas molecules or solution.
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1.1.4.2     Historical background

Berzelius in 1836 coined the name catalysis. Egyptians of 2000 BC used yeast

to catalysed fruits into alcoholic beverages. It has been applied for thousands

of years in the process of fermentation. The influence of metal and oxides on

the decomposition of several substances was studied at the end of the

eighteenth and the beginning of the nineteenth century. Thernard in 1813

found that dissociation of ammonia occurs over various metals provided they

are hot.

1.1.4.3    Application
Catalysts improve a large number of reactions, principally in organic synthesis

and reformation. The petroleum and petrochemical industries use a variety of

catalysts in processing crude oil and other secondary raw materials for the

production of fuels and chemicals. Some of the uses of catalyst in the industry

include  [17] catalytic;

(i) hydrodesulfurization     (ii) cracking         (iii) reforming

(v) dehydrogenation and dehydrocyclization

(vi) oxidative condensation and     (vii) isomerization [17].

Catalytic cracking is an extremely important process that was estimated to

generate financial benefit in 1992 to the US economy to the tune of $8 billion

dollars [18]. Catalytic reforming in the petroleum industry is used to improve

products by catalytic cracking. Catalytic reforming changes straight chain

alkanes into branched and aromatic molecules [19].
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1.1.5       Description of Catalyst

1.1.5.1     Introduction

The most familiar forms of catalyst are metals and their oxide. Mostly

numerous metal catalysts are involved in different areas from everyday life to

large industrial processes. Transition metals have the upper hand in the

catalysis process because of the presence of vacant d or f orbital in their

atoms. Some metal oxides such as V2O5, TiO2, SiO2 and Al2O3 and their

mixtures are widely used to promote dehydration, isomerization and

oligomerization reactions.

For a catalyst the desired properties are

· high and stable activity

· high and stable selectivity

· controlled surface area and porosity

· good resistance to poisons

· good resistance to high temperatures and temperature

fluctuations.

· high mechanical strength

· no uncontrollable hazards
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1.1.5.2    Kinetics

Catalysts are vital to non-equilibrium reactions as it improves the yield of

products but do not affect the equilibrium of products in ideal equilibrium

systems.

In essence, a catalyst performs its function by increasing the rate at which

reactions take place without affecting the equilibrium conditions. Thus, use of

catalysts in industrial processes usually yields more products at higher rates

and lower temperatures.

Activation energy is the energy needed to make molecules of a substance

take part in a chemical reaction. Essentially activation energy exists because

of the numerous bond breaking and dissociation that occurs for a specific

reaction. The chemical reaction must overcome activation energy barrier to

convert reactants to products. The catalyst function by lowering activation

energy as demonstrated in Figure 1.2-1.
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Figure 1.1-2 Energy profile

Three different aspects of kinetics studies identified are as follows;

(i)Kinetics studies for design purpose; as kinetic expressions are useful for the

design of chemical reactors, quality control in catalyst production, and

comparison of different brands of catalysts, studies of deactivation and

poisoning of catalysts.

(ii) Kinetics studies of mechanistic detail, for a simple reaction kinetic study,

may be used to determine detailed mechanisms.

(iii) Kinetics as a consequence of a reaction mechanism; kinetics is usually

deduced from proposed reaction mechanisms [16].
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1.1.5.3   Surfaces

Accessibility of free bonding sites on the catalyst is crucial for the catalytic

process to proceed. The initial step involves the adsorption of the reactant

molecular species onto the catalyst. There are two types of adsorptions;

physisorption embraces the forces of molecular interaction such as dipole,

nuked dipole and quadrupole attraction; and chemisorption when the

molecule forms actual bonds with the catalytic surface [20]. The Higher

enthalpy changes are associated with chemisorption than physisorption, but

the chemisorbed intermediates have greater stability.

1.1.6     Zeolites

Zeolites are a class of oxides consisting of microporous crystalline

aluminosilicates that can either be found in nature or synthesized artificially

[16]. The zeolite catalyst was discovered by Swedish mineralogist Alex

Frederick Cronstedt. The zeolite framework is very open and contains

channels and cages where cations, water and adsorbed molecules may reside

and react

1.1.6.1     Structure and composition

Natural zeolites typically bear the name of the mineral (mordenite, faujasite,

ferrierite, silicate) or person that discovered e.g. Barrerite after Professor

Barrer or place of discovery e.g. Bikitaite from Bikita, Zimbabwe.

Synthetic zeolites bear the name of the industry synthesizing the catalyst e.g.

ZSM stands for Zeolite Socony Mobil or university e.g. VPI Virginia

Polytechnic Institute.

Essentially zeolites consist of SiO4 and AlO4 tetrahedral ions which can be

arranged by sharing O-corner atoms in many different ways to build a
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crystalline lattice. The SiO4 can be arranged into several silicate units e.g.

square (four), 6 or 8-membered rings called secondary building blocks. The

zeolite structures are built up by joining a selection of building blocks into

recurring structures.

Figure 1.1-3 Zeolite structure  [16]

As soon as Al3+ replaces Si4+ ions atoms in the tetrahedral, the net unit charge

will be -1, and thus cations such as Na+ are needed to neutralize the charge.

Hence, the number of cations present within in a zeolite structure equals the

number of alumina tetrahedral in the framework. However, when a proton

replaces sodium (yielding HX-, H-ZSM-5, etc.), the zeolites become a very

large poly acid. For being a proton donor, the site at which H located, is called

a Brønsted acid. Its strength depends on the local environment of the proton,

in particular on the number of other aluminium ions in the environment
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Figure 1.2-3   Structures  four selected  zeolite(from top to bottom; faujasite
or zeolite,  zeolite ZSM-12, zeolite ZSM-5 or silicate zeolite[21]

.

1.1.6.2   Acidic properties of zeolites

Two acid sites are present in the zeolite structure, Lewis and Bronsted sites.

The Bronsted acidic character occurs from a positive ions excess of an ion

with a formal negative charge while Lewis acid character arises from positives

ions excess on an ion with a formal positive charge. A Lewis base character

occurs from a negative ion excess of a negative ion with formal negative

charge, but a Bronsted basic character arises from negative ion excess on an

ion of formal positive charge.

1.1.6.3    Synthesis

Zeolites are prepared by hydrothermal synthesis under pressure in

autoclaves, in the presence of template molecules such as

tetramethylammonium, which act as structure directing agents.



37

Basic preparatory materials for the process are alumina and silicate gels

prepared from aqueous solutions of sodium silicate, sodium aluminates and

NaOH. The typical process conditions or preparation of standard A, X and Y

zeolites are summarized below;

Table 1.2-1   Summarized typical composition of material for synthesis of

zeolite catalysts[22]

Zeolite Na/Si molar
ratio

Si/Al molar
ratio

H2O/Si
molar ratio

Process time
(Hours)

A 0.5 1.0 17 3

X 0.9 1.5 48 8

Y 0.2 10 16 8

NaOH(aq)  + {Al(OH)4Na(aq)   + SiO3Na2(aq) room temp→

                     {Al(OH3)3(aq)

  [Naa(AlO)b(SiO2)c.NaOH.H2O (gel)   → Nap  [AlO2)p(SiO2)g].hH2O (crystals

suspension

Formation of Y-zeolite[22].

1.1.6.4    Fine turning with addition of modifiers

Wojciechowski and Corma [23], reported that increasing the silica: alumina

ratio of 2.5-5.5 increases thermal stability from 820 °C to 860 °C. Use of ions

such other simple sodium or ammonium do have far reaching effects on the

properties and structures of the zeolites. The increase in atomic cation size

will increase thermal stability. The thermal stability of cations is in order of;

monovalent<divalent<trivalent.

Ward [24] investigated the effect of cation-exchange using divalent cations

and concluded that Bronsted acidity is increased with increasing ionic radius,

and consequently catalytic activity.
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1.1.6.5    Zeolite selectivity

The diameter of the zeolite pore (0.3 to 5.0 nm) is similar to those of regular

molecules used in fuel or chemical industry feedstocks, thus a molecular

sieving effect can be achieved with selection of an appropriate zeolite. The

regular pore, cage, super cage, crystallinity, and channel of a zeolite make it

unique amongst porous solids

Csicsery  [25], articulate four types of zeolite selectivity namely;

(i) Reactant selectivity occurs when only part of the reactant molecules

are small enough to diffuse through the catalyst pores.

(ii) Product selectivity, this occurs when some of the products formed

within the pores are too bulky to diffuse out as observed products.

They are either converted to a less bulky molecule (e.g.

equilibration) or eventually deactivate the catalyst by blocking the

pores.

(iii) Restricted transition state selectivity which occurs when some

reactions are prevented because the corresponding transition state

would require more space than available in the cavities.



39

(a)

(b)

(c)

Figure 1.2-4    shows zeolite selectivity for (a) Reactant (b) Product

and (c) Restricted

(iv) Molecular traffic control may take place in zeolites with more than

one type of pore system. Reactant molecules may preferentially

enter the catalyst through one of the pore systems while the

products diffuse out by the other. Counter diffusion is thereby

minimized at this point.
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1.1.6.6   Applications of zeolites

There are three main uses of zeolites in industry: catalysis, gas separation

and ion exchange.

Catalysis: Zeolites are extremely useful as catalysts for several important

reactions involving organic molecules. The most important are cracking,

isomerization and hydrocarbon synthesis. Zeolites can promote a diverse

range of catalytic reactions including acid-base and metal induced reactions.

Zeolites can also be acid catalysts and utilized as supports for active metals

or reagents. Zeolites can be shape-selective catalysts either by transition state

selectivity or by the exclusion of competing reactants on the basis of molecular

diameter. They have also been used as oxidation catalysts. The reactions can

take place within the pores of the zeolite, which allows a greater degree of

product control.The main industrial application areas are petroleum refining,

synfuels production, and petrochemical production. Synthetic zeolites are the

most important catalysts in petrochemical refineries.

Adsorption: Zeolites are used to adsorb a variety of materials, this includes

applications in drying, purification, and separation. They can remove water to

very low partial pressures and are very effective desiccants, with a capacity

of up to more than 25% of their weight in water. They can remove volatile

organic chemicals from air streams, separate isomers and mixtures of gases.

A widely used property of zeolites is that of gas separation. The porous

structure of zeolites can be used to "sieve" molecules having certain

dimensions and allow them to enter the pores. This property can be fine-tuned

by varying the structure or by changing the size and number of cation around
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the pores. Other applications that can take place within the pore include

polymerization of semiconducting materials and conducting polymers to

produce materials having unusual physical and electrical attributes.

Ion exchange: Hydrated cations within the zeolite pores are bound loosely to

the zeolite framework, and can readily exchange with other cations when in

aqueous media. Applications of zeolite for ion exchange can be seen in water

softening devices, and the use of zeolites in detergents and soaps. The largest

volume use for zeolites is in detergent formulations where they have replaced

phosphates as water-softening agents. They do this by exchanging the

sodium in the zeolite for the calcium and magnesium present in the water. It

is even possible to remove radioactive ions from contaminated water

1.2   Aims and Objectives

This research work aim at converting plastics waste into valuable liquid

resources (liquid fuels) via thermal and catalytic pyrolysis processes. The

plastic waste used are commonly available plastic, such as polyethylene,

polypropylene, PET, polystyrene, Laboratory prepared or simulated mixtures

of virgin plastics (e.g. PE/PP, PE/PS, PP/PS, PE/PP/PS etc.), real world

plastic wastes or mixed plastics, Waste electric and electronic equipment

(WEEE) such as CRT, fridge, ABS and HIPS etc. Elemental analysis

technique will be use to characterize plastic samples. TGA studies on plastic

samples will be conducted to ascertain the degradation pattern of the plastic

by varying temperature conditions under inert nitrogen flow.  Some catalysts

will be selected base on their properties and performance for initial pyrolysis

experiments. Zeolite Y and ZSM-5 will be used for preliminary work, later

stage spent FCC catalyst (Fluid Cracking Catalyst from the petroleum
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industry) will be use for catalytic pyrolysis. Thermal and catalytic pyrolysis will

be carried out at varying reaction conditions, catalyst type and plastic to

catalyst ratios using novel two-stage pyrolysis-catalysis downdraft batch

reactor.

The various products of pyrolysis; gas, liquid or oil and char (solid) are to be

analyse. Gas will be analysed for hydrocarbon gases (hydrogen and C1-C4

hydrocarbons) and permanent gases (carbon monoxide, carbon dioxide,

oxygen and nitrogen) by gas chromatography. Liquid or oil products will be

analysed using both gas chromatography mass spectrometer (GCMS/MS)

and GC-FID for aliphatic and aromatic hydrocarbons. The liquid product

simulated distillation properties will be quantified using GC studies.

The catalysts, both fresh and spent will be characterized using the following

techniques: TGA, scanning electron microscopy (SEM), Electron diffraction X-

ray EDX and XRD.
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Chapter 2   LITERATURE REVIEW

2.1   Thermal Degradation of Plastics

In this section, thermal degradation is discussed for both single and mixed

plastics.

2.2   Thermal Degradation of Single Plastics

The thermal degradation or pyrolysis of single (individual) plastics has been

performed by several researchers using different reactor designs, reaction

conditions and reaction times. The following are some cited research work

reported for some selected single plastics.

2.2.1   Polyethylene (PE)

Figure 2.1- 1  Polyethylene structure

Polyethylene is the commonest polymer compound produced. Polyethylene is

made from pure ethylene as a result of polymerization either by the high or

low-pressure method. The polyethylene produced by the high-pressure

method possesses a low density, also known as high-pressure or low-density

polyethylene (LDPE). However, the polyethylene produced by the low-

pressure method possesses a high density and is known as high-density

polyethylene (HDPE).
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Polyethylene is used for the injection moulding of housewares and toys,

containers, and bottles. The high-density polyethylene utilized for in

packaging. Accordingly unpigmented HDPE are used for milk, juice, water and

laundry product containers, whereas pigmented HDPE are used for margarine

tubs, yogurt containers and for bottling detergent and bleach.

The degradation of polyethylene is considered to be a free radical chain

reaction in a sequence involving initiation, propagation, intermolecular

hydrogen transfer, and termination. Siddiqui and Redhwi [1], suggested that

the depolymerization of polyalkenes such as polyethylene occurs using

radical mechanisms. The reaction has activation energies of between 188-

251 kJ mol-1 and significant degradation occurring only above 370 °C [2].

Initiation;

R2─ CH2-─CH2─CH2─ CH2─ CH2─ R → R─ CH2─ CH2─ CH2─ CH2─ CH2• + R•

β-Scission propagation;

R─ CH2─ CH2─ CH2─ CH2─ CH2•→ R─ CH2─ CH2-─ CH2•+  CH2=CH2

Random propagation;

R─ CH2─ CH2─ CH2─ CH2─ CH2•→ CH 3─ CH2─ CH2─ CH2─ CH2•

Intermolecular hydrogen transfer;

R─ CH2─ CH2─ CH2─ CH2─ CH2•+ R─ CH2─ CH2─ CH2─ R

 → R─ CH2─ CH2─ CH2─ CH2─CH3 + R─ CH2─C.H CH2─ R

Termination;

R•  +  R• →R─R

 However, the type of polyethylene high density, low density or linear low

density; the thermal degradation temperature and its molecular weight, dictate

the reaction products as reported by Xanthos and Leidner [3].
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Seo and Shin [4], reported that the pyrolysis reaction at a high temperature of

around 600-800 °C is capable of reducing reaction time, but produced more

light hydrocarbons as well as gaseous materials. However, low-temperature

pyrolysis 400-500 °C produces oily material while consuming less energy.

Researchers have worked with different types of reactors for both thermal and

catalytic pyrolysis of polyethylene. Miskolczi et al. [5], reported the thermal

degradation of polyethylene and polystyrene from the packaging industry over

different catalysts into fuel-like feedstocks using a batch reactor at a

temperature range of 410 - 450 °C. The liquid products were mainly alkene

and alkane hydrocarbons while the aromatic content was higher at lower

temperatures. The gas yield increased with temperature.

Gonzalez et al. [6], performed work on the thermal degradation of

polyethylene in a batch reactor at the reaction temperatures of 450, 500 and

700 °C. But, a full range of hydrocarbons was observed in the gas products

with the number of carbon in the range of C4-C10, linear and branched

hydrocarbon and benzene. The products obtained in the studies could be

used as feedstock for the chemical industry or energy production.

Williams and Williams [7], pyrolysed low-density polyethylene in a fluidized

bed reactor at a temperature range of 500-650 °C. Gas production showed an

increase as the temperature was increased, as a result of liquid products

being cracked to gas. The liquid product yield increased with an increase in

temperature from 500 & 560 °C; these might be ascribed to the wax product

being cracked to oil at medium temperature. However, the liquid fraction

decreased with temperatures as the temperature rose to 600, 650 & 700 °C,
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whereas the liquids were further cracked into gas. The primary gas products

were H2, CH4 and ethane, ethene, propane, propene, butane and butene.

Single ring aromatic and polycyclic aromatic hydrocarbons of significant

concentration formed at 700 °C. Consequently, the rise in the reaction

temperature also enhanced the yield of gas. Thus, the gas yield reaches 71%

at 700 °C, and their main compositions were methane (11.7%), ethane

(26.8%) and propene (18.6%). Conesa [8], pyrolysed polyethylene at

temperatures range 500 & 900 °C, and Kaminsky et al. [9], pyrolysed

polyethylene at temperature 760 °C both work in fluidized bed reactors.

Serrano et al. [10], worked with a screw kiln reactor for converting low-density

polyethylene (LDPE) into petrochemical feedstock. They placed two furnaces

to heat the reactor tube to heat the plastic, creating two different heating areas

of 450 °C and 550 °C. The thermal treatment led mainly to gasoline range

hydrocarbons (C5-C12) and middle distillates (C13-C33)  with the selectivity  of

~25 and 55 wt. % respectively. Alkenes and n-alkanes were the principal

products of the middle distillate and gasoline range hydrocarbons

respectively.

2.2.2   Polypropylene (PP)

 The production of polypropylene is through the polymerization of propylene

in a batch reactor at 20-120 °C temperature and 1 - 40 atmospheres pressure

in the presence of triethyl aluminum and titanium tetrachloride catalyst

dispersed in n-heptane in an inert solvent. The crystalline polymer is insoluble

and precipitates as finely granular solid, propylene addition is continued until

the slurry becomes quite thick. The catalyst is recovered by adding a suitable

reagent, and the polymer is separated from the solvent and dried.
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Polypropylene has a melting point of 160-170 °C due to its crystalline

structure. Polypropylenes are known to be used in making automobile

components, stationery, containers of various types, plastic components, and

laboratory equipment.

Pyrolysis of polypropylene waste plays a significant role in converting the

waste into an economically valuable hydrocarbon, which can be used either

as feedstock in the petrochemical industry or as fuels. Kruse et al. [11],

reported work on the pyrolysis of polypropylene at different pyrolysis

temperatures; i.e. 350, 380, and 420 °C. Hence, they proposed a mechanistic

model using free radical reactions types. The reactions include; intermolecular

hydrogen abstraction, radical addition or recombination, bond fission,

mid/end-chain β-scission and disproportion to predict the formation of low

molecular weight (C1-C15) hydrocarbon products. Thermal decomposition of

polypropylene proceeds essentially by random scission mechanisms. The

way in which a molecule fragments during pyrolysis and the identity of the

fragments evolved depend on the type of chemical bonds involved and the

stability of the resulting smaller molecules [12].

Hujuri et al. [13], studied the temperature-dependent pyrolytic product

evolution profiles for polypropylene at a different temperatures; these are 200,

300, 400, 446, 500 or 600 °C. The samples were heated from ambient

temperature at a heating rate of 100C min-1 under a constant flow of argon

(flow rate 40-50 ml min-1). The yield of light liquid hydrocarbon (C5-C10) was

small at a pyrolysis temperature of 200-300 °C, and gradually increased up to

the maximum decomposition temperature of 446 °C and decreased afterward.
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Shah et al. [14], performed the catalytic pyrolysis of low-density polyethylene

in a batch reactor. Approximately 5 g of polyethylene heated at different

temperatures 250, 300, 350 and 400 °C. The products of the thermal

degradation of each cracking temperature collected separately. The total

conversion to gas and liquid products improved from 10.52 ± 0.45 to 25.36 ±

0.52 % as the temperature was increased.

2.2.3   Polystyrene (PS)

Polystyrene polymer usually produced by polymerization of the monomer,

styrene. Styrene polymerized by radical, coordination, cationic or anionic

polymerization mechanism.

Figure 2.1- 2  Polymerization reaction for polystyrene

The Figure depicts a typical polymerization process of styrene. Polystyrene is

used in making disposable cutlery, plastic models, CD and DVD cases, and

smoke detector housing, packing materials and foam drink cups. Polystyrene

has poor biodegradability and its waste generated from both household and

industry causes significant impact to the environment.

The thermal degradation of polystyrene was investigated by Carniti et al. [15],

and they suggested the degradation was through consecutive reactions as

follows;
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PS (+ heavy products of partial degrade.) → C13-C24 →C6-C11 Equation 1.2

Madorsky et al. [16], reported an investigation on the vacuum degradation of

polystyrene at a set of two different temperatures. The temperatures are lower

set at 400 °C and 500 °C for 30 min and a higher set at temperatures between

800 °C and 1200 °C for 5 min. The major composition of the degradation

products was styrene that decreased with higher temperatures due to

secondary decomposition into benzene and lower molecular weight alkanes.

The authors work was similar to the work of Jianfeng et al. [17], who reported

a 61.1 %  yield of styrene from the thermal pyrolysis of polystyrene. The

polystyrene was pyrolyzed in the temperature range of 370-430 °C, but

styrene yield improved slowly at a temperature higher than 410 °C.

Bajus and Hajekova [18], investigated polystyrene that produced an oil yield

which consisted almost wholly of aromatic compounds particularly toluene,

ethylbenzene and styrene over the range of temperatures. The polystyrene

produced a mainly dark-coloured viscous oil at 350 °C and char formation was

significantly enriched at higher temperatures 450 °C and 500 °C, up to 30%

[18].
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2.2.4   Poly (ethylene terephthalate) (PET)
Poly (ethylene terephthalate) (PET) produced from ethylene glycol and

dimethyl terephthalate or terephthalic acid. The monomer for PET is bis (2-

hydroxyethyl) terephthalate.

Figure 2.1-3  PET monomers and the polymer

In this process, the excess ethylene glycol and dimethyl terephthalate are

reacted at a temperature of 150-200 °C with methanol as a basic catalyst. The

catalyst (methanol) is distilled off to help drive the reaction forward. Another

trans-esterification reaction will proceed at 270-280 °C, and excess ethylene

glycol are distilled off in both steps

The two steps for the reactions are as follows:

First step

C6H4(CO2CH3)2 +  2  HOCH2CH2OH  → C6H4(CO2CH2CH2OH)2 +  2

CH3OH

Second step

nC6H4(CO2CH2CH2OH)2 → [(CO)C6H4(CO2CH2CH2O)]n + n

HOCH2CH2OH

In the esterification process ethylene glycol and the terephthalic acid reacted

at moderate pressure (2.7-5.5 bars) and temperature (220 - 260 °C). A

continuous distillation process is used to remove water.
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nC6H4(CO2CH3)2 + n HOCH2CH2OH → [(CO)C6H4(CO2CH2CH2O)]n +

2n H2O

PET is mainly used to package consumer items such as soft drinks, water,

beer, mouthwash, food containers, and for oven-proof film and food trays.

Some other use includes chemical drums, carpeting, and pipes and tubing for

gas, water, etc. due to its strength, toughness, and transparency.

Thermogravimetric degradation curves of polyethylene terephthalate (PET),

polybutylene terephthalate (PBT) and poly Deca methylene terephthalate

(PDMT) produced by McNeil & Bounekhel [19], showed a single stage

decomposition. The onset of degradation was above 300 °C, the maximum

rate of weight loss being in the range 400-450 °C. The amount of residue at

500 °C was relatively small, particularly for PBT and PDMT. Carbon monoxide

was detected in all the three polymers in the non-condensable gases. Traces

of methane were also detected only in PET, which was presumed to originate

from the methyl ester end groups present. However, three main fractions

obtained from the condensable gases and volatile liquids in PET products; the

first fraction consisted of carbon dioxide together with traces of alkenes. But

the second fraction was acetaldehyde, and the third fraction collected a liquid

which characterized as vinyl benzoate and dioxane with traces of

benzaldehyde, toluene, and divinyl terephthalate.

Montaudo et al. [20], reported on the thermal degradation of PET and PBT

and concluded that the primary step is an ionic process. In the ionic process,

a β-CH hydrogen transfer leading to the formation of the oligomer with an

olefin and carboxylic end groups was suggested.



54

Figure 2.1- 4  Thermal degradations of PET and PBT (a) Scheme 1
(b)Scheme 2  [20]

The Scheme 2 proposed by Montaudo et al. [20], involved an intramolecular

exchange process that leads to the formation of the cyclic oligomer. The

Scheme 2 is based on an on-line analysis that prevents thermally labile

compounds with short lifetimes at high temperatures to escape the reactor.

Montaudo et al. [20], reported that several studies have ascertained that the

cyclization occurs in PET through an intramolecular alcoholysis reaction

(ionic). The intramolecular alcoholysis is usually activated at a temperature

range of 250-300 °C, involving the attack of hydroxyl ends on the inner group

of the polyester chain as scheme.
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2.2.5   Polyvinyl Chloride (PVC)

Polyvinyl chloride (PVC) produced by polymerization of the monomer, vinyl

chloride. The monomer vinyl chloride is prepared using various methods;

CH2=CH2 + ½O2 + HCl 260 °C→ ClCH=CH2 + H2O

Figure 2.1- 5  Polymerization of vinyl chloride to polyvinyl chloride

Polyvinyl chloride used in sewage piping and other piping applications when

cost or vulnerability to corrosion limits the use of metal. In the thermal

degradation of the polymer, polyvinyl chloride degrades by a different

mechanism compared to other common polymers such as PE, PP and PS

with a two-stage mechanism. Dehydrochlorination (DHC) is the first stage in

which more than 99 wt. % of the initial chlorine content in PVC  released as

HCl in the temperature range of between 200-360 °C that is lower than the

usual decomposition temperature of polyethylene, polypropylene, and

polystyrene [21].
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Figure 2.1- 6  Two stage degradation of PVC stage: Elimination of HCl and
stage 2: Decomposition of unsaturated hydrocarbons and benzene
formation  [21]

The emission of HCl accompanied by the evolution of small amounts of C1-C4

hydrocarbons, C6H6 and some unsaturated aromatic compounds [22, 23].

Aromatization and chain scission dominate degradation at higher temperature

giving large amounts of carbonaceous residue whereas liquid products are

formed in low amounts [21, 24]. Williams and Williams  [25], reported on the

pyrolysis of PVC  at a heating rate of 25 °C min-1 to a maximum temperature

of 700 °C in the fixed bed batch reactor.  They recorded product yields of

2.47% permanent and hydrocarbon gas, 31.69% oil, 13.78% char and 52.93%

as HCl gas. However, other researchers recorded much higher char values

up to 20% [26].

2.2.6   Acrylonitrile butadiene styrene (ABS)

Acrylonitrile butadiene styrene (ABS) is a copolymer made by polymerization

of styrene, and acrylonitrile in the presence of polybutadiene. Acrylonitrile is a



57

synthetic monomer produced from propylene and ammonia, and styrene

obtained by dehydrogenation of ethylbenzene. ABS is used to make light, rigid

molded products such as piping, musical instruments, golf club heads,

automotive body parts, wheel covers, enclosures, protective head gear and

toys.

 Jung et al.  [27], reported on the thermal degradation of ABS in a bench scale

pyrolysis plant equipped with a fluidized bed reactor constructed with a char

separation system. Pyrolysis was carried out over a temperature range of

430–510 °C. The oil produced was in the range of 64.11-77.41 wt. %, gas was

1.12-3.4 wt. % while char products were 6.36-21.21 wt. %. The addition of

calcium based additives decreases oil yield and increased char formation. The

major compounds formed were ethyl benzene, toluene, and styrene, with also

appreciable N-compounds in the heteroatom fraction identified. The

acetonitrile, propene-nitrile, propane-nitrile and benzene butane-nitrile were

the predominant aliphatic and aromatic nitriles amongst the nitrogenised

compounds. The reaction between acrylonitrile and styrene might be the

source of benzene butane-nitrile [28]. The maximum styrene yields were

recorded at reaction temperatures ranging between 460 and 480 °C. The

hydrogenation of styrene at higher temperature might have stimulated the

production of ethylbenzene [27].

2.2.7   High Impact Polystyrene (HIPS)

High impact polystyrene (HIPS) is prepared by free radical polymerization of

styrene in the presence of dissolved rubber such as polybutadiene (PB), to

improve the impact strength and toughness of the glassy polystyrene.
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HIPS  commonly produced by the introduction of PB before the free radical

polymerization of styrene with a variable content PB (3-10 mol %); the PB then

compatibilized by the grafting of styrene units [29].

High impact polystyrene mainly used in making packaging, containers,

appliance parts, housewares, refrigerator interiors, toys and interior parts in

household electronics. HIPS composed of multiphase and multicomponent

polymeric materials, with glass and rubber phases. End use properties are

dependent on many variables such as the molecular weight and the

distribution of the polymerized polystyrene and rubber used [30].

Some synergic combination of polybrominated compounds and antimony

trioxide (Sb2O3) are used as flame retardants sometimes added to HIPS [31].

The polybrominated flame retardants are thermally labile and release Br

radicals that extinguish the radical chain reactions of combustion and fire

spreading processes. The antimony trioxide accelerates the rate of halogen

release from aromatic halides via the formation of antimony halides and

oxyhalides during combustion [32] [33].  Polybrominated diphenyl ethers

(DPE) were known to produce brominated dioxins and dibenzofurans (DBF)

during combustion [34]. Accordingly, Dumler [35], studied the formation of

polybrominated DBFs from decabromodiphenyl ether (Br10-DPE)  in  a

polybutylene–terephthalate–Sb2O3 matrix. They observed that high-

temperature degradation (500–700 °C) resulted in a high yield of tetrabromo

dibenzofurans.  Likewise, numerous brominated benzene, toluene, and

styrene derivatives have also been identified by [36] through combustion of

HIPS-Br10- DPE–Sb2O3 composite.
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2.3   Thermal Degradation of Mixed Plastics

The processing of highly commingled plastics with different compositions of

plastics represents a  significant technical challenge [37]. This challenge is as

a result of the different degradation pattern and possibility of interaction of

plastics degradation product. For example, the presence of polyvinyl chloride

in a mixture of plastic wastes which undergoes pyrolysis always is

accompanied by releases of hydrogen chloride. The hydrogen chloride

released by PVC can cause not only a corrosion of the equipment but, also

the formation of chloro-organic compounds in the product hydrocarbon oil [38].

Mlynková et al. [39], reported work on the thermal pyrolysis of several mixtures

of commonly found plastic wastes. The mixture consists of high-density

polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density

polyethylene (LLDPE), polypropylene (PP), polyvinyl chloride (PVC),

polyethylene terephthalate (PET) and polystyrene (PS). The reactor used was

a batch reactor system at temperatures from 350 to 500 °C at atmospheric

pressure. The low carbon number fractions in the gasoline range were the

primary yield, and there was a small yield fraction of heavy oil. The predicted

polystyrene, polyvinyl chloride and polyethylene terephthalate in the feedstock

had a significant effect on the formation and yields of gases and oil/waxes in

comparison with thermal cracking of individual and mixed polymers. The

authors found that the presence of polystyrene, polyvinyl chloride and

polyethylene terephthalate increased the formation of carbon monoxide and

carbon dioxide in the gas and benzene, toluene, xylenes, styrene in the liquid

(oil/waxes) products [39].
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Bhaskar [40], investigated the influence of the presence of PET in a mixture

of PP/PE/PS/PVC/HIPS-Br plastics, during pyrolysis. The author reported a

significant influence on the product yield and composition. For example, both

the gaseous products and chlorinated branched alkanes yields increased in

the presence of PET, with a waxy residue formed. On the other hand, liquid

yield decreased.

Ballice [41], reported work  on the co-pyrolysis of low-density polyethylene

with polypropylene, and the authors found that conversion of the mixture into

volatile hydrocarbons was higher with the mixture. However conversion rise

with increasing amount of polypropylene ratio in the co-pyrolysis operation.

The work showed that n-alkane hydrocarbon gas yield (C1-C4) improved with

the increase in polypropylene in the mixture. The formation rate of n-alkenes

was lower than n-alkanes. Jung et al. [42], reported work on pyrolysis of a

fraction of waste PP and PE  for the recovery of BTX aromatics using fluidized

bed reactor. They suggested that the ease with which propene formed in

polypropylene pyrolysis enabled subsequent participation in Diels–Alder

reactions for benzene, toluene and xylene production. The propene formation

was as a result of sequence reactions; random chain scission of

polypropylene produces both primary and secondary radicals, and afterward,

tertiary radicals were formed by intramolecular transfer reactions. Thus, the

beta cleavage of the tertiary radicals led to the easier formation of propene

[43].

2.4   Catalytic Pyrolysis of Plastics

In this section, catalytic pyrolysis is discussed for both single and mixed

plastics. The yield and composition of pyrolysis products  greatly influenced
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by a range of process parameters. These parameters include the type of

waste plastic, reactor system, the gas residence time, temperature and

pressure ranges, the presence of a catalyst and or hydrogen gas or hydrogen

donor compounds  [44] [39] [5]  [45].

2.5   Catalytic Degradation of Single Plastics

Single plastics were pyrolyzed using various catalysts type, amounts, and

reactor type and reaction condition as reported by researchers.

2.5.1   Polyethylene

Gonzalez et al. [6], investigated the thermal and catalytic degradation of

polyethylene wastes in the presence of silica gel, 5A molecular sieve and

activated carbon in a batch reactor at 450, 500 and 700 °C temperature for 2

h. The catalytic degradation showed a higher conversion of PE waste than the

thermal degradation for all the temperature ranges. They found that the silica

gel conversion rate decreased with increasing temperature. The 5A molecular

sieve conversion of PE increased with temperature and activated carbon

recorded the highest conversion at the lower temperature of 450 °C. Buekens

and Huang [46], reported work on the catalytic and thermal degradation of PE

to a broad range of products. The authors reported that activated carbon as a

catalyst gave the highest quantity of aromatics compounds, while the silica

gel produced a greater amount of methane.

Shah et al. [14], performed catalytic pyrolysis using a wide range of acidic and

basic catalysts; silica (SiO2), calcium carbide (CaC2), alumina (Al2O3),

magnesia (MgO), zinc oxide (ZnO), and homogeneous mixture of silica and

alumina. The authors based temperature optimization as the suitable
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temperature at which maximum liquid could be obtained. But, the total

conversion was based on the amount of liquid, and gas formed during catalytic

pyrolysis. Thus, MgO, CaC2, SiO2 and Al2O3 optimum was obtained at 350 °C.

But, ZnO and mixture of silica and alumina optimum was obtained at 400 °C

temperatures. Shah et al. [14], found that beyond the optimum temperature a

decrease in the liquid fraction, and associated that with further conversion of

a liquid into volatile product leading to higher gases and decrease in liquid

fraction. Shah et al. [14], conclude from the physical test results, that the liquid

fractions are comparable with the standard results of the physical test for

gasoline, kerosene and diesel fuel oil.

Olazar et al. [47], reported the influence of FCC catalyst streaming on HDPE

pyrolysis product distribution, using a conical spouted bed reactor provided

with a feeding system for continuous operation to maximize the diesel -oil

fraction. They used commercial FCC catalysts based on active zeolite phase

for the pyrolysis of HDPE, and also different treatment applied to improved

catalyst behavior. Thus separately from the fresh catalyst, the two different

steaming treatment have been applied to the catalyst. The treatment is mild

steaming carried out at 760 °C for 5 h and severe steaming at 816 °C for 8 h.

The pyrolysis runs have been carried out at 500 °C with the fresh and mildly

steamed catalysts while a reduced temperature of 475 °C was used for

severely steamed catalyst to improve product distribution. The catalyst used

by Olazar et al. [47], has the following characteristic properties as shown in

Table 2.2-1.
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Table 2.2-1  Properties of the fresh and equilibrated FCC commercial catalysts

used [47]

	 Fresh	 Equilibrated		

at	750	°C	

Equilibrated		

at	816	°C	

BET	surface	area	(m2/g)	

Micropore	Volume	(cm3/g)	

Mesopore	volume	(cm3/g)	

Acid	strength	(kJ/mmol	NH3)	

Total	acidity	(mmol	NH3/g	cat)	

338

0.116

0.070

123.2

0.598

192

0.061

0.078

99.2

0.057

187

0.061

0.099

87.9

0.039

  The fresh catalyst yielded 52 wt. % gas, 35 wt. % light liquid fraction and; low

C10+ fraction (13 wt. %). However, after the author performed mildly steaming

the results show a significant change in product distribution. Consequently,

product gas yield decreases to 22 wt. %, light liquid fraction yield is similar to

that of the fresh one (38 wt. %), but the desired C10+ fraction rose to 38 wt.

%. However, the best results concerning aim of the work were obtained with

severe streamed catalyst. Thus, the gas fraction was decreased (8 wt. %), the

light liquid fraction also reduced to 22 wt. % and the yield of diesel fraction

rose to 69 wt. %).

2.5.2   Polypropylene

 Lin and Yen [48], performed work on the fluidized bed pyrolysis of

polypropylene over a zeolite cracking catalyst for the production of
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hydrocarbons at a temperature range 290-430 °C in a varying nitrogen flow

(270-900 mL/min). But, the authors used three zeolite catalysts; HZSM-5, H-

ultra stabilised Y-zeolite (HUSY) and H-mordenite (HMOR) and non-zeolite;

amorphous SiO2-Al2O3 (SAHA) and mesoporous-Mobile crystalline materials

(MCM-41). Lin and Yen [48] found that the zeolite catalyst (in order HSZM-

5>HUSY ≈HMOR) recorded a higher volatile hydrocarbon yield than the non-

zeolite catalyst (SAHA ≈MCM-41). Equally, zeolite catalysts produced more

alkane hydrocarbon while the non-zeolite catalyst produced more alkene

hydrocarbons. Lin and Yen [48], found that HZSM-5 catalyzed show product

distribution contained more olefinic materials with about 60 wt.% in the range

of  C3-C5. However, other two zeolite catalyst HMOR and HUSY produced

more paraffin streams with large amounts of isobutene (i-C4). The non-zeolite

SAHA and MCM-41 gave the lowest conversion and produced an olefin-rich

product with the rise to the broadest carbon range C3-C7. The authors

suggested that under suitable reaction conditions, a catalyst can have the

ability to control both the product yield and product distribution from polymer

degradation, potentially leading to a cheaper process with more valuable

products.

2.5.3 Polystyrene

Pyrolysis of polystyrene produces a high concentration (>70%) of styrene and

other styrene oligomers compared to catalytic pyrolysis which shows a

marked reduction in styrene content in the product oil [49, 50]. Lower yields of

styrene from catalytic degradation of polystyrene on solid acid catalysts have

been attributed to further cracking of styrene into either toluene or benzene

and further hydrogenation of styrene into ethylbenzene [51].
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Bagri and Williams [50], investigated the catalytic pyrolysis of polystyrene over

fluidized bed reactor. They used ZSM-5 catalyst to study the effect of catalyst

bed loading and particle size on product yields and composition of the derived

oils and waxes. Bagri and Williams [50], found gas yield increased with the

addition of ZSM-5 catalyst and further increased with increasing catalyst

loading. However, the wax/oil yield decreases with the catalyst loading. They

also found that reduction of catalyst particles size had the same effect as

catalyst loading. The hydrocarbon gases produced are mainly C1, and  C4,

ethane and propene gases are dominant. Bagri and Williams [50], found that

the product oils for non-catalyzed pyrolysis run contain a large amount of

styrene and a small quantity of non-styrene single ring aromatic and PAH. But,

they found a reduction in styrene concentration and increase in non-styrene

single ring aromatic and PAH with the introduction of catalyst and rose with

catalyst loading.

2.6   Catalytic Degradation of Mixed Plastics

Lin [52], performed a pyrolysis of a post-constomer plastic waste ( PE /PP

/PS/ PVC ) over a wide range catalysts (FCC-R1, HUSY, ZSM-5, and SAHA

), using a fluid catalytic cracking (FCC)  process operating at ambient

pressure. The product distribution at 390 °C was dependent on the type of

catalyst used. For example, the zeolitic catalysts (ZSM-5 ≈ HUSY) gave a

higher yield of volatile hydrocarbons than non-zeolitic catalysts (SAHA) and

the zeolite based equilibrium FCC catalyst (FCC-R1). The zeolitic catalyst

ZSM-5 gave the highest volatile hydrocarbon yields (83.3 wt. %). The bulk of

products obtained with the acidic cracking catalysts ( FCC-R1, HUSY, ZSM-

5, and SAHA ) were in the gas phase with less than four wt. % liquid collected.



66

The significant difference in the products between the acidic catalysts

observed with ZSM-5 producing a much higher C1 –C4 hydrocarbon gas yield

(~55 wt. %) than HUSY, SAHA, and FCC-R1 catalysts. However, some

similarities were observed between SAHA and FCC-R1 with C1-C4 and C5-C9

yields, which were approximately 24 - 30 wt. % and 52-55 wt. % respectively.

However, both acidity and diffusion constraints within individual microspores

of each catalyst may play significant roles in the observed products distribution

confirmed by Lin, [52].

Bhaskar et al. [40], reported on catalytic experiments in the presence of Ca-C

catalyst on the effect of PET in a mixture of PP/PE/PS/PVC/HIPS-Br, using

semi-batch operation for pyrolysis at 430 °C temperature. The use of calcium

carbonate (Ca-C) without PET entirely removed Cl and Br. But for the liquid

products trace amounts of Cl and Br (20 ppm and 310 ppm respectively) were

detected in the presence of PET. The chlorine-containing compounds

detected in the liquid products were mono-chlorinated branched alkanes (2-

chloro-2-methylpropane, 2-chloro-2-methylpentane, and 2-chloro-2, 4-

dimethylheptane). The addition of the released HCl during PVC pyrolysis on

products of polypropylene decomposition forms the basis for the formation of

the chlorine compounds. The tertiary carbon atoms of PP are more prone to

Cl addition than secondary C-atoms of n-alkenes and n-alkadienes, the main

unsaturated products of PE decomposition. Thus, the HCl furthermore reacts

with styrene monomer and dimer to formed a significant amount of 1-chloro-

ethylbenzene and a smaller amount of chlorinated diphenyl butane and

pentane [40]. The catalytic decomposition of HIPS-Br evolves a significant

quantity of hydrogen bromide. HBr reacts primarily with branched alkenes and
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styrene as indicated by the evolution of 2-bromo 2-methyl pentane,  and 1-

bromo ethyl benzene in the study reported Bhaskar et al. [40].

Tang et al. [53], published work on the catalytic degradation of the mixed

polymer systems, PE/PVC at 420 °C, PP/PVC at 380 °C and PS/PVC at 360

°C was reported. The work was carried out in a glass reactor under

atmospheric pressure by the batch operation. For thermal degradation of the

mixed polymer systems, the liquid yield was highest (72.7%) for PP/PVC and

lowest (60.5%) for PS/PVC. The char product was highest (19.3%) for the

PS/PVC mixture with PP/PVC recording the lowest (8.55%). Consequently,

the chlorine distribution in various phases showed 88 – 96 wt.% of chlorine

content of the sample evolved as gaseous HCl, and in the liquid, 3 -12wt.%

and less than 2 wt.%  in the residue. The liquid yield was highest (64.38%) for

the PP/PVC mixture and lowest (59.85%) for the PS/PVC. However, for

catalytic degradation the liquid yield was lower than thermal degradation, this

might be due to further cracking of some long chain hydrocarbons. This

argument further demonstrated with high gas yield for the catalytic

degradation. The char products were highest (23.56%) for the PS/PVC while

the mixture of PP/PVC gave the lowest liquid phase (8.02%). However, except

for the PS/PVC mixture the char produced by catalytic degradation was higher

than thermal. The chlorine distribution in various phases showed a sharp

decrease in both liquid and gas phases while char (residue) recorded the

highest yield for all samples

Hung et al. [54], studied the pyrolysis of post-consumer polymer waste

(HDPE/LDPE/PP/PS) in a fluidized bed reactor operating isothermally at
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ambient pressure over various catalysts over range of a reaction temperature

290-420 °C. The acidic zeolite catalyst yielded higher volatile hydrocarbons in

the order of ZSM-5>MOR>USY than non-zeolite catalyst MCM-41>ASA over

a range of reaction conditions. The majority of the products were gas with less

than 6 wt. % liquids. The non-zeolite catalyst ASA with the low surface (274

m2 g-1) and Si: Al ratio (2.6), produced a highest unconverted polymer. But,

the zeolite catalyst USY with high surface area (603 m2 g-1) and SI: Al ratio

(6.6) yielded the highest coke as solid products. For USY, the gas phase and

solid residue production increased with increased temperature. Similarly,

faster rates of hydrocarbon production were observed at a higher temperature.

The time for the polymers to be degraded lengthened, and the initial rate of

hydrocarbon production dropped as the temperature decreased. The ZSM-5

cracking catalyst exhibited greater selectivity for the product yields, with about

60% of the products in the range of C3-C5.

 Zhou [55], performed a catalytic degradation of polyvinyl chloride (PVC)

containing polymer mixtures. The polymer mixture includes polypropylene

(PP)/PVC, low-density polyethylene (LDPE)/PVC, polystyrene (PS)/PVC and

LDPE/PP/PS/PVC. Accordingly,for LDPE/PVC  thermal degradation, the wt.%

distribution of Cl was that the bulk amount (95.89%) was in the gas phase

products with less than 4% in liquid products and the residue contained only

trace amounts (0.16%).

Lopez et al. [56], worked on catalytic pyrolysis of packaging plastic waste

using semi-batch reactor. The researchers explored three methods. Hence ,

the first method was ‘’Conventional catalytic pyrolysis’’ where the plastic

sample mixed with the catalyst and the system heated at a rate of 20 °C min-
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1 to 400 °C and maintained there for 30 min. The second method  ‘’Catalytic

stepwise pyrolysis'' where plastic sample mixed with a catalyst, then a

dechlorination was carried out at a temperature of 300 °C for 60 min before

the temperature was raised at 20 °C min-1 to 440 °C to complete the pyrolysis

process. The third method was ‘’Non-catalytic dechlorination step+ catalytic

pyrolysis’’. In which the dechlorination step was applied to the plastic sample

alone (without catalyst) and then the catalyst was added and then carry out

the final pyrolysis as in the other methods. The zeolite catalyst ZSM-5 with the

following properties; BET S.A.  (m2 g-1) 412.0, external S.A. (m2 g-1) 65.88,

micropore volume (cm3 g-1) 0.100, total pore volume (cm3 g-1) 0.397, and total

acidity (mmol NH3 g-1) 0.176 was used. Five plastic samples used for the

mixture are polyethylene (40%), polypropylene (35%), polystyrene (18%),

PET (4%) and polyvinyl chloride (3%).

They observed that the catalyst played an important role in pyrolysis product

distribution, producing more gas and lower liquid than in the thermal run.

However, zeolite catalysts show losses in activity with an increase in liquid

yield and a reduced in gas yield when a dechlorination step is carried out in

the presence of a catalyst. Lopez et al. [56], preferred that the decreased in

gas yield owing to the loss of activity of the catalyst seemed to be greater than

the increase due to the dechlorination step. Thus, the catalyst might have lost

its activity because the plastic sample melted during the dechlorination step,

then cracked, and the melted fragment may physically block the catalyst

pores. Therefore, the effect of the catalyst in the subsequent pyrolysis step

could be hindered.
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The characteristic of the pyrolysis liquids in the three different methods used

by Lopez et al. [56], show variation in their composition. The liquid was

characterized using GC-MS analysis and reported as area % calculated with

respect to total ion. Conventional catalytic run shows the low molecular weight

C5-C9 as the main fraction, amounting to more than 80% area. However, when

they carried out dechlorination step in the presence of the zeolite. The

percentage of light (C5-C9) and medium (C10-C13) hydrocarbons significantly

decrease (to 70.4 and 1.5 % area respectively), and the yield of heavy

hydrocarbons increases up to 9.5 % area. These further strengthen the

argument, which that the catalyst loses its activity with dechlorination step.

But when compared the conventional catalytic run with non-catalytic

dechlorination step + catalytic pyrolysis, the catalyst works well with both runs

recorded nearly equal amount of C5-C9 yields (81.5 and 82 %area

respectively). However, they observed the difference in the C10-C13 and >C13

yield, which are lower and higher respectively than in the conventional

catalytic run. The authors reported similar trend found in their previous work

[57] for non-catalytic pyrolysis run as the stepwise pyrolysis compared to

conventional thermal run. They suggested that some degradation and

rearrangement of polymer structure are taken place during the dechlorination

step, leading to different pyrolysis pathways and consequently to various

pyrolysis products.

Likewise, the authors reported the distribution of aromatics show similar trend

as observed in the composition of light, medium and heavy hydrocarbons. The

conventional catalytic (>95%) and non-catalytic dechlorination + catalytic

pyrolysis run (94.2%) are similar. But as the dechlorination step was carried
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out with the catalyst mixed with the sample, the production of aromatic was

lowered (80.6%). The high yield of aromatic came as a surprise to the authors

since the plastic sample used in the work mainly composed of a polyolefin.

However, they revealed that there was evidence in the literature that high

content of aromatic could be obtained from the pyrolysis of the polyolefin. The

use of ZSM-5 in the pyrolysis of the polymer was reported by the authors to

obtained liquids with a high level of aromatics. They attributed this to the high

number of Bronsted acid sites contained within the zeolite, which promote

aromatization reactions. The distribution of the main aromatic compounds

shows a similar trend for the conventional catalytic run and the non-catalytic

dechlorination + catalytic pyrolysis run. Both produced more than 30% area of

styrene, and around 10% area of toluene, ethyl benzene, and xylenes. But the

stepwise catalytic pyrolysis run produced higher styrene (≈45% area) and

other less than 10%. The authors were able to reduce the chlorine content

with the addition of dechlorination step to about 75 wt. % reduction in the liquid

fraction.

Antonakou et al. [58] performed pyrolysis and catalytic pyrolysis as a recycling

method of waste CDs originating from polycarbonate and HIPS in a bench

fixed bed reactor. The two catalysts used included  ZSM-5 based catalyst with

properties as follows,  BET surface area 127 m2 g-1, the total number of acid

sites 0.14 mmoles NH3 g-1 and Bronsted to Lewis acid sites ratio 1.8. The

other catalyst was MgO catalyst with properties as follows, the surface area

of 62 m2 g-1 and negligible acidity of <0.01 mmoles NH3 g-1 and contained

basic sites  0.24 mmoles NH3 g-1. The samples used for the work were

commercial poly(bisphenol A carbonate) and HIPS; and two commercial CDs
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which were CD-PC (polycarbonate base) and CD-PS (polystyrene base). The

plastic to catalyst/silica ratio used was 2:1. The solid feedstock fed from the

top of the reactor and was pushed down instantaneously with the aid of a

piston in the reactor hot zone ( at 600 °C). The produced pyrolysis vapour was

swept through the catalyst bed with flowing N2 (100 ml min-1) for 15 min while

an additional purging with N2 (50 ml min-1) performed for another 10 min. The

authors observed that the nature of polymer had a dramatic effect on the

pyrolysis product yields. However, the use of both catalysts did not seem to

have a significant additional effect on the product yields compared to those of

thermal pyrolysis run. The product yield for both thermal and catalytic run for

PC (both CD-PC and PC), showed liquid products yield between 50 and 60

wt, %, gas yield 15-20 wt. % and solid products 20-30 wt. % the original

polymer. The polystyrene raw material (HIPS and CD-PS) both pyrolysis runs

showed liquid fraction was the main pyrolysis products, with more than 90 wt.

% of the original polymer. Likewise, a similar behavior was observed for the

model and commercial polymers (with the same chemical origin) in terms of

pyrolysis product distribution under same experimental conditions.Antonakou

et al. [58] had an astonishing findings in terms of the high selectivity of the

valuable chemicals in the pyrolysis liquid fractions ( up to 93 and 95 area %

observed for phenol and aromatic respectively). The use of catalysts had

showed a negligible effect on the liquid fraction composition, with only a

noticeable small increase in the yield of phenols with the use of basic MgO

catalysts in the pyrolysis of PC polymer. Then, Antonakou et al.[58],

suggested that the decrease in a monomer for catalytic pyrolysis of both

polymers was because selected catalysts favour the polymer decomposition

into lower molecular weight compounds (mainly single ring phenols and



73

hydrocarbon). Thus, for these mention reason the liquid fraction coming from

catalytic pyrolysis run contain less of the initial monomer. The two catalysts

used did not differ in terms of recovery of monomer in the polymer studied,

and thermal pyrolysis was a better option as a recycling method for recovery

of the monomers. Benzene was detected in the catalytic run of polystyrene

raw materials, as rightly reported by other researchers [58].

Lee [59], performed work on the composition of aromatic products in the

degradation of the mixture of wastes PS and HDPE using spent FCC catalyst

in a semi-batch reactor at 400 °C. The study used 10:1 reactant to catalyst

ratio, N2 stream 20 ml/min, a heating rate of about 9 °C/min to 400 °C and

stirring speed of 200 rpm. The characteristic of the FCC used in the research

was summarized as follows; BET surface area 151 m2 g-1. Then the micropore

area 76 m2 g-1, mesopore area 75 m2 g-1, total volume 0.25 cm3 g-1, micropore

volume area 0.03 cm3 g-1 and average pore diameter 6.7nm. The experimental

system used by Lee [59] shown in Figure 2.2-1
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Figure 2.2-1  Schematic diagram of the experiment [59]

The author obtained in the initial (short) reaction time the fraction of gasoline

range components (C6-C12) in liquid products was 90 wt.% or more,

irrespective of weight proportion of HDPE and PS. Then during the prolong

reaction time the fraction gasoline range components was reduced, whereas

the kerosene and diesel compounds (>C13) rose. These results obtained

were suggested to be due to different degradation characteristic of PS and

HDPE [59, 60]. Consequently, Lee [59] noted that degradation of PS mainly

influenced carbon number distribution of oil product obtained at initial (short)
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reaction time. But with a prolonging in reaction time the effect of HDPE with

relatively difficult degradation become apparent. The composition of the

degraded product obtained strongly depended on the chemical properties of

the plastic type in waste plastic as observed by the other authors. Thus, the

styrene monomer and alkyl-styrene content in degraded products had risen

with the increase in the PS content in plastic mixtures. Lee [59] noted from

Boxiong et al. [61], that the concentration of aromatic hydrocarbons obtained

from the degradation of the waste polymer using USY catalyst with large pore

size was much higher than that for ZSM-5 with small pore size. Therefore, the

size of zeolite aperture plays a crucial role in the aromatic product distribution.

Lee [59], showed that the distribution of styrene and ethylbenzene product

highly influenced by the proportion of both HDPE and PS. While, he observed

benzene and toluene products were 10% or less, and these are less than

styrene and ethylbenzene product obtained. The author [59], concluded that

the distribution C9-C12 alkyl aromatic components as by-products, methyl

styrene, (C1-styrene) and isopropylbenzene (C3-benzene) components were

the primary products formed by β-scission and hydrogen transfer of PS while

the rest of alkylation products showed very low fraction being 1% or less.

Lin and Yang [62], reported work on catalytic conversion of commingled

polymer waste into chemical and fuels over spent FCC commercial catalyst in

a fluidized-bed reactor Figure 2.2-2. The commingled polymer waste

(CPW#1)  used is composed of HDPE=38 wt.%, LDPE= 24 wt.%, PP = 30

wt.%, PS = 7 wt.% and PVC =1 wt.%.
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Figure 2.2-2  Schematic diagram of a fluidized bed reactor system : (1) Feed (2)
Furnace (3) sintered distributor (4) fluidized catalyst (5) reactor (6) condenser (7)
de-ionized water trap (8) 16-loop automated  sample system (9) gas bag (10) GC
and (11) digital controller for three=zone furnace[62].

Six catalysts used for the pyrolysis of the commingled polymer are as follows;

ECat-1, USY, ZSM-5, ASA, and silicates. The catalysts characteristic

properties are shown in Table 2.2-2 [62].
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Table 2.2-2  Catalysts used in commingled polymer waste degradation [62]

Catalyst	 Si/Al	 Surface	
area	

(cm2g-1)	

Surface	
area	(cm2g-

1)	

Surface	
area	

(cm2g-1)	

Metal	
(ppm)	

Commercial	
name	

	 BET microspore External V      Ni

ECat-1	 NDb 147 103 44 2560
870

Equilibium
catalyst

Silicates	 >1000 ND - Synthesized
in-house

USY	 5.7 547 421 126 - Ultrastablised
Y-Zeolitec

ZSM-5	 17.5 391 263 128 - ZSM-5 zeoliticd

ASA	 3.6 268 21 247 - Amorphous
Si:Alc

The carbon number distribution of the products of CPW#1 cracking at 400 °C

over the six catalysts used by Lin and Yang [62], and nature of the product

distribution found to vary with the catalyst used.The yield of volatile

hydrocarbon for zeolite catalyst (ZSM-5 ≈USY) gave higher than spent FCC

commercial catalysts (ECat-1), and non-zeolitic catalysts (ECat-1 ≈ ASA). But

the highest yield was obtained for ZSM-5 (≈ 86 wt.%). However, the work

showed the bulk of the product obtained with these acidic cracking catalysts

(ECat-1, ZSM-5, USY, and ASA) in the as phase with less than 6 wt.% Liquid

collected. The significant difference in the product distribution between the

catalysts used was found to be a high yield of C1-C4 hydrocarbon in ZSM-5

(53 wt.%) than ECat-1, USY and ASA catalysts. However, the authors

observed some close similarity between  ECat-1 and ASA with  C1-C4 and C5-

C9 yields, which were approximately  24-27 wt.% and 50-54 wt.% respectively.

Lin and Yang conclude that the experiments carried out with differing



78

selectivity in the final products depend on reaction condition. Likewise, the

selectivity could be further influenced by changes in operating conditions;  in

particular, olefins and iso-olefins were produced by low temperature and short

contact time.

2.7   Reactor types

There are various types of reactor used in the pyrolysis of plastic materials.

However, the most widely used are batch/semi-batch, fixed bed, fluidized bed,

spouted bed and screw kiln reactors [63].

2.7.1   Batch/semi-batch reactor
The main reason for the use of batch/semi-batch reactor in the pyrolysis of

plastics is the ease of their design and operation [63]. In some cases, a purge

gas is used which removes the volatile products from the reactor that

consequently reduces the extent of the secondary reactions of the primary

pyrolysis products.  There is voluminous literature that have reported on the

use of either batch reactor [43, 64-67] or semi-batch reactor [49, 57, 68, 69].
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2.3- 1  Schematic diagram of semi-batch reactor [57]

For example, Lopez et al. [57], work on the catalytic pyrolysis of a plastic

mixture using a ZSM-5 zeolite catalyst. The study was carried out in a

semi-batch reactor (Figure 2.3-1) at 440 °C. They proved that after one

pyrolysis experiment the catalyst rapidly lost its activity. But the

deactivation was found to be reversible via regeneration by heating at 550

°C in an oxygen atmosphere.

2.7.2   Fixed bed reactor

Fixed-bed reactors have been used for thermal cracking of the plastic,

followed by feeding the liquid or gaseous products into the fixed catalyst

bed as shown in Figure 2.3-2  [70-72].
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Figure 2.3- 2.  Schematic diagram of fixed bed reactor  [73]

For example, Masuda et al. [73], produced high-quality gasoline from waste

PE derived heavy oil over a Raney-Ni catalyst, in a steam atmosphere using

a fixed bed reactor.
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2.7.3   Fluidized bed reactor

The use of fluidized bed reactors in plastic pyrolysis helps to eliminate the

temperature gradients observed in other reaction systems [63]. Hence, both

temperature and composition homogeneity are achieved with ease using

fluidized bed reactors. Fluidized bed reactor also promotes the possibility of

secondary reactions in the gas phase due to high gas flow rates of up to 25 L

min-1.

 Umberto and Maria [74] quoted the following advantage of fluidized bed

pyrolysis by Kunii and Lever [75];

(i) The rapid and good mixing of solids, this allows virtually uniform

isothermal condition throughout the bed i.e. reliable process control.

(ii) The entire reactor of well-mixed solids represents a large thermal

flywheel that resists to rapid temperature changes and avoids the

formation of cold or hot spots.

(iii) The range of operating temperature is usually lower than that of

other gas-solid reactors.

(iv) Heat and mass transfer between gas and particle are high when

comparing with those of other gas-solid reactors and there is

enough quality contact between reactants of a gas-solid reactor.

(v)  The liquid-like flow of particles allows continuously controlled

operations with easy handling.
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(vi)  The high process flexibility makes possible to utilize different

fluidizing agents, operating temperature and gas residence times

and to operate with or without a specific catalyst.

(vii) The lower maintenance times and costs, the absence of moving

parts in the hot region and lower operating temperature.

The authors [74] also enumerate the following disadvantages or

shortcoming for fluidized bed reactor.

(i) Friable solids are pulverized and entrained by the gas.

(ii) For non-catalytic thermal treatment of waste, the

agglomeration and sintering of fine or sticky particles can

require a lowering use in operating temperature or a

continuous withdrawal of bed materials that must be

substituted with a make-up of fresh materials.

(iii) The intensive rapid solid mixing in the reactor leads to a wide

range of residence times of individual particles in the reactor;

for continuous operation this gives poorer performance.

(iv) Erosion of pipes and vessels by abrasion of bed particles can

be serious

(v) Scale-up is not always easy to realize in pilot plants, which

is often necessary to verify the validity of laboratory scale

test.
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Kaminsky et al. [9], used a fluidized bed reactor which was shown in Figure

2.3-3 to investigate the thermal degradation of the plastic. The plastics

degraded to monomers and oil, and syngas.

Figure 2.3- 3  Schematic diagram of Fluidized bed reactor [9]

The fluidized reactor used by Kaminsky et al. [9] had an interior diameter of

450 mm; the plastic was introduced by a screw or a double lock into an

auxiliary fluidized bed of quartz sand at temperatures of between 600 and 900

°C. The fluidizing gas was preheated with pyrolysis gas at 400 °C. The various

products obtained were separated in several stages comprising a cyclone,

condensers, and electrostatic separators. The oil products were distilled in two

packed column. The authors found that polystyrene as feed produced up to

75% styrene and 10% of oligomers, using fluidized bed reactor indicating that

secondary reactions were well eliminated.
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2.7.4   Spouted bed reactor

Elordi et al. [76], used a conical spouted bed reaction for the catalytic pyrolysis

of HDPE on a ZSM-5 catalyst. The reactor presented in Figure 2.3-4 and

showed that the conical shape is the principal component of an upper

cylindrical section. The height of the reactor (HT) 340 mm; Conical section (Hc)

205 mm the angle of the conical section (ˠ) is 28°.The cylinder dimensions

(diameter (DC) 123 mm; diameter base (Di) 20 mm; and gas inlet diameter

(Do) 10 mm) guarantee bed stability in a wide range of process condition. The

reactor was provided with a continuous solid-fed system and consisting of a

hopper. The hopper was a hollow ball valve where the plastic to be pulse-fed

is located with an inlet tube cooled by water.

Figure 2.3- 4  Schematic diagram of a conical spouted bed reactor by Elordi et
al. [76]

Screw kiln reactor

The screw kiln reactor mainly designed for thermal and or catalytic

degradation of plastics and plastic oil mixtures [10 63 77 78]. The reactor as

reported by Aguado et al. [64], was built with a hopper where raw plastics
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were melted and fed by gravity into the screw. The stirring and mixing of the

melted materials in the hopper was achieved by mean of an electric motor and

an anchor mixer. Nitrogen was employed to provide an inert atmosphere as

the hopper was hermetically closed. The two furnaces FA and FB heated the

hopper for the materials to be melted.  A screw auger located inside a 52 cm

long stainless steel tube with an i.d. of 2 cm in the second heating zone. The

speed rate and residence time in the screw adjusted in a range 0.5-2.5 r.p.m.

Three furnaces (FC,  FD, and FE) were used to heat the tube reactor, inside

which is the screw. The FC furnace kept at a temperature of melted plastics

same as that existing inside the hopper. Hence, the furnace FD and FE allowed

a combination of two different reaction temperatures set along the screw.

Various thermocouples located inside the tube were used to measure the

temperature at different points of the reaction zone.

Figure 2.3- 5  Schematic diagram of screw kiln reactor [64]
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The work showed that the thermal pyrolysis carried out at different

temperature and screw speed in a continuous system was suitable for LDPE.

High gasoline range hydrocarbons (C5 –C12) has been obtained using the

reactor in the presence of mesoporous catalyst MCM-41.
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Chapter 3 MATERIALS AND METHODS

3.1   Introduction

This chapter discusses the materials and experimental systems used to

investigate the pyrolysis and catalytic pyrolysis of waste plastics. Also, the

analytical techniques used to characterise the different raw materials,

catalysts, and products of pyrolysis and catalytic pyrolysis.

3.2   Materials

3.2.1   Virgin Plastics
Polyethylene (3mm), polypropylene (3mm), Polystyrene (3.5mm) and PET

(3mm) supplied as virgin polymer provided by Good Fellow Ltd, UK. Samples

of virgin high-impact polystyrene (HIPS) and acrylonitrile –butadiene-styrene

(ABS) were obtained from Atofina and Vamptech United Kingdom,

respectively.

3.2.2   Real-world Mixed Plastics
Real-world, post-consumer, municipal solid waste mixed plastic obtained from

Belgium collected and recycled by Fost Plus. The collected plastic waste

fraction was flaked, and air separated to produce a sample containing mainly

PE, PP, and PET with a sample size of approximately 5mm.

3.2.3   Waste HDPE
Waste high-density polyethylene (HDPE) was in 2mm pellet form supplied by

Regain Polymers Limited, UK.
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3.2.4   Simulated mixture of Plastics (SMP)
A simulated mixture of plastics (SMP) was prepared to consist of a blended

mixture of virgin plastics and consisted of 60.0 wt. % Polyethylene, 13.0wt. %

Polypropylene, 18.0 wt. % Polystyrene, and 9.00 wt. % PET. The proportions

based on data obtained from a short review of the literature.

3.2.5   Future Simulated mixture of Plastics (FSMP)
A future simulated mixed plastic (FSMP) was prepared to consist of a blended

mixture of virgin plastics and consisted of 62.0 wt.% Polyethylene

(HDPE=19% + LDPE=43%), 8 wt.% polypropylene, 15 wt.% Polystyrene and

15 wt.% PET. The proportions of the plastics in the mixtures adopted from

Delgado [1] and represented a projection of the future range of plastics that

would be found in future MSW plastic fractions.

3.2.6   Waste Electrical and Electronic Equipment (WEEE)
The waste electrical and electronic equipment feedstock consisted of plastics

collected from a waste electrical and electronic equipment recycling plant that

separately recovered the plastics. Plastics from waste refrigerators and

freezers and plastic from waste cathode ray tubes (televisions and computer

monitors) were collected. For the refrigerator and freezer waste (designated

as ‘Fridge’), the compressors were first removed followed by shredding before

various WEEE fraction were separated. Foam insulation removed by air

blowing; ferrous metals removed by electromagnets and non-ferrous metals

and plastics are separated by cyclones. However, complete separation could

not be achieved, and a significant proportion of non-ferrous metal pieces

remained in the sample. The second WEEE sample collected from the

recycling unit that handled the waste cathode ray tubes from old style waste

television sets and computer monitors (designated as CRT). The plastic outer
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casings were removed before the separation of the glass screen from the

electronic components. The circuit board and glass are separated from the

CRT equipment, and the plastic fraction is ground into small flakes of

approximately 10-20mm in size. Representative one kg samples of the two

types of the shredded WEEE plastics were taken using standard sampling

procedures [2].

3.2.7   Catalyst
This section described the various catalysts used; catalysts were grouped into

pellets and powdered as commercial zeolite catalysts mainly used, and a

powdered spent FCC catalyst.  Table 3.3.1 shows the various commercial

catalysts used, and Table 3.3.2 shows the spent FCC catalyst used

3.2.7.1   Pellet Catalysts
Zeolites Y and ZSM-5 were in pellet form of approximate size, 1mm by 5 mm

obtained from Zeolyst International   (USA) and the BDH United Kingdom.

3.2.7.2   Powdered Catalysts
Powdered zeolite Y and ZSM5 catalyst used for the research were all supplied

by Alfa Aesar, United Kingdom. Powdered spent FCC catalyst provided by the

University of Pannonia, Hungary.



97

Table 3.2-1  Zeolite Y and ZSM-5 Catalysts used in the research work

SN Physical
state

Zeolite
structure

Surface area
m2g-1

Si: Al
ratio Cation Na2O

(%)

Microspore
Volume
(cm3g-1)

Mesopore
Volume
(cm3g-1)

Pore
radius

( Å)

1 Pellets Y-Zeolite - 5.4 - - - - 7.8
2 Pellets ZSM-5 - 40 - - - - 5.6
3 Powdered Y-Zeolite 705 5.1:1 H+ 0.15 0.321 0.163 7.55
4 Powdered Y-Zeolite 853 5.1:1 NH4+ 0.14 0.189 0.100 7.15
5 Powdered Y-Zeolite 935 5.2:1 NH4+ 2.93 0.340 0.040 7.62
6 Powdered Y-Zeolite 937 30:1 H+ 0.02 0.390 0.220 7.39
7 Powdered Y-Zeolite 888 80:1 H+ 0.02 0.315 0.221 7.05
8 Powdered ZSM-5 450 23:1 NH4+ 0.03 0.064 0.060 7.21
9 Powdered ZSM-5 452 50:1 NH4+ 0.00 0.167 0.134 7.40

10 Powdered ZSM-5 467 80:1 NH4+ 0.00 0.204 0.117 7.50
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3.2.7.3   Spent FCC
The spent Fluid Catalytic Cracker (FCC) catalyst used was obtained from the

Department of Hydrocarbon and Coal Processing, the University of Pannonia,

Hungry, which was obtained from a petrochemical refinery. Hall et al. [3],

characterized the spent FCC catalyst using X-ray spectrometry for Si:Al,

Micrometric ASAP 2000 for BET surface area; and Analysette 22 grain

analyser for pore size distribution. The detail characteristics of the spent FCC

as determined are shown in Table 3.3.2.

Table 3.2-2 Characteristic of spent FCC catalyst by Hall et al.[3]

FCC catalyst
Average grain size (µm) 59.7
Si/Al ratio 16.4
BET area (m2/g) 148.1
Micropore area (m2/g) 78.9
Micropore area 1.7-300 nm (m2/g) 83.6
Micropore volume 1.7-300 nm
(m3/g) 0.155

Micropore volume (m3/g) 0.032

3.3   Plastic Sample Characterization

3.3.1   Elemental Analysis of Plastics
 The elemental compositions of the plastic sample were carried out using a

CE Instrument (Wigan, United Kingdom) CHNS-O analyser to determine

carbon (C ), hydrogen (H), nitrogen (N) and sulphur. However, oxygen (O)

was calculated by weight difference.
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Figure 3.3-1 The Flash 2000 CHNS-O Analyzer

3.3.2   Thermogravimetric Analysis (TGA)
The temperature indicates the nature and amount of products obtained by

thermal degradation of polymers. Accordingly TGA studies were carried out

to investigate the degradation pattern of the plastic materials under the

reaction conditions to be used for pyrolysis. Therefore, the TGA study was

carried out at medium reaction temperatures of 500 °C with 30 minutes hold

time under nitrogen flow. It was carried out to determine the weight loss of the

plastic as a function of temperature and time. The core components of a

thermogravimetric analyser are a controlled ceramic furnace coupled to

microbalance, and a data recorder [4].

Thermogravimetric analysis (TGA) of the plastic samples were performed on

a Shimazu 50A TGA instrument to determine the thermal degradation

characteristics of the plastics via plastic weight loss of the sample in relation

to increasing temperature. The procedure involved heating approximately 15

mg of the plastics (in nitrogen) at 10 °C min-1 to a final temperature of 500 °C;
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the sample held at the temperature for 30 min. For the TGA, the plastic

samples were pulverized into 500 nm particles in a cryogenic mill to ensure

that a representative,  homogeneous sample was presented to the TGA.

Figure 3.3-2 The 50A Thermogravimetric Analyzer Instrument

Figure 3.3-3 A typical TGA-DTG plot of Polyethylene
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3.4   Two-stage pyrolysis-catalytic fixed bed bench reactor

A two-stage pyrolysis-catalytic fixed bed bench reactor was used in this study

to conduct the pyrolysis-catalysis of the various waste plastics.

3.4.1   Reactor Set-up & Experimental procedure
The reactor consisted of two stages with a downdraft configuration. The

reactor was designed to test pyrolysis-catalysis process of the different plastic

samples. The pyrolysis process takes place within the first stage; while the

catalysis was carried out downdraft in a second stage. The reactor was made

up of a vertical stainless steel cylindrical tube of length 480 mm and an internal

diameter 39 mm and both stages were thermally heated independently by two

1.5 kW tube furnaces. The reactor divided into two section; with pyrolysis

heated zone, and catalyst heated zones. Two thermocouples were located via

the reactor cover lid to allowed control of the temperature; the heat transfer

between the two stages was negligible. The two furnaces were mounted in a

vertical arrangement with pyrolysis in the upper stage and catalysis in the

lower stage. The catalytic section contained stainless steel mesh supporting

quartz wool on top of which was weighed an amount of sand for thermal

pyrolysis or catalyst for catalytic pyrolysis. The plastic sample was weighed

into a stainless steel crucible (78 mm length and 24 mm diameter) which was

suspended inside the pyrolysis reactor. A schematic diagram of the laboratory

bench scale two stage fixed bed pyrolysis-catalysis reactor system is shown

in Figure 3.5-1.
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Figure 3.4-1 Schematic diagram for two stage Pyrolysis-catalysis reactor

In the experimental procedure, the bottom catalyst furnace was controlled and

heated to 500 °C (or varying temperature) and kept constant at that

temperature. Then the top pyrolysis furnace was switched on and the plastic

sample was heated at a heating rate of 20 °C min-1 to a temperature of 500

°C and then held constant for a 30 minutes hold time and followed by 20

minutes gas collection time. Nitrogen (200ml min-1 flow rate) was used as the

carrier gas to provide an inert atmosphere and to sweep the evolved pyrolysis

gases from the reactor. Hence, it also served to curtail any minor reactions of

the gaseous products. Condenser system: three condenser system consisting

of solid dry ice-cooled condensers. The condenser system was connected to

a gas sample bag. The loss of volatiles was prevented by sealing the

Furnace

Furnace

Thermocouple

Plastic

Nitrogen

Catalyst

Condenser
System

Gas Sample
Bag

Thermocouple
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condenser and tubes with parafilm at the end of the experiment; and

condensers are weighed immediately the experiment finished.

The gas bag was taken immediately at an end of each experiment for gas

analysis by gas chromatography (GC) [5].

Figure 3.4-2  Assembled and main part of the pyrolysis-catalysis reactor

3.4.2   Experiment Reproducibility and Selection of process
conditions

The reactor was fabricated in-house (internally) at the Energy Research

Institute Leeds University, and some test experiments were performed for

initial validation and optimization in order to establish the most suitable

operational condition for the pyrolysis-catalysis process.  During the test

experiments virgin plastic samples and a bed of sand was initially used. The

amount of plastic sample was varied between 2 and 4 grams; an amount was

established considering the high density of the plastic material and the size of
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the bolt\crucible. The heating rate of 10 °C min-1 and 20 °C min-1 was tested

under a nitrogen flow rate of 200ml min-1.

3.5   Characterization of materials and products

3.5.1   Analysis of products gases

The gas products collected in the gas bag were routinely and immediately

used for both permanent and hydrocarbon gas analyses. The purpose of using

the analytical technique was to acquire qualitative and quantitative information

about the product gas composition. The gas chromatography technique

involved an injection of the sample into the GC via an injection port. A carrier

gas chemically inert (argon, helium or nitrogen) was used to transport the

sample through the oven and via suitable analytical column packed with a

mesh of specific characteristics. Lastly, the eluted sample reached the

detection system which was either a flame ionization (FID) or thermal

conductivity detector (TCD). The major constituents of a GC comprise a

sample injection system, column, oven, thermostat, data interpretation

system, and a flow meter; are shown in Figure [6].
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Figure 3.5-1 General schematic diagram for typical GC [7]

3.5.2   Permanent gases
For permanent gases, the analysis was performed using a Varian CP-3380

GC with thermal conductivity detector (TCD) equipped with a 2m-long column

with a 2 mm diameter packed with 60-80 mesh molecular sieve. The carrier

gas for the GC/TCD was argon gas. The column oven temperature was held

constant at 40 °C during the analysis, and the temperature of the injector and

detector was 120 and 160 °C respectively. The GC oven temperature was

isothermally held at 30 °C; the injector and detector temperature were set at

120 °C and the filament temperature at 160 °C.

Carbon dioxide was analysed on a Hysep 80–100 mesh column with argon

carrier gas. The temperature of the detector and the filament was 120 °C and

160 °C respectively.
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Figure 3.5-2 GC-/TCD for CO2 gas analysis

3.5.3   Hydrocarbon gases

Hydrocarbon gases from C1 to C4 were  analysed using a Varian CP 3380 GC

with a flame ionization detector (FID) equipped with a 2m long column with a

diameter of 2mm and packed with 80-100 mesh size Haysep was used. The

injector was set and held at 150 °C while the detector temperature was 200

°C. The oven temperature was programmed to be held at 60 °C for 3 minutes,

then heating up to 100 °C with a rate of 10 °C min-1, further held for 3 minutes

and finally ramped to at 20 °C min-1. The oven temperature was set at 60 °C

for 3 minutes, then the temperature was increased up to 100 °C at 5 °C min-1

heating rate and held for 3 more minutes; lastly the temperature was ramped

up to 120 °C at 20 °C min-1 heating rate and held for 17 minutes.
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Figure 3.5-3 GC-FID for Hydrocarbon gases analysis

3.5.4   Calibration of Gas Chromatography (GC) Analysis
The standard gas mixture was used to calibrate the gas chromatography to

ensure accurate quantitation. The standard gases were used to make

calibration curves and used as a reference for compositional calculation of

each gas. Thus, for hydrocarbons the calibration curve was made using two

standard gas for saturated (alkanes) and unsaturated (alkenes) hydrocarbons

both balanced with nitrogen. Accordingly, the standard alkane’s mixture

contains approximately 1 vol. % each of CH4,  C2H6,  C3H8 and C4H10. The

standard alkenes mixture contains 1 vol. % each of ethane (C2H4), propene

(C3H6) and 2vol. % 1-3 butene-butadiene (C4H8).
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Figure 3.5-4  A GC response peaks for a standard gas mixture of hydrocarbon
(alkane) gases.

Figure 3.5-5  A GC response peaks for a standard gas mixture of hydrocarbon
(alkene) gases.
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However, for permanent gases the calibration curve was created by using the

standard gas mixture containing 1 vol. % each of H2, O2, CO, CO2 and 96 vol.

% N2.

Figure 3.5-6  A GC response peaks for a standard gas mixture of permanent
gases (H2, O2, N2 and CO).

The procedure for injection of standard gas was the same as describe in the

sections 3.6.1.1 and 3.6.1.2 using appropriate the GC for hydrocarbon and

permanent gases separately. Hence, 1 ml of each standard was injected into

the GC. The voltage signal obtained for each gas component was fed

manually into the GC software (a digital integrator); which in turn gave a

response factor for each component.

3.5.5   Reproducibility of the standard gas injection

3.5.5.1   Permanent Gases
Permanent gases standard injection is shown in the table 3.6.1. The

percentage standard deviation shows the values are with minimal errors.
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Table 3.5-1 Peak Area values for the standard of permanent gases

Run Hydrogen Nitrogen CO
1 595068 4457732 48776
2 595068 4457732 48776
3 595068 4457732 48776
4 595068 4457732 48776
5 595068 4457732 48776
6 586410 4669621 48370
7 595068 4457732 48776
8 595068 4457732 48776
9 595068 4457732 48776

Mean 594106 4481275 48730.89
Rel. Standard Deviation (%) 0.49 1.58 0.28

3.5.5.2   Hydrocarbon gases
Similarly, the two separate standard hydrocarbon gases were injected. The

Table shows the injection of the standard gases; the mean values and percent

standard deviation indicate the minimal error.
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Table 3.5-2 Peak Area values for the standard of hydrocarbon gases
Run Methane Ethene Ethane Propene Propane Butene+Butadiene Butane

1 543760 933754 970690 1310338 1405587 3277859 1842283

2 543760 933754 970690 1310338 1405587 3277859 1842283

3 543760 933754 970690 1310338 1405587 3277859 1842283

4 543760 933754 970690 1310338 1405587 3277859 1842283

5 543760 933754 970690 1310338 1405587 3277859 1842283

6 511183 853996 895441 1178473 1295293 3057853 1707504

7 511183 853996 895441 1178473 1295293 3057853 1707504

8 543760 933754 970690 1310338 1405587 3277859 1842283

9 543760 933754 970690 1310338 1405587 3277859 1842283

Mean 536520.7 916030 953968 1281035 1381077 3228969 1812332

Rel. Std

Deviation

(%)

2.68 3.84 3.48 0.45 3.52 3.00 3.28

3.5.6   Calculation of Gas Concentration
The calculation of the volume percentage of the gas products was made using

the results produced by the analysis of standard gases. The area values

recognized by the digital integrator by converting the electrical signal from the

detector were used to obtain response factors (RFs) for each species in the
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standard gases. The following equation was used to calculate response

factors;

Equation 3.5-1

After obtaining RFs for all the gases, the volume percentages of each

species in the gas effluent obtained from the experiments can be calculated

as;

 Equation 3.5-2

After the volume % of each gas, species were obtained the ideal gas equation

was used to calculate the mole of each gas.

Equation 3.5-3

Where n is the number of moles (mol.); V is the volume obtained; P and T are

pressure and temperature respectively; R is gas constant (8.3144 J K-1mol-1

[8]. A spreadsheet was developed to calculate accurately results and

corrected values for the large amount data collected. The spreadsheet was

designed to make gas data analysis easy and error free. The various

parameters included in the spreadsheet were; calculation of gas

concentration, corrected nitrogen values, oxygen correction, and mass

balance. Hence, the sheet gave useful information from data input such as;

volumes, ratio of different gases, moles and, weight emitted for individual and

total gases.
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3.5.7   Liquid Products Analysis

The condensed liquid products of plastic pyrolysis were collected in the three

condenser system. The liquid product weight was obtained by weight

difference, i.e. weight of the three empty condensers subtracted from the

weight of the condenser with the liquid products.

3.5.7.1   Sample Preparation

The liquid product was dissolved in a dichloromethane (DCM) solvent and

stored in a freezer at end of the experiment or analysed immediately with liquid

injection using a Varian 430 GC.

3.5.7.2   Gas Chromatography/ Mass Spectrometry (GC-MS)
The liquid product i,e, oil or wax dissolve in dichloromethane were qualitatively

analysed using a gas chromatography coupled to a mass spectrometer (GC-

MS). This device combines the benefit of the high resolution separation

components from GC with the very sensitive and selective detector of the

mass spectrometer. Principally GC acts as the separation technique, whereas

MS identifies the compounds eluted from the column [9].The mass

spectrometer measures the relation of mass and charge ratio of the eluted

samples. The interaction between the GC and the mass spectrometer

proceeds via an inlet system (interface) that must provide a suitable pressure

(10-5 to 10-8 torr) by using a vacuum system.

The identification of individual components is achieved by ionising and

fragmenting them. Thus, ionisation of the molecule is vital for detection since

the analyser separates ions using their charges. For example, ethyl benzene

would generate four major ions to be detected. So, the first would be the ionic

form of ethyl benzene itself, the parent species, this would give an MW
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spectrum line 106. Fragmentation would likely break the ethyl benzene up into

a variety of species. These species are a benzyl ion (MW of 77), an ethyl ion

(MW of 29) and methyl ion (MW of 15). Therefore, these ions and their relative

concentrations are entirely indicative of the ethyl benzene species [9].The

detailed description of how this technique works is reported in Skoog [10]

GC-MS analyses were carried out using a Varian CP3800 gas chromatograph

coupled to a Varian Saturn 2200 GC-MS mass spectrometer. An aliquot of

2µL of liquid sample dissolved in DCM injected via autosampler system into

the GC injection port at a temperature of 290 °C. The oven programme

temperature was 40 °C for 2 minutes, and then the temperature ramped into

280 °C at 5 °C min-1 heating rate and held for 10 minutes. The transfer line

temperature maintained at 280 °C; the manifold was 120 °C, and the oil trap

temperature was kept at 200 °C. A typical chromatogram for thermal pyrolysis

of pure HDPE shown in Figure 3.5-7.

Figure 3.5-7 GC-MS chromatogram for thermal Pyrolysis of PE
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3.5.7.3   Gas Chromatography FID Liquid Injection

The use of gas chromatography FID has wider acceptance as an analytical

technique. It used for identification and quantification of the array of

compounds identified in the plastic pyrolysis oils. Moreover, use of capillary

column gas-liquid chromatography was well established [11].

The external standard method was used for identification and quantification of

organic compounds. Skoog [11], reported that quantitative chromatography is

built upon a comparison of either the height or the area of an analyte peak

with that of one or more standard g [10]. Hence, both of these parameters vary

linearly with concentration provided the conditions are adequately controlled.

A range of the standard was prepared; this was done as the high-value

chemicals in the sample had been known. The standard helps to quantify the

high-value chemicals. Hence, the standard for a range of simple aliphatic and

aromatics were obtained commercially from Aldrich, Poole, UK.

The pure aromatic standards prepared from the compound that were found or

known to be in a significant amount and indicative of a group of compounds.

The Table 3.6.3 shows the various standard aromatic and PAH compounds

used with their retention times.

Table 3.5-3 the various standard aromatic and PAH compounds used with
their retention time

Compound formula Molar mass g
mol.-1

Retention time
(min)

Benzene C6H6 78.112 4.476
Toluene C7H8 92.138 8.728
Ethylbenzene C8H10 106.165 12.450
m/p-Xylene C8H10 106.165 12.897
Styrene C8H8 104.149 13.647
o-Xylene C8H10 106.165 13.813
Alphamethylstyrene C9H10 118.176 16.925
Betamethylstyrene C9H10 118.176 17.491
s-Limonene C10H16 136.234 18.941
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Compound formula Molar mass g
mol.-1

Retention time
(min)

Indane C9H10 118.176 21.050
1,2,3,4 Tetra methylbenzene C10H14 134.218 23.382
Naphthalene C10H8 128.171 26.635
2-Methylnaphthalene C11H10 142.197 28.825
Biphenyl C12H10 154.208 29.333
2-ethylnaphthalene C12H12 156.224 29.617
1,4-dimethylnaphthalene C12H12 156.224 30.433
2,6,-demethylnaphthalene C12H12 156.224 30.498
2,2-diphenylpropane C15H16 196.292 33.002
Bibenzyl C14H14 182.261 33.953
Fluorene C13H10 166.219 35.534
1,3-diphenylpropane C15H16 196.288 38.315
Phenanthrene C10H14 178.229 39.856
1-Phenylnaphthalene C16H12 204.094 40.481
o-Terphenyl C18H14 230.304 43.928
Fluoranthene C16H10 202.251 44.906
Pyrene C16H10 202.251 45.396
m-terphenyl C18H14 230.304 53.988
1-3-5-triphenylbenzene C24H18 306.420 59.434

Therefore, to obtain a calibration curve, the standards were accurately diluted

to the range 50-1000 ppm. All prepared standard were from Aldrich. The

calibration curve was produced for each compound by injecting 2µL of each

concentration (20 ppm, 40 ppm, 80 ppm, 100 ppm) into the GC-FID

equipment. An example of a calibration curve plot for the standard compound

injected is shown in Figure 3.6.8.
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Figure 3.5-8  Calibration curve for the standard aromatic and PAH injected into
GC-FID

The oil was quantitatively analysed by liquid injection GC using a Varian 430

Liquid GC with flame ionization detector (FID). The gas chromatograph was

equipped with a split/split less injection port. The analysis was carried out on

a ZB-1 capillary column (30 m × 0.53 mm i.d., 0.5 μm ;) .The liquid phase was

100% Dimethyl siloxane. Nitrogen was used as carrier gas with a constant

flow of 1.0 mL min-1. The injection volume was 2.0 μL. The column was

temperature programmed from 40 to 310 at 5 °C min–1 heating rate. The

system was calibrated with aromatic and polycyclic standards for aromatic and

PAH analysis, while prepared aliphatic hydrocarbons standard was used for

aliphatic hydrocarbon analysis.
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Figure 3.5-9  Peak response for standard aromatic and PAH injected into GC-FID

The oil sample was prepared using dichloromethane (analytical reagent

grade) to approximately 2000 ppm [5].

The GC-FID system used was controlled by computer with the aid of software.

On-column split less injection system was used. Grob and Eugen [12] reported

that the on-column injection system greatly reduces errors associated with the

other injection methods. The reduction in error is achieved by inserting the

sample directly onto the column.

3.5.7.4   Simulated Distillation

Boiling point distribution properties of plastic pyrolysed oil is essential for its

potential use as fuels. Hence, the distribution of oil with increasing

temperature indicate the amount of oil distributed between the range  of

distillation appropriate for processing of different oil based  products. The use

of simulated distillation for pyrolysis oil has been   reported by a number of

authors [5, 13-16].
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The distillation curve provides a platform for comparative fuel analysis of

commercial fuel and pyrolysed oil. Although the method has a limitation it

helps in the study of the fuel properties of the pyrolysis oil. Commercial

unleaded gasoline was used for comparison.

The simulated distillation was determined using the GC-FID Varian 430

analysis data described above. The computation uses the retention time for

all n-alkanes in the analytical range, and the boiling point of the n-alkanes.

The combined peak areas for all peaks with retention times between the n-

alkanes were used as and estimation of the products with same carbon

number as alkanes. Therefore, by estimating a constant response factor for

all the compounds integrated and the boiling point of the n-alkanes, the

concentration was calculated. A normalised simulated distillation curve,

showing the quantity of the oil distilled against the temperature was produced

for comparison with the fuel oils [9].

3.5.8   Characterization of Catalysts

 This section describes the various techniques used to characterize the

reacted and /or fresh catalyst. Thus, some of the techniques were used to

characterize reacted catalyst and compare some properties before and after

the pyrolysis-catalysis process. The various analytical techniques used in this

research work were as follows;

3.5.8.1   Surface Area by Brunauer-Emmet-Teller  (BET) Method

 The BET method determination of surface area was carried out only for fresh

catalysts. The fresh catalysts were analysed to determine their surface area

and porous properties via nitrogen adsorption at liquid gas temperature.
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Likewise, the surface area might be also studied using other techniques such

as adsorption from solution and by the heat of adsorption [17]

The ultra-fine powders and porous materials surface area are analysed using

Brunauer-Emmet-Teller linear equation which was as follows ; [18] [19].

Equation 3.5-4

Where p0   refers to the saturation pressure, V is the amount of gas adsorbed

at the determined P/P0 pressure; Vm is the monolayer capacity and C is an

empirical constant. Therefore a linear trend can be built using point-by-point

adsorption data from the multipoint analysis.

The surface area analysis was carried out using a NOVA 2200e series

instruments. The samples were degassed using a degassing unit of the

instrument. About 100mg of each sample was degassed for 3h at 300 °C

under N2 atmosphere. The degassing was carried out in order to remove all

previously physisorbed matter from the adsorbent surface  [18]. A full isotherm

was carried out for each sample.
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Figure 3.5-10  BET surface area and pore size analyzer NOVA 2200e

3.5.8.2   Determination of microspore volume by Dubinin-
Radushkevich (DR) method

Further information apart from the BET linear equation might be obtained from

adsorption-desorption studies, using other calculation methods. The Dubinin-

Radushkevich (DR) method, relates the temperature, relative pressure and

energy with the adsorbed amount of gas per unit of micropore volume. The

calculation of micropore volumes, uses the equation below [20, 21].

2] Equation 3.5-5
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2] Equation 3.5-6

With x= p/p0, characteristic energy for a given fluid system (E), the amount of

gas adsorbed (W), micropore volume (W0), temperature in kelvin ((T) and

universal gas constant (R). Moreover, the adsorbed volume (Vads; cm3 STP g-

1) could be plotted against the {log(x)}2 or {log(p/p0)}2. Hence, the relationship

gives a typical straight line from which the volume of gas adsorbed can be

obtained.

 Thus, from the Figure the ‘Y intercept’ is usually used to compute the

micropore volume [Vmicro.]. Hence, the quantity of gas adsorbed at relative

pressures closer to one correspond to the total amount adsorbed at both

micropores ( generally filled at low relative pressure), and mesopore volume

(generally filled at relative pressure above 0.2) [22]. Hence, the mesopore

volume value can be computed by subtracting the micropore volume

(calculated from DR equation) from total amount of gas adsorbed at relative

pressure p/p0   [22]).

3.5.8.3   Barrett, Joyner & Halenda (BJH) method for total pore volume
and pore diameter

The Barrett, Joyner & Halenda (BJH) method is used to determine the total

pore volume and pore diameter. The method is aimed at securing information

about porous adsorbents with a wide range of pore size. The technique

accounts for capillary condensation in pores, based on the Kelvin equation.

The total excess adsorption in each pore is given by a surface layer t(P) plus

a pore-filling terms; Thus the pore is filled as the pressure satisfied the

following expression in equation [23] .
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Equation 3.5-7

Where rc = r-t(p) and r is the radius of the pore. VL is the molar volume of the

liquid, γ is the surface tension, and p0 is the vapour pressure [23].

3.5.8.4   Temperature Programmed oxidation (TGA-TPO)

The reacted catalysts from the pyrolysis-catalysis of plastics were analysed

using thermogravimetric method known as temperature programme oxidation

(TGA-TPO). The analytical technique is suitable for analysis of the reacted

catalyst and coke deposited using TGA method which was described

previously in section 3.4.2 for plastic characterization. In this work a

thermogravimetric Mettler Toledo (TGA\DSC) instrument was used; about 20

mg of the reacted catalysts was weighted into the alumina crucible which was

transferred into auto sampler. The TGA was programmed to heat-up at

heating rate 15 °C min-1 to a temperature of 800 °C using air with a flow rate

of 50 ml min-1 and dwell time of 10 min. The change in catalyst weight denoted

the combustion of coke deposited over the catalyst surface used. The

variation of weight was detected by the ultra-microbalance and recorded by

the computer using software. Thus, with the aid of the software, both the

thermo gravimetric (TGA-TPO) curve and differential gravimetric (DTG-TPO)

were obtained. Two main stages were identified from TPO studies, around 80-

100 °C moisture volatile are lost and above 390 °C might be the identified

carbon combustion depending on the sample studied.
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Figure 3.5-11 Toledo Mettler TGA-DTS

3.5.8.5   Scanning Electron Microscopy (SEM)
The microscopic technique was used to characterize both fresh and reacted

catalyst. The image of morphologies before and after reaction was used to

further characterize the catalyst. The major component of scanning electron

microscope (SEM) technique is the electron column which consists of an

electron gun and mainly two electron lenses, other components include the

control console consisting of a cathode ray tube (CRT), screen, and computer

system that allows the control the electron beams. An energy filter might be

used, allowing the electron beam to be dispersed according to the electron

energy. Thus electrons can pass through a diaphragm to form the final image

[24].
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Figure 3.5-12 Schematic diagrams for SEM

http://zenofstem.com/project/using-the-sem/03-05-2015 22:22

In this work a high resolution scanning electron microscope (LEO 1530),

coupled to an energy dispersed X-ray spectrometer (EDXS) was used to carry

out SEM and SEM-EDXS studies. The catalyst sample was prepared by

applying a metallic coating which was reported to be necessary for charge

dissipation to improve [25]. Thus, the catalyst was coated with Pt/Pd to

produce a 5.0nm layer.
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(a)  Coater (b) LEO SEM

Figure  3.5-13 (a) Coater and (b) LEO SEM
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Chapter 4 THERMAL AND CATALYTIC PYROLYSIS OF
WASTE PLASTIC FROM ELECTRICAL AND ELECTRONIC
EQUIPMENT

This chapter describes the thermal and catalytic pyrolysis of waste plastic from

electrical and electronic equipment in two stage catalysis-pyrolysis reaction

system.

4.1   Introduction

A two stage down draft pyrolysis-catalysis fixed bed batch reactor was used

to carry out a series of experiments. The experiments were carried out using

pyrolysis or pyrolysis-catalysis reaction system as described in Chapter 3,

Section 3.3. Waste electric and electric equipment (WEEE) whose preparation

was described in Chapter 3, section 3.2.6 and; two major component of WEEE

plastic HIPS and ABS in section 3.2.1. These materials were used as raw

material for the work. However, two zeolite catalysts; zeolite Y and ZSM-5

catalysts were tested during the catalytic cracking stage to promote

cracking/reforming reactions. Hence, the activities of the two zeolite catalysts

were measured in terms of their influence on the product yields as well as gas

and liquid compositions. However, the results obtained were compared with

non-catalytic pyrolysis experiment carried out using a bed of sand.

4.2   Elemental composition of the WEEE and characteristic of
catalyst

This section describes both the elemental composition of WEEE plastic used

and, characteristic properties of the two zeolite catalysts tested.
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4.2.1   Elemental composition of the WEEE

The elemental analysis of WEEE plastic was carried out with CE Instrument

Flash EA 1112 Elemental Analyzer as described in Chapter 3 Section

3.4.1.The result of the elemental analyses for the four plastic represented in

Table 4.2-1

Table 4.2-1 Elemental analysis of the plastics (wt. %)

High impact

polystyrene

(HIPS)

Acrylonitrile-

butadiene-

styrene

(ABS)

Plastics from

Waste Cathode

Ray Tubes (CRT)

Plastics from

Waste

refrigerators

(Fridge)

Carbon 80.5 72.3 81.6 71.4

Hydrogen 7.30 6.40 7.50 7.00

Nitrogen 0.20 4.10 5.50 1.80

Oxygen 0.80 2.80 3.90 4.70

Bromine 7.60 11.2 <0.01 <0.01

Chlorine - - 0.26 1.30

Antimony 3.60 3.20 - -

Ash - - 1.30 13.8

The halogen elements (Br and Cl) and antimony were detected in all or two of

the plastic samples. The high bromine content of the HIPS and ABS plastic

samples reflects the high content of brominated flame retardant added to the

plastic. The use of brominated compounds in flame retarder is well known and

reported [1, 2].However, antimony is added as antimony trioxide as a synergist

to aid the effectiveness of the flame retardant. Zhang et al. [1], highlighted that

a series of reaction between antimony trioxide and hydrogen halide produce
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antimony trihalide and various antimony oxygen halide compounds. Thus,

oxygen is excluded from the front of the flame, and the antimony oxygen

halides absorb the quantity of heat. Interestingly, the bromine content of the

plastics from the waste televisions and computer monitors and fridge and

freezers plastics samples was very low, below the detection limit of the

analysis procedure. This was most likely due to dilution of the brominated

plastic waste with non-brominated Fire-retardant plastics. The ash content of

the plastics derived from the recycled WEEE was high, particularly from the

plastic sample produced from waste fridges and freezers. The plastic from

fridge and freezer commonly consisted of mainly metals carried over from

poor separation of the materials and plastics.

4.2.2   Characteristic properties of the zeolite catalysts

The characteristic properties of catalysts play a vital role in the catalytic

pyrolysis of polymeric materials [3, 4]. The catalysts used were Y zeolite and

ZSM-5 zeolite which were in pellet form of approximate size, 1 mm by 5 mm.

The Y zeolite catalyst had a Si-Al ratio of 5.4, the pore size of 7.8 Å and high

acidity, the ZSM-5 zeolite catalyst had a Si-Al ratio of 40, the pore size of 5.6

Å and lower acidity.

4.3   Pyrolysis-catalysis results

4.3.1   Product Yields and Gas composition

The mass balance of the products was calculated using the Excel spreadsheet

developed and described in Chapter 3 Section 3.6.1.4. The results for the

mass balance and product yields (gas, liquid and char) presented in Figure

4.3-1and Figure 4.3-2.
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Figure 4.3-1 Product yield from the pyrolysis and pyrolysis-catalysis of CRT and

Fridge plastics with Zeolite Y and ZSM-5 catalysts.

Figure 4.3-2  Product yield from the pyrolysis and pyrolysis-catalysis of HIPS
and ABS plastics with Zeolite Y and ZSM-5 catalysts.
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The product mass balances were all close to 100 wt%, with the main product

being the pyrolysis oil, especially for CRT and fridge in Figure 4.3-1.High oil

yield and, use of three dry-ice cooled condensers system had helped to

improve the mass balance.Similarly, mass balance >95% reported in the

pyrolysis of PS and PS or styrene containing WEEE [5-7].

The bulk component of the plastic used in this work content PS or styrene in

their main polymeric structure. Hence, Marczewski et al. [8], described the

chemistry of PS transformation. They identified two main routes for the

transformation of polystyrene as scheme 1 and 2.This begins with the

transformation of the polymeric chain into the radical, cationic or anionic state

(scheme 1).

Figure 4.3-3  Degradation or transformation of Polystyrene scheme 1  [8]



134

Thermal activation results in the radical species formation while cationic or

anionic species counterparts a specific catalyst. Hence, a Lewis acid catalyst

would remove a hydride anion (H-) from the benzylic position in PS with III

order cation formation [9]. Consequently, Bronsted acid type of catalyst does

protonate the aromatic ring attached to the aliphatic chain of the PS resulting

in benzene elimination (dealkylation reaction) and formation of a polycation

[10]. But, the basic catalyst activates PS through protonation [11]. The β-

cleavage of C-C bond located in the aliphatic chain meanwhile is the next step

of the transformation. Thus, new radical, anions or cations activate in the

further reaction are then formed (scheme 2) [8].

Figure 4.3-4  Degradation or transformation of Polystyrene scheme 2  [8].
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Consequently, the radical, anions or cations undergo depolymerization

leading to styrene and shorter polymer being II order radicals, cations or

anions.

Table 4.3-1  Gas composition for the pyrolysis and pyrolysis-catalysis
of HIPS and ABS plastic waste with Zeolite Y and ZSM-5 catalysts

High-impact polystyrene
Acrylonitrile-Butadiene-styrene

(ABS)(HIPS)

Gas
Composition No Y

zeolite
ZSM-5
zeolite

No
Y zeolite ZSM-5 zeolite

(Vol. %) Catalyst Catalyst
H2 60.6 31.0 37.3 69.7 45.7 49.5
CH4 16.6 20.8 8.80 12.9 18.4 11.8
C2H4 5.90 18.3 33.1 3.70 9.30 13.5
C2H6 6.90 7.00 3.60 5.60 6.50 5.10
C3H6 4.20 11.2 13.8 2.60 17.2 15.1
C3H8 2.70 7.60 0.00 2.00 0.00 0.00
C4H8 1.60 3.80 2.30 2.20 1.20 3.30
C4H10 1.40 0.50 1.00 1.40 1.60 1.70
C2-C4 22.8 48.2 53.9 17.5 35.9 38.7
Alkanes 27.6 35.9 13.2 19.8 26.6 18.6
Alkenes 11.7 33.3 49.2 8.50 28.0 31.9
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Table 4.3-2 Gas composition for the pyrolysis and pyrolysis-catalysis of
CRT and Fridge plastic wastes with Zeolite Y and ZSM-5 catalysts.

Television & PC monitor
plastics

(CRT)

Refrigerator plastics

(Fridge)

Gas composition

(Vol. %)

No

Catalyst
Y zeolite

ZSM-5

zeolite

No

Catalyst
Y zeolite

ZSM-5

zeolite

H2 37.6 28.1 35.2 35.1 21.7 19.2

CH4 26.7 16.2 11.6 16.1 19.7 10.9

C2H4 10.9 19.5 21.8 12.8 21.8 32.3

C2H6 9.20 7.50 5.50 11.8 8.70 5.6

C3H6 7.80 19.3 19.5 12.7 15.9 23.1

C3H8 2.00 6.20 0.00 2.70 6.40 0.00

C4H8 3.20 1.70 4.3 5.20 3.30 6.30

C4H10 2.60 1.40 2.1 3.70 2.40 2.60

C2-C4 35.7 55.7 53.2 48.8 58.5 69.8

Alkanes 40.5 31.3 19.2 34.3 37.2 19.1

Alkenes 21.9 40.5 45.6 30.7 41.0 61.7

Table 4.3-1 shows that the main gases were hydrogen, methane and

ethane and lower concentrations of other hydrocarbons. However, without the

presence of a catalyst, the CRT plastics produced an oil yield of 84.0 wt%.

But with the zeolite catalysis produced a decrease in oil yield to 80.0 wt% for

the Y zeolite and 77.5 wt% for the ZSM-5 catalysts.  There was a consequent

increase in gas yield, mainly the alkene gases, particularly ethene and

propene. Similar results were found for the Fridge plastics.   The char included

the carbonaceous pyrolysis char and ash derived from the metal

contamination.  The ash content of the fridge sample (Table 4.2-1 ) was high
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at 13.8wt.% which would transfer to the solid char product resulting in a higher

solid residue; result for the fridge sample compared to the CRT sample which

only had 1.30wt.% ash content.

Figure 4.3-2 and Table4.3-2 shows the product yield and gas

composition respectively for the pyrolysis and pyrolysis-catalysis of high

impact polystyrene (HIPS) and acrylonitrile-butadiene-styrene (ABS) with the

Y zeolite and ZSM-5 catalysts.  As with the WEEE plastics, the largest product

for uncatalyzed pyrolysis was the pyrolysis oil at 84.0 wt% for HIPS and 66.5

wt% for ABS. The influence of the addition of a zeolite catalyst to the process

was to decrease the oil yield and increase the gas yield for the HIPS. But there

was less of an effect on the overall product distribution for the ABS plastics.

Table 4.3-2 shows there were some changes in gas composition in the

presence of the catalysts, in relation to increased concentrations of alkene

gases, mainly ethene and propene.  The char from HIPS and ABS would

contain some of the residual antimony trioxide added as a synergist with the

organo-bromine fire retardant compounds.  The presence of the fire retardant

would also influence the yield of oil from pyrolysis and also increase the char

from the pyrolysis of the plastic.The elemental analysis of the HIPS and ABS

(Table 4.2-1) shows that the bromine content, from the addition of brominated

flame retardant, was significantly higher for the ABS sample (11.8 wt%)

compared to the HIPS sample (7.6 wt%). The flame retardant mechanism of

brominated flame retardants operates through the release of bromine free

radicals at a lower temperature of thermal decomposition than the host plastic,

preventing the formation of flammable gases. High energy OH and H radicals,

formed during combustion, are removed by reaction with the released
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brominated species in the gas flame phase [12]. The reaction considerably

slows or prevents the combustion process, thus reducing heat generation and

consequently the production of further pyrolysis vapours which later condense

to produce the pyrolysis oil. Also, the presence of brominated flame retardants

in waste plastics has been shown to increase the yield of char [13]. Therefore,

the higher bromine content would produce more charring reactions resulting

in a higher solid product yield and also lower oil yield for the ABS compared

to the HIPS.

4.4 Oil  Composition

The pyrolysis oils were analysed using GC-FID 430 Varian as described in

chapter 3 section 3.6.3.2.This section discusses the oil composition produced

by various pyrolysis experiment run.

Figure 4.4-1 shows the single ring to four-rings aromatic compounds present

in the oils derived from the pyrolysis and the pyrolysis-catalysis of CRT and

Fridge plastics with the Y zeolite and ZSM-5 catalysts.  The oils are dominated

by single ring aromatic compounds with lower concentrations of 2-4 ring

polycyclic aromatic hydrocarbons (PAH).  The addition of the catalysts

resulted in only a slight increase in the single ring aromatic compounds in the

product oils. Similarly,  Figure 4.4-2 shows aromatic compound distribution

according to their ring number for HIPS and ABS plastics. The same trend

observed as in CRT and Fridge with the addition of both zeolites catalysts.

However, Figure 4.4-3 shows that the relative concentrations of the main

aromatic compounds present in the oil showed significant differences due to

the effects of the catalysts.Styrene dominated the uncatalysed pyrolysis oil.

Also present in high concentration are single ring toluene and ethylbenzene.
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At lower concentration were two-ring naphthalene, alkylated naphthalenes

and three or more ring PAH such as pyrene. Similarly,  Figure 4.4-4 the

relative proportion of the main aromatic  compound   for HIPS and ABS

plastics pyrolysed oils. The influence of the zeolites  catalysts was in the same

trend  as in CRT and Fridge .

Figure 4.4-1 Aromatic compounds (AR) composition for oil from pyrolysis of CRT
and Fridge plastics ( 1R = single ring; 2R = two rings; 3R = three rings; 4R =
four rings aromatic compounds)
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Figure 4.4-2  Aromatic compounds (AR) composition for oil from pyrolysis of
HIPS

and ABS plastic (1R = single ring; 2R = two rings; 3R = three rings; 4R = four rings
aromatic compounds)
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Figure 4.4-3 Relative proportions of the main aromatic compounds in the oil
derived from the pyrolysis of CRT and Fridge plastics

(a) CRT

(b) Fridge
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Figure 4.4-4 Relative proportions of the main aromatic compounds in the oil
derived from the pyrolysis of HIPS and ABS plastic

The addition of the Y zeolite to the CRT pyrolysis-catalysis process for

both the CRT and the Fridge plastics resulted in a marked decrease in styrene

concentration in the product oil and a consequent marked increase in benzene

and toluene.The influence of the zeolite ZSM-5 catalyst on the pyrolysis of the

CRT and fridge plastics was less than that of the Y zeolite catalyst, with less

reduction of the styrene concentration and a lower increase in toluene.

(b ) ABS

(a) HIPS
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Figure 4.4-5  Gas Chromatograms for (a) the product oil from pyrolysis catalysis of HIPS with ZSM-5 zeolite catalyst, (b) the
product oil from pyrolysis catalysis of HIPS with Y zeolite catalyst and (c) the pyrolysis oil derived from uncatalysed

pyrolysis of HIP
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Figure 4.4-6  Gas Chromatograms for (a) the product oil from pyrolysis catalysis of ABS with ZSM-5 zeolite catalyst, (b) the
product oil from pyrolysis catalysis of ABS with Y zeolite catalyst and (c) the pyrolysis oil derived from uncatalysed pyrolysis of ABS
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Figure 4.4-5 and Figure 4.4-6 shows GC/FID chromatograms for the

pyrolysis oil derived from HIPS in the absence of a catalyst and also the

product oil from the pyrolysis of HIPS and ABS with the Y zeolite and the ZSM-

5 zeolite respectively. The results were, on the whole, similar to those found

in the CRT and Fridge plastics, the uncatalysed pyrolysis oils containing high

concentrations of single ring aromatic compounds (Figure 4.4-2) which were

mainly styrene, directly derived from the styrene-based high impact

polystyrene and acrylonitrile-butadiene-styrene and the toluene and

ethylbenzene. The addition of the Y zeolite and ZSM-5 catalysts produced

increased concentrations of mainly benzene, and toluene, with ethylbenzene

and styrene also present. Comparison of the results from the HIPS and ABS

suggest, as expected that the CRT and Fridge plastics were mainly composed

of HIPS and ABS plastics.  However, the real-world WEEE waste plastics

derived from the computer and television plastic casings (CRT) and the

refrigerators and freezers would also contain other plastics.

The Y zeolite has different characteristics compared to the ZSM-5

zeolite, with the Y zeolite having a pore size of 7.8 Å and a Si/Al ratio of 5.4

and the zeolite ZSM-5 a pore size of 5.6 Å and Si/Al ratio of 40.  The lower

silica/alumina ratio of the Y zeolite at 5.4 results can increase the relative

surface concentration of aluminium compared to the ZSM-5 zeolite with a

much higher Si/Al ratio of 40. The consequence of high aluminium content for

the Y-zeolite results in a higher surface acidity of the catalyst which in turn

results in a higher catalytic activity [14, 15].  The catalytic active sites are

producing increased conversion to aromatic products [16].  Zeolites are known

as solid acid catalysts because they can have strongly acidic protons
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uniformly distributed throughout the internal volume of the catalyst channels.

The manipulation of the silica/alumina ratio influences both the number and

strength of the acid sites.  The Y zeolite also had a larger pore size of 7.8 Å,

compared to the ZSM-5 zeolite catalyst at 5.6 Å, the pore size influencing the

size of molecules that can enter the three dimensional zeolite structure and

react with the active catalyst sites.

Pyrolysis has been suggested to be a promising processing path for

the treatment of WEEE plastics but generates oil with a high content of

bromine, derived from the brominated flame retardants added to the plastic

[17-19]. Zeolite catalysts have been used to reduce the amount of bromine in

the product pyrolysis oil [19, 20].Thus, other researchers have investigated

the influence of zeolite catalysts on the pyrolysis of waste plastics and their

influence on the composition of the product oil. Aguado et al. [21] used a two-

stage pyrolysis–catalysis reaction system to process low-density polyethylene

with a zeolite HZSM-5 catalyst and reported a high conversion to alkene gases

(73.5 wt.% at 450 °C).The liquid products (16.4 wt.%) contained a high

proportion of aromatic and branched hydrocarbons in the gasoline range (C5–

C12). Miskolczi et al. [22], investigated the catalytic pyrolysis of a mixture of

polyethylene and polystyrene waste plastics in a batch reactor.  The liquid

products were reported to consist of a wide range of hydrocarbons (C5-C28),

with polyethylene producing linear non-branched hydrocarbons and

polystyrene producing aromatic compounds including ethylbenzene, styrene,

toluene and benzene. Lee [23], also investigated the catalytic pyrolysis of a

mixture of polyethylene and polystyrene in a stirred batch reactor using spent

FCC (zeolite based fluid catalytic cracking (FCC) catalyst). The presence of
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styrene and ethylbenzene in high concentrations was reported, and their

concentrations were dependent on reaction time, and the relative composition

of polyethylene and polystyrene. Lopez et al. [24], used a ZSM-5 zeolite

catalyst (Si/Al ratio of 50) in the pyrolysis processing of mixed plastics

(18.0wt.% polystyrene) and showed that the uncatalysed oil contained

aliphatic compounds derived from the linear plastics and also aromatic

compounds which were mainly toluene, ethylbenzene and styrene. The

influence of the ZSM-5 catalyst was reported to reduce significantly the

styrene concentration and increase the concentration of toluene,

ethylbenzene and xylenes.

Ates et al. [16], investigated the batch reactor catalytic pyrolysis of the plastic

fraction produced from municipal solid waste using a range of different

catalysts.  They reported that the Si-Al ratio influenced the production of

aromatic compounds in the product oil,  with zeolite ZSM-5 catalysts with a Si-

Al ratio of 12.6 producing higher aromatic content product oils compared to a

β-zeolite with a Si-Al ratio of 17.1. Lee  [25], investigated the influence of

different types of zeolite catalyst on the upgrading of pyrolysis oil/wax derived

from the pyrolysis of the plastic fraction of the municipal solid waste.

Comparison of a ZSM-5 zeolite catalyst (Si-Al ratio of 30) and a Y zeolite (Si-

Al ratio of 80) showed that the ZSM-5 catalyst with the lower Si-Al ratio

produced an oil with 78.9 wt% aromatic compared to the Y zeolite at 31.95

wt% aromatics.  The raw oil/wax produced from the pyrolysis of the municipal

solid waste plastics had negligible aromatic content. It should also be noted

that the zeolite catalysts had different surface areas (ZSM-5 at 400 m2 g-1 and

Y zeolite at 780 m2 g-1) , and would have different pore structures in addition
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to the differences in Si-Al ratio. Therefore, the results of Lee [25], suggest that

surface acidity has more influence on the aromatic forming catalytic reactions

of the pyrolysis degradation products than the catalyst surface area and wider

pore size as found in the Y zeolite.

The main polymeric structure found in the high impact polystyrene,

acrylonitrile-butadiene-styrene and WEEE plastics would be based on the

polystyrene structure. The mechanism for the degradation of polystyrene in

the presence of zeolite catalysts has been discussed by several authors [26-

29]. Serrano et al. [29], suggest that the catalytic cracking of polystyrene may

proceed through a complex combination of different reactions. Thermal

pyrolysis is represented by random scission of the polystyrene polymer to

produce polymer radicals. However, acid catalysis involves degradation of the

polystyrene at Bronsted active sites to produce carbenium ions which undergo

further scission and hydrogen transfer [29]. Cross-linking reactions of the

polymer degradation products may also occur and also cracking, and

hydrogenation of the thermally produced styrene may occur on the catalyst

[30]. Antonakou et al. [26], undertook catalytic pyrolysis of waste plastics

containing HIPS (compact disc waste) in the presence of a zeolite ZSM-5

catalyst. They reported that styrene concentration was reduced from 75.75 wt.

% in the thermal pyrolysis oil to 64.82 wt. % for the catalytic pyrolysis, with an

increase in benzene. They suggested that the thermal degradation of

polystyrene started with random initiation to form polymer radicals. But in the

presence of the catalysts degradation is extended in the form of cracking and

hydrogenation reactions resulting in decreased styrene concentration. Lopez

et al. [27], also suggested that the styrene produced from thermal pyrolysis
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further degraded to other hydrocarbons via secondary reactions in the

presence of the catalyst. Puente et al. [28], investigated the catalytic pyrolysis

of polystyrene and polystyrene-polybutadiene using an FCC catalyst (fluid

catalytic cracking catalyst from the petroleum refining industry). Miskolczi et

al. [22], have described FCC catalyst as being mainly Y zeolite typified by a

faujasite type crystal structure with open pores. The open pores are allowing

larger molecules to enter the catalyst structure to increase reaction on the

catalyst sites. The concentrations of styrene obtained by Puente et al. [28], in

the presence of fresh FCC catalyst showed a marked reduction, decreasing

from 75.59 wt% to 14.90 wt% for the catalytic pyrolysis of polystyrene, with

increased formation of toluene, benzene and ethyl benzene. They also

suggest the key degradation mechanism in the presence of a zeolite catalyst

is via polymer thermal cracking, surface oligomerisation of styrene molecules

and further cracking, in parallel to hydrogen transfer reactions.Audisio et al.

[31], investigated the thermal degradation of polystyrene in the presence of

several catalysts, including a Y zeolite. They reported that the main

degradation products from the non-catalytic pyrolysis of catalytic pyrolysis of

polystyrene with the Y zeolite were benzene, ethylbenzene, toluene, α-methyl

styrene and indane. They proposed several reaction schemes to describe the

thermal degradation of polystyrene to give the reaction products. For example,

benzene was proposed to be formed via the catalytic addition of hydrogen to

the aromatic ring producing polymeric ions which further react through one

route to produce benzene and a polymer ion as a result of β-scission.
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Figure 4.4-7  Catalytic addition  of H on aromatic ring give rise to two ions (a)
and (b); after β-scission of ion (b) benzene is produced and polymer ion
(I)[31] .

However, ions (a) from Figure 4.4-7 could undergo a β-scission to produce a

polymer ion (II) with the charge on the last carbon atom and a cyclodiene

substituted polymer. Hence the polymer ion (II) could undergo an internal

rearrangement by an H- ion shift followed by β-scission to give α-methyl

styrene or undergo β-scission to produced styrene as illustrated by Figure 4.4-

8 [31].
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Figure 4.4-8  The ion (a) undergo β-scission or internal rearrangement by H - ion
shift follows by β-scission to produced styrene or and α-methyl styrene
respectively.[31].

Jung et al. [32], investigate the effect of Ca based additives on halogen

removal from thermal degradation of ABS containing flame retardants using a

fluidized bed reactor. They performed pyrolysis at a temperature range of 430

to 510 °C and, used bench scale reactor equipped with the char separation

system. Oil yield markedly reduced to a range of 45 to 64 wt. % from about 77

wt. % as the additive was added. Similarly, the total bromine and chlorine

content in the oil reduced to about 0.05 and 0.04 wt. % respectively as Ca

(OH)2 was added. They suggested that gaseous strong acidic halide (HBr and

HCl) are captured by Ca(OH)2 additive, this yielded calcium halide and water.

Fast pyrolysis of a waste fraction of HIPS containing brominated flame

retardant was performed by Jung et al. [33] in a fluidized bed reactor. They
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used Ca-based additives on the removal of bromine at a pyrolysis temperature

of 422 to 480 °C. The total bromine content in pyrolysis oil was decreased to

1.3 and 2.7 wt.%. This happens as Ca(OH)2 and oyster shell were added

respectively from 5 wt.% in absent of additives.

 In this work, the Y zeolite which has more catalytically active sites and the

larger pore size results in the higher conversion of the pyrolysis volatile

material to other products compared to the ZSM-5 catalyst. In particular, the

larger pore size of the Y zeolite allows the larger molecular size pyrolysis

products derived from the polystyrene polymer, including larger polymer

fragments and styrene to enter the pores of the catalyst to react at the catalyst

sites to reduce styrene concentration. In addition, because of the lower Si-Al

ratio of the Y zeolite equating to increased surface aluminium concentration

and higher surface acidity of the catalyst which in turn results in a higher

catalytic activity higher levels of styrene degradation were found compared to

the ZSM-5 zeolite catalyst.

4.5   Summary

The research reported here shows that pyrolysis of plastics produced

from commercial waste electrical and electronic equipment produces a mainly

oil product containing mostly styrene.  The influence of the addition of a zeolite

catalyst to the process was mainly dependent on the Si-Al characteristics of

the zeolite catalyst used.  Zeolite catalyst with a lower Si-Al ratio (Y zeolite)

produced a higher conversion of the styrene to other aromatic products,

particularly benzene and toluene.  Comparison of the catalytic pyrolysis of

high impact polystyrene (HIPS) and acrylonitrile-butadiene-styrene (ABS) with
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the WEEE plastics results suggests that the WEEE plastics consisted of

mostly, but not exclusively HIPS and ABS plastics.



154

 References

1. Zhang, P., Song, L., Lu, H., Wang, J. and Hu, Y., The influence of
expanded graphite on thermal properties for paraffin/high density
polyethylene/chlorinated paraffin/antimony trioxide as a flame
retardant phase change material. Energy Conversion and
Management, 2010. 51(12): p. 2733-2737.

2. Gale, P.J., Mass spectrometric studies of the reactivity of antimony
trioxide with halogenated flame retardants in the pyrolysis of plastics.
International Journal of Mass Spectrometry and Ion Processes, 1990.
100: p. 313-322.

3. Aguado, J., D. Serrano, and J. Escola, Catalytic Upgrading of Plastic
Wastes. Feedstock Recycling and Pyrolysis of Waste Plastics:
Converting Waste Plastics into Diesel and Other Fuels, 2006: p. 73-
110.

4. Aguado, J., Serrano, D.P., Miguel, G.S., Escola, J.M. and Rodriguez,
J.M., Catalytic activity of zeolitic and mesostructured catalysts in the
cracking of pure and waste polyolefins. Journal of analytical and
applied pyrolysis, 2007. 78(1): p. 153-161.

5. Liu, Y., Qian, J. and Wang, J. Pyrolysis of polystyrene waste in a
fluidized-bed reactor to obtain styrene monomer and gasoline
fraction. Fuel Processing Technology, 2000. 63(1): p. 45-55.

6. Brebu, M., Uddin.M.A., Muto, A., Sakata, Y. and Vasile, C., The role
of temperature program and catalytic system on the quality of
acrylonitrile-butadiene-styrene degradation oil. Journal of analytical
and applied pyrolysis, 2002. 63(1): p. 43-57.

7. Bhaskar, T., Murai, K., Matsu, T., Brebu, M.A., Uddin, M.A., Muto,
A.,Sakata, Y. and Murata, K., Studies on thermal degradation of
acrylonitrile–butadiene–styrene copolymer (ABS-Br) containing
brominated flame retardant. Journal of analytical and applied
pyrolysis, 2003. 70(2): p. 369-381.

8. Marczewski, M., Kaminskwa, E., Marczewska, H., Godek, M., Rokicki,
G. and Sokolowski, J., Catalytic decomposition of polystyrene. The
role of acid and basic active centers. Applied Catalysis B:
Environmental, 2013. 129: p. 236-246.

9. Karmore, V. and G. Madras, Thermal degradation of polystyrene by
Lewis acids in solution. Industrial & engineering chemistry research,
2002. 41(4): p. 657-660.



155

10. Lin, R. and White, R. L. Acid-catalyzed cracking of polystyrene.
Journal of applied polymer science, 1997. 63(10): p. 1287-1298.

11. Lin, R. and R. White, Catalytic cracking of polystyrene. Preprints of
Papers, American Chemical Society, Division of Fuel Chemistry,
1996. 41(CONF-960807--).

12. Rahman, F., Langford, K.H., Scrimshaw, M.D. and Lester, J.N.,
Polybrominated diphenyl ether (PBDE) flame retardants. Science of
the Total Environment, 2001. 275(1): p. 1-17.

13. Cunliffe, A.M. and Williams,  P.T. Pyrolysis of flame retardant
brominated polyester composites. Environmental Technology, 2004.
25(12): p. 1349-1356.

14. Campbell, I.M., Catalysis at surfaces1988: Springer Science &
Business Media.

15. Venuto, P.B. and E.T. Habib Jr, Fluid catalytic cracking with zeolite
catalysts.MARCEL DEKKER, INC. New York 1979.

16. Ateş, F., Miskolczi, N, and Borsodi, N. Comparision of real waste
(MSW and MPW) pyrolysis in batch reactor over different catalysts.
Part I: Product yields, gas and pyrolysis oil properties. Bioresource
technology, 2013. 133: p. 443-454.

17. Hall, W.J. and Williams, P.T., Fast pyrolysis of halogenated plastics
recovered from waste computers. Energy & Fuels, 2006. 20(4).

18. Hall, W.J. and Williams, P.T., Analysis of products from the pyrolysis
of plastics recovered from the commercial scale recycling of waste
electrical and electronic equipment. Journal of analytical and applied
pyrolysis, 2007. 79(1): p. 375-386.

19. Hall, W.J. and Williams, P.T., Removal of organobromine compounds
from the pyrolysis oils of flame retarded plastics using zeolite
catalysts. Journal of analytical and applied pyrolysis, 2008. 81(2): p.
139-147.

20. Mitan, N.M., Brebu, M., Bhaskar, T., Muto, A. and Sakata, Y.,
Individual and simultaneous degradation of brominated high impact
polystyrene and brominated acrylonitrile-butadiene-styrene and
removal of heteroelements (Br, N, and O) from degradation oil by
multiphase catalytic systems. Journal of Material Cycles and Waste
Management, 2007. 9(1): p. 56-61.

21. Aguado, J., Serrano, D.P., San Miguel, G., Castro, M.C. and Madrid,
S., Feedstock recycling of polyethylene in a two-step thermo-catalytic
reaction system. Journal of analytical and applied pyrolysis, 2007.
79(1): p. 415-423.



156

22. Miskolczi, N., Bartha, L. and Deák, G., Thermal degradation of
polyethylene and polystyrene from the packaging industry over
different catalysts into fuel-like feedstocks. Polymer Degradation and
Stability, 2006. 91(3): p. 517-526.

23. Lee, K.-H., Composition of aromatic products in the catalytic
degradation of the mixture of waste polystyrene and high-density
polyethylene using spent FCC catalyst. Polymer Degradation and
Stability, 2008. 93(7): p. 1284-1289.

24. López, A., De Marco, I., Cabellero, B.M., Laresgoiti, M.F., Adrados, A.
and Aranzabai, A., Catalytic pyrolysis of plastic wastes with two
different types of catalysts: ZSM-5 zeolite and Red Mud. Applied
Catalysis B: Environmental, 2011. 104(3): p. 211-219.

25. Lee, K.-H., Effects of the types of zeolites on catalytic upgrading of
pyrolysis wax oil. Journal of Analytical and Applied Pyrolysis, 2012.
94.

26. Antonakou, E.,  Kalogiannis, K.G., Stephanidis, S.D., Triantafyllidis,
K.S., Lappas, A.A. and Achilias, D.S., Pyrolysis and catalytic pyrolysis
as a recycling method of waste CDs originating from polycarbonate
and HIPS. Waste Management, 2014. 34(12): p. 2487-2493.

27. Lopez, A., de Marco, I., Cabellero, B.M., Adrados, A. and Laresgoiti,
M.F., Deactivation and regeneration of ZSM-5 zeolite in catalytic
pyrolysis of plastic wastes. Waste management, 2011. 31(8): p. 1852-
1858.

28. de la Puente, G., Arandes, J.M. and Sedran, U.A. Recycled plastics in
FCC feedstocks: specific contributions. Industrial & engineering
chemistry research, 1997. 36(11): p. 4530-4534.

29. Serrano, D., Aguado, J. and Escola, J. Catalytic conversion of
polystyrene over HMCM-41, HZSM-5 and amorphous SiO< sub>
2</sub>–Al< sub> 2</sub> O< sub> 3</sub>: comparison with
thermal cracking. Applied Catalysis B: Environmental, 2000. 25(2): p.
181-189.

30. Lee, S., Yoon, J.H., Kim, J.R. and Park, D.W., Catalytic degradation
of polystyrene over natural clinoptilolite zeolite. Polymer degradation
and stability, 2001. 74(2): p. 297-305.

31. Audisio, G., Bertini, F., Beltrame, P.L. and Carniti, P., Catalytic
degradation of polymers: Part III—Degradation of polystyrene.
Polymer Degradation and Stability, 1990. 29(2): p. 191-200.

32. Jung, S.-H., Kim, S.-J. and Kim, J.-S. Thermal degradation of
acrylonitrile–butadiene–styrene (ABS) containing flame retardants
using a fluidized bed reactor: The effects of Ca-based additives on
halogen removal. Fuel Processing Technology, 2012. 96: p. 265-270.



157

33. Jung, S.-H., Kim, S.-J. and Kim, J.-S. Fast pyrolysis of a waste
fraction of high impact polystyrene (HIPS) containing brominated
flame retardants in a fluidized bed reactor: The effects of various Ca-
based additives (CaO, Ca(OH)(2) and oyster shells) on the removal of
bromine. Fuel, 2012. 95(1).



158

Chapter 5 : INFLUENCE OF ZEOLITE CATALYST
CHARACTERISTICS ON THE CATALYTIC PYROLYSIS OF
WASTE HIGH-DENSITY POLYETHYLENE

5.1   Introduction

The addition of catalysts to the pyrolysis of waste plastics can play a

critical role in the thermochemical process in terms of promoting targeted

reactions, reducing reaction temperature and improving the whole process

efficiency [1]. Consequently, most research has centered on the use of zeolite

catalysts such as HZSM-5, MCM, NH4Y and NaY since these are often used

in petroleum refineries for upgrading crude oil [2, 3] [4]. Keane [5] has

suggested that the shape selectivity micropore-size properties and surface

acidity of zeolite catalysts can be manipulated to produce narrow ranges of

hydrocarbons. While there are many studies on the use of zeolite catalysts for

pyrolysis-catalysis processing of waste plastics, there are few about the

relation of the physical properties of the catalyst to the yield and composition

of the product oils and gases. Zeolite catalysts are crystalline, alumina-

silicates with an open cage/framework structure consisting of AlO4 and SiO4

tetrahedral crystal structure with a defined pore size with a defined

microporous structure. Due to the poor resolution of propane and propene

using GC analysis, the results has been presented at a sum of the two, C3

hydrocarbon gases. However, a detailed analysis of the proportion of C2 and

C4 hydrocarbon indicate that propane would be the major product. The Y-type

zeolite (faujasite) consists of a cage-like structure with pores comprised of 12-

membered rings with a pore diameter of ~7.4 Å and, the ZSM-5 zeolite
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structure consists of 5 membered rings with a pore diameter of ~5.4 Å. The

properties of the zeolite catalysts can be varied in terms of their surface area

and silica: alumina ratio which may in turn influence the range of products

formed during the catalytic pyrolysis of waste plastics. The silica: alumina ratio

is known to influence the surface acidity of the zeolites with low Si: Al ratios

producing higher surface acidity compared to higher Si: Al ratios[6].

In this chapter, the use of five different Y type zeolite catalysts and

three different ZSM-5 zeolite catalysts for the two-stage pyrolysis-catalysis of

waste high-density polyethylene has been investigated.  The work focused on

the influence of the zeolite catalysts on the yield and composition of the

product oils and gases. In particular, emphases were made about the aromatic

composition of the product oils.

The plastic sample used in this study was waste high-density

polyethylene (HDPE) has been earlier described in chapter 3. Five of the

catalysts were of the zeolite Y type, and three were of the ZSM-5 type. Table

5.1-1 show the characteristic of the zeolite catalysts. The three Y zeolites

catalysts had different surface areas, but with similar silica: alumina ratios at

~5.2:1.whereas, the two other Y catalysts had a different silica: alumina ratios.

The three ZSM-5 zeolite catalysts had similar surface areas, between 450 and

467 m2 g-1, but with different Si: Al ratios of 23:1, 50:1 and 80:1.
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Table 5.1-1 Characteristics of zeolite catalysts used

Catalyst properties Z-1 Z-2 Z-3 Z-4 Z-5 Z-6 Z-7 Z-8

Zeolite Structure Y-Zeolite Y-Zeolite Y-Zeolite ZSM-5 ZSM-5 ZSM-5 Y-Zeolite Y-Zeolite

Surface area (m2 g-1) 705 853 935 450 452 467 937 888

Silica: Alumina ratio 5.1:1 5.1:1 5.2:1 23:1 50:1 80:1 30:1 80:1
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The plastic samples (2 g) were pyrolyzed in the fixed bed two-stage

batch reactor described in Chapter 3. The plastic sample was heated from

ambient temperature to 500 °C at a heating rate of 10 °C min-1. The zeolite

catalyst was maintained at a bed temperature of 500 °C. The catalyst (2 g)

was mixed with 2 g of 2 mm sized quartz sand and was supported on quartz

wool in the second stage reactor. For comparison, where no catalyst was

used, quartz sand (4 g) was substituted for the catalyst. In this chapter, the

zeolite catalysts are designated as Z-1, Z-2, Z-3, Z-4, Z-5, Z6, Z-7 and .Z-8.
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Table 5.1-2 Product yield and gas composition from the pyrolysis-catalysis of waste HDPE with different zeolite catalysts

Product HDPE Z-1

(Y-Zeolite)

Z-2

(Y-Zeolite)

Z-3

(Y-Zeolite)

Z-4

(ZSM-5)

Z-5

(ZSM-5)

Z-6

(ZSM-5)

Z-7

(Y-Zeolite)

Z-8

(Y-Zeolite)

Oil (wt. %) 75.0 59.5 59.0 45.4 44.0 50.0 53.5 63.00 63.00

Gas (wt. %)

Char wt. %)

MB (wt. %)

25.5

-

100.5

38.3

-

97.8

43.9

-

102.9

50.9

-

96.3

49.8

-

93.8

49.7

-

99.7

47.0

-

100.5

37.97

-

100.9

40.83

-

103.8

- Negligible
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5.2   Influence of Zeolite Y characteristics on the catalytic degradation

of HDPE wastes

The work examines the influence of both surface area and the silica-alumina

ratio of Y zeolite in the catalytic degradation of the waste HDPE. Thus, the

influence of the zeolite Y catalyst’s surface area was discussed separately in

section 5.3.1.1 and influence of silica: alumina ratio was discussed in 5.3.1.1.

The zeolite Y catalyst surface area was considered here to study its influence

on the products yield and composition.

5.2.1   Influence of zeolite Y catalysts surface area on the catalytic

degradation of waste HDPE

5.2.1.1   Product Yields

Table 5.1-2 shows the product yield and gas compositions from the pyrolysis-

catalysis of the waste high-density polyethylene with the different types of the

zeolite catalyst.  For the uncatalysed pyrolysis (with sand in the second

reactor), the yield of oil was 75.0 wt. % and 25.5 wt. % gas and with negligible

char. In the presence of all of the zeolite catalysts, there was a marked

reduction in oil yield and a consequent increase in gas yield.  The main gases

which were increased by the addition of the zeolite catalyst were the C2-C4

hydrocarbons, produced by cracking of the HDPE pyrolysis gases. The Y

zeolite catalysts exhibited a decreasing oil yield and increasing gas yield in

relation to the increasing surface area of these catalysts with an increase in

surface area from 705 m2 g-1 to 853 m2 g-1 and to 935 m2 g-1. But for Si: Al

ratio variation in Y zeolite catalysts, only gases show a rise in yield with an
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increase in the ratio as similar oil yield were obtained for both catalysts. For

the ZSM-5 zeolite catalysts, which had a similar surface area (~450-467 m2 g-

1) the oil yield showed an increase and gas yield a decrease, the catalyst with

the lowest Si:Al ratio (Z-4) exhibiting the lowest oil yield.

The main gases produced were hydrogen, methane and C2 -  C4

hydrocarbons.  The production of hydrocarbons is known to result from

scission of the polymer chain of the HDPE [7]. The Y zeolite catalysts showed

an increase in C3 and C4 hydrocarbons as the surface area of the Y zeolite

catalyst increased.  For the ZSM-5 catalysts with similar surface area but

increasing Si: Al ratio, the methane, C2 and C3hydrocarbon gases showed a

decrease in yield as the Si: Al ratio was increased, but for the C4 hydrocarbons

there was an increase. However, a similar trend was observed for Y zeolite

with different SI: Al ratio, the rise in C4 hydrocarbon and decrease in methane,

C2, and C3 Hydrocarbon.
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5.2.1.2   Gas composition

Table 5.2-1  Gas composition from Y zeolite with varying surface area

Gas components No catalyst Z-1 Z-2 Z-3

H2 (vol. %) 11.7 9.98 11.0 13.1

CH4 (vol. %) 11.2 13.5 11.2 10.2

C2H4 (vol. %) 14.7 10.1 6.90 8.00

C2H6 (vol. %) 9.61 6.35 5.35 4.94

C3H6 + C3H8 (vol. %) 31.9 39.9 37.7 34.2

C4H8 (vol. %) 18.9 17.9 20.3 22.2

C4H10 (vol. %) 2.09 2.30 7.60 7.40

C2-C4 (vol. %) 77.2 76.5 77.8 76.8

CV(MJ/m3) 74.3 76.6 80.4 79.3

Figure 5.2-1  Gases produced from non-catalytic and catalytic pyrolysis of HDPE
waste with Y zeolite with varying surface area

Figure 5.2-1 shows the gas yield for pyrolysis of waste HDPE in the presences

of three zeolite Y catalysts with different surface area Z1 (705 m2 g-1 ), Z2 (853

m2 g-1) and Z3 (935 m2 g-1). The gas yield increases with the increases in the

0

5

10

15

20

25

no catalyst 705 853 935

w
t.%

surface Area for zeolite Y (m2g-1)

H2

CH4

 C2

 C3

C4



166

surface area, and the gas composition gives the same trend with the three Y

catalysts. The increase in the gas yield with the introduction of catalysts was

reported by other authors [1 2 8-10]). Tables 5.3-1 shows the gas composition

in volume % while Figure 6.3-1 gives gas composition in wt.%.The hydrogen

gas, methane and C2 hydrocarbons show a less significant rise from non-

catalysed pyrolysis run as the catalysts are introduced. However, the C3 and

C4 hydrocarbons gases are the main gases produced and increased with

increase in surface area of the catalysts. The total gross heating value refer

here as calorific value (CV) computed in MJ/m3 in Table 5.2-1 shows an

increase with the addition of the catalyst. Likewise, the calorific values of the

product gas increased with the surface area for 705 m2 g-1 and 853 m2 g-1, but

it stabilized at the same value for higher surface area 935 m2 g-1.The trend in

CV is a reflection of the composition of high calorific value gases as observed

in both tables above indicating increase in the higher molecular weight

hydrocarbon gases. The high-value caloric value is desirable for high valued

fuel gases.
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5.2.1.3   Oil composition

Figure 5.2-2 Fuel range (C5 – C15) and high molecular weight (C16+) hydrocarbons
from the pyrolysis-catalysis of HDPE in relation to surface areas of Y-zeolite
catalysts

Figure 5.2-2 shows the fuel range hydrocarbons in the product oil.  The fuel

range hydrocarbons defined as C5-C15 hydrocarbons and the high molecular

weight, i.e. as C16+ hydrocarbons. In the absence of any catalyst (where sand

was used as a blank), there was ~55wt% of the condensed oil of high

molecular weight hydrocarbons.  However, when the zeolite catalysts were

introduced, there was a marked decrease in C16+ higher molecular weight

hydrocarbons and a corresponding marked increase in the C5-C15

hydrocarbons.  In some experimental run, the C5-C15 hydrocarbons reached

more than 90.0 wt% of the product oil. Hence, that showed that the two-stage
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pyrolysis-zeolite catalysis of waste plastic was effective in producing a useful

product oil, similar to that produced from petroleum refining.

Examination of Figure 5.2-2 shows that for the zeolite Y with increasing

surface area (705, 853 and 935 m2 g-1) there was less conversion to the lower

molecular weight fuel range hydrocarbons.  The higher surface area (Z-3)

zeolite catalyst at 935 m2 g-1 showing the lowest conversion to fuel range

hydrocarbons.

Figure 5.2-3 Aliphatic and aromatic content of the product oil from the pyrolysis-
catalysis of HDPE in relation to surface areas of Y-zeolite catalysts

Figure 5.2-3 shows the aliphatic and aromatic content of the product oil from

the pyrolysis-catalysis of waste high-density polyethylene in the presence of

the various Y-zeolite catalysts with varying surface area.  The uncatalyzed

pyrolysis of high-density polyethylene produced a mainly aliphatic oil

consisting of alkanes, alkenes and alkadienes, with only a low proportion of
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aromatic compounds as has been reported by others [11]. For the Y-zeolite

catalysts, there was a decrease in aromatic content with an increase in

surface area of the catalyst.

 Figure 5.2-4 Yields of selected aromatic compounds in the oils produced from
the pyrolysis-catalysis of HDPE in relation to surface areas of Y-zeolite
catalysts

Figure 5.2-4 shows the yields of selected aromatic compounds in the oils

produced by the pyrolysis and pyrolysis-catalysis of waste high-density

polyethylene with different zeolite catalysts.  In the absence of a catalyst, there

were only low concentrations of aromatic compounds as also shown in Figure

5.2-3.  However, when the zeolite catalysts were introduced to the pyrolysis-

catalysis reactor system, the concentration of single ring and two-ring

aromatic hydrocarbons increased markedly. The aromatic content decreases

with the rise in the surface area of the Y zeolite catalyst. Kumar et al. [7], have

reviewed the pyrolysis and catalytic pyrolysis of high-density polyethylene.
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They reported that the catalytic pyrolysis  polyethylene polymer chain is

rapidly depolymerised by the reaction on acid sites on the catalyst reducing

the high molecular weight of the polymer to produce a high fraction of low

molecular weight hydrocarbons. They suggest that the catalytic reaction

process involves a range of reactions, including rearrangement,

hydrogenation,  dehydrogenation, cyclisation which results in the formation of

aromatic compounds, increased C5-C10 hydrocarbons and increased C3 and

C4 hydrocarbons in the gas phase as was found in this work. In addition to the

surface acidity, the physical properties of the zeolite catalyst such as surface

area, pore size, pore volume, pore size distribution and pore structure are all

important factors in determining the catalytic activity of the zeolite catalyst [7].

The defined pore size of zeolite catalyst allows hydrocarbons of different

molecular size to enter the channels and pores of the catalyst and selectively

react with the active sites of the catalyst.  However, it has been noted that the

large molecular size molecules produced from the pyrolysis of waste plastics

have limited diffusion into the pores of zeolite catalyst [7].

Serrano et al. [1], have reviewed the catalytic pyrolysis of polyalkene plastics

to fuels and chemicals and have suggested that the reaction mechanism for

thermal pyrolysis is very different from that of catalytic pyrolysis. Thermal

cracking of polyalkenes such as high-density polyethylene involves random

polymer chain scission through initiation, propagation and termination leading

to the formation of a range of alkanes, alkenes and alkadienes of molecular

weights from C1 – C60 [1].  The formation of aromatic compounds is, therefore

low. However, in the presence of a catalyst, carbenium and carbonium ions

are produced on the acid sites of the catalyst followed by isomerization,
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oligomerization, cyclization, aromatization and cracking. Catalytic cracking

reactions, therefore, lead to increased formation of branched, cyclic and

aromatic hydrocarbons. Figure 5.2-5 [1] illustrates the range of reaction

pathways for the catalytic pyrolysis of polyalkenes.

Figure 5.2-5 Reaction pathways for the catalytic cracking of waste plastics [1]

The product oils were analysed for their boiling point range distribution using

gas chromatography which enables the simulated distillation of the oils to be

determined (ASTM D2887).
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Figure 5.2-6  Simulated distillation of pyrolysis oils from the pyrolysis-catalysis
of HDPE in relation to surface areas of Y-zeolite catalysts.

Figure 5.2-6 shows the simulated distillation curves for the product oils from

pyrolysis-catalysis of HDPE in the presence of the Y zeolite with varying

surface area. The non-catalytic oil product showed that a significant part

(greater than 50%) of the oils have a boiling range of greater than 317 °C and

only 14% below 150 °C. However, the catalytic degradation product oils show

a shift to lower boiling points, reflecting the shift in molecular weight range as

seen in Figure 5.3-2.Muhammad et al. [12], noted that boiling range

distribution for gasoline would be >95% below 150 °C. Nevertheless, for the

catalytic product oils, the boiling point range fraction below 150 ◦C was

between 62.0% and 73.0%.The Y zeolite catalysts used for the catalytic

pyrolysis of waste HDPE, show a major improvement in the distillation range

of the product oils suggesting a boiling point range similar to petroleum-

derived kerosene or diesel fuel.



173

5.2.1.4   Summary

The influence of surface area of the three Y zeolites investigated show

reduction in the low molecular weight hydrocarbons with an increase in the

surface area. The high-value fuel hydrocarbon gases improved with the

addition of the catalyst and was further enhanced with an increase in surface

area. Likewise, aromatic compounds obtained in the pyrolyzed oil show a

similar trend, i.e. decrease in aromatic content and single ring aromatic

compounds with the increase in the surface area.

5.2.2   Influence of silica: alumina ratio of the Y zeolite on catalytic

degradation of waste HDPE

In this section influence of the silica: alumina ratio of the Y zeolite catalyst was

considered. The product yields results, and its discussion was shown in the

prior section 5.1. Thus, in this section influence of the silica; alumina ration on

the following; gas composition, the distribution of fuel range and high

molecular weight compounds; aliphatic and aromatic compounds distribution;

distribution of selected aromatic compounds and simulated distillation

properties are presented and discussed
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5.2.2.1   Gas Composition

Table 5.2-2  Gas composition from HDPE pyrolysis using Y zeolite
catalysts with varying Si: Al ratio area

No catalyst Z-1 Z-7 Z-8

H2 (vol. %) 11.7 9.98 8.29 6.57

CH4 (vol. %) 11.2 13.5 4.43 3.50

C2H4 (vol. %) 14.7 10.1 20.7 21.4

C2H6 (vol. %) 9.61 6.35 4.50 3.31

C3H6 + C3H8 (vol. %) 31.9 39.9 45.4 45.7

C4H8 (vol. %) 18.85 17.9 11.5 15.9

C4H10 (vol. %) 2.09 2.30 5.10 3.73

C2-C4 (vol. %) 77.2 76.5 87.2 89.9

CV (MJNm-3) 74.3 76.6 76.1 89.9

Figure 5.2-7  Gases produced from non-catalytic and catalytic pyrolysis of HDPE
with Y zeolite with varying Si: Al ratio
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Tables 5.2-3 shows the gas yield for pyrolysis of waste HDPE in the presences

of three zeolite Y catalysts with different silica: alumina ratio. The gas yield

increases with the addition of the catalysts for the pyrolysis of HDPE waste.

The initial gas showed an increase for low silica-alumina ratio Z-1 (38.3 wt.%),

but eventually remained fairly stable at the higher ratio Z-7 (37.9 wt.%) and Z-

8 (40.8 wt.%). The low Si: Al is an indicator for high catalytic activity as

reported [13-15]. Tables 6.3-2 shows the gas composition in volume % while

Figure 5.2-7 gives gas composition in wt. %. The gas composition shows a

trend with a lower molecular mass hydrocarbons increase with low in Si: Al

ratio, with the corresponding reduction in C3 and C4 hydrocarbons. Thus, the

lower hydrocarbon gases composition rose with the corresponding reduction

in Si: Al ratio, the rise perhaps might be due to increase in catalyst activities

with Si: Al [10 13 14]. But dwindling increases of C3 and C4 hydrocarbons was

observed for high Si: Al ratio. The high surface area of the two catalysts (937

m2 g-1 and 888 m2 g-1) might have contributed to the catalytic degradation of

the polymer observed. Likewise, a total gross heating value referred here as

caloric value (CV) is shown in Table 5.2-3. The calorific values rose with the

addition of the catalyst and improved with increasing silica-alumina ratio. The

calorific values show a similar trend as the composition of the gases as

observed in both Table 5.2-3 and Figure 5.2-7 above. The productions of high-

value calorific value gases are desirable from waste plastics and add value to

product yield.
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Figure 5.2-8  Fuel range (C5 – C15) and high molecular weight (C16+)
hydrocarbons from HDPE in relation to Si:Al ratio of  zeolite Ycatalysts

.
Figure 5.2-8 shows the fuel range (C5-C15) hydrocarbons in the product oil

from non-catalytic and Y zeolite with varying SI: Al ratio catalyzed pyrolysis

run. Likewise, the high molecular weight ( i.e. C16+ hydrocarbons) are

presented in the figure. Thus, for a non-catalytic run as shown in section

5.3.1.1, also there was ~55.0wt% of the condensed oil of high molecular

weight hydrocarbons. Nevertheless, a marked decrease in C16+ higher

molecular weight hydrocarbons was observed when the Y zeolite catalysts

were introduced. Thus, as obtained in the previous section, there was a

consistent rise in the C5-C15 hydrocarbons with catalyst addition. However, for

zeolite Y with 80:1 Si: Al (Z-8), the C5-C15 hydrocarbons reached 90.0wt% of

the product oil. The higher Si: Al ratio shows a lower concentration of
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aluminium in the catalyst. But, the low concentration of aluminium in the

catalyst signifies lower surface acidity  [13, 14]. The significance of a lower

surface acidity is that the catalyst has lower catalytic activity for the conversion

of the plastic HDPE linear polyalkene polymer to low molecular weight

compounds [13]. Thus, the zeolite Y (Z-8) catalyst has the potential low

catalytic activity, but the higher C5-C15 hydrocarbons (93.4 %) obtained might

be due to both its lower surface area (888 m2 g-1) and micropore volume

(0.315 cm3 g-1) [13]. Consequently as highlighted before, that the two-stage

pyrolysis-zeolite catalysis of waste plastic was effective in producing a useful

product oil. However, low surface area might have played a role as observed

in Section 5.3.1.1. So, a Z-1 catalyst with both low silica-alumina ratio (5.1:1)

and surface area (705 m2 g-1), recorded nearly the same fuel range

hydrocarbon (88.56 %) as Z-7 with both high Si:Al (30:1) and surface area

(937 m2 g-1) yielded 87.7 wt.%. Then, it can be presumed that low surface area

and high Si: Al in zeolite Y could favour the rise in the yield of desired fuel

range hydrocarbons.
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Figure 5.2-9 Aliphatic and aromatic content of the product oils from HDPE in
relation to Si:Al ratio of  zeolite Y catalysts

Figure 5.2-9 shows the aliphatic and aromatic content of the product oil from

the pyrolysis-catalysis of waste high-density polyethylene in the presence of

the various Y zeolite with varying silica: alumina ratio. The pyrolysis with no

catalyst of high-density polyethylene produced a primarily aliphatic oil

containing of alkanes, alkenes and alkadienes, with only a little proportion of

aromatic compounds as has been reported by others [11]. Consequently,

there was a decrease in aromatic content with an increase in silica: alumina

ratio of the Y zeolite catalysts. The lower surface acidity associated with lower

silica: alumina ratio in catalyst cause lower catalytic activity. Thus, this could

be the main reason for the decrease in the conversion of the plastic HDPE

linear polyalkene polymer to aromatic compounds [13]
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Figure 5.2-10 Yields of selected aromatic compounds in the oils from HDPE in
relation to Si:Al ratio of  zeolite Y catalysts

Similar to the findings in Section 5.2 in this work, Figure 5.2-8 shows the yields

of selected aromatic compounds in the oils produced by the pyrolysis and

pyrolysis-catalysis of waste high-density polyethylene with Y zeolite catalysts

(with different Si: Al ratio). In the absence of a catalyst, there were only low

concentrations of aromatic compounds as also shown in Figure 5.3-9. But, the

concentration of single ring and two-ring aromatic hydrocarbons increased

markedly, when the zeolite catalysts were introduced to the pyrolysis-catalysis

reactor system. The selected aromatics compound considered here are

mainly single ring aromatics.The catalyst with high catalytic activity (Z1)

produced a higher concentration of benzene, toluene, ethylbenzene and

styrene.Consequently, the amount of these selected aromatics compounds

decreases with increase in the silica-alumina ratio. Hence, these could be
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explained in term of a decrease in the catalytic acidity with increase in silica-

alumina ratio.

The products oil from both non-catalytic and catalytic pyrolysis of waste

HDPE were analysed for their fuel properties by simulated distillation using

gas chromatography to determine the boiling range distribution of the oils.

Figure 5.2-11  Simulated distillation of uncatalyzed pyrolysis oils from the
pyrolysis-catalysis of HDPE in relation to Si:Al ratio of  Y-zeolite catalysts

The Figure 5.2-11 shows the boiling range distribution of the product oil. The

non-catalytic oil showed that a substantial part (greater than 50%) of the oils

have a boiling range of greater than 317 °C and only 14% below 150 °C.

However, the catalytic degradation product oils show a shift to lower boiling

points, reflecting the shift in molecular weight range as seen in Figure 5.3-8.

Muhammad et al. [12], noted that the boiling range distribution of gasoline

would be >95.0% below 150 °C. But, for the catalytic product oils, the boiling

point range fraction below 150 °C was between 73.0% and 76.0%.
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5.2.2.2   Summary
The influence of the silica-alumina ratio of the three Y zeolites investigated

shows a reduction in the low molecular weight hydrocarbons and aromatic

compound contents with an increase in the silica-alumina ratio. However, the

single ring aromatic compounds obtained in the pyrolyzed oil decrease with

an increase in the silica-alumina ratio.  The decrease in catalytic activity which

comes with the increase in silica-alumina ratio perhaps might be the reason

for the decrease in single ring aromatic compounds. But, catalyst (Z-8) with

the least catalytic activity and high silica-alumina ratio shows better activity

due to perhaps its high surface area and low micropore volume.

5.2.3   Influence of silica: alumina ratio of the ZSM-5 zeolite on

catalytic degradation of waste HDPE

In this section influence of the silica: alumina ratio of the ZSM-5 zeolite

catalyst was considered. The product yields were considered in the prior

section 5.2. Thus, in this section influence of the silica; alumina ratio on the

gas composition,  distribution of fuel range and high molecular weight

compounds; aliphatic and aromatic compounds distribution; distribution of

selected aromatic compounds  and simulated distillation properties are

presented and discussed.

5.2.3.1   Products Yield

Table 5.1-2 shows the gas yield for pyrolysis of waste HDPE in the

presences of three ZSM-5 catalysts with different silica: alumina ratio. The

gas yield from thermal run increases with the introduction of the catalysts for

the pyrolysis of HDPE waste. However, the gas yield slightly varied with the
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increase in Si: Al ratio (from 49.8 to 47.0 wt. %). The gas is slightly reduced

with increasing Si: Al. Thus, the result might be explained in terms of low

catalytic activity with the increase in Si: Al ratio.

5.2.3.2   Gas Composition

Table 5.2-3  Gas composition from ZSM-5 with varying Si: Al ratio
catalyzed degradation of HDPE waste

No catalyst Z-4 Z-5 Z-6

Si:Al nd 23:1 50:1 80:1

H2 (vol. %) 11.7 9.68 4.75 11.4

CH4 (vol. %) 11.2 13.6 6.75 6.90

C2H4 (vol. %) 14.7 10.7 7.45 24.1

C2H6 (vol. %) 9.61 6.62 3.56 6.03

C3H6 + C3H8 (vol. %) 31.9 40.8 41.5 44.6

C4H8 (vol. %) 18.9 15.4 24.2 6.29

C4H10 (vol. %) 2.09 3.34 11.8 1.19

C2-C4 (vol. %) 77.2 76.8 88.5 82.2

CV (MJMm-3) 74.3 72.1 79.1 81.8
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Figure 5.2-12  Gases produced from non-catalytic and catalytic pyrolysis of
HDPE waste with ZSM-5 with varying Si: Al ratio

Tables 5.2-3 shows the gas composition in volume % while Figure 5.2-12

gives gas composition in wt. %. Mordi et al. [16], the investigation found that

ZSM-5 catalysts give rise to products lighter than C14. The authors obtained a

higher amount of hydrocarbon gases 54.0%. They ascribed that to the

occurrence of 10-membered ring sinusoidal and straight intersecting channels

in the HSZM-5. However, they also pointed out that the cracking initiation took

place on the external surface of the zeolite or at the pore mouth., since the

polymer is too large to enter the pore. These starting degradation products

were subsequently converted over the catalyst through secondary reactions,

giving rise to the reported selectivity. The total gross heating values refer here

as calorific value (CV) computed in MJ/m3 in Table 5.2-3 shows rise with the

introduction of the catalyst. Similarly, the calorific values rise with the silica;

alumina ratio as lower molecular weight hydrocarbon gases decrease with low
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catalysts activity associated with higher Si: Al ratio. The improvement in the

calorific value of the gases with the introduction of the catalyst (except for Z-

1) was a reflection of the composition of high caloric value gases as detected

in both Table 5.3-3 and Figure above. The high-value calorific value is known

to be desirable as a product of waste plastic pyrolysis.

Figure 5.2-13 Fuel range (C5 – C15) and high molecular weight (C16+)
hydrocarbons from the pyrolysis-catalysis of HDPE in relation to Si:Al ratio
of  ZSM-5 zeolite catalysts

Figure 5.2-13 shows the fuel range (C5-C15) hydrocarbons in the product oil

from non-catalytic and zeolite ZSM-5 with varying Si: Al ratio catalyzed

pyrolysis run. Similarly, the high molecular-weight hydrocarbons (i.e. C16+) are

presented in the figure. Thus, for a non-catalytic run as shown other section

above, there was ~55.0wt% of the condensed oil of high molecular weight

hydrocarbons.  Nevertheless, a marked decrease in C16+ higher molecular
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weight hydrocarbons was observed when the ZSM-5 catalysts with varying Si:

Al ratios were introduced. Hence, as obtained in an earlier section, a

consistent increase in the C5-C15 hydrocarbons with catalyst addition was

observed. Among the ZSM-5 catalyst with Si: Al ratios of 23:1, 50:1 and 80:1,

zeolite Z-4 which has the lowest Si: Al ratio produced the highest conversion

of the HDPE pyrolysis gases to fuel range C5-C15 hydrocarbons.  The lower

Si: Al ratio indicates a higher concentration of aluminium in the catalyst.

Venuto and Habib [14] and Campbell [17] have reported that a higher content

of aluminium in zeolite catalysts produces a higher surface acidity through the

formation of strongly acidic protons on the surface, and within the pores and

channels of the zeolite catalyst.  For example, Ates et al. [13] reported that a

zeolite ZSM-5 catalyst with and Si:Al ratio of 12.6, produced a higher content

of aromatic hydrocarbons in the product oil compared to a zeolite ZSM-5

catalyst with a Si: Al ratio of 17.1 for the pyrolysis-catalysis of municipal solid

waste plastic.  Kumar et al. [7], have also reported that the aluminium content

in the zeolite influences the acid site density which has a marked influence on

cracking reactions of high molecular weight hydrocarbons such as the

pyrolysis gases produced from high-density polyethylene.
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Figure 5.2-14 Aliphatic and aromatic content of the product oil from the
pyrolysis-catalysis of HDPE in relation to Si:Al ratio of  ZSM-5 zeolite
catalysts

Figure 5.2-14 Shows the aliphatic and aromatic content of the product oil

from the pyrolysis-catalysis of waste high-density polyethylene in the

presence of the various ZSM-5 zeolite catalyst. Examination of Figure 5.2-14

shows that the highest conversion to aromatic compounds was formed by

the zeolite Z-8 with the highest Si: Al ratio (80:1) which represents the lowest

acidity.
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Figure 5.2-15 Yields of selected aromatic compounds in the oils produced from
the pyrolysis-catalysis of HDPE in relation to Si:Al ratio of  ZSM-5 zeolite
catalysts

Accordingly, as also obtained in the section above sections, Figure 5.2-15

shows the yields of selected aromatic compounds in the oils produced by the

pyrolysis and pyrolysis-catalysis of waste high-density polyethylene with

different zeolite catalysts.  In the absence of a catalyst, there were only low

concentrations of aromatic compounds as also shown in Figure 5.2.15.  But,

when the ZSM-5 catalysts were introduced to the pyrolysis-catalysis reactor

system, the concentration of single ring and two-ring aromatic hydrocarbons

increased markedly. Liu et al. [18], performed catalytic degradation of HDPE

over a clay catalyst compared with the catalysts in a fixed bed batch reactor.

They proposed catalytic degradation mechanisms of HDPE over the different

solid catalysts as shown below in Figure 5.3-16. Thus, they considered HZSM-

5 with strong acidic sites and microporous structure, as beneficial for the

production of olefins by β-scission reaction via a carbenium mechanism.
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Figure 5.2-16  Mechanistic diagram for catalytic degradation of HPDE

A similar trend was observed in this work for a catalytic run. Conversely, the

trend for thermal (non-catalytic) degradation shows resemblance with their

proposed mechanism that was the free radical mechanism.

The product oils were analysed for their boiling point range distribution using

gas chromatography which enables the simulated distillation of the oils to be

determined (ASTM D2887).
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Figure 5.2-17  Simulated distillation of uncatalyzed pyrolysis oil and pyrolysis-
catalysis derived the oil from the pyrolysis-catalysis of HDPE in relation to
Si:Al ratio of  ZSM-5 zeolite catalysts

The non-catalytic oil showed that a substantial part (greater than 50%) of the

oils have a boiling range of greater than 317  °C and only 14% below 150 °C.

However, the pyrolysis-catalytic product oils show a shift to lower boiling

points, reflecting the shift in molecular weight range as seen in Figure 6.3-

13.Compared to the boiling point range distribution of gasoline, which gives

>95.0% below  150 °C [12] the catalytic product oils, the boiling point range

fraction below 150 °C was between 74.0% and 77.0%.

The HZSM-5 zeolite catalysts used for the waste HDPE show a major

improvement in the distillation range of the product oils suggesting a boiling

point range similar to petroleum-derived kerosene or diesel fuel.

5.2.3.3   Summary
The influence of the silica-alumina ratio of the three zeolites ZSM-5

considered show reduction in the low molecular weight hydrocarbons and

aromatic compound contents with an increase in the silica-alumina ratio.

However, the single ring aromatic compounds obtained in the pyrolyzed oil
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also increase with the increase in the silica-alumina ratio. Thus, low silica-

alumina ratio enhanced the catalytic activity of the ZSM-5 catalyst for

production of more volatile hydrocarbon and the aromatic compound. The fuel

properties investigated shows improvement with the introduction of the

catalyst.

The influence of the silica-alumina ratio of the three Y zeolites investigated

show reduction in the low molecular weight hydrocarbons and aromatic

compound contents with an increase in the silica-alumina ratio

5.3   Comparing influence of Zeolite Y and ZSM-5 catalysts

In this section influence of the silica: alumina ratio of the ZSM-5 zeolite catalyst

and zeolite Y was considered. The product yields were shown in the previous

section 5.1 Thus, in this Section the influence of different zeolite structure with

similar Si: Al ratios (80:1)  silica; alumina ratio on the gas composition,

distribution of fuel range and high molecular weight compounds; aliphatic and

aromatic compounds distribution; distribution of selected aromatic compounds

and simulated distillation properties are presented and discussed
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5.3.1   Gas Composition

Table 5.3-1  Gas composition from Y zeolite and ZSM-5 catalysed
degradation of HDPE waste

No catalyst Z6 Z8

H2 (vol. %) 11.7 11.4 6.57

CH4 (vol. %) 11.2 6.90 3.50

C2H4 (vol. %) 14.7 24.1 21.4

C2H6 (vol. %) 9.61 6.03 3.31

C3H6 + C3H8 (vol. %) 31.9 44.6 45.6

C4H8 (vol. %) 18.9 6.29 15.9

C4H10 (vol. %) 2.09 1.19 3.73

C2-C4 (vol. %) 77.2 82.2 89.9

CV (MJ m-3) 74.3 81.8 89.9

Figure 5.3-1  Gases produced from non-catalytic and catalytic pyrolysis of HDPE
waste with Y zeolite and ZSM-5
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Tables 5.3-1 shows the gas yield for pyrolysis of waste HDPE in the presence

of zeolite Y (Z-8) and ZSM-5 (Z-6) catalysts with same silica: alumina ratio.

The gas yield increases with the addition of the catalysts for the pyrolysis of

HDPE waste. The zeolite Y gives higher gas yield (63.0 wt. %) than the ZSM-

5 (47.0 wt. %). Tables 5.3-4 shows the gas composition in volume % while

Figure 5.3-1 gives gas composition in wt. %. However, the total gross heating

value or the calorific value (CV) computed in MJ/m3 in Table 5.3-1 shows an

increase with the addition of the catalysts, but Y zeolite catalyst gives highest

calorific values. Hence, the CV of the product gases shows a reflection of the

composition of highly combustible fuel gases as observed in Table 5.3-1 and

Figure 5.3-1 above.  This high-value fuel gases can be burnt as a mixture to

provide energy for the pyrolysis-catalysis plant and separated and sold as

individual gases

Figure 5.3-2 Fuel range (C5 – C15) and high molecular weight (C16+) hydrocarbons
from the pyrolysis-catalysis of HDPE in relation to zeolite structure
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Figure 5.3-2 shows the fuel range (C5-C15) hydrocarbons in the product oil

from un-catalytic, zeolite ZSM-5 and Y zeolite catalyzed pyrolysis run. Equally,

the high molecular weight (i.e. C16+ hydrocarbons) are presented in the figure.

Thus, for a non-catalytic run as shown in previous sections, there was

~55.0wt% of the condensed oil of high molecular weight hydrocarbons.

However, a noticeable decrease in C16+ higher molecular weight

hydrocarbons was observed when both zeolite catalysts were introduced.

Thus, as found in earlier sections, there was a steady rise in the C5-C15

hydrocarbons with catalyst addition. However, for zeolite Y with 80:1 Si: Al

(Z8), the C5-C15 hydrocarbons reached more than 90wt% of the product oil,

but ZSM-5 (Z6) produce 84.6 wt.%. The large pores of zeolite Y allow heavy

oil penetrate and proper acidic properties compared to ZSM-5 made it

possible to reform PE pyrolyzed oil to gasoline and low coke [15, 19].

Figure 5.3-3  Aliphatic and aromatic content of the product oil from the
pyrolysis-catalysis of HDPE in relation to zeolite structure
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Figure 5.3-3 shows the aliphatic and aromatic content of the product oil from

the pyrolysis-catalysis of waste high-density polyethylene in the presence of

the various Y zeolite (Z-8) and ZSM-5 (Z-6) catalysts.  The uncatalyzed

pyrolysis of high-density polyethylene produced a mainly aliphatic oil

consisting of alkanes, alkenes and alkadienes, with only a low proportion of

aromatic compounds as has been reported by others [11].

For the ZSM-5 zeolite catalysts, there was an increase in aromatic content

compared with Y catalyst. But the findings of greater concentration of

aromatics hydrocarbons with zeolite Y catalyst compared to ZSM-5 was

reported elsewhere [2]. Likewise, Muhammad et al. [20], reported pyrolysis of

WEEE that Y zeolite with lower silica –alumina ratio produced a higher

conversion of the styrene to other aromatics products, particularly benzene

and toluene. Thus, the introduction of the ZSM-5 zeolite catalysts produced a

much higher conversion of plastics to aromatic compounds compared to the

Y  zeolite  catalyst.

Figure 5.3-4 Yields of selected aromatic compounds in the oils produced from
the pyrolysis of HDPE in relation to zeolite structure
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Figure 5.3-4 shows the yields of selected aromatic compounds in the oils

produced by the pyrolysis and pyrolysis-catalysis of waste high-density

polyethylene with different zeolite catalysts.  In the absence of a catalyst, there

were only low concentrations of aromatic compounds as also shown in Figure

5.3.4.  But, when the zeolite catalysts were introduced to the pyrolysis-

catalysis reactor system, the concentration of single ring and two-ring

aromatic hydrocarbons improved evidently. For the Y zeolites, the

concentration of the aromatic compounds produced was less than that for the

ZSM-5 catalysts. Notably, the concentration of benzene, toluene and xylenes

was significantly higher for the product oil using the Y zeolite compared to the

ZSM-5 zeolite catalyst. Lopez et al. [21], investigated the pyrolysis and

pyrolysis-catalysis of mixed plastics at 500 °C using zeolite ZSM-5 catalyst

and, also reported the presence of increased concentrations of benzene,

toluene and styrene with the introduction of the catalyst.

Figure 5.3-5  Simulated distillation of uncatalyzed pyrolysis oil and pyrolysis-
catalysis derived the oil from the pyrolysis-catalysis of HDPE in relation to
zeolite structure.
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The product oils were analysed for their boiling point range distribution using

gas chromatography which enables the simulated distillation of the oils to be

determined (ASTM D2887).  The Figure 5.3-5 shows the simulated distillation

curves for the product oils from pyrolysis-catalysis of HDPE in the presence

of the Y zeolite  and the zeolite ZSM-5 catalyst   compared to the simulated

distillation of the uncatalysed oil as showed  in Figure 5.3-5. The non-catalytic

oil showed that a significant fraction (greater than 50%) of the oils have a

boiling range of greater than 317 °C and only 14% below 150  °C. However,

the catalytic degradation product oils show a shift to lower boiling points,

reflecting the shift in molecular weight range as seen in Figure 5.3-19.

 Both zeolite catalysts show a major improvement in the distillation range of

the product oils suggesting a boiling point range similar to petroleum-derived

kerosene or diesel fuel.

5.4   Summary

The influence of zeolite Y and zeolite ZSM-5 catalysts on the products from

the catalytic pyrolysis of high-density polyethylene (HDPE) has been

investigated. The zeolite catalysts had different characteristics including,

surface areas and silica: alumina ratios in addition to the different crystal

structures of Y and ZSM-5 zeolites. The pyrolysis products included oil, gas

and negligible char. The quantity of oil produced from non-catalysed pyrolysis

of HDPE was more than 74 wt%, and the gases consisted of hydrogen,

methane and C2-C4 hydrocarbons. When the catalysts were introduced, there

was a decrease of between 15.0-30.0 wt. percent in oil yield. However, there

was a corresponding increase in gas yield ranging between 38-50wt. percent
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which increased with catalyst surface area. The catalysed oil was enriched in

benzene ethylbenzene, xylenes, styrene and toluene. The catalyst with the

higher surface area produced a lower conversion of the higher molecular

weight material to single aromatic ring compounds compared to the zeolite Y

catalyst with the lower surface area .

Overall, the results suggest that there is some influence of the surface area

and the Si: Al ratio on the conversion of HDPE to more valuable products such

as fuel range hydrocarbons and chemicals.  However, in this study, the zeolite

catalysts were obtained commercially and consequently, the composition of

the catalysts could not be controlled to enable a thorough study of the

influence of only surface area or the Si: Al ratio.  For example, within each set

of Y zeolite or ZSM-5 zeolite, there was some variation in the catio, for

example, H+ or NH4+, variation in Na2O content and differences in micropore

and mesopore volumes.
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Chapter 6 : THERMAL DEGRADATION OF REAL-WORLD
WASTE PLASTICS AND SIMULATED MIXED PLASTIC FOR
FUEL PRODUCTION

This chapter discussed the results of thermal degradation of real-world waste

plastics and simulated plastic in a two-stage pyrolysis-catalysis bench scale

reactor for fuel production.

6.1   Introduction

Muhammad et al [1], reported a suggestion that an optimum reactor

configuration  for the catalytic pyrolysis of waste plastic will be a two-stage

reactor, with a first stage of pyrolysis followed by catalysis in a second stage

reactor [2].They further stated the advantages includes greater control and

optimization of temperature for each stage process, particular suitability for

mixed plastic wastes. It is particularly suitable for the mixed plastic where any

residue or dirt remains in the first pyrolysis stage, protection of the catalyst

from carry-over of particulates that may deactivate the catalyst. Likewise, it

will improvement the contact between pyrolysis products and catalyst, and

ease of recycling of the used catalyst. Series of authors have investigated the

catalytic pyrolysis of plastics using different reactor type, reaction condition

and catalyst. Nevertheless, the large majority of studies of couple pyrolysis-

catalysis of plastic have been with single, pure polymer plastics; there are

fewer studies on the pyrolysis-catalysis process using real-world post

consumer mixed plastic waste.
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However, in this work real-world, post-consumer plastic waste has been

processed using a two stage, pyrolysis-catalysis reactor discussed in chapter

3 section 3.3. They are processed using an HZSM-5 catalyst to produce high-

quality liquid fuel containing fuel range hydrocarbons. Also, pure, single-

polymer plastics in the form of PE, PP, PS, and PET were also processed in

the pyrolysis-catalysis reactor system. Likewise, a simulated mixture of the

four plastics was also processed to determine if there was any interaction

between the plastic products during the process that might influence the

composition of the product oils and gases.

Table 6.1-1  Composition of waste plastics used for research

Waste
HDPE

(Wt. %)

LDPE

(Wt. %)

PP

(Wt.
%)

PS

(Wt.
%)

PET

(Wt. %)

PVC

(Wt.
%)

Others

(Wt. %)
Reference

Slovenia

P-MSW1
652 - 9 9 10 1 6 [3]

Synthetic
mixture 34.57 34.583 9.57 9.57 10.64 1.07 - [3]

South
Taiwan

P-MSW
38 24 34 1 - 3 - [4]

Synthetic
mixture 33 22 33 11 - - - [5]

Synthetic
mixture 682 - 16 16 - - - [6]

Hungary

P-MSW
59.12 - 25 7.2 - - 8.74 [7]

Synthetic
mixture 402 - 35 18 4 3 - [8]

Synthetic
mixture 30 - 30 20 5 10 5 [9]

1 Plastics from MSW
2 Comprises, HDPE & LDPE
3 Equal quantities of LDPE & LLDPE
4 Comprises PET, PVC, PA & ABS
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The proportion of the four plastic in the simulated mixture based on a short

review of the literature (Table 6.1-1) [3],[4-9]. The range of waste plastic used

in this work was selected to reflect the range of the main plastic  polymers

found or researched in municipal solid waste plastics

6.2   Mixed plastic Characterization

The plastic samples were characterized using thermogravimetric analysis

as described in chapter 3 section 3.4.2.
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Figure 6.2-1  Thermogravimetric Analysis for (a) Virgin  Plastics, (b) Real-world
mixed plastics (MP) and(c)  Simulated mixed plastic (SMP)

The plastic samples were characterised to study the thermal degradation

of the plastics with increasing temperature of pyrolysis. Figure 6.2-1a shows
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and DTG the real-world mixed plastic (MP), and Figure 6.2-1c the TGA and

DTG of the simulated mixture of plastic (SMP).

The TGA thermograms of the individual plastic polymers  in the Figure

above, showed that polystyrene gave the main degradation peak at a lower

temperature (~420 °C), lower than the other polymers and that polyethylene

had the highest degradation temperature (~480 °C).  The order of thermal

degradation was PS < PET < PP < PE. The mass loss thermograms for the

real-world mixed plastic waste showed a DTG single peak at 480 °C, which is

consistent with its reported composition of mainly polyalkene plastics.  The

simulated mixture of plastics showed two areas of weight loss on the TGA, as

shown by the two DTG peaks indicating weight loss attributed to the PS and

PET composition at the lower temperature (~420 °C) and the PE and PP

content at the higher temperature (470 °C).

6.3   Product Yield

Panels a and b Figure 6.3-1 show the product yield obtained from the

uncatalyzed and catalyzed pyrolysis of the real-world mixed plastic, simulated

plastic mixture and the four virgin plastics respectively. Virgin plastic

polystyrene gave a maximum oil yield of ~ 97.0 wt. % for uncatalyzed pyrolysis

with catalysed PET producing the lowest oil yield (38.50 wt. %), with a

significant production of char. Park et al [10], investigated the pyrolysis and

catalytic pyrolysis of polystyrene in a semi batch reactor and reported an oil

yield of 96.7 wt. % at a reaction temperature of 480 °C for noncatalytic,

thermal pyrolysis. Similarly, Achilias et al.  [11], reported an oil yield of 91.8

wt. % for the pyrolysis of polystyrene in a fixed bed reactor at 510 °C.
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Polyethylene and polypropylene gave high wax yields of over 80 wt. %; similar

results have reported for the thermal pyrolysis of polyalkene plastics[12].

Figure 6.3-1 Product yield and mass balance (MB) for non-catalytic (a) and
catalytic (b) pyrolysis of real world plastics (MP), the simulated mixture of
plastics (SMP) and virgin plastics (PE,  PP, PS, PET).
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The liquid products from the uncatalyzed pyrolysis of real-world mixed plastic

(MP) and the simulated mixture of plastics gave product yields similar to that

found for polyethylene and polypropylene,  reflecting the dominance of these

polymers in the plastic mixtures investigated. However, the mixed plastics also

produced some char, which reflects the content of PET in the mixtures. The

overall mass balances for the experiments are shown in Figure 6.3-1 and

show that high mass closures were achieved.

The addition of the Zeolite HZSM-5 catalyst to the second-stage catalytic

reactor produced a marked increase in gas production from the pyrolysis-

catalysis of the plastics with a resultant reduction in oil yield.  The exception

was for the polystyrene that maintained a high yield of oil (91.5 wt. %) in the

presence of the catalyst. Similar observations on the influence of catalyst on

the plastic pyrolysis were reported by Aguado et al. [13] and Lopez et al. [8,

14]. For example Lopez et al.[8], investigated the catalytic pyrolysis of

packaging plastic waste in a semi-batch reactor at 400 °C using a zeolite

HZSM-5 catalyst. They obtained a product yield for the non-catalytic

experiment of 79.3 wt. % liquid, 17.7 wt. % gas and 3.00 wt. % char, which

changed to 56.9 wt. % liquid, 40.4 wt. % gas and 3.20 wt. % char in the

presence of the catalyst. Ateş et al. [7], also reported a reduction in the oil

produced by the catalytic pyrolysis of municipal solid waste derived plastics

when zeolite HZSM-5 catalyst was added to the process of catalytic pyrolysis.

The mass of carbon deposited on the catalyst during pyrolysis determined

by temperature programmed oxidation (TPO) which showed that the carbon

deposition was only 0.48 wt. % of the mass of reacted catalyst. Similarly,
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scanning electron microscopy observation of the  reacted catalysts are shown

in Figure 6.3-2 for the fresh HZSM-5 (Figure 6.3-2 a), reacted HZSM-5 with

HDPE (Figure 6.3-2 b); reacted HZSM-5 with MP (Figure 5.3-2 c) and reacted

HZSM-5 with HDPE 5 (Figure 6.3-2 d). The SEM observation of the reacted

catalyst after the pyrolysis-catalysis experiments did not reveal any significant

carbon deposition on the catalyst surface.
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(a) Fresh HZSM-5 (b) HZSM-5 spent for HDPE

(c) HZSM-5 spent for MP (d) HZSM-5 spent for SMP

Figure 6.3-2  SEM analysis of the fresh and reacted HZSM-5 after
pyrolysis for the plastic samples

Kumar et al. [15], reported that low acidity zeolite catalysts, with a high

Si:Al ratio (similar to this work), would produce lower coke formation than a

high acidity, low Si:Al ratio catalyst, but with the disadvantage that the lower



209

acidity means that the catalyst is less effective in cracking hydrocarbons

compared to a high acidity catalyst.

6.4   Gas Composition:

This section described the gas composition from various pyrolysis

experiments carry out.

Figure 6.4-1 Gases produced from (a) non-catalytic (b) catalytic pyrolysis of real
world plastics (MP), the simulated mixture of plastics (SMP) and virgin
plastics (PE, PP, PS, PET).
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the zeolite catalyst for the pyrolysis and pyrolysis-catalysis of the real world

plastics (MP) the simulated mixture of plastics (SMP), and the virgin plastics

(PE, PP, PS, PET). Likewise, Figure 6.4-1a shows that the main gases

produced during the thermal pyrolysis of MP, SMP, PE and PP in the absence

of the catalyst were C2 (mainly ethene with lower concentrations of ethane),

C3 (mainly propene) and C4 gases (mainly butene). These plastic samples

consisted of mainly polyalkene polymer structures. But, the polyalkenes

plastic are thermally degraded via a random scission process to produce

mainly alkene gases C2H4, C3H6, and C4H8, and to a lesser extent the alkanes

gases, C2H6, C3H8, and C4H10 [16]. The pyrolysis of polystyrene produced little

gas.  For PET, the main gases were carbon dioxide, formed from the

decarboxylation of the PET  and CO, as well formed through decarboxylation

of polymer or reaction between carbon dioxide and char [16].

The addition of the zeolite HZSM-5 catalyst showed a marked rise in the

yield of the C2 – C4 hydrocarbon gases, but particularly C3 for the pyrolysis-

catalysis of the MP, SMP, PE and PP plastics (Figure 6.4-1b). The yield and

composition of the product gases from the pyrolysis-catalysis of PS and PET

(Figures 6.3-1b and 6.4-1 b) showed only a small influence when the Zeolite

catalysts were introduced to the process. Other researchers have reported the

observed enhanced production of hydrocarbon gases with the introduction of

a zeolite catalyst.[2, 14, 15, 17]. For example, Lopez et al. [14],  reported that

the main gases derived from the thermal processing of a mixture of plastics

(PE, PP, PS, PET, PVC) were methane, ethene, ethane, and C3-C4 gases.

The C3-C4 hydrocarbons were the highest product gases. They also reported
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the presence of CO and CO2 derived from the PET in the plastic mixture. The

introduction of a zeolite HZSM-5 catalyst to their process produced an overall

increase in gas yield, including C3-C4 hydrocarbon gases.

Table 6.4-1 Possible Interaction of plastics during pyrolysis of the simulated
mixture of plastics compared with the expected gas composition based
on the proportions of the individual plastics.

	 	Thermal	Actual	

Gas	Yield	

(Wt.	%)	

Expected	

Gas	Yield	

(Wt.	%)	

Hydrogen 0.02 0.02

Methane 0.27 0.47

C2 Hydrocarbons 1.18 1.83

C3 Hydrocarbons 1.78 2.73

C4 Hydrocarbons 1.88 2.12

Carbon monoxide <0.10 0.74

Carbon dioxide 1.41 1.78

Catalytic Actual

Gas Yield

(Wt. %)

Expected

Gas Yield

(Wt. %)

Hydrogen 0.13 0.12

Methane 0.50 1.01

C2 Hydrocarbons 6.87 6.54

C3 Hydrocarbons 18.76 16.73

C4 Hydrocarbons 11.27 8.11

Carbon monoxide <0.10 0.98

Carbon dioxide 1.65 2.08

Table 6.4-1 shows the gas concentration of the gases produced from pyrolysis

and pyrolysis-catalysis of the simulated mixture of plastics compared with the
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expected gas composition based on the proportions of the individual plastics.

The gas composition for the simulated mixture of plastics showed a yield of

the C2, C3 and C4 gases was higher than expected based on the proportions

of each gas generated by the individual virgin polymers, which suggests some

interaction between the individual virgin plastics in the mixture. The yield of

carbon monoxide and carbon dioxide from the pyrolysis and pyrolysis-

catalysis was lower than would be expected, suggesting an interaction of the

mixture of plastics.

Jing et al. [18], used a closed batch reactor to investigate the pyrolysis

50:50 ratio mixture of low-density polyethylene and polypropylene and also

reported an interaction between the polymers. The yield of gases, specifically

the yield of alkane gases, C2H6, C3H8 and C4H10, was increased compared to

that expected from the proportions of the individual plastics.  Williams and

Williams [12], also showed that for several different plastics, mixing the

individual plastic with polystyrene produced a clear interaction between the

plastics, resulting in increased yield of alkene gases.
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6.5   Oil Composition:

This section described the gas composition from various pyrolysis

experiments carry out.

Figure 6.5-1  Influence of HZSM-5 on the distribution of fuel range (F.R.) and
high molecular weight (HMWt) compounds in non-catalysed (a) and

catalysed ( b) product oil from processing MP,  SMP and virgin plastics
(PE, PP, PS, PET) in comparison to gasoline

The product yield from the pyrolysis-catalysis of the plastics shown in

Figure 6.3-1 showed a decrease in oil yield when the Zeolite catalyst
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introduced to the second stage of the pyrolysis/catalysis process. However,

the composition of the oils was greatly influenced by the presence of the

catalyst. Thus, Figure 6.5-1 shows the influence of the addition of  zeolite

HZSM-5 catalyst addition on the fuel range  ( i.e. C5-C15) and the high

molecular weight (i.e. C16+) hydrocarbon compounds,  for the uncatalyzed (a)

and catalyzed ( b) product oils,  respectively. The results of the fuel range and

high molecular weight hydrocarbons were compared to standard gasoline

hydrocarbons. The uncatalyzed pyrolysis of the plastic samples showed a

high proportion of fuel range hydrocarbons, but also significantly a high

content of the high molecular weight hydrocarbons from C16 and above.

However, in the presence of the catalyst, the fuel range hydrocarbons

dominate the composition of the product oil. Sakata et al. [19], investigated

the pyrolysis and catalytic pyrolysis of polyethylene and polypropylene for

several different catalysts, including zeolite ZSM-5.  For the processing of

polyethylene, they reported a pyrolysis oil yield of 69.3 wt. % which decreased

to 49.8 wt.% when zeolite ZSM-5 catalyst was present, with a corresponding

rise in gas yield from 9.60 wt. % to 44.3 wt. %. They also reported for

polypropylene an oil yield of 80.1 wt.% for thermal pyrolysis that decreased to

47.0 wt. % with the zeolite catalyst and gas yield increased from 6.6 wt. % to

50.0 wt. %. They attributed the changes to be due to the strong surface acidity

of the zeolite ZSM-5 catalyst that promoted the degradation and or cracking

of the heavier hydrocarbons into lighter hydrocarbons.  Although the oil yield

was reduced with the catalyst, Sakata et al.[19] showed that the majority of

the hydrocarbons in the product oil had a carbon number distribution in the
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gasoline range compared to the uncatalyzed pyrolysis oil with a significantly

higher carbon number distribution.

The product oils from the thermal pyrolysis and catalytic pyrolysis of the plastic

samples were analyzed for their fuel properties by simulated distillation using

gas chromatography to determine the boiling range distribution of the oils. The

results are shown in Figure 6.5-2.

Figure 6.5-2  Simulated distillation of (a) the uncatalyzed pyrolysis oil and (b)
the pyrolysis-catalysis product oils.
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oils show a shift to lower boiling points, reflecting the shift in molecular weight

range as shown in Figure 6.5-1. Although there was an improvement in the

properties of the product oils in the presence of the catalyst, boiling range

distributions for gasoline would be >95% below 150 °C. However, for the

pyrolysis−catalysis product oils, the boiling range fraction below 150 °C was

between 50% and 70%.

Figure 6.5-3 Distribution of aliphatic and aromatics hydrocarbons in (a) non-
catalysed and (b) catalysed (b) product oil from processing of real world
plastics (MP), the simulated mixture of plastics (SMP) and virgin plastics
(PE, PP, PS, PET).
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The hydrocarbon composition of the oils produced from the pyrolysis and

pyrolysis-catalysis of the plastic samples presented as fuel range (C5-C15) and

the high molecular weight (C16+) hydrocarbons shown in Figure 6.5-1. It may

also be presented in terms of their aromatic and aliphatic content. Thus, the

Figure 6.5-3  shows the composition of the product oils from pyrolysis (a) and,

also the pyrolysis-catalysis (b) of the three categories of plastics. The plastics

include real-world plastics (MP), the simulated mixture of plastics (SMP) and

virgin plastics (PE, PP, PS, PET). Accordingly, for the plastic samples

containing the polyalkene polymers (MP, SMP, PE, PP), the oil produced from

pyrolysis was mainly aliphatic in nature. However, the polystyrene and

polyethylene terephthalate produced an aromatic oil derived from the aromatic

nature of the polymer structure. The polyethylene and polypropylene pyrolysis

oil would be expected to be almost wholly aliphatic in content, but there was

some aromatic content.  These aromatics present may be due to the cracking

reactions over the sand placed in the second stage reactor (for the

uncatalysed experiments), also resulting in an extended time in the hot zone

of the reactor. Abbas-Abadi et al. [20], have reported an aromatic content of

10% in the pyrolysis oil from pyrolysis of polypropylene in a semi-batch

reactor. Jung et al. [21], too reported an aromatic content of ~25 wt.% for the

pyrolysis of polypropylene using a fluidised bed reactor,  at 668 °C (a higher

temperature than used in this work). Both Abbas-Abadi et al. [20] and Jung et

al. [21] reported increasing aromatic content in the product oils with increasing

temperature. The PET produced an oil which consisted of a mainly aromatic

content with benzoic acid detected in large quantities (~30 wt. %). Jing et al.

[18] , in their work proposed a mechanistic model as shown in Figure 5.5-5.
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The model considers only the main reactions ( chain initiation, intermolecular

hydrogen transfer, intramolecular hydrogen transfer, and β-scission) to

evaluate the interaction between PP and LDPE.

Figure 6.5-4  Jing et. al.[18] proposed interaction scheme by enhanced
intermolecular hydrogen transfer.

The model revealed that there were more radical from thermal degradation

of PP in Figure 6.5-4 (feature A1) than the thermal degradation of PE (feature

A2) in the initial process.Decomposition of PP provides PE with more radical

(Rp or  Rs) which after intermolecular hydrogen transfer from PE and a β-

scission, respectively (feature D1 and B1), the reaction path of PE  taken.

Consequently, the initial reaction of PE degradation is enhanced by chain
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transfer reaction with Rp or Rs.The model further shows that PP radicals (Rp

or Rs) abstract hydrogen from PE or their cracked products (D1, D2 and so on

) to form i-alkanes or i-alkenes. Whereas PE and their cracked products

degrade to form shorter-chain n-alkanes or n-alkenes by β-scission, followed

by intermolecular hydrogen transfer (featureB1 and D4).

When the zeolite HZSM-5 catalyst was introduced into the process, the

aromatic content of the product oils increased significantly with a decline in

the aliphatic content of the oils. The polyalkene plastics, PE  and PP, and the

MP and SMP plastic mixtures,  (both of which were dominated by PE and PP),

produced oils with a marked rise in aromatic content in the presence of the

zeolite ZSM-5 catalyst. For aromatic containing polymers, polystyrene and

polyethylene terephthalate, the product oils from the thermal pyrolysis had a

higher aromatic content which further increased when the catalyst was

present in the process. The benzoic acid found in the oil from the thermal

pyrolysis of PET was reduced in the presence of the zeolite catalyst being

cracked to mainly toluene.

Kumar et al.  [15], discussed broadly on the thermo catalytic degradation

mechanism of the polymer. They emphasized that it is a well-known fact, that

the thermal cracking of plastic occurs by a radical mechanism, where the

effect of heat forms the initiating radicals. Conversely, Kumar et al. [15], regard

catalytic cracking of polymer to proceed generally through carbenium ions.

They consider that the ion are produced by the abstraction of H- ion from the

polymer ( as catalyst acts as Lewis acid), or the addition of H+ to it ( catalyst

acts as Bronsted acid) as an initial step. But further cracking of the fragment

formed in the first cracking reactions occur, into lower molecular weight
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hydrocarbons at the active sites of the catalyst. Therefore, the unstable

primary fragments are cracked in further decomposition reaction. Kumar et al.

[15], identified the following elemental reactions to take place both in thermal

and thermo-catalytic cases.

(a) Initiation

(b) Formation of secondary radicals

· Depolymerization, formation of monomers;

· Favorable and unfavorable hydrogen transfer reaction;

· Intermolecular hydrogen transfer ( formation of paraffins and dienes);

· Isomerization via vinyl groups;

(c) Termination by disproportionation or recombination of radical.

The details of the elementary reactions discussed below;

(a) Initiation

 Thermo-catalytic degradation initiation mechanism is partly radical [15].

Hence, the cracking of C-C bond occurs by homolytic cracking of C-C bonds,

in regions with structural faults or distortion of the electron cloud. Kumar et al

[15], cited that thermal decomposition of HDPE as initially proceeds basically

by random scission mechanisms. However, catalytic cracking proceeds

through a carbenium ion from a polymer or the addition of proton n the polymer

macromolecule in the initial step of the reaction [22]. The Figure 6.5-6 below

shows that initial step for the reaction of HDPE.
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Figure 6.5-5  Initiation mechanism of HDPE via carbenium ion [15]

Consequently, C-C bond dissociation is the more probable in initiation step,

this happens as the C-C bond (347 KJ/mol.) is weaker than the C-H bond (413

KJ/mol.). However, both C-C bond and C-H bond dissociated at high

temperatures, and almost only C-C bond does so at low temperature. So, the

initial step in thermal degradation is random scission to unstable hydrocarbon

radicals [24]. Hence, smaller differences were found between thermal and

thermo-catalytic degradation with respect to yields and structure of products

at higher temperatures (450-500 °C) than that at a lower temperature (400-

420 °C)[15]. Kumar et al. [15], summoned that the concentration of isoparaffin

and olefins increased with decreasing temperature, They suggest that it as a

result of the increase in further degradation of branched hydrocarbons, and

which is greater than that of non-branched with increasing temperature.

Hence, similar phenomena could be observed in the case of catalysts
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possessing a weak hydrogenation property accompanied by considerable

acidity because the olefin intermediates formed are isomerized in greater ratio

on the acidic sites of catalysts. On the other hand, the probability of

isomerization, but catalysts activity is decreasing with decreasing of the

catalyst.

(b) Formation of unstable secondary compounds

The unstable secondary compounds of lower molecular weight formed from

unstable molecular fragments (radicals and ions). These are formed in the

initiating reaction as a result of further decomposition reaction with uncracked

macromolecules of polymer or radicals and ions. Figure 6.5-7 shows the

different reactions that occur in a second step; these include β-scission,

isomerization of carbon framework, isomerization of the double bond and

hydrogen transfer reactions.
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Figure 6.5-7  the different reactions in the second step of the polymer
degradation mechanism[15].

But, the different radicals formed in the thermal pyrolysis, from random

scission are capable of stabilizing themselves either by H-abstraction or β-

scission, all of which form stable molecules [15]. However; temperature

determines which reaction would be favored for stabilization. Thus, at low

temperature (200-300 °C) abstraction is the preferred route for radical

stabilization leading to higher hydrocarbons. Then, at high temperature (300

°C) other reactions such as intermolecular H-transfer and intramolecular H-

transfer, β-scission, etc. become important. So, some lighter hydrocarbons

beyond 300 °C are formed due to intermolecular H-transfer followed by a β-
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scission. Dimers, trimers, tetramers, pentamers, etc. are produced via 1, 5 H-

transfer. Hujjuri et al. [23], reported that β-scission and or depolymerization is

responsible for the production of lower molecules at 400-500 °C. So, lighter

hydrocarbons beyond 300 °C are formed due to intermolecular H-transfer.

Kumar et al. [15], noted that the formation of aromatic by Diels-Alders reaction

is possible at a higher temperature. The primary unstable fragment reacts with

alkenes. Thus, polyenes might be the precursor of benzene.

 (c) Termination with recombination or disproportionation

Recombination or disproportionation of an unstable fragment from primary

and secondary cracking could stabilize these products. Consequently, due to

the recombination the molecular weight and branching of products might be

significantly increased. Likewise, cyclization, aromatization or

polycondensation are other ways of termination.  These reactions above result

in forming cyclic alkenes, alkenes, mono and polynuclear arenes or coke [15].

Figure 6.5-8 shows cyclization and aromatization as a termination strip of the

degradation products of polymer.

Figure 6.5-6 Cyclization and aromatization as termination step for degradation
mechanism of the polymer

Zeolite catalysts are known to produce aromatic hydrocarbons during catalytic

pyrolysis of plastics because of the properties of surface area, porosity, and

silica: alumina ratio. The silica: alumina ratio influences the surface acidity of

the catalyst with lower ratios (higher relative surface alumina concentration)
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producing an increase in the surface acidity of the catalyst [24].  For zeolite

catalyst, surface acidity equates with catalytic activity, and the manipulation

of the pore size of the zeolite structure enables reaction selectivity. It has been

shown that low silica:alumina ratio catalysts with consequently higher surface

acidity and surface catalytic activity produce oils with increased content of

aromatic compounds from the pyrolysis−catalysis of PE using different zeolite

catalysts [6, 25]. The zeolite HZSM-5 catalyst used in this work had a Si: Al

ratio of 50, which is relatively high, and consequently the catalysts had a

relatively lower surface acidity and catalyst activity for aromatic hydrocarbon

production. The influence of the pore size of zeolite catalysts is through the

restriction of the size of the hydrocarbon molecule which can enter the pore

structure and participate in catalytic reactions of cracking and reformation

which produce the aromatic hydrocarbons [24]. Therefore, any large molecular

weight materials which are formed from the pyrolysis of the plastic would have

to be thermally decomposed on the catalyst surface before they could enter

the controlled pore size of the catalyst. Kumar et al [15], have discussed, in

detail, the role of catalysts, including zeolite catalysts, in the mechanism of

catalytic thermal degradation of plastics. They summarized the main steps of

catalytic pyrolysis as diffusion on the catalyst surface, adsorption, chemical

reaction, desorption from the catalyst, and diffusion in the liquid phase.
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Table 6.5-1 Evaluation of possible Interaction of plastics during pyrolysis of
the simulated mixture of plastics using aliphatic and aromatic
components

	 Thermal	

Actual	

(Peak	area	%)	

	

Expected	

(Peak	area	%)	

Aliphatic 66.49 79.84

Aromatic 30.53 18.63

Catalytic

Actual

(Peak area %)

Expected

(Peak area %)

Aliphatic 35.53 58.45

Aromatic 57.47 38.75

Table 6.5-1 shows the aliphatic and aromatic hydrocarbon content of the

product oil for the pyrolysis and pyrolysis−catalysis of the simulated mixed

plastics (SMP) compared with the expected content based on the proportions

of the individual plastics. The aromatic and aliphatic content of simulated

plastic and collective yield of the individual plastics that make up the simulated

plastics compared, and evaluated for a possible interaction between the

plastics. The aromatic hydrocarbon content in the oils from the pyrolysis and

pyrolysis−catalysis of the simulated mixed plastics was significantly higher

than expected from the proportions derived from the individual virgin plastics.

This increase in aromatic content in the product oils suggests there is some

interaction of the individual virgin plastic that composed the SMP. Jing et al

[18], reported that for pyrolysis of a 30:70 mixture ratio of PE and PP. They

found there was an increase in the aromatic content of the product oil
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compared to the expected concentration of aromatics derived from the

proportions of the individual plastics, suggesting significant interaction.

Williams and Williams [12], mixed polystyrene in binary mixtures with  HDPE,

LDPE, PP, PVC, and PET and analyzed the product oil from pyrolysis of the

mixtures. It was reported that the concentration of single-, two-, and three-ring

aromatic hydrocarbons in the product oil was influenced by the interaction of

each plastic with the polystyrene.

Figure 6.5-7 Yields of some selected aromatic compounds in (a) non-catalysed
and (b) catalysed (b) product oil from processing of real world plastics (MP),

the simulated mixture of plastics (SMP) and,  virgin plastics (PE, PP, PS,
PET).
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The aromatic hydrocarbons in the product oils from the pyrolysis and

pyrolysis−catalysis of the plastic samples are shown in Figure 6.5-9a, b. The

results are expressed in terms of the peak area in relation to the gas

chromatogram obtained from the analysis. The results show that the

uncatalyzed pyrolysis oil (Figure 6.5-9a) for the polystyrene contained mainly

styrene, derived from the polystyrene polymer. Park et al [10], have also

reported high concentrations of styrene for thermal pyrolysis of polystyrene,

for example, 76.31 wt. % styrene was reported at a pyrolysis temperature of

450 °C. The simulated plastic mixture also contained significant amounts of

styrene, but more than would be expected based on the simulated

composition, suggesting that there was some interaction between the plastics.

Lopez et al [14], investigated the pyrolysis and pyrolysis−catalysis of a mixture

of plastics and reported a higher than expected content of styrene, as also

reported here for the simulated mixture of plastics. Lopez et al [14], also

suggested that other mechanisms such as secondary reactions could result

in the higher styrene content.

The main aromatic compounds produced from catalytic pyrolysis of the plastic

samples with zeolite HZSM-5 catalyst shows (Figure 6.5-9b). They are mainly

single-ring aromatic compounds with benzene, toluene, ethylbenzene,

xylenes, and styrene accounting for a significant proportion as reported by

others [2 14 26]. Benzene produced in high yield for the pyrolysis−catalysis of

the plastic samples, but particularly for PET and for SMP as the catalyst was

introduced, while styrene yields reduced. The reduction of styrene

concentration in the presence of a zeolite catalyst has been attributed to the
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carbenium nature of the acid catalyzed decomposition of polystyrene leading

to the formation of aromatic products other than styrene [27]. For a simulated

mixture of plastics processed at 500 °C, Lopez et al [14], reported toluene

concentrations (% peak area) of 8.1% for pyrolysis which increased to 17.5%

in the presence of a zeolite ZSM-5 catalyst, ethylbenzene increased from

5.0% to 9.6%, and xylenes increased from <3.0% to 13.8%. Bagri and

Williams[28] investigated the pyrolysis and pyrolysis−catalysis of polystyrene

in a fluidized bed reactor using a zeolite ZSM-5 catalyst. The uncatalyzed

pyrolysis oils were found to contain large amounts of styrene. However, the

addition of zeolite catalyst resulted in a marked decrease in styrene

concentration in the product oils and increased concentrations of

monoaromatic compounds. Lin and White [29], also reported that the thermal

degradation of polystyrene produces high yields of styrene, but catalytic

pyrolysis with ZSM-5 catalyst markedly reduced styrene concentration and

increased the production of benzene; in addition, ethyl benzene and toluene

were also formed at lower concentrations. Similarly, Aguado et  al. [30],

investigated the influence of the operating variables on the catalytic

conversion of a polyolefin mixtures over HMCM-41 and nanosized n-HZSM-

5. They proposed reaction pathway  as shown by Figure 6.5-10
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Figure 6.5-8  Aguado et. al,[30] proposed reaction pathways in the (catalytic)
conversion of polyolefins mixtures

Consequently,  due to the addition of n-HZSM-5 zeolite, the cracking takes

place on the external surface of the crystal, yielding mainly light olefin as the

primary products coming from the an-end-chain scission mechanism.The

olefins undergo subsequent oligomerization and cyclization reactions, leading

to heavier aliphatic hydrocarbons.Likewise, aromatic are formed from

hydrogen transfer reaction from the aliphatic products to gaseous olefins and

favor the transformation of olefins into paraffin. However, cracking the

polyolefins on HMCM-41 crystal occur mainly within its mesopores yielding

waxes as the primary products, but the contribution from thermal degradation

cannot be discarded.
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 Summary

A two-stage pyrolysis−catalysis fixed bed reactor was used to investigate the

product yield, composition, and hydrocarbon distribution from the pyrolysis of

plastics. And the pyrolysis−catalysis of real-world mixed plastics, simulated

mixed plastic, and four virgin plastics in the presence of a zeolite HZSM-5

catalyst. For the uncatalyzed pyrolysis of the plastics, a high yield of oil/wax

was obtained for the plastic material in the range of 81−97 wt. %. The yield of

oil/wax decreased with the addition of a catalyst to between 44 and 51 wt. %,

depending on the plastic, with a resultant increase in gas yield. However, the

composition of the pyrolysis−catalysis oils significantly increased in aromatic

hydrocarbon content. Accordingly In addition, the composition of the oils

shifted from high molecular weight hydrocarbons (C16+) to fuel range

hydrocarbons (C5−C15), with a high content of single-ring aromatic

hydrocarbons such as benzene, toluene, ethylbenzene, xylenes, and styrene.

The yield and composition of the products obtained from the pyrolysis and

pyrolysis−catalysis  of  the  simulated  mixture  of  plastics  (PE,  PP,  PS,  PET)

were compared with those obtained from the expected results based on the

individual plastic data. The results showed that there was interaction between

the plastics in the simulated plastic mixture resulting in a yield of the C2, C3,

and C4 gases that was higher than expected in the proportions of each gas

generated by the individual virgin polymers. Also, the aromatic hydrocarbon

content of the oils from the simulated mixture of plastics (SMP) was also

higher than expected.
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Chapter 7 : PYROLYSIS-CATALYSIS OF REAL-WORLD
WASTE PLASTICS AND FUTURE SIMULATED MIXED
PLASTIC FOR VALUABLE PRODUCTION FUELS AND
CHEMICAL FEEDSTOCK

7.1  Introduction

The use of fluid cracking catalyst (FCC) in the oil industries is well established,

and the cost of the catalyst is very high. The quantity of spent FCC catalyst

thrown away as solid waste has risen significantly in recent years due to the

high demand for light and high-quality transportation fuels as well as the

changes in feedstock  [1]. Thus, the disposal of this type of waste which has

been classified as hazardous material in many countries is problematic. So,

the use of spent FCC for waste plastic pyrolysis could prove to be a great idea

for sustainability. Pu et al. [1], suggested that the utilization of spent FCC

catalyst as a raw material in the production of other valuables products is an

attractive option,which takes the environmental regulations and economic

benefit into consideration. Lee et al. [3],  performed a study on the comparison

of plastic types for catalytic degradation of waste plastics into a liquid product

with spent FCC catalyst in stirred semi-batch operation at 400 °C reaction

temperature.  Four plastic materials HDPE, LDPE, PP and PS, were

considered for product rate and liquid product distribution during catalytic

degradation. The authors found that the polyolefin plastics (both PE and PP)

produced a liquid yield of between 80-85 %, but polystyrene gave higher liquid

and less gas. Thus, the degradation temperature influenced the accumulative

liquid product weight by catalytic degradation. Similarly, they showed for all
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polyolefin plastics there was a tendency for similar molecular weight

distribution of the liquid product. But for PS  the liquid products showed an

aromatic content of 97% or over and the C8 aromatic components was about

75%.

This work was based on the predicted future plastic wastes from a review work

reported by Delgado et al.  [4]. The authors carried out a comprehensive

assessment of the environmental advantages and drawbacks of existing and

emerging polymer recovery processes, and arrived at a future plastic waste

composition. The future municipal solid waste (MSW) generation in Europe

was considered and simulated mixed plastic waste was prepared and used

for the study. The plastic sample could be known as future simulated mixed

plastics (FSMP). Five plastics samples considered in this work were as

follows; high-density polyethylene (HDPE), low-density polyethylene (LDPE),

polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and

simulated mixed plastic prepared from plastics as described by Delgado et

al.[4]; and real-world mixed plastics were as earlier  described in chapter 3.

The proportion of each was as follows; PE 62.0% (HDPE 19.0% and LDPE

43.0%), PP (8.0%), PS (15.0%) and PET (15.0%). However, the catalytic

pyrolysis performed in the work used spent FCC catalyst as the main catalyst.

The spent FCC catalyst properties have been detailed in chapter 3 section

3.3.3 of this work. The Influence of catalyst loading on the future simulated

mixed plastic was carried out. Three pyrolysis temperatures were considered

400 °C, 500 °C and 600 °C.

The catalysts used was spent FCC catalyst, Table 7.1-1 show the

characteristic of the catalysts.
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 Table 7.1-1  Characteristics of spent FCC and the zeolite catalysts
used

Catalyst properties FCC

Zeolite Structure FCC-Zeolite

Surface area (m2 g-1) 148.1

Silica: Alumina ratio 16.4

Cation -

Na2O (%) 0.14

Micropore Volume (cm3 g-1) 0.032

Mesopore volume (cm3 g-1) -

Pore radius (Å) -

For each experiment, 2 g of plastic was pyrolyzed in the fixed bed two-

stage batch reactor as described in Chapter 3. The plastic sample was heated

from ambient temperature to 500 °C at a heating rate of 10 °C min-1. In order

to study the effect of the different catalyst (spent FCC) amount, the catalyst

was maintained at a bed temperature of 500 °C. The pyrolysis temperature of

500 °C and nitrogen flow rate 200 ml min-1 maintained throughout all the

experimental run. The catalyst bed was prepared by mixing 2 g each catalyst

and 2 g of 2 mm sized quartz sand and was supported on quartz wool in the

second stage reactor. For comparison, where no catalyst was used, quartz

sand (4 g) was substituted for the catalyst. In this work, FCC1 denotes 1g

spent FCC and 3 g quartz sand while FCC2 denotes 2 g FCC spent and 2 g

quartz sand.
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Table 7.1-2  Catalyst and quartz sand mixing proportion

No catalyst FCC1 FCC2

Quartz (g) 4 3 2

Catalyst (g) 0 1 2

Results
 The various result obtained from the influence of spent FCC loading on

pyrolysis of FSMP are discussed in this section.

7.2   Product Yields

Figure 7.1-1 shows the product yield from the pyrolysis and  pyrolysis-

catalysis of the real-world mixed plastics (MP) and future simulated mixed

plastic (FSMP) as well as the five individual virgin plastics .The results of the

non-catalytic pyrolysis of these plastics have been  discussed earlier.

However, the FSMP, HDPE and LDPE, which are the new sample, the yields

are given  in Table 7.2-1. Lee et al. [3], also observed HDPE, LDPE and PP

produced less liquid and more gas than the PS. A similar result was reported

for thermal degradation of real-world waste plastics and simulated mixed

plastic in a two-stage pyrolysis-catalysis reactor for fuel production [5]. Elordi

et al. [6], investigated the cracking on a spent FCC of polyethylene in a conical

spouted bed reactor at 500 °C reaction temperature. The authors used HDPE

cracked over the spent FCC catalyst and HY zeolite and tested both catalysts

mixture agglomerated with bentonite.They observed for thermal  cracking of

HDPE at 500 °C temperature, waxes (liquid)  were the main products as

obtained in this work and reported by other [3].
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Table 7.2-1  Products Yields for FSMP, HDPE and LDPE thermal
pyrolysis

Non-cat SMP HDPE LDPE
Gas (wt. %) 10.3 1.78 9.32
Oil (wt. %) 79.0 98.0 87.5
Char  (wt.) 3.5 0.00 0.00
MB (wt. %) 92.8 99.8 96.8

Figure 7.2-1  Product yield for  (a)  FCC1 and (b) FCC2 catalytic pyrolysis of real-
world (MP), the future simulated mixture of plastics (SMP), and virgin
plastics (HDPE, LDPE,PP,PS and PET)
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Bajus and Hájeková [7] investigated thermal cracking of the model seven

components of mixed plastics into oils/waxes in a batch reactor  tempertures

from 350 to 500 °C . The author obtained the highest liquid product yield at 450

°C for polyolefin and mixed plastics of 85.0 wt.% for PP and lowest yield 75.4

wt.% for mixed plastics ( LDPE / HDPE /LLDPE /PP /PVC / PS/ PET). The

presence of PET and PVC in the mixed plastic  that evolved volatile product

(gas phase) contribute to low liquid products. Accordingly, a similar trend was

observed in this work as the liquid product from thermal pyrolysis of FSMP (79

wt.%) than HDPE, LDPE, PP and PS. However, the liquid products reduced

and gas products rose with introduction of the spent FCC catalyst as showed

in the Figure  7.2-1 (b) and (c).Therefore, in the presence of the spent FCC

catalysts amount, there was a marked reduction in oil yield and a subsequent

increase in gas yield. The decrease in liquid products and subsequent rise in

gas products with the introduction of catalyst was reported before [8, 9] [6]

[10]. Similarly, the reduction in liquid products and rise in gas products was

found to increase with the amount of the catalysts used for the plastics as

reported elsewhere [6 11 12].

  Gas composition

 Tables 7.2-2, 7.2-3 and 7.2-4 (vol.%) and Figure 7.2-2 (wt.%) shows the

concentration of the product gases with and without the spent FCC catalyst

for the pyrolysis and pyrolysis-catalysis of the real world plastics (MP), the

future simulated mixture of plastics (FSMP) and the virgin plastics (HDPE,

LDPE, PP, PS, PET). However, Figure 7.2-1 (a) shows that the main gases

produced during the thermal pyrolysis of MP, FSMP, HDPE, LDPE and PP in

the absence of the spent FCC catalyst were C2 (mainly ethene with lower
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concentrations of ethane), C3 (mainly propene) and C4 gases (mainly butene).

Hence, these plastic samples consisted of mostly polyolefin polymer

structures. Nevertheless, the polyolefin  plastic is thermally degraded via a

random scission process to produce mainly alkene gases C2H4,  C3H6, and

C4H8, and to a lesser extent the alkanes gases, C2H6, C3H8, and C4H10  [13].

Likewise, the main gases that increased by the addition of the spent FCC

catalyst were the C2-C4 hydrocarbons. The gases were produced by cracking

of the plastics, but carbon monoxide (CO) and carbon dioxide (CO2) were

formed by FSMP and PET samples. The CO and CO2 yield were influenced

by the introduction of the catalyst.

Table 7.2-2  Gas Product composition for thermal pyrolysis of FSMP,
HDPE and LDPE plastics

Not-cat FSMP HDPE LDPE

H2 (vol. %) 4.55 14.8 5.31

CH4 (vol. %) 8.72 11.1 12.0

C2H4 (vol. %) 12.8 19.9 18.7

C2H6 (vol. %) 6.14 9.44 11.6

C3H6 + C3H8 (vol. %) 17.1 28.5 33.0

C4H8 (vol. %) 6.43 8.45 11.9

C4H10 (vol. %) 4.18 7.82 7.43

CO (vol. %) 14.8 0 0

CO2 (vol. %) 25.6 0 0

CV (MJ m-3) 45.5 69.6 77.1

C3-C4 (vol. %) 46.5 74.2 82.7

Note; (the data for PP, MP,PS and PET are given in Chapter 6
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Table 7.2-3  Gas Product composition for FCC1 catalyzed pyrolysis of
MP, FSMP and five virgin plastics

FCC1 FSMP MP HDPE LDPE PP PS PET

H2 (vol. %) 4.46 5.28 8.19 4.44 2.26 100 1.91

CH4 (vol. %) 6.11 9.3 6.98 6.72 5.73 0 3.89

C2H4 (vol. %) 9.88 12.8 11.8 10.4 5.05 0 3.64

C2H6 (vol. %) 3.84 7.20 5.81 6.02 5.76 0 0

C3H6 + C3H8 (vol. %) 26.6 41.1 41.3 45.8 45.3 0 1.08

C4H8 (vol. %) 11.2 15.9 17.3 18.4 26.5 0 0.85

C4H10 (vol. %) 9.71 8.47 8.65 8.27 9.39 0 0

CO (vol. %) 12.2 0 0 0 0 0 46.7

CO2 (vol. %) 16.0 0 0 0 0 0 41.9

CV (MJ m-3) 61.7 82.7 82.7 86.3 92.5 12.1 11.5

C3-C4 (vol. %) 61.3 85.4 84.8 88.8 92.0 0 5.56
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Table 7.2-4  Gas Product composition for FCC2 catalyzed pyrolysis of
MP, FSMP and five virgin plastics

FCC2 FSMP MP HDPE LDPE PP PS PET

H2 (vol. %) 5.47 6.63 6.58 4.31 2.00 49.8 2.42

CH4 (vol. %) 4.72 7.62 6.43 5.38 5.81 8.29 3.84

C2H4 (vol. %) 9.08 11.2 11.37 8.42 4.86 15.8 3.42

C2H6 (vol. %) 2.94 5.61 5.03 4.65 5.49 0.00 0.00

C3H6 + C3H8 (vol. %) 30.5 43.3 47.8 40.2 37.2 21.6 1.62

C4H8 (vol. %) 13.6 16.9 15.2 24.1 30.9 4.50 1.66

C4H10 (vol. %) 6.64 8.72 7.54 12.9 13.8 0.00 0.00

CO (vol. %) 10.9 0.00 0.00 0.00 0.00 0.00 41.6

CO2 (vol. %) 16.2 0.00 0.00 0.00 0.00 0.00 45.4

CV (MJ m-3) 62.7 83.7 83.8 90.8 95.1 43.7 12.2

C3-C4 (vol. %) 62.7 85.8 86.9 90.3 92.2 41.9 6.77
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Figure 7.2-2  Gases produced from non-catalytic (a) FCC1 (b) and FCC2 catalyzed
(c) pyrolysis of real-world (MP), the future simulated mixture of plastics
(FSMP), and virgin plastics (HDPE,LDPE,PP,PS and PET)

Similarly, the calculated calorific value (CV) obtained shows the same trend

as the gas composition. Thus, the CV rises with the introduction of the catalyst
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and further enhance with the amount of the catalyst. Huang et al.[11], reported

work using ZSM-5, MOR, USY, MCM-41, ASA as fluidizing cracking catalysts.

They performed thermochemical conversion of polymer wastes into

hydrocarbon fuels over various FCC on fluidized bed reactor. The authors

observed that the zeolite catalyst yielded high volatile than the non-zeolite

catalyst. The bulk of the volatile product were the gas phase with less than

6.00 wt. % liquid collected. They suggested two of the catalysts show

similarities between them, ZSM-5 and MOR with C1-C4 and C5-C9 yielded 58.7

wt. % and 26.3 wt. % respectively. A similar trend was observed in this work

as shown in Figure 7.3-2 (a) and (b) that show FCC catalysed gas products.

The rise in gas with the amount of FCC could be due to the number of acid

sites. The number of the acid sites may be easily augmented by increasing

the amount of catalyst used or by decreasing the silica-alumina ratio [14].

Therefore, the results obtained reflect the different cracking effect of the FCC

that differs with the amount of the catalyst. Elordi et al. [6], obtained from

catalytic pyrolysis of HDPE higher yield of butenes and propylene with the low

yield  of  C2 and other gases. The authors finding are similar to what was

obtained in this work.  Abbas-Abadi et al. [10], reported an evolution of

pyrolysis process parameters on PP degradation over FCC in stirred reactor

at varying temperature 420-510 °C.
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Figure 7.2-3  Distribution of fuel range and high molecular weight hydrocarbons
for (a) non-catalytic  (b) FCC1 and (c) FCC2 catalytic pyrolysis of MP, FSMP

and virgin plastics

The liquid products were analysed using GC/FID. Thus, from the product

yield for the pyrolysis-catalysis of the plastics shown in Figure 7.2-.1, oil yield

reduced when the spent FCC catalyst introduced to the second stage of the
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pyrolysis/catalysis process. Conversely, the composition of the liquid products

was greatly influenced by the presence of the catalyst. Accordingly, Figure

7.2-3 shows the influence of the addition of  spent FCC catalyst addition on

the fuel range  ( i.e. C5-C15) and the high molecular weight (i.e. C16+)

hydrocarbon compounds,  for the uncatalyzed (a) 1g FCC (FCC1) (b)  and 2g

FCC (FCC2)  catalyzed ( c) product oils,  respectively. The uncatalyzed

pyrolysis of the plastic samples gave a high amount of fuel range

hydrocarbons, but also considerably a high content of the high molecular

weight hydrocarbons from C16 and above. The benzoic acid detected in high

concentration for PET pyrolysis was included in high molecular weight

compounds. Thus the high yield of high molecular weight compound from

thermal pyrolysis of PET was mainly due to high yield of benzoic acid. Though,

in the presence of the catalyst, the fuel range hydrocarbons dominate the

composition of the product oil [14-16]. The improvement in fuel range

hydrocarbon with the introduction of catalyst, further increase with the amount

of spent FCC as shown in Figure 7.2-3 (b)  and (c) for  FCC1 and FCC2

respectively. So, increase in the available activity sites of the catalyst with the

amount of FCC might cause the rise in its activities and production of lighter

molecular weight compounds [14] . The high molecular weight hydrocarbons

from  C16 and above were for both amount of catalysts reduced in the

corresponding order with the increase in fuel range. Likewise, there was a

drastic reduction in benzoic acid for PET with the introduction of a catalyst.
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Figure 7.2-4  Distribution of aliphatic and aromatic hydrocarbons for (a) non-
catalytic (b) FCC1 (c) FCC2  pyrolysis of MP, SMP, and virgin plastics
(HDPE,LDPE,PP,PS and PET).

The distribution of the hydrocarbon compounds obtained from the pyrolysis

processs was also compared in term of aliphatic and aromatic compound

distribution.Figure 7.2-4  shows the distribution of the oil product composition

in terms of the aliphatic and aromatic content.The polymeric stucture of the
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plastic also play a role on the  composition of oil products. For the polyolefins

plastics (MP, FSMP, PE, PP) oil  from pyrolysis was mainly aliphatic in nature.

But, the polystyrene and polyethylene terephthalate produced an aromatic oil

derived from the aromatic nature of the polymer structure. The polyethylene

and polypropylene pyrolysis oil would be more probable to be almost solely

aliphatic in content, but there was some aromatic content.  These aromatics

present may be due to the cracking reactions over the sand placed in the

second stage reactor (for the thermal experiments), also resulting in an

extended time in the hot zone of the reactor. Jing et al. [17], reported that in a

closed batch reactor, there was increase in aromatics for pyrolysed LDPE:PP

mixture when proportion of PP was higher than LDPE 30:70 (3.34 ±0.47% Hα),

whereas lower LDPE:PP  mixture 70:30 yields low aromatics (0.95±0.05 Hα).

The authors suggested on interaction mechanism, in would which probable,

the intermolecular H transfer  and LDPE/PP mixture increases alkene content

by enhancing β-scission. Then the higher alkene content accelerates

aromatics formation by unimolecular cyclisation reactions, followed by

dehydrogenation or Diels-Alder reactions. The aliphatic and aromatic

distribution were influenced with the introduction of the spent FCC catalyst.

Lin [18] reported FCC catalytic degradation of  post-consumer plastic waste

suggested that  FCC and ZSM-5 are likely to form a plastic/zeolite complex

and consequently proceed via the scission reaction to further produced the

volatile products.
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Figure 7.2-5  Yield of some selected aromatic compounds for (a) non-catalytic
(b) FCC1 (c) FCC2  pyrolysis of real-world (MP), the future simulated
mixture of plastics (FSMP), and virgin plastics (HDPE,LDPE,PP,PS and PET)

However, the introduction of the catalyst resulted in an increase in aromatics

and PAH compounds as shown in Figure 7.2-5 (b). Similarly, the production

of the aromatics compound were further enhanced with the amount of the FCC

catalyst used as shown in Figure 7,2-5 (c). The increase in aromatics with the
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introduction of the catalyst was reported by others [3, 19-22]. Lee et al. [3],

reported that a higher yield of the aromatics was obtained in their work from

spent FCC pyrolysis of mixed plastics compared to thermal degradation. The

authors suggested these were due to cyclization of olefin within pores of the

catalyst due to shape selectivity. The higher aromatics obtained for LDPE than

HDPE in this work agree with Lee et al. [3]. Thus, the authors suggested that

pyrolysis of waste LDPE the olefinic intermediates from primary cracking of

the polymer were reacted more readily to the paraffin by hydrogenation and

aromatic by cyclization than waste HDPE [3]. The bulk product of PS was

aromatics and shows similar findings with 97.0% aromatic yields for PS by

Lee et al.[3]. The styrene was the primary product of thermal PS pyrolysis as

reported by others  [16]. The introduction of the spent FCC catalyst

significantly reduced the styrene content and increased benzene, toluene and

ethyl benzene which was further increased with the quantity of the catalyst.

These catalytic effects on the styrene yield was obtained by other researchers

[16]. The bulk of the benzoic acid was produced in the thermal pyrolysis of

PET.  The benzoic acid produced was significantly reduced with the catalytic

cracking and was converted into mainly benzene. The conversion of the

benzoic acid to mainly benzene and another aromatic was further improved

with the quantity of the spent FCC used. Hence, it would seem that the

enhanced yield of all the aromatic compounds considered in the Figure 7.2-5

with the increased quantity of the spent FCC was largely due to increase in

available catalysts sites.
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Fuel properties of product oils

The product oils from the uncatalyzed pyrolysis and catalytic pyrolysis of the

plastic samples were analyzed for their fuel properties by simulated distillation.

The gas chromatography was used for simulated distillation to determine the

boiling range distribution of the product oils. The results of boiling range

distribution are shown in Figure 7.2-6.
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Figure 7.2-6  Simulated distillation of for (a) non-catalytic (b) FCC1 (c)
FCC2   pyrolysis  of  real-world  (MP),  the  future  simulated
mixture of plastics (FSMP), and virgin plastics
(HDPE,LDPE,PP,PS and PET )

The boiling point range distribution for non-catalytic product oil showed in

Figure 7.2-6 (a) have a significant boiling point range  of greater than 250 °C.

But, the boiling point range distribution was significantly influenced with the
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addition of the spent FCC catalyst as shows in Figure 7.2-6 (b) and (c). The

boiling point distribution was further greatly influenced with the quantity of

spent FCC used.
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Summary

The influence of spent FCC catalyst on pyrolysis-catalysis of real-world waste

plastics and future simulated mixed plastic for valuable production of fuels and

chemical feedstock was investigated. The main product of pyrolysis obtained

is hydrocarbon gases, liquid oil and a trace amount of char. The quantity of oil

produced from uncatalyzed future simulated  mixed plastics was 79.0  wt.%

and  real-world  waste plastics 81.5 wt.%, and the gases consisted of

hydrogen, methane, C2-C4 hydrocarbons for both, but additional gases i.e. CO

and CO2 were also produced. However, when the catalyst was introduced,

there were a decrease of between 9-15 wt. percent in oil yield with a

corresponding increase in gas yield ranging from 6-15 wt. % that increased

with catalyst amount. The oil from catalytic test was enriched in single ring

aromatic compounds i.e. benzene, ethyl benzene, xylenes, styrene and

toluene. In addition, the results include the interaction between the individual

plastic that make up the simulated mixed plastic.
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Chapter 8 : INFLUENCE OF CATALYST BED TEMPERATURE
AND CATALYST TYPE ON PYROLYSIS OF FUTURE
SIMULATED MIXED PLASTICS (FSMP)

8.1   Introduction

The use of the catalyst in the pyrolysis of waste plastic has been well

documented [1-12]. However, there are few works among catalytic pyrolysis

of plastic that investigate the influence of catalyst types and catalyst bed

temperature in a two stage pyrolysis-catalysis process. Boxiong et al. [11],

performed pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts over

a fixed bed reactor. The authors investigated the influence of the catalytic

temperature on the yield of the product of pyrolysis-catalysis of waste tyres.

Boxiong et al. [11], reported that an increase of catalytic temperature

enhances gas yield at the expense of oil yield. Achilias et al. [13], reported

work on the chemical recycling of plastics waste made from polyethylene

(HDPE and LDPE)  and polypropylene in fixed bed reactor at 450 °C reaction

temperature. The authors obtained low gas yield for catalytic pyrolysis of

model HDPE, LDPE and PP using acidic FCC catalyst, as well as on waste

products.  The low gas yield was attributed to the low pyrolysis temperature

for all the plastics used. Williams and Brindle[14] investigated catalytic

pyrolysis of tyres in a two stage pyrolysis-catalysis and considered the

influence of catalyst temperature using zeolite Y and ZSM-5 catalysts. The

catalyst was found to reduce the yield of oil with a consequent increase in the

gas and formation of coke on the catalyst[14]. Zhang et al. [15], performed

catalytic co-pyrolysis of biomass and different plastics  (PE, PP and PS) to

improve hydrocarbon yields in a fluidized bed reactor using spent FCC

catalyst, zeolite ZSM-5 and γ-Al2O3. Thus, Zhang et al. [15], reported that the
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spent FCC catalyst gave maximum carbon yield of petrochemicals (71.0%) at

600 °C pyrolysis temperature.

 This work based on a review work reported by Delgado et al. [16] and a

detailed description of the plastics used and preparation are given in Chapter

7.The future municipal solid waste (MSW) generation in Europe as reported

by Delgado et al.[16]. The catalytic pyrolysis carried out in the work makes

use of spent FCC catalyst and fresh zeolite catalysts that include two zeolite

Y catalysts and one ZSM-5 catalyst.  Table 8.1-1 show the characteristic of

the zeolite catalysts. The two Y zeolites catalysts had both different silica-

alumina ratio and surface area, but one Y zeolite catalyst (ZY-2) had the same

silica-alumina ratio with ZSM-5 zeolite catalyst (ZS-1) of 80:1.

For each experiment 2g of plastic was pyrolyzed in the fixed bed two-

stage batch reactor as described in Chapter 3. The plastic sample was heated

from ambient temperature to 500 °C at a heating rate of 10 °C min-1 and the

second stage (catalyst bed) was maintained at a temperature of 500 °C before

the heating of plastic started. Equally, when the influence of catalyst type and

bed temperature were considered, the catalyst bed temperature maintained

at either 500 °C or 600 °C. The pyrolysis temperature of 500 °C and nitrogen

flow rate 200 ml min-1 was maintained throughout all the experiments. The

catalyst bed was prepared as Table 8.1-1.In this chapter, the zeolite catalysts

are designated as ZY-1 and ZY-2 for the Y-zeolites catalysts, ZS-1 for ZSM-5

catalyst and FCC for spent FCC catalyst.
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Table 8.1-1  Catalyst and quartz sand mixing proportion
No catalyst FCC ZY-1 ZY-2 ZS-1

Quartz (g) 4 2 2 2 2

Catalyst (g) - 2 2 2 2

8.2   Influence of FCC bed temperature

In this section influence of the spent FCC catalyst bed temperature was

considered.

8.2.1   Product Yields

Figure 8.2.-1 shows the product yield from the pyrolysis and pyrolysis-

catalysis of the future simulated mixed plastic (FSMP) at 400 °C catalyst bed

temperature.



262

Figure 8.2-1  Product yield for non-catalytic  and catalytic  pyrolysis of the
future simulated mixture of plastics (FSMP) at 400 °C

However, oil yield for thermal pyrolysis at a bed temperature of 400 °C (69.0

wt%) was lower than FCC catalysed (81.0 wt.%), this might be as a result of

a sudden drop in temperature from 500 °C to a catalyst bed temperature of

400 °C. As a result of a sudden drop in the temperature from a pyrolysis

temperature of 500 °C to a catalyst bed temperature of 400 °C  leading to

condensation of melted plastic in the cooler bed temperature clearly shows a

decrease in oil yield for non-catalytic run This occurence of a trend might

indicate that the influence of temperature was more pronounced than the

influence of the catalyst. Aguado  et al. [17], reported the overall conversion

of plastic in the first stage of thermo-catalytic conversion of LDPE solely
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controlled by the temperature in the thermal reactor and were not affected by

the presence of a catalyst in the second stage. Therefore, the authors found

that when the reaction was conducted at 425 °C, only 53-55 wt. % of the

original plastic was collected as hydrocarbon products in the condenser or gas

sampling bag.  So the remaining 45-47 wt. % was unable to pass through the

reaction system and stayed in the thermal reactor as a liquid oil. .But a

remarkable rise in conversion values (90-95 wt. %) was obtained at 450 °C,

and the reaction was completed at 475 °C. The two-stage reactor Aguado et

al. [17], used was an upward draft, and the nitrogen flow rate was 39 ml min-1

unlike the down draft system and 20 ml min-1 nitrogen employed in this work.

The Figure 8.2-2 shows the schematic diagram of two-stage reactor used by

Aguado et al. [17].

Figure 8.2-2 A schematic representation of two stage reaction system
by Aguado et al. [17].



264

Accordingly, in this work the flow rate and delivery system gases to move

downwards by nitrogen flow. The pyrolysis temperature was 500 °C. Thus, the

plastic would almost entirely pyrolyze. Accordingly many researchers reported

the strong influence of both catalyst and bed temperature in decreasing oil

yield and a corresponding increase in gas yield [9, 14]. Venuto et al. [18],

reported that the activity of modern zeolite cracking catalyst has improved to

the point where, for the most part, only 1 to 4 seconds of contact time are

required to effect substantially complete a non-aromatic portion of the feed.

Lee et al. [19], suggested that the yields of gas and liquid from catalytic

degradation strongly depended on the type of plastics. Thus, the overall

performance of the spent FCC on the degradation of FSMP was dependant

of the proportion of the individual virgin plastic that made up the mixture.

8.2.2   Gas composition

The main gases produced during the thermal pyrolysis of FSMP at 400 °C bed

temperature were C2 (mainly ethene with lower concentrations of ethane), C3

(mainly propene) and C4 gases (mainly butene), carbon monoxide and carbon

dioxide as shown in Table 8.2-1. So that the gas yield of hydrocarbon product

depended on the bed temperature. Therefore, even at a bed temperature of

400 °C, the spent FCC catalyst prevented the condensation of the melted

plastic and rather transferred hydrocarbons to oil products.
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Table 8.2-1  Gas Product composition for FCC catalyzed pyrolysis of
FSMP at different catalyst bed temperature

Thermal FCC

400 °C 400 °C

H2 (vol. %) 5.99 5.16

CH4 (vol. %) 0.99 3.36

C2H4 (vol. %) 7.61 6.28

C2H6 (vol. %) 3.92 2.48

C3H6 + C3H8 (vol. %) 11.76 23.34

C4H8 (vol. %) 4.66 15.54

C4H10 (vol. %) 6.50 9.30

CO (vol. %) 22.23 10.12

CO2 (vol. %) 36.35 24.41

CV (MJ m-3) 34.94 58.95

C3-C4 (vol. %) 34.44 56.94

Figure 8.2-3 Gas composition from non-catalytic (a) and catalytic (b)
pyrolysis of the future simulated mixture of plastics (FSMP)
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The FSMP consist of  mainly polyolefin i.e. HDPE, LDPE and PP (more than

65 wt.%), and they are known to thermally degraded via a random scission to

produce mainly alkenes gases C2H4, C3H6, and C4H8, and to a smaller range

the alkanes gases, C2H6, C3H8, and C4H10  [20]. Table 8.2-1 and Figure 8.2-3

shows the concentration of the product gases with and without the spent FCC

catalyst for the pyrolysis and pyrolysis-catalysis of the future simulated mixture

of plastics (FSMP) at 400 °C bed temperature. The pyrolysis of polystyrene is

known to produced a small quantity of gas while PET is the source of  CO2 by

decarboxylation and CO formed through decarboxylation of polymer or

reaction between carbon dioxide and char [20]. Thus, FSMP gas production

is affected by both PS and PET that are part its constituents, so low gas yield

and the presence of CO and CO2 are due to the present of PS and PET

respectively. The yield of gas rises with the introduction of the catalyst, so also

do the constituent gases, C3, C4, and CO2 which show a significant rise. Zhang

et al. [15], reported that the degradation of plastic is an endothermic reaction;

thus, the olefin yield increases with the increasing temperature. Aguado et al.

[17], observed the selectivities by carbon atom number exhibited by the

hydrocarbon products produced at different temperature (425-475 °C) in the

absece of catalyst;  yield of light species at 425 °C were 16.0% and increased

to 37.0% at higher temperature of 475 °C. However, cracking over n-HZSM-5

at 450 °C (C1-C4) fraction reached 77.0%.  The authors attributed this increase

to high acidic properties of the catalyst.
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  Product oils composition

The product oils were characterized using data from GC/FID analysis into fuel

range and high molecular weight compounds. The distribution of the fuel

range and high molecular weight for FSMP at 400 °C different bed

temperature is shown in Figure 8.2-4.

Figure 8.2-4 Distribution of Fuel range (C5 – C15) and high molecular
weight (C16+) hydrocarbons for (a) non-catalytic  and (b) catalytic
pyrolysis of the future simulated mixture of plastics (FSMP) at
400 °C

The high molecular weight compounds distribution reduced with the

introduction of catalyst and a corresponding increase in fuel range

hydrocarbons was observed. The spent FCC with low Si: Al showed mild

activity with its high available acidic sites. The low catalyst bed temperature

did not significantly enhance fuel range hydrocarbon production. Escola et al.

[21], reported work on conversion of PE into transportation fuels by the

combination of thermal cracking and catalytic hydro-reforming over Ni

supported on hierarchical beta zeolite. The authors obtained for thermal

cracking of LDPE in a stirred autoclave reactor at 400 °C mostly hydrocarbon
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within the range of gasoline (C5-C12, 48.4%) and light diesel C13-C18, 35.5%) ,

with the remaining hydrocarbon being gases (C1-C4, 0.4%) and heavy diesel

(C19-C40, 15.7%). Accordingly, these hydrocarbon fractions are suggested

cannot be used in a straightforward way as transportation fuels due to the high

amount of olefins that might lead toward the formation of gum in the engines

as well as during storage. The same can be said of the oil produced from both

the catalytic and thermal runs at a bed temperature of 400 °C in this work.

Figure 8.2-5 Distribution of aliphatic and aromatics hydrocarbon for
(a)non-catalytic and (b)  catalytic  pyrolysis of the future
simulated mixture of plastics (FSMP)

Figure 8.2-5  shows the distribution of the oil product composition in terms of

the aliphatic and aromatic content from pyrolysis process of FSMP at 400 °C

catalyst bed temperature.The polymeric structure of the plastic that made up

the future simulated mixed plastics might also play a role in the distribution as

more than 65.0% of the mixture made up polyolefins plastics. Thus, the oil

from pyrolysis was mainly aliphatic in nature. Nevertheless, the polystyrene

and polyethylene terephthalate component of the mixture were expected to

contribute an aromatic oil derived from the aromatic nature of the polymer

structure. Those aromatic compounds present were suggested to come from
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the cracking reactions over the sand placed in the second stage reactor (for

the thermal experiments), also resulting in an extended time in the hot zone

of the reactor. The aliphatic compound distribution showed modest rise  (63.8

to 67.4%) with the introduction of FCC catalyst and  a decrease in aromatic

yield (35.8 to 32.1%). These further demonstrate that the low catalyst bed

temperature did not support good catalyst activity. Escola et al. [21], obtained

very low aromatic yield in the hydrocarbon mixtures at 400 °C cracking

temperature in a stirred autoclave reactor. The authors regard the low

aromatics compound observed not suitable for use in the transportation fuel

mixture, as the presence of a higher amount of aromatics in the gasoline

enhances the desired research octane number (RON).

The fuel property of the product oils was investigated using gas

chromatography to determine the boiling range distribution of the product oils.

The boiling range distribution results are shown in Figure 8.2-6. The product

oils from thermal pyrolysis showed that a higher fraction of the oils has a

boiling point range greater than 300 °C, compared to those obtained in the

presence of spent FCC. However, the spent FCC catalysed products oil show

an only modest shift to lower boiling points, reflecting little appreciable shift in

molecular weight range as observed in Figure 8.2-4.
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Figure 8.2-6 Simulated distillation of (a) thermal and (b) catalytic
pyrolysis product oils from FSMP.

8.3   The influence of catalyst type and bed temperatures for
the pyrolysis-catalysis on the future simulated mixed
plastic

The preceding section shows that while the spent catalyst resulted in the

better conversion of plastic samples at 400 °C  bed temperature, the yield of

fuel range compounds showed only a slight improvement. Therefore, the other

catalyst were tested at 500 °C and 600 °C bed temperature. Thus, in this

section, the spent FCC catalyst and three fresh zeolites catalysts were used

to study pyrolysis-catalysis of future simulated mixed plastic (FSMP). The four

catalysts described in Table 7.1-1 all designated as follows; ZY-1 and ZY-2

for the Y-zeolites catalysts, ZS-1 for ZSM-5 catalyst and FCC for spent FCC

catalyst.
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8.3.1   Product Yields

Figure 8.3-1 Product yield for non-catalytic  and catalytic pyrolysis of
the future simulated mixture of plastics (FSMP) at (a) 500 °C and
(b) 600 °C catalyst bed temperature

Figure 8.3.-1 shows the product yield from the pyrolysis and pyrolysis-

catalysis of the future simulated mixed plastic (FSMP) at different catalyst bed

temperatures.

Considering FCC performance over the three temperatures tested, the un-

catalyzed pyrolysis of FSMP at between the temperature of 500 °C gave the

maximum oil yield of 79.0 wt.% compared to a bed temperature of 600 °C and

400 °C. The increase in bed temperature led to increasing in gas yield,

particularly visible at 500 °C and 600 °C. For example, in the non-catalytic run,
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gas yield increased from 6.81 to 10.27 wt.% as the bed temperature increased

from 400 °C to 500 °C. There was a 3-fold increase in gas yield after bed

temperature increased from 500 °C to 600 °C for a non-catalytic run. Similarly,

gas yield increased slightly when bed temperature was increased from 400 °C

to 500 °C, but nearly doubled when bed temperature increased from 500 °C

to 600 °C. Accordingly, similar gas and oil yields were obtained for both

catalytic and non-catalytic runs when the temperature was 600 °C. This effect

of the bed temperature might indicate that the influence of temperature was

more pronounced than the influence of catalyst at 600 °C. In Figure 8.3-1. The

thermal pyrolysis of FSMP at 500 °C gave the highest oil yield of 79.0 wt.%,

with ZS-1 catalysed FSMP at 600 °C producing the lowest oil yield (44.5

wt.%), The oil product yield decreased with both catalyst addition and

increases in bed temperature, with a corresponding increase in gas products.

Similar results have been reported in the literature [9, 14, 15].The zeolite ZS-

1  had a low surface area (467 cm3 g-1) and low available acidic catalytic site

as a result of high Si:Al ratio (80:1), however it exhibit higher activity to

produce less oil (44.7%) at 500 °C temperature and highest gas product

(52.9%)  at 600 °C bed temperature. Therefore, the yield of gas rose markedly

at the expense of oil yield with the increase in catalyst bed temperature. Thus,

the same trend in increased gas yield was obtained for ZY-1 (25.9 to 45.3

wt.% ), ZY-2 (19.7 to 32.6 wt.%) and FCC (16.9 to 30.8 wt.%) as the bed

temperature was increase from 500 to 600 °C. The data obtained suggest that

the bed temperature also had an effect on the thermal pyrolysis. The increase

in gas yield with an increase in catalyst bed temperature was reported in the

literature [11, 14].
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8.3.2   Gas composition

Table 8.3-1  Gas Product composition for thermal and catalytic
pyrolysis of FSMP with different catalyst type at 500 °C bed
temperature

500 °C Thermal FCC ZY-1 ZY-2 ZS-1

H2 (vol. %) 4.55 5.47 15.7 22.3 14.3

CH4 (vol. %) 8.72 4.72 9.97 5.27 6.38

C2H4 (vol. %) 12.8 9.08 9.96 9.81 11.9

C2H6 (vol. %) 6.14 2.94 4.80 3.06 3.70

C3H6 + C3H8 (vol. %) 17.1 30.5 26.9 24.0 29.0

C4H8 (vol. %) 6.34 13.6 12.6 7.75 9.37

C4H10 (vol. %) 4.18 6.64 4.68 5.04 6.10

CO (vol. %) 14.8 10.9 5.82 7.88 6.32

CO2 (vol. %) 25.5 16.2 9.66 15.0 12.9

CV (MJ m-3) 45.5 62.7 59.0 49.5 57.9

C3-C4 (vol. %) 46.5 62.7 58.9 49.6 60.0



274

Table 8.3-2  Gas Product composition for thermal and catalytic
pyrolysis of FSMP with different catalyst type at 600 °C  bed
temperature

600 °C Thermal FCC ZY-1 ZY-2 ZS-1

H2 (vol. %) 10.6 9.91 31.8 12.6 9.46

CH4 (vol. %) 15.4 14.6 16.7 10.7 7.44

C2H4 (vol. %) 23.1 17.7 8.80 8.98 21.7

C2H6 (vol. %) 6.80 5.88 6.41 3.69 3.40

C3H6 + C3H8 (vol. %) 17.7 21.4 16.1 14.2 25.6

C4H8 (vol. %) 4.65 5.72 5.57 4.15 4.64

C4H10 (vol. %) 3.74 4.64 7.65 2.61 4.51

CO (vol. %) 8.92 7.75 4.49 37.2 19.7

CO2 (vol. %) 9.17 12.5 2.49 5.93 3.55

CV (MJ m-3) 52.7 54.7 33.3 67.2 50.8

C3-C4 (vol. %) 55.9 55.3 44.5 33.6 58.8
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Figure 8.3-2 Gas composition from non-catalytic  and catalytic
pyrolysis of the future simulated mixture of plastics (SMP) at (a)
500 °C and (b) 600 °C catalyst bed temperature

Tables 8.3-1, 8.3-2, Figures 8.3-2  and 8.3-2, shows the concentration of the

product gases for the pyrolysis and pyrolysis-catalysis of FSMP using different

catalysts at 500 or 600 °C bed temperatures. The thermal pyrolysis product

gases consisted of mainly alkenes gases C2H4,  C3H6, and C4H8, and to a

smaller range of the alkanes gases, C2H6,  C3H8, and C4H10. . The gases

produced increased with the temperature rise.Thus, the gas yield were further

enhanced with the introduction of the catalyst so that at 500 °C bed
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temperature, the FCC catalyst (Si:Al, 16.4) with strong acidic site produce the

highest yield of C2-C4 hydrocarbons (62.7 vol.%), while low acidic ZY-2

catalysts (Si: Al, 80.1) produced low yield of C2-C4 (49.7vol.%). However, ZY-

1 with stronger acidic properties (Si:Al, 5.2) produced more H2 and CH4

(15.7vol,%, 9.97 vol.%) than FCC H2 and CH4 (5.47vol.%, 4.72 vol.%).

Similarly, ZS-1 with the  same acidic strength as ZY-2 show better catalytic

activity with a higher yield of C2-C4 hydrocarbons (60.0 vol, %),  lower H2 and

CH4 (14.3 vol.%, 6.38 vol.%). The calorific values of the hydrocarbons

increase with the introduction of the catalyst. Accordingly, at 600 °C bed

temperature there was a corresponding increase in hydrocarbon, CO and CO2

gases with the introduction of catalysts. However, there was some variation

from what was observed at 500 °C bed temperature. ZY-1  recorded lower C2-

C4 hydrocarbons yields of 44.51vol.% and 33.64vol.% respectively than

thermal run 55.93 vol.%. Accordingly, the calorific value (52.7 Mj m-3) of the

gas products decrease with the introduction of the catalyst with spent FCC

gave slightly improved calorific value of 54.7 Mj m-3. Likewise, there was the

corresponding rise in H2 gas for ZY-1 catalyzed pyrolysis of FSMP at 600°C

catalytic cracking temperature. Lin and  Yang [22], reported C1-C4

hydrocarbon distribution from spent FCC commercial equilibrium catalyzed

the conversion of commingled polymer over a temperature range of 340-460

°C. The authors observed an increase in C2-C4 hydrocarbon with the rise in

temperature of 18.2% to 28.7%, but methane and ethane were detected only

at the higher temperatures. Huang et al. [6], observed that change in the

hydrocarbon yield with temperature was similar, for all catalysts tested, with

faster rates observed at higher temperatures.Lopez et al. [23], reported work

on deactivation and regeneration of ZSM-5 in the catalytic pyrolysis of plastic



277

wastes using a semi-batch reactor at 440 °C. The authors  observed that fresh

catalyst enhanced the production of C3 and  C4 fractions compared to the

thermal pyrolysis; but in the case of spent  and regenerated ZSM-5, the

production of C4 fraction was even higher than in the fresh zeolite pyrolysis,

while C3 fraction was lower in the former cases.However, Lopez et al. [23],

obtained similar results for spent catalyst and thermal pyrolysis as C3 and C4

are added (43.8 and 42.6 wt.% respectively) and was lower than  those

observed with fresh  and regenerated ZSM-5 (57.0 and 57.1 wt.%

respectively) and suggested that ZSM-5 promotes the production of such

fractions.

8.3.3   Product oils composition

Similarly, the product oils were characterized using data from GC/FID analysis

into fuel range (C5 – C15) and high molecular weight (C16+) compounds. The

distribution of the fuel range and high molecular weight compounds for FSMP

pyrolyzed using different catalysts at 500 °C, or 600 °C catalytic cracking

temperature was shown in Figure 8.3-3.
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Figure 8.3-3 Distribution of Fuel range (C5 – C15) and high molecular
weight (C16+) hydrocarbons for non-catalytic  and catalytic
pyrolysis of the future simulated mixture of plastics (FSMP) at
(a) 500 °C and (b) 600 °C catalyst bed temperature

The fuel range hydrocarbons increased with catalysts introduction from 62.9

to 85.1 %. The spent FCC at 500 °C catalytic cracking temperature competed

with fresh zeolite catalysts and recorded the second highest yield (83.4%).

The small acidic ZY-2 catalyst gave the best fuel range hydrocarbons yield

(85.1%) better than ZS-1 with the same available acidic sites (Si: Al 80.1).

Thus, a general trend was observed at a 500 °C catalytic cracking temperature
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as high molecular weight compounds were cracked into fuel range

compounds. However, there was a reoccurrence of the increase in fuel range

compounds and decrease in high molecular compounds at 600 °C cracking

temperature. But, this was true for all comparative to 500 °C cracking

temperatures. Nevertheless, spent FCC  and ZS-1 showed an increase in high

molecular weight compounds and reduction in fuel range compounds at 600

°C temperature when compared to their activity at 500 °C cracking

temperature. Lopez-Urionabarrenechea et al. [24], noted that Serrano et al.

[25], suggested  the pyrolysis of polyolefins over the  ZSM-5 catalyst leads to

the reactions through an end-chain scission pathway, yielding light

hydrocarbons as primary products, instead of the typical polyolefin random

scission pathway that takes place in thermal pyrolysis.
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Figure 8.3-4 Distribution of aliphatic and aromatics hydrocarbon for
non-catalytic  and catalytic  pyrolysis of the future simulated
mixture of plastics (FSMP)  at (a) 500 °C and (b) 600 °C
catalyst/sand bed temperature

The distribution of the hydrocarbon compounds obtained from the pyrolysis

process of SMP at different catalyst bed temperature were also compared in

terms of aliphatic and aromatic compound distribution. These are shown in

Figure 8.3-4. The results show that the composition of oils relative to catalyst

bed temperature for the plastics were all influenced by the introduction of the

catalyst. The various catalysts show their different influence at the two catalyst

bed temperatures. There was also influence from the composition of the

plastic sample as mentioned in section 8.2. The aromatic content of the
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product oil was affected by both the catalyst type and bed temperature. So,

the catalyst with the less silica-alumina ratio (ZY-1)  and also higher available

acidic catalytic sites gave highest aromatics yield at both bed temperatures

(47.1% and 61.4% respectively for 500 °C and 600 °C). Similarly, the aromatic

yield rises with an increase in temperature for all the catalysts. The spent FCC

with medium acidic property  due to its low silica and alumina ratio, compete

favourably with other fresh zeolite catalysts recording higher (36.2%) aromatic

yield than ZY-2 (33.7%) with more Si:Al ratio and low acidic catalytic site at

500 °C. However, at the higher bed temperature of 600 °C spent FCC

recorded slightly lower aromatic yield (38.8%) than zeolite ZY-2 (39.8%).

Likewise, the zeolite ZS-1 (ZSM-5)  showed enhanced aromatic compounds

production compared to ZY-2 (zeolite Y)   with both having same Si: Al ratio

at 500 °C catalyst bed temperature. However, at higher catalyst bed

temperature of 600 °C, both catalysts  ZS-1 (41.0%) and ZY-2 (39.8%) show

improved aromatic compounds production and with rather a slight increase in

ZS-1 aromatic compounds production. Thus, there is evidence from many

kinds of literature that the pyrolysis of polyolefins can obtain high aromatics;

the formation mechanism is not well agreed [24, 26]. Lopez-

Urionabarrenechea et al.[24] and Lapez et al. [26], both suggested

mechanism was Diels-Alder reaction followed by dehydrogenation and

unimolecular cyclisation followed by dehydrogenation. Jing et al. [27],

suggested that higher alkene content during catalytic pyrolysis of polyolefin

plastic mixture (LDPE/PP) accelerates aromatic formation by unimolecular

cyclisation reactions, followed by dehydrogenation or Diel-Alders reactions.

The Si: Al ratio of the catalyst influence the product yield, Rahimi et al. [28],
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reported that as the SI: Al ratio increases the yield of BTX decreases over the

modified HZSM-5 zeolites.

Figure 8.3-5 Yield of some selected aromatic compounds for non-
catalytic  and catalytic  pyrolysis of the future simulated mixture
of plastics (FSMP)  at (a) 500 °C and (b) 600 °C catalyst/sand bed
temperature

Figure 8.3-5 shows the peak area % of some specific aromatic hydrocarbons

in relation to catalyst type and bed temperature. The percentage peak area

yield of styrene for thermal pyrolysis of FSMP was 21.03% for 500 °C and 500

°C catalyst/sand bed cracking temperature, and 17.17% for 600 °C

catalyst/sand cracking temperature. Williams et al. [29],  reported a high yield

of styrene with percentage mass yield of derived styrene (53.0±1.0%) for 500

and 600 °C secondary cracking temperature, and 34.0 for the 700 °C cracking

temperature. However, the authors observed during the upgrade of the
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product oil the styrene content markedly decreased in concentration as the

temperature of the secondary reactor increased from 500 to 700 °C. The

reduction of styrene with the styrene dimer and trimer, and from intermolecular

transfer followed by β-scission leading to the production of new radicals and

alkenes. Williams et al. [29], proposed a Diel-Alder reaction for the formation

of PAH from the secondary reaction of alkenes, including the alkene radicals

of styrene and styrene oligomers derived from the pyrolysis of PS [29]. The

Figure 8.3-6 shows the proposed Diel-Alder reaction proposed.

Figure 8.3-6 Diels-Alder reaction of alkenes [29]
The fuel properties of the product oils was examined using gas

chromatography to determine the boiling range distribution of the product oils.

The boiling range distribution results are shown in Figure 8.3-7. The thermal

product oils showed that the substantial fraction of the oils have a boiling point

range greater than 300 °C, but   600 °C bed temperature recorded a large

fraction at a slightly below 300 °C boiling. Accordingly, the catalysed products

oil show a shift to lower boiling points, reflecting the shift in molecular weight

range as observed in Figure 8.3-3.
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Figure 8.3-7 Simulated distillation of (a) 500 °C and (b) 600 °C bed
temperature thermal and catalytic pyrolysis product oils from

FSMP
The significant boiling range distribution for FCC, ZY-1 and ZY-2 are at a lower

boiling range distribution of the product oils.

Other researchers [30] reported that the boiling range distribution for gasoline

would be >95% below 150 °C. However, the catalysis product oil was between

50% and 70% at 150 °C boiling range. Hence, there was an improvement for

catalysis product oil for 500 °C bed temperatures. However, the 600 °C

catalyst bed temperature product oil boiling point range distribution improved

slightly with the introduction of FCC catalyst, while the ZY-1, ZY-2 and ZS-1

gave much better boiling range distribution with a range between 70% and
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80% below 150 °C. All these showed the resemblance to the preceded

molecular weight range distribution shown in Figure 8.3-3.

Summary

The Influence of catalyst bed temperature and type of catalyst on pyrolysis of

future simulated mixed plastic (FSMP) for the production of valuable liquid

fuels and chemical feedstock was studied. Hence, a sample of spent FCC

catalyst was used in a bench batch reactor to investigate the effect of 400 °C

catalyst bed temperature for degradation of FSMP. Subsequently, the

influence of catalyst type at 500 or 600 °C catalyst bed temperature using the

spent FCC,  two zeolite Y and one ZSM-5 catalyst was investigated.The main

product of both thermal and catalytic pyrolysis obtained was gases, liquid oil

and a trace amount of char. The quantity of oil produced from uncatalyzed

FSMP was 79.0 wt.%, and oil yield decreased with temperature, whereas the

gases consisted of hydrogen, methane, C2-C4 hydrocarbons, CO and CO2.

Conversely, once the catalyst was introduced, there were a drastic decrease

in oil yield with a corresponding increase in gas yield. With the spent FCC

shows significant catalytic activity under the three temperature conditions, gas

yield massively increase with the temperature in the presence of the catalyst.

The spent FCC shows that at 500 °C bed temperature highest yield of fuel

range hydrocarbons (83.4%), and the highest aliphatic hydrocarbons at 400

°C (67.4%) and aromatics at 600 °C (38.8%) respectively. Accordingly, when

the influence of catalyst type on pyrolysis of FSMP was considered, oil yields

equally decreased with the introduction of catalyst and further decreased with

temperature. Similarly, a corresponding increase in gas yield was obtained
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with temperature. The caloric value decreases with temperature for thermal

and all catalytic above 500 °C pyrolysis temperature. Hence, all the oil

products from the catalytic test were enriched in single ring aromatic

compounds i.e. benzene, ethyl benzene, xylenes, styrene and toluene. Also,

the results show the presence of interaction between the individual plastic that

make up the FSMP. The spent FCC compete favourably with the fresh zeolite

catalyst in processing the FSMP into valuable gas and liquid products.
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Chapter 9   CONCLUSIONS AND SUGGESTIONS FOR
FUTURE WORK

 The research presented in this thesis has been divided into several sections.

Different commercial zeolite catalysts were tested during the pyrolysis of

different single plastics and mixed plastic samples that are often found in

municipal solid wastes, in order to produce upgraded liquid fuels and valuable

chemicals. A two stage pyrolysis-catalysis reaction system was used to carry

out the experiments described in this research work.

The main aim of the work was the improvement of the thermochemical

process which focused on catalysis for production of good quality liquid

products. A series of different commercial zeolite catalysts and one spent FCC

catalyst were used in the experiments. The range of catalysts had different

physical characteristics such as surface area and silica-alumina ratios. In

addition, some of the catalysts were in powdered form, while others were in

the form of pellets.

9.1   General conclusion

The following conclusions were addressed considering the order of the

Chapters and results in this research work.

9.1.1   Thermal and Catalytic Pyrolysis of Waste Plastic from
Electrical and Electronic Equipment

The effects of two zeolite catalysts, namely Zeolite Y and ZSM-5 were tested

on the catalytic degradation of waste electric and electronic equipment

(WEEE) plastics, and two main plastic components of WEEE plastics i.e. HIPS
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and ABS. The work showed that thermal (non-catalytic) pyrolysis of the

styrene-based plastics produced from commercial waste electrical and

electronic equipment produced mainly an oil product containing mostly

styrene.  The influence of the addition of a zeolite catalyst to the process was

mainly dependent on the Si-Al characteristics of the zeolite catalyst used.

Zeolite catalyst with a lower Si-Al ratio (Y zeolite) produced a higher

conversion of the styrene to other aromatic products, notably benzene and

toluene.  Comparison of the catalytic pyrolysis of high impact polystyrene

(HIPS) and acrylonitrile-butadiene-styrene (ABS) with the WEEE plastics

results suggests that the WEEE plastics consisted of mostly, but not

exclusively HIPS and ABS plastics.

9.1.2   Influence of Zeolite Catalysts Characteristics on the

Catalytic Pyrolysis of Waste High-Density Polyethylene

 The influence of six zeolites catalysts were tested on the catalytic pyrolysis

of waste high-density polyethylene (HDPE) in a two-stage pyrolysis-catalysis

fixed bed reactor. The zeolite catalysts used were of different characteristics

including, surface areas and silica: alumina ratios in addition to the different

crystal structures of Y and ZSM-5 zeolites. The pyrolysis products included

oil, gas and negligible char. The quantity of oil produced from non-catalysed

pyrolysis of HDPE was more than 74 wt%, and the gases (nearly the balance)

consisted of hydrogen, methane and C2-C4 hydrocarbons.  However, when

the influence of catalyst surface area of the catalysts was investigated, there

was a decrease of between 15-30 wt. % in oil yield with ˚introduction of the

catalysts and a corresponding increase in gas yield ranging between 38-50wt.

%.These processes are increased with increase in catalyst surface area. The
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catalysed oil was enhanced in the concentration of benzene ethylbenzene,

xylenes, styrene and toluene. The catalyst zeolite Y with the higher surface

area (935 m2 g-1)  produced a lower conversion of the higher molecular weight

material to single ring aromatic compounds compared to the zeolite Y catalyst

with the smaller surface area (705 m2 g-1).The high-value fuel hydrocarbon

gases improved with the addition of the catalyst and was further enhanced

with an increase in surface area. Likewise, aromatic compounds obtained in

the pyrolysis oil show a similar trend, i.e. decrease in aromatic content and

single ring aromatic compounds with the increase in the surface area.

Accordingly, when the influence of the silica-alumina ratio of the three Y

zeolites was investigated, the results showed reduction in the low molecular

weight hydrocarbons and aromatic compound contents with an increase in the

silica-alumina ratio. However, the single ring aromatic compounds obtained in

the pyrolysis oil decrease with an increase in the silica-alumina ratio.

Decrease in catalytic activity which comes with increase in silica-alumina ratio

perhaps might be the reason for the decrease in single ring aromatic

compounds. But, the catalyst (Z-8) with the least catalytic activity and high

silica-alumina ratio shows better activity due to perhaps its high surface area

and low micropore volume.

Similarly, as the influence of the silica-alumina ratio of the three zeolites ZSM-

5 is considered, the results obtained showed a reduction in the low molecular

weight hydrocarbons and aromatic compound contents with an increase in the

silica-alumina ratio. However, the single ring aromatic compounds obtained in

the oil product also increase with the increase in the silica-alumina ratio. Thus,

a small silica-alumina ratio enhanced the catalytic activity of the ZSM-5
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catalyst for production of more volatile hydrocarbon and aromatic compound.

The fuel properties investigated showed improvement with the introduction of

the catalyst.

Overall, the results suggest that there was some influence of the surface area

and the Si: Al ratio on the conversion of HDPE to more valuable products such

as fuel range hydrocarbons and chemicals.  However, in this study, the zeolite

catalysts were obtained commercially, and the composition of the catalysts

could not be controlled. Therefore, it was not possible to undertake a thorough

study of the influence of only surface area or the Si: Al ratio.  For example,

within each set of Y zeolite or ZSM-5 zeolite, there was some variation in the

catio, for example, H+ or NH4+, variation in Na2O content and differences in

micropore and mesopore volumes.

9.1.3   Thermal degradation of real-world waste plastics and

simulated mixed plastic for fuel production

A  pyrolysis−catalysis investigation of real-world mixed plastics, simulated

mixed plastic (SMP), and four virgin plastics in the presence of a zeolite

HZSM-5 catalyst was investigated . A high yield of oil/wax was obtained for

the plastic materials in the range of 81−97 wt. % during thermal pyrolysis. The

oil product yields decreased with the addition of the catalyst to between 44

and 51 wt. %, depending on the plastic, with a resultant increase in gas yield.

However, the composition of the pyrolysis−catalysis oils significantly

increased in aromatic hydrocarbon content mainly single-ring aromatic

hydrocarbons such as benzene, toluene, ethylbenzene, xylenes, and

styrene.While there was a shift of the high molecular weight hydrocarbons
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(C16+) to fuel range hydrocarbons (C5−C15). The results showed that there

was an interaction between the plastics in the SMP mixture resulting in a yield

of gases that were higher than expected compared to the proportions of each

gas generated by the individual virgin polymers. Also, the aromatic

hydrocarbon content of the oils from the simulated mixture of plastics (SMP)

was also higher than expected.

9.1.4   Pyrolysis-Catalysis of real-world waste plastics and future

simulated mixed plastic (FSMP) for valuable production fuels

and chemical feedstock

The influence of spent FCC catalyst on pyrolysis-catalysis of real-world waste

plastics and future simulated mixed plastics (FSMP) for valuable production

of fuels and chemical feedstock was investigated. Comparison with three fresh

zeolites catalysts was also investigated. The main products of pyrolysis

obtained are hydrocarbon gases, liquid oil and a trace amount of char. The

quantity of oil produced from uncatalyzed simulated (future) mixed plastics

was 79  wt.% and  real-world  waste plastics 81.50 wt.%, and the gases

consisted of hydrogen, methane, C2-C4 hydrocarbons for both, but additional

gases i.e. CO and CO2 werealso produced due to the presence of PET.

However, when the catalyst was introduced, there were a decrease of

between 9-15 wt. percent in oil yield with a corresponding increase in gas yield

ranging from 6-15 wt. % that increased with catalyst amount. The oil from the

catalytic test was enriched in single ring aromatic compounds i.e. benzene-

ethyl benzene, xylenes, styrene and toluene. In addition, the results show

overall include the interaction between the individual plastic that make up the
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simulated mixed plastic. Therefore, the spent FCC catalysts showed strong

catalytic activity for the pyrolysis of real-world and FSMP for the production of

liquid fuels and valuable chemicals.

9.1.5   Influence of catalyst bed temperature and catalyst type on

pyrolysis of future simulated mixed plastics (FSMP)

The Influence of catalyst bed temperature and type of catalyst on pyrolysis of

future simulated mixed plastic (FSMP) for the production of valuable liquid

fuels and chemical feedstock was also investigated. In the previous sections,

the catalyst bed temperature was maintained throughout at 500 °C, so in these

sets of experiments, the catalyst bed temperature was varied from 400 °C to

600 °C. In these tests, the pyrolysis temperature was still kept at 500 °C.

Subsequently, the bed temperature of 400 °C led to a marginal performance

with spent FCC, even though results were better (in terms of conversion)

compared to the non-catalytic tests, which resulted in the deposition of melted

plastics on the cooler bed temperature. Therefore, with the three catalysts, the

influence of bed temperature was investigated at 500 °C or 600 °C. The main

products of both thermal and catalytic pyrolysis obtained are gases, liquid oil

and a trace amount of char.  The oil yield from the non-catalytic test decreased

with temperature, whereas the gases produced increased. Likewise, gas yield

enhanced with an increase in catalyst bed temperature. Invariably,  once the

catalyst was introduced, there were a drastic decrease in oil yield with a

corresponding increase in gas yield, these happened with all the catalysts and

with the different bed temperatures The spent FCC showed significant

catalytic activity under the three temperatures but especially at 500 °C and
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600 °C.  with gas yields massively increasing with temperature in the presence

of the catalyst. The test with the spent FCC at 500 °C bed temperature,

produced the  highest yield of fuel range hydrocarbons (83.38%), whereas the

test at 600 °C gave the highest aromatic yields (38.78%) respectively.

However, when the influence of the catalyst type on pyrolysis FSMP was

considered, the oil yield similarly decreased with the introduction of the

catalyst. Also there was a further decrease with increased bed temperature.

In addition, a corresponding increase in gas yield was obtained with

temperature. The calorific value of the product gases decreased with

temperature for thermal and all catalytic above 500 °C pyrolysis temperature

due to the enhanced yields of hydrogen and methane compared to the C2-C4

hydrocarbon gases. Hence, all the oil products from the catalytic test were

enriched in single ring aromatic compounds i.e. benzene, ethyl benzene,

xylenes, styrene and toluene. The zeolite Y catalyst with lowest Si:Al ratio

performed better than the rest of the catalysts tested, indicating that this

property was influential during the pyrolysis-catalysis process investigated. It

is fair to say though that the spent FCC competed favourably with the fresh

zeolite catalyst in transforming the FSMP into valuable gas and liquid

products.

9.1.6   General remarks

In general, it was found that the two-stage pyrolysis-catalysis of waste plastics

in a fixed bed reactor at 500 °C reaction temperature as established in this

work could be an important technique to treat waste plastics. The use of

zeolite catalyst for the catalytic pyrolysis processes has demonstrated that the

versatile application of the catalyst could be exploited to upgrade the pyrolysis
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oil of waste plastics for more useful applications in the fuels and chemical

industry. The silica-alumina ratio of the catalyst has demonstrated the strong

influence on the overall properties of the catalyst used. The product oils of

pyrolysis-catalysis showed remarkable improvement in quality of both fuel

properties (boiling range temperature distribution), aromatics and fuel range

hydrocarbons. There was strong evidence that the individual plastics used to

prepare simulated mixed plastic interacted among themselves during the

thermochemical process, possibly leading to improved overall properties of

the product oils and gases. Finally, 500 °C catalyst bed temperature was

found to be the optimum reaction temperature for the yield of quality product

liquids for pyrolysis-catalysis of waste plastic into liquid fuels.

9.2   Future work

During the development of this research work, some of the initially identified

objectives were either removed or modified and, so also additional aims were

included according to the experimental results obtained. Therefore, it is

suggested to perform certain tasks to achieve some of these goals. A brief

description of the future work suggested given below.

9.2.1   Life cycle studies of the catalysts used

The zeolite catalysts tested in this research work using plastics samples as

mentioned earlier yielded very low carbon deposition according to TPO

studies. Thus, there is the need to investigate the deactivation properties of

the catalyst under the optimum reaction condition ascertained in this work. For

example, this could be through the repeated reuse of the catalysts or through

increasing the reaction residence times.  Further TGA/TPO and SEM studies
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for the re-used reacted catalyst need to be done to test its potential for

regeneration and reuse.

9.2.2   Use of mesoporous zeolite catalyst and metallic doping of
the catalyst

The use of mesoporous zeolite catalyst could be suggested to explore the

high pore size properties of these catalysts for the production of high-quality

liquid products. Likewise, metal doping of the zeolite catalyst could be

proposed to improve the catalytic activity of the catalyst. The transition metals

such as nickel and Pd could be used to enhance some secondary reactions

for high octane number fuel productions.

9.2.3   Pyrolysis-catalysis of contaminated plastics and co-
pyrolysis of biomass and plastics

The two-stage pyrolysis-catalysis system used could be a potential success

for catalytic degradation of contaminated plastics and co-pyrolysis of biomass

and plastics. Hence, in both cases the pyrolysis vapour produced in the top

furnace and swept downwardly over catalyst bed will minimize catalyst

deactivation potential of the vapour compared to a bed of mixed catalyst and

feedstock. Co-pyrolysis of waste plastics and biomass may become a

veritable way to obtained liquid fuels with the desired consistent and

synergistic properties in the future. Thus, the process might be achieved by

carefully determining the appropriate plastic/biomass ratios through rigorous

experimentation. The plastics component being more energy dense could

provide much needed improvement in the fuel properties in biomass bio-oil.


